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Chapter 1

How do we interact with our environment? We effortlessly turn door handles, reach for a cup 
of coffee, and use various kinds of tools and electronic equipment. But how do we coordinate 
our actions in response to these environmental demands? Intuitively, we first perceive an 
object, then we think for a very brief moment, and, finally, we perform actions on it. So, 
somehow in ‘the thinking’ our perception and action systems must ‘connect’. The nature 
of this connection has been a central topic within the field of Cognitive Psychology (Ward, 
2002). Indeed, actions that are not guided by perception would not only be inefficient but 
might also be rather dangerous. Moreover, coordinating perception and action is potentially 
very complex as natural environments offer an overwhelming number of perceivable objects 
and natural bodies allow for a virtually unlimited number of different responses. As the 
human cognitive system usually seems to cope quite well with this complexity, understanding 
its perception and action connection could be beneficial for developing artificial embodied 
cognitive systems (i.e., robots) that need to cope with similar challenges.

In this thesis I argue that perception and action planning do not represent separable 
stages of a unidirectional processing sequence, but rather emerging properties of highly 
interactive mental processes. In other words, information processing is the result of a (context 
modulated) dynamic interplay between perception and action.

Traditional views of human information processing
Traditionally, very much in line with the intuitive reasoning described above, responding to 
stimuli in our environment has theoretically been conceived as a sequence of separable stages of 
processing (e.g., Donders, 1868; Neisser, 1967; Sternberg, 1969; see Figure 1). The separation 
of information processing into a sequence of steps has a strong history in various theories of 
human information processing. Moreover, in many models and cognitive systems different 
steps are often realized by different modules.

For example, in their seminal work, Card, Moran and Newell (1983) describe the 
Model Human Processor being composed of three main modules: perception, cognition 
and action modules. Information processing is defined as a cyclic, sequential process from 
stimulus perception to cognitive problem solving to response execution. The perceptual 
system is considered to contain sensors and is responsible for coding the sensory input into 
symbolic representations. The cognitive system combines this symbolic input with long term 
memory and determines how to respond. Finally, the motor system is assumed to carry out 
the specified response.

Figure 1. The perceive-think-act sequence is the basis of various theories of human information processing

Stimulus selectionStimulus identification Response selection Response execution
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In similar vein, the Seven stages of Action model (Norman, 1988) — a conceptual model 
of human task performance popular in the field of Human Computer Interaction — 
decomposes the interaction between people and their environment into the following seven 
stages: people (1) perceive the state of the world, (2) interpret their perception, (3) form 
evaluations based on these interpretations, (4) match these evaluations against their goals, 
(5) form an intention to act, (6) translate this intention into a sequence of actions and (7) 
execute this action sequence. Executing an action sequence subsequently results in a change 
in the world state which can again be perceived in the first stage. 

More recently, cognitive architectures have been developed (e.g., ACT-R, Anderson, 
1993; SOAR, Newell, 1990;  EPIC, Kieras & Meyer, 1997) to address the challenge of 
computationally characterizing human information processing. Crucially, these architectures 
also separate processing in stages and mostly focus on the middle, cognitive steps of the 
perceive-think-act processing sequence. It is assumed that the first steps, perceiving and 
interpreting the world state, are performed relatively easily. The main focus is on comparing 
the world state with a goal state and deciding upon which action to take next in order to achieve 
the goal state. It is further assumed that once an action is chosen, its execution is easy, leading 
to a predictable new world state. The core mechanism used by most cognitive architectures 
is a production rule system (Byrne, 2003). A production rule defines the translation of a 
pre-condition into an action that is known to produce a desired post-condition. This can be 
interpreted as “IF (x) THEN (y)” rules. By specifying a set of production rules, a cognitive 
architecture can be given some prior knowledge resulting in response tendencies to choose 
those actions that eventually realize certain goals. When putting a cognitive architecture, 
endowed with a set of production rules, in interaction with an environment, however, conflicts 
between rules or unexpected conditions may present themselves. Moreover, by assuming a 
set of production rules, a cognitive architecture also assumes a set of action alternatives. 
However, when someone is interacting with a physical or virtual environment, it is often 
unclear which actions can be performed. Also, in certain contexts, people may not readily 
detect all action opportunities and action alternatives may differ in their availability, leading 
to variance in behavior (Kirlik, 2007).  This is hard to capture in a cognitive architecture that 
assumes a predefined set of (re)actions. 

Artificial Intelligence and Robotics
Responding to environmental demands in the environment has also been a major challenge 
in the fields of Artificial Intelligence and Robotics. In the 1960s – 1970s these fields started 
out with top down approaches focusing on robots that could reason about the world, create 
internal maps and figure out with hard computation how to navigate through the world. A 
well-known example was Shakey, a robot built in the late 1960s (Nilsson, 1984). Shakey was 
essentially a box on wheels with a camera. It was accompanied with an off-board computer that 
was programmed to make plans of ‘what to do next’. The interaction with the environment 
started with a perception stage in which camera input was analyzed and a world model was 
computed in the off-board computer. Then, during the ‘think’ stage, the computer would 
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go through all alternatives of what to do next, an algorithm taking minutes to compute. 
Finally, during the ‘action’ stage, essentially with eyes shut, Shakey would move a couple 
of feet, hoping that the world would remain stable. Then, in a new cycle, Shakey opened 
up its eyes again, looked at the environment, built a new world model and continued its 
journey. As demonstrated by rather hilarious scenes where culprits would come in and alter 
the environment precisely when Shakey was in its ‘blind’ action stage resulting in inaccurate 
internal models and inappropriate actions, this perceive-think-act architecture seemed to 
pose a problem for real world robotics: robots constructed like Shakey are limited by the need 
for all information from the sensors to pass through the modeling and planning modules 
before having any effect on the robot’s actions (Brooks, 1991). As a result, Shakey could only 
cope with highly impoverished, static environments. Natural, dynamic environments would 
require too much time to construct a plan in response to ongoing, unexpected events. 

In the decades that followed, some AI researchers took stronger notice of nature and 
observed that rather simple organisms such as bugs and insects are quite able to cope with 
environments that are too challenging for Shakey. Brooks (1986) proposed an activity-
based decomposition of information processing. He reasoned that perception, cognition 
and action should be considered intertwined and suggested that a system might rather be 
decomposed in different behavior-producing subsystems and that each of these subsystems 
in itself forms a complete perception, cognition, action pathway. As these pathways may inhibit 
or suppress each other, such a system is able to exhibit a wide variety of complex behaviors. 
This approach resulted in a decade of developing insect-like robots that demonstrated much 
better performance in dealing with real environments than the earlier robots based on the top 
down approach, like Shakey. However, linking their behavior and internal representations to 
higher level cognitive activities such as planning, reasoning about and communicating with 
other robots or humans proved to be rather hard (Shanahan, 1998).

The issue of modularity is still a central topic in modern day robotics. Robots are complex 
systems and functional decomposition into hardware and/or software modules makes sense 
from an engineering point of view. In the last decade we have witnessed the dawn of highly 
advanced robot vision systems that recognize complex objects instantaneously (e.g., Detry & 
Piater, 2011) and reconstruct entire 3D scenes in internal world models (e.g., Baseki et al., 
2010) . Moreover, video clips of robots showing immensely impressive behavioral repertoires 
(e.g., drumming, dancing, walking stairs) appear in the media weekly. How to architect 
and interconnect perceptual, cognitive and action systems, however, remains a matter of 
debate and an issue to be explicitly addressed by roboticists (e.g., the three-level architecture 
described in Kraft et al., 2008).

Information processing in the brain
Where traditional views on human information processing focus on the ‘software’ processing 
steps irrespective of the ‘hardware’ (i.e., the brain) that is assumed to perform these steps, 
connectionist theories stress that the structural and functional properties of the brain may 
have strong influences on human information processing. Indeed, the human brain does not 
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contain a single complex central processor that does all the computations; it rather consists of 
billions of simple computing units (neurons) that are interconnected by trillions of connections 
and primarily engage in local interactions (i.e., with their directly connected ‘neighbors’). 

Given the complexity of the brain early work on network models of cognitive performance 
was not aimed at modeling brain activity in complete detail. Researchers rather set out to 
model cognitive phenomena in systems that exhibited some of the same basic properties as 
networks of neurons in the brains. McCulloch and Pitts (1943) laid the foundation with 
networks composed of binary units and demonstrated (Pitts & McCulloch, 1947) that 
these networks could be used to perform pattern recognition tasks. Later approaches (e.g., 
Rosenblatt 1961) explored similar networks of units with connections of varying weights. 
In addition, following Hebb’s (1949) suggestion that when two neurons in the brain were 
jointly active, the strength of their connection might increase, procedures came to be that 
allowed these networks to learn and demonstrate associative memory abilities (e.g., Taylor, 
1956). The success of these early network models was, however, rather short-lived as there 
were strong limitations (e.g., demonstrated by Minskey & Papert, 1969) to what this type 
of networks could compute and serious learning algorithms were lacking. These limitations 
turned the focus of AI research towards symbolic models of information processing. 

In the mid-1980s, however, important limitations of rule-based symbolic systems were 
identified (e.g., inflexibility, difficulty in learning from experience, inadequate generalization) 
and network-inspired approaches came back in vogue. Rumelhart, Hinton, and McClelland 
(1986) published their very influential Parallel Distributed Processing (PDP) work that 
essentially defined the connectionism. In the connectionist approach there is a network of 
elementary units, each of which has a certain degree of activation. The network is considered 
to be a dynamical system which, once provided with initial input, spreads activation among 
its units for a set period of time or until a stable state is achieved. Such a connectionist system 
is considered to ‘perform’ a cognitive task by interpreting the inputs as a problem and the 
resulting stable configuration of the system as the solution to that problem. Compared to the 
symbolic approach, that involves transformation of symbols according to specific rules, the 
connectionist approach focuses on causal processes by which the units spread activation to 
each other. Hence, information processing in connectionist networks is distributed.

As connectionism became increasingly popular in the late 1980s, some researchers 
(e.g., Fodor, 1983; Pinker, 1997) argued that connectionism actually constituted a reversion 
toward behaviorism (e.g., Watson, 1913) by focusing on mere input-output associations 
rather than addressing mental processes in terms of explicit logical algorithms. In their view, 
mental activity is computational; that is, performing operations on symbols. Indeed one 
could argue that connectionist-like hardware (i.e., the brain) may actually only implement 
the symbolic-like software algorithms. Hence, the mind could still very well be decomposed 
in separate (e.g., perception, cognition and action) subsystems. Indeed, to what extent the 
mind can be considered a modular system is still a matter of lively debate among cognitive 
scientists (Prinz, 2006). 
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Direct interaction between perception and action
Now, interestingly, empirical findings in psychology have demonstrated that parts of human 
information processing do not seem to involve conscious cognitive decision making. Features 
of perceived objects (such as location, orientation, and size) can influence actions directly 
and beyond (tight) cognitive control, as illustrated by stimulus–response compatibility 
phenomena, such as the Simon effect (Simon & Rudell, 1967). In the typical Simon task, 
stimuli vary on a spatial dimension (e.g., randomly appearing on the left or right) and on 
a non-spatial dimension (e.g., having different colors). Participants have to respond to the 
non-spatial stimulus feature by performing a spatially defined response (e.g., pressing a left 
or right key). Although the location of the stimulus is irrelevant for the response choice, it 
nevertheless influences response time and accuracy: participants respond faster (and more 
accurately) when the stimulus location is congruent with the response location than when the 
stimulus location is incongruent with the response location. This finding suggests that there 
is a direct interaction between stimulus perception and response planning. The Simon effect 
is a very robust finding, has been replicated numerous times and has been used frequently 
as a methodological tool to investigate perception, action, and cognitive control (for general 
overviews, see Hommel, 2011; Proctor, 2010).

To account for both controlled and automatic processing, various dual route process 
accounts have been proposed (e.g., Kornblum, Hasbroucq, & Osman, 1990; Zorzi & 
Umilta, 1995). These accounts propose that there is a second, direct route from perception to 
action that can bypass cognition, as explicitly modeled in various computational models of 
the Simon effect (e.g., Zorzi & Umilta, 1995; see Chapter 4 for a more elaborate discussion). 
Essentially, dual route accounts consider the observed direct stimulus-response interaction 
as an exception requiring an additional route next to the ‘normal’ one that does involve 
cognition. Moreover, they typically do not address the reason why some stimulus features 
directly influence action and others do not.

Representing perception and action using common codes
An alternative view that gives much more weight to this direct interaction between perception 
and action is the Theory of Event Coding (TEC, Hommel, Müsseler, Aschersleben & Prinz, 
2001; illustrated in Figure 2). TEC is a general theoretical framework that addresses how 
perceived events (i.e., stimuli) and produced events (i.e., actions) are cognitively represented 
and how their representations interact to generate both perceptions and action plans. TEC 
holds that stimuli and actions are represented in the same way and by using the same ‘feature 
codes’. These codes refer to the distal features of objects and events in the environment, 
such as shape, size, distance, and location, rather than to proximal features of the sensations 
elicited by stimuli (e.g., retinal location or auditory intensity; see Heider, 1959; Hommel, 
2009). For example, a haptic sensation on the left hand and a visual stimulus on the left both 
activate the same distal code representing ‘left’. 

Crucially, these feature codes can represent the properties of a stimulus in the 
environment just as well as the properties of a response — which, after all, is a perceivable 
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stimulus event itself. This theoretical assumption is derived from ideomotor theory (James, 
1890; see Stock & Stock, 2004, for a historical overview), which presumes that actions 
are cognitively represented in terms of their perceivable effects. According to the ideomotor 
principle, when one executes a particular action, the motor pattern is automatically associated 
to the perceptual input representing the action’s effects (action–effect learning; Elsner & 
Hommel, 2001). Based on these action-effect associations, people can subsequently plan 
and control (Hommel, 2009) a motor action by anticipating its perceptual effects, that is, 
(re-)activate a motor pattern by intentionally (re-)activating the associated feature codes. 
Thus, stimuli and actions are represented in a common representational medium (Prinz, 1990). 
Consequently, stimulus perception and action planning are considered to be similar processes: 
both involve activating1 feature codes that represent external events.

Neuroscientific evidence for common codes at a distal feature level can be found in the 
response characteristics of mirror neurons in the premotor cortex (cf., Keysers & Perrett, 
2004). In the macaque monkey, these neurons are active both when the monkey performs 
a particular action and when it perceives the same action carried out by another monkey or 
human, such as picking up food. Crucially, this overlap occurs at a distal representational 
level, that is, at the level where planned and perceived actions can be described as having 
the same goal or end state such as picking up an object (Rizzolati & Craighero, 2004). Also, 
various behavioral studies show that, in humans, action planning can actually influence object 
perception (e.g., Fagioli, Hommel & Schubotz, 2007; Stoet & Hommel, 2002; Wykowska, 
Schubö & Hommel, 2009), suggesting that perceptual processes and action processes overlap 
in time (see also Hommel, 1997) and influence each other. 

F1 F2

S1 S2 S3 S4 S5 S6 M1 M2 M3 M4 M5 M6

Figure 2. Sensory, feature and motor codes in TEC (adapted from Hommel et al., 2001). Multiple sensory codes can relate to the 
same feature codes (and vice versa). The same holds for motor codes and feature codes.

1 TEC also addresses how more complex cognitive codes (‘event files’) are created, an aspect that refers to the 
integra-tion of feature codes rather than their mere activation. This structure-building aspect will not be dealt with 
in this thesis but be left for future work.
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Finally, TEC stresses the role of task context in stimulus and response coding. In particular, the 
responsiveness of feature codes to activation sources is considered to be modulated according 
to the task or goals at hand (the intentional weighting principle, Memelink & Hommel, 
2013). For example, if the task is to grasp an object, feature codes representing features 
relevant for grasping (such as the object’s shape, size, location and orientation) are assumed 
to be enhanced, while feature codes representing irrelevant features (such as the object’s color 
or sound) appear to be attenuated (Hommel, 2010; Wykowska et al., 2009). 

HiTEC connectionist model
In this thesis I aim to shed more light on the biological and computational plausibility of 
common representations underlying perception and action planning. To this end I have 
developed HiTEC, a connectionist model based on TEC. Our aim was to formulate a 
clear alternative to sequential models of perception and action and to develop a minimal 
framework for considering how perceptual and action processes may interact in the control 
of behavior. HiTEC extends and further specifies TEC’s principles to account for a series of 
key experimental findings in a unitary theoretical framework and at a level of specificity that 
allows for computer simulation. 

Outline of the thesis
The thesis is organized as follows. Chapter 2 presents HiTEC, the connectionist model 
developed to study the feasibility of common representations and interactive processing; 
in Chapters 3 to 5, various simulations of empirical phenomena are described. Here, the 
focus is on research questions that particularly challenge existing models of stimulus-response 
translation that assume separate modules or processing stages. Finally, general conclusions 
are described in Chapter 6. In this endeavor the following research questions are addressed 
in this thesis.

How do neuron-like representations realize stimulus-response translation?
This research question is addressed in Chapter 2. In this chapter, the HiTEC connectionist 
model is presented. In HiTEC, neuron-like representations are distributed over multiple levels 
and processing involves both feedforward and feedback interaction between lower and higher 
level representations. In addition, one of the HiTEC levels contains common representations; 
these representations are used both for stimulus perception and response planning. As a 
result, stimulus-response processing is fully interactive rather than in stages. The HiTEC 
model is used in all simulations discussed in this thesis. 

How do situation-specific meanings of motor actions emerge? 
In order to control its actions in response to demands in the environment the cognitive 
system needs to know what actions are possible and what these actions ‘mean’. Various 
empirical findings suggest that for a cognitive system this ‘meaning’ is not a fixed fact; it 
rather depends on the (perceptual) effects within the task context. Consequently, in order 
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to select and execute an appropriate response to a stimulus a plausible cognitive model must 
first learn (i.e., from experience) what the effects of its motor actions are and how to interpret 
these effects in the task context. How these situation-specific meanings of actions may emerge 
and how these meanings are used in action control is addressed in Chapter 3. Simulations 
in this chapter demonstrate that HiTEC allows for associating action effects with motor 
actions. Moreover, the strengths of these associations depend on the context allowing for the 
emergence of situation-specific meanings.

How and why do parts of stimulus–response translation occur automatically?
Some parts of the translation from stimulus to response are considered to occur automatically 
as demonstrated by stimulus–response compatibility (SRC) effects such as the Simon effect 
(Hommel, 2011; Simon & Rudell, 1967). How and why these effects may occur is addressed 
in Chapter 4. Simulations in this chapter demonstrate that HiTEC provides a parsimonious 
rationale for these effects, most notably in terms of the common representation level and the 
fact that task-relevance is considered to apply to both stimuli and responses.

How does the task context modulate stimulus-response translation? 
How the task context may modulate stimulus-response translation is more explicitly addressed 
in Chapter 5, which includes both the simulation of an existing empirical study and a novel 
behavioral study and its simulation. The first simulation in this chapter demonstrates how 
the task context may modulate action control by means of (spatial) attention within the 
environment; the empirical study and the second simulation show how intentional weighting 
may also operate on a more abstract (distal) level.

Finally, in Chapter 6, these research questions and their interrelations are further 
discussed as not only perception and action are strongly interrelated, so are the different 
research questions addressed in this thesis. 

Publications
Note that these chapters contain major parts of various articles published in the course of 
this research. Rather than presenting a collection of published and submitted articles divided 
over chapters, I have chosen to assist the reader with what I consider a more logical structure. 
Following this structure, one chapter is devoted to presenting the entire model, and the other 
chapters focus on various major aspects of the interaction between perception and action 
combining simulations from various articles. In my view, this structure better reflects the 
integrated character of the work and avoids unnecessary repetition of common or iteratively 
refined parts such as model implementations, theoretical background and simulation 
procedures. 
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The thesis is an integration of a number of articles I wrote in collaboration with co-authors. 
Note that this is reflected in the various chapters by the use of ‘we’ rather than ‘I’. The 
interested reader is referred to these articles. 

Haazebroek, P., & Hommel, B. (2009a). Anticipative control of voluntary action: Towards 
a computational model. Lecture Notes in Artificial Intelligence, 5499, 31-47. 

Haazebroek, P., & Hommel, B. (2009b). Towards a computational model of perception 
and action in human computer interaction. Lecture Notes in Computer Science, 5620, 
247-256. 

Haazebroek, P., Raffone, A., & Hommel, B. HiTEC: A Connectionist Model of the Interaction 
between Perception and Action Planning. Manuscript submitted for publication.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2009). Towards a computational account 
of context mediated affective stimulus-response translation. Proceedings of the 31st 
Annual Conference of the Cognitive Science Society (pp. 1012-1017). Austin, TX: 
Cognitive Science Society.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2011a). A computational model of 
perception and action for cognitive robotics. Cognitive Processing, 12, 355-365

Haazebroek, P., van Dantzig, S., & Hommel, B. (2011b). Interaction between Task 
Oriented and Affective Information Processing in Cognitive Robotics. Lecture Notes 
of the Institute for Computer Sciences, Social Informatics and Telecommunications 
Engineering, 59, 34-41.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2013). How task goals mediate the 
interplay between perception and action. Frontiers in Psychology, 4:247.

As my PhD project was embedded into an interdisciplinary robotics project I also got the 
chance to collaborate with scientists from other disciplines. Some of this collaborative work 
has not been integrated in this thesis, even though it contains some of the ideas captured 
therein; the interested reader is referred to following articles.

Broekens, J. & Haazebroek, P. (2007). Emotion and reinforcement: Affective facial 
expressions facilitate robot learning. In Proceedings of the IJCAI Workshop on AI for 
Human Computing (AI4HC’07, Hyderabad, India) (pp.47-54).

Lacroix, J. P. W., Postma, E., Hommel, B. & Haazebroek, P. (2006). NIM as a brain for a 
humanoid robot. In Proceedings of the Toward Cognitive Humanoid Robots workshop 
at the IEEE-RAS International Conference on Humanoid Robots 2006. Genoa, Italy.

Spiekman, M.E., Haazebroek, P., & Neerincx, M.A. (2011). Requirements and Platforms 
for Social Agents that Alarm and Support Elderly living Alone. Lecture Notes in 
Computer Science 7072., 226-235.



2121

Introduction



2222



2323

Chapter 2 
HiTEC Connectionist Model

This chapter is an integration of major parts of the following articles:

Haazebroek, P., Raffone, A., & Hommel, B. HiTEC: A Connectionist Model of the Interac-
tion between Perception and Action Planning. Manuscript submitted for publication.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2013). How task goals mediate the inter-
play between perception and action. Frontiers in Psychology, 4:247.
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In this chapter we describe the HiTEC connectionist model in full detail. We start out with 
discussing the general cortical layering of the brain and our general connectionist modeling 
approach. Then we describe the specific HiTEC architecture, followed by its computational 
implementation. We proceed with discussing how HiTEC allows simulating behavioral 
studies and, finally, we compare our approach with related work and address how neuron-
like representations may realize stimulus-response translation.

Cortical layering
Neurons in the primate cortex appear to be organized in numerous interconnected cortical 
layers. It is commonly assumed that this organization allows the brain to encode perceived 
objects in a distributed fashion. That is, different features seem to be processed and represented 
across different cortical layers (e.g., Cowey, 1985; DeYoe & Van Essen, 1988), coding for 
different perceptual modalities (e.g., visual, auditory, tactile, proprioceptive) and different 
dimensions within each modality (e.g., visual color and shape, auditory location and pitch). 
Each sensory cortical layer typically contains neurons that are responsive to specific sensory 
features (e.g., a specific color or a specific visual location). Cortical layers in the motor cortex 
contain neurons that code for more or less specific movements (e.g., the muscle contractions 
that produce the movement of the hand pressing a certain key, or more complex movement 
such as shifting one’s weight to the right). Higher up in the processing stream there are 
cortical layers containing neurons that are receptive to stimulation from different modalities. 
In effect, they are considered to integrate information from different senses and modalities. 
Finally, the prefrontal cortex contains neurons that are involved in task-generic cognitive 
control (Duncan & Owen, 2000). These levels of representation are illustrated in Figure 3 and 
form the basis of the HiTEC model architecture. 

Figure 3. Tentative locations of various cortical layers in the primate brain with sensory layers in sensory regions,  
task control layers in the frontal lobe, motor layers in motor area and intermediate feature layers  

mediating between lower and higher region layers.

Auditory

Somato
sensory

Motor
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Feature
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Crucially, cortical layers are not only interconnected by feedforward connections (i.e., 
from lower to higher level layers) but there are also dense neural pathways from centers 
of higher brain function back into perception centers (Braitenberg & Schüz, 1991; Young, 
1995) suggesting top-down influence of higher level layers on processing within lower level 
layers (e.g., Prinz, 2006). This constraint of reciprocal connectivity between various levels of 
representation is taken seriously in the HiTEC connectionist model.

Connectionist approach
The cortical layers in the primate brain contain a vast amount of spiking neuron cells. The 
local interactions between these neurons are largely random, but on a group level – a neuron 
population – the global population activity (i.e., mean spike frequency) can be considered 
deterministic (Wilson & Cowan, 1972). That is, mean activation depends on various inputs 
and the decay of the neuron population (see Figure 4). 

To model such neuron populations HiTEC follows2 the interactive activation 
connectionist modeling approach (PDP; Rumelhart et al., 1986). In these connectionist 
models processing occurs through the interactions of a large number of interconnected 
elements called units. In HiTEC, these units may stand for the neuron populations described 
above and are organized into higher structures representing cortical layers. Each unit has an 
activation value indicating local activity. Processing occurs by propagating activity through 
the network; that is, by propagating activation from one unit to the other, via weighted 
connections. When a connection between two units is positively weighted, the connection is 
excitatory and the units will increase each other’s activation. When the connection is negatively 
weighted, it is inhibitory and the units will reduce each other’s activation. Processing starts 
when one or more units receive some sort of external input. Gradually, unit activations rise 
and propagate through the network while interactions between units control the flow of 
processing. Some units can be designated output units. When activations of these units reach 
a certain threshold the network is considered to produce the corresponding output(s). 

Figure 4. Cortical layer with neuron populations with various inputs  
(TD: top down, Inh: lateral inhibition, Exc: excitatory input)

2 For our current work we have focused on representations and interactive processing. For this purpose, PDP 
principles provided the means we needed. This modeling framework, however, is not essential for TEC/HiTEC. 
Other aspects are probably hard to tackle within the limitations of PDP, such as binding and integration. In the 
future we may change to or add other modeling principles than PDP prescribes.

I

I

I
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HiTEC architecture
HiTEC has a multiple-layer architecture (see Figure 5) and recurrent interactions at multiple 
levels, including feedback to lower level units.  In HiTEC feedforward and feedback 
interactions are cooperative and lateral interactions (i.e., within layers) are competitive (see 
also Murre, Phaf & Wolters, 1992; van Dantzig, Raffone & Hommel, 2011). The HiTEC 
neural network is composed of excitatory and inhibitory neural units in each layer. The 
coding functions are implemented as excitatory units3. The inhibitory units are only involved 
in lateral competitive interactions; by contrast, the excitatory units can receive inputs from 
and send outputs to associated units in other layers, yielding cooperative interactions. Within 
each layer inhibitory units are activated by an associated excitatory unit and propagate 
inhibition to the excitatory units that implement other codes in the same layer (see Figure 6). 

We now first describe the general model architecture, and then describe the model 
behavior and the computational specification of the network units. HiTECs general 
architecture contains sensory layers, feature layers, a task layer and a motor layer, as depicted 
in Figure 5. Each layer resembles a cortical circuitry and contains codes implemented as 
excitatory connectionist network units as described above. The different codes (and related 
units) are characterized as follows. 

Task Level

Sensory Level

Haptic

Feature Level

Motor Level

Haptic Dimension

S7 S8

Auditory

Auditory Dimension

S5 S6

Visual

Visual Dimension

S3 S4

Visual Dimension

S1 S2

Motor Codes

M1 M2

Feature Dimension

F1 F2

Feature Dimension

F3 F4

Feature Dimension

F5 F6

T1 T2

Figure 5. General computational structure of HiTEC. Codes are contained in layers at various levels, and are connected by 
excitatory connections. Solid lines denote fixed weights, dashed lines are connections with learned weights. Sensory codes receive 
modulated excitatory input from feature codes, denoted by the open arrows. Note that feature code – motor code associations are 

one-way connections and that feature code – task code connections are non-modulated both ways.

3 We have opted for localist representations to keep HiTECs architecture and representations as simple as possible. 
There is, however, nothing that precludes the possibility that any of the codes could be distributed over many sub-
codes/sub-units.
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Sensory codes
In HiTEC, different perceptual modalities (e.g., visual, auditory, tactile, proprioceptive) are 
distinguished and different dimensions within each modality (e.g., visual color and shape, 
auditory location and pitch) are processed and represented in different sensory layers. Each 
sensory layer contains a number of sensory codes that are responsive to specific sensory 
features (e.g., a specific color or a specific location in the visual field). Sensory codes receive 
external input and feedback activation from feature codes. 

Crucially, the responsiveness of sensory coding units is modulated by connected feature 
coding units. This is realized by making the inputs from feature units to a sensory coding 
unit dependent on that sensory coding unit’s activation, which is primarily determined by its 
external stimulation. This way, a sensory coding unit cannot become highly active by mere 
top down input, which would be the equivalent of a hallucination.

Motor codes
The motor layer contains motor codes, referring to more or less specific movements (e.g., 
the movement of the hand pressing a certain key or producing a verbal utterance). Although 
motor codes could also be organized in multiple layers (e.g. reflecting different body parts), 
in the present version of HiTEC we consider only a single basic motor layer with a set of 
motor codes. Motor codes are activated by feature codes. When the activation level of one 
of the motor coding units reaches a set response threshold, the motor code is assumed to 
be selected and executed. Subsequent action effects in the environment are presented to the 
sensory coding units. 

How motor actions are controlled is more explicitly addressed in Chapter 3. Note that 
our present account of motor information represents a dramatic simplification. Movements 
are unlikely to be represented by coherent, encapsulated motor programs (as considered by 
Keele, 1968) but, rather, in a rather complex, distributed fashion (Hommel & Elsner, 2009; 
Wickens, Hyland, & Anson, 1994). However, this simplification does not affect our main 
arguments and it helps keeping the model and its behavior reasonably transparent. 

Feature codes
TEC’s notion of feature codes (Hommel et al., 2001) is captured at the feature level by codes 
that are connected to and thus grounded in both sensory codes and motor codes. Crucially, 
the same (distal) feature code (e.g., ‘left’) can be connected to multiple sensory codes (e.g., 
‘left proprioceptive direction’ and ‘left visual shape’). Thus, information from different sensory 
modalities and dimensions is combined in one feature code representation. It is assumed that 
feature codes arise from regularities in sensorimotor experience, presumably by detecting 
co-occurrences of sensory features. The distal feature ‘left’, for example, could arise from 
perceptual experience of numerous objects that were visible and audible on the left. Future 
encounters of objects audible on the left activate the ‘left’ feature code which – by means of 
its connections to both ‘left auditory location’ and ‘left visual location’ – will enhance the 
processing of visual left locations. In other words, hearing something on the left will result 
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in expecting to see something on the left as well, which seems to be quite useful, for example 
when visual sensory input is degraded. Although feature codes are considered to arise from 
experience, in the present HiTEC version we assume the existence of a set of feature codes 
(and their connections to sensory codes) to bootstrap the process of extracting sensorimotor 
regularities in interactions with the environment.

Since feature codes connect to both sensory codes and motor codes, they can be 
considered common codes in the sense of Prinz (1990), subserving both stimulus perception 
and response planning. When a certain feature code is used to represent a task stimulus and 
this same feature code is also used to represent a task response, the resulting code overlap may 
result in compatibility effects. Such compatibility effects are demonstrated in the simulations 
discussed in the next chapters, most notably in Chapter 4. 

Task codes
The task layer contains generic task codes that reflect alternative stimulus-response 
combinations resulting from the task context. Different task codes reflect different stimulus-
response choice options within the task context. Task codes connect bi-directionally to feature 
codes, both the feature codes that represent stimuli and the feature codes that represent 
responses, in correspondence with the current task context. Note that task codes themselves 
are task-generic (i.e., labeled ‘T1’, ‘T2’ et cetera); their meaning derives from their connections 
with specific feature codes.

The multiple-layer recurrent neural network architecture with different types of 
codes and the connections between associated codes is illustrated in Figure 5. Note that 
the connection weights can be different (asymmetrical) for corresponding ‘forward’ and 
‘backward’ connections (e.g. different weights for the connection from feature codes to task 
codes, and the reciprocal connection from task codes to feature codes).  

Basic model behavior
The presentation of a stimulus is simulated by feeding external input to the appropriate 
(excitatory) sensory codes. This results in a gradual increase of their activation level, which is 
translated into output to feature codes. Thus, activation flows gradually from sensory codes 
to (stimulus related) feature codes to task codes to (response related) feature codes to motor 
codes. Once a motor code is activated strongly enough it is assumed to lead to the execution 
of a motor response to the presented stimulus. The gradual passing of activation between 
codes in different layers along their connections is iterated for a number of simulation cycles, 
which allows for the simulation of reaction time (i.e., number of processing cycles from 
stimulus onset to response selection). Crucially, activation also propagates back from task 
codes to stimulus related feature codes that in turn modulate the sensitivity of sensory codes, 
thereby rendering an integrated processing system with both feedforward and feedback 
dynamics rather than a serial stage-like processing mechanism.
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Ideomotor learning
In HiTEC, connections between feature codes and motor codes are learned according to the 
ideomotor principle (Hommel, 2009; James, 1890; Lotze, 1852). This principle states that 
when one executes a particular action and perceives the resulting effects in the environment, 
the active motor pattern is automatically associated to the perceptual input representing the 
action’s effect. Based on these action-effect associations, people can subsequently plan and 
control a motor action by anticipating its perceptual effect. 

In similar vein, learning in HiTEC is done by first randomly activating motor codes, 
not unlike the random movement behavior of newborn infants (motor babbling) or complete 
novices at a new task. When a motor code reaches a threshold of activation, we assume 
that the response is executed, resulting in perceivable changes in the environment (action 
effects). Perceiving these action effects constitutes stimulating the respective sensory codes; 
activation is subsequently propagated from these sensory codes towards feature codes (cf. 
Elsner & Hommel, 2001). Finally, associations are learned between these feature codes and 
the executed motor code. During subsequent stimulus-response translation these associations 
enable activation of the appropriate motor action by activating the associated feature codes. 
Thus, a motor action can be selected by ‘anticipating its perceptual effects’. Ideomotor 
learning and its role in action control is addressed more elaborately in Chapter 3.

Task internalization
In behavioral experiments both stimuli and responses can have a variety of features. The 
task context dictates which of these features are relevant (i.e., the features to look for and 
to discriminate) and which are irrelevant. In HiTEC, a task instruction is implemented by 
connecting feature codes and task codes according to the actual task rules in terms of stimulus 
features and response (i.e., action effect) features. This procedure allows the task instruction to 
be readily internalized. An example task instruction “when you hear a high tone, press the left 
key” would then be implemented as connections from ‘High’ to ‘T1’ and from ‘T1’ to ‘Left’ 
and ‘Key’. During the subsequent stimulus-response translation, these connections modulate 
the responsiveness of feature codes to bottom-up input from stimulated sensory codes and 
through these connections activation is propagated towards feature codes associated to the 
proper motor responses in accordance with task demands (cf., Miller & Cohen, 2001). This 
way, appropriate goal oriented behavior can take place within a certain task context. 

In the present HiTEC version, these connections between feature codes and task codes 
units are set by hand in correspondence with the verbal task instruction. However, it is 
conceivable that these connections arise from external or internal verbal or nonverbal (self-
) instruction and are maintained due to internal motivational drives. We hypothesize that 
feature codes could be accessed by means of verbal labels and that receiving a task instruction 
would activate these feature codes (e.g., Bargh & Gollwitzer, 1994; Hommel & Elsner, 2009; 
Logan & Bundesen, 2004) and connect them to generic task codes (i.e., some sort of internal 
simulation of the translation from stimulus features to response features). Note that apart 
from this instruction based wiring we do not assume any other type of task-specific addition 
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to the model. That is no additional ‘task inputs’ or biases in code dynamics are required to 
control stimulus-response translation.

Computational implementation
HiTEC codes are implemented as (excitatory) neural network units, characterized by an 
activation level. These units, which may stand for neuronal groups, receive excitatory and 
inhibitory inputs from other units and background noise. Excitatory inputs can either be 
voltage independent or voltage dependent, i.e. with a modulatory role dependent on the 
voltage (‘activation’) of the receiving unit. Indeed, cortical feedback connections are generally 
voltage dependent, i.e. necessitate a sufficient level of feedforward (stimulus related) synaptic 
input to be effective. In addition, the activation of the units is characterized by a decay rate, so 
that in case of absence of any input the activation will decay exponentially towards a resting 
level. Units in the sensory layers can also receive an external (stimulus related) input. Thus, 
on every cycle unit activations are updated according to the following equation:

    			   (1)

In this equation, da is the activation decay rate, Ai(t) is the activation level of unit i at 
time t, Exci is the sum of its excitatory input, Inhi is its inhibitory input and both γexc and γinh 
are scaling terms. Note that both excitatory and inhibitory inputs are scaled in a way that 
the unit’s activation may take on any real value between 0.0 and 1.0. The excitatory input is 
computed as follows:

			  (2)

Here, ExcVIi is a voltage independent (‘non-modulatory’) input from other units in 
the network, which does not depend on the activation of the receiving unit; ExcVDi is a 
voltage dependent input, which is instead dependent on the activation of the receiving units 
(implicitly related to the membrane potential of receiving neurons). These different excitatory 
inputs stand for different synaptic currents in cortical networks: feedforward signaling takes 
place by voltage-independent synaptic currents, and feedback signaling by modulatory 
voltage dependent currents (e.g., Dehaene et al., 2003; Raffone & Pantani, 2010; Tononi, 
Sporns, & Edelman, 1992). Exti is input from external stimulation (only for units in the 
sensory layers) and Noisei is a noise term. This noise term is determined by drawing a random 
value from a Gaussian distribution4 at each update cycle and for each unit independently. 

( ) ( ) )()(1)(1)1( tAInhtAExctAdtA iiinhiiexciai ××+−××+×−=+ γγ

iiiii NoiseExtExcVDExcVIExc +++=

4 Determining the noise term by drawing from a Gaussian distribution sometimes (with our parameters, in < 5% 
of the cases) results in a negative value. In order to restrict the excitatory input to positive values, we replace any 
negative value by 0.0.



3131

HiTEC Connectionist Model

The voltage independent input is obtained by calculating the weighted sum of the 
outputs of all connected units (apart from units where voltage dependent input applies, see 
below):

				    (3)

Here, w+ are the positive weights of the connections from other units k to unit i and ϕ  
is a scale factor. The output of a unit is a non-linear function of its activation value, using 
the following function (Grossberg & Grunewald, 1997; Grossberg & Somers, 1991), with 
parameters na and qa:

					   
(4)

Crucially, the responsiveness of sensory coding units is modulated by connected feature 
coding units. This is realized by making the inputs from feature units to a sensory coding 
unit dependent on the sensory coding unit’s activation, which is primarily determined by 
its external stimulation. This way, a sensory coding unit cannot become highly active by 
mere top down input. This voltage dependent input from feature coding units to sensory 
coding units is computed using the following equation (see Tononi et al., 1992, for a similar 
computation): 

      
 (5)

		
				  

Here, da is the activation decay rate and VT is the voltage threshold. When the sensory 
coding unit has a (scaled) activation level higher than this threshold, top down input from 
connected feature coding units is taken into account, rescaled in proportion to the voltage 
threshold and added to the sensory coding unit’s excitatory input. If the sensory coding unit’s 
scaled activation level is lower than the voltage threshold, this input is discarded.

Activation of units is competitive, so that coding units within the same layer (sensory 
layers, feature layers, task layer, or motor layer) inhibit each other. This is computationally 
realized by the involvement of ‘paired units’. As shown in Figure 6, each of the inhibitory 
units receive activation from its excitatory paired unit, and propagates inhibition (i.e., their 
‘outgoing’ connections are negatively weighted) to all other excitatory units within the 
same layer. Such inhibition is characterized by non-linearity, i.e. inhibitory units propagate 
inhibition when they approach a level of activation. This mechanism ensures that within a 
layer only one unit becomes highly active after a certain number of simulation cycles.  
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Inhi is computed using the following equation:

			
	

(6)

Here, k denotes the inhibitory units belonging to any other unit than unit i in the layer, 
and w- are the negative connection weights. The activation of inhibitory units is updated 
in a similar fashion as the excitatory units, but their input can only be excitatory from the 
associated paired unit. 

Connections
Weights between sensory coding units and feature coding units are set by hand as are the 
weights of the connections between feature coding units and task coding units closely 
following the task instruction. The weights from feature coding units to motor coding units 
are modified using Hebbian learning. Specifically, at the end of each learning trial (see below), 
the connection weights from feature coding units to motor coding units are updated during a 
number of cycles according to the following set of equations:

   
 

		

(7)

		
	

Figure 6. Inhibition between units within the same layer. In each layer, codes are implemented as excitatory units with additional 
paired inhibitory units. These inhibitory units receive activation from their excitatory paired unit (arrowed connections) and send 
inhibition (i.e., activation through negatively weighted connections; denoted with solid discs) to all other excitatory units within 

the same layer.
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In these equations, wjk is the weight from feature coding unit j to motor coding unit 
k, the dw weight decay rate ensures that only repeated co-activations result in stable weight 
learning, LR denotes the learning rate (i.e., the magnitude of the change in weights for each 
learning trial), Actj (t) is a value based on the activation of feature coding unit j, Actk (t) is 
a value based on the activation of motor coding unit k, LT is the learning threshold (above 
which the activation levels of both units must be in order to engage in weight learning) and 
Aj(t) and Ak (t) are the actual activation levels at time t of feature coding unit j and motor 
coding unit k respectively. Note that we rescale the activation of both units to their respective 
proportion to the learning threshold and that the computed connection weights are bound 
to vary between 0.0 and 1.0. 

The total number of codes (coding units) and connections varies with the specific 
instances of HiTEC used for the different simulations. All parameters and default values as 
used in the simulations are listed in the Appendix. In sum, these modeling equations and 
parameters allow for a biologically plausible simulation of activation propagation through a 
network of units. Higher decay rates make units decay faster; lower decay rates keep units 
very active for a longer period of time. Higher input values for external input and stronger 
weights between units result in faster activation propagation. Higher voltage thresholds make 
unit activation to a lesser extent enhanced by top down input; conversely, lower voltage 
thresholds lead to earlier and stronger influence of top down modulation on unit activation. 
Stronger weights between excitatory and inhibitory units strengthen the lateral inhibition 
mechanism. As a result, they reduce the time required to settle the competition between 
the units within a shared layer, after which only one unit remains strongly activated. Lower 
weights, conversely, lengthen this time to convergence. 

Note that our ambition for HiTEC has not been to search for specific parameter values 
(e.g., thresholds, weight ranges and scaling parameters) in order to optimally fit specific data 
distributions. We rather set out to provide a proof of principle as to how neurally plausible 
representations and connectivity may realize stimulus-response translation while addressing 
critical theoretical issues such as action control (Chapter 3), automaticity (Chapter 4) and 
coping with task context (Chapter 6).

Simulating behavioral studies
To model a behavioral study in HiTEC, a specific instance of the HiTEC model is constructed 
with layers, codes (coding units) and connections that match the stimulus, response, and task 
characteristics of the simulated experiment. Crucially, connections between feature codes and 
task codes are set to reflect the exact task instructions.

In each simulation there are two phases: first, action effects are learned, reflecting the 
period in which the participants get acquainted with the keypresses and their effects, which 
is commonly part of behavioral experiments. In this learning phase, we allow the model a set 
number of learning trials to acquire the associations between feature codes and motor codes. 
Note that when a motor code is executed, the changes in the environment (i.e., its action 
effects) are presented by supplying input to the sensory codes. Propagating activation towards 
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feature codes allows the model to learn the feature code – motor code associations.
In the subsequent, experimental, phase the model is presented with various stimuli by 

supplying input to specific sensory coding units. Gradually, activation spreads across all the 
involved coding units in the various network layers. The trial is terminated at the selection of 
a motor response and the reaction time is determined based on the number of cycles between 
stimulus onset and response selection. This enables comparing simulated reaction times with 
reaction times of human participants in behavioral experiments.

In each simulation, multiple simulated subjects are generated based on the same HiTEC 
model instance. Although the layers and codes in the networks of these simulated subjects 
are identical, the noise in activation propagation of coding units is random, resulting in 
individual differences in performance, as reflected in both varying reaction times and error 
trials. To be able to use between-subjects designs, simulated subjects are assigned to different 
group conditions (and receive, for example, different task instructions or stimuli). Mean 
reaction times and standard deviations are computed for each simulated subject and each 
condition.

Model dynamics
As depicted in Figure 7, when a stimulus is presented to the model, activation propagates 
from sensory codes to feature codes, involving task codes, other feature codes and motor 
codes simultaneously. In the figure, an example trial (incongruent trial in the Simon task; see 
Chapter 4 for the specific HiTEC model instance and actual simulation results) is shown. 
From the first cycle on a high, right stimulus tone is presented by feeding external input to 
the sensory codes ‘Auditory high’ and ‘Auditory right’. During the subsequent cycles their 
activation levels rise accordingly. Simultaneously, activation propagates towards feature codes. 
Until cycle 21, these are predominantly the feature codes (e.g., ‘Right’ and ‘High’) connected 
to the active sensory codes. 

Due to prior action-effect learning, feature code ‘Right’ propagates activation to motor 
code ‘M2’, of which the activation level is rising during cycles 6 to 29. At the same time, 
activation propagates from the ‘High’ feature code towards the task codes, resulting in a 
relatively more strongly activated ‘T1’ and less strongly activated ‘T2’ from cycle 7 on. ‘T1’ 
further propagates activation towards feature code ‘Left’. As a result, this feature code’s 
activation level rises from cycle 7 on and exceeds the activation level of ‘Right’ at cycle 24. 
At the same time activation propagates from ‘Right’ to the associated motor code ‘M1’ which 
exceeds the activation level of ‘M2’ at cycle 34 and reaches the response threshold at cycle 41. 
At that point, also feature codes ‘Left’ and ‘Key’ are highly activated.

Note that these feature codes resemble the action effect of the produced response. Also 
note that when ‘M2’ would have been slightly more activated, this code could have reached 
the response threshold and the corresponding motor action could have been selected rather 
than ‘M1’, constituting an error trial.
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Figure 7. Interactive processing during a single stimulus-response translation trial (i.e., a high right auditory tone) involving 
representations at all levels simultaneously (example shown from Simon effect simulation. See Chapter 4 for more details).
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Discussion
In HiTEC, neuron-like representations realize stimulus-response translation. Stimuli are 
presented by feeding external input to sensory codes. Responses are considered to execute 
when a motor code reaches the activation threshold. The connection between perception and 
action is realized by representations on multiple levels and interconnected by feedforward and 
feedback connections. The result is an integrated processing network that translates stimuli 
in responses by gradually propagating activation trough units in the model. Rather than 
a sequential stepwise process from sensory codes through intermediate representations to 
response codes, all representations at all levels cooperate and compete and together converge 
to a response outcome. Crucially, representations at higher levels modulate representations 
at lower levels. This allows both for direct interaction between perception and action 
representations and modulation by the task context.  

Although the rather simple HiTEC model is not intended as a detailed neuroscientific 
model, it might be worth noting that its components, as well as their connectivity, do map in 
a gross way onto specific neural systems. The network architecture follows the same general 
form as more neurobiologically oriented models of visual attention and object selection do 
(e.g., Deco & Rolls, 2004).

Our approach is in line with the integrated competition hypothesis (Duncan, Humphreys, 
& Ward, 1997). This hypothesis proposes that visual attention results from competition in 
multiple brain systems and rests on the three following principles. First, different objects are 
considered to compete for activation within multiple brain systems. Second, although this 
competition takes place in multiple brain systems, it is integrated between these systems in 
such a way that units responding to the same object in different brain systems support each 
other’s activity, whereas units responding to different object compete. Finally, competition 
is considered to be directed on the basis of relevant object properties based on the current 
task demands. Duncan et al. (1997) suggest top-down neural priming as a possible control 
mechanism. HiTEC could be considered both a generalization and specification of this 
hypothesis. Due to the common coding nature of feature codes, not only visual attention but 
also action anticipation (and thus action control) are considered to compete for activation, 
hence generalizing the scope of the integrated competition account. HiTEC further specifies 
a possible method of directing this competition using task set connections rather than 
priming. HiTEC explicitly addresses how the task instruction could implement such a task 
set and how task instruction could influence both perception and action planning.

The notion of interactive processing with mutual influences among multiple subsystems 
is shared by other models. For example, Ward (1999) proposes in his Selective Action Model 
that action plans may bias selective perceptual processing towards relevant objects. In his 
model, representations of a single object and its implications for actions are selected due to 
gradual and coordinated processing in multiple systems of perception and action. Similarly to 
HiTEC, the model aims at formulating an alternative to the sequential models of perception 
and action. To this end, the model follows the integrated competition hypothesis of visual 
attention and further integrates action systems. In similar fashion as HiTEC, selected 
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representations receive external input and activation gradually spreads among various units 
coding through the reciprocal connections converging to a selected object and action. Task 
context is encoded by priming the units that represent the object feature (e.g., the color 
red) to look for or the action feature (e.g., a grabbing action) to execute. This biases the 
global competition resulting in response time differences between different conditions. The 
most important difference between Ward’s (1999) model and HiTEC concerns the model 
architecture: Ward has explicitly taken the ventral ‘what’ and dorsal ‘where’ pathways (Milner 
& Goodale, 1995) into account resulting in two hardwired pathways between perceptual 
and action systems. HiTEC, in contrast, is based on TEC and thus contains a common 
coding level of feature representations that are used both for perception and action planning. 
Another major difference between the models is how a task is internalized. In Ward’s model, 
a selection of codes receives a priming bias input. In this sense, stimulus presentation and 
task instruction occur simultaneously and using the same mechanism of applying external 
input. In HiTEC, in contrast, task context is internalized by interconnecting feature codes 
and generic task codes. These pathways subsequently modulate the propagation of activation 
resulting from stimulus presentation. Crucially, this allows HiTEC to internalize multiple 
task rules that compete during subsequent stimulus-response translation, whereas the Ward 
model seems to be confined to executing one specific task rule depending on the code(s) 
that receive additional input bias. Finally, although Ward, in accord with our approach, 
aimed at addressing the interaction between perception and action, his model assumes the 
implications for action of a given object by fixed connections between object features (e.g., 
vertical object orientation) and specific actions (e.g., vertical grasp). This connection between 
perception and action planning is addressed more explicitly in HiTEC using the notion of 
common codes and ideomotor learning (see Chapter 3). Moreover, these mechanisms allow 
addressing the issue of automaticity (see Chapter 4), which is not a matter of interest (or 
readily possible to account for) in the Ward model.

More recently, Botvinick et al. (Botvinick, Buxbaum, Bylsma, & Jax, 2009) further 
developed the Ward model. In their simulations, they explicitly link specific object features 
(e.g., color, shape, location) to specific response representations (e.g., reach actions, manual 
actions, color naming, respectively). In accord with Ward, they find that implementing a task 
set (i.e., priming specific actions) results in top down input to object features and, hence, 
in selective attention for objects having these features. Most points of comparison between 
HiTEC and the Ward model also apply here: the connections between object features and 
specific actions are assumed, the task set is implemented as additional input to action codes 
and automaticity is not addressed.

Summarizing, in addressing the interaction between perception and action these models 
extend (visual) attention for objects with a system that takes action features into account 
by means of reciprocal connections between perception and action subsystems. How these 
connections follow from experience or the task context, however, is not explicitly addressed. 
Moreover these models do not address empirical findings of automaticity (i.e., stimulus-
response compatibility) which is key considering their implications for direct interaction 
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between perception and action.
Well-known models of automaticity (e.g., Cohen, Dunbar, & McClelland, 1990; 

Kornblum et al., 1990; Kornblum, Stevens, Whipple, & Requin, 1999; Zorzi & Umilta, 
1995) typically share the general (PDP) connectionist approach with units and excitatory 
and inhibitory connections. The model of the Simon effect by Zorzi and Umilta (1995), 
for example, contains stimulus feature codes and response codes. The stimulus feature codes 
propagate activation towards the response codes. The response codes compete for activation 
due to their mutual inhibitory connection. In contrast with the models described above, the 
connections between stimulus codes and response codes are one-directional. That is, stimulus 
codes activate response codes, not the other way around. In general, these models are more 
focused on the process of translating stimuli to responses and aim at fitting their simulation 
results to behavioral data. In this endeavor, Kornblum et al. (1999) explicitly divide processing 
in two distinct sequential stages: stimulus processing and response production. This division 
ensures that no processing takes place in the response-production stage until activation in the 
stimulus stage has reached threshold; this is in sharp contrast with HiTEC and the models 
of the interaction between perception and action discussed above.  It does, however, allow 
them to fit their model to behavioral data on specific stimulus onset asynchrony effects in 
time courses in SRC effects. In contrast to these dual route process models, HiTEC and both 
the Ward and Botvinick et al. models take (neurally inspired) representations and reciprocal 
connectivity into account. The dual route models are discussed more elaborately in Chapter 
4 where we discuss the topic of automation.

Finally, it must be stressed that HiTEC has a fairly simple architecture, modeling only 
a minimal basis of neuroscientific findings. The human brain has many more mechanisms 
known to mediate perception and action (e.g., subcortical structures such as the superior 
colliculus and the thalamus). In addition, processing in cortical areas is mediated by a variety 
of factors (e.g., neurotransmitters) and top down influences and lateral competition, central 
in HiTEC’s interactive processing, are shown to await a first, fast feedforward sweep of 
activation in visual processing (Lamme & Roelfsema, 2000) suggesting distinct modes of 
vision and that assuming immediate interaction between multiple levels is rather simplified.

However, despite these simplifications, HiTEC’s key assumptions – multiple level 
representations, common coding level, ideomotor learning, biased competition, reciprocal 
connections – lead to rather complex and interesting dynamics. We believe that these 
dynamics may shed light on the interaction and coordination of perception and action 
planning in human behavior. More specifically, we address how situation-specific meanings 
of actions emerge in action control (Chapter 3), how and why automaticity occurs (Chapter 
4) and how task context may modulate perception and action planning in order to coordinate 
behavior (Chapter 5).
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Chapter 3
Action Control

This chapter is an integration of major parts of the following articles:

Haazebroek, P., & Hommel, B. (2009a). Anticipative control of voluntary action: Towards 
a computational model. Lecture Notes in Artificial Intelligence, 5499, 31-47.

Haazebroek, P., Raffone, A., & Hommel, B. HiTEC: A Connectionist Model of the Interac-
tion between Perception and Action Planning. Manuscript submitted for publication.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2011). A computational model of percep-
tion and action for cognitive robotics. Cognitive Processing, 12, 355-365.
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Human behavior is commonly proactive rather than reactive. That is, people do not await 
particular stimulus events to trigger certain responses but, rather, carry out planned actions 
to reach particular goals. Planning an action ahead and carrying it out in a goal-directed 
fashion requires prediction and anticipation: in order to select an action that is suited to reach 
a particular goal presupposes knowledge about relationships between actions and effects, 
that is, about which goals can be realized by what action. Under some circumstances this 
knowledge might be generated ad hoc. For instance, should your behavior ever make a flight 
attendant to drop you by parachute in a desert, your previously acquired knowledge may 
be insufficient to select among reasonable action alternatives, so you need to make ad hoc 
predictions to find out where to turn to. But fortunately, most of the situations we encounter 
are much more familiar and, thus, much easier to deal with. We often have a rough idea 
about what actions may be suitable under a given goal and in a particular context, simply 
because we have experience: we have had and reached the same or similar goals and acted in 
the same or similar situations before.

How experience with one’s own actions generates knowledge that guides the efficient 
selection of actions, and how humans carry out voluntary actions in general, was the central 
issue in ideomotor approaches to human action control. Authors like Lotze (1852), Harless 
(1861), and James (1890) were interested in the general question of how the mere thought 
of a particular action goal can eventually lead to the execution of movements that reach that 
goal in the absence of any conscious access to the responsible motor processes (executive 
ignorance). Key to the theoretical conclusion they came up with, the ideomotor principle, 
was the insight that actions are means to generate perceptions (of wanted outcomes) and 
that these perceptions can be anticipated. If there would be an associative mechanism that 
integrates motor processes (m) with representations of the sensory effects they produce (e), 
reactivating the representation of the effect by voluntarily “thinking of it” may suffice to 
reactivate the associated motor processes (em). In other words, integrating movements and 
their sensory consequences presumably provides a knowledge base that allows for selecting 
actions according to their anticipated outcomes—for anticipative action control that is. 

This chapter deals with action control in the HiTEC model (see Chapter 2). The 
HiTEC model allows for associations between motor codes and feature codes in accord with 
the ideomotor principle described above. Now, three questions arise. The first question relates 
to how HiTEC allows for acquiring these associations from sensorimotor experience. This is 
addressed in the first simulation. Second, actions typically lead to multiple perceivable effects 
or effect features at the same time (e.g., auditory, visual, proprioceptive).  and the task context 
determines which features (or effect feature dimensions) actually matter and how they should 
be interpreted. Thus, it would be expected that the task set in the model modulates this 
sensorimotor experience and, hence, influences the situation-specific ‘meaning’ of actions. 
Third, how do these meanings (i.e., associations) subsequently influence action control? 
These latter two questions are explicitly addressed in Simulation 2.
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Simulation 1: Action-effect learning

Original experiment
Action-effect acquisition is assumed to occur on-the-fly. Indeed, Elsner and Hommel (2001) 
showed that people learn action-effect associations spontaneously. In their Experiment 1, 
participants responded to a visual cue stimulus by pressing a randomly chosen left or right 
key. One keypress produced a high tone and the other a low tone, which according to the 
ideomotor principle should have induced bidirectional associations between motor patterns 
and tone/pitch representations. In the second phase, participants responded to the tones 
that previously served as action effects by pressing the same two keys, but now according 
to a specific instruction (e.g., ‘when hearing a high tone, press the left key’). In one (‘non-
reversal’) group, the new instruction heeded the learned relationship between tones and keys, 
so that the tone that was previously produced by a particular keypress was now signaling that 
keypress. In another (‘reversal’) group, these relationships were reversed, so that the tone that 
was previously produced by one keypress was now signaling the other keypress. 

It was found that if the tone-key combinations in the second phase matched the key-
tone combinations from the first phase, participants were faster than if the combinations did 
not match up. This suggests that in the first phase, the tones were spontaneously associated 
with the keypresses that caused them, biasing the keypress responses to the tone stimuli in 
the second phase. Indeed, later brain imaging studies demonstrated that experiencing action-
-effect sequences renders the perceived effect an automatic retrieval cue of the corresponding 
action (Elsner et al., 2002; Melcher, Weidema, Eenshuistra, Hommel, & Gruber, 2008).
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Figure 8. Specific HiTEC Model for Learning Trials of Simulation 1. Feature codes are included to code for the visual cue, the 
key responses and the auditory action effects. Connections (dashed lines) between feature codes and motor codes are learned. Note 
that in principle any feature code can be connected to any motor code. However, only some of these possible connections actually 
become (strongly) weighted as a result of the perceived regularities in action effects. These connections are depicted in the figure.
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HiTEC simulation
To simulate Elsner and Hommel’s (2001) finding, we created an instance of the HiTEC 
model with sensory codes for the registration of the visual cue, the auditory pitch levels, 
and the haptically perceived locations of the keys, with feature codes for the square shape, 
the pitch levels, the locations, and the ‘Sound’ and ‘Key’ in general5, and with motor codes 
for the two keypressing actions. This is illustrated in Figure 8. During the learning phase 
motor patterns ‘M1’ and ‘M2’ are activated alternately and their respective action effects are 
presented to the model. As a result, associations are learned between the motor codes and 
the active feature codes: action-effect binding in the sense of ideomotor theory and TEC 
(Hommel, 2009). 

Figure 9a shows a learning trial in which the motor code ‘M1’ is activated. This leads to 
the simultaneous perception of both a keypress and an auditory tone, resulting in a relatively 
strong activation of some of the feature codes, including ‘Left’ and ‘Low’. This enables the 
learning of associations between feature codes and motor codes, such as between ‘Left’ and 
‘M1’ and between ‘Low’ and ‘M1’. The regularity in combinations of motor actions and 
their perceivable effects results in systematic co-activation of specific motor codes and feature 
codes. As a consequence, specific motor code - feature code connections are strengthened 
over time, as is illustrated by Figure 9b. Note that we label the motor codes ‘M1’ and 
‘M2’ (rather than “Left” and “Right”) on purpose, as the motor codes themselves have no 
intrinsically spatial connotations. They acquire spatial meaning only through the learning of 
associations between ‘M1’ and its ‘Left’ perceptual action effect and between ‘M2’ and its 
‘Right’ perceptual action effect. In other words, the perceived ‘left’-ness and ‘right’-ness of 
motor actions emerges through experience.

Figure 9. Code Activation and Connection Weight Time Courses in Learning Trials of Simulation 1. (a). During learning trials, 
motor codes (i.e., ‘M1’) are activated resulting in increased activation levels of sensory codes and feature codes (i.e., ‘Low’ and 
‘Left’). Note that with ‘activation level’ we refer to the code’s excitatory unit’s activation level. (b) Connections between motor 

codes and feature codes (e.g., between ‘M1’ and ‘Low’ and ‘M2’and ‘Left’) are gradually strengthened due to repeated experience 
of the perceptual regularities during the learning trials. After 20 trials, each motor code is strongly connected to those feature codes 

that were repeatedly co-activated with the respective motor code (i.e., its perceptual effect). Note that feature codes ‘Key’ and 
‘Sound’ are omitted from the figures for the sake of clarity.

5 For the sake of simplicity, these feature codes are taken to represent all object characteristics that are not 
represented by other, specific feature codes, such as its color or location.
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In the second phase, we have let the model respond to auditory stimuli with high or 
low pitch. Note that the change of task (i.e., ‘press a random key’ vs. ‘respond selectively to 
auditory tones’) is reflected in the change in connections between feature codes and task 
codes only as illustrated in Figure 10. The remainder of the model is kept unchanged, most 
notably the learned associations between feature codes and motor codes. For the second phase, 
two different groups of simulated subjects were to respond to stimuli according to different 
instructions. The ‘non-reversal’ group was to respond to the learning-compatible stimuli (i.e., 
what had been the effect on an action now became the stimulus signaling this action), whereas 
the ‘reversal’ group was to respond to auditory tones with responses previously produced the 
alternative tone. In the model, stimulus tones are presented by stimulating auditory sensory 
codes. Activation flows from these sensory codes towards ‘Pitch’ feature codes, task codes and 
to the ‘Location’ feature codes and the ‘Key’ feature code. Also, activation flows through the 
learned associations towards the motor codes. On average, in the non-reversal condition the 
model reaches the response threshold faster than in the reversal condition.
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Figure 10. Specific HiTEC Model for Experimental Trials of Simulation 1. Note that only the feature code – task code 
connections have been changed as compared to Figure 3, reflecting a new task instruction with the same simulated subject. Now, 

two task codes are present representing two alternative response choices to the task stimuli. Crucially, the learned connection 
weights (dashed lines) between feature codes and motor codes are kept unchanged. Connections between location feature codes 
and motor codes allow the model to choose the appropriate motor action. Connections between pitch feature codes and motor 

codes result in a compatibility effect with respect to the stimulus pitch and the chosen response. Note that in principle any feature 
code can be connected to any motor code. However, only some of these possible connections actually become strongly weighted as 

a result of the perceived regularities. These connections are depicted in the figure.
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Simulation results
The simulation results are provided in Figure 11, where 11a shows the mean reaction times 
in cycles for both groups and 11b the mean reaction times in milliseconds as found in the 
original behavioral study. In the simulation, the non-reversal group (15 simulated subjects, 
20 experimental trials each) responded on average in 23.90 cycles (SD = 0.32) on average, 
while the reversal group (15 simulated subjects, 20 experimental trials each) needed 31.77 
cycles (SD = 2.10) on average. No errors were made and no simulated subjects were excluded 
from analysis. Overall, our simulation shows a good fit with the available empirical data 
and provides insight in the internal dynamics of action-effect learning. It demonstrates that 
the model automatically learns novel action-effect associations, a fundamental aspect of 
ideomotor learning. And it demonstrates how the acquisition of action-effect associations 
creates a basis for stimulus-response compatibility effects: Any stimulus that shares features 
with a previously learned action effect will tend to activate the associated action. Stimulus-
response compatibility is addressed more explicitly in Chapter 4.

Simulation 2: Action planning
The observations of Elsner and Hommel (2001) confirm the claim from ideomotor theory 
that action-effect associations are automatically acquired as demonstrated in Simulation 1. 
However, this does not yet speak to the further-reaching claim of ideomotor theory that action 
effects play an important role in the planning of intentional actions. Evidence supporting 
that claim was provided by Kunde, Koch and Hoffmann (2004), who showed that choice 
performance is affected by the compatibility between haptic action effects of the responses 
proper and novel (auditory) action effects. 

Original experiment
In their experiment, for one group of participants, responses were followed by a compatible 
action effect; the loudness of the tone matched the response force (e.g., a loud tone appeared 
after a forceful key press). In the other group of participants the relationship between actions 
and action effects was incompatible (e.g., a soft tone appeared after a forceful key press). In 

Figure 11. Results of Simulation 1 compared with behavioral data (adopted from Elsner & Hommel, 2001), showing average 
reaction time means and standard deviations. Human variance data was not available.
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the following test phase subjects had to respond to a visual cue stimulus by pressing the key 
softly or forcefully. It was found that the group with action-compatible action effects was 
faster on average than the group with incompatible action effects. Given that the tones did 
not appear before the responses were executed, this observation suggests that the novel, just 
acquired action effects were anticipated and considered in the response-selection process.

HiTEC simulation
This effect of response-effect compatibility was simulated in HiTEC. According to ideomotor 
theory, actions are planned in terms of their perceptual features (i.e., the features of their 
perceptual consequences), so that the critical compatibility relationship exists between the 
natural haptic and/or kinesthetic action effects of the keypress response and the auditory 
action effects of the tone presentation. Accordingly, the model, as shown in Figure 12, 
contains sensory codes for the visual colors, auditory intensities and haptic intensities. Motor 
codes ‘M1’ and ‘M2’ represent forceful and soft keypresses, respectively. Again, to the model 
these motor codes are not intrinsically forceful or soft but are associated with (and acquire 
their meaning from) these perceptual characteristics through learning.
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Figure 12. Specific HiTEC Model for Simulation 2. The model contains feature codes that code for the stimulus color and the 
intensities of both the key press itself and the additional auditory perceptual effects. Note that the task instruction is already 

internalized before presenting the learning trials as reflected in the connections between feature codes and task codes. This biases 
the learning of connections between feature codes and motor codes. Note that in principle any feature code can be connected to 

any motor code. However, only some of them actually become (strongly) weighted reflecting the specific perceptual regularities. In 
this experiment, activating motor codes can have inconsistent action effects resulting in activating both ‘Strong’ and ‘Weak’ feature 
codes (albeit not both to the same extent). Therefore, all possible connections between  motor codes and intensity feature codes are 

depicted in the figure.
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Moreover, the learning of these associations is influenced by the consistency of the 
simultaneously presented action effects; if a consistent action effect is presented (e.g., a 
forceful keypress with a loud tone), then both action effects result in the activation of the 
same intensity feature code (e.g., ‘Strong’). As a consequence, the association with the active 
motor code becomes strong. Conversely, when inconsistent action effects are presented (e.g., 
a forceful keypress together with a soft tone), both ‘Strong’ and ‘Weak’ are activated and 
associations with the motor codes are only learned weakly. Indeed, because both feature codes 
are activated and inhibit each other, they are less active than when only one of the feature 
codes is activated. Crucially, already during learning the ‘Key’ feature code is connected to the 
task codes (whereas the ‘Sound’ feature code is not, as it is not part of the task instruction). 
When the ‘Key’ feature code is activated due to the perception of a haptic action effect, it 
sends activation to both task codes ‘T1’ and ‘T2’ that both again further enhance the task-
relevant ‘Key’ code. Thus, this mere connectivity makes the system enhance the perception of 
haptic intensity—which is relevant for action control—over auditory intensity—which is not 
(in accordance with empirical findings demonstrating this kind of impact of action-control 
requirements on perception and attention: Hommel, 2010). As a result the haptic intensity 
becomes the major determinant in the weight learning of connections between ‘Intensity’ 
feature codes and the motor codes, whereas the auditory intensity moderates this process.

Simulation results
After running the simulation (two groups of 15 simulated subjects performing 20 experimental 
trials each), 6 subjects were excluded6 (all in the incompatible group) from analysis because 
of error percentages higher than 30. After removal of error trials, the results revealed that the 
compatible group responded faster (M = 24.16 cycles, SD = 0.20) than the incompatible 
group (M = 30.64 cycles, SD = 4.10). Figure 13 shows a good fit of the outcome with the 
empirical data obtained by Kunde, Koch and Hoffmann (2004). This confirms that HiTEC 
is able to produce response-effect compatibility effects without introducing new kinds of 
representations or processing principles.

Discussion
The simulations in this chapter deal with action control. Action control in HiTEC is based 
on the ideomotor principle which stresses both the acquisition of action-effect associations 
and the use of these associations in action planning. Simulation 1 addresses how novel action-
contingent perceivable effects are (spontaneously) associated to the actions that yield these 

6 In this and the following simulations a substantial number of simulated subjects were to be excluded because 
of excessive error rates. It is interesting to note that this is a very common observation in investigations of 
compatibility effects in children and infants, where the reaction time effects are often not too different from adults 
while the error effects are dramatic (e.g., Eenshuistra, Weidema, & Hommel, 2004; Kray, Eenshuistra, Kerstner, 
Weidema, & Hommel, 2006). In fact, some children are virtually unable to follow the instruction in the face 
of stimuli suggesting an alternative response. Such observations are commonly attributed to the still developing 
frontal cortex, which plays an important role in maintaining instructions and action goals (Miller & Cohen, 
2001).
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effects. Simulation 2 demonstrates how the (internal) consistency of these effects influences 
the representations of these effects. As action-effect learning depends on the activation of both 
motor codes and feature codes, the consistency of feature code activation has consequences 
for the resulting association strengths. And because these associations have a crucial role 
in planning actions in response to stimuli, subsequent stimulus-response translation 
is influenced by the strengths of these associations. As a result, action planning takes the 
contextual meaning (e.g., consistency among action effect features) of motor actions into 
account as represented in the acquired action-effect associations. 

Importantly, Simulation 1 demonstrates that in HiTEC novel action effects become 
(at the distal level) associated to motor codes. This is schematically illustrated in Figure 
14a. Here the coupling of sensory and motor code to a shared feature code is depicted. The 
connection between sensory and feature code is the result of (earlier) grounding processes; 
the connection between motor code and feature code results from action-effect learning as 
demonstrated in both simulations. That is, execution of the motor code M results in changes 
in the environment E that are ‘picked up’ by sensory code S and distally represented by feature 
code F. Multiple encounters of this sensorimotor co-occurrence is considered to strengthen 
the connection between motor code M and feature code F. 

Figure 14b illustrates the fact that different sensory codes may activate the same feature 
code. This is the case in Simulation 2 where both auditory and haptic sensory codes project 
to the same distal feature codes that code for ‘intensity’. Consistent action effects activate 
these feature codes more strongly and therefore lead to stronger action-effect associations as 
compared to inconsistent action effects, as suggested by the findings of Kunde and colleages 
and as demonstrated in Simulation 2. Crucially, in the HiTEC simulation of this experiment, 
the auditory and haptic sensory codes receive equal external stimulation upon perceiving 
the action effect. It is due to the top down modulation of the task-feature connections 
with the ‘key’ code that the haptic sensations are enhanced and thus play a dominant 
role in representing the action effect as compared to the auditory sensations. This task set 
modulation of action effect representation (and thus its influence on action-effect learning 

Figure 13. Results of Simulation 2 compared with behavioral data (adopted from Kunde, Koch, & Hoffmann, 2004), showing 
average reaction time means and standard deviations. Human variance data was not available.
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and subsequent stimulus-response translation) by means of mere connectivity rather than 
additional bias inputs is a key mechanism resulting from the multiple-level characteristic of 
the HiTEC architecture and we will turn to this more explicitly in Chapter 5 where the task 
set is manipulated experimentally.

Summarizing, executing motor actions results in changes in the environment. These 
changes are perceived and represented using sensory codes and feature codes. Sensorimotor 
co-occurrences lead to co-activation of motor codes and feature codes representing their 
perceptual effects. This co-activation is considered to strengthen the action-effect (m-f ) 
associations. The representation of action effects is modulated by the same influences as 
‘normal’ stimulus perception, such as consistency among different sensory modalities and 
top down modulation (cf. priming) of task context resulting in situation-specific meaning of 
actions. The action-effect associations can further be used as a means to control actions based on 
their perceptual effects. That is, by means of anticipating the effect of an action, the appropriate 
motor action can be planned (cf. Schütz-Bosbach & Prinz, 2007). In other words, the action 
is now considered to be under ‘intentional control’.

Note that we use a very limited notion of ‘learning’ here. Adult participants are unlikely 
to learn how to press a key in a lab experiment but rather bring that knowledge to the lab. 
And yet, what we can achieve with an action and what sensory effects an action produces 
can change very rapidly, so that even already acquired action-effect associations need to be 
updated frequently. In this thesis we mainly focus on this kind of short-term learning, which 
allows old actions to be adapted to the current situation and new action effects to become 
associated with the motor patterns they were produced by.

HiTEC’s differentiation between motor codes and codes representing action effects is 
in line with Wallace’s (Wallace, 1971) conclusions. In his experiment, in one condition, 
participant’s left and right hands were placed on left and right keys, respectively. In the other 
condition, the hands were crossed. That is, the left hand was on the right key and the right 
hand on the left. His results showed that compatibility effects were related to the position 
of the response keys and not to the particular hand used to produce the response. This lead 
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Figure 14. Schematic illustrations of couplings between sensory code S, feature F and motor codes M in HiTEC relevant for the 
simulations in this chapter. (a) depicts the coupling of sensory and motor code to a shared feature code as a result of sensorimotor 

co-occurrences in environment E. (b) illustrates the fact that different sensory codes may activate the same feature code.
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Wallace to the conclusion that there must be an abstract ‘response code’ that relates to the 
stimulus code (in terms of compatibility) and that this response code is associated to the 
given output. The degree of compatibility between stimulus and response code, he argues, 
then somehow must affect the processing of this output, through this response code. In his 
conclusions he speculates that this response code might be considered a ‘body code’ and for 
his specific experiment he considers the ‘hand itself ’ as this body code. Thus compatibility 
between stimulus and hand location (i.e., the position of the hand above the keys; in other 
words: the key locations) influences the associated output process, which is the actual 
keypresses involving the muscles of that hand and limb. 

In the decades that followed more evidence of such intermediate ‘response codes’ that can 
match stimuli to varying degrees has been accumulated. For instance, Riggio, Gawryszewski 
and Umilta (1986) reported that when participants responded with sticks that were either 
parallel or crossed, the Simon effect was found to relate to the stick end position, not to the 
hands holding the sticks. In experiments where participants operated the left and right keys 
with fingers of the same hand holding their hand in palm up or palm down position. As it 
turned out, compatibility effects were independent of the chosen hand or finger. In a study 
by Guiard (1983) participants had to respond with a steering wheel. These results suggest that 
not the position of the hands but the steering direction (as in a car) determines the Simon 
effect, indicating that the notion of ‘left’ or ‘right’ responses drives on prior experience. In 
a study by Beckers and colleagues (Beckers, De Houwer, & Eelen, 2002) novel, affective 
action effects (i.e., electroshocks) were presented following a motor action. In subsequent 
experimental trials, these novel action effects (i.e., distally represented in terms of positive vs. 
negative) were shown to yield SRC effects with valenced stimuli, suggesting that these novel 
action effects were taken into account during action planning (Haazebroek, van Dantzig, 
& Hommel, 2009; 2010). Finally, Hommel (1993) experimentally manipulated the task 
instruction and demonstrated significant differences in SRC direction, suggesting that the 
coding of responses directly depended on this instruction (see Chapter 5). Summarizing, the 
coding of responses seems to depend on direct context, recent and prior experience, and the 
task instruction. In the case of the Simon task, it is the rather flexible notion of ‘left’-ness or 
‘right’-ness, rather than the actual physical location of a response, that seems to interact with 
the spatial location of the stimulus. This constraint of flexible response codes has been taken 
seriously in the HiTEC connectionist model.

Despite this flexibility in human action planning as demonstrated in various empirical 
findings, most models of perception and action (e.g., Botvinick et al., 2009) as well as models 
of stimulus-response compatibility (e.g., Zorzi & Umilta, 1995; Kornblum et al, 1999), 
however, do not differentiate between response codes and motor codes. The Ward model 
(Ward, 1999), as a notable exception, does contain codes for both ‘grasping horizontally’ and 
‘grasping’. This somewhat resembles the notion of ‘intermediate’ response codes that mediate 
between stimulus features and action codes proper and refer to some perceptual property 
of the response. Still, it is unclear how associations between these intermediate codes and 
the action codes emerge. Botvinick et al. (2009), however, eliminated these intermediate 
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codes in their adaptation of the Ward model, and directly connected stimulus feature codes 
(e.g., location, shape, color) to specific response codes (e.g., reaching, manual actions, color 
naming, respectively). In similar vein, the spatial SRC models (e.g., Zorzi & Umilta, 1995; 
Kornblum et al, 1999) generally contain direct connections between stimulus feature codes 
and response codes. The latter codes are assumed to relate to left or right responses. How 
these (spatial) response codes have bearing on actual motor actions is not explicitly addressed. 
If, however, these codes should be interpreted as motor codes that do directly relate to 
patterns of muscle contractions, then the question arises how these codes could be spatially 
connotated in the first place, as assumed in these models; and, how they can be directly 
related to specific (spatial) stimulus feature codes. In addition, in such a scheme, it would not 
be possible to cope with the flexibility of (spatial) coding of responses as clearly demonstrated 
in a variety of empirical studies. 

Summarizing, in most existing models containing action systems action codes refer to 
both the motor programs that are executed and to the response codes that can be directly 
related to stimulus features. This, however, does not allow such a model to account for the 
shown flexibility in response coding and, thus, in action control. More specifically, it is 
unclear how these action codes acquire their meaning and how this could depend on the 
current (task) context as demonstrated in the simulations in this chapter.

It could be argued that action control as modeled in HiTEC is still rather limited. 
Indeed, a motor code does not seem to represent a complete specification of a motor action 
(e.g., trajectory, speed, acceleration, and deceleration). Empirical findings by Prablanc and 
Pélisson (1992), however, may suggest the human brain does not do this either. In their 
experiment, participants were instructed to move their hands to a goal position indicated by 
a light. This light was sometimes shifted by a few centimeters after they had begun their hand 
movement. Although participants were not able to notice the shift (which was carried during 
eye movements), they moved their hand straight to the new goal location without abrupt 
changes in the movement trajectory. This suggests that, once an action has been linked to an 
object location, any change in this location leads to an automatic update of the movement’s 
parameters, even if the change occurs outside the actor’s awareness. Hence, it makes sense 
to interpret motor codes as blueprints of motor actions that need to be filled in with this 
specific, on line, information when executing the movement, much like the schemas put 
forward by Schmidt (1975) and Glover (2004). In HiTEC, action effect anticipation acts as a 
rich retrieval cue for associated motor programs. At the same time, forming this anticipation 
(i.e., activating the distal feature codes belonging to the action effect) may reflect a (distal) 
specification of an action plan that can be used to fill hook up online movement parameters 
during action execution. In Simulation 2, one of the action anticipation consists of a highly 
active ‘strong’ and ‘key’ feature codes (resulting in an active motor code). These feature codes 
could be considered (distal) representations of the action plan that allows for controlling the 
action in similar way as in the experiment by Prablanc and Pélisson (1992). In addition, one 
could imagine that by activating distal features, the related proximal sensory codes are top 
down moderated to ‘focus their attention’ towards specific aspects of the environment (e.g., 
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visual object location). This distinction between offline plans and online close-loop control 
is in line with the notion of different pathways in the brain (i.e., ventral ‘what’ vs.  dorsal 
‘where’ pathways, Milner & Goodale, 1995). Here, the ventral pathway relates to offline 
selection and the dorsal pathway to online action control. These ventral and dorsal pathways 
are included in the Ward model (Ward, 1999) although it is unclear to what extent these 
labeled routes actually constitute offline vs. online action control in this model. 

In HiTEC, action-effect learning may be seen as a rather reactive/passive process 
explicitly triggered by a learning phase. The principle itself, however, is consistent with the 
notion of a more active actor/perceiver as brought forward by O’Regan and Noë (2001). In 
their sensorimotor theory, perceiving is a way of acting, actively exploring the environment 
rather than merely registering and representing the outside world. Vision, for example, 
requires eye movements that directly influence retinal stimulation. Hence, seeing would need 
to account for both the actual changes in the environment and those due to oculomotor 
actions. The active perceiver/actor, they argue, would need to learn how his/her own actions 
influence perceptions (sensorimotor contingencies). Perceiving the world thus builds on 
this knowledge. Although HiTEC does not model learning such contingencies per se, it 
does share the idea of acquiring grounded representations of sensorimotor regularities in 
interactions with the world (as illustrated in Figure 14a) and using those representations both 
for perception (as suggested in the sensorimotor theory) and actions, which indeed lead to 
perception, both in the sensorimotor account and in HiTEC.

One possibility to endow HiTEC with a more active learning strategy is by means 
of action monitoring. The anticipated action effects are a trigger for action selection, but 
also form an expectation of the perceptual outcome of the action. Differences between this 
expectation and reality lead to adjusting the action on a lower sensorimotor level than is 
currently modeled in HiTEC. What matters now, is that the feature codes are interacting with 
the sensory codes, making sure that the generated perception is within the set parameters, as 
determined by the expected action outcome. If this is not (well enough) the case, the action 
should be adjusted. However, when a discrepancy of this expectation drastically exceeds 
‘adjustment thresholds’, it may actually trigger action effect learning (phase 1). Apparently, 
the action-effect associations were unable to deliver an apt expectation of the actual outcome. 
Thus, anticipating the desired outcome falsely led to the execution of this action. This may 
trigger the system to modify these associations, so that the motor codes become associated 
with the correct action effect features. Such a monitoring system could work along the lines 
of (Botvinick, Braver, Barch, Carter, & Cohen, 2001). The experience of response conflict 
and/or of negative feedback might strengthen the activation state of goal codes and their 
impact on stimulus-response processing, which would tend to prevent errors in the future 
(van Steenbergen, Band, & Hommel, 2009). 

Furthermore, anticipation based action control (see also Butz & Pezzulo, 2008) 
is consistent with basic concepts in research on human motor control (e.g., Wolpert & 
Ghahramani, 2000)  Here, the motor system is considered to form a loop in which motor 
commands lead to muscle contractions which cause sensory feedback, which in turn 
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influences future motor commands. Neural circuits are considered to form internal models 
that control motor action: forward models are considered to model the causal relationship 
between actions and their consequences and inverse models determine the motor command 
required to achieve the desired outcome. These concepts clearly resonate with the role of 
action-effect associations in the HiTEC model.

Finally, it should be noted that in the current simulations we have focused on paradigms 
where the participant (and, hence, the model) produces an action in response to a stimulus. 
Other paradigms that include non-stimulus-driven action planning or sequences of actions 
may stress the model’s ability to control its actions by anticipating action effects (i.e., goal-
directed actions; see also Hommel, 2009). 

To conclude, the meaning of action seems to be rather flexible as demonstrated by 
various findings on action control. In HiTEC, this flexibility is addressed explicitly by 
action-effect learning which involves motor codes, their effects in the environment and 
registration of these effects by HiTEC’s sensory codes and feature codes. This allows for 
acquiring associations between motor codes and feature codes, effectively representing action 
effects, in line with ideomotor theory. Action-effect learning takes the (task) context into 
account allowing situation-specific meanings of actions to emerge that are subsequently used 
to control actions in response to stimuli. These aspects of action control are generally not 
addressed in models of perception and action, or in models of SRC.

Moreover, using anticipations to select and plan actions is in line with various other 
lines of research on action control. In HiTEC action effect anticipations are encoded using 
the same (distal feature) representations used for representing stimuli. This sharing of 
representations between stimuli and responses may sometimes lead to notable consequences 
for stimulus-response-translation in terms of compatibility effects as will be discussed in the 
next chapter.



5555

Action Control



5656



5757

Chapter 4
Automaticity

This chapter is an integration of major parts of the following articles:

Haazebroek, P., Raffone, A., & Hommel, B. HiTEC: A Connectionist Model of the 
Interaction between Perception and Action Planning. Manuscript submitted for 
publication.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2011a). A computational model of 
perception and action for cognitive robotics. Cognitive Processing, 12, 355-365.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2011b). Interaction between Task 
Orient-ed and Affective Information Processing in Cognitive Robotics. Lecture 
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications 
Engineering, 59, 34-41.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2009). Towards a computational account 
of context mediated affective stimulus-response translation. Proceedings of the 31st 
Annual Conference of the Cognitive Science Society (pp. 1012-1017). Austin, TX: 
Cognitive Science Society.
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Traditional views on human information processing hold that responding to stimuli in 
our environment follows a sequence of separable stages of processing (e.g., Donders, 1868; 
Neisser, 1967; Sternberg, 1969) from stimulus perception, to decision making, up to response 
execution. Numerous empirical findings, however, have demonstrated that parts of human 
information processing do not seem to involve conscious cognitive decision making. Features 
of perceived objects (such as location, orientation, and size) can influence actions directly and 
beyond (tight) cognitive control, as illustrated by stimulus–response compatibility (SRC) 
phenomena (for general overviews, see Hommel & Prinz, 1997; Prinz & Hommel, 2002; 
Proctor & Vu, 2006), such as the Simon effect (Simon & Rudell, 1967) as simulated in 
Simulation 3. 

To account for both controlled and automatic processing, various dual route process 
accounts have been proposed (e.g., Zorzi & Umilta, 1995; Kornblum, et al., 1990; but see 
Hasbroucq & Guiard, 1991, for a strictly perceptual account). These accounts propose that 
there is, next to the first cognitively controlled route, a second, direct route from perception 
to action that can bypass cognition, as explicitly modeled in various computational models 
of the Simon effect. Essentially, dual route accounts consider the observed direct stimulus-
response interaction as an exception requiring an additional route. Moreover, they typically 
do not address the reason why some stimulus features directly influence action and others do 
not.

In this chapter we attempt to explain how and why automaticity occurs in the HiTEC 
connectionist model (see Chapter 2). We explicitly address how representational and 
processing characteristics of HiTEC inevitably lead to SRC effects. Here, common codes play 
a crucial role. Building upon this notion of common codes, HiTECs structure and processes 
allow stimulus features, both task relevant and task irrelevant, to be registered, processed and 
translated into responses. In this endeavor we focus on two key paradigms. In Simulation 3, 
a HiTEC instance is constructed to simulate the Simon task. In Simulation 4, we model the 
Stroop effect. As HiTEC treats stimulus and response representation in a similar way, it is 
to be expected that a model instance similar to the one used in Simulation 3 would be able 
to account for the Stroop effect as well. The empirical findings accounted for in this chapter 
have been modeled before by other (dedicated) computational models. We conclude this 
chapter with a comparison of some of these models with our approach. 

Simulation 3: Simon effect

Original experiment
Simon and Rudell (1967) showed that people respond faster to stimuli if the location of 
the stimulus is compatible with (corresponds to) the response location, even when stimulus 
location is not task relevant. In the standard Simon task, stimuli with a non-spatial stimulus 
feature (e.g., auditory pitch) are presented at different locations (e.g., left or right). Participants 
are instructed to respond to the non-spatial feature by giving a spatially defined response 
(e.g., pressing a left or right key). Even though the location of the stimulus is not relevant 
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for this task, performance is facilitated when the chosen response corresponds spatially to the 
stimulus location.

HiTEC simulation
The Simon effect was modeled in HiTEC using sensory codes for auditory pitch7, auditory 
locations and haptic locations. At the feature level there are feature codes for pitch, location 
and for ‘Key’. The model, as shown in Figure 15, contains two motor codes, ‘M1’ and ‘M2’, 
representing pressing the left and the right key. During the learning phase, ‘M1’ and ‘M2’ 
are activated alternately and their respective action effects are presented to the model. As a 
result, associations are learned selectively between the motor codes and the ‘Left’ and ‘Right’ 
feature codes.

In the experimental trials, tones are presented and are responded to by anticipating and 
executing left or right keypresses (i.e., by activating ‘Left’ or ‘Right’ feature codes respectively). 
Crucially, the ‘Left’ and ‘Right’ feature codes are also activated when the tone stimulus is 
presented on the left or right, yielding a compatibility effect as demonstrated in Figure 16 
and as reflected in the results. Because ‘Left’ and ‘Right’ are features that are relevant for 

Task Level

Sensory Level

Haptic

Feature Level

Motor Level

Location

Left Right

Location

Left Right

Auditory

Motor Codes

M1 M2

Pitch

High Low

Other

Key

Location

Left Right

T1 T2

Pitch

High Low

Figure 15. Specific HiTEC Model for Simulation 3. Feature codes are present for stimulus pitch and location. Note that location 
feature codes are used for encoding both stimulus location and response location. The task instruction is already internalized before 
presenting the learning trials. This biases the learning of connections between feature codes and motor codes. Note that in principle 
any feature code can be connected to any motor code. However, only some of them actually become (strongly) weighted reflecting 

the specific perceptual regularities.

7  We decided to simulate the auditory version of the Simon task, rather than the more common visual version, 
because that will make it easier for the reader to relate it to the auditory version of the Simon task that we 
modeled in Chapter 5. However, the logic of our modeling applies to visual versions just as well.
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Figure 16. Time courses of feature code and motor code activations in the experimental trials of Simulation 3. Panel A depicts 
the activations in the compatible condition. Here ‘M1’ reaches threshold in 19 cycles. Panel B depicts the dynamics in the non-
compatible condition. Here ‘M1’ reaches threshold in 41 cycles. In the latter condition, activating ‘Right ‘(as stimulus feature) 
biases the model into planning a ‘right’ action. This, however, is overcome due to the task connections so that ‘Left’ becomes 

stronger and eventually wins over ‘Right’. Similarly, first the incorrect motor response, ‘M2’ becomes active, but eventually ‘M1’ 
reaches threshold. In effect, the model takes longer to respond in the non-compatible condition than in the compatible condition. 

Activations of the remaining feature codes, task codes and sensory codes are omitted for sake of clarity.

Figure 17. Results of Simulation 3 compared with behavioral data (adopted from Simon & Rudell, 1967), showing average 
reaction time means and standard deviations. Human variance data was not available.

response coding, they are part of the task connections. As a consequence, stimulus location 
becomes of influence in the overall stimulus-response translation. As shown in Figure 16, in 
the compatible condition, the stimulus location already activates the correct spatial feature 
code and thereby speeds up response selection, on average. 

Conversely, in the incompatible condition, stimulus location activates the wrong spatial 
feature code, which also already activates the wrong motor code. Meanwhile, however, the 
stimulus pitch is translated –– through the task codes –– into the correct spatial feature codes 
and the correct motor code. This latter pathway typically overcomes the head start due to the 
overlap-pathway, but the code overlap does slow down the overall translation as reflected in 
the results.
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Simulation results
In the simulations (15 simulated subjects, each performing 20 trials in each condition), no 
errors were made and no subjects were excluded from analysis. Compatible trials yielded 
faster responses (M = 19.79 cycles, SD = 0.18) than neutral trials (M = 25.28 cycles, SD = 
0.23), which again produced faster responses than incompatible trials (M = 34.04 cycles, 
SD = 0.73). The results are shown in Figure 17, where 17a shows the averaged simulated 
reaction times in cycles and 18b the empirical data from the study by Simon and Rudell 
(1967) in milliseconds. Overall, the simulation results fit well with the available behavioral 
data, demonstrating that and how code sharing between stimulus and response results in 
compatibility effects. Note that the processing logic according to which SRC effects are 
produced are identical to that responsible for action-effect compatibility effects as assessed in 
Simulation 1 (see Chapter 1).

Simulation 4: Stroop effect
As we do not differentiate between perceptual and action stages, one could argue that 
stimulus–response compatibility and stimulus–stimulus compatibility would need to work 
similarly in HiTEC.

Original experiment
Stroop (1935) showed that if people are instructed to name the ink color of color words, 
they are slower if the word (e.g., “blue”) appears in an incompatible ink color (e.g., red). This 
compatibility effect is dramatically reduced if non-verbal responses are required (MacLeod, 
1991), suggesting that the task-irrelevant words interfere (at least partly) with verbally naming 
the colors. Note that this interpretation of the Stroop effect bears a strong resemblance to the 
Simon effect as the effect is now attributed to incompatibility between a stimulus feature (ink 
color) and a response feature (verbal sound).

HiTEC simulation
In HiTEC the Stroop effect is simulated by having the model, as depicted in Figure 18, 
structured very similarly to the model used in Simulation 3 to simulate the Simon effect. 
The connections from visual shape to word feature codes have been made slightly stronger 
(weight of 0.45 instead of 0.4; see Appendix for further details) in order to take into account 
the richer experience of word reading as compared to color naming. During the learning 
trials, the model alternately executes ‘M1’ and ‘M2’, reflecting the ‘physical’ pronunciation of 
the respective words. The model is subsequently presented with the auditory feedback (i.e., 
reflecting the perception of this pronunciation) and associations are learned between motor 
codes and feature codes. During experimental trials, naming ink color of compatible color 
words benefits from facilitation whereas naming the color of incompatible color words suffers 
from interference.
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Task Level
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Figure 18. Specific HiTEC Model for Simulation 4. Feature codes are present for stimulus colors and words. Crucially, word 
feature codes are used for encoding both stimuli (i.e., the color words) and responses (i.e., the words to name the ink color). Note 
that this structure is in essence identical to the structure of the model used for Simulation 3. Connections between word feature 

codes and motor codes are learned during learning trials (i.e., pronouncing the words).

Figure 19. Results of Simulation 4 compared with behavioral data (adopted from MacLeod, 1991), showing average reaction time 
means and standard deviations. Human variance data was not available.

(a) (b) 
 

0
5

10
15
20
25
30
35
40
45

Neutral Trials Incompatible Trials

R
ea

ct
io

n 
Ti

m
e 

(c
yc

le
s)

0

20

40

60

80

100

120

Netural Trials Incompatible Trials

R
ea

ct
io

n 
Ti

m
e 

(m
s)



6363

Automaticity

Simulation results
In the simulation (15 simulated subjects, each performing 20 trials in each condition) 5% 
errors were made on average (all during incompatible trials) and one subject was excluded 
from analysis due to having more than 30% error trials. After removal of error trials, the 
results showed that responses were fastest with compatible trials (M = 19.22 cycles, SD 
= 0.14), intermediate with neutral trials (M = 25.27 cycles, SD = 0.24) and slowest with 
incompatible trials (M = 39.53 cycles, SD = 0.65). The global fit between simulation results 
and behavioral data is depicted Figure 19. Note that the Stroop simulation results point 
more strongly to an interference effect with non-compatible stimuli than to facilitation with 
compatible stimuli, a result that is also found in behavioral studies (MacLeod, 1991). In our 
simulation this is due to the stronger weights from visual shape sensory codes to word feature 
codes (see Appendix).

Discussion
This chapter attempts to address how and why compatibility effects arise in stimulus-response 
translation. These effects demonstrate that some aspects of stimulus-response translation 
occur automatically. As demonstrated in the simulations, HiTEC is able to account for 
these effects. In fact, SRC is an inevitable consequence of HiTECs structures and processing 
characteristics as we will now explain. First, in order to internalize task instructions into a 
task set, both stimuli and responses need to be represented on a distal level and associated 
through task codes (see Figure 20a). Secondly, actions are represented in terms of perceptual 
effects and therefore use the same distal codes as stimuli and, consequently, are grounded 
in the same perceptual world (Prinz, 1992; illustrated in Figure 20b).This means that code 
overlap is possible and – to the extent that stimuli and responses overlap in the external 
environment, such as spatial correspondence — very probable. Finally, HiTEC assumes 
integrated processing which means that stimulus coding and response coding also overlap 
in time. Thus, the task set results in a pathway mediated by task codes and defined in distal 
features, and in probable code overlap of these same distal features; as stimulus processing and 
response planning occur simultaneously, the cognitive system inevitably needs to combine 
task-driven and automatic feature code activation. As a result, code overlap between stimulus 
and response features results in either facilitation or interference effects (Hommel, 2004).

F1

T

F2 S
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M

Figure 20. Schematic depiction of couplings between sensory codes, motor codes, feature codes and task codes. Panel (a) depicts a 
relation between task codes and feature codes that is part of the task set. F1 refers to a task relevant stimulus feature and F2 refers 
to an action effect feature of the required response. Panel (b) shows that feature codes are common codes, relating to both sensory 

and motor codes.
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In Simulation 3, the simulation of the Simon effect, stimulus-response compatibility 
follows from the fact that responses are coded in terms of their spatial perceptual consequences 
(due to ideomotor learning, see Chapter 3). That is, left or right keypresses. In order to plan 
one of these keypress actions, the model needs to activate either the ‘left’ or ‘right’ feature 
code. Now, when a stimulus is presented left or right, the ‘left’ and ‘right’ feature codes will 
be activated both due to the exogenous excitation resulting from the presented stimulus 
and due to the endogenous excitation due to their roles as action effect features. When both 
stimulus perception and response anticipation activate the same ‘left’ or ‘right’ feature code, 
overall stimulus-response translation is faster, constituting a compatible trial. When they do 
not activate the same but competing codes, stimulus-response takes longer, constituting an 
incompatible trial.

In similar vein, in the simulation of the Stroop effect, the task irrelevant word feature 
only has influence because the response is coded using these features (which is a result from 
the action–effect learning). If the response is not verbally defined (e.g., in terms of key presses) 
the compatibility effect is dramatically reduced in behavioral studies (MacLeod, 1991). In 
HiTEC this would result in a different set of action effect features to be associated to the 
motor codes. Hence, code overlap with stimulus features would cease to occur, effectively 
eliminating the compatibility effect.

In typical computational models of SRC effects, such as the Simon effect, stimuli are 
represented in terms of non-spatial task-relevant codes (e.g., ‘high tone’ and ‘low tone’) 
and spatial task-irrelevant codes (e.g., ‘left tone’ and ‘right tone’), and responses are also 
represented in terms of spatial codes (e.g., ‘left key’ and ‘right key’). As depicted in Figure 
21, stimulus codes and response codes are connected using two routes (e.g., Kornblum et al., 
1990; Zorzi & Umilta, 1995; De Jong, Liang, & Lauber, 1994).  A direct route connects 
the spatial stimulus codes to the corresponding spatial response codes, which is assumed to 
reflect the automatic process. The task instruction (e.g., “when you hear a high tone, press 
the left key”) is implemented as a soft-wired connection from the non-spatial stimulus code 
(e.g., ‘high tone’) to a spatial response code (e.g., ‘left key’), following the task instruction. 
This is assumed to reflect the controlled process. When a stimulus is presented, activation is 
propagated through the model towards the response codes. The response code that first reaches 
an activation threshold will be selected for execution. Now, when a compatible stimulus is 
presented (e.g., a high tone presented on the left), both the hard-wired spatial connections 
and the soft-wired task instruction-based connections contribute to a speedy activation of the 
correct response code. Conversely, when an incompatible stimulus is presented (e.g., a high 
tone presented on the right), the direct route activates the incorrect response. The controlled 
route, however, activates the response determined by the task instruction, which eventually 
is assumed to win this competition. As a result, processing incompatible stimuli results in 
longer reaction times than processing compatible stimuli. In sum, in dual route models, 
the stimulus–response compatibility effect arises from the interplay between the direct 
route, reflecting automatic comparison between spatial stimulus and response codes, and 
the controlled route, reflecting the task instructions. Thus, to account for SRC effects, these 
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models drive on three main assumptions: (1) responses are represented by spatial codes, (2) 
attending to a stimulus automatically produces a spatial stimulus code, and (3) the outcome 
of a comparison between the spatial stimulus code and the spatial response code produces the 
compatibility effect. Here, this comparison is assumed to occur automatically and arise from 
the idea that stimuli and responses are similar (e.g., ‘have dimensional overlap’, Kornblum et 
al., 1990; 1999). 

Clearly, there are some strong similarities between these dual route models and HiTEC. 
First, the basic dynamic activation mechanisms of these models (i.e., codes, connections, 
activation levels) are very similar to HiTEC’s connectionist implementation, and second, 
the general structure of the HiTEC model instance used to model the Simon (and Stroop) 
effect also shows some resemblance to ‘two routes’ (i.e., a route through the task codes and a 
route through the common codes). However, HiTEC does not share the main assumptions 
of the (strictly feedforward) dual route models and provides a different rationale for SRC. 
With respect to the main assumptions listed above, HiTEC assumes that (1) motor codes and 
representations of their perceptual effects are learned, allowing for the emergence of situation-
specific meanings of actions (see Chapter 3), (2) task sets are implemented using common 
distal feature codes and recurrent connections with task codes. Including a feature code as 
response feature automatically makes it susceptible to stimulus based exogenous excitation 
and (3) compatibility between stimuli and responses (i.e., action effects) is due to the degree 
they are represented using the same common codes. These assumptions follow directly from 
key characteristics of the HiTEC model and do not require a notion of ‘dimensional overlap’ 
or ‘similarity’ that selectively applies to some combinations of stimuli and responses and not 
to others.

high 
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left 
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Figure 21. Dual route account of Simon effect (adapted from Zorzi & Umilta, 1995).
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Also, the ideomotor learning of action-effect associations as employed in the simulations 
in this chapter allows for the flexibility and context dependence that is shown in a variety 
of SRC studies (see Chapter 3 for an elaborate overview). Moreover, in HiTEC task sets are 
implemented using recurrent connections only. These connections strictly follow the actual 
task instructions. In comparison, the Dimensional Overlap model (Kornblum et al., 1990; 
1999), in addition to the controlled and automatic connections, assigns different activation 
dynamics to task relevant stimulus features than to task irrelevant stimulus features. Hence, 
we argue that HiTEC allows for a more parsimonious approach to controlled and automatic 
stimulus-response translation and provides a rationale – based on representations and 
processes – for why these SRC effects occur.

A related model of the Stroop effect (Cohen et al., 1990) also contains two routes. In this 
model, however, ‘automatic’ and ‘controlled’ is considered to depend on experience which 
they address explicitly. The model further allows for modeling multiple tasks (naming the 
ink color vs. naming the color word), showing somewhat of the task flexibility demonstrated 
by the HiTEC model. Task implementation in this model, however, is confined to injecting 
additional input to either one out of two task nodes thereby biasing the model to either one 
of the two implemented tasks.

The SLAM model (Phaf, van der Heijden, & Hudson, 1990) for attention in visual 
selection tasks is also used to model the Stroop effect. This connectionist model consists of 
multiple interacting levels of representation and employs two main processes, object selection 
and attribute selection, to perform a variety of filtering tasks. In order to account for the 
Stroop effect additional connections between stimulus features and response aspects are 
assumed (“privileged links”) in similar vein as the automatic route in the dual process models 
described above. 

Other models that include perception and action systems, such as the models by Ward 
(1999) and by Botvinick et al. (2009) do not address SRC; in these models stimulus features 
are simply connected to action features according to the task at hand; hence, stimulus features 
are just straightforwardly translated into action features. In contrast to the dual route models 
described above, however, connections in these models are recurrent. Hence, action activation 
can also influence stimulus perception, in similar spirit as HiTEC (see Chapters 2 and 3 for 
a more detailed comparison).

Another well-known SRC effect, which we did not explicitly model in HiTEC, is 
the Flanker effect (Eriksen & Eriksen, 1974). This effect is observed when participants are 
required to respond to a visual target with close-by distractors (flankers) which they are unable 
to ignore. For instance, if a discriminative response is required for a central target letter that 
is flanked by distractors, participants are faster if target and distractors are associated with 
the same response than with different responses. This result suggests that also for distractors 
the associated responses are activated and that this activation interacts with producing the 
response to the target. The Flanker effect is modeled by Cohen and Shoup (1997). In their 
model, displays of multiple stimuli are processed in terms of their individual features, which 
include location information. This process works separately for each feature dimension. At 
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this stage, response competition is assumed to occur possibly yielding congruency effects. 
Finally, response activation from multiple dimensions is combined into a single actual 
response. Cohen and Shoup (1997) propose that the Flanker effect results from within-
dimension competition. This set up somewhat resembles HiTECs architecture. Motor codes 
(responses) are associated to feature codes (features in dimensions). In contrast, however, 
HiTEC does not confine response competition within dimension, but rather assumes a 
model-wide integrated competition process. Crucially, to simulate the Flanker task, a model 
must be able to process a display of multiple objects and selectively treat one object as the 
‘target’ and the others as ‘distractors based on their location in the display. The HiTEC 
model currently does not provide for such differentiation but see (Cohen, Servan-Schreiber, 
& McClelland, 1992) for a PDP model of the Flanker effect. 

To summarize, existing models of congruency in stimulus-response translation typically 
assume spatial response codes and special links between stimulus features and these response 
codes based on a certain ‘similarity’. HiTEC does not need such assumptions as congruency 
effects follow naturally and inevitably from using common codes for both stimulus and 
response (i.e., action effect) representation.

Interestingly, dual route systems have also been proposed to account for fast and 
automatic responses to affective stimuli (LeDoux, 1996). In such a system, a ‘low road’, 
associated with the amygdala, automatically translates stimuli to responses. In parallel with 
this subcortical pathway there is a ‘high road’, associated with the cortical structures of the 
brain. This pathway analyzes the stimulus in a more fine-grained, but slower way. Together, 
these routes enable someone to respond quickly to affective stimuli and to process these 
stimuli in more detail in order to adjust behavior at a later point in time. Recent studies show 
that automatic processes may be affected by top-down influences (e.g., Beckers et al, 2002). 
The simulations in this chapter show that HiTEC is able to account for such influences. In 
Haazebroek et al. (2009b; 2011b) this is more explicitly applied to affective processing in a 
simulation of an affective version of the Simon effect (Beckers et al., 2002).

Although HiTEC accounts for some aspects of automatic processing, it must be noted 
that automaticity is a much broader field than these SRC effects alone suggest (see Moors 
& De Houwer, 2006 for an overview). Indeed, there is a long history of theorizing on the 
struggle between human will and habit (for a prototype, see Ach, 1910).  With respect to the 
SRC effects discussed in this chapter, alternative explanations for automatic, uncontrolled 
or unconscious behavior include storing and retrieving action instances (Logan, 1988), 
integrating ‘chunks’ of behavior (Anderson, 1992) and over-learning of stimulus-response 
translation (Proctor and Lu, 1999; Tagliabue, Zorzi, Umiltà, & Bassignani, 2000). In this 
thesis, however, we have focused on aspects of automaticity that naturally follow from a set of 
key characteristics of our connectionist model of perception and action planning. Moreover, 
in HiTEC, important components of cognitive control are actually assumed to be exerted 
already before responding to any stimuli. This includes the prerequisites for code overlap, 
so that—somewhat paradoxically—automaticity is the result of control (Hommel, 2000a). 
In effect, we have eliminated the difference between automatic and controlled information 
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processing in the model (i.e., everything is automatic). One could argue that this is there 
is more to cognitive control than modeled in current simulations. With respect to the 
simulated experimental paradigms, however, it seems that other types of (online) control are 
unnecessary.

Although we have explained how and why automaticity occurs in the HiTEC model by 
means of code overlap, one could still wonder why this would be beneficial for coordinating 
our behavior. Clearly, being slower or faster in a Simon task does not provide one immediate 
evolutionary advantages. However, even though the presence of such effects is convenient 
for the scientific study of perception-action relationships, their real benefit is prevalent in 
everyday life: object properties (e.g., location, shape) must often be translated into very 
similar action parameters (location, shape of hand) in order to efficiently interact with the 
environment. Perceiving an object and internally coding its features would therefore be likely 
to specify and literally prepare important components of the action plan that the given object 
affords (Hommel, 2009). Thus, rather than explicitly translating these stimulus features into 
response features (e.g., ‘if big object, use large grasp action’), automaticity – in our framework 
using common codes (e.g., ‘big’) – allows for implicit, effortless translation of matching 
features. 

To conclude, we have addressed how and why automaticity occurs in stimulus-response 
translation. In the HiTEC connectionist model stimuli and responses are represented using 
common codes. In typical SRC tasks, responses are defined in terms of features that are shared 
by the stimuli to be responded to. This means that a task set not only defines a controlled 
pathway but also an automatic translation path through the common codes used both for 
stimuli and responses (cf. Hommel, 2000b). In this chapter we focused on automaticity, in 
the next chapter we will discuss the role of task context more explicitly.
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Chapter 5
Task Context

This chapter is an integration of major parts of the following articles:

Haazebroek, P., Raffone, A., & Hommel, B. HiTEC: A Connectionist Model of the 
Interaction between Perception and Action Planning. Manuscript submitted for 
publication.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2013). How task goals mediate the inter-
play between perception and action. Frontiers in Psychology, 4:247.
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Laboratory tasks in behavioral research are commonly not self-explaining and human 
participants are thus commonly ‘task ignorant’ until they receive the task instruction. That 
is, they do bring the general ability to perceive and act, but the task instruction makes them 
respond to particular stimuli with particular responses, just as needed. As a consequence, 
the same individual is able to participate in various experiments as long as he/she receives 
appropriate task instructions. Now, how does the cognitive system configure itself to perform 
a specific task? Here, intuition might suggest that cognitive control follows perception and 
precedes action planning, so that a stimulus is being responded to appropriately. Interestingly, 
findings on two-interactions between perception, cognition and action suggest otherwise.

The interaction between perception and cognition, for example, can be demonstrated 
by so-called spatial congruency effects. Several studies have found interactions between 
the meaning of words and the spatial position of those words on the computer screen. For 
example, people respond faster to a word such as helicopter or stork when it is presented at 
the top of the computer screen than when it is presented at the bottom of the screen (Šetić 
& Domijan, 2007). Other studies showed that the spatial meaning of a word may attract 
attention to a particular location on the screen (e.g., Estes, Zerges, & Barsalou, 2008; Zanolie 
et al., 2012). Spatial congruency effects are also found with words referring to abstract 
concepts that are metaphorically connected to spatial locations, such as power (Schubert, 
2005; Zanolie et al., 2012), valence (Meier & Robinson, 2004), divinity (Meier et al., 2007) 
or magnitude (Fischer, Castel, Dodd, & Pratt, 2003; Pecher & Boot, 2011), but see Lakens 
(2012) for an alternative explanation, based on polarity correspondence (Proctor & Cho, 
2006). Furthermore, studies have shown that perceiving motion in a particular direction 
interacts with the processing of sentences or words describing motion in the same direction 
(e.g., Kaschak et al, 2005; Meteyard et al., 2007; 2008).

Likewise, spatial congruency effects also occur in the interaction between cognition 
and action. For example, participants are faster to respond to a sentence when the direction 
of the response matches the direction of the action described in the sentence. This so-called 
action compatibility effect has been found with different kinds of movement, such as moving 
the hand toward or away from the body (Glenberg & Kaschak, 2002) and rotating the 
hand (Zwaan & Taylor, 2006). These results are taken as evidence that the representations 
underlying conceptual processing partially overlap with the representations underlying the 
preparation and execution of action.

 Finally, spatial congruency effects occur in the interaction between perception and 
action. Much research has been devoted to stimulus–response compatibility (SRC) effects; 
the canonical example being the Simon effect (Simon & Rudell, 1967; Hommel, 2011). In 
the typical Simon task, stimuli vary on a spatial dimension (e.g., randomly appearing on the 
left or right) and on a non-spatial dimension (e.g., having different colors). Participants have 
to respond to the non-spatial stimulus feature by performing a spatially defined response 
(e.g., pressing a left or right key). Although the location of the stimulus is irrelevant for 
the response choice, it nevertheless influences the response time and accuracy, suggesting 
interaction between stimulus perception and response planning. Participants respond faster 
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(and more accurately) when the stimulus location is congruent with the response location 
than when the stimulus location is incongruent with the response location. The Simon effect 
is simulated and discussed more elaborately in Chapter 4.

Although spatial congruency effects seem to demonstrate compatibility effects that 
However, the various spatial congruency effects discussed above suggest an interaction 
between cognition and perception and between cognition and action. Hence, it is to be 
expected that the (cognitive) task set may influence the automatic translation from spatial 
stimulus codes to spatial response codes. Indeed, various studies have demonstrated that 
SRC effects are strongly influenced by the task. For instance, Riggio et al. (1986) reported 
that when participants responded with sticks that were either parallel or crossed, the Simon 
effect was found to relate to the stick end position, not to the hands holding the sticks. In 
a study by Guiard (1983), participants had to respond with a steering wheel. Their results 
suggest that not the position of the hands but the steering direction (as in a car) determines 
the Simon effect, indicating an even more abstract notion of left or right responses. It is this 
task- and intention-dependent left-ness or right-ness, rather than the actual physical location 
of a response, that seems to interact with the spatial location of the stimulus and thereby 
yields the Simon effect (see Chapter 3 for more elaborate discussion on the situation-specific 
meaning of actions).

Moreover, Hommel (1993) showed that the Simon effect as described in Simulation 3 
can be inverted by just changing the task instruction. In this study participants responded 
with left or right keypresses to the high vs. low pitch of tones which were presented left or 
right. When a key was pressed a flash light was presented on the opposite side of the keypress. 
One group was instructed to “press the left/right key” in response to the low/high pitch of 
the tone, whereas another group was instructed to “flash the right/left light” in response to 
the low/high pitch. In other words, all participants carried out exactly the same movements 
in response to the same stimuli, but one group did that “in order to press the keys” while the 
other did it “in order to flash the lights”. This seemingly minor manipulation had a major 
impact on the Simon effect. Whereas the Key group showed a standard Simon effect with 
faster responses for spatial correspondence between tones and keys, the Light group showed 
the opposite effect: faster responses for spatial correspondence between tones and lights. This 
observation demonstrates the crucial role of task instruction in stimulus and response coding.

The Theory of Event Coding (TEC) stresses that perception and action are flexible; 
that is, they are tuned to the current context and are subject to cognitive control (Hommel 
et al., 2001). Codes are assumed to be ‘intentionally weighted’; that is, the strength of their 
activation depends on the task context (Memelink & Hommel, 2013). In this chapter, we 
explicitly address how the task context may be internalized into a task set and how this task 
set may modulate both controlled and automatic aspects of stimulus-response translation.

In the first simulation we model the empirical study by Hommel (1993) described 
above. Here, the task set wires the model in such a way that either the light or the key 
locations are more strongly perceived and integrated in action-effect associations. This has 
consequences for subsequent stimulus-response translation. Interestingly, the HiTEC model 
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of this study raised a new question: on what level does ‘intentional weighting’ operate? To 
empirically test this, we have conducted a novel experiment using a Wii Balance Board. To 
assess the differences between this experiment and the Hommel (1993) study, we have also 
simulated the new experiment. Finally, discuss both simulations and compare our approach 
with related work on assessing the influence of task context in stimulus-response translation.

Simulation 5: Inverting the Simon effect

HiTEC simulation
The empirical study by Hommel (1993) discussed above, was simulated in HiTEC using 
two instances of the model. One instance is configured according to the Key instruction, 
the other the Light instruction. The latter condition is depicted in Figure 22. Note that the 
difference in task instructions is reflected in the task connections alone. Crucially, in the Key 
condition the mere connections between ‘Key’ and the task codes enhance the processing of 
haptic locations. In contrast, in the Light condition, the connections between ‘Light’ and the 
task codes enhance visual locations. This specific wiring biases the action-effect learning and 
the direction of the compatibility effect during subsequent experimental trials.

Task Level

Sensory Level

Haptic

Feature Level

Motor Level

Location

Left Right

Location

Left Right

Auditory

Motor Codes

M1 M2

Pitch

High Low

Other

Key

Location

Left Right

T1 T2

Pitch

High Low

Light

Visual

Location

Left Right

Figure 22. Specific HiTEC Model for Simulation 5. This is the model instance for the Light condition. The Key condition differs 
only in the connections from ‘T1’and ‘T2’ to ‘Key’ instead of ‘Light’. ¬These task code – feature code connections moderate the 
learning of feature code – motor code connections as the ‘Light’ feature code (in the “Light” condition; the ‘Key’ feature code in 

the Key condition) sends activation to and therefore receives activation from the task codes during learning. As the location feature 
codes are used to code for stimulus location (i.e., location of the tone) and both action effects (haptic and visual), compatibility 

effects arise. The task instruction determines which action effect (haptic vs. visual) is top down enhanced and therefore determines 
the major determinant (and consequently the direction) of the compatibility effect during the experimental trials. Note that the 
connections between feature codes and motor codes (dashed lines) are depicted in a way that both action effects are taken into 
account. Some of these connections (as determined by the enhancement of the ‘Light’ or the ‘Key’ code) become stronger than 

others, but this is a relative weighting, as both action effects are present in the environment.
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Simulation results
The two groups consisted of 15 simulated subjects each, each performing 60 trials. On average 
17% of the trials were errors (all of them in the stimulus-key incompatible condition). No 
simulated subjects were excluded from the analysis. After removal of error trials, the Key 
group showed fastest responses with congruent stimulus-key trials (M = 19.81 cycles, SD = 
3.23), intermediate responses with neutral trials (M = 23.74 cycles, SD = 2.35), and slowest 
responses with incongruent stimulus-key trials (M = 26.67 cycles, SD = 1.13). In contrast, in 
the ‘Light’ group congruent stimulus-key trials (i.e., trials in which the stimulus location was 
incongruent with the action-effect light location) yielded the slowest responses (M = 25.83 
cycles, SD = 1.15), neutral trials intermediate responses (M = 23.35 cycles, SD = 1.13), and 
incongruent stimulus-key trials (i.e., trials in which the stimulus was congruent with the 
action-effect light) the fastest responses (M = 19.75, SD = 3.9). As depicted in Figure 23a 
the simulation results provide a good fit with the empirical data shown in Figure 23b. This 
pattern demonstrates that a slight change in the instruction can generate a different task set, 
which again leads to an inversion of the commonly robust Simon effect; and it shows that 
HiTEC is equipped to simulate the resulting pattern very closely. It also demonstrates that an 
associative account of perception-action interactions need not be inconsistent with cognitive 
flexibility and the possibility of adaptive task-set configuration as evidenced by the inversion 
reported by Hommel (1993).

Figure 23. Results of Simulation 5 compared with behavioral data (adopted from Hommel, 1993). Human variance data was not 
available. The horizontal axis denotes the different trial congruency levels.
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Conclusion 
As the empirical findings by Hommel (1993) suggest and Simulation 5 demonstrates, 
intentional weighting can also affect the coding of response representations. In Hommel 
(1993) it can be argued that the task set results in stronger weighting of key vs. light location, 
depending on the instruction. One could ask, however, whether this actually implies weighting 
of feature dimensions. Indeed, on closer examination in the HiTEC model instance used 
in Simulation 5 (Figure 22), both the key and the light locations are represented by the 
same spatial feature dimension (i.e., left-right). Therefore one could argue that not feature 
dimensions, rather the respective sensory dimensions are selectively enhanced by top down task 
influences by means of the ‘key’ vs. ‘light’ instruction. In other words, the task instruction 
determines whether a participant attends to either the (visual) light locations or the (haptic) 
key locations. Subsequently, the attended locations get encoded on the single spatial left-right 
feature dimension. The fact that this same left-right feature dimension is also used to encode 
the stimulus location forms the basis of the observed SRC effect. 

Empirical study: Feature weighting
As discussed above, our simulation of the Hommel (1993) experiment suggests that in 
that experiment, intentional weighing operated within the same feature dimension (‘key’ 
vs ‘light’), effectively modulating the contributions of multiple sensory dimensions to the 
same ‘left’/’right’ feature dimension. Indeed, results from Memelink and Hommel (2005) 
demonstrated that mere task instruction may not be sufficient to affect action coding if the 
manipulation does not change the task goal. The question then arises: what constitutes a task 
goal? Does one need to attend to different objects (e.g., key vs. light) in the environment to 
selectively enhance sensory coding? Or does the intentional weighting principle apply to more 
abstract feature codes as well? In the present study we assess the influence of task instruction 
on automatic processes in stimulus–to–response translation at the feature level. In the design 
of the task there are two important criteria to take into account: (1) the experimental set up 
needs to employ a single object and a single sensory dimension which can be encoded in two 
different feature dimensions, based on the task instruction. In this way, we can rule out the role 
of purely object based attention; (2) the experimental set up needs to use a task in which two 
different interpretations of the same ambiguous movement are – to a certain extent and in 
the eyes of the participant – equally intuitive and applicable to the observed (sensory) effects 
of the physical movements. Otherwise, if participants can easily recode the variations in these 
dimensions into a single intuitive dimension, they will do so; the influence of task instruction 
will then disappear (cf., Memelink & Hommel, 2005).

With these criteria in mind we opted for a relatively natural scenario rather than 
responding by pressing keys (see Wang, Proctor & Pick, 2007; Yamaguchi & Proctor, 2011 
for similar approaches). In a natural scenario – we hypothesized – participants would be 
more strongly compelled to adhere to the action coding specified by the task instruction. In 
the present study, participants stood on a Wii balance board and were instructed to imagine 
standing on either a snowboard or a pair of skis. They had to respond to stimuli by leaning 
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sideways. In the ski condition, this lateral movement was presented as moving the skis to 
the “left” or “right”, whereas in the snowboard condition, it was presented as moving the 
snowboard “backward” or “forward”. In performing the task, participants could draw on their 
own motor experience if they had any experience with skiing or snowboarding. Participants 
who had never skied or snowboarded could still form a mental representation of what it means 
to be skiing or snowboarding, by combining elements from partial or similar experiences 
(Barsalou, 2008; Taylor & Zwaan, 2009). For example, they could draw on visual experience 
(e.g., watching snowboarders on TV), and combine this with related motor experience (e.g., 
surfing or skateboarding). 

In the experiment, the Wii balance board was oriented diagonally towards the screen 
displaying the stimuli (Figure 24). The critical stimuli consisted of colored arrows pointing in 
one of four directions (backward, forward, left or right). The study used a between-subjects 
design; participants were either instructed to imagine standing on a pair of skis or on a 
snowboard, and to respond to the stimulus color by leaning sideways. Given the diagonal 
orientation of the balance board, the responses simultaneously varied on the left– right 
dimension and on the forward– backward dimension. We expected that the weighting of 
the (feature) dimensions would depend on the instruction given to the participant. A skier 
stands in the same direction as her skis. When she leans to the left or right, this causes the 
skis to turn into the respective direction. Therefore, participants in the ski condition would 
encode the lateral leaning movements as ‘left’ and ‘right’. In contrast, a snowboarder stands 
on a snowboard perpendicular to its direction of movement. When she leans sideways, the 
snowboard will slide forward or backward. As a result, we expected that participants in the 
snowboard condition would not only encode the movements as ‘left’ and ‘right’, but also as 
‘forward’ or ‘backward’. Therefore, we expected a forward– backward congruency effect to 
occur in the snowboard condition, but not in the ski condition. 
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Figure 24. Setup of the experiment.
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In the next section we describe the methods of the behavioral experiment. We continue 
with presenting the results, followed by a HiTEC simulation of the study. Finally, we discuss 
the implications of both our empirical findings and simulation results.

Material and methods
Participants. A total of 83 Dutch undergraduate psychology students from Leiden University 
(65 women, 18 men) took part in the experiment. In return for their participation they 
received course credits or a monetary reward of EUR 4.50. Mean age of the participants was 
19.8 (SD 2.3).

Apparatus and Stimuli. The instructions and stimuli were presented on a television 
monitor with a diameter of 107 cm and a refresh rate of 60 Hz. E-Prime software was used 
to present the stimuli. Stimuli were blue or red symbols, consisting of one direction-neutral 
stimulus and arrows pointing in one of four different directions; left, right, forward or 
backward (Figure 25). On screen, each stimulus measured approximately 30 x 30 cm.

Participants stood on a Wii balance board (51 cm long x 32 cm wide x 5 cm high), 
which was placed diagonally, at an angle of 45° or -45°, in front of the monitor. In order to be 
able to face the monitor, participants who were positioned at the 45° angle always had their 
left foot forward (i.e., closest to the monitor), and participants at the -45° angle always had 
their right foot forward. Thus, the participant’s position with respect to the computer screen 
was determined by the orientation of the balance board.

The distance between the monitor and the center of the balance board was 200 cm 
(Figure 24). The orientation of the balance board was counterbalanced across participants. 
Half of the participants stood with their left foot forward, the other half stood with their right 
foot forward. The participant’s weight distribution on the left–right axis and front–back axis 
of the balance board was recorded at a frequency of 100 Hz. This was done by custom-made 
software that polls the sensor values of the balance board, using a Bluetooth connection. To 
respond to a stimulus, participants had to lean sideways far enough to exceed a predefined 
threshold on the left–right axis of the balance board. When this threshold was exceeded, the 
response time and accuracy of the response were logged.

Figure 25. Experimental stimuli. Arrows pointing forward, backward, left, right and direction-neutral stimulus.
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Procedure. The complete experiment lasted approximately 30 minutes. Upon arrival to 
the lab, participants were randomly assigned to one of eight counterbalance versions  (see 
Table 1), defined by the instruction (snowboard or ski), the orientation of the balance board 
(45° or -45°) and the stimulus–response mapping (red–left/blue–right or red–right/blue–
left). Participants in the snowboard condition received the following instruction: “Imagine 
that you’re standing on a snowboard, which you can move forward or backward by leaning on 
your front or back leg”, whereas participants in the ski condition received the alternative 
instruction: “Imagine that you’re standing on skis, which you can move to the left or right by 
leaning on your left or right leg”. To enhance the context of the task, an illustration of a skier or 
a snowboarder was presented, standing in the same position as the participant on the balance 
board (see Figure 26). 

The instruction was followed by a practice block, which contained 24 trials. Each practice 
trial started with the presentation of the sentence “Take the start position” for 1000 ms. Next, 
the instruction to lean into a particular direction (e.g., “Move the skis to the left (left leg)” or 
“Move the snowboard forward (front leg)” ) was presented until the participant responded 
by leaning into the respective direction. In the snowboard condition, the directions were 
“backward” or “forward”, whereas in the ski condition the directions were “left” or “right”. 
To enhance the encoding of the movements in the appropriate dimension, participants 
were instructed to mention out loud the direction in which they had to lean. Following a 
correct response, the word “correct” was presented for 1000 ms. Following a response that 
was incorrect or too slow (more than 5000 ms), the word ”error” or ”too slow” was presented 
for 1000 ms. 

Task Position Instruction

Ski 45° (left foot forward) If the image is blue, lean to the left
If the image is red, lean to the right

If the image is blue, lean to the right
If the image is red, lean to the left

-45° (right foot forward) If the image is blue, lean to the left
If the image is red, lean to the right

If the image is blue, lean to the right
If the image is red, lean to the left

Snowboard 45° (left foot forward) If the image is blue, lean forward
If the image is red, lean backward

If the image is blue, lean backward
If the image is red, lean forward

-45° (right foot forward) If the image is blue, lean forward
If the image is red, lean backward

If the image is blue, lean backward
If the image is red, lean forward

Table 1. Overview of the eight different counterbalance versions of the experiment.
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After completing the practice trials, participants received the instruction for the 
experimental trials. They were instructed to respond to the stimulus color by leaning into 
a particular direction. In the snowboard condition, participants had to respond to red or 
blue stimuli by leaning forward or backward (e.g., “If the image is red, lean forward”). In 
the ski condition, participants had to respond to red or blue stimuli by leaning to the left 
or right (e.g., “If the image is red, lean to the left”). The actual mapping of color to direction 
was counterbalanced across participants. In addition, participants were urged to respond as 
quickly and accurately as possible.

The instruction was supported by the illustration of the skier or snowboarder, in which 
the two skis or the two sides of the snowboard were colored in the corresponding stimulus 
color (for example, a skier with a red left ski and a blue right ski, see Figure 26).  

Each trial was either neutral (the neutral shape), left–right congruent (left- or right-
pointing arrow, corresponding to the horizontal direction of the response), left–right 
incongruent (left- or right-pointing arrow, opposite to the horizontal direction of the response), 
forward–backward congruent (forward- or backward-pointing arrow, corresponding to the 
forward–backward direction of the response) or forward-backward incongruent (forward- or 
backward-pointing arrow, opposite to the forward–backward direction of the response). 

The experiment was divided into four blocks with 50 trials each. Since there were 10 
different stimuli (two colors; red and blue, and five orientations; backward, forward, left, right 
and neutral), each stimulus was repeated five times during each block. Stimuli were presented 
in random order. A trial started when the participant had taken the start position and his/
her balance was centered on the Wii balance board. After 500 ms, a black fixation cross was 
presented for 1000 ms, followed by the experimental stimulus. The stimulus remained on 
the screen until the participant’s response was recorded or until 5000 ms had elapsed. If the 

Figure 26. Illustrations of (a) skier and (b) snowboarder used during instruction.

(a) (b)
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response was incorrect or too slow, a feedback screen was presented for 2000 ms, displaying 
the word “error” or “too slow”. If the response was correct, no feedback was given. After 
completing a trial, participants had to return their balance to the center of the balance board. 
Following each block of 50 trials, there was a short break of 10 seconds, during which the 
instruction was repeated. The instruction was visually supported by the same illustration of 
the snowboarder or skier that had been shown in the initial experimental instruction (Figure 
26).

After completing the experimental trials, participants indicated whether they had any 
experience with skiing or snowboarding. Experienced snowboarders also indicated whether 
they preferred to snowboard with their left foot forward or their right foot forward

Results
The data from eight participants were discarded because they had an overall accuracy level 
lower than 0.70. For the remaining participants (38 in the Ski condition and 37 in the 
Snowboard condition) we computed mean reaction times and accuracy for the responses. 
Incorrect responses (7.8 %) were excluded from the reaction time analysis. Furthermore, 
based on Tukey’s criterion, reaction times below 415 ms and above 1590 ms (5.3%) were 
also discarded. Mean trimmed reaction times and error rates are presented in Table 2. The 
reaction times were analyzed with a 2 x 2 x 2 repeated measures ANOVA, with dimension 
(backward–forward vs. left–right) and congruency (congruent vs. incongruent) as within-
subject variables, and instruction (ski vs. snowboard) as between-subject variable.

The majority of participants (27 in the ski group, 18 in the snowboard group) had no 
experience with snowboarding or skiing, 14 participants had only ski experience (6 in the 
ski group, 8 in the snowboard group), 5 participants had only snowboard experience (2 in 
the ski group, 3 in the snowboard group), and 11 participants had both ski and snowboard 
experience (3 in the ski group, 8 in the snowboard group). Because of the small number of 
participants in some of the groups, we ignored this factor in the analysis. 

Instruction Dimension Congruent Incongruent Effect

Ski Left-right 970 (154.6) 1056 (179.8) 84 ms

Forward-
backward

1006 (159.1) 1011 (169.7) 5 ms

Snowboard Left-right 922 (134.5) 981 (153.4) 59 ms

Forward-
backward

950 (120.3) 966 (143.0) 16 ms

Table 2. Mean response times (ms) and standard deviations for the different trials in the two instruction conditions.
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There was a main effect of congruency, with congruent trials being faster than incongruent 
trials, F(1,73) = 108.4, p < .001, ηp

2 = .60.  In addition, there was a significant interaction 
between congruency and dimension, F (1,73) = 72.5, p < .001, ηp

2 = .50. The congruency 
effect was larger for the left–right dimension than for the backward–forward dimension. 
This finding is in line with the left–right prevalence effect found in other studies (e.g., 
Nicoletti & Umilta, 1984; 1985; Nicoletti, Umilta, Tressoldi, & Marzi, 1988).  Different 
accounts are given for this effect (see e.g., Hommel, 1996; Proctor, Vu, & Nicoletti, 2003; 
Rubichi, Gherri, Nicoletti, & Umiltà, 2005). We will turn to this matter in the simulation 
results section.  Most interestingly, there was a significant three-way interaction between 
congruency, dimension and task instruction, F(1,73) = 7.1, p = .01, ηp

2  = .09. On the left–
right dimension, the congruency effect was significantly larger in the ski condition than in 
the snowboard condition, F(1,73) = 4.5, p = .04, ηp

2 = .06. The opposite result appeared 
on the front-back dimension; there was a significant congruency effect in the snowboard 
condition, t(36) = 2.4, p = .02, but not in the ski condition, t(37) = 1.0, p = .33. Although 
responses in the snowboard condition appeared to be faster in the snowboard condition than 
in the ski condition, there was no significant main effect of task, F(1,73) = 2.7, p = .11, ηp

2 = 
.03, because the between-subject differences were quite large. 

Conclusion
Concluding, significant spatial congruency effects were found both in the left–right 
dimension and in the forward–backward dimension. Although the instructions did not cause 
a complete switch of the congruency effects, they modulated the relative size of the effects. 
On the left–right dimension, the effect was significantly larger in the ski condition than in 
the snowboard condition. On the forward–backward dimension, the effect was larger in the 
snowboard condition than in the ski condition. These results suggest that participants in the 
ski condition may have encoded the movements predominantly as ‘left’ and ‘right’, whereas 
participants in the snowboard condition may have encoded the movements also as ‘forward’ 
and ‘backward’. Before discussing our results in more detail, we will first present the HiTEC 
model and explain how this model can account for our findings.

Simulation 6: Feature weighting
In the experiment, a two-dimensional Simon task was used, with critical stimuli being colored 
arrows pointing in one of four directions (backward, forward, left or right). Participants 
stood on a Wii balance board, oriented diagonally towards the screen displaying the stimuli. 
They were either instructed to imagine standing on a snowboard or on a pair of skis and to 
respond to the stimulus color by leaning towards either the left or right foot. We expected 
that participants in the snowboard condition would encode these movements as forward 
or backward, resulting in a Simon effect on this dimension. This was confirmed by the 
results. The left–right congruency effect was larger in the ski condition, whereas the forward–
backward congruency effect appeared only in the snowboard condition. The results can be 
readily accounted for by our connectionist model, HiTEC (see Chapter 2). Together, the 
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empirical study and the simulation using the connectionist model may contribute to a better 
understanding of the complex interaction between perception, cognition, and action.

HiTEC simulation
The current study involves colored arrow-shaped stimuli and responses that require a 
participant to move his/her balance to a certain direction (left/forward and right/backward). 
In order to be able to register these sensations, the HiTEC model is equipped with sensory 
maps for color, shape and proprioceptive direction. In addition, two movements are included 
in the motor map.

The task context includes instructions for responding to the stimulus color (“red” or 
“blue”), by moving either “left” vs. “right” or “forward” vs. “backward”, depending on the 
instruction group. We have included feature codes for these terms and have connected these 
codes to task codes appropriately. For each simulated subject, there are only two task rules 
to choose from, reflected by the two task codes in the task map. Figure 27 depicts the codes 
and connectivity for a simulated subject in the snowboard condition who was instructed to 
respond to red stimuli by moving forward, and to blue stimuli by moving backward, as can 
be seen by the connections between feature codes and task codes. 

As illustrated in Figure 27, sensory codes are connected to feature codes. Stimulus related 
feature codes are connected to task codes and task codes to response related feature codes 
allowing activation to propagate from sensory codes to stimulus related feature codes to task 

Task Level

Sensory System

Feature Level

Motor System

Shape

BwLeft Right

Visual

Fw

Motor Codes

M1 M2

Color

Red Blue

Fw/bw

Fw

Horizontal

Left Right

T1 T2

Color

Red Blue

Bw

Proprioceptive

Direction

L/F R/B

Figure 27. HiTEC model of the balance board task. Solid lines depict fixed connections, dashed lines are connections that are 
learned during action–effect learning. Depicted is the model in snowboard instruction condition, where the left leg is the front 
leg, and where a red stimulus requires a forward response (and a blue stimulus a backward response). Note that ‘forward’ and 
‘backward’ feature codes are abbreviated as ‘Fw’ and ‘Bw’ and that ‘L/F’ denotes the ambiguous left/forward sensory code and 

‘R/B’ the right/backward sensory code.
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codes to response related feature codes. Connections between feature codes and motor codes 
are explicitly learned. Importantly, in the current simulation, we have taken into account that 
the cognitive system has more experience with coding for ‘left’ and ‘right’ than is the case for 
‘forward’ and ‘backward’. In the model this is realized by setting the weights from sensory 
codes towards ‘forward’ and ‘backward’ slightly lower (0.3 rather than 0.4; see Appendix for 
all parameters). 

Note that the sensory codes for proprioceptive direction (i.e., proprioceptive map in 
Figure 27) are not considered ‘left’ vs. ‘right’ or ‘forward’ vs. ‘backward’ by themselves. 
They represent two ambiguous sensations that can activate feature codes in both feature 
dimensions. We shall see that task context (i.e., the connections between feature codes and 
task codes, in close correspondence with the task instruction) determines to what extent this 
sensation is perceived as ‘left’ vs. ‘right’ or ‘forward’ vs. ‘backward’. 

The HiTEC simulation of the current empirical study consists of 40 simulated subjects 
in the ski condition and 40 simulated subjects in the snowboard condition. For each simulated 
subject, first the instruction is internalized by setting its task code–feature code connections 
appropriately; then, during 20 training trials feature code–motor code connections are 
learned, and finally, 20 repetitions of the 10 experimental trials (i.e., 2 colors x 5 shapes) 
are performed. This corresponds to the design of the empirical study as discussed above. 
Each individual simulated subject has its own random noise resulting in subtle individual 
differences in processing and in variance in behavior (i.e., varying reaction times) as is the case 
with individual human participants. 

Simulation results
Table 3 shows the average number of cycles from stimulus onset until response selection for 
both instruction conditions and both congruency levels. As accuracy was 1.0 for all simulated 
subjects, it was not regarded in the analysis. The three-way interaction between congruency, 
dimension and task instruction found in the experiment was replicated in the simulation, 
as depicted in Figure 28. The left-right congruency effect was larger in the ski condition, 
whereas the forward-backward congruency effect was larger in the ski condition. We now 
explain how these results arose in the simulation by discussing the model dynamics in more 
detail.

Note that the HiTEC simulation only covers a part of the entire process of stimulus 
to response production in humans. The actual movements, for example, are included in the 
empirical reaction times (Table 2) but are not part of the simulation reaction times (Table 3). 
This results in larger relative effect sizes in the simulation results as compared to the empirical 
data.
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Figure 28. Comparison between human data (left) and simulation results (right). Lines depict the effect sizes for both instruction 
groups (ski and snowboard) and both congruency dimensions (left–right and forward–backward). 

 

Table 3. Average number of processing cycles from stimulus onset until stimulus selection in the HiTEC model, based on all 80 
simulated subjects.

Instruction Dimension Congruent Incongruent Effect

Ski Left-right 14.7 29.2 14.5

Forward-
backward

17.1 18.0 0.9

Snowboard Left-right 15.6 27.0 11.4

Forward-
backward

15.7 21.0 5.3
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Figure 29. HiTEC simulation graphs of one simulated subject in the ski condition (panels A and C) and one simulated subject 
in the snowboard condition (panels B and D) during learning trials. Panels A and B show code activations resulting from the 

perception of the ambiguous action effect (balance towards ‘left’/ ‘forward’). Due to differences in task code – feature code wiring 
there is difference in recurrency and therefore slight differences in code activation (‘left’ vs. ‘forward’) in the two instruction 

conditions. In the panels C and D, that show the weight strength of a selection of feature code – motor code connections during 
all learning trials, it is clear that during the learning trials this difference in code activation accumulates to a substantial difference 

in the learned action–effect weights.

Model dynamics during simulation
Although the stimuli and responses are equal for both instruction groups, the congruency 
effects differ. These differences between the groups are the result of several dynamics of the 
model, as we will now explain.

The task instruction is reflected by connections between task codes and feature codes. 
These connections are bidirectional. As a consequence, activating a feature code will activate 
each connected task code, which on its turn will activate or enhance all connected feature 
codes, including the feature code that activated the task code in the first place (i.e., recurrent 
connectivity). This means that the mere fact of being connected to a task code will further 
enhance the activation of a feature code. For the ski instruction group, this means that ‘left’ 
and ‘right’ feature codes receive this enhancement, for the snowboard group this is the case 
for the ‘forward’ and ‘backward’ feature codes. 
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Crucially, this selective enhancement is already at play during the learning trials. When 
a motor code is activated during a learning trial, and its effects are presented to the model, 
the mere connections between feature codes and task codes will enhance either the ‘Left’ and 
‘Right’ feature codes (in the ski condition) or the ‘Forward’ and ‘Backward’ feature codes (in 
the snowboard condition) and thereby determine the coding of the ambiguous sensation. 
When the action effect produced by ‘M1’ is presented (i.e., activating the ‘L/F’ proprioceptive 
code) this results in a slightly higher activation for the ‘Left’ feature code in the ski condition 
and a slightly higher activation for the ‘Forward’ feature code in the snowboard condition, as 
shown in Figure 29 panels A vs. B. When the action effect produced by ‘M2’ is presented (i.e., 
activating the ‘R/B’ proprioceptive code), this works in similar fashion. 

During the 20 learning trials, this minimal difference in feature code activation results 
in pronounced differences in the weights learned (see Figure 29, panel C vs. panel D) and 
prepares the model for the experimental trials. Note that in the ski condition, the weights 
between the ‘Left’/‘Right’ feature codes and motor codes are strong and the weights between 
the ‘Forward’/‘Backward’ feature codes and motor codes are rather moderate (Figure 29, 
panel C). This is due to both the connections between the task codes and the ‘Left’/‘Right’ 
feature codes and the stronger connections between sensory codes and the ‘Left’/ ‘Right’ 
feature codes (as compared to the connections between sensory codes and the ‘Forward’ 
/ ‘Backward’ feature codes). In the snowboard condition, the weights between the ‘Left’ / 
‘Right’ feature codes and the motor codes are roughly equally strong as the weights between 
the ‘Forward’ / ‘Backward’ feature codes and the motor codes (Figure 29, panel D). This is 
due to the ‘Forward’/ ‘Backward’ feature codes being connected to the task codes, resulting 
in top down enhancement of these feature codes. At the same time, the ‘Left’ / ‘Right’ feature 
codes receive more excitatory input due to their stronger connections with the sensory codes. 

During the subsequent experimental trials, the model is set to respond to stimulus color 
and automatically takes stimulus direction into account (stimulus–response compatibility, 
SRC). This is a result from the fact that the model codes for responses and stimuli using 
common spatial feature codes. In the ski condition, the feature codes ‘Left’ and ‘Right’ are 
used to encode the responses. When perceiving a horizontal arrow stimulus, however, ‘Left’ 
and ‘Right’ are also used to encode this stimulus. When a congruent stimulus is presented, 
the corresponding feature code is already activated to encode this stimulus and therefore 
speeds up the encoding of the response. When an incongruent stimulus is shown, the wrong 
feature code is activated which slows down the activation – by means of lateral inhibition – 
of the correct response feature. This results in longer reaction times for incongruent than for 
congruent stimuli.

Now, the overlap between feature codes of stimulus and response obviously depends 
on the spatial coding of the response. As a result of task instruction and subsequent action–
effect learning, this is different for the ski group and snowboard group. We now describe in 
detail the dynamics of the model during the experimental trials in both ski and snowboard 
conditions and for each type of stimulus (left-right congruent and incongruent, forward-
backward congruent and incongruent) as depicted in the panels of Figure 30. 
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Figure 30. HiTEC simulation graphs of one simulated subject in the ski condition (panels A and C) and one simulated subject 
in the snowboard condition (panels B and D) during learning trials. Panels A and B show code activations resulting from the 

perception of the ambiguous action effect (balance towards ‘left’/ ‘forward’). Due to differences in task code – feature code wiring 
there is difference in recurrency and therefore slight differences in code activation (‘left’ vs. ‘forward’) in the two instruction 

conditions. In the panels C and D, that show the weight strength of a selection of feature code – motor code connections during 
all learning trials, it is clear that during the learning trials this difference in code activation accumulates to a substantial difference 

in the learned action–effect weights.
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In panel A, a red left arrow stimulus is presented to the model in the ski condition, 
resulting in an initial increase of activation of ‘Red’ and ‘Left’ feature codes. In line with the 
ski task set, activation propagates from ‘Red’ to a task code and to the ‘Left’ feature code. This 
overlap results in a fast increase of activation of the ‘Left’ feature code. In the Ski condition 
the ‘Left’ feature code is strongly connected to ‘M1’, resulting in fast activation propagation 
towards motor code ‘M1’ and fast action selection. This explains the relatively shorter reaction 
times for the left-right congruent trials in the ski condition.

In panel B, a red left arrow stimulus is presented to the model in the snowboard 
condition, resulting in an initial increase of activation of ‘Red’ and ‘Left’ feature codes. In 
line with the snowboard task set, activation propagates from ‘Red’ to a task code and to the 
‘Forward’ feature code; hence the subsequent increase in activation of the ‘Forward’ feature 
code. In the snowboard condition, ‘Left’, ‘Right’ and ‘Forward’ and ‘Backward’ feature 
codes are strongly connected to the motor codes (as depicted in Figure 29, panel B). Thus, 
both ‘Left’ and ‘Forward’ now propagate activation toward motor code ‘M1’ resulting in fast 
action selection. This explains the relatively shorter reaction times for the left-right congruent 
stimulus trials in the snowboard condition.

In panel C, a red right arrow is presented to the model in the ski condition, resulting 
in initial increase of activation of ‘Red’ and ‘Right’ feature codes. In line with the ski task 
set, activation propagates from ‘Red’ to a task code and to the ‘Left’ feature code; hence the 
subsequent increase in activation of the ‘Left’ feature code. Now, both ‘Left’ and ‘Right’ 
feature codes are active and highly competing. They are both strongly connected to different 
motor codes that both receive activation and also compete with each other. This competition 
takes time and lengthens the trial.

 In panel D, a red right arrow is presented to the model in the snowboard condition, 
resulting in initial increase of activation of ‘Red’ and ‘Right’ feature codes. In line with the 
snowboard task set, activation propagates from ‘Red’ to a task code and to the ‘Forward’ 
feature code, hence the subsequent increase in activation of the ‘Forward’ feature code. Now, 
the ‘Forward’ feature code is strongly connected to the ‘M1’ motor code, the motor code to 
be selected. The ‘Right’ feature code, however, is (even more) strongly connected to the ‘M2’ 
motor code. As both ‘Forward’ and ‘Right’ feature codes are highly activated and propagate 
activation to both motor codes, it takes longer for the system to settle this competition. This 
explains the relatively longer reaction times for the left-right incongruent stimulus trials in 
the snowboard condition.

In panel E, a red forward arrow is presented to the model in the ski condition, resulting 
in an initial increase of activation of ‘Red’ and ‘Forward’ feature codes. In line with the ski 
task set, activation propagates from ‘Red’ to a task code and to the ‘Left’ feature code; hence 
the subsequent increase in activation of the ‘Left’ feature code. Now, in the ski condition 
the ‘Left’ feature code is strongly connected to the ‘M1’ motor code, the motor code to be 
selected. The ‘Forward’ feature code, however, is very weakly connected to the ‘M1’ motor 
code. Thus the activation mainly propagates from the ‘Left’ feature code towards the ‘M1’ 
motor code resulting in a speedy selection of the ‘M1’ motor code, whereas the activation of 
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the ‘Forward’ feature code has minimal influence. This explains the unaffected reaction times 
for the forward-backward congruent stimulus trials in the snowboard condition. 

In panel F, a red forward arrow is presented to the model in the snowboard condition, 
resulting in an initial increase of activation of ‘Red’ and ‘Forward’ feature codes. In line with 
the snowboard task set, activation propagates from ‘Red’ to a task code and to the ‘Forward’ 
feature code. This overlap results in fast increase of ‘Forward’ feature code activation. In the 
snowboard condition the ‘Forward’ feature code is strongly connected to ‘M1’, resulting in 
fast activation propagation towards ‘M1’ and fast action selection. This explains the relatively 
shorter reaction times for the forward-backward congruent trials in the snowboard condition.

In panel G, a red backward arrow is presented to the model in the ski condition, resulting 
in an initial increase of activation of ‘Red’ and ‘Backward’ feature codes. In line with the ski 
task set, activation propagates from ‘Red’ to a task code and to the ‘Left’ feature code, hence 
the subsequent increase in activation of the ‘Left’ feature code. Now, in the ski condition the 
‘Left’ feature code is strongly connected to the ‘M1’ motor code, the motor code to be selected. 
The ‘Backward’ feature code is connected to the ‘M2’ motor code, introducing competition. 
However, in the ski condition this latter connection is very weak. Thus the activation mainly 
propagates from the ‘Left’ feature code towards the ‘M1’ motor code resulting in a speedy 
selection of the ‘M1’ motor code, whereas the activation of the ‘Backward’ feature code has 
minimal influence. This explains the unaffected reaction times for the forward-backward 
incongruent stimulus trials in the snowboard condition. 

In panel H, a red backward arrow is presented to the model in the snowboard condition, 
resulting in an initial increase of activation of ‘Red’ and ‘Backward’ feature codes. In line with 
the snowboard task set, activation propagates from ‘Red’ to a task code and to the ‘Forward’ 
feature code. Now, both ‘Forward’ and ‘Backward’ feature codes are active and highly 
competing. They are both strongly connected to different motor codes that also compete. 
This competition takes time and lengthens the trial, explaining the relatively longer reaction 
times for the forward-backward incongruent stimulus trials in the snowboard condition.

Finally, the data from the empirical study and the results from the simulation both 
clearly show a stronger congruency effect for the left–right dimension than for the forward–
backward dimension (see Figure 28, depicted effect sizes are listed in Tables 2 and 3). As 
mentioned in Section 3, the asymmetry in the empirical data is in line with the left–right 
prevalence effect found in other studies (e.g., Nicoletti & Umiltà, 1984; 1985; Nicoletti et 
al., 1988). In the current study, we hypothesize that the use of left and right feet — for both 
left–right and forward–backward responses — may have yielded this prevalence effect (cf. 
Hommel, 1996). In more general terms, it could be argued (Rubichi et al., 2005) that the 
right–left discrimination is overlearned and produces faster processing than discriminations 
on other dimensions. In the model, the left–right dimension was enhanced by strengthening 
the connections between the sensory codes and ‘Left’ and ‘Right’ feature codes as compared 
to ‘Forward’ and ‘Backward’ feature codes. This resulted in a left–right prevalence effect, 
similar to the effect found in the empirical data.
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In sum, the stronger connections between sensory codes and the ‘Left’/’Right’ 
feature codes (as compared to the weaker connections between sensory codes and the 
‘Forward’/‘Backward’ feature codes) together with the differences in mere connectivity 
between feature codes and task codes — which results from different task instructions — 
yield a pattern of left-right and forward-backward SRC effects that is comparable to the 
findings from the empirical study.

Discussion
In line with the general ‘intentional weighting’ principle (Memelink & Hommel, 2013), 
HiTEC explicitly addresses how task instructions are implemented in terms of representations 
and connections, and how they affect subsequent processing. The model is initially as 
task ignorant as humans are, until it ‘receives the task instruction’. A task instruction is 
implemented by connecting feature codes and task codes following the actual task rules in 
terms of stimulus features and response (i.e., action effect) features (illustrated in Figure 
31a). Here, we hypothesize that feature codes can be accessed by means of verbal labels and 
that receiving a task instruction can activate these feature codes and connect them to generic 
task codes (i.e., some sort of internal simulation of the translation from stimulus features to 
response features; see Chapter 2 for a more elaborate discussion of task internalization). This 
allows the task instruction to be readily internalized as connections from feature codes to task 
codes to feature codes. 
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task codes to feature codes representing stimulus or response features (b) feature codes representing responses in the task set may 
also relate to sensory codes (c) multiple sensory codes can relate to the same feature code (d) the same sensory code can relate to 

multiple feature codes

(a) (b)

(c) (d)



9292

Chapter 5

An example task instruction, taken from Simulation 5, “when you hear a high tone, press 
the left key” would then be implemented as connections from ‘High’ to ‘T1’ and from ‘T1’ 
to ‘Left’ and ‘Key’. These connections subsequently enable the model to produce stimulus–
response translations in accordance with task demands. Note that apart from this instruction 
based wiring we do not assume any other type of task-specific addition to the model (i.e., no 
additional ‘task inputs’ or biases in code dynamics). 

These feature code–task code connections have two main consequences for subsequent 
processing: (1) they propagate activation from stimulus features towards response features 
that in turn excite motor codes and (2) they top down modulate lower level processing due 
to their recurrent nature. Arguably, this essentially constitutes ‘attention’: sensory codes that 
are connected to feature codes are enhanced, sensory codes that are not connected (i.e., 
stimulated by ‘the other’ elements in the scene) are not enhanced. Moreover relative higher 
activation of feature codes also results in relative stronger enhancement of sensory codes. This 
enhancement of lower level representations is crucial both in stimulus–response translation 
(i.e., responding to a stimulus is an integrated process) and during action–effect learning 
where it focuses attention on the relevant action effect features (see Chapter 3).

Moreover, as stimuli and responses are both defined in terms of common feature codes, 
it could happen that a response feature code included in the task set may be activated by 
a sensory code due to perceiving a (albeit task-irrelevant) stimulus feature (illustrated in 
Figure 31b). In that case the feature code would receive both exogenous excitation directly 
originating from a sensory code due to stimulus perception and endogenous excitation 
originating from response planning. Note that the latter form of excitation indirectly also 
originates from the stimulus but is mediated by the task set. As a result, response planning 
may be facilitated or hampered due to interaction between these pathways, yielding stimulus-
response compatibility (SRC) effects (see Chapter 4).

Crucially, these effects depend on both stimulus and response coding. In HiTEC, 
responses are coded in terms of their perceptual effects. During the action-effect learning 
phase, associations are strengthened between motor codes and feature codes. The strengths 
of these associations depend on the co-activation of these motor codes and feature codes, 
which depends on both external stimulation (not explicitly modeled in current simulations, 
all sensory codes receive the same external input when excited) and top down modulation 
(i.e., connectivity between sensory codes, feature codes and task codes). Thus, as stated above, 
the task set not only determines actual stimulus-response translation (both controlled and 
automatic), it also influences how responses are coded (during action-effect learning) and 
thereby how (controlled and automatic) subsequent stimulus-response translation is carried 
out. 

This influence of task instruction on stimulus-response translation is explicitly 
demonstrated in Simulation 5, where the instruction based connections automatically result 
in specific recurrency that selectively enhances either the ‘key’ or ‘light’ feature codes that 
in turn selectively enhance either the haptic location codes or the visual location codes 
when perceiving action effects. This leads to differences in action–effect weight learning and 
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subsequently in how a response is encoded. These differences in response coding, in turn, 
influence the degree in which the feature codes representing stimuli and responses overlap, 
giving rise to different SRC effect directions across conditions.

Likewise, the empirical study presented in this chapter uses a (two-dimensional) Simon 
task with two groups of participants who only differ in the instruction (i.e., ski vs. snowboard) 
they received. Here, the presence and size of the Simon effect is also strongly dependent on 
the instruction: the left–right congruency effect is larger in the ski condition than in the 
snowboard condition, while the forward–backward effect only appears in the snowboard 
condition. Obviously, then, the task instruction moderates the internal translation process 
from stimulus to response. 

Simulation 6, using the HiTEC model, shows how this result may emerge: task 
instruction is implemented as connections between feature codes and task codes, closely 
following the verbal instructions. This mere connectivity automatically results in specific 
recurrency that selectively enhances either the ‘Left’ vs. ‘Right’ or the ‘Forward’ vs. ‘Backward’ 
feature codes when perceiving (ambiguous) action effects. This leads to differences in action–
effect weight learning and subsequently in how a response is encoded. These differences in 
response coding, in turn, influence the degree in which the feature codes representing stimuli 
and responses overlap, giving rise to different SRC effects across conditions.

Note that both the Hommel (1993) study and the empirical study presented in this thesis 
demonstrate influences of the task instruction on the reported SRC effects. These outcomes 
can be taken as evidence for the intentional weighting principle. However, the simulations 
of these studies show explicitly that this principle applies on multiple levels. In Simulation 
5, different aspects of the action effect (i.e., light vs. key) contributed selectively to the same 
feature dimension (i.e., left–right; illustrated in Figure 31c) depending on the task instruction. 
Describing that task in terms of ”key pressing” focused the (spatial) attention on the keys and 
increased the contribution of key location to the left–right dimension, whereas describing it 
in terms of ”light switching” focused attention on the lights and increased the contribution 
of light location to the left–right dimension. Subsequently, the stimuli were encoded using 
this same left–right dimension. This resulted in either facilitation or interference yielding the 
observed stimulus–response compatibility effect. In Simulation 6, in contrast, a single sensory 
dimension (i.e., ambiguous proprioceptive balance) was assumed to map onto two distinct 
feature dimensions (i.e., left–right and forward–backward; illustrated in Figure 31d). Here, 
task instruction modulated the relative weighting of these two feature dimensions in the coding 
of the response. Subsequently, left vs. right directed stimuli were encoded using the left–
right feature dimension and forward vs. backward directed stimuli were encoded using the 
forward–backward feature dimension. The relative weighting of these feature dimensions — 
modulated by task instruction — determined the relative sizes of the left–right SRC effects 
and forward–backward SRC effects, as observed in both the empirical data and simulation 
results. To conclude, the results of the empirical study presented in this thesis and the 
dynamics demonstrated in Simulation 6 together suggest that intentional weighting is not 
limited to weighting sensory dimensions, as demonstrated by Hommel (1993) and simulated 
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in Simulation 5, but also extends to weighting abstract feature dimensions.
Summarizing, processing a task instruction is assumed to activate feature codes which 

are grounded in sensorimotor experience. Implementing a – in principle abstract – task set 
automatically wires these feature codes into a stimulus–to–response processing pathway using 
task codes. The fact that these feature codes also represent (prior) sensorimotor experience 
(i.e., by virtue of their connections to sensory codes) allows the task instruction to modulate 
subsequent sensorimotor processing (i.e., by top–down enhancing feature codes and therefore 
sensory codes), even on the automatic level of stimulus–response compatibility.

In a related study, Memelink and Hommel (2005) assessed the effects of both dimension 
priming and task instruction. Participants were presented stimuli that varied on both horizontal 
and vertical dimensions and performed actions that were also defined on both horizontal and 
vertical dimension. Prior to this task, participants performed an unrelated task for which only 
one of the spatial dimensions was relevant. In addition, instructions were varied by describing 
the responses in spatial terms or in terms of non-spatial features or response keys. The results 
showed that priming one of the dimensions increased the Simon effect on that dimension. 
Instructions, however, did not have any effect. These findings suggest that drawing attention 
to a specific dimension results in a stronger contribution of those features in response coding, 
which is fully compatible with HiTEC. At the same time, these findings show that mere 
task instruction does not affect action coding. Presumably, participants tend to recode the 
variations in these dimensions into a single intuitive dimension; hence, the influence of task 
instruction will then disappear. In the empirical study presented in this chapter, we have 
attempted to prevent this recoding by (1) use rather ambiguous balance responses and (2) 
reconfirming the response dimensions (“left”-“right” or “forward”-“backward” depending on 
the condition) in the recurring task instructions. 

As in Hommel (1993) and the empirical study presented in this chapter, Yamaguchi 
and Proctor (2011) also found that the SRC effect depends on the attentional demands of 
the task. In their study participants controlled a simulated aircraft. A response yielded action 
effects on multiple dimensions: movement of the aircraft, movement of the horizon and the 
physical joystick movement. In this study, SRC effects depended on whether the (visual) 
emphasis was on the orientation of the aircraft (i.e., aircraft tilt, fixed horizon) or of the 
horizon (i.e., fixed aircraft, horizon tilt), which resonates well with our findings. In similar 
vein, Santiago, Ouellet, Román, and Valenzuela (2012) showed that conceptual congruency 
effects only appeared when participants attended to the relevant conceptual dimension, either 
through task instruction or by means of exogenous attentional cueing.

Note that these studies are based on the main assumption that in experimental settings 
human participants generally only respond to particular stimuli with particular responses 
because they are instructed to do so. Indeed, it has been shown that the stimulus-induced 
response activation that underlies SRC effects can only be obtained after the participant 
has implemented the required task set (Valle-Inclán & Redondo, 1998). In this study, the 
stimulus-response mappings of the task (i.e., the task instruction) varied randomly from trial 
to trial. In some trials, the mapping instruction was presented followed by the target stimulus. 
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In other trials, the stimulus preceded the mapping instruction. Their results showed that the 
Simon effect was only observed in trials where the mapping instruction was presented before 
the stimulus. This suggests the task set must be implemented before SRC can occur.

Thus, understanding the task demands somehow configures the cognitive system to 
modulate both stimulus perception and response planning. This involves attending to task-
relevant stimulus features (e.g., a high or low auditory pitch) and preparing a small selection 
of motor schemas (e.g., pressing keys). In more general terms this process of configuring the 
cognitive system is what we consider the main contribution of cognitive control; it prepares 
the system to subsequently act according to instruction—it in a sense turns the system into 
a ‘prepared reflex’ (Hommel, 2000a; see also Bargh, 1989). Note that instruction wiring by 
itself ensures attention for the right dimension(s), for example key locations vs. light locations 
in Simulation 5. Indeed, as cognitive control is implemented as mere connectivity resulting 
from task instructions, there is – at least with respect to the simulated experiments – no need 
additional online control of the inner mechanisms.

Addressing the apparent crucial role of task goals in SRC, Ansorge and Wühr (2004) 
formulated the response-discrimination hypothesis that states that response representations 
are not automatically formed, but rather top-down controlled. Only spatial features that 
discriminate between alternative responses are represented and thus give rise to a Simon 
effect. This resonates well with the conclusions in a general review by Proctor and Vu (2006) 
that the Simon effect is not resulting from an automatic activation of a corresponding 
response by means of a hard-wired (e.g., Kornblum et al., 1990) or over-learned (e.g., Umiltà 
& Zorzi, 1997) route; rather the task defines S-R associations that mediate this responding. 
HiTEC is clearly consistent with this response-discrimination hypothesis and provides a 
rationale, in terms of internalization of an explicit task set using codes that are grounded in 
sensorimotor experience, for how and why these response representations are formed and top 
down modulated.

In general, existing models of SRC do not address internalizing task instructions or 
context explicitly. Stimulus codes and response codes are connected using two routes (e.g., 
Kornblum et al., 1990; Zorzi & Umiltà, 1995; De Jong, et al., 1994). A direct route connects 
the spatial stimulus codes to the corresponding spatial response codes, which is assumed to 
reflect an automatic process. The task instruction (e.g., “when you hear a high tone, press the 
left key”) is implemented as a connection from the non-spatial stimulus code (e.g., ‘high 
tone’) to a spatial response code (e.g., ‘left key’), following the task instruction. This is 
assumed to reflect a controlled process. Now, when a compatible stimulus is presented (e.g., 
a high tone presented on the left), both the direct connections and the controlled process 
connections contribute to a speedy activation of the correct response code. Conversely, when 
an incompatible stimulus is presented (e.g., a high tone presented on the right), the direct 
route activates the incorrect response. The controlled route, however, activates the response 
determined by the task instruction, which eventually wins the competition. As a result, 
processing incompatible stimuli results in longer reaction times than processing compatible 
stimuli. In sum, the stimulus–response compatibility effect arises from the interplay between 
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the direct route, reflecting an automatic comparison between spatial stimulus and response 
codes, and the controlled route, reflecting the task instructions (see Chapter 4 for a detailed 
analysis of automaticity in these dual route models). Crucially, these models do not address 
how the direct route also depends on the task context, a result that is evidently demonstrated 
in the empirical study in this chapter as well as in the related work described above.

Moreover, existing dual process models have been built to simulate particular tasks, so 
that task instructions were hard-coded into the model. Although HiTEC also contains codes 
that are specific to the task to be simulated, the actual task instruction and practice trials 
prepare the model for the experimental trials. This allows a HiTEC model instance to take task 
instruction into account and is therefore able to flexibly interpret the same motor action as 
either ‘left’ or ‘right’ depending on this task instruction, and thereby account for the inversion 
of the Simon effect (example taken from Simulation 5). A crucial difference between dual 
process models and HiTEC, in this respect, is that HiTEC contains recurrent connections, 
allowing task codes to modulate both stimulus and response coding; whereas dual process 
models work strictly feedforward, requiring the modeler to fully design the resulting process 
in advance. This does not allow for ‘run-time’ differences between instruction conditions.

Interestingly, studies in neuroscience have demonstrated that the same neural circuitry 
is used for decision making in different tasks (e.g., Duncan & Owen, 2000). Presumably, 
by hearing and internalizing the task instruction, this circuitry can be tuned to the task at 
hand (i.e., implementing a task set, Monsell, 1996). In a similar vein, in HiTEC, the same 
perception–action model with the same generic structure, representations and processing 
principles enables the simulation of multiple experimental tasks when tuned by different task 
instructions. 

The task modulated interaction between perception and action may also be related to 
psychologically meaningful interactions between levels: (1) activation of lower level codes 
is modulated by higher levels through their connections, effectively realizing what could 
be called ‘attention’ (i.e., task codes that by their connections enhance feature codes that 
enhance sensory codes; see particularly Simulation 5); and (2) competition at the sensory level 
supports competition at the feature level (i.e., their relative activation levels are continuously 
propagated) and at the task level; and vice-versa: competition between task-codes influences 
the selective enhancement of lower level codes (i.e., feature codes and thereby sensory codes) 
and thereby biasing their lateral competition.

HiTEC explicitly models the influence of task context on stimulus-to-response 
translation. It can be argued that different task instructions direct the model’s ‘attention’ 
to different stimulus features (or response features). Cohen et al. (1990) have presented an 
influential PDP model of attentional control for the Stroop task. In their model, as in the 
aforementioned dual process models, activation propagates from stimulus codes towards 
response codes. In addition, this model contains two task codes. Depending on the task 
at hand, one of the task codes is also activated and biases processing, thus realizing task 
modulated processing from perception to action, as in HiTEC. In fact, HiTEC can be seen 
as an extension of the approach of Cohen et al. in that it considers how task representations 
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modulate stimulus-response translation in a broader range of tasks and stimulus and response 
sets. In particular, the intentional-weighting principle built into TEC and HiTEC is perfectly 
consistent with the suggestion of Cohen et al. to explain task-specific modulation through 
the priming of task-relevant representations and pathways. At the same time, HiTEC goes 
beyond the Cohen et al. model by explaining where the respective representations are coming 
from and by accounting for a broader range of phenomena.

In an attempt to account for the role of task context Yamaguchi and Proctor (2012) 
propose a multidimensional vector model of SRC. This mathematical model addresses the 
issue of task context in the Simon task by means of an S-R vector space. In this model, 
stimulus features and response features are treated in similar fashion, which is in line with 
the HiTEC model. HiTEC, however, stresses biological plausibility by means of codes with 
activation dynamics that approximate biological neuron population, recurrent connections 
and within-layer lateral inhibition.

In the Ward model (Ward, 1999; see Chapter 2 for a more detailed comparison of 
is architecture with HiTEC), that also contains recurrent connections, units are selectively 
activated based on the task at hand. For example activation of ‘red’ code biases interactive 
processing such that the model enhances representations of ‘red’ stimuli. In contrast to 
HiTEC, however, the Ward model does not provide any means to internalize a number of 
translation ‘rules’ that effectively make up a forced choice paradigm. Also, in other models 
such as SLAM (Phaf et al., 1990) and the attentional response model by Cohen and Shoup 
(1997) – see Chapter 4 for a more elaborate comparison with HiTEC –, the task is hardwired 
as connections between stimulus feature codes and – through intermediate codes – response 
codes. Despite their recurrent connections, in contrast to the dual process models mentioned 
above, these models do not provide the means to internalize a task or explain SRC beyond 
the assumption that ‘special links’ exist between some stimulus - responses combinations and 
not between others (see Chapter 4 for a more detailed discussion). 

Summarizing, existing models of perception and action typically do not allow for a 
straightforward internalization of a forced choice response task into a task set. Moreover, 
empirical evidence suggests and our simulations demonstrate that such a task set has critical 
influences on SRC effects. As most models of SRC do not explicitly address the task context 
they cannot account for these influences and thereby lack the ability to provide a rationale for 
the SRC effects to attempt to model. 

To conclude, adaptive behavior is defined within a specific task context. Empirical 
evidence suggests and our simulations demonstrate that control is exerted by having the 
task instruction implemented as a task set that results both in strong task-driven translation 
pathways — so that the stimulus–response translation is controlled in distal terms — and in 
specific code overlap — so that automaticity effectively gets to fill in the details. 
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Chapter 6
General Discussion

This chapter is an integration and extension of major parts of the following articles:

Haazebroek, P., Raffone, A., & Hommel, B. HiTEC: A Connectionist Model of the 
Interaction between Perception and Action Planning. Manuscript submitted for 
publication.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2013). How task goals mediate the inter-
play between perception and action. Frontiers in Psychology, 4:247.
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In contrast to traditional views of human information processing (e.g., Donders, 1868; 
Sternberg, 1969), abundant empirical evidence (e.g., Elsner & Hommel, 2001; Müsseler & 
Hommel, 1997; Simon & Rudell, 1967; Stroop, 1935; Stoet & Hommel, 2002) suggests 
that perception and action planning do not represent separable stages of a unidirectional 
processing sequence, but rather emerging properties of highly interactive processes. To 
capture these interactive characteristics of the human cognitive system, we have developed 
a connectionist model of the interaction between perception and action planning: HiTEC, 
based on the Theory of Event Coding (TEC, Hommel et al., 2001). The model is characterized 
by representations at multiple levels and by shared representations and processes. HiTEC 
extends and further specifies TEC’s principles to account for a series of key experimental 
findings in a unitary theoretical framework and at a level of specificity that allows for 
computer simulation. 

Research questions revisited
In order to gage the merits of the HiTEC model, we have addressed a number of specific 
research questions in the previous chapters. 

How do neuron-like representations realize stimulus-response translation?
In HiTEC, the connectionist (Rumelhart et al., 1986) model presented in Chapter 2, 
neuron-like representations are distributed over multiple levels and processing involves both 
feedforward and feedback interaction between lower and higher level representations, in line 
with global cortical layering and connectivity (cf., Braitenberg & Schütz, 1991; Prinz, 2006). 
Through this bi-directional interaction, lower level representations code for sensory features 
(in line with DeYou & Van Essen, 1988) or motor responses, and higher levels modulate and 
coordinate their interaction in accord with the task context implemented as task set (in line 
with Duncan & Owen, 2000). In addition, in the spirit of neural circuitries that appear to 
code for both perception and action (e.g., mirror neurons in the premotor cortex, Keysers & 
Perrett, 2004; Rizzolati & Craighero, 2004), HiTEC contains common code representations 
(Prinz, 1990) that are used both for stimulus perception and response planning. These codes 
ensure that stimulus-response translation may also take features into account that are only 
implicitly specified in the task set.

Stimulus-response translation is initiated by presenting a stimulus. In HiTEC this is 
done by feeding external input to sensory codes. Responses are considered to execute when 
a motor code reaches the activation threshold. The connection between perception and 
action is realized by representations at multiple levels and interconnected by feedforward and 
feedback connections. The result is an interactive processing network that translates stimuli 
in responses by gradually propagating activation trough units in the model. Rather than 
a sequential stepwise process from sensory codes through intermediate representations to 
response codes, all representations at all levels cooperate and compete and together converge 
to a response outcome (in line with Duncan et al, 1997). Crucially, representations at higher 
levels modulate representations at lower levels. This allows both for direct interaction between 
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perception and action representations and their modulation by the task context.  

How do situation-specific meanings of motor actions emerge? 
In order to control its actions in response to demands in the environment the cognitive 
system needs to know what actions are possible and what these actions ‘mean’. Various 
empirical findings suggest that for a cognitive system this ‘meaning’ is not a fixed fact; it 
rather depends on the (perceptual) effects within the task context. Consequently, in order 
to select and execute an appropriate response to a stimulus a plausible cognitive model must 
first learn (i.e., from experience) what the effects of its motor actions are and how to interpret 
these effects in the task context. 

Action control in HiTEC, discussed in Chapter 3, is based on the ideomotor principle 
(James, 1890; Lotze, 1852) which stresses both the acquisition of action-effect associations 
and the use of these associations in action planning (Hommel, 2009). Simulation 1 addressed 
how novel action-contingent perceivable effects are (spontaneously) associated to the motor 
actions that yield these effects (Elsner & Hommel, 2001). In HiTEC simulations, this is 
done during a phase of action-effect learning. Simulation 2 of a study by (Kunde et al., 2004) 
demonstrated how the (internal) consistency of these effects influences the representations 
of these effects. As action-effect learning depends on the activation of both motor codes and 
feature codes, the consistency of feature code activation has consequences for the resulting 
association strengths. And because these associations have a crucial role in planning actions in 
response to stimuli, subsequent stimulus-response translation is influenced by the strengths 
of these associations. As a result, responding to stimuli takes the contextual meaning (e.g., 
consistency among action effect features) of motor actions into account as it is represented in 
the acquired action-effect associations. Moreover, the strengths of these associations depend 
on the co-activation of motor codes and feature codes during learning. This co-activation 
not only depends on external stimulation but also on top down modulation (i.e., due to 
connectivity between sensory codes, feature codes and task codes). As a result, action-effect 
learning, and thus the ‘meaning’ of action, depends on the task set. This is the case in all 
simulations, including those in Chapter 3, but explicitly modeled in Simulations 5 (of 
Hommel, 1993) and 6 in Chapter 5. In these simulations, the task instruction was explicitly 
manipulated resulting in differences in task sets, and, therefore, differences in top down 
modulation of feature and sensory codes, also during action-effect learning. This resulted in 
different representations of the same motor actions and consequently in the emergence of 
situation-specific meaning of action. 

How and why do parts of stimulus–response translation occur automatically?
Some parts of the translation from stimulus to response are considered to occur automatically 
as demonstrated by stimulus–response compatibility (SRC) effects (e.g., Hommel, 1993; 
MacLoad, 1991; Simon & Rudell, 1976). How and why these effects may occur is addressed 
in Chapter 4. As demonstrated in the simulations in this chapter, HiTEC is able to account for 
these effects. In fact, SRC is an inevitable consequence of HiTEC’s structures and processing 
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characteristics. First, in order to internalize task instructions into a task set, both stimuli and 
responses need to be represented on a distal level and associated through task codes. Secondly, 
actions are represented in terms of perceptual effects and therefore use the same distal codes 
as stimuli and, consequently, are grounded in the same perceptual world (Prinz, 1992). This 
means that code overlap is possible and – to the extent that stimuli and responses overlap in 
the external environment, such as spatial correspondence — very probable. Finally, HiTEC 
assumes integrated processing (cf. Duncan et al., 1997) which means that stimulus coding 
and response coding also overlap in time. Thus, the task set results in a pathway mediated 
by task codes and defined in terms of distal features, and in probable code overlap of these 
same distal features; as stimulus processing and response planning occur simultaneously, 
the cognitive system inevitably needs to combine task-driven and automatic feature code 
activation. As a result, code overlap between stimulus and response features results in either 
facilitation or interference effects.

How does the task context modulate stimulus-response translation? 
How the task context may modulate stimulus-response translation is explicitly addressed 
in Chapter 5. In HiTEC, processing a task instruction is assumed to activate feature codes 
which are grounded in sensorimotor experience (Hommel et al., 2001). Implementing a – in 
principle abstract – task set wires these feature codes into a stimulus–to–response processing 
pathway using task codes. The fact that these feature codes also represent (prior) sensorimotor 
experience (i.e., by virtue of their connections to sensory codes) allows the task instruction 
to modulate subsequent sensorimotor processing (i.e., by top–down enhancing feature codes 
and therefore sensory codes), even on the automatic level of stimulus–response compatibility. 
Note that we constrain task internalization to setting connections between grounded feature 
codes and generic task codes only and do not allow additional codes or inputs to influence 
stimulus-response translation. The first simulation in this chapter, Simulation 5 of a study by 
(Hommel, 1993) demonstrated how the task context may modulate action control by means 
of (spatial) attention within the environment; this is realized by virtue of enhancement of 
either visual or haptic sensory dimensions projecting to a shared feature dimension; in similar 
vein, the empirical study presented in this chapter and Simulation 6 together showed how 
cognitive labeling of an ambiguous action may also influence response coding by modulating 
the enhancement of one or the other feature dimension. Together these simulations suggest 
that a task set in terms of connections is sufficient to top down modulate sensorimotor 
processing and that the theoretical notion of intentional weighting (Memelink & Hommel, 
2013) may indeed operate on multiple levels of representation.
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Key characteristics of HiTEC
The HiTEC connectionist model (described in more detail in Chapter 2) features a number 
of key characteristics. We now discuss each of these characteristics in more detail.

Multi-level architecture
In line with neuroscientific findings (e.g., DeYou & Van Essen, 1988) HiTEC is architected 
as a multi-level model, with lower level representations relating to sensory input and motor 
output and higher levels referring to generic cognitive control (cf. Duncan & Owen, 2000). 
Presumably the brain is architected using many more levels of representation, but HiTEC 
simulations of various empirical findings suggest that it is necessary to dissociate a minimum 
of three levels8 of representation. These dissociations are illustrated in Figure 32. Panel A of 
the figure depicts the dissociation between feature codes and sensory codes. Although many 
feature codes in the HiTEC model instances presented in this thesis seem to merely duplicate 
their sensory code counterparts (e.g., ‘high’ pitch feature code and ‘high’ pitch sensory code 
in Simulation 1, illustrated in Figure 8),  in some cases multiple sensory codes may project 
on shared feature codes, such as in Simulation 2, illustrated in Figure 12. Here multiple 
sensory dimensions, i.e., auditory and haptic intensities, are assumed to relate to a shared 
feature dimension. Indeed, sensory codes register proximal sensation, whereas distal feature 
codes represent cognitive interpretation of a (possibly multi-modal and even multi-sense) 
sensation—following the distinction introduced and elaborated by Heider (1926/1959, 
1930/1959; see Hommel, 2009). Activating sensory codes means actually getting external 
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Figure 32. Levels of representation in HiTEC: (a) multiple sensory codes may relate to the same feature code, (b) feature codes 
relate to both sensory codes and motor codes, (c) sensory codes may relate to multiple feature codes, (d) motor codes may relate to 

multiple feature codes, and, (e) task codes selectively relate to feature codes

8 Note that although we consider sensory codes and motor codes to be distinct systems we regard them similar 
in their level of representation. Hence task level, feature level and sensory / motor levels constitute three different 
levels of representation.



104104

Chapter 6

input from the senses, activating feature codes could reflect imagination (e.g., when following 
a task instruction), expectation and/or planning. Sensory codes are labeled for the reader’s 
convenience but they reflect sensory input that is generally too specific — i.e., precise color 
hue, auditory pitch or exact haptic location — to retain in memory or to imagine, feature 
codes are considered(grounded) cognitive features and are available for planning, imagination 
et cetera.

Moreover, feature codes are assumed to relate to sensory codes and motor codes due 
to ideomotor learning. This relation may depend on various factors (e.g., consistency in 
sensory stimulation; top down modulation by the task set) as demonstrated in for example 
Simulation 2 and Simulation 5. This suggests dissociation between feature codes and motor 
codes as depicted in Figure 32b (Hommel et al., 2001). Also, the same sensory code may 
relate to multiple feature codes, such as in Simulation 6, illustrated in Figure 27. Here an 
ambiguous sensory sensation were found to relate to both left/right and forward/backward 
feature dimensions as suggested by the empirical study and demonstrated in the simulation. 
In similar vein, the same motor code may relate to multiple feature codes, as was the case in 
most simulations (for instance Simulation 1; here, motor codes were associated to both left-
right location and high/low pitch features). Finally, the task set selectively relates stimulus 
features to response features resulting in top down modulation of stimulus perception and 
response planning, and their interaction. This is illustrated in Figure 32e. Crucially, this 
task set is implemented in terms of distal feature codes, presumably by means of verbal 
labels (Hommel & Elsner, 2009) rather than in sensory or motor codes.  Indeed, the task 
instruction is likely to operate in terms of cognitive interpretations of sensory stimulation. 
For instance, the instruction “when you hear a high tone, press the left key” cannot relate to a 
specific sensory code, as it is, at the moment of task instruction, unclear what the actual pitch 
of the “high” tone would be. 

Thus, together, these requirements result in a minimum of three levels of representation 
necessary to translate stimuli to responses according to a task context within the key 
paradigms selected for simulation: generic task codes control different task-directed 
translation pathways by selectively wiring to a-modal feature codes; these feature codes are 
activated both intentionally and automatically; sensory codes are activated by external input 
and are top down modulated by cognitively anticipating feature codes connected at the distal 
feature level.

Ideomotor learning
Another key characteristic of HiTEC, which it inherits from TEC, is ideomotor learning. 
Although this mechanism is currently implemented as an explicit phase preceding stimulus-
response translation and modulated by prior set task instructions, it could be designed 
as to be part of an error-correction routine based on action anticipation (see Chapter 3). 
Importantly, in HiTEC, ideomotor learning allows representations that relate perception 
and action to be grounded in sensorimotor experience. This in turn, makes possible the 
emergence of situation-specific meaning of actions. Although many models and artificial 
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cognitive systems are employed with predefined actions, it would seem that any autonomous 
cognitive system would need to learn from such experience. Naturally, the question arises as 
to what level these action effects should be represented. In HiTEC we have opted for a ‘distal 
level’ of representation, rather than directly associating motor output to sensory input. This 
allows for some variation in (presumably more noisy and less accurate) sensory stimulation, 
for combining information from multiple senses and modalities, for sensitivity to exogenous 
saliency and, importantly, for top down modulation originating from the current (task) 
context. The various empirical studies simulated in this thesis show that the meaning of 
action depends on these factors and the simulations show that ideomotor learning provides 
the means to cope with exactly that. 

Common codes
Central to HiTEC and TEC alike, is the assumption of common codes (Prinz, 1990). 
In addition to various findings in neuroscience that strengthen the plausibility of such 
representations (Keysers & Perrett, 2004; Rizzolati & Craighero, 2004), common codes 
constitute representations with an intuitive grounding in regularities in sensorimotor 
experience. Implementing a task set in terms of these common feature codes further allows the 
cognitive system to control its stimulus-response processing while allowing stimulus features 
and response features that overlap to be translated implicitly. This implicit translation explains 
the facilitation and impairment of performance observed in experimental SRC paradigms. In 
‘real life’, however, it allows the cognitive system to control its behavior using minimal task 
set specifications and leave the details to automatic mechanisms (Hommel, 2009). The idea of 
this implicit translation resonates well with the notion of affordance.  Gibson (1979) defined 
affordances as the action possibilities that an object offers to a perceiver/actor. He further 
proposed that these action possibilities can be directly perceived (see also Neisser, 1992), that 
is without mediating (symbolic) representations. Hence, action systems can readily make 
use of this information. On a similar note, rather than setting out to represent every minute 
detail of the outside world (and then reason about it using hard computation) the world 
itself can serve as “its own best model” (Brooks, 1991, p. 139). Indeed, the outside world is 
always up to date and contains every detail there is to be known. The use of common codes 
representing both object features and action features on a distal level may enable lower level 
closed-loop mechanisms to sample the world while acting. Such mechanisms may eliminate 
the need for higher level representations for detailing out specifics of action control (as more 
elaborately discussed in Chapter 3; see also Hommel, 2009; c.f., findings by Prablanc & 
Pélisson, 1990). 

One could argue, however, that the common feature codes in HiTEC need not be 
actually common per se. For example, Oriet, Stevanovski and Joliceur (2001) claim that a 
two-way interaction between separate perceptual features and action features would suffice 
to yield similar results. This, however, would require additional, and in fact duplicated, codes 
(e.g., instead of a common ‘left’ feature code, the model would contain two interconnected 
(sub)codes: a ‘left’ perceptual feature code and a ‘left’ action feature code) as well as additional 
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computational mechanisms without clear computational benefits or theoretical necessity. In 
contrast, common codes provide a parsimonious solution and a clear concept of how actions 
are grounded in the perceptual world (Hommel, 2009; 2013).

Interactive processing
Processing in HiTEC is interactive: stimulus-response translation is carried out by including 
all related codes in a global competition mechanism (cf. Duncan et al., 1997). However, 
one could question the usefulness of such interactive processing as some of the existing SRC 
models do not seem to need this and employ strictly feedforward processing (and in the case 
of Kornblum et al., 1990 even divide processing into perceptual and response stages). Indeed, 
one could argue that at some point (1) sensory codes need only to register stimulus input, 
that (2) motor codes need to be activate in order to execute a response, and, thus, (3) that 
activation needs only to propagate from these sensory codes to these motor codes without an 
apparent need for interactivity.

 In this thesis, however, we argue that interactivity is not as much a direct requirement 
for such stimulus-response translation on its own, rather a logical consequence of constraints 
regarding crucial aspects that precede such translation: (1) not allowing additional 
task specific input biases during stimulus-response translation requires the task set to be 
internalized using connections between feature codes and task codes only. This means 
that modulation of feature codes (i.e., attending to one feature over the other, in accord 
with the task set) is to be done using these connections. This is realized by making these 
connections bi-directional. (2) feature codes are grounded by means of their connections to 
sensory codes. It is to be expected that these connections reflect long term experience and 
do not change in their weights that easily. However, short-term enhancement of specific 
sensory dimensions is necessary for situation-specific response coding as demonstrated in 
Simulation 5. In this simulation, without modulation of haptic vs. visual sensory inputs both 
would have influenced the left-right feature dimension equally, reducing the model’s ability 
to internalize context-specific action-effect regularities, and, eliminating the Simon effect 
altogether. Bi-directional connections between feature codes and sensory codes realize such 
modulation as they allow feature codes to bias sensory code activation without affecting their 
grounding. And (3) codes within the same layer compete for activation as a consequence 
of lateral inhibition following PDP (e.g., Cohen et al., 1992). Together these aspects yield 
integrated competiton (cf. Duncan et al., 1997). Moreover, other empirical findings (e.g., 
Müsseler & Hommel, 1997; Stoet & Hommel, 2002) explicitly demonstrate direct influence 
of action perception on stimulus perception, requiring such interactivity.  Finally, interactive 
processing seems very much in line with basic general neuroscientific findings (Braitenberg 
& Schütz, 1991; Prinz, 2006) that show vast numbers of recurrent connections in the brain. 

Assuming direct interactivity between codes from different representational levels 
opposes serial stage theories and has consequences for what is often referred to as modularity. 
The strong modularity hypothesis (e.g., Fodor, 1983; Pinker, 1997) states that the cognitive 
system is composed of information encapsulating modules that receive input from only a few 
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other modules and produce all-or-none output in discrete stages. In contrast, in PDP models 
(Rumelhart et al., 1986), such as HiTEC, representations are distributed and processing 
is continuous rather than being staged. Moreover, information within PDP components is 
available to other components rather than encapsulated. At the same time, as discussed in 
Chapter 2, we do aim at constraining HiTEC’s representations and connectivity to basic 
observations in neuroscience: lower cortical area’s code for specific sensory modalities and 
dimensions, mid-level areas combine information from lower levels and high-level areas are 
task-generic and involved in practically any decision task. Moreover, representations from 
different levels are connected not only with feedforward but also with vast amounts of 
feedback connections. By adhering to these constraints, it could be argued that the HiTEC 
model can indeed be decomposed in different structures/modules. Each of these modules 
may even be considered to represent specific aspects of perception, cognition or action. 
However, as processing in HiTEC is fully interactive it is misleading to assign such labels 
to HiTEC’s structural components: indeed, perception emerges from interaction between 
all structures, and so do cognition and action. In similar vein, one could to try to discretize 
the global process in HiTEC; that is, divide the time course of stimulus-response translation 
into stages such as ‘registering the stimulus’, ‘choosing between task mappings’, ‘planning the 
response’ and map these stages onto the ‘mainly active representations’ (e.g., sensory codes 
and stimulus feature codes are mainly active right after stimulus presentation and would, 
in such discretization carry out the ‘registration of the stimulus’). However, first, as clearly 
demonstrated in the various simulations in this thesis, these ‘stages’ would overlap in time; 
and, second, during each stage representations other levels (e.g., task level, motor level) are 
involved enhancing or suppressing activation in the structures that would be considered to 
carry out the respective stage; and even though one would regard their activation only as 
moderate, their influence on the activation levels of other representations (e.g., at the feature 
level) is actually be decisive at crucial moments of the task (e.g., top done enhancement of 
visual over haptic locations in the light condition in Simulation 5).

Extending HiTEC
Although we have demonstrated that the current version of HiTEC can simulate a variety 
of perception-action experiments, its principles, processes, and properties are still far from 
sufficient to account for all known phenomena in this domain. Most notably, HiTEC 
yet lacks the ability to bind features—an ability that was emphasized in the original TEC 
(Hommel et al., 2001). When an agent is presented with two visual objects, say one blue and 
one red, both ‘Blue’ and ‘Red’ sensory codes will be activated concurrently and the present 
model has no means to code or keep track which color belongs to which object (the classic 
‘binding problem’: Treisman, 1996). Given that several empirical phenomena in the domain 
of perception-action interactions are likely to reflect feature-binding processes (Müsseler 
& Hommel, 1997; see Hommel, 2004, for an overview), extending HiTEC to include a 
binding mechanism seems essential. Closely related is the impact of episodic memory on 
perception and action planning (Waszak, Hommel, & Allport, 2003). Not only the current 
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task set but also recent experiences with particular stimuli and actions under a particular task 
set can play a large role in the later interpretation of stimuli and responses and the efficiency 
with which their processing can be controlled (Nuxoll & Laird, 2004). 

In addition, action planning in HiTEC is currently greatly simplified as we only allow 
one rather simple action to be planned at a time. A more realistic model of action control 
would include the planning, programming, and coordination of more complex, hierarchical 
actions (Logan & Crump, 2010) and action sequences (Tubau, Hommel, & López-Moliner, 
2007). As stressed in Chapter 2, a particular strong addition would be the inclusion of 
conflict monitoring and performance feedback along the lines of (Botvinick et al., 2001). The 
experience of response conflict and/or of negative feedback might strengthen the activation 
state of goal codes and their impact on stimulus-response processing, which would tend to 
prevent errors in the future (van Steenbergen, Band, & Hommel, 2009). 

Moreover, the current computational implementation of HiTEC as a connectionist 
model introduces notable simplifications as such a model may adhere to only a few basic 
constraints from neuroscience. Clearly the 100 billion neurons of the human brain allow 
for much more intricate interactions than HiTEC is able to model. For example, the 
current connectionist approach focuses on simple causal task mappings between stimuli and 
responses. Although this was sufficient for the paradigms simulated for this thesis, extending 
representational power for higher order logical reasoning may enable simulating more 
complex experiments. 

In addition, in the current version of HiTEC we have focused on the interaction between 
perception and action and how this is mediated by the task context, both in terms of a 
direct pathway of activation propagation and in terms of connecting feature codes that relate 
to both stimuli and responses. In current simulations, however, feature codes are assumed 
have evolved from prior sensorimotor experience, presumably by detecting regularities in 
sensorimotor patterns. An obvious extension of our current work would be to investigate the 
actual grounding mechanism of feature codes by addressing how and when these regularities 
are detected and result in the creation of new (or possibly the adjustments of existing) feature 
codes. One option would be to employ self-organizing feature maps (e.g., Cos-Aguilera, 
Canamero, & Hayes, 2004; Kohonen, 1982) allowing to create and adjust inter-related 
clusters of possibly high variance, multidimensional sensory input. Along the lines we have 
suggested for action-effect learning, creating or adjusting such sensory feature networks may 
also be triggered by the detection of discrepancies between expectations and perception, and 
modulated by top down processes in similar spirit as action-effect learning and stimulus-
response translation processes discussed in this thesis. 

Finally, HiTEC is very much in line with theories of embodied cognition (e.g., Barsalou, 
1999; Glenberg, 1997; Wilson, 2002). Numerous findings (e.g., Pecher & Zwaan, 2005) 
support the idea that perceptual and motor systems are involved in even abstract cognitive 
processing. This suggests that cognition interacts with perception and action and that these 
systems share the same representations and processes. Hence, as HiTEC explicitly models 
stimulus-response translation in a way consistent with these theories, it may prove quite 
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interesting to actually embody HiTEC. That is, to endow an embodied cognitive system 
(i.e., a robot) with a HiTEC-like control architecture and put both theory and model to the 
test of real world interaction. Interestingly, in line with Brooks (1986), stimulus-response 
translation in HiTEC involves multiple interacting perception-action pathways at different 
levels. Moreover, ate each of these levels perception and action interact resulting in experience 
based action-effect learning, mid-level common features that may automatically overlap and 
high level wiring of task codes and feature codes implementing a cognitive task. 

To conclude, I hope to have shed some light on the link between perception and action. 
Although HiTEC may seem to be a simple model considering its architecture, its recurrent 
connections yield interesting dynamics. The HiTEC model is intended as a proof of principle, 
showing how common representations may mediate the interaction between  - what could 
be called - perception and action in a stage-less way, addressing issues of situation-specific 
action knowledge, selective automaticity and task demands, all relevant for effective behavior. 

So, how do we interact with our environment? How do we grasp our cups, shift gears or 
press buttons on the TV remote? We do not seem to first perceive, then think and finally act. 
No, we are much smarter than that! We configure our perception-action system in advance, 
tuned to the task at hand. Then, we let perception and action interact as they see fit, and 
control this interaction on an abstract level only, saving scarce cognitive resources for other 
demanding mental activities, such as reading a thesis.
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Category Parameter Default value

External inputs External input sensory codes 0.5a

External input motor codes (during learning) 0.3

Sensory weights Sensory – feature forward 0.4b

Sensory – feature backward 3.0

Stimulus features Feature –task forward 1.3c

Feature – task backward 0.2

Response features Task – feature forward (location, intensity, etc.) 1.3

Task – feature forward (other) 0.9d

Task – feature backward 0.2

Inhibition Excitatory to inhibitory paired unit 1.25

Inhibitory to other excitatory codes within layer -0.75

Code parameters da  decay parameter 0.1e

qa sigmoid parameter in response function 0.9

na sigmoid parameter in response function 4

γexc scale parameter 0.9f 

γinh scale parameter 0.9g

Noise Mean 0.025

Standard deviation 0.015

Code thresholds Voltage threshold (VT) 0.5

Learning threshold (LT) 0.6h

Response threshold for motor code selection 0.6

Learned weights Learning rate (LR) 0.1

Weight decay (dw) 0.0005

Weight scale factor (ϕ  ) 0.8i

General parameters Action effects trials 10 trials per 
motor code

Action effect duration (= cycles of weight learning) 50 cycles

HiTEC incorporates realistic neuronal integration/decay properties, non-linear response 
(output) functions of excitatory and inhibitory neural units, as well realistic voltage-
dependency of feedback connections and associative Hebbian learning. Incorporating these 
realistic neural properties implies various parameters in the model. The default values for all 
parameters are listed in Table 4.

Table 4. Default parameter values for HiTEC simulations
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Exceptions (see Table 4)
a.	 0.6 in Simulation 6
b.	 0.45 in Simulation 4 for the sensory to feature connections (visual to word); 
      0.3 for ‘forward’ and ‘backward’ in Simulation 6
c.	 1.5 in Simulation 6
d.	 0.55 in Simulation 2 and 0.6 in Simulation 3
e.	 0.2 for sensory codes (all simulations)
f.	 0.8 for sensory codes in Simulations 1 to 5; all codes 1.0 in Simulation 6
g.	 0.8 for sensory codes in Simulations 1 to 5; all codes 1.0 in Simulation 6
h.	 0.5 for Simulations 1 and 2
i.	 1.0 in Simulation 6

Note that we have attempted to eliminate various scaling parameters in the model 
instance sued for Simulation 6. That is, γexc , γinh and  have been set to 1.0. In order to retain 
the model dynamics, some of the other parameters were adjusted accordingly: external input 
and task-feature (other) weights.
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Hoe werkt onze interactie met de directe omgeving? Betrekkelijk moeiteloos openen wij 
deuren, reiken we voor een kop koffie en gebruiken wij een variatie aan gereedschappen en 
apparaten in ons dagelijks leven. Maar hoe lukt het ons eigenlijk om al onze acties zó aan 
te sturen dat we rekening houden met allerlei specifieke omstandigheden? We draaien onze 
hand immers zodanig dat we onze vingers gemakkelijk om de deurklink kunnen vouwen en 
we pakken een kop koffie op zo’n manier op dat we er ook nog uit kunnen drinken. 

We zijn in staat tot dergelijke handelingen door eigenschappen, features, van 
waargenomen stimuli als het ware om te zetten in features van de handelingen, actie responsen,  
die wij uitvoeren. Het oortje van mijn kop koffie voor mij op tafel bevindt zich nu aan de 
rechterzijkant, dus ik kantel mijn rechterhand en vouw mijn vingers zodanig dat de afstand 
tussen de vingertoppen overeenstemt met de grootte van het oortje, terwijl ik mijn hand naar 
het kopje verplaats. Dit doe ik echter niet heel bewust, ondertussen denk ik na over deze tekst, 
maar als ik helemaal niet oplet stoot ik misschien wel het kopje omver. Het doorgronden van 
de processen onderliggend aan deze stimulus-respons omzetting is niet alleen van belang om 
het mentale functioneren van de mens beter te begrijpen, maar ook nuttig voor bijvoorbeeld 
het ontwerp van robots. Robots dienen immers ook voortdurend een vertaalslag te maken 
van waargenomen objecten naar zorgvuldig gecoördineerde acties.

De vraag is nu hoe waargenomen stimuli worden omgezet in uitvoerbare actie 
responsen. Traditionele theorieën (e.g., Donders, 1968; Sternberg, 1969) en ook meer 
specifieke computermodellen van menselijke informatieverwerking (e.g., Anderson, 1993; 
Card, Moran & Newell, 1983; Kieras & Meyer, 1997) veronderstellen dat deze omzetting in 
losse, opeenvolgende stadia plaatsvindt: eerst wordt een stimulus waargenomen, geanalyseerd 
en geselecteerd om op te reageren. Vervolgens wordt er een passende actie respons gekozen 
en uiteindelijk uitgevoerd. Met andere woorden, deze theorieën veronderstellen dat eerst 
perceptuele, dan cognitieve en tot slot actiegerelateerde processen plaatsvinden.

Hoewel deze theorieën en modellen intuïtief overkomen en zij veel fenomenen in 
de cognitieve psychologie hebben kunnen verklaren, hebben verschillende experimenten 
aangetoond dat sommige aspecten van stimulus-respons omzetting niet bewust werken. 
Eigenschappen van waargenomen stimulus objecten (zoals locatie, orientatie en grootte) 
kúnnen acties direct beinvloeden, buiten onze controle om. Dit wordt geïllustreerd door 
zogenaamde stimulus-respons compatibiliteit fenomenen, zoals het Simon effect (Simon 
& Rudell, 1967). In een typische Simon taak in een onderzoekslaboratorium worden 
verschillende stimuli één voor één op een beeldscherm getoond aan de proefpersoon. 
Deze stimuli zijn bijvoorbeeld rode of blauwe stippen. Bovendien worden ze soms links en 
soms rechts op het scherm weergegeven. Proefpersonen dienen alleen te letten op de kleur. 
Afhankelijk van de kleur dienen ze op een linker of rechter knop te drukken. Alhoewel de 
locatie van de stimulus er helemaal niet toe doet voor deze taak, heeft deze locatie desondanks 
wél invloed op de reactietijd en accuraatheid. Proefpersonen reageren sneller en maken 
minder fouten als de stimulus zich aan dezélfde kant (compatibele conditie) bevindt als de te 
geven respons dan wanneer de stimulus zich aan de tegengestelde kant bevindt (incompatibele 
conditie). Deze inmiddels vaak gerepliceerde bevinding suggereert dat er een directe interactie 
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is tussen stimulus waarneming en actie planning. In meer recente modellen van stimulus-
respons omzetting (e.g., Kornblum, Hasbroucq, & Osman, 1990; Zorzi & Umilta, 1995) 
wordt dit veelal opgelost door naast de ‘gewone’ perceptie-cognitie-actie route een éxtra 
route van perceptie naar actie te veronderstellen. Alhoewel dergelijke dual route modellen 
mogelijk maken om verschillende stimulus-respons compatibiliteit fenomenen te simuleren, 
blijft echter onduidelijk hoe en waarom sommige stimuluseigenschappen wél direct invloed 
hebben op actie planning, en andere eigenschappen niet.

Een alternatieve theorie, die zich expliciet richt op de directe interactie tussen perceptie 
en actie én op de representaties die deze interactie mogelijk kunnen maken, is de Theory 
of Event Coding (TEC, Hommel, Müsseler, Aschersleben & Prinz, 2001). Deze theorie 
stelt dat het brein stimulus features en actie features representeert gebruikmakend van een 
gemeenschappelijke verzameling feature codes. Hierbij verwijzen feature codes naar de ‘distale’ 
eigenschappen van objecten in de omgeving, zoals de globale vorm, grootte, afstand en 
locatie. Hierdoor zullen een tast-sensatie bij de linkerhand en de waarneming van een visuele 
stimulus ergens in het linker gezichtsveld beiden dezelfde distale feature code ‘links’ activeren. 
Van acties wordt verondersteld dat zij worden uitgevoerd door het activeren van motor 
codes. Het uitvoeren van een actie leidt tot een waarneembaar effect, een verandering in de 
omgeving, dat in feite weer een nieuwe stimulus vormt. Het waarnemen van dit effect leidt 
tot activatie van feature codes. Deze actieve feature codes worden vervolgens geassociceerd 
met de reeds actieve motor codes. Op basis van deze associaties kan vervolgens een actie 
doelgericht worden gepland en gecoördineerd. Door de feature codes horend bij een ‘gewenst 
actie effect’ te (her)activeren, zorgen deze associaties er namelijk voor dat de juiste motor 
codes worden geactiveerd en de bijhorende actie wordt uitgevoerd. Tot slot stelt TEC dat 
de taak context van belang is voor het representeren van stimuli en responsen. Wanneer, 
bijvoorbeeld, de taak is gegeven om een object op te pakken, dan worden díe feature codes 
versterkt in de waarneming die relevant zijn voor oppakken, zoals de vorm, grootte en locatie 
van het object, terwijl feature codes die minder relevant zijn voor deze taak, zoals de kleur of 
toonhoogte, verzwakt worden.

Dit proefschrift richt zich op de biologische en computationele plausibiliteit van deze 
gemeenschappelijke feature codes voor waarneming en actie planning. Hiertoe heb ik HiTEC 
ontwikkeld, een connectionistisch model gebaseerd op TEC. Connectionistsiche modellen 
houden, in tegenstelling tot de typische sequentiele modellen van informatieverwerking, ook 
rekening met de globale eigenschappen van het menselijk brein. Het brein bevat immers 
geen complexe, centrale processor, zoals bij een computer, die de informatie binnenkrijgt 
van de zintuigen, dan stapsgewijs alle berekeningen uitvoert en het resultaat tot slot naar de 
spieren stuurt. Integendeel, het brein bevat miljarden betrekkelijk simpele rekeneenheden, 
neuronen, die in grote netwerken met elkaar verbonden zijn. Via deze verbindingen krijgen 
zij signaaltjes binnen van hun buren en sturen zij weer signaaltjes door naar andere buren. 
Door het enorme aantal neuronen en de complexiteit van hun onderlinge verbindingen, 
en door de dynamiek waarmee nieuwe neuronen en verbindingen worden aangemaakt en 
bestaande verbindingen worden aangepast, is de werking van het brein niet eenvoudig te 
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doorgronden. 
In het connectionistische perspectief wordt een poging gedaan om – met de nodige 

simplificaties – een netwerkaanpak op informatieverwerking te onderzoeken. Hierbij worden 
netwerken gebouwd van eenvoudige elementen, units, die elk een zekere mate van activatie 
hebben. Zo’n netwerk wordt beschouwd als een dynamisch systeem waarbij signaaltjes 
binnenkomen bij een aantal units en deze dientengevolge gaandeweg een hogere activatie 
krijgen. Tegelijk verspreidt deze activatie zich naar de andere units in het netwerk via de 
onderlinge verbindingen en stabiliseert het netwerk zich na verloop van tijd. Van zo’n 
connectionistisch netwerk wordt gesteld dat het een ‘taak uitvoert’ door signalen (input) aan 
te bieden aan sommige units, te wachten tot het netwerk de activatie heeft verspreid en dan 
te bepalen wat de activatie van andere units (output) is. De verwerking van informatie in zo’n 
netwerk geschiedt niet in losse rekenstapjes, zoals bij de traditionele, sequentiele modellen, 
maar door het heen en weer verspreiden van activatie tussen de units. Er wordt dan ook 
gesteld dat informatieverwerking hier gedistribueerd is, vergelijkbaar met de interacties tussen 
de neuronen in het menselijk brein.

Ons doel voor HiTEC was om een duidelijk alternatief te formuleren voor de 
sequentiele modellen van stimulus-respons omzetting, en om tot een minimaal framework te 
komen waarin de interactie tussen perceptie, cognitie en actie processen leidt tot taakgericht 
gedrag. HiTEC bouwt verder op de principes van TEC om een verklaring te bieden voor 
een reeks aan experimentele bevindingen, in een eenduidig framework en op een niveau van 
specificiteit die computersimulatie mogelijk maakt. 

Hoofdstuk 2 van dit proefschrift beschrijft het HiTEC model en de computationele 
uitwerking als connectionistisch netwerk. Hierbij staat de vraag centraal hoe een netwerk 
van neuron-achtige representaties stimulus-respons omzetting kan realiseren. In HiTEC zijn 
de representaties gedistribueerd over meerdere niveaus. Lagere niveaus corresponderen met 
sensorische input en motor output (respectievelijk sensory codes en motor codes), hogere niveaus 
met meer globale representaties (feature codes en task codes). Stimulus-respons omzetting vindt 
plaats door activatie door het model te verspreiden. Feature codes in HiTEC verwijzen naar de 
gemeenschappelijke representaties in TEC. Deze codes worden gebruikt voor zowel stimulus 
waarneming als actie planning. Bij stimulus-respons omzetting werken alle representaties 
op alle niveaus tegelijk samen. Dit heeft tot gevolg dat stimulus-respons omzetting volledig 
interactief is en niet sequentieel. Hogere niveau representaties versterken en verzwakken 
daarbij de gevoeligheid van representaties op lagere niveaus. Dit maakt mogelijk dat er directe 
interactie mogelijk is tussen perceptie en actie én dat deze interactie kan worden beïnvloed 
door de taak context. Het HiTEC model is gebruikt in alle simulaties zoals beschreven in 
Hoofdstukken 3 tot en met 5. In deze simulaties ligt de nadruk op aspecten die een uitdaging 
vormen voor de bestaande sequentiele modellen van stimulus-respons omzetting.

In Hoofdstuk 3 wordt ingegaan op de situatie-specifieke betekenissen van motor acties. 
Om adequaat te kunnen reageren op de omgeving dient het cognitieve systeem te weten 
wat voor acties er zoal mogelijk zijn en wat deze acties ‘betekenen’. Verschillende empirische 
bevindingen suggereren dat deze betekenis niet een vaststaand feit is, maar afhangt van de 
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(waarneembare) effecten van een actie binnen de taak context. Dit heeft tot gevolg dat als het 
systeem een passende actie repons moet selecteren en uitvoeren, het systeem eerst moet leren 
(op basis van ervaring) wat de effecten van zijn eigen motor acties zijn en hoe deze effecten 
binnen de taak context geïnterpreteerd dienen te worden. In bestaande modellen wordt deze 
betekenis veelal in het model ingebouwd, wat het voor deze modellen lastig maakt empirische 
bevindingen te verklaren die de flexibiliteit van deze betekenis demonstreren.

Simulatie 1 in dit hoofdstuk toont hoe in HiTEC nieuwe actie effecten spontaan 
worden geassocieerd met motor acties tijdens een fase van actie-effect leren. In Simulatie 2 
wordt dit mechanisme gebruikt om een empirische studie van Kunde en collega’s (Kunde, 
Koch, & Hoffmann, 2004) te simuleren. In deze simulatie wordt gedemonstreerd hoe 
de consistentie van verschillende actie effecten de interne representaties van deze effecten 
beïnvloedt. Aangezien actie-effect leren weer afhankelijk is van deze representaties, heeft de 
varierende consistentie consequenties voor de geleerde associaties tussen feature codes en 
motor codes. Deze associaties spelen vervolgens weer een cruciale rol in het plannen van 
acties. De simulatie laat zien dat het omzetten van stimuli naar respons vervolgens inderdaad 
beïnvloed wordt overeenkomstig de resultaten van de oorspronkelijke empirische studie. 
Dit demonstreert dat het mechanisme zoals voorgesteld in HiTEC in staat is om context-
afhankelijke betekenis aan motor acties te verbinden en deze betekenis mee te nemen bij het 
plannen van deze acties als respons op aangeboden stimuli. 

In Hoofdstuk 4 wordt verder ingegaan op hoe en waarom sommige sommige aspecten van 
stimulus-respons omzetting automatisch geschieden. Bestaande modellen van stimulus-respons 
compatibiliteit veronderstellen een extra route die het mogelijk maakt om deze fenomenen, 
zoals het eerder genoemde Simon effect (Simon & Rudell, 1976), te simuleren. Het blijft 
hierbij echter onduidelijk hoe en waarom sommige stimulus eigenschappen wél direct invloed 
hebben op actie controle, en andere eigenschappen niet. Simulaties in dit hoofdstuk, van het 
Simon effect en het Stroop effect (Stroop, 1935), demonstreren hoe HiTEC wél een duidelijke 
verklaring biedt voor deze effecten. In HiTEC zijn deze effecten in feite een onvermijdelijke 
consequentie van de representaties op verschillende niveaus, en hun onderlinge verbindingen. 
Ten eerste, om een taak te kunnen uitvoeren dienen zowel stimuli als responsen te worden 
gerepresenteerd op het distale representatieniveau en te worden verbonden met task codes. 
Ten tweede, acties die worden uitgevoerd in de taak context worden gerepresenteerd in 
termen van hun waarneembare effecten. Deze effecten bevinden zich in dezelfde perceptuele 
omgeving als de waarneembare stimuli. Dit betekent dat overlap in feature codes tussen 
stimulus features en actie features mogelijk en zeer waarschijnlijk is. Tot slot veronderstelt 
HiTEC dat stimulus perceptie en actie planning tegelijk plaatsvinden. Met andere woorden, 
de taakinstructie definieert een task set die wordt geïmplementeerd als een verwerkingspad 
van  taak codes en specifieke feature codes. De omgeving leidt tot de mogelijke overlap van 
deze feature codes voor stimuli en responses. Aangezien stimulus percepie en actie planning 
vervolgens tegelijk plaatsvinden, dient het cognitieve systeem onvermijdelijk het expliciete 
verwerkingspad te combineren met feature code activatie. Code overlap tussen stimulus 
en respons features resulteert tot slot in facilitatie (compatibele conditie) of interferentie 
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(incompatibele conditie) effecten.
Hoofdstuk 5 behandelt de vraag hoe de taak context stimulus-respons omzetting beinvloedt. 

In dit hoofdstuk worden zowel twee simulaties besproken als een nieuwe empirische studie 
waarbij gebruik is gemaakt van een Wii Balanceboard. De eerste simulatie in dit hoofdstuk, 
van een empirische studie van Hommel (1993), demonstreert hoe de taak context actie 
planning kan beïnvloeden door middel van aandacht voor verschillende elementen binnen 
de fysieke omgeving. In verschillende condities (vergelijkbaar met het origienele experiment) 
ontvangt het model verschillende taak instructies. De ene taak instructie benadrukt de visuele 
dimensie, de andere instructie de tast dimensie. Sensorische input van beide dimensies 
worden vervolgens op een gemeenchappelijke links-rechts feature dimensie gerepresenteerd. 
Zo heeft de taak instructie invloed op hoe een actie effect dat uit zowel een visuele als 
een tastcomponent bestaat intern wordt gerepresenteerd en daarmee op hoe actie-effect 
associaties worden geleerd. De gemeenschappelijke links-rechts feature dimensie wordt 
vervolgens ook gebruikt voor stimulus perceptie bij stimulus-respons omzetting waardoor 
er compatibiliteitseffecten optreden. Dit (automatische) compatibiliteitseffect is daarmee 
afhankelijk van de taakinstructie die een weging van verschillende sensorische dimensies 
bewerkstelligt.

De empirische studie en tweede simulatie in dit hoofdstuk laten op vergelijkbare wijze 
de invloed van taakinstructie op directe perceptie-actie interactie zien. In deze studie echter, 
wordt gedemonstreerd hoe alleen de taakomschrijving van verder ambigue acties invloed 
kan hebben op hoe de effecten van deze acties worden gerepresenteerd op het feature code 
representatieniveau, in dit geval voor-achter of links-rechts. Afhankelijk van de taak context 
worden actie effecten dus verschillend gerepresenteerd en de associaties tussen feature 
codes en motor codes dus ook verschillend geleerd. Bij de stimulus-respons omzetting van 
stimuli die ook een voor-achter of links-rechts component hebben tonen de verschillende 
instructiegroepen dan ook verschillen in hun compatibiliteitseffecten. In de HiTEC simulatie 
wordt duidelijk dat dit verklaard kan worden door weging van verschillende feature dimensies 
ten gevolge van de verschillen in taakinstructie.

Samen laten deze simulaties en de gedragsstudie zien dat de taakinstructie, 
geïnternaliseerd als verbindingen tussen feature codes en task codes, voldoende is om top 
down de verwerking van stimulus features en planning van actie features en hun automatische 
interactie te beïnvloeden. De weging van features lijkt dus te opereren op verschillende niveaus 
van representatie. 

Tot slot worden in Hoofdstuk 6 de algemene conclusies beschreven. Vergeleken met de 
sequentiele modellen biedt HiTEC een meer representationele verklaring van gecontroleerde 
én automatische interactie tussen stimulus features en respons features. Hierbij wordt 
aangenomen dat er geen afzonderlijke deelstapjes zijn in deze processen, maar dat representaties 
van verschillende nvieaus, tegelijk en met voortdurende onderlinge beïnvloeding deze interactie 
realiseren. De netwerkaanpak in HiTEC past in de traditie van connectionische modellen 
waarin informatieverwerking gedisribueerd is over meerdere units. In veel van de gangbare 
modellen wordt echter wel een graduele maar strikte feedforward (eenrichtingsverkeer) 
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architectuur aangehouden, terwijl er bij HiTEC sprake is van zowel top down als bottum up 
interactie tussen verschillende niveaus van representatie. 

Bovendien wijzen de simulaties in dit proefschrift erop dat voor stimulus-respons 
omzetting met neuron-achtige units teminste drie niveaus van representatie nodig zijn. Zo 
vereisen sommige simulaties dat meerdere sensory codes verbonden zijn met dezelfde feature 
code, en andere simulaties dat dezelfde motor code geassocieerd kan worden met meerdere 
feature codes en dat dezelfde sensory code verbonden is met meerdere feature codes. De 
verbindingen van task codes met feature codes dienen eveneens flexibel te zijn om zo hetzelfde 
cognitieve systeem verschillende taken te kunnen laten uitvoeren. 

Tot slot wordt benadrukt dat het connectionistische HiTEC model nog erg beperkt 
en gesimplificeerd is. De werking van de miljarden neuronen in het menselijk brein kent 
talloze bronnen van complexiteit, zoals de invloed van neurotransmitters. Evenzo zijn de 
verbindingen tussen neuronen vele malen complexer dan gesuggereerd in het huidige HiTEC 
model. Naast deze computationele simplificatie kent HiTEC ook beperkingen ten aanzien 
van de psychologische fenomenen die het model kan verklaren. Zo is het huidige model niet 
goed in staat meerdere objecten tegelijk waar te nemen en te representeren of om meerdere 
acties vooruit te plannen. Dit zijn interessante mogelijke uitbreidingen van het model die 
weer verschilende nieuwe uitdagingen met zich mee brengen.

Het proefschrift besluit met de conclusie dat HiTEC is voorgesteld als een proof of 
principle, gericht op hoe gemeenschappelijke representaties de interactie tussen perceptie 
en actie medieren. Dit heeft geresulteerd in een model dat zonder expliciete deelstappen 
stimuli in responsen kan omzetten en daarbij een expliciete behandeling mogelijk maakt van 
verschillende issues – situatie-specifieke betekenis van acties, selectieve automaticiteit en de 
invloed van taak context – die allen relevant zijn voor effectief gedrag. 

Dus, hoe openen wij deuren en pakken wij kopjes koffie op? En hoe zouden robots 
dit ook kunnen aanpakken? Resultaten van dit proefschrift suggereren dat wij niet eerst 
waarnemen, dan denken en dan pas acties uitvoeren; integendeel, wij stellen eerst ons 
perceptie-actie systeem in op basis van de taak die wij dienen uit te voeren, en we coördineren 
deze omzetting vervolgens op louter abstract niveau. Hierdoor hoeven we ons niet continu en 
bewust te bekommeren om elk klein detail en is er genoeg denkkracht over om bijvoorbeeld 
dit proefschrift te lezen.
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