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We derive the critical nearest-neighbor connectivity gn as 3/4, 3(7 − 9ptri
c )/4(5 − 4ptri

c ), and 3(2 + 7ptri
c )/

4(5 − ptri
c ) for bond percolation on the square, honeycomb, and triangular lattice, respectively, where

ptri
c = 2 sin(π/18) is the percolation threshold for the triangular lattice, and confirm these values via Monte

Carlo simulations. On the square lattice, we also numerically determine the critical next-nearest-neighbor
connectivity as gnn = 0.687 500 0(2), which confirms a conjecture by Mitra and Nienhuis [J. Stat. Mech.
(2004) P10006], implying the exact value gnn = 11/16. We also determine the connectivity on a free surface
as gsurf

n = 0.625 000 1(13) and conjecture that this value is exactly equal to 5/8. In addition, we find that at
criticality, the connectivities depend on the linear finite size L as ∼ Lyt −d , and the associated specific-heat-like
quantities Cn and Cnn scale as ∼ L2yt −d ln(L/L0), where d is the lattice dimensionality, yt = 1/ν the thermal
renormalization exponent, and L0 a nonuniversal constant. We provide an explanation of this logarithmic factor
within the theoretical framework reported recently by Vasseur et al. [J. Stat. Mech. (2012) L07001].
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I. INTRODUCTION

To study the nature of the percolation process [1], much
attention has been paid to correlation functions Pn(z1, . . . ,zn)
describing the probability that n points (z1, . . . ,zn) belong
to the same cluster. For example, the mean cluster size
can be calculated as S = ∑

z P2(z,0), and a recent work
investigated the factorization of the three-point correlation
function in terms of two-point correlations [2]. While most
results in the literature deal with long-range correlations
[1–4], the present work is dedicated to the investigation of
short-range correlations, over distances comparable with the
lattice spacing.

It is well known that the bond-percolation model can be
considered as the q → 1 limit of the q-state Potts model [5,6].
For a lattice G with a set of edges denoted as {eij }, the reduced
Hamiltonian (i.e., divided by kT ) of the Potts model reads

H(K,q) = −K
∑
eij

δσiσj
, σi = 1, . . . ,q, (1)

where the sum is over all nearest-neighbor lattice edges eij ,
and K = J/kT , such that −Jδσiσj

is the energy of a neighbor
pair. The celebrated Kasteleyn-Fortuin transformation [7]
maps the Potts model onto the random-cluster (RC) model
with partition sum

Zrc(u,q) =
∑
A⊆G

uNbqNc , u = eK − 1, (2)

where the sum is over all subgraphs A of G, Nb is the
number of occupied bonds in A, and Nc is the number of
connected components (clusters). The RC model generalizes
the Potts model to noninteger values q > 0, and in the limit
q → 1 it reduces to the bond-percolation [6,7] model, in
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which bonds are uncorrelated, and governed by independent
probabilities p = u/(u + 1). As a result, the critical thermal
fluctuations are suppressed in this model, so that the critical
finite-size-scaling (FSS) amplitudes of many energy-like
quantities vanish. For instance, the density of the occupied
bonds is independent of the system size, and the density of
clusters converges rapidly to its background value with zero
amplitude for the leading finite-size term with yt = 1/ν in the
exponent [8,9]. Though the partition function at q = 1 reduces
to a trivial power of u, a number of nontrivial properties of
the percolation model can be derived from the RC model via
differentiation of the RC partition sum to q, and then taking
the limit q → 1. Quantities of interest can then be numerically
determined by sampling the resulting expression from Monte
Carlo-generated percolation configurations. An example is
given in Appendix A, where we display the behavior of the RC
specific heat in the percolation limit q → 1 as a function of
temperature.

Making use of existing results on the critical temperature
and energy of the Potts model [6,10,11], in the limit q → 1, we
derive analytically the critical nearest-neighbor connectivity gn

as 3/4, 3(7 − 9ptri
c )/4(5 − 4ptri

c ), and 3(2 + 7ptri
c )/4(5 − ptri

c ),
for bond percolation on the square, honeycomb, and triangular
lattices, respectively, where ptri

c = 2 sin(π/18) is the percola-
tion threshold for the triangular lattice, and confirm them with
Monte Carlo simulations. For bond percolation on the square
lattice, we also determine numerically the critical next-nearest-
neighbor connectivity as gnn = 0.687 500 0(2), which is very
close to 11/16. Our transfer-matrix calculations (Appendix
B), which apply to a cylindrical geometry, are consistent with
this value. As explained in Appendix C, gnn is related to a
quantity for the completely packed O(1) loop model, which
has been studied by Mitra et al. [12]. They formulated a
conjecture implying the exact value gnn = 11/16. Our results
support that this conjecture holds exactly. Furthermore, we
determined the connectivity on free one-dimensional surfaces
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of the square lattice as gsurf
n = 0.625 000 1(13), and conjecture

that this value is exactly equal to 5/8.
We are also interested in the critical FSS behavior of the

connectivities gn and gnn, as well as the associated specific-
heat-like quantities Cn and Cnn. Numerical simulations and
finite-size analysis were done for square, triangular, honey-
comb, and simple-cubic lattices. It is found that, at criticality,
one has g(L) = ga + gsL

yt−d (d is the spatial dimensionality),
where ga accounts for the background contribution and the
amplitude gs for the singular part is nonzero. In two and three
dimensions, this critical exponent is known as yt = 1/ν = 3/4
[13,14] and yt = 1.141 0(15) [15], respectively. For Cn and
Cnn, it is observed that the leading yt -dependent term with
exponent 2yt − d also exists. Moreover, it is found that this
leading term is modified by a multiplicative logarithmic factor
such that Cn and Cnn are proportional to L2yt−d ln (L/L0),
where L0 is nonuniversal.

The logarithmic factor mentioned above can be related with
recently identified logarithmic observables that were explained
by mixing the energy operator with an operator connecting
two random clusters [3,4]. The latter operator is associated
with a change of the bond probability p [16] between Potts
spins, while the Potts coupling K remains constant. For q → 1
the bond probability field and the temperature field become
degenerate. This mechanism is independent of the lattice type
and the number of dimensions.

The remainder of this work is organized as follows.
Section II contains the definitions of the observables, as well as
their expected FSS behavior. Section III presents the derivation
of the exact critical connectivities. The Monte Carlo results for
gn and gnn, for Cn and Cnn, on different lattices, are presented in
Sec. IV. The origin of a logarithmic factor in the FSS behavior
of Cn and Cnn is explored in Sec. V. The paper concludes with
a brief discussion in Sec. VI. Further details and examples
are presented in the Appendices, including the derivation of
the exact nearest-neighbor connectivities for the triangular and
honeycomb lattices in Appendix D.

II. OBSERVABLES AND FINITE-SIZE SCALING

A. Observables

We use γx,y(A) = 1 and 0 to represent the situation that,
in a configuration A of bond variables, lattice sites x and y

belong to the same and to different clusters, respectively. The
following observables were studied:

(1) Energy-like quantities:
(a) The bond-occupation density ρb = 〈Nb〉/Ne, where

Ne denotes the number of edges in the lattice, and “〈〉”
represents the ensemble average.

(b) The cluster-number density ρk = 〈Nc〉/Ns, where
Ns denotes the number of sites in the lattice.

(c) The nearest-neighbor connectivity gn, defined by

En(A) =
∑

xy∈{eij }
γx,y(A), gn = 〈En〉/Nn,

where the sum is on all nearest-neighbor pairs, and Nn = Ne

is the total number of nearest-neighbor pairs.
(d) The next-nearest-neighbor connectivity gnn, defined

analogously as gn, except that the summation on xy involves

next-nearest-neighbor pairs, and that the denominator Nn

is replaced by the total number of next-nearest-neighbor
pairs of the lattice. Connectivities at other distances can be
defined similarly.
(2) Specific-heat-like quantities:

(a) Cn = (〈E2
n 〉 − 〈En〉2)/Ne.

(b) Cnn, defined analogously as Cn for the next-nearest
neighbors.

B. Finite-size scaling

The analysis of the sampled quantities, obtained by nu-
merical simulation of the percolation model, is based on FSS
predictions. To obtain these predictions, one first expresses
these quantities in terms of the derivatives of the free-energy
density f = −L−d ln Z of the random-cluster model with
respect to the thermal field t , the magnetic field h, or the
parameter q. Then, one applies the scaling relation for the
free-energy density f (q,t,h,L), which is

f (q,t, h, L) = fr(q,t, h) + L−dfs(q,tLyt , hLyh,1), (3)

where the irrelevant scaling fields have been neglected, fr

denotes the regular part of the free-energy density, and fs is
the singular part. The thermal scaling field t is approximately
proportional to u − uc, where uc is the critical value of u.

Differentiation of the partition sum Eq. (2) with respect to
u at the critical point shows that

(−uLd/Ne)(∂f/∂u) = N−1
e 〈Nb〉 ≡ ρb(L) = ρb,0 + aLyt−d ,

(4)

where ρb,0 represents the bond density in the thermodynamic
limit. The last equality in Eq. (4) follows from Eq. (3). In the
q → 1 limit, the amplitude a vanishes as a ≈ a1(q − 1).

The FSS behavior of the nearest-neighbor connectivity
gn(L) follows from its relation with ρb(L). The mapping on
the random-cluster model [7] shows that Potts variables in
the same cluster are equal, variables in different clusters are
uncorrelated, and that each Potts pair of nearest neighbors
is connected by a bond with probability pδσiσj

, where p ≡
u/(u + 1). The fraction gn of the nearest neighbors belonging
to the same cluster thus contribute a term pgn to the bond
density. The remaining fraction 1 − gn of nearest-neighbor
pairs lie across a boundary between two different clusters,
and there is still a probability 1/q that the two spins of the
pair are equal. The latter pairs thus contribute a second term
p(1 − gn)/q to the bond density. Therefore, for integers q > 1,
the bond density is expressed in gn as

ρb = p[gn + (1 − gn)/q]. (5)

It follows from Eqs. (4) and (5) that, at criticality p = pc, gn

is given by

gn(L) = qρb,0/pc − 1

q − 1
+ qaLyt−d

(q − 1)pc
. (6)

One expects that this expression remains valid for noninteger
values of q. We denote the first term in Eq. (6) by gn,0 and
postpone its evaluation to Sec. III. In the limit q → 1, it is
sufficient to linearize the amplitude a as a 
 a1(q − 1), which
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yields

gn(L) = gn,0 + gn,1L
yt−d , (7)

where the amplitude gn,1 takes a nonzero value a1/pc. The
above equation expresses that, in spite of the suppression of
the critical thermal fluctuations, gn(L) does display a singular
dependence on L. Similar FSS behavior is expected for gnn(L).

For the specific-heat like quantities Cn and Cnn at criticality,
one might simply expect

Cn(L) ∼ Cnn(L) ∝ C0 + c1L
2yt−d . (8)

As numerically demonstrated later, Eq. (8) does not hold
exactly, namely, a term proportional to L2yt−d ln L is present.
We will explain the logarithmic factor by relating Cn to
observables whose two-point functions scale logarithmically
for q → 1 [3,4].

III. EXACT VALUES FOR THE CONNECTIVITY
gn IN THE THERMODYNAMIC LIMIT

At criticality, Eq. (6) yields, in the thermodynamic limit,

gn,0 = qρb,0/pc − 1

q − 1
. (9)

Using this formula, and the known behavior of ρb,0(q) and
pc(q), exact values of gn can be derived. On the square lattice,
the condition of self-duality yields the critical parameters
ρb,0(q) = 1/2 and pc = √

q/(
√

q + 1). Thus, for general
values of q, one has

gn,0(q) =
√

q + 2

2(
√

q + 1)
, (10)

which yields gn,0 = 3/4 for the bond-percolation problem
(q = 1).

For the triangular lattice one has 〈δσiσj
〉 = −E/3K , where

E is the reduced internal energy. The critical value of K as
a function of q is given in Ref. [10], and that of E is given
in Ref. [11]. At criticality, considering ρb,0 = pc〈δσiσj

〉, the
substitution of Kc(q) and Ec(q) into Eq. (9) yields the function
gtri

n,0(q) as

gtri
n,0(q) = −qEc/3Kc − 1

q − 1
. (11)

For the honeycomb lattice, which is dual to the triangular
lattice, the function ghon

n,0 (q) can be obtained from its duality
relation with gtri

n,0(q). The relation tells that if there is a (no)
bond on an edge of the triangular lattice, there will be no (a)
bond on the dual edge in the honeycomb lattice. Furthermore,
if there is no bond between two nearest-neighbor sites, then,
if the two sites are connected (disconnected), the dual pair of
sites will be disconnected (connected).

Taking the q → 1 limit of Eq. (11), one can de-
rive (see Appendix D) that gtri

n,0 = 3(2 + 7ptri
c )/4(5 − ptri

c ) =
0.714 274 133 · · · for the bond-percolation problem on
the triangular lattice, and making use of the duality
relation, we obtain ghon

n,0 = 3(−2 + 9phon
c )/4(1 + 4phon

c ) =
0.804 735 202 · · · for the honeycomb lattice, where ptri

c =
2 sin(π/18) and phon

c = 1 − 2 sin(π/18) [17] are bond-
percolation thresholds for the two lattices, respectively. Noting

that ptri
c is the solution to p3 − 3p + 1 = 0 [17], substituting

the relations between gn,0 and ptri
c into the cubic equation,

it can be derived that the gtri
n,0 and ghon

n,0 are solutions to
cubic equations 64x3 − 144x2 − 144x + 153 = 0 and 64x3 −
432x2 − 720x + 333 = 0, respectively. These results are sim-
ilar to those of Ref. [8], where the results of Ref. [11] for
the cluster-number densities on the triangular and honeycomb
lattices are written in terms of pc of the two lattices, and
identified as solutions to cubic equations.

IV. NUMERICAL RESULTS

To confirm the exact values of gn, and to explore the FSS
properties, we simulated the bond percolation models on the
square, triangular, honeycomb, and simple-cubic lattices. The
results are presented in the following subsections.

A. Finite-size analysis for the square lattice

The Monte Carlo simulations of the bond-percolation
model on L×L square lattices with periodic boundary con-
ditions follow the standard procedure: each edge is randomly
occupied by a bond with the critical probability p = pc = 1/2,
and the resulting bond configuration is then decomposed in
percolation clusters. Quantities are sampled after every sweep.
The simulations used 22 sizes in range 4 � L � 8000, with
numbers of samples around 100 million for L � 120, 80
million for 160 � L � 480, 50 million L = 800, 25 million
for L = 1600, 10 million for L = 4000, and 2.5 million for
L = 8000. Roughly 22 months of computer time were used.

1. Connectivities gn and gnn

We fitted our Monte Carlo data for gn by the formula

gn = gn,0 + Lyt−d (c1 + c2L
yi ), (12)

with yt = 3/4, yi = −2, and d = 2. Extrapolations are con-
ducted by successively removing the first few small-size
data points, while using the guidance of the χ2 criterion.
The results are gn,0 = 0.749 999 99(13), c1 = 0.277 6(3), and
c2 = −0.15(13), with Lmin = 16. These error margins in
the numerical results are quoted as two standard deviations
and include statistical errors only. The gn,0 value is in
perfect consistency with the assumption of the continuity
of gn(L = ∞) in Eq. (6) as a function of q, used to derive
gn(L = ∞) = 3/4 in the limit q → 1.

The fit of the gnn data, using the same scaling formula,
Eq. (12), yielded gnn,0 = 0.687 500 0(2), c′

1 = 0.416 5(4), and
c′

2 = −0.31(17), with Lmin = 16. The precision of gnn,0 sup-
ports the conjecture that gnn(L = ∞) = 11/16 holds exactly.
This reproduces a conjecture [12] for correlations in the
completely packed O(1) loop model, which was based on
exact results for correlations on L×∞ cylinders for several
finite L values. This O(1) loop model can be mapped on the
square-lattice percolation model on a cylinder, but with the
axis of the cylinder along a diagonal direction of the square
lattice. In Appendix C we describe the relation between gnn in
the percolation model and the probability that two consecutive
points lie on the same loop of the completely packed O(1)
loop model.
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TABLE I. Data for the nearest- and next-nearest-neighbor connectivities and the amplitudes of their fluctuations for the bond-percolation
model. These data apply to L×L systems on square lattices with periodic boundary conditions. The quoted error bar corresponds to one
standard deviation.

L 4 8 16 32 64 120

gn 0.797 65(2) 0.770 51(1) 0.758 66(1) 0.753 643(4) 0.751 536(2) 0.750 698(1)
gnn 0.755 67(3) 0.718 11(2) 0.700 48(1) 0.692 964(5) 0.689 804(3) 0.688 547(2)
Cn 1.156 8(2) 1.674 6(2) 2.152 2(3) 2.564 3(4) 2.907 8(4) 3.164 2(5)
Cnn 1.763 9(2) 2.820 3(4) 3.831 6(5) 4.711 8(6) 5.451 5(7) 6.0063(8)

L 200 480 800 1600 4000 8000

gn 0.750 368(1) 0.750 123 4(3) 0.750 065 4(3) 0.750 027 4(2) 0.750 008 8(1) 0.750 003 6(1)
gnn 0.688 052(1) 0.687 685 3(5) 0.687 598 1(4) 0.687 541 1(3) 0.687 513 2(2) 0.687 505 3(2)
Cn 3.337 5(5) 3.574 2(6) 3.683 0(7) 3.799 6(11) 3.917(2) 3.976(4)
Cnn 6.382 4(10) 6.899 2(11) 7.136(2) 7.391(2) 7.650(3) 7.780(7)

The Monte Carlo data for gn and gnn are presented in Table I.
We also performed some transfer-matrix calculations of these
two quantities in L×∞ bond-percolation systems. These show
that the connectivities converge very quickly to their infinite-
system values 3/4 and 11/16 as L increases. The finite-size
results for gn and gnn are obtained as fractional numbers, which
reflects the interesting algebraic properties already observed in
the related context of the completely packed O(1) loop model
[12]. These results are presented in Appendix B.

2. Numerical evidence of a logarithmic factor
in the scaling behavior of Cn and Cnn

For the quantity Cn, which describes the amplitude of the
fluctuations in gn, we tried several fits according to

Cn = Cn,0 + Lψ (d1 + d2L
yi + · · · ). (13)

The results suggest that Cn,0 ≈ 4.22 and ψ ≈ −0.358. For
example, a fit to the data by Cn,0 + Cn,1L

ψ yielded Cn,0 =
4.20(4), Cn,1 = −6.2(6), ψ = −0.368(13), with Lmin = 320
for the cutoff at small system sizes. However, some caution
concerning the result ψ ≈ −0.358 for the leading finite-size
exponent in Cn seems justified. Apart from the fact that
the exponent −0.358 cannot be expressed as a suitable
combination of the renormalization exponents and the space
dimensionality d, acceptable values of χ2 could only be
obtained for unusually large Lmin.

Since, as will be argued in Sec. V, a multiplicative
logarithmic factor may occur in the singular behavior of Cn, we
also applied fits according to Cn = Cn,0 + d1L

y1 ln L + d2L
y2 .

For y1 = y2 this reduces to Cn = Cn,0 + d1L
y1 ln L/L0 +

. . . , with d2 = −d1 ln L0. With fixed y1 = y2 = 2yt − d =
−1/2, the fit led to Cn,0 = 4.169 8(12), d1 = −1.462(4), d2 =
−4.018(5), with Lmin = 8. Other fits with y1 or y2 as free
parameters yielded consistent results. One observes that the fits
including a logarithm use fewer parameters and/or a smaller
cutoff Lmin. This indicates that a multiplicative logarithmic
factor indeed appears in the scaling of Cn. We present our data
for this quantity in Table I. The existence of the logarithmic
factor in these data is illustrated in Fig. 1.

For the quantity Cnn, which represents the amplitude of
the fluctuations in gnn, a fit by Cnn,0 + Cnn,1L

ψ led to Cnn,0 =
8.30(3), Cnn,1 = −12.8(3), and ψ = −0.358(3), necessarily
with a cutoff at a large size Lmin = 200. These results tell that

the FSS behavior of Cnn on the square lattice is similar to that of
Cn. A fit to the data by Cnn,0 + d ′

1L
−1/2 ln L + d ′

2L
−1/2 yielded

Cnn,0 = 8.206(2), d ′
1 = −3.271(7) and d ′

2 = −8.43(1), with
Lmin = 8. Other fits with either or both of the exponents as free
fitting parameters also yielded results consistent with those for
Cn. Thus, also the results for Cnn indicate the existence of a
logarithmic factor. Data for Cnn are also presented in Table I
and plotted in Fig. 1.

B. Finite-size analysis for other lattices

1. Triangular lattice with periodic boundary conditions

We simulated the bond-percolation problem on the triangu-
lar lattice at the percolation threshold ptri

c = 2 sin(π/18) [17].
Rhombus-shaped lattices were used, with periodic boundary
conditions applied along edges of the rhombus. We used
lattices with L2 sites, with 7 different values of the linear size L

in the range between 18 and 1152. The number of samples was
100 million for each size. Fits of the gn data by gtri

n,0 + c1L
y1

 4

 8

 12

 16

 20

10 102 103 104

ΔC
n 

 L1/
2

L

10

30

10 103

ΔC
nn

  L
1/

2

L

FIG. 1. (Color online) The quantities �CxL
1/2 = (Cx(∞) −

Cx(L))L1/2, where x represents “n” and “nn” (inset), versus system
size L on a logarithmic scale. The quantities Cn(L), Cnn(L) are
the amplitudes of the fluctuations in the nearest- and the next-
nearest-neighbor connectivities, respectively, for bond percolation
on L×L square lattices with periodic boundary conditions. We use
Cn(∞) = 4.169 8 and Cnn(∞) = 8.206, as determined by our fits.
The figures clearly indicate the presence of a logarithmic factor in the
leading scaling term of Cn and Cnn. The lines are added for clarity.
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yielded gtri
n,0 = 0.714 273 9(8) and y1 = −1.249(7). The value

y1 agrees well with yt − d = −5/4. Fits of the data by Eq. (12)
led to gtri

n,0 = 0.714 273 9(3), which is in good agreement with
the theoretical prediction 0.714 274 133 · · · in Sec. III. For
gnn, fits of the data by Eq. (12) yielded gtri

nn,0 = 0.637 428 6(5).
A fit of the Cn data by C tri

n,0 + c1L
ψ led to C tri

n,0 = 7.24(3),
c1 = −10.0(3), and ψ = −0.351(8), with Lmin = 144. The
value −0.351 of the exponent is quite different from 2yt − d =
−1/2. When including a logarithmic factor, a fit of the Cn data
by C tri

n,0 + c1L
−1/2 + c2L

−1/2 ln L yielded C tri
n,0 = 7.140(3),

c1 = −6.99(3), and c2 = −2.54(2), with Lmin = 18. For Cnn,
the first fit led to ψ = −0.343(7), with Lmin = 144, and the
second fit yielded C tri

nn,0 = 17.595(11), c1 = −18.5(2), and
c2 = −7.67(7), with Lmin = 36.

The above results tell that the FSS behavior of the
connectivities and their fluctuations on the triangular lattice
is similar to that on the square lattice.

2. Honeycomb lattice with periodic boundary conditions

We also simulated the bond-percolation problem on the
honeycomb lattice at the percolation threshold phon

c = 1 −
2 sin(π/18). Rhombus-shaped lattices were used, with peri-
odic boundary conditions applied along edges of the rhombus.
We used lattices with L2/2 sites, with eight different values
of the linear size L in the range between 8 and 1024. The
number of samples was 100 million for each size. Fits of the gn

data by ghon
n,0 + c1L

y1 yielded ghon
n,0 = 0.804 735 3(2) and y1 =

−1.250(1). The value y1 agrees well with yt − d = −5/4,
and the numerical value of ghon

n,0 is in good agreement with the
theoretical prediction 0.804 735 202 · · · in Sec. III.

A fit of the Cn data by Chon
n,0 + c1L

ψ led to Chon
n,0 = 2.367(6),

c1 = −2.94(4), and ψ = −0.351(5), with Lmin = 128. The
value −0.351 of the exponent is quite different from 2yt − d =
−1/2. When including a logarithmic factor, a fit of the Cn data
by Chon

n,0 + c1L
−1/2 + c2L

−1/2 ln L yielded Chon
n,0 = 2.332 8(6),

c1 = −2.170(4), and c2 = −0.722(2), with Lmin = 16. Thus,
as expected, the FSS behavior on the honeycomb lattice
is similar to that on the square and triangular lattices. It
indicates that the logarithmic factor is a universal property
of two-dimensional lattices.

3. The three-dimensional cubic lattice

The bond-percolation model on three-dimensional L3

simple-cubic lattices with periodic boundary conditions was
investigated. The simulations were done at 11 different sizes
4 � L � 256, at a bond-occupation probability p = pcub

c =
0.248 811 8 [15]. The number of samples was over 100 million
for L � 64 and around 10 million for L � 128.

A fit of the gn data by gcub
n,0 + c1L

y1 led to gcub
n,0 =

0.359 404 4(3) and y1 = −1.857 3(14), with Lmin = 24. The
y1 value is consistent with y

(3)
t − d ≈ −1.859, as it follows

from the d = 3 literature value of the thermal exponent,
namely y

(3)
t = 1.141 0(15) [15].

A fit of the Cn data by Ccub
n,0 + d1L

ψ yielded Ccub
n,0 =

6.57(2) and ψ = −0.602(16), with Lmin = 32. Including a
correction term with exponent y

(3)
i = −1.2 [15], another fit

of the data by Ccub
n,0 + Lψ (d1 + d2L

y
(3)
i ) led to Ccub

n,0 = 6.57(2)
and ψ = −0.62(2), with Lmin = 16. These values of ψ are

 7.2

 9.6

 12

 14.4

 16.8

 1  10  100

ΔC
ncu

b   L
0.

71
8

L

FIG. 2. (Color online) The quantity �Ccub
n L0.718 = (Ccub

n (∞) −
Ccub

n (L))L0.718 versus system size L on a logarithmic scale. Ccub
n (L)

represents the amplitude of the fluctuations in the nearest-neighbor
connectivities for percolation on a L3 simple-cubic lattice with
periodic boundary conditions. We use Ccub

n (∞) = 6.566 as obtained
from the fit. The line is added for clarity. Its nonzero slope expresses
the presence of a logarithmic factor in the leading finite-size
dependence of Ccub

n . Deviations at small L values are attributed to
finite-size correction terms.

different from 2y
(3)
t − d ≈ −0.718. Instead, a fit by Ccub

n,0 +
L−0.718(d1 + d2 ln L + d3L

y
(3)
i ) led to Ccub

n,0 = 6.556(16), d1 =
−8.0(7), and d2 = −1.25(22), with Lmin = 16. These fit
results support the appearance of a multiplicative logarithmic
factor in the FSS behavior of Cn, which is also shown in Fig. 2.

4. The square lattice with open boundaries

We also performed bond-percolation simulations at a
bond-occupation probability p = 1/2, using a square L×L

geometry, with periodic boundary conditions in one direction
and open boundary conditions in the other direction. We took
11 system sizes from L = 8 to L = 256, and a number of
100 million independent percolation configurations for each
size, in order to sample the nearest- and next-nearest-neighbor
connectivities gsur

n and gsur
nn on the open boundaries. Note that

a pair of next-nearest neighbors on the boundary is separated
by a distance of 2 lattice units, instead of

√
2 as in the bulk.

Fits of the gsur
n data by gsur

n,0 + c1L
y1 yielded gsur

n,0 =
0.625 000 1(12) and y1 = −1.999(6); and fits of the gsur

nn
data led to gsur

nn,0 = 0.449 789(2), c1 = 2.22(5), and y1 =
−2.005(7). On a free boundary, the scaling dimension of the
energy operator ε should be replaced by �ε = 2 [18] (yε =
d − �ε = 0). The numerical results for gsur

n and gsur
nn agree very

well with y1 = yε − d = −�ε . The surface connectivities
converge more quickly with the size of the system than the
bulk ones, possibly because surface clusters are smaller or
their correlations fall off faster, so that they are not as strongly
affected by the finite size of the system.

The result for the surface connectivity strongly suggests
that gsur

n,0 = 5/8 holds exactly. It applies to a system with a
bond probability p = 1/2 on the open boundary. When we
erase those bonds, the limiting probability that two nearest-
neighboring sites on the boundary are connected decreases to
gsur′

n,0 = 5/32, as can be easily checked by adding a row of
p = 1/2 bonds perpendicular to the boundary. Next, we may
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merge two half-infinite systems, one with and one without
boundary bonds, thus reconstructing the infinite system. The
combined probability that the two nearest-neighboring sites
are now connected by some path within either system is
5/8 + 3/8×5/32 = 175/256, slightly smaller than the bulk
value 3/4. It thus appears that there is a probability 3/4 −
175/256 = 17/256 that connections between the two neigh-
boring sites exist only via paths entering both half systems.

V. ORIGIN OF THE LOGARITHMIC FACTOR
IN THE FINITE-SIZE SCALING

We show that the quantity Cn relates to connectivities of
four points {�x1,�y1,�x2,�y2}, in which �x1 and �x2 are two sites
separated by a distance r , and �y1, �y2 denote a nearest neighbor
of �x1 and �x2, respectively. In Ref. [3] a logarithmic term was
derived in the FSS of these connectivities, in the limit q → 1.
It was obtained from the mixing of the energy operator with
the operator that connects two random clusters. These two
operators become degenerate at q = 1, with the same scaling
dimension 5/4 in two dimensions.

Following the notation of Ref. [3], we define P0(r) as the
probability that the sites {�x1,�y1,�x2,�y2} belong to four different
percolation clusters; P1(r) as the probability that {�x1,�y1,�x2,�y2}
belong to three different clusters, of which one cluster connects
one of {�x1,�y1} to one of {�x2,�y2}; and P2(r) as the probability
that the four points belong to two different clusters, each of
which contains one point of {�x1,�y1} and one point of {�x2,�y2}.
The probability that the pair {�x1,�y1} is unconnected, while the
pair {�x2,�y2} is simultaneously unconnected, is equal to

P0(r) + P1(r) + P2(r) = 〈(1 − γx1y1 )(1 − γx2y2 )〉
= 1 − 2gn + 〈γx1y1γx2y2〉, (14)

(for convenience, we omit the arrow symbol over the site
coordinates here and below).

Next, we express the quantity Cn as

Cn = N−1
e

(〈
E2

n

〉 − 〈
En

〉2)
= N−1

e

∑
x1y1, x2y2

(〈γx1y1γx2y2〉 − 〈γx1y1〉〈γx2y2〉)

=
⎛
⎝N−1

e

∑
x1y1 �=x2y2

〈γx1y1γx2y2〉
⎞
⎠ + 〈γx1y1〉 − Ne〈γx1y1〉2

=
⎛
⎝N−1

e

∑
x1y1 �=x2y2

〈γx1y1γx2y2〉
⎞
⎠ + gn − Neg

2
n . (15)

The FSS singularity of Cn resides in the first term in the last
line of Eq. (15), in particular in the dependence of 〈γx1y1γx2y2〉
on the distance r between (x1y1) and (x2y2). Using Eq. (14),
and considering that 1 − gn equals the probability that two
neighboring points belong to different clusters, one derives〈

γx1y1γx2y2

〉
r

= (P0(r) + P1(r) + P2(r) − 1 + 2gn)

= (P0(r) +P1(r) + P2(r) − (1 − gn)2) + g2
n .

(16)

According to Ref. [3], it behaves as 〈γx1y1γx2y2〉r 
 g2
n +

(a + b ln r)r−2� in two dimensions, where � = 5/4 is the

common scaling dimension of the two degenerate operators.
The scaling behavior of the sum is, therefore,

N−1
e

∑
x1y1 �=x2y2

〈
γx1y1γx2y2

〉 ≈ (Ne − 1)g2
n

+
∫ L/2

1
2πrdr(a + b ln r)r−5/2

= (Ne − 1)g2
n + (A + B ln L)L−1/2, (17)

where A and B are nonuniversal constants. Substituting the
above result in Eq. (15), one gets

Cn(L) = Cn(∞) + d1L
−1/2 ln L + d2L

−1/2 + · · · . (18)

This explains the multiplicative logarithmic factor in the
singular part of Cn.

Equation (18) still contains a contribution due to gn, which,
as noted in Sec. II B, satisfies gn = gn,0 + c1L

yt−d + o(Lyt−d ).
The terms in Eq. (18) originating from gn thus contribute a
constant contained in Cn(∞), and the omitted terms include
one proportional to Lyt−d , etc. This conclusion is consistent
with the numerical results in the previous section.

Similar arguments apply in the case of Cnn. The above
analysis is not restricted to the two-dimensional case. Indeed,
a similar relation between Cn and the four-point connectivities
holds for d > 2; and it is expected that the energy operator
and the operator that connects two random clusters become
degenerate also in higher dimensions [3,4,19]. Thus we expect
a logarithmic factor also for d > 2 in the FSS behavior of
Cn, which is supported by our numerical results for the three-
dimensional cubic lattice in the previous section.

VI. DISCUSSION

As already clear from the work of Mitra et al. [12], critical
connectivities in the percolation model display remarkable
algebraic properties. Completely in line with these findings
are the results for the exact eigenvectors in Appendix B,
the exact value gn = 3/4, and the conjectured exact values
gnn = 11/16 and gsur

n = 5/8 for the square-lattice model. We
also derived, from the existing results for the Potts model, the
exact values of gn on the triangular and honeycomb lattices.
Results from Monte Carlo simulations agree very well with
these exact or conjectured values. In addition, we numerically
determined some other neighboring connectivities. Our results
for critical short-range connectivities in the thermodynamic
limit are summarized in Tables II and III. For the RC model
with q �= 1, the critical nearest-neighbor connectivity can
be obtained from Eqs. (10) and (11), for the square and
triangular lattices, respectively; and for the honeycomb lattice,
the nearest-neighbor connectivity can be obtained from its
duality relation with that of the triangular lattice.

In this work, for the percolation model, we also investigated
the FSS behavior of the short-range connectivities and their
fluctuations. As far as we know, the fluctuation amplitudes Cn

and Cnn have not yet been studied before. While gn and gnn

are energy-like quantities with leading FSS term proportional
to Lyt−d , so that their fluctuations may be expected to have a
leading scaling exponent 2yt − d, the analysis using a simple
power of the system size yields a numerical exponent that is
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TABLE II. Critical nearest- and next-nearest-neighbor connectiv-
ities for bond-percolation in different lattices. For each lattice, the first
line shows the numerical result(s), and the second line (if applicable)
presents the exact or conjectured (labeled by “*”) value(s). Periodic
boundary conditions are used, except for the “square surface,” where
the connectivities are measured on free one-dimensional surfaces of
the square lattice.

Lattice gn gnn

Square 0.749 999 99(13) 0.687 500 0(2)
3/4 11/16∗ (Ref. [12])

Triangular 0.714 273 9(3) 0.637 428 6(5)
3(2 + 7ptri

c )/4(5 − ptri
c )

Honeycomb 0.804 735 3(2)
3(−2 + 9phon

c )/4(1 + 4phon
c )

Square (surface) 0.625 000 1(12) 0.449 789(2)
5/8∗

Simple cubic 0.359 404 4(3)

very different from 2yt − d. This numerical exponent does
not seem to fit a combination of the dimensionality and
the thermal scaling dimension of the percolation problem.
However, as described above, satisfactory fits (as judged from
the χ2 criterion) are obtained by including a logarithmic
factor, for Cn as well as for Cnn. These results support
that the fluctuations in the neighboring connectivities scale
as C − C0 
 L2yt−d ln(L/L0), where C0 is the value of
the fluctuations in the thermodynamic limit, and L0 is a
nonuniversal factor. We have thus shown the existence of a
class of observables in critical percolation with logarithmic
factors in their scaling behavior, which are closely related
to recently identified four-point connectivities, which scale
logarithmically in critical percolation [3,4]. The origin of
the logarithmic factor is different from a mechanism that
introduces logarithmic factors through the q-dependence of the
critical exponents in some critical singularities in percolation
[20]. From another point of view, the observed FSS behavior
may be used to determine the critical exponent yt in d > 2
dimensions, where an exact value of yt may not be available.
For example, from our results of gn for the simple-cubic lattice,
the value of yt for d = 3 is obtained as 1.142 7(14), which is
comparable with a latest result 1.141 0(15) [15], and consistent
with the value 8/7 conjectured by Ziff and Stell (see Ref. [21]).

TABLE III. Critical third to ninth nearest-neighbor connectivities
for bond-percolation in the periodic square and triangular lattices.
The displacement vectors of the connectivities are listed in Cartesian
coordinates under x,y.

x,y Square x,y Triangular

gn3 2,0 0.649 577 2(6) 2,0 0.619 666 5(6)
gn4 2,1 0.629 978 1(7) 5/2,

√
3/2 0.584 475 2(7)

gn5 2,2 0.599 838 6(8) 3,0 0.569 576 8(8)
gn6 3,0 0.595 566 4(8) 3,

√
3 0.552 726 4(8)

gn7 3,1 0.587 653 5(8) 7/2,
√

3/2 0.548 185 7(10)
gn8 3,2 0.571 119 2(9) 4,0 0.536 507 7(9)
gn9 4,0 0.560 360 4(12) 4,

√
3 0.526 981 8(10)
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APPENDIX A: SPECIFIC-HEAT BEHAVIOR
IN THE LIMIT q → 1

The fluctuations in the energy-like quantities have been
used to obtain specific-heat-like quantities, but thus far we
have not considered the actual Potts model specific heat C

per site, which can be expressed as the dimensionless quantity
C/k ≡ K2∂2f (K,q)/∂2K , where k is the Boltzmann constant
and f (K,q) ≡ Ns

−1 ln Z(K,q) is the reduced free-energy
density. While the specific heat of the random-cluster model
vanishes at q = 1, one may still ask the question how it behaves
in the limit q → 1. From Eq. (1) one reads that the energy
change associated with the ordering of the Potts model, i.e.,
the integrated specific heat, is equal to 2J (q − 1)/q for the
square lattice. The q-dependence of the energy change, and
therefore the vanishing of the specific-heat amplitude at q = 1,
can thus be compensated by introducing a normalization factor
q/(q − 1). This is illustrated in Fig. 3, which shows the
specific heat of the random-cluster model on the square lattice,
including such a factor, in the limit q → 1.

The quantity plotted in Fig. 3 is equal to
K2 ∂3f (K,q)/∂2K∂q at q = 1. The Monte Carlo calculation
of this quantity is slightly more involved than that of the
random-cluster specific heat [22] for general q, because of
the additional derivative to q, which requires sampling of
the correlation of the bond density and the cluster density at
q = 1. In particular, our numerical results were obtained by
sampling of

(
∂3f (K,q)

∂K2∂q

)
q=1

=
{

(u + 1)2

u2

(〈
Nb

2Nc/Ns
〉

− 2〈NbNc/Ns〉〈Nb〉
)−u + 1

u2
〈NbNc/Ns〉

−
[

(u + 1)2

u2

(〈
Nb

2
〉 − 2〈Nb〉2

)

− u + 1

u2
〈Nb〉

]
〈Nc/Ns〉

}
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FIG. 3. (Color online) Dimensionless specific heat C/k of the
q-state Potts model on the square lattice, divided by q − 1, versus
reduced temperature T ∗ ≡ kT /J = 1/K , in the percolation limit
q → 1. The Potts specific heat vanishes near q = 1 as q − 1, so
that the normalization factor 1/(q − 1) compensates the vanishing
specific-heat amplitude. The data points (full squares) were obtained
by extrapolations of finite-size data to the thermodynamic limit.
Estimated error bars do not exceed the symbol sizes. The curves
are added for visual aid only. The critical singularity is governed by
a specific-heat exponent α = 2 − 2/yt = −2/3. The dashed parts
(blue) of the curves display the power-law behavior with this
exponent. In contrast with the Ising model (q = 2), the specific heat
remains finite at the critical point; this illustrates the “nonuniversal”
behavior of the Potts model when q is varied.

and extrapolation to the thermodynamic limit. We simulated
square systems with sizes up to L = 64, taking numbers of
samples up to a few hundred million.

The figure illustrates that the rescaled specific heat remains
finite at the critical temperature and displays a cusp-like
singularity that is, as follows from the known tempera-
ture exponent [13,14] of the Potts model, proportional to
|T ∗ − T ∗

c |−α , with α = −2/3 and the reduced temperature
T ∗ ≡ kT /J = 1/K = −1/ ln(1 − p).

APPENDIX B: TRANSFER-MATRIX CALCULATION
OF THE PERCOLATION CONNECTIVITIES

The key observation behind the results of Ref. [12] is
that the leading transfer-matrix eigenvector can be normalized
such that all its components are integers. Motivated by these
results, we investigated finite L×∞ bond-percolation systems
with the periodic direction along a set of edges, for several
values of L. Indeed we found that it is possible to normalize
the eigenvector belonging to the largest eigenvalue such that
all components are integers with greatest common divisor 1.
While this eigenvector describes the connectivity at the open
end of the cylinder, one can connect two of these systems
by L intermediate bond variables, and thus compute the
connectivities on a cylinder without an open end. It is therefore
possible to express the nearest- and the next-nearest-neighbor
connectivities on these finite systems as exact fractions. The
results of these transfer-matrix calculations are presented in
Table IV. It is apparent that the connectivities converge very
quickly to their infinite-system values 3/4 and 11/16 as L in-
creases. The data were fitted by an iterated power-law method
[23], which yielded gn = 0.750 2(8) and gnn = 0.687 49(2).
These fit results are consistent with the infinite-system
values.

Some practical guidance is given in Ref. [12] about how
one can guess a formula from a series of integer numbers. We
did not succeed in guessing exact formulas for gn and gnn as
functions of L. The difficulty originates from the following
facts: (1) large prime numbers occur, such as 75 337 in the
denominator of the fractional value of connectivities when
L = 5, and 55 051 in the factorization of 18 442 085, which
occurs in the denominator for L = 6; and (2) the integers in
the leading eigenvector increase very rapidly as L increases.
This made clear by an inspection of the smallest elements
of the leading eigenvector. A list of values of these smallest
elements, after normalization as mentioned above, is presented
in Table V for several values of L.

For even L, the entries in Table V are equal to 2(L−2)L/4 for
even L, and for odd L they are equal to (2L−1 − 1)2(L−1)(L−3)/4.

TABLE IV. Nearest- and next-nearest-neighbor connectivities on L×∞ square bond-percolation lattices with periodic boundary conditions
along a set of edges. They are also represented as exact fractions whose numerators and denominators are listed.

L Numerator Denominator gn

2 21 52 0.84
3 1201 392 0.789612097304
4 1496541 13932 0.771234389567
5 4331416849 753372 0.763156025078
6 258134675843541 184420852 0.758972970522
7 3885478927552013401 22662626292 0.756526392191
8 47703428114196051853941 2513685059572 0.754966814629

L Numerator Denominator gnn

2 16 52 0.64
3 114 132 0.674556213018
4 1326144 13932 0.683421208184
5 3893316098 753372 0.685966680489
6 233593856264336 184420852 0.686817539741
7 3529173407855598194 22662626292 0.687151539217
8 390852028122815173284096 7541055178712 0.687302830864
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TABLE V. Integer value (i) of the smallest element in the nor-
malized eigenvector, which corresponds with the largest eigenvalue
of the transfer-matrix for the bond-percolation problem on an L×∞
square lattice with periodic boundary conditions along a set of edges.

L 2 4 6 8 10

i 1 22 26 212 220

L 3 5 7 9

i 3 15×22 63×26 255×212

Thus, defining cL ≡ 2(L−2)L/4, one observes that the smallest
element is cL if L is even, and cL+1 − cL−1 if L is odd.

Since many analytic expressions have been obtained [12]
for the completely packed O(1) loop model, which relate
to specific algebraic numbers series, such as the number
of symmetric alternating sign matrices and coefficients of
the characteristic polynomial of the Pascal matrix [12], one
wonders if it will be possible to find exact expressions for the
aforementioned connectivities as a function of L in the case
of the bond-percolation problem on L×∞ square lattices with
the presently used periodic direction.

APPENDIX C: RELATION BETWEEN PERCOLATION
AND O(1) LOOP CORRELATIONS

Figure 4 illustrates the mapping of a completely packed
loop configuration to a bond configuration of the correspond-
ing bond-percolation problem [24]. Reference [12] gives a
conjecture on the probability that n consecutive points on a

A O Ba b

FIG. 4. Correspondence between completely packed O(1) loop
configurations and configurations of the bond-percolation model. The
figure shows a part of a system wrapped on a cylinder, such that it
is periodic in the horizontal direction and extends to infinity in both
vertical directions. Solid circles show points in the middle of the
lattice edges of the O(1) loop model. The dual lattice of the lattice
defined by these solid circles is divided into two mutually dual square
sublattices, whose lattice sites are shown by open triangles and circles.
Solid lines are for loops, and dashed lines are for bonds in percolation
clusters on one of the dual square lattices. The dotted line indicates a
row where we take the probability that two consecutive points, such as
A and B, on a row lie on the same O(1) loop, and the probability that
two next-nearest-neighbor sites, such as a and b, of the corresponding
percolation configuration belong to the same cluster.

row lie on the same loop of the O(1) loop model on L×∞
cylinders. For n = 2, it predicts that the probability approaches
11/16 as L → ∞. We argue that, for the completely packed
O(1) loop model on L×∞ cylinders, the probability that
two consecutive points on a row, such as A and B in
Fig. 4, lie on the same loop equals the probability that two
next-nearest neighbors, such as a and b in Fig. 4, are in
the same percolation cluster on the corresponding square
lattice. The argument is based on: (1) When two consecutive
points on a row lie on the same loop, the two next-nearest
neighbors on the corresponding percolation lattice belong
to the same cluster. (2) When two consecutive points on a
row lie on different loops, the two next-nearest neighbors
on the corresponding percolation lattice belong to different
clusters.

The two conclusions above can be derived as follows. In
Fig. 4, a and O are located on different sides of the loop
through point A, while b and O are located on different
sides of the loop through point B. In this configuration, A

and B lie on the same loop, so that a and b are adjacent
to and on the same side of the loop. Therefore, a and b

belong to the same percolation cluster on the corresponding
square lattice. Let us now change the loop configuration
such that A and B lie on different loops. Then, the path
aAOBb crosses the loop through A once, i.e., one of a and
b belongs to the inside of that loop and the other one to the
outside. Therefore, a and b belong to different percolation
clusters.

The Mitra-Nienhuis conjecture was based on exact numeri-
cal results for systems on a cylinder with a finite circumference,
which also applies to our transfer-matrix calculations for the
percolation problem. However, the orientation of the O(1)
lattice used in Ref. [12] with respect to the axis of the cylinder
differs by π/4 from our percolation lattice, so that our results
for finite system do not match those for the O(1) model.
But these differences should vanish after extrapolation to the
infinite system.

APPENDIX D: DERIVATION OF THE EXACT
NEAREST-NEIGHBOR CONNECTIVITY FOR

BOND PERCOLATION ON THE TRIANGULAR
AND HONEYCOMB LATTICES

We first derive the exact nearest-neighbor connectivity on
the triangular lattice and then find the one on the honeycomb
lattice using a duality relation. For the bond-percolation
problem on the triangular lattice, with −Ec/3Kc = 1 at q = 1,
from Eq. (11) one gets

gtri
n,0 = 1 −

(
∂(E/3K)

∂q

)
q=1,K=Kc

. (D1)

The value of Kc as a function of q can be obtained from
Ref. [10] as

exp Kc(q) = 1 +
√

q

2
sec

(
1

3
arctan

√
4

q
− 1

)
, (D2)
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and the reduced internal energy at K = Kc is given in Ref. [11] as

Ec(q) = −3ε csc(2φ) sin(2φ/3) sin(4φ/3)
∫ ∞

−∞

sinh[(π − φ)x] cosh(2φx/3)

sinh(πx) cosh(φx)
dx, (D3)

with cos φ = √
q/2 (0 < φ < π

2 ), ε = ln[2 cos(2φ/3)], and q < 4.
Substituting Kc(q) and Ec(q) into Eq. (D1), we derive the exact connectivity in the limit q → 1 as

gtri
n,0 = 1 − 8 ln

(
2 cos 2π

9

)
sin2 π

9

(
3
√

3 − tan π
9

)
cos π

18

9 ln2
[

1
2

(
2 + sec π

9

)](
2 + sec π

9

) + 12 cos π
9 − 8 cos 2π

9 − 4 sin π
18 − 2 ln

(
2 cos 2π

9

)(
7 + 4 sin π

18

)
9 ln

[
1
2

(
2 + sec π

9

)](
2 + sec π

9

)
+ ln

(
2 cos 2π

9

)
cos π

18

{−8 cot π
9 + 3 csc 2π

9 + [−21 + 16
√

13cos
(

1
3 arctan 53

√
3

19

)]
sin 2π

9

}
9 ln

[
1
2

(
2 + sec π

9

)]
= 3

(
2 + 7ptri

c

)
4
(
5 − ptri

c

) = 3(2 + 14 sin[π/18])

4(5 − 2 sin[π/18])
= 0.714 274 133 . . . , (D4)

where ptri
c = 2 sin(π/18) is the bond-percolation threshold

on the triangular lattice [17]. The derivation involved the
calculation of several complicated integrals, which led to
an intermediate result [the first two lines of Eq. (D4)].
We found the simplified expression in the last line of
Eq. (D4) with the help of an answer engine [25] using
numerical values of the intermediate result. We verified
that the two results are exactly equal. In the verification,
we made use of the identities 4 cos(2π/9) = 2 + sec(π/9)
and

√
13 cos(arctan[53

√
3/19]/3) = (4 + 7 sin[π/18])/

(3 − 8 sin[π/18]).
From the above gtri

n,0, one obtains the value of ghon
n,0 as follows.

Let ptri
c be the critical bond-occupation probability on the

triangular lattice and ptri
o the probability that two nearest-

neighbor sites are connected via some path of bonds not
covering the bond between the two sites. Then, (1 − ptri

c )ptri
o is

the probability that there is no bond between nearest-neighbor
sites, while the sites are still connected. Thus,

gtri
n = ptri

c + (
1 − ptri

c

)
ptri

o . (D5)

Similarly, one can write for the honeycomb lattice

ghon
n = phon

c + (
1 − phon

c

)
phon

o . (D6)

The duality property tells that

ptri
c + phon

c = 1, ptri
o + phon

o = 1. (D7)

The substitution of Eqs. (D7) and (D5) into Eq. (D6) yields

ghon
n = 1 − ptri

c + ptri
c

(
1 − gtri

n − ptri
c

1 − ptri
c

)
. (D8)

Using the above equation and the gtri
n,0 value as given in

Eq. (D4), one obtains

ghon
n,0 = 3

(
7 − 9ptri

c

)
4
(
5 − 4ptri

c

) = 3
( − 2 + 9phon

c

)
4
(
1 + 4phon

c

)
= 3(−7 + 18 sin[π/18])

4(−5 + 8 sin[π/18])

= 0.804 735 202 · · · . (D9)
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(2008).
[21] C. D. Lorenz and R. M. Ziff, Phys. Rev. E 57, 230 (1998).

[22] X. Qian, Y. Deng, and H. W. J. Blöte, Phys. Rev. E 71, 016709
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