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ABSTRACT

We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection,
a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI)
for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by
removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through.
The number of principal components used determines how well the stellar PSF is globally modeled. Using more
principal components may decrease the number of speckles in the final image, but also increases the background
noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized
phase plate. We do not detect any companions, with a model dependent upper mass limit of 13–18 MJup from
4–10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up
to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective
at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the
number of principal components used in PCA proves most effective for pulling out a planet signal.
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1. INTRODUCTION

The detection and characterization of extrasolar planets has
grown dramatically as a field since the first detection in 1992
(Wolszczan & Frail 1992). The most successful detection tech-
niques thus far are radial velocity (RV) and transit detection. Us-
ing ground and space based surveys (HARPS, Kepler, COROT,
etc.), these indirect techniques have discovered over 800 planets
(exoplanet.eu) as well as thousands more planet candidates.

The direct detection of planets provides a unique opportunity
to study exoplanets in the context of their formation and
evolution. It complements the underlying semi-major axis
exoplanet distribution from RV surveys (from 100 AU down
to a few AUs) and enables the characterization of the planet
itself with an examination of its emergent flux as a function
of wavelength. The detection of the planets HR8799 bcde
(Marois et al. 2008), Fomalhaut b (Kalas et al. 2008), β Pic b
(Lagrange et al. 2009), 2MASS1207 (Chauvin et al. 2004),
1RXS J1609−2105 b (Lafrenière et al. 2008), HD 95086 b
(Rameau et al. 2013b), KOI-94 (Takahashi et al. 2013) as well
as discoveries of protoplanetary candidates LkCa 15 b (Kraus &
Ireland 2012) and HD100546 b (Quanz et al. 2013), demonstrate
the potential breakthroughs of the technique. However, thus far,
most dedicated high contrast imaging surveys have yielded null
results (e.g., Rameau et al. 2013a; Vigan et al. 2012; Chauvin
et al. 2010; Biller et al. 2007; Heinze et al. 2008). These null
results are due to the lack of contrast at small orbital separations,
where most planets are expected to be found. Since planets are
concluded to be rare at large orbital separations (Chauvin et al.
2010; Lafrenière et al. 2007), high contrast imaging must probe
close to the parent star to detect a planet.

∗ Based on observations collected at the European Organisation for
Astronomical Research in the Southern Hemisphere, Chile under program
number 087.C–0901(B).

High contrast imaging is limited by the diffraction limit, set
by the telescope optics, which determines the minimum angular
separation achievable under ideal conditions. Since planets are
low mass, cold, and red compared to their parent star (Spiegel
& Burrows 2012; Baraffe et al. 2003), the contrast ratio of their
magnitudes is an additional constraint on their detectability.
New instruments and techniques have been developed to combat
these constraints at the acquisition and image processing stage.

Coronagraphs have been developed to reduce the light scat-
tered in the telescope optics from diffraction during acquisition,
but at a cost of throughput and angular resolution (Guyon et al.
2005). Coronagraphic optics allow us to probe smaller inner
working angles, but are limited by the stellar “speckles” which
can dominate the flux from a planet (Hinkley et al. 2009).

By turning off the telescope derotator on an alt-az telescope,
the planet is able to “rotate” around the star, while the stellar
PSF stays relatively stable and the speckles vary randomly in
time. This technique is used in angular differential imaging
(ADI; Marois et al. 2008). It takes advantage of this rotation
to identify and subtract (in post-processing) the contribution
from the stellar PSF and speckles. There are a number of image
processing techniques aimed at modeling and subtracting the
stellar PSF from every image, allowing the sky fixed planet
signal to shine through. Locally optimized combination of
images (LOCI; Lafrenière et al. 2007) is an extension of ADI,
which models the local stellar PSF structure in every image.
Principal component analysis (PCA; Amara & Quanz 2012;
Soummer et al. 2012; Brandt et al. 2013) models how the PSF
varies in time by identifying the main linear components of
the variation. Application of these image processing techniques
has been demonstrated to increase the limiting magnitude
achievable by up to a factor of five (Lafrenière et al. 2007;
Amara & Quanz 2012).

In this work, we present a detailed study of LOCI and
PCA image processing techniques in order to optimize the
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Figure 1. Image demonstrating the APP airy diffraction pattern with the
diffraction suppressed region outlined in blue. This is the only region that
is used in the data reduction.

(A color version of this figure is available in the online journal.)

signal-to-noise ratio (S/N) of a planet at small angular sep-
arations with the apodizing phase plate (APP) coronagraph
(Kenworthy et al. 2010, 2007). We compare our results to the
previous result of Kenworthy et al. (2013).

The Fomalhaut dataset that is used in the following analyses
are a deep but typical observing sequence and will act as an
example for the rest of our surveys.

2. DATA

Data were obtained of the star Fomalhaut at the Very Large
Telescope (VLT)/UT4 with NaCo (Lenzen et al. 2003; Rousset
et al. 2003) in 2011 July and August (087.C–0701(B)) and were
analyzed and published in Kenworthy et al. (2013). Fomalhaut
was used as the natural guide star with the visible band wavefront
sensor. The L27 camera on NaCo was used with the NB4.05 filter
(λ = 4.051 μm and Δλ = 0.02 μm) and the APP coronagraph
(Kenworthy et al. 2010; Quanz et al. 2010) to provide additional
diffraction suppression. We used pupil tracking mode to perform
ADI (Marois et al. 2006). The PSF core is intentionally saturated
to increase the signal from any potential companions.

The APP provides diffraction suppression over a 180◦ wedge
on one side of the target (Figure 1). Additional observations
are required with a different position angle (P.A.) to cover the
full 360◦ around the star. For these observations, we have three
different datasets with different P.A.s ensuring full P.A. coverage
around the target star. Each dataset has a large amount of field
rotation: 119◦, 117◦, 120◦.

Data were acquired in cube mode. Each data cube contains
200 frames, each with an integration time of 0.23 s. Approx-
imately 70 cubes were obtained for each hemisphere dataset,
totaling in an integration time of 160 minutes. A three point
dither pattern was used to allow subtraction of the sky back-
ground and detector systematics as detailed in Kenworthy et al.
(2013). Unsaturated short exposure data with the neutral density
filter were also taken for photometry.

3. CREATING THE SIMULATED DATASETS

Data cubes at each dither position were pairwise subtracted to
remove the sky background and detector systematics. The cubes
were shifted to move the core PSF into the middle of a square
image and bad frames (open loop and poor adaptive optics (AO))
were discarded (5% of hemisphere 1, 16% of hemisphere 2, and
7% of hemisphere 3). The three different APP P.A. datasets
were processed separately. Each hemisphere dataset has its own
corresponding unsaturated data for photometry.

Fake planets are subsequently used to determine the limiting
contrast after image processing. The unsaturated Fomalhaut data
is used to add a fake planet in each saturated frame. One fake
planet is added at a time, between 0.′′2 and 1.′′0 in steps of 0.′′1
and δ magnitudes in steps of 1 mag from dM = 7–13. Due to
the asymmetric nature of the APP PSF, it is also necessary to
determine the S/N of a planet at different P.A.s. For our analysis
we placed a planet on opposite sides of the star (P.A. = 45◦ and
225◦ relative to the sky) to take into account the asymmetric PSF
of the APP. These two P.A. orientations ensure that the planet is
on the dark side of the APP in at least two of the hemispheres at
once. The mean of the limiting contrast at each P.A. is stored.

The final science frames are processed with several different
algorithms to recover the fake planet signal. All of the algorithms
take advantage of the fake planet’s rotation in the sky around
the star to model and subtract the stellar PSF from each image
(ADI; Marois et al. 2006). Before each algorithm is applied, the
innermost region is masked out (r < 0.′′15) where the star has
saturated the image and no planet could be detected. The method
of modeling the stellar PSF differs between the algorithms,
detailed in the following subsections.

One metric for detectability of planets is S/N. It is a measure
of the detectability of a point source, assuming the noise is
Gaussian and decorrelated between diffraction limited elements
at that radius. The equation below is similar to those in the
literature, describing local S/N:

(
S

N

)
planet

= Fplanet

σ (r)
√

πr2
ap

,

where Fplanet is the sum of the planet flux in an aperture with
radius rap = 3 pixels and σ is the root mean square of the pixels
in a 180◦, 6 pixel wide arc at the same radius, surrounding
the star.

The equation above assumes statistically independent pixels,
which in the case of speckle noise limited regimes is typically
not be the case. For the sake of consistency with other papers in
the literature, we use one of the most common definitions of S/N
calculation to facilitate comparison with other methods. This is
a widely acknowledged issue in this research field, so while the
S/N quoted may be off by a scaling factor, the conclusions in this
paper do not rely on the absolute scaling as we are comparing
analysis techniques.

4. DATA ANALYSIS

Coadding the frames in a data cube is a common practice but
the best number of frames to coadd has not yet been thoroughly
studied. We experimented with different numbers of coadded
frames using fake planets. We ran the data through our PCA
pipeline (detailed in Section 4.2) with different numbers of
frames coadded (Figure 2). For example, 100 frames coadded
means that twice as many images are passed to our pipeline
as in the 200 coadded frames case. Figure 2 shows four S/N
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Figure 2. Signal-to-noise ratio curves for a fake planet at four angular
separations, with different amounts of frames coadded. At each angular
separation, planets were added at four position angles and averaged. The error
bars are 1σ . The number of PCs is fixed at 20. Each contrast curve is offset from
a S/N of 10 for clarity.

curves for planets injected a different angular separations, each
with a S/N of approximately 10. The curves are offset from 10
for clarity. Coadding 200 or less frames yields a higher S/N.
However, the S/N varies by less than a factor of two over all
coadds, making this a relatively small effect. For the following
analysis, we keep the coadds fixed at 200 frames, which yields
S/N as good as less coadds, but is computationally much faster.
This corresponds to ∼70 coadded images in each hemisphere
which are passed to our pipeline. Since there is little field rotation
between individual frames in a data cube, the smearing effect
within a cube is negligible.

4.1. LOCI

Locally optimized combination of images (Lafrenière et al.
2007) is a widely used planet detection algorithm which spatially
models the stellar PSF to remove speckles. An image is divided
into rings, which are subdivided into wedges. An optimal, linear
combination of images subtracts speckles within that region.
The least squares fit succeeds at minimizing speckles, but also
reduces the planet flux through the subtraction for small angular
separations.

Each hemisphere dataset is processed with LOCI indepen-
dently and the final three hemisphere sky aligned cubes are
collapsed. Since we are using the APP, we only perform LOCI
on the “dark side” of the image frames. This 180◦ D shaped
region (inner = 2λ/D, outer = 7λ/D) is the only part of each
frame that is coadded in the final image.

Kenworthy et al. (2013) analysis of these data used the LOCI
algorithm. Monte Carlo simulations exploring LOCI parameters
ensured that this is the best sensitivity LOCI could produce.

4.2. Principal Component Analysis

Principal component analysis is a mathematical technique
that relies on the assumption that every image in a stack can be
represented as a linear combination of its principal orthogonal
components, selecting structures that are present in most of the
images. Its recent application to high contrast exoplanet imaging
(Amara & Quanz 2012; Soummer et al. 2012) has been shown
to be very effective. Unlike LOCI (Lafrenière et al. 2007) which
models the local stellar PSF structure, PCA models the global
PSF structure.

The full stack of images with sky rotation is used for PCA.
However, since we are using the APP, only the “dark side” of
each image is used in the fit. The S/N from a fake planet is
lower if we include the “bright side.” We follow the description
of PCA outlined in Amara & Quanz (2012) for the following
analysis.

The number of principal components (PCs) used deter-
mines how well the stellar PSF is fit. The first few com-
ponents are the most stable, have less noise, and contain
the most common structure in all the images. For our de-
fault analysis, we used 20 PCs to model the stellar PSF.
PCA is run on each hemisphere dataset independently, as the
PCs are correlated with time. The final de-rotated frames are
coadded into one final image covering the full 360◦ around
the star.

The following subsections discuss self-subtraction due to the
PCA algorithm as well as a series of modifications we performed
on PCA to optimize the detection of a planet at small λ/D.

4.2.1. Self-subtraction

Self-subtraction due the LOCI algorithm has been well
documented by previous authors (Lafrenière et al. 2007; Marois
et al. 2010), but its impact on PCA is not yet well studied. The
LOCI algorithm requires that the frames nearest in time to the
current frame are not considered in the least squares fit, thus
limiting the self-subtraction a potential planet. However, this
frame rejection technique does not completely account for flux
loss from a planet.

For our PCA analysis, we draw a distinction between two
types of modes: detection and characterization. Characterization
mode requires fully accounting for flux loss of the planet as a
function of number of PCs as we map between the measured flux
and the calibrated estimate of “true” flux. However, in detection
mode, since we only care about our ability to separate the planet
signal from the background noise, the main issue is the flux loss
relative to the separation of the background noise. In this paper,
we address simply the detection mode.

Figure 3 shows three plots with the flux ratio and S/N versus
the number of PCs it was processed with. The top figure is
for a planet injected at 1.′′0, middle is at 0.′′5 and bottom is at
0.′′3. The “flux ratio” is the ratio of the injected planet flux to
the PCA processed flux in a 4 pixel aperture. For each angular
separation, the L′ contrast which yields a S/N of approximately
10 is plotted. This figure demonstrates that the PCA method
is more efficient at capturing the patterns associated with the
background fluctuations of the field than capturing information
associated with the planet translation. This differential effect
means that in detection mode, it is acceptable for the flux ratio
to decrease as long as the noise is decreasing as or more rapidly.
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Figure 3. Comparison of the flux ratio and S/N based on number of PCs at different radii. The top panel is for a fake planet at 1.′′0, the middle panel is for 0.′′5 and the
bottom panel is for 0.′′3. These panels demonstrate that, while the flux ratio does decrease with PCs, the S/N follows a different curve.

4.2.2. PCA Modifications

1. Frame rejection. For our PCA code detailed above, all
the frames are used in the fit and none are rejected. This
was done under the assumption that self-subtraction of
the planet happens less rapidly than the noise subtraction
when using PCA. As discussed in Section 4.2.1, while we
are in “detection mode” of direct exoplanet detection, the
important factor to consider is the S/N rather than planet
flux. To test this, we used only a subset of the frames
to determine the PCs. The frames nearest in time to the
frame being fitted were rejected. These are frames where
a potential planet would overlap by 0.5 FWHM or more.
The number of frames to reject depends on the separation
of the planet from the star. The total rotation of the planet is
limited by the amount of sky rotation achieved during each
dataset. A planet very far from its parent star would appear
to rotate faster between frames, thus less frames need to
be rejected. This test allows us to compare the S/N of a
fake planet processed with standard PCA and “0.5 FWHM
rejection,” where we mimic the routine in LOCI to reject
the frames closest in time.

2. Radius limited. Next, we modified the PCA basis set by only
using the image out to a certain radius. The outer radius
(Rout) passed to the PCA code determines the amount of
information provided to the singular value decomposition
(SVD) algorithm. Extra information does not necessarily
provide a better fit. Our previous applications of PCA kept
Rout fixed. The information passed to the SVD algorithm
should be directly related to the stellar PSF. We modified
our PCA code to vary Rout based on the location of the fake
planet. The new Rout is 1 λ/D greater than the radius of
the fake planet (see Figure 4), thus performing PCA on a
smaller region. This experiment was performed to test how
significant the stellar PSF fit was affected by radii greater
than the planet location.

3. Number of PCs.The main parameter which can be manip-
ulated in PCA is the number of PCs used in the SVD fit.
The first principal value (the highest singular value in the

Figure 4. Image demonstrating the APP airy diffraction pattern with the radius
limited region outlined in blue. This is the only region that is used in the data
reduction.

(A color version of this figure is available in the online journal.)

diagonal matrix) is the “variance” of the image stack from
the mean, in the direction of the first PC. The same is true
about the second principal value and so on.
Figure 5 shows the PCA coefficient values in descending
order for one of our datasets. The first few PCA coefficient
values are significantly greater than the later values, im-
plying that those PCs contain the most dominant features.
Increasing the number of PCs in the stellar PSF fit can help
bring out the planet signal by removing structure, however
it also can add noise. Determining the optimal number of
PCs for a certain stellar PSF fit is an essential but expen-
sive task. The optimal number of PCs depends on the time
variability of complex speckles.
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Figure 5. Plot of the PCA coefficient values. The highest PCA coefficient value
corresponds to the most significant PC.

Figure 6. Contrast curves for a 7σ detection of a point source in our Fomalhaut
APP data processed with LOCI, ADI, and variations of ADI. The LOCI curve
is adapted from Kenworthy et al. (2013) to a 7σ detection. The numbers on the
yellow curve signify the number of PCs which yield the highest S/N at that
radius. The dashed line is the background limit. The PCA contrast curves are
the mean value for fake planets inserted at two P.A.s on opposite sides of the
star (P.A. = 45◦ and 225◦).

(A color version of this figure is available in the online journal.)

For each dataset and fake planet angular separation, PCA
was run with different numbers of PCs ranging from 5 to
60, in increments of 5.

5. RESULTS AND DISCUSSION

Figure 6 shows the results of each image processing method
detailed in Section 4.2. Each technique was run with varying
planet contrasts at a given radius. We extrapolated between
planet contrasts to determine contrast that yields a S/N of 7. For
the method with varying PCs detailed in Section 4.2.2, we noted
which number of PCs yielded the highest S/N at which radius.
These are the numbers listed on the yellow curve in Figure 6.

Our standard PCA technique yields a better contrast curve
than LOCI for our coronagraphic data. Our modifications to
PCA, in some cases, yield better sensitivity.

Figure 7. Three-dimensional surface of the contrast achieved in a 7σ detection
with varied numbers of PCs. Varying the number of PCs at small angular
separations affects the 7σ detection limit by up to 8 mag. Beyond 0.′′6, the
number of PCs used is less significant.

(A color version of this figure is available in the online journal.)

Unlike the LOCI algorithm, rejecting the frames nearest in
time (detailed in Section 4.2.2) yields a worse contrast curve than
our standard PCA. This is likely due to the noise being more
correlated in frames closer in time, thus providing important
information to the SVD algorithm and increasing the S/N of the
planet. We did not reject any frames in our final data analysis
approach.

Limiting the outer radius passed to the SVD algorithm yielded
a slightly better contrast ratio than standard PCA from 0.′′5 to
0.′′8. However, this contrast increase is not significant and is only
beneficial because it is less computationally expensive.

Our standard PCA contrast curve was generated with 20 PCs.
By varying the number of PCs we can increase the S/N from
a companion. Our PC-varying result yields a consistently more
sensitive contrast curve then all the other methods. We gain
between 0.5 and 1 mag contrast over our LOCI analysis from
0.′′2 to 1.′′0. From Figure 6 we see that the number of PCs which
yield the highest S/N for a planet varies based on its angular
separation.

Figure 7 is a three-dimensional (3D) surface plot showing
how the number of PCs at each radius affects the contrast at 7σ
for a planet at a fixed P.A. Fake planets were added between
2 and 20 PCs in smaller steps to emphasize the structure. This
figure demonstrates that at small angular separations (<0.′′6),
the S/N is sensitive to the number of PCs chosen. This is the
region where the diffraction and speckles due to the star are more
significant than the unstructured noise from thermal emission
and the sky background. For example, at 0.′′2 choosing a small
number of PCs yields an 8 mag gain in sensitivity than a large
number of PCs. Increasing the number of PCs quickly leads to
nearly complete self-subtraction. This can be seen in Figure 7
as a contrast of nearly zero. As we move to larger radii the
optimal number of PCs remains in the 5–20 PC range. Beyond
0.′′6 where the number of PCs shows no significant preference
below 45 PCs.

5.1. Comparison with Kenworthy et al. (2013)

Our PCA re-analysis of these data improves sensitivity at
small inner working angles, from 0.′′2 to 1′′, in some cases
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Figure 8. Detection limit for fake companions around Fomalhaut generated
with PCA (black lines) and LOCI (blue lines, converted to 7σ detection from
Kenworthy et al. 2013) using Baraffe et al. (2003; solid lines) and Spiegel &
Burrows (2012; dashed lines).

(A color version of this figure is available in the online journal.)

by 1 mag (see blue and yellow curves, Figure 6). We convert
the best 7σ detection contrast curve to an upper mass limit
for planets using the Baraffe et al. (2003) and Spiegel &
Burrows (2012) atmospheric models (Figure 8) assuming an
age of 440 Myr (Mamajek et al. 2012). We confirm the non-
detection of companions with model-dependent upper mass
limit of 13–18 MJup from 4–10 AU. Our new upper mass
limit is based on our more robust 7σ detection limit. The
1 mag increase in the contrast ratio at 0.′′5 translates to an
increased sensitivity of Δ 7 MJup. The increase in sensitivity
allows us to probe planetary masses (<15 MJup) at small angular
separations.

5.2. Fainter Fomalhaut

We have shown that the number of PCs which yield the
highest S/N depends on the planet’s distance from the parent
star (yellow line, Figure 6). At small angular separations
(<0.′′6), the S/N is sensitive to the number of PCs chosen
(Figure 7). This is the limit where the diffraction from the
central star is equal to or less significant than the background
noise.

We add Gaussian white noise to our data to test if this
turnover point changes for a fainter target (Figure 9; 3D surface
noise). Increasing the sky background noise makes Fomalhaut
1.5 mag fainter, while keeping the telescope conditions and
Strehl identical. This is the ideal way to test how fainter targets
will behave. Fake planets are once again injected and the best
number of PCs at each angular separation is noted.

Changing the number of PCs used at each angular separation
is still the best method for detecting companions. As expected,
the regime of large numbers of PCs at small separations results
in low contrast, which then improves down to a plateau at
smaller PCs and larger radii. The turnover point remains near
0.′′6, beyond which the diffraction from the star is no longer
significant and the optimal number of PCs is less clear. Beyond
this separation, the background noise dominates the SVD fit and
thus does not help subtract the stellar PSF.

Figure 9. Similar to the 3D surface in Figure 7, but with Gaussian white noise
added to the data. The resulting star is 1.5 mag fainter than Fomalhaut.

(A color version of this figure is available in the online journal.)

6. CONCLUSION

We re-analyze our Fomalhaut APP/NaCo/NB4.05 data using
PCA and compare it with the LOCI algorithm. PCA yields a
more sensitive contrast curve than the LOCI algorithm at small
inner working angles. We tested several modifications to PCA
and gain up to 1 mag of contrast over our LOCI analysis from
0.′′2 to 1.′′0. The most effective parameter which optimized PCA
was varying the number of principal components. The number
of principal components chosen is sensitive for planets at small
inner working angles. The detection limit of a planet at small
radii can vary by several magnitudes. Careful attention should
be paid to determining the number of principal components
used at radii where the speckles are more significant than the
unstructured noise of thermal emission and the sky background.
Running PCA for a range of principal components at each
angular separation and generating a 3D surface is a useful way
to visualize the optimal number of principal components needed
to pull out a faint planet signal.

Further analysis is needed in other wavelengths, as differing
Strehl ratios may affect the turnover point where the stellar
diffraction is less significant than the background noise. These
results have direct application for current and future planet
imaging campaigns, which will likely use a combination of
PCA, LOCI, and other image processing techniques.

We thank the referee for helpful comments and suggestions
that improved this paper. T.M. and M.A.K. acknowledge funding
under the Marie Curie International Reintegration Grant 277116
submitted under the Call FP7-PEOPLE-2010-RG. This paper
has made use of the SIMBAD database.
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