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Abstract
In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish spe-
cies belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei,
also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained con-
siderable attention from genome researchers in the last decade.We discuss many examples that demonstrate that
this highly deserved attention is currently leading to new opportunities for answering important biological questions
on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been
applied for studying various fish species we put the recent advances in genome research on the model species zebra-
fish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby
want to illustrate how the combined value of research on model species together with a broad angle perspective
on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up ap-
plications in many societally important areas such as the development of new medicines, toxicology test systems,
environmental sensing systems and sustainable aquaculture strategies.
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INTRODUCTION
In the recent years there have been tremendous ad-

vances in genomic studies of many vertebrate species.

In these studies the attention to various representa-

tives of the bony fish species (the superclass of

Osteichthyes) has been increasing enormously, espe-

cially focussing on the infraclass of Teleostei that

represent approximately 96% of the species of this

superclass. This increase in attention is partly the

result of the fact that this superclass with about

27 000 living species represents more than 50% of

all known vertebrate species [1–4]. In our opinion,

it also reflects the trend that fundamental and applied

scientific interests in the genomics of bony fish are

now converging. On the one hand, fish species such

as zebrafish and medaka have clearly shown their

broad applicability for studies of fundamental pro-

cesses underlying development and disease. The tre-

mendous attention these fish species have obtained

for an extensive range of fundamental and applied

research purposes have earned them the qualification

of model fish species. On the other hand, the eco-

nomical value of the bony fish for food resources

coincides with their applicability for biomedical ap-

plications and toxicology studies. Together, these

fundamental and applied scientific purposes have

made it possible that the most advanced genomics

technologies have been used for studies of many

bony fish species, ranging from the model fish species

zebrafish and medaka to ‘living fossils’ such as the

coelacanths and the fresh water eels [5–11]. The

fresh water eels have only recently been termed

living fossils since apparently they have retained

most of the genome duplication that occurred after

the radiation of the bony fish from the common

ancestor with the mammals. This is an example

that these studies already are giving an unprece-

dented insight into the evolution of all bony fish
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species. The teleost species are extremely interesting

for evolutionary studies because they are widespread

in an incredible range of microenvironments con-

taining water, ranging from the deepest levels of

the oceans, to caves completely devoid of any light

or even in environments which most of a year do not

contain any water. This has led to remarkable adap-

tations to life at extreme conditions as exemplified by

the tilapia species that can survive at 44�C at very

high salinity, Antarctic toothfish that can thrive at

temperatures below 0�C and deep sea fish such as

from the genus Coryphaenoides that can stand pressures

of more than 60 MPa [2, 12]. This has made bony

fish species very attractive for studies on the effects of

adverse conditions such as high gravity that are

applicable to space travel research [13–15], or the

absence of light that has important implications for

studies of circadian rhythm in adults and embryonic

stages [16–20]. On the other hand, the response of

many bony fish species such as trouts and minnows

to toxic compounds is very similar to that in humans.

Therefore, these fish have been extensively used

for toxicology research already for many decades

[21–24] and recently this attention has been ex-

tended to the model fish species zebrafish and

medaka [25–32]. In this review, we will give an

overview of genome sequencing and assembly tech-

nologies that have been most popular to study the

bony fish and the near future possibilities that will

still have to gain in importance. Secondly, we will

discuss the impact of fundamental and applied re-

search on model fish species with special attention

to the current status of genome sequencing and the

impact for further genomic studies. Thirdly, we will

give an overview of the advances in genomics of

non-model bony fish species. Finally, we will discuss

the predicted impact of bony fish genomics on bio-

medical and aquacultural applications and their im-

portance for future evolutionary studies in a broader

perspective than the bony fish.

COMPARISONOF SEQUENCING
PLATFORMS
Over the past 8 years a number of so-called next-

generation sequencing platforms have hit the market.

They are all based on parallel sequencing of immo-

bilized targets and have revolutionized the genomics

field by generating an abundance of sequencing data.

Several different sequencing strategies are employed

by these platforms. Each of them has their own

characteristics. Here we will briefly discuss some of

the more popular platforms which are widely used in

fish genomics today. An overview of several charac-

teristics of these platforms is shown in Table 1.

There are now four companies who together

dominate the market. Roche (454 GS FLX) and

Life Technologies (Ion Torrent machines) both de-

veloped systems that use pyrosequencing to read the

DNA sequence. Although this technique is fast it has

problems reading through homopolymers. The read

length on the Ion Torrent machine does not match

these from the 454 GS FLX but is likely to increase

as new chips and chemistry become available.

Next to their Ion Torrent machines Life Tech-

nologies also has the SOLiD platform in its portfolio.

This platform is more comparable in terms of

throughput and costs per base to the Illumina plat-

form. Whereas SOLiD employs a ligation system

with dibase tags, Illumina’s HiSeq and MiSeq use a

process called sequencing by synthesis (SBS). This

SBS technology has already been on the market for

a few years now and lately the development of this

technology has mainly resulted in longer read length

and not so much in more reads per flow-cell.

All these machines need clonal copies of the DNA

molecule to obtain enough signal for reliable base

calling. The amplification step needed to obtain

these copies can be a source of bias in the sequence

data and information about DNA modifications is

lost.

An altogether different system is used by the

PacBio RS II from Pacific Biosciences. In this ma-

chine strand synthesis is followed on single DNA

molecules. Although this produces reads spanning

several kilobases the raw error rate is high due to

the nature of imaging single molecules. Since no

amplification is needed it has the benefit that DNA

modifications can also be detected and there is no

bias in the sequence data.

When using different applications like de novo
genome sequencing, resequencing and transcriptome

sequencing different parameters are important that

influence the choice of the sequencing platform.

For de novo genome sequencing it is important to

have even coverage in all regions and to have a

low error rate. To facilitate assembly the read

length should be as long as possible. The combined

use of Illumina HiSeq and PacBio RS platforms are

best suited for this type of applications. When

sequencing a transcriptome a high throughput is de-

sirable but read length is a less important factor.
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In the coming years we can expect a further drop

in cost/Mb driven by ongoing development of the

current technologies and the introduction of new

sequencing technologies like sequencing using nano-

pores. This will result in tools that will make de novo
genome sequencing and resequencing even more ef-

ficient and easier.

The sequencing endeavours of non-model fish

species are increasingly based on whole genome

shotgun sequencing (WGS). This kind of sequence

data is still inferior in coverage to map-based se-

quence data, for instance based on BAC sequencing.

This is notwithstanding the fact that even in the ab-

sence of large scaffolded WGS data sets it is still pos-

sible to obtain highly valuable complete exome

predictions that also make use of transcriptome data

sets and improved gene prediction models.

However, especially chromosomal areas with

many repetitive sequences will be poorly covered

by WGS assemblies. Furthermore, for polyploid

species it will be very difficult to obtain a reliable

estimate of the coverage of the entire genome. The

bioinformatics needed for scaffolding of WGS is

still in the development stage. In Table 2, we present

an overview of the software that has been used

for de novo assembly and scaffolding of WGS data.

It can be argued that in the future the technologies

mentioned above will further improve to such

extent that the disadvantages of WGS will be-

come less pronounced. For instance, when PacBio

sequencing length runs and coverage will further

increase it could be used to obtain larger scaffolds

even for difficult areas of a WGS assembly. This

was recently demonstrated by sequencing the

genome of the Arabidopsis Ler-0 mutant solely

using the PacBio RS II platform (data available

from github.com/PacificBiosciences/DevNet/wiki/

Datasets).

It should also be mentioned that alternative meth-

ods to BAC sequencing have been developed that

are highly applicable to obtaining genetic maps of

fish species. To obtain a genetic map of an organism

restriction associated DNA (RAD) tag sequencing

can be employed as demonstrated for the spotted

gar [53], the threespine stickleback [54] and the

Xiphophorus sequencing projects [43]. This method

uses next-generation sequencing to map sequence

variants in the neighbourhood of restriction sites in

the offspring from a cross. From the inheritance of

the variants a high-density genetic linkage map can

be constructed. This map can then be used to align

scaffolds in higher order structures. More recently

optical mapping of nicking sites on the genome in

nanochannel arrays has also been employed to create

a high-density genome map that can be used to order

contigs and scaffolds [55].

Table 1: Overview of high-throughput sequencing platforms

Platform Roche 454 FLX þ Life
Technologies
SOLiD
5500XL

Illumina HiSeq
High Output

Illumina HiSeq
Rapid Run

Illumina
MiSeq

Pacific
Biosciences
PacBio RS II

Life
Technologies
IonTorrent
PGM

Life
Technologies
IonTorrent
Proton

Mean read
length (bp)

700 2� 60 2�100 2�150 2� 250 4500 400 170

Reads/run �1M 1.4G 6G 1.2G 30M 40^60K �5M 60^80M

Yield/run 0.7Gb 155Gb 600Gb 120Gb 8Gb 230Mb 1Gb 8^10Gb

Raw error rate <1% �5% �0.1% �0.1% �0.1% �15% 0.5^2% <1%

Run time 23h 8 days 11 days 27h 39h 120min 7h 4h

Technology Pyrosequencing
with luciferase
detection.

Ligation system
with fluorescent
dibase tags.

Single nucleotides are incorporated into the
synthesized strand, imaged. The terminator
is removed after imaging allowing
incorporation of the next nucleotide.

Live imaging of
fluorescent
strand synthesis.

Pyrosequencing with pH
detection.

Remarks Short runtime. Short read length. Lower coverage on AT- and GC-rich sequences. Long read length. Short runtime.
Errors accumulate at end of read. No sequence bias. Homopolymers cannot be

properly resolved.
Homopolymers

cannot be
properly
resolved.

Low coverage on
GC-rich
sequences.

Short run time in Rapid run and on MiSeq. High raw error
rate.

Low coverage on AT-rich
sequences.

Cost/Mb $10.00 $0.07 $0.05 $0.05 $0.14 $3.00 $1.00 $0.10
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GENOMICS INMODEL FISH
SPECIES
The most frequently studied fish species are zebrafish

(Danio rerio) and medaka (Oryzias latipes). Although

statistically the zebrafish is currently used most

often as a research model, the use of medaka has

particular advantages and the importance of the

availability of two genomically well-characterized

models for comparative purposes and tool develop-

ment should not be underestimated [5, 56, 57]. For

instance, the use of the Tol2 transposon from

medaka in the zebrafish, where this transposon

does not occur, is the basis for the most successful

transgenesis protocols in zebrafish [58]. As a result of

the combined efforts of a very large number of re-

search groups these fish species have now established

themselves in every field of biology, and also have

propagated the use of fish species for chemical, phys-

ical and mathematical studies [59–61] and therefore

have earned the name model fish species. Although

historically these models have earned their fame by

their contribution to large forward genetic screens

linked to vertebrate developmental studies [62], in

recent years these model species have also been ex-

tensively used for biomedical applications, and there

are already several examples of medicines in clinical

trials that were originally developed in zebrafish

models. These studies have shown that research in

model fish species can greatly speed up the discovery

of new medicines [63–66]. Model fish species are also

increasingly used for comparative studies in experi-

ments with other fish species that are of importance

for aquaculture, e.g. as a model for the effects of

swimming exercise on muscle development [67].

Reversely, species that are very important in aqua-

culture, such as rainbow trout and common carp

(Cyprinuscarpio), have shown to have benefits for fun-

damental research. Research with the latter species is

especially relevant to biomedical studies in the very

closely related zebrafish owing to its large body size,

the availability of highly inbred lines and a very

large spawn size that offers possibilities for high-

throughput screening [41, 68].

From a genomics perspective the zebrafish

genome is now the most advanced model in that

the sequencing efforts have reached the stage in

which the completed genome will be further per-

fected by the Genome Reference Consortium

(http://genomereference.org) [9]. The recently pub-

lished zebrafish reference genome will undoubtedly

have a major impact on future genomics studies, for

instance by its major role in aiding the identification

of protein functions, as shown recently by Kettlebor-

ough et al. [69] and Varshney et al. [70], and by sup-

porting the identification of mutations in forward

genetic screens [71]. Howe et al. [9] have shown ex-

amples of how the available genomic sequence data

can lead to new insights into the evolution of

genome architecture and can identify new biological

functions for instance involved in sex determination.

The results obtained from the zebrafish models can

now be compared with other fish species such as

medaka that has been extensively used for studies

of sex determinants and is thereby the basis to

obtain a better understanding of the evolution of

sex determination in all bony fish with implications

for mammalian research on sex chromosome evolu-

tion [72–75]. Due to the rapid evolutionary turn-

over of sex chromosomes in fish, sex-linked markers

found in medaka and zebrafish will not be directly

translatable to results in other fish species. However,

by comparative genomic studies with the data ob-

tained in species such as medaka and rainbow trout

[76] the resulting knowledge on sex determination

mechanisms in several bony fish might also lead to

predicted gender markers for other fish species. This

will have applications for aquaculture, since methods

for determining the sex ratios of offspring of cultured

fish species is of economical value.

The genome sequence of the zebrafish demon-

strates that even between closely related fish species

there can be large differences in repetitive DNA con-

tent. For instance, in zebrafish the type II DNA

transposable elements cover 39% of the entire

genome sequence [9], whereas in common carp

there is a very low number of repetitive elements,

as low as in fugu [41]. This, together with smaller

intron and intergenic region sizes, explains why

common carp as a pseudo-tetraploid species has a

similar DNA content as zebrafish. We recently

have obtained a shotgun sequence of the giant

Danio (genus Devario) showing that it has a diploid

genome that resembles the zebrafish rather than

common carp in its richness of repeat sequences

(Spaink and Dirks, unpublished data).

In addition to these comparative studies, the avail-

able model fish genome sequences are an essential

basis for the successful interpretation of the extensive

transcriptome, proteome and metabolome data sets

that are now rapidly accumulating, also for non-

model fish species, as illustrated by a small represen-

tation of the many recent publications that have
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stimulated our research in this area [41, 77–93]. The

limited annotation of particular classes of genes, such

as non-coding RNAs and genes that are only ex-

pressed during disease, are bottlenecks that still

need to be addressed. Furthermore, there is still a

lack of information on orthology relationships be-

tween genes from different fish species and mamma-

lian genes. This is a pity since the application in

model fish of many new genomics technologies,

for instance in epigenetic analysis [94–98], will be

more difficult to translate to comparative epigenetic

studies in other fish species and mammals.

NEW INSIGHTS FROMNON-
MODELTELEOST FISH GENOMES
Commercial availability of massive parallel sequen-

cing or next-generation sequencing technologies in

2005 triggered an exponential growth of the number

of species for which draft assemblies of complete

genome sequences were released. The genome se-

quence of the giant panda was the first sequence of a

vertebrate species that was denovo assembled based on

next-generation technology alone [99]. As of 2 July

2013 a total of 3263 eukaryotic genomes were regis-

tered at NCBI’s genome database (http://www.ncbi.

nlm.nih.gov/genome/). Animal genomes accounted

for 977 entries and the majority of these belong to

the groups of mammals (378) and insects (285).

Teleost fish, although the largest known group of

vertebrates (� 27 000 species), are only poorly rep-

resented in this database, namely by 93 species and

including 42 entries with the status ‘no data’ and 17

entries with the status ‘SRA/traces’. A combined

search for whole genome sequencing projects of

ray-finned fish (Actinopterygii) and lobe-finned fish

(Sarcopterygii) in three commonly used databases,

namely NCBI, ENSEMBL (http://www.ensembl.

org/index.html) and GOLD (www.genomesonline.

org/), resulted in a list of 61 registered fish genomics

projects (Table 3), some of which have the status

‘Scaffolds or contigs’ (27), or ‘Chromosomes’ (6),

and more than half of which are still incomplete.

Clearly, the orders of the Cypriniformes (6 projects),

Cyprinodontiformes (11 projects) and Perciformes

(18 projects) are currently the most popular for gen-

omics projects.

Another important resource of fish genomics data

is NCBI’s Bioproject database (http://www.ncbi.

nlm.nih.gov/bioproject), which partially overlaps

with the genome database. The Bioprojects database

contained almost 900 registered teleost projects

(2 July 2013) divided over 12 Project Data Type

categories (Table 4). The majority of bioprojects

are ‘Transcriptome or gene expression’ projects

(84%) and most of the remaining projects are

‘Genome sequencing’ projects (9%). Although the

Bioprojects comprise over 168 individual teleost spe-

cies, only 12 species already account for �70% of all

projects. Most of the Bioprojects are based on the

popular zebrafish model D. rerio (37.3%) and other

laboratory models, such as fathead minnow

(Pimephales promelas, 3.4%), mummichog (Fundulus
heteroclitus, 2.4%), goldfish (Carassius auratus, 2.4%),

Japanese rice fish/Medaka (O. latipes, 1.6%) and

three-spined stickleback (Gasterosteus aculeatus, 1.3

%). In addition, species that are important for fish-

eries and aquaculture are well represented, such as

rainbow trout (Oncorhynchus mykiss, 10%), Atlantic

salmon (Salmo salar, 5.1%), gilt-head (sea) bream

(Sparus aurata, 2.2%), Sockeye (red) salmon

(Oncorhynchus nerka, 1.3%), largemouth bass

(Micropterus salmoides, 1.3%) and channel catfish

(Ictalurus punctatus, 1.1%). Also worth mentioning is

a set of 30 Bioprojects that include nearly all 28

known species of the genus Xiphophorus (swordtails

and platyfish), divided over 5 genome and 25 tran-

scriptome projects.

Additional draft assemblies of complete teleost

genomes have been published, but are not yet avail-

able from the NCBI database. For example, genomic

scaffolds of the European eel (Anguilla anguilla)
[7], Japanese eel (Anguilla japonica) [6], and the

common carp (C. carpio) [41] are all accessible

via the website www.zfgenomics.com. Recently, a

draft assembly of the complete genome of Pacific

bluefin tuna (Thunnus orientalis) was published [36],

which is accessible via GenBank (accession nos.

BADN01000001–BADN01133062).

Availability of the complete genome sequence of

model and non-model fish species has a strong cata-

lytic effect on a broad range of scientific disciplines

and on applied science, as indicated by the following

examples. Sequence analysis of the complete genome

of the atlantic cod (Gadus morhua) uncovered that

these cold-adapted teleosts lack a functional major

histocompatibility complex (MHC) II pathway.

Apparently, this is compensated for by expansion

of the number of MHCI genes and by specific adap-

tations in the Toll-like receptor (TLR) families,

thereby providing new fundamental insight into

the evolution of the adaptive immune system in
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vertebrates [39]. The draft genome sequences of the

European eel (A. anguilla) and Japanese eel (A. japon-
ica) showed that these fish species, in contrast to

most other teleosts, retained fully populated Hox

gene clusters, which may be correlated with their

peculiarly complex life cycle that includes two

larval stages [6, 7]. In contrast, elasmobranch fishes,

such as the cat shark (Scyliorhinus canicula) and the

little skate (Leucoraja erinacea), seem to have lost all

HoxC cluster genes [42]. This sheds a completely

new light on the relative importance of this family

of genes for body plan formation in the fish embryo.

Detailed analysis of the genome sequence of the

Pacific bluefin tuna (T. orientalis) revealed remarkable

adaptations in multiple visual pigment genes, which

may not only explain their specific predatory behav-

iour in the blue-pelagic ocean but may also contrib-

ute to improved aquaculture conditions [36]. The

recent publication of the genome sequence of the

platyfish (Xiphophorus maculatus) has already signifi-

cantly broadened our understanding of a wide

variety of phenomena, such as live-bearing fish re-

production, pigmentation patterns and melanoma

tumorigenesis, and even complex behavioural traits

[43].

CONCLUSIONSAND FUTURE
OUTLOOK
The state-of-the-art in genomics of the bony fish has

advanced so enormously in the last few years that

even in the context of the recent large human

sequencing projects, for example in the Encode pro-

jects [104], it is no longer possible to catch phrase the

recent advances under the term of ‘fishy genomics’

or ‘fish and chips’. The latter catch phrase anyway

will have to suffer increasing unpopularity with the

prediction that RNA and DNA microarray technol-

ogies will soon lose most of their importance, as they

will be gradually replaced by methods based on

sequencing technologies in the coming years. As ex-

plained above, teleost fish species have much to offer

for research that is dependent on whole organism test

models and for biomedical applications they have in

many aspects advantages even over the use of mam-

malian test systems as recently discussed by Spaink

et al. [68]. Independently of its applied values,

genome-wide studies of the bony fish have great

impact for comparative genomics: it will provide a

deep understanding of the recent half billion years of

evolution in vertebrates and of more recent era that

led to an extreme diversification of particular sub-

groups of the Teleostei, such as the cichlids that have

been intensively studied from an evolutionary per-

spective [105]. It will also provide enormous oppor-

tunities for data mining and will provide the

possibility to trace back the origins of genes from

the organisms closest to the earliest evolutionary

branches to its origins within invertebrates. For this

purpose it is fortunate that many invertebrate species

such as the tunicates are also increasingly being ana-

lysed with genomics technologies (http://www.tu

nicate-portal.org/wordpress/). That this can lead to

unexpected findings is nicely illustrated by the recent

discovery of a completely novel fluorescent protein

in the Japanese eel [106]. Furthermore, it can lead to

new insights into the origin of individual genes, for

instance the interesting example of horizontal gene

transfer of a transposon between lamprey species and

their hosts indicate that transfer of genetic material

between species mediated by parasite–host inter-

actions could be very frequent [107]. In addition to

fundamental evolutionary research there will also be

important applied aspects, for instance in nature con-

servation biology and the impact of ancient climate

changes on species diversification or extinction pro-

cesses. This could lead to better prediction models

for the effects of current estimated climate changes

on biodiversity of the teleost fish species and thereby

could provide better guidelines for knowledge-based

fishery regulations.

Sequence technology has reached the stage that

the capacity of instrumentation is not limiting any-

more for sequencing a large number of vertebrates,

in contrast to the period at the end of the 20th

Table 4: Teleost Bioprojects registered at NCBI (2
July 2013) according to ‘Project DataType’

Project DataType Number of
projects

Transcriptome or gene expression 758
Genome sequencing 80
Epigenomics 21
Refseq genome 12
Variation 8
Map 8
RAD tag 4
Random survey 3
Phenotype or genotype 2
Targeted locus 1
Clone ends 1
Microsatellite 1
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century when, as an illustration, one of the reasons

for sequencing the genome of the Fugu (Fugu
rubripes) was its small size genome. With the super

high capacity of shotgun sequencing facilities it

might already now be possible to obtain WGS data

for all teleost fish species. Although this would still be

extremely costly and no plans have yet been pro-

posed for this, there are bigger problems than cost

involved: the bioinformatics and curation facilities

that are still not adapted to handle the next-gener-

ation sequencing data flow coming from many in-

dependent sequencing projects, at least not in a user

friendly way. Especially since the quality of WGS

shotgun sequences does not make the data highly

suitable yet to be integrated in a bioinformatic setting

such as ENSEMBL it is needed that complementary

bioinformatics and data curation solutions become

available at low thresholds to analyse and compare

the early versions of WGS assemblies [108]. In add-

ition, it would be desirable to strive to common

genome data curation and annotation facilities that

cover all fish species as now is offered for zebrafish

within VEGA [109] (vega.sanger.ac.uk) and to

obtain a comprehensive web site that links all bony

fish gene annotations and functional studies follow-

ing the example presented by ZFIN for zebrafish

(zfin.org).

In the context of genome evolution, we can see

the great progress in the last years in answering sev-

eral old questions that have been extensively debated

for over decades such as the origin of the Teleostei
gene duplication. Since it is likely that a majority

of all vertebrates will be sequenced within the

coming decades, we can get new insights in many

fish species into the correlation between genome

duplications and repeat content of genomes, on the

one hand, with environmental selection pressures

and particular adaptations of body architecture. We

can also predict that we can soon obtain new insights

into the mechanisms that were the cause of gene

losses resulting in the trimmed genomes of the

modern fishes that we are now studying. This will

certainly give an amazing view of the genome dy-

namics that took place during a period of natural

selection that lasted for many hundreds of millions

of years. This knowledge can form a bridge between

molecular biological studies carried out at the very

basic molecular levels in microbes and lower verte-

brates and studies in mammalian systems. We have

therefore no doubts that genomic studies in the bony

fish species will remain to play an important role in

uniting the levels of molecular and evolutionary stu-

dies, e.g. by being perfect models for system biology

studies [60, 61, 110, 111].

Key Points

� Next-generation sequencing has revolutionizedde novo assembly
of fish genomes sequences.

� Fish models are rapidly gaining importance at all levels of funda-
mental and applied science.

� We predict that advances will further accelerate and that the
resulting genomic data sets will lead to unprecedented new in-
sights in to vertebrate gene functions and evolutionary
mechanisms.

� The application for nucleotide sequencing in transcriptomics
technologies will further increase and will gradually replace
expressionmicroarray technologies.

� There is an increasedneed for better andmoreuser-friendlybio-
informatic tools and curated database storage of data might
become a bottleneck.

References
1. Clark MS. Genomics and mapping of teleostei (bony fish).

Comp Funct Genom 2003;4:182–93.

2. Nelson JS. Fishes of theWorld. New York: John Wiley and
Sons, 2006:1–601.

3. Miller S, Harley JP. Zoology. New York: McGraw-Hill
Higher Education, 2007:1–297.

4. Sarropoulou E, Fernandes JM. Comparative genomics in
teleost species: knowledge transfer by linking the genomes
of model and non-model fish species. Comp Biochem Physiol
DGenom Proteom 2011;6:92–102.

5. Takeda H, Shimada A. The art of medaka genetics and
genomics: what makes them so unique? Annu Rev Genet
2010;44:217–41.

6. Henkel CV, Dirks RP, de Wijze DL, et al. First draft
genome sequence of the Japanese eel, Anguilla japonica.
Gene 2012a;511:195–201.

7. Henkel CV, Burgerhout E, de Wijze DL, et al. Primitive
duplicate Hox clusters in the European eel’s genome. PLoS
One 2012b;7:e32231.

8. Burgess DJ. Genomics: new zebrafish genome resources.
Nat RevGenet 2013;14:368–9.

9. Howe K, Clark MD, Torroja CF, et al. The zebrafish ref-
erence genome sequence and its relationship to the human
genome. Nature 2013;496:498–503.

10. Lampert KP, Blassmann K, Hissmann K, et al. Single-male
paternity in coelacanths. Nat Commun 2013;4:2488.

11. Schier AF. Genomics: zebrafish earns its stripes. Nature 2013;
496:443–4.

12. Morita T. High-pressure adaptation of muscle proteins from
deep-sea fishes, Coryphaenoides yaquinae and C. armatus.
AnnNYAcad Sci 2010;1189:91–4.

13. Goolish EM, Okutake K, Johnson P. The behavioral re-
sponse of zebrafish to hypergravity conditions. J Gravit
Physiol 2000;7:99–100.

Advances in genomics of bony fish 153

Downloaded from https://academic.oup.com/bfg/article-abstract/13/2/144/222485
by guest
on 10 November 2017

89
90
41; 42; 91; 92


14. Ijiri K. Life-cycle experiments of medaka fish aboard
the international space station. Adv Space Biol Med 2003;9:
201–16.

15. Renn J, Winkler C, Schartl M, et al. Zebrafish and medaka
as models for bone research including implications regarding
space-related issues. Protoplasma 2006;229:209–14.

16. Dekens MP, Santoriello C, Vallone D, et al. Light regulates
the cell cycle in zebrafish. Curr Biol 2003;13:2051–7.

17. Carr AJ, Tamai TK, Young LC, et al. Light reaches the
very heart of the zebrafish clock. Chronobiol Int 2006;23:
91–100.

18. Dekens MP, Whitmore D. Autonomous onset of the cir-
cadian clock in the zebrafish embryo. EMBO J 2008;27:
2757–65.

19. Mejia R. Cave-dwelling fish provide clues to the circadian
cycle. PLoS Biol 2011;9:e1001141.

20. Idda ML, Bertolucci C, Vallone D, et al. Circadian clocks:
lessons from fish. Prog Brain Res 2012;199:41–57.

21. Bailey GS, Williams DE, Hendricks JD. Fish models for
environmental carcinogenesis: the rainbow trout. Environ
Health Persp 1996;104(Suppl. 1):5–21.

22. Thorgaard GH, Bailey GS, Williams D, et al. Status and
opportunities for genomics research with rainbow trout.
Comp Biochem Physiol B BiochemMol Biol 2002;133:609–46.

23. Miracle AL, Ankley GT. Ecotoxicogenomics: linkages be-
tween exposure and effects in assessing risks of aquatic con-
taminants to fish. ReprodToxicol 2005;19:321–6.

24. Ankley GT, Villeneuve DL. The fathead minnow in aquatic
toxicology: past, present and future. AquatToxicol 2006;78:
91–102.

25. Spitsbergen JM, Kent ML. The state of the art of the zebra-
fish model for toxicology and toxicologic pathology re-
search–advantages and current limitations. Toxicol Pathol
2003;31(Suppl):62–87.

26. Busch W, Duis K, Fenske M, et al. The zebrafish embryo
model in toxicology and teratology, September 2-3, 2010,
Karlsruhe, Germany. ReprodToxicol 2011;31:585–8.

27. Legler J, Zeinstra LM, Schuitemaker F, et al. Comparison of
in vivo and in vitro reporter gene assays for short-term
screening of estrogenic activity. Environ SciTechnol 2002;36:
4410–5.

28. Sipes NS, Padilla S, Knudsen TB. Zebrafish: as an integra-
tive model for twenty-first century toxicity testing. Birth
Defects Res C EmbryoToday 2011;93:256–67.

29. Strahle U, Scholz S, Geisler R, etal. Zebrafish embryos as an
alternative to animal experiments–a commentary on the
definition of the onset of protected life stages in animal
welfare regulations. ReprodToxicol 2012;33:128–32.

30. Driessen M, Kienhuis AS, Pennings JL, et al. Exploring the
zebrafish embryo as an alternative model for the evaluation
of liver toxicity by histopathology and expression profiling.
ArchToxicol 2013;87:807–23.

31. Piersma AH, Bosgra S, van Duursen MB, etal. Evaluation of
an alternative in vitro test battery for detecting reproductive
toxicants. ReprodToxicol 2013;38:53–64.

32. Scholz S. Zebrafish embryos as an alternative model for
screening of drug-induced organ toxicity. Arch Toxicol
2013;87:767–9.

33. Jaffe DB, Butler J, Gnerre S, et al. Whole-genome sequence
assembly for mammalian genomes: Arachne 2. Genome Res
2003;13:91–6.

34. Smith JJ, Kuraku S, Holt C, et al. Sequencing of the sea
lamprey (Petromyzon marinus) genome provides insights
into vertebrate evolution. Nat Genet 2013;45:415–21.

35. Langmead B, Trapnell C, Pop M, et al. Ultrafast and
memory-efficient alignment of short DNA sequences to
the human genome. Genome Biol 2009;10:R25.

36. Nakamura Y, Mori K, Saitoh K, et al. Evolutionary changes
of multiple visual pigment genes in the complete genome of
Pacific bluefin tuna. Proc Natl Acad Sci USA 2013;110:
11061–6.

37. Myers EW, Sutton GG, Delcher AL, etal. A whole-genome
assembly of Drosophila. Science 2000;287:2196–204.

38. Venkatesh B, Kirkness EF, Loh YH, etal. Survey sequencing
and comparative analysis of the elephant shark
(Callorhinchus milii) genome. PLoS Biol 2007;5:e101.

39. Star B, Nederbragt AJ, Jentoft S, etal. The genome sequence
of Atlantic cod reveals a unique immune system. Nature
2011;477:207–10.

40. Aparicio S, Chapman J, Stupka E, et al. Whole-genome
shotgun assembly and analysis of the genome of Fugu
rubripes. Science 2002;297:1301–10.

41. Henkel CV, Dirks RP, Jansen HJ, et al. Comparison of the
exomes of common carp (Cyprinus carpio) and zebrafish
(Danio rerio). Zebrafish 2012;9:59–67.

42. King BL, Gillis JA, Carlisle HR, et al. A natural deletion of
the HoxC cluster in elasmobranch fishes. Science 2011;334:
1517.

43. Schartl M, Walter RB, Shen Y, et al. The genome of the
platyfish, Xiphophorus maculatus, provides insights into
evolutionary adaptation and several complex traits. Nat
Genet 2013;45:567–72.

44. Sudbery I, Stalker J, Simpson JT, et al. Deep short-read
sequencing of chromosome 17 from the mouse strains A/J
and CAST/Ei identifies significant germline variation and
candidate genes that regulate liver triglyceride levels.
Genome Biol 2009;10:R112.

45. Margulies M, Egholm M, Altman WE, et al. Genome
sequencing in microfabricated high-density picolitre re-
actors. Nature 2005;437:376–80.

46. Huang X, Wang J, Aluru S, et al. PCAP: a whole-genome
assembly program. Genome Res 2003;13:2164–70.

47. de la Bastide M, McCombie WR. Assembling genomic
DNA sequences with PHRAP. Curr Protoc Bioinform 2007;
Chapter 11:Unit 11.

48. Loh YH, Katz LS, Mims MC, et al. Comparative analysis
reveals signatures of differentiation amid genomic poly-
morphism in Lake Malawi cichlids. Genome Biol 2008;9:
R113.

49. Mullikin JC, Ning Z. The phusion assembler. Genome Res
2003;13:81–90.

50. Kasahara M, Naruse K, Sasaki S, et al. The medaka draft
genome and insights into vertebrate genome evolution.
Nature 2007;447:714–9.

51. Ahsan B, Kobayashi D, Yamada T, et al. UTGB/medaka:
genomic resource database for medaka biology. NucleicAcids
Res 2008;36:D747–52.

52. Boetzer M, Henkel CV, Jansen HJ, et al. Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics 2011;27:
578–9.

53. Amores A, Catchen J, Ferrara A, et al. Genome
evolution and meiotic maps by massively parallel DNA

154 Spaink et al.

Downloaded from https://academic.oup.com/bfg/article-abstract/13/2/144/222485
by guest
on 10 November 2017



sequencing: spotted gar, an outgroup for the teleost genome
duplication. Genetics 2011;188:799–808.

54. Hohenlohe PA, Bassham S, Etter PD, et al. Population gen-
omics of parallel adaptation in threespine stickleback using
sequenced RAD tags. PLoSGenet 2010;6:e1000862.

55. Hastie AR, Dong L, Smith A, etal. Rapid genome mapping
in nanochannel arrays for highly complete and accurate de
novo sequence assembly of the complex Aegilops tauschii
genome. PLoSOne 2013;8:e55864.

56. Mitani H, Kamei Y, Fukamachi S, et al. The medaka
genome: why we need multiple fish models in vertebrate
functional genomics. GenomeDyn 2006;2:165–82.

57. Sasado T, Tanaka M, Kobayashi K, et al. The National
BioResource Project Medaka (NBRP Medaka): an inte-
grated bioresource for biological and biomedical sciences.
Exp Anim 2010;59:13–23.

58. Kawakami K. Tol2: a versatile gene transfer vector in ver-
tebrates. Genome Biol 2007;8(Suppl. 1):S7.

59. Schaaf MJ, Koopmans WJ, Meckel T, et al. Single-molecule
microscopy reveals membrane microdomain organization of
cells in a living vertebrate. BiophysJ 2009;97:1206–14.

60. Augustine S, Gagnaire B, Floriani M, et al. Developmental
energetics of zebrafish, Danio rerio. Comp Biochem Physiol A
Mol Integr Physiol 2011;159:275–83.

61. Jusup M, Klanjscek T, Matsuda H, et al. A full lifecycle
bioenergetic model for bluefin tuna. PLoS One 2011;6:
e21903.

62. Ingham PW. Zebrafish genetics and its implications for
understanding vertebrate development. Hum Mol Genet
1997;6:1755–60.

63. Mione M, Zon LI. Cancer and inflammation: an aspirin a
day keeps the cancer at bay. Curr Biol 2012;22:R522–5.

64. Santoriello C, Zon LI. Hooked! Modeling human disease in
zebrafish. J Clin Invest 2012;122:2337–43.

65. Tamplin OJ, White RM, Jing L, et al. Small molecule
screening in zebrafish: swimming in potential drug thera-
pies. Wiley Interdiscip Rev Dev Biol 2012;1:459–68.

66. Tan JL, Zon LI. Chemical screening in zebrafish for novel
biological and therapeutic discovery. MethodsCell Biol 2011;
105:493–516.

67. Palstra AP, Tudorache C, Rovira M, et al. Establishing zeb-
rafish as a novel exercise model: swimming economy,
swimming-enhanced growth and muscle growth marker
gene expression. PLoSOne 2010;5:e14483.

68. Spaink HP, Cui C, Wiweger MI, et al. Robotic injection of
zebrafish embryos for high-throughput screening in disease
models. Methods 2013;62:246–54.

69. Kettleborough RN, Busch-Nentwich EM, Harvey SA,
et al. A systematic genome-wide analysis of zebrafish pro-
tein-coding gene function. Nature 2013;496:494–7.

70. Varshney GK, Lu J, Gildea DE, et al. A large-scale zebrafish
gene knockout resource for the genome-wide study of gene
function. Genome Res 2013;23:727–35.

71. Henke K, Bowen ME, Harris MP. Perspectives for identi-
fication of mutations in the zebrafish: making use of next-
generation sequencing technologies for forward genetic
approaches. Methods 2013;62:185–96.

72. Herpin A, Schartl M. Molecular mechanisms of sex deter-
mination and evolution of the Y-chromosome: insights
from the medakafish (Oryzias latipes). Mol Cell Endocrinol
2009;306:51–58.

73. Herpin A, Schartl M. Sex determination: switch and sup-
press. Curr Biol 2011;21:R656–9.

74. Herpin A, Schartl M. Vertebrate sex determination: ques-
tioning the hierarchy. FEBS J 2011;278:1001.

75. Kikuchi K, Hamaguchi S. Novel sex-determining genes in
fish and sex chromosome evolution. Dev Dyn 2013;242:
339–53.

76. Yano A, Guyomard R, Nicol B, et al. An immune-related
gene evolved into the master sex-determining gene in rain-
bow trout, Oncorhynchus mykiss. Curr Biol 2012;22:1423–8.

77. Papan C, Chen L. Metabolic fingerprinting reveals devel-
opmental regulation of metabolites during early zebrafish
embryogenesis. OMICS 2009;13:397–405.

78. Forne I, Abian J, Cerda J. Fish proteome analysis: model
organisms and non-sequenced species. Proteomics 2010;10:
858–72.

79. Hayashi S, Akiyama S, Tamaru Y, et al. A novel application
of metabolomics in vertebrate development. BiochemBiophys
Res Commun 2009;386:268–72.

80. Sukardi H, Ung CY, Gong Z, et al. Incorporating zebrafish
omics into chemical biology and toxicology. Zebrafish 2010;
7:41–52.

81. Samuelsson LM, Bjorlenius B, Forlin L, et al. Reproducible
(1)H NMR-based metabolomic responses in fish exposed to
different sewage effluents in two separate studies. EnvironSci
Technol 2011;45:1703–10.

82. Silva TS, Cordeiro O, Richard N, et al. Changes in the
soluble bone proteome of reared white seabream
(Diplodus sargus) with skeletal deformities. Comp Biochem
Physiol DGenom Proteom 2011;6:82–91.

83. Cordeiro OD, Silva TS, Alves RN, et al. Changes in liver
proteome expression of Senegalese sole (Solea senegalensis)
in response to repeated handling stress. Mar Biotechnol (NY)
2012;14:714–29.

84. Ji P, Liu G, Xu J, et al. Characterization of common carp
transcriptome: sequencing, de novo assembly, annotation
and comparative genomics. PLoSOne 2012;7:e35152.

85. Lossner C, Wee S, Ler SG, et al. Expanding the zebrafish
embryo proteome using multiple fractionation approaches
and tandem mass spectrometry. Proteomics 2012;12:1879–82.

86. Martyniuk CJ, Popesku JT, Chown B, et al. Quantitative
proteomics in teleost fish: insights and challenges for neu-
roendocrine and neurotoxicology research. Gen Comp
Endocrinol 2012;176:314–20.

87. Rodrigues PM, Silva TS, Dias J, et al. PROTEOMICS in
aquaculture: applications and trends. J Proteomics 2012;75:
4325–45.

88. Veldhoen N, Ikonomou MG, Helbing CC. Molecular pro-
filing of marine fauna: integration of omics with environ-
mental assessment of the world’s oceans. Ecotoxicol Environ
Saf 2012;76:23–38.

89. Xu J, Ji P, Zhao Z, etal. Genome-wide SNP discovery from
transcriptome of four common carp strains. PLoSOne 2012;
7:e48140.

90. Calduch-Giner JA, Bermejo-Nogales A, Benedito-Palos L,
et al. Deep sequencing for de novo construction of a marine
fish (Sparus aurata) transcriptome database with a large cover-
age of protein-coding transcripts. BMCGenomics 2013;14:178.

91. Palstra AP, Beltran S, Burgerhout E, et al. Deep RNA
sequencing of the skeletal muscle transcriptome in swim-
ming fish. PLoSOne 2013;8:e53171.

Advances in genomics of bony fish 155

Downloaded from https://academic.oup.com/bfg/article-abstract/13/2/144/222485
by guest
on 10 November 2017



92. Raterink RJ, Kloet FM, Li J, etal. Rapid metabolic screen-
ing of early zebrafish embryogenesis based on direct infu-
sion-nanoESI-FTMS. Metabolomics 2013;9:864–73.

93. Yang H, Zhou Y, Gu J, et al. Deep mRNA sequencing
analysis to capture the transcriptome landscape of zebrafish
embryos and larvae. PLoSOne 2013;8:e64058.

94. Andersen IS, Lindeman LC, Reiner AH, et al. Epigenetic
marking of the zebrafish developmental program. CurrTop
Dev Biol 2013;104:85–112.

95. Bogdanovic O, Fernandez-Minan A, Tena JJ, et al. The
developmental epigenomics toolbox: ChIP-seq and
MethylCap-seq profiling of early zebrafish embryos.
Methods 2013;62:207–15.

96. Jiang L, Zhang J, Wang JJ, et al. Sperm, but not oocyte,
DNA methylome is inherited by zebrafish early embryos.
Cell 2013;153:773–84.

97. Long HK, Sims D, Heger A, et al. Epigenetic con-
servation at gene regulatory elements revealed by non-
methylated DNA profiling in seven vertebrates. Elife
2013;2:e00348.

98. Potok ME, Nix DA, Parnell TJ, et al. Reprogramming the
maternal zebrafish genome after fertilization to match the
paternal methylation pattern. Cell 2013;153:759–72.

99. Li R, Fan W, Tian G, et al. The sequence and de
novo assembly of the giant panda genome. Nature 2010;
463:311–7.

100. Amemiya CT, Alfoldi J, Lee AP, et al. The African coela-
canth genome provides insights into tetrapod evolution.
Nature 2013;496:311–6.

101. Nikaido M, Noguchi H, Nishihara H, et al. Coelacanth
genomes reveal signatures for evolutionary transition
from water to land. Genome Res 2013;23:1740–8.

102. Reichwald K, Lauber C, Nanda I, et al. High tandem
repeat content in the genome of the short-lived annual
fish Nothobranchius furzeri: a new vertebrate model for
aging research. Genome Biol 2009;10:R16.

103. Davidson WS, Koop BF, Jones SJ, et al. Sequencing the
genome of the Atlantic salmon (Salmo salar). Genome Biol
2010;11:403.

104. Dunham I, Kundaje A, Aldred SF, et al. An integrated en-
cyclopedia of DNA elements in the human genome.
Nature 2012;489:57–74.

105. Fan S, Elmer KR, Meyer A. Genomics of adaptation and
speciation in cichlid fishes: recent advances and analyses in
African and Neotropical lineages. PhilosTrans RSoc Lond B
Biol Sci 2012;367:385–94.

106. Kumagai A, Ando R, Miyatake H, et al. A bilirubin-indu-
cible fluorescent protein from eel muscle. Cell 2013;153:
1602–11.

107. Kuraku S, Qiu H, Meyer A. Horizontal transfers of Tc1
elements between teleost fishes and their vertebrate para-
sites, lampreys. Genome Biol Evol 2012;4:929–36.

108. Flicek P, Ahmed I, Amode MR, et al. Ensembl 2013.
Nucleic Acids Res 2013;41:D48–D55.

109. Ashurst JL, Chen CK, Gilbert JG, et al. The Vertebrate
Genome Annotation (Vega) database. Nucleic Acids Res
2005;33:D459–65.

110. Deng W, Tang X, Hou M, et al. New insights into the
pathogenesis of tuberculosis revealed by Mycobacterium
marinum: the zebrafish model from the systems biology
perspective. Crit Rev Eukaryot Gene Expr 2011;21:337–45.

111. Deo RC, MacRae CA. The zebrafish: scalable in vivo
modeling for systems biology. Wiley Interdiscip Rev Syst
Biol Med 2011;3:335–46.

156 Spaink et al.

Downloaded from https://academic.oup.com/bfg/article-abstract/13/2/144/222485
by guest
on 10 November 2017


