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ABSTRACT

Context. A prescription for the fragment size distribution resulting from dust grain collisions is essential when modelling a range of
astrophysical systems, such as debris disks and planetary rings.
Aims. While the slope of the fragment size distribution and the size of the largest fragment are well known, the behaviour of the
distribution at the small size end is theoretically and experimentally poorly understood. This leads debris disk codes to generally
assume a limit equal to, or below, the radiation blow-out size.
Methods. We use energy conservation to analytically derive a lower boundary of the fragment size distribution for a range of collider
mass ratios. Focusing on collisions between equal-sized bodies, we apply the method to debris disks.
Results. For a given collider mass, the size of the smallest fragments is found to depend on collision velocity, material parameters,
and the size of the largest fragment. We provide a physically motivated recipe for the calculation of the smallest fragment, which
can be easily implemented in codes for modelling collisional systems. For plausible parameters, our results are consistent with the
observed predominance of grains much larger than the blow-out size in Fomalhaut’s main belt and in the Herschel cold debris disks.
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1. Introduction

Fragmenting collisions are important in a range of astrophysical
systems. While the slope of the fragment size distribution and
the size of the largest fragment are well characterized and can
be used confidently in models, the smallest fragment size is less
well understood and is usually assumed to be constant for all col-
lisions. We provide a framework for self-consistently calculating
the smallest fragment size as a function of material and collision
parameters (Sect. 2), and discuss its implications for modelling
debris disks (Sect. 3).

Numerous experimental studies have looked at the fragment
size distribution of destructive collisions, focussing on the slope
of the power law(s), and on the size of the largest fragment
(Davis & Ryan 1990; Ryan et al. 1991; Nakamura & Fujiwara
1991; Ryan 2000). The smaller end of the size distribution has
received considerably less attention; the smallest fragments are
hard to count experimentally, and require a very high resolution
to be captured in numerical simulations. Fragment distributions
are therefore incomplete below sizes of 100 µm, or masses be-
low 10−3 gr (Fujiwara et al. 1977; Takagi et al. 1984). Molecular
dynamics (e.g. Dominik & Tielens 1997) or smooth particle hy-
drodynamics (Geretshauser et al. 2010) simulations have limited
resolution and tend to focus on the fragmentation threshold ve-
locity rather than the smallest fragments.

2. Minimum fragment size in a single collision

We consider collisions below the hypervelocity regime, i.e. the
relative velocity of the colliders is much smaller than their
internal sound speed, generally implying vrel . 1 km s−1.

? Appendices are available in electronic form at
http://www.aanda.org

Based on experiments, we adopt the standard fragment size
distribution

n(s) = C · s−α, (1)

with 3 < α < 4, and C a coefficient we express below. While the
mass is dominated by the largest particles, the surface area and
thus the surface energy is dominated by the smallest fragments.
As the creation of infinitely small fragments would require an
infinite amount of energy, while the amount of kinetic energy
available in a collision is finite, the power law must stop or flat-
ten at some small fragment size. To the best of our knowledge,
however, the regime of fragment sizes relevant for the analysis
below has not yet been probed by available experimental data
nor described theoretically in an astrophysical context.

Assuming spherical fragments with sizes between smin and
smax(�smin), the total fragment mass and surface area are

Mfrag =
4πρC

3(4 − α)
s4−α

max, Afrag =
4πC
α − 3

s3−α
min · (2)

For a collision between two bodies of size s0 and mass M0 =
(4π/3)ρs3

0, mass conservation implies Mfrag = 2M0, and thus

C = 2(4 − α)s3
0sα−4

max. (3)

The pre-collision kinetic energy is simply UK = (1/2)µv2
rel,

where µ = M0/2 denotes the reduced mass. The difference
in surface energy before and after the collision equals ∆US =
γ(Afrag − 8πs2

0), where γ equals the surface energy per unit sur-
face of the material. Assuming that only a fraction η of the ki-
netic energy is used for creating new surface, we can combine
Eqs. (2) and (3) to obtain a lower limit for the smallest fragment
size. For the specific case of α = 3.5, this reduces to

smin =

 24γs0

ηρs0v
2
rel + 24γ

2

s−1
max, (4)
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Fig. 1. Top: minimum fragment size smin in a 20 m/s collision (Eq. (4))
for three materials, as a function of collider size s0. We have assumed
η = 10−2 and smax = 2−1/3 s0. The grey shaded areas are excluded
because of mass conservation (left), and self-gravity (right). The dot-
ted lines indicate the limit of Eq. (6). Bottom: critical energies versus
size for equal-sized collisions. The energy needed to split a particle
(e.g. Eq. (6)) is shown for η = 10−3 (dotted) and η = 1 (dashed).
The solid curves correspond to catastrophic fragmentation of aggregates
(Beitz et al. 2011), and ice and basalt (Benz & Asphaug 1999), showing
both the strength-dominated (small sizes) and self-gravity dominated
regimes (large sizes).

and gives the size of the smallest fragments created in a collision
at vrel, assuming α = 3.5 and smax � smin.

Instead of forming a fragment distribution, we imagine the
limiting case in which the kinetic energy just suffices to split
both colliders in half1, i.e. ηUK = 2πs2

0γ. Solving for s0, we
obtain

ssplit
0 =

3γ
ηρv2

rel

, (5)

which is the smallest particle that can be split in half. The
smallest fragment is slightly smaller, but does not have a rig-
orously defined radius because we assume spherical particles.
Equation (5) is similar to the result of Biermann & Harwit (1980)
if η = 1.

The same limit can be explored using Eq. (4), by forcing
smin ∼ smax ∼ 2−1/3s0. This results in

smin '
5γ
ηρv2

rel

, (6)

which is very similar to Eq. (5). To summarise, in an energetic
collision in which many fragments are created, the size of the
smallest fragment is given by Eq. (4). When the relative velocity
is decreased, the fragment distribution becomes more and more
discrete, until we reach the limit described by Eq. (6), in which
particles can only just be split into two.

Figure 1 shows the minimum size from Eq. (4) as a func-
tion of collider size, assuming vrel = 20 m/s, η = 10−2, and a

1 One could imagine splitting only one of the colliders, or indeed chip-
ping off only small parts of one of the collider bodies. Since less sur-
face area is created, this would still be allowed at very low velocities.
However, in that case the largest fragment is of the same size as s0. We
refrain from identifying this as fragmentation, and use the size derived
in Eq. (5) as the size below which fragmentation becomes inefficient.

Table 1. Material properties for silicate and ice used in this work.

Material ρ (g cm−3) γ (J m−2)
Silicate 2.6 0.05
Ice 1.0 0.74
Aggregate ∼10−1 ∼10−4−10−3

Notes. The values for the typical aggregate are explained in
Appendix A.

maximum fragment that carries half of the initial collider mass.
Gravity is important for bodies larger than 100 m (see below).
Smaller bodies are weaker, and can produce fragments down to
the smin indicated by the solid curve. For example, SiO2 frag-
ments smaller than a micron can, at this velocity, only be formed
by collisions of bodies larger than a few centimetres. The shaded
region, top left, is forbidden, as there Mfrag > 2M0 and mass is
not conserved. Close to smin ∼ s0, the solid curves are non-linear
as the pre- and post-collision surface areas become comparable.

It is interesting to compare Eq. (6) with the traditional form
of the catastrophic fragmentation threshold velocity in equal-
sized collisions: v2

f = 8Q∗. The critical energy, Q∗, has units
of erg/g, and varies with particle mass. For small bodies, the
strength is dominated by cohesion, and for large ones by gravity
(Benz & Asphaug 1999). For solid bodies, this transition occurs
around 100 m in size. Values of Q∗ ∼ 107 erg/g are often taken
as typical for asteroids, and experimentally obtained values for
small grains (mm to cm sizes) can be several orders of magnitude
smaller (Blum & Münch 1993; Beitz et al. 2011). Figure 1 shows
the critical energy for splitting predicted by Eq. (6) as a function
of size for the materials in Table 1 assuming η = 10−3 and η = 1.
The solid lines indicate critical fragmentation energies for basalt
and ice (Benz & Asphaug 1999) and silicate aggregates (Beitz
et al. 2011). The critical fragmentation energies exceed the split-
ting energy, indicating that substantially more energy is required
to destroy – rather than split – colliders. The values plotted for
ice and basalt were obtained at collision velocities of 3 km s−1,
substantially higher than the velocities considered here, and Q∗
is known to depend on velocity (Leinhardt & Stewart 2012).
While such a velocity dependence appears absent in the splitting
energy, it might be implicitly included in η. In fact, η is expected
to vary with material and impact energy. We adopt a constant
value of η = 10−2.

Appendix B investigates similar limits for colliders with dif-
ferent mass ratios, and shows that collisions with a mass ratio
close to unity are the most effective at creating small fragments.

3. Application to debris disks

Debris disks are leftovers of planet formation, and are usually
described by a birth-ring of km-sized asteroid-like particles or-
biting their parent star, together with a population of smaller
bodies formed in a collisional cascade (for a recent review, see
Matthews et al. 2014). A steady-state and scale-independent
population of bodies will follow a size distribution given by a
power law with α = 3.5 (Dohnanyi 1969). Some variation in
α has been found in different simulations. Pan & Schlichting
(2012) find up to α = 4 for cohesion-dominated collisional par-
ticles, and up to α = 3.26 for gravity-dominated ones.

Models of debris disks most often assume a smallest frag-
ment size equal to the blow-out size, sblow (Wyatt & Dent 2002;
Wyatt et al. 2010), or some constant, but arbitrary, smin < sblow
for all collisions (Thébault et al. 2003; Krivov et al. 2008).
The blow-out size corresponds to particles with β = 1/2,
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where β = 1.15Qpr(L?/L�)(M?/M�)−1(ρ/g cm−3)−1(s/µm)−1

is the ratio of the radiation and gravitational force. Particles
with β > 1/2 are removed from the system by radiation pres-
sure. Alternatively, Gáspár et al. (2012) calculate a collision-
dependent smin from mass conservation, but do not study the
surface energy.

If, however, for any relevant collision Eq. (4) predicts smin >
sblow, extrapolating the fragment size distribution down to these
sizes is not justified. For example, starting from Eq. (2) of Krivov
et al. (2008), cm-sized bodies have Q∗ ' 5 × 106 erg/g. In the
Krivov et al. framework, a collision between two such bodies at
70 m/s will then result in fragmentation, as the kinetic energy
('12 J, assuming ρ = 2.35 g/cm3) slightly exceeds the critical
energy (=2mQ∗ ' 10 J), and fragments will be created from a
size comparable to the impactor (Eq. (21) of Krivov et al. 2006)
down to the blow-out size. For this particular collision, Eq. (4)
yields smin � sblow for η = 0.1 and γ = 0.1 J/m2, but smin '

6 µm for η = 10−3. Thus, the difference between our results and
the fragment sizes of Krivov et al. may be substantial, depending
on the true value of η. We stress that our theory is valid for 3 >
α > 4, and does not apply to models that use shallower power
laws, for example Sect. 4.2 of Krivov et al. (2013).

The importance of the limit given by Eq. (4) depends on the
parameters, and can vary per individual collision, depending on
the collision velocity and choice for smax. In the rest of this sec-
tion, we explore in which cases this limit is most relevant.

In a debris disk, a particle of size s0 is most likely formed
in a collision between only slightly larger particles. In addition,
we focus on collisions between equal-sized particles, as these
are most efficient at forming small fragments (Appendix B).
Therefore, we use Eq. (6) as an indication for the lower limit
of the particle size distribution. Quantitative comparisons re-
quire relative collision velocities, which for the largest bodies
are often written in terms of the Keplerian orbital velocity at the
corresponding distance from the central object. For bodies on
orbits with identical semi-major axes, the relative velocity can
then be written in terms of orbital eccentricity and inclination
as f ≡ vrel/vK = (1.25e2 + i2)1/2, with vK = (GM?/a)1/2 the
Keplerian orbital velocity (Wyatt & Dent 2002). In a debris disk,
a range of eccentricities and inclinations will be present. For a
rough comparison, we use average quantities 〈e〉 and 〈i〉 to ob-
tain typical collision velocities. In reality, 〈e〉 and 〈i〉 are poorly
constrained. Estimates range from 〈e〉 ∼ 〈i〉 ∼ 10−3−10−1, de-
pending on the level of stirring (Matthews et al. 2014).

The ratio between the smallest grain size from Eq. (6) and
the blow-out size then becomes

smin

sblow
= 2.4

( a
5 AU

) (L?
L�

)−1 (
f

10−2

)−2 (
η

10−2

)−1 (
γ

0.1 J m−2

)
, (7)

where both the stellar mass and the material density drop out,
and we assumed Qpr = 1. Figure 2 compares this ratio with ob-
servations of debris disks at large radii, where we predict the
most pronounced effect. We have used a fixed γ = 0.1 J m−2,
f = 10−2, and η = 10−2, and the arrows indicate the depen-
dence of smin/sblow on various parameters. For the main dust
belt around Fomalhaut, Min et al. (2010) found the scattering
properties to be consistent with predominantly ∼100 µm sili-
cate grains (sblow = 13 µm Acke et al. 2012). The relative ve-
locities in Fomalhaut are typically taken a factor of 10 higher
(Wyatt & Dent 2002). For HD 105, Donaldson et al. (2012) de-
rived smin = 8.9µm (sblow = 0.5µm) at orbital distances above
∼50 AU. Notably, very large grain sizes of ∼100 µm (sblow .
1µm) are inferred for the recently discovered “Herschel cold de-
bris disks” (Krivov et al. 2013), which are seen around F, G, and
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Fig. 2. Predicted smin/sblow in debris disks, as a function of disk radius.
Arrows indicate how the ratio changes with stellar luminosity, surface
energy, f , and η. Coloured regions indicate observational constraints
on smin/sblow for various systems (see text), and the diagonal solid lines
give our calculations for each system. We fix γ = 0.1 J m−2, f = 10−2,
and η = 10−2 for this comparison.

K type stars. Krivov et al. were not able to model these systems
with a collisional cascade reaching down to smin = 3 µm, and
proposed that the large grains in these systems are primordial,
unstirred material. Our calculations suggest that they can also be
explained as the outcome of a collisional cascade. However, the
model is highly degenerate, as material properties (η and γ) and
belt properties ( f ) are usually poorly known, and all have a large
impact on smin.

In Fig. 2, we assume constant and equal relative velocities
for all particles. In reality, radiation pressure will also increase
the eccentricities of small particles with β . 0.5. The enhanced
eccentricity can be written as eβ = β/(1 − β). The relative veloc-
ity of such a radiation-influenced particle scales with its size as
vrel ∝ β ∝ s−1, while Eq. (6) predicts the fragmentation velocity
scales as vrel ∝ s−1/2

0 . Hence, the relative velocity between the
smallest particles increases faster than the velocity needed for
fragmentation. As a result, particles can reach arbitrarily small
sizes in this regime. Particles smaller than sblow are then removed
on a short timescale. For a more detailed estimation, β should be
evaluated for each particular case, considering the optical prop-
erties of the material and the shape of the stellar spectrum.

A dearth of small grains in weakly stirred disks is also pre-
dicted by Thébault & Wu (2008), but the cause is not a limit
on smin. In their scenario, smin is fixed and the production rate
of the smallest grains decreases with weaker stirring, while the
destruction rate is determined by radiation forces and is unaf-
fected by stirring. While the smallest grains present are always
of blow-out size, their abundance is set by the balance between
their creation and destruction (their Fig. 7).

While the theory developed in this work predicts that the
smallest particles that can fragment further can be quite large
and sizes just below this will be depleted, some smaller particles
will still be created as a result of erosive collisions, collisions be-
tween larger bodies, and collisions that occur above the average
collision velocity. Detailed debris disk models implementing the
surface energy constraint are needed to determine the resulting
size distribution.

4. Discussion

Of the fundamental parameters in our model, the largest uncer-
tainty affects η, the fraction of kinetic energy used for the cre-
ation of new surface. While information may be available about
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the kinetic and surface energy of the largest fragments, it is hard
to quantify whether the remainder of the available energy went
into surface creation, heat generation, or kinetic energy of the
smallest fragments. Experimentally, studying η is challenging,
since it requires sensitive and complete measurements down to
very small sizes. Once the functional form of η is quantified by
laboratory and numerical experiments, observations of smin in a
system of interest may constrain f and thus the local relative
velocities.

During the preparation of this manuscript, we discovered that
a similarly defined smin to the one we present has been explored
in a more abstract framework, and without elaborating on appli-
cations, by Bashkirov & Vityazev (1996). We note that the lack
of data on the size distribution of small collision fragments, as
well as the fraction of kinetic and internal energy in the frag-
ments already noted by Bashkirov & Vityazev, still prevails and
we encourage further experiments to quantify these important
parameters.

Thus far, we have focussed on equal-sized collisions. While
collisions with a larger mass ratio might not lead to catastrophic
fragmentation, cratering and erosion may still be important, and
might be able to form small particles (Appendix B). Assuming
a fixed relative velocity, we focus on a particle of size s1. We
define a mass loss rate ṁ(s) for the larger particle, dependent
on collider size s. Assuming a collision with a particle of size
s < s1 erodes a mass ∝s3, and noting the collision timescale is
proportional to the particle density and collision cross-section,
we obtain for the total mass loss rate Ṁ = ṁ(s) ds ∝ s−3.5s3(s +
s1)2 ds. If the collisional cross-section is dominated by s1, we
find Ṁ ∝ s2

1s1/2, and thus the mass loss is dominated by the
larger bodies. When s ∼ s1, we obtain Ṁ ∝ s5/2.

We have adopted a constant value of 50% of the collider
mass for the largest fragment. However, experiments show smax
can be substantially smaller as a function of material and impact
velocity (e.g. Davis & Ryan 1990; Ryan et al. 1991). Such results
can easily be implemented in Eq. (4) (and Eqs. B.2 and B.3)
as necessary. Since smin ∝ s−1

max, smaller sizes for the largest
remnant will make the production of small particles even more
difficult.

Other collisional systems where the proposed fragment size
limit operates include planetary rings. Our calculations are con-
sistent with the observed dominant grain sizes in the rings
of Saturn, Jupiter, and Uranus. Because of additional relevant
physics, such as tidal and electromagnetic effects, consistency
does not directly imply the dominant grain size in all these rings
is fragmentation-dominated.

The full implications of an energy-limited smin on systems
such as debris disks and planetary rings can only be assessed
with models tracking the full particle population with all rele-
vant processes included. For example, if small particles cannot
be destroyed in collisions, Poynting-Robertson (PR) drag will
influence their orbits, and cause particles to drift towards the star
on timescales of Gyr in the outer parts of disks (Wyatt 2005; van
Lieshout et al. 2014). Such modelling is outside the scope of the
present paper.

5. Conclusions

We investigated the energetic constraints on the lower size limit
in a distribution of collision fragments. A quantification of the
lower limit of such size distributions is relevant for the modelling

of debris disks and other astrophysical systems where collisional
fragmentation is important.

1. Based on surface energy constraints, we derive a parame-
terised recipe for the smallest fragment size in individual
grain-grain collisions.

2. The smallest size in a distribution of fragments from a two-
particle collision, constrained by the collision energy, is
given by Eq. (4), and illustrated in Fig. 1. For example, at
20 m/s, submicron silicate particles can only be effectively
produced by centimeter-sized colliders.

3. In the limit where the colliding bodies are split in half, the
fragmentation threshold velocity is given by Eq. (6).

4. While dedicated models are needed to reveal the full impli-
cations of the fragment size limit, Fig. 2 offers an indication
of where the size distribution is expected to be influenced.

5. In systems where the collision velocities are low, our the-
ory may offer a natural explanation for a paucity of small
grains in debris at large orbital distances, such as observed
in Fomalhaut and the Herschel cold debris disks (Fig. 2).
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Appendix A: Applicability to aggregates

For porous aggregates, the basic principles explored here are
expected to hold, but some material properties have to be al-
tered. First, aggregates have an internal filling factor φ = ρagg/ρ

that is <1, and might be as low as 10−4 in some extreme
cases (Okuzumi et al. 2012; Kataoka et al. 2013). Second, the
’effective’ surface energy γagg will be smaller, since there is
only limited contact between the aggregate’s constituents to be-
gin with. Assuming the parent bodies are built up of spheri-
cal monomers, the effective surface energy can be estimated
as γagg ∼ (a/R)2φ2/3γ, where a and R denote the radius of
the contact area shared by monomers, and the radius of the
monomers themselves. The fraction (a/R) depends on the size
of the monomers and the material properties, but for 0.1-micron-
sized monomers, (a/R) ∼ 0.1 is reasonable.

For aggregates, N-body simulations have been performed
with particles containing up to 106 monomers, and values of η
range from close to unity (Dominik & Tielens 1997; Wada et al.
2009), to several orders of magnitude less (Ringl et al. 2012), and
depend on the employed contact model (Seizinger et al. 2013).

Appendix B: Collisions with different mass ratios

Here we extend the theory to collisions between “targets” and
“projectiles” of arbitrary sizes st > sp. Assuming the fragment
distribution can be described as before, we can still use Eq. (2),
while the pre-collision kinetic energy now equals

UK =
1
2
µv2

rel =
1
2

mpmt

mp + mt
v2

rel. (B.1)

For a given collision velocity, we might then think of two cases,
complete fragmentation when sp ∼ st, and erosion/cratering
when st � sp.

B.1. Catastrophic fragmentation

Since both particles are destroyed completely we may set
Mfrag = mp + mt. For simplicity we will assume in this section
that the change in surface energy is dominated by the fragments
∆US = γAfrag. Using the same definition for η as before and
focussing on the α = 3.5 case, we obtain

smin =

6γ(s3
p + s3

t )2

ηρv2
rel(spst)3

2

s−1
max. (B.2)
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Fig. B.1. Minimum fragment size resulting from destructive unequal
collisions, assuming smin � smax, and relating the largest fragment size
to the heavier collider. The y-axis has been normalized with the value
for smin in equal-mass collisions.

B.2. Erosion

When the mass ratio becomes very large, it is no longer realistic
to assume the target is completely disrupted. Rather, such colli-
sions result in erosion, and the eroded mass is typically of the or-
der of the mass of the projectile (Schräpler & Blum 2011). Thus,
we write Mfrag = κmp, with κ of the order of unity. For large mass
ratios µ→ mp. Furthermore, assuming that the change in surface
energy is dominated by the new fragments, ∆US = γAfrag, we
obtain

smin =

 6γκ
ηρv2

rel

2

s−1
max. (B.3)

Consider now a particle with a size s0 close to the smaller end of
the size distribution, colliding with particle of sizes sx, ranging
from slightly smaller to much larger than s0. Figure B.1 shows
the minimum size of the fragments produced as a function of
collider size sx. The y-axis is normalized to the value obtained
in equal-sized collisions (i.e. between two s0 particles). For mass
ratios below unity, s0 acts as the target, and the mass of the
largest fragment is assumed to equal m0/2. For large mass ra-
tios, s0 acts as a projectile instead, and the largest fragment mass
is set to mx/2. Collisions at mass ratios above 102 are assumed
to be erosive (Seizinger et al. 2013), with the largest fragment
equalling m0/2. Since both the excavated mass, and the largest
fragment mass, depend on the projectile, the curves in the ero-
sive regime do not depend on the mass ratio directly. However,
the size of the target does set an upper limit on κ.
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