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Chapter 1

General introduction

1.1 Introduction of the thesis

This thesis focuses on the development of image analysis methods for ultra-high con-
tent analysis of high-throughput screens where cellular phenotype responses to various
genetic or chemical perturbations that are under investigation. Our primary goal is
to deliver efficient and robust image analysis platforms which can 1) automatically
detect cellular structures of interest from florescence microscope images and 2) quan-
tify dynamics and organization of multi-cellular systems with phenotypic features. To
recover heterogeneity of cellular behavior, we aim to develop single-cell-based image
analysis methods so that cell subpopulations can be distinguished and investigated.
Furthermore, we intend to develop methods to extract an ultra-high level of phe-
notypic details from images. This would enable system-level studies of phenotype
characterization.

To promote a further understanding of this thesis, this introductory chapter
firstly provides the general background and essential knowledge related to the high-
throughput and high-content screening. Next, the state-of-the-art techniques and
image analysis methods that have been already applied to high-throughput and high-
content screenings are given. Finally, the scope and structure of this thesis is pre-
sented at the end of this chapter.

1.2 High-throughput and high-content screening

High-throughput and high-content screening is a phenotypic screening technique that
utilizes automated microscope systems to identify the functional role of substances
such as small molecules, peptides or RNA interference (RNAi), in the context of a
pivotal, pathology relevant, cellular process, ultimately enabling the identification of
drug targets and/or novel drug molecules. To prepare the screening, cells are cultured
in 96- or 384-well format micro plates and treatments with substances are applied.
Changes in cell phenotype can be visualized by labeling structures and molecular
components of the cells with fluorescent dyes, made visible by immunofluorescence
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Chapter 1

methodologies, or by expression of green fluorescent protein (GFP)-tagged proteins.
Finally, micro plates are imaged by an automated microscope system to monitor
cellular response to the different perturbations.

1.2.1 “High-throughput”

In recent years, florescence microscopy technology has been developed dramatically
in respect to resolution, speed, complexity and scale. The emergence of automated
microscope systems with robotic handling enables the investigation of a large volume
of compounds or genetic players simultaneously. Combined with genome-wide RNAi
approaches [1, 2], high-throughput small-molecule-based perturbations [3] or over-
expression strategies [4], high-throughput and high-content screening has become a
powerful technology to thoroughly study the regulation of biological pathways that
underlie the function of intact cells.

1.2.2 “High-content”

Although other high-throughput techniques, such as mass spectrometry or DNA-
microarrays, have been developed and successfully applied to study diverse cellular
pathway and their possible involvement in disease, these techniques, despite their
great usefulness, cannot provide adequate temporal and spatial information , in the
context of the structural and functional integrity of cells. Most importantly, they do
not directly show whether the identified molecules have a functional role in the cellu-
lar process that is under investigation. High-throughput and high-content screening
technique fills this gap by probing the function of molecules in their nature environ-
ment with exquisite and ever increasing spatial and temporal resolution [5–8]. More-
over, integrated with other high-throughput techniques, interdisciplinary information
is collected, which provides us a challenging opportunity to study whole biological
systems more comprehensively.

1.3 Workflow of high-throughput and high-content screen-
ings

High-throughput and high-content screenings consist of four major stages: sample
preparation, image acquisition, image analysis and data analysis. In this chapter,
a general introduction for each of these stages is provided and the state-of-the-art
techniques that are used in each stage are summarized.

1.3.1 Sample preparation

According to the biological question, different types of assays can be used for screen-
ing. In general, they are categorized in two groups: fixed assays and live-cell assays.
For the studies where only the final status of cells needs to be investigated, fixed
assays are the primary technique to be considered. The most common one is a 2D
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fixed assay. In this assay, cells are grown as a cell monolayer (therefore the term
“2D” is used) and only a simple and specific read out is measured. Because this
type of assay is relatively easy to be processed and imaged, it is often considered for
higher-throughput experimentation and larger scale automation. Many projects have
already achieved a great success using this type of assay [1, 3, 7, 9, 10]. One example
is the work of Marino Zerial and his co-workers [1]: a genome-wide RNAi screen was
performed in HeLa cells to explore the function of human kinases in two principal
types of endocytosis: clathrin- and caveolae/raft-mediated endocytosis. They showed
that a high number of kinases is involved in endocytosis, and that each endocytosis
route is regulated by a specific kinase subset.

However, 2D fixed assays are not representative of the cellular environment found
in organisms. In fact, tissue-specific architecture, mechanical and biochemical cues,
and cell–cell communication are lost under such simplified and highly biased condi-
tions. Efforts to address this problem led to the development of 3D cell cultures.
They utilize an extracellular matrix (ECM) gel to re-establish physiological cell–cell
and cell–ECM interactions, thus mimicking spatial organization of real tissues in
their nature environment better than 2D cultures. Recently 3D cultures have shown
many advantages in a broad range of cell biology studies [11, 12], including tumori-
genesis [13, 14], cell adhesion [15–17], cell migration [18] and epithelial morphogene-
sis [19]. Many researchers also start to establish 3D assays for high-throughput and
high-content screening, for example, in the study of tumor cell migration and inva-
sion [20]. Two 3D screening assays based on mouse and human breast cancer cells
are extensively described in chapters 3 and 5 of this thesis.

Another type of assays are live-cell assays which are used to study the dynamics
of cellular processes. It requires automated microscope to monitor these processes
and often fluorescence tagged protein are used that are continuously imaged over a
certain period of time. This allows the collection of much more detailed phenotypic
information, especially temporal information is provided that otherwise cannot be
obtained. In addition, live-cell assays can reveal primary defects and secondary con-
sequences of the phenotype and thereby allow a more precise interpretation of the
function of the molecules that are under investigation. This type of assays has been
widely used in the study of embryogenesis [2], cell division [21], and intracellular
translocation of molecules [22,23], which so far are the most significant achievements
among all high-throughput and high-content studies. These type of studies are based
on the discrimination between the cell membrane, the nucleus and the cytoplasm,
and the translocation of fluorescently labeled molecules between the distinct com-
partments. One example is the study of NF-κB nuclear translocation. Many studies
on this subject have been published in recent years, notably the work of Covert and
co-workers [24,25]. They developed a screen platform with single cell resolution that
can image and determine the NF-κB activation over time in a high-throughput man-
ner. In chapter 2 of this thesis, a novel NF-κB screening platform is described that
also measures NF-κB activation dynamics at a single cell level but is able to apply
for high cell density as well. Furthermore, it is able to quantify the characteristics of
all single cell dynamics for further understanding of cell-to-cell heterogeneity.
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1.3.2 Image acquisition in a high-throughput manner

One of the characteristics of high-throughput and high-content screening is that a
large amount of images needs to be acquired. Therefore image acquisition systems
that are fully automated and time efficient are required. Most researchers choose to
use commercial systems that are already available on the market [7, 26, 27]. In this
chapter, the techniques that are relevant in the context of this thesis are summarized.

1.3.2.1 Microscope models

Most high-throughput and high-content image acquisition systems are equipped with
wide-field fluorescence microscopy. For this type of microscopy, cellular structures of
interest are tagged with fluorescent proteins and exited by light of a specific wave-
length. After absorbing energy from excitation light, the fluorescent proteins emit
light of longer wavelength that is captured by a detector to generate images. Confo-
cal microscopy is another frequently used and more advanced fluorescence microscopy
method. It adds a pinhole aperture in front of the light source so that light excites
only one optical plane (focal plane) at a time. In addition, another pinhole is added
in front of the detector to filter out the emission light generated from the plane above
and beneath the focal plane. Therefore, images from confocal microscopy contain
only sharp in-focus information from the focal plane. This is especially useful when
a specimen is relatively thick and a series of optical sections need to be acquired
through the specimen. The disadvantage is the relatively slower imaging process and
longer exposure time of the specimen. Especially when a large number of sections
needs to be imaged, severe photobleaching can occur and that presents an as yet
unresolved problem.

The new generation of high-throughput screening systems starts to explore two-
photon excitation microscopy [28], spinning disc microscopy [3] and super resolution
microscopy [29]. Unfortunately, due to their relatively higher demand for both hard-
ware and software, only few researchers have so far developed and applied them
successfully in high-throughput and high-content screening.

1.3.2.2 Magnification, resolution, sampling size and camera setting

Objective lenses are the most important component of an optical system because
they are the predominant factor that defines image quality. In general, objective
lenses can be classified based on their magnification and resolution. High-throughput
and high-content screening systems are typically equipped with< 10×, 20× and 40×
magnification lenses. Different magnifications are applied according to the structure
of analysis. Measurement of structures over large areas, such as cell networks or
zebrafish embryos, requires lower magnification than measurement of sub-cellular
structures, for example, nuclear repair foci in a DNA damage and repair assay.

Image resolution (which refers here to spatial resolution) is a term used to describe
how closely two objects can be resolved in an image and is directly determined by
numerical aperture (NA), which is a number describing the amount of light coming
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from the focus that the objective can collect. According to the Rayleigh criterion,
the relation between NA and resolution is formulated as:

r = 0.61× λ

NA
(1.1)

where λ is the wavelength of emitted light. For a fluorescence microscope of NA = 0.5
and λ = 500nm, this results a resolution limit of 610nm. Two distinct objects closer
than this resolution will be imaged as a single object. Because in high-throughput
and high-content screening image acquisition is often done (as well as in this thesis)
with 4× or 10× lenses with NA equivalent to 0.13–0.3 (corresponding to resolution
limits of 2346nm–1017nm at λ = 500nm), the objective lenses are the limiting factor
in determining which sub-cellular structures can still be imaged.

Sampling size (also refers to sampling frequency) often refers to the distance
between 2 signal-recording points. According to the Nyquist rate, image sampling
size in xy-direction bigger than half of the objective lens resolution would result in
a loss of information. The pixel size of the camera used often determines whether
this can be achieved (the width of each pixel in the camera chip divided by the
magnification gives the size of each pixel in the sample plane). Combining pixels
in the camera (pixel binning) can increase the pixel size and signal intensity. The
benefits of this setting are that exposure time and image file size can be reduced
significantly, but the disadvantage is that spatial resolution will be decreased.

1.3.2.3 Balance between quality and quantity

Image quality is directly related to magnification, resolution, sampling size, pixel
binning and other elements. Higher magnification, smaller sampling size or no pixel
binning could increase the image quality and this could make complex and compu-
tational intensive image analysis methods redundant while much more detailed and
accurate information can be extracted. However, better image quality sacrifices imag-
ing time, processing time and requires more data storage. For example, reducing z
sampling size from 10µm to 5µm not only doubles the size of the image file, but also
doubles the time of imaging. Moreover, the limitations of hardware and software
often make it impossible to deal with extremely large amount of data. For example,
image files bigger than 1.5 gigabyte cannot be opened and analyzed by ImageJ on
a 32-bit Windows operation system. Therefore finding the balance between image
quality and quantity is very critical for high-throughput and high-content screening.

1.3.3 Image analysis

Once images are acquired, the next stage of screening is image analysis. Image anal-
ysis is a process to extract numerical information from images that are representative
of cellular phenotypic responses. Those numerical parameters are then used for fur-
ther data analysis, such as hit identification and compound characterization. Image
analysis often comprises two general steps: segmentation and quantification.
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1.3.3.1 Segmentation

Segmentation is a technique of defining regions of the images that contain signals from
the molecules which are under investigation (also called region of interested or ROIs).
Those molecules are often fused with fluorescence protein or antibodies, or stained
with fluorescent dyes, and as a result, regions that contain these molecules present
higher signal intensity in images than other regions. This difference of intensity
between ROIs and background is used for most segmentation algorithms. The key of
those algorithms is to automatically determine an intensity threshold to distinguish
ROIs and background, or sometimes multiple-levels are selected. There are other
advanced segmentation methods that are model based or using prior knowledge, for
example active contour model [30, 31]. However, considering their complexity and
specificity, they have not been widely applied in high-throughput and high-content
screening.

Because quantification is often made based on the segmentation result, proper
segmentation is the key to generate meaningful data and must be optimized for ev-
ery screening. Several commercial systems already combine image acquisition and
analysis [7], for example, the BD pathwayTM bioimaging system, KineticScan HCS
Reader (Cellomics) and ImageXpress high-content imaging Systems (Molecular De-
vices). They provide many standard image analysis methods, however, it is not
possible for researchers to substantially adapt these methods for more specific biolog-
ical questions. Therefore many researchers choose to use independent image analysis
packages or write their own macros. One of the most popular tools used in high-
throughput and high-content screening is ImageJ (or Fiji, which is considered as
a distribution of ImageJ). It contains various standard image analysis algorithms.
More importantly, because of its free open-source feature, hundreds of state-of-the-
art methods have been programmed in the form of ImageJ plugins and macros, and
are provided online. Furthermore, it provides a user-friendly platform for developers
to customize their own analysis. For example, image analysis algorithms developed
in this thesis are programmed as ImageJ plugins.

1.3.3.2 Quantification

Quantification aims to extract numerical features from images. According to biolog-
ical questions, features can be classified as morphological based, localization based
and intensity based. Morphological based features usually refer to the morphological
properties of structures that are under investigation, such as the area of the nucleus
(2D) or surface of neuron cell (3D). Localization based features contain relative spa-
tial information of interested structures, for example the position of focal adhesions
relative to the cell border. Both features are measured based on the segmentation
result, and can be measured on the single-cell level or cell population level, or some-
times even sub-cellular level [32]. Intensity based features can be measured from the
segmentation result as well. For example, in the study of NF-κB translocation [33]
(chapter 2), dynamic changes of fluorescence intensity in the nuclear and cytoplasmic
area are quantified to analyze the kinetics of NF-κB translocation. Other intensity
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based features are independent of segmentation result, such as moments and wavelet.
Recently those features started to draw more and more attention, and some analysis
packages already embed algorithms to measure them, such as CellProfiler [34] and
PSLID [32,35].

1.3.3.3 Tracking and analysis for image stacks

For some research projects, tracking techniques are required. Tracking refers to find-
ing the location of objects (such as nuclei or cells) in each consecutive frame of
time-lapse images. It works directly on the segmentation result and it connects ob-
jects in time on the basis of criteria such as the speed of motion, the shape of the
trajectory and the possibility of the objects splitting (cell division) or merging (cell
fusion). Once tracking is computed, the tracks and associated object properties (mor-
phology and intensity changes) can be combined to yield a powerful description of
the phenotypic evolution of cells.

For the study of 3D structures, series of optical sections are typically acquired
and compose image stacks. Those stacks can be used to reconstruct the 3D geomet-
ric models of the sample, or can be collapsed (also called projected) into a single
2D image. For the latter, further analysis such as segmentation and quantification
is performed on the 2D projected images, thus saving processing time and data stor-
age significantly. However, information in z-direction is missing. 3D analysis provides
much more detailed spatial information, but requires more complicated and computa-
tional intensive reconstruction methods and quantification methods. Although it has
not been widely used for high-throughput screening, especially for large-scale experi-
ments such as genome wide siRNA screens, due to the physiological and pathological
relevance of 3D culture systems, image analysis for 3D high-throughput and high-
content screening will become an important area for future innovative developments
in image processing. This is the subject of chapters 4 and 5 of this thesis.

1.3.4 Data analysis

In data analysis, numerical features derived from a single treatment, for example a
single RNAi gene knockdown or exposure to a small molecule, are considered as data
from one sample. The purpose of data analysis varies from experiment to experiment.
One basic purpose is to identify “hits”, meaning to identify genes or compounds which
play a functional role in the cellular process that is under investigation (genes), or
may - positively or negatively - affect the process (compounds). This is determined by
comparing each sample with control treatments that are carried out under the same
condition but induce no change in the cellular process. Before “hits” are identified,
quality control and data normalization are performed to remove systematic errors
and to allow comparison and combination of samples from different plates. There
are many statistical methods for normalization and quality control for single read-
out screens which are summarized in references [36,37]. For the high-throughput and
high-content screen where multiple readouts are measured, multi-parametric tests are
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applied, for example Mahalanobis distance. Because more aspects of phenotype are
taken into account, multi-parametric tests often provide more precise hits for treat-
ments that have high variability in a single readout metric. Several multi-parametric
methods will be introduced and applied in this thesis.

Recently, machine learning started to show its powerful function in high-throughput
and high-content screening [38]. Clustering is one of the typical techniques. It is a
form of unsupervised machine learning and can be used to group the samples based
on the phenotypic similarities. For example, clustering has been used to group drugs
by their effects [39] and proteins by their sub-cellular patterns [40]. Another often
used technique is classification [41], which is a form of supervised machine learning.
The biologists define the classes of treatments according to the biological properties
in advance. For example, genes which are involved in the same signaling pathway are
assigned to the same class. Those samples with known classes are used as training
data to train a “classifier”, which can automatically determine the class of unknown
sample and which of the features are informative for distinguishing the classes. Some-
times unsupervised machine learning and supervised machine learning are combined
in one experiment, to for example investigate the relationship of known biological
classes with morphological clusters.

1.4 Scope and structure of this thesis

Currently, image analysis is likely the major bottleneck in high-throughput and high-
content screening studies. One of the problems is the lacking of robust single-cell
based analysis. Few platforms perform single cell image analysis but rely on the cell
density or image resolution. When the cells are too dense or image resolution and
magnification is relatively low, for example in micro-tissue study, existing methods
cannot work properly. Therefore, one goal of this thesis is to develop robust and
efficient image analysis methods suitable for single-cell studies that should not be
largely limited to cell type, cell density and image quantity

The reason that there is a great need for the methods of single cell analysis is
that cells may respond to stimuli or perturbation differently, creating distinct sub-
populations. Although many studies emphasize this effect, it has almost never been
quantitatively identified and the information on subpopulation behavior has not been
used for later screening data analysis. Thus how important the role is of subpopula-
tion in many high-throughput and high-content screens is still unknown. This thesis
aims to develop an analysis platform that takes into account the heterogeneity of
cellular behavior so that subpopulation information is collected for the further data
analysis.

In many high-throughput and high-content screens specific biological effects are
expected, and in the analysis by conventional methods only representative features
are measured from the images. Those methods largely depend on the expertise of
biologists, but often even biologists are not certain of all possible effects. To solve
this problem, many methods measure morphological parameters thoroughly, however,
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they miss the information which cannot be revealed by morphological properties.
This thesis aims to develop an ultra-high content analysis which collects maximum
information of phenotype from images, which can be applied for various types of
screening assays.

The structure of this thesis is as follows: chapter 2 introduces an automated im-
age analysis for the study of NF-κB nuclear translocation kinetics in high-throughput
screening. Chapter 3 moves away from the live-cell screening and presents another
image analysis platform suitable for the study of 3D cultured micro-tissues. This
platform firstly projects each image stack into a single in-focus 2D image, and then
ultra-high content measurement is carried out on the 2D projected image. The work in
chapter 4 extends this 2D projection based analysis to real 3D analysis, and demon-
strates that it is suited for screenings which use wide-field microscopy. In chapter
5, this 3D analysis platform is applied to analyze the effects of various anti-cancer
drugs on 3D micro-issues of mouse breast cancer. The performance of 2D projection
analysis and 3D analysis is compared in chapter 5. Finally, chapter 6 provides a
general discussion on the results obtained in our studies and on the implications for
future research.
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Abstract

Nuclear entry and exit of the NF-κB family of dimeric transcription factors play an
essential role in regulating cellular responses to inflammatory stress. The dynamics
of this nuclear translocation within a cell population may dramatically change e.g.
upon drug exposure. Furthermore, there is significant heterogeneity in individual cell
response upon stress signaling. In order to systematically determine factors that de-
fine NF-κB translocation dynamics, high-throughput screens that enable the analysis
of dynamic NF-κB responses in individual cells in real time are essential. Thus far,
only NF-κB downstream signaling responses of whole cell populations at the tran-
scriptional level are in high-throughput mode. In this study, we developed a fully
automated image analysis method to determine the time-course of NF-κB translo-
cation in individual cells, suitable for high-throughput screenings in the context of
compound screening and functional genomics. Two novel segmentation methods were
used for defining the individual nuclear and cytoplasmic regions: watershed masked
clustering (WMC) and best-fit ellipse of Voronoi cell (BEVC). The time profiles of
NF-κB oscillatory response at the single cell and population level was coupled to
automated extraction of 26 analogue parameters including number of translocation
peaks, amplitude of each peak, and duration of each translocation. The automated
image analysis method was validated through a series of statistical tests demonstrat-
ing computational efficient and accurate quantification of our algorithm. Both phar-
macological inhibition of NF-κB and short interfering RNAs targeting the inhibitor
of NF-κB, IκBα, demonstrated the ability of our method to identify compounds and
genetic players that interfere with the nuclear translocation of NF-κB.
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2.1 Introduction

NF-κB is a family of dimeric transcription factors consisting of homo- or heterodimers
of different subunits (e.g. p65/RelA). It is involved in cellular stress responses to
stimuli such as cytokines, free radicals, ultraviolet irradiation, oxidized LDL, and
bacterial or viral antigens [1–5]. In resting cells, NF-κB dimers are located within
the cytoplasm, bounding to the NF-κB inhibitor IκB. After being exposed to NF-κB
activating stimuli such as TNFα or IL1β, the IKK (the inhibitor κB kinase) complex is
activated, which in turn phosphorylates IκB [6] and NF-κB [7,8]. Phosphorylated IκB
proteins are then ubiquitinated and degraded by the proteasome, thereby liberating
NF-κB dimers that translocate into the nucleus and regulate the transcription of the
target genes. However, NF-κB dimers do not stay in the nucleus permanently. IκBα,
a member of IκB family, is a transcriptional target of NF-κB [9]. Transcription of
IκBα creates a negative feedback loop: newly synthesized IκBα protein enters the
nucleus and binds to NF-κB, leading to the export of complex back to the cytoplasm
(Figure 2.1). This negative feedback loop creates an oscillation of NF-κB nuclear-to-
cytoplasmic translocation. Such a response seems essential in modulating differential
transcriptional responses under transient or sustained cytokine signaling [10]. Given
the role of NF-κB in diverse (patho)physiological responses, understanding the cell
population dynamics of this process is essential.

Figure 2.1: NF-κB oscillation is regulated by an auto-regulatory negative feedback
loop. Simplified schematic overview of the TNFα-induced canonical NF-κB response. TNFα bind-
ing to the TNF receptor (TNFR) activates the inhibitor of κB kinase (IKK) complex, leading to
phosphorylation of the inhibitor of NF-κB, IκB, upon which NF-κB is free to enter the nucleus to
activate transcription of its target genes. One of the primary NF-κB target genes is IκB, which
may retrieve NF-κB from the nucleus to maintain inactive IκB::NF-κB complex in the cytoplasm.
Ongoing TNFR signaling can re-initiate the induction-inhibition cycle.
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The most common approach taken in NF-κB translocation studies, which sim-
ply measures the NF-κB localization ratio between the total nuclear and total cy-
toplasmic region of a cell population, obscures the fact that not all cells respond
to the stimulation synchronously [10, 11](Figure 2.2a and 2.2b). Similarly, recent
studies of lipopolysaccharide-induced NF-κB activity showed that only half of the
cells responded to the secondary TNFα autocrine signal, creating distinct subpop-
ulations [12, 13]. Such cell-to-cell heterogeneity seems essential for the plasticity of
tissue responses to inflammation [14,15].

Furthermore, NF-κB responds to many different stimuli, each of which may lead
to different activation dynamics. To understand NF-κB signaling under a wide vari-
ety of stimulation conditions, it is important to measure single-cell NF-κB dynamics
in large cell populations. Obviously, studies of NF-κB translocation in just several
individual cells are not sufficient for this purpose, although dedicated and sophisti-
cated image analysis methods have been developed for this specific task [11,16,17]. In
order to systematically determine factors that define NF-κB translocation dynamics,
high-throughput screens need to be developed in relevant cell lines in the context of
compound screening and functional genomics.

Our goal was to develop a methodology for quantification of NF-κB translocation
dynamics in single cells, suitable for high throughput screening (HTS). For this, we
used HepG2/GFP-p65 cells which show a dynamic nuclear-to-cytoplasmic transloca-
tion response upon TNFα stimulation (Figure 2.2a). To derive quantitative informa-
tion of this shuttling in the entire cell population, we set out a strategy for the image
analysis (Figure 2.2c). We describe two novel segmentation methods that are required
for this purpose: one for the segmentation of individual nuclei, and one for the seg-
mentation of individual cells. Next, cell tracking was done based on the segmentation
results of nuclei. Finally, methods for the quantification of NF-κB translocation dy-
namics, and the extraction of informative parameters from the NF-κB translocation
time profiles are described. In addition, procedures and results for the validation of
each step in the quantification methodology are presented.

2.2 Results

2.2.1 Image collection and pre-processing

First, dual channel confocal images were collected (the two channels are Hoechst
stained nuclear channel and GFP-p65 channel) in a 6 hour time-lapse series with a
recording interval of 6 minutes (see Methods for details). Next, image pre-processing
was applied separately for each of the two channels (Figure 2.3a and 2.3e). For the
nuclear channel, images were sharpened first in order to enhance the contrast between
background and intensity signals (by ImageJ http://rsbweb.nih.gov/ij/). This was
implemented by an unsharp filter. It equals to subtracting a Gaussian blurred copy of
the image and rescales the image to obtain the same contrast of large (low-frequency)
structures as in the input image. We empirically defined the optimal radius of the
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Figure 2.2: Image analysis of NF-κB nuclear translocation. (a, b) An example time-lapse
image series of GFP-p65 expressing HepG2 cells after stimulated with 10 ng/mL TNFα. (a) Both
Hoechst stained nuclear channel and GFP-p65 channel. (b) Only GFP-p65 channel to provide clear
view of NF-κB translocation. Heterogeneous cell behavior is shown here. The white arrow indicates
a cell with multiple nuclear translocations at 30, 150 and 270 minutes, while for another cell (yellow
arrow) the translocation occurs at 30, 120, 210 and 330 minutes. The red arrow indicates a cell with
only one, long, nuclear translocation event. (c) Flowchart of the single-cell based image analysis
for the quantification of NF-κB translocation: 1. Splitting two fluorescence channels of time series
images. 2. Segmentation of individual nuclei for the Hoechst stained nuclear channel. 3. Tracking of
nuclear masks throughout the time series. 4. Segmentation of cell clusters for the GFP-p65 channel.
5. Identification of individual cells by best-fit ellipse of Voronoi cell (BEVC). 6. Quantification of
GFP intensity ratio between the nuclear and cytoplasmic region per time-point, per cell. 7. Nuclear
translocation profiles of individual cells. 8. One example of subpopulations analysis.
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Gaussian filter [18] to be 3 pixels, and the scaling of the filter to be 0.6. Next, the
so-called Rolling Ball method [19] was used to remove the unevenly illuminated back-
ground by subtracting an averaged image intensity within a circular kernel around
each pixel (by ImageJ). The size of the kernel was chosen to be slightly larger than the
radius of the largest nucleus. A pre-processed image of the nuclear channel is shown
in Figure 2.3b. To define the overall cell cluster regions in images, the GFP-p65
channel was processed with a Median filter [20], resulting in smooth cellular regions
(Figure 2.3f).

2.2.2 Segmentation for individual nuclei: Watershed Masked Clus-
tering (WMC)

The segmentation of individual nuclei was accomplished by watershed masked clus-
tering [21, 22]. This method uses a watershed segmentation to divide images into
separated regions, each of which contains only one nucleus. Subsequently, within
each region K-means clustering [23] was applied to define the nuclear region (Figure
2.3c). This method is based on the assumption that each nucleus is evenly illumi-
nated and the contrast between nuclei and background is sufficiently high. Over-
segmentation is a well-known issue of watershed segmentation. In order to address
this issue, pre-processed images (Figure 2.3b) were convolved with a Gaussian filter
to smooth discrete intensity signals, using an optimized kernel size. Once watersheds
were obtained from this image, the pre-processed images prior to Gaussian convolving
(Figure 2.3b) were used to apply K-means clustering.

2.2.3 Cell tracking

The nuclear masks obtained from the segmentation were used for the cell-tracking. In
our NF-κB translocation experiments, we observed that most of the cells moved over
short distances between two consecutive image frames, and also a negligible number
of cell divisions occurred during the image acquisition period. Given these condi-
tions, the maximum overlap ratio OLR (Equation 2.1) is a feasible and applicable
criterion. For every labeled nuclear region in the current frame nfi , where i represents
corresponding label and f represents the frame index, we connect its track with the
labeled nucleus in the next frame nf+1

j which maximizes the OLR with nfi :

OLRij =
nfi ∩ n

f+1
j

max(Area(nfi ), Area(nf+1
j ))

(2.1)

Given the short imaging interval, cells should not disappear from one frame to
another except when moving out of the frame borders. Disappearing cells are thus
likely to be caused by under-segmentation. In order to avoid fragmented cell traces,
as may occur in the more condensed cell clusters, we applied an extra tracking image
buffer [24] to store disappearing cell regions until they are recovered again in one of
the subsequent frames that maximizes the OLRs. As a result, nuclei that are not
consistently detected in every frame can still be tracked correctly.
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2.2.4 Segmentation for individual cells: Best-fit Ellipse of Voronoi
Cell (BEVC)

The objects that need to be extracted in this particular live-cell NF-κB imaging
application are cells that grow in clusters. These cells touch and may slightly overlap
with each other thus making it sometimes difficult to uniquely identify the cellular
edges. Therefore the classic edge detection methods which locate the maximum
intensity gradient are not applicable to this particular case. Instead, we propose a
single cell simulation algorithm called best-fit ellipse of Voronoi cell (BEVC). The
algorithm produces an estimate of the single cellular areas based on the topology of
the cells, which is derived from the distribution of nuclei. In principle, it consists of
three steps:

Step 1, generate Voronoi diagram according to the topology of nuclei:
A Voronoi diagram [25] was generalized based on a set of disjointed nuclear masks
bnucleusi for i =1,2,3,. . . , Df , (Figure 2.3c) with bnucleusi

⋂
bnucleusj = 0 when i 6= j,

where Df is number of nuclear masks in the frame f . Each Voronoi cell Vi containing
bnucleusi (Figure 2.3d) is defined as a region which includes all pixels r closer to the
boundary of bnucleusi than to the other nuclear masks. The formula is presented as
following:

Vi(b
nucleus
i ) =

{
r ∈ min

s∈bnucleusi

| r − s |< min
s′∈

⋃D
j 6=i b

nucleus
j

| r − s′ |

}
(2.2)

Step 2, obtain the Voronoi diagram within the cell cluster regions: A
global threshold was applied to the pre-processed images of the GFP-p65 channel
(Figure 2.3f) to obtain the binary masks of cell clusters (Figure 2.3g). Subsequently
the masks were multiplied (AND operation) with the Voronoi diagram obtained from
step 1, so that only the Voronoi cells within the binary masks of cell clusters were
preserved (Figure 2.3h).

Step 3, estimate the cell shape per Voronoi cell: The underlying model
for BEVC is that cells are ellipsoid shaped objects. Based on this assumption, we
simulated the region, or better shape, of an individual cell as the best-fit ellipse in
each Voronoi cell Vi by calculating the major and minor axis from the centralized
moments (Figure 2.3i) [26, 27].

2.2.5 Quantification of NF-κB translocation dynamics

In order to exclude improper segmentation, both cellular masks and nuclear masks
were validated by supervised two-class classifiers, based on their morphological fea-
tures (Table S2.1, Figure S2.1-S2.3 and see Supplementary note for details). Next,
the NF-κB translocation dynamics Dt

i of a single cell i at a time point t is defined
as the ratio of average fluorescence intensities between the nuclear area bnucleusi and
cytoplasmic area, where the cytoplasmic area is defined as total cellular area minus
nuclear area bcelli ∩ bnucleusi :
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Dt,f
i =

1
N

∑
p∈bnucleusi

Intensity(p)

1
M

∑
p∈bnucleusi ∩bnucleusi

Intensity(p)
(2.3)

where p represents a pixel and f represents the frame index. N is the number of
pixels in the nuclear mask of cell i, and M is the number of pixels in the cytoplasmic
mask of cell i.

Figure 2.3: Stepwise demonstration of the image analysis method. An original image
from the Hoechst stained nuclear channel (a) is pre-processed by image sharpening and background
subtraction (b), followed by WMC for the nuclear mask identification (c). Subsequently, the Voronoi
diagram (d) is generated based on the disjointed nuclear masks. For the GFP-p65 channel, the
original image (e) is pre-processed by a smoothing filter (f) for the identification of cell cluster
regions (g). By multiplication of the cell cluster masks (g) with the Voronoi diagram (d), the
Voronoi mask is defined for each cell (h). The cytoplasmic areas are refined as the best-fit ellipse of
Voronoi cells (i). Figure(j) shows the composite view of the original image from GFP-p65 channel
and the corresponding BEVC segmentation result.

For cells with tracks that disappeared in three or less than three consecutive
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frames, linear interpolation was applied to generate missing data. For cells with
tracks that disappeared in more than three consecutive frames, interpolation becomes
too inaccurate and the corresponding translocation profiles were removed from the
final data. Generally, <30% of cells were removed by this procedure.

2.2.6 Quantification of NF-κB translocation analogue parameters

One advantage of the proposed analysis method is its ability to automatically quan-
tify analogue parameters from each individual translocation profile (Supplementary
note, Figure S2.5, Table S2.2). We first defined translocation events which start at
a local minimum of a profile (NF-κB stays in the cytoplasmic region), include the
next local maximum (NF-κB translocates to the nuclear region), and end at the next
local minimum (NF-κB translocates back to the cytoplasmic region). We calculated
the number of translocation events, various properties for each translocation event,
nuclear entry and exit rates and time between consecutive peaks; in total 26 ana-
logue parameters. More detailed information and pseudo code are presented in the
Supplementary note.

2.2.7 Statistical validation of the NF-κB quantification method

We validated our quantification method in a three step process using five randomly
selected time-lapse image series. First, we compared our BEVC method for cell seg-
mentation with other segmentation methods that are used to segment touching or
overlapping cells. One approach that is often used to define the cytoplasmic topo-
logical region is to dilate the corresponding binary nuclear mask by a few iterations.
However, the extent of the dilation requires fine-tuning for different cell sizes to avoid
overlap between individual cells. Another approach is to define the cell region by
only applying the Voronoi diagram. Our method (BEVC) extends the topology in-
formation from the Voronoi diagrams with a best-fitting ellipse, which leads to a more
stringent definition of the cellular area.

To compare these three methods (Dilation, Voronoi and BEVC), we first generated
the binary images using different methods. For Dilation, we used a circular kernel
with a radius of three pixels to define cytoplasmic regions, based on the general cell
size in our images. Next, we assessed each segmentation result by comparing with
human perception. For this, five test frames from different image series were used
with a total of 1116 nuclei. For each frame f , a score named “error rate” ∂f was
calculated to measure the segmentation accuracy:

∂f =

∑Df
i=1B(bcelli )

Df
× 100% (2.4)

where B(bcelli ) is a binary indicator that B(bcelli ) =

{
1, if bcelli ∈ bcell,Originali

0, if bcelli /∈ bcell,Originali

. bcelli

is the cellular mask of cell i obtained from one of three methods. bcell,originali is the
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cellular mask of i′th cell obtained by human perception. Df is the total number
of cells in the image frame f , detected by one of three methods. The use of the
Voronoi combined with best fit ellipse (BEVC) yielded the smallest error rate for
cytoplasmic area definition (10.3%±2.2%), compared to a Dilation or Voronoi method
(14.5%± 3.2% and 11.8%± 1.4% respectively) (Figure 2.4a).

Next, we validated our NF-κB translocation quantification method by compar-
ing automatically generated translocation profiles with benchmark profiles that were
produced from cells with validated segmentation and tracking profiles by human per-
ception. Five randomly selected time-lapse image series each with 47 frames were
used in this test. From each test image series, three benchmarks were generated sep-
arately by three independent individuals (Figure S2.4a-e), in order to compensate for
possible human bias. Subsequently, a split-plot ANOVA [28] was applied (by Statis-
tical Computing Seminars Repeated Measures Analysis with R) to test the difference
between the benchmark profiles generated by three test persons and the computa-
tional result, in total four groups. The metric is the NF-κB Nuclear/Cytoplasmic
intensity ratio, and two independent factors are time and group. The statistical tests
indicate that the variation between the three benchmarks is not significant; moreover
there are no significant differences between the benchmarks and the computational
result (Figure S2.4f). This indicates that the designed algorithm provides an accurate
estimation of NF-κB translocation profiles.

2.2.8 Computational efficiency of the algorithm

We tested computational efficiency of the algorithm on the dataset obtained from
HepG2/GFP-p65 cells (see Methods for details). The computational complexity of
this algorithm is O(nlogn). We analyzed six sets of 60 time-lapse image series (six
times 3.51 GB). Each series contains two channels, and each channel consists of 60
frames. On average, 250 cells were analyzed per movie. The analysis of this dataset
was completed in 83±2 minutes on a desktop PC (Intel Core i7-3770, 3.40 GHz with 8
GB of RAM and Microsoft Windows 7 Professional, SP1). The most computationally
intensive part is the background subtraction on the nuclear channel followed by the
segmentation of the nuclei by WMC. This takes ~64 seconds per series. Tracking of
the nuclei is done in 6 to 7 seconds.

2.2.9 Identification of heterogenous cell populations

One of the main purposes to quantify single-cell NF-κB nuclear translocation dy-
namics, especially in the context of high-throughput screens, is to study the hetero-
geneity between cell subpopulations. Therefore it is necessary to validate whether
our quantification method correctly identifies specific subpopulations of cells and
does not create a bias towards any particular subpopulation. To establish this, we
benchmarked five time series images (with 1116 cells) by manually counting the cell
subpopulations. We performed three separate tests, comparing the computational
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Figure 2.4: Statistical validation of the automated image segmentation and NF-κB
translocation quantification. (a) Comparison of 3 cytoplasmic segmentation methods based on
the criterion of error rate (Equation 2.4). The error rate of the Dilation method is 14.5%± 3.2%; of
Voronoi it is 11.8%±1.4% ; and of BEVC it is 10.3%±2.2%.* p−value < 0.05; ** p−value < 0.005;
Paired t-test (b) Example translocation profiles of (i) cells without translocation and cells with
translocation, (ii) cells with and without a synchronized first round of NF-κB translocation, (iii)
cells with NF-κB translocation occurring only once and cells with more than one NF-κB translocation
event. (c) Bias assessment of our quantification method by comparison of the computational results
with the benchmark for different subpopulations. No significant differences (p − value > 0.1) were
found between the computational results and the benchmark for different cell subpopulations within
a 6 hour imaging time frame.

results with the benchmark. In each test, cells were clustered into two complemen-
tary categories. In the first test, cells were clustered in cells without translocation
response versus cells with translocation response (Figure 2.4b(i)). In the second test,
we distinguished cells with a synchronized first peak of NF-κB translocation, from
non-synchronized responders (Figure 2.4b(ii)). In this category, synchronization was
defined as the first NF-κB translocation peak occurring within three frames from
the first peak of population averaged profile. The third test clustered cells into (a)
cells with no or only one (prolonged) NF-κB translocation event, and (b) cells with
more than one NF-κB translocation event (Figure 2.4b(iii)). The reason for defining
these three tests is their simplicity for human counting. For all three tests, we ob-
tained p − values greater than 0.1, indicating that there is no significant difference
between our computational result and the benchmarks. Therefore, we conclude that
our algorithm can efficiently be used to perform population studies on NF-κB nuclear
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translocation profiles.

2.2.10 Biological validation of the NF-κB quantification method

In order to validate the sensitivity of our algorithm for perturbation of the biological
system, a pilot experiment was performed by pre-exposing the HepG2/GFP-p65 cells
for 2 hours with increasing concentrations of an IKK-inhibitor, BMS-345541 (0.5, 2.0
and 4.0µM) before TNFα stimulation. Inhibition of IKK prevents NF-κB nuclear
translocation (Figure 2.1). The experiment was performed in 96-well plates on two
different days, with two replicates per plate. In the first analysis step, the average
GFP-p65 nuclear/cytoplasmic ratio profile over whole cell population of each image
series were generated from our quantification method. Already at very low inhibitor
concentration (0.5µM), the second and third NF-κB nuclear translocation peaks were
delayed and the amplitude of the first peak was decreased. Increasing the concentra-
tion of BMS-345541 to 2.0µM and 4.0µM prolonged the first nuclear translocation
event. Without TNFα stimulation, no NF-κB oscillation was observed (Figure 2.5a).

Next, the individual GFP-p65 nuclear translocation profiles were analyzed for the
number of translocation events within the 6 hours imaging period after TNFα stimula-
tion. In non-stimulated cells, 5% of the cells show spontaneous nuclear translocation,
which is non-synchronous (Figure 2.5b). After TNFα stimulation, there is nuclear
translocation with either one, two or three peaks, in 90% of the cells (Figure 2.5b).
The average nuclear translocation profiles for cell subpopulations with either one, two
or three peaks, clearly show that the percentage of cells with only one translocation
peak increases with the concentration of BMS-345541, and that the percentage of
cells with 3 translocation peaks decreases. In addition, we compared the time distri-
bution of each translocation peak between the control (TNFα stimulated cells) and
BMS-345541 pre-treatment. The result indicated that already at a low concentration
(0.5µM) a significant delay occurred for the second and third translocation peaks
(Figure 2.5c). In conclusion, all these data indicate that the quantification method
can be used to perform cell-population studies, to identify rare events, and to study
drug-dependent effects, even at low concentrations.

2.2.11 Application of the NF-κB quantification method in high-
throughput screening assays

Having validated our NF-κB translocation quantification approach for segmentation
accuracy, for correct subpopulation identification, and for sensitivity to biological
perturbation of the system, we validated whether our quantification method can suc-
cessfully be applied in the context of high-throughput functional genomics screening.
For this screening, the approach of gene silencing by transient transfection of short
interfering RNAs (siRNAs) was applied. We used three different siRNAs as control:
the positive control is siNFKBIA that targets IκBα, upon which knockdown the NF-
κB response will be affected [11]; the negative control is siCASP8 that targets caspase
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Figure 2.5: Population analysis of NF-κB nuclear translocation perturbation by the
IKKβ inhibitor BMS-345541. Cells were pre-treated for 2 hours with increasing concentrations
of BMS-345541 before TNFα stimulation. (a) Average nuclear translocation profiles over whole
cell population of image series. (b) Average nuclear translocation profiles with standard error bars
for cells with one, two or three translocation peaks. The total number of cells, the number (N)
and percentage of cells which show responding number of peaks are presented. (c) Analysis of the
time distribution of the 1st, 2nd and 3rd nuclear translocation peak in TNFα stimulated and TNFα
stimulated plus 0.5µM BMS pre-treated cells. ns: No significant difference; *** p − value < 0.001;
**** p− value < 0.0001.

8, which is a downstream effector of the TNFR, but does not affect the NF-κB acti-
vation; and siRNA control #1 (targeting luciferase) which also should not affect the
NF-κB activation. These siRNAs were tested in 12 different 96-well plates (2 repli-
cates per plate) on 4 different days, allowing an accurate analysis of the robustness
of the assay.

First, we calculated the population average of GFP-p65 nuclear/cytoplasmic ratio
profiles for each control, as well as for the cells that were not transfected with siRNAs,
but exposed to a transfection reagent (mock) (Figure 2.6a). We did not detect an
effect of caspase 8 knockdown on NF-κB oscillation compared to mock treatment;
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yet surprisingly, siCntrl#1 slightly decreased the peak amplitude. IκBα knockdown
however, strongly impaired NF-κB oscillation as expected.

Next, for each well, we calculated the average for each of the 26 analogue pa-
rameters (Table S2.2) over the cell population and derived further subpopulation
information including the percentage of cells (%) showing 0 to 4 translocation peaks:
in total 32 parameters (Figure 2.6b). In order to remove the cross-plate variance, a
robust z − score [29] was calculated to normalize each of the 32 parameters for each
well.

To validate the reproducibility of controls and the quality of assay, we first calcu-
lated the standard Z ′−factor for each individual parameter (Figure 2.6b) to quantify
the stability of both positive and negative controls, as well as the difference between
positive and negative controls [30]. However, this conventional method of quality con-
trol is developed for assays with only a single readout and our quantification method
provides readouts with multiple parameters. To enable the comparison of our assay
with assays using only a single readout, we integrated multiple parameters into one
value by Fisher’s linear discriminant [31, 32] as suggested recently for integration of
multiple readouts for quality control in high-content screening [33]. A direction ω
was first identified to maximize the separation between positive control and negative
control:

ω = (Spositive + Snegative)
−1(µpositive − µnegative) (2.5)

where µpositive, µnegative, Spositive and Snegative is the mean vector of positive control,
mean vector of negative control, covariance matrix of positive control and negative
control, respectively. They were derived from the z − score vector [z − score1, z −
score2, ... , z − scoreN ] of each well, where N is the number of parameters used
for the calculation of multi-parametric Z ′ − factor and N 6 32 . The z − scores
were then linearly projected onto this dimension ω according to Equation 2.6 and a
multi-parametric Z ′ − factor (Equation 2.7) can be calculated from the projected
values.

Pi = ω · z − scorei (2.6)

Z ′ − factor = 1− 3(Std(Ppositive) + Std(Pnegative))

|Mean(Ppositive)−Mean(Pnegative) |
(2.7)

where z − scorei is the z − score vector of well i. We measured both standard
Z ′− factor (Equation 2.7) and robust Z ′− factor (Equation 2.8) by calculating the
mean and standard deviation (Std), and the median and median absolute deviation
(MAD), respectively:

robust Z ′ − factor = 1− 3(MAD(Ppositive) +MAD(Pnegative))

|Median(Ppositive)−Median(Pnegative) |
(2.8)
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Figure 2.6b shows univariate standard Z ′ − factors for all 32 parameters. The
highest value was 0.32 and the highest robust Z ′ − factor was 0.54, both for the
parameter “% 3 or more peaks” in concordance with the strong reduction of the
number of oscillations upon IκBα knockdown. According to an established criteria
[30], a Z ′ − factor > 0.5 indicates an assay suitable for HTS. The high value of the
robust Z ′ − factor therefore may validate our method for HTS. When we integrated
the parameters with univariate Z ′ − factor > 0, in this case 6 parameters (Figure
2.6b), to calculate multi-parametric Z ′ − factor, a higher value of 0.61 for standard
Z ′ − factor and a very good robust Z ′ − factor of 0.78 were obtained which further
validates our assay for HTS (Figure 2.6c).

2.3 Discussion and conclusions

Controlling cellular fate in response to external stimuli is an important event in
many physiological and pathological processes and in the action pharmacologically
active compounds. Signaling routes that are involved herein frequently modulate
gene-transcription by activation of nuclear transcription factors, such as NF-κB. In
order to obtain a better insight in underlying processes that lead to the activation of
these transcription factors, their subsequent translocation to the nucleus, and in the
downstream events that follow their activation, methods need to be developed that
enable the study of such events at the individual cell level and in high throughput
fashion. In this study, we successfully developed such a methodology based on a
novel method for cytoplasm definition (BEVC) and nuclei segmentation (WMC).
Our method can easily be adapted to study the activation and nuclear cycling of
other nuclear transcription factors as well.

The cell line used in this study (HepG2) is an epithelial-like hepatoma cell line,
showing clustered and stacked cell growth. This influences the readout for GFP-p65
translocation by epifluorescence microscopy: superimposed, yet out of focus nuclei
decrease the accuracy of single cell tracking and measurements. By adopting confocal
microscopy in this study, the resolution and accuracy of single cell measurements are
increased. Furthermore, we introduced the BEVC algorithm for accurate cytoplasm
definition based on cell topology. Combined with WMC segmentation for the nuclear
mask, and a series of quantification processes such as linear interpolation, the NF-κB
translocation profile of each individual cell can be constructed. In order to validate
our method, three sets of tests were applied on five time-lapse image series. These
tests evaluated the proposed quantification method from three different perspectives,
i.e. (1) accuracy of BEVC algorithm, (2) accuracy of calculated NF-κB translocation
profiles, and (3) correct identification of cell subpopulations. In our test, only 10% of
cells were segmented incorrectly by BEVC algorithm. Compared with a 14% error rate
obtained by the Dilation method and a 12% error rate by the Voronoi method, we can
state that the BEVC algorithm provides sufficiently accurate cell segmentation. The
BEVC algorithm is also highly efficient, which is a key consideration for HTS analysis.
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Figure 2.6: Application of the NF-κB nuclear translocation analysis method in siRNA
screening assays. (a) The population average of GFP-p65 nuclear/cytoplasmic ratio profiles for
negative control siCASP8, siCntrl#1, transfection reagent without siRNA (mock), and positive
control siNFKBIA. Inset: representative images of mock and siNFKBIA treated GFP-p65 cells, at
0 and 30 minutes after TNFα stimulation (b) Table showing the ordered univariate Z′ − factors
for all 32 individual parameters. The definitions of 26 analogue parameters are given in Table S2.2.
Absolute Curve Difference indicates the absolute point-by-point difference between average profiles
of control and treatment. (c) Multi-parametric Z′ − factors calculated based on the top-scoring
univariate Z′ − factors. Both the standard as well as robust multi-parametric Z′ − factors exceed
the confidence threshold of 0.5 by combining more than 5 top-scoring univariate Z′ − factors with
linear projection.

Other algorithms, such as contours derived from an active shape model [34], would
possibly define a more precise cell edge, yet at the cost of analysis speed. Moreover,
due to the uniform distribution of GFP-p65 in the cytoplasm, exact detection of cell
boundaries is considered less relevant.

In the second and third validation test, we evaluated the accuracy of the calculated
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NF-κB translocation profiles and the accuracy of cell subpopulation identification
respectively. Our results indicate no significant differences between human generated
benchmarks and the results obtained from the automated computational procedures,
thereby validating our methods for studying NF-κB translocation, not only in the
context of overall effects on the translocation response, but more importantly, also at
the individual cell level.

In order to establish the sensitivity of our algorithm for perturbation of the bio-
logical system, an experiment was performed by pre-exposing the HepG2/GFP-p65
cells for 2 hours with an IKK-inhibitor, BMS-345541 before TNFα stimulation. The
results show that already at the lowest concentration of BMS-345541, perturbation
of NF-κB translocation was observed, thus validating our method for studying fac-
tors that affect this translocation. We also validated that our quantification method
can successfully be applied in the context of high-throughput functional genomics
screening. For this screening, the approach of gene silencing by transient transfection
of siRNAs was applied. Based on calculation of multi-parametric Z ′ − factors, we
demonstrated that our NF-κB quantification method can be used in HTS assays to
identify genetic players that interfere with the nuclear translocation of NF-κB.

In this study we demonstrated the effect of IκBα silencing by siNFKBIA treat-
ment on NF-κB oscillation. Theoretically the expected effect of IκBα loss would
be persistent nuclear presence of NF-κB, however, this is not observed. The 3-day
siRNA treatment instead led to an increased expression of the GFP-p65 construct,
which was strongly retained in the cytoplasm, even upon TNFα stimulation (Figure
2.6a). Western-blot analyses showed that the loss of IκBα had resulted in a basic
up-regulation of NF-κB target genes, including A20 and IκBα itself (data not shown),
indicating that upon siNFKBIA treatment, the reporter cells had undergone multiple
rounds of NF-κB translocation that most likely prevented further activation at the
time of imaging.

NF-κB signaling is a complex process, and the balance of cytokine production
and intracellular signaling transduction controls cellular fate in innate immunity and
inflammation responses [14, 35]. It has been established by several groups that the
individual cell response to cytokines may be very heterogeneous and is character-
ized by a full response of a few cells at low TNFα concentrations, and a similar
response, but now for almost all cells at high concentrations, thereby creating dis-
tinct subpopulations of cells [10,14,15]. We show that for the HepG2 cells 5% of the
cells oscillate spontaneously when no stimulation was applied. Spontaneous nuclear
translocation has also been reported in neuroblastoma cells, although at a slightly
higher level (18%) [15]. It is thought that this cellular variation serves biological
important goals such as stability in acute tissue responses that are made up from
highly heterogeneous individual oscillatory cell responses [14]. Therefore, it is an im-
portant goal and a major challenge to quantify cell subpopulations within the NF-κB
response pathway. Several methods have been described that partially meet this de-
mand [10, 14, 15, 36]. However, none of these is suitable for HTS because they either
lack fully automated image analysis and require human intervention at some point, or
require special equipment that prohibits massive parallel screening. The development
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of a methodology suitable for HTS in the context of NF-κB signaling as presented in
this study, whereby time courses of NF-κB translocation can be recorded in hundreds
of individual cells over a period of many hours, presents a major breakthrough in this
field. It now becomes possible to identify factors that govern NF-κB signaling at a
genome wide scale. We are currently performing siRNA screening using this model
to identify novel kinases and ubiquitinases that affect TNF-induced NF-κB nuclear
shuttling.

Finally, the analogue parameters that we acquire from all the individual translo-
cation profiles can be used as variables to model the sinusoidal oscillation of NF-κB
translocation by systems biology approaches [14,15,36].

2.4 Methods

2.4.1 Cell line and cell culture

HepG2 cells stably expressing N-terminally GFP-tagged p65 (GFP-p65) [37] were
maintained in Dulbecco’s modified Eagle’s medium (DMEM) with high glucose, 10%
(v/v) FBS and 25µg/mL penicillin/25µg/mL streptomycin. HepG2/GFP-p65 cells
were seeded on Greiner micro-clear 96well black plates (20,000 cells/well) and grown
at 37◦C, 5% CO2 for 2-3 days.

2.4.2 Treatment of cells

The human cytokine TNFα (R&D Systems) was used in all experiments at 10ng/mL.
The IKK-inhibitor BMS-345541 was from Sigma-Aldrich. Transient knockdown of
NFKBIA was achieved using siGENOME NFKBIA SMARTpool siRNA (50nM; Dhar-
macon Thermo Fisher Scientific, Landsmeer, the Netherlands) and transfected into
the HepG2 cells 3 days before imaging with INTERFERin (Polyplus transfection,
Leusden, the Netherlands). Transfections with siGENOME SMARTpool CASP8
siRNA were used as negative controls in these experiments. Prior to imaging, nuclei
were labelled with 100ng/ml Hoechst 33342 in culture medium for 45 minutes. For
confocal fluorescence microscopy, upon recording the first frame of the time-series,
TNFα was added as 10µL to each well containing 190µL medium.

2.4.3 Fluorescence microscope

The NF-κB nuclear translocation in the HepG2/GFP-p65 cells was imaged using
a Nikon TiE2000 microscope equipped with a Perfect Focus System at 37◦C with
5% CO2 delivery to the sample plate location. Both the Hoechst-nuclear channel
(excitation 405 nm, emission: 450 nm) and the GFP-p65 channel (excitation 488 nm,
emission 515 nm) were recorded with the laser excitation confocal system. Images
were acquired with a 20× (NA 0.75) dry Plan Apochromat objective and the image
acquisition was controlled by EZ-C1 software (Nikon). In each well, an image from
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the same position was acquired every 6 minutes for a period of 6 hours. The time-
lapse series were exported in TIFF files as 16-bit digital images with 512× 512 pixels
frame.

2.4.4 Image analysis and statistical analysis

Image analysis was implemented using ImageJ (http://rsbweb.nih.gov/ij/). In-house
plugins were written for quantification of both translocation profile and analogue pa-
rameters (Supplementary note). R (http://www.r-project.org/) was used to calculate
the ANOVA test, t-test and multi-parametric Z ′ − factor.
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Supplementary note

1. Nuclear mask validation by classification

a. Overview
After defining the nuclear mask by WMC, we observed that some masks were not
segmented accurately. Especially masks that extended over nuclear boundaries would
generate inaccurate average GFP intensities of nuclei. To solve this problem, we
decided to train a classifier which can automatically recognize incorrect nuclear masks
and discard them. This classifier can be used for experiments carried out on different
dates or with different treatments, as long as the microscope settings and cell line
remain the same.

b. Training data
5 frames were randomly selected from 5 different time-lapse image series. We man-
ually identified incorrect nuclear masks from the segmentation result of WMC . For
all test images, 1179 nuclear masks were validated as accurate segmentation results
(Figure S2.1a), and 127 nuclear masks were considered as incorrect (Figure S2.1b).
Next morphological parameters (Table S2.1) were calculated using ImageJ, on both
correct masks and incorrect masks, and then used to train the classifier.

c. Classification
Feature selection was performed to avoid the curse of dimensionality, using “forward”
search algorithm. To define the optimal number of features, multiple classification
methods were applied and a 10-fold cross-validation was used to evaluate the number
of features, as well as the accuracy of each classification algorithm. The classification
methods we tested were k-nearest neighbor classification with k = 1 or 2, linear Bayes
normal classification, quadratic Bayes normal classification, nearest mean classifica-
tion, Fisher linear classification and support vector machine with linear kernel. Figure
S2.2 showed the cross-validation error rate for each classification method calculated
on certain number of features. The result showed that when 2 features were selected,
quadratic Bayes normal classification gave a quite low error rate of 5.58%. Those 2
features are circularity and area. In the end, a quadratic classifier was obtained which
can be used to automatically validate the nuclear mask for the whole experiment. All
the functions were implemented using PRtools on MATLAB.

2. Cellular mask validation by classification

a. Overview
We have also validated the cellular masks. Since we used the best-fit ellipse of Voronoi
cell to simulate the cellular region, the circularity for each mask would all be 1, so
that can not be used for the classification. Therefore we decided to only use an area
threshold to identify the incorrect cellular masks. For regions where cells grow on
top of each other, cell layers are not perfectly aligned with the focal plane where
images are acquired and therefore these regions are not in focus (Figure S2.3a). As a
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result, nuclei can not be detected and no nuclear masks were obtained in those regions
(Figure S2.3b). Consequently, very big Voronoi cells (Figure S2.3c) and ellipses are
generated (Figure S2.3d). Overlap of the GFP channel with ellipses clearly showed
that those big ellipses contained multiple cells. To discard those incorrect cellular
masks, we manually distinguished those ellipses from the rest and calculated an area
threshold to automatically identify cellular masks with incorrect size.

b. Training data and classification
5 images which contain out of focus regions were chosen. Next, incorrect cellular
masks which covered multiple cellular areas where the corresponding nuclear masks
were missing were manually identified. Afterwards, the areas of these identified masks
were measured, as well as those of correctly identified masks. In the end, an optimal
area threshold was set up to minimize false classification.

3 Quantification of analogue parameters

a. Overview
One advance of our fully automated method is its ability to provide analogue param-
eters automatically for each time course profile. These analogue parameters translate
the profiles into numerical parameters, such as number of peaks and amplitude of each
peak (Table S2.2). This is very useful for categorizing different cell subpopulations
according to their analogue parameters so that we can study not only the influence
of various conditions on the whole population but also on subpopulations.

The outline for the quantification is shown in the Figure S2.5. For each time course
profile, we first located the maximum value. Then each profile was smoothened to
remove the small spikes which may be caused by intensity noise. Next, we started from
the maximum point and scanned in both directions along the translocation profile,
to search for the neighboring local minimum and local maximum. After defining all
local maxima and local minima which represent peaks and valleys of each nuclear
translocation events, parameters were measured to characterize each translocation
event.

b. Smoothening of each time course profile
The main idea of smoothening is to remove noisy spikes on each profile so that we
can locate the local maximum and local minimum precisely. We used a 1 × 5 mean
filter window 1 1 1 1 1 to slide, frame by frame, convolving over the entire
profile.

c. Local maximum and local minimum
Logically, local maximum and local minimum should appear alternatively. Combining
this rule with following 4 rules, we experimentally define a point as local minimum:

1) The GFP-p65 nuclear/cytoplasmic ratio of this point is smaller than the ratio
of neighbor points;

2) The adjacent local maximum should be at least 2 frames away from this point;
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3) The ratio of this point should be below the half of maximum value;
4) The ratio difference between adjacent local maximum and this point should be

at least 0.1.
For the local maximum, the rules are:
1) The nuclear/cytoplasmic ratio of this point is bigger than the ratio of neighbor

points;
2) The adjacent local minimum should be at least 2 frames away from this point;
3) The ratio difference between adjacent local minimum and this point should be

at least 0.1.
According to above rules, we are giving pseudo code as following:

d. Nuclei entry and exit time points

Some of parameters, such as SlopEntry and SlopExit of each translocation event,
require us to first define where nuclei entry and exit time points are (Figure S2.5c),
and then to calculate the gradient on that point. Those parameters can provide the
information about how fast NF-κB translocates into or exits nuclei. The method
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to calculate them is similar to the 2D edge detection by a Sobel operator. The
filter -1 0 1 is convolved over the smoothened profile to calculate the gradient
approximation for each frame, and then the frames with local maximum magnitude
were assigned as SlopeExit or SlopeEntry according to the direction of the gradient.

Supplementary figures

Figure S2.1: Validation of nuclear masks. (a) Accurately identified nuclear masks overlapping
with Hoechst stained nuclei and (b) incorrect masks which were manually identified.

Figure S2.2: 10-fold cross-validation result from 7 different classification methods. The
best result was obtained from quadratic Bayes normal classification when 2 features were selected
(marked by red box).
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Figure S2.3: Cellular mask validation. (a) Out-of-focus region are formed when cells are
clustered on top of each others (in the white box). (b) No nuclear masks were identified in those out
of focus regions. (c) Very big Voronoi cells were generated due to the missing nuclear masks, and
consequently big ellipses were generated (d). Overlap of the GFP channel with ellipses (d) clearly
showed that those big ellipses contained multiple cells. An area threshold was trained to discard
incorrect cellular masks.
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Figure S2.4: Validation of the automated NF-κB translocation quantification method.
(a-e) For five test time-lapse series, we show the numbers of cells (#) and average GFP-p65 nu-
clear/cytoplasmic ratio profiles obtained from different individuals and computational result. (f)
The accuracy validation results from the split-plot ANOVA analysis. Df: degrees of freedom. Sum
Sq: sum of squares. Mean Sq: mean of squares.
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Figure S2.5: The outline to quantify the analogue parameters from individual time
course profiles. (a) One example time course profile of one cell. (b) Smoothed profile on which
we defined the local maximum (peak of translocation) and local minimum (valley of translocation).
(c) Afterwards, parameters were measured to characterize the profile dynamic.
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Supplementary tables

Index Measurement Description

1: Area The number of pixel in the current mask

2: Perimeter The length of the outside boundary of the current mask

3: MajorAxis The primary axis of the best fitting ellipse of the current mask

4: MinorAxis The secondary axis of the best fitting ellipse of the current mask

5: Angle The angle between the primary axis and a line parallel to the
X-axis of the image

6: Circularity 4π × [Area]

[Perimeter]2

7: Maximum caliper The longest distance between any two points along the boundary
of the current mask

8: Minimum caliper The shortest distance between any two points along the boundary
of the current mask

9: Axis ratio [MajorAxis]
[MinorAxis]

10: Roundness 4× [Area]

π×[MajorAxis]2

11: Solidity [Area]
[ConvexArea]

Table S2.1: Morphological parameters for training the classifier to validate nuclear
masks.
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Analogue parameters Parameter description

Number of peaks
The number of nuclear translocation events shown in the translocation
profile

Time for max The time when N/C ratio reaches the maximum along the profile

Time(peak 1)
The time when N/C ratio reaches the first translocation maximum of the
profile

Amplitude (peak 1) The N/C ratio of the first translocation maximum

Duration(peak 1) The duration of first nuclear translocation event

SlopeEntry(peak 1) The slope of nuclear entry of the first nuclear translocation event

SlopeExit(peak 1) The slope of nuclear exit of the first nuclear translocation event

Time(peak 2)
The time when N/C ratio reaches the second translocation maximum of
the profile

Amplitude(peak 2) The N/C ratio of the second translocation maximum

Duration(peak 2) The duration of second nuclear translocation event

SlopeEntry(peak 2) The slope of nuclear entry of the second nuclear translocation event

SlopeExit(peak 2) The slope of nuclear exit of the second nuclear translocation event

Time(peak 3)
The time when N/C ratio reaches the third translocation maximum of the
profile

Amplitude(peak 3) The N/C ratio of the third translocation maximum

Duration(peak 3) The duration of third nuclear translocation event

SlopeEntry(peak 3) The slope of nuclear entry of the third nuclear translocation event

SlopeExit(peak 3) The slope of nuclear exit of the third nuclear translocation event

Peak 1:2 time
The duration time between the first translocation maximum and the
second maximum

Peak 1:2 damp
The difference of N/C ratio between the first translocation maximum and
the second maximum

Peak 1:2 quiet time
The time between end of the first nuclear exit and start of next nuclear
entry event

Peak 2:3 time
The duration time between the second translocation maximum and the
third translocation maximum

Peak 2:3 damp
The difference of N/C ratio between the second translocation maximum
and the third translocation maximum

Peak 2:3 quiet time
The time between end of the second nuclear exit and start of next nuclear
entry event

Average amplitude The average N/C ratio of all the translocation maxima

Average minima The average N/C ratio of all the translocation minima

Nuclear occupancy time
The total amount of time when the N/C localization ratio>half of the
maximum amplitude

Table S2.2: Definition of analogue parameters measured for each individual cell translo-
cation profile.
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Abstract

In many situations, 3D cell cultures mimic the natural organization of tissues more
closely than 2D cultures, enabling cells to develop complex phenotypes. Conven-
tional methods for phenotyping such 3D cultures use either single or multiple simple
parameters which limits system-level study of phenotype characteristics. Here, we
have developed a new image analysis platform to automatically profile 3D cultured
micro-tissues with 598 phenotypic parameters including morphological parameters,
topological parameters, texture parameters such as wavelet and image moments, as
well as subpopulation related parameters. As proof of concept, we analyzed mouse
breast cancer cells in a 384-well plate format following exposure to a diverse set of
compounds at different concentrations. The result showed concentration dependent
phenotypic trajectories for different biologically active compounds that could be used
to classify compounds based on their biological target. To demonstrate the wider
applicability of our method, we analyzed the phenotypes of 44 human breast cancer
cell lines cultured in 3D and showed that our method correctly distinguished basal-A,
basal-B, luminal and ERBB2+ cell lines in a supervised nearest neighbor classification
method.
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3.1 Introduction

Over the past decade, in vivo models and 2D cell cultures represented the two principle
approaches used to study cellular process. The extreme low throughputs of in vivo
models and poor (patho-) physiological relevance of over-simplified monolayer cell
cultures motivated the development of 3D cell cultures. In many situations, 3D cell
cultures mimic the natural organization of tissues more closely than 2D cultures,
enabling cells to develop complex micro-tissue phenotypes. Especially for the study
of tissue development where the spatial organization, architecture and interaction
with the extracellular matrix are critical, 3D cell culture models may bridge the gap
between in vivo studies and simple 2D cell mono-layer cultures [1]. One example is
tubulogenesis of epithelial cells in 3D extracellular matrix (ECM) hydrogels, which
result in in vivo-like structures that cannot be recapitulated in 2D cell cultures [2].
3D cell cultures are also used frequently in tumor studies, allowing the effects of ECM,
stromal cells and individual genes on tumor growth and invasion to be studied [3–7].

One potential application of 3D cultures is for the high-throughput screening
(HTS) and high-content analysis (HCA) of pharmacologically active compounds [8].
For such purposes, 3D cultures are treated with compound libraries in 96- or 384-
well micro plates. After incubation for an appropriate time, cells are labeled with
fluorescent dyes, made visible by immunofluorescence methodologies, or by expres-
sion of green fluorescent protein (GFP)-tagged proteins. Next, fluorescent images
are captured by automated microscopy. Here, 3D cultures have presented a chal-
lenge in collecting image data with sufficient resolution that is not prohibitively time
consuming for a significant throughput of screening. Many methodologies have been
established for the image analysis of HTS [9], although the quantification of phe-
notypes is mostly performed with single or multiple simple parameters. Therefore
methods are needed to extract the maximum amount of useful information from the
phenotypic complexity of the cultured tissues to allow the system-level study of the
full range of effects of test compounds.

Our goal was to develop an automated multi-parametric profiling platform which
is suited for HTS and is able to quantify cellular phenotypes exhaustively. Such a
platform should apply rapid image preprocessing and segmentation methods that are
suited for the images with limited resolution. For each well, collected attributes should
provide a full spectrum of phenotypic information including properties of morphology,
fluorescence staining intensity and topology, spatial attributes of the nuclei, as well
as texture information such as image moments and wavelets. More importantly, this
platform should be able to recover heterogeneous cell behavior. For example, it should
be able to identify epithelial cells that develop branched structures from those that do
not in response to a specific treatment. Such cell-to-cell heterogeneity seems essential
for the plasticity of tissue responses e.g. in response to inflammation or associated
with tumor invasion [10,11].

As proof of concept, we investigated mouse breast cancer cells (4T1) after they
formed micro-tissues in 3D by monitoring their cellular phenotypic response to a di-
verse set of compounds, using a novel 3D screening and ultra high-content analysis
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(uHCA) technique. After image acquisition, we extensively mined images for feature
data which we used for multi-parametric phenotypic profiling. To investigate phe-
notypic patterns, principle component analysis (PCA) was first used to reduce the
dimensionality of the dataset. Subsequently, we compared various multi-parametric
tests to identify biologically active compounds. Next, polynomial regression modeling
was applied to characterize concentration dependent trajectories for each biologically
active compound, and the distance between the trajectories was used for hierarchical
clustering of compounds. Finally, multiple classification models were used to identify
distinct phenotypic patterns.

3.2 Results

3.2.1 4T1 breast cancer cells acquire a complex phenotype in 3D
culture, which is perturbed by biologically active compounds

To generate 3D micro-tissues, mouse triple negative breast cancer cells (4T1) were
cultured in an extracellular matrix protein-rich hydrogel in 384-well high-content
imaging micro plates. After seeding, cells were exposed to 29 compounds with dif-
ferent biological activities including tyrosine kinase inhibitors, cytostatic drugs, and
Wnt-signalling activators (Table S3.1) at 6 different concentrations in quadruplicate
(see Methods). To visualize nuclei and F-actin, the cultured micro-tissues were fixed
and stained with Hoechst 33258 and rhodamine-phalloidin, respectively. Z-stacks of
17 xy epifluorescence image slices were collected using a BD Pathway 855 automated
microscope with a 4× objective and 0.16 Numerical Aperture (NA). In control wells,
cells spontaneously formed a heterogeneous array of multi-cellular structures compris-
ing spheroids and branched micro-tissues that were interconnected to form a complex
network (Figure 3.1a). Exposure to many of the 29 test compounds resulted in a
change in various aspects of network formation, such as branch length and thickness,
number of branches, and the proportion and shape of spheroids (Figure 3.1b-3.1f)).
Some compounds, such as the protease inhibitor bortezomib, and several compounds
at higher concentrations, showed apparent toxicity, characterized by complete inhi-
bition of network formation and pronounced inhibition of cell growth (Figure 3.1f).
Exposure to other compounds, such as dasatinib, resulted in complete inhibition of
branch formation and only multi-cellular spheroids were visible (Figure 3.1c).

3.2.2 Multi-parametric image analysis for phenotypic profiling

To capture the complexity and variation in phenotype in response to different treat-
ments, we developed an automated image analysis pipeline for the multi-parametric
phenotype profiling of the 3D cell cultures (Figure 3.2, Figure S3.1). First, a pro-
jection of in-focus information was generated from each fluorescence channel of the
image stack (Figure 3.2a-3.2d), using an ImageJ plugin “Stack_Focuser” (see Meth-
ods). Next, the projected nuclei and F-actin images were segmented automatically
to define the region of nuclei and cell clusters, respectively (Figure 3.2e, 3.2f). For
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Figure 3.1: Mouse breast cancer cell (4T1) exposed to different compounds in 3D cell
culture. For a clear representation of cellular phenotypic responses to different compounds, these
images were acquired by a Nikon Eclipse Ti microscope in confocal mode. We used a dry air lens
with 4× magnification and 0.2 NA. Two channel (Hoechst stained nuclei channel and rhodamine
stained F-actin channel) z-stacks of 32 xy epifluorescence image slices were collected from each
well, with acquisition step size in z-direction 50µm. Maximum intensity projection was applied to
compress 3D image stacks to 2D image representation. Concentration of all compounds shown here
was 0.316µM. Scale bar represents 100µm. (a) Untreated cells cultured in 0.2% DMSO, (b) cells
exposed to compound Arq 197, (c) cells exposed to dasatinib, (d) cells exposed to entinostat, (e)
cells exposed to sorafenib tosylate, (f) cells exposed to bortezomib.

the Hoechst stained nuclei channel, watershed masked clustering (WMC) [12,13] was
applied to retrieve the binary masks of individual nuclear regions. For the rhodamine
stained F-actin channel, the local Niblack algorithm [14] was used to define the re-
gion of cell clusters (see Methods). Quantification algorithms assembled from the
literature [15, 16] were incorporated into an ImageJ plugin to extract morphological
and fluorescence intensity parameters from the images (Figure 3.2g, Table S3.2-S3.4
and Methods). We observed that the 3D micro-tissues formed different subpopula-
tions: 1) spherical cell clusters and 2) branched and interconnected complex networks.
Upon exposure to different compounds, the proportion and the shape of these two
subpopulations often changed in a specific pattern and these patterns may contain
compound specific information. To be able to quantitatively study these changes,
an automated classifier for these two subpopulations was developed and embedded
in the image analysis pipeline (see Methods and Figure S3.2). Relevant information
was collected for each subpopulation based on fluorescence intensity and morphology
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(Table S3.5). In total, 598 parameters were measured from the image of each well for
the whole population and two subpopulations.

3.2.3 Identification of biologically active compounds

Our first goal was to identify biologically active compounds which significantly affect
the cellular phenotype compared to controls (cells growing in 0.2% DMSO). For this
purpose, we firstly calculated the robust z−score [17] for each of the 598 parameters
for the purpose of cross-plate normalization (see Methods). Next, the z − scores
of all 598 parameters were used for PCA and we retrieved 9 principle components
which preserved 90% data variation. A 3D plot of data points on the first 3 prin-
ciple components is given in Figure 3.3a. The parameters that contribute most to
the first 3 principle components are shown in Table S3.6. These include subpopu-
lation parameters, intensity parameters and morphological parameters. To identify
biologically active compounds, we compared three multi-parametric tests based on
the 9 principle components: Mahalanobis distance, Chi-square and Wilks’ lambda
test (see Methods). Each test was validated manually (by eye) by comparing control
and compound-treated images. Mahalanobis distance at α=0.05 came the closest to
visual scoring a treatment as having an effect on phenotype. Figure 3.3b shows the
false positives and false negatives for the different statistical tests. From a total 29
(test compounds) × 6 (concentrations) = 174 conditions, 60 conditions were iden-
tified as active when we set the significance level α=0.05 for Mahalanobis distance.
The Mahalanobis distance to control (DMSO) of all active compounds is shown in
Figure 3.3c. Table S3.7 lists the active compounds and the concentrations at which
a statistically significant effect on the phenotype was detected. Of all the 29 com-
pounds that were tested, 21 induced a significant phenotypic change at least at one
tested concentration.

3.2.4 Concentration dependent phenotypic trajectories of biologi-
cally active compounds

We found for many biologically active compounds, that data points seem to move
away from negative controls in trajectories with increasing concentration (Figure
3.3a). This is shown clearly in a PCA plot of the first 2 principle components (Fig-
ure 3.4a). Interestingly, the trajectories of different active compounds separate the
most at medium concentrations but converge at higher concentrations. This may be
explained by the fact that at high concentrations severe toxicity is induced which
inhibits not only cell invasion and branching but also proliferation and growth, lead-
ing to a similar phenotype. This is shown for the compounds Arq 197, dasatinib,
entinostat, and sorafenib tosylate at the concentration of 10µM (Figure 3.4b). At the
lowest concentration (0.03µM), except for dasatinib that already induced apparent
inhibition of network formation, all other compounds had only a marginal effect on
cellular network. Distinct phenotypes of different compounds were observed at the
medium concentration of 0.316µM. Dasatinib inhibited branching but not prolifera-
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Figure 3.2: Stepwise demonstration of the image analysis method. Images were produced
by a BD pathway 855 microscope in the wide-field mode with 4× air objective (NA=0.16). The
scale bar represents 100µm. (a-b) Image stack obtained from the Hoechst stained nuclei channel and
rhodamine stained F-actin channel. (c-d) In-focus 2D images projected from the stacks of Hoechst
stained nuclei channel and stacks of rhodamine stained F-actin channel. (e) Binary nuclear mask
after segmentation by Watershed Masked Clustering. (f) Binary cellular mask after segmentation
by local Niblack algorithm. The green contour represents branched and interconnected complex
networks. The red contour represents spherical multi-cellular structures. (g) Phenotypic parameters
measured for each well of the 384-well plates are categorized in three classes: 54 classic morphological
parameters, 234 intensity and moments parameters, and 310 subpopulation based parameters. See
Table S3.2-S3.5 and Methods for further description.
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Figure 3.3: Identification of biologically active compounds. (a) 3D PCA plots of all com-
pounds and concentrations. Compounds are marked with different colors and the concentration is
represented by the size of data points. Control, active compounds and inactive compounds iden-
tified by Mahalanobis distance were represented by different shape of data points. Percentages of
data variation preserved in each principle component are shown with each axis. (b) Comparison
of three multi-parametric tests for the identification of biologically active compounds. “positive”
indicates correctly identified active concentration of a test compound (p− value 6 α). “False posi-
tive” indicates the concentration which is identified as active but no obvious difference was observed
compared to control images. “negative” indicates correctly identified inactive concentration of a test
compound (p− value > α). “False negative” indicates the concentration which is identified as inac-
tive but obvious differences were observed compared to control images. “#” means “number of”. (c)
Natural logarithm of Mahalanobis distance to DMSO control of all active compounds. Compounds
are marked with different colors and shapes. Black dashed line corresponds to p− value = 0.05.

50



uHCA of 3D cultured micro-tissues

tion so that bigger cell clusters were formed, while entinostat induced much thinner
branches compared to the control (Figure 3.4b). Sorafenib tosylate and Arq 197
caused formation of much shorter branches, indicative of inhibition of invasion. Most
strikingly, we found that trajectories of compounds that inhibit the same biological
target were more similar to each other than to trajectories of compounds with dif-
ferent targets (Figure 3.4a), indicating that phenotypic development of 4T1 cells is
effected by different biological targets in characteristic ways and that we can identify
this with our uHCA methodology.

3.2.5 Trajectory modeling and phenotypic pattern recognition

To further characterize the different phenotypes, we used a 2nd order polynomial
regression modeling to build the trajectory for each identified active compound. First,
we investigated data variation for each of the 9 principle components. We compared
the data between control and active compounds using a two sample Kolmogorov-
Smirnov (KS) test (Figure S3.3, Supplementary note). The principle components
with no significant difference between negative control and active compounds, or
equal data variation or bigger variation in negative controls than in active compounds,
were excluded to avoid overtraining, resulting in retaining only the first 2 components.
Next, a 2nd order polynomial regression model of the trajectory for each compound
was trained and the difference between the trajectories of two compounds i and j was
computed based on the coefficient of determination R2:

Distance(i, j) =
√

1−R2
mean (3.1)

R2
mean =

R2
(i,j) +R2

(j,i)

2
(3.2)

where R2
(i,j) is the coefficient of determination to indicate how well data points of com-

pound j fit a trajectory which is modeled for compound i (see also Supplementary
note). Subsequently, a hierarchical clustering with complete linkage [18] was applied
on the distance matrix defined above (Figure 3.5a). Consistent with our finding in
the PCA analysis, compounds with the same biological target cluster together but
compounds with different targets are separated. To further validate our hypothesis
that phenotypic responses are specific to the biological target that is inhibited, we
applied classification. Five classes of compounds were defined based on their bio-
logical targets (Figure 3.5b). Only active concentrations were taken into account,
and compound classes with less than 15 data points were not included in order to
avoid the curse of dimensionality. We tested several classification algorithms on the
598 z− scores space, including k-nearest neighbor classification, linear Bayes normal
classification [19–21], quadratic Bayes normal classification [19,21], nearest mean clas-
sification, support vector machine classification (SVC) [22,23] with different kernels,
and Fisher linear classification [19, 21, 24]. For each classification method, a forward
feature selection with the criterion Mahalanobis distance was firstly performed and
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Figure 3.4: 2D PCA plot of phenotype profiles for various active compounds and their
concentration dependent phenotypic trajectories. (a) 2D PCA plot of phenotype profiles for
negative control (DMSO) and 12 active compounds at different concentrations. Percentages of data
variation preserved in each principle component are shown with each axis. Compounds with the
same biological target are colored identically. Red: BCR-ABL target inhibitor; Yellow: VEFGR
inhibitor; Green: EGFR inhibitor; Purple: HDAC inhibitor; Blue: c-MET inhibitor. Concentration
is represented by the size of data points. The trend lines were added for each effective compound
using 2nd polynomial regression models. (b) Comparison of microscope images of four example
compounds with two DMSO control images. Each compound has a different biological target.
2D projected images from the rhodamine stained F-actin channel are shown here. The scale bar
represents 500µm.
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only the selected features were used for classification. To evaluate the performance
of feature selection and classification, 10-fold cross-validation was used (Figure 3.5c).
For each of 10 tests, a classification error rate (%) was calculated as follows:

∑ number of erroneously classified objects per class

size of class
× prior probability of class

(3.3)
where the prior probability is equal for each class (20%). According to the feature
selection result, we found that the most frequently selected discriminative parameters
included morphology- and intensity-based parameters and parameters from both the
whole population and two subpopulations. The classification result is shown in Figure
3.5c. The lowest mean classification error rate of 12.8% was obtained from a linear
kernel based SVC with 7 features selected. 1-nearest neighbor classification also
showed a relatively high classification accuracy with an error rate of 13.1% when 6
features were selected. With this high classification accuracy of different classification
methods, further evidence is provided for the potential of our phenotypic pattern
recognition method to identify the different biological targets of compounds.

3.2.6 Contribution of the different parameter classes to the classi-
fication

To recover the heterogeneity of responses of 4T1 cells to the different compounds
within the cell population, we have analyzed different multi-cellular subpopulations
and quantified phenotype parameters for each subpopulation separately. In order
to establish the value of analyzing these subpopulations separately, we repeated the
above analysis excluding subpopulation-related parameters, collecting only 288 pa-
rameters from each well. After normalization, we applied PCA and retrieved 7 prin-
ciple components which preserved 90% data variation. After computing the trajec-
tories for the active compounds and hierarchical clustering as described above, the
result showed that excluding subpopulation parameters caused a failure to co-cluster
all BCR-ABL inhibitors together, and EGFR inhibitors together (Figure S3.4a). We
also repeated classification without subpopulation parameters (Figure S3.4b) and the
classification accuracy was decreased compared to Figure 3.5c. SVC with linear ker-
nel still performed relatively better than other classification methods when 8 features
were selected, but the error rate increased to 16.5% compared to the error rate of
12.8% when subpopulation parameters were used. Using 1-nearest neighbor classifi-
cation, the lowest error rate was obtained when 11 features were selected resulting
an error rate of 16.6%.

We also repeated the analysis without moments and intensity parameters. Only
morphological parameters were measured from the whole object population and the
two subpopulations, resulting in 152 parameters extracted from each well for classifi-
cation (Figure S3.4c). The classification results of SVC with linear kernel showed that
omission of moments and intensity parameters increased the misclassification error
to 15.4%. These results show that simplification of the analysis by omitting either
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Figure 3.5: Characterization of cellular phenotypes by clustering and classification.
(a) Hierarchical clustering result using a distance matrix based on Equation 3.1. The scale of
dendrogram is the natural logarithm of

√
(1−R2

mean). (b) Five defined classes of test compounds
and corresponding compounds and number of data points. (c) Classification result using multiple
classification methods. Feature selection with search algorithm “forward” and criterion “Mahalanobis
distance” was applied to detect the optimal number of features. For each classification method and
each number of selected features, 10-fold cross-validation was applied, resulting in 10 error rates.
The average error rates are shown in the chart with standard deviation as error bar. SVC means
support vector machine classification.
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subpopulation parameters or intensity and moments parameters e.g. to decrease time
for computation, compromises the quality of the analysis.

3.2.7 Computational efficiency

Our complete method takes approximately 260 minutes of computational time for 384
wells on an Intel i7 3770 model with 4 GB of RAM with Windows XP professional
2002. As the costs of these computational systems are relatively modest, we do not
regard the computation time of our method as a major drawback because the load of
the analysis can easily be spread across multiple computers.

3.2.8 Comparison to other analysis methods

In order to compare the performance of our newly developed analysis method with
other published methods, we have analyzed our images with PhenoRipper [25] and
CellProfiler [26]. PhenoRipper is a platform using a segmentation-free approach: it
breaks down images into small blocks and clusters the blocks to different types ac-
cording to the pixel intensity distribution. Then it quantifies images by proportions
of different types of block. As the quantification is not executed based on segmen-
tation, this approach is highly computational efficient, using ~5 minutes to analyze
four complete 384 well plates of our data set. As correct block size is essential, we
tested different block widths ranging from 20 to 80 pixels. However, after plotting
profiles of all data points on a 2D multidimensional scaling (MDS) plot using this
platform, we found that the distances between compounds in the plot did not reflect
the similarities or dissimilarities in the images observed by eye (Figure S3.5a-S3.5c).
For example, the negative control (DMSO) data points are closely located to data
points of the positive control Arq 197 with concentration 3.16µM in the MDS plot
even though these two conditions showed clearly discrete phenotypes.

CellProfiler is segmentation dependent software. It is able to calculate morpho-
logical parameters including Zernike moments, object intensity parameters, topolog-
ical parameters, texture parameters and image intensity parameters. In total we
measured 395 parameters (including the per-image mean and standard deviation for
object measurement) for each well using CellProfiler. After robust z − score nor-
malization, we applied PCA and plotted the concentration trajectories for the active
compounds. However, these trajectories were not biological activity specific (Figure
S3.6a). This is also reflected in the hierarchical clustering result which did not show
co-clustering of compounds with the same biological target (Figure S3.6b). Finally
we applied Mahalanobis distance (α=0.05) to identify the active concentrations of
the biologically active compounds, and those concentrations were used for classifica-
tion (still five classes). The lowest error rate of 26.8% was obtained when SVC with
linear kernel was applied with 14 parameters selected. Compared to the classification
error rate of 12.8% obtained using our method, this higher error rate indicates that
subpopulation information which is lacking in CellProfiler plays a very important role
in our method and should be taken into account for compound characterization.
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3.2.9 Reproducibility of the methodology

To validate the reproducibility of our multi-parametric profiling platform, the 4T1
cell screen was repeated independently on a different occasion. Twelve biologically
active compounds (Table S3.8) were included in this screen. We used the same data
analysis pipeline as described above for the multi-parametric profiling of those com-
pounds. After robust z− score normalization and PCA, a 2D PCA plot with control
was generated (Figure S3.7a). A large extent of similarity was observed with Figure
3.4a, which validates the high reproducibility of our platform. Subsequently, we ap-
plied Mahalanobis distance (α=0.05) to identify the biologically active compounds
and corresponding active concentration (Table S3.8). Compounds at concentrations
which were detected as active in this screen but not active in the first screen are
highlighted with bold style. 7 out of 49 concentrations were identified differently
between the two independent experiments. Finally we defined the classes according
to the biological targets and applied classifications. (Figure S3.7b). The error rate
was 17.8% when we used 1-nearest neighbor classification and 9 features were se-
lected. The best classification accuracy was obtained using quadratic Bayes normal
classification. The corresponding error rate was 15.1% when 8 features were used for
classification. Excluding subpopulation parameters increased the classification error
rate of quadratic Bayes normal classification to 19.1%, while the lowest classification
error of 1-nearest neighbor classification increased to 19.8%. We also repeated the
classification without moments, wavelet and intensity parameters. The lowest clas-
sification error rate of quadratic Bayes normal classification and 1-nearest neighbor
classification were 17.6% and 19.0%, respectively, which is higher than the 15.1% and
17.8% obtained when these parameters were included in the analysis, confirming their
importance for the quality of the analysis.

3.2.10 Other applications of the methodology: classification of hu-
man breast cancer cell lines

To investigate the wider applicability of our multi-parametric image analysis plat-
form, we used it to classify 44 known human breast cancer cell lines (Table S3.9)
that have been categorized as basal-A, basal-B, luminal or luminal/ERBB2+ based
on their gene expression profiles [27–30]. The cell lines were cultured in ECM-rich
hydrogel in 384-well high-content imaging micro plates, with each cell line having 3 or
6 replicates (Table S3.9 and Methods). Image stacks were obtained from the Hoechst
stained nuclei channel and the rhodamine stained F-actin channel as described for the
experiments with the 4T1 cells. We firstly applied our platform for multi-parametric
profiling (including automatic identification of spherical cell clusters and branched
network subpopulations) on the in-focus projections of z-stack images. After robust
z−score normalization, we applied supervised forward feature selection with criterion
Mahalanobis distance and different classification methods for categorizing basal-A,
basal-B, luminal and ERBB2+ cell lines. 10-fold cross-validation was used to assess
classification performance (Figure 3.6a). The mean classification error was lowest
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when 8 features were selected and 1-nearest neighbor classification method was used,
resulting in an error rate of 5.9%. The selected features include intensity parame-
ters from the whole population and subpopulations, morphological parameters and
topological parameters from the whole population and subpopulations. Based on
these 8 selected features, a PCA was applied (Figure 3.6b), which clearly shows the
separation between the various human breast cancer cell classes. If we used only
classic morphological parameters, moments, and wavelet parameters for the whole
population only, thus excluding parameters from the subpopulations, we obtained
a significantly increased classification error rate (24.9%) when a 1-nearest neighbor
classification method was used. Similarly, omitting wavelets, moment and intensity
features from our feature set increased the error rate to 35%.

Figure 3.6: Classification of human breast cancer cell lines. (a) Classification result using 7
classification methods. Feature selection with search algorithm “forward” and criterion “Mahalanobis
distance” was applied to detect the optimal number of features. For each classification method and
each number of selected features, 10-fold cross-validation was applied, resulting in 10 error rates.
The average error rates are shown in the chart with standard deviation as error bar. (b) According
to the cross-validation result, the smallest error rate was achieved when 8 features were selected. A 3
dimensional PCA plots was generated based these 8 selected features. Percentages of data variation
preserved in each principle component were shown with each axis. Different categories of breast
cancer cells are colored differently to show the separation between the various human breast cancer
cell classes.

57



Chapter 3

3.3 Discussion and conclusions

In this study, we developed a new methodology for 3D cell culturing in conjunction
with high-throughput imaging for the characterization of compounds according to
their effect on the phenotype of cultured micro-tissues. First, we developed a novel
method for 3D cell culturing in 384-well plates and next an image analysis platform,
which automatically measures 598 parameters, including morphological parameters,
fluorescent staining intensity parameters, topological parameters, spatial attributes
of the cellular nuclei, subpopulation information, as well as image moments and
wavelets using both segmentation dependent and independent approaches. This plat-
form provides a very detailed level of phenotypic description which opens the door to
system-level study of the full activity of test compounds.

Our method is the first for high-content analysis of 3D micro-tissues that is ca-
pable of classifying complex phenotypes of 3D cell cultures and can do this in an
automated, high-throughput fashion. This represents an important tool e.g. for the
classification of new and existing pharmacologically active compounds, but also for
the characterization of different tumor sub-types. It is also the first quantification
method which takes into account heterogeneous cell behavior. Our method requires
only an initial human-based step (defining branched and spheroidal structures) to
train an automatic classifier. This simple procedure is then followed up by a largely
automated method to classify multi-cellular structures and retrieve the subpopula-
tion related parameters. The classifier can be applied for a broad class of phenotypes.
For example, we applied it to classify 44 different breast cancer cell lines successfully
(our manuscript) and also to invasive prostate cancer cells and invasive lung cancer
cells (not yet published).

This platform can be used for many different applications including identification
of biologically active compounds, concentration dependent trajectory construction,
clustering and classification. We revealed that trajectories of different compounds
varied and are likely to be specific for biological activities. We also demonstrated
that our platform can be used to correctly classify a collection of human breast can-
cer cell lines into known subclasses. Although the group of Bissell et al. has pioneered
automated phenotyping of human breast cancer cell lines [31], a complete classifica-
tion of these cell lines could only be achieved so far with more elaborate and expensive
techniques such as gene expression analysis. Our platform present an opportunity to
identify new treatments/drugs aimed at reverting cancer cells to phenotypes with
better prognosis and/or drug responsiveness, rather than direct tumor cell killing per
se.

For each application, we analyzed the contribution of different parameter classes
to the phenotype characterization of the 4T1 cell cultures. With PCA, we found
that the parameters which contributed most to the variation in the first 3 principle
components included subpopulation parameters, intensity parameters, morphological
parameters and topological parameters. For classification of compounds with different
biological activities, the feature selection method that we used selected morphological
and intensity parameters, and parameters from both total populations and subpop-
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ulations. Altogether, these findings indicate that to systematically study phenotypes
associated with modulation of different cellular pathways, it is necessary to quantify
images with a full spectrum of phenotypic information. It will not only reveal de-
tails that are otherwise not resolved, but also enable adaption to different cell lines
or new biological questions. Although the use of 598 parameters may seem redun-
dant initially, it enables us to analyze 3D-cellular phenotypes under a wide variety
of conditions, while our feature selection methodologies automatically identify those
features that contribute most to the separation and characterization of the particular
phenotypes under study.

Compared to other methods, we demonstrated that our methodology offers signif-
icant advantages in terms of recognition of specific phenotypes within still reasonable
computational demands. While some other methods such as PhenoRipper [25] are
suitable for analyzing sub-cellular data in 2D imaging-based assays, they are not
appropriate for the type of images used in this study. Another advantage of our
methodology is that it can be incorporated in the user friendly, freely available Im-
ageJ environment written in Java, and therefore can be run with various operating
systems (Linux, Windows, Mac OS X).

3.4 Methods

3.4.1 Cell culturing, fluorescence staining, and image acquisition

To generate 3D micro-tissues, mouse triple negative breast cancer cells (4T1) were
cultured in a hydrogel containing extracellular matrix proteins and inert hydrogel
(O4-Gel, OcellO, Leiden, The Netherlands) for 4 days in 384-well high-content imag-
ing micro plates. 24 hours after seeding, cells were exposed to 29 different compounds
with different biological activities (Table S3.1) at 6 different concentrations (0.03µM,
0.1µM, 0.316µM, 1µM, 3.16µM, 10µM) in quadruplicate. After 72 hours of exposure,
the cultured micro-tissues were fixed and stained with Hoechst 33258 (final concen-
tration 0.4 µg/mL) and rhodamine-phalloidin (final concentration 0.1µM) to visualize
nuclei and F-actin, respectively.

For the classification of the 44 breast cancer cell lines (Table S3.7), these were
cultured similarly as described above for the 4T1 cells with each cell line having 3 or
6 replicates. 96 hours after seeding, they were stained with Hoechst and rhodamine-
phalloidin as described above. The human breast cancer cell lines were from ATCC
(Manassas, VA, USA) or as described [32] and provided to us by Prof. Dr. John A.
Foekens and Dr. John W. Martens from Erasmus University Medical Center-Daniel
den Hoed Cancer Center, Rotterdam, The Netherlands.

3.4.2 Image analysis for multi-parametric phenotype profiling

a. Overview

For each well of a 384-well plate, 2 channels (corresponding to the rhodamine stained
F-actin and the Hoechst stained nuclei) of 16-bit image stacks were collected using
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an automated microscope system: BD pathway 855, equipped with a 4× magnifica-
tion/0.16 NA UPlanSApo objective. For each image slice, pixel size was 1.6µm and
step size in z-direction was 50µm. For quantitative phenotype profiling, image analy-
sis was performed on both channels of image stacks in four steps. First, each stack was
projected to a 2D plane. Next, two segmentation algorithms were applied on nuclei
and F-actin stained channels separately to retrieve binary masks of the nuclear and
cell cluster regions. After binary multi-cellular objects were obtained, a user prede-
fined classifier was used to distinguish two cellular subpopulations: spherical objects
and branched objects. In the last step, morphological parameters and intensity based
parameters were measured on both the whole population and subpopulations.

b. 2D projection

In order to achieve high-throughput in our methodology, we used wide-field mi-
croscopy for screening as its imaging process is much faster than confocal laser scan-
ning microscopy. However, due to its limited depth of field, each image slice includes
both in-focus regions and out-of-focus regions of specimen that are bigger than the
depth of field. To extract only the in-focus information, a free open source plugin
of ImageJ “Stack Focuser” was used to compose 2D image slices by projecting only
in-focus regions from each slice of image stacks. First, a median filter was used to
remove the noise. We empirically defined the filter kernel size as 3× 3 pixels; using a
bigger size would affect object size. Next, a Sobel filter [33] was used for edge detec-
tion and subsequently a maximum filter was applied to map the local focal strength,
by taking the maximum value in a kernel of the specified size. In this project, we
defined the kernel size as 10 × 10 pixels, which is slightly bigger than the average
size of the nuclei (8× 8 pixels). In the last step, for each coordination (x,y) the pixel
value from the slice with the highest focal strength was copied to the composed 2D
image (Figure S3.1a, S3.1d).

c. Segmentation

Two different segmentation algorithms were used for the two image channels. For
the Hoechst stained nuclear channel, watershed masked clustering (WMC) [12, 13]
was applied to retrieve the binary masks for individual nuclear regions. This algo-
rithm first generates watersheds on the Gaussian filter (σ = 2.0) convolved images
to separate the adjacent nuclei into individual compartments (Figure S3.1b). Con-
volving with a Gaussian filter prevented the influence of noise from causing artificial
local maxima. Next, K-means clustering was then applied on the images prior to
convolving to refine the region of the nucleus in each compartment (Figure S3.1c).

Before segmentation on the rhodamine stained F-actin channel, median filter (ker-
nel size 3× 3 pixels) and rolling ball (radius = 30 pixels) were applied to remove the
background and reduce the noise level (Figure S3.1e). The radius of rolling ball was
chosen to be slightly bigger than the biggest cell cluster. Next, the Local Niblack
algorithm [14] was used to define regions of cell clusters (Figure S3.1f). This algo-
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rithm calculates a threshold T for each pixel (x, y) according to the intensity mean
mean(x, y) and standard deviation σ(x,y) within a specified kernel size (we defined
this size as 30×30 pixels which is slightly bigger than the biggest cell cluster) centered
at pixel (x, y):

T (x, y) = mean(x, y) + k ∗ σ(x, y) (3.4)

where k indicates how much the standard deviation influences the threshold and its
value was determined empirically.

d. Subpopulation classification

To automatically identify the spherical cell clusters and branched networks in the
3D micro-tissues, a classifier was trained. Five test image stacks were randomly
selected from DMSO controls which contain both spherical structures and tubular
structures. 2D projection and segmentation were applied for the rhodamine stained
F-actin channel to define the binary masks of multi-cellular regions (Figure S3.2a).
We defined each connected binary region (in 8-connectivity) as a multi-cellular object
and in total 1318 binary multi-cellular objects were obtained. Next, we manually
identified spherical objects (Figure S3.2b) and branched objects (Figure S3.2c). For
each of binary multi-cellular masks, a skeleton (Figure S3.2d) was retrieved using
a “Skeletonize” plugin of ImageJ, which iteratively removes pixels from the edge of
object in the binary image, reducing them to the single pixel wide skeleton. We
labeled each pixel of the skeleton with one of the following categories depending on
their neighbors in 8-connectivity:

- End point: the pixel with only 1 skeleton pixel in neighbor.
- Junction point: the pixel with more than 2 skeleton pixels in

neighbor.
- Single junction point: the connected junction points in 8-connectivity.
- Slab point: the pixel with 2 skeleton pixels in neighbor
- Triple point: the pixel with 3 skeleton pixels in neighbor.
- Quadruple point: the pixel with 4 skeleton pixels in neighbor.

19 parameters (Figure S3.2e) were finally calculated from each cellular cluster,
including basic morphological parameters and topological parameters from the skele-
tons. The topological parameters were calculated based on the category of each
skeleton pixel defined above. Single branch is defined as the part of skeleton between
single junction points, end points, or single junction point and end point. Branch
length of a single branch is defined as the sum of Euclidian distance between two ad-
jacent skeleton pixels over all pixels on the single branch. The definition and equation
of the 11 morphological parameters are defined as follows:
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M1 Area: the number of pixels in the binary object.
M2 Solidity: Area

Area of convex hull
M3 Major axis [33]: the primary axis of the best fitting ellipse derived from

2nd order moment η
M4 Minor axis [33]: the secondary axis of the best fitting ellipse derived

from 2nd order moment η
M5 Axis ratio: Major axis

Minor axis
M6 Perimeter: the length of the contour of the binary object.
M7 Roundness: 4× [Area]

π×[Major Axis]2

M8 Equivdiameter: the length of the diameter of the perfect circle that had
the same area as the binary object.

M9 Elongation [33]: measures how much the shape must be compressed
along its major axis in order to minimize the extension.

M10 Extension [33]: measures how much the shape differs from the circle.
M11 Dispersion [33]: the minimum extension that can be attained by uniform

compression of the shape
where η =

µpq
µγpq

, γ = p+q
2 +1, µpq =

∑width−1
0

∑height−1
0 (x− x̄)p(y− ȳ)qB(x, y). width

and height indicate the width and height of the object in pixels. (x, y) is the center
coordinate of the binary object B(x, y).

For classification, we used a Matlab toolbox, PRTools. Firstly, feature selection
was performed to avoid the curse of dimensionality, using search algorithm ’forward’
with criterion “Mahalanobis distance” [34]. For this two subpopulations situation,
Mahalanobis distance criterion optimizes:

Jmaha = (µ2 − µ1)T
(

Σ1 + Σ2

2

)−1
(µ2 − µ1) (3.5)

where µ1, µ2, Σ1, Σ2 indicate the mean vector of subpopulation 1 data, mean vector
of subpopulation 2 data, the covariance matrices of subpopulation 1 and 2. To define
the optimal number of features, multiple classification methods were applied and the
10-fold cross-validation was applied to evaluate the number of features, as well as
the accuracy of each classification method. The classification methods tested were
k-nearest neighbor classification (k=1), linear Bayes normal classification [19–21],
quadratic Bayes normal classification [19, 21], nearest mean classification and Fisher
linear classification [19, 21, 24]. Figure S3.2f showed the average error rate obtained
from 10-fold cross-validation for each classification method with a certain number
of features. The classification error rate was calculated according to Equation 3.3.
In this study, prior probability was defined equally for each of two subpopulation
classes. The result revealed that when two features were selected, linear Bayes normal
classification gave the least average error rate of 1.67%. The two features which were
selected most often are perimeter and major axis. Finally, a linear Bayes normal
classifier based on these two parameters was trained and embedded in the platform to
automatically classify all cellular binary masks of the whole experiment. To increase
the robustness of this platform, the user can also define the classification method and
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features for classification empirically.

e. Quantification

Quantification algorithms were assembled from the literature [15, 16] and incorpo-
rated into an ImageJ plugin to extract different phenotypic parameters from the
segmentation results or projected images. According to the function, parameters can
be categorized into three groups: 1) classic morphological parameters (M ), 2) mo-
ment parameters of the binary objects as shape descriptor (S) and 3) intensity-based
parameters (I ).

1. (M1-M29)Classic morphological parameters include a series of shape
properties that were calculated for each binary object. A binary object was
defined as a connected binary region (8-connectivity) on the binary image.

• Basic morphological parameters measured for each binary multi-cellular
object: These parameters describe the basic dimensional and geometry in-
formation of the cell clusters. As noted in session d above, we already ex-
plained the Area, Solidity, Major axis, Minor axis, Axis Ratio, Perimeter,
Roundness, Equivdiameter, Elongation, Extension and Dispersion. The
remaining parameters were defined as following:
- M12 Feret’s Diameter: the longest distance between any two points
along the selection boundary.
- M13 MinFeret: the minimum distance between any two points along
the selection boundary.

• Skeleton parameters measured for each binary multi-cellular object: These
parameters measure the properties of skeletons obtained after skeletoniza-
tion of binary objects (Figure S3.2d). As noted in session d above, we
already explained the basic properties: end point, junction point, single
junction point, slab point, triple point, quadruple point, single branch and
branch length. Parameters shown as following were measured based on
those properties:
– Number of end point (M14 ), number of junction point (M15 ), num-

ber of single junction point (M16 ), number of single branch (M17 ),
number of triple point (M18 ) and number of quadruple point (M19 ).

– Branch length parameters: maximum single branch length (M20 ),
average branch length (M21 ), average length of the single branch
between two single junction points (M22 ), accumulated branch length
(M23 ).

• The number of nuclei (M24 ) and the number of multi-cellular structures
(M25 ).

• Total area of nuclei (M26 ) and total area of cells (M27 ): This is defined
as the sum of all binary objects’ area in the Hoechst stained nuclei channel
and the rhodamine stained F-actin channel, respectively.
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• Density of nuclei (M28 ) and density of cell clusters (M29 ): For each
binary object, we defined its local density as the mean of its peer-to-peer
distance to the other binary objects. The distance was calculated between
the gravity center coordinate of two objects. The density for whole image
was defined as the average of all the objects’ local density.

2. (S1-S49)Moment parameters measured for each binary multi-cellular ob-
ject: All parameters in this list were calculated on the binary masks as shape
descriptors. We only considered the moments which are invariant under trans-
lation and rotation.

• Zernike moment parameters (S1 -S49 ) [16, 35]: Calculating the Zernike
moments was composed of three stages. In the first stage, the center
coordinate was calculated for each binary object. Next, we calculated the
corresponding radius and mapped the pixel (x, y) of the object to a unit
circle. Finally, Zernike moments up to degree 12 were calculated (n ≤ 12),
providing 49 numbers for describing each binary object.

3. (I1-I140)Intensity-based parameters: In this list, all parameters were cal-
culated on the projected grey value images.

• Total intensity of the projected images for the Hoechst stained nuclei chan-
nel (I1 ) and rhodamine stained F-actin channel (I2 ).

• The average intensity calculated on the projected images of the Hoechst
stained nuclei channel (I3 ) and rhodamine stained F-actin channel (I4 ).

• The standard deviation of the intensity calculated on the projected images
of the Hoechst stained nuclei channel (I5 ) and rhodamine stained F-actin
channel (I6 ).

• The maximum intensity value calculated on the projected images of the
Hoechst stained nuclei channel (I7 ) and rhodamine stained F-actin chan-
nel (I8 ).

• The minimum intensity value calculated on the projected images for the
Hoechst stained nuclei channel (I9 ) and rhodamine stained F-actin chan-
nel (I10 ).

• Zernike moment parameters of the projected images for the rhodamine
stained F-actin channel (I11-I59 ). Different from the Zernike moments
calculated on binary objects, the intensity value was also taken into ac-
count. We firstly normalized the projected images to a unit circle with
radius of 1. Next, the Zernike moments polynomials up to degree 12 were
calculated.

• Hu moment [36] calculated on the projected images for the rhodamine
stained F-actin channel (I60-I66 ): 7 Hu moments were calculated.
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• The Gabor wavelet parameters [35, 37] calculated on the projected im-
ages for the rhodamine stained F-actin channel (I67-I136 ): The Gabor
wavelet parameters are formed by a set of multi-scale and multi-orientation
coefficients to describe texture variations in an image. The method to
calculate 70 numbers (the mean µ and the standard deviation σ of the
magnitude of coefficients from the Gabor wavelet transformation when
we used four scale S = 4, and six orientationK = 6) is describe in the
literature [35].

• Intensity-based parameter measured for each multi-cellular structure: We
calculated the average intensity (I137 ), standard deviation of the intensity
(I138 ), maximum intensity (I139 ) and minimum intensity (I140 ) for
each binary object masked region on the projected grey value image.

f. Phenotypic profiling

For each of the classic morphological parameters and moment parameters which were
measured on the binary objects, the mean and standard deviation were calculated
over the whole population, as well as the subpopulations (Table S3.2-S3.5), providing
598 parameters to profile phenotype of each well.

3.4.3 Identification of the biologically active compounds

a. Overview

After quantification, a workflow of multi-parametric analysis to identify the biologi-
cally active compounds was set up in KNIME. It is composed of three stages. Firstly,
normalization was performed to remove artifact errors from the data and to allow
comparison and combination of data from different plates in the screen. Next, we
performed a PCA to extract the dimensions which contained most of the data vari-
ation. Then we compared different multivariate statistics to identify the biologically
active compounds and their active concentrations (hit identification).

b. Normalization

A simple statistics robust z − score [17] was calculated for each of 598 parameters
and used for plate normalization and further data analysis:

robust z − score for each parameter =
xi −mediannegative

MADnegative
(3.6)

where xi is the original measurement on the ith well, mediannegative andMADnegative

are the median and median absolute deviation of this parameter calculated for the
negative control. Compared with z − score, robust z − score is less sensitive to
outliers.
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c. Principle component analysis

PCA was performed to project the normalized 598 z−scores to independent principle
component space. We obtained 9 principle components which retained 90% of data
variation. We plotted the data points (all compounds with different concentrations)
on the first three dimensional PC space and 6 outliers were observed. These outliers
were confirmed by visual inspection of the original image stacks and were due to
errors occurring at the image acquisition stage. Since the outliers would result in
bias in the PCA, they were removed and PCA was performed again on the outlier
removed dataset. As the result, another 9 principle components were obtained which
maintained 90% of dataset variation. The top 5 parameters which have the highest
coefficient representing the influence of the respective input dimension to the first 3
principal components are shown in Table S3.6.

d. Multi-parametric test

For hits identification, we compared three commonly used multivariate tests: Ma-
halanobis distance [34, 38], Chi-square test [39] and Wilks’ lambda [40]. They were
performed on the 9 principle components obtained from the PCA. The Mahalanobis
distance D calculates the similarity of a data vector to the negative control based on
the correlation between variables:

D2
i = (xi − µnegative)TΣ−1negative(xi − µnegative) (3.7)

where xi is a 9 principle components vector of the ith well and µnegative indicates
mean vector of the negative control. Σnegative indicates the covariance matrix of the
negative control. Chi-square calculates

χ2 = (xi − µnegative)2 (3.8)

When the variables are multivariate normal distributed, the squared Mahalanobis
distance D2 and χ2 follow a Chi-square distribution with n degrees of freedom (n is
number of variables). Wilks’ lambda is a statistics used as a measure of the class
center separation when classes are multinomial with identical covariance matrix:

Λ =
det(Swg)

det(Swg + Sbg)
(3.9)

where det indicates determinant of a matrix, Swg and Sbg represent within-group
and between-group sum-of-square and cross-products matrix (SSCP) correspondingly,
when two groups in comparison are defined as negative control and tested compound
with certain concentration. For all three methods, a p−value was calculated for each
compound and each concentration and appropriate threshold of significance level α
was calibrated by manually checking a selection of control and compound-treated
images.
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3.4.4 Software

For image analysis, ImageJ plugins were developed in-house, and written in Java. KN-
IME was used to develop the hits identification pipeline including robust z − score
normalization, PCA and multivariate tests. Mahalanobis distance, Chi-square and
Wilks’ lambda test were coded in R snippets and integrated in KNIME. For pheno-
typic pattern recognition including clustering, classification and feature selection, we
used the Matlab toolbox, PRTool.
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Supplementary note

Phenotypic trajectory modeling using 2nd order polynomial regres-
sion model

To further characterize different phenotypes induced by the biologically active com-
pounds, we used a 2nd order polynomial regression model to build the concentration
dependent phenotypic trajectory for each identified active compound. We firstly cal-
culated the data variation for each of the 9 principle components. The mean and
standard deviation were calculated for pool of all identified active compounds and
control, respectively. Two sample Kolmogorov-Smirnov test was used to compare con-
trol data and active compounds data. The principle components with no significant
difference between control and compounds, equal data variation, or bigger variation
in negative controls were excluded to avoid over training of the regression model. As
the result, the first 2 components were retained.

For each compound we used all concentrations including inactive concentrations,
active concentrations and the average of DMSO controls for the regression model.
To quantify the distance between two trajectories, for example the trajectories of
compound i and compound j, we firstly calculated the R2

(i,j) using the trajectory
model built for compound i to fit the data points of compound j , and also for the
other way around R2

(j.i).

R2
(i,j) = 1−

SSerr(i,j)

SS(i,j)

SSerr(i,j) =
∑
nj

(x2 − x′2)2

SStot(i,j) =
∑
nj

(x2 − x2)2

where x2 is the observed value of a data point of compound j on the PC2. x′2 is the
predicted value of the same data point of compound j on the PC2 using the trajectory
model of compound i. x2 is the mean of x2 over all data points of compound j. nj
represents number of data points for compound j. Finally the distance between two
trajectories was calculated according to the Equation 3.1 and Equation 3.2 in the
Results section.

This modeling method can be easily extended to more dimensions. For example,
to model a 3D trajectory, our task becomes to fit a model

x′2 = βax
2
1 + βbx1 + ε1

x′3 = βcx
2
1 + βdx1x

′
2 + βex1 + βfx

′
2x
′
2 + βgx

′
2 + ε2

for each compound, where β represents regression coefficient and ε is an error term.
x3 and x′3 is the observed value and predicted value of a data point of compound j on
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the 3rd dimensional principle component, respectively. Then SSerr(i,j) and SStot(i,j)
would be defined as

SSerr(i,j) =
∑
nj

(x3 − x′3)2

SStot(i,j) =
∑
nj

(x3 − x3)2

Supplementary figures

Figure S3.1: Segmentation of the projected images from the Hoechst stained nuclei
channel and rhodamine stained F-actin channel. (a-c) An example of the stepwise result of
“Projection-Preprocessing-Segmentation pipeline” of an image from the Hoechst stained nuclei chan-
nel (d-f) Stepwise result of “Projection-Preprocessing-Segmentation” pipeline of the corresponding
image from the rhodamine stained F-actin channel.
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Figure S3.2: Subpopulation classification. (a) Segmentation result of a projected rhodamine
stained F-actin image. (b) Manually selected spherical objects and (c) branched objects. (d) Skele-
ton of each binary object. (e) Features calculated from each binary object for subpopulation clas-
sification. (f) Cross-validation result for comparing different classification methods and identifying
optimal number of features for classification. Average error rate of a 10-fold cross-validation is shown
in the chart with standard deviation as error bar.

Figure S3.3: Selection of principle components for phenotypic trajectory modeling.
Comparison of data variation of active compounds and negative control for each one of the 9 principle
components. In the chart the mean and standard deviation are shown for all active compounds and
control. Two sample Kolmogorov-Smirnov test was used to compare the data variation between
active compounds and negative control. *: p−value < 0.05, **: p−value < 0.005, ***: p−value <
0.0005.

73



Chapter 3

Figure S3.4: Clustering and classification of 4T1 compounds screen when subpopulation
or intensity parameters are not used. (a) Hierarchical clustering with complete linkage was
applied on the distance matrix defined according to Equation 3.1. All the subpopulation parameters
were not taken into account when we computed the PCA. The scale of the dendrogram is the natural
logarithm of

√
(1−R2

mean). (b) Classification result using multiple classification methods when the
subpopulation parameters were not taken into account. (c) Classification result when all the wavelet,
moments and intensity parameters were not taken into account. For (b) and (c), the classes were
defined according to the Figure 3.5b. Feature selection with search algorithm “forward” and criterion
“Mahalanobis distance” was applied to detect the optimal number of features. For each classification
method and each number of selected features, 10-fold cross-validation was applied, resulting in 10
error rates. The average error rates are shown in the chart with standard deviation as error bar. *
SVC stands for support vector machine classification.
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Figure S3.5: Comparison to PhenoRipper. (a) A two dimensional MDS plot after using Phe-
noRipper for analysis of the 4T1 compounds screen. The block size used was 50 pixels. Compounds
are identified by different color. The highlighted orange point corresponds to a well treated with
Arq 197 at the concentration of 3.16µM, and the highlighted purple point corresponds to a control
well. (b-c) Phenotype images corresponding to the highlighted points in (a).
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Figure S3.6: Comparison to CellProfiler. (a) A 2D PCA plot of phenotype profiles for negative
control (DMSO) and 12 active compounds at different concentrations using CellProfiler to profile
compounds in the 4T1 screen (not all compounds are shown). Percentages of data variation preserved
in each principle component are shown with each axis. Compounds are marked with different shapes
and colors. Compounds with the same biological target are colored identically. Red: BCR-ABL
target inhibitor; Yellow: VEFGR inhibitor; Green: EGFR inhibitor; Purple: HDAC inhibitor; Blue:
c-MET inhibitor. Concentration is represented by the size of data points. The trend lines were
added for each effective compound using 2nd order polynomial regression model. (b) Hierarchical
clustering result for all active compounds using a distance matrix defined based on Equation 3.1.
The scale of dendrogram is the natural logarithm of

√
(1−R2

mean).
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Figure S3.7: Reproducibility of our methodology. (a) A two dimensional PCA plot of pheno-
type profiles for negative control (DMSO) and 11 active compounds from a repeated experiment (not
all compounds are shown). Percentages of data variation preserved in each principle component are
shown with each axis. Compounds are marked with different shapes and colors. Compounds with
the same biological target are colored identically. Red: BCR-ABL target inhibitor; Yellow: VEFGR
inhibitor; Green: EGFR inhibitor; Purple: HDAC inhibitor; Blue: c-MET inhibitor. Concentration
is represented by the size of data points. The trend lines were added for each effective compound
using 2nd order polynomial regression model. (b) Classification result using multiple classification
methods. Feature selection and classification algorithms are the same as in the first experiment.
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Supplementary tables

Compound Name Biological activity Active in
screen

DMSO Negative control no
AG 538 tyrosine kinase inhibitor (EGFR) no
Arq 197 tyrosine kinase inhibitor (c-MET), Positive control yes
AZD 0530 tyrosine kinase inhibitor (SRC family, BCR-ABL ) yes
bisindolylmaleimide IX serine/threonine kinase inhibitor (PKC, GSK3) yes
bortezomib proteasome inhibitor yes
cisplatin genotoxic, DNA-crosslinker yes
dasatinib tyrosine kinase inhibitor (Src family, BCR-ABL ) yes
entinostat HDAC inhibitor yes
erlotinib HCl tyrosine kinase inhibitor (EGFR) yes
everolimus threonine kinase inhibitor (mTORC1), immunosuppressant yes
gefitinib tyrosine kinase inhibitor (EGFR) yes

genistein
tyrosine kinase inhibitor (EGFR), Caspase, PPAR gamma
and Topoisomerase II inhibitor, Estrogenic activity yes

GSK3 inhibitor IX (BIO) serine/threonine kinase inhibitor (GSK3) yes
imatinib mesylate tyrosine kinase inhibitor (PDGFR, KIT, BCR-ABL) yes
lapatinib dihydrate tyrosine kinase inhibitor (EGFR, HER2) no

LY364947
serine/threonine kinase inhibitor (TGF-β RI, TGF-β RII,
p38 MAPK, MLK-7) no

MeBIO negative control for BIO, AhR-ligand yes

nilotinib
tyrosine kinase inhibitor (BCR-ABL, KIT, LCK, EPHA3,
EPHA8, DDR1, DDR2, PDGFR, MAPK11 and ZAK) yes

olaparib PARP inhibitor no
PF562271 tyrosine kinase inhibitor (FAK, PTK2B) yes
SB203580 serine/threonine kinase inhibitor (p38MAPK, PKB) yes
sorafenib tosylate tyrosine kinase inhibitor (VEGFR, PDGFR, Raf kinases) yes

SP600125
serine/threonine kinase inhibitor (JNK1, JNK2, JNK3,
Aurora A, Flt3, TRKA) no

stf-62247 autophagy inducer yes
SU6668 tyrosine kinase inhibitor ( PDGFR,FGFR1, Flk-1/KDR) no
sunitinib maleate tyrosine kinase inhibitor (VEGFR, EGFR, RET, KIT) yes
vandetanib tyrosine kinase inhibitor (VEGFR, EGFR, RET, KIT) yes
wortmannin phosphoinositide (PI) 3-kinase inhibitor no
Y27632 serine/threonine kinase inhibitor (ROCK) no

Table S3.1: List of compounds used in the 4T1 cell screen.
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Parameter
index

Description

From 1-23 The mean of M1-M23 of all cell clusters in one image
From 24-46 The standard deviation of M1-M23 of all cell clusters in one image
47 The number of nuclei in one image (M24)
48 The number of cell clusters in one image (M25)
49 The total area of nuclei in one image (M26)
50 The total area of cell clusters in one image (M27)
51 The mean density of nuclei in one image (M28)
52 The mean density of cell clusters in one image (M29)
53 The maximum branch length of all cell clusters in one image
54 The accumulated branch length of all cell clusters in one image

Table S3.2: List of classic morphological parameters calculated for the whole object
population. The definition of parameters M1-M29 is in the Methods section.

Parameter index Description
From 1-49 The mean of S1-S49 of all cell clusters in one image
From 50-98 The standard deviation of S1-S49 of all cell clusters in one image

Table S3.3: List of moment parameters calculated for the whole object population. The
definition of parameters S1-S49 is in the Methods section.

Parameter index Description
From 1-136 The parameters I1-I136 measured on the projected images of the Hoechst

stained nuclei channel and the rhodamine stained F-actin channel

Table S3.4: List of intensity parameters calculated for the raw intensity projected
images. The definition of parameters I1-I136 is in the Methods section.

Parameter index Description
1 The number of cell clusters which are classified as spherical object
2 The number of cell clusters which are classified as branched object
3 The accumulated area of cell clusters which are classified as spherical object
4 The accumulated area of cell clusters which are classified as branched object
5 The accumulated branch length of cell clusters which are classified as spherical

object
6 The accumulated branch length of cell clusters which are classified as branched

object
From 7-29 The mean of M1-M23 of the cell clusters which are classified as spherical object
From 30-52 The standard deviation of M1-M23 of the cell clusters which are classified as

spherical object
From 53-56 The mean of I137-I140 of cell clusters which are classified as spherical object
From 57-60 The standard deviation of I137-I140 of cell clusters which are classified as

spherical object
From 61-83 The mean of M1-M23 of the cell clusters which are classified as branched object
From 84-106 The standard deviation of M1-M23 of the cell clusters which are classified as

branched object
From 107-110 The mean of I137-I140 of cell clusters which are classified as branched object
From 111-114 The standard deviation of I137-I140 of cell clusters which are classified as

branched object
From 115-212 The mean and the standard deviation of S1-S49 of cell clusters which are

classified as spherical object
From 213-310 The mean and standard deviation of S1-S49 of cell clusters which are classified

as branched object

Table S3.5: List of parameters calculated for the subpopulations. The definition of pa-
rameters M1-M23 , I137-I140 , S1-S49 is in the Methods section.
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Principle component 1
(62.45%)

Principle component 2
(9.81%)

Principle component 3
(4.69%)

The average dispersion of cell
clusters which are classified as
branched object

The average solidity of cell
clusters which are classified as
branched object

The average solidity of cell
clusters which are classified as
branched object

The average extension of cell
clusters which are classified as
branched object

The mean intensity of cell
clusters which are classified as
branched object

The average extension of cell
clusters which are classified as
branched object

The average solidity of cell
clusters which are classified as
branched object

The mean(minimum intensity of
each cell cluster which is
classified as branched object)

The average elongation of cell
clusters which are classified as
branched object

The average Feret’s diameter of
cell clusters

The mean(maximum intensity
of each cell cluster which is
classified as branched object)

The average Zernike moments
(order 4) measured on the binary
mask of the cellular clusters

The standard deviation of
cellular solidity

The intensity standard
deviation of rhodamine channel

The average Zernike moments
(order 14) measured on the
binary mask of cellular clusters
which are classified as branched
object

Table S3.6: Top 5 parameters which contribute most to each of the 3 first principle
components in the 4T1 cell screen. * The percentage (%) after each principle component
indicates what percentage of data variance it accounts for.

Active compounds Active concentrations
Arq 197 10 µM 3.16 µM 1 µM 0.316 µM
AZD 0530 10 µM 3.16 µM 1 µM
bisindolylmaleimide IX 10 µM 3.16 µM
bortezomib 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM 0.03 µM
cisplatin 1 µM
dasatinib 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM 0.03 µM
entinostat 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM
erlotinib HCl 3.16 µM 1 µM
everolimus 1 µM 0.1 µM
gefitinib 0.316 µM 0.03 µM
genistein 10 µM
GSK3 inhibitor IX 3.16 µM
imatinib mesylate 10 µM 3.16 µM 1 µM
MeBIO 10 µM
nilotinib 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM 0.03 µM
PF 10 µM 3.16 µM
SB203580 10 µM
sorafenib tosylate 10 µM 3.16 µM 1 µM 0.316 µM
stf-62247 10 µM 3.16 µM 1 µM
sunitinib maleate 10 µM 3.16 µM 1 µM
vandetanib 10 µM 3.16 µM

Table S3.7: Biologically active compounds and corresponding active concentration iden-
tified using Mahalanobis distance (α=0.05).
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Active compounds Active concentrations
Arq 197 10 µM 3.16 µM 1 µM 0.316 µM
AZD 0530 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM
dasatinib 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM 0.03 µM
entinostat 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM
erlotinib HCl 10 µM 3.16 µM 1 µM
genistein 10 µM 3.16 µM
imatinib mesylate 10 µM 3.16 µM 1 µM
nilotinib 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM 0.03 µM
sorafenib tosylate 10 µM 3.16 µM 1 µM 0.316 µM 0.1 µM 0.03 µM
stf-62247 10 µM 3.16 µM 1 µM
sunitinib maleate 10 µM 3.16 µM 1 µM
vandetanib 10 µM 3.16 µM 1 µM

Table S3.8: Compounds tested in the repeated 4T1 cell screen and corresponding active
concentration identified using Mahalanobis distance (α=0.05). Concentrations which were
detected as active in this screen but not active in the first screen are highlighted in bold.
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Cell line index Cell line Categories Replicates
1 BT20 basal-A 6
2 BT474 ERBB2+ 3
3 BT483 luminal 3
4 BT549 basal-B 6
5 CAMA-1 luminal 6
6 EVSA-T ERBB2+ 6
7 HCC1143 basal-A 6
8 HCC1395 basal-B 6
9 HCC1569 basal-A 3
10 HCC1806 basal-A 3
11 HCC1937 basal-A 3
12 HCC1954 basal-A 3
13 HCC202 ERBB2+ 3
14 HCC70 basal-A 6
15 Hs578T basal-B 6
16 MCF7 luminal 6
17 MDA-MB-134VI luminal 3
18 MDA-MB-175VII luminal 3
19 MDA-MB-231 basal-B 6
20 MDA-MB-361 ERBB2+ 3
21 MDA-MB-415 luminal 3
22 MDA-MB-435s basal-B 6
23 MDA-MB-436 basal-B 6
24 MDA-MB-453 ERBB2+ 6
25 MDA-MB-468 basal-A 6
26 MPE600 luminal 3
27 OCUB-F ERBB2+ 6
28 OCUB-M ERBB2+ 6
29 SK-BR-3 ERBB2+ 6
30 SK-BR-7 basal-B 6
31 SUM102PT basal-B 6
32 SUM1315MO2 basal-B 6
33 SUM149PT basal-A 6
34 SUM159PT basal-B 6
35 SUM185PE luminal 6
36 SUM190PT ERBB2+ 3
37 SUM225CWN ERBB2+ 3
38 SUM229PE basal-A 6
39 SUM44PE luminal 3
40 SUM52PE luminal 3
41 T47D luminal 3
42 UACC812 ERBB2+ 3
43 UACC893 ERBB2+ 3
44 ZR-75-1 luminal 3

Table S3.9: Breast cancer cell lines (basal-A, basal-B, luminal or ERBB2+) used for
classification.
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Abstract

3D cell cultures have been widely applied for high-content screening to investigate
cellular phenotypic responses to different genetic or chemical perturbations. In or-
der to study complex micro-tissue architectures that cells develop in 3D cultures,
confocal laser scanning microscopy is often used to visualize specimens by shifting
a focal plane through their entire form. In this manner high-resolution images are
generated using point-by-point laser excitation and application of a filtering pinhole
to eliminate out-of-focus information from adjacent focal planes. However, the slow
scanning process is a major drawback so that image acquisition takes a large amount
of time, which limits its application for high-throughput screening. To overcome this,
we developed a high-content analysis pipeline that is able to perform phenotypic pro-
filing of 3D cultured micro-tissues based on automated wide-field microscopy. Image
stacks of two fluorescent channels were acquired for each well of a standard multi-well
micro plate by shifting a focal plane in z-direction. We first applied a deconvolu-
tion method to restore the image signals, which were degraded by light scattering.
Next, two novel segmentation methods were developed to define single nucleus and
multi-cellular regions, respectively. For each nuclear structure, we calibrate its di-
mension in z-direction using images of fluorescent beads with a known size. After
surface reconstruction, 3D morphological, topological features, moments and local-
ization properties were measured from the reconstructed structures. To validate our
method, we generated multiple image stacks using a confocal laser scanning micro-
scope with a high resolution objective lens. The quantification results from the two
imaging techniques were compared statistically and no significant differences were ob-
tained. Therefore, we conclude that our analysis pipeline can retrieve 3D properties
of micro-tissue structures from wide-field microscope images that are comparable to
the information extracted from confocal microscope images, but at much less cost of
imaging and computational time allowing higher throughput.
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4.1 Introduction

Recent advances in 3D cell cultures have provided novel insights into various aspects
of cell behavior. 3D cultures mimic spatial organization of real tissues by using
extracellular matrix (ECM) gel to re-establish physiological cell-cell and cell-ECM
interactions, and therefore enable cells to develop more in vivo like tissue architectures
[1, 2]. To investigate those complex micro-tissue structures, molecular components
of the cells are labeled with fluorescent dyes and 3D fluorescence microscopes are
used to scan specimens over their entire depth range by shifting a focal plane in z-
direction [3, 4], yielding stacks of sequential image slices and each of them contains
information of the focal plane. One of the most common 3D fluorescence microscopy is
confocal laser scanning microscopy. Although the generated images have much higher
resolution compared to conventional fluorescence microscopy, a major drawback is
that it needs to scan whole specimen point-by-point. Especially when the specimen is
thick or at micro-tissue scale, this slow scanning process not only limits the application
of confocal microscopy for high throughput experiments, but also causes a severe
bleaching problem when the screening time becomes too long. Therefore, conventional
wide-field microscopy needs to be considered as an alternative solution for high-
throughput screening of 3D cultured micro-tissues. Wide-field microscopes use an
excitation light-source to illuminate entire specimen so that the imaging speed is
dramatically increased. However, each image slice is degraded by out-of-focus signals
because the emission light that composes the image comes from the focal plane as
well as the planes above and below the focal plane. A major challenge is to recover
3D structures correctly from those low resolution images. This requires an advanced,
accurate and efficient image analysis method.

Another challenge is the phenotypic profiling of 3D cultured micro-tissues. Al-
though increased popularity of high-content screening has fueled the development of
image analysis techniques, until recently, quantification of cellular phenotypic fea-
tures is still limited to single or multiple 2D parameters [5]. Since cells are not flat
and together develop much higher levels of tissue architecture in 3D cell cultures,
it is necessary to develop an image analysis method to measure more relevant and
sophisticated 3D parameters.

Here we aimed to establish a wide-field microscopy-based high-content analysis
pipeline for the high-throughput screening of 3D cultured micro-tissues that involves
the challenges mentioned above (Figure 4.1). After fluorescent staining, images stacks
of two channels (for nucleus and microfilament signal) were collected from an auto-
mated wide-field microscope system. We first used a deconvolution technique to
enhance the quality of the image stacks by removing the out-of-focus signal. Next,
we developed two segmentation methods to define single nucleus and multi-cellular
micro-tissue regions, respectively. As defined objects appeared to be much elongated
in the vertical direction, we introduced a simple calibration method to normalize the
dimension of each individual nucleus in z-direction, using images of fluorescent beads
with known size. After 3D surface reconstructions, three categories of 3D parameters
were measured on the reconstructed nucleus and micro-tissue structures, respectively.
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Figure 4.1: Overview of the proposed image analysis pipeline for high-content screening
of 3D cultured micro-tissues based on wide-field florescence microscopy.

To validate our method, we investigated human prostate cancer cells (PC3) in
a 384-well plate format after they were exposed to hepatocyte growth factor and
formed invasive micro-tissue structures in the 3D cell culture. The micro-tissues
were fixed and stained with Hoechst 33258 to visualize nuclei and with rhodamine-
phalloidin to visualize F-actin. We used a wide-field microscope system as well as
a confocal laser scanning microscope to collect image stacks from the same wells.
Subsequently, our analysis pipeline described above was applied to extract phenotypic
parameters from the image stacks acquired from the wide-field microscope. For the
image stacks that were collected by the confocal microscope, we applied automated
segmentation and the results were validated by human evaluation. Based on the
segmentation results, 3D surface reconstruction was performed with a normalization
of the nuclei in z-direction similar to the normalization of the nuclei performed for the
wide-field microscope. Next, the same phenotypic parameters were measured from the
reconstructed nuclei and micro-tissue structures, respectively. Finally, we statistically
compared the quantification results extracted by the two different microscopes. A
substantial gain in time efficiency was shown when we used our analysis pipeline
in combination with the wide-field microscope and the quantification results were
comparable to the results from the confocal microscope.

4.2 Results

4.2.1 Method development for 3D surface reconstruction

4.2.1.1 Deconvolution

A major disadvantage of wide-field microscopy is that each generated image slice
contains out-of-focus signals. According to the optical principles, this blurring effect
is mainly caused by light scattering and can be formulated by a point spread func-
tion (PSF). One way to eliminate this blurring effect is deconvolution. It computes
the PSF based on the optical principles and then deconvolves microscope images
with that PSF so that the process of image degradation is inversed and the image
quality is improved. There are many methods available for calculating the PSF.
In this project, we used Huygens Software (http://www.svi.nl/HuygensProducts) to
compute a theoretical PSF that is based on the microscope model and microscope
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parameters (Table S4.1). First, the signal-to-noise ratio was estimated on randomly
selected sample images. This ratio was relatively high (> 80), and considering the
time efficiency we used a fast maximum likelihood estimation algorithm [6] for the
image restoration (see examples before and after deconvolution in Figure 4.2a-4.2h).
A large extent of out-of-focus signals was removed and the the signal-to-noise ratio
was enhanced for both Hoechst stained nuclei channel and rhodamine stained F-actin
channel.

Figure 4.2: An example of deconvolution results for both Hoechst stained nuclei channel
and rhodamine stained F-actin channel. For the Hoechst stained nuclei channel, we cropped
a part of an original image stack and showed its maximum intensity projection (MIP) on (a) xy-
plane and on (b) yz-plane. After deconvolution of this image stack, we showed the MIP of the
same part of image stack on (c) xy-plane and on (d) yz-plane. For the rhodamine stained F-actin
channel, we showed the MIP of corresponding part of image stack before deconvolution (e-f) and
after deconvolution (g-h). The scale bar represents 50µm.
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4.2.1.2 Segmentation for each individual nucleus

Before segmentation, a 2D median filter with kernel size 3 × 3 pixels was applied
on each slice to reduce systemic noise. Next, a Rolling Ball algorithm [7] was ap-
plied to correct for uneven illumination in the background. As a rule of thumb, the
rolling ball radius should be at least as large as the radius of the largest object in
the image. Here, the average nuclear radius equals about 8 pixels, thus the radius of
the rolling ball was defined at 15 pixels. To segment individual nuclei, a 2D water-
shed masked segmentation method [8, 9] was extended to its equivalent 3D version.
First, a 3D watershed algorithm [10, 11] was applied to divide image stacks into 3D
compartments each of which contains one nucleus. Subsequently, K-means cluster-
ing [12, 13] was applied within each compartment to refine nuclear regions (Figure
4.3a). As the watershed segmentation is sensitive to signals of discrete intensity that
may cause artificial local maximum and an over-segmentation problem, images were
first convolved with a Gaussian filter (kernel size 3×3 pixels) to remove noises before
using watershed segmentation. Once 3D watersheds were obtained, the preprocessed
images prior to Gaussian convolution were used to apply K-means clustering [8, 9].

4.2.1.3 Segmentation for multi-cellular micro-tissue structures

A novel segmentation method was developed to define multi-cellular structures on the
image stacks with relatively low resolution. Due to the low NA, deconvolution cannot
remove all the out-of-focus signal from each image slice. Moreover, we observed that
the level of sharpness varied over different slices. It is not feasible to calculate a
global threshold for the whole image stack. Instead, a segmentation method which
dynamically calculates a threshold intensity value for each slice according to the
estimation of its sharpness level was developed.

To estimate the sharpness level for each image slice, we firstly calculated the
magnitude of the gradient (GM) for each pixel using a 2D Sobel filter [14]. A sim-
ple sharpness metric SL of a certain slice was then defined as the average gradient
magnitude (Equation 4.1).

SL(s) =

∑
p∈sGMp

ns,GM>0
(4.1)

where s indicates the sth slice of an image stack and p indicates each pixel of slice s.
ns means number of pixels of which GM > 0 in slice s. This is based on the principle
that sharper images should have much more intensity variation, and thus the SL
would be relatively higher. In contrast, blurred images contain more out-of-focus
regions where intensity varies more smoothly which results in an SL that would be
decreased.

In blurred images where there are much more out-of-focus regions than in-focus
regions (though the intensity of our-of-focus regions are still lower than that of in-
focus regions) the conventional K-means clustering cannot work properly as it is based
on the assumption that the intensity variations in the foreground and background are

88



Automated analysis pipeline for 3D surface reconstruction

equal. In order to take into account the difference in variation between foreground
and background, we modified the conventional K-means clustering method [12] to
adjust the threshold for each image slice with the SL. It iteratively updated a new
threshold Ti as:

Ti =
k

SL
×mf (Ti−1) + (1− k

SL
)×mb(Ti−1) (4.2)

where i represents ith iteration. mf (T ), mb(T ), represents the average foreground
intensity and background intensity when the threshold is T . k is a rational number
and can be defined empirically according to the signal-to-noise ratio of image stacks
and is often consistent through the whole screening process. The iterations terminate
when the changes |Ti − Ti−1| become sufficiently small. Actually, we can rewrite
Equation 4.2 to

k

SL
=

Ti −mb(Ti−1)

mf (Ti−1)−mb(Ti−1)
(4.3)

which indicates that k
SL can determine the proportion of background intensity varia-

tion in the total intensity variation of an image slice. For the conventional K-means
clustering method k

SL = 1
2 . After being incorporated with SL , the blurred image

slice with smaller SL would increase the proportion of background intensity variation,
and thus the corresponding threshold value would be higher. Figures 4.3b-4.3d show
segmentation results of two image slices obtained from the same image stack but
with different sharpness levels. Although in Figure 4.3c there are out-of-focus regions
with high intensity value, due to high k

SL , these regions are defined as background,
whereas the in-focus regions with lower intensity in Figure 4.3d are recognized as
foreground.

4.2.1.4 3D surface reconstruction and normalization of nuclei in z-direction

Our 3D surface reconstruction consists of two important steps: 1) 3D labeling which
assigns a label to each foreground pixel so that pixels with the same label define
one single object; 2) 3D reconstruction which generates a geometrical 3D model for
each labeled object. For the Hoechst stained nuclei channel, 3D watershed already
created compartments for each single nucleus. Foreground pixels identified in the
same compartment were assigned with the same object label. For 3D labeling of
the multi-cellular micro-tissue structures, we applied a sequential labeling algorithm
based on 18-connected connectivity as follow: suppose one foreground pixel with coor-
dinates (x, y, z) has already been labeled as l, 18 neighboring pixels with coordinates
(x, y, z±1), (x±1, y, z±1), (x, y±1, z±1), (x±1, y, z), (x, y±1, z), (x±1, y±1, z)
are pushed into a first-in-last-out stack to be assessed later. Every time one pixel is
removed from the beginning of the stack. If this pixel is a foreground pixel, label l is
assigned to the pixel and its 18 neighbors are pushed into the stack. The labeling of
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Figure 4.3: Segmentation results for both Hoechst stained nuclei channel and rho-
damine stained F-actin channel. (a) Segmentation result of one cropped image slice (decon-
volved) for the Hoechst stained nuclei channel. Red marks the contour of the segmentation result.
(b) Segmentation result for the corresponding image (deconvolved) from the rhodamine stained F-
actin channel. (c) A deconvolved image slice with low sharpness level, from the same stack. White
boxes mark the regions which are out-of-focus but with high intensity. Red marks the contour of
the segmentation result. (d) A deconvolved image slice with higher sharpness level than (c). White
box marks the region which is in-focus but has lower intensity than the regions marked in (c). The
segmentation result is shown in (b). The scale bar represents 50µm.

object l is finished when the stack is empty and a new labeling process l + 1 starts
when an unsigned foreground pixel is found.

3D reconstruction is a process of constructing 3D geometrical models by trian-
gularization of 3D surface area and connecting mesh of surface triangles based on
foreground voxels (pixels transform to voxels by calibrating z-sampling size). Here,
we applied the marching cube algorithm [15] for surface reconstruction of both nuclei
and micro-tissue structures. Figure 4.4 shows an example of reconstructed nuclei and
micro-tissue structure. We observed that both nuclei and micro-tissues were elon-
gated in z-direction (Figure 4.4b, 4.4d). This can be caused by two reasons: one is
due to the low NA which significantly degrades the imaging vertical resolution and
the other one is the spherical aberration caused by refractive index mismatch be-
tween the objective immersion medium (Air/1.0) and cell culture medium (Collagen-
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Figure 4.4: 3D reconstruction result for nuclei and multi-cellular micro-tissue struc-
tures. (a-b) 3D reconstructed nuclei in xy- and xz-direction, based on the same image stack as
shown in Figure 4.3. (c-d) 3D reconstructed multi-cellular structures in xy- and xz-direction.

Matrigel/1.36). This elongation artifact was partially corrected by the deconvolution
process; however, it still affects the reconstruction results so that the obtained 3D
geometrical models do not resemble the correct object size in z-direction. To solve
this problem, we developed a normalization method to calibrate the dimension of
nuclei in z-direction according to the images of fluorescent beads with a known size.
Blue fluorescent-labeled microspheres (Molecular Probes) with a 10µm diameter were
used, as this size was close to the diameter of a nucleus. We firstly embedded the
microspheres into the medium which we used to culture the PC3 cells. Subsequently,
images were collected using the same microscope according to the parameters shown
in Table S4.1. After deconvolution, we investigated the intensity profile of the beads
in x-, y-, z-direction. Figures 4.5a and 4.5b show the same image slice through the
middle plane of a bead and Figure 4.5c shows the intensity profile along the lines
indicated in Figure 4.5a and 4.5b. These figures clearly show that in both x- and
y-direction the diameter of the beads is ~ 10µm when we set the intensity thresh-
old as 1.4E + 04 (Figure 4.5c). With the same intensity threshold, the diameter of
the bead in z-direction is 150.17µm (Figure 4.5d, 4.5e). We measured beads located
at different positions in several image stacks and obtained an average diameter of
150µm in z-direction, indicating that the spherical beads appeared to have a diame-
ter in z-direction equal to 15 times their diameter in x-, y-direction. According to this
result, we corrected the elongation effect of a nucleus by normalizing the coordinates
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of nuclear foreground voxels as follows:

Step 1: Calculate the centroid (Cx, Cy, Cz) for each foreground voxel (xp, yp, zp)
with label l:

Cx =

∑
p∈l xp

nl
, Cy =

∑
p∈l yp

nl
, Cz =

∑
p∈l zp

nl
(4.4)

where p indicates a foreground voxel assigned with label l . nl represents number of
voxels assigned to l.

Step 2: Normalize z coordinate for each voxel with a factor of 1
15

zcalibratedp =
zp − Cz

15
+ Cz (4.5)

Figure 4.5f shows the reconstructed nuclei after correction of the elongation ar-
tifact. Compared to Figure 4.4b which was generated from the same part of image
stacks before correction, nuclei appear much more spherical in shape and this is more
consistent with our expectation, while the distance between nuclear centroids is not
affected. However, this normalization method is not suitable for the micro-tissue
structures obtained from the rhodamine stained F-actin images because of their ir-
regular shapes and sizes. We found that beads with different orders of magnitude
(size) were elongated by different factors using the same microscope and medium.
Normalizing all micro-tissue structures according to one factor would cause incorrect
reduction of the elongation effect.

4.2.2 Phenotype measurement

4.2.2.1 Phenotype measurement for individual nuclei

Parameters to profile the phenotype of each individual nucleus can be categorized in
three classes: morphological parameters, localization parameters and image moment
parameters (Table 4.1). Morphological parameters include a series of shape properties
and are measured from the reconstructed 3D geometrical models. In addition to the
basic shape properties such as volume and surface, we computed a convex hull [16]
and the best-fit ellipsoid [17] for each nucleus, and relative geometrical parameters
were measured, for example the volume of the convex hull and semi-axis of the best-fit
ellipsoid. Localization parameters estimate the nuclear density by calculating distance
between pairs of nuclear centroids. Moment parameters include centroid coordinates
and Eigenvalues calculated by Eigen decomposition of the covariance matrix of voxel
coordinates. To calculate Eigen decomposition, all coordinates were normalized by
moving centroid to origin according to Equation 4.6. Furthermore, we measured the

inertia tensor matrix
Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

for each nucleus l [17], according to the parallel

axis theorem (Equation 4.7-4.12) [18] :
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Figure 4.5: Normalization of nuclei in z-direction. (a-b) Image slices through the middle of
one fluorescent bead in x- and y-direction. (c) The intensity profiles along the lines indicated in (a)
and (b). Red dash line represents the intensity profile in x-direction and black solid line represents
the intensity profile in y-direction. (d-e) A xz-plane through the middle of the same bead as in (a)
and (b) and corresponding intensity profile. (f) 3D reconstruction for nuclei in xz-direction after
normalization. The reconstruction result of the same image stacks before normalization is shown in
Figure 4.4b.
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x′p = xp − Cx, y′p = yp − Cy, z′p = zcalibratedp − Cz (4.6)

Ixx =
∑
p∈l

(y′2p + z′2p +
yScale2 + zScale2

12
) (4.7)

Iyy =
∑
p∈l

(x′2p + z′2p +
xScale2 + zScale2

12
) (4.8)

Izz =
∑
p∈l

(x′2p + z′2p +
xScale2 + yScale2

12
) (4.9)

Ixy =
∑
p∈l
− (x′p × y′p) (4.10)

Ixz =
∑
p∈l
− (x′p × z′p) (4.11)

Iyz =
∑
p∈l
− (y′p × z′p) (4.12)

where xScale, yScale and zScale equal the sampling size in x-,y-,z-direction. Sub-
sequently, principle axes I1, I2, I3 were computed by the Eigen decomposition of the
inertia tensor matrix.

4.2.2.2 Phenotype measurement for multi-cellular micro-tissue network

In the 3D cell cultures, the invasive cancer cells spontaneously develop elongated and
branched micro-tissue structures that are interconnected to form a complex network.
To investigate the organization of those networks, we quantified the phenotypic prop-
erties based on whole image stacks. For the morphological profiling, we calculated the
total size, volume and surface (Table 4.2) of all reconstructed multi-cellular structures
found in one image stack (One example of reconstructed multi-cellular structure is
shown in figure 4.6a). In addition, morphological parameters used to describe geo-
metrical properties of whole micro-tissue networks (Table 4.2) were calculated. The
convex hull of a micro-tissue network (Figure 4.6c) was constructed using the Quick-
Hull algorithm after assigning all foreground voxels of the stack with one object label.
For image moment parameters, Eigenvalues and principle axes were calculated based
on the coordinates of all foreground voxels. In addition to morphological parameters
and image moment parameters, we also quantified topological features for each multi-
cellular structure, based on a topological skeleton (Figure 4.6b) computed by a 3-D
thinning algorithm [20]. Every voxel that was part of the skeleton was labeled with
different categories according to their 18-connected neighbors; voxels with one, two or
more than two skeleton voxels in neighbor were respectively labeled as “End-point”,
“Slab-point” or “Junction-point”. Next, the properties of the skeleton were calculated
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based on the category of skeleton voxels, for example, the number of End-points and
the branch length which is defined as the Euclidian distance between two adjacent
skeleton voxels over all voxels on the skeleton. Finally, sum of those properties (Ta-
ble 4.2) were calculated over all reconstructed multi-cellular structures in the image
stack.

Morphological Parameters for each nucleus

Size: Number of foreground voxels assigned to a nucleus

Volume: Volume of a nucleus calculated by summarizing the volume of triangular pyramids
that compose the 3D geometrical model.

Surface: Surface of a nucleus calculated by summarizing the area of triangles that compose the
surface of the 3D geometrical model.

Width: Width of the 3D bounding rectangular box for a nucleus

Height: Height of the 3D bounding rectangular box for a nucleus

Thickness: Thickness of the 3D bounding rectangular box for a nucleus

Sphericity [19]: Compactness measure. Sphericity = π
1
3×(6×Volume)

2
3

Surface

SAV: Surface to volume ratio. SAV = Surface
Volume

Volume of convex hull: Convex hull was calculated using QuickHull algorithm [16]

Surface of convex hull

Solidity: Solidity = Volume
Volume of convex hull

Major axis: Length of the longest radius of the best-fit ellipsoid. The best-fit ellipsoid was
calculated based on a least-square optimization algorithm according to a ImageJ plugin
BoneJ [17]

Median axis: Length of the middle radius of the best-fit ellipsoid

Minor axis: Length of the shortest radius of the best-fit ellipsoid

Mass of the best-fit ellipsoid: Mass = 4
3
× π ×Major axis×Median axis×Minor axis

Moments of inertia of the best-fit ellipsoid:
Iellipsoidxx = 1

5
×Mass× (Median axis2 +Minor axis2)

Iellipsoidyy = 1
5
×Mass× (Major axis2 +Minor axis2)

Iellipsoidzz = 1
5
×Mass× (Major axis2 +Median axis2)

Localization Parameters

Average distance to other nuclear centroids

Moments Parameters

Centroid(Cx, Cy, Cz), this is used to calculate Eigen decomposition.

Eigenvalue from Eigen decomposition: λ1, λ2, λ3

Principle axes: I1, I2, I3

Table 4.1: Phenotypic parameters measured for each nucleus.
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Morphological Parameters

Total size: Number of foreground voxels in an image stack

Total volume: Sum of the volume of all micro-tissue structures within an image stack

Total surface: Sum of the surface of all micro-tissue structures of an image stack

Thickness: Thickness of a 3D bounding rectangular box for micro-tissue network

Sphericity: Sphericity(binary image stack) = π
1
3×(6×Total volume)

2
3

Total surface

SAV: SAV(binary image stack) = Total surface
Total volume

Volume of convex hull of micro-tissue network

Surface of convex hull of micro-tissue network

Solidity: Solidity(binary image stack) = Total volume
Volume of convex hull

Topological Parameters

Total number of End-point, Junction-point, Triple-point and Quadruple-point:
Triple point is one kind of junction point which has 3 skeleton voxels in neighbor .
Quadruple point is one kind of junction point which has 4 skeleton voxels in neighbor.

Total number of branches:Branch is defined as the part of skeleton between junction
points, end points, or junction point and end point

Total length of all branches

Moments Parameters

Centroid of a micro-tissue network, which is used to calculate Eigen decomposition

Eigenvalue from Eigen decomposition: λ1, λ2, λ3

Principle axes of a micro-tissue network: I1, I2, I3

Table 4.2: Phenotype parameters measured for multi-cellular micro-tissue network.

4.2.3 Validation by comparison to the confocal laser scanning mi-
croscope results

To validate our method, we imaged the same fields of multiple wells using both the
wide-field microscope and a confocal laser scanning microscope with a higher reso-
lution and magnification objective (Table S4.2). The quantification results obtained
from the confocal microscope were used to evaluate the quantification results obtained
from our analysis pipeline in combination with the wide-field microscope. As image
files generated by the confocal microscope were too large (4.05GB for each channel
per well) to perform image processing on whole image stacks, we randomly cropped
segments from each channel of confocal image stacks and the same fields of image
stacks were cropped from the wide-field microscope image stacks (Figure 4.7). For
the Hoechst stained nuclei channel, five image segments were generated including 125
nuclei, while ten image segments were generated for the rhodamine stained F-actin
channel.

Image analysis on the wide-field microscope images was performed using our
pipeline (Figure 4.7b, 4.7d). To define individual nuclei and multi-cellular structures
correctly in the confocal microscope image stacks, we performed automated segmen-
tation methods and then the segmentation results were validated by visual inspection.
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Figure 4.6: Morphological properties for micro-tissue structure and network. (a) Surface
of a micro-tissue structure, and (b) corresponding skeleton. (c) Convex hull of a micro-tissue network
which contains the structure shown in (a).

Before segmentation, we applied the rolling ball algorithm (radius = 50) and a me-
dian filter (kernel size 3×3 pixels) to the image stacks, to remove uneven background
illumination and image noise. To segment individual nucleus, we performed Otsu seg-
mentation method [22] on each image slice and then used a 2D watershed to divide
connected nuclei (Figure 4.7c). Over-segmentation was corrected manually. For the
segmentation of the rhodamine channel images, we applied a log K-means clustering
algorithm, which firstly transformed images by taking the natural logarithm and then
performed K-means clustering to define multi-cellular micro-tissue structures (Figure
4.7e). A sequential labeling algorithm based on 18-connected neighbor pixels was
used to label each nucleus and micro-tissue structure after segmentation. Similar to
the correction of elongated nuclei in the wide-field microscope images, we imaged
blue fluorescent-labeled microspheres with a 10µm diameter for the calculation of a
normalization factor using the same confocal microscope settings as for imaging the
micro-tissues (Table S4.2). A normalization factor 1

5 was obtained for the confocal
microscope and then used to calibrate dimensions of nuclei in z-direction. Finally, we
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Figure 4.7: Comparison of wide-field microscope images with confocal microscope im-
ages. (a) A cropped segment of an original image slice obtained from the wide-field microscopy and
Hoechst stained nuclei channel. A part of segment (white box) is magnified 5× to provide a clear
perception of resolution. (b) The same image part after deconvolution. Red marks the contour of
segmentation result. (c) The same field was cropped from an image slice obtained by the confocal
microscope, and the contour of segmentation result is presented in red. (d) A cropped segment
of a deconvolved image slice with segmentation result for rhodamine stained F-actin channel. (e)
Corresponding region and segmentation result from the confocal microscope image. The unit of the
scale bar is µm.

reconstructed nuclei and micro-tissue structures (Figure S4.1) based on the marching
cube algorithm, and the phenotypic parameters (Table 4.1-4.2) were measured for
those reconstructed structures from the confocal microscope.

4.2.3.1 Comparison of the quantification results of nuclei obtained from
the wide-field microscope images and confocal microscope images.

We firstly compared the number of nuclei obtained by applying our image analysis
pipeline to the wide-field microscope images with the manual counting of nuclei in
the confocal microscope images (Table 4.3). Although the low resolution of the wide-
field microscopy affected segmentation so that a slightly higher number of nuclei was
detected using our automated method, the difference was not significant. Next we
calculated a two-sample KS test for each of the parameters presented in Table 4.1
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Cropped segments Number of nuclei

(Wide-field)

Number of nuclei

(Confocal)

Segment 1 8 8

Segment 2 14 14

Segment 3 21 20

Segment 4 28 26

Segment 5 63 57

p− value of two-sample KS test > 0.9

Table 4.3: Comparison of number of nuclei between confocal microscope images and
wide-field microscope images.

(Figure 4.8a), except for the size and principle axes which are highly dependent on the
image resolution and number of foreground voxels. The result shows that for most
parameters no significant difference (α = 0.01) was obtained comparing the quan-
tification results of wide-field microscope images with confocal microscope images.
In the end, we investigated the Pearson product-moment correlation coefficient for
each parameter (Figure 4.8b) and obtained significant correlation (p− values < 0.01
for the hypothesis of no correlation) for most of parameters, further validating that
by using our image analysis pipeline for the nuclear channel we are able to obtain
comparable quantification results from the wide-field microscope images as from the
confocal microscope images with relatively higher resolution. Figure 4.8c shows the
scatter plot of volume for each nucleus measured from the two microscope techniques.

4.2.3.2 Comparison of the quantification result of micro-tissue networks
obtained from the wide-field microscope images and confocal mi-
croscope images

Due to the different resolutions of the two microscopes and the fact that we did
not calibrate the dimension of micro-tissue structures in z-direction, morphological
parameters obtained from those two different image modalities cannot be compared
directly to each other using KS tests. Nevertheless, the topological parameters that
are independent of calibration result, such as the number of branches, should be
comparable. Therefore, we firstly investigated the topological parameters using both
Pearson’s correlation and the two-sample KS test, and the result is presented in Table
4.4, which clearly shows a high correlation and no significant difference between the
results obtained from two images modalities. We found that for most test segments,
slightly more branches were detected from the confocal microscope images than from
the wide-field images although the differences were not significant. We presume that
this is due to the higher resolution of confocal microscope images so that more subtle
details were preserved (Figure 4.9a).

Next, we calculated Pearson’s correlation for each of the parameters that are pre-
sented in the Table 4.2. Figure 4.9b shows the coefficients for all parameters of which
each has a high value, indicating the quantification results of multi-cellular micro-
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Figure 4.8: Comparison of the quantification results of the nuclei obtained from the
wide-field microscope images and the confocal microscope images. (a) The result of the
two-sample KS tests, comparing the quantification result between wide-field microscope and confocal
microscope for the Hoechst stained nuclei channel. (b) Pearson’s correlation coefficient between
the quantification result from the wide-field microscope images and the results from the confocal
microscope images. * represents p − value > 0.01 under the hypothesis that two data samples are
not correlated. (c) The scatter plot of volume for each nucleus. x-axis represents the value from
wide-field microscope images and y-axis represents the corresponding value from confocal microscope
images.
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cropped segments
#End #Junction #Triple #Quad. #Branches

WF CF WF CF WF CF WF CF WF CF

Segment 1 88 88 75 68 65 64 1 1 157 146

Segment 2 147 157 82 95 66 82 9 8 203 223

Segment 3 45 51 39 36 35 33 2 1 80 82

Segment 4 57 74 21 35 14 33 2 1 58 91

Segment 5 106 132 70 76 55 67 9 4 163 181

Segment 6 65 80 44 56 41 51 3 1 107 115

Segment 7 56 57 31 37 27 33 3 3 77 85

Segment 8 111 128 77 79 66 68 5 7 175 186

Segment 9 38 53 34 34 37 31 2 0 71 76

Segment 10 83 94 72 80 62 72 3 4 151 168

Pearson’s correlation 0.98 0.95 0.91 0.77 0.97

Two-sample KS-test p− value 0.98 0.98 0.31 0.31 0.68

Table 4.4: Comparison of topological parameters between the wide-field microscope
and the confocal microscope for micro-tissue structures. “#” means “number of”; “End”,
“Junction”, “Triple” and “Quad.” mean “end point”, “junction point”, “triple point” and “quadruple
point”, respectively.

tissue structures obtained from the wide-field microscope images are comparable to
the quantification results obtained from the confocal microscope images. Figure 4.9c
and 4.9d show the scatter plots of the total volume and total surface of the micro-
tissue network for each image segment, calculated from the two techniques.

4.2.3.3 Comparison of the time efficiency between the wide-field micro-
scope and confocal microscope

Due to the slow scanning process, the confocal microscope requires more imaging
time compared to the wide-field microscope, and therefore limits its application in
high-throughput screening where time efficiency is an important consideration. To
quantitatively illustrate this point, we compared the image acquisition time between
the confocal microscope and the wide-field microscope that were used in this study.
For the BD Pathway wide-field microscope system, approximately 150 seconds were
required to collect a two channel image stack from one well, while our Nikon confocal
microscope took 6 hours to capture the same area of one well. Due to this large
amount of imaging time, severe bleaching was observed in the last image slices as
well as in neighboring wells. Besides, larger image files were generated when we used
higher magnification of objective for the confocal microscope, and this increased the
computational time and required more computer memory to perform image analysis.

We also recorded the image acquisition time for the BD Pathway microscope
system with the same settings as in Table S4.1, but now with laser scanning confocal
mode: 105 minutes were required to collect a two channels of image stack from one
well which compares very unfavorable to the image acquisition time in the wide-field
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Figure 4.9: Comparison of the quantification result of the micro-tissue networks recon-
structed from the wide-field microscope images and the confocal microscope images.
(a) One crop of the same field from a wide-field microscope image slice and a confocal microscope
image slice. The white box high lightens the regions with different level of details. The unit of
the scale bar is µm. (b) Pearson’s correlation coefficient between the quantification result from the
wide-field microscope images and from confocal microscope images. * represents p − value > 0.01
under the hypothesis that two data samples are not correlated. (c) The scatter plot of total volume
and (d) the scatter plot of total surface of micro-tissue network for each image segment. For both
(c) and (d), x-axis represents the value from wide-field microscope images and y-axis represents the
corresponding value from confocal microscope images.
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mode (150 seconds).

4.2.3.4 Assessment of different sampling step sizes in z-direction

Theoretically, increasing the sampling frequency in z-direction would improve the
image vertical resolution, however, it would also affect the time efficiency because
more image slices are required for imaging the same size of specimen. To find a bal-
ance between image quality and time efficiency, we investigated the effect of different
z-sampling step sizes on the quantification results. Ten wells of image stacks were
resampled with different sampling step sizes in z-direction (10µm, 15µm, 20µm) us-
ing the wide-field microscope system settings. The same resampling sizes were also
applied to image the 10µm blue fluorescently labeled beads, in order to normalize the
dimension of nuclei in z-direction. Next, our image analysis pipeline was applied to
reconstruct 3D models for nuclei and micro-tissue network respectively, and finally the
quantification results were evaluated by comparison to the quantification results ob-
tained from the confocal microscope images. To our surprise, for the Hoechst stained
nuclei channel the optimal performance was not always obtained with the smallest
z-step size (5µm). Two-sample KS tests showed (Figure S4.2a) that the z-step size of
10µm and 5µm provided the closest results to the quantification results obtained from
the confocal microscope images. The total number of nuclei obtained from the stacks
with z-step size of 10µm and 15µm was closer to the number of nuclei from confocal
microscope images, than from stacks with z-step size 5µm (Figure S4.2b). Similarly,
according to the Pearson’s correlation coefficient (Figure S4.2c) z-step size 10µm and
15µm provided higher correlations with the results from confocal microscope images
than z-step size 5µm. We presumed this is due to the fact that the segmentation error
was enhanced when the sampling frequency is too high and more image slices were
analyzed. With the sampling size increased to 20µm, the difference of quantification
results between wide-field microscopy and confocal microscopy was enlarged: 8 out
of 21 parameters had significant difference based on the two-sample KS test (Figure
S4.2a) and 7 parameters had correlation coefficient <0.5 (Figure S4.2b).

For the rhodamine stained F-actin channel, we measured the Pearson’s correlation
coefficient for different z-step sizes (Figure S4.3). The results showed that when the
z-sampling step size was increased from 5µm to 15µm, quantification accuracy was
decreased, however, not to a big extent except for the parameter Thickness. When the
z-sampling size increased to 20µm, more parameters (SAV and number of quadruple-
points) have a much lower Pearson’s correlation coefficient. Considering the fact that
a z-sampling size of 15µm is much more time efficient than z-sampling sizes of 5µm
and 10µm while still providing quantification results comparable to the results of
the confocal microscope images for both fluorescence channels, the z-sampling size of
15µm seems optimal for our future high-throughput screening of 3D cultured micro-
tissues.
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4.3 Discussion and conclusions

In this study, we developed an automated image analysis pipeline for 3D surface
reconstruction and phenotype profiling of 3D cultured micro-tissues, suitable for high-
content and high-throughput screening. It first applies a deconvolution technique to
enhance the image quality by removing out-of-focus effects. Subsequently, two 3D
segmentation methods were developed to identify individual nuclei and multi-cellular
regions. Based on the segmentation results, a simple and efficient 3D reconstruction
method was used to model the 3D structures of nuclei and multi-cellular micro-tissue
structures. For nucleus surface structure, we performed a correction of dimension in z-
direction to recover the nucleus from the elongation artifacts. Finally, 3D phenotypic
parameters were measured directly on the reconstructed structures, including 3D
morphological parameters, localization parameters, 3D topological parameters and
moments.

This study intends to develop an image analysis pipeline to extract sufficient
phenotypic characteristics from the conventional wide-field microscope, in order to
achieve a high-content analysis. Granted, using fluorescence microscopy with higher
resolution, for example confocal microscopy, would be greatly beneficial, yet due to
their complexity, the applicability is often limited in throughput. In this study, we
compared the imaging efficiency between a confocal microscope and a wide-field mi-
croscope. To image the same field of view in a well, the confocal microscope required
up to 40 times more of image acquisition time compared to the time needed for the
wide-field mode. Recently, more advanced microscopy techniques such as spinning
disc confocal microscopy were made available for high-content screening. However,
these techniques are too expensive to be widely available. Therefore, developing im-
age analysis methods that are able to distill information from conventional microscope
images would be a reasonable solution.

We have provided statistical evidence that by using this image analysis pipeline
the quantification results obtained from the wide-field microscope are not significantly
different from the results extracted from the confocal microscope. This achievement
does largely rely on the image preprocessing including deconvolution, the segmenta-
tion algorithms and the reconstruction method. The most computational expensive
part is deconvolution. It takes ~45 seconds to process one image stack on a server
which is equipped with 16 Intel(R) Xeon(R) model E5530 processors and 24GB of
RAM in total. The rest of our image analysis pipeline was performed on an Intel Core
i7-2600 model with 16GB of RAM and a 64-bit Windows 7 operation system. Our
complete image analysis of wide-field microscope image stacks for one 384-well plate
takes approximately computational time of 1150 minutes. This time is slightly longer
than the image acquisition time for one 384-well plate in wide-field mode. Consid-
ering the very significant benefit in image acquisition time, wide-field microscopy, in
combination with our image analysis pipeline, has a substantial advantage in time
efficiency over confocal microscopy, and we do not regard the time efficiency of our im-
age analysis as an important bottleneck in the whole high-content screening pipeline,
nor do we regard the minor differences between quantification results from wide-field
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microscope and from confocal microscope as a major drawback.
In this study, we also investigated the effect of different z-sampling step sizes on

the quantification results, in order to establish a balance between the image analysis
accuracy and imaging time efficiency. Surprisingly, we found that the smaller step size
is not necessary providing better quantification results, suggesting an oversampling
problem which not only increases image acquisition time, computational complexity
and image storage capacity, but also degrades the quantification result. Therefore,
finding the optimal z-sampling size is crucial for high-content analysis of 3D cultured
micro-tissues.

4.4 Methods

4.4.1 Cell culturing

Human prostate cancer cells (PC3) were cultured and exposed to hepatocyte growth
factor (HGF) in a mixture of collagen type IV and laminin-rich basement membrane
extract (Matrigel) for 4 days in 384-well high content imaging microplates. 72 hours
after seeding, the cultured micro-tissues were fixed and stained with Hoechst 33258
and rhodamine-phalloidin to visualize nuclei and F-actin, respectively.

4.4.2 Image acquisition

For each well of a 384-well plate, two stacks of 152 xy epi-fluorescence image slices (16-
bit) were collected from two fluorescence channels respectively, using a BD Pathway
855 automated microscope in wide-field mode. The gel was imaged through its entire
depth (z-direction) and each image captured approximately 75% of the area of the
well.

The confocal microscope images which were used to validate the accuracy of
our image pipeline were collected using a Nikon Eclipse Ti confocal laser scanning
microscope. For each well, two stacks of 71 xy epifluorescence image slices (16-bit)
were generated. In order to capture whole well, each image slice was stitched by 9
images (3 images in a row and 3 images in a column), each of which captured one
physical position of the well.

4.4.3 Software

For image analysis, ImageJ plugins (Java) were developed in-house, including a plugin
to program a tcl script that can call the Huygens Core (http://www.svi.nl/HuygensCore)
to run a batch process of a WideField deconvolution function in 384-or 96-well for-
mat, a plugin to perform segmentation, reconstruction and phenotypic quantification,
and a plugin to compose obj files that contain vertex coordination of surface trian-
gles. Meshlab (http://meshlab.sourceforge.net/) was used to visualize 3D geometrical
models of reconstruction results.
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Supplementary figures

Figure S4.1: Comparison of reconstructed nuclei and micro-tissue structures based on
the wide-field microscope images and the confocal microscope images. For the Hoechst
stained nuclei channel, the reconstruction results of the same field of a well based on (a) the wide-field
microscope image and (b) the confocal microscope image. The corresponding original images are
shown in Figure 4.7a and 4.7c. For the rhodamine stained F-actin channel, the reconstruction results
from (c) the wide-field microscope image and (d) the confocal microscope image. The corresponding
original images are shown in Figure 4.7d and 4.7e.
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Figure S4.2: Comparison of the quantification results of the nuclei obtained from the
different z-sampling step sizes with the results from the confocal microscope images.
(a) The result of two-sample KS test, comparing the quantification results of different z-sampling
step sizes to the results from the confocal microscope images for the Hoechst stained nuclei channel.
For the confocal microscope images, the z-sampling step size is 5µm. For the wide-field microscope
images, different sampling sizes are colored in different shades of grey. *: p − value < 0.01. (b)
Comparison of the total number of nuclei obtained from 5 test segments between the wide-field
microscope and the confocal microscope. (c) Pearson’s correlation coefficient between each of the
quantification result from the wide-field microscope images with different z-sampling step sizes and
the results from the confocal microscope images. Red * represents p − value > 0.01 under the
hypothesis that two data samples are not correlated.
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Figure S4.3: Comparison of the quantification results of the micro-tissue network ob-
tained with different z-sampling step sizes and the results from the confocal microscope
images. For the rhodamine stained F-actin channel, the Pearson’s correlation coefficient between
the quantification result from the wide-field microscope images with different z-sampling step sizes
and the results from the confocal microscope images. For the confocal microscope, the z-sampling
step size is 5µm. For wide-field microscope, different sampling sizes are colored in different shades of
grey. * represents p− value > 0.01 under the hypothesis that two data samples are not correlated.
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Supplementary tables

Objective type BD Pathway Olympus 4XUPLAPO

Plan-Apochromat

* Numerical aperture(NA) 0.16

Magnification 4×

* Lens refractive index 1.00 (Air)

* Medium refractive index 1.00 (Air)

* Hoechst excitation wavelength / bandwidth 380 nm/10nm

* Hoechst emission wavelength / bandwidth 435 nm/LP

* Rhodamine excitation wavelength / bandwidth 555 nm/28nm

* Rhodamine emission wavelength / bandwidth 645 nm/75nm

* Sampling size in x-,y-direction 1.60 µm

* Sampling size in z-direction 5 µm

Size of image stack (x,y) 1344× 1024 pixels

Table S4.1: The parameters of the wide-field microscope to acquire image stacks. LP
refers to low-pass filter. The parameters used for Huygens deconvolution software are marked with
*.

Objective type Nikon Plan Fluor 10X DIC L N1

* Numerical aperture(NA) 0.3

Magnification 10×

* Lens refractive index 1.00 (Air)

* Medium refractive index 1.36

* Hoechst excitation wavelength / bandwidth 405 nm

* Hoechst emission wavelength / bandwidth 450 nm/50nm

* Rhodamine excitation wavelength / bandwidth 561 nm

* Rhodamine emission wavelength / bandwidth 595 nm/50nm

* Sampling size in x-,y-direction 0.63 µm

* Sampling size in z-direction 5 µm

Size of image stack (x,y) 5530× 5530 pixels

Table S4.2: The parameters of the confocal laser scanning microscope.
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Abstract:

Due to the increased physiological relevance and often more in vivo like functioning
of 3D cell cultures compared to 2D cell cultures, 3D cell cultures have been inten-
sively applied in high-content screening to investigate cellular responses to different
genetic or chemical perturbations. In previous work, we investigated mouse breast
cancer cells which formed characteristic phenotypes of micro-tissues in 3D cultures
after being exposed to a diverse set of anti-cancer drugs, using a novel screening and
ultra-high content analysis platform. This platform firstly generated a 2D projection
for each image stack that was obtained by imaging micro-tissues in z-direction. Sub-
sequent image analysis was performed on the projections, including segmentation of
nuclei and micro-tissue structures, and phenotype quantification. We showed that
this platform can successfully retrieve the concentration dependent phenotypic tra-
jectory of each compound that could be used to classify compounds based on their
biological target. However, this platform did not take into account tissue develop-
ment in z-direction and this information might play an important role in phenotype
characterization. To fill this gap, we developed a 3D image analysis platform for
ultra-high content analysis of 3D cultured micro-tissues. Instead of generating 2D
projections of image stacks, this platform reconstructed 3D objects from image stacks
and measured phenotypes from the reconstructed objects or directly from the image
stacks. Here, we compared the performance of both platforms for the analysis of
mouse breast cancer cells cultured in 3D in a 384-well micro plate format, following
exposure to 12 compounds at different concentrations. A thorough comparison of
those two platforms was performed using criterions of sensitivity, classification accu-
racy and reproducibility. The results showed that while 2D analysis is more sensitive
in detecting a biological effect of the test compounds, 3D analysis has an increased
classification accuracy and a significant improvement in reproducibility.
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5.1 Introduction

Because 3D cell cultures have a higher physiological relevance than 2D cell cultures,
3D cell cultures have been widely used in high-content screening (HCS) to study
the effects of large libraries of compounds, peptides, or RNA interference (RNAi),
by investigating cellular phenotypic responses to these factors. Especially for tumor
migration and invasion studies where the culture microenvironment, cell-cell, and
cell-extracellular matrix (ECM) communications play a crucial role [1, 2], 3D cell
cultures mimic the natural organization of tissues more closely than 2D cultures,
enabling tumor cells to develop complex micro-tissue phenotypes. However, using
3D cell cultures in high-content and high-throughput screening adds a higher level
of complexity in respect of assay preparation, image acquisition and especially image
analysis, thus creating numerous technological challenges. In typical 3D HCS, cells
are fixed and stained with fluorescence dyes and then z-stack images are acquired
using an automated fluorescence microscope. The z-stack images can be used to
reconstruct 3D surfaces of cells, or they can be compressed by projecting into single
2D image slices. Subsequent phenotype profiling is performed on the image stacks,
3D surfaces or projected 2D slices depending on which method is used.

For 2D projection based platforms, many algorithms have been developed to gen-
erate 2D image slices from image stacks, including maximum intensity projection [3]
and in-focus slice extraction [4]. In our previous study (chapter 3) we have devel-
oped an automated image analysis platform for ultra-high content analysis (uHCA)
of 3D cultured micro-tissues, based on 2D projection of image stacks. We gener-
ated a composite 2D image slice for each image stack of a fluorescence channel by
projecting only in-focus regions from each slice. Subsequently, segmentation and
phenotype quantification was applied on the composite 2D images. In chapter 3,
this analysis platform was applied to investigate mouse breast cancer cells (4T1) in
a 384-well micro plate format following exposure to a diverse set of anti-cancer drugs
at different concentrations. Based on 598 parameters, we were able to retrieve an
unique concentration dependent trajectory for each tested compound, and success-
fully demonstrated that modulating different biological targets may effect phenotypic
development of 4T1 cells in a characteristic way.

One advantage of this projection based method is time efficiency, because it avoids
extensive computations such as 3D segmentation and 3D reconstruction. Moreover,
because the z-sampling frequency can be much less than required for 3D reconstruc-
tion, image acquisition time often is significantly reduced. However, information of
tissue development in z-direction was not taken fully into account in the 2D projec-
tion based analysis presented in our previous work (chapter 3), and this information
might play an important role in phenotype characterization. To fill this gap, more
recently (chapter 4) we developed a new analysis platform which is able to extract
information of phenotype in all 3 dimensions with great details. Efficient 3D segmen-
tation and reconstruction methods were developed for both single cell based pheno-
type profiling and cell cluster (or multi-cellular structure) based phenotype profiling.
Many parameters measured in 2D analysis platform were extended to their equiva-
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lent 3D version such as morphological parameters, topological parameters, intensity
properties, moments, as well as subpopulation related parameters. Furthermore, new
3D parameters were measured to maintain an “ultra” high level of content in our 3D
analysis of phenotype.

Because some types of parameters can only be measured in the 2D projection
based platform so far due to their complexity, such as Gabor wavelet, this may de-
crease the performance of our 3D HCA platform despite the theoretical advantages
of a full 3D analysis. To discover whether our 3D profiling improves the phenotype
characterization compared to the 2D projection based profiling, we evaluated the per-
formance of both platforms in a HCS where 4T1 cells were cultured in ECM-rich hy-
drogel in 384-well micro plates and then exposed to 12 biologically active compounds
at different concentrations. Firstly, we tested the sensitivity of the two platforms
according to their ability to identify concentrations that significantly influenced the
phenotype development of 4T1 cells. Secondly, we classified compounds according to
their biological activity and evaluated the classification accuracy of both platforms
for phenotype profiling. In the end, we tested the reproducibly of both platforms
based on the concentration dependent phenotypic trajectories. Trajectories of the
same compounds in independent duplicate screens should locate more close to each
other than to trajectories of different compounds.

5.2 Methods

5.2.1 High-content screening of 4T1 cells

The 3D cell culturing method has been described previously (chapter 3). In short,
4T1 cells were cultured in 384-well micro plates (Figure 5.1a) and exposed to 12
compounds (Table 5.1) at 6 different concentrations (0.03µM, 0.1µM, 0.316 µM, 1
µM, 3.16 µM, 10 µM) in quadruplicate. Compounds were dissolved in DMSO such
that the final concentration in the cell incubation medium was 0.2%. Control cells
were exposed to DMSO (0.2%) only. As a blind test, we repeated the experiment
independently including 11 compounds (without erlotinib HCl) and the compound
treatments were concealed. The test compounds can be categorized according to
biological activities in BCR-ABL inhibitors, VEGFR inhibitors, c-MET inhibitors,
autophagy inducer, EGFR inhibitors and HDAC inhibitors. After 72 hours of expo-
sure, cells were fixed and stained with Hoechst 33258 and rhodamine-phalloidin to
visualize nuclei and F-actin, respectively. We obtained two channels of epifluores-
cence image stacks from each well (Figure 5.1b), using a BD Pathway 855 automated
microscope fitted with an air objective lens with magnification 4× and numerical
aperture (NA) 0.16. The sampling size in x-, y-, z-direction was 1.6µm, 1.6µm and
15µm, respectively.
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Compound Index Compound Name Biological activity
1 Arq 197 tyrosine kinase inhibitor (c-MET), Positive control
2 AZD 0530 tyrosine kinase inhibitor (SRC family, BCR-ABL )
3 dasatinib tyrosine kinase inhibitor (SRC family, BCR-ABL )
4 entinostat HDAC inhibitor
5 imatinib mesylate tyrosine kinase inhibitor (PDGFR, KIT, BCR-ABL)
6 nilotinib tyrosine kinase inhibitor (BCR-ABL, KIT, LCK,

EPHA3, EPHA8, DDR1, DDR2, PDGFR, MAPK11
and ZAK)

7 sorafenib tosylate tyrosine kinase inhibitor (VEGFR, PDGFR, Raf
kinases)

8 stf-62247 autophagy inducer
9 sunitinib maleate tyrosine kinase inhibitor (VEGFR, EGFR, RET, KIT)
10 vandetanib tyrosine kinase inhibitor (VEGFR, EGFR, RET, KIT)
11 erlotinib HCl tyrosine kinase inhibitor (EGFR)
12 genistein tyrosine kinase inhibitor (EGFR), Caspase, PPAR

gamma and Topoisomerase II inhibitor, Estrogenic
activity

Table 5.1: 12 compounds used in the 4T1 cell screening and their corresponding bio-
logical activities.

5.2.2 Automated phenotype profiling platform based on 2D projec-
tion

An ultra-high content 3D phenotype profiling platform based on 2D projection has
been described previously (chapter 3). In short, an in-house ImageJ plugin was
developed in Java to perform 2D projection, segmentation and phenotype quantifica-
tion. For each image stack, a single image plane was firstly composed by projection
of only in-focus regions from each slice (Figure 5.1c). Segmentation (Figure 5.1d)
and quantification (Figure 5.1e) were then applied to the 2D projected images. For
segmentation, we applied a 2D watershed masked clustering [5,6] to segment individ-
ual nuclear regions and a local Niblack algorithm [7] to segment cell clusters. After
segmentation, quantification was carried out on the segmentation results or on the
2D projected images, as described in chapter 3. Measured parameters included
morphological parameters, topological parameters, intensity parameters, texture pa-
rameters, moments and subpopulation parameters. In this study, we extended the
ability of this platform to measure additional morphological and topological param-
eters compared to our earlier work (chapter 3) (see Table S5.1 and Supplementary
note for the detailed description). Moreover, the correlation between the two fluo-
rescence channels was also taken into account (Table S5.2). In total, 794 parameters
were measured to profile each well.

5.2.3 Automated 3D phenotype profiling platform

We have developed an in-house ImageJ plugin in Java to automatically profile the
phenotype of 3D cultured micro-tissues for uHCA based on the reconstructed 3D
structures. Firstly, a deconvolution method (Figure 5.1f) was applied to the stacks
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to restore images which were degraded due to light scattering. This was achieved
by running a batch process script on the Huygens Core to call a WideField Decon-
volution function (chapter 4). Next, we used a 3D watershed masked clustering to
segment each individual nucleus region (Figure 5.1g) on the Hoechst stained nuclei
channel. For cell clusters segmentation on the rhodamine stained F-actin channel, we
applied a background variation based method which is described in chapter 4 (Fig-
ure 5.1g). 3D surface reconstruction (Figure 5.1h) was carried out using a marching
cube algorithm [8] for both channels. To recover each reconstructed 3D nucleus struc-
ture from the elongated artifact (caused by low NA and low vertical resolution), a
normalization method was applied to calibrate the dimension of nuclei in z-direction,
as described in chapter 4. However, this normalization method is not suitable for
the cell cluster structures because of their irregular shapes and sizes.

Quantitative 3D phenotyping was carried out on the 3D reconstructed objects
or on the image stacks directly (Figure 5.1i). Similar to the 2D projection based
profiling platform, parameters measured by the 3D profiling platform can be cate-
gorized as morphological parameters, topological parameters, intensity parameters,
3D moments, Haralick co-occurrence parameters and subpopulation parameters. In
total 290 parameters were calculated for each well:

1. Morphological and topological parameters: Morphological parameters
(Table S5.3) include a series of shape properties and are measured directly from
each reconstructed 3D object. We firstly extended 2D morphological parameters
to their equivalents 3D version. such as changing area to volume. In addition,
many parameters were defined as described in chapter 4 (Table 4.1 and 4.2).
To measure the topological parameters (Table S5.3), a topological skeleton of
each object was firstly computed using a 3D-thinning algorithm [9] and relative
parameters (Table S5.3) were measured from the obtained skeleton (see chapter
4 for details). In the end, the mean, sum and standard deviation of each
parameter over all 3D objects were quantified for the phenotypic profiling of
each well.

2. Intensity parameters: Intensity parameters (Table S5.4) were measured on
the image stacks which were already processed by deconvolution. Except for
the basic intensity properties such as average intensity, maximum intensity of
whole image stack, intensity gradient information was also taken into account
by using a Sobel filter [10] to calculate the gradient magnitude for each pixel.
Since image sampling size in z-direction (15µm,) is different from that in the
horizontal direction (1.6µm), the Sobel filter was only applied in the horizontal
direction. In the end, the mean, maximum and standard deviation of gradient
magnitude were calculated over all pixels in one image stack.

3. 3D Zernike moments [11]: We extended 2D Zernike moments to their com-
parable 3D versions (Table S5.5). For each binary image stack (after segmenta-
tion) which consists of pixels assigned with 1 (foreground) and 0 (background),
we firstly applied normalization as follows so that the center of each image stack
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Figure 5.1: Workflow of uHCS of 3D cultured micro-tissues for both 2D projection
based analysis platform and 3D analysis platform. (a) Cancer cells, for example 4T1 cells,
are grown in the 3D cell culture and then transferred to a 384-well micro plate. (b) Two channels of
image stacks are produced by a BD pathway 855 microscope or equivalent apparatus in the wide-field
mode with 4× magnification of air objective with 0.16 NA. Scale bar represents 100µm. (c) In-focus
2D images are projected from the stacks of the Hoechst stained nuclei channel and the rhodamine
stained F-actin channel. (d) Nuclear masks are obtained by 2D Watershed Masked Clustering, and
masks of cell clusters are obtained using local Niblack segmentation. The green masks represent the
subpopulation of branched and interconnected multi-cellular structures. The red masks represent the
subpopulation of spherical cell clusters. (e) Quantitative parameters are derived for each well from
segmentation results and projected images. (f) Deconvolution is applied on each channel of image
stack, separately. (g) Nuclear masks are obtained by 3D Watershed Masked Clustering, and masks
of cell clusters are obtained using the background variation based segmentation. (h) 3D surface
reconstruction results. (i) Quantitative parameters are derived for each well from reconstructed
objects and deconvolved image stacks.
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(xc,yc,zc) was transformed to the origin:

(xc, yc, zc) = (
imageWidth

2
), (

imageHeight

2
), (

imageThickness

2
) (5.1)

x′i = (xi − xc) (5.2)

y′i = (yi − yc) (5.3)

z′i = (zi − zc) (5.4)

where (xi,yi,zi) is the original coordinate of pixel i and (x′i, y
′
i,z
′
i) is the corre-

sponding coordinate after transforming. imageWidth and imageHeight repre-
sent the number of pixels in each row and column of an image slice, respectively.
imageThickness is the number of slice per image stack. Subsequently, the im-
age was scaled as follows so that whole image stack could be mapped into the
unit 3D ball:

x′′i =
x′i

imageWidth
2

× 1√
3

(5.5)

y′′i =
y′i

imageHeight
2

× 1√
3

(5.6)

z′′i =
z′i

imageThickness
2

× 1√
3

(5.7)

where x′′i , y
′′
i , z

′′
i is the coordination of pixel i after scaling. In the second step,

we calculated all geometrical moments of each scaled image stack up to degree
of n:

Mrst =
∑
xi

∑
yi

∑
zi

(x′′i )
r(y′′i )s(z′′i )tf(xi, yi, zi) (5.8)

where r, s, t≥0 and r + s + t≤n. f(xi, yi, zi) = 0 when pixel (xi, yi, zi) is a
background pixel and f(xi, yi, zi) = 1 when pixel (xi, yi, zi) is identified as
a foreground pixel. In the third step, we calculated all Ωm

nl according to the
literature [11]. Here n ∈ [0, N ],l ∈ [0, n] such that (n − l) be an even number
and m ∈ [−l, l].

Ω
m
nl

=
3

4π

∑
r+s+t<n

χrstnlmMrst (5.9)

Since the calculation of χ is independent of a particular image stack, it only
needs to be calculated once for all stacks to save computational time. Finally,
all Zernike moments up to degree of n were calculated according to:

Fnl =‖ (Ωl
nl, Ωl−1

nl , Ωl−2
nl , ..., Ω−lnl )

t ‖ (5.10)

In this project, 9 3D Zernike moments(n = 4) were calculated for each image
stack. Later, F00 was not included for profiling because it is equal to the number
of foreground pixels which is already counted in the category of morphological
parameters.
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4. Haralick texture parameters: The Haralick texture parameters [12–14]
measure the co-occurrence distribution based on deconvolved grey level im-
ages. Simply speaking, the co-occurrence distribution measures the frequency
that a particular gray level is found adjacent to another gray level. Many re-
searches [14,15] have already shown the importance of the Haralick parameters
in phenotype recognition, therefore we also included them in this project. We
firstly normalized the grey value of each deconvolved image stack (32-bit) to
[0, 255]. Secondly, co-occurrence matrices were generated according to the lit-
erature [14]. In an image stack, adjacency can occur in each of 13 directions,
thus 13 co-occurrence matrices were calculated corresponding to each direction.
Finally, 13 statistics (Table S5.5) were extracted from each co-occurrence ma-
trix, and two types of texture features were generated for phenotype profiling:
the average and the range between maximum and minimum of each statistics
over all 13 directions.

5. Subpopulation parameters: In our earlier work (chapter 3) which was
based on 2D projection profiling analysis, we have determined that the imple-
mentation of subpopulation parameters increased the accuracy of phenotype
classification. Therefore, in this platform, we embedded a simple classifier to
distinguish spherical cell clusters and branched cell clusters according to the
sphericity and number of branches (see chapter 4 for the description of spheric-
ity and number of branches). The cell clusters with sphericity higher than 0.5
and number of branches smaller than 2 were classified as spherical cell clus-
ters, and the rest of the clusters were classified as branched structures. Finally,
relevant information was collected for both subpopulations (Table S5.6).

5.3 Results

To evaluate the performance of 2D projection profiling platform versus the 3D pro-
filing platform, three criterions were used based on hits identification, phenotype
classification and reproducibility of concentration dependent trajectories. To achieve
this, quality control was firstly carried out to exclude wells that appear to be outliers
compared to other replicates. It was determined by visual validation of the orig-
inal image stacks that they were due to errors occurring at the image acquisition
stage. Next, the robust z − score [16] was calculated for each parameter in order to
implement cross-plate comparison.

5.3.1 Hit identification

For high-content screening, the primary goal is to identify compounds and their con-
centrations which significantly influence biologically relevant phenotypes compared
to control condition. Those identified compounds or concentrations are usually re-
ferred to as “hits”. Many multi-parametric tests have been applied for this purpose
including: Mahalanobis distance [17,18], Chi-square [19] and Wilks’ lambda test [20].
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In our previous study where we investigated the phenotypic response of 4T1 cells to
different anti-cancer compounds in 3D cell cultures (chapter 3), Mahalanobis dis-
tance yielded the closest result to visual scoring a treatment as having an effect on
phenotype. Therefore, we chose to measure the Mahalanobis distance of each well
to the DMSO control in this screening for hits identification. Firstly, a principle
component analysis (PCA) was performed based on the z − scores of all measured
parameters, resulting in 15 principle components (PCs) obtained from 2D projection
analysis and 13 PCs from 3D analysis respectively, which preserved 90% of the data
variation. Next, Mahalanobis distance was measured based on the PCA result, in
order to quantify the similarity of phenotype between each treated well and control
condition and next, the median Mahalanobis distance was calculated over all repli-
cates. To identify hits, we used a significance level α = 0.05. Table 5.2 shows all 12
test compounds and their corresponding concentrations with p− values smaller than
0.05, in either 2D projection analysis or 3D analysis. From a total of 23 compounds
(12 test compounds in the first experiment and 11 compounds in the repeated, blind
test experiment) × 6 concentrations = 138 conditions, 99 conditions were identified
as hits using 2D projection analysis platform, while 84 conditions were identified as
hits using 3D analysis platform. For the 11 compounds which were retested in the
blind experiment, 2D projection analysis platform detected 50 conditions as hits in
the first experiment and 40 of them (80%) were confirmed in the blind test exper-
iment. When we used 3D analysis, 43 conditions of 11 compounds were identified
as hits in the first experiment and 36 of them (83.7%) were confirmed in the blind
test experiment. For both experiments, more conditions were identified as hits using
2D projection analysis platform than using 3D analysis, suggesting that 2D projec-
tion analysis might be more sensitive in terms of hits identification. However, this
higher sensitivity of 2D projection analysis may be the consequence of measuring
more parameters than the 3D analysis. This is further substantiated by comparing
this 2D projection based platform with the previous 2D projection based platform
which measured only 598 parameters for each well (chapter 3). We noticed that
the relatively low concentration of compounds entinostat (0.03µM), genistein (0.316
µM), imatinib mesylate (0.316 µM) and sunitinib maleate (0.316 µM) were not de-
tected using the 598 parameters based platform (Table S3.8), but were identified as
hits when 794 parameters were used in this study.

5.3.2 Phenotype classification

In our previous study (chapter 3), we have observed that compounds with different
biological targets, each induced a typical phenotype (recapitulated in Figure S5.1, left
panel). Here, we observed the same using 3D analysis (Figure S5.1, right panel). We
also observed in our previous study that compounds which share the same biological
target influenced the phenotypic development of 3D cultured 4T1 cells in a similar
pattern. Based on this observation we successfully classified the tested compounds
according to their biological activity. Here, we evaluated the classification accuracy
for 2D projection analysis and 3D analysis respectively. To obtain classification train-
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Compound 0.03µM 0.1µM 0.316µM 1µM 3.16µM 10µM

Arq 197 - - 2D 2D/3D 2D/3D 2D/3D

Arq 197(blind test) - - 2D/3D 2D/3D 2D/3D 2D/3D

AZD 0530 - 2D 2D/3D 2D/3D 2D/3D 2D/3D

AZD 0530 (blind test) 2D - 2D/3D - - 2D/3D

dasatinib 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D

dasatinib (blind test) 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D

entinostat 2D 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D

entinostat (blind test) - - 2D 2D/3D 2D/3D 2D/3D

imatinib mesylate - - 2D/3D 2D 2D/3D 2D/3D

imatinib mesylate (blind test) - - 3D 2D 2D/3D 2D/3D

nilotinib 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D

nilotinib (blind test) 2D/3D 2D 2D/3D 2D/3D 2D/3D 2D/3D

sorafenib tosylate 2D 2D 2D/3D 2D/3D 2D/3D 2D/3D

sorafenib tosylate (blind test) 3D 2D/3D 2D/3D 2D/3D 2D/3D 2D/3D

stf-62247 - - - 2D/3D 2D/3D 2D/3D

stf-62247 (blind test) - 2D 2D 2D/3D 2D/3D 2D/3D

sunitinib maleate 2D 2D/3D 2D/3D 2D/3D

sunitinib maleate (blind test) 2D 2D - 2D/3D 2D/3D 2D/3D

vandetanib - - - 2D/3D 2D/3D 2D/3D

vandetanib (blind test) - 2D - 2D/3D 2D/3D 2D/3D

erlotinib HCl - - - 2D 2D/3D 2D/3D

genistein - - 2D 3D 2D/3D 2D/3D

genistein (blind test) - - - - - 2D/3D

Table 5.2: List of compounds and corresponding concentrations identified as hits in
either 2D projection analysis or 3D analysis, using Mahalanobis distance (α = 0.05).
“2D” indicates that the condition (per compound per concentration) was identified as a hit in our
2D projection based analysis. “3D” indicates that the condition was identified as a hit in our 3D
analysis. “2D/3D” indicates that the condition was identified as a hit in both 2D projection analysis
and 3D analysis. “-” indicates not a hit in neither of the analysis.

ing data, we firstly collected the robust z − scores of all measured parameters from
the conditions that were identified as hits by the corresponding analysis platform
(Table 5.2). Four classes of compounds were defined according to the biological tar-
get (Figure 5.2a and 5.2b). The class of c-MET inhibitor (Arq 197) and the class of
autophagy inducer (stf-62247) contained less than 15 data points respectively, thus
they were not included in the classification, in order to avoid the curse of dimen-
sionality. As the result, 46 conditions were selected from 2D projection analysis and
39 conditions were selected from 3D analysis for the classification training process,
respectively. The blind test experiment was not included in the classification training
process but was used to test the obtained classifiers later. For each platform, we
firstly performed forward feature selection with the criterion of Mahalanobis distance
and then evaluated several classification algorithms using 10-fold cross-validation (see
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Supplementary note for pseudo code). The tested classification methods include k-
nearest neighbor classification, linear Bayes normal classification [5,21,22], quadratic
Bayes normal classification [21, 22], nearest mean classification, support vector ma-
chine classification (SVC) [23,24], and Fisher linear classification [21,22,25]. For each
subsample test of 10-fold cross-validation, a classification error rate (%) was defined
as:∑ number of erroneously classified objects per class

size of class
× prior probability of class

(5.11)
where the prior probability is equal for each class (25%). For the 2D projection
analysis, the best performance of classification was obtained when we used quadratic
Bayes normal classification with 6 selected parameters (Figure 5.2c), and the corre-
sponding error rate was 20.2% (Table 5.3). For 3D analysis platform, the error rate
was 12.8% when we applied linear Bayes normal classification with 14 parameters
selected (Figure 5.2d; Table 5.3). This indicates that the error rate for 3D analysis
is lower than for 2D projection analysis.

In the previous section, we noticed that the 2D projection analysis platform has
a higher sensitivity of hits identification compared to the 3D analysis platform. The
consequence was that relatively low concentrations were selected as hits and thus
included for classification, which might affect the classification accuracy. To validate
whether the relatively lower classification accuracy of 2D projection analysis platform
was caused entirely by including those low concentrations for the training process,
we repeated the classification for two platforms, including only the conditions (38
conditions) that were identified as hits in both 2D projection analysis and 3D analysis
(Table 5.2; Figure S5.2a). As the result, the lowest classification error rate of 2D
projection analysis was decreased from 20.2% to 15.8% using quadratic Bayes normal
classification (Table 5.3; Figure S5.2b), however, this is still higher than the lowest
classification error rate of 3D analysis which was 12.4% (Table 5.3; Figure S5.2c),
indicating that the 3D analysis platform preserved more characteristic features of
phenotype and those features played an important role in phenotype classification.

For both analysis platforms, we investigated the parameters that contributed
most to the classification. In 2D projection analysis, the classification result (Figure
5.2c) showed that the best performance was obtained when quadratic Bayes normal
classification was used and 6 parameters were selected. Table S5.7 shows a list of
6 parameters that were most frequently selected as discriminative parameters using
the feature selection algorithm in 10-fold cross-validation. The selected parameters
included morphological parameters and intensity attributes measured from total pop-
ulation and from subpopulations. For the 3D analysis platform, the most frequently
selected 14 discriminative parameters are shown in Table S5.8. Similar to 2D projec-
tion analysis, we noticed that not only morphological parameters, but also intensity
parameters and subpopulation information played an important role for phenotype
classification.

To further establish the value of analyzing different categories of parameters, we
firstly repeated feature selection and classification excluding subpopulation parame-
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Figure 5.2: Comparison of classification accuracy between our 2D projection analysis
platform and our 3D analysis platform. (a-b) Four classes of compounds were defined according
to their biological activity. Two training data sets for classification were collected respectively from
our 2D projection analysis (a) and 3D analysis (b). These training data sets included the conditions
which were identified as biologically active by the corresponding platforms. The corresponding
compounds and number of data points are also shown in the tables. (c-d) Classification result using
multiple classification methods for (c) 2D projection based analysis, and (d) 3D analysis. Feature
selection with search algorithm “forward” and criterion “Mahalanobis distance” was applied to detect
the optimal number of features. For each classification method and each number of selected features,
10-fold cross-validation was carried out resulting in 10 error rates. The average error rates are shown
in the chart with standard deviation as error bar. SVC means support vector machine classification.

ters, resulting in only 460 z − scores of 2D projection analysis and 191 z − scores of
3D analysis that were used as classification training data. The classification results
are shown in Figure 5.3a, 5.3b and Table 5.3. For both 2D projection analysis and 3D
analysis, decreased classification accuracy was obtained when subpopulation param-
eters were not taken into account. In 2D projection analysis, quadratic Bayes normal
classification still performed relatively better than other classification methods when
5 parameters were selected, but the error rate increased to 24.6% compared to the
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error rate of 20.2% when subpopulation parameters were used. In 3D analysis, lin-
ear Bayes normal classification performed the best with an error rate of 14.4% when
10 parameters were selected for classification. This is higher than 12.8% which is
the lowest error rate of linear Bayes normal classification when subpopulation pa-
rameters were included for classification. Next, we repeated the analysis without
moments, wavelet and intensity parameters. Only morphological parameters were
measured from the whole object population and the two subpopulations, resulting in
224 z− scores of 2D projection analysis and 210 z− scores of 3D analysis that were
measured from each well and used for classification. The classification results (Table
5.3; Figure 5.3c, 5.3d) showed that omission of moments and intensity parameters
increased the classification error from 20.2% to 21.8% for 2D projection analysis, from
12.8% to 14.4% for 3D analysis.

Previously, we have analyzed the phenotypic response of 3D cultured 4T1 cells to
the same classes of compounds (Table S3.8), using a 2D projection based profiling sys-
tem which extracted 598 parameters from each well. Forward feature selection with
the criterion of Mahalanobis distance was performed, and several classification meth-
ods were evaluated by 10-fold cross-validations. The best performance of classification
was obtained using quadratic Bayes normal classification with 8 selected parameters
and the corresponding error rate was 15.1%. In this chapter, we extended this 2D
projection analysis platform so that it can measure 794 parameters for each well.
However, the classification error increased to 20.2% using the same feature selection
and classification method (Table 5.3). We presume that this is due to the increased
sensitivity of hits identification as more parameters were used for PCA. It led to
the identification as hits of more relatively low concentrations (entinostat 0.03 µM;
genistein 0.316µM; imatinib mesylate 0.316µM; sunitinib maleate 0.316µM) which
were subsequently included in the classification training process. At these concentra-
tions, the differences in phenotypes between different compound classes are not yet
very significant and consequentially, the classification accuracy might be affected. To
confirm this hypothesis, we removed these four concentrations from the data set and
repeated the feature selection and classification based on the phenotype profiles of
794 z− scores. As expected, the smallest classification error reduced significantly to
14.3% (Table 5.3) when we applied quadratic Bayes normal classification. This error
rate was also slightly lower than the error rate of 15.1% which was obtained using the
598 parameters based platform and using the same concentrations for classification
training process, indicating that the additional parameters in fact contributed to the
classification of compounds.

Finally, we used the phenotype profiling from the blind test experiment to evaluate
the classifier built on the training data (Figure 5.2a and 5.2b). To obtain test data, we
firstly performed hit identification and selected the conditions which were identified as
hits in both 2D and 3D analysis. Next, for each z− score the average over replicates
was calculated and used as test data. In 10-fold cross-validation, quadratic Bayes
normal classification with 6 selected parameters showed the highest classification
accuracy for 2D projection analysis, while linear Bayes normal classification with 14
selected parameters performed relatively better than other classification methods for
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Table 5.3: Comparison of the smallest classification error rates obtained using different
conditions for training and different platforms for phenotype profiling. The profiling
system used to identified the active conditions are given in brackets.
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Figure 5.3: The contribution of different parameters to the phenotype classification for
both 2D projection analysis platform and 3D analysis platform. (a-d) Classification result
using multiple classification methods for (a) 2D projection based analysis without subpopulation
information, (b) 3D analysis without subpopulation information, (c) 2D projection based analysis
without intensity parameters, moments and wavelet parameters, (d) 3D analysis without intensity
parameters, moments and texture parameters. The classes were defined according to the Figure
5.2a, 5.2b. Feature selection and classification algorithms are the same as in the Figure 5.2.

3D analysis, respectively. According to this result, we trained a quadratic Bayes
normal classifier for 2D projection analysis based on the parameters shown in Table
S5.7. For 3D analysis, a linear Bayes normal classifier was trained based on the
parameters shown in Table S5.8. We tested these 2D and 3D classifiers with the
obtained test data set, and the results are shown in Table 5.4 and Table 5.5. The
3D classification accuracy of BCR-ABL inhibitors is decreased compared to the 2D
results, but the classification accuracy of VEGFR is improved. The overall error rate
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True Class
Output of classifier

BCR-ABL VEGFR EGFR HDAC

BCR-ABL 13 2 0 0

VEGFR 3 7 0 1

EGFR 0 0 3 0

HDAC 0 0 0 1

Table 5.4: Classification result for 2D analysis platform using 6 parameters. The
quadratic Bayes normal classifier achieved an overall error rate of 20.0%. The prior probability
of test data set was defined as class frequencies.

True Class
Output of classifier

BCR-ABL VEGFR EGFR HDAC

BCR-ABL 11 4 0 0

VEGFR 0 11 0 0

EGFR 0 0 3 0

HDAC 0 0 0 1

Table 5.5: Classification result for 3D analysis platform using 14 parameters. The linear
Bayes normal classifier achieved an overall error rate of 13.3%. The prior probability of test data
set was defined as class frequencies.

of the 3D classification was slightly lower than of the 2D classification.

5.3.3 Reproducibility of concentration dependent phenotypic tra-
jectories

For the 2D projection profiling platform, we were able to model the concentration
dependent trajectory in multidimensional principle component space for each com-
pound, using 2nd order polynomial regression models (chapter 3). Here we applied
the same method to model a trajectory of each compound for both 2D projection
based analysis and 3D analysis, based on the first two PCs. Next, we measured for
each compound in the blind test experiment the difference between its trajectories
and the trajectory of every compound in the first experiment, based on the coeffi-
cient of determination R2 (see Supplementary note of chapter 3 for details). In
theory, good reproducibility means that the same compound in two different experi-
ments should have a closer distance than the distance between different compounds.
Therefore, we predicted the name of each compound in the blind test experiment as
the compound based on its closest neighbor in the first experiment. In 2D analysis,
only 5 out of 11 compounds were correctly predicted, while 9 out 11 compounds were
correctly predicted in 3D analysis.
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5.4 Discussion and conclusions

In this study, we firstly extended our previous 2D projection based uHCA platform to
measure 794 parameters for the phenotype profiling of 3D cultured micro-tissues. As
the number of parameters increased from 598 to 794, an enhanced sensitivity of hits
identification was obtained, however, this compromised the classification accuracy
of compounds with different biological targets. We found that this is due to the
low compound concentrations which were now additionally identified as hits. The
corresponding phenotypes however, were not yet representative. When we removed
these lower concentrations, the classification accuracy increased significantly and even
surpassed the best classification performance obtained using the 598 parameters based
platform, indicating that the additional parameters contributed to the separation and
characterization of the phenotypes.

Next, we developed a new high-content analysis platform for the phenotype profil-
ing of 3D cultured micro-tissues, based on image stacks and reconstructed 3D struc-
tures. Novel segmentation algorithms and a reconstruction method were applied, and
290 parameters were automatically measured from each well. Although it managed to
extract phenotype properties in numerous aspects, including morphology, topology,
intensity, moments, texture, as well as subpopulations, compared to 794 parameters
that were measured by the 2D profiling platform, much less information was retrieved
from the 3D phenotype profiles. This was reflected in the sensitivity of hits identifi-
cation. We applied both analysis platforms for the identification of biologically active
concentrations of 12 compounds that significantly influenced the phenotypic devel-
opment of the 4T1 cells. More concentrations were identified as hits using our 2D
projection based platform, compared to the active concentrations detected by the 3D
analysis platform.

However, the 3D analysis platform showed some clear advantages in phenotype
characterization. We compared the classification accuracy between our 2D projection
analysis and our 3D analysis based on the same list of concentrations for training and
test. Moreover, we evaluated the reproducibility of phenotype for each platform,
by comparing the trajectory models of compounds in the blind experiment with
the trajectories of compounds in the first experiment. Both tests showed that the
3D analysis provided better performance, indicating that to systematically study
phenotypes associated with modulation of different cellular pathways, it is necessary
to extract information of phenotype in all 3 dimensions with great details.

However, 3D phenotype profiling costs much more computational time and mem-
ory than 2D projection profiling. For our 2D projection profiling, analyzing 384 wells
on a Windows 7 64-bits operation system with an Intel core i7-2600 processor and
16 GB of RAM took 280 minutes. To analyze the same wells with our 3D profiling
platform, 1150 minutes were required using the same hardware. One of the most
computational expensive procedures is deconvolution and 3D watershed masked clus-
tering, each of which took approximately 1.2 minutes to process one well. Considering
both computational expenses and hits identification ability of the 3D analysis plat-
form, we suggest that our 2D projection based platform might already be sufficient
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for primary screens where a large amount of compounds or even whole libraries of
RNAi’s need to be tested for activity identification. For screens which aim to system-
atically study the effect of biologically active compounds on cellular phenotypes, the
3D analysis platform is more recommended. Importantly, relative high concentrations
should be tested in this type of screen, for example concentrations at the IC50s and
higher, to achieve the maximum separation of phenotypes between different classes.

At this stage we compared our 2D projection and 3D phenotype profiling platform
so far in only one type of cell screen, with only a limited set of biologically active
compounds. We will further investigate the advantages and disadvantages for both
2D and 3D phenotype classification in other cancer cell types. This will further
streamline strategies for candidate drug discovery.
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Supplementary Note

1. Additional parameters measured for 2D projected analysis

Previously, we developed an automated image analysis platform to automatically
profile micro-tissue phenotypes on 2D projected images with 598 parameters (Table
S3.2-S3.5). Here, we extended this platform so that it can measure more parameters.

• (M30-M36)More classic morphological parameters in addition to the
classic morphological parameters represented in the Chapter 3 (M1-M29 )

– Rectangular bounding box of an object: For each binary object (either
nucleus or cell cluster), we measured the bounding rectangle which is the
smallest rectangle enclosing the object. Relative properties were mea-
sured for each bounding box including area (M30 ) and Area of object

Area of bounding box
(M31 ).

– Axis angle of an object (M32 ): Axis angle measures the angle between
the major axis and a line parallel to the x-axis of the image.

– Feret’s angle (M33 ): Feret angle measures the angle between the Feret’s
diameter and a line parallel to the x-axis of the image.

– Circularity of an object (M34 ): Circularity of each segmented object
(either nucleus or cell cluster) is defined as 4π × Area

Perimeter2 .
– Eccentricity of object (M35 ): Eccentricity of each segmented object (ei-

ther nucleus or cell cluster) is defined as
√

1− (Minor axis
Major axis)

2.

• Accumulated intensity (I141 ) calculated for each binary object masked region
on the projected grey value images, in addition to the intensity-based parame-
ters represented in the Chapter 3 (I1-I140 )

• (O1-O5 )The correlation between two fluorescence channels.

– For each cell cluster, we calculated the number of nuclei it contains (O1 ).
– For each cell cluster masked region, we calculated the Pearson correlation

coefficients of the pixel intensity between the projected image from the
Hoechst stained nuclei channel and the corresponding projected image
from the rhodamine stained F-actin channel (O2 ).

– For each cell cluster masked region ,we calculated the slop of the linear
correlation of the pixel intensity between the projected image from the
Hoechst stained nuclei channel and the corresponding projected image
from the rhodamine stained F-actin channel (O3 ).

– The Pearson correlation coefficients of intensity of all pixels between the
projected images of two channels (O4 ).

– The slop of the linear correlation of intensity of all pixels intensity between
the projected images of two channels (O5 ).

134



Comparison of 2D projection based method and a 3D method

2. Pseudo code for 10-fold cross-validation
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Supplementary figures

Figure S5.1: Phenotypes of 4T1 3D micro-tissues after exposure to compounds with
different biological targets. Composite, projected 2D image slices of micro-tissues after be-
ing exposed to three compounds with different biological targets and DMSO control. The image
stacks were obtained from the rhodamine stained F-actin channel (left panel) and corresponding
reconstructed 3D cell cluster structures retrieved from the same image stacks (right panel). Concen-
tration of all compounds shown here was 0.316 µM. Compared to the phenotype of DMSO control,
dasatinib inhibited branching but not proliferation so that bigger cell clusters were formed, while
entinostat induced much thinner branches. Sorafenib tosylate caused formation of much shorter
branches, indicative of inhibition of invasion. Scale bar represents 200µm.
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Figure S5.2: Comparison of classification accuracy between our 2D projection analysis
platform and 3D analysis platform. (a) Four classes of compounds were defined according
to their biological activity. Only concentrations that were identified as an active concentration in
both analysis platforms were included for classification training. The corresponding compounds
and number of data points are also shown in the tables. (b-c) Classification result using multiple
classification methods for (b) 2D projection based analysis, (c) 3D analysis. Feature selection with
search algorithm “forward” and criterion “Mahalanobis distance” was applied to detect the optimal
number of features. For each classification method and each number of selected features, 10-fold
cross-validation was carried out resulting in 10 error rates. The average error rates are shown in the
chart with standard deviation as error bar. SVC means support vector machine classification.
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Supplementary tables

Parameter index Parameter Description
From 1-6 The mean of M30-M35 of all cell clusters in one image
From 7-12 The standard deviation of M30-M35 of all cell clusters in one image
From 13-18 The sum of M14-M19 of cell clusters
From 19-32 The mean of M1, M2, M5-M8, M12, M13 and M30-M35 of all nuclei in

one image
From 33-46 The standard deviation of M1, M2, M5-M8, M12, M13 and M30-M35 of

all nuclei in one image
From 47-95 The mean of S1-S49 of all nuclei in one image
From 96-144 The standard deviation of S1-S49 of all nuclei in one image
From 145-149 The mean of I137-I141 of all cell clusters in one image
From 150-154 The standard deviation of I137-I141 of all cell clusters in one image
From 155-159 The mean of I137-I141 of all nuclei in one image
From 160-164 The standard deviation of I137-I141 of all nuclei in one image
From 165-170 The mean of M30-M35 of cell clusters which are classified to spherical object
From 171-176 The standard deviation of M30-M35 of cell clusters which are classified to

spherical object
From 177-182 The mean of M30-M35 of cell clusters which are classified to branched object
From 183-188 The standard deviation of M30-M35 of cell clusters which are classified to

branched object

Table S5.1: Profiling based on the 2D projection: List of parameters, in additional
to the parameters described in Table S3.2-S3.5. The definition of parameters M1-M29 ,
S1-S49 and I1-I140 is in the Chapter 3-Methods section.

Parameter Index Parameter Description
From 1-3 The mean of O1-O3 of all cell clusters in one image
From 4-6 The standard deviation of O1-O3 of all cell clusters in one image
7 O4
8 O5

Table S5.2: Profiling based on the 2D projection: List of parameters measured on the
correlation between two fluorescence channels. The definition of parameters O1-O5 is in
Supplementary note.
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Parameter Index Parameter Description
1 The number of cell clusters
2 The total number of pixels assigned to the segmented cell clusters regions
From 3-4 The total volume and total surface of cell clusters
5 Sphericity (Table 4.2)
6 The total surface to the total volume ratio (SAV) (Table4.2)
7 The thickness of the 3D bounding rectangular box for the micro-tissue network
From 8-9 The average and standard deviation of the number pixels assigned to each cell

cluster
From 10-19 The average and standard deviation of the volume, surface, sphericity, solidity

and SAV of cell clusters (Similar to the measurement of nuclei in Table 4.1)
From 20-25 The average and standard deviation of the width, height and thickness of 3D

rectangular bounding boxes of cell clusters (Similar to the measurement of nuclei
in Table 4.1)

From 26-29 The average and standard deviation of the volume and surface of the convex hull
of cell clusters: Convex hull was calculated using the QuickHull algorithm as
described in Table 4.1

From 30-35 The average and standard deviation of eigenvalue λ1 (the shortest), λ2 (the
median), λ3 (the longest), of cell clusters. (Similar to the measurement of nuclei
in Table 4.1)

From 36-41 The average and standard deviation of principle axis I1, I2, I3 of cell clusters.
(Similar to the measurement of nuclei in Table 4.1)

From 42-44 Eigenvalues (the shortest, the median and the longest) measured when
considering all binary cellular regions as one object (Table 4.2).

From 45-47 Principle axises measured when considering all binary cellular regions as one
object (Table 4.2).

From 48-53 The sum of #end point, #junction point, #slab point, #triple point, #quadruple
point and #single branch of cell clusters (see Chapter 4 for details).

54 The sum of the length of all single branches
From 55-66 The average and standard deviation of #end point, #junction point, #slab point,

#triple point, #quadruple point and #single branch of cell clusters.
67 The average branch length of cell clusters
From 68-69 The average and standard deviation of the accumulated branch length of cell

clusters
From 70-72 The maximum average branch length, maximum branch length and maximum

accumulated branch length of cell clusters
73 The number of nuclei
74 The total number of pixels assigned to the segmented nuclear regions
From 75-76 The total volume and total surface of nuclei
From 77-110 Parameter index from 8-41 but measured for nuclei (see Table 4.1 for details).
111 Average density of nuclei: average peer-to-peer distance between nuclei. (see

Table 4.1 for details).

Table S5.3: Profiling based on the 3D analysis: List of morphological parameters and
topological parameters calculated on the reconstructed cell clusters and nuclei for the
whole population. “#” means “number of”
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Parameter Index Parameter Description
1 The average intensity of deconvolved image stack from the rhodamine channel
2 The intensity standard deviation of deconvolved image stack from the rhodamine

channel
3 The maximum intensity of deconvolved image stack from the rhodamine channel
4 The average intensity of deconvolved image stack from the Hoechst channel
5 The intensity standard deviation of deconvolved image stack from the Hoechst

channel
6 The maximum intensity of deconvolved image stack from the Hoechst channel
7 The average intensity gradient magnitude of deconvolved image stack from the

rhodamine channel
8 The standard deviation of intensity gradient magnitude of deconvolved image

stack from the rhodamine channel
9 The maximum intensity gradient magnitude of deconvolved image stack from the

rhodamine channel
10 The average intensity gradient magnitude of deconvolved image stack from the

Hoechst channel
11 The standard deviation of intensity gradient magnitude of deconvolved image

stack from the Hoechst channel
12 The maximum intensity gradient magnitude of deconvolved image stack from the

Hoechst channel

Table S5.4: Profiling based on the 3D analysis: List of intensity parameters calculated
on the deconvolved image stack for two fluorescence channels.
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Parameter Index Parameter Description
From 1-16 8 Zernike moments measured for the rhodamine channel and Hoechst channel
17 Haralick parameter measured for the rhodamine channel: Average of angular

second moment
18 Haralick parameter measured for the rhodamine channel: Range of angular

second moment
19 Haralick parameter measured for the rhodamine channel: Average of contrast
20 Haralick parameter measured for the rhodamine channel: Range of contrast
21 Haralick parameter measured for the rhodamine channel: Average of correlation
22 Haralick parameter measured for the rhodamine channel: Range of correlation
23 Haralick parameter measured for the rhodamine channel: Average of sum of

square of variance
24 Haralick parameter measured for the rhodamine channel: Range of sum of square

of variance
25 Haralick parameter measured for the rhodamine channel: Average of inverse

difference moment
26 Haralick parameter measured for the rhodamine channel: Range of inverse

difference moment
27 Haralick parameter measured for the rhodamine channel: Average of sum average
28 Haralick parameter measured for the rhodamine channel: Range of sum average
29 Haralick parameter measured for the rhodamine channel: Average of sum variance
30 Haralick parameter measured for the rhodamine channel: Range of sum variance
31 Haralick parameter measured for the rhodamine channel: Average of sum entropy
32 Haralick parameter measured for the rhodamine channel: Range of sum entropy
33 Haralick parameter measured for the rhodamine channel: Average of entropy
34 Haralick parameter measured for the rhodamine channel: Range of entropy
35 Haralick parameter measured for the rhodamine channel: Average of difference

variance
36 Haralick parameter measured for the rhodamine channel: Range of difference

variance
37 Haralick parameter measured for the rhodamine channel: Average of difference

entropy
38 Haralick parameter measured for the rhodamine channel: Range of difference

entropy
39 Haralick parameter measured for the rhodamine channel: Average of info measure

of correlation 1
40 Haralick parameter measured for the rhodamine channel: Range of info measure

of correlation 1
41 Haralick parameter measured for the rhodamine channel: Average of info measure

of correlation 2
42 Haralick parameter measured for the rhodamine channel: Range of info measure

of correlation 2
From 43-68 Parameter index from 17-42 but for the Hoechst channel

Table S5.5: Profiling based on the 3D analysis: 3D Zernike moments and Haralick
texture parameters calculated for two fluorescence channels.

141



Chapter 5

Parameter index Parameter Description
1 The percentage of cell clusters classified as spherical objects
From 2-35 The responding morphological parameters(Table S5.3 parameter index from 8 to

41) calculated from the cell clusters which are classified as spherical objects
From 36-69 The responding morphological parameters(Table S5.3 parameter index from 8 to

41) calculated from the cell clusters which are classified as branched object
From 70-84 The responding topological parameters(Table S5.3 parameter index from 55 to

69) calculated from the cell clusters which are classified as spherical object
From 85-99 The responding topological parameters(Table S5.3 parameter index from 55 to

69) calculated from the cell clusters which are classified as branched object

Table S5.6: Profiling based on the 3D analysis: List of parameters calculated for the
subpopulations of cell clusters.

Parameter index Parameter Description
1 The average minor axis of cell clusters that are classified as spherical objects
2 The standard deviation of the intensity standard deviation of cell clusters that are

classified as spherical objects
3 The average solidity of cell clusters that are classified as branched objects
4 The average of cell clusters’ minimum intensity
5 The sum of number of quadruple point of cell clusters
6 The average Zernike moment (order 34) of cell clusters

Table S5.7: A list of 2D projection profiling parameters that were most frequently
selected as discriminative parameters for the compounds classification, using feature
selection algorithm in each round of 10-fold cross-validation.

Parameter index Parameter Description
1 The standard deviation of convex hull’s volume of cell clusters
2 The total number of end point
3 The standard deviation of eigenvalue (the longest) of cell clusters that are

classified as spherical objects
4 The standard deviation of eigenvalue (the shortest) of cell clusters that are

classified as spherical objects
5 The standard deviation of solidity of cell clusters
6 The standard deviation of branch length of cell clusters that are classified as

branched objects
7 The average volume of convex hull of cell clusters that are classified as branched

objects
8 The average number of junction points of cell clusters that are classified as

branched objects
9 The standard deviation of number of triple points of cell clusters that are

classified as branched objects
10 The standard deviation of bounding box’s thickness of cell clusters that are

classified as branched objects
11 The average surface to volume ratio(SAV) of cell clusters
12 The number of cell clusters
13 The average intensity of deconvolved image stack from the rhodamine channel
14 The standard deviation of solidity of cell clusters that are classified as branched

objects

Table S5.8: A list of 3D profiling parameters that were most frequently selected as
discriminative parameters for the compounds classification, using feature selection al-
gorithm in each round of 10-fold cross-validation.
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Discussion and conclusions

6.1 Developing ultra-high content analysis platforms for
high-throughput screening which do not require high
resolution microscopes

Over the past years, high-throughput and high-content screening has been developed
and successfully applied in various screens to identify the functional role of small
molecules, peptides or RNA interference (RNAi) molecules by investigating cellu-
lar phenotypic development after exposure to these agents. With advanced labora-
tory robotics and automated microscopy systems, high-throughput and high-content
screening enables thousands of experiments to be performed simultaneously with large
volumes of microscope images generated automatically. Therefore the term “high-
throughput” is used. The term “high-content” refers to the information of cellular
phenotypic changes and their dynamics contained in the microscope images. With
an increasing interest of observing more subtle changes for more complex cellular
phenotypes, several research groups have made efforts to improve microscopy tech-
niques or implement high resolution microscopes such as spinning disc confocal mi-
croscopy [1,2] or super resolution microscopy [3,4] for the purpose of high-throughput
and high-content screening, thus providing improved sensitivity and image quality
and resolution. However, these technologies are often too expensive and require ma-
jor technical modifications for wider availability. Therefore many laboratories cannot
afford these techniques.

In this thesis, we aimed to develop robust image analysis platforms that do not
require high resolution microscopes for high-throughput and high-content screening.
In chapter 2, we investigated the NF-κB nuclear translocation dynamics based on a
confocal fluorescence microscope. In order to study a sufficient number of cells from
each siRNA treatment, a dry Plan Apochromat objective with relatively low magni-
fication (20×) and low numerical aperture (0.75 NA) was used to acquire time-lapse
image series. The biggest challenge was to resolve individual cells, especially in the
regions where cells were touching each other or even overlap with each other. To solve
this problem, we developed a novel segmentation method to estimate single cellular
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area based on the topology of cells. We firstly applied watershed masked clustering
(WMC) [5, 6] to detect single nuclear regions. Subsequently, the Voronoi diagram
was generated to estimate the edges of cells. Finally, based on the convention that
cells are ellipsoid-like objects, the best-fit ellipse in each Voronoi cell was calculated
to refine single cell regions.

In chapters 3, 4 and 5, two images analysis platforms were developed to extract
phenotype characteristics of 3D cultured micro-tissues from wide-field microscope im-
age stacks, which contain both in-focus and out-of-focus signals due to the limited
depth of field. One platform presented in chapter 3 is based on the 2D projection. It
started with compositing a single image slice by projecting only in-focus regions from
each slice of image stacks. Next, watershed masked clustering was applied on the
projected 2D slice to segment individual nuclei, while a local Niblack algorithm was
used to define multi-cellular regions. Finally, quantification was carried out on the
segmentation results and projected images, resulting in 598 parameters measured for
the phenotypic profiling of each well. In chapter 4, we extended the 2D projection
based analysis platform to enable 3D phenotypic profiling of micro-tissues. A decon-
volution technique was applied to each image stack to remove out-of-focus signal by
computing a point spread function (PSF) according to the optical principles. After
deconvolution, we applied 3D watershed masked segmentation to detect individual
nuclei. To define multi-cellular micro-tissue regions, we developed a novel segmen-
tation method based on a sharpness level metric. By incorporating this metric in a
K-means clustering method, correct intensity variation of background was estimated
and a threshold was calculated dynamically for each slice. To reduce the elongated
effect of nuclei in z-direction, resulting from low NA and low vertical resolution,
we introduced a simple normalization method using the image of fluorescent beads
with known size. Subsequently, 3D geometric models of nuclei and multi-cellular
structures (also refers to as cell clusters) were reconstructed to perform phenotype
quantification.

6.2 Balance between “high-content” and “high-throughput”

Image quality directly depends on several factors such as imaging modality, resolu-
tion and magnification of objective, and imaging sampling. To obtain higher quality
of images, more advanced imaging techniques, higher magnification and resolution,
or smaller sampling size are often required, however, this limits the throughput in
high-content screening applications due to increased imaging time and computational
complexity. In order to find the balance between “high-content” and “high through-
put”, this thesis optimized the imaging techniques, sampling sizes and image analysis
modalities for different screening purposes.

6.2.1 Imaging techniques: Confocal or wide-field microscope

Compared to wide-field microscopy, confocal microscopy provides much higher resolu-
tion image stacks for 3D imaging, as each generated image slice contains only in-focus
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information from the focal plane. However, the slow scanning process limits their ap-
plication in high-throughput screening. Especially when the cellular structure under
investigation is at a micro-tissue level, a large amount of imaging time is required
to process a whole plate and consequently bleaching of the fluorescence of the spec-
imen is caused. Therefore, wide-field microscopy is an alternative solution for the
high-throughput and high-content screening of 3D cultured micro-tissues. Though
the images generated by wide-field microscopes contain out-of-focus regions due to
the limited depth of field, by developing an efficient image analysis method for wide-
field microscope, we retrieved quantification results comparable to results generated
with confocal microscope. In chapter 4, we developed an automated image analysis
platform to reconstruct 3D micro-tissue structures from wide-field microscope im-
ages, and then profile the reconstructed structures with phenotypic parameters. We
evaluated these parameters by comparing with the same parameters measured from
the confocal microscope images. No significant difference was obtained, indicating
that with advanced image analysis techniques, wide-field microscopy might already
be sufficient for the high-content screening of 3D cultured micro-tissues to establish
changes in cellular phenotypes.

6.2.2 Sampling sizes: undersampling and oversampling

For imaging, ideal sampling size is defined as the largest distance between two signal-
recording points that enables to reconstruct the original continuous signal without
any information loss. According to the Nyquist-Shannon sampling theorem, the con-
ventional fluorescence wide-field microscope that was used in chapters 4 and 5
should have the ideal axial sampling size (also referred to as pixel size) of 679 nm and
vertical sampling size (also referred to as z-sampling step size) of 16882 nm. However,
due to the limitation of the microscope system, which is that the smallest sampling
size in axial direction is 16000 nm, almost 24 times of the ideal axial sampling size,
an undersampling problem was caused. As a consequence, the performance of the
deconvolution was degraded as it lacked necessary information to compute the cor-
rect PSF, and the segmentation and reconstruction results were not optimal. In this
thesis, we could not intensively evaluate the influence of undersampling on decon-
volution, segmentation and reconstruction due to the limitation of the microscope
system. Nevertheless, it should be taken into account in future research.

Oversampling is the effect of having an actual sampling size that is smaller than
the ideal sampling size. Excessive oversampling in z-direction would significantly
increase the imaging time and number of image slices that need to be processed.
However, the impact of oversampling on the image analysis results is still unknown.
To assess this impact, in chapter 4 we compared the phenotypic parameters mea-
sured from the wide-field microscope image stacks acquired using different z-sampling
sizes (5000nm, 10000nm, 15000nm and 20000nm) with the same parameters measured
from the confocal microscope images with z-sampling size of 5000nm. To our surprise,
oversampling by using z-sampling size 5000nm did not help us to get more comparable
results to the confocal microscope. Compared with the z-sampling size 15000nm, the
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differences of parameters between the wide-field microscope images with z-sampling
size 5000nm and confocal microscope images are bigger, indicating that oversampling
does not only increase the imaging time, computational complexity and image storage
capacity, but also impairs the quantification results.

6.2.3 Image analysis modalities: 2D projection or 3D reconstruc-
tion

To investigate the phenotypic organization of 3D cultured micro-tissues for high-
throughput screening, we developed two image analysis platforms to perform high-
content analysis. The platform described in chapter 3 started with a 2D projection
process to collapse each image stack into a single image slice, and followed by pheno-
typic profiling based on this single slice. The second platform described in chapter
5 was able to reconstruct 3D structures from image stacks. Subsequently, phenotypic
profiling was performed either on the reconstructed structures or directly on the image
stacks. The advantage of the 2D projection platform is firstly reflected in the imaging
time and image size. 2D projection does not require ideal z-sampling size and there-
fore we set up a z-sampling size (50000nm) much bigger than the ideal z-sampling
size (16882nm), which significantly reduced the imaging time, as well as the image
stack size. Another advantage is computational simplicity. Without computational
expensive procedures such as deconvolution, 3D segmentation and 3D reconstruction,
the whole analysis process is fast and not limited by available computer memory or
processor speed. We tested this platform on a high-content screening of mouse breast
cancer cells (4T1 cells) in a 384-well plate format using an Intel i7 2600 model with
16 GB of RAM and Windows 7 64-bits operation system. Our complete method took
approximately 280 minutes of computational time for processing 384 wells, this is
much faster than the analysis performed with our 3D analysis platform which took
1150 minutes for the same number of wells. The disadvantage of this platform is the
fact that it discards the depth information of tissue development, which may signif-
icantly influence the phenotype characterization and classification. Our second, 3D
analysis platform fills this gap by establishing a real 3D analysis platform that is able
to reconstruct 3D micro-tissue structures and measure phenotypic parameters based
on 3D information. However, this achievement is at the cost of almost 5 times the
computational time that is needed to complete the 2D projection based platform for
processing 384 wells. Furthermore, how crucial the information in z-direction that this
3D platform delivers in phenotype characterization and classification of mouse breast
cancer 4T1 cells, is unknown. To answer this question, in chapter 5 we statistically
assessed the performance of the two image analysis platforms in a 4T1 cells screen,
where the 4T1 cells were cultured in 384-well high-content imaging micro-plates and
exposed to 12 compounds at 6 different concentrations in quadruplicate. We firstly
compared the sensitivity of both platforms according to their ability to identify active
concentrations of compounds (also referred to as “hits”) that significantly affect the
invasion of the 4T1 cells. As a result, more concentrations were identified as effective
using the platform based on 2D projection, reflecting its higher sensitivity in terms
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of hits identification. Secondly, we labeled the compounds according to their bio-
logical activity and applied various classification techniques based on the phenotypic
parameters. The classification accuracy of the 3D platform was slightly higher than
the 2D projection platform, indicating a benefit of incorporating spatial information
in z-direction for phenotype characterization and classification. In the end, we tested
both platforms on the reproducibility of concentration dependent phenotypic trajec-
tory for each compound. The method to model the phenotypic trajectory is described
in chapter 3. The 3D analysis platform provided much higher reproducibility than
the 2D projection platform, further confirming the superiority of the 3D analysis in
respect to phenotype characterization.

6.3 Ultra-high content analysis

Advances in high throughput technology have enabled collecting thousands of images
from large-scale screens in a single day [7–10]. However, the image analysis technique
is still a bottleneck. Several pioneering screens have either relied on visual scoring
by experts [11, 12], or developed their in-house automated analysis software to mea-
sure single or at most few phenotypic parameters [13]. Those parameters are often
too specific for a certain type of phenotype and hence not suitable for other screens.
Moreover, those methods largely depend on the expertise of biologists, but often even
biologists are not certain of all possible effects. Consequently, many details were lost
and subtle changes may not have been detected. In this thesis, our goal was to de-
velop ultra-high content analysis platforms which should be able to collect maximum
information of phenotypes from images, and applied for various types of screening
assays. Compared to other existing high-content analysis platforms, the novelties of
our platforms were presented in its ability to extract subpopulation information and
its ultra-high level in information content.

6.3.1 Subpopulations

Many researchers have found that responses of cells are inhomogeneous [14–16]. For
example, in chapter 2 we showed that not all HepG2 cells respond to the TNFα
stimulation synchronously. Therefore, subpopulations should be taken into account
and this requires single cell measurement. In this thesis, all developed image analysis
platforms are able to perform single-object measurements in order to extract inhomo-
geneous, cell subpopulation information. In chapter 2, we firstly measured the time
course of NF-κB nuclear translocation for each single HepG2 cell. Afterwards, the
cells were categorized into different subgroups according to the number of transloca-
tion peaks, and finally cell subpopulations were investigated before and after TNFα
stimulation. In chapter 3, we embed an automated classification system in the de-
veloped platform to automatically distinguish the spherical cell clusters and branched
cell networks. Subsequently, the subpopulation related parameters were collected and
included as a part of phenotypic profiling. In order to assess the value of these sub-
populations information, we performed compounds clustering and classification with
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and without subpopulation parameters on the 3D cultured 4T1 cells screen, where
cells were exposed to 29 compounds that can be categorized according to their bio-
logical target. The result showed that excluding subpopulation parameters resulted
in a failure to co-cluster compounds with the same biological activity and decreased
classification accuracy. Similarly, the 3D analysis platform developed in chapter 5
classified cell clusters to either spherical structure or branched structure according to
the sphericity and number of branches. Extracting subpopulation related parameters
and using them for compounds classification increased the classification accuracy,
further confirming the importance of subpopulation information and which should be
taken into account for phenotype characterization.

6.3.2 Ultra-high level in information content

Most of NF-κB translocation studies only investigate the dynamics of NF-κB nuclear
translocation through the time course of translocation profiles. We have extended our
system so that it can automatically quantify 26 analogue parameters for each individ-
ual translocation profile, such as the number of translocation peaks and time between
consecutive peaks [5]. These parameters can be used to distinguish inhomogeneous
cell populations and might be a powerful tool to study heterogeneous cell behavior in
the future. Both image analysis platforms we developed in chapter 3 and chapter 5
can measure not only classic morphological parameters, but also topological param-
eters, intensity properties, texture, moments, as well as subpopulation information,
therefore providing the full spectrum of phenotypic information. This is not only ben-
eficial for detecting subtle changes that would otherwise be missed, but also enables
system-level studies of the full range of phenotype characteristics. For example, we
have showed in chapter 3 that the concentration dependent phenotypic trajectory
for each compound tested in the 4T1 cells screen could be modeled based on the full
spectrum of phenotypic characteristics. We also used the phenotypic trajectories to
successfully co-cluster compounds with the same biological activity. For both the
2D projection based platform and 3D analysis platform, the compounds classification
according to their biological activity was achieved with high classification accuracy.

Another advantage of measuring the full spectrum of phenotypic information is
robustness. It enables us to analyze 3D-cellular phenotypes under a wide variety of
conditions. In chapter 3, we tested our analysis platform on a high-content screening
of 44 known human breast cancer cell lines that have been categorized as basal-A,
basal-B, luminal or luminal/ERBB2+ based on their gene expression profiles. The
result showed that those cell lines can be correctly classified based on the phenotypic
profiling with a classification error rater less than 6%. Although initially the use of all
parameters may seem redundant, our feature selection methodologies automatically
identify those features that contribute most to the separation and characterization
of the particular phenotypes under study. In addition to the initial application of
our analysis platforms in the 4T1 cell screen and classification of 44 human breast
cancer cell lines, described in chapter 3 and 4, they have been successfully used in
various other screens, such as compound screens in invasive prostate cancer cells and
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invasive lung cancer cells (not yet published), confirming their robustness and their
wider applicability.

6.4 Future perspective

With the successful development of advanced image analysis platforms for high-
throughput and high-content screens, we are able to extract a wealth of information
from screening images. The platform developed for analyzing NF-κB nuclear translo-
cation in chapter 2 can provide a time course profile of translocation dynamics and
26 analogue parameters for each individual cell, as well as for the whole population.
In chapter 5, the 2D projection based platform we developed to profile the pheno-
type of 3D cultured micro-tissues can measure up to 794 parameters, while the 3D
analysis platform can measure up to 290 parameters. Now the bottleneck is moving
downstream to the data analysis and data mining. How to fully explore these rich
datasets to reveal cellular signaling networks, is a challenge. Most of the data analy-
sis methods for high-throughput and high-content screening still remain at the stage
of hit identification. Quality control such as evaluating Z’-factor based on a single
parameter is already out of date. For data mining, we showed a few applications
in this thesis. For example, we applied phenotype clustering and classification on
the 3D cultured 4T1 cell screen to characterize the compounds according to their
biological target. For the NF-κB nuclear translocation assay, we applied this method
to identify novel regulators of TNFα-induced apoptosis in human HepG2 cells [17].
However, more powerful tools and systematical methodologies are still needed to
relate phenotype characteristics to cellular pathways.

In order to extract reliable information from microscope images in an efficient
way, more efforts are required to improve current image analysis methods for high-
throughput and high-content screening. For example, the platform developed in
chapter 3 still requires human interaction to train an embedded classifier for rec-
ognizing different subpopulations, though human interaction is needed only once for
the screening of all similar phenotype structures. A built-in clustering which is able
to automatically group subpopulations would improve the automation level so that
human labor is not required in the whole image analysis process. Moreover, poten-
tial subpopulations which are not identified by human vision would be detected. In
chapter 4, a simple method to correct nuclear size in z-direction was performed using
images of fluorescent beads with known size. However, more advanced methods to
normalize the dimension of multi-cellular structures despite of their irregular size and
shapes are still needed. Another direction to improve our image analysis methods is
to increase the analysis time efficiency, where enabling multi-thread processing on a
computer cluster would greatly contribute.

Although the impact of imaging resolution on the quantification result was not
extensively investigated in this thesis, we should bear in mind that different imaging
modalities and image resolutions would generate different quantification results and
therefore may lead to a different conclusion. In chapter 4, we showed that different z-
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sampling sizes influenced the morphological parameters, topological parameters and
moments obtained from our image analysis platform, and therefore an optimal z-
sampling size was defined for high-content screening of 3D cultured micro-tissues.
In the future, sampling in axial direction should also be optimized, as well as other
imaging setting.

The integration of high-throughput and high-content screening with other omics
technologies is getting more and more attention. For example, a study recently
integrated a high-content RNAi screen with phosphoproteomics and transcriptomics
to unravel DNA damage response signaling processes in mouse embryonic stem cells
treated with cisplatin [18]. Another example is the integration of our NF-κB nuclear
translocation assay in a RNAi screen to identify novel regulators of TNFα-induced
apoptosis in human HepG2 cells [18]. This study used an in vitro liver cell model
and methods such as high-content imaging and functional genomics, which brought
us closer to understanding the molecular mechanisms of chronic inflammation and
drug-induced liver injury. All those studies showed that combining different omics
data with high-throughput and high-content screening would piece together a more
comprehensive picture of signaling networks. Furthermore, fueled with mathematical
modeling, integration of high-throughput and high-content screening with other omics
technologies would open a new era for systems biology.
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Nederlandse samenvatting

High-throughput en high-content beeldanalyse is een krachtige methode om fenotyp-
ische responsen van cellen en multicellulaire structuren te associëren met veranderin-
gen in hun functioneren die worden veroorzaakt door kleine moleculen, peptiden of
interferentie RNA (RNAi), wat uiteindelijk de identificatie van nieuwe geneesmiddel
targets en/of nieuwe geneesmiddelen mogelijk maakt. Echter, een aantal beperkingen
van de huidige beeldanalyse methoden beperken de toepassing van high-throughput
en high-content screening tot alleen de identificatie van biologisch actieve verbindin-
gen of genetische componenten. Het volledige potentieel van high-throughput en
high-content screening om systematisch fenotypes te bestuderen, bijvoorbeeld om
fenotypes te karakteriseren en te associëren met modulatie van cellulaire signaal
mechanismen, wordt nu nog onderschat. Een belangrijke beperking is dat huidige
beeldanalyse methoden allen een aantal typische eigenschappen meten die gebaseerd
zijn op bekende fenotypische veranderingen die plaats vinden onder vergelijkbare ex-
perimentele omstandigheden. Daarom worden nog onbekende fenotypes en subtiele
veranderingen niet herkend en is een complete karakterisering van fenotypes niet mo-
gelijk. Een andere belangrijke beperking van de huidige analyse methoden is het
gebrek aan een meer algemene toepassing omdat veel van deze methoden alleen zijn
ontwikkeld voor bepaalde fenotypes en cellen. Nog belangrijker is dat deze methoden
sterk afhankelijk zijn van de resolutie van de beelden. Wanneer de beeld resolutie
en vergroting relatief laag zijn, kunnen deze methoden niet goed individuele cellen
fenotyperen. Als gevolg is heterogeen gedrag van cellen niet waarneembaar.

Eén van de doelstellingen van het onderzoek dat in dit proefschrift wordt gep-
resenteerd is de ontwikkeling van robuuste en efficiënte beeldanalyse methoden die
geschikt zijn voor studies naar individuele cellen die niet zijn beperkt tot specifieke
cel types, cel dichtheden of een specifieke beeldkwaliteit. Bovendien moet er rekening
gehouden worden met heterogeniteit van subpopulaties van cellen en moet relevante
informatie kunnen worden verzameld voor fenotypische karakterisering. In hoofdstuk
2 hebben we een dergelijke methode ontwikkeld om de dynamiek van translocatie van
NF-κB naar de kern te bestuderen in enkelvoudige cellen na stimulatie van de NF-κB
route na externe stimulatie. We hebben aangetoond dat deze methode kan worden
toegepast bij confocale fluorescentie microscopie met relatief lage vergroting (20×) en
lage numerieke apertuur (0.75NA). Alhoewel de cellijn die we hebben gebruikt om de
methode te valideren, samengepakte en op elkaar groeiende cellen vertoonde wat de
mogelijkheid om losse cellen te analyseren moeilijker maakte, hebben we door twee
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nieuwe segmentatie methoden BEVC en WMC te introduceren toch enkelvoudige
cellen en plaatsen van kernen kunnen definiëren. In dit onderzoek werden subpopu-
laties van cellen gedefinieerd op grond van het aantal translocaties van NF-κB naar de
kern. Een vergelijking van de grootte van de verschillende subpopulaties liet zien dat
BMS-345541 (een IKK-remmer die de translocatie van NF-κB naar de kern voorkomt)
een effect heeft op de translocaties van NF-κB naar de kern door het percentage van
cellen met 3 translocatie pieken te verminderen, en het percentage van cellen met
maar één piek te vergroten. Dit effect zou niet te zien zijn geweest in de gemiddelde
respons van de hele cel populatie.

Een andere belangrijke doelstelling van het onderzoek dat in dit proefschrift wordt
gepresenteerd is de ontwikkeling van een beeldanalyse systeem voor de gedetailleerde
en complete karakterisering van cellulaire fenotypes uit beelden met lage resolutie.
In hoofdstukken 3, 4 en 5 zijn hiervoor twee beeldanalyse methoden ontwikkeld
om de fenotypes te karakteriseren van in 3D geweekt microweefsel uit planparallelle
beelden die waren verkregen met conventionele wide-field fluorescentie microscopie.
Eén system dat beschreven wordt in hoofdstuk 3 is gebaseerd op de projectie van
de planparallelle beelden naar een 2D beeld. Dit begint met het samenstellen van een
enkel beeld door projectie van alleen die gedeelten van de planparallelle beelden die in
het scherptevlak liggen. Vervolgens werd WMC toegepast op het geprojecteerde 2D
beeld om de individuele kernen te segmenteren, terwijl een lokaal toegepast Niblack
algoritme werd gebruikt om multicellulaire structuren te definiëren. Tenslotte werd
fenotypering uitgevoerd op de gesegmenteerde resultaten en geprojecteerde beelden.
In hoofdstuk 4 hebben we de op 2D projectie gebaseerde methode uitgebreid om
3D fenotypering van microweefsel mogelijk te maken. Eerst werd een deconvolutie
techniek toegepast op iedere opeenvolgende reeks van beelden om informatie die niet
in het scherptevlak lag te verwijderen. Vervolgens werd een 3D WMC methode geïn-
troduceerd om iedere afzonderlijke kern te definiëren, en een nieuwe methode om
de scherpte te schatten werd ingebouwd in de methode om multicellulaire gebieden
te segmenteren. Na corrigeren van een effect dat de kernen in de z-richting te lang
maakt, werden 3D geometrische modellen gemaakt van kernen en multicellulaire ge-
bieden om fenoypes te typeren. Zowel in de op 2D projectie gebaseerde methode als
in de 3D fenotyperings methode (hoofdstukken 3 en 5) is een automatische clas-
sificering ingebouwd om ronde celclusters en vertakte celnetwerken te onderscheiden.
We hebben statistisch aangetoond dat het gebruik van parameters die kenmerkend
zijn voor de subpopulaties in de fenotypische classificering de nauwkeurigheid van
classificeren verhoogd, wat het belang van informatie van de subpopulaties voor feno-
typering bevestigd. Om de bredere toepassing van onze methode te onderzoeken,
hebben we de methode beschreven in hoofdstuk 2 gebruikt om 44 bekende humane
borstkanker cellijnen te classificeren gebaseerd op het profileren van hun fenotypes.
Er werd een hoge nauwkeurigheid van classificatie verkregen, waarmee een bredere
toepassing van onze methode wordt gesuggereerd. Wij hebben beide methoden ook
toegepast in verschillende andere screens, zoals een screen van chemische verbindin-
gen in invasieve PC3 cellen en invasieve longkanker cellen. Dit toont ook aan dat de
methoden breder toegepast kunnen worden.
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Nog een ander doel van het onderzoek beschreven in dit proefschrift is het on-
twikkelen van een ‘ultra-high content’ beeldanalyse methode die in staat moet zijn
het maximum aan informatie te verzamelen uit fenotypes. In hoofdstuk 2 hebben
we onze methode zodanig uitgebreid dat deze in staat is om 26 analoge parameters
te kwantificeren voor ieder translocatie profiel van NF-κB naar de kern zoals aantal
translocatie pieken, en tijd tussen twee opeenvolgende pieken. Deze parameters kon-
den worden gebruikt om verschillende subpopulaties te onderscheiden binnen een niet-
homogene populatie, waarmee dit een belangrijke methode is die in de toekomst ge-
bruikt kan worden om heterogene celpopulaties te bestuderen. Beide methoden die in
hoofdstuk 3 en in hoofdstuk 5 zijn ontwikkeld kunnen niet alleen klassieke morfol-
ogische parameters meten, maar ook topologische parameters, intensiteit parameters,
teksturen, momenten, en informatie van subpopulaties, waarmee het volledige spec-
trum van fenotypische informatie wordt aangeboden. Wij hebben de bijdrage bepaald
van de verschillende parameter klassen aan de typering van fenotypes van 4T1 cellen
blootgesteld aan verschillende tyrosine kinase remmers. De resultaten lieten zien dat
weglaten van een bepaalde parameter klasse uit de analyse, de nauwkeurigheid van
classificatie verminderde waarmee het belang van kwantificering van beelden met het
volledige spectrum van fenotypische informatie werd aangetoond.

Omdat met onze beeldanalyse methoden een schat aan informatie kan worden
verkregen, kunnen meer systematische benaderingen worden toegepast om fenotypes
te karakteriseren of om fenotypes te associëren met verschillende cellulaire signaal
routes. In hoofdstuk 3 hebben we een regressiemoduleringsmethode geïntroduceerd
om de concentratie-afhankelijke trajecten te construeren in multifenotypische param-
eter ruimte voor biologische actieve verbindingen die het cellulaire fenotype beïnvloe-
den. Met behulp van een nieuwe clusteringsmethode die gebaseerd is op de afstand
tussen twee trajecten, hebben we gegevens verkregen die laten zien dat fenotypis-
che responsen van 4T1 cellen op kinase remmers specifiek zijn voor het biologis-
che doelwit dat word geremd. Om dit resultaat te valideren, hebben we de geteste
verbindingen in verschillende klassen ingedeeld naar gelang hun biologische doelwit.
Er konden vervolgens classificeerders worden getraind die de verbindingen op grond
van hun fenotypische profiel (2D projectie gebaseerd of 3D gebaseerd) met succes
konden classificeren. Dit resultaat opent de weg naar een nieuwe strategie om ac-
tiviteit te onderzoeken van farmacologisch actieve verbindingen of om bijwerkingen
van bestaande verbindingen te identificeren.
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English summary

High-throughput and high-content image analysis is a powerful tool to associate phe-
notypic responses of cells and multi-cellular structures, with modulation of their func-
tional components by small molecules, peptides or RNA interference (RNAi), ulti-
mately enabling the identification of novel drug targets and/or novel drug molecules.
However, several limitations of current image analysis methods restrict the applica-
tion of high-throughput and high-content screening to the identification of biologically
active compounds or genetic players only. The full potential of high-throughput and
high-content screening to systematically study phenotypes, for example to character-
ize phenotypes and associate them with modulation of cellular signaling pathways,
is underestimated as yet. A major limitation is that current image analysis methods
only measure a few representative features which are based on known phenotypic
changes that occur under similar experimental conditions. Consequently, novel phe-
notypes and subtle changes remain undetected and a comprehensive characterization
of phenotypes cannot be achieved. Another major limitation of current image anal-
ysis methods is lack of robustness as many of them are designed only for specific
phenotypes and cell types. More importantly, these methods are highly dependent
on the resolution of microscopy images. When image resolution and magnification
are relatively low, these methods cannot profile phenotypes at a single cell level. As
a consequence, heterogeneous cell behavior is obscured.

One of the goals of the research presented in this thesis is to develop robust and
efficient image analysis methods suitable for single-cell studies that should not be
limited to specific cell types, cell densities or image quality. More importantly, het-
erogeneity between cell subpopulations should be taken into account and relevant
information should be collected for phenotype characterization. In chapter 2, we
developed such a methodology to investigate the NF-κB nuclear translocation dy-
namics in single cells after activating the NF-κB pathway with external stimuli. It
is shown that this methodology can be applied to confocal fluorescence microscopy
with relatively low magnification (20×) and low numerical aperture (0.75NA) ob-
jective. Although the cell line (HepG2) we used for the method validation showed
clustered and stacked cell growth which increased the difficulty to separate individual
cells, by introducing two novel segmentation methods BEVC and WMC we can still
define single cellular and nuclear regions accurately. In this research, different cell
subpopulations were defined according to the number of NF-κB nuclear translocation
peaks. Comparing the size of different subpopulations revealed that BMS-345541 (an
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IKK-inhibitor which prevents NF-κB nuclear translocation) has an impact on NF-κB
nuclear translocation by decreasing the percentage of cells with three translocation
peaks, and increasing the percentage of cells with only one translocation peak. This
impact would not have been resolved in the average nuclear translocation response
over the whole cell population.

Another important goal of this research is the development of image analysis
platforms for the detailed and comprehensive characterization of cellular phenotypes
from low-resolution images. In chapters 3, 4, and 5, two image analysis plat-
forms were developed to profile phenotype of 3D cultured micro-tissues from image
stacks which were generated by conventional wide-field microscopes. One platform
presented in chapter 3 is based on the 2D projection of image stacks. It starts
with composing a single image slice by projecting only in-focus regions from each
slice of image stacks. Next, WMC was applied on the projected 2D slice to segment
individual nuclei, while a local Niblack algorithm was used to define multi-cellular
regions. Finally, phenotype profiling was carried out on the segmentation results and
the projected images. In chapter 4, we extended the 2D projection based analysis
platform to enable 3D phenotypic profiling of micro-tissues. Firstly, a deconvolution
technique was applied to each image stack to remove out-of-focus information. Sec-
ondly, a 3D WMC method was introduced to define individual nuclei, and a novel
sharpness estimation method was incorporated in the segmentation of multi-cellular
regions. After correcting the elongation effect of nuclei in z-direction, 3D geometric
models of nuclei and multi-cellular structures were reconstructed to perform pheno-
type profiling. Both the 2D projection based analysis platform and the 3D phenotypic
profiling platform (chapters 3 and 5) embed an automated classification system to
automatically distinguish the spherical cell clusters and branched cell networks. We
statistically proved that extracting subpopulation related parameters and including
them for phenotype classification increased the classification accuracy, confirming the
importance of subpopulation information in the phenotype characterization. To in-
vestigate the robustness of our image analysis platforms, we applied the platform
presented in chapter 2 to classify 44 known human breast cancer cell lines based
on the phenotype profiles. The result showed high classification accuracy, indicating
a wider applicability of our method. We also successfully applied both platforms in
various other screens, such as compound screens in invasive PC3 cells and invasive
lung cancer cells. This further confirms the robustness of our methods.

In this research, we aim to develop ultra-high content analysis platforms which
should be able to collect maximum information of phenotypes from images. In chap-
ter 2, we have extended our image analysis so that it can automatically quantify
26 analogue parameters for each individual NF-κB nuclear translocation profile, such
as the number of translocation peaks and time between consecutive peaks. These
parameters were used to distinguish different cell subpopulations within an inhomo-
geneous population, representing a powerful tool to study heterogeneous cell behavior
in the future. Both image analysis platforms we developed in chapter 3 and chap-
ter 5 can measure not only classic morphological parameters, but also topological
parameters, intensity properties, texture, moments, as well as subpopulation informa-
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tion, therefore providing the full spectrum of phenotypic information. We analyzed
the contribution of different parameter classes to the phenotype characterization of
the 4T1 cell cultures exposed to various protein kinase inhibitors. The result showed
that excluding any parameter class decreased the accuracy of phenotype classification,
confirming the importance of quantifying images with a full spectrum of phenotypic
information.

Due to a wealth of information that can be extracted by our image analysis meth-
ods, more systematical approaches can be used to characterize phenotypes or asso-
ciate phenotypes with modulation of different cellular pathways. In chapter 3, we
introduced a regression modeling method to construct the concentration dependent
trajectories in multi-phenotypic parameter space for biologically active compounds
that affect cellular phenotypes. By means of a novel clustering method which is based
on the distance between two trajectories, we obtained data suggesting that the pheno-
typic responses of 4T1 cells to protein kinase inhibitors are specific for the biological
target that is inhibited. To validate this result, we categorized tested compounds into
different classes according to their biological target. Classifiers were trained to suc-
cessfully classify those compounds based on their corresponding phenotype profiles
(2D projection based profiles or 3D profiles). This result may lead to a new strategy
to study activity of new pharmacologically active compounds or identify off-target
effects of existing compounds.
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