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States of self-stress—tensions and compressions of structural ele-
ments that result in zero net forces—play an important role in de-
termining the load-bearing ability of structures ranging from bridges
to metamaterials with tunable mechanical properties. We exploit a
class of recently introduced states of self-stress analogous to topo-
logical quantum states to sculpt localized buckling regions in the
interior of periodic cellular metamaterials. Although the topological
states of self-stress arise in the linear response of an idealized me-
chanical frame of harmonic springs connected by freely hinged joints,
they leave a distinct signature in the nonlinear buckling behavior of a
cellular material built out of elastic beams with rigid joints. The sa-
lient feature of these localized buckling regions is that they are
indistinguishable from their surroundings as far as material
parameters or connectivity of their constituent elements are con-
cerned. Furthermore, they are robust against a wide range of struc-
tural perturbations. We demonstrate the effectiveness of this
topological design through analytical and numerical calculations
as well as buckling experiments performed on two- and three-
dimensional metamaterials built out of stacked kagome lattices.
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Mechanical metamaterials are artificial structures with un-
usual properties that originate in the geometry of their

constituents, rather than the specific material they are made of.
Such structures can be designed to achieve a specific linear elastic
response, like auxetic (negative Poisson ratio) (1) or pentamode
(zero-shear modulus) (2) elasticity. However, it is often their
nonlinear behavior that is exploited to engineer highly responsive
materials, the properties of which change drastically under applied
stress or confinement (3–7). Coordinated buckling of the building
blocks of a metamaterial is a classic example of nonlinear behavior
that can be used to drive the auxetic response (4, 8), modify the
phononic properties (5), or generate 3D micro/nanomaterials
from 2D templates (9).
Buckling-like shape transitions in porous and cellular meta-

materials involve large deformations from the initial shape, typically
studied through finite element simulations. However, many aspects
of the buckling behavior can be successfully captured in an ap-
proximate description of the structure that is easier to analyze (5, 6,
10, 11). Here, we connect the mechanics of a cellular metamaterial,
a foamlike structure made out of slender flexible elements (12, 13),
to that of a frame—a simpler, idealized assembly of rigid beams
connected by free hinges—with the same beam geometry. We ex-
ploit the linear response of a recently introduced class of periodic
frames (14), inspired by topologically protected quantum materials,
to induce a robust nonlinear buckling response in selected regions
of two- and three-dimensional cellular metamaterials.
Frames, also known as trusses, are ubiquitous minimal models

of mechanical structures in civil engineering and materials science.
Their static response to an external load is obtained by balancing
the forces exerted on the freely hinged nodes against internal
stresses (tensions or compressions) of the beams. However, a
unique set of equilibrium stresses may not always be found for any
load (15). First, the structure may have loads that cannot be carried
because they excite hinge motions called zero modes that leave all

beams unstressed. Second, the structure may support states of self-
stress—combinations of tensions and compressions on the beams
that result in zero net forces on each hinge. An arbitrary linear
combination of states of self-stress can be added to an internal
stress configuration without disrupting static equilibrium, implying
that degenerate stress solutions exist for any load that can be car-
ried. The respective counts Nm and Nss of zero modes and states of
self-stress in a d-dimensional frame with nn nodes and nb beams are
related to each other by the generalized Maxwell relation (16, 17):

dnn − nb =Nm −Nss. [1]

As Eq. 1 shows, states of self-stress count the excess constraints
imposed by the beams on the dnn degrees of freedom provided
by the hinge positions.
States of self-stress play a special role in the mechanical re-

sponse of repetitive frames analyzed under periodic boundary
conditions (18). Macroscopic stresses in such systems correspond
to boundary loads, which can only be balanced by states of self-
stress involving beams that cross the boundaries. If these states
span the entire system, boundary loads are borne by tensions and
compressions of beams throughout the structure. Conversely, by
localizing states of self-stress to a small portion of a frame, load-
bearing ability is conferred only to that region. Our approach
consists of piling up states of self-stress in a specific region of a
repetitive frame so that the beams participating in these states of
self-stress are singled out to be compressed under a uniform load
at the boundary. In a cellular material with the same beam ge-
ometry, these beams buckle when the compression exceeds their
buckling threshold.
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artificial structures, termed metamaterials, with an unconven-
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Although our strategy is of general applicability, it is particu-
larly suited to isostatic lattices (19, 20), with dnn = nb and no zero
modes other than the d rigid body motions under periodic
boundary conditions. According to Eq. 1, these lattices only have
d states of self-stress, insufficient to bear the dðd+ 1Þ=2 possible
independent macroscopic stresses (18, 21). Additional states of
self-stress can significantly modify the load-bearing ability of these
structures at the cusp of elastic stability. Trivial states of self-stress
can be created by locally adding extra beams between hinges.
However, some isostatic periodic lattices can harbor topological
states of self-stress that owe their existence to the global structure
of the frame. These frames, introduced by Kane and Lubensky
(14), are characterized by a polarization RT and its origin can be
traced to topological invariants calculated from the geometry of
the unit cell. Domain walls between different topological polari-
zations, as in Fig. 1A (14, 22), and lattice defects (23) can harbor
localized states of self-stress, which can be used to drive localized
buckling. Unlike their trivial counterparts, the existence of these
topological states of self-stress cannot be discerned from a local
count of the degrees of freedom or constraints in the region. An
attractive feature for potential applications is their topological
protection from perturbations of the lattice or changes in material
parameters that do not close the acoustic gap of the structure (14,
24–27).
In the remainder of this article, we use robust states of self-

stress to design buckling regions in topological metamaterials
composed of flexible beams rigidly connected to each other at
junctions. As shown in Fig. 1, the states of self-stress are local-
ized to a quasi-2D domain wall obtained by stacking multiple
layers of a pattern based on a deformed kagome lattice (14). The
domain wall separates regions with different orientations of the
same repeating unit (and hence of the topological polarization
RT of the underlying frame). When the material is compressed
uniaxially, beams participating in the topological states of self-
stress will buckle out of their layers in the portion of the lattice
highlighted in red, see Movie S1. The region primed for buckling
is indistinguishable from the remainder of the structure in terms
of the density of beams per site and the characteristic beam
slenderness. We verify using numerical calculations that the
states of self-stress in the idealized frame influence the beam
compressions of the cellular structure in response to in-plane
compressions along the edges. The phenomenon survives even
when the patterns on either side of the domain wall are nearly
identical, reflecting the robustness of the topological design.

Linear Response of the Frame
The distinguishing feature of the isostatic periodic frame used in
our design is the existence of a topological characterization of
the underlying phonon band structure (14). If the only zero
modes available to the structure are the d rigid-body translations,
its phonon spectrum has an acoustic gap; i.e., all phonon modes
have nonzero frequencies except for the translational modes at
zero wavevector. A gapped isostatic spectrum is characterized by
d topological indices ni, one for each primitive lattice vector ai
(i∈ f1, 2g for the 2D lattice used in our design). Although the
phonon spectrum can be changed by smoothly deforming the
unit cell geometry, the indices themselves are integer valued and
thus invariant to smooth perturbations. Their value can only be
changed by a deformation that closes the acoustic gap. Analo-
gous to topological electronic systems such as quantum Hall
layers and topological insulators that harbor protected edge
states (28), the existence of these invariants guarantees the
presence of zero modes or states of self-stress localized to lattice
edges or domain walls where the ni change value.
The count of topological mechanical states at an edge or do-

main wall is obtained via an electrostatic analogy. The lattice
vector RT =

P
iniai (Fig. 1A) can be interpreted as a polarization

of net degrees of freedom in the unit cell. Just as Gauss’s law

yields the net charge enclosed in a region from the flux of the
electric polarization through its boundary, the net number of
states of self-stress (minus the zero modes) in an arbitrary por-
tion of an isostatic lattice is given by the flux of the topolog-
ical polarization through its boundary (14). In Fig. 1A, the left
domain wall has a net outflux of polarization and harbors to-
pological states of self-stress (the right domain wall, with a
polarization influx, harbors zero modes). Although only one of
each mechanical state is shown, the number of states of self-
stress and zero modes is proportional to the length of the domain
wall. Similar results can be obtained by using other isostatic
lattices with an acoustic gap and a topological polarization, such
as the deformed square lattice in ref. 23.
The linear response of a frame can be calculated from its

equilibrium matrix A, a linear operator that relates the beam
tensions t (a vector with as many elements as the number of
beams nb) to the resultant forces on the nodes p (a vector with
one element for each of the 2nn degrees of freedom of the nn
nodes) via At= p. States of self-stress are vectors ~tq that satisfy

RT = RT = RT =A

x 4
B

C

a1

a2

Fig. 1. Topological buckling zone in a cellular metamaterial. (A) Isostatic
frame containing two domain walls that separate regions built out of oppo-
site orientations of the same repeating unit (boxed; the zoom shows the three
unique hinges in the unit cell as disks). This unit cell carries a polarization
RT = a1 (solid arrow), and the periodic frame displays topological edge modes
(14). The left domain wall harbors topological states of self-stress, one of
which is visualized by thickened beams identifying equilibrium-maintaining
tensions (red) and compressions (blue) with magnitudes proportional to the
thickness. The right domain wall harbors zero modes, one of which is visual-
ized by green arrows showing relative displacements that do not stretch or
compress the beams. Modes were calculated using periodic boundary condi-
tions. (B) A 3D cellular metamaterial is obtained by stacking four copies of the
beam geometry in A, and connecting equivalent points with vertical beams to
obtain a structure with each interior point connecting six beams. The beams
are rigidly connected to each other at the nodes and have a finite thickness.
Points are perturbed by random amounts in the transverse direction and a
small offset is applied to each layer to break up straight lines of beams. A 3D-
printed realization of the design made of flexible plastic (Materials and
Methods) is shown in C. The sample has a unit cell size of 25 mm and beams
with circular cross-section of 2 mm diameter. The stacking creates a pile-up of
states of self-stress in a quasi-2D region, highlighted by dotted lines.
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A~t
q
= 0, i.e., they are beam stresses that do not result in net

forces on any nodes (the index q identifies independent nor-
malized states of self-stress that span the null space of A). The
same null vectors are also an orthogonal set of incompatible
strains of the structure, i.e., beam extensions that cannot be re-
alized through any set of point displacements (15).
Because we are interested in triggering buckling through

uniform loads that do not pick out any specific region of the
lattice, we focus on the response to affine strains, where affine
beam extensions ea are imposed geometrically by some uniform
strain «ij across the sample via

ea α = r̂αi «ijr
α
j . [2]

Here, α indexes the beams and rα is the end-to-end vector of
beam α. To attain equilibrium, the beams take on additional
nonaffine extensions ena. Under periodic boundary conditions,
affine strains are balanced by loads across the system boundary
rather than loads on specific nodes, which implies that the re-
sultant beam tensions ta = kðea + enaÞ must be constructed solely
out of states of self-stress (18, 29) (we assume for simplicity that
all beams have identical spring constant k). Therefore, ta =P

qxq~t
q ≡ ~Tx where ~T= ½~t1,~t2, . . . ,~tNss � and the xq are the weights

of the Nss states of self-stress. These weights are determined by
requiring that the nonaffine strains have zero overlap with the set
of incompatible strains (15) (the affine strains are automatically
compatible with the affine node displacements):

~T
T
ena = ~T

T
�
1
k
~Tx− ea

�
= 0, [3]

which gives the solution

x= k~T
T
ea [4]

⇒ta = k~T~T
T
ea = k

X
q

ð~tq · eaÞ~tq. [5]

Therefore, the beam tensions under an affine deformation are
obtained by projecting the affine strains onto the space of states
of self-stress.
Eq. 5 shows that the loading of beams under affine strains is

completely determined by the states of self-stress. In a frame
consisting of a single repeating unit cell, loads are borne uni-
formly across the structure. However, if the structure also has
additional states of self-stress with nonzero entries in ~t

q con-
fined to a small region of the frame, it would locally enhance
tensions and compressions in response to affine strains, provided
the ~t

q have a nonzero overlap with the affine bond extensions
imposed by the strain. Fig. 2 shows the approximate states of
self-stress for the domain wall geometry of Fig. 1A, which has
a nonzero overlap with affine extensions ex and ey due to uni-
axial strains «ij = δixδjx and «ij = δiyδjy, respectively. (These approx-
imate states of self-stress become exact when the separation
between the two domain walls becomes large.) The system-
spanning states of self-stress ~ta and ~t

b in Fig. 2 A and B, respec-
tively, do not single out any particular region. Although they have
a nonzero overlap with both ex and ey, they do not provide sig-
nificant stiffness to a uniaxial loading because a combined affine
strain «ij = δixδjx + βδiyδjy exists with β≈−1.2 such that the overlaps
of the corresponding affine extensions with ~t

a and ~t
b are small

(less than 10−5). Upon compression along one direction, say y,
the frame can expand in the perpendicular direction to keep the
tensions and compressions low in the majority of the sample. In
contrast, the localized states of self-stress shown in Fig. 2 C and D
have a significant overlap with ey but not ex. Therefore, according
to Eq. 5, a uniform compression applied to the lattice along the

vertical direction, with the horizontal direction free to respond by
expanding, will significantly stretch or compress only the beams
participating in the localized states of self-stress.
Whereas the topological polarization guarantees the presence

of states of self-stress localized to the left domain wall, their
overlap with one of the three independent affine strains is de-
termined by the specific geometry of the hinges and bars. For the
frame in Fig. 2, the states of self-stress visualized in Fig. 2 C and
D are crucial in triggering buckling response, which may be
predicted to occur under compression along the y direction (or
extension along the x direction, which would also lead to y
compression because the lattice has a positive Poisson ratio set
by β). In other domain wall geometries, or other orientations of
the domain wall relative to the lattice, the localized states of self-
stress could have small overlap with affine strains, which would
make them inconsequential to the buckling behavior. Alterna-
tively, states of self-stress that overlap significantly with shear
deformations could also be realized that would enable buckling
to be triggered via shear.

Buckling in Topological Cellular Metamaterials
The cellular metamaterial differs from the ideal frame in two
important ways. First, real structures terminate at a boundary, and
loads on the boundary are no longer equilibrated by states of self-
stress, but rather by tension configurations that are in equilibrium
with forces on the boundary nodes (15). However, these tension
states are closely related to system-traversing states of self-stress
in the periodic case, with the forces on the boundary nodes in
the finite system playing the role of the tensions exerted by the
boundary-crossing beams in the periodic system. Therefore, the
states of self-stress also provide information about the load-
bearing regions in the finite structure away from the boundary.
In addition to having boundaries, the cellular block probed in

Fig. 1 also departs from the limit of an ideal frame, as it is made
of flexible beams rigidly connected at the nodes and can support
external loads through shear and bending of the beams in ad-
dition to axial stretching or compression. Nevertheless, the states
of self-stress and tension states of the corresponding frame (with
the same beam geometry) determine the relative importance of
bending to stretching in the load-bearing ability of the cellular
structure (21). To verify that the localized states of self-stress in
the underlying frame influence the response of the finite cellular

A

B

C

D

Fig. 2. Extended and localized states of self-stress of the frame. (A–D)
States of self-stress in the infinite periodic frame obtained by tiling the de-
sign of Fig. 1A in both directions. The states A and B are largely uniform over
the structure, whereas C and D are localized to the left domain wall. The
overlaps of each state of self-stress with the affine strains ex and ey (main
text) are also shown. Only states of self-stress with significant overlaps are
shown; all other states of self-stress in the structure have ~t

q
·efx, yg < 10−5.
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structure, we numerically calculate the in-plane response of each
layer treated as an independent 2D cellular structure with
loading confined to the 2D plane. Each beam provides not just
axial tension/compression resistance but also resistance to shear
and bending. A beam of length L, cross-sectional area A, and
area moment of inertia I resists (i) axial extensions e with a
tension t= ðEA=LÞe, (ii) transverse deformations es with a re-
storing shear force s= 12ðEI=L3Þes, and (iii) angular deflections
of the end nodes θ with restoring moment m= ðEI=LÞθ (Fig. 3).
Because A∼w2 and I ∼w4 for a beam of width w, the relative
contribution of the bending, shear and torsional components to
the total stiffness is set by the aspect ratio w=L of each beam; the
frame limit with no bending or shear stiffness is recovered when
w=L→ 0. The physical sample has beams with aspect ratios in the
range 0.1Kw=LK 0.2, indicating a small but appreciable con-
tribution of shear and torsion to the response.
The 2D linear response of such a structure is calculated by

augmenting the equilibrium matrix A to include an additional
degree of freedom (a rigid rotation angle) at each node, and two
additional restoring forces (shear and torsion) for each beam,
see Materials and Methods. The resulting equilibrium matrix is of
size 3nn × 3nb, which implies that cellular solids based on isostatic
frames with nb ≈ dnn are severely overconstrained for d= 2, 3,
and structurally stable even with free boundaries. In particular,
they can support any loads exerted on the boundary nodes as long
as the net forces and torques about the center of mass are zero.
Once the equilibrium matrix is constructed, its singular value
decomposition can be used to completely determine all stresses
and torques experienced by the beams in response to forces

specified on the boundary nodes (15). Fig. 3 shows the linear
response of each plane of the cellular pattern corresponding to
the domain wall geometry of Fig. 2 under uniform compressive
force applied to the nodes on the top and bottom edges. The
beams participating in the states of self-stress at the left domain
wall are singled out by their high compression; in contrast, the
rest of the structure primarily supports the boundary load
through shear rather than compression or bending. Remarkably,
the unique compression-dominated response of the left domain
wall (originating from the topological invariant in the idealized
isostatic frame with freely hinged joints) survives in cellular
structures away from the isostatic condition.
We expect a similar localized compression-dominated response

in each layer of the stacked structure (Fig. 1 B and C). The en-
hanced compressions along the left domain wall trigger buckling
when the compression exceeds the Euler beam buckling threshold,
ti <−cEI=L2

i , where c is a positive numerical factor determined by
the clamping conditions as well as cooperative buckling effects.
Buckling is signified by a loss of ability to bear axial loads, as the
beam releases its compression by bending out of plane. Upon
compressing the 3D sample between two plates as shown in Fig.
4A, we see a significant out-of-plane deflection for beams along
the left domain wall (Fig. 4 B and C), consistent with buckling of
the maximally stressed beams in Fig. 3A. The deflection in dif-
ferent layers is coordinated by the vertical beams connecting
equivalent points, so that beams within the same column buckle
either upwards (column 1) or downward (column 2) to produce a
distinctive visual signature when viewed along the compression
axis. Beams connecting different planes in the stacked pattern
create additional states of self-stress that traverse the sample
vertically, but these do not single out any region of the material,
and do not couple to the specific in-plane loading of Fig. 4A.
We emphasize that having as many states of self-stress as there

are unit cells along the domain wall is crucial for the buckling to
occur throughout the domain wall. When a beam buckles, its
contribution to the constraints of distances between nodes es-
sentially disappears, reducing the number of load-bearing con-
figurations by one. If there were only a single localized state of
self-stress in the system, the buckling of a single beam would
eliminate this state, and the compressions on the other beams
would be relaxed, preventing further buckling events. However,
the presence of multiple states of self-stress, guaranteed in this
case by the topological origin of the states, allows many buckling
events along the domain wall. In the SI Text, we use an adaptive
simulation that sequentially removes highly compressed beams
to show that each repeating unit along the y direction experi-
ences a unique buckling event even when the loss of constraints
due to other buckling events is taken into account (Fig. S1).

Robustness of the Buckling Region
Finally, we show that the robustness of the topological states of
self-stress predicted within linear elastic theory carries over to
the buckling response in the nonlinear regime. There is a wide
range of distortions of the deformed kagome unit cell which do
not close the acoustic gap, leaving the topological invariants ni
and hence the polarization RT unchanged (14). These distortions
may bring the unit cell arbitrarily close to the regular kagome
lattice with equilateral triangles of beams (for which the gap is
closed and the polarization is undefined). The unit cell of the
2D lattice shown in Fig. 5A is minimally distorted away from
the regular kagome lattice, but this barely noticeable distor-
tion (Fig. 5A, Inset) is sufficient to induce the same topological
polarization RT in the underlying frame as before. As a result,
the domain wall on the left (characterized by a net outflux of
polarization) localizes states of self-stress (shown in Fig. S2),
even though the unit cells are nearly identical on either side.
For ease of visualization, we tested this design in a 2D pro-

totype cellular metamaterial, obtained by laser-cutting voids in a

e

es

es

e

A

B

C

Fig. 3. Stretching, shear, and bending contributions to the linear in-plane
response of the cellular metamaterial. Response of a planar cellular struc-
ture, related to the lattice in Fig. 2 but with free edges, subject to a vertical
compressive force F (solid arrows) at each point highlighted along the top
and bottom edges. The structure is modeled as a network of flexible beams
connected by rigid joints at the nodes, and with each beam providing tor-
sional stiffness in addition to axial stiffness. The beams are colored according
to (A) axial compression; (B) shear load; and (C) bending moment.
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1.5-cm-thick slab of polyethylene foam (Materials and Methods),
leaving behind beams 1–2 mm wide and 10–12 mm long (Fig.
5A). The aspect ratio of the beams is comparable to that of the
3D sample. Because the slab thickness is much larger than the
beam width, deformations are essentially planar and uniform
through the sample thickness, and can be captured by an overhead
image of the selectively illuminated top surface. The sample was
confined between rigid acrylic plates in free contact with the top

and bottom edges, and subjected to a uniaxial in-plane compres-
sion along the vertical direction by reducing the distance between
the plates. Using image analysis (Materials and Methods) we
computed the beams’ tortuosity, defined as the ratio of the con-
tour length of each beam to its end-to-end distance. Buckled
beams have a tortuosity significantly above 1. Under a vertical
compression of 4%, only beams along the left domain wall show a
tortuosity above 1.05, consistent with a localized buckling response
(Fig. 5B). However, under higher strains, the response of the
lattice qualitatively changes. When beams have buckled along the
entire domain wall, its response to further loading is no longer
compression dominated (Fig. S1). Future buckling events, which
are triggered by coupling between torsional and compressional
forces on beams due to the stiff hinges, no longer single out the
left domain wall and happen uniformly throughout the sample
(Fig. 5C and Movie S2).
We have demonstrated that piling up localized states of self-

stress in a small portion of an otherwise bending-dominated
cellular metamaterial can induce a local propensity for buckling.
Whereas this principle is of general applicability, our buckling re-
gions exploit topological states of self-stress (14), which provide
two advantages. First, they are indistinguishable from the rest of
the structure in terms of node connectivity and material parame-
ters, allowing mechanical response to be locally modified without
changing the thermal, electromagnetic, or optical properties. This
feature could be useful for optomechanical (30) or thermo-
mechanical (31) metamaterial design. Second, the buckling regions
are robust against structural perturbations, as long as the acoustic
bulk gap of the underlying frame is maintained. This gap is a
property of the unit cell geometry. Large deformations that close
the gap could be induced through external actuation (32) or con-
finement, potentially allowing a tunable response from localized to
extended buckling in the same sample, reminiscent of electrically
tunable band gaps in topological insulators (33).

Materials and Methods
Deformed Kagome Lattice Unit Cell. The deformed kagome lattices are ob-
tained by decorating a regular hexagonal lattice, built from the primitive
lattice vectors fa1 = ax̂,   a2 =−ða=2Þx̂ + ð ffiffiffi

3
p

a=2Þŷg, where a is the lattice con-
stant, with a three-point unit cell that results in triangles with equal sizes. The
unit cells are described by a parameterization introduced in ref. 14, which uses
three numbers ðx1, x2, x3Þ to quantify the distortion of lines of bonds away from
a regular kagome lattice (xi =0). The unit cell in Fig. 1A, which forms the basis
for the 3D cellular structure, is reproduced by ðx1, x2, x3Þ= ð−0.1, 0.06, 0.06Þ

A B

C

1

2
1

2
Fig. 4. Buckling in the 3D topological cellular metamaterial. (A) Top view of the 3D sample (constructed as outlined in Fig. 1) showing the compression
applied by confining the sample between transparent plates in contact with the front and back surfaces. The buckling zone is highlighted in red as in Fig. 1.
Two vertical columns within this zone are labeled in yellow. Magenta arrows show the compression direction. (B and C) View along the compression axis at
compressions of 0 and 20%, respectively. The beams in the region with states of self-stress have buckled in the vertical direction, whereas other beams have
largely deformed within their stacking planes. (Scale bar, 25 mm.)

RT = RT = RT =A

B

C

Fig. 5. Buckling is robust under polarization-preserving changes of the unit
cell. (A) A 2D foam cellular prototype, whose unit cell maintains the topo-
logical polarization RT even though its distortion away from the regular
kagome lattice is small (a zoom of the constituent triangles is shown within
the yellow circle). The domain wall geometry is identical to that of the 3D
sample, with the left domain wall localizing states of self-stress. (Scale bar,
2 cm.) (B) Response of the structure under a vertical compression of 4% with
free left and right edges. The beams are colored by the tortuosity, the ratio
of the initial length of the beam to the end-to-end distance of the deformed
segment (color bar). (C) Response of the structure under 7% compression,
with beams colored by tortuosity using the same color scale as in B.
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for which the topological polarization is RT =−a1 (14). The unit cell for the
design in Fig. 5A parameterized by ð−0.025, 0.025, 0.025Þ has the same po-
larization. In all cases we describe the unit cell and polarization in the outer
region; the inner region between the domain walls rotates this unit cell by
π, which flips the polarization direction.

Construction of the Equilibrium/Compatibility Matrix. Analysis of the linear
response of a frame or a cellular material begins with the construction of the
equilibrium matrix A. Because it is more natural to relate node displacements
to beam length changes, we describe how to build the compatibility matrix
C=AT, relating point displacements u to extensions e via Cu= e. We con-
struct the compatibility matrix from the contributions of individual beams.
Consider a single beam aligned to the x axis connecting hinge 1 at ð0, 0Þ to
hinge 2 at ðL, 0Þ. There are six degrees of freedom potentially constrained by
the beam: the positions ðxi , yiÞ at each node i and the torsion angle θi. Within
Euler–Bernoulli beam theory, these values are sufficient to determine the
shape of the beam along its length as well as the forces and torques at each
end needed to maintain equilibrium (34). Three independent combinations
of forces and torques can be identified and which are proportional to
generalized strains experienced by the beam: pure tension t ∝ x2 − x1, pure
shear s∝ y2 − y1 − Lðθ1 + θ2Þ=2, and pure bending torque m∝ θ2 − θ1, as il-
lustrated schematically in Fig. 3. In matrix form, this gives

e=

0
@−1 0 0 1 0 0

0 −1 −L=2 0 1 −L=2
0 0 −1 0 0 1

1
A ·

0
BBBBBB@

x1
y1
θ1
x2
y2
θ2

1
CCCCCCA
≡Cu. [6]

The forces and torque (generalized stresses) are obtained from the gener-
alized strains e through the stiffness matrix K, which depends on the Young’s
modulus E, the cross-sectional area A, the area moment of inertia I, and the
beam length L:

σ ≡

0
@ t

s
m

1
A=

0
@EA=L 0 0

0 12EI
�
L3 0

0 0 EI=L

1
A· e≡Ke. [7]

The compatibility matrix for a beam with arbitrary orientation is obtained by
projecting the displacement vectors at the end of each beamonto the axial and

transverse directions using the appropriate rotation matrix, which depends on
the angle made by the beam with the x axis. Each beam in an assembly pro-
vides three rows to the compatibility matrix, with additional columns set to
zero for the degrees of freedom unassociated with that beam. In the simpler
frame limit, each beam only resists axial extensions, and contributes one row
(the first row of the C matrix in Eq. 6) to the compatibility matrix.

Once the equilibrium matrix is constructed, the approximate states of self-
stress of the periodic frame (Fig. 2) as well as the linear response of the
cellular material under loads (Fig. 3) are obtained from its singular value
decomposition following the methods of ref. 15. More details of the com-
putation are provided in the SI Text.

Construction and Characterization of 2D and 3D Prototypes. The 3D structures
were printed by Materialise N.V. through laser sintering of their proprietary
thermoplastic polyurethane TPU 92A-1 (tensile strength 27 MPa, density 1.2
g/cm3, Young’s modulus 27 MPa).

The 2D structures were cut using a VersaLaser 3.5 laser cutter (Laser & Sign
Technology) from 1.5 cm thick sheets of closed-cell cross-linked polyethylene
foam EKI-1306 (EKI B.V.; tensile strength 176 kPa, density 0.03 g/cm3,
Young’s modulus 1.7 MPa). A characteristic load-compression curve of a 2D
sample is shown in Fig. S3.

Image Analysis of 2D Experiment. Images of the 2D cellular prototype (Fig. 5)
were obtained using a Nikon CoolPix P340 camera and stored as 3,000 ×
4,000 px 24-bit JPEG images. To quantitatively identify the buckled beams
in the 2D prototype under confinement, we extracted the tortuosity τ of each
beam, defined as the ratio of the length of the beam to the distance between
its endpoints. Tortuosity was estimated from the sample images through a
series of morphological operations, as detailed in SI Text and Fig. S4. Straight
beams have τ= 1, whereas beams that buckle under axial compression have
τ> 1. Unlike other measures of curvature, tortuosity distinguishes buckled
beams from sheared beams (schematic, Fig. 3B), which have τJ 1.
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