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Chapter 1

(General imtroduction

1.1 Introduction of the thesis

This thesis focuses on the development of image analysis methods for ultra-high con-
tent analysis of high-throughput screens where cellular phenotype responses to various
genetic or chemical perturbations that are under investigation. Our primary goal is
to deliver efficient and robust image analysis platforms which can 1) automatically
detect cellular structures of interest from florescence microscope images and 2) quan-
tify dynamics and organization of multi-cellular systems with phenotypic features. To
recover heterogeneity of cellular behavior, we aim to develop single-cell-based image
analysis methods so that cell subpopulations can be distinguished and investigated.
Furthermore, we intend to develop methods to extract an ultra-high level of phe-
notypic details from images. This would enable system-level studies of phenotype
characterization.

To promote a further understanding of this thesis, this introductory chapter
firstly provides the general background and essential knowledge related to the high-
throughput and high-content screening. Next, the state-of-the-art techniques and
image analysis methods that have been already applied to high-throughput and high-
content screenings are given. Finally, the scope and structure of this thesis is pre-
sented at the end of this chapter.

1.2 High-throughput and high-content screening

High-throughput and high-content screening is a phenotypic screening technique that
utilizes automated microscope systems to identify the functional role of substances
such as small molecules, peptides or RNA interference (RNAi), in the context of a
pivotal, pathology relevant, cellular process, ultimately enabling the identification of
drug targets and/or novel drug molecules. To prepare the screening, cells are cultured
in 96- or 384-well format micro plates and treatments with substances are applied.
Changes in cell phenotype can be visualized by labeling structures and molecular
components of the cells with fluorescent dyes, made visible by immunofluorescence
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Chapter 1

methodologies, or by expression of green fluorescent protein (GFP)-tagged proteins.
Finally, micro plates are imaged by an automated microscope system to monitor
cellular response to the different perturbations.

1.2.1 “High-throughput”

In recent years, florescence microscopy technology has been developed dramatically
in respect to resolution, speed, complexity and scale. The emergence of automated
microscope systems with robotic handling enables the investigation of a large volume
of compounds or genetic players simultaneously. Combined with genome-wide RNAi
approaches [1, 2|, high-throughput small-molecule-based perturbations [3| or over-
expression strategies [4], high-throughput and high-content screening has become a
powerful technology to thoroughly study the regulation of biological pathways that
underlie the function of intact cells.

1.2.2 “High-content”

Although other high-throughput techniques, such as mass spectrometry or DNA-
microarrays, have been developed and successfully applied to study diverse cellular
pathway and their possible involvement in disease, these techniques, despite their
great usefulness, cannot provide adequate temporal and spatial information , in the
context of the structural and functional integrity of cells. Most importantly, they do
not directly show whether the identified molecules have a functional role in the cellu-
lar process that is under investigation. High-throughput and high-content screening
technique fills this gap by probing the function of molecules in their nature environ-
ment with exquisite and ever increasing spatial and temporal resolution [5-8]. More-
over, integrated with other high-throughput techniques, interdisciplinary information
is collected, which provides us a challenging opportunity to study whole biological
systems more comprehensively.

1.3  Workflow of high-throughput and high-content screen-
ings

High-throughput and high-content screenings consist of four major stages: sample
preparation, image acquisition, image analysis and data analysis. In this chapter,
a general introduction for each of these stages is provided and the state-of-the-art
techniques that are used in each stage are summarized.

1.3.1 Sample preparation

According to the biological question, different types of assays can be used for screen-
ing. In general, they are categorized in two groups: fixed assays and live-cell assays.
For the studies where only the final status of cells needs to be investigated, fixed
assays are the primary technique to be considered. The most common one is a 2D
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fixed assay. In this assay, cells are grown as a cell monolayer (therefore the term
“2D” is used) and only a simple and specific read out is measured. Because this
type of assay is relatively easy to be processed and imaged, it is often considered for
higher-throughput experimentation and larger scale automation. Many projects have
already achieved a great success using this type of assay [1,3,7,9,10]. One example
is the work of Marino Zerial and his co-workers [1]: a genome-wide RNAi screen was
performed in HeLa cells to explore the function of human kinases in two principal
types of endocytosis: clathrin- and caveolae /raft-mediated endocytosis. They showed
that a high number of kinases is involved in endocytosis, and that each endocytosis
route is regulated by a specific kinase subset.

However, 2D fixed assays are not representative of the cellular environment found
in organisms. In fact, tissue-specific architecture, mechanical and biochemical cues,
and cell—cell communication are lost under such simplified and highly biased condi-
tions. Efforts to address this problem led to the development of 3D cell cultures.
They utilize an extracellular matrix (ECM) gel to re-establish physiological cell—cell
and cell-ECM interactions, thus mimicking spatial organization of real tissues in
their nature environment better than 2D cultures. Recently 3D cultures have shown
many advantages in a broad range of cell biology studies [11,12], including tumori-
genesis [13,14], cell adhesion [15-17], cell migration [18] and epithelial morphogene-
sis [19]. Many researchers also start to establish 3D assays for high-throughput and
high-content screening, for example, in the study of tumor cell migration and inva-
sion [20]. Two 3D screening assays based on mouse and human breast cancer cells
are extensively described in chapters 3 and 5 of this thesis.

Another type of assays are live-cell assays which are used to study the dynamics
of cellular processes. It requires automated microscope to monitor these processes
and often fluorescence tagged protein are used that are continuously imaged over a
certain period of time. This allows the collection of much more detailed phenotypic
information, especially temporal information is provided that otherwise cannot be
obtained. In addition, live-cell assays can reveal primary defects and secondary con-
sequences of the phenotype and thereby allow a more precise interpretation of the
function of the molecules that are under investigation. This type of assays has been
widely used in the study of embryogenesis [2], cell division [21], and intracellular
translocation of molecules [22,23|, which so far are the most significant achievements
among all high-throughput and high-content studies. These type of studies are based
on the discrimination between the cell membrane, the nucleus and the cytoplasm,
and the translocation of fluorescently labeled molecules between the distinct com-
partments. One example is the study of NF-xB nuclear translocation. Many studies
on this subject have been published in recent years, notably the work of Covert and
co-workers [24,25]. They developed a screen platform with single cell resolution that
can image and determine the NF-xB activation over time in a high-throughput man-
ner. In chapter 2 of this thesis, a novel NF-«xB screening platform is described that
also measures NF-xB activation dynamics at a single cell level but is able to apply
for high cell density as well. Furthermore, it is able to quantify the characteristics of
all single cell dynamics for further understanding of cell-to-cell heterogeneity.
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1.3.2 Image acquisition in a high-throughput manner

One of the characteristics of high-throughput and high-content screening is that a
large amount of images needs to be acquired. Therefore image acquisition systems
that are fully automated and time efficient are required. Most researchers choose to
use commercial systems that are already available on the market [7,26,27|. In this
chapter, the techniques that are relevant in the context of this thesis are summarized.

1.3.2.1 Microscope models

Most high-throughput and high-content image acquisition systems are equipped with
wide-field fluorescence microscopy. For this type of microscopy, cellular structures of
interest are tagged with fluorescent proteins and exited by light of a specific wave-
length. After absorbing energy from excitation light, the fluorescent proteins emit
light of longer wavelength that is captured by a detector to generate images. Confo-
cal microscopy is another frequently used and more advanced fluorescence microscopy
method. It adds a pinhole aperture in front of the light source so that light excites
only one optical plane (focal plane) at a time. In addition, another pinhole is added
in front of the detector to filter out the emission light generated from the plane above
and beneath the focal plane. Therefore, images from confocal microscopy contain
only sharp in-focus information from the focal plane. This is especially useful when
a specimen is relatively thick and a series of optical sections need to be acquired
through the specimen. The disadvantage is the relatively slower imaging process and
longer exposure time of the specimen. Especially when a large number of sections
needs to be imaged, severe photobleaching can occur and that presents an as yet
unresolved problem.

The new generation of high-throughput screening systems starts to explore two-
photon excitation microscopy [28|, spinning disc microscopy [3] and super resolution
microscopy [29]. Unfortunately, due to their relatively higher demand for both hard-
ware and software, only few researchers have so far developed and applied them
successfully in high-throughput and high-content screening.

1.3.2.2 Magnification, resolution, sampling size and camera setting

Objective lenses are the most important component of an optical system because
they are the predominant factor that defines image quality. In general, objective
lenses can be classified based on their magnification and resolution. High-throughput
and high-content screening systems are typically equipped with< 10x, 20x and 40x
magnification lenses. Different magnifications are applied according to the structure
of analysis. Measurement of structures over large areas, such as cell networks or
zebrafish embryos, requires lower magnification than measurement of sub-cellular
structures, for example, nuclear repair foci in a DNA damage and repair assay.
Image resolution (which refers here to spatial resolution) is a term used to describe
how closely two objects can be resolved in an image and is directly determined by
numerical aperture (NA), which is a number describing the amount of light coming
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from the focus that the objective can collect. According to the Rayleigh criterion,
the relation between NA and resolution is formulated as:

A
— 0.61 X —— 1.1
r=0.61x (1.1)

where A is the wavelength of emitted light. For a fluorescence microscope of NA = 0.5
and A = 500nm, this results a resolution limit of 610nm. Two distinct objects closer
than this resolution will be imaged as a single object. Because in high-throughput
and high-content screening image acquisition is often done (as well as in this thesis)
with 4x or 10x lenses with NA equivalent to 0.13-0.3 (corresponding to resolution
limits of 2346nm-1017nm at A = 500nm), the objective lenses are the limiting factor
in determining which sub-cellular structures can still be imaged.

Sampling size (also refers to sampling frequency) often refers to the distance
between 2 signal-recording points. According to the Nyquist rate, image sampling
size in xy-direction bigger than half of the objective lens resolution would result in
a loss of information. The pixel size of the camera used often determines whether
this can be achieved (the width of each pixel in the camera chip divided by the
magnification gives the size of each pixel in the sample plane). Combining pixels
in the camera (pixel binning) can increase the pixel size and signal intensity. The
benefits of this setting are that exposure time and image file size can be reduced
significantly, but the disadvantage is that spatial resolution will be decreased.

1.3.2.3 Balance between quality and quantity

Image quality is directly related to magnification, resolution, sampling size, pixel
binning and other elements. Higher magnification, smaller sampling size or no pixel
binning could increase the image quality and this could make complex and compu-
tational intensive image analysis methods redundant while much more detailed and
accurate information can be extracted. However, better image quality sacrifices imag-
ing time, processing time and requires more data storage. For example, reducing z
sampling size from 10pum to bpum not only doubles the size of the image file, but also
doubles the time of imaging. Moreover, the limitations of hardware and software
often make it impossible to deal with extremely large amount of data. For example,
image files bigger than 1.5 gigabyte cannot be opened and analyzed by ImageJ on
a 32-bit Windows operation system. Therefore finding the balance between image
quality and quantity is very critical for high-throughput and high-content screening.

1.3.3 Image analysis

Once images are acquired, the next stage of screening is image analysis. Image anal-
ysis is a process to extract numerical information from images that are representative
of cellular phenotypic responses. Those numerical parameters are then used for fur-
ther data analysis, such as hit identification and compound characterization. Image
analysis often comprises two general steps: segmentation and quantification.
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1.3.3.1 Segmentation

Segmentation is a technique of defining regions of the images that contain signals from
the molecules which are under investigation (also called region of interested or ROIs).
Those molecules are often fused with fluorescence protein or antibodies, or stained
with fluorescent dyes, and as a result, regions that contain these molecules present
higher signal intensity in images than other regions. This difference of intensity
between ROIs and background is used for most segmentation algorithms. The key of
those algorithms is to automatically determine an intensity threshold to distinguish
ROIs and background, or sometimes multiple-levels are selected. There are other
advanced segmentation methods that are model based or using prior knowledge, for
example active contour model [30,31|. However, considering their complexity and
specificity, they have not been widely applied in high-throughput and high-content
screening.

Because quantification is often made based on the segmentation result, proper
segmentation is the key to generate meaningful data and must be optimized for ev-
ery screening. Several commercial systems already combine image acquisition and
analysis |7], for example, the BD pathwayTM bioimaging system, KineticScan HCS
Reader (Cellomics) and ImageXpress high-content imaging Systems (Molecular De-
vices). They provide many standard image analysis methods, however, it is not
possible for researchers to substantially adapt these methods for more specific biolog-
ical questions. Therefore many researchers choose to use independent image analysis
packages or write their own macros. One of the most popular tools used in high-
throughput and high-content screening is ImageJ (or Fiji, which is considered as
a distribution of ImageJ). It contains various standard image analysis algorithms.
More importantly, because of its free open-source feature, hundreds of state-of-the-
art methods have been programmed in the form of ImageJ plugins and macros, and
are provided online. Furthermore, it provides a user-friendly platform for developers
to customize their own analysis. For example, image analysis algorithms developed
in this thesis are programmed as ImageJ plugins.

1.3.3.2 Quantification

Quantification aims to extract numerical features from images. According to biolog-
ical questions, features can be classified as morphological based, localization based
and intensity based. Morphological based features usually refer to the morphological
properties of structures that are under investigation, such as the area of the nucleus
(2D) or surface of neuron cell (3D). Localization based features contain relative spa-
tial information of interested structures, for example the position of focal adhesions
relative to the cell border. Both features are measured based on the segmentation
result, and can be measured on the single-cell level or cell population level, or some-
times even sub-cellular level [32]. Intensity based features can be measured from the
segmentation result as well. For example, in the study of NF-xB translocation [33]
(chapter 2), dynamic changes of fluorescence intensity in the nuclear and cytoplasmic
area are quantified to analyze the kinetics of NF-xB translocation. Other intensity
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based features are independent of segmentation result, such as moments and wavelet.
Recently those features started to draw more and more attention, and some analysis
packages already embed algorithms to measure them, such as CellProfiler [34] and
PSLID [32,35].

1.3.3.3 Tracking and analysis for image stacks

For some research projects, tracking techniques are required. Tracking refers to find-
ing the location of objects (such as nuclei or cells) in each consecutive frame of
time-lapse images. It works directly on the segmentation result and it connects ob-
jects in time on the basis of criteria such as the speed of motion, the shape of the
trajectory and the possibility of the objects splitting (cell division) or merging (cell
fusion). Once tracking is computed, the tracks and associated object properties (mor-
phology and intensity changes) can be combined to yield a powerful description of
the phenotypic evolution of cells.

For the study of 3D structures, series of optical sections are typically acquired
and compose image stacks. Those stacks can be used to reconstruct the 3D geomet-
ric models of the sample, or can be collapsed (also called projected) into a single
2D image. For the latter, further analysis such as segmentation and quantification
is performed on the 2D projected images, thus saving processing time and data stor-
age significantly. However, information in z-direction is missing. 3D analysis provides
much more detailed spatial information, but requires more complicated and computa-
tional intensive reconstruction methods and quantification methods. Although it has
not been widely used for high-throughput screening, especially for large-scale experi-
ments such as genome wide siRNA screens, due to the physiological and pathological
relevance of 3D culture systems, image analysis for 3D high-throughput and high-
content screening will become an important area for future innovative developments
in image processing. This is the subject of chapters 4 and 5 of this thesis.

1.3.4 Data analysis

In data analysis, numerical features derived from a single treatment, for example a
single RNAi gene knockdown or exposure to a small molecule, are considered as data
from one sample. The purpose of data analysis varies from experiment to experiment.
One basic purpose is to identify “hits”, meaning to identify genes or compounds which
play a functional role in the cellular process that is under investigation (genes), or
may - positively or negatively - affect the process (compounds). This is determined by
comparing each sample with control treatments that are carried out under the same
condition but induce no change in the cellular process. Before “hits” are identified,
quality control and data normalization are performed to remove systematic errors
and to allow comparison and combination of samples from different plates. There
are many statistical methods for normalization and quality control for single read-
out screens which are summarized in references [36,37]. For the high-throughput and
high-content screen where multiple readouts are measured, multi-parametric tests are
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applied, for example Mahalanobis distance. Because more aspects of phenotype are
taken into account, multi-parametric tests often provide more precise hits for treat-
ments that have high variability in a single readout metric. Several multi-parametric
methods will be introduced and applied in this thesis.

Recently, machine learning started to show its powerful function in high-throughput
and high-content screening [38]. Clustering is one of the typical techniques. It is a
form of unsupervised machine learning and can be used to group the samples based
on the phenotypic similarities. For example, clustering has been used to group drugs
by their effects [39] and proteins by their sub-cellular patterns [40]. Another often
used technique is classification [41]|, which is a form of supervised machine learning.
The biologists define the classes of treatments according to the biological properties
in advance. For example, genes which are involved in the same signaling pathway are
assigned to the same class. Those samples with known classes are used as training
data to train a “classifier”, which can automatically determine the class of unknown
sample and which of the features are informative for distinguishing the classes. Some-
times unsupervised machine learning and supervised machine learning are combined
in one experiment, to for example investigate the relationship of known biological
classes with morphological clusters.

1.4 Scope and structure of this thesis

Currently, image analysis is likely the major bottleneck in high-throughput and high-
content screening studies. One of the problems is the lacking of robust single-cell
based analysis. Few platforms perform single cell image analysis but rely on the cell
density or image resolution. When the cells are too dense or image resolution and
magnification is relatively low, for example in micro-tissue study, existing methods
cannot work properly. Therefore, one goal of this thesis is to develop robust and
efficient image analysis methods suitable for single-cell studies that should not be
largely limited to cell type, cell density and image quantity

The reason that there is a great need for the methods of single cell analysis is
that cells may respond to stimuli or perturbation differently, creating distinct sub-
populations. Although many studies emphasize this effect, it has almost never been
quantitatively identified and the information on subpopulation behavior has not been
used for later screening data analysis. Thus how important the role is of subpopula-
tion in many high-throughput and high-content screens is still unknown. This thesis
aims to develop an analysis platform that takes into account the heterogeneity of
cellular behavior so that subpopulation information is collected for the further data
analysis.

In many high-throughput and high-content screens specific biological effects are
expected, and in the analysis by conventional methods only representative features
are measured from the images. Those methods largely depend on the expertise of
biologists, but often even biologists are not certain of all possible effects. To solve
this problem, many methods measure morphological parameters thoroughly, however,
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they miss the information which cannot be revealed by morphological properties.
This thesis aims to develop an ultra-high content analysis which collects maximum
information of phenotype from images, which can be applied for various types of
screening assays.

The structure of this thesis is as follows: chapter 2 introduces an automated im-
age analysis for the study of NF-xB nuclear translocation kinetics in high-throughput
screening. Chapter 3 moves away from the live-cell screening and presents another
image analysis platform suitable for the study of 3D cultured micro-tissues. This
platform firstly projects each image stack into a single in-focus 2D image, and then
ultra-high content measurement is carried out on the 2D projected image. The work in
chapter 4 extends this 2D projection based analysis to real 3D analysis, and demon-
strates that it is suited for screenings which use wide-field microscopy. In chapter
5, this 3D analysis platform is applied to analyze the effects of various anti-cancer
drugs on 3D micro-issues of mouse breast cancer. The performance of 2D projection
analysis and 3D analysis is compared in chapter 5. Finally, chapter 6 provides a
general discussion on the results obtained in our studies and on the implications for
future research.
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Chapter 2

Abstract

Nuclear entry and exit of the NF-xB family of dimeric transcription factors play an
essential role in regulating cellular responses to inflammatory stress. The dynamics
of this nuclear translocation within a cell population may dramatically change e.g.
upon drug exposure. Furthermore, there is significant heterogeneity in individual cell
response upon stress signaling. In order to systematically determine factors that de-
fine NF-kB translocation dynamics, high-throughput screens that enable the analysis
of dynamic NF-xB responses in individual cells in real time are essential. Thus far,
only NF-kB downstream signaling responses of whole cell populations at the tran-
scriptional level are in high-throughput mode. In this study, we developed a fully
automated image analysis method to determine the time-course of NF-xB translo-
cation in individual cells, suitable for high-throughput screenings in the context of
compound screening and functional genomics. Two novel segmentation methods were
used for defining the individual nuclear and cytoplasmic regions: watershed masked
clustering (WMC) and best-fit ellipse of Voronoi cell (BEVC). The time profiles of
NF-xB oscillatory response at the single cell and population level was coupled to
automated extraction of 26 analogue parameters including number of translocation
peaks, amplitude of each peak, and duration of each translocation. The automated
image analysis method was validated through a series of statistical tests demonstrat-
ing computational efficient and accurate quantification of our algorithm. Both phar-
macological inhibition of NF-xB and short interfering RNAs targeting the inhibitor
of NF-kB, IkBa, demonstrated the ability of our method to identify compounds and
genetic players that interfere with the nuclear translocation of NF-xB.
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2.1 Introduction

NF-&B is a family of dimeric transcription factors consisting of homo- or heterodimers
of different subunits (e.g. p65/RelA). It is involved in cellular stress responses to
stimuli such as cytokines, free radicals, ultraviolet irradiation, oxidized LDL, and
bacterial or viral antigens [1-5]. In resting cells, NF-xB dimers are located within
the cytoplasm, bounding to the NF-xB inhibitor IxB. After being exposed to NF-xB
activating stimuli such as TNFa or IL13, the IKK (the inhibitor ~B kinase) complex is
activated, which in turn phosphorylates IxB [6] and NF-xB [7,8]. Phosphorylated IxB
proteins are then ubiquitinated and degraded by the proteasome, thereby liberating
NF-xB dimers that translocate into the nucleus and regulate the transcription of the
target genes. However, NF-xB dimers do not stay in the nucleus permanently. IxBe,
a member of IkB family, is a transcriptional target of NF-xB [9]. Transcription of
IkBa creates a negative feedback loop: newly synthesized IxkBa protein enters the
nucleus and binds to NF-«B, leading to the export of complex back to the cytoplasm
(Figure 2.1). This negative feedback loop creates an oscillation of NF-xB nuclear-to-
cytoplasmic translocation. Such a response seems essential in modulating differential
transcriptional responses under transient or sustained cytokine signaling [10]. Given
the role of NF-xB in diverse (patho)physiological responses, understanding the cell
population dynamics of this process is essential.

[ proteasome

IkB| degradation

(/H\
A "
( NF-kB dimmers

4\\&\1%

.,

.....
.

.,.

Figure 2.1: NF-xB oscillation is regulated by an auto-regulatory negative feedback
loop. Simplified schematic overview of the TNFa-induced canonical NF-xB response. TNFa bind-
ing to the TNF receptor (TNFR) activates the inhibitor of kB kinase (IKK) complex, leading to
phosphorylation of the inhibitor of NF-xB, 1B, upon which NF-xB is free to enter the nucleus to
activate transcription of its target genes. One of the primary NF-xB target genes is 1xB, which
may retrieve NF-xB from the nucleus to maintain inactive IxB::NF-xB complex in the cytoplasm.
Ongoing TNFR signaling can re-initiate the induction-inhibition cycle.
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The most common approach taken in NF-xB translocation studies, which sim-
ply measures the NF-xB localization ratio between the total nuclear and total cy-
toplasmic region of a cell population, obscures the fact that not all cells respond
to the stimulation synchronously [10, 11](Figure 2.2a and 2.2b). Similarly, recent
studies of lipopolysaccharide-induced NF-xB activity showed that only half of the
cells responded to the secondary TNFa autocrine signal, creating distinct subpop-
ulations [12,13]. Such cell-to-cell heterogeneity seems essential for the plasticity of
tissue responses to inflammation |14, 15].

Furthermore, NF-£B responds to many different stimuli, each of which may lead
to different activation dynamics. To understand NF-xB signaling under a wide vari-
ety of stimulation conditions, it is important to measure single-cell NF-xB dynamics
in large cell populations. Obviously, studies of NF-xB translocation in just several
individual cells are not sufficient for this purpose, although dedicated and sophisti-
cated image analysis methods have been developed for this specific task [11,16,17]. In
order to systematically determine factors that define NF-xB translocation dynamics,
high-throughput screens need to be developed in relevant cell lines in the context of
compound screening and functional genomics.

Our goal was to develop a methodology for quantification of NF-xB translocation
dynamics in single cells, suitable for high throughput screening (HTS). For this, we
used HepG2/GFP-p65 cells which show a dynamic nuclear-to-cytoplasmic transloca-
tion response upon TNF« stimulation (Figure 2.2a). To derive quantitative informa-
tion of this shuttling in the entire cell population, we set out a strategy for the image
analysis (Figure 2.2c). We describe two novel segmentation methods that are required
for this purpose: one for the segmentation of individual nuclei, and one for the seg-
mentation of individual cells. Next, cell tracking was done based on the segmentation
results of nuclei. Finally, methods for the quantification of NF-xB translocation dy-
namics, and the extraction of informative parameters from the NF-xB translocation
time profiles are described. In addition, procedures and results for the validation of
each step in the quantification methodology are presented.

2.2 Results

2.2.1 Image collection and pre-processing

First, dual channel confocal images were collected (the two channels are Hoechst
stained nuclear channel and GFP-p65 channel) in a 6 hour time-lapse series with a
recording interval of 6 minutes (see Methods for details). Next, image pre-processing
was applied separately for each of the two channels (Figure 2.3a and 2.3¢). For the
nuclear channel, images were sharpened first in order to enhance the contrast between
background and intensity signals (by ImageJ http://rsbweb.nih.gov/ij/). This was
implemented by an unsharp filter. It equals to subtracting a Gaussian blurred copy of
the image and rescales the image to obtain the same contrast of large (low-frequency)
structures as in the input image. We empirically defined the optimal radius of the
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Figure 2.2: Image analysis of NF-xB nuclear translocation. (a, b) An example time-lapse
image series of GFP-p65 expressing HepG2 cells after stimulated with 10 ng/mL TNFa. (a) Both
Hoechst stained nuclear channel and GFP-p65 channel. (b) Only GFP-p65 channel to provide clear
view of NF-kB translocation. Heterogeneous cell behavior is shown here. The white arrow indicates
a cell with multiple nuclear translocations at 30, 150 and 270 minutes, while for another cell (yellow
arrow) the translocation occurs at 30, 120, 210 and 330 minutes. The red arrow indicates a cell with
only one, long, nuclear translocation event. (c) Flowchart of the single-cell based image analysis
for the quantification of NF-xB translocation: 1. Splitting two fluorescence channels of time series
images. 2. Segmentation of individual nuclei for the Hoechst stained nuclear channel. 3. Tracking of
nuclear masks throughout the time series. 4. Segmentation of cell clusters for the GFP-p65 channel.
5. Identification of individual cells by best-fit ellipse of Voronoi cell (BEVC). 6. Quantification of
GFP intensity ratio between the nuclear and cytoplasmic region per time-point, per cell. 7. Nuclear
translocation profiles of individual cells. 8. One example of subpopulations analysis.
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Gaussian filter [18] to be 3 pixels, and the scaling of the filter to be 0.6. Next, the
so-called Rolling Ball method [19] was used to remove the unevenly illuminated back-
ground by subtracting an averaged image intensity within a circular kernel around
each pixel (by ImagelJ). The size of the kernel was chosen to be slightly larger than the
radius of the largest nucleus. A pre-processed image of the nuclear channel is shown
in Figure 2.3b. To define the overall cell cluster regions in images, the GFP-p65
channel was processed with a Median filter [20], resulting in smooth cellular regions
(Figure 2.3f).

2.2.2 Segmentation for individual nuclei: Watershed Masked Clus-
tering (WMC)

The segmentation of individual nuclei was accomplished by watershed masked clus-
tering [21,22]. This method uses a watershed segmentation to divide images into
separated regions, each of which contains only one nucleus. Subsequently, within
each region K-means clustering [23] was applied to define the nuclear region (Figure
2.3c). This method is based on the assumption that each nucleus is evenly illumi-
nated and the contrast between nuclei and background is sufficiently high. Over-
segmentation is a well-known issue of watershed segmentation. In order to address
this issue, pre-processed images (Figure 2.3b) were convolved with a Gaussian filter
to smooth discrete intensity signals, using an optimized kernel size. Once watersheds
were obtained from this image, the pre-processed images prior to Gaussian convolving
(Figure 2.3b) were used to apply K-means clustering.

2.2.3 Cell tracking

The nuclear masks obtained from the segmentation were used for the cell-tracking. In
our NF-kB translocation experiments, we observed that most of the cells moved over
short distances between two consecutive image frames, and also a negligible number
of cell divisions occurred during the image acquisition period. Given these condi-
tions, the maximum overlap ratio OLR (Equation 2.1) is a feasible and applicable
criterion. For every labeled nuclear region in the current frame n{ , where 7 represents
corresponding label and f represents the frame index, we connect its track with the
labeled nucleus in the next frame n{ *1 Wwhich maximizes the OLR with n{ :

f ﬂnf+1

L 2.1
max(Area(n{), Area(nf“)) (21)

n
OLR;; =

Given the short imaging interval, cells should not disappear from one frame to
another except when moving out of the frame borders. Disappearing cells are thus
likely to be caused by under-segmentation. In order to avoid fragmented cell traces,
as may occur in the more condensed cell clusters, we applied an extra tracking image
buffer [24] to store disappearing cell regions until they are recovered again in one of
the subsequent frames that maximizes the OLRs. As a result, nuclei that are not
consistently detected in every frame can still be tracked correctly.
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2.2.4 Segmentation for individual cells: Best-fit Ellipse of Voronoi
Cell (BEVC)

The objects that need to be extracted in this particular live-cell NF-xB imaging
application are cells that grow in clusters. These cells touch and may slightly overlap
with each other thus making it sometimes difficult to uniquely identify the cellular
edges. Therefore the classic edge detection methods which locate the maximum
intensity gradient are not applicable to this particular case. Instead, we propose a
single cell simulation algorithm called best-fit ellipse of Voronoi cell (BEVC). The
algorithm produces an estimate of the single cellular areas based on the topology of
the cells, which is derived from the distribution of nuclei. In principle, it consists of
three steps:

Step 1, generate Voronoi diagram according to the topology of nuclei:
A Voronoi diagram [25] was generalized based on a set of disjointed nuclear masks
bpuclens for i =1,2,3,..., Dy, (Figure 2.3c) with bjucleus (ppucleus — 0 when i # j,
where Dy is number of nuclear masks in the frame f. Each Voronoi cell V; containing
prucleus (Rigure 2.3d) is defined as a region which includes all pixels r closer to the
boundary of b?“deus than to the other nuclear masks. The formula is presented as
following;:

Vi (bructens) = {T’ € min |r—s|< min |r—s"| (2.2)
sGb;“"C eus Sleuj;éi b;ucleus

Step 2, obtain the Voronoi diagram within the cell cluster regions: A
global threshold was applied to the pre-processed images of the GFP-p65 channel
(Figure 2.3f) to obtain the binary masks of cell clusters (Figure 2.3g). Subsequently
the masks were multiplied (AND operation) with the Voronoi diagram obtained from
step 1, so that only the Voronoi cells within the binary masks of cell clusters were
preserved (Figure 2.3h).

Step 3, estimate the cell shape per Voronoi cell: The underlying model
for BEVC is that cells are ellipsoid shaped objects. Based on this assumption, we
simulated the region, or better shape, of an individual cell as the best-fit ellipse in
each Voronoi cell V; by calculating the major and minor axis from the centralized
moments (Figure 2.31) [26,27].

2.2.5 Quantification of NF-xB translocation dynamics

In order to exclude improper segmentation, both cellular masks and nuclear masks
were validated by supervised two-class classifiers, based on their morphological fea-
tures (Table S2.1, Figure S2.1-S2.3 and see Supplementary note for details). Next,
the NF-xB translocation dynamics D! of a single cell i at a time point ¢ is defined
as the ratio of average fluorescence intensities between the nuclear area b;‘“deus and
cytoplasmic area, where the cytoplasmic area is defined as total cellular area minus
nuclear area bgell N ppructeus,
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% Zpebr}ucleus Intens@ty(p)

Dbl —

)

(2.3)

L I )
> etens ——— Intensity(p
M peb;“ cleus mb;(m cleus ( )

where p represents a pixel and f represents the frame index. N is the number of
pixels in the nuclear mask of cell 7, and M is the number of pixels in the cytoplasmic
mask of cell 4.

Original Preprocessed Voronoi for nuclei

—

Hoechst

Figure 2.3: Stepwise demonstration of the image analysis method. An original image
from the Hoechst stained nuclear channel (a) is pre-processed by image sharpening and background
subtraction (b), followed by WMC for the nuclear mask identification (c). Subsequently, the Voronoi
diagram (d) is generated based on the disjointed nuclear masks. For the GFP-p65 channel, the
original image (e) is pre-processed by a smoothing filter (f) for the identification of cell cluster
regions (g). By multiplication of the cell cluster masks (g) with the Voronoi diagram (d), the
Voronoi mask is defined for each cell (h). The cytoplasmic areas are refined as the best-fit ellipse of
Voronoi cells (i). Figure(j) shows the composite view of the original image from GFP-p65 channel
and the corresponding BEVC segmentation result.

For cells with tracks that disappeared in three or less than three consecutive
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frames, linear interpolation was applied to generate missing data. For cells with
tracks that disappeared in more than three consecutive frames, interpolation becomes
too inaccurate and the corresponding translocation profiles were removed from the
final data. Generally, <30% of cells were removed by this procedure.

2.2.6 Quantification of NF-«B translocation analogue parameters

One advantage of the proposed analysis method is its ability to automatically quan-
tify analogue parameters from each individual translocation profile (Supplementary
note, Figure S2.5, Table S2.2). We first defined translocation events which start at
a local minimum of a profile (NF-xB stays in the cytoplasmic region), include the
next local maximum (NF-xB translocates to the nuclear region), and end at the next
local minimum (NF-xB translocates back to the cytoplasmic region). We calculated
the number of translocation events, various properties for each translocation event,
nuclear entry and exit rates and time between consecutive peaks; in total 26 ana-
logue parameters. More detailed information and pseudo code are presented in the
Supplementary note.

2.2.7 Statistical validation of the NF-xB quantification method

We validated our quantification method in a three step process using five randomly
selected time-lapse image series. First, we compared our BEVC method for cell seg-
mentation with other segmentation methods that are used to segment touching or
overlapping cells. One approach that is often used to define the cytoplasmic topo-
logical region is to dilate the corresponding binary nuclear mask by a few iterations.
However, the extent of the dilation requires fine-tuning for different cell sizes to avoid
overlap between individual cells. Another approach is to define the cell region by
only applying the Voronoi diagram. Our method (BEVC) extends the topology in-
formation from the Voronoi diagrams with a best-fitting ellipse, which leads to a more
stringent definition of the cellular area.

To compare these three methods (Dilation, Voronoi and BEVC), we first generated
the binary images using different methods. For Dilation, we used a circular kernel
with a radius of three pixels to define cytoplasmic regions, based on the general cell
size in our images. Next, we assessed each segmentation result by comparing with
human perception. For this, five test frames from different image series were used
with a total of 1116 nuclei. For each frame f, a score named “error rate” 0y was
calculated to measure the segmentation accuracy:

Dy cell
T B(b¢

o = 2 BOF) 100% (2.4)
Dy

. cell cell,Original
1, if beell e b W

- ¢ pcell cell,Original * 71
0, if b &b

is the cellular mask of cell 7 obtained from one of three methods. bfe”’omgmal is the

)

where B(b$°!) is a binary indicator that B(b¢!) = {
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cellular mask of i'th cell obtained by human perception. Dy is the total number
of cells in the image frame f, detected by one of three methods. The use of the
Voronoi combined with best fit ellipse (BEVC) yielded the smallest error rate for
cytoplasmic area definition (10.3%+2.2%), compared to a Dilation or Voronoi method
(14.5% + 3.2% and 11.8% =+ 1.4% respectively) (Figure 2.4a).

Next, we validated our NF-xB translocation quantification method by compar-
ing automatically generated translocation profiles with benchmark profiles that were
produced from cells with validated segmentation and tracking profiles by human per-
ception. Five randomly selected time-lapse image series each with 47 frames were
used in this test. From each test image series, three benchmarks were generated sep-
arately by three independent individuals (Figure S2.4a-¢), in order to compensate for
possible human bias. Subsequently, a split-plot ANOVA [28] was applied (by Statis-
tical Computing Seminars Repeated Measures Analysis with R) to test the difference
between the benchmark profiles generated by three test persons and the computa-
tional result, in total four groups. The metric is the NF-xB Nuclear/Cytoplasmic
intensity ratio, and two independent factors are time and group. The statistical tests
indicate that the variation between the three benchmarks is not significant; moreover
there are no significant differences between the benchmarks and the computational
result (Figure S2.4f). This indicates that the designed algorithm provides an accurate
estimation of NF-xB translocation profiles.

2.2.8 Computational efficiency of the algorithm

We tested computational efficiency of the algorithm on the dataset obtained from
HepG2/GFP-p65 cells (see Methods for details). The computational complexity of
this algorithm is O(nlogn). We analyzed six sets of 60 time-lapse image series (six
times 3.51 GB). Each series contains two channels, and each channel consists of 60
frames. On average, 250 cells were analyzed per movie. The analysis of this dataset
was completed in 8342 minutes on a desktop PC (Intel Core i7-3770, 3.40 GHz with 8
GB of RAM and Microsoft Windows 7 Professional, SP1). The most computationally
intensive part is the background subtraction on the nuclear channel followed by the
segmentation of the nuclei by WMC. This takes ~64 seconds per series. Tracking of
the nuclei is done in 6 to 7 seconds.

2.2.9 Identification of heterogenous cell populations

One of the main purposes to quantify single-cell NF-xB nuclear translocation dy-
namics, especially in the context of high-throughput screens, is to study the hetero-
geneity between cell subpopulations. Therefore it is necessary to validate whether
our quantification method correctly identifies specific subpopulations of cells and
does not create a bias towards any particular subpopulation. To establish this, we
benchmarked five time series images (with 1116 cells) by manually counting the cell
subpopulations. We performed three separate tests, comparing the computational
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Figure 2.4: Statistical validation of the automated image segmentation and NF-xB
translocation quantification. (a) Comparison of 3 cytoplasmic segmentation methods based on
the criterion of error rate (Equation 2.4). The error rate of the Dilation method is 14.5% =+ 3.2%; of
Voronoi it is 11.8% +1.4% ; and of BEVC it is 10.3%+2.2%.* p—value < 0.05; ** p—wvalue < 0.005;
Paired t-test (b) Example translocation profiles of (i) cells without translocation and cells with
translocation, (ii) cells with and without a synchronized first round of NF-xB translocation, (iii)
cells with NF-£B translocation occurring only once and cells with more than one NF-xB translocation
event. (c) Bias assessment of our quantification method by comparison of the computational results
with the benchmark for different subpopulations. No significant differences (p — value > 0.1) were
found between the computational results and the benchmark for different cell subpopulations within
a 6 hour imaging time frame.

results with the benchmark. In each test, cells were clustered into two complemen-
tary categories. In the first test, cells were clustered in cells without translocation
response versus cells with translocation response (Figure 2.4b(i)). In the second test,
we distinguished cells with a synchronized first peak of NF-xB translocation, from
non-synchronized responders (Figure 2.4b(ii)). In this category, synchronization was
defined as the first NF-xB translocation peak occurring within three frames from
the first peak of population averaged profile. The third test clustered cells into (a)
cells with no or only one (prolonged) NF-£B translocation event, and (b) cells with
more than one NF-xB translocation event (Figure 2.4b(iii)). The reason for defining
these three tests is their simplicity for human counting. For all three tests, we ob-
tained p — values greater than 0.1, indicating that there is no significant difference
between our computational result and the benchmarks. Therefore, we conclude that
our algorithm can efficiently be used to perform population studies on NF-xB nuclear
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translocation profiles.

2.2.10 Biological validation of the NF-xB quantification method

In order to validate the sensitivity of our algorithm for perturbation of the biological
system, a pilot experiment was performed by pre-exposing the HepG2/GFP-p65 cells
for 2 hours with increasing concentrations of an IKK-inhibitor, BMS-345541 (0.5, 2.0
and 4.0uM) before TNFa stimulation. Inhibition of IKK prevents NF-£B nuclear
translocation (Figure 2.1). The experiment was performed in 96-well plates on two
different days, with two replicates per plate. In the first analysis step, the average
GFP-p65 nuclear/cytoplasmic ratio profile over whole cell population of each image
series were generated from our quantification method. Already at very low inhibitor
concentration (0.54M), the second and third NF-kB nuclear translocation peaks were
delayed and the amplitude of the first peak was decreased. Increasing the concentra-
tion of BMS-345541 to 2.0uM and 4.0uM prolonged the first nuclear translocation
event. Without TNF« stimulation, no NF-xB oscillation was observed (Figure 2.5a).

Next, the individual GFP-p65 nuclear translocation profiles were analyzed for the
number of translocation events within the 6 hours imaging period after TNF« stimula-
tion. In non-stimulated cells, 5% of the cells show spontaneous nuclear translocation,
which is non-synchronous (Figure 2.5b). After TNFa stimulation, there is nuclear
translocation with either one, two or three peaks, in 90% of the cells (Figure 2.5b).
The average nuclear translocation profiles for cell subpopulations with either one, two
or three peaks, clearly show that the percentage of cells with only one translocation
peak increases with the concentration of BMS-345541, and that the percentage of
cells with 3 translocation peaks decreases. In addition, we compared the time distri-
bution of each translocation peak between the control (TNFa stimulated cells) and
BMS-345541 pre-treatment. The result indicated that already at a low concentration
(0.5uM) a significant delay occurred for the second and third translocation peaks
(Figure 2.5¢). In conclusion, all these data indicate that the quantification method
can be used to perform cell-population studies, to identify rare events, and to study
drug-dependent effects, even at low concentrations.

2.2.11 Application of the NF-xB quantification method in high-
throughput screening assays

Having validated our NF-xB translocation quantification approach for segmentation
accuracy, for correct subpopulation identification, and for sensitivity to biological
perturbation of the system, we validated whether our quantification method can suc-
cessfully be applied in the context of high-throughput functional genomics screening.
For this screening, the approach of gene silencing by transient transfection of short
interfering RNAs (siRNAs) was applied. We used three different siRNAs as control:
the positive control is siNFKBIA that targets IxkBa, upon which knockdown the NF-
xB response will be affected [11]; the negative control is siCASP8 that targets caspase
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Figure 2.5: Population analysis of NF-xB nuclear translocation perturbation by the
IKKp inhibitor BMS-345541. Cells were pre-treated for 2 hours with increasing concentrations
of BMS-345541 before TNFa stimulation. (a) Average nuclear translocation profiles over whole
cell population of image series. (b) Average nuclear translocation profiles with standard error bars
for cells with one, two or three translocation peaks. The total number of cells, the number (N)
and percentage of cells which show responding number of peaks are presented. (c) Analysis of the
time distribution of the 15%, 2"4 and 3™ nuclear translocation peak in TNFa stimulated and TNFa
stimulated plus 0.5uM BMS pre-treated cells. ns: No significant difference; *** p — value < 0.001;
*HFX p — value < 0.0001.

8, which is a downstream effector of the TNFR, but does not affect the NF-xB acti-
vation; and siRNA control #1 (targeting luciferase) which also should not affect the
NF-kB activation. These siRNAs were tested in 12 different 96-well plates (2 repli-
cates per plate) on 4 different days, allowing an accurate analysis of the robustness
of the assay.

First, we calculated the population average of GFP-p65 nuclear/cytoplasmic ratio
profiles for each control, as well as for the cells that were not transfected with siRNAs,
but exposed to a transfection reagent (mock) (Figure 2.6a). We did not detect an
effect of caspase 8 knockdown on NF-kB oscillation compared to mock treatment;
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yet surprisingly, siCntrl#1 slightly decreased the peak amplitude. IxBa knockdown
however, strongly impaired NF-xB oscillation as expected.

Next, for each well, we calculated the average for each of the 26 analogue pa-
rameters (Table S2.2) over the cell population and derived further subpopulation
information including the percentage of cells (%) showing 0 to 4 translocation peaks:
in total 32 parameters (Figure 2.6b). In order to remove the cross-plate variance, a
robust z — score [29] was calculated to normalize each of the 32 parameters for each
well.

To validate the reproducibility of controls and the quality of assay, we first calcu-
lated the standard Z’— factor for each individual parameter (Figure 2.6b) to quantify
the stability of both positive and negative controls, as well as the difference between
positive and negative controls [30]. However, this conventional method of quality con-
trol is developed for assays with only a single readout and our quantification method
provides readouts with multiple parameters. To enable the comparison of our assay
with assays using only a single readout, we integrated multiple parameters into one
value by Fisher’s linear discriminant 31, 32] as suggested recently for integration of
multiple readouts for quality control in high-content screening [33|. A direction w
was first identified to maximize the separation between positive control and negative
control:

W = (Spositive + Snegative)_l (Hpositive - ,Unegative) (25)

where Lipositive, Unegative, Spositive a0 Spegative 18 the mean vector of positive control,
mean vector of negative control, covariance matrix of positive control and negative
control, respectively. They were derived from the z — score vector [z — scorel, z —
score2, ..., z — scoreN| of each well, where N is the number of parameters used
for the calculation of multi-parametric Z' — factor and N < 32 . The z — scores
were then linearly projected onto this dimension w according to Equation 2.6 and a
multi-parametric Z' — factor (Equation 2.7) can be calculated from the projected
values.

P, =w -z — score; (2.6)

3(Std(Ppositive) + Std(Pnegative))

7' — factor =1 —
f ‘ Mean(Ppositive) - Mean(Pnegative> |

(2.7)

where z — score; is the z — score vector of well . We measured both standard
Z' — factor (Equation 2.7) and robust Z' — factor (Equation 2.8) by calculating the
mean and standard deviation (Std), and the median and median absolute deviation
(M AD), respectively:

3(MAD(Ppositive) + MAD(Pnegative))
’ Median(Ppositive) - Median(Pnegative) ’

robust Z' — factor =1 — (2.8)
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Figure 2.6b shows univariate standard Z’ — factors for all 32 parameters. The
highest value was 0.32 and the highest robust Z’ — factor was 0.54, both for the
parameter “% 3 or more peaks” in concordance with the strong reduction of the
number of oscillations upon IkBa knockdown. According to an established criteria
[30], a Z’ — factor > 0.5 indicates an assay suitable for HTS. The high value of the
robust Z' — factor therefore may validate our method for HT'S. When we integrated
the parameters with univariate Z’ — factor > 0, in this case 6 parameters (Figure
2.6b), to calculate multi-parametric Z’ — factor, a higher value of 0.61 for standard
7' — factor and a very good robust Z' — factor of 0.78 were obtained which further
validates our assay for HTS (Figure 2.6c¢).

2.3 Discussion and conclusions

Controlling cellular fate in response to external stimuli is an important event in
many physiological and pathological processes and in the action pharmacologically
active compounds. Signaling routes that are involved herein frequently modulate
gene-transcription by activation of nuclear transcription factors, such as NF-xB. In
order to obtain a better insight in underlying processes that lead to the activation of
these transcription factors, their subsequent translocation to the nucleus, and in the
downstream events that follow their activation, methods need to be developed that
enable the study of such events at the individual cell level and in high throughput
fashion. In this study, we successfully developed such a methodology based on a
novel method for cytoplasm definition (BEVC) and nuclei segmentation (WMC).
Our method can easily be adapted to study the activation and nuclear cycling of
other nuclear transcription factors as well.

The cell line used in this study (HepG2) is an epithelial-like hepatoma cell line,
showing clustered and stacked cell growth. This influences the readout for GFP-p65
translocation by epifluorescence microscopy: superimposed, yet out of focus nuclei
decrease the accuracy of single cell tracking and measurements. By adopting confocal
microscopy in this study, the resolution and accuracy of single cell measurements are
increased. Furthermore, we introduced the BEVC algorithm for accurate cytoplasm
definition based on cell topology. Combined with WMC segmentation for the nuclear
mask, and a series of quantification processes such as linear interpolation, the NF-xB
translocation profile of each individual cell can be constructed. In order to validate
our method, three sets of tests were applied on five time-lapse image series. These
tests evaluated the proposed quantification method from three different perspectives,
i.e. (1) accuracy of BEVC algorithm, (2) accuracy of calculated NF-xB translocation
profiles, and (3) correct identification of cell subpopulations. In our test, only 10% of
cells were segmented incorrectly by BEVC algorithm. Compared with a 14% error rate
obtained by the Dilation method and a 12% error rate by the Voronoi method, we can
state that the BEVC algorithm provides sufficiently accurate cell segmentation. The
BEVC algorithm is also highly efficient, which is a key consideration for HT'S analysis.
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Figure 2.6: Application of the NF-xB nuclear translocation analysis method in siRNA
screening assays. (a) The population average of GFP-p65 nuclear/cytoplasmic ratio profiles for
negative control siCASP8, siCntrl#1, transfection reagent without siRNA (mock), and positive
control siNFKBIA. Inset: representative images of mock and siNFKBIA treated GFP-p65 cells, at
0 and 30 minutes after TNFa stimulation (b) Table showing the ordered univariate Z' — factors
for all 32 individual parameters. The definitions of 26 analogue parameters are given in Table S2.2.
Absolute Curve Difference indicates the absolute point-by-point difference between average profiles
of control and treatment. (c) Multi-parametric Z’ — factors calculated based on the top-scoring
univariate Z’' — factors. Both the standard as well as robust multi-parametric Z’ — factors exceed
the confidence threshold of 0.5 by combining more than 5 top-scoring univariate Z' — factors with
linear projection.

Other algorithms, such as contours derived from an active shape model [34], would
possibly define a more precise cell edge, yet at the cost of analysis speed. Moreover,
due to the uniform distribution of GFP-p65 in the cytoplasm, exact detection of cell
boundaries is considered less relevant.

In the second and third validation test, we evaluated the accuracy of the calculated
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NF-kB translocation profiles and the accuracy of cell subpopulation identification
respectively. Our results indicate no significant differences between human generated
benchmarks and the results obtained from the automated computational procedures,
thereby validating our methods for studying NF-«B translocation, not only in the
context of overall effects on the translocation response, but more importantly, also at
the individual cell level.

In order to establish the sensitivity of our algorithm for perturbation of the bio-
logical system, an experiment was performed by pre-exposing the HepG2/GFP-p65
cells for 2 hours with an IKK-inhibitor, BMS-345541 before TNF« stimulation. The
results show that already at the lowest concentration of BMS-345541, perturbation
of NF-kB translocation was observed, thus validating our method for studying fac-
tors that affect this translocation. We also validated that our quantification method
can successfully be applied in the context of high-throughput functional genomics
screening. For this screening, the approach of gene silencing by transient transfection
of siRNAs was applied. Based on calculation of multi-parametric Z’ — factors, we
demonstrated that our NF-kB quantification method can be used in HTS assays to
identify genetic players that interfere with the nuclear translocation of NF-xB.

In this study we demonstrated the effect of IkBa silencing by siNFKBIA treat-
ment on NF-kB oscillation. Theoretically the expected effect of IkBa loss would
be persistent nuclear presence of NF-xB, however, this is not observed. The 3-day
siRNA treatment instead led to an increased expression of the GFP-p65 construct,
which was strongly retained in the cytoplasm, even upon TNF« stimulation (Figure
2.6a). Western-blot analyses showed that the loss of IkBa had resulted in a basic
up-regulation of NF-xB target genes, including A20 and IxBa itself (data not shown),
indicating that upon siNFKBIA treatment, the reporter cells had undergone multiple
rounds of NF-xB translocation that most likely prevented further activation at the
time of imaging.

NF-kB signaling is a complex process, and the balance of cytokine production
and intracellular signaling transduction controls cellular fate in innate immunity and
inflammation responses [14,35]. It has been established by several groups that the
individual cell response to cytokines may be very heterogeneous and is character-
ized by a full response of a few cells at low TNFa concentrations, and a similar
response, but now for almost all cells at high concentrations, thereby creating dis-
tinct subpopulations of cells [10,14,15]. We show that for the HepG2 cells 5% of the
cells oscillate spontaneously when no stimulation was applied. Spontaneous nuclear
translocation has also been reported in neuroblastoma cells, although at a slightly
higher level (18%) [15]. It is thought that this cellular variation serves biological
important goals such as stability in acute tissue responses that are made up from
highly heterogeneous individual oscillatory cell responses [14]|. Therefore, it is an im-
portant goal and a major challenge to quantify cell subpopulations within the NF-xB
response pathway. Several methods have been described that partially meet this de-
mand [10,14,15,36]. However, none of these is suitable for HTS because they either
lack fully automated image analysis and require human intervention at some point, or
require special equipment that prohibits massive parallel screening. The development
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of a methodology suitable for HT'S in the context of NF-xB signaling as presented in
this study, whereby time courses of NF-xB translocation can be recorded in hundreds
of individual cells over a period of many hours, presents a major breakthrough in this
field. It now becomes possible to identify factors that govern NF-xB signaling at a
genome wide scale. We are currently performing siRNA screening using this model
to identify novel kinases and ubiquitinases that affect TNF-induced NF-«B nuclear
shuttling.

Finally, the analogue parameters that we acquire from all the individual translo-
cation profiles can be used as variables to model the sinusoidal oscillation of NF-xB
translocation by systems biology approaches [14, 15, 36].

2.4 Methods

2.4.1 Cell line and cell culture

HepG2 cells stably expressing N-terminally GFP-tagged p65 (GFP-p65) [37] were
maintained in Dulbecco’s modified Eagle’s medium (DMEM) with high glucose, 10%
(v/v) FBS and 25ug/mL penicillin/25ug/mL streptomycin. HepG2/GFP-p65 cells
were seeded on Greiner micro-clear 96well black plates (20,000 cells/well) and grown
at 37°C, 5% COy for 2-3 days.

2.4.2 Treatment of cells

The human cytokine TNFa (R&D Systems) was used in all experiments at 10ng/mL.
The IKK-inhibitor BMS-345541 was from Sigma-Aldrich. Transient knockdown of
NFKBIA was achieved using siGENOME NFKBIA SMARTpool siRNA (50nM; Dhar-
macon Thermo Fisher Scientific, Landsmeer, the Netherlands) and transfected into
the HepG2 cells 3 days before imaging with INTERFERin (Polyplus transfection,
Leusden, the Netherlands). Transfections with siGENOME SMARTpool CASP8
siRNA were used as negative controls in these experiments. Prior to imaging, nuclei
were labelled with 100ng/ml Hoechst 33342 in culture medium for 45 minutes. For
confocal fluorescence microscopy, upon recording the first frame of the time-series,
TNF«a was added as 10ul to each well containing 190ul, medium.

2.4.3 Fluorescence microscope

The NF-£B nuclear translocation in the HepG2/GFP-p65 cells was imaged using
a Nikon TiE2000 microscope equipped with a Perfect Focus System at 37°C with
5% COq delivery to the sample plate location. Both the Hoechst-nuclear channel
(excitation 405 nm, emission: 450 nm) and the GFP-p65 channel (excitation 488 nm,
emission 515 nm) were recorded with the laser excitation confocal system. Images
were acquired with a 20x (NA 0.75) dry Plan Apochromat objective and the image
acquisition was controlled by EZ-C1 software (Nikon). In each well, an image from
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the same position was acquired every 6 minutes for a period of 6 hours. The time-
lapse series were exported in TIFF files as 16-bit digital images with 512 x 512 pixels
frame.

2.4.4 Image analysis and statistical analysis

Image analysis was implemented using ImageJ (http://rsbweb.nih.gov/ij/). In-house
plugins were written for quantification of both translocation profile and analogue pa-
rameters (Supplementary note). R (http://www.r-project.org/) was used to calculate
the ANOVA test, t-test and multi-parametric Z' — factor.
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Supplementary note

1. Nuclear mask validation by classification

a. Overview

After defining the nuclear mask by WMC, we observed that some masks were not
segmented accurately. Especially masks that extended over nuclear boundaries would
generate inaccurate average GFP intensities of nuclei. To solve this problem, we
decided to train a classifier which can automatically recognize incorrect nuclear masks
and discard them. This classifier can be used for experiments carried out on different
dates or with different treatments, as long as the microscope settings and cell line
remain the same.

b. Training data

5 frames were randomly selected from 5 different time-lapse image series. We man-
ually identified incorrect nuclear masks from the segmentation result of WMC . For
all test images, 1179 nuclear masks were validated as accurate segmentation results
(Figure S2.1a), and 127 nuclear masks were considered as incorrect (Figure S2.1b).
Next morphological parameters (Table S2.1) were calculated using ImageJ, on both
correct masks and incorrect masks, and then used to train the classifier.

c. Classification

Feature selection was performed to avoid the curse of dimensionality, using ‘“forward”
search algorithm. To define the optimal number of features, multiple classification
methods were applied and a 10-fold cross-validation was used to evaluate the number
of features, as well as the accuracy of each classification algorithm. The classification
methods we tested were k-nearest neighbor classification with k = 1 or 2, linear Bayes
normal classification, quadratic Bayes normal classification, nearest mean classifica-
tion, Fisher linear classification and support vector machine with linear kernel. Figure
S52.2 showed the cross-validation error rate for each classification method calculated
on certain number of features. The result showed that when 2 features were selected,
quadratic Bayes normal classification gave a quite low error rate of 5.58%. Those 2
features are circularity and area. In the end, a quadratic classifier was obtained which
can be used to automatically validate the nuclear mask for the whole experiment. All
the functions were implemented using PRtools on MATLAB.

2. Cellular mask validation by classification

a. Overview

We have also validated the cellular masks. Since we used the best-fit ellipse of Voronoi
cell to simulate the cellular region, the circularity for each mask would all be 1, so
that can not be used for the classification. Therefore we decided to only use an area
threshold to identify the incorrect cellular masks. For regions where cells grow on
top of each other, cell layers are not perfectly aligned with the focal plane where
images are acquired and therefore these regions are not in focus (Figure S2.3a). As a
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result, nuclei can not be detected and no nuclear masks were obtained in those regions
(Figure S2.3b). Consequently, very big Voronoi cells (Figure S2.3c) and ellipses are
generated (Figure S2.3d). Overlap of the GFP channel with ellipses clearly showed
that those big ellipses contained multiple cells. To discard those incorrect cellular
masks, we manually distinguished those ellipses from the rest and calculated an area
threshold to automatically identify cellular masks with incorrect size.

b. Training data and classification

5 images which contain out of focus regions were chosen. Next, incorrect cellular
masks which covered multiple cellular areas where the corresponding nuclear masks
were missing were manually identified. Afterwards, the areas of these identified masks
were measured, as well as those of correctly identified masks. In the end, an optimal
area threshold was set up to minimize false classification.

3 Quantification of analogue parameters

a. Overview

One advance of our fully automated method is its ability to provide analogue param-
eters automatically for each time course profile. These analogue parameters translate
the profiles into numerical parameters, such as number of peaks and amplitude of each
peak (Table S2.2). This is very useful for categorizing different cell subpopulations
according to their analogue parameters so that we can study not only the influence
of