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We experimentally probe nonlinear wave propagation in weakly compressed granular media and

observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show

that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is

independent of P0—two hallmarks of granular shocks predicted recently. The shocks exhibit surprising

power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak

and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential

energy balance in the leading part of the shocks.
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Many disordered materials, including granular media
[1–4], foams [5], and emulsions [6,7], lose their rigidity
when their confining pressure P0 is lowered. In almost all
cases, the resulting unjamming transition goes hand in
hand with the vanishing of one or both elastic moduli
[8–17], and consequently, nonlinearities must dominate
when such marginal systems are subjected to finite stresses
[1,18,19]. For example, soft particles exhibit nonlinear
rheology near jamming [6,20], even when their local elas-
tic and viscous interactions are linear [21,22], and margin-
ally connected spring networks exhibit nonlinear elasticity
near their critical points [23,24]. In these two cases, the
vanishing of the elastic moduli is a collective phenomenon,
closely connected to the isostatic character of the marginal
state [8–17].

Here, we experimentally probe a different scenario
where local nonlinearities near unjamming lead to vanish-
ing elastic moduli and nonlinear excitations: shock waves
in granular media [25]. Granular media have frictional
interactions, and frictional media in general do not reach
the isostatic limit: there are thus no collective mechanisms
leading to vanishing elastic moduli or nonlinearities
[15,26–28]. Nevertheless, when granular media unjam as
the pressure P0 is lowered, the individual contacts weaken
due to the nonlinear local Hertz contact law, which states
that for elastic spheres, the contact forces f scale with

deformations � as f� �3=2 [29,30]. As a result, frictional
granular media have a vanishing linear response at their
unjamming point, and their elastic moduli and sound speed

vanish as P1=3
0 and P1=6

0 , respectively [10,31–34].

Recent simulations on frictionless Hertzian media by
Gomez et al. suggest that sound waves give way to strongly
nonlinear shock waves near the unjamming (P0 ! 0) point
[1]. Three crucial questions remain open, as the numerical
model of Gomez has no static friction, no dissipation, and
is in 2D. First, realistic granular media are frictional: do
shock waves also arise for nonisostatic, frictional systems?
Second, friction also leads to dissipation—do shock waves

survive realistic levels of dissipation? Third, can such
shock waves be excited in 3D experiments?
To answer these questions, we experimentally probe

sound and shock waves by impacting a weakly compressed
granular medium with a heavy mass, while measuring the
propagation speed and front shape for a wide range of
impact magnitudes (Fig. 1). We find that we excite shock
waves, which exhibit the three main hallmarks of the nu-
merically observed conservative shocks: (i) a crossover
from linear waves to shock waves when the impact pressure
P exceeds the confining pressure P0; (ii) independence of
the shock speed on P0 but power law scaling with impact
strength; (iii) a balance of kinetic and potential energies in
the leading edge of the shock waves.
Moreover, we find a novel power law attenuation of the

shock waves, which we can capture by a simple model
where the local dissipation depends logarithmically on
grain forces—this dissipation is qualitatively different
from other granular dissipation mechanisms. The ease
with which we can excite such granular shock waves

FIG. 1. Schematic side view (a) and top view (b) of our setup.
Shock waves are excited in the granular medium by a plunger
(A) which slides through a circular hole (B) and is impacted
by a heavy mass (C). Pressure sensors and accelerometers
(big, respectively, small squares—both enlarged for visibility)
are attached to steel wires immersed in the granular medium at
locations �1 and �2.
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suggests that they play an important role whenever loose
granular media are strongly excited [35–39].

Setup.—Our setup consists of a large metal container
(45� 45� 45 cm) filled with glass beads (diameter D ¼
3:8–4:4 mm) and covered by a 2 kg aluminum top plate. To
excite shock waves, we impact a freely sliding cylindrical
piston (A), (diameter 10 cm, length 18 cm, mass 3.7 kg),
which makes contact with the grains through a circular
hole in the side of the container (B), with a mass (C, 1.2 kg)
suspended from a pendulum (mass 2 kg, length 1.3 m). We
detect wave propagation throughout the material via pres-
sure sensors and accelerometers buried in the granular
medium; the sensors are attached to steel wires to ensure
their correct positioning and orientation. We thus probe the
local excess pressure (our pressure sensors have no dc
response) and acceleration at distances �1 and �2 from
the impact zone (Fig. 1).

Phenomenology.—In Fig. 2, we show typical time traces
of the local pressures and velocities detected at locations
�1 ¼ 5 cm and �2 ¼ 15 cm, for a strong impact and low
confining pressure. The waves take the form of fronts with
a clearly identifiable leading edge, where the pressures and
particle velocities peak, followed by a long tail with a
complex structure. We characterize our waves by the
peak pressures, P�1

and P�2
, and peak particle velocities,

u1 and u2, at �1 and �2. We determine the front speed Vs

from the time of travel�t, where�t is the interval between
P reaching its 50% value at �1 and �2.

From data such as presented in Fig. 2, we can deduce
that elastic deformations dominate the physics of the lead-
ing edge of the shock, by connecting the force per particle
and its displacement through Hertz law. The peak force per
particle �1 can be estimated using the contact area of the
pressure sensor (1:33 cm2) to be of order 0.6 N. Typical
contact deformations then follow from Hertz law, which

relates the contact force F and deformation � as F ¼
4
3E

�R1=2�3=2 [29]. Taking E� ¼ 50 GPa (typical value for

glass), we estimate that � � 0:35 �m. The location �1 is

12 particle diameters � 24 contact zones away, so the
cumulative motion x at �1 is predicted to be of order
8 �m. Integrating the velocity signal [Fig. 2(c)] up to its
peak at time t� � 0:13 ms, we estimate the displacement at
t� to be also 8 �m. This suggests that in the leading edge of
the wave, the deformations are predominantly elastic.
The picture that emerges is that upon impact, a rapid

front is formed, which, for the cases when Vs is larger than
the sound speed, we will call a shock wave. We note that
while the grain displacements at t ¼ t� are of the order of
�m’s, the total motion of the plunger into the sand is of the
order of a mm: long after the shock wave has outrun our
system, the plunger is still slowly penetrating the sand bed,
leading to a very long tail, where the vast majority of
rearrangements and dissipative events take place [33,34].
Propagation speed.—To probe the nature of the waves

excited in this system, we varied the pressure P0 at the
depth of the sensors from 0.9 to 6 kPa and determined the
propagation speed Vs for a wide range of impact strengths.
To compare our data to the theoretical predictions of [1],
we plot our data in a so-called Hugoniot plot. Due to
attenuation (see Fig. 2), P�2

<P�1
and we therefore use

their geometric mean, Pm :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�1

P�2

p
, as a measure of the

impact strength.
Figure 3 shows Vs as a function of Pm and P0, and our

data are well fit by the form Vs ¼ Cð1þ Pm=PfÞ1=6, which
is a phenomenological fit capturing the plateau at low
impacts and power law at large impacts. We note that the
exact result for the 2D frictionless shocks, as given by Eq. 5
of [1], is similar to this fit.
The main three features are the following. (i) For strong

impacts, Vs becomes independent of P0, and Vs scales

FIG. 2 (color online). Typical signals for high impact ampli-
tude, for P0 ¼ 0:9 kPa, at �1 ¼ 5 cm (black) and �2 ¼ 15 cm
(red, dashed). (a) Local pressures PðtÞ. (b) Local velocities uðtÞ
obtained by integrating the acceleration signal. (c) Local dis-
placement obtained by integrating the velocity signal. The dot
represents the cumulative displacement at the peak velocity.

FIG. 3 (color online). Front speed vs as a function of peak
pressure in the front, Pm, for a range of confining pressures P0, at
�1 ¼ 5 cm at �2 ¼ 15 cm. Each data point corresponds to a
number of runs, and we indicated a typical 5% error bar. Fits
(solid lines) are functions of the form Vs ¼ Cð1þ Pm=PfÞ1=6.
For Pm � P0, Vs � P1=6

m (dashed line) and is independent of P0.
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consistently as P1=6
m —the dependence on Pm is a hallmark

of nonlinear waves, and the exponent 1=6 is the one
predicted for Hertzian shock waves. (ii) For weak impacts,
Vs becomes independent of the impact strength—the hall-
mark of linear waves—but increases with pressure due to
the nonlinear local interaction law. (iii) The crossover from
the linear to nonlinear regime is expected to arise when
Pm � P0, because when Pm � P0, linearization fails [1].
Indeed, we find that Pf grows with P0.

All these features are in good qualitative and quantita-
tive agreement with the earlier numerical findings of
Gomez et al.: the waves we excite for large impacts are
indeed shock waves.

Attenuation.—The peak pressure diminishes whilst the
shock propagates through the material. In Fig. 4, we com-
pare the peak pressures P�1

and P�2
at �1 ¼ 5 cm and

�2 ¼ 15 cm for the same experiments as shown in
Hugoniot plot. Strikingly, the attenuation varies signifi-
cantly with impact strength: for the weakest impacts,
P�2

� P�1
, while for larger impacts the relation between

P�2
and P�1

is consistent with power law scaling:

For ~P � 1: ~P2 ¼ ~P�
1 ; (1)

For ~P � 1: ~P2 ¼ ~P1; (2)

where ~P :¼ P=P�, ~P1;2 :¼ P�1;2
=P�, the characteristic

pressure P� � 50 Pa and � � 0:77	 0:05.
We will now determine a simple local model that cap-

tures this remarkable power law attenuation. We ignore
disorder and imagine the signal to propagate over a linear
chain of beads, where each bead attenuates the signal by a
factor (1� "). We assume the local attenuation " to
depend on the local pressure P only:

Piþ1 ¼ ½1� "ðPiÞ
Pi: (3)

Taking the continuum limit yields:

dP

dx
¼ �"ðPÞ

D
P: (4)

One can easily show [40] that we can capture the power
law relation between P�1

and P�2
when "ðPÞ has the

following logarithmic form [Fig. 5(a)]:

For P � P�: "ðPÞ ¼ "s ln

�
P

P�

�
; (5)

For P � P�: "ðPÞ ¼ 0; (6)

where "s :¼ � lnð�ÞD=ð�2 � �1Þ is a material constant.
A surprising consequence of this model is that it predicts

that the exponent� should depend on the distance between
�2 and �1. To test this, we have performed several sets of
experiments where we vary this distance. Figure 5(b)
shows that the log slope relating P�1

and P�2
indeed

increases for larger propagation distance between �2 and
�1. These trends are captured by our model, for a single
value of "s ¼ 3:46, and without any additional fit
parameters.
Local Elastic Motion and Energy Balance.— Figure 5(a)

illustrates that even for the strongest impacts, the attenu-
ation per particle is less than 10%. This motivates us to
probe the balance between elastic and potential energies in
our shock waves. For the conservative shocks studied in the
numerical simulations [1], the kinetic and potential ener-
gies balance in the shock regime, whereas away from the
shock regime, the kinetic energy tends to zero, but the

potential energy saturates at its lower bound �P5=3
0 .

To probe this balance in our experimental data, we
present scatter plots of the peak velocities u1 and u2 vs
the peak pressures P�1

andP�2
in Fig. 6. The kinetic energy

simply scales �u2m, where um is the maximum local ve-
locity, whereas the potential energy for Hertzian contacts

scales ��5=2
m � f5=3m , where �m and fm are the local maxi-

mum deformations and forces. Note that the contact force
fm should contain both the dc component / P0 and ac
component / P�1;2

. Our data are fully consistent with a 5=6

power law in the strongly nonlinear regime, and a pressure
dependent deviation from this law in the weakly nonlinear

FIG. 4 (color online). Scatter plot of the maximum pressures
P�1

and P�2
at �1 ¼ 5 cm and �2 ¼ 15 cm for a range of

pressures—same data as in Fig. 3. The black curve is a fit to
our model given by Eqs. (3)–(6).

FIG. 5 (color online). (a) Attenuation per contact "ðPÞ.
(b) Scatter plot of P1 and P2 for P0 ¼ 1:4 kPa at various
locations �1 and �2, and corresponding fits to our model.
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regime, and shows a strikingly good qualitative agreement
with the numerical data by Gomez et al. [Fig. 3(d) of [1]].
We finally note that this balance is equally good at �1 and
�2, even though the energies in �2 are smaller than in �1

due to attenuation. All this suggest that the attenuation
does not significantly upset the balance between kinetic
and potential energies.

Discussion.—By varying the impact strength, we can
tune our waves from pressure dependent sound waves at
low impact, to pressure independent nonlinear shock
waves at higher impact, similar to what was predicted for
dissipationless Hertzian particles [1]. We find that propa-
gating from one grain to the next, a small amount of energy
is dissipated, which leads to novel power law scaling of the
attenuation of the shocks amplitude over several decades.
Is this attenuation caused by scattering or dissipation?
While we cannot rule out scattering, we note that the
overall decrease of the pressure and velocity profiles shown
in Fig. 2 favors a dissipative picture; in addition, the width
of the leading edge does not change very much under
propagation. Notwithstanding this weak dissipation, the
magnitude of displacements in the shock, and the balance
of kinetic and potential energy, show that the physics in
the leading edge of the shock is dominated by elastic
interactions.

The shock waves we observe here are therefore qualita-
tively different from the slow granular densification waves
known as ‘‘plowing’’ [35,41]. Plowing is associated with
densification through highly dissipative rearrangements,
and such densification fronts propagate with velocities far
below the sound speed [35]. Similarly slow and dissipative
events may occur in the tail of our waves, but the point is
that the leading edge of our shock waves propagates faster
than the sound speed. These shock waves are also qualita-
tively different from the weakly nonlinear waves observed
under continuous driving [33,34].

We stress here that the log type of dissipation observed
is very different from ordinary granular dissipation. For
example, linear wave attenuation is typically associated
with a constant value of �, leading to exponential attenu-
ation in space and a linear relation between P�1

and P�2
.

Dissipation based on inelastic collisions takes a power law

form [42–44]—however, the relation between P�2
and P�1

is not itself a power law for power law dissipation [45].
We are not aware of any other examples where one finds a
similar nontrivial power law relation between P�1

and P�2
,

which may be a unique feature of shock waves. We note
that this form of dissipation leads to two new characteristic
scales, P� � 50 Pa and "s � 3:5, not present in the fric-
tionless problem.
Finally, we note the relevance of the relative magnitude

of the two characteristic pressure scales—the external
pressure P0 that sets the crossover from linear to shock
waves, and the characteristic pressure P� above which
attenuation sets in. In our experiment, P0 � P�, but it is
conceivable that for more elastic particles, or in micro-
gravity, one can reach P0 � P�, in which case, virtually
dissipation free granular shock waves could be observed.
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