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Abstract

We discuss a new method to compute the canonical height of an algebraic point on a
hyperelliptic jacobian over a number field. The method does not require any geometrical
models, neither p-adic nor complex analytic ones. In the case of genus 2 we also present
a version that requires no factorisation at all. The method is based on a recurrence rela-
tion for the ‘division polynomials’ associated to hyperelliptic jacobians, and a diophantine
approximation result due to Faltings.

1. Introduction

In [3] G. Everest and T. Ward show how to approximate to high precision the canon-
ical height of an algebraic point on an elliptic curve E over a number field K with a limit
formula using the (recurrence) sequence of division polynomials φn associated to E , and a
diophantine approximation result.

The φn have natural analogues for jacobians of hyperelliptic curves. In [18] Y. Uchida
shows how to obtain recurrence relations for the φn for hyperelliptic jacobians of dimension
g � 2. Further there exists a suitable analogue of the diophantine approximation result
employed by Everest and Ward, proved by G. Faltings [4]. In this paper we derive a limit
formula for the canonical height of an algebraic point on a hyperelliptic jacobian from these
inputs.

We have implemented the resulting method for computing canonical heights in Magma
for g = 2. The method does not require geometrical models, neither p-adic nor complex
analytic ones. If the curve is defined over Q and the coordinates of the point are integral,
then it also requires no factorisation. It does need either large integer arithmetic or large p-
adic and real precision, however. In principle the implementation can be extended to higher
genera.
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358 R. DE JONG AND J. S. MÜLLER

2. Statement of the main results

Let K be a number field with ring of integers OK and let (X, o) be a pointed hyperelliptic
curve of genus g � 2 over K given by an equation y2 = f (x) with f ∈ OK [x] monic of odd
degree 2g +1, where o is the unique point at infinity. Let J denote the jacobian variety of X .
Then the theta divisor � on J is the reduced and irreducible divisor on J whose support is
given by the set of all points which can be represented by a divisor (p1)+· · ·+ (pd)−d(o),
where all pi ∈ X and d < g. Equivalently, these are precisely the points whose reduced
Mumford representation (a(x), b(x)) (cf. Section 5) satisfies deg(a) < g.

For each integer n � 1 there exists a canonical ‘division polynomial’ φn in the function
field of J over K , see Section 5. We have

div φn = [n]∗� − n2� .

For each place v of K we further have a canonical local height function λ̂v,
see [18, section 7]. These functions are determined by the key relations:

log |φn(p)|v = −̂λv(np) + n2 λ̂v(p)

for each integer n � 1, each place v and generic p ∈ J (Kv), where | · |v is the absolute value
on Kv , normalized as in Subsection 3·2.

Let p be a point in J (K ), not in supp (�). Let ĥ : J (K ) → R be the canonical height
with respect to the canonical principal polarization on J . We have the formula:

[K : Q] ĥ(p) =
∑

v

nv λ̂v(p) ,

where nv is a standard local factor defined in Subsection 3·2. Put

T (p) = {n ∈ Z>0 | np � supp (�)}.
Then one can show that T (p) is an infinite set.

Our first result extends [3, theorem 3] and gives a limit formula for the canonical local
height λ̂v in terms of the division polynomials. The proof is based on a diophantine approx-
imation result due to Faltings (Theorem 4·1).

THEOREM 2·1. Let v be any place of K and let p ∈ J (K ) \ supp (�) be a rational point.
Then T (p) is an infinite set and the formula

λ̂v(p) = lim
n→∞

n∈T (p)

1

n2
log |φn(p)|v

holds.

Let S be a finite set of places of K . We put:

ĥS(p) = 1

[K : Q] lim
n→∞

n∈T (p)

1

n2
log

∏
v∈S

|φn(p)|nv

v .

Theorem 2·1 implies that the limit ĥS(p) exists, and gives the S-part of the canonical height
of p.
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Canonical heights and division polynomials 359

THEOREM 2·2. Assume that p is a point in J (K ), not in supp (�). Then the limit ĥS(p)

exists, and the formula

[K : Q] ĥS(p) =
∑
v∈S

nv λ̂v(p)

holds.

Our next result expresses ĥ(p) in terms of ĥS(p) and ĥS(2p), for a suitable set S. Let � =
24gdisc( f ) denote the discriminant of X . Then the curve X , and hence the jacobian J , has
good reduction outside the set Sbad of places of K dividing the ideal (�). Let S∞ be the set
of archimedean places of K .

THEOREM 2·3. Let p ∈ J (K ) and assume that both p and 2p are not in supp (�). Let
S be a finite set of places of K containing Sbad � S∞, such that for all v � S one has that
neither p nor 2p lies on the theta divisor modulo v. Then the formula

ĥ(p) = −1

3
ĥS(p) + 1

3
ĥS(2p)

holds.

Note that, for a finite place v outside Sbad, saying that p lies on the theta divisor modulo v is
equivalent to saying that p can be represented by a divisor (p1) + · · · + (pg) − g(o), where
one of the pi reduces to o modulo v, or that one of the coefficients of the first polynomial
in the Mumford representation of p is not v-integral. We will see that ĥS(p) and ĥS(2p) are
effectively computable for S and p as in Theorem 2·3.

For g = 2 we can prove a simpler version of Theorem 2·3.

THEOREM 2·4. Suppose that g = 2 and that p ∈ J (K ) \ supp (�). Let S be a finite set
of places of K containing {v ∈ Sbad : ordv(�) � 2} � S∞ such that for all v � S the point p
does not lie on the theta divisor modulo v. Then we have

ĥ(p) = ĥS(p).

For the proof of Theorem 2·4, we compare the canonical local height λ̂v to a canonical local
height associated with 2� introduced by V. Flynn and N. Smart in [5].

The plan of this paper is as follows. Section 3 contains some basic results around canonical
local heights on abelian varieties. In Section 4 we recall Faltings’s diophantine approxima-
tion result and deduce a general limit formula from it. After this we focus on hyperelliptic
jacobians. First, in Section 5 we review some facts we need from Uchida’s paper [18] on
hyperelliptic division polynomials.

Then in Sections 6 and 7 we prove Theorems 2·1–2·4. Note that, in principle, these results
allow one to approximate values of ĥ(p) effectively. There are two issues to be dealt with.
One is the possible occurrence of large ‘gaps’ in the sets T (p), another is the need to factor
the discriminant in order to apply Theorem 2·3. We discuss, and resolve to some extent,
both issues in Section 8. In particular we can control the gaps and present a factorisation-
free approach to computing ĥ(p) in the genus 2 case, adapting an approach described in [3]
for the elliptic curves case.

In Section 9 we discuss the actual implementation of our method in Magma, and compare
our method with earlier ones due to Flynn and Smart [5], M. Stoll [15], Uchida [17], D.
Holmes [6] and the second author [12]. We finish the paper by presenting and analysing some
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360 R. DE JONG AND J. S. MÜLLER

data in Section 10. In particular we note that assembling enough data may yield predictions
on the general convergence rate of our limit formulas.

3. Canonical local heights

3·1. Local theory

We start with some well-known generalities on canonical local heights on abelian varie-
ties. See for instance, [10, chapter 11].

Definition 1. Let A be an abelian variety defined over a local field K with absolute value
| · |. To each divisor D on A one can associate a function λD : A(K ) \ supp (D) → R such
that the following conditions are satisfied:
(i) if D, E ∈ Div(A), then λD+E = λD + λE + c1 for some c1 ∈ R;

(ii) if D = div( f ) ∈ Div(A) is principal, then λD = − log | f | + c2 for some c2 ∈ R;
(iii) if ϕ : A → A′ is a morphism of abelian varieties and D ∈ Div(A′), then we have

λϕ∗(D) = λD ◦ ϕ + c3 for some c3 ∈ R.

We call λD a canonical local height (or Néron function) associated with D.

Given a divisor D on an abelian variety A defined over a local field K , a canonical
local height λD associated with D is uniquely determined up to a constant. In particu-
lar, if λD is a canonical local height associated to a symmetric divisor D on A, then by
[10, proposition 11·1·4], there exists a function φ ∈ K (A)× such that div(φ) = [2]∗ D − 4D
and

λD(2p) − 4λD(p) = − log |φ(p)|
for all p ∈ A(K ) such that both p and 2p do not lie in supp (D). The function φ is deter-
mined up to a constant factor in K × and λD is uniquely determined by φ.

Assume now that K is non-archimedean and let A be an abelian variety over K . In this
case canonical local heights can be related to the Néron model A of A over the ring of
integers OK of K . For D ∈ Div(A) and p ∈ A(K ) let D (resp. p) denote the Zariski closure
of D with multiplicities (resp. of the divisor (p)) in A and let λD denote a canonical local
height associated with D. Let v denote the closed point of Spec(OK ) and let iv(D, p) denote
the intersection multiplicity of D and p as defined in [10, section 11·5].

PROPOSITION 3·1 (Néron, cf. [10, section 11·5]).

(i) If Av is connected, then iv(D, p) is the usual intersection multiplicity of D and p on
Av.

(ii) If D is represented by α ∈ K (A) around p � Av, then we have

iv(D, p) = − log |α(p)|.
(iii) For each component C of the special fiber of A there is a constant γ (C) ∈ R such that

for all p ∈ A(K ) \ supp (D) reducing to C we have

λD(p) = iv(D, p) + γ (C).

3·2. Global theory

Let K be a number field. There is a standard way of endowing each completion Kv with
an absolute value | · |v, as follows: when v is archimedean, we take the euclidean norm
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Canonical heights and division polynomials 361

on Kv. When v is non-archimedean, we normalize | · |v such that |π |v = e−1, where π is a
uniformiser of Kv. Now let MK be the set of places of K . For each v ∈ MK let nv be the
local factor defined as follows: when v is real, then put nv = 1; when v is complex, then
put nv = 2; finally if v is non-archimedean, then nv is the logarithm of the cardinality of the
residue field at v. Then we have the product formula

∑
v∈MK

nv log |x |v = 0 valid for all x
in K ×.

The connection between canonical heights and canonical local heights is provided by the
following result, again due to Néron:

PROPOSITION 3·2 (Néron). Let A be an abelian variety over K and let D ∈ Div(A) be
symmetric. Let φ ∈ K (A) such that div(φ) = [2]∗ D − 4D. For each place v ∈ MK we let
λv denote the canonical local height associated with D on A(Kv) which satisfies

λv(2p) − 4λv(p) = − log |φ(p)|v
for all p ∈ A(Kv) such that p and 2p are not in supp (D). Then we have

[K : Q] ĥD(p) =
∑

v

nv λv(p)

for all p ∈ A(K ) \ supp (D), where ĥD is the canonical height associated to D.

4. Faltings’s result and an application

The following general diophantine approximation result due to G. Faltings
(see [4, theorem II]) will be the main ingredient of our method.

THEOREM 4·1. Let A be an abelian variety over a number field K and suppose that D
is an ample divisor on A. Let v be a place of K and let λD,v be a canonical local height
function on A(Kv) with respect to D. Let h be a Weil height on A associated to some ample
line bundle on A, and let k ∈ R>0 be arbitrary. Then there exist only finitely many points
p ∈ A(K ) \ supp (D) such that λD,v(p) > k · h(p).

In fact we will use the following corollary.

THEOREM 4·2. Let A be an abelian variety over a number field K and let D be a
symmetric ample divisor on A. Let v be a place of K and let λD,v be a canonical local
height function on A(Kv) with respect to D. Let p ∈ A(K ) \ supp (D) be a rational point
and put T (D, p) = {n ∈ Z>0 | np � supp (D)}. Then T (D, p) is infinite and we have
λD,v(np)/n2 → 0 as n → ∞ over T (D, p).

Proof. We start by showing that T (D, p) is infinite when p � supp (D). For p a torsion
point this is immediate. Assume therefore that p is not torsion. We prove that for infinitely
many n ∈ Z we have np � supp (D). This is sufficient for our purposes: as D is symmet-
ric, we have np ∈ supp (D) if and only if −np ∈ supp (D). An elementary argument on
algebraic groups shows that the Zariski closure Z of the subgroup Z · p is a closed algebraic
subgroup of A. Suppose that only finitely many of the np are outside supp (D). Then Z is
the union of a finite set with a closed subset of supp (D). It follows that Z has dimension
zero, and hence consists of only finitely many points: contradiction.

The limit formula follows immediately if p is torsion since then the set of values λD,v(np)

as n ranges over T (D, p) is bounded. Assume therefore that p is not torsion. Then the np
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362 R. DE JONG AND J. S. MÜLLER

with n running through T (D, p) form an infinite set of K -rational points of A \ supp (D).
Let ĥ be the canonical height with respect to D. Since:

λD,v(np)

n2
= ĥ(p) · λD,v(np)

ĥ(np)
,

where ĥ(p) > 0, Theorem 4·1 can be applied, leading to:

lim sup
n→∞

n∈T (D,p)

λD,v(np)

n2
� 0 .

On the other hand, since λD,v is bounded from below we have:

lim inf
n→∞

n∈T (D,p)

λD,v(np)

n2
� 0 .

The theorem follows by combining these two estimates.

Remark 1. The above result has the following consequence: let S be a finite set of places
of K , and assume that ĥ(p) > 0. Then there is an N ∈ N such that for all n � N ,∑

v�S

nvλD,v(np) > 0 .

It would be interesting to have an effective result in this direction.

5. Points and division polynomials

Let K be a field of characteristic not equal to 2 and let X be a hyperelliptic curve of genus
g � 2 over K given by an equation y2 = f (x) with f ∈ K [x] monic of odd degree 2g + 1.
We write f (x) = ∑2g+1

i=0 μi x i , where μ2g+1 = 1. Note that X has a unique point o at infinity.
Let J be the jacobian of X , endowed with its canonical principal polarization. If p1 ∈ X ,
then we write p−

1 for the image of p1 under the hyperelliptic involution.
Then for any point p ∈ J , there is a unique reduced divisor D = (p1) + . . . + (pd) on X

such that D−d(o) represents p, which we write as p = [D−d(o)]. Here we call an effective
degree d divisor D on X reduced if d � g and if we have o � pi � p−

j for all distinct
pi , p j ∈ supp (D). This leads to the Mumford representation (a(x), b(x)) of a point p ∈ J :
If (p1) + · · · + (pd) is the reduced divisor associated to p, then a(x) = ∏d

i=1(x − x(pi )) ∈
K [x] and b(x) ∈ K [x] is the uniquely determined polynomial of minimal degree such that
y(pi) = b(x(pi)) for all i = 1, . . . , d. One also defines the Mumford representation of the
origin to be (1, 0). Note that the map X (g) → J given by (p1, . . . , pg) 	→ [(p1) + · · · +
(pg) − g(o)] is birational.

For the construction of the division polynomials φn Uchida uses certain higher-dimen-
sional generalisations ℘i j and ℘i jk , where i, j, k ∈ {1, . . . , g}, of the Weierstrass ℘-function
from the theory of elliptic curves. Over C, these functions are constructed as second and
third order partial logarithmic derivatives of the hyperelliptic σ -function, respectively. They
are well-defined on the jacobian, see [18, proposition 2·5].

Despite their analytic construction, the ℘-functions make sense over an arbitrary field of
characteristic zero and in fact this continues to hold in more general situations. Let p ∈ J ,
then the values ℘i j(p) and ℘i jk(p) can be expressed as polynomials in the coefficients of
the Mumford representation (a(x), b(x)) of p with coefficients in Z[μ0, . . . , μ2g]. More
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precisely, if we write a(x) = ∑g
i=0 ai xi and b(x) = ∑g−1

i=0 bi xi , then we have

℘g j = −a j−1 and ℘ggk = 2bk−1 (5·1)

for j, k ∈ {1, . . . , g} by [18, theorem 2·8]. Furthermore, the ℘-functions ℘g j and ℘ggk ,
where j, k ∈ {1, . . . , g}, can be used to embed J \ supp (�) into C2g. In particular, they
have a pole only along �. The other ℘-functions can be expressed as polynomials in the ℘g j

and ℘ggk by [18, theorem 2·9].
The division polynomials φn are also defined in terms of the hyperelliptic σ -function

and can be expressed as polynomials in terms of the ℘-functions with coefficients in
Z[1/D, μ0, . . . , μ2g]. Here D is an integer which can be computed explicitly and is in-
dependent of X . See [18, theorem 5·8]. In fact Uchida conjectures [18, conjecture 4·14] that
φn ∈ Z[μ0, . . . , μ2g][℘i j , ℘i jk] for all n. Moreover, the φn satisfy certain recurrence rela-
tions which make it possible to compute the values they take without the need to construct
them as polynomials, cf. [18, theorem 6·4].

6. Proof of Theorems 2·1 and 2·2
Consider the jacobian J of a hyperelliptic curve X of genus g � 2 defined over a number

field K , given by an equation y2 = f (x), where f ∈ OK [x] is monic of degree 2g + 1.
Note that every hyperelliptic curve over K of genus g with a K -rational Weierstrass point
has such a model. Let � denote the theta divisor on J with respect to the point o at infinity.
As −[(p1)+· · ·+ (pg)− g(o)] = [(p−

1 )+ . . .+ (p−
g )− g(o)], we have that � is symmetric.

Recall that for the division polynomial φ2 we have

div(φ2) = [2]∗� − 4�.

Hence there is a canonical local height function λ̂v associated with � for each v ∈ MK such
that

log |φ2(p)|v = −̂λv(2p) + 4̂λv(p)

for p ∈ J (Kv) such that p, 2p � supp (�). Therefore Proposition 3·2 implies that we have

[K : Q] ĥ(p) =
∑

v

nv λ̂v(p) ,

where ĥ is the canonical height associated to �.
More generally, Uchida shows [18, theorem 7·5] that

log |φn(p)|v = −̂λv(np) + n2̂λv(p) (6·1)

for each integer n � 1 and p ∈ J (Kv) such that p, np � supp (�).
Using (6·1) and Theorem 4·2, we can prove Theorem 2·1, giving a limit formula for the

canonical local height λ̂v in terms of the division polynomials.

Proof of Theorem 2·1. By equation (6·1) we are done once we prove that T (p) is infinite
and that λ̂v(np)/n2 → 0 as n → ∞ over T (p). But note that λ̂v is a canonical local
height associated to �, which is a symmetric and ample divisor on J . The result follows by
applying Theorem 4·2.

The proof of Theorem 2·2 is now almost immediate.
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364 R. DE JONG AND J. S. MÜLLER

Proof of Theorem 2·2. As S is finite we find:

[K : Q]̂hS(p) = lim
n→∞

n∈T (p)

1

n2
log

∏
v∈S

|φn(p)|nv

v

= lim
n→∞

n∈T (p)

1

n2

∑
v∈S

nv log |φn(p)|v

=
∑
v∈S

nv lim
n→∞

n∈T (p)

1

n2
log |φn(p)|v.

By Theorem 2·1 we have

lim
n→∞

n∈T (p)

1

n2
log |φn(p)|v = λ̂v(p)

for each v ∈ MK . This proves the result.

Remark 2. Unfortunately Theorem 4·2 does not tell us anything about the conver-
gence rate of the sequences ((1/n2)̂λv(np))n∈T (p) or ((1/n2) log |φn(p)|v)n∈T (p). If v is
archimedean, then a conjecture of Lang [9, (2·1)] implies that λ̂v(np) = O(log n). For
elliptic curves, this bound can be proved unconditionally using the results of David and
Hirata–Kohno on linear forms in elliptic logarithms [2], see [19]. For non-archimedean v,
we expect that a more refined analysis of the statements in Proposition 3·1 will give an
O(log n) bound for λ̂v(np) as well (in particular one should not need diophantine approx-
imation to prove such a bound).

If the genus is 2, then we can compare λ̂v to another well-known canonical local height
function. In [5], Flynn and Smart construct a function λ̂FS

v : J (Kv) → R. Uchida [17,
theorem 5·3] has shown that this is a canonical local height associated to 2� for each place
v of K . Let κ = (κ1, . . . , κ4) : J → P3 denote the morphism constructed explicitly in [1,
chapter 3]. The image of κ is the Kummer surface associated to J embedded into P3 and we
have κ1(p) = 0 if and only if p ∈ supp (�). There are homogeneous quartic polynomials
δi ∈ Z[μ0, . . . , μ4][x1, . . . , x4] such that if p ∈ J , then

δ(κ(p)) = κ(2p),

where δ = (δ1, . . . , δ4). In addition, the relation div(δ1 ◦ κ) = [2]∗(2�) − 8� holds.
The canonical local height λ̂FS

v constructed by Flynn and Smart is associated to 2� and is
determined by the condition that

λ̂FS
v (2p) − 4̂λFS

v (p) = − log

∣∣∣∣δ1

(
κ(p)

κ1(p)

)∣∣∣∣
v

(6·2)

holds for all p ∈ J (Kv) such that both p and 2p are not in supp (2�).

PROPOSITION 6·1. If the genus of X is 2 and if p ∈ J (Kv) \ supp (�), then we have

λ̂FS
v (p) = 2̂λv(p).

Proof. Since λ̂v is a canonical local height associated to �, it follows from property (i) of
Definition 1 that 2̂λv is a canonical local height associated to 2�. Because of (6·1) and (6·2),
it suffices to show that for a point p ∈ J \ supp (�) we have

δ1

(
κ(p)

κ1(p)

)
= φ2(p)2.
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We have checked this relation symbolically using explicit expressions for φ2 and δ1. For this
computation we used the computer algebra system Magma [11].

7. Proof of Theorems 2·3 and 2·4
Proof of Theorem 2·3. For v � Sbad �S∞ the jacobian J has good reduction, so the special

fiber Jv of the Néron model J of J over Spec(OKv
) is an abelian variety. Hence for such

v we have, for all p not in supp (�), that λ̂v(p) = iv(p, �) + γv where iv is the v-adic
intersection multiplicity on J , and γv is a constant independent of p, see Proposition 3·1.
There are only finitely many v � S such that γv is non-zero. Put δS = ∑

v�S nvγv. The
assumption on p implies that for v � S we have λ̂v(p) = λ̂v(2p) = γv . We obtain using
Theorem 2·2

[K : Q] ĥ(p) =
∑
v∈S

nvλ̂v(p) + δS

=[K : Q] ĥS(p) + δS

and similarly

[K : Q] ĥ(2p) = [K : Q] ĥS(2p) + δS .

Combining this with ĥ(2p) = 4ĥ(p) we deduce the required formula.

Proof of Theorem 2·4. Suppose that g = 2. It clearly suffices to show that if v is a finite
place of K such that ordv(�) � 1, then we have

λ̂v(p) = iv(�, p) (7·1)

for all p ∈ J (Kv) \ supp (�).
So let v be such a place. It follows from [15, proposition 5·2] that if p � supp (�), then

the canonical local height λ̂FS
v constructed by Flynn and Smart satisfies

λ̂FS
v (p) = log max

1�i�4

∣∣∣∣ κi(p)

κ1(p)

∣∣∣∣
v

. (7·2)

Pick integral coordinates (x1, . . . , x4) for κ(P) in such a way that x j is a unit for some
j ∈ {1, . . . , 4}. Then (7·2) implies

λ̂FS
v (p) = − log min

1�i�4

∣∣∣∣ x1

xi

∣∣∣∣
v

= − log

∣∣∣∣ x1

x j

∣∣∣∣
v

= − log |x1|v.

But since κ1(p) = 0 if and only if p ∈ supp (�), Proposition 3·1 (ii) implies

− log |x1|v = iv(2�, p) = 2iv(�, p).

Combined with Proposition 6·1, this proves (7·1) and hence the theorem.

Remark 3. The above proof shows that γv = 0 if ordv(�) � 1 and g = 2. For general
g � 2, if J has good reduction at v, one has

γv = − log |φ2(p)|v
3

for any p such that p and 2p are not in supp (�) mod v. This implies that γv � 0 for such v.
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8. Gaps and factorisation

Suppose now that we want to calculate ĥ(p) for a rational point p on the jacobian associ-
ated to the hyperelliptic curve X : y2 = ∑2g+1

i=0 μi x i defined over a number field K , where
g � 2, μ2g+1 = 1 and all μi ∈ OK .

In order to apply Theorem 2·2 or 2·4, a first requirement is that p is not in supp (�)

(applying Theorem 2·3 requires, in addition, that 2p is not in supp (�)). If p ∈ supp (�),
we can simply try to replace p by a multiple.

Next, one wants to know in advance that the set T (p) of multiples to which one is confined
does not contain large gaps. Note that a gap of length g + 1 gives rise to a point in the
intersection ���p � · · ·��gp of g+1 translates of the theta divisor �. These translates are
distinct if p is not torsion of order � g, since the morphism J → Ĵ given by q 	→ [�−�q]
is an isomorphism. Generically one expects the intersection of these translates therefore to
be empty.

In the case g = 2 we can give the following precise statement.

LEMMA 8·1. Let K be a field of characteristic not equal to 2 and let X be a genus 2
curve defined over K with jacobian J . Let p = [(p1) + (p2) − 2(o)] ∈ J be a non-zero
point. Then we have:

(i) if p ∈ J [2], then
⋂N

n=1 �np is non-empty for all N � 1;
(ii) assume that neither p1 nor p2 is a Weierstrass point. Then � � �p � �2p is empty;

(iii) the intersection � � �p � �2p � �3p is empty for all p � J [2].
Proof. Note that p uniquely determines the unordered pair {p1, p2} by Riemann–Roch.

If p ∈ J [2] \ {0}, then both p1 and p2 are Weierstrass points. One then readily checks that
in this situation both [(p1) − (o)] and [(p2) − (o)] lie in � � �p, which proves (i).

Now let p ∈ J \ {0} be arbitrary and suppose q = [(q1) − (o)] ∈ � � �p. Then there
exists r = [(r1) − (o)] ∈ � such that p = r − q and hence

(p1) + (p2) − 2(o) ∼ (r1) − (q1) .

By Riemann–Roch this implies

(r1) − (q1) ∈ {(p1) − (p−
2 ), (p2) − (p−

1 )} (8·1)

and hence q1 = p−
1 or q1 = p−

2 . Without loss of generality we assume that q1 = p−
1 .

Suppose that q ∈ � � �p � �s where s = 2p = [(s1) + (s2) − 2(o)]. Similarly as before
we find that q1 = s−

1 or q1 = s−
2 . Hence si = p1 for some i ∈ {1, 2}, say s1 = p1. This

implies

p = s − p = [(s2) − (p2)].
Again by Riemann–Roch we find

(s2) − (p2) ∈ {(p1) − (p−
2 ), (p2) − (p−

1 )} ,

leading to p2 = p−
1 or p2 = p−

2 . The first possibility implies p = 0, which we excluded, so
we end up with p2 = p−

2 . This proves (ii).
To prove (iii), we may assume that p2 = p−

2 , so that 2p = [2(p1) − 2(o)]. Note that
under this assumption p � J [3], since otherwise we would have 2p = −p, which implies
p1 = p−

1 or p1 = p−
2 , and hence p ∈ J [2] � J [3] = {0}.
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By the arguments above, we may assume that a point q ∈ ���p ��2p satisfies q1 = p−
1 .

If we assume, in addition, that q ∈ �t , where t = [(t1) + (t2) − 2(o)] = 3p � 0, then
Riemann-Roch implies p1 ∈ {t1, t2} as in (8·1), say p1 = t1. But then

p = 3p − 2p = [(t1) + (t2) − 2(p1)] = [(t2) − (p1)] ,

which implies p ∈ J [2].
Note that we also need to find the primes dividing the ideal (�) if we want to apply

Theorem 2·2 or 2·4. In practice, this becomes problematic if NK/Q(�) is large. The following
result generalizes equation (21) in [3].

THEOREM 8·2. Assume that X is defined over Q. Let p ∈ J (Q) \ supp (�) such that
φn(p) ∈ Z for all n � 1 and put En = φn(p). Let S′ be a finite set of prime numbers
containing Sbad and write S = S′ � {∞}. Assume that l is a positive integer such that for all
reductions J̃ of J modulo primes not in S′ we have that T ( p̃) contains no gap larger than l,
where p̃ is the reduction of p. Then we have

ĥS(p) = lim
n→∞

n∈T (p)

1

n2
log

( |En|
gcd(|En|, |En+1|, . . . , |En+l |)

)
.

Proof. Note that ∏
v∈S

|φn(p)|nv

v = |En|
∏
v∈S′

|En|nv

v ,

and hence

ĥS(p) = lim
n→∞

n∈T (p)

1

n2
log |En|

∏
v∈S′

|En|nv

v .

By assumption, we have that for each given n ∈ T (p) a prime v � S′ does not occur in all
of En, . . . , En+l simultaneously, so that the gcd is only composed of primes in S′. In fact we
have

gcd(|En|, . . . , |En+l |) =
∏
v∈S′

min(|En|−1
v , . . . , |En+l |−1

v )nv

=
∏
v∈S′

|En|−nv

v min(1, |En+1/En|−1
v , . . . , |En+l/En|−1

v )nv .

Thus it suffices to show that in the limit as n → ∞ one has
1

n2
log min(1, |En+1/En|−1

v , . . . , |En+l/En|−1
v ) −→ 0 (8·2)

for n ∈ T (p). By Theorem 2·1, the sequence
(
n−2 log |En|v

)
n∈T (p)

converges for every v ∈
S′, hence is a Cauchy sequence. This proves (8·2) and therefore the theorem.

Using Theorem 8·2 and Lemma 8·1, we can develop a method for the computation of ĥ(p)

if K = Q and g = 2 which requires no factorisation at all.

COROLLARY 8·3. Suppose that g = 2 and that p ∈ J (Q) satisfies ℘2 j (p), ℘22k(p) ∈ Z

for j, k ∈ {1, 2} and gcd(a(x), b(x)) = 1, where (a(x), b(x)) is the Mumford representation
of p. Suppose, moreover, that φn(p) ∈ Z for all n � 1. Then we have

ĥ(p) = lim
n→∞

n∈T (p)

1

n2
log

( |En|
gcd(|En|, |En+1|, |En+2|)

)
.
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Proof. Write p = [(p1) + (p2) − 2(o)], where both p1, p2 ∈ X (K ) and K = Q or K is a
quadratic extension of Q. The condition gcd(a(x), b(x)) = 1 ensures that neither p1 nor p2

is a Weierstrass point on X . In order to apply Theorem 8·2 we let S′ denote the union of Sbad

and the finite set of places v such that p1 or p2 reduces to a Weierstrass point modulo w for
some place w of K dividing v. By Lemma 8·1 we can then take l = 2. Put S = S′ � {∞}.

By Theorem 8·2, the right-hand side of the equality to be proven equals ĥS(p). The as-
sumptions that ℘2 j (p), ℘22k(p) ∈ Z for j, k ∈ {1, 2} imply that for v � S the point p
does not lie on the theta divisor modulo v. The equality itself then follows by applying
Theorem 2·4.

Remark 4. Assuming that all the φn(p) are integers may seem like a strong restriction,
but, possibly after applying a simple coordinate transformation to X , we can at least al-
ways assume that all ℘g j(p) and ℘ggk(p) are integral. Then, a conjecture of Uchida [18,
conjecture 4·14] predicts that all φn(p) are integral. So we can simply test along the way
whether En has a nontrivial denominator for n = 1, 2, . . .; such an n would then yield a
counterexample Uchida’s conjecture.

Remark 5. We note that if p = [(x1, y1) + · · · + (xg, yg) − g(o)] ∈ J (Q) such that all
xi and yi are integral, then all ℘g j (p) are integral, but this need not hold for all ℘ggk(p).
Consider, for instance, the Jacobian J of the hyperelliptic curve X given by the affine model

y2 = 1 + 2x + 3x2 + 4x3 + 5x4 + x5

and the point p = [(1, 4) + (−2, 5) − 2(o)] ∈ J , satisfying

℘21(p) = −1, ℘22(p) = 2, ℘221(p) = −2/3, ℘222(p) = 26/3.

9. Implementation

Suppose that g = 2. We have implemented the computation of the values of φn for this
case in Magma. Expressions for the ℘-functions ℘11, ℘112 and ℘111 in terms of ℘12, ℘22, ℘122

and ℘222 are given in [18, example 5·9]. Uchida shows that all φn ∈ Z[1/2, μ0, . . . , μ4] and
conjectures that in fact φn ∈ Z[μ0, . . . , μ4]. The division polynomials φn for n ∈ {1, . . . , 5}
were already computed by Uchida and we are grateful to him for sharing them with us. In
fact it is not hard to compute these using a method already discussed by Kanayama [7] who
first constructed the division polynomials in the genus 2 case.

We have not computed any of the polynomials φn for n > 5 because they quickly become
rather complicated. Instead we employ a recurrence relation due to Kanayama [8, theorem 9
(corrected)] which can be used to compute φ2n+1 (n � 2) and φ2n (n � 3) in terms of
φn−2, . . . , φn+2 and some of their partial derivatives. Given p ∈ J (Q) \ supp (�), we apply
this method for the calculation of φn(p), where n = 6, 7, 8; our method relies on finding
partial derivatives of φ2, . . . , φ5 for our specific J and then evaluating them at p.

Having determined φ1(p), . . . , φ8(p), we then proceed to use Uchida’s recurrence re-
lations from [18, example 6·6] to compute φn(p) for n � 9. These are preferable to
Kanayama’s recurrence relations since they only need the values φm(p) for m ∈ {1, . . . , 5}
and m ∈ {(n − 7)/2, . . . , (n + 7)/2} (resp. m ∈ {(n − 8)/2, . . . , (n + 8)/2}) if n is odd
(resp. even); no derivation of polynomials is required.

We have implemented the computation of ĥ(p) using both Theorem 2·4 and Corol-
lary 8·3. If we can factor �, then it is usually much faster to use Theorem 2·4 and work
locally at each relevant place. The code is available on the second author’s homepage
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http://www.uni-oldenburg.de/fileadmin/user upload/mathe/
personen/steffen.mueller/CanHtsDivPolys.zip.

Several other methods exist for the computation of canonical heights on hyperelliptic ja-
cobians. For instance, Holmes [6] and the second author [12] have independently developed
algorithms that can be used for arbitrary g � 1; the current record computation has g = 10,
see [12, section 6]. Their methods need integer factorisation, regular models of the curves
and theta functions on Cg.

For g = 2 other algorithms are available. These all require explicit arithmetic on a model
of the Kummer surface associated to J in P3, see Section 6. The original method of Flynn
and Smart [5] requires no integer factorisation, but needs the computation of a certain mul-
tiple np of the point p ∈ J (K ) whose canonical height we want to compute. As n can
become quite large (see [15, section 1]), this often becomes impractical. A modified ver-
sion due to Stoll [15] remedies this, but requires integer factorisation. However, one can
combine this modified version with the original method of Flynn and Smart to avoid dif-
ficult factorisations, see [15, section 6]. Further improvements are given in [14]. Another
algorithm which is very similar to Stoll’s method is due to Uchida [17]. One could extend
these techniques to higher genus if one had formulas for explicit arithmetic on a model of
the Kummer variety. This is already quite difficult in genus 3, see for instance [13]; Stoll has
recently found an analogue of his genus 2 algorithm in genus 3 [16].

Currently, Magma contains an implementation of the algorithms from [12] for general
g and [15] for g = 2. When g = 2, then the algorithm from [15] is usually faster than
the algorithms using Theorem 2·4 or Corollary 8·3, which in turn are usually faster than
the implementation of the algorithm from [12] if we are only interested in a few digits of
precision.

10. Examples

10·1. Height computation

Let X be given by the affine model

y2 = 1 + 2x + 3x2 + 4x3 + 5x4 + x5

and let J be the Jacobian of X . We want to compute the canonical height ĥ(p) of the point
p = [(1, 4) + (−2, −5) − 2(o)] ∈ J , satisfying

℘21(p) = −1, ℘22(p) = 2, ℘221(p) = 6, ℘222(p) = 2.

Using the implementation of the Flynn-Smart algorithm [5] modified by Stoll [15] in
Magma, we compute ĥ(p) ∼ 0.905661971737515301104367671719.

We can use Corollary 8·3 to compute ĥ(p) without any factorisations, see Table 1. If we
are only interested in a few digits of precision, it suffices to compute φn(p) for n � 100.
In this case the bulk of the computation is spent on the computation of φn(p) for n � 8,
because, as mentioned in Section 9, we need to manipulate polynomials. For the computation
of φn(p) for n � 9 recurrence relations are used which only need the values φm(p) for a few
m < n, see Section 9.

If we are interested in more than 4 digits of precision, then the computation of ĥ(p) using
Theorem 2·4 is much faster, see Table 2. The prime factorisation of the discriminant of X is
� = 28 · 86477, so it suffices to consider the set of places S = {2, ∞}, since p has integral
℘2 j (p), ℘22k(p).
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Table 1. Computing ĥ(p) using Corollary 8·3

Iterations Running time in seconds Error

10 0.33 3.60 · 10−2

100 0.36 4.67 · 10−4

200 0.74 1.27 · 10−4

300 2.60 6.92 · 10−5

400 7.73 3.49 · 10−5

500 18.990 2.45 · 10−5

Table 2. Computing ĥ(p) using Theorem 2·4

Iterations Running time in seconds Error

10 0.72 3.60 · 10−2

100 0.74 4.67 · 10−4

1000 0.89 4.82 · 10−6

5000 1.58 1.93 · 10−7

10000 2.45 5.86 · 10−8

15000 3.30 2.26 · 10−8

20000 4.14 1.65 · 10−8

25000 4.96 1.21 · 10−8

10·2. Order of growth of λ̂v(np)

As was remarked before, we are not able to say anything about the convergence rate of the
sequence ((1/n2) log |φn(p)|v)n∈T (p) for a given place v using only Faltings’s Theorem 4·1.
By (6·1), finding this convergence rate is equivalent to finding the order of growth of λ̂v(np).

We have applied our implementation described in Section 9 to gather data on the asymp-
totic behaviour and the implied constants of the sequence (̂λv(np))n∈N, where p ∈ J (Q)

is a rational point on a genus 2 jacobian and v ∈ MQ. To this end we varied the place
v, the coefficients μi and the point p. More precisely, we considered about 2000 random
genus 2 curves with |μi | � 50 for i ∈ {1, . . . , 4}; we computed λ̂v(np) for v = ∞ and all
non-archimedean v such that ordv(�) � 2, for all p � supp (�) � J [2] of Kummer surface
height bounded by 500 and for all n ∈ {1, . . . , 15000}�T (p). We also considered about 100
examples of curves with 50 < |μi | � 1000.

10·2·1. Archimedean places

Let us first describe the case v = ∞. As mentioned in Remark 2, by a conjecture of Lang
we should have

λ̂∞(np) = O(log n)

for n ∈ T (p). We have used our implementation to test this prediction.
See Figure 1 for the values of λ̂∞(np), where n ∈ {1, . . . , 15000} and p ∈ J1(Q) has

Mumford representation

(x2 + 1081/25x + 148/5, 13803/125x + 1799/25).

Note that every n ∈ {1, . . . , 15000} lies in T (p). Here J1 is the jacobian of the genus 2 curve
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Fig. 1. λ̂∞(np) and log(n) for n ∈ {1, . . . , 15000}.

given by

y2 = 25 + 20x + 30x2 + 40x3 + 50x4 + x5.

All examples we have considered exhibit a similar behavior. The resulting data suggest that
we may even have

λ̂∞(np) = O((log n)A)

for some 0 < A < 1 depending on X and p, and that the implied constant is rather small
compared to the coefficients μi .

10·2·2. Non-archimedean places

Let J2 be the jacobian of the genus 2 curve given by

y2 = 100 + 200x + 300x2 + 400x3 + 500x4 + x5

and let q ∈ J2(Q) have Mumford representation

(x2 + 400x + 200, 3990x + 1990).

Then q reduces to a singular point on the reduction of J2 modulo v = 2; the values of λ̂2(nq)

are shown in Figure 2.
Note the apparent formation of finitely many horizontal lines, as well as a set of ‘sporadic’

points following the graph of log n. This dual behavior can perhaps be explained using Pro-
position 3·1 (ii) and (iii) as follows: the set of specialisations n p̃2 of the nq in the special fiber
of the Néron model modulo v is a finite group R. The group R has a partition R = R1 � R2

into points which are on resp. off the closure of the theta divisor modulo v. The values of
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Fig. 2. λ̂2(nq) and log(n) for n ∈ {1, . . . , 15000}.

λ̂2(nq) display a log n behavior for n p̃2 ∈ R1, and are given by γ (C), with C the component
containing n p̃2, when n p̃2 ∈ R2. Again, a similar behaviour occurred in all our examples.
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