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Introduction 

 

Plants produce tens of thousands of different secondary metabolites, compounds with 

important roles in defence against herbivores, pests and pathogens or interaction with 

surroundings but not required for plant growth, development or reproduction in controlled 

conditions. These compounds have a diversity of traditional and novel applications for 

example as medicines, flavourings, colorants, or in agriculture. Catharanthus roseus 

(Madagascar periwinkle) is one of the most studied medicinal plants and it has been the 

object of interest of scientists for several decades. It produces the important class of 

secondary metabolites the monoterpenoid indole alkaloids (MIA) and their precursors the 

(seco)iridoids. From the over 130 known C. roseus MIAs several have pharmaceutical 

applications such as the anti-hypertensive drugs serpentine and ajmalicine and the potent 

antitumor agents bisindole alkaloids vincristine and vinblastine that are widely used to treat 

several types of cancer such as Hodgkins lymphoma, Kaposi‘s sarcoma, breast cancer, 

bladder cancer and testicular cancer. Most MIAs are present in plants in very small amounts 

making their extraction for pharmacological use uneconomical. Because of their complex 

structures total synthesis is unfeasible (van der Heijden et al., 2004). A lot of effort has been 

put into biotechnological ways to produce higher amounts of MIAs such as metabolic 

engineering of cell cultures (Canel et al., 1997), hairy roots (Jaggi et al., 2011; Hughes et al., 

2004; Hong et al., 2006; Magnotta et al., 2007; Peebles et al.  2009, 2011; Wang et al., 2010; 

Pomachova et al., 2009; Zhou et al., 2011; Liu et al., 2011), and even whole plants (Pan et al., 

2012) with the help of hormone treatments and intermediate metabolite feeding (Morgan and 

Shanks, 1999; El-Sayed and Verpoorte, 2002; El-Sayed et al., 2004; Lee-Parsons and Royce, 

2006), but a breakthrough still awaits. To date only parts of the biosynthetic pathway leading 

to MIAs are known. Knowledge of the biosynthesis is essential to biotechnological 

production of MIAs and (seco)iridoids. 
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MIA biosynthesis   

 

The C. roseus MIA biosynthetic pathway is extremely complex with tens of hypothetical steps 

and different branches. The universal precursor of all MIAs, strictosidine, is produced by 

condensation of the monoterpenoid secologanin and the indole compound tryptamine (Fig. 

1) by the enzyme strictosidine synthase (STR) (Mizukami et al., 1979; Pfitzner and Zenk 1989; 

McKnight et al 1990; Pasquali et al., 1992; de Waal et al., 1995). Tryptamine originates from 

the shikimate pathway and is synthesized from tryptophan by the enzyme tryptophan 

decarboxylase (TDC) (Pennings et al., 1989; De Luca et al., 1989), whereas secologanin 

originates from the methyl erythritol phosphate (MEP) pathway via the iridoid pathway 

(Contin et al., 1998; Veau et al., 2000; Chahed et al., 2000; Hong et al., 2003). The iridoid 

pathway is considered to be the rate-limiting step in MIA biosynthesis (Morgan and Shanks, 

1999) and engineering of this part of the MIA biosynthesis pathway may be the key to 

successfully improve MIA production. All MIAs from plants, including the anti-cancer drug 

camptothecin from Camptotheca acuminata and the antimalarial drug quinine from the 

Cinchona tree, are produced from tryptamine and secologanin (O‘Connor and Maresh, 2006). 

This stresses the important role of the MEP and iridoid pathways in engineering of the MIA 

pathway. 

 In C. roseus MIA biosynthesis occurs via the removal of the glucose moiety from 

strictosidine by strictosidine- -D-glucosidase (SGD) yielding strictosidine aglucone giving 

rise to the highly reactive dialdehyde that can go through a number of molecular 

rearrangements. This is the first branching point of MIA biosynthesis leading to the tens of C. 

roseus monomeric MIAs (Scott et al., 1977; Luiendijk et al., 1998; Geerlings et al., 2000). 

Dimeric bisindole alkaloids are formed by condensation of catharanthine and vindoline to 

form 3‘,4‘-anhydrovinblastine by the peroxidase enzyme α-3‘,4‘-anhydrovinblastine synthase 

(PRX1) (Costa et al., 2008) further leading to vinblastine and ultimately to vincristine 

(O‘Connor and Maresh, 2006). 
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Fig.1 Overview of MIA biosynthesis. Solid arrows indicate single enzymatic conversions, dashed arrows multiple 

reactions. MEP-pathway: methyl erythritol phosphate pathway, TDC: tryptophan decarboxylase, STR: strictosidine 

synthase, SGD: strictosidine- -D-glucosidase, PRX1: α-3‘,4‘-anhydrovinblastine synthase.  
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Numbering of carbon atoms in terpenoid and iridoid structures  

 

In literature there exist two different ways of numbering carbon atoms in linear terpenoids. 

Both are used in this thesis in names of compounds and enzymes (Fig. 1B). One is used 

mostly in C. roseus and MIA biosynthesis related publications (Fig. 2A)(Uesato et al., 1984). 

The second one used in most of the monoterpene related literature conforms to the naming 

standards of the international union of pure and applied chemistry (IUPAC), the world 

authority on chemical nomenclature (IUPAC-IUB, 1986)(Fig. 2B). This nomenclature will be 

used in the rest of this chapter.  As an example 10-OH-geraniol as named acoording to the 

non-IUPAC nomenclature is 8-OH-geraniol in the IUPAC nomenclature. The cyclic iridoids 

are usually numbered in a non-IUPAC way (Fig. 2C) (Dinda et al., 2007). Whereas other 

numbering schemes exist this is the most widely used and is used here for clarity‘s sake.  

 

 

Fig. 2 Numbering of terpenoid and iridoid carbon atoms. A: non-IUPAC numbering, B: IUPAC compliant 

numbering, C: typical numbering of iridoid carbons.  
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Monoterpene and iridoid biosynthesis 

 

Biosynthesis of the terpenoid moiety of MIAs (Fig. 3) starts from the head to tail 

condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate 

(IPP)(McGarvey and Croteau, 1995), the basic building blocks of all terpenes, by the enzyme 

geranyl diphosphate synthase (GPPS) to form geranyl diphosphate (GPP). C. roseus has two 

different kinds of holoenzymes capable of making GPP, the mitochondrial homomeric 

CrGPPS and the plastidial heteromeric enzyme consisting of a small- and large subunit 

(CrGPPS-SSU and CrGPPS-LSU). The heteromeric form is thought to supply GPP for MIA 

production (Rai et al., 2013). The next step is generally assumed to be the synthesis of the 

acyclic monoterpene alcohol geraniol (Oudin et al., 2007a). While a Mn2+ dependent terpene 

synthase called geraniol synthase (GES) is known to produce geraniol from GPP in Ocimum 

basilicum (Iijima et al., 2004), Cinnamomum tenuipilum (Yang et al., 2005), and Perilla citriodora 

(Ito and Honda, 2007) no GES from an iridoid producing plant species such as C. roseus had 

been cloned at the start of the present study. 

The first dedicated step in (seco)iridoid biosynthesis is the hydroxylation of geraniol 

(and its cis-isomer nerol) at its 8-position by the cytochrome P450 (CYP) enzyme  geraniol-8-

oxidase (G8O)(also known as geraniol-8-hydroxylase) (Meehan and Coscia, 1973; Collu et al., 

2001) to form 8-hydroxygeraniol (and 8-hydroxynerol respectively). This enzyme was shown 

to also be able to oxidize the 8-position further to 8-oxogeraniol (Höfer et al., 2013). G8O 

needs the accessory protein cytochrome P450 reductase (CPR) to function (Madyasha and 

Coscia, 1979; Meijer et al., 1993). The following steps are less well known, though feeding 

experiments with (radio)isotopes of intermediates and assays with enzyme preparations 

from C. roseus and other plants suggests oxidation of 8-OH-geraniol/nerol to both 8-oxo-

geraniol and 8-hydroxygeranial and further oxidation into 8-oxo-geranial by 8-

hydroxygeraniol oxidoreductase (8-HGO) (Uesato et al., 1984, 1986a, 1986b and 1987; Ikeda et 

al., 1991; Hasnain, 2010). Recently it was found that 8-oxogeranial is turned into the first 

iridoid, cis-trans-nepetalactol (also known as iridodial hemiacetal form), by the iridoid 

synthase (IS) enzyme in an NADPH dependent reductive cyclization reaction forming the 

first compound 
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Fig. 3 Hypothetical model of iridoid biosynthesis. Solid arrows indicate single enzymatic conversions, dashed 

arrows multiple reactions. Reactions for which the corresponding C.roseus gene has been cloned have a black 

background, reactions for which the corresponding gene was not cloned but that are described in literature or for 

which the corresponding gene has been cloned from another organism have a white background. Numbers are for 

putative enzyme type, 1: oxidoreductase, 2: cytochrome P450, 3: UDP-glucose-glucosyltransferase. 
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with an iridoid backbone. The compound is considered to exist in equilibrium between the 

single ring structure cis-trans-iridodial and the double ring hemiacetal structure cis-trans-

nepetalactone (Geu-Flores et al., 2012). Even though a reaction oxidizing cis-trans-

nepetalactol at carbon-11 was never described, iridotrial was found to be incorporated into 

MIAs in isotope feeding experiments making it a plausible intermediate. Genes coding for 

enzymes catalyzing the later steps have not been cloned but some of the reactions have been 

characterized from protein extracts. A partially purified enzyme from Lonicera japonica cell 

cultures showed UDP-glucose dependent glucosyltransferase activity by glucosylating 7-

deoxyloganetic acid and similar compounds into 7-deoxyloganic and other glucosides, 7-

deoxyloganic acid glucosyl transferase  (7-DLGT) activity being the most specific (Yamamoto 

et al., 2002). Nagatoshi et al. (2011) described a UDP-glucose:glucosyltransferase from 

Gardenia jasminoides that glucosylates 7-deoxyloganetin but not 7-deoxyloganetic acid. They 

also proposed that UGT85A23 (AB591741.1) from C. roseus could be the enzyme responsible 

for iridoid glucosylation. 7-deoxyloganic acid hydroxylase activity (7-DLH), leading to 

loganin, was observed in an incubation of a microsome preparation from a Lonicera japonica 

cell culture. According to inhibition assays the enzyme is likely to be a CYP (Katano et al., 

2001). Loganic acid methyl transferase (LAMT) was cloned from C. roseus by Murata et al. 

(2008). It uses S-adenosyl-methionine (SAM) as co-substrate. Loganin is known to be turned 

to secologanin by secologanin synthase (SLS), a CYP catalyzing a peculiar ring opening 

reaction (Yamamoto et al., 1999, 2000; Irmler et al., 2000). 
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Tissue and subcellular organization of iridoid biosynthesis 

 

Many different subcellular compartments in different cell types are required in MIA 

biosynthesis. This is proposed to minimize the toxic effects of the compounds (Facchini, 2001) 

but is also seen as a multilayered defence strategy (Guirimand et al., 2010; Roepke et al., 

2010). It is speculated that the ‖Early Steps of Monoterpenoid Biosynthesis‖ (ESMB), at least 

until G8O, occur in vascular tissue cells called internal phloem associated parenchyma 

(IPAP) cells (Burlat et al., 2004; Oudin et al., 2007b). In C. roseus the known MEP pathway 

genes are expressed in IPAP cells and the enzymes located in plastids (Oudin et al., 2007b; 

Ginis et al., 2012; Burlat et al., 2004; Guirimand et al., 2009). It is not yet known in which cell 

type the genes coding for the next enzymes, the plastid-located CrGPPS-SSU and CrGPPS-

LSU, are expressed but the idea of a co-localized early pathway/ESMB suggests localization 

in the IPAP cells. Tissue and subcellular localization of GES is also expected to be the same. 

This would mean that an intermediate metabolite must then be transported to the cytosol 

since the next enzyme G8O is located on the ER facing to the cytosol, again in the IPAP cells 

(Burlat et al., 2004; Guirimand et al., 2009). IS reported to be located in the cytosol of IPAP 

cells (Geu-Flores et al., 2012) suggesting similar localization of the in-between step(s) (8-

HGO). Localization of the next enzymes is not known. The later steps in the pathway, LAMT, 

SLS, TDC and STR, dubbed intermediate pathway, are expressed in epidermal cells (Irmler et 

al., 2000; Murata et al., 2008; Guirimand et al., 2011b). These enzymes are all localized in the 

cytosol except STR that localizes to the vacuole. This proposed to have a function in plant 

defence against herbivores; the glucoside strictosidine is separated from the -glucosidase 

SGD as long as subcellular compartments are intact. When cells are disrupted by herbivory, 

substrate and enzyme mix producing highly reactive and hypothetically toxic protein 

crosslinking compounds (Guirimand et al., 2010). Dimeric bisindole MIAs are produced in 

another distinct cell type, i.e. the idioblast/laticifer cells (Guirimand 2011b).   
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Fig. 4 Tissue localization of MIA biosynthesis.  Solid arrows indicate single enzymatic conversions, dashed arrows 

multiple reactions. 
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Regulation of MIA and iridoid biosynthesis genes  

 

MIAs and iridoids are secondary metabolites, compounds that are not regarded as essential 

for the growth and development of an organism but rather for interaction with its 

surroundings including as mentioned earlier, plant defence. This is reflected in the way their 

production is regulated. MIA biosynthetic genes are tightly regulated by developmental cues 

and external stress signals (Aerts et al., 1994; St. Pierre et al., 1999). A striking mechanism of 

developmental regulation is that each of the known MIA biosynthetic genes is strictly 

expressed in one of the three distinct cell types in C. roseus aerial organs (IPAP cells, 

epidermis, idioblasts/laticifers).  MIA production is also dependent on the developmental 

stage of leaves. All known MIA pathway genes are regulated by the defence hormone 

jasmonate (van der Fits and Memelink 2000; Giddings et al., 2011; Geu-Flores et al., 2012; 

Oudin et al., 2007; He et al., 2011) orchestrating defence against herbivores,  necrotrophic 

pathogens and biotrophic pathogens. Also the plant hormones auxin, ethylene, cytokinins 

and the signaling molecule nitric oxide are known to affect the expression of MIA 

biosynthesis genes and MIA production (Ginis et al., 2012; Yahia et al., 1998; Zhou et al., 

2010). Many genes, in the precursor (ASα), intermediate (STR, SLS, LAMT, TDC) and late 

(D4H) pathway, are regulated by octadecanoid-derivative responsive Catharanthus AP2-

domain transcription factors (ORCA2, ORCA3) (Menke et al., 1999; van der Fits and 

Memelink 2000; Hasnain 2010). These jasmonate inducible regulators are known to activate 

STR expression by binding to a GCC box in the jasmonate and elicitor responsive element 

(JERE) in the STR promoter (Menke et al., 1999; van der Fits and Memelink, 2000; van der Fits 

et al., 2001). The expression of the ORCA3 gene is controlled by the basic helix-loop-helix 

(bHLH) transcription factor CrMYC2 that binds an element called a G-box (T/G-box) in the 

ORCA3 promoter (Zhang et al., 2011). ORCA3 expression is induced by jasmonate via 

jasmonate dependent degradation of the jasmonate ZIM domain (JAZ) repressors, which 

bind CrMYC2 in the absence of jasmonate, allowing CrMYC2 to activate the ORCA3 

promoter. (Zhang, 2008). The STR promoter also contains a G-box but CrMYC2 cannot 

activate the promoter directly (Zhang et al., 2011). On the other hand the G-box binding 

factors CrGBF1 and CrGBF2 act as transcriptional repressors of the STR promoter (Siberil et 
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al., 2001). A second set of transcription factors, the repressors ZCT1, ZCT2 and ZCT3, bind 

elsewhere in the STR promoter (Pauw et al., 2004). A similar transcriptional regulation 

system has been found in tobacco where homologues of ORCA3, the jasmonate inducible 

NIC2 locus ERF transcription factors activate nicotine biosynthesis gene expression by 

binding to a GCC box (Shoji et al 2010). ORC1 (ERF221) and ERF189, activate nicotine 

biosynthesis gene expression but in this case bHLH trancription factors were found to be 

additionally needed to fully activate expression (Shoji et al., 2011; De Boer et al., 2011). The 

CrMYC2 homolog NtMYC2 was found to boost activation of nicotine biosynthesis genes by 

ERF189 by binding a G-box (Shoji et al., 2011) and NbbHLH1 from Nicotiana benthamiana was 

also found to boost activation by ORC1 (De Boer et al., 2011). RNAi silencing of NtMYC2 

dramatically reduced the expression of nicotine biosynthesis genes but also the expression of 

the NIC2 locus ERF genes suggesting that they are regulated by NtMYC2 and leading to a 

model where nicotine biosynthesis genes are induced by NtMYC2 directly and through ERF 

transcription factors (Shoji et al., 2011). NtMYC2 itself was found to bind JAZ repressors and 

be activated by jasmonate via the degradation of the JAZ repressors (Shoji et al 2008). 

Regulation of C. roseus early pathway genes such as G8O seems to employ a different 

mechanism and they are known not to be regulated by the ORCAs (Hasnain, 2010). While the 

G8O promoter does not contain a JERE it also has a G-box sequence (Suttipanta et al., 2007). 

No transcription factor(s) binding to the G-box in the G8O promoter are known yet but it is 

likely to be a bHLH, possibly CrMYC2 or a related transcription factor.  

 

Research strategy and available resources 

 

This work was part of the SmartCell project, a EU seventh framework funded collaboration 

between several European groups, where the aim was the elucidation of the secoiridoid 

pathway and the engineering of the pathway in several organisms for optimized and de novo 

production of iridoids, MIAs and related compounds. A candidate based approach was taken 

to find enzymes catalyzing both hypothetical and completely unknown intermediate 

reactions in iridoid biosynthesis and to find suitable enzymes for biotechnical applications. 

The candidates were picked based on amino acid and nucleotide sequence homology with 

known enzymes in Leiden and the screening refined by gathering additional information 
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such as gene expression pattern in different conditions by SmartCell partner Vlaams Instituut 

voor Biotechnologie, Gent, Belgium, tissue localization of proteins by partners University of 

Zurich, Switzerland and Université Catholique de Louvain, Belgium and tissue localization 

of transcripts by the external collaborator Vincent Burlat from University of Toulouse, 

France. Functional screening of the chosen soluble enzyme candidates was performed in 

Leiden and P450s were screened by the SmartCell partner Centre national de Recherche 

Scientifique, Strasbourg, France. Work concerning the C. roseus GES was a non-Smart Cell 

collaboration with Marc Clastre and Andrew Simkin from Tours University, France and 

collaborators form University of Toulouse, France.  

Today‘s high throughput data mining methods enable the problem to be addressed 

from multiple angles yielding a broad range of candidates but also the possibility for finer 

selection and more significant results. Based on the evidence at the onset of these studies the 

pathway was missing 4-6 enzymes with completely new functionalities. As proposed before 

(Ikeda et al., 1991; Hasnain, 2010) oxidation of 8-OH geraniol to 8-oxogeraniol should be 

carried out by a soluble enzyme using NAD(P)+ as a co-substrate by an alcohol 

dehydrogenase subtype of oxidoreductases expected to be expressed in IPAP cells. Similar 

reactions have been showed to be catalyzed also by other kinds of oxygenase enzymes such 

as cytochrome P450s (Höfer et al., 2013), therefore also other types of candidates were taken 

into account. In order to get the carboxyl group at the 11-position as it is present in the later 

metabolites, for example in loganic acid, the iridoid intermediate has to be oxidized to form 

either the hypothetical intermediate 11-OH-iridodial, iridotrial or directly 7-deoxyloganetic 

acid. While no enzyme types for the reaction have been proposed in literature the 

hypothetical reaction of 11-hydroxylation is similar to the one of G8O and thus a cytochrome 

of the CYP76 family seemed a good candidate. In the case of a hydroxylated intermediate an 

oxidoreductase might be needed to yield iridotrial that can further be oxidized to the 

carboxylic acid by the same or a different P450. To end up with loganin or any iridoid later in 

the pathway glucosylation has to happen. This reaction is likely catalyzed by a Plant 

Secondary Product Glucosyltransferase (PSPG) a subclass of UDP-dependent 

glucosyltransferases (Vogt et al., 2000; Nagatoshi 2011). Hydroxylation of 7-deoxyloganic 

acid was previously described as probably done by a P450 (Katano et al., 2001). Candidates 
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for the C. roseus GES were expected to belong to the class of monoterpene synthases 

identified in several plant species 

Several C. roseus transcriptomics data sets created with techniques such as cDNA-

AFLP (Rischer et al., 2006; Hasnain 2010), random cDNA library sequencing (Murata et al., 

2006 and 2008) or next generation sequencing (Van Moerkercke et al., 2013; Gongora-

Castilloet al., 2013; Xiao et al., 2013) are currently publicly available. They have been 

generated from different types of plant material such as different organs/tissues of whole 

plants, wild type and transgenic cell culture lines and hairy roots in different conditions such 

as different developmental stages, and with different hormone treatments. This not only 

gives access to a large amount of sequence data with good coverage of the transcriptome in 

desired conditions (for example jasmonate treatment) yielding full sequences of candidates, 

but also enables comparison between datasets and candidate selection based on differential 

expression. cDNA AFLP data from ORCA2 and ORCA3 inducible overexpression cell culture 

lines made it possible to screen for ORCA2 and ORCA3 regulated candidates (Hasnain, 

2010). Recent proteomics data (Champagne et al., 2012) from MIA producing plant material 

gives differential data about enzyme distribution over different cell culture lines. As only 

indirect evidence of the existence of most of the intermediate compounds was available 

different pathway models were taken into account and the candidate enzymes were assayed 

with hypothetical intermediates according to the different models. Most compounds to be 

used in these functional assays were not commercially available so a strategy to obtain such 

compounds was designed. Some literature on the synthesis exists (Jensen et al., 1987 and 

1989; Hasnain 2010) so semisynthesis from natural products according to the literature was 

chosen as a production method. Aucuba japonica leaf material was collected on the Leiden 

University campus. Aucubine (an iridoid glucoside) was purified by charcoal adsorbtion 

followed by silica gel chromatography and compound purity was measured with NMR in 

Leiden. Iridotrial was then produced by Chiralix BV. (Nijmegen, NL) from aucubine by 

HCOOH,Pd/C reduction and Vilsmeijer formylation. Three other glucosides were produced 

from iridotrial by organic reduction and oxidation reactions by the same company. 

Aglucones for enzyme assays were produced by β-glucosidase treatment in Leiden.  

In vivo experiments to test candidate genes and known terpenoid and iridoid 

biosynthesis genes for in vivo activity and biotechnological properties in N. benthamiana, N. 
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tabacum and C. roseus, were performed by SmartCell partners University of Wageningen 

(WUR), University of Lleida, Spain, VTT Technical Research Centre of Finland and IME 

Fraunhofer, Aachen Germany. Reconstitution of the pathway in N. benthamiana by transient 

transformation and metabolite analysis of products was conducted at WUR. 

 

Outline of the thesis 

 

Chapter 2 presents cloning and functional characterization of the C. roseus geraniol synthase 

(CrGES). The enzyme expressed in E. coli was functionally characterized in vitro. Also tissue-

specific and subcellular localization of GES were determined. Proof of enzyme in function in 

vivo was given by recombinant expression of CrGES in Saccharomyces cerevisiae followed by 

metabolite analysis. Expression analysis showed it has a jasmonate inducible early 

monoterpenoid pathway expression pattern. 

 

Chapter 3 describes cloning of the geraniol synthase from Valeriana officinalis (VoGES) and its 

comparison with the geraniol synthase from Lippia dulcis (LdGES). The enzymes expressed in 

E. coli were functionally characterized in vitro. GESs were expressed in stable transgenic 

tobacco lines and transiently expressed in N. benthamiana as full length plastidial and N-

terminally truncated cytosolic versions and resulting changes in soluble and volatile 

metabolites were analyzed in detail.  

 

Chapter 4 presents transcriptomics and proteomics screening of candidates for the missing 

iridoid pathway enzymes. It describes the characterization of the genes corresponding to all 

the missing iridoid pathway enzymes, 8-hydroxygeraniol oxidoreductase (8-HGO), 7-

deoxyloganetic acid glucosyltransferase (7-DLGT), iridoid oxidase (IO) and 7-deoxyloganic 

acid hydroxylase (7-DLH) and their functional characterization via in vitro enzyme assays. 

Tissue and subcellular localization is described and proof of function in vivo is given by 

reconstitution of the whole pathway by Agrobacterium mediated transient expression in N. 

benthamiana. A detailed metabolite analysis leads to a complete model of the (seco)iridoid 

biosynthetic pathway. 

Chapter 5 contains a summary and discussion of chapters 2-4  



Chapter 1  

 
24 

 

References 

 

Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapor 

increases the developmentally controlled synthesis of alkaloids in Catharanthus and 

Cinchona seedlings. Plant J 5: 635-643 

Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP 

pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of 

Catharanthus roseus implicates multicellular translocation of intermediates during the 

biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary 

metabolites. Plant J 38: 131-141 

Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, 

Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase 

and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus 

roseus. Planta 205: 414-419 

Chahed K, Oudin A, Guivarc'h N, Hamdi S, Chénieux J-C, Rideau M, Clastre M (2000) 1-

Deoxy-D-xylulose 5-phosphate synthase from periwinkle: cDNA identification and 

induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol 

Biochem 38: 559-566 

Champagne A, Rischer H, Oksman-Caldentey KM, Boutry M (2012) In-depth proteome 

mining of cultured Catharanthusroseuscells identifies candidate proteins involved in 

thesynthesis and transport of secondary metabolites. Proteomics 12: 3536-3547 

Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J 

(2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid 

indole alkaloid biosynthesis. FEBS Lett 508: 215-220 

Contin A, van der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside 

secologanin is derived from the novel triosephosphate/pyruvate pathway in a 

Catharanthusroseus cell culture. FEBS Lett 434: 413-416 

Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo 

AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class 



Monoterpenoid indole alkaloid and iridoid biosynthesis in Catharanthus roseus 

 
25 

III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus 

roseus. Plant Physiol 146: 403-417 

De Boer K, Tilleman S, Pauwels L, van den Bossche R, De Sutter V, Vanderhaeghen R, 

Hilson P, Hamill J, Goossens A (2011) APETALA2/ETHYLENE RESPONSE 

FACTOR and basic helix–loop–helix tobacco transcription factors cooperatively 

mediate jasmonate-elicited nicotine biosynthesis. Plant J 66: 1053–1065 

De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding 

a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Pro 

Natl Acad Sci USA. 86: 2582-2586 

de Waal A, Meijer AH, Verpoorte R (1995) Strictosidine synthase from Catharanthus roseus - 

Purification and characterization of multiple forms. Biochem J 306: 571-580 

Dinda B, Debnath S, Harigaya Y (2007) Naturally Occurring Iridoids. A Review, Part 1. 

Chem Pharm Bull 55: 159—222  

El-Sayed M, Choi YH, Frederich M, Roytrakul S, Verpoorte R (2004) Alkaloid accumulation 

in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotech Lett 

26: 793-798 

El-Sayed M, Verpoorte R (2002) Effect of phytohormones on growth and alkaloid 

accumulation by a Catharanthus roseus cell suspension cultures fed with alkaloid 

precursors tryptamine and loganin. Plant Cell Tiss Org 68: 265-270 

Facchini PJ (2001) Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular 

regulation, and metabolic engineering applications. Ann Rev Plant Phys 52: 29 

Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, 

O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization 

in iridoid biosynthesis. Nature 492: 138-142 

Geerlings A, Ibanez MML, Memelink J, van der Heijden R, Verpoorte R (2000) Molecular 

cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid 

indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275: 3051-3056 

Ginis O, Courdavault V, Melin C, Lanoue A, Giglioli-Guivarc’h N St-Pierre B, Courtois M, 

Oudin A (2012) Molecular cloning and functional characterization of Catharanthus 

roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the 

methyl erythritol phosphate pathway Mol Biol Rep 39: 5433–5447 



Chapter 1  

 
26 

Gongora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-

Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-

Herde M, DellaPenna D, McKnight TD, O’Connor SE, Buell R (2012) Development 

of Transcriptomic Resources forInterrogating the Biosynthesis of 

MonoterpeneIndoleAlkaloids in Medicinal Plant Species. PLOS ONE 7: e52506 

Guirimand G, Burlat V, Oudin A, Lanoue A, St-Pierre B, Courdavault V (2009) 

Optimization of the transient transformation of Catharanthus roseus cells by particle 

bombardment and its application to the subcellular localization of 

hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant 

Cell Rep 28: 1215-1234 

Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-

Guivarc’h N, St-Pierre B, Burlat V (2010) Strictosidine activation in Apocynaceae: 

towards a ―nuclear time bomb‖? BMC Plant Biol 10: 182 

Guirimand G, Guihur A, Ginis O, Poutrain P, Hericourt F, Oudin A, Lanoue A, St-Pierre B, 

Burlat V, Courdavault V (2011a) The subcellular organization of strictosidine 

biosynthesis in Catharanthusroseus epidermis highlights several trans-tonoplast 

translocations of intermediate metabolites.FEBS J 278: 749–763 

Guirimand G, Guihur A , Poutrain  P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, 

Courdavault (2011b) Spatial organization of the vindoline biosynthetic pathway in 

Catharanthus roseus. J Plant Physiol 168: 549–557 

Hasnain G (2010) the ORCA-ome as a key to understanding alkaloid biosynthesis in 

Catharanthus roseus. PhD thesis, Leiden University 

Hedhili S, Courdavault V, Giglioli-Guivarc’h N, Gantet P (2007) Regulation of the terpene 

moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochemistry 

Rev 6: 341-351 

Hong SB, Hughes EH, Shanks JV, San KY, Gibson SI (2003) Role of the non-mevalonate 

pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol 

Progr 19: 1105-1108 

Hong SB, Peebles CAM, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis 

feedback-insensitive anthranilate synthase holoenzyme and tryptophan 

decarboxylase genes in Catharanthusroseushairy roots. J Biotechnol 122:28–38 



Monoterpenoid indole alkaloid and iridoid biosynthesis in Catharanthus roseus 

 
27 

Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the 

indole pathway in Catharanthus roseus hairy roots and increased accumulation of 

tryptamine and serpentine. Metab Eng 6: 268-276 

Höfer R, Dong L, André F, Ginglinger JF, Lugan R, Gavira C, Grec S, Lang G, Memelink J, 

Van Der Krol S, Bouwmeester H, Werck-Reichhart D (2013) Geraniol hydroxylase 

and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 

enzymes and potential for engineering the early (seco)iridoid pathway. Metab Eng.. 

Available online 7 August 2013 

Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of 

Geraniol Synthase from the Glands of Sweet Basil. Plant Physiol 134: 370–379 

Ikeda H, Esaki N, Nakai S, Hashimoto K, Uesato S, Soda K, Fujita T (1991) Acyclic 

Monoterpene  Primary Alcohol:NADP+ Oxidoreductase of Rauwolfia serpentina 

Cells: The Key Enzyme in Biosynthesis of Monoterpene Alcohols. J Biochem 109: 341-

347 

Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, 

Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme 

activities and identification of cytochrome P450CYP72A1 as secologanin synthase. 

Plant J 24: 797-804 

Ito M, Honda G (2007) Geraniol synthases from perilla and their taxonomical significance. 

Phytochemistry 68: 446–453 

IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) (1987) Prenol 

nomenclature,Recommendations 1986. Eur J Biochem 167:181-184  

 Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene CrPrx 

in transgenic hairy root lines of Catharanthus roseus Appl Microbiol Biotechnol 

90:1005–1016 

Jensen SR, Kirk O, Nielsen BJ (1987) application of the Vilsmeier formylation in the 

synthesis of 11-13C labelled iridoids. Tetrahedron 4: 1949 -1954 

Jensen SR, Kirk O, Nielsen BJ (1989) Biosynthesis of the iridoid glucoside cornin in Verbena 

officinalis. Phytochemistry 28: 97-105 

Katano N, Yamamoto H, Iio R,Inouea K (2001) 7-Deoxyloganin 7-hydroxylase in Lonicera 

japonica cell cultures. Phytochemistry 58: 53–58 



Chapter 1  

 
28 

Lee-Parsons CWT, Royce AJ (2006) Precursor limitations in methyl jasmonate-induced 

Catharanthusroseus cell cultures. Plant Cell Rep 25: 607-612 

Liu DH, Ren WW, Cui LJ, Zhang LD, Sun XF, Tang KX (2011) Enhanced accumulation of 

catharanthine and vindoline in Catharanthus roseus hairy roots by overexpression of 

transcriptional factor ORCA2. Afr J Biotechnol 10:3260-3268 

Luijendijk TJC, Stevens LH, Verpoorte R (1998) Purification and characterisation of 

strictosidine beta-D-glucosidase from Catharanthus roseus cell suspension cultures. 

Plant Physiol Bioch 36: 419-425 

McGarvey DJ, Croteau R (1995) Terpenoid Metabolism. Plant Cell 7: 1015-1026 

McKnight TD, Roessner CA, Devagupta R, Scott AJ, Nessler CL (1990) Nucleotide 

sequence of a cDNA encoding the vacuolar protein strictosidine synthase from 

Catharanthus roseus. Nucleic Acids Res 18: 4939 

Mackenzie P, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Gigleux SF, Green 

M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Roy Chowdhury J, 

Ritter, JK, Tephly, TR, Schachter H, Tephly T, Tipton, KF, Nebert, DW (1997) The 

UDP glycosyltransferase gene superfamily: recommended nomenclature update 

based on evolutionary divergence. Pharmacogenetics 7: 255-269 

Madyastha KM, Coscia CJ (1979) Detergent-solubilized NADPH-cytochrome c (P-450) 

reductase from the higher plant, Catharanthus roseus. Purification and 

characterization. J Biol Chem 254: 2419-2427 

Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-

acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68: 1922–1931 

Meehan TD, Coscia CJ (1973) Hydroxylation of geraniol and nerol by a monooxygenase 

from Vinca rosea. Biochem bioph res com 53: 1043 

 Meijer AH, Lopes Cardoso MI, Voskuilen JT, de Waal A, Verpoorte R, Hoge JHC (1993) 

Isolation and characterization of a cDNA clone from Catharanthus roseus encoding 

NADPH:cytochrome P-450 reductase, an enzyme essential for reactions catalysed by 

cytochrome P450 mono-oxygenases in plants. Plant J 4: 47-60 

Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-

responsive element in the periwinkle secondary metabolite biosynthetic gene STR 



Monoterpenoid indole alkaloid and iridoid biosynthesis in Catharanthus roseus 

 
29 

interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, 

ORCA2. EMBO J 18: 4455-4463 

Mizukami H, Nordlov H, Lee SL, Scott AI (1979) Purification and properties of strictosidine 

synthetase (an enzyme condensing tryptamine and secologanin) from Catharanthus 

roseus cultured cells. Biochemistry 18: 3760-3763 

Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor 

feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79: 137–145 

Murata J, Bienzle D, Brandle JE, Sensen CW, De Luca V (2006) Expressed sequence tags 

from Madagascar periwinkle (Catharanthus roseus) FEBS Lett 580: 4501–4507 

Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus 

reveals its biochemical specialization. Plant Cell 20: 524-542 

Nagatoshi M, Terasaka K, Nagatsu A, Mizukami H (2011) Iridoid-specific 

Glucosyltransferase from Gardenia jasminoides. J. Biol Chem 286: 32866-32874 

O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid 

biosynthesis.  Nat Prod Rep 23: 532–547 

Oudin A, Courtois M, Rideau M, Clastre M (2007a) The iridoid pathway in Catharanthus 

roseus alkaloid biosynthesis.Phytochem Rev 6:259–276 

Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodriguez-Concepcion M, 

St-Pierre B, Burlat V (2007b) Spatial distribution and hormonal regulation of gene 

products from methyl erythritol phosphate and monoterpene-secoiridoid pathways 

in Catharanthus roseus. Plant Mol Biol 65: 13-30 

Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K 

(2012) Overexpression of ORCA3 and G10H in Catharanthusroseus Plants Regulated 

Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics. PLOS ONE 

7: e43038 

Pauw B, Hilliou FAO, Sandonis Martin V, Chatel G, de Wolf CJV, Champion A, Pré M, 

van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc Finger Proteins Act 

as Transcriptional Repressors of Alkaloid Biosynthesis Genes in Catharanthus roseus. J 

Biol Chem 79: 52940-52948 



Chapter 1  

 
30 

Pasquali G, Goddijn OJM, de Waal A, Verpoorte R, Schilperoort RA, Hoge JHC, 

Memelink J (1992) Coordinated regulation of two indole alkaloid biosynthetic genes 

from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18: 1121-1131 

Peebles CAM, Hughes EH, Shanks JV, San KY (2009)Transcriptional response of the 

terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with 

jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11: 

76-86 

Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The 

expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or 

anthranilate synthase increases terpenoidindole alkaloid accumulation in 

Catharanthus roseus hairy roots. Metab Eng 13: 234-240 

Pennings EJM, Groen BW, Duine JA, Verpoorte R (1989) Tryptophan decarboxylase 

from Catharanthus roseus is a pyridoxoquinoprotein. FEBS lett 255: 97-100 

Pfitzner U, Zenk MH (1989) Homogeneous strictosidine synthase isoenzymes from cell 

suspension cultures of Catharanthus roseus. Planta Med 525-530 

Pomahacova B, Dusek J, Duskova J, Yazakid K, Roytrakul S, Verpoorte R (2009) Improved 

accumulation of ajmalicine and tetrahydroalstonine in Catharanthus cells expressing 

an ABC transporter.  J Plant Physiol 166: 1405—1412 

Rai A, Smita, SS, Singh AK, Shanker K, Nagegowda DA (2013) Heteromeric and 

homomericgeranyldiphosphate synthases from catharanthusroseusand their role in 

monoterpeneindolealkaloid biosynthesis. Mol Plant. Published online March 29, 2013 

Roepke J, Salim V, Wu M, Thamm AM, Murata J, Ploss K, Boland W, De Luca V (2010) 

Vincadrug components accumulate exclusively in leaf exudates of Madagascar 

periwinkle P Natl Acad Sci USA 107:15287–15292 

Rischer H, Oresic M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, 

Van  Montagu MCE, Inze D, Oksman-Caldentey KM, Goossens A (2006) Gene-

to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus 

roseus cells. P Natl Acad Sci USA 103: 5614–5619 

Scott AI, Lee SL, Wan W (1977) Indole alkaloid biosynthesis - partial-purification of 

ajmalicine synthetase from Catharanthus roseus. Biochem Biophy Res Co 75: 1004-1009 

Shoji T, Ogawa T, Hashimoto T (2008) Jasmonate-induced nicotine formation in tobacco is 



Monoterpenoid indole alkaloid and iridoid biosynthesis in Catharanthus roseus 

 
31 

mediated by tobacco COI1 and JAZ Genes. Plant Cell Physiol 49: 1003-1012 

Shoji T, Kajikawa M, Hashimoto T (2010) Clustered Transcription Factor Genes Regulate 

Nicotine Biosynthesis in Tobacco. Plant Cell 22: 3390-3409 

Shoji T, Hashimoto T (2011) Tobacco MYC2 Regulates Jasmonate-Inducible Nicotine 

Biosynthesis Genes Directly and By Way of the NIC2-Locus ERF Genes. Plant Cell 

Physiol 52: 1117-1130  

Siberil Y ,Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boisson B, 

Doireau Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as 

repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 

45: 477–488 

St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of 

Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a 

pathway intermediate. Plant Cell 11: 887-900 

Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of 

the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole 

alkaloid biosynthesis. BBA-Gene Struct Expr 1769: 139-148 

Uesato S, Matsuda S , Inouye H (1984) Mechanism for iridane skeleton formation from 

acyclic monoterpenes in the biosynthesis of secologanin and vindoline in 

Catharanthus roseus and Lonicera morrowii. Chem Pharm Bull 32: 1671-1674 

Uesato S, Ogawa Y, Inouye H, Saiki K, Zenk MH (1986a) synthesis of iridodial by cell free 

extracts from Rauwolfia serpentina cell suspension cultures. Tetrahedron Lett  27: 2893-

2896 

Uesato S, Kanomi S, Iida A, Inouye H, Zenk MH (1986b) mechanism for iridane skeleton 

formation in the biosynthesis of secologanin and indole alkaloids in Lonicera tatarica, 

Catharanthus roseus and suspension cultures of Rauwolfia serpentina. Phytochemistry 

25: 839-842 

Uesato S, Ikeda H, Fujita T, Inouye H, Zenk MH (1987) Elucidation of iridodial formation 

mechanism partial purification and characterization of the novel monoterpene 

cyclase from Rauwolfia serpentina cell suspension cultures. Tetrahedron Lett 28: 4431-

4434  



Chapter 1  

 
32 

van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator 

of plant primary and secondary metabolism. Science. 289: 295-297 

van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus 

alkaloids: Pharmacognosy and biotechnology. Curr Med Chem 11: 607-628 

Van Moerkercke A, Fabris M, Pollier J, Baart GJE, Rombauts S, Hasnain G, Rischer H, 

Memelink J, Oksman-Caldentey KM, Goossens A (2013) CathaCyc, a Metabolic 

Pathway Database Built from Catharanthus roseus RNA-Seq Data. Plant Cell Physiol 

54: 673–685 

Veau B, Courtois M, Oudin A, Chenieux JC, Rideau M, Clastre M (2000) Cloning and 

expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus 

roseus. BBA-Gene Struct Expr 1517: 159-163 

Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: 

characterization of a supergene family. Trends Plant Sci 5: 380 

Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the 

hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 

29: 887–894 

Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R, Desgagné-Penix I, Haslam 

TM, Kim YB, Liu E, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, 

Zhang Y, Bohlmann J, Patrick S. Covello P, De Luca V, Page JE, Ro DK, Martin 

VJJ, Facchini PJ, Sensen CW (2013)Transcriptome analysis based on next-generation 

sequencing of non-model plants producing specialized metabolites of 

biotechnological interest. J Biotechnol 166:122–134 

Yahia A, Kevers C, Gaspar T, Chenieux JC, Rideau M, Creche J (1998) Cytokinins and 

ethylene stimulate indole alkaloid accumulation in cell suspension cultures of 

Catharanthus roseus by two distinct mechanisms. Plant Sci 133: 9–15 

Yamada Y, Koyama T, Sato F (2011) Basic Helix-Loop-Helix transcription factors and 

regulation of alkaloid biosynthesis. Plant Signal Behav 6: 1627-1630 

Yamamoto H, Katano N, Ooi A, Inoue K (1999) Transformation of loganin and 7-

deoxyloganin into secologanin by Lonicera japonica cell suspension cultures. 

Phytochemistry 50: 417-422 



Monoterpenoid indole alkaloid and iridoid biosynthesis in Catharanthus roseus 

 
33 

Yamamoto  H,  Sha M, Kitamura Y, Yamaguchi M, Katano N, Inoue K (2002) lridoid 

Biosynthesis: 7-DeoXyloganetic Acid I- O- Glucosyltransferase in Cultured Lonicera 

japonica Cells. Plant Biotechnol 19: 295-301 

Yang T, Li J, Wang HX, Zeng Y (2005) A geraniol-synthase gene from Cinnamomum 

tenuipilum. Phytochemistry 66: 285–293 

Zhang H (2008) Jasmonate-responsive transcriptional regulation in Catharanthus roseus. PhD 

thesis, Leiden University 

Zhang H, Hedhili H, Montiel G, Zhang Y, Chatel G, Pre M, Gantet P, Memelink J (2011) 

The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-

responsive expression of the ORCA genes that regulate alkaloid biosynthesis in 

Catharanthus roseus. Plant J 67: 61–71 

Zhou ML, Zhu XM, Shao JR, Wu YM, Tang YX (2010) Transcriptional response of the 

catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in 

Catharanthus roseus hairy root culture. Appl Microbiol Biotechnol 88: 737–750 

Zhou ML, Hou HL, Zhu XM Shao JR, Wu YM, Tang YX (2011) Soybean transcription factor 

GmMYBZ2 represses catharanthine biosynthesis in hairy roots of Catharanthus roseus. 

Appl Microbiol Biotechnol 91: 1095–1105 

 



  

 
 



 

 

Chapter 2 

 

Characterization of the plastidial geraniol synthase from 

Madagascar periwinkle which initiates the monoterpe-

noid branch of the alkaloid pathway in internal phloem 

associated parenchyma 

 

Phytochemistry (2013) 85:36-43 

 

 

Andrew J. Simkina,1,†, Karel Miettinenb,†, Patricia Claudelc, Vincent Burlatd,e, Grégory 

Guirimanda, Vincent Courdavaulta, Nicolas Papona, Sophie Meyerc, Stéphanie Godeta,2, 

Benoit St-Pierrea, Nathalie Giglioli-Guivarc‘ha, Marc J.C. Fischerc, Johan Memelinkb, Marc 

Clastrea,* 

† These authors contributed equally to this work. 

 

(a) Université François-Rabelais, EA2106, Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200 Tours, 

France 

(b) Institute of Biology, Sylvius Laboratory, Sylviusweg 72, PO Box 9505, 2300 RA Leiden, The Netherlands 

(c) Université de  Strasbourg, INRA, Métabolisme secondaire de la vigne, Unité mixte de Recherche Santé Vigne et 

Qualité des vins, 28 rue de Herrlisheim, 68021 Colmar, France 

(d) Université de Toulouse, UPS, UMR5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, 31326 

Castanet-Tolosan, France 

(e) CNRS, UMR5546, BP 42617, Castanet-Tolosan, France 

 

1 Current address: School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, CO4 3SQ, United 

Kingdom 

2 Current address : Agrocampus Ouest, Centre d‘Angers, Institut National d‘Horticulture et de Paysage, 2 rue André 

Le Nôtre, 49045 Angers cedex 01, France 

* Corresponding author. Tel.: +33 247 36 72 13; fax: +33 247 27 66 60. 

E-mail address: marc.clastre@univ-tours.fr 

mailto:marc.clastre@univ-tours.fr


Chapter 2 

 
36 

 

Abstract 

 

Madagascar periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) produces 

monoterpene indole alkaloids (MIAs), secondary metabolites of high interest due to their 

therapeutic value. A key step in the biosynthesis is the generation of geraniol from geranyl 

diphosphate (GPP) in the monoterpenoid branch of the MIA pathway. Here we report on the 

cloning and functional characterization of C. roseus geraniol synthase (CrGES). The full-

length CrGES was over-expressed in Escherichia coli and the purified recombinant protein 

catalyzed the conversion of GPP into geraniol with a Km value of 58.5 µM for GPP. In vivo 

CrGES activity was evaluated by heterologous expression in a Saccharomyces cerevisiae strain 

mutated in the farnesyl diphosphate synthase gene. Analysis of culture extracts by gas 

chromatography-mass spectrometry confirmed the excretion of geraniol into the growth 

medium. Transient transformation of C. roseus cells with a Yellow Fluorescent Protein-fusion 

construct revealed that CrGES is localized in plastid stroma and stromules. In aerial plant 

organs, RNA in situ hybridization showed specific labelling of CrGES transcripts in the 

internal phloem associated parenchyma as observed for other characterized genes involved 

in the early steps of MIA biosynthesis. Finally, when cultures of Catharanthus cells were 

treated with the alkaloid-inducing hormone methyl jasmonate, an increase in CrGES 

transcript levels was observed. This observation coupled with the tissue-specific expression 

and the subcellular compartmentalization support the idea that CrGES initiates the 

monoterpenoid branch of the MIA biosynthetic pathway.  
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1. Introduction 

 

 Madagascar periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) is a 

pantropical medicinal plant which synthesizes a wide range of complex secondary 

metabolites known as monoterpene indole alkaloids (MIAs). Several of them are valuable 

therapeutic compounds, including monomers such as ajmalicine and serpentine used in the 

treatment of circulatory diseases and anxiety, and heterodimers such as vinblastine and 

vincristine known as powerful anticancer drugs (van der Heijden et al., 2004). Due to the 

pharmacological importance of these compounds, the MIA metabolic pathway has been 

highly studied in the whole plant and in cell suspension culture systems (Zhou et al., 2011). 

MIAs originate from two convergent pathways. Tryptamine (provided by the indole 

pathway through decarboxylation of L-tryptophan) and secologanin (provided by the 

monoterpenoid pathway also known as the iridoid pathway) are condensed into 

strictosidine, the precursor of all other MIAs (van der Heijden et al., 2004) (Supplementary 

Fig. S1).  

Studies of fluxes in the pathways leading to the formation of MIAs by precursor 

feeding highlighted that the monoterpenoid branch is limiting for the biosynthesis of 

alkaloids in cell and tissue cultures of C. roseus (Oudin et al., 2007a). A key step in the 

formation of MIAs is the biosynthesis of the monoterpenoid geraniol from geranyl 

diphosphate (GPP).  

Geraniol feeding of C. roseus cell (Lee-Parsons and Royce, 2006) and hairy root 

cultures (Morgan and Shanks, 2000) resulted in an increase in the formation of the MIAs 

ajmalicine and tabersonine, respectively, suggesting that the formation of geraniol is a critical 

step in MIA biosynthesis. To date, periwinkle geraniol synthase (GES) has not been 

characterized at the molecular level. The present work focuses on the cloning and functional 

characterisation of C. roseus GES, the study of the corresponding gene expression in response 

to methyl jasmonate, the in situ localization of GES mRNA and the subcellular localization of 

the enzyme. 
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Supplementary Fig. S1. Tissue-specific gene expression and subcellular localization of the enzymes of the 
monoterpenoid indole alkaloid pathway of C. roseus. Broken arrows represent uncharacterized reactions. The 
localization of CrGES was determined in the present study. 16OMT: 16-hydroxytabersonine-16-O-methyltransferase; 
ADH: acyclic monoterpene primary alcohol dehydrogenase; CrGES: geraniol synthase; D4H: deacetoxyvindoline-4-
hydroxylase; DAT: deacetylvindoline 4-O-acetyltransferase; DL7H: 7-deoxyloganin 7-hydroxylase; G10H: geraniol 
10-hydroxylase; GPS: geranyl diphosphate synthase; IDI: isopentenyl diphosphate isomerase; LAMT: S-adenosyl-L-
methionine:loganic acid methyl transferase; MC: monoterpene cyclase; MEP pathway: methyl erythritol 4-phosphate 
pathway; NMT: 16-methoxy-2,3-dihydro-3-hydroxytabersonine N-methyltransferase; PRX1: peroxidase; SGD: 
strictosidine β-glucosidase; SLS: secologanin synthase; STR: strictosidine synthase; T16H: tabersonine 16-
hydroxylase; TDC: tryptophan decarboxylase. For references see text. 
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2. Results and discussion 

 

2.1. Isolation of the C. roseus geraniol synthase (CrGES) full-length cDNA 

 

A partial sequence of 554 bp (Genbank ID: EG558318) displaying similarities with 

known geraniol synthases was identified in a Catharanthus roseus EST database. The full-

length coding sequence for CrGES (C. roseus geraniol synthase) was recovered by 3‘ RACE, 

PhageWalker and GenomeWalker protocols as described in the experimental method section. 

The CrGES sequence has been deposited at NCBI under Genbank ID: JN882024. 

The CrGES open reading frame of 1770 bp encodes a protein of 589 amino acids in 

length with a calculated mass of 67.7 kDa. The CrGES protein contains the highly conserved 

aspartate-rich motif DDxxD (positions 343-347) and the less conserved NSE/DTE motif 

(positions 485-496) with the consensus sequence (L,V)(V,L,A)-(N,D)D(L,I,V)x(S,T)xxxE 

(Supplementary Fig. S2). Both motifs are found in several terpene synthases and are involved 

in the fixation of the diphosphate substrate (Christianson, 2006). Amino acid sequence 

comparison revealed that CrGES showed similarities with terpene synthases. A high degree 

of similarity was found with previously characterized geraniol synthases (Supplementary 

Fig. S2). The highest similarity (64% of identity) was found with the geraniol synthase from 

Lippia dulcis (Genbank ID: GU136162; Yang et al., 2011). Furthermore, CrGES possessed 59% 

of identity with the Ocimum basilicum ortholog (Genbank ID: AY362553, Iijima et al., 2004), 

36% with the Cinnamomum tenuipilum GES (Genbank ID: AJ457070, Yang et al., 2005) and 33% 

with the GES from Perilla frutescens (Genbank ID: DQ234300, Ito et al., 2007) and P. citriodora 

(Genbank ID: DQ088667, Ito et al., 2007). 
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Supplementary Fig. S2. Multiple sequence alignment of plant geraniol synthases. Amino acid comparison of CrGES 

from C. roseus (Genbank ID: JN882024) with geraniol synthases from Lippia dulcis (Genbank ID: GU136162), Ocimum 

basilicum (Genbank ID: AY362553), Cinnamomum tenuipilum (Genbank ID: AJ457070), Perilla frutescens (Genbank ID: 

DQ234300) and P. citriodora (Genbank ID: DQ088667). Identical and similar residues, common to at least three 

proteins, are shaded in dark and light grey, respectively. The asterisk indicates the position at which the protein was 

truncated to remove the transit peptide for heterologous expression in yeast. The two upper lines indicate the 

regions corresponding to the aspartate-rich motif DDxxD and the NSE/DTE motif. 
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2.2. Functional characterization of the purified recombinant CrGES 

 

The close homology with previously identified geraniol synthases suggested that CrGES 

catalyzes the conversion of GPP into geraniol. Functional expression was thus carried out to 

investigate the catalytic activity. The complete CrGES open reading frame including the 

putative N-terminal plastidial targeting peptide flanked by a C-terminal His tag and an N-

terminal Strep tag was expressed in Escherichia coli and purified by sequential Ni-NTA and 

Strep-tactin affinity chromatography. Analysis of the recombinant protein by SDS-PAGE and 

Coomassie Brilliant Blue staining or western blotting and immunoprobing with anti-His 

antibodies showed the presence of one major band (Fig. 1A). Analysis of reaction products 

formed after incubation of the protein with GPP showed the presence of a single peak (Fig. 

1A), which was identified as geraniol based on the retention time (Fig. 1B) and on the mass 

spectrum (Fig. 1C and D). A control reaction with boiled protein did not result in detectable 

products (data not shown). Under the reaction conditions employed, the protein catalyzed 

the conversion of GPP to geraniol with a Km value of 58.5 μM for GPP (Supplementary Fig. 

S3), which is close to the apparent Km of 55.8 μM reported for GES from the evergreen 

camphor tree C. tenuipilum assayed under similar conditions (Yang et al., 2005).  
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Fig. 1. Analysis of the CrGES-catalyzed reaction product. GC analysis of reaction products with the substrate geranyl 

diphosphate and recombinant CrGES (A) and of authentic geraniol, nerol and linalool (B). Mass spectra of authentic 

geraniol (C) and the peak from A (D). The inset in (A) shows the analysis of recombinant CrGES protein. The protein 

was separated by 10% SDS-PAGE and either stained with Coomassie Brilliant Blue (lane 1) or visualized after 

western blotting using anti-His antibodies (lane 2). Sizes of relevant marker (M) bands are indicated in kDa.  

 

Supplementary Fig. S3. Michaelis-Menten (A) and Lineweaver-Burk (B) plots of the reaction rate with CrGES and 

GPP. The data are means ± standard errors of three replicates. 

Fig. 1 

Fig. S3 
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2.3. Expression of CrGES in Saccharomyces cerevisiae FPS mutants 

 

Farnesyl diphosphate synthase (FPS) catalyses the formation of the C15 product 

farnesyl diphosphate (FPP) by two sequential reactions: the initial condensation of 

isopentenyl diphosphate (IPP) and dimethylallyl diphosphate leading to GPP followed by 

the condensation of GPP with a second molecule of IPP producing FPP. It is generally 

accepted that FPS produces only FPP and that no GPP is released from the catalytic site of 

this enzyme. However, yeast mutant strains containing a mutated FPS, with lower FPS-

specific activity, also produced GPP available for the synthesis of geraniol and other related 

monoterpenes. These compounds originate from GPP and result from endogenous yeast 

enzymes activities and/or chemical instability of some monoterpenols (Fischer et al., 2011). 

The over-expression of the heterologous sweet basil (O. basilicum) GES in an FPS yeast 

mutant strain resulted in a marked increase in the production of geraniol (Oswald et al., 

2007). Optimisation of the FPS mutation (mutation K197G) coupled to GES expression 

strongly enhanced (10-20 fold) monoterpene production and led to the excretion of up to 5 

mg/l geraniol in the culture medium (Fischer et al., 2011). 

We used the yeast strain with the FPS-K197G mutation to evaluate CrGES activity in vivo. A 

truncated coding sequence of CrGES, devoid of the plastidial targeting peptide, was cloned 

into the galactose-inducible expression cassette of the pYES2 vector and introduced into the 

K197G strain. When transformed with the empty vector, the yeast strain produced a low 

quantity of various monoterpenes where the major component was geraniol (Table 1). 

Expression of CrGES greatly increased monoterpenoid production (8.4 fold for geraniol) with 

the major product geraniol reaching a concentration of approximately 3.3 mg/l in the culture 

medium. Similar observations were made with the GES from sweet basil, which produced 

only geraniol when assayed as a recombinant protein in vitro (Iijima et al., 2004), whereas 

expression in the K197G yeast strain resulted in an increase of several monoterpenes with 

geraniol as the major product (Fischer et al., 2011).  
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[Linalool] 

µg/l 

[α-terpineol] 

µg/l 

[Citronellol] 

µg/l 

[Neral] 

µg/l 

[Geranial] 

µg/l 

[Nerol] 

µg/l 

[Geraniol] 

µg/l 

pYES2 104 ± 22 6 ± 3 11 ± 1 ND ND 9 ± 7 394 ± 27 

pYES2+Cr

GES 
257 ± 36 18 ± 3 69 ± 14 31 ± 1 54 ± 3 14 ± 3 3.310 ± 221 

 

Table 1. Monoterpene content in the culture medium (µg/l) of a yeast strain with a FPS-K197G mutation 

transformed with the empty vector pYES2 or with the vector pYES2 containing the CrGES coding sequence without 

the plastidial targeting peptide. Terpenoids were extracted from minimal medium at stationary growth phase. 

Results are the mean of 5 independent transformants ± standard deviation. ND: Not Detected. 

 

In summary, the results on the heterologous expression of CrGES in yeast mutants 

are in agreement with the product specificity of the recombinant enzyme and demonstrated 

that, in vivo, CrGES displayed mainly geraniol synthase activity. 

  

2.4. CrGES transcript accumulation  

 

MIA accumulation is induced in C. roseus cell cultures growing in a 2,4-D-free 

medium and can be further increased by the addition of methyl jasmonate (MeJa) (Gantet et 

al., 1998). This phytohormone stimulates the biosynthesis of alkaloids by inducing the 

expression of the ESMB genes (encoding enzymes catalyzing Early Steps in Monoterpenoid 

Biosynthesis) such as those of the methyl erythritol 4-phosphate (MEP) pathway and the 

geraniol 10-hydroxylase (G10H) gene (Collu et al., 2001; Oudin et al., 2007b) (Supplementary 

Fig. S1).  MeJa also induces the expression of the gene encoding the transcription factor 

ORCA3 which controls many MIA biosynthetic genes (van der Fits and Memelink, 2000; 

2001). 

Analysis of transcript levels showed that CrGES gene expression was undetectable in 

untreated cells but strongly induced by MeJa 4 hours post-treatment (Fig. 2). The expression 

of the ORCA3 gene, used as a positive control, was strongly increased 30 min post-treatment 

as previously described (van der Fits and Memelink, 2001). The slower kinetics of gene 

induction of CrGES upon addition of MeJa correlated well with those of G10H whose 
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transcripts also accumulated 4 hours after treatment of periwinkle cell suspensions (Collu et 

al., 2001).  

These results are corroborated by exploiting transcriptomic data from MPGR 

(http://medicinalplantgenomics.msu.edu/) showing that CrGES and G10H were both 

strongly induced by MeJa in hairy roots and young seedlings (Supplementary Fig. 

S4A).  When coupled with the periwinkle metabolome from MPGR, the transcriptomic data 

revealed that CrGES and G10H transcript abundance had a similar pattern of distribution in 

aerial organs (immature leaves, matures leaves and stem, respectively) with those of 

secologanin and some MIA (Supplementary Fig. S4B). Overall, the comparison of the 

expression values of CrGES and G10H within the 22 available periwinkle samples from 

MPGR revealed that both genes had a very similar expression pattern with a very high 

Pearson Product-Moment Correlation Coefficient (0.977).  

 

Fig. 2. Time course of CrGES mRNA levels in C. roseus cell suspension cultures. The cells were not treated or treated 

with 100 µM MeJa, harvested at the times (h) indicated above the lanes and then analyzed by RT-PCR. The ACTIN 

gene was used as a constitutive control while the ORCA3 gene was used as a positive control for the 

MeJa treatment.  

http://medicinalplantgenomics.msu.edu/
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Supplementary Fig. S4. Co-expression of CrGES and G10H and correlation with alkaloid accumulation. (A) Time 

course of CrGES and G10H gene expression (FPKM: fragments per kilobase per transcript per million mapped reads) 

in two types of hairy roots (TDCi and wild type) and in sterile seedlings treated with MeJa. MJ0h: control at time 0 h; 

MJ24h: 24 h after 250 µM MeJa treatment; 12d: 12 days old seedlings without MeJa treatment; MJ12d: seedlings 

treated with 6 µM MeJa for 12 days. (B) Distribution patterns of CrGES and G10H gene expression (FPKM) and 

alkaloid relative abundance in aerial organs (immature leaf, mature leaf and stem). Anhy: anhydrovinblastine; catha: 

catharanthine; seco: secologanin; serp: serpentine; vindo: vindoline. The data were retrieved from the Medicinal 

Plant Genomics Resource (MPGR, http://medicinalplantgenomics.msu.edu). 

http://medicinalplantgenomics.msu.edu/
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2.5. Subcellular localization of the CrGES protein 

 

It is generally accepted that monoterpene synthases that use GPP as a substrate are 

localized in plastids (Chen et al., 2011).  We used ChloroP and PSORT programs to assign 

confidence values to the presence of an N-terminal plastid transit peptide (Tp) in CrGES. This 

Tp was predicted by the ChloroP program to be 43 amino-acids in length. To confirm the 

predicted plastid localization, we determined the subcellular distribution of CrGES through a 

biolistic-mediated transient expression approach in C. roseus cells according to Guirimand et 

al. (2009). In transiently transformed C. roseus cells, the full-length CrGES-YFP fusion protein 

displayed a pattern of fluorescence which co-localized perfectly with those of the plastidial 

marker. Fig 3A-C revealed that the full-length CrGES was imported in the plastid stroma but 

also in stromules (Supplementary Fig. S5), which are thin envelope-bound extensions of the 

stroma (Natesan et al., 2005). The CrTpGES-YFP fusion protein (corresponding to the first 43 

amino acids of CrGES fused to YFP) was also shown to be targeted to the plastid 

compartment (Fig. 3E-G). This result indicates that the first 43 amino acids are sufficient to 

direct efficient plastidial import.  

The present work constitutes the first demonstration of the presence of a monoterpene 

synthase within stromules since previous studies have only reported the localization of this 

family of enzymes in the plastid stroma (Turner et al., 1999; Nagegowda et al., 2008; Lin et al., 

2008). The subcellular localization of CrGES in stroma and stromules is also consistent with 

our previous work showing that the earlier enzymatic steps leading to the formation of 

geraniol, including the MEP pathway enzyme hydroxymethylbutenyl 4-diphosphate 

synthase (Oudin et al., 2007; Guirimand et al., 2009) and a long isoform of isopentenyl 

diphosphate isomerase (IDI) (Guirimand et al., 2012), have a similar compartmentalization in 

C. roseus (Supplementary Fig. S1). Furthermore, it has been demonstrated that stromules are 

in close association with the endoplasmic reticulum (ER) suggesting that an exchange of 

metabolites between the two organelles occurs in vivo (Guirimand et al., 2009; Schattat et al., 

2011). Such a scenario fits well with the next step of the monoterpenoid branch consisting of 

the conversion of geraniol into 10-hydroxygeraniol catalyzed by G10H (Collu et al., 2001). 

This enzyme is a cytochrome P450 anchored to the ER membrane with its catalytic domain 
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likely exposed to the cytosol and in close vicinity with stromules (Guirimand et al., 2009). 

Thus, it could be hypothesized that stromules facilitate the export of geraniol into the cytosol 

and thereby its conversion into 10-hydroxygeraniol by the ER-anchored G10H.  

 

 

Fig. 3. Subcellular localisation of CrGES. C. roseus cells were transiently co-transformed with the plasmid expressing 

CrGES-YFP (A) or CrTpGES-YFP (E) and the ―plastid‖-CFP marker CD3-994 (B, F). Co-localization of the two 

fluorescence signals appeared in white (C, G) when merging the two individual (green/magenta) false colour 

images. The morphology (D, H) is observed with differential interference contrast (DIC). Bars correspond to 10 µm. 

 

 

Supplementary Fig. S5. CrGES subcellular compartmentation highlighting localization in stromules. C. roseus cells 

were transiently transformed with the plasmid expressing CrGES-YFP (A, C). The morphology (B, D) is observed 

with differential interference contrast (DIC). Bars correspond to 10 µm. 
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2.6. Cell specific gene expression of CrGES 

 

Considerable progress has been made in the past decade in the understanding of the 

cellular architecture of the MIA biosynthetic pathway revealing its multicellular 

compartmentalization in aerial organs of C. roseus (Supplementary Fig. S1). The late steps, 

including desacetoxyvindoline-4-hydroxylase and deacetylvindoline-4-O-acetyltransferase, 

have been localized to laticifers/idioblasts which are specialized alkaloid-accumulating cells 

(St-Pierre et al., 1999). The intermediate part of the pathway, from the step catalysed by 

loganic acid O-methyltransferase until the step catalyzed by 16-hydroxytabersonine 16-O-

methyltransferase, occurs in epidermal cells (St-Pierre et al., 1999; Irmler et al., 2000; Burlat et 

al., 2004; Murata and De Luca, 2005 ; Murata et al., 2008 ; Guirimand et al., 2011a; Guirimand 

et al., 2011b). The early steps (ESMB, Oudin et al., 2007b), including the MEP pathway, the 

IDI reaction and the synthesis of 10-hydroxygeraniol by G10H, are present in the internal 

phloem associated parenchyma (IPAP) cells (Burlat et al., 2004 ; Oudin et al., 2007; 

Guirimand et al., 2009; Guirimand et al., 2012). 

The cellular distribution of CrGES transcripts was investigated by RNA in situ 

hybridization performed on young developing leaves. Using the antisense probe, CrGES 

transcripts were specifically detected in the adaxial part of the leaf vascular region (Fig. 4A, 

B), corresponding to the IPAP cells as confirmed by the co-localization with G10H mRNA 

(Fig. 4E, F; Burlat et al., 2004). No signal was observed with the CrGES sense probe, used as a 

negative control (Fig. 4C, D). This specific labeling of CrGES and G10H in IPAP cells was also 

observed in other aerial organs, such as the cotyledons of young seedlings (Supplementary 

Fig. S6) as well as carpels and stamens (Supplementary Fig. S7). These results clearly indicate 

that the two consecutive enzymatic steps involving CrGES and G10H occur in IPAP cells. 
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Fig S6 FigS7 
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Fig. 4. In situ localization of CrGES mRNA in young leaves of C. roseus. Paraffin-embedded serial longitudinal 

sections of young leaves were hybridized with digoxigenin-labelled riboprobes, which were subsequently localized 

with antidigoxigenin-alkaline phosphatase conjugates followed by nitro blue tetrazolium chloride (NBT)/5-bromo 4-

chloro-3-indolyl phosphate (BCIP) color development. The antisense probe CrGES_AS  was used for RNA labeling 

(A, B) and a control hybridization was performed with the sense probe CrGES_S (C, D). Hybridization of the G10H 

transcripts with the antisense probe G10H_AS was used as a positive control (E, F). ab ep: abaxial epidermis; ad ep: 

adaxial epidermis; ipap: internal parenchyma associated phloem ; pp : palisade parenchyma ; sp : spongy 

parenchyma ; vb : vascular bundle. Bars correspond to 100 µm. 

 

Supplementary Fig. S6. In situ localization of CrGES mRNA in cotyledons of young seedlings of C. roseus. Paraffin-

embedded serial longitudinal sections of emerging cotyledons were hybridized with digoxigenin-labelled 

riboprobes, which were subsequently localized with antidigoxigenin-alkaline phosphatase conjugates followed by 

nitro blue tetrazolium chloride (NBT)/5-bromo 4-chloro-3-indolyl phosphate (BCIP) color development. The 

antisense probe CrGES_AS  was used for RNA labeling (A, B) and the control hybridization was performed with 

sense probe CrGES_S (C, D). Hybridization of G10H transcripts with the antisense probe G10H_AS was used as a 

positive control (E, F). ab ep: abaxial epidermis; ad ep: adaxial epidermis; ipap: internal parenchyma associated 

phloem ; pp : palisade parenchyma ; sp : spongy parenchyma ; vb : vascular bundle. Bars correspond to 100 µm. 

 

Supplementary Fig. S7. In situ localization of CrGES mRNA in carpels and stamens of C. roseus. Paraffin-embedded 

serial transversal sections of carpels (A, C, E) and stamens (B, D, F) were hybridized with digoxigenin-labelled 

riboprobes, which were subsequently localized with antidigoxigenin-alkaline phosphatase conjugates followed by 

nitro blue tetrazolium chloride (NBT)/5-bromo 4-chloro-3-indolyl phosphate (BCIP) color development. The 

antisense probe CrGES_AS  was used for RNA labeling (A, B) and the control hybridization was performed with 

sense probe CrGES_S (C, D). Hybridization of G10H transcripts with the antisense probe G10H_AS was used as a 

positive control (E, F). Lines show labeling within the internal parenchyma associated phloem (ipap). Bars 

correspond to 100 µm.  
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3. Conclusions 

 

In this report we describe the cloning and functional characterization of the 

periwinkle cDNA CrGES encoding geraniol synthase. The recombinant enzyme produced in 

E. coli catalysed the in vitro conversion of GPP into geraniol only. In the yeast FPS mutant 

K197G expressing CrGES, geraniol was the main enzymatic product formed. The plastidial 

localization of CrGES suggests that the availability of its product geraniol to the next enzyme 

G10H could be facilitated through stromule/ER interactions. Furthermore, the induction of 

CrGES expression by MeJa, a phytohormone which stimulates alkaloid accumulation in C. 

roseus cell suspensions, the positive correlation between CrGES and G10H expression in 

different tissues of periwinkle and the in situ co-localization of CrGES mRNA with the ESMB 

transcripts in IPAP cells of aerial organs support the view that CrGES initiates the 

monoterpenoid branch of the MIA pathway in C. roseus. 
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4. Experimental 

 

4.1. Plant material and growth conditions 

 

Periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) cell suspensions (line 

C20D) were maintained on a 7-day-growth cycle in the B5 medium of Gamborg et al. (1968) 

supplemented with 58 mM sucrose and 4.5 µM 2,4-dichlorophenoxyacetic acid (2,4-D).  For 

experimental purposes, 7-day-old cells were subcultured in the same medium depleted of 

2,4-D. Methyl jasmonate (MeJa) (Sigma-Aldrich, http://www.sigmaaldrich.com ) at a final 

concentration of 100 µM, was added at the fourth day of culture. Accumulation of MIAs is 

induced in C. roseus cells growing in a 2,4-D-free medium and can be further increased by the 

addition of MeJa (Gantet et al., 1998). Mature C. roseus plants, grown in a greenhouse, were 

used for in situ hybridization studies. 

 

4.2. RNA extraction and cDNA synthesis  

 

Frozen cells were ground to a fine powder in liquid nitrogen. Total RNAs were 

extracted with RNAeasy Plant mini kit (Qiagen, http://www.qiagen.com ). The cDNAs were 

synthesized from 2 µg RNA using the oligo-dT AP primer (Supplementary Table S1) 

according to the protocol in the Superscript II Reverse Transcriptase kit (Invitrogen, 

http://www.invitrogen.com ) in a final volume of 20 µl.  

 

4.3. Cloning of the CrGES cDNA  

 

Using the BLAST algorithm and the NCBI database, we recovered a C. roseus EST 

(Genbank ID: EG558318) of 554 bp encoding an amino acid sequence which showed 

similarity with an internal fragment of known geraniol synthases. The EST sequence was 

used to design primers for the isolation of the 5‘ and 3‘ ends of the coding sequence of the 

cDNA. 

http://www.sigmaaldrich.com/
http://www.qiagen.com/
http://www.invitrogen.com/
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The 3‘-end of the cDNA was recovered by 3‘ RACE according to the manufacturer‘s 

instructions (Invitrogen). Reverse transcription was performed with the primer AP followed 

by a first PCR with primers GOS4 and AUAP (from the 3‘ RACE kit) and a second nested 

PCR with primers GOS6 and AUAP (Supplementary Table S1). The resulting PCR fragment 

was cloned into the vector pGEM-T Easy (Promega, http://www.promega.com) and 

sequenced. 

The 5‘-end of the cDNA was recovered by Nested PhageWalker using a C. roseus 

cDNA library (Simkin AJ, unpublished data) constructed with the ZAP Express System 

(Stratagene, http://www.stratagene.com). The first PCR reaction was carried out with the 

reverse primer PWGES1 and the forward primer corresponding to the phage plasmid T3 

primer (Supplementary Table S1). One µl of this PCR reaction was used for a second PCR 

reaction with primer T3 and the nested primer PWGES2 (Supplementary Table S1). The 

resulting amplicon was cloned in pGEM-T Easy and sequenced. The remaining 5‘-end 55 bp 

including the start ATG codon was cloned using the GenomeWalker kit (Clontech, 

http://www.clontech.com). PCR amplification of genomic DNA extracted from periwinkle 

leaf was done with primers GWGES4 and AP1 (from the GenomeWalker kit) followed by 

nested PCR using primers GWGES5 and AP2 (from the GenomeWalker kit) (Supplementary 

Table S1). This generated a DNA fragment, which was cloned in pGEM-T Easy and 

sequenced. Following in-silico assembly, the full-length open reading frame was identified.  

 

4.4. CrGES expression in Escherichia coli and enzyme purification 

 

The CrGES open reading frame was PCR amplified with the primers EcGES1 and 

EcGES2 (Supplementary Table S1) using a pACTII cDNA library of C. roseus MP183L cells 

treated with yeast extract as template and cloned into pASK-IBA45plus (IBA Biotagnology, 

http://www.iba-go.com) with BamHI/PstI. 

Double Strep/His-tagged CrGES protein was expressed from plasmid pASK-

IBA45plus in Escherichia coli strain BL21 (DE3) pLysS and purified by sequential Ni-NTA 

agarose (Qiagen) and Strep-Tactin sepharose (IBA Biotagnology) chromatography. For 

quality analysis the recombinant protein was run on a 10% (w/v) SDS-PAA gel, transferred 

to Protran nitrocellulose (Whatman, http://www.whatman.com) by semidry electroblotting, 

http://www.promega.com/
http://www.stratagene.com/
http://www.stratagene.com/
http://www.clontech.com/
http://www.iba-go.com/
http://www.whatman.com/
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and the western blot was probed with mouse monoclonal anti-His horseradish peroxidase 

(HRP) conjugate antibodies (5Prime, http://www.5prime.com). Antibody binding was 

detected by incubation in 250 μM sodium luminol, 0.1 M Tris-HCl, pH 8.6, 3 mM H2O2, 67 

μM p-coumaric acid and exposure to X-ray film. 

 

4.5. Enzymatic assays  

 

Enzymatic assays were performed as 1 ml reactions containing 100 mM HEPES-KOH 

pH 7, 1 mM MgCl2, 100 μM MnCl2, GPP and 4 μg of purified enzyme. For determination of 

the Km value reactions contained 20, 50, 250 or 1000 μM GPP. Reaction mixtures were 

overlaid with 1 ml hexane and incubated at 32 °C for 30 min. For quantitative analysis 5 μg of 

citronellol was added as an internal standard after incubation. The contents of the tubes were 

thoroughly mixed by vortexing and kept on ice for 10 min. The tubes were centrifuged at 

4000 g for 10 min, and the supernatant hexane phase was collected. The extraction was 

repeated with 1 ml hexane. The pooled hexane phase was dehydrated by passing it through a 

layer of anhydrous Na2SO4 for gas chromatography-mass spectrometry (GC-MS) and GC-

flame ionization detector (GC-FID) analysis. Amounts of geraniol formed in enzyme assays 

were calculated from the resultant GC-FID integral using the relative response factor with 

respect to the citronellol internal standard. A Lineweaver-Burk plot was constructed to 

obtain the Km value. 

 

4.6. GC-MS and GC-FID analysis of the enzymatic product from CrGES expressed in E. coli 

 

For compound identification the CrGES reaction products were subjected to capillary 

GC-MS, using a Varian Saturn 2000 ion trap mass spectrometer run in electron ionization 

mode (70 eV). The hexane extract of the reaction mixture was separated on a Varian 3800 gas 

chromatograph equipped with a DB-5 capillary column (30 m x 0.25 mm, film thickness of 

0.25 μm) (Agilent Technologies, http://www.home.agilent.com) using nitrogen as carrier gas 

at a flow rate of 1.2 ml/min. The separation conditions were: injection split ratio 1:20, 

injection volume 1 μl , injector temperature 230oC, initial oven temperature 60oC, then linear 

gradient to 150oC at a rate of 5oC/min followed by a linear gradient to 240oC at a rate of 

http://www.5prime.com/
http://www.home.agilent.com/
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20oC/min. The transfer line temperature was 275oC, the ion trap temperature 220oC and the 

manifold temperature 60oC. The mass scan range was 41-500 u with a scan range time of 1 s.  

For quantification of geraniol reaction mixtures were subjected to capillary GC-FID.  

The hexane extract of the reaction mixture was separated on an Agilent 6890 GC equipped 

with a DB-5 capillary column using nitrogen as carrier gas at a flow rate of 1.2 ml/min. The 

separation conditions were: splitless mode, injection volume 4 μl, injector temperature 230oC, 

initial oven temperature 100oC, then linear gradient to 140oC at a rate of 10oC/min followed 

by a linear gradient to 240oC at a rate of 35oC/min. The detector temperature was 250oC. 

 

4.7. CrGES expression in yeast strains 

 

The 1611 bp partial-length cDNA was amplified with primers GES_F_pYES2 and 

GES_R_pYES2 (Supplementary Table S1), digested with SacI and BamHI and directionally 

cloned into the pYES2 expression vector resulting in pYES2-CrGES. 

Yeast strains were grown aerobically in minimal medium (1.7 g/l Yeast Nitrogen 

Base (Difco), 5 g/l ammonium sulphate (Merck) supplemented with 1% galactose as carbon 

source and the required amino acids (His, Leu, Ura) at 50 g/ml (Euromedex, 

http://www.euromedex.com). The haploid FPPS mutated strain AE9K197G (Mat; his3-; 

leu2∆0; ura3-; trp1∆63; YJL167W::kanMX4 [pLB41ERG20K197G]) (Fischer et al., 2011) was 

transformed with pYES2 or pYES2-CrGES plasmids. Transformed cells were selected for 

uracil prototrophy on minimal medium supplemented with required amino acids (His, Leu).  

 

4.8. Yeast monoterpene analysis 

 

The cells from a stationary phase culture were harvested by centrifugation (5000 g 

for 5 min). 3-Octanol (4 µg) and Ethylheptanoate (4 µg) were added as internal standard to 20 

ml culture medium supernatant. Monoterpenoids were analysed by Stir Bar Sorptive 

Extraction and liquid desorption followed by gas chromatography-mass spectrometry 

method (SBSE-LD-GC-MS) (Coelho et al., 2008) adapted to the laboratory conditions, with 1 

µl injection volume. The analyses were performed on an Agilent 6890N gas chromatograph 

equipped with a Gerstel MultiPurpose Sampler MPS 2 (Gerstel, http://www.gerstel.de) 

http://www.euromedex.com/
http://www.gerstel.de/
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coupled to an Agilent 5975B inert MSD (Agilent Technologies). The gas chromatograph was 

fitted with a DB-Wax capillary column (60 m × 0.32 mm i.d. × 0.50 µm film thickness, Agilent 

Technologies) and helium was used as carrier gas (1 ml/min constant flow). The GC oven 

temperature was programmed from 45°C to 82°C at 20°C/min then to 235°C at 2.7°C/min 

(hold 15 min). The injector was set to 230°C and used in pulsed splitless mode (25 psi for 0.50 

min). The transfer line, MS ion source and quadrupole analyzer temperatures were 

maintained at 270°C, 230°C and 150°C, respectively. Electron ionization mass spectra in the 

range of 29-450 m/z were recorded at 70eV. The mass spectra were obtained in full-scan mode 

and compared with the Wiley 7 MS library and NIST 05 mass spectral databases. Agilent 

MSD ChemStation software (G1701DA, Rev D.03.00) was used for instrument control and 

data processing. Total amounts of monoterpenoids were determined using linear calibration 

curves with an R2 value of 0.99 over a concentration range from 0 to 6 mg/l. 

 

4.9. In situ hybridization 

 

A CrGES cDNA obtained by PCR amplification with primers GES_Fwd and GES_Rev 

(Supplementary Table S1) was cloned in pGEM-T Easy and used for the synthesis of sense 

(SpeI linearization / T7 RNA polymerase) and antisense (SacII linearization / SP6 RNA 

polymerase) digoxigenin-labelled RNA riboprobes as previously described (Mahroug et al., 

2006). For CrG10H, a previously described plasmid was used for riboprobe transcription 

(Burlat et al., 2004). Paraffin-embedded serial longitudinal sections of young developing 

leaves and of emerging cotyledons and serial transversal sections of carpels and stamens 

were hybridized with digoxigenin-labelled riboprobes and localized with anti-digoxigenin–

alkaline phosphatase conjugates according to Mahroug et al. (2006). 

 

4.10. Generation of constructs for subcellular localisation studies 

 

The full-length CrGES cDNA was amplified from C. roseus RT-generated cDNA using 

primers GES_Fyfp and GES_Ryfp (Supplementary Table S1). The full-length CrGES cDNA 

was digested with NheI and cloned into the SpeI site of vector pSCA-cassette YFPi resulting 

in the plasmid pSCA-CrGES-YFP. 
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A truncated CrGES cDNA representing the first 43 amino acids of the transit peptide 

was amplified using primers GES_Fyfp and reverse primer GES_Ryfp_TP1 (Supplementary 

Table S1). This amplicon was cloned into the SpeI site of vector pSCA-cassette YFPi resulting 

in plasmid pSCA-CrTpGES-YFP. 

 

4.11. Transient transformation of C. roseus cells and epifluorescence microscopy 

 

Transient transformation of C. roseus cells by particle bombardment and YFP imaging 

were performed following the procedures described by Guirimand et al. (2009, 2010). Briefly, 

C. roseus cells were plated onto solid culture medium and bombarded with DNA-coated gold 

particles (1 µm) using a 1,100 psi rupture disk at a stopping-screen-to-target distance of 6 cm, 

using the Bio-Rad PDS1000/He system. Cells were cultivated for 15h to 48h and the protein 

subcellular localization was determined using an Olympus BX-51 epifluorescence microscope 

equipped with an Olympus DP-71 digital camera. The ―plastid‖-CFP (CD3-994) marker 

(Nelson et al., 2007) obtained from the ABRC (http://www.arabidopsis.org) was used for co-

transformation studies with the CrGES-YFP and CrTpGES-YFP constructs.  

 

4.12. Semi-quantitative RT-PCR 

 

The gene expression levels of CrGES, ORCA3 and ACTIN were analysed semi-

quantitatively using RT-PCR. The first strand cDNA was synthesized by reverse transcriptase 

as described above and was used as template for PCR amplification with the primer pairs 

indicated in Supplementary Table S1. The ACTIN gene was chosen as a constitutive external 

control. The ORCA3 gene, whose expression is induced by MeJa, was chosen as a positive 

control for MeJa treatments. PCR reactions were performed with GoTaq polymerase 

according to the manufacturer‘s instructions (Promega). Thermocycling conditions were 94°C 

for 5 min followed by 27 cycles of 94°C for 30 s, 56°C for 30 s and 72°C for 45 s and a final 5 

min extension at 72°C. The amplified products were resolved on a 1.5% (w/v) agarose gel 

and visualized by ethidium bromide staining. 

http://www.arabidopsis.org/


Characterization of the plastidial geraniol synthase from Madagascar periwinkle 

 
59 

 

 

4.13. Sequence analysis 

 

Database searches for similar protein sequences were performed using NCBI's 

BLAST network service (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Protein sequence 

alignment was performed using ClustalW from the Mac Vector program (MacVector, 

http://www.macvector.com). The theoretical molecular weight was calculated using the 

Compute pI/Mw tool (http://expasy.org/tools/pi_tool.html). The chloroplast targeting 

peptide was predicted using ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) and 

PSORT (http://wolfpsort.org/) programs.  

 

4.14. Transcriptomic and metabolomic data  

 

The C. roseus transcriptome and metabolome are available on the Medicinal Plant 

Genomics Resource web site (MPGR, http://medicinalplantgenomics.msu.edu). Gene 

expression levels are provided in the form of FPKM values (Fragments per kilobase per 

transcript per million mapped reads) for 22 periwinkle samples. The Microsoft Excel 

PEARSON function calculating the Pearson Product-Moment Correlation Coefficient (PCC) 

for two sets of expression values (CrGES and G10H) within the 22 samples was used. The 

metabolome database provides information about the relative distribution of metabolites 

(including MIAs) in 19 samples. The relative abundances of individual metabolites were 

measured on the basis of their molecular mass. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.macvector.com/
http://expasy.org/tools/pi_tool.html
http://www.cbs.dtu.dk/services/ChloroP/
http://wolfpsort.org/
http://medicinalplantgenomics.msu.edu/
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Primer used for reverse transcription    
AP  5‘-GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTTTTT-3‘ 
 
Primers used for RT-PCR 
GESf  5‘-AGAAAATGGAGTTAGAACAGCAGG-3‘ 
GESr  5‘-TACACAACTTGGGAAGCTCTTGC-3‘ 
ORCA3f  5‘-CCGAGTTCCGAAAGCTGTCAA-3‘ 
ORCA3r  5‘-TAGAAGGCTCCGCAGGGAAAC-3‘ 
ACTINf  5‘-TGGTGTGATGGTGGGAATGG-3‘  
ACTINr  5‘-TTCCCGTTCTGCTGAGGTTGT-3‘ 
 
Primers used for 3‘RACE 
GOS4  5‘-TGAATCTCTCATCAAGTTCTTGCG-3‘  
GOS6  5‘-ATGCAGAAAAACCATTGGAGGC-3‘   
AUAP  5‘-GGCCACGCGTCGACTAGTAC-3‘  
 
Primers used for nested phage walker 
PWGES1  5‘-ACTGATCTTATGCCCATTGTGTCGAAGC-3‘ 
PWGES2  5‘-AGTGAGGAGATCTTCATGAGTTTGGCTGC-3‘ 
T3  5‘-AATTAACCCTCACTAAAGGG-3‘ 
 
Primers used for genome walker 
GWGES4  5‘-TCAATGGAGTTGCCAAAGGCAGAGACATGG-3‘ 
GWGES5  5‘-AGTCGATGAAGTTTTAGGCCTTTCTAGCC-3‘ 
AP1  5‘-GTAATACGACTCACTATAGGGC-3‘ 
AP2  5‘-ACTATAGGGCACGCGTGGT-3‘ 
 
Primers used for CrGES expression in Escherichia coli 
EcGES1  5‘-CCGGTTGGATCCAATGGCAGCCACAATTAGTAACC–3‘ 
EcGES2  5‘-AACCGGCTGCAGTAAAAACAAGGTGTAAAAAACAAAGC-3‘  
 
Primers used for CrGES expression in Saccharomyces cerevisiae 
GES_F_pYES2  5‘-ATAGGGAATATTGAGCTCATGTCTCTGCCTTTGGCAACTCC-3‘ 
GES_R_pYES2  5‘-ATAGGGAATATTGGATCCTTAAAAACAAGGTGTAAAAAACAAAGC-3‘ 
 
Primers used for subcellular localization 
GES_Fyfp  5‘-CTGAGAGCTAGCATGGCAGCCACAATTAGTAACC-3 
GES_Ryfp  5‘-CTGAGAGCTAGCAAACAAGGTGTAAAAAACAAAGCTTTTAC-3‘ 
GES_Ryfp_TP1 5‘-CTGAGAGCTAGCTGATGGCATAGACATGCAAATAGTCG-3 
 
Primers used for in situ localization 
GES_Fwd  5‘-CTGAGAGGATCCTCTCTGCCTTTGGCAACTCC-3‘  
GES_Rev  5‘-CTGAGAGAGCTCTTAAAAACAAGGTGTAAAAAACAAAGC-3‘ 
 
 
 
Supplementary Table S1. Primers used in this study. Restriction sites incorporated for downstream cloning of the 
amplification fragments are underlined. 
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Abstract     

 

 Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis 

(LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km value 

of 32 µM and 51 µM for GPP, respectively, upon expression in E. coli. The in planta enzymatic 

activity and sub-cellular localization of VoGES and LdGES were characterized in stable 

transformed tobacco and using  transient expression in Nicotiana benthamiana. Transgenic 

tobacco expressing VoGES or LdGES accumulate  geraniol, oxidized geraniol compounds like 

geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol 

emission of leaves was lower than that of flowers, which could be related to higher levels of 

competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins 

show that VoGES resides (as expected) predominantly in the plastids, while LdGES import 

into to the plastid is clearly impaired compared to that of VoGES, resulting in both  cytosolic 

and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was 

nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic 

targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid 

targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily 

available, both in the plastids as well as in the cytosol.The potential role of GES in the 

engineering of the TIA pathway in heterologous hosts is discussed.  

 

1. Introduction 

 

 Plants are estimated to produce more than 500,000 secondary metabolites of various 

classes (isoprenoids, phenylpropanoids, alkaloids) (Hadacek, 2002). Of these, the isoprenoids 

represent the largest family based on their diverse structural features which relate to 

numerous biological activities. Isoprenoids have been shown to affect many physiological 

processes such as respiration, signal transduction, cell division, membrane architecture, 

photosynthesis, and growth. In addition, isoprenoids have ecological significance as they 

play an important roles in the exchange of signals between plants and between plants and 

microorganisms or in defense against pathogens and herbivores. Also the applications of 



Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis 

 
67 

isoprenoids in foods, cosmetics and pharmaceutical drugs make specific terpenoids 

interesting commerical targets.  

 Although isoprenoids are extraordinarily diverse, they all originate from the 

condensation of the universal five-carbon precursors, isopentenyl diphosphate (IPP) and 

dimethyl allyl diphosphate (DMAPP). In higher plants, two independent pathways, located 

in separate intracellular compartments, are involved in the biosynthesis of IPP and DMAPP. 

In the cytosol, IPP is derived from the classic mevalonic acid (MVA) pathway that starts from 

acetyl-CoA (Porter et al., 1981), whereas in plastids, IPP is formed from pyruvate and 

glyceraldehyde 3-phosphate via the methylerythritol phosphate (MEP or non-mevalonate) 

pathway (Eisenreich et al., 2001; Lichtenthaler, 1999). Cytosolic IPP and DMAPP are 

converted to farnesyl diphosphate (FPP, C15), which serves as a precursor of sesquiterpene 

and triterpene biosynthesis in the cytosol. In contrast, the plastidial pool of IPP/DMAPP is 

converted to geranyl diphosphate (GPP, C10) and geranylgeranyl diphosphate (GGPP, C20) 

which serve as precursors for monoterpenes, and diterpenes and tetraterpenes, respectively, 

in the plastid (Lange et al., 2001; McConkey et al., 2000; Tholl and Lee, 2011; Turner et al., 

1999). 

Geraniol is an acyclic monoterpene alcohol that is synthesized in one step from GPP. 

Geraniol is a component of essential oils present in many fragrant plant species (Antonelli et 

al., 1997; Bakkali et al., 2008; Bayrak and Akgül, 1994; Sangwan et al., 2001; Yang et al., 2005). 

It has a rose-like odor and is commonly used in perfumes (Chen, 2006; Rastogi et al., 2003) 

and aromatic fragrance in wine (Herrero et al., 2008; Pedersen et al., 2003). Geraniol also has 

pharmaceutical properties, as it can inhibit the growth of human colon cancer cells 

(Carnesecchi et al., 2001) and interfere with membrane functions in Candida albicans and 

Saccharomyces cerevisiae (Bard et al., 1988). In some plant species geraniol is the precursor for 

terpenoid indole alkaloid (TIA) biosynthesis. For instance, in Catharanthus roseus the 

anticancer agents vinblastine and vincristine are synthesized from geraniol (monoterpene 

iridoid branch) and tryptophan (indole branch) in the TIA pathway.  

Multiple approaches have been tested to increase TIA production. For example, 

overexpress gene 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase gene were 

shown to  increase the flux towards vinblastine and vincristine in C. roseus hairy root (Peebles 

et al., 2011). Attempts to boost transcription of TIA biosynthetic genes in the hairy roots or 
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suspension cells were only partially  successful (Liu et al., 2011; Memelink and Gantet, 2007; 

Montiel et al., 2007). For example, ORCA3 is a jasmonate responsive transcription factor that 

promote transcription of TIA biosynthesis genes (Vom Endt et al., 2007). However, when 

ORCA3 is overexpressed, also repressor activity is activated, which in the long term actually 

caused a decrease in several TIA metabolites in C. roseus (Peebles et al., 2009). Expression of 

the TIA pathway biosynthesis genes in a heterologous host may provide a way to overcome 

such feedback regulation problems.     

The objective of the present study was the efficient production of the monoterpene 

geraniol as the first step in a larger program to rebuild the complete monoterpene iridoid 

branch of the TIA biosynthesis pathway in a heterologous host. To achieve this, a geraniol 

synthase (GES) was cloned from Valeriana officinalis L. (Valerianaceae) (VoGES) and 

compared to the previously isolated LdGES from Lippia dulcis (Yang et al., 2011). Both 

proteins showed similar geraniol synthase activity in vitro and in planta. VoGES was 

subsequently used in a number of transient and stable metabolic engineering approaches to 

explore the possibility to reconstitute the monoterpene branch of TIA biosynthesis in tobacco.  

 

2.  Materials and methods 

 

2.1.  Cloning and sequence analysis of geraniol synthase gene 

 

For the cloning of the geraniol synthase gene, Valeriana officinalis L. (VoGES)  total 

RNA was isolated from V. officinalis leaves using SV Total RNA Isolation System (Promega). 

Based on conserved domains of known geraniol synthases, the degenerate primers (forward 

primer 5‘-GAYGARAAYGGIAARTTYAARGA-3‘ and reverse primer 5‘-

CCRTAIGCRTCRAAIGTRTCRTC -3‘) were designed  to amplify partial cDNA fragment  by 

reverse transcription PCR (RT-PCR). Full length sequences of the cDNAs were obtained by 

rapid amplification of cDNA ends (RACE).  

Putative VoGES sequence was blasted against the GenBank ENTREZ database (NCBI 

Blast 2.2.23) (Altschul et al., 1997) and GES sequences were aligned using CLUSTALX 1.83 

(Thompson et al., 1997) using standard settings. Prediction of the subcellular localization was 

from the targeting prediction programs PREDOTAR version 1.03 
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(http://urgi.versailles.inra.fr/predotar/) (Small et al., 2004) and TARGETP 1.1 Server 

(http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson et al., 2000).  

 

2.2.  Heterologous expression of VoGES and LdGES protein in Escherichia coli  

 

For the in vitro functional analysis of the putative geraniol synthase from Valeriana 

officinalis and comparison with LdGES, the truncated cDNAs ΔNVoGES (bp 178-1785) and 

ΔNLdGES (bp 139-1755) were subcloned into the multiple cloning site of the expression 

vector pRSET A (Invitrogen) to yield constructs pRSET-ΔNVoGES and pRSET-ΔNLdGES. 

Primer sequences for PCR amplification and restriction sites for each primer are listed in 

Table S1. After full re-sequencing to check integrity, constructs were transformed into E. coli 

BL21 (DE3) (Invitrogen) and expression was induced by isopropyl β-D thiogalactopyranoside 

(IPTG) in transformed E. coli BL21 (DE3) cell cultures. The His-tagged proteins were isolated 

by passing through Ni-NTA Spin columns according to the manufacturers recommendations 

(Qiagen). For quality analysis, the recombinant protein was confirmed with 12.5 % (w/v) 

SDS-PAGE gel electrophoresis followed by Western blotting using mouse monoclonal anti-

His horseradish peroxidase (HPR) conjugate antibodies (5Prime, http:// www.5prime.com). 

Antibody binding was detected by incubation in 250 µM sodium luminol, 0.1 M Tris-HCl (pH 

8.6), 3 mM H2O2, 67 µM p-coumaric acid and exposure to X-ray film. 

 

Table S1 Primer sequences for PCR amplification and restriction site for E. coli expression 

and GFP fusion constructs 

 

An enzyme assay was carried out for functional characterization, using geranyl 

diphosphate (GPP) and farnesyl diphosphate (FPP) as substrates. Enzymatic assays were 

done in 0.5 ml reaction buffer containing 50 mM Tris-HCl, 1 mM MgCl2, 0.1 mM MnCl2, and 

10, 20, 50 or 100 µM GPP (or 62.5 µM FPP) and 0.5 μg (VoGES) and 2 μg (LdGES) of purified 

enzyme. The reaction mixture was incubated at 32 °C for 5 min. For quantitative analysis 

citronellol was added to a concentration of 50 μM as an internal standard into the reaction 

tube after incubation. The reaction was stopped by adding 1 volume of hexane, mixing 

thoroughly by vortexing and keeping on ice for 10 min. The tubes were centrifuged at 4000 g 

http://urgi.versailles.inra.fr/predotar/
http://www.cbs.dtu.dk/services/TargetP/
http://www.5prime.com/
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for 10 min, and the supernatant hexane phase was collected. The extraction was repeated 

with hexane (0.5 ml). Then the hexane phase was collected and dehydrated and then 

subjected to capillary gas chromatography-flame ionizing detector (GC-FID) and gas 

chromatography-mass spectrometry (GC-MS, supplementary method).  For the latter, the 

hexane extract was separated on a Agilent GC 6890 series equipped with  a DB-5 capillary 

column (30 m × 0.25 mm, film thickness of 0.25 μm) (J&W Scientific) using nitrogen as carrier 

gas at a flow rate of 1.2 ml min-1. The separation conditions were: split mode 1: 5, injection 

volume 5 μl, injector temperature 230 oC, initial oven temperature 100 oC, then linear gradient 

to 140 oC at a rate of 10 °C min-1  followed by a linear gradient to 240 oC at a rate of 35 °C min-

1. Amounts of geraniol formed in enzyme assays were calculated from the resultant GC/FID 

integral using the relative response factor with respect to the citronellol internal standard. 

Lineweaver-Burk plots of VoGES and LdGES activity were used to obtain the Km values for 

GPP.  

 

2.3.  VoGES and LdGES subcellular localization studies 

 

  For analysis of the subcellular targeting, the coding sequences of EGFP was fused to 

the N-terminus or C-terminus of full length VoGES and LdGES. In addition a truncated 

version of LdGES lacking the first 46 AA (ΔNLdGES: bp 139-1755) and a truncated version of 

VoGES lacking the first 56 AA (ΔNVoGES: bp 178 -1785) was made using standard cloning 

techniques and the C-terminal coding sequence of these genes was fused in frame to that of 

GFP. The VoGES-GFP,  LdGES-GFP,  GFP-VoGES,  GFP-LdGES, ΔNVoGES-GFP and 

ΔNLdGES-GFP were cloned into impact vector pIV2A 2.1 

(www.pri.wur.nl/UK/products/ImpactVector/) under control of the CaMV 35S-promoter. 

In addition, the truncated versions of VoGES and LdGES were provided with a heterologous 

plastid import signal by cloning into impact vector pIV2A 2.4 which carries an artificial 

plastid targeting signal ( www.pri.wur.nl/UK/products/ImpactVector/) (Wong et al., 1992). 

The fusion constructs were sequenced to check integrity, before transferring the fusion 

cassettes to the binary vector pBIN+ (van Engelen et al., 1995) using LR recombination 

(Gateway technology) (Karimi et al., 2002). Primer sequences for PCR amplification and 

restriction sites for each primer are listed in Table S1. Finally, the binary expression 

http://www.pri.wur.nl/UK/products/ImpactVector/
http://www.pri.wur.nl/UK/products/ImpactVector/
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constructs were transformed into Agrobacterium tumefaciens strain AGL0 (Lazo et al., 1991) 

which was used for transient expression in Nicotiana benthamiana as described below. 

Expression and localization were analyzed at different days post-agroinfiltration in small leaf 

samples (~0.5 cm2 leaf material  from at least three independent agro-infiltrated plants) by 

confocal laser scanning.  

Microscopy using an Axiovert 200 M with a Zeiss LSM 5 PASCAL laser scanning 

microscope (Carl Zeiss) and a 20 × (N.A. 0.5) Plan NeoFluar (Zeiss) or a 63 × (N.A. 1.4 oil) 

Plan Apochromat (Zeiss) objective. Samples were excited with 1 % of a 488 nm laser 

(emission from a 30 mW argon tube) for EGFP and chlorophyll excitation and green EGFP 

fluorescence and red chlorophyll fluorescence were collected using two emission filters. Band 

pass was set to 505 to 530 nm for EGFP fluorescence detection and long pass was set to > 560 

nm for chlorophyll autofluorescence detection. Images were exported from .lsm files to .tif 

files using Zeiss LSM image browser version 3.5 without further processing. 

2.4.  Tobacco stable plant transformation 

The VoGES and LdGES  full length cDNA sequences were subcloned into the binary 

expression vector  pBIN+ using standard cloning techniques. In this vector VoGES and 

LdGES are under the control of the constitutive CaMV-d35S promoter and a nopaline 

synthase terminator. Both the 35S::LdGES and 35S::VoGES pBIN+ constructs were introduced  

into A. tumefaciens AGL0 and in vitro grown wild-type N. tabacum ‗Samsun NN‘ was 

transformed using the leaf disc method as described (Horsch et al., 1985). Transformed 

shoots were selected on medium with 100 mg/l kanamycin. Primary transformed shoots 

were rooted on non-selective medium, checked by PCR for presence of the expression 

construct and positive T0 shoots were transferred to soil and grown until seed set. T1 plants 

were grown until seed set and from the T2 population five homozygous lines 35S::LdGES and 

three homozygous lines 35S::VoGES with single insert were selected. 

 

2.5.  Transient expression in Nicotiana benthamiana  

 

A. tumefaciens infiltration (agro-infiltration) was performed according to the 

description of van Herpen et al. (van Herpen et al., 2010). Briefly, A. tumefaciens was grown at 

28 ºC for 24 hours in LB media with kanamycin (50 mg/L) and rifampicillin (34 mg/L). Cells 
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were harvested by centrifugation for 20 min at 4000 g and 20 ºC and then resuspended in 

infiltration buffer containing 10 mM MES (2-(N-morpholino) ethanesulfonic acid, Duchefa 

Biochemie), 10 mM MgCl2 and 100 µM acetosyringone (4′-hydroxy-3′, 5′-

dimethoxyacetophenone, Sigma) to a final OD600 of ~0.5, followed by incubation at room 

temperature under gentle shaking at 50 rpm for 150 min. In all experiments, A. tumefaciens 

harboring TBSV p19 was included to maximize protein production by suppression of gene 

silencing (Voinnet et al., 2003). A. tumefaciens harbouring constructs with GFP-GES or GES 

were infiltrated into leaves of five-week-old N. benthamiana plants by pressing a 1 mL syringe 

without metal needle against the abaxial side of the leaf and slowly injecting the bacterium 

suspension into the leaf. N. benthamiana plants were grown from seeds on soil in the 

greenhouse with a minimum of 16 hour light. Day temperatures were approximately 28 ºC, 

night temperatures 25 ºC. After agro-infiltration the plants remained under the same 

greenhouse conditions until further analysis. 

 

2.6.  Volatile GC–MS analysis 

 

For analysis of the production of volatiles by 35S::LdGES or 35S::VoGES tobacco 

seedling, T2 seeds were sterilized by chlorine bleach and placed on ½ MS (Duchefa, 

Netherlands) medium. Petri dishes with ~50 seeds were incubated at 4°C  in the dark to 

ensure synchronous germination. Subsequently, petri dishes were transferred to growth 

cabinets with 16 L/ 8 D, 28 ºC day, 25 ºC night. After 2 weeks of growing, petri dishes were 

placed in 0.5 L glass jars, and volatiles were trapped for 5 hours in the light using Tenax TA 

(20/35 mesh, Alltech, Breda, the Netherlands).      

Headspace analysis of stable transformed VoGES tobacco was done using detached 

leaves and flowers.  Before they were enclosed in 1 L glass jars with a Teflon-lined lid 

equipped with in- and outlet, detached leaves and flowers from tobacco plants at different 

development stages were placed into small glass bottles with water in them while different 

parts of flowers were placed on wet filter paper. A vacuum pump was used to draw air 

through the glass jar at approximately 100 ml.min-1, with the incoming air being purified 

through a glass cartridge (140 × 4 mm) containing 150 mg Tenax TA. At the outlet the 

volatiles emitted by the samples were trapped on a similar Tenax cartridge. After 5 h of 
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trapping, the trapped volatiles were analyzed by Thermodesorption GC-MS using a thermal 

desorber (Unity, Markes International Limited) and a Trace GC Ultra (Thermo Electron 

Corporation) coupled with DSQ mass spectrometer (Thermo Electron Corporation). The 

tubes were first purged to remove water vapor and oxygen for 2 min at room temperature 

with helium flow of 50 ml min-1. Then trapped volatiles were desorbed from the Tenax in the 

thermal desorber at 250 °C for 5 minutes. Volatiles were collected in an electrically cooled 

sorbent trap (Unity; Markes, Llantrisant) at 10 °C and injected into the analytical column (ZB-

5MSI, 30 m × 0.25 mm ID, 1.0 μm-film thickness, Zebron, Phenomenex). The temperature 

program of the gas chromatograph started at 40 °C (3 min hold) and rose to 280 °C at 12 °C 

min-1, with a hold at final temperature for 2 min. The mass spectrometer was set to scan from 

45 to 300 m/z with a scan time of 5.4 scans s-1. The helium flow was constant at 1.0 ml min-1. 

Ionization potential was set at 70 eV. For quantification, a geraniol calibration curve was 

made with a series of standard solutions. The GC-MS results were analyzed using Xcalibur 

software (Thermo, Waltham). After headspace trapping for 5 h in the light, samples were 

frozen in liquid nitrogen and stored at -80 °C for further analysis. 

 

2.7.  GC-MS analysis of extracts 

 

Volatile compounds accumulated in the plant material were extracted with 

dichloromethane (DCM) and measured by GC-MS as described above. Aliquots of 500 mg of 

frozen, powdered material in pre-cooled glass tubes were extracted twice with 3 ml DCM. 

Extracts were shortly vortexed,  sonicated for 10 min, centrifuged for 10 min at 1200 g and 

filtered through a small glass column containing anhydrous Na2SO4. The eluent was 

concentrated extracts under a flow of nitrogen and 1 μl concentrated extracts were injected 

into the GC-MS column. The initial oven temperature was 45 °C for 1 min, and was increased 

to 300 °C at a rate of 10 °C min-1 and held for 5 min at 300 °C. For quantification of geraniol 

and oxidised geraniol products, standards of geraniol, geranial and geranic acid were 

injected at different concentrations to establish calibration curves. Each sample was spiked 

with 2 μg/μl cis-nerolidol as internal standard.  
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2.8.  Analysis of geraniol-derived conjugates by LC- QTOF-MS and LTQ-Orbitrap-MSn 

 

Analysis of non-volatile compounds in transgenic tobacco extracts was done by liquid 

chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) 

(De Vos et al., 2007). Aliquots of 200 mg of frozen, powdered material were extracted with 0.6 

ml 99.9% MeOH / 0.133% formic acid in 1.5 ml Eppendorf vial. After short vortex and 15 min 

sonication, the extracts were centrifuged and filtered through 0.45 µm filters (SRP4, Sartorius, 

Germany) and 5 µl of the filtered extract was analysed using a Waters Alliance 2795 HPLC 

connected to a QTOF Ultima V4.00.00 mass spectrometer (Waters, MS technologies, UK). 

Measurements were in negative ionization mode and leucine encephalin ([M – H]– = 

554.2620) was used as a lock mass for online mass calibration.  

Acquisition of LC-MS data was performed under MassLynx 4.0 (Waters). MassLynx 

was used for visualization and manual processing of LC-PDA-MS data. Mass data were 

processed using metAlign version 1.0 (www.metalign.nl). Baseline and noise calculations 

were performed from scan number 70 to 2,480. The maximum amplitude was set to 25,000 

and peaks below three times the local noise were discarded. Multiple mass signals derived 

from the same compound were grouped using MSClust software (biotools.wurnet.nl) by 

Multivariate Mass Spectra Reconstruction (MMSR) (Tikunov et al., 2005). The selected mass 

intensities were normalized using log2 transformation and standardized using range scaling, 

in which each value in a certain row, corresponding to the internal standard leucine 

encephalin, was divided by the intensity range observed for this row throughout all samples 

analysed. Each row was then mean centred. Finally, the normalized and log-transformed 

data matrix was used for Principal Components Analysis implemented in GeneMath XT 

version 2.1.   

Significance of differences in intensity of each aligned mass signal between samples 

was assessed using student t-test (level of significance set at 0.05). Masses showing significant 

difference were manually checked in MassLynx. Putative identification of metabolites was  

by determining the best fit elemental composition using C, H and O with MassLynx 

software. For multiple possible molecular formulas (tolerance <5 ppm) the best matches were 
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searched in the Dictionary of Natural Products and SciFinder databases for possible 

structures.  

For further identification, selected compounds were targeted for fragmentation  by 

an Accela HPLC tower connected to a LTQ Orbitrap hybrid mass spectrometer (Thermo 

Fisher Scientific). The instrument settings of HPLC and LTQ Orbitrap were used as described 

earlier (van der Hooft et al., 2011). The LTQ was programmed to use a window of 10 D to 

isolate the mass of interest in MS1. The data-dependent fragmentation was set as follows: 

MS2 fragmentation of most intense ion in MS1; MS3 fragmentation of the 5 most intense 

fragment ions in MS2; MS4 fragmentation of the 5 most intense fragment ions in each MS3.  

 

2.9.  Glycosidase treatment 

 

To quantify how much of the geraniol related products were modified by glycosylation, 

extracts were treated with glycosidase to release geraniol or geraniol related compounds. For 

this purpose, 200 mg infiltrated leaf material was ground in liquid nitrogen and extracted 

with 1 ml citrate phosphate buffer, pH 5.4. The extracts were prepared by brief vortexing and 

sonication for 15 min. 0.2 ml of Viscozyme L (Sigma) was added and overlaid with 1ml of 

pentane to trap released volatiles and the samples were again vortexed. To trap released 

volatiles, 1 ml pentane was added on top of the extract. The mixture was incubated overnight 

at 37 °C, and subsequently extracted twice with 2 ml of pentane. Extracts were dehydrated 

using anhydrous Na2SO4 and concentrated to approximately 100 µl. An internal standard, cis-

nerolidol was used to quantify the products. Samples were analyzed using GC-MS as 

described under 2.7. 

Supplemental methods 

Western blotting 

Western blotting was used to check the integrity of the LdGES-GFP fusion proteins 

after transient expression in N. benthamiana. 10mg liquid nitrogen grounded agro-infiltrated 

N. benthamiana leaf was suspended in sample buffer (50 mM Tris pH 6.8, 2% SDS, 0.1% BFB, 

10% glycerol, 4% β-me).The suspension together with sample was heated 10 min at 94 ºC and 
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centrifuged 1 min at 13000 rpm. 15 µl supernatant was first run in a 12% SDS-PAGE gel, 

subsequently was blotted on to a PDVF membrane (Biorad) for 1 hr at 100 V. The membrane 

was blocked overnight at 4ºC in TBS-T (Tris buffered saline with 0.05% Tween 20) containing 

3% non-fat dried milk. Next the blot was incubated with 1: 20000 rabbit anti-GFP 

(ab290,Abcam) for 1hr at room temperature, and washed three times in TBS-T.Then the blot 

was incubated with donkey anti rabbit-HRP 1: 50000 dilution (Thermo scientific) in TBS-T, 

followed by washing four times in TBS-T. 3 ml Supersignal® West Dura Extended Duration 

Substrate (Thermo scientific) was used.  

GC-MS analysis  of the enzymatic product from VoGES and LdGES expressed in E. coli  

Products were analyzed by GC-MS using a gas chromatograph (7809A, Agilent 

Technologies, USA) equipped with a 30 m × 0.25 mm, 0.25 mm film thickness column (ZB-5, 

Phenomenex) and a Triple-Axis detector (model 5975C, Hewlett Packard, Agilent 

Technologies). The injection port (splitless mode), interface and MS source temperatures 

were 250 °C, 290 °C and 180 °C respectively. The injection volume was 2 μl. The oven was 

programmed at an initial temperature of 45 °C for 1 min, with a ramp of 10 °C min-1 to 280 

°C, and final time of 5 min. Scanning was performed from 45-300 atomic mass unit (amu). 

The helium inlet pressure was checked by electronic pressure control to achieve a constant 

column flow of 1.0 ml min-1. Ionization potential was set at 70 eV. Products were identified 

by comparing mass spectra to the National Institute of Standards and Technology (NIST) 

mass spectra library and by calculating the Kovats Index (Kovats, 1965) based on the 

retention time relative to alkane standards. An empty vector (original pRSET A vector 

without any insert) was used as negative control.  
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3.  Results 

 

3.1.  Functional characterization of  geraniol synthase from Valeriana officinalis and Lippia dulcis in 

vitro 

 

The GES gene from Valeriana officinalis (VoGES) encodes a protein which shares 37-67 

% identity with GES proteins from other plant species (Table 1, Figure 1). Previous 

characterized GES gene from Lippia dulcis (LdGES) shares 63% identity with VoGES. The 

alignment shows that the Aspartate-rich DDxxD-motif for metal-dependent ionization of the 

prenyl diphosphate substrate (Bohlmann et al., 1998; Tarshis et al., 1996; Wendt and Schulz, 

1998) is present in all GES sequences (Figure 1). Both the VoGES and LdGES protein with N-

terminal truncation were produced in E. coli (see methods) to compare the in vitro activity. 

Analysis of both recombinant protein by SDS-PAGE and Coomassie Brilliant Blue staining 

and immunoprobing with anti-His antibodies showed the presence of one major band 

(Figure 2A). In the presence of GPP, both enzymes catalyzed the formation of the acyclic 

monoterpene alcohol geraniol, which was identified based on comparison with the retention 

time of authentic geraniol (Figure 2) and the mass spectrum comparison with the NIST 

library (Figure S2). Truncated VoGES and LdGES catalyzed the conversion of GPP to 

geraniol with a Km value of 32 µM  and 51 µM, respectively (Figure S3). No product was 

detected when VoGES or LdGES  were supplied with FPP (data not shown).  

Gene 

Identities (%) 
Full 

Length 

Predicted 

Localization VoGES LdGES CrGES ObGES CtGES PfGES VvGES 

VoGES 100 63 67 59 42 37 57 594aa Chloroplast 

LdGES 63 100 66 68 39 36 54 584aa Chloroplast 

CrGES 67 66 100 63 42 36 57 589aa Chloroplast 

ObGES 59 68 63 100 41 35 50 567aa Mitochondrion 

CtGES 42 39 42 41 100 45 42 603aa Chloroplast 

PfGES 37 36 36 35 45 100 37 603aa Chloroplast 

VvGES 57 54 57 50 42 37 100 595aa Chloroplast 

 

Table 1 Comparison of Geraniol synthase proteins from different plant species and their predicted location by 

Target P(http://www.cbs.dtu.dk/services/TargetP/). 

http://www.cbs.dtu.dk/services/TargetP/
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Figure 1 Alignment of deduced amino acid sequences of ObGES (Ocimum basilicum geraniol synthase, AY362553), 

PfGES (Perilla frutescens geraniol synthase, DQ234300), CtGES (Cinnamomum tenuipilum geraniol synthase, 

AJ457070),CrGES(Catharanthus roseus geraniol synthase, AFD64744), LdGES (Lippia dulcis geraniol synthase, 

GU136162), VvGES (Vitis vinifera geraniol synthase, ADR74218), and VoGES (Valeriana officinalis geraniol synthase) 

using CLUSTALX 1.83 program. The metal ion-binding motif DDXXD is double underlined. The black star indicates 

the putative cleavage site of the targeting signal. 

 

 

Figure 2 GC-FID analysis of volatiles produced in 

vitro from GPP by ΔNVoGES(A) and ΔNLdGES(B) 

and of authentic geraniol (C).The insert in (A) shows 

the analysis of recombinant ΔNVoGES and 

ΔNLdGES protein. The protein was separated by 

SDS-PAGE and either stained with Coomassie 

Brilliant Blue (lane 1,ΔNVoGES; lane 2,ΔNLdGES) or 

visualized with Westerrn blotting using anti-His 

antibodies (lane 3,ΔNVoGES; lane 4,ΔNLdGES



Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis 

 
79 

 

Figure S2 GC-MS profile of volatiles produced in vitro from GPP by N-terminal truncated VoGES and LdGES.A. GC 

chromatogram, B. Mass spectrum of the peak at 11.16 min, C. Mass spectrum of geraniol from the NIST library. 



Chapter 3 

 
80 

 

 

Figure S3 Michaelis-Menten (left) and Lineweaver-Burk (right) plots of the geraniol productionfrom GPP as 

catalyzed by truncated VoGES and LdGES. The data are means ± standard errors of three replicates. 

 

3.2.  Different subcellular localization of VoGES and LdGES  

 

 Monoterpene synthases are generally believed to be localized in the plastids, and 

also their precursor GPP is supposed to be produced in the plastids. Target P (Emanuelsson 

et al., 2000) predicts plastid targeting for all GES proteins except ObGES, which is predicted 

to be targeted to the mitochondria (Table 1). Transient expression of the GES-GFP fusion 

proteins in N. benthamiana leaves showed that for VoGES-GFP the fluorescence signal was 

located in the plastids (Figure 3A). The fluorescence of VoGES-GFP was also detected in the 

stromules that emanate from the plastids, which was most clearly observed in epidermal cells 

(Figure 3B). However, for LdGES-GFP, the GFP fluorescence was observed in the cytosol and 

around the plastids (Figure 3C). No stromule labelling was observed with  LdGES-GFP in 
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epidermal cells, confirming impaired import of  LdGES into plastids and suggesting 

preferred localization in the  cytosol. The cytosolic signal of GFP fluoresence can  also be 

explained by instability of the LdGES-GFP fusion protein: if the GFP moiety is cleaved from 

the fusion protein in the cells, this would result in cytosolic localization. We therefore 

checked the integrity of the fusion proteins after transient expression in N. benthamiana on 

Western blots (Figure S1). The western blot shows that the signal detected by anti-GFP is of 

the predicted size of the LdGES-GFP fusion protein (91 kD), indicating that the fluorescence 

signal is derived from the intact fusion protein, which for LdGES-GFP is located in mostly in 

the cytosol. For the N-terminal fusion proteins, both GFP-VoGES and GFP-LdGES (full 

length and truncated one) located (as expected) to the cytosol (Figure 3D and E, result only 

show the GFP with full length). The fluorescence signal for LdGES-GFP and GFP-LdGES 

fusion proteins was consistently lower than that of VoGES-GFP, suggesting a lower stability 

for the LdGES protein.  
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Figure S1 Western blot analysis 

of LdGES-GFP fusion protein in 

agro-infiltrated leaves. 

N. benthamiana leaves infiltrated 

with LdGES-GFP (lane1) with 

water (lane 3). Lane 2: purified 

GFP protein 

Figure 3 Visualization of subcellular compartments of  N. benthamiana cells using transient 

transformation with VoGES and LdGES fusion with epi-fluorescence GFP (e-GFP). A. VoGES-GFP 

(mesophyll cell), B. VoGES-GFP (epidermal cell), C. LdGES-GFP, D. GFP-VoGES, E. GFP-LdGES. F. 

ΔNLdGES-GFP, G. ΔNVoGES-GFP. CHL, chlorophyll autofluorescence (red), GFP, GFP fluorescence 

(green), Merge, merged green and red images. Arrows indicate stromules.Bar represents 5 µm. 
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3.3.  The different subcellular localization of VoGES and LdGES does not affect transient in planta 

activity 

 

GES is a monoterpene synthase which uses the substrate GPP, which is mostly 

synthesized in the plastidic MEP pathway. Because of the different subcellular location of 

VoGES and LdGES (Figure 3), it was of interest to compare their in planta activity. For this 

purpose, the native VoGES, LdGES and the VoGES-GFP and LdGES-GFP fusion proteins 

were expressed transiently in N. benthamiana leaves. Ten days after agro-infiltration the 

plastidic (VoGES-GFP) and cytosolic (LdGES-GFP) targeting of the fusion protein was again 

confirmed by confocal fluorescence microscopy. No free geraniol was detected in the 

headspace of leaves expressing VoGES or LdGES and their GFP fusions when assayed at ten 

days post-agroinfiltration (not shown). However, previous experiments with expression of 

LdGES in maize had shown that the LdGES product geraniol may be converted by 

endogenous enzymes to geranial, geranic acid and other geraniol related products, which 

subsequently are sequestered as glycosylated compounds (Yang et al., 2011). Therefore, N. 

benthamiana leaves expressing the different constructs were extracted with citrate phosphate 

buffer and either mock treated or treated with Viscozyme, to release any glycosylated 

geraniol compounds. The released geraniol, geranial and geranic acid were trapped in the 

pentane overlay. Indeed, without glycosidase treatment, the levels of free geraniol and 

geraniol derivatives were below the level of detection by GC-MS in the citrate phosphate leaf 

extracts. In contrast, with Viscozyme treatment of the leaf samples, geraniol and the geraniol 

related compounds geranial, geranic acid, nerol, and neral were detected by GC-MS (Table 

2). No geraniol or geraniol related products were detected after Viscozyme treatment of N. 

benthamiana leaves infiltrated with empty vector (Table 2). There was no significant difference 

in geraniol and the different geraniol derived products from free GES or the GES-GFP fusion 

proteins, indicating that the C-terminal fusion of GFP does not impair the GES activity. 

Moreover, there was not much difference in GES related product accumulation for the full 

length VoGES and LdGES (Table 2). The presence of the products geranial, geranic acid, 

nerol, and neral indicates that geraniol was further converted to these products, likely by 

endogenous N. benthamiana enzymes. 
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To determine if geraniol production is possible from a cytosolic localized GES we tested an 

N-terminal truncated version of both VoGES and LdGES (ΔNVoGES-GFP and ΔNLdGES-GFP, 

respectively), which lack the plastid import signal. As expected, both these constructs 

showed cytosolic localization when expressed in N. benthamiana (Figure 3F and 3G). In 

addition, we made expression constructs of the ΔNLdGES and ΔNVoGES with an N-terminal 

fusion to the same A. thaliana ribulose-1,5-bisphosphate carboxylase small subunit transit 

peptide (pΔNLdGES and pΔNVoGES, respectively) (Wong et al., 1992). The transient 

expression of ΔNLdGES and ΔNVoGES in N. benthamiana leaves resulted in similar levels of 

geraniol glycosides, but levels were about 30% lower than that produced by truncated genes 

fused to the heterologous plastid targeted signal (pΔNLdGES and pΔNVoGES) of the native 

VoGES and LdGES (Figure 4).  

 

 

Figure 4 Relative quantitative analysis of geraniol glycosides in agro-infiltrated N. benthamiana leaves with truncate 

(ΔN), artificial plastidic target(p) LdGES and VoGES and empty vector control (EV) by LC-MS. 

Bars represent the total mass intensity of all geraniol-derived glycosides (malonyl-hexosyl-geraniol, acetyl-hexosyl-

hydroxy-dihydro-geranicacid, acetyl-dihexosyl-geraniol, hexosyl-carboxygeranic acid, hexosyl-hydroxygeraniol, 

pentosyl-hexosyl-geraniol andpentosyl-hexosyl-hydroxy-tetrahydro-geranic acid). 
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3.4.  Similar activity of VoGES and LdGES in stably transformed tobacco plants 

 

Headspace analysis of stable transfomants of Nicotiana tabacum L. ‗Samsun NN‘ 

showed no geraniol in the headspace of wild type plantlets, but plantlets transformed with 

either VoGES or LdGES expression constructs did emit geraniol into the headspace (Figure 

5A). Geraniol production differed between lines, but the production of geraniol was similar 

in the highest producer of VoGES and highest producer of LdGES  transformants (Figure 5B).   

To analyse the production of non-volatile geraniol-derived products produced in 

planta in VoGES or LdGES transformed plants, the semipolar, non-volatile metabolites were 

analysed by LC-QTOF-MS. PCA of reconstituted mass peaks (see materials and methods) 

shows clustering of the replicate groups and separation between WT and transgenic lines in 

the first component (49.7% of the variation; Figure 5C). There was no separation between 

VoGES and LdGES, confirming that both GES proteins have very similar in planta activity, 

despite their different subcellular localization. Because of strong similarity in chemical 

profiles between the VoGES and LdGES lines, subsequently only VoGES18 was analyzed in 

more detail.  
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Figure 5 GC-MS headspace 

analysis of volatiles and princi-

pal component analysis of non-

volatiles on transgenic and wild 

type tobacco plantlets  

 

A. GC chromatogram showing 

selected ion 69 of a geraniol 

standard, transgenic line 

VoGES18, LdGES10 and WT. 

Geraniol eluted at retention 

time 17.10 min. 

 

B. Geraniol concentration in the 

headspaceof tobacco plantlets 

(n= 3 groups ~50 plants) 

 

C. Principal component analy-

sis of the LC-MS data on 

tobacco plantlets. PC1, PC2 

and PC3 describe 49.7%, 

21.5% and 15.3% of the total 

metabolic variation, respect-

tively. V5, V9 and V18 indicate 

independent transgenic lines of 

VoGES; L1, L7, L8, L10 and 

L11 indicate independent 

transgenic lines of LdGES 

(three biological replicates of 

each line).  
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Figure 6 Headspace analysis of 

different tissues of transgenic VoGES 

tobacco plants 

 

A. Geraniol concentration of different 

developmental stage leaves.The num-

bers 3, 8 and 16 represent young (8 

cm), middle (20 cm) and old (20 cm) 

age leaves, respectively. 

 

B. Geraniol emission of  different 

developmental stage flowers.  

 

C. Geraniol emission of  different 

parts of  flowers. 
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3.5.  Different geraniol related compounds in flowers and leaves of transformed plants expressing GES 

 

To determine free geraniol emission capacity of different parts of the plant, the 

headspace of leaves and flowers of different developmental stages was analyzed. Leaves 

were harvested from the plant at the onset of flowering. The headspace volatiles were 

collected for 5 hours during the day. Analysis by GC-MS showed that the youngest leaves 

emit most geraniol and emission decreased in older leaves, while there was no significant 

difference between middle and old leaves (Figure 6A). Analysis of flowers in different stages 

of development showed that emission was highest in freshly opened flowers (Figure 6B). To 

understand which part of the flower contributes most to the geraniol emission, different parts 

of the tobacco flowers were isolated and separately analysed for headspace production. 

Figure 6C shows that petal, sepal and ovary contribute almost equally to the geraniol in the 

total flower headspace. However, we noted that after dissection of the flower the production 

of geraniol increased almost 10-fold compared with the intact flower, possibly as a result of a 

wound induced increase in the flux through the MEP pathway (Bonaventure and Baldwin, 

2010; Cordoba et al., 2009). Alternatively, it is possible that wounding results in induction of 

glycosidases that could liberate glycosidically bound geraniol (Edwards and Wratten, 1983; 

Hoagland, 1990). 

To determine the level of geraniol-derived glycosides in different tissues, leaves and 

flowers were treated with Viscozyme.  Analysis of the released volatiles by GC-MS showed 

that without glycosidase treatment only geraniol is detected in the tissue extracts. Viscozyme 

treatment strongly increased geraniol production and now also geranial, and geranic acid 

were detected (Table 2). Combined, the level of glycosylated geraniol products in leaves 

(32.04 µg/g fw)  were  about 5-fold higher than in flowers (6.39 µg/g fw).   

For analysis of the conjugated GES related products in the transformants the LC-MS 

chromatograms of WT and VoGES18 plants were compared and 19 compounds were 

identified with significantly higher signal in the transgenic line (Table 3). For identification of 

these putative geraniol-related products, the masses were targeted for fragmentation by  

LTQ Orbitrap MSn. According to the MSn spectra from 18 of the differential masses, the 

compounds are likely hexose, pentose and malonyl or acetyl conjugates of geraniol, hydroxy- 
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geraniol, geranic acid, hydroxy-geranic acid and hydroxy-dihydro-geranic acid. One mass 

(709.3562), which is specific for sepal tissue could not be identified as a geraniol related 

product (Table 3). A malonylated hexosyl geranic acid conjugate was present in flower 

tissues but not in leaves, whereas a hexosyl hydroxyl-geranic acid conjugate was specific for 

leaves. Combined, the results suggest that the glycosylating activities for geraniol and 

geraniol derivatives are tissue-dependent. According to the mass intensity signal of the 

different glycoside conjugates in leaves, 89% were directly derived from geraniol, while 11% 

were apparently derived from geraniol after further modification to hydroxy-geraniol, 

geranic acid, hydroxy-geranic acid or hydroxy-dihydro-geranic acid (Figure 7). In flowers, 

the proportion of geraniol and further modified products was slightly different from that in 

leaves in sepal, petal and ovary (Figure 7), likely as a result of different endogenous enzyme 

activities in different tissues.   

 

Figure 7 Components of geraniol related aglycons based on mass intensity of putative glycosides in VoGES tobacco 

leaves and flowers.  
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4.  Discussion 

 

4.1.  Localisation of VoGES in the plastids and LdGES mostly in the cytosol has no effect on in planta 

activity 

 

In this study, we show that both VoGES and LdGES only produce the product geraniol in 

vitro as specific product from GPP (Figure 2). Both VoGES and LdGES contain a putative 

plastid signal peptide (Table 1) and monoterpene synthases are generally believed to be 

active in the plastids (Bouvier et al., 2000; Dudareva et al., 2005; Turner et al., 1999). For 

instance, CrGES from C. roseus has been shown to be localized in the plastids (Simkin et al., 

2012). Our localization experiments showed that VoGES directs the GFP protein to the 

plastids, as expected, and no cytosolic signal was observed from transient expression of 

VoGES-GFP in agroinfiltrated leaves of N. benthamiana, indicating that import into the 

plastids was not saturated. The plastidic localization of VoGES-GFP was also evident from 

GFP signal in the stromules extending from the plastids (Figure 3A-B). In contrast, the signal 

of LdGES-GFP was mostly in the cytosol. Although some fluorescence in or around the 

plastids was observed, no LdGES-GFP signal was localized to the stromules of the plastids 

(Figure 2C). Control experiments show that the cytosolic signal from LdGES-GFP does not 

result from cleavage of GFP from the fusion protein (Figure S1). The GFP localization studies 

thus suggest a predominantly cytosolic localization of LdGES. Because product analysis 

(Table 2 and Figure 5) shows that native VoGES and LdGES have similar activity in planta, 

this suggests that the substrate pool of GPP is not limiting for native LdGES in the cytosol. 

However, we also note that activity of the truncated VoGES and LdGES proteins (both 

localized to the cytosol) was only 30% of plastid localized VoGES and LdGES, suggesting that 

(although for these cytosolic GES proteins the GPP substrate is available) GPP is not as 

abundant available as in plastids. Indeed, it recently was shown that in tomato fruits 

cytosolic monoterpene biosynthesis can be supported by plastid-generated geranyl 

diphosphate substrate (Gutensohn et al., 2013). The higher activity of native (mostly) 

cytosolic LdGES and truncated  ΔNLdGES could be related to the partial plastidic 

localization of native LdGES. 
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4.2.  Multiple oxidized and glycosylated forms of geraniol produced by endogenous enzymes 

 

In our experiments approximately 11% of the produced geraniol was converted to the 

oxidized products geranial, hydroxy-geraniol, geranic acid, hydroxy-geranic acid and 

hydroxy-dihydro-geranic acid, which were mostly present as conjugates (Figure 7, Table 3). 

These conversions of geraniol are likely catalyzed by endogenous  tobacco enzymes. For 

examples, geranic acid is likely to be synthesized from geranial by an NAD+ dependent 

dehydrogenase (Boyer and Petersen, 1991; Campos-García, 2010; Davidovich-Rikanati et al., 

2007; Lüddeke et al., 2012).  Geranic acid was only present in glycosylated forms in the 

transgenic plants and not as the free form (Figure 8). Because low levels of geranial were 

detected only after and not before de-glycosylation, presumably this product is formed from 

oxidation of geraniol during the de-glycosylation reaction.  

 

4.3. Biotransformation of geraniol in different hosts 

 

In this study, VoGES and LdGES were expressed in both a microbial, E. coli, and plant host 

(N. benthamiana and N. tabacum). With E. coli protein, we could only detect geraniol as 

product, while geraniol, geranial and geranic acid were observed in transiently expressing N. 

benthamiana as well as stable transformed N. tabacum. In addition, in N. benthamiana small 

amounts of nerol and neral were detected (Table 2). Previously it was shown that LdGES 

expressed in maize also results in geranyl acetate production in leaves (Yang et al., 2011), 

while this product was absent in N. benthamiana or tobacco plants expressing the same 

LdGES (this paper). This shows that different heterologous GES hosts metabolize the 

produced geraniol differently, and that especially plants tend to produce a wider spectrum of 

geraniol derivatives. Similar observation were made with  expression of Ocimum basilicum 

geraniol synthase (ObGES) in yeast, E. coli, grape and tobacco (Fischer et al., 2012) and 

tomato (Davidovich-Rikanati et al., 2007). As expected, in all hosts the main product of 

ObGES was geraniol, but minor product (linalool, citronellol, nerol, α-terpineol...) formation 

differed between the heterologous hosts. 
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4.4.  Different glycosylation patterns of geraniol products in different tissues and stages of 

development 

 

Geraniol and geraniol derivatives accumulated in glycosylated form, some of which 

were further modified by endogenous malonyltransferases or acetyltransferases. The 

glycosides were mono-glycoside, di-glycosides and tri-glycosides. The hexoside, ubiquitous 

in nature, which can potentially be attached to geraniol is glucopyranoside, whereas the 

pentosides could be arabinofuranoside, arabinopyranoside, apiofuranoside, xylopyranoside 

or rhamnopyranoside (Genovés et al., 2005; Maicas and Mateo, 2005; Mateo and Jiménez, 

2000). Presumably, the glycosylated geraniol products are sequestered in the vacuole (Wink, 

2010; Winterhalter and Skouroumounis, 1997). The profile of glycosylated geraniol products 

differed between the agro-infiltrated N. benthamiana leaves and leaves of the stable 

transformed tobacco plants (Table 2). The glycosylation profile also differed between tissues 

and developmental stages within the same plant (Table 3). For instance, in the mature leaves 

of stable transformed tobacco plants expressing GES, the acetylated and malonylated 

glycosides of geraniol are ~5-fold higher than in seedlings (data not shown), suggesting that 

acelylation and malonylation are induced later during development. In total, the 

bioconversion by endogenous enzyme activities distributed the product of VoGES, geraniol, 

over at least 19 different compounds. Clearly, for effective reconstruction of a multiple step 

terpene biosynthesis pathway, such diversion of products needs to be avoided  in order to 

raise the desired product yield. The use of different promoters, driving expression in tissues 

more specialized for the production and/or storage of terpenoids, could be one way to 

achieve this.   

 

4.5.  No pleiotropic effects of GES overexpression 

 

Introduction of GES into tobacco could potentially result in competition for  the substrate 

GPP with other monoterpene synthases or result in depletion of  the substrates isopentenyl 

diphosphate and dimethylallyl diphosphate which are important for the formation of other 

terpenes, carotenoids and gibberellins, and this could have a dramatic effect on the plant 
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phenotype (Aharoni et al., 2003; Davidovich-Rikanati et al., 2007). However, no leaf or flower 

phenotype was observed in our stable transformed tobacco plants expressing VoGES or 

LdGES, despite high transgenic product levels suggesting that sufficient GPP is available in 

both leaves and flowers.  Also, in the LC-MS and GC-MS analysis of transgenic plants or after 

transient expression of GES genes in N. benthamiana, only new products were detected but no 

obvious reduction in endogenous products, which suggests there is indeed no competition 

for substrate.      

In the selected transgenic lines no pleiotropic effect of GES overexpression was 

observed. We cannot exclude that in the regeneration of stable transformed tobacco plants 

with 35S-VoGES or 35S-LdGES a selection occurred against very high GES expression, 

resulting in either toxic levels of geraniol or creating a drain of GPP required for  other 

processes.  Boosting of the GES production in the stable transformed tobacco plants (e.g. by 

combining with GPPS overexpression) could result in toxic effects of geraniol, but these 

effects may be eliminated by simultaneous co-expression with P450 enzymes which convert 

geraniol to less reactive intermediates/end products and/or by using tissue-specific 

promoters to drive geraniol production in tissues more specialized for terpene production 

and storage (for example trichomes).    

 

4.6. Higher fluxes through geraniol sequestration than through geraniol emission  

 

We note that emission of geraniol in stable transformed tobacco plants changed during 

development. For instance, in young seedlings emission was ~8 ng/g h, while in mature 

plants emission by leaves declined from young to old leaves from 55 to 5 ng/g h (Figure 5 

and Figure 6). In flowers of stable transformants emission of geraniol increased until flowers 

were fully open from 12 to 28 ng/g h (Figure 6). Based on the average headspace emission, 

the loss of geraniol from leaves would be  ~17 µg/g month and from flowers ~13 µg/g 

month, while 37 µg/g fw of geraniol  (derived) products (determined by de-glycosylation) 

are stored in 1 month old tobacco leaves (Table 2). N. benthamiana leaves at four days post-

agroinfiltration show an average emission rate of 0.13 ng/g h (not shown), while no geraniol 

was emitted into the headspace ten days post-agro-infiltration (data not shown). This might 

suggest that after ten days not only has the T-DNA with the expression construct degraded, 
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but that also the GES protein is no longer active in the cells, indicating a relatively high turn-

over of terpene synthase protein.  

Assuming that (1) effective expression in transient assays is from day 4-7 and that (2) 

geraniol production is at least 0.13 ng/g h in N. benthamiana leaves and that (3) flux through 

the pathway is 24 hr/day (which may not be the case if precursors are preferably produced 

in the light (Aharoni et al., 2003), the cumulative production of emitted geraniol over 4 days 

of transient expression would be ~0.012 µg/g fw. However, at ten days post agroinfiltration, 

the combined level of accumulated geraniol (derived) products (determined by de-

glycosylation) was around 56 g/g fw (Table 2). 

Assuming that geraniol derived products in N. benthamiana accumulate during four 

days of continuous activity, this suggests a geraniol production of ~    0.58 µg/ g h fw. 

Total level of geraniol derived products in the stable transformants is ~37  µg/g fw and that 

is produced in 1 month, the geraniol production rate of stable transformants in tobacco is 

only 0.05 µg/ g h fw.  The high production in the transient assay is most likely due to an 

extremely high gene dosage number of the infiltrated GES expression construct compared to 

the low copy number in stable transformants. At present it is not clear why the high GES 

activity in the transient expression assay is not matched by a higher emission of geraniol, but 

one explanation may be that the conjugation capacity of infiltrated N. benthamiana leaves is 

highly efficient. 

 

4.7.  Towards a monoterpene iridoid pathway in heterologous plants 

 

Expression of GES in tobacco is the first step in a larger effort to introduce the terpene indole 

alkaloid (TIA) biosynthesis into tobacco plants, consisting of a  monoterpene iridoid branch 

and an indole branch (Mahroug et al., 2007; Simkin et al., 2012). The second step of this 

pathway is the conversion of geraniol to 10-hydroxy-geraniol by geraniol 10-hydroxylase 

(G10H), but (as described above) this conversion may already take place by endogenous 

tobacco enzymes (Table 3). We are currently testing whether co-expression of VoGES with a 

G10H can effectively compete for the endogenous unwanted oxidation and glycosylation of 

the primary product geraniol. In the context of multiple-step monoterpene pathway 

reconstruction in heterologous plant hosts, elimination of the conversion by endogenous 
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enzyme activities may become an important target for efficient channeling towards the 

desired product(s).  
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Abstract 

 

The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form 

two large families of plant-derived bioactive compounds with a wide spectrum of high-value 

pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as 

anti-cancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to 

high market prices and poor availability. Their biotechnological production is hampered by 

the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last 

four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes 

encoding this pathway together with two genes boosting precursor formation and two 

downstream alkaloid biosynthesis genes in an alternative plant host allowed the 

heterologous production of the complex MIA strictosidine. This confirms the functionality of 

all enzymes of the pathway and highlights their utility for synthetic biology programs 

towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids 

with pharmaceutical and agricultural applications. 

 

Introduction 

 

Monoterpenoid indole alkaloids (MIAs) are a large group of plant-derived natural products 

with a range of pharmacological properties.Examples of MIAs are camptothecin used to treat 

cancer and quinine, the antimalarial drug of choice till the mid of the last century. 

Madagascar periwinkle, Catharanthus roseus, the best-characterized MIA-producing plant 

species, is the source of the valuable MIAs vincristine and vinblastine, which are used 

directly or as derivatives for the treatment of several cancer types. Because of the extremely 

low concentrations (0.0002 % fresh weight), production of vincristine and vinblastine is 

expensive (3000 USD/g) and availability of the drug is sensitive to environmental and 

political instability in the production countries. Therefore, biotechnology-based production of 

MIAs in microorganisms or alternative plant hosts has been proposed as a sustainable 

substitute but progress has been hampered by the lack of knowledge of the enzymes 

responsible for MIA biosynthesis, particularly in the secologanin pathway (Fig. 1). 
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Secologanin is the monoterpenoid (also called iridoid or secoiridoid) branch end point and is 

coupled to tryptamine by strictosidine synthase (STR) to form strictosidine, the universal 

MIA precursor. The secologanin pathway has broad importance as many plant species 

accumulate iridoids and secoiridoids (including secologanin) as end products without 

incorporating them into complex alkaloids. Many (seco)iridoids are bioactive themselves, 

with among others anticancer, anti-microbial and anti-inflammatory activities 1-4. Iridoids are 

also pheromones in some insect species, and as such can be employed for pest management 

in agriculture and the control of insect disease vectors5, 6. 

The (seco)iridoid pathway is still largely unresolved. It starts with geraniol and is thought to 

comprise approximately 10 enzymes catalyzing successive oxidation, reduction, 

glycosylation and methylation reactions (Fig. 1). Although the pathway has been investigated 

for decades7, 8, only the first step (geraniol 10-hydroxylase/8-oxidase, G8O)9and the two last 

steps (loganic acid O-methyltransferase, LAMT; and secologanin synthase, SLS)10, 11 are well 

established. Only recently, two additional enzymes were identified, iridoid synthase (IS) 

responsible for the reductive cyclisation step12and geraniol synthase (GES)13. A complicating 

factor for gene discovery as well as biotechnological production is that the MIA pathway in 

C. roseus is organized in a complex manner, with the enzymes localized in different cell types 

and subcellular compartments14, 15 (Fig. S1). 
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Fig. 1.The secologanin–strictosidine pathway. 

Genes indicated in boxes were published before 

(black background) or during (white background) 

the present study, or are reported here (yellow 

background). Frames indicate mRNA localization in 

the leaf internal phloem-associated parenchyma 

(IPAP) (pink) or epidermis (blue). Numbers indicate 

predicted enzyme classes in the initial gene 

discovery strategy. 1: oxidoreductase, 2: cytochrome 

P450, 3: UDP-glycosyltransferase (UGT). GPPS, 

geranyldiphosphate synthase, GES, geraniol 

synthase; G8O, geraniol 8-oxidase; 8-HGO, 8-

hydroxygeraniol oxidoreductase; IS, iridoid 

synthase; IO, iridoid oxidase; 7-DLGT, 7-

deoxyloganetic acid glucosyltransferase; 7-DLH, 7-

deoxyloganic acid hydroxylase; LAMT, loganic acid 

O-methyltransferase; SLS, secologanin synthase; STR, 

strictosidine synthase; TDC, tryptophan 

decarboxylase. 
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Fig. S1. Overview of the MIA pathway and the cell-specific localization of the branches leading to vinblastine 

and vincristine. Solid arrows represent single enzymatic steps, dashed arrows multiple enzymatic steps. The arrow 

bearing a black circle represents the transport of loganic acid from one type of cells to the other. 
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Here we report the characterization of the last missing steps of the C. roseus secoiridoid 

pathway. We used an integrated transcriptomics and proteomics approach for gene 

discovery, followed by biochemical characterization of the isolated candidates. Furthermore, 

we reconstituted the entire MIA pathway up to strictosidine in the plant host Nicotiana 

benthamiana, by heterologous expression of the newly identified genes in combination with 

the previously known biosynthesis genes. This work provides essential tools that will allow 

development of synthetic biology platforms for the production of bioactive iridoids, 

secoiridoids and complex MIAs with a wide range of agricultural and pharmaceutical 

applications, including the treatment of cancer. 

 

Results and Discussion 

 

Gene discovery 

 
We previously reported the assembly of CathaCyc, a C. roseus metabolic pathway database 

based on Illumina HiSeq2000 RNA sequencing data16. The dataset was derived from C. roseus 

suspension cells and shoots treated with the plant hormone methyl jasmonate (MeJA)16. 

Here, we complemented this dataset with RNA-Seq data from cell suspensions 

overexpressing either ORCA2 or ORCA3, transcription factors that regulate the expression of 

LAMT, SLS and several other genes in the MIA biosynthesis pathway17, but not GES and G8O 

(Fig. 2A). These four and all other known MIA genes are induced by MeJA both in cell 

suspension cultures and whole C. roseus plants, although GES/G8O and LAMT/SLS show 

different induction characteristics (Fig. 2B). Furthermore, GES and G8O are expressed in the 

internal phloem-associated parenchyma (IPAP) cells, whereas LAMT and SLS are expressed 

in the leaf epidermis10, 11, 13, 18, 19. The differential induction and in situ expression data 

suggested that the first part of the pathway (up to 7-deoxyloganic acid) corresponds to one 

transcriptional regulon, whereas all subsequent steps up to the synthesis of secologanin 

would comprise a second regulon. 

Based on the hypothetical pathway and predicted enzyme activities catalyzing the hitherto 

missing steps (Fig. 1), we screened our dataset for genes encoding NAD(P)-binding 

Rossmann fold domain-type oxidoreductases, cytochrome P450 monooxygenases (P450s) and 
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UDP-glycosyltransferases (UGTs) that display co-expression with GES/G8O, and for P450s 

that show co-expression with LAMT/SLS. Three genes encoding putative oxidoreductases 

showed a high degree of co-expression with GES/G8O (Fig. 2A). The first (accession number 

Caros008267) was annotated as a progesterone reductase, the second (Caros003452) as an 

aldehyde dehydrogenase and the third (Caros009903) as a 12-oxophytodienoate reductase. 

We also identified four P450s (Caros020058, Caros001222, Caros018961, and Caros005234) 

and one UGT (Caros009839) that showed close co-expression with GES/G8O (Fig. 2A). The 

first oxidoreductase was found to encode the recently-described iridoid synthase12, thus 

confirming the validity of our screening strategy. The others were selected for further 

functional analysis. We also verified the co-expression of these candidate genes in the 

publicly-available dataset from the Medicinal Plant Genomics Resource consortium 

(http://medicinalplantgenomics.msu.edu) which has been integrated into the ORCAE 

website (http://bioinformatics.psb.ugent.be/orcae16). This analysis strongly supported our 

selection of candidate genes (Fig. 2B). 

 

The tissue localization of the enzymes in the leaf was used as a second criterion to pinpoint 

the most promising candidate genes. This was investigated using proteomics on epidermal 

and mesophyll protoplasts isolated from C. roseus leaves. The proteomics analysis resulted in 

the identification of 2200 proteins. Three P450s and one UGT (Caros005234, Caros006766, 

Caros020058 and Caros020739) were enriched in the mesophyll fraction, whereas one P450 

(Caros007986), one UGT (Caros004449) and nine oxidoreductases (Caros022489, Caros002459, 

Caros017236, Caros002170, Caros012730, Caros006689, Caros007544, Caros021570 and 

Caros003491)were enriched in the epidermal fraction. One P450 (Caros003164) was present in 

both tissues (Fig. 2C and Table S) 
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Fig. 2. Gene discovery strategy. (A-B) Complete-linkage hierarchical clus-tering of early MIA pathway gene 

expression in C. roseus based on our data (A) or the Medicinal Plant Genomics Resource consortium 

(http://medicinalplantgenomics.msu.edu). (B) Colors indicate transcriptional activation (blue) or repression 

(yellow) relative to untreated samples. Tissues: Fl, flower; mL, mature leaves; iL, immature leaves; St, stem; Ro, root; 

Sdlg, seedling. Suspension cells (CellSus): Wt, wild-type; O2, ORCA2; O3, ORCA3. Hairy roots (HairRt): Wt, wild-

type; Td, TDCi; RebH, RebH_F. Treatments: Not, no treatment; MeJA, methyl jasmonate (6, 12 or 24 h); Con, mock; 

YE, yeast extract. (C) Candidate P450 proteins in epidermis and mesophyll from proteomics analysis. GES, geraniol 

synthase; G8O, geraniol 8-oxidase; 8-HGO, 8-hydroxygeraniol oxidoreductase; IS, iridoid synthase; IO, iridoid 

oxidase; 7-DLGT, 7-deoxy-loganetic acid glucosyltransferase; 7-DLH, 7-deoxyloganic acid hydroxylase; LAMT, 

loganic acid O-methyl-transferase; SGD, strictosidineβ-D-glucosidase; SLS, secologanin synthase; STR, strictosidine 

synthase (1-3: three related genes); TDC, tryptophan decarboxylase 
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Candidate enzyme activities 

 

The three oxidoreductases (Caros008267, Caros003452 and Caros009903) were produced in 

Escherichia coli and purified for in vitro enzyme assays. Confirming a previous report12, the 

putative progesterone reductase (Caros008267) was shown to possess iridoid synthase (IS) 

activity in the presence of 8-oxogeranial (data not shown), yielding a mixture of cis-trans-

iridodial and cis-trans-nepetalactol. Caros003452 was active with the substrates 8-OH-

geraniol, 8-OH-geranial and 8-oxogeraniol in the presence of NAD+, yielding mixtures of the 

three compounds and 8-oxogeranial in varying relative amounts depending on the 

combination and the incubation time (Fig. 3A). The enzyme was therefore coined 8-

hydroxygeraniol oxidoreductase (8-HGO). With the co-factor NAD+ it did not convert 8-

oxogeranial (Fig. 3A), and it was not active with any of the substrates listed above in the 

presence of NADP+/NADPH. Given the complex kinetics, with four interconvertible 

compounds and eight possible reactions, the reaction constants could not be determined. 

G8O was recently shown to also produce 8-oxo-geraniol from geraniol20, thus the two 

enzymes G8O and 8-HGO appear to catalyze partially overlapping (and in the case of G8O, 

monodirectional) oxidation reactions that result in the production of 8-oxogeranial from 

geraniol (Fig. 1). Six candidate P450 genes (CYP76A26, CYP81Z1, CYP81Q32, CYP72A224 and 

CYP71AY1, CYP71AY2) were transferred to a yeast expression vector and co-expressed in 

Saccharomyces cerevisiae together with the P450 reductase ATR1 from Arabidopsis thaliana21 

(Fig. S2). Functional screening was carried out as described20 with geraniol, 

8-hydroxygeraniol, 8-hydroxygeranial, 8-oxogeraniol, 8-oxogeranial, iridodial, iridotrial, 

7-deoxyloganic acid and 7-deoxyloganetic acid as potential substrates. CYP76A26 converted 

both iridodial and iridotrial into 7-deoxyloganetic acid. The cis-iridodial and trans-iridodial 

freely interconverted with cis-trans-nepetalactol12, and although CYP76A26 seemed to use the 

bicyclic iridodial nepetalactol as the preferred substrate, the monocyclic cis- and trans-

iridodials were also utilized, possibly after spontaneous conversion into nepetalactol (Fig. 

3B). The interconversion and sequential metabolism of nepetalactol and the iridodials in 

aqueous solution and the limited availability of pure iridodial prevented evaluation of the 
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catalytic parameters with these substrate(s). Although we never detected 

 

Fig. S2. Evaluation of the expression of P450 candidates in transformed yeast microsomes. Differential absorbance 

of the CO-saturated-reduced versus reduced microsomes was recorded between 400 and 500 nm and cytochrome 

P450 concentration was determined according to45. x-axis: wavelength in nm. Iridoid oxidase (IO, CYP76A26, 

Caros003676), 7-deoxyloganic acid hydroxylase (7-DLH, CYP72A224, Caros005234), Geraniol-8-oxidase (G8O, 

CYP76B6, Caros006766), CYP81Z1 (Caros001222), CYP71AY1 (Caros018961), CYP71AY2 (Caros007986), CYP81Q32 

(Caros003164). 
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Fig. 3. Functional characterization of recombinant pathway enzymes. The enzymatic activities of 8-

hydroxygeraniol oxidoreductase (8-HGO) and 7-deoxyloganetic acid glucosyltransferase (7-DLGT) were tested 

using affinity-purified proteins expressed in E. coli. Cytochrome P450s were expressed in yeast and assayed as 

microsomal preparations. (A) 8-HGO; (B) iridoid oxidase (IO); (C) 7-DLGT; (D), 7-deoxyloganic acid hydroxylase (7-

DLH). Left: GC-FID and HPLC-DAD profiles show the specific formation of products by the enzymes, compared to 

negative controls and authentic standards. Right: Product identity was confirmed by comparison of MS or UV-

spectra with authentic standards  
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Fig. S3. Activity of iridoid oxidase (IO; CYP76A26) with different substrates. Substrates (100 µM) were incubated 

for 20 min at 27 °C with 23 µM of CYP76A26 in absence (top) or in presence (bottom) of NADPH. Samples were then 

extracted with ethyl acetate and analyzed on GC-FID. s: substrate peak(s); p: peak(s) of product(s). 

 

iridotrial as an intermediate in the iridodial to 7-deoxyloganetic acid conversion, iridotrial 

was converted into 7-deoxyloganetic acid with a Kmapp of 45 µM and kcat of 57 s-1. Because the 

related G8O (CYP76B6) was previously shown to oxidize several (other) monoterpene 
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alcohols in addition to geraniol9, these compounds were also tested as potential substrates for 

CYP76A26. The enzyme converted 8-oxogeraniol into an unidentified product (Fig. S3), albeit 

with a low efficiency, and catalyzed the hydroxylation of linalool, nerol, citronellol and 

lavandulol, but not geraniol (Fig. S3). CYP76A26 thus catalyzes the direct conversion of 

iridodial into 7-deoxyloganetic acid in the secologanin pathway, and was consequently 

named iridoid oxidase (IO) (Fig. 1). 

The UGT (Caros009839 or UGT709C2), produced in E. coli, catalyzed the glucosylation of 7-

deoxyloganetic acid to form 7-deoxyloganic acid using UDP-glucose as the sugar donor (Fig. 

3C). The enzyme had a Kmapp of 9.8 µM and a kcatof 1.25 s-1. The enzyme was inactive with 

loganetic acid, loganetin, iridodial, iridotrial, 8-OH-geraniol, jasmonic acid, gibberellic acid, 

indole acetic acid, salicylic acid, abscisic acid, zeatin and luteolin. It thus behaved as a 

selective 7-deoxyloganetic acid glucosyltransferase (7-DLGT) (Fig. 1).  

In despite of its poor expression in yeast, CYP72A224 catalyzed the conversion of 7-

deoxyloganic acid into loganic acid in yeast microsomes with a Kmapp of 400 µM and a Vmaxof 

0.5 pmol.min-1.mg-1 microsomal protein (Fig. 3D). The activity was confirmed in a N. 

benthamiana leaf-disc assay (Fig. S4). The aglycone derivative of 7-deoxyloganic acid (7-

deoxyloganetic acid) was not a substrate for CYP72A224, confirming that glycosylation 

precedes hydroxylation of the cyclopentane ring. CYP72A224 was thus named 7-

deoxyloganic acid hydroxylase (7-DLH). It belongs to the same P450 subfamily as 

secologanin synthase (SLS; CYP72A1), which catalyzes the conversion of loganin into 

secologanin10. Both of these P450s use glycosylated substrates and have similar 

regiospecificities, suggesting that SLS evolved from 7-DLH thus extending the iridoid 

pathway to the secoiridoids. This evolutionary process apparently resulted in a complete 

change in activity because SLS shows no 7-DLH activity and vice versa (Fig. S5).  
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Fig. S4. Evaluation of 7-deoxyloganic acid conversion into loganic acid by CYP72A224 in N. benthamiana leaf-disc 

assay. Discs from leaves agro-infiltrated with a binary vector containing the 7-deoxyloganic acid hydroxylase (7-

DLH; CYP72A224) sequence were excised 5 days post-infiltration and incubated for 3 hours on buffer containing 7-

deoxyloganic acid. A leaf methanol extract was analyzed on UPLC-MS. Multiple reaction monitoring in positive 

mode with the transition 215.1>108.9 is shown. EV: extracts of discs agro-transfected with the empty vector 

incubated with 7-deoxyloganic acid. 
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Fig. S5. Comparison of the activities of 7-deoxyloganic acid hydroxylase and secologanin synthase expressed in 

yeast with 7-deoxyloganic acid and loganin. Microsomes from yeast expressing CYP72A224 (7-DLH) or CYP72A1 

(SLS) were tested for activity with 7-deoxyloganic acid (A) and with loganin (B) and analyzed by HPLC as described 

earlier. No 7-DLH activity was found for SLS. No activity with loganin was observed for 7-DLH, whereas SLS forms 

the two peaks of products (p) corresponding to reference secologanin (RT: 12.065 and 12.468 minutes). Experimental 

conditions were the same as used for testing 7-DLH activity (see main text). s: substrate; p: product. 

 

Pathway reconstitution in Nicotiana benthamiana 

 

The identification of the four enzymes described above allowed us to propose a complete 

secologanin pathway (Fig. 1), which we tested by stepwise combinatorial transient 

expression of the corresponding genes in N. benthamiana (Fig. 4A). To boost substrate 

availability for the pathway a geranyldiphosphate synthase from Piceaabies (PaGPPS)22 and a 

geraniol synthase from Valerianaofficinalis (VoGES)23 were used because the C. roseusorthologs 

were not available at the onset of these studies. The transient expression of PaGPPS+VoGES 

in N. benthamiana resulted in the formation of geraniol, but also a series of additional oxidized 

and glycosylated derivatives produced by endogenous N. benthamiana enzymes as previously 

reported23. The stepwise addition of G8O and IS resulted in the generation of new 

compounds, including new derivatives of the anticipated pathway intermediates 

(combinations 1, 2 and 4 in Fig. 4A, B; Fig. S6). In contrast, the addition of 8-HGO to the 

combination PaGPPS+VoGES+G8O only modified the existing product profile but did not 

generate any new compounds (combination 3 in Fig. 4A, B; Fig. S6). When IO was co-

expressed with PaGPPS+VoGES+G8O+8-HGO+IS (combination 5), the metabolic profile did 

not change, and 7-deoxyloganetic acid and its derivatives were not detected (Fig. 4A, B). 
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However, reconstitution of the pathway up to 7-DLGT(combination 6) was successful and 

resulted in the production of 7-deoxyloganic acid and putative acetylated 7-deoxyloganic 

acid (Fig. 4A, C). Without IO, these products were not detected (Fig. S7), indicating that IO is 

functional in N. benthamiana and forms an essential part of the biosynthesis pathway. These 

findings also illustrate the importance of full pathway coverage for functional analysis of 

individual enzymes. 

Subsequently, the entire postulated secologanin pathway (PaGPPSto SLS) was introduced by 

agroinfiltration, but in first instance this only yielded products up to 7-deoxyloganic acid. 

Therefore, we artificially increased the input halfway into the pathway by infiltrating the 

intermediates iridodial, iridotrial or 7-deoxyloganic acid in combination with the pathway 

genes. In all cases this resulted in the production of secologanin, indicating that the second 

half of the pathway is also functional (Fig. 4D). Finally we tested whether the biosynthesis 

pathway up to secologanin can be functionally combined with the reconstituted tryptamine 

branch of the MIA pathway. When the secologanin biosynthesis pathway genes were co-

infiltrated with the tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes, 

and the flux through the pathway was boosted by infiltration of the intermediates iridodial, 

iridotrial or 7-deoxyloganic acid, strictosidine was indeed produced (combination 10 in Fig.  

4D).  
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Fig. S6. Masses and quantitative changes of compounds detected upon step-wise reconstitution of the 

secologanin pathway in N. benthamiana. Gene combinations are as listed in Fig. 4A. Heatmap shows relative mass 

intensity changes. 

1 F, formic acid adduct; A, acetyl group adduct; M, malonyl group adduct; number 2, dimer; H, hexose, P, pentose. 

NI : not identified. 
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Fig. 4. Reconstitution of the strictosidine pathway in N. benthamiana. (A). Gene combinations infiltrated in leaves 

in triplicate. (B). Principal component analysis. PC1 and PC2 describe 36.2% and 31.1% of the total mass variation, 

respectively. (C). LC-MS analysis showing selected masses 401 and 359 representing (acetylated) 7-deoxyloganic acid 

(7-DLA) from infiltrations with 8-carboxygeranic acid (CGA), 7-DLA or gene combinations 6 or 7 (negative control). 

(D). LC-MS analysis showing selected masses 433 (formic acid adduct of secologanin) and 575 (formic acid adduct of 

strictosidine) from infiltrations with secologanin or strictosidine, or with gene combinations 9 or 10, with or without 

iridodial. *Identical profiles with iridotrial or 7-DLH. Hex = hexosyl. 
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Fig. S7. Iridoid oxidase (IO) is an essential component of the pathway. LC-MS analysis on selected mass 359 (7-

deoxyloganic acid ; 7-DLA) and 401 (acetylated 7-DLA) of N. benthamiana leaves infiltrated with 7-DLA or 8-

oxogeranial co- agro-infiltrated with gene combination IS+IO+7-DLGT or IS+7-DLGT. 

 

Pathway reconstitution experiments thus validated the enzyme sequence leading to the 

formation of strictosidine (Fig. 1). The low flux through the pathway probably reflects the 

substantial conversion of intermediate products to other oxidized, acetylated, malonylated 

and glycosylated derivatives by endogenous N. benthamiana enzymes, which can be 

addressed by further engineering but may also open new avenues for combinatorial 

biochemistry programs to produce novel bioactive (seco)iridoids (Fig. S6).  
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Pathway localization 

Efficient pathway engineering also requires precise knowledge of the cellular and subcellular 

organization of different pathway components. IO, 7-DLH, 8-HGO and 7-DLGTwere 

therefore expressed as green fluorescent protein (GFP) fusions in C. roseus cells together with 

mCherry markers for nucleus, cytosol, endoplasmic reticulum (ER), plastids, mitochondria or 

peroxisomes. This revealed that IO and 7-DLH are ER-associated as predicted, whereas 8-

HGO and 7-DLGT are soluble proteins found in the cytosol and the nucleus (Fig. S8). 

Previous in situ transcript analysis24 has suggested that a pathway intermediate is 

translocated from IPAP cells (the site of the early biosynthetic steps) to the epidermis, where 

the final steps of the pathway occur. In situ hybridization showed that 8-HGO, IO, 7-DLGT 

and 7-DLH are expressed in the same tissue as G8O (Fig. 5). The separate clustering of these 

genes in Fig. 2A and the joint transcript localization as shown in Fig. 5 suggest that these 

genes constitute a transcriptional regulon for the production of loganic acid in IPAP cells. 

The epidermis-specific positive control SGD confirms the localization of the next 

transcriptional regulon, consisting of LAMT, SLS, STR and TDC, in the epidermis. The 

existence of this regulon is supported by the highly similar co-expression profiles of these 

genes as shown in Fig. 2A. The expression of 7-DLH in IPAP cells indicates that loganic acid 

is the mobile intermediate transferred to the epidermis, and hence that glycosylation by 7-

DLGT is not sufficient for mobility but that further hydroxylation by 7-DLH is also required. 

This tissue-specific expression may increase the flux through the pathway by alleviating 

feedback inhibition by intermediates and products, and/or it may segregate the iridoid and 

secoiridoid/MIA pathways, allowing them to fulfill tissue-specific functions. 

In conclusion, we have identified the four last missing enzymes in the secologanin pathway. 

In combination with the iridoid genes previously identified, the genes encoding these four 

enzymes are sufficient to engineer secologanin production and, together with TDC and STR, 

biosynthesis of the complex alkaloid strictosidine in a heterologous plant system. Notably, 

although different segments of the strictosidine pathway are localized in different cell types 

in C. roseus, our results show that the entire pathway can be successfully reconstituted in a 

single N. benthamiana organ. This paves the way for the biotechnological production of 



Chapter 4 

 
126 

valuable iridoids and iridoid-derived compounds, such as the MIAs vincristine and 

vinblastine, making these important anti-cancer drugs available to more people and at a 

lower price. 
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Fig. 5. Expression of the transcriptional regulon required for loganic acid biosynthesis in the internal phloem-associated 

leaf parenchyma (IPAP) cells. In situ hybridization on serial longitudinal sections of young developing leaves was carried out 

with antisense (AS) probes and sense (S) probes as controls. Geraniol 8-oxidase (G8O) and strictosidine β-D-glucosidase (SGD) 

AS probes were used as IPAP and epidermis markers, respectively. Sense probe controls gave no signals. 8-HGO, 8-

hydroxygeraniol oxidoreductase; IO, iridoid oxidase; 7-DLGT, 7-deoxyloganetic acid glucosyltransferase; 7-DLH, 7-

deoxyloganic acid hydroxylase; ipap, internal phloem associated parenchyma; ep, epidermis. Scale bar = 100 µm. 

Fig. S8. Subcellular localization of (seco)iridoid pathway enzymes. C. roseus cells were transiently co-transformed with 

plasmids expressing pathway enzymes fused to GFP (green; left) and mCherry organelle markers (red; middle). Co-

localization of the fluorescent signals appears in the merged pictures in yellow (right). Iridoid oxidase (IO) and 7-deoxyloganic 

acid hydroxylase (7-DLH) were co-transformed with ER marker and 8-hydroxygeraniol oxidoreductase (8-HGO) and 7-

deoxyloganetic acid-O-glucosyltransferase (7-DLGT) with cytosol/nucleus marker. Scale bars = 10 µM. 
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Materials and methods 

 

Chemicals. The substrates 8-carboxygeranial, 8-carboxygeranic acid, 8-oxogeranic acid and 8-

hydroxygeranic acid were synthesized on order by Synthelor (Vandoeuvre-Lès-Nancy, 

France), whereas 8-OH-geraniol, 8-oxogeraniol, 8-OH-geranial and 8-oxogeranial were 

synthesized by Chiralix B.V. (Nijmegen, Netherlands). Iridodial-glucoside, iridotrial-

glucoside and 7-deoxyloganic acid were synthesized from aucubin extracted from Aucuba 

japonica leaves by Chiralix B.V. as described25, 26. The aglucone iridoid pathway intermediates 

were produced by incubation with almond -glucosidase (Sigma Aldrich) in 50 mM acetate 

buffer (pH 5). Loganetic acid and loganetin were produced by the deglucosylation of loganic 

acid and loganin (Extrasynthese). Aglycones were extracted with diethyl ether, evaporated 

under N2 and quantified by 1H-NMR.  
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Transcriptomic analysis. 

 

 Transgenic derivatives of C. roseus cell line MP183L (overexpressing the ORCA transcription 

factors) were generated by particle bombardment27 with derivatives of the pER8 plasmid28 

carrying either the ORCA2 or ORCA3 ORFs. Selected transgenic lines were treated for 24 h 

with 10 µM estradiol, and RNA was isolated as described16. Illumina HiSeq2000 RNA 

sequencing, assembly, annotation and mapping of the RNA-Seq reads onto the reference 

transcriptome was carried out as described16. Complete linkage hierarchical cluster analysis 

was achieved using the CLUSTER and TREEVIEW software29 and the log10 transformed 

values of the normalized FPKM values were used as input for CLUSTER. 

 

Plant material.  

 

Catharanthus roseus var. Little Bright Eyes seeds were sown in sterilized soil and covered with 

transparent plastic until germination. The soil was kept humid. The plants were fertilized 

weekly with 0.2% liquid Wuxal (29 g/l nitrate-N; 46 g/l ammonium-N; 25 g/l carbamide-N; 

100 g/l P2O5 total phosphate; 75 g/l K2O; 124 mg/l B; 50 mg/l Cu; 248 mg/l Fe; Cu, Fe, Mn 

and Zn as EDTA-chelate). The plants were re-potted twice during further growth. 

 

Isolation of epidermal protoplasts.  

 

Young, light-green C. roseus leaves (length 4–7 cm) from side branches (without buds or 

flowers) of 8 to 11-week-old plants were harvested for protoplast isolation. The mid-vein was 

removed and the leaves were cut into 1–2 mm strips. Protoplasts where isolated as 

described30. To collect epidermal protoplasts, a layer of 1 ml betaine solution (0.5 M betaine, 1 

mM CaCl2, 10 mM MES, pH 5.6 with KOH) was added on top and the tubes containing the 

protoplast mix. After centrifugation for 7 min at 1500 rpm and 4°C, epidermal protoplasts 

were collected from the upper interphase. The suspension was mixed with 4 ml protoplast 

solution and 25% Percoll (pH 6), and overlaid with 1.5 ml of betaine solution for a second 

purification step. The tubes were centrifuged at 700 rpm for 30 min and the epidermal 
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protoplasts were again collected from the upper interphase. Protoplasts were pelleted in the 

betaine solution. 

 

Isolation of mesophyll protoplasts. 

 

 Mesophyll protoplasts were isolated as described for the epidermal protoplasts although 

with the MCP solution was replaced with TEX solution (3.2 g/l Gamborg‘s B5 medium, 3.1 

mM NH4NO3, 5.1 mM CaCl2, 2.6 mM MES, 0.4 M sucrose, pH 5.6-5.8 with 0.5 M KOH), and 

the betaine solution replaced with mannitol/W5 (1 mM D-glucose, 30 mM NaCl, 25 mM 

CaCl2, 1 mM KCl, 0.3 mM MES, 320 mM α-mannitol, pH 5.6-5.8 with KOH). For the first 

gradient, 5–10% Percoll (pH 6) was added instead of 3–5 %. 

 

Collection of protoplast microsomes. 

 

 The protoplast pellet was resuspended in 2–4 ml buffer A (20 mM HEPES pH 7.2, 1 tablet/10 

ml Roche Protease Inhibitor, 1 mM PMSF). The mixture was pressed 10–20 times through a 

syringe with needle and centrifuged for 10 min at 3000 rpm and 4°C. The samples were ultra-

centrifuged for 1 h at 30,000 rpm. The membrane pellets were dissolved in 1 ml washing 

solution (0.3 M NaCI, 20 mM HEPES buffer, pH 7.2 (with KOH), 1 tablet/10 ml Roche 

Protease Inhibitor, 1 mM PMSF) by stirring with a small brush, and then vortexed for 30 s. 

The microsomes were frozen at –80°C for at least 1 h, thawed and then centrifuged for 1 h at 

30,000 rpm and 4°C. The pellets were dissolved in 50–100 µl buffer A for further analysis. The 

protein concentration was determined using the Bio-Rad DC protein assay according to the 

manufacturer‘s instructions.  

 

Mass spectrometry.  

 

Approximately 50 µg of protein was separated by one-dimensional gel electrophoresis31 in 

10% polyacrylamide gels to reduce sample complexity. The gels were stained with 

Coomassie Brilliant Blue, the lanes were cut into ten slices, the proteins were reduced with 

tris(carboxyethyl)phosphine hydrochloride (TCEP) and sulhydryl groups were blocked with 

iodoacetamide. In-gel digestion with sequencing-grade modified trypsin (Promega, reference 
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V5111) was carried out overnight at 37°C32. The resulting peptides were recovered by adding 

40 mM Tris-HCl buffer (pH 8.0) and 50% acetonitrile containing 1% formic acid. The peptide 

mixtures were desalted by solid-phase extraction on C18 reversed-phase columns and 

analyzed on an LTQ Orbitrap mass spectrometer (Thermo Fischer Scientific, Bremen, 

Germany) coupled to an Eksigent Nano HPLC system (Eksigent Technologies, Dublin, CA, 

USA) as previously described33. 

 

Database searching and protein identification.  

 

Protein databases were searched using Mascot v2.3. Raw data were searched against a 

composite database consisting of all entries in the NCBI Viridiplantae database (released in 

November 2010), all publicly-available C. roseus expressed sequence tags (downloaded from 

NCBI in November 2010) and the reference transcriptome released on CathaCyc and 

ORCAE16 (database contained forward and reverse protein entries, total number of protein 

entries 1,166,013). The parameters for precursor and fragment ion mass tolerance were set to 

5 ppm and 0.8 Da, respectively. One missed trypsin cleavage was allowed. 

Carboxamidomethylation of cysteine was specified as fixed modification, and oxidation of 

methionine and pyroglutamate formation from glutamine were selected as variable 

modifications.  

 

Data processing and protein quantitation.  

 

Scaffold v3.0 (Proteome Software, Portland, OR, USA) was used to validate and quantify 

MS/MS-based peptide and protein identifications. Peptide identifications were accepted if 

they were established at greater than 95% probability as specified by the Peptide Prophet 

algorithm34. Protein identifications were accepted if they were established at greater than 90% 

probability and at least one peptide was uniquely assigned to a corresponding protein in a 

minimum of two of our samples. Protein probability was assigned by the Protein Prophet 

algorithm35. Proteins that were identified with the same set of peptides and could not be 

differentiated by MS/MS analysis were grouped to protein clusters to satisfy the principles of 

parsimony. Peptide and protein false-discovery rates (FDR) were determined by the Scaffold 
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software. A peptide FDR of 0.01% and a protein FDR of 0.2% were computed. The Scaffold 

software was also used to determine protein abundance in the mesophyll and epidermal 

factions based on the number of spectra assigned to each protein. An F-test was applied to 

assess significant differences in protein abundances. 

Gene isolation. Open reading frames (ORFs) were amplified by PCR from a pACT2 cDNA 

library of a C. roseus cell culture elicited with yeast extract36 using the primers listed in 

Extended Data Table 2. For expression in plants, the ORFs were transferred to vector 

pRT10137 to bring them under the control of the Cauliflower mosaic virus 35S promoter, and 

the entire expression cassettes were then transferred to the binary vector pCAMBIA1300 

(Cambia). For expression in E. coli, the ORFs were transferred to vector pASK-IBA45plus 

(IBA) and/or pET16-H (Novagen pET-16b derivative). Probes for in situ hybridization were 

prepared from the same ORFs cloned in pBluescript II SK+ (Stratagene). For localization 

analysis the ORFs were transferred to vector pTH238, 39 and/or pTH2BN (a derivative of 

pTH2). The marker for nucleocytosolic localization (pRT101-mCherry) was prepared by 

amplifying the mCherry ORF from plasmid ER-rk40 (The Arabidopsis Information Resources, 

TAIR, clone CD3-959). 

 

Isolation of His-tagged recombinant proteins. 

 

 Recombinant proteins carrying a His6 tag were expressed using plasmid pASK-IBA45plus 

and/or pET16-H in E. coli strain BL21 (DE3) pLysS and purified by Ni-NTA agarose 

chromatography (Qiagen). For quality analysis, the recombinant proteins were separated by 

12.5% (w/v) SDS-PAGE, transferred to Protran nitrocellulose membranes (Whatman) by 

semidry electroblotting, and western blots were probed with mouse monoclonal anti-His 

horseradish peroxidase (HRP) conjugate antibodies (5Prime). Antibody binding was detected 

by incubation in 250 μM sodium luminol, 0.1 M Tris-HCl (pH 8.6), 3 mM H2O2 and 67 μM 

p-coumaricacid, followed by exposure to X-ray film. 

Enzymatic assays of UGT and oxidoreductases. UGT activity was detected in 0.1 ml reaction 

buffer containing 50 mM potassium phosphate (pH 7.5), 2 mM UDP-glucose, 5–1000 μM 7-

deoxyloganetic acid or 2 mM of other tested compounds and 50–1000 ng of purified enzyme. 

Reactions were incubated at 32°C for 15 min and stopped by adding 1 volume of methanol, 
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mixed by vortexing and kept on ice for 10 min. The tubes were centrifuged at 4000 x g for 10 

min, and the supernatants were passed through 0.22-µm nylon filters. 

Oxidoreductase activity was detected in 1 ml reaction buffer containing 50 mM bis-tris 

propane (pH 9 for oxidation and pH 7.5 for reduction), 2–1000 μM 8-OH-geraniol, 

8-oxogeraniol, 8-OH-geranial, 8-oxogeranial or other tested compounds, 2–2000 μM NAD+ or 

NADH and 50–1000 ng of purified enzyme. Reactions were incubated for 15 min at 32°C, 

stopped by adding 0.2 volumes of 1 M sodium citrate (pH 3) and centrifuged and filtered as 

above. Quantitative assays were carried out by measuring NADH production at 340 nm in a 

Nanodrop2000c (Thermoscientific) 

 

Chromatographic analysis.  

 

Qualitative and quantitative analysis of 7-DLGT and 8-HGO products was carried out using 

an Agilent series 1200 HPLC with a diode array detector (DAD) and a Polymer Laboratories 

PL-ELS 2100 ICE evaporative light scattering detector (ELSD) and a Phenomenex Luna 5 

micron 150 x 4.6 mm C18 column. The injection volumes were 10 or 100 µl. The binary solvent 

system consisted of acetonitrile and 0.1% trifluoroacetic acid in water. The elution program 

was: 5 min isocratic 10% acetonitrile and then 25 min gradient until 95% acetonitrile. Peak 

areas were calculated using Agilent ChemStation.  

 

NMR. 

 

Structures of enzyme products were analyzed by nuclear magnetic resonance (NMR) 

spectroscopy in 750 µl of acetone-d6 or methanol-d4in a 5 mm NMR glass tube41. 

 

Subcellular localization studies. 

 

 C. roseus MP183L cell suspension cultures were maintained by weekly 10-fold dilution in 50 

ml Linsmaier&Skoog (LS) medium containing 88 mM sucrose, 2.7 µM 1-NAA and 0.23 µM 

kinetin (LS-13). The cells were grown at 25°C with a 18/6h light dark cycle. The cells were 

bombarded27 using the plasmids pTH2-IO, pTH2-7-DLH, pTH2-7-DLGT, pTH2BN-7-DLGT, 

pTH2-8-HGO and pTH2BN-8-HGO. The first two were combined with equal amounts of the 
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ER marker ER-rk, and the others with the nucleocytosolic marker mCherry. Bombarded cells 

were placed on Petri dishes with LS-13 medium and viewed after 24 h using a Zeiss Observer 

laser scanning microscope. 

 

In situ hybridization. 

 

 pBluescript plasmid derivatives containing the cDNAs for 8-HGO, IO, 7-DLGT and 7-DL 

were used for the synthesis of antisense and sense digoxigenin-labeled riboprobes as 

previously described19. G8O antisense probes19 and SGD antisense probes42 were used as 

internal phloem-associated parenchyma and epidermis markers, respectively. Paraffin-

embedded serial longitudinal sections of young developing leaves were hybridized with 

digoxigenin-labeled riboprobes and localized with antidigoxigenin-alkaline phosphatase 

conjugated antibodies43. 

 

P450 expression in yeast and corresponding enzyme assays.  

 

P450 coding sequences were amplified from pRT100 source vectors using specific primers to 

introduce USER™ sites at the 5‘ and 3‘ ends of each sequence. The genes were subsequently 

transferred to the plasmid pYeDP60 using the USER™ cloning technique (New England 

Biolabs, Ipswich, UK) as previously described44. The resulting recombinant plasmids were 

introduced into S. cerevisiae strain WAT11, cultivated at 28°C and P450 expression was 

induced as described21. Cells were harvested by centrifugation and manually broken with 

0.45-mm glass beads in 50 mM Tris‐HCl buffer (pH 7.5) containing 1 mM EDTA and 600 mM 

sorbitol. The homogenate was centrifuged for 10 min at 10,000 x g and the supernatant was 

centrifuged for 1 h at 30,000 x g. The pellet, comprising microsomal membranes, was 

resuspended in 50 mM Tris‐HCl (pH 7.4), 1 mM EDTA and 30% (v/v) glycerol with a 

Potter‐Elvehjem homogenizer and stored at –20°C. All procedures for microsomal 

preparation were carried out at 0–4°C. P450 expression was evaluated as described45 and 

enzymatic activities were determined in a standard 0.1-ml assay comprising for IO 2.3 nmol 

cytochrome P450, 0.6 mM NADPH and substrate in 20 mM sodium phosphate (pH 7.4). The 

reaction was initiated by the addition of NADPH and was stopped after 5 min by the 
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addition of 10 μl 1M HCl. Iridoids were extracted in 1 ml ethyl acetate, and the organic phase 

was concentrated to 200 µl before GC-FID analysis. For 7-DLH, 10 µl of yeast microsomes 

expressing 7-DLH (130 µg of microsomal protein) were incubated for 20 min at 27°C, in 0.1 

ml of 20 mM Na-phosphate (pH 7.4) containing 0.6 mM NADPH and substrate. The reaction 

was initiated by the addition of NADPH and was stopped after 20 min on ice. After addition 

of 50 µl of 50 % acetic acid, tubes were vortexed and centrifuged. The supernatant was run on 

reverse-phase HPLC (Alliance 2695 Waters system, NOVA-PAK C18 4.6 x 250 mm column) 

with photo-diode array detection at 236.5 nm. Peak areas of the product(s) were used to 

calculate the catalytic parameters of each enzyme.  

Leaf disc assays. Five-week-old N. benthamiana leaves were infiltrated with A. tumefaciens 

transformed with vector pC1300 containing the relevant candidate genes, plus the helper 

plasmid p19. Five days post-infiltration, leaves were used in a leaf disc assays as previously 

described20. 

 

Pathway reconstruction in N. benthamiana.  

 

The pathway genes were transiently expressed in the leaves of five-week-old N. benthamiana 

plants by agroinfiltration as previously described23. Briefly, bacteria carrying the relevant 

expression constructs (PaGPPS, VoGES, G8O, 8-HGO, IS, IO, 7-DLGT, 7-DLH, LAMT, SLS, 

TDC, STR, empty vector or TBSV p1946)were grown individually at 28ºC for 24 h. Cells were 

harvested by centrifugation and then resuspended in infiltration buffer containing 10 mM 

MES (DuchefaBiochemie), 10 mM MgCl2 and 100 µM acetosyringone (4′-hydroxy-3′,5′-

dimethoxyacetophenone, Sigma) to a final OD600 of ~0.5. For all gene combinations that 

compared subsequent steps in the pathway, the amounts of cell suspension for each 

expression construct were kept constant by adding the corresponding amount of A. 

tumefaciens carrying an empty vector. In several experiments, pathway intermediates were 

injected into the same leaves three days after agroinfiltration. Compounds used for 

infiltration were diluted to a final concentration of 400 µM in methanol/water (1:19), with the 

same ratio of methanol/water alone as a negative control and 400 µM 7-deoxyloganic acid, 8-

carboxygeranic acid, secologanin or strictosidine as positive controls. Leaves were harvested 
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for metabolite analysis 5 days after agroinfiltration.Frozen, powdered N. benthamiana leaves 

(200 mg aliquots) were extracted in 0.6 ml 99.867% methanol, 0.133% formic acid and 5 µl of 

the extract was analyzed using a Waters Alliance 2795 HPLC connected to a QTOF Ultima 

V4.00.00 mass spectrometer (Waters, MS technologies, UK). Measurements were taken in 

negative ionization mode. LC-MS data were acquired using MassLynx 4.0 (Waters) and 

processed using MetAlign version 1.0. The normalized and log-transformed data matrix was 

used for principal component analysis implemented in GeneMath XT v 2.1. 
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Catharanthus roseus (Madagascar periwinkle) is the best studied medicinal plant.  It produces 

the important class of secondary metabolites the monoterpenoid indole alkaloids (MIA) and 

their precursors the (seco)iridoids, bioactive compounds with a wide spectrum of high-value 

pharmacological and insect-repellent activities. From the over 130 known C. roseus MIAs 

many have pharmaceutical applications such as the anti-hypertensive drugs serpentine and 

ajmalicine and the potent antitumor agents bisindole alkaloids vincristine and vinblastine 

that are widely used to treat several types of cancer such as Hodgkins disease, Kaposi‘s 

sarcoma, breast cancer, bladder cancer and testicular cancer. Vinblastine and vincristine are 

produced by C. roseus in extremely low levels, leading to high market prices and poor 

availability. Because of their complex structures total synthesis is unfeasible (van der Heijden 

et al., 2004). After decades of research only parts of the MIA biosynthetic pathway are 

known. Complete knowledge of the biosynthesis is essential for biotechnological production 

of MIA‘s and (seco)iridoids. 

The aim of this work was elucidation and further description of the iridoid pathway from C. 

roseus from a metabolic engineering perspective. A candidate based approach was taken to 

find enzymes catalyzing both hypothetical and completely unknown intermediate reactions 

in iridoid biosynthesis and to find suitable enzymes for biotechnological applications. The 

candidates were picked based on amino acid and nucleotide sequence homology with known 

enzymes and the screening was refined by gathering additional information such as 

expression pattern in different conditions and established tissue localization of proteins and 

transcripts. Based on the evidence at the onset of these studies the pathway was missing 4-6 

enzymes with completely new functionalities. In addition the gene coding for enzyme 

geraniol synthase (GES) was known from Ocimum basilicum (Iijima et al., 2004), Cinnamomum 

tenuipilum (Yang et al., 2005), and Perilla citriodora (Ito and Honda, 2007) but C.roseus GES 

(CrGES) was not identified.  Several oxidoreductases of different classes, cytochrome P450‘s, 

glucosyltransferases and a terpene synthase were chosen as candidates according to our 

pathway model (Fig. 1). These candidates were expressed in Escherichia coli and Saccharomyces 

cerevisiae and used for candidate screening with in vitro biochemical assays. The pathway was 

completely reconstituted by transiently expressing the final four candidates and known 

iridoid biosynthesis genes in Nicotiana benthamiana and new metabolites were analyzed by 
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LC-MS, CrGES was validated by in vitro biochemical assays of an enzyme produced in E. coli 

and it was further characterized by expression in a farnesyl biosynthesis mutant S. cerevisiae 

strain and by in situ hybridization and by transient expression of a GFP-fusion in a C. roseus 

cell culture.  Geraniol synthases from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES) 

were characterized in vitro and in planta to assess biotechnological aspects of monoterpenoid 

biosynthesis.   

 

Chapter 1 serves as a general overview of MIA and iridoid biosynthesis and present the 

research strategy for this work.  

 

Chapter 2 presents the cloning and functional characterization of the C. roseus cDNA for 

CrGES encoding geraniol synthase (CrGES). The full-length CrGES was over-expressed in E. 

coli and the purified recombinant protein catalyzed the in vitro conversion of GPP into 

geraniol only with a Km value of 58.5 µM for GPP. In vivo CrGES activity was evaluated by 

heterologous expression in S. cerevisiae strain K197G mutated in the farnesyl diphosphate 

synthase gene. Analysis of culture extracts by gas chromatography-mass spectrometry 

confirmed the excretion of geraniol into the growth medium. Transient transformation of C. 

roseus cells with a Yellow Fluorescent Protein-fusion construct revealed that CrGES is 

localized in the plastid stroma and the stromules. This could suggest that the availability of 

its product geraniol to the next enzyme G10H could be facilitated through stromule/ER 

interactions. In aerial plant organs, RNA in situ hybridization showed specific labelling of 

CrGES transcripts in the internal phloem associated parenchyma as observed for other 

characterized genes involved in the early steps of MIA biosynthesis. Finally, when cultures of 

Catharanthus cells were treated with the alkaloid-inducing hormone methyl jasmonate, an 

increase in CrGES transcript levels was observed. This observation coupled with the tissue-

specific expression and the subcellular compartmentalization support the idea that CrGES 

initiates the monoterpenoid branch of the MIA biosynthetic pathway.  

Chapter 3 discloses the recombinant expression and characterization of two geraniol 

synthases (GES). GESs from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were 

isolated from E. coli and were shown to turn geranyl diphosphate (GPP) into geraniol as a 

specific product in vitro with Km values of 32 µM and 51 µM for GPP, respectively. The in 



Chapter 5 

 
146 

planta enzymatic activity and sub-cellular localization of VoGES and LdGES were 

characterized in stably transformed tobacco plants and using transient expression in N. 

benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate  geraniol, oxidized 

geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to 

similar levels. Geraniol emission of leaves was lower than that of flowers, which could be 

related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of 

the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, 

while LdGES import into to the plastid is clearly impaired compared to that of VoGES, 

resulting in both cytosolic and plastidic localization.  Geraniol production by VoGES and 

LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of 

VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol 

glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate 

geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The 

potential use of GES in the engineering of the MIA pathway in heterologous hosts is 

discussed.  

Chapter 4 reports the discovery of the last five missing steps of the (seco)iridoid biosynthesis 

pathway from C. roseus (Fig. 1) using an integrated approach combining gene expression and 

coexpression analysis, tissue-specific proteomics and biochemical assays. Five new 

biosynthesis genes were cloned and the corresponding enzymes characterized. One of the 

enzymes, the alternative terpene cyclase iridoid synthase (IS) was recently published while 

this work was in progress (Geu-Flores et al., 2012). The novel enzyme 8-hydroxygeraniol 

oxidoreductase (8-HGO) catalyzes the oxidation of 8-hydroxygeraniol both at position 1 and 

8 to ultimately yield 8-oxogeranial. Another novel enzyme, iridoid oxidase (IO, CYP76A26) 

was found to turn cis-trans-nepetalactol (also known as iridodial hemiacetal form) and cis-

trans-iridodials into 7-deoxyloganetic acid. Also iridotrial was utilized by the enzyme 

resulting in the same product. 7-deoxyloganetic acid was in turn used by 7-deoxyloganetic 

acid glucosyltransferase (7DLGT, UGT709C2) to produce 7-deoxyloganic acid. This 

compound was hydroxylated by a fourth enzyme, 7-deoxyloganic acid hydroxylase (7DLH, 

CYP72A224), into loganic acid.  All of the enzymes were found to be expressed in vascular 

tissue of C. roseus aerial organs, notably the internal phloem associated parenchyma (IPAP) 

cells, by in situ hybridization. The novel biosynthesis genes showed a very similar expression 
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pattern in whole plants and in tissues cultures in multiple conditions. The subcellular 

localization of GFP fusions of the CYP450 enzymes (IO, 7DLH) was found to be in the ER as 

expected. 8-HGO and 7DLGT N- and C-terminal fusion proteins were found localize in the 

cytosol. Expression of the eight genes encoding this pathway together with two genes 

boosting precursor formation and two downstream alkaloid biosynthesis genes in an 

alternative plant host allowed the heterologous production of the complex MIA strictosidine.  
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Fig.1 The secoiridoid pathway in C. roseus: Reactions for which the corresponding C.roseus gene has been described 

in literature have a black background, reactions for which the corresponding gene has been newly described in this 

thesis have a yellow background. IPP: isopentenyl diphosphate, DMAPP: dimethylallyl diphosphate, GPPS: 

geranyldiphosphate synthase, GES: geraniol synthase, G8O: geraniol-8-oxidase, 8-HGO: 8-hydroxygeraniol 

oxidoreductase, IS: iridoid synthase, IO: iridoid oxidase, 7DLGT: 7-deoxyloganetic acid glucosyltransferase, 7DLH: 

7-deoxyloganic acid hydroxylase, LAMT: loganic acid methyltransferase, SLS secologanin synthase, TDC: 

tryptophan decarboxylase, STR: strictosidine synthase. Frames indicate mRNA localization in the leaf internal 

phloem-associated parenchyma (IPAP) (pink) or epidermis (blue). Numbers indicate predicted enzyme classes in the 

initial gene discovery strategy. 1: oxidoreductase, 2: cytochrome P450, 3:UDP-glucose-glucosyltransferase, 4: terpene 

synthase. 

 

This confirmed the functionality of all enzymes of the pathway and highlights their utility for 

synthetic biology programs towards sustainable biotechnological production of valuable 

(seco)iridoids and alkaloids with pharmaceutical and agricultural applications. Notably, 

although different segments of the strictosidine pathway are localized in different cell types 

in C. roseus, our results show that the entire pathway can be successfully reconstituted in a 

single N. benthamiana organ. This paves the way for the biotechnological production of 

valuable iridoids and iridoid-derived compounds, such as the MIAs vincristine and 

vinblastine, making these important anti-cancer drugs available to more people and at a 

lower price.  

As a conclusion this thesis presents the complete set of iridoid biosynthesis genes and 

enzymes. The tissue specific expression of the genes confirms the model proposing that the 

early part of iridoid synthesis occurs in the IPAP cells associated with vascular tissue and the 

late part in the epidermis. The nearly very similar expression patterns of all the early 

pathway genes reinforce this model and suggest regulation by common transcription factors. 

The elucidation of the pathway validates the approach taken in this work of coexpression 

analysis and tissuespecific proteomics for finding specific biosynthesis genes. The 

reconstitution of the whole pathway in N. benthamiana acts as proof of concept for expressing 

whole biosynthetic pathways in plants. Each enzyme was found to fulfill its hypothesized 

function and to be required to complete the pathway. The metabolite analysis from stably 

transformed tobacco with the GESs and N. benthamiana transiently transformed with GESs or 

the whole pathway and the first MIA biosynthesis genes can help to identify and solve 

bottlenecks in future metabolic engineering efforts. As formation of the monoterpenoid 
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moiety of MIAs (MEP pathway and iridoid pathway) is considered to be the rate limiting 

step in MIA biosynthesis (Morgan and Shanks, 1999), the availability of pathway genes and 

additional information on their characteristics can bring about new more elaborate metabolic 

engineering schemes for producing high amounts MIAs and iridoids in heterologous hosts.  
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Catharanthus roseus (roze maagdenpalm) is de best bestudeerde medicinale plant. Het 

produceert de monoterpenoïde indoolalkaloïden (MIAs) en hun voorlopers de 

(seco)iridoïden. Deze secundaire metabolieten bezitten een breed spectrum aan 

farmacologische en insectenwerende activiteiten. Van de meer dan 130 bekende MIAs uit C. 

roseus hebben velen farmaceutische toepassingen, zoals serpentine en ajmalicine tegen hoge 

bloeddruk en de bisindoolalkaloïden vincristine en vinblastine die op grote schaal worden 

gebruikt om verschillende soorten kanker te behandelen, zoals leukemie, de ziekte van 

Hodgkin, Kaposi-sarcoom, borstkanker, blaaskanker en testiculaire kanker. Vinblastine en 

vincristine worden door C. roseus geproduceerd in extreem kleine hoeveelheden, wat leidt tot 

hoge marktprijzen en slechte beschikbaarheid. Vanwege hun complexe structuren is 

chemische totaalsynthese onhaalbaar (van der Heijden et al., 2004). Ondanks tientallen jaren 

van onderzoek zijn slechts delen van de MIA biosyntheseroute bekend. Volledige kennis van 

de biosyntheseroute is essentieel voor biotechnologische productie van MIAs en 

(seco)iridoïden. 

 

Het doel van dit werk was opheldering en nadere omschrijving van de iridoïdroute in C. 

roseus, en met name identificatie van de enzymen die zowel de veronderstelde als de 

onbekende intermediaire reacties katalyseren. Kandidaatgenen voor deze enzymen werden 

gekozen op basis van een hypothetisch model van de biosyntheseroute waarin bepaalde 

enzymactiviteiten verondersteld werden, en vervolgens werden DNA sequenties coderend 

voor deze veronderstelde enzymen gekozen uit het C. roseus transcriptoom op basis van 

overeenkomsten in de aminozuurvolgorde met bekende vergelijkbare enzymen van andere 

planten. De selectie werd verfijnd door het verzamelen van bijkomstige informatie zoals 

genexpressiepatronen onder verschillende omstandigheden en de lokalisatie van 

gentranscripten in verschillende plantenweefsels. De wetenschappelijke stand van zaken bij 

het begin van deze studie gaf aan dat er 4-6 enzymen met compleet nieuwe functies 

ontbraken in de iridoïdroute. Het gen dat codeert voor het eerste enzym in de route, geraniol 

synthase (GES), was bekend van basilicum (Ocimum basilicum; Iijima et al., 2004), 

Cinnamomum tenuipilum (Yang et al., 2005)  en Perilla citriodora (Ito en Honda, 2007), maar niet 
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van C. roseus. Meerdere oxidoreductasen van verschillende klassen, cytochroom P450s, 

glucosyltransferases en terpeensynthases werden als kandidaten gekozen volgens het model 

voor de biosynthetische route (Afbeelding 1). Deze kandidaten werden tot expressie gebracht 

in de darmbacterie Escherichia coli of in de bakkersgist Saccharomyces cerevisiae en 

enzymactiviteiten werden vervolgens getest met in vitro biochemische assays. De route werd 

volledig opgelost door tijdelijke expressie van de vier nieuwe kandidaten samen met de 

bekende iridoïdbiosynthesegenen in Nicotiana benthamiana en analyse van de nieuwe 

metabolieten met vloeistofchromatografie-massaspectrometrie (LC-MS). De identiteit van het 

GES enzym uit C. roseus werd bevestigd door expressie in E. coli en in een S. cerevisiae stam 

met een mutatie in farnesylbiosynthese gevolgd door biochemische analyse van de 

producten, door meting van de weefselspecifieke genexpressie in C. roseus via in situ 

hybridisatie en door tijdelijke expressie van een fusie-eiwit met Yellow Fluorescent Protein 

(YFP) in C. roseus cellen. Homologe geraniol synthases van valeriaan (Valeriana officinalis; 

VoGES) en Azteeks zoetkruid (Lippia dulcis; LdGES) werden gekarakteriseerd via in vitro 

assays en tijdelijke in planta expressie. 

 

Hoofdstuk 1 geeft een algemeen overzicht van de MIA en de iridoïd biosynthese en beschrijft 

de onderzoeksstrategie voor dit werk. 

 

Hoofdstuk 2 beschijft de klonering en functionele karakterisering van geraniol synthase uit 

C. roseus (CrGES). CrGES werd tot expressie gebracht in E. coli.  Het gezuiverde 

recombinanteiwit katalyseerde de in vitro omzetting van geranyl difosfaat (GPP) in geraniol 

met een KM waarde van 58.5 µM voor GPP. In vivo CrGES activiteit werd geëvalueerd door 

heterologe expressie in de S. cerevisiae stam K197G die gemuteerd is in het 

farnesyldifosfaatsynthasegen. Analyse van cultuurextracten door gaschromatografie-MS 

(GC-MS) bevestigde de uitscheiding van geraniol in het groeimedium. De tijdelijke expressie 

in C. roseus cellen van een fusie-eiwit met Yellow Fluorescent Protein (YFP) wees uit dat 

CrGES gelokaliseerd is in het stroma en de stromules van de plastiden. Dit vormt een 

aanwijzing dat de beschikbaarheid van het product geraniol voor het volgende enzym G10H 

wordt vergemakkelijkt door interacties tussen de stromules en het endoplasmatisch 

reticulum (ER) waar G10H zich bevindt. In bovengrondse plantenorganen toonde RNA in 
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situ hybridisatie aan dat CrGES transcripten voorkomen in de parenchymcellen die zich 

dicht bij de interne floëemvaten bevinden, net als de transcripten van andere bekende genen 

betrokken bij de vroege stappen in de MIA biosynthese. Behandeling van C. roseus cellen met 

de signaalstof methyljasmonaat leidde tot een toename van de hoeveelheid CrGES 

transcripten, net als eerder werd gerapporteerd voor de transcripten van andere genen 

betrokken bij de vroege stappen van de MIA biosynthese. Gezamenlijk ondersteunen deze 

waarnemingen het idee dat CrGES aan het begin staat van de monoterpenoïde tak van de 

MIA biosynthese. 

 

Hoofdstuk 3 beschrijft de karakterisering van twee geraniol synthases van Valeriana officinalis 

(VoGES) en Lippia dulcis (LdGES). De enzymen werden geproduceerd in E. coli en waren in 

staat om GPP om te zetten in geraniol met KM waarden van respectievelijk 32 µM en 51 µM 

voor GPP. De in planta enzymatische activiteit en de subcellulaire lokalisatie van VoGES en 

LdGES werden vastgesteld in respectievelijk stabiel getransformeerde tabaks- en tijdelijk 

getransformeerde N. benthamiana planten. Transgene tabaksplanten met VoGES of LdGES 

accumuleerden geraniol, geoxideerde geraniolverbindingen zoals geranial en geranisch zuur 

en hexose-conjugaten van deze verbindingen. Geraniol-emissie van bladeren was lager dan 

die van bloemen, wat correleerde met hogere niveaus van concurrerende geraniol-

conjugerende activiteit in bladeren. Analyse van de lokalisatie van GFP-fusies van de twee 

GES eiwitten toonde aan dat VoGES zoals verwacht overwegend in plastiden voorkomt, 

terwijl LdGES ook in het cytosol voorkwam. Ondanks deze verschillen in lokalisatie was 

geraniolproductie door N. benthamiana planten die VoGES of LdGES tot expressie brachten 

vrijwel hetzelfde. Expressie van verkorte versies van VoGES of LdGES met lokalisatie in het 

cytosol resulteerde in de accumulatie van 30% minder geraniolglycosiden dan met de VoGES 

en LdGES varianten die in de plastiden voorkomen, wat suggereert dat het substraat 

geranyldifosfaat zowel beschikbaar is in de plastiden als in het cytosol. De potentiële 

toepassing van GES om de MIA biosyntheseroute in heterologe gastheren tot expressie te 

brengen wordt bediscussiëerd. 

 

Hoofdstuk 4 beschrijft de ontdekking van de laatste vijf ontbrekende stappen van de 

(seco)iridoïdbiosyntheseroute van C. roseus (Afbeelding 1) met behulp van een geïntegreerde 
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benadering, inclusief analyse van genexpressie en co-expressie, weefsel-specifieke proteomics 

en biochemische assays. Vijf nieuwe biosynthesegenen werden gekloneerd en de 

bijbehorende enzymen gekarakteriseerd. Eén van de enzymen, een alternatief terpeencyclase 

dat iridoid synthase (IS) is genoemd, werd recent gerapporteerd in het tijdschrift Nature 

(Geu-Flores et al., 2012). Het nieuwe enzym 8-hydroxygeraniol oxidoreductase (8-HGO) 

katalyseert de oxidatie van 8-hydroxygeraniol zowel op positie 1 als 8 tot het uiteindelijk 

eindproduct 8-oxogeranial. Een ander nieuw enzym, iridoid oxidase (IO, CYP76A26), bleek 

cis-trans-nepetalactol (ook wel bekend als de hemiacetaalvorm van iridodial) en cis-trans-

iridodial om te zetten in 7-deoxyloganetisch zuur. Ook iridotrial werd omgezet door het 

enzym in hetzelfde product. 7-deoxyloganetisch zuur werd op zijn beurt omgezet door 7-

deoxyloganetisch zuur glucosyltransferase (7DLGT, UGT709C2) tot 7-deoxyloganaat. Deze 

verbinding werd gehydroxyleerd door een vierde enzym, 7-deoxyloganaat hydroxylase 

(7DLH , CYP72A224) tot loganaat. Transcripten voor alle enzymen werden gedetecteerd in 

parenchymcellen rond het floëeemvaatweefsel in bovengrondse C. roseus organen door in situ 

hybridisatie. Onder verschillende omstandigheden vertoonden de nieuwe biosynthesegenen 

hetzelfde expressiepatroon in planten en celculturen. De subcellulaire lokalisatie van GFP-

fusies van de CYP450 enzymen (IO, 7DLH) was zoals verwacht in het ER. GFP fusie-eiwitten 

met 8-HGO en 7DLGT bevonden zich in het cytosol. Expressie van de acht genen die coderen 

voor de secoiridoïdroute samen met twee genen die precursorvorming stimuleren en met 

twee genen voor biosynthese van alkaloïden in een heterologe waardplant leidde tot de 

productie van het complexe MIA strictosidine. Dit bevestigde de werking van alle enzymen 

uit de route en geeft een indicatie voor hun toepasbaarheid in synthetische 

biologieprogramma's voor duurzame biotechnologische productie van waardevolle 

(seco)iridoïden en alkaloïden met farmaceutische en agrarische toepassingen. Hoewel 

verschillende delen van de strictosidine biosyntheseroute gelokaliseerd zijn in verschillende 

celtypes in C. roseus, blijkt uit onze resultaten dat de hele route met succes tot expressie kan 

worden gebracht in een enkel N. benthamiana orgaan. Dit effent de weg voor de 

biotechnologische productie van waardevolle iridoïden en iridoïd-afgeleide verbindingen, 

zoals de MIAs vincristine en vinblastine, hetgeen deze belangrijke anti-kanker medicijnen 

beschikbaar zou maken voor meer mensen en tegen een lagere prijs. 
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Afbeelding 1 (pagina 148). De secoiridoïdroute in C. roseus. Reacties waarvoor het overeenkomstige C. roseus gen in 

de literatuur is beschreven hebben een zwarte achtergrond, reacties waarvoor het overeenkomstige gen is 

beschreven in dit proefschrift hebben een gele achtergrond. IPP: isopentenyldifosfaat, DMAPP: dimethylallyl 

difosfaat, GPPS: geranyldifosfaat synthase, GES: geraniol synthase, G8O: geraniol-8-oxidase, 8-HGO: 8-

hydroxygeraniol oxidoreductase, IS: iridoid synthase, IO: iridoid oxidase, 7DLGT: 7-deoxyloganetisch zuur 

glucosyltransferase, 7DLH: 7-deoxyloganaat hydroxylase, LAMT: loganaat methyltransferase, SLS: secologanine 

synthase, TDC: tryptofaan decarboxylase, STR: strictosidine synthase. De kleur van het kader geeft de mRNA 

lokalisatie aan in de parenchymcellen rond de floëemvaatcellen (IPAP cellen) (roze) of de epidermiscellen (blauw) in 

het blad. Nummers geven voorspelde enzymklassen aan in de oorspronkelijke onderzoeksstrategie. 1: 

oxidoreductase, 2: cytochroom P450, 3: UDP-glucose-glucosyltransferase, 4: terpeen synthase 

 

Kortom, dit proefschrift beschrijft de complete set van iridoïdbiosynthesegenen en enzymen. 

De weefselspecifieke expressie van de genen bevestigt het model dat voorstelt dat het begin 

van iridoïdsynthese plaatsvindt in de parenchymcellen rond het floëemvaatweefsel en het 

laatste gedeelte in de epidermiscellen. De identieke expressiepatronen van de 

biosynthesegenen suggereert regulatie door gemeenschappelijke transcriptiefactoren. De 

opheldering van de biosyntheseroute bevestigt de juistheid van de onderzoeksstrategie voor 

het vinden van de specifieke biosynthesegenen die gebaseerd was op co-expressie analyse en 

weefsel-specifieke proteomics. De reconstructie van de hele route in N. benthamiana vormt 

een proof of concept voor het tot expressie brengen van hele biosynthesewegen in planten. 

Elk enzym bleek de hypothetische functie inderdaad te bezitten en was nodig voor de 

complete biosyntheseroute. Toekomstige analyse van metabolieten in tabaksplanten of N. 

benthamiana planten getransformeerd met delen van of met de gehele route kan helpen om 

knelpunten in de biosyntheseroute te identificeren en op te lossen. De biosynthese van het 

monoterpenoïde deel van de MIAs via de MEP route en de iridoïdroute wordt beschouwd 

als de snelheidsbepalende stap in de MIA biosynthese (Morgan en Shanks, 1999). De 

beschikbaarheid van alle biosynthesegenen en de aanvullende informatie over de 

eigenschappen van de bijbehorende enzymen vormen de basis voor geavanceerde ―metabolic 

engineering‖ strategieën voor de productie van MIAs en iridoïden in heterologe gastheren. 
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