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Abstract
Cell migration processes are controlled by sensitive interaction with external
cues such as topographic structures of the cell’s environment. Here, we present
systematically controlled assays to investigate the specific effects of spatial
density and local geometry of topographic structure on amoeboid migration of
Dictyostelium discoideum cells. This is realized by well-controlled fabrication of
quasi-3D pillar fields exhibiting a systematic variation of inter-pillar distance
and pillar lattice geometry. By time-resolved local mean-squared displacement
analysis of amoeboid migration, we can extract motility parameters in order to
elucidate the details of amoeboid migration mechanisms and consolidate them in
a two-state contact-controlled motility model, distinguishing directed and ran-
dom phases. Specifically, we find that directed pillar-to-pillar runs are found
preferably in high pillar density regions, and cells in directed motion states sense
pillars as attractive topographic stimuli. In contrast, cell motion in random
probing states is inhibited by high pillar density, where pillars act as obstacles
for cell motion. In a gradient spatial density, these mechanisms lead to topo-
graphic guidance of cells, with a general trend towards a regime of inter-pillar
spacing close to the cell diameter. In locally anisotropic pillar environments, cell
migration is often found to be damped due to competing attraction by different
pillars in close proximity and due to lack of other potential stimuli in the vicinity
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of the cell. Further, we demonstrate topographic cell guidance reflecting the
lattice geometry of the quasi-3D environment by distinct preferences in migra-
tion direction. Our findings allow to specifically control amoeboid cell migration
by purely topographic effects and thus, to induce active cell guidance. These
tools hold prospects for medical applications like improved wound treatment, or
invasion assays for immune cells.

S Online supplementary data available from stacks.iop.org/NJP/16/075012/
mmedia

Keywords: amoeboid migration, topographic guidance, 3D environmental
structure, cell motility, cell migration assay

Introduction

Amoeboid motion is a particularly efficient form of cell migration, characteristic for several cell
types, e.g. stem cells, specific immune cells or metastatic tumor cells. In the human body, these
cell types exhibit rapid migration through diverse types of tissue, enabling them to travel long
distances to their point of destination [1].

The high efficiency of amoeboid migration is the result of interplay of fast cytoskeletal
dynamics and relatively weak, short-lived contacts to the substrate [2–8]. These mechanisms
allow for a rapid response to chemical and mechanical cues in the cells’ environment [9]. For
example, amoeboid migration is observed for neutrophils and leukocytes, migrating towards the
source of an inflammation in response to molecular signaling cascades [10]. Interestingly,
similar signaling cascades and corresponding response mechanisms can be observed in
Dictyostelium discoideum (Dd) amoebae [11]. Thus, Dd is both a biologically relevant and
experimentally robust model organism to study amoeboid cell migration as a response to
environmental cues [12].

Influence on cell migration can be generated by several types of external cues like
chemical signals [13–18] and mechanical stimuli [19–21]. Topographic variations in the
vicinity of migrating cells are a special type of mechanical stimulus, but their importance
becomes clear by looking at human tissue: cells are always facing local variations in their
natural environment, as the local topography inside tissue of the human body is far from being
isotropic. In fact, tissue is the antipode of the flat and smooth glass substrates commonly used in
2D in vitro migration assays. Recent progress in technologies for controlled fabrication of
micro- and nano-structures facilitated the investigation of cell behavior in response to
topographic variations like grooves or pillars. However, extensive studies on cell orientation
[22, 23] and migration [24, 25] led to sometimes contradictory findings, even for the same
substrate structures and cell types [26, 27]. In this context, it is crucial to establish model
experimental situations to control and measure the effects of topographic stimuli on migrating
cells precisely and reproducibly. By that, more detailed numerical analyses enable reliable
interpretations and predictions with respect to realistic 3D conditions inside the human body.

Following this approach, we designed systematically controlled assays to assess the
influence of topographic cues on cell migration behavior. In particular, we used PDMS micro-
pillar fields consisting of lattices of trigonal (isotropic) and hexagonal/honeycomb (anisotropic)
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geometry with defined density gradients, providing spatially controlled quasi-3D environments
for cell migration. In doing so, we take advantage of the fact that PDMS is a comprehensively
characterized standard material, which provides a well-controllable model environment for
systematic cell migration studies [29, 32]. To exclude surface-induced or chemically related
side-effects, the pillar samples were produced from bulk material, exhibiting uniform surface
structure and chemical composition. This way, we make sure that the pillars and the bottom in
between them are of the same material. For all experiments the pillars are non-flexible posts of
the same diameter d= 4 μm. This way, changes in the migration behavior of cells in contact with
the pillar structures can be related solely to the topographic properties of the environment. By
performing local mean squared displacement (l-MSD) analysis of cell trajectories within the
pillar fields we extract cell motility parameters from phases of directed runs (dir-runs)
and random motion modes (rm-modes) of amoeboid migration. This allows us to analyze
changes in cell migration behavior with respect to local variations in pillar density and pillar
lattice structure. First, we study the effect of the spatial pillar density on Dd single cells
migrating in quasi-3D micro-pillar fields of varying pillar densities. As a second part of this
work, we investigate the influence of the local geometry on cell migration by comparison of Dd
migration in trigonal (isotropic) and hexagonal (anisotropic) pillar fields. Finally, we examine
topography-induced cell guidance effects in dependence on pillar density gradients and lattice
geometry.

With this study, we aim at revealing the mechanisms governing amoeboid cell migration
by structural cues in a quasi-3D environment. A detailed understanding of these mechanisms
will allow for topographic control of amoeboid cell migration, holding prospects for future
applications, e.g. for the design of invasion assays for immune cells and smart materials for
wound treatment.

Materials and methods

Amoeboid migration of single D. discoideum (Dd) cells in the vegetative state was studied. The
experiments were performed at low cell density in the absence of cell nutrients, in order to avoid
external chemical stimuli biasing cell migration. We observed Dd cells in quasi-3D
environments, provided by hexagonal arrays of micro-pillars, fabricated from transparent
polydimethylsiloxane (PDMS). For systematic study of cell migration in response to topographic
cues, we varied the inter-pillar distance and the geometry of the pillar arrays in a controlled
manner. PDMS as a material is stiff (elastic modulus E = 1.72MPa [32]) with respect to the
relatively weak adhesion forces exhibited by Dd cells [33, 34]. This allows for the investigation of
structural determinants of amoeboid cell migration independent of the details of the particular
cell–substrate interaction. Fluorescently labeled Dd cells and transparent PDMS pillar arrays
were imaged by fluorescence and bright-field microscopy. Cell migration analysis was performed
by using an established cell tracking routine [30] and l-MSD analysis software [28].

Cell culture and microscopy imaging

Cell culture

The axenic Dd strain (HG1694) expressing freeGFP (obtained from Dr Günther Gerisch, MPI
for Biochemistry, Martinsried, Germany) was grown in HL5 medium (ForMedium™,
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Hunstanton, UK) adjusted at pH= 6.7 and complemented by the antibiotic Gentamycin at a
concentration of 20 μgmL−1 (G-418, Biochrom AG, Berlin, Germany). The cell confluence was
kept below 40%.

For microscopy experiments, HL5 medium was substituted by phosphate buffered saline
(PBS), adjusted at pH= 6.0. The cell–PBS suspension was filled into the observation chamber
(composed of a cover glass and a Teflon® frame) and rested for 20min to let the cells settle
down, until a concentration of 10–20 cells per 400 × 400 μm2 (camera field of view) was
achieved.

Microscopy

The measurements were carried out with a 20× objective (Nikon, Germany) on a Nikon Eclipse
Ti microscope (Nikon, Germany) equipped with an EM-CCD camera (Hamamatsu, Herrsching,
Germany) at 19–21 °C. Fluorescence and bright field images of fluorescently labeled cells and
transparent pillar arrays were acquired every 10 s for at least one hour to exclude short-time
effects. To minimize the excitation stress for the cells, exposure times were kept below 100ms.

Preparation of micron-sized PDMS pillar structures

Substrates on which cells were seeded were made out of the transparent polymer
polydimethylsiloxane (PDMS), after its casting, cross-linking and unpeeling from a silicon
wafer-based master obtained by standard photolithography procedures. The PDMS structures
resulting from this process were two different types of arrays of 10–12 μm high pillars with a
constant diameter of 4 μm.

Experimental characterization by scanning electron microscopy shows that the pillars are
in fact highly uniform, with variations in dimension on nanometer scale, due to the precisely
controlled fabrication process of the samples (see supporting information, available from stacks.
iop.org/NJP/16/075012/mmedia, figure S1). The PDMS micro-pillar array fabrication was done
by the standard procedure previously described by Steinberg et al [29]. The well-defined
character, i.e. constant diameter, of the PDMS micro-pillars used for our cell migration
experiments has already been demonstrated by Arcizet et al [31]. Accordingly, variations in
stiffness of the pillars influencing the cell interaction can be excluded for the experiments.

Pillars were arranged in (i) arrays of trigonal geometry with gradients in lattice constant,
ranging from 8.2 μm to 22.5 μm, or in (ii) lattices of hexagons with gradients in hexagon side
length ranging from 10.5 μm to 38.4 μm. Please note that all substrates, including the micro-
pillars and the areas in between, exhibit the same chemical composition. This way any external
chemical bias of cell migration can be excluded.

Master fabrication

Master fabrication was performed by standard clean room microlithography procedures,
according to protocols described by Steinberg et al [29]. Therefore, a 3 inch silicon wafer (Si-
Mat, Landsberg/Lech, Germany) was cleaned under nitrogen flow protection and covered with
5ml of SU8-10 negative photoresist (Microchem, distributed by Micro Resist Technology,
Berlin, Germany) by spin-coating at 3000 rpm for 30 s. After that, the substrate was
progressively soft-baked (1min at 65 °C and 2min at 85–90 °C, cooling down slowly to room
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temperature) and illuminated with UV-light in a mask aligner (Süss MicroTec, Garching,
Germany) through a chromium mask (ML&C, Jena, Germany), with varying illumination times
of 3–5 s, according to the intended structure sizes. The illumination was followed by a
progressive hard bake of 1min at 65 °C, and 2min at 85–90 °C, with cooling down slowly to
room temperature. After that, the unilluminated photoresist was removed by two bathing steps
in SU8-specific developer (MicroResist Technology, Berlin, Germany).

Preparation of the PDMS structures

The resist master was silanized by vapor deposition of fluorosilane (1H,1H,2H,2H-
perfluorooctyltrichlorosilane, ABCR, Germany) under vacuum for one hour. The PDMS base
and the cross-linking agent were mixed at a 1 : 10 ratio (Sylgard 184 Silicone Elastomer Kit,
Dow Corning, MI, USA) and degassed for 30min under vacuum. Subsequently 2–3ml of
PDMS was poured on the Si-photoresist master, and degassed again for 15–30min under
vacuum. PDMS cross-linking was obtained after 3–5 h at 65 °C. After cutting and peeling the
PDMS structures off the master, the samples were immediately transferred to the observation
chambers (consisting of a cover glass and a Teflon® frame), immersed in PBS solution and
stored until use for cell migration experiments.

Cell migration analysis

Cell migration analysis was performed in two steps. First, center of mass positions (X and Y
coordinates) of each cell, investigated at each time point of the experiment, were obtained from
fluorescence images using a cell tracking plug-in [30] for ImageJ image analysis software (W S
Rasband, US National Institutes of Health, Bethesda, USA, http://imagej.nih.gov/ij/). This plug-
in detects cells as clusters of more than n bright pixels of a certain set intensity I in closer
proximity than a distance d. All of these parameters were adjusted optimally for precise cell
recognition.

In a second step, the obtained cell position data were processed using a homemade Matlab
algorithm. This algorithm was adapted from the previously developed TRAnSpORT routine
[28, 31] and is able to distinguish two modes of cell migration—directed runs and random
motion phases—in a time-resolved manner. For this purpose, TRAnSpORT routine uses global
as well as l-MSD analysis of cell trajectories.

Instantaneous migration velocity and direction are obtained from the changing positions of
the center of mass of the cell. A global trend towards a migration state of a more ‘diffusive’ or a
more ‘directed’ character is determined by global MSD (MSD) analysis over the entire
trajectory of each cell.

The l-MSD analysis is based on a two-state model of cell migration, extracting alternate
phases of directed runs and diffusive-like random walks [7, 31]. The directed parts of the
trajectory correspond to phases when the amoeba crawls at a quasi-constant speed in a quasi-
constant direction. The directed runs are separated by non-directed phases, during which the cell
probes its environment, repolarizes and starts a new directed run in another direction. As a key
feature, the l-MSD analysis algorithm is capable of distinguishing the two motility modes in the
migration trajectories. After trajectory splitting, the phase durations can be retrieved, together
with specific migration parameters, such as velocity for the directed runs, and a diffusion
coefficient analogue for the random motion states. The power of this method lies within the fact
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that the parameters are evaluated only during the corresponding phases of the motion. This
prevents, for example, phases of directed motion from biasing the overall statistical analysis by
increasing the global diffusion coefficient analogue. Moreover, the local analysis reveals
otherwise hidden features of the migration behavior, which are related to local or short-term
stimuli.

l-MSD Δ τR ( )i k
2 and angle persistence Δφ τt( , )

i i k are calculated over a rolling window of
M = 30 frames for each experiment time point ti of the trajectory as a function of different lag
times τ δ= ⋅k tk as follows:
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Here, =R t X t Y t( ) ( ( ), ( ) )i i i is the coordinate of the center of mass of the cell and
δ =t 10 s is the inverse frame rate of the experiment. In previous work, the l-MSD analysis
algorithm was tested with the precisely controlled motion of latex beads in microfluidic
stop-flow experiments [28]. Based on this calibration, the window size is adapted for
application to biophysical questions. In this context, we showed that the temporal
resolution obtained by the l-MSD analysis is of the order δτ⋅ sM

4
[28]. Specifically for cell

migration in PDMS pillar fields we determined M = 30 frames per time point as suitable
window size [31], which is chosen accordingly for the comparable experimental setting in
this work. The l-MSD function is fitted by using a well-established relation from statistical
physics:

Δ τ = ⋅ ταR t A( , ) .i k k
2

Here, the exponent α characterizes the migration state of the cell and the prefactor A bears
either the information about the diffusion coefficient analogue of random diffusive-like
migration modes or the velocity of directed runs. For α ≈ 2 and a persistent angle of motion,
the cell migration state is defined as ‘directed’, otherwise as ‘random’ migration mode. The l-
MSD algorithm defines the probability for directed motion for a certain time point as

α Δφ= ⩽ ⩽ ∧ ⩽ ⩽⎧⎨⎩P
1 for [1.7 2] [0 0.9 rad]
0 otherwisedir

Further, phase durations τrm and τdir for random states and dir-runs are computed, as well
as the overall probability Prm and Pdir for each migration mode.

Results and discussion

In this work, we study the influence of structural properties of the local environment on
amoeboid migration of Dd cells in the vegetative state, in the absence of any chemical

6

New J. Phys. 16 (2014) 075012 M Gorelashvili et al



attractors. Specifically, we investigate the influence of spatial density and geometry of the
environment, independently of the details of the particular substrate adhesion mechanism of the
cells. Therefore, we analyze amoeboid cell migration within well-defined micro-pillar arrays of
gradient inter-pillar distance and different lattice geometry. Standard pillars of 4 μm diameter
and 10–12 μm height are made of polydimethylsiloxane (PDMS) by standard photolithography
and polymer molding procedures. To avoid chemically related side effects, the entire substrate
was fabricated from bulk material exhibiting homogeneous chemical composition and surface
properties. Please note that within the pillar arrays, the cells migrate in a quasi-3D environment,
i.e. on the bottom substrate in between the pillars, not on top of pillars. Migration of
fluorescently labeled Dd cells in transparent PDMS pillar arrays is imaged by fluorescent and
bright field microscopy.

We analyze first the migration of cells in fields of trigonal lattice structure and different
pillar density. For our investigations, we measured cells in pillar arrays of gradient inter-pillar
distance ranging from values close to half the average cell size (diameter) up to twice the cell
size. Accordingly, we differentiate between three regions of spatial density of the pillar fields:
(i) low density regions, where cells contact only one to two pillars simultaneously, (ii)
intermediate density regions, where cells sense three to five pillars in their immediate vicinity
and (iii) high density regions, where the cells are squeezed in between more than five
neighboring pillars. Secondly, we study the effect of geometry by comparison between cell
migration in isotropic trigonal (T-arrays) (figures 2(A)–(C)) and in anisotropic hexagonal
lattices (H-arrays) of gradient inter-pillar distance. Hexagonal arrays are congruent with trigonal
lattices, where the pillar in the center of each hexagon is missing (figures 3(A)–(C)). Thus, H-
arrays lack the local topographic isotropy exhibited by T-arrays. Further, hexagonal lattices
provide more space for cell migration on the ‘floor’ (base substrate) in between pillars
compared to trigonal pillar arrays. Thirdly, we analyze guidance of cells by topographic cues,
specifically with respect to the direction of the pillar density gradient and the respective lattice
vectors of the pillar arrays.

For data evaluation, center of mass trajectories of cells within pillar arrays were
extracted from the obtained image stacks. A typical cell trajectory in a trigonal pillar array for
a time period of 68min is shown in figure 1(A). The obtained data were analyzed with
respect to cell migration [7, 31]. MSD lag-time dependent analysis of the whole cell
trajectory bears information on global migration properties of different time-scales, as
illustrated by figure 1(B). Here, a distinct decrease in the exponent α for increasing lag-times
is shown. To resolve the migration state of the cell at each experiment time point, we perform
l-MSD analysis within a predefined time window (of length M = 30 frames), sliding along the
entire cell trajectory. By that, each cell trajectory is divided into phases of directed runs (dir-
runs) and random motion (rm-mode), as shown in figure 1(C). This analysis is based on the
lag-time dependent l-MSD function as shown in figure 1(D), which bears the full information
of all states for each time point. During directed runs (dir-runs), a cell migrates at nearly
constant velocity and exhibits a high directional persistence. In random migration phases,
cells probe their environment in a diffusive-like manner without any preferred migration
direction. The migration state is identified as dir-run by criterion of the l-MSD exponent
α ≈ 2 and angular persistence Δφ ≈ 0, or is assigned the rm-mode in all other cases. The
numerical analysis of the cell motility states yields distributions for the l-MSD exponent α,
for instantaneous velocities vrm and vdir and for phase durations τrm and τdir, as well as the

7

New J. Phys. 16 (2014) 075012 M Gorelashvili et al



overall probabilities Prm and Pdir to be in the rm-state or to perform a dir-run, which are
discussed at first by evaluation of their mean values. Further, the numerical distributions of
the cell migration parameters were statistically characterized by their median values and the
measures for deviation and relative asymmetry, as listed in table S1.We find that in all pillar
arrays, cell migration can be well characterized by the two-state motility model and cells
exhibit dir-runs as well as rm-modes.

Figure 1. Two-state amoeboid motility model. (A) Typical trajectory (white curve) of a
D. discoideum amoeba cell (green) migrating in a quasi-3D trigonal pillar lattice (white
pillar tops). White circles highlight positions of the pillars, which are of uniform shape
and constant diameter of 4 μm. The cell is shown for time points t1 = 0min and
t2 = 68.2min, with corresponding positions of its center of mass in blue (t1) and orange
(t2). (B) Global mean squared (MSD) analysis of the cell trajectory in (A), revealing
different motility state trends, by change of slope as a function of the lag-time τ. (C)
Cell trajectory of (A) split into directed runs (dir-run) of almost constant velocity and
high directional persistence (red), and random migration phases (rm-mode) (blue), using
local MSD analysis. (D) Landscape-plot of the local MSD function, bearing information
of lag-time dependent motility states for each time point of the experiment. The local
MSD exponents, which quantitatively describe the motility state, are color-coded,
whereby dir-runs are shown in red and rm-modes in yellow to blue, depending on the
value of the exponent.
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Cell migration in isotropic trigonal pillar arrays of varying lattice constant

To study the influence of pillar density on cell motion, we analyze cell migration (N= 126
cells, n= 44 200 data points) within micro-pillar arrays of regular trigonal lattice structure
exhibiting a density gradient. With respect to the mean cell size, we define three regimes
of the pillar lattice constant a as a > 16 μm (region T1), 16 μm > a > 13 μm (region T2)
and 13 μm > a (region T3), representing low, intermediate and high pillar density,
respectively. In comparison, the typical cell size (diameter) of Dd amoeba is ∼8–12 μm.
Figures 2(A)–(C) show representative images of cells in pillar fields of trigonal lattice
geometry at low (T1), intermediate (T2) and high density (T3). Please note that
figures 2(A)–(C) show genuine microscopy images which have been optimized for
acquisition of the fluorescent cells’ positions in the quasi-3D environments of not
fluorescently labeled pillar fields. This explains the slightly different image appearance of
the pillars, which are in fact highly uniform, with a diameter of 4 μm and extremely small
variation in dimension (see figure S1). For Dd cells the pillars act as uniform, non-flexible
posts they encounter in their migration paths.

In the low density regime (T1), cells can attach to one or two pillars at the same
time (figure 2(A)), but are able to sense more neighboring pillars by filopodia. In the
intermediate regime (T2), cells can establish contacts with three to five pillars simultaneously
(figure 2(B)). For a high pillar density, cells are squeezed in between more than five pillars
(figure 2(C)).

High pillar density facilitates dir-runs

Local-MSD analysis of cell motility states (i.e. directed runs and random migration modes) in
different density regimes of the trigonal pillar lattices reveals a distinct dependence of
amoeboid cell migration on spatial density. The probability for dir-runs shows the highest
value at high pillar density (PT3

dir = 25.1%), followed by the low density regime (PT1
dir = 20.4%),

while it is significantly lower at intermediate pillar density (PT2
dir = 16.2%, for reference:

on flat PDMS substrate P2D
dir = 35%) (table 1). In addition, the values of angular persistence

Δφ are slightly higher for high and low density regimes than for intermediate spatial density
of T-arrays (figures 2(J)–(L) and table 1). The mean value of the l-MSD exponent α〈 〉T

dir of
the dir-run states is nearly equal for all density regimes of trigonal pillar arrays and for 2D
substrates (figures 2(D)–(F), table 1). These results reveal that dir-runs are more pronounced
in high and low density regions of the trigonal arrays, as compared to intermediate density
areas.

Analysis of the instantaneous velocities during directed migration phases reveals a
positive correlation with the spatial pillar density, with respective mean values

μ= −v 0.033 m sT1
dir 1, μ= −v 0.036 m sT 2

dir 1 and μ= −v 0.043 m sT3
dir 1 (figures 2(G)–(I)).

Further, the persistence times of the dir-run modes show a peak in the high density
regime (T3), with a mean value of τ = 131.6 sT3

dir . The corresponding distribution of the dir-
run phase durations is broadened and shifted to higher values, compared to the low density
(T1) and the intermediate regime (T2). Phase duration distributions of the complementary
rm-modes reveal that these phases are shortened in the high density regime (T3) (figures S2
(A)–(C)). In contrast, in the low density regime (T1), the persistence times of the random
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Figure 2. Cell migration in trigonal lattices of varying pillar density regimes. Cell
motility state characteristics for cells migrating in isotropic trigonal pillar lattices of low
(T1), intermediate (T2) and high density (T3). (A), (B), (C) Typical trajectories of D.
discoideum cells (green), with phases of directed runs (red) and random migration
modes (blue). Cells are shown for time points t1 = 0min and t2 = 50min (A), t2 = 53min
(B) and t2 = 90min (C), respectively. The corresponding cell center of mass positions
are highlighted in blue (t1) and orange (t2). White circles highlight positions of the
pillars, which are of uniform shape and constant diameter of 4 μm. (D), (E), (F)
Distributions of alpha exponents of dir-runs (red), rm-modes (blue) and all values
(black) describing the characteristics of cell motion in the different pillar density
regimes. (G), (H), (I) Corresponding distributions of instantaneous velocities during dir-
runs (red) and rm-modes (blue). The overall distributions of instantaneous velocities are
shown in black. Insets show velocity distributions of dir-runs, fitted by log-normal
distribution function. (J), (K), (L) Angular persistence of cell migration during directed
runs (red) and random migration modes (blue). The overall distribution is shown in
black.
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Table 1. Parameters describing cell motility in pillar lattices of trigonal (T1, T2, T3) and hexagonal (H1, H2, H3) lattice geometry
and different inter-pillar distances, corresponding to figures 2 and 3. For reference, cell migration data on flat PDMS substrate are
shown (2D) [31].

T1 T2 T3 H1 H2 H3 2D

a> 16 μm 16 μm> a> 13 μm 13 μm> a r> 16 μm 16 μm> r> 10 μm 10 μm> r

Number of data points in
the statistics

N 20 663 15 998 7539 14 402 5794 7504 12 338

Exponents of the l-MSD
power law

Directed runs αdir 1.81 1.81 1.81 1.78 1.76 1.80 1.81
Random migration states αrm 1.22 1.21 1.15 1.18 1.17 1.13 1.30
Diffusion coefficient ana-
log (μm2 s−1)

D 0.0090 0.0078 0.0084 0.0068 0.0066 0.0075 0.0072

Instantaneous velocity
(μm s−1)
Directed runs Vdir 0.033 0.036 0.043 0.069 0.053 0.046 0.075
Random migration states Vrm 0.032 0.030 0.028 0.029 0.028 0.027 0.044

Lifetimes of states (s)
Directed runs τdir 119.2 108.0 131.6 91.1 71.5 100.3 155
Random migration states τrm 302.2 371.6 286.8 424.7 513.9 555.8 238.7

Angular persistence (deg)
Directed runs Δφdir 14.67 15.83 15.53 17.82 18.85 17.02 16.51
Random migration states Δφrm 115.59 116.25 120.31 126.25 127.57 124.84 89.91

Dir-num probability Pdir 20.4 16.2 25.1 8.8 6.4 9.4 35
Random mode probability Prm 79.6 83.8 74.9 91.2 93.6 90.6 65
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modes are longer. Compared to trigonal lattices, on flat PDMS substrate cells performing
dir-runs exhibit higher migration velocities and larger values for temporal persistence τ,
while the temporal persistence of rm-modes is lowered (table 1 and table S1).

Together, these results indicate that in the trigonal pillar lattice, the high density
regime (T3) facilitates directed cell runs in terms of high velocities and persistence times,
as well as increased probability. The enhancement of the dir-run mode by the high density
regime supports the concept of pillars acting as topographic ‘attractors’ to the cells,
as introduced by Arcizet et al [31]. During directed migration phases, cells show contact-
controlled motility and perform pillar-to-pillar runs. While coming into contact
with one pillar, a cell simultaneously senses its environment and can start a dir-run
to the next pillar, found in its immediate vicinity. At lower pillar densities, cells exhibit
a decreased probability of sensing neighboring pillars and thus, dir-runs are less frequent
with a smaller mean phase duration, as compared to the high density regions (T3) (see
supplementary data, movie S1). In conclusion, cells in the dir-run migration state sense
pillars as topographic stimuli and orient their motion towards them, performing contact-
controlled pillar-to-pillar runs.

Random motion—pillars act as obstacles

In contrast to dir-run states, we find that during random migration (rm) phases the pillars
act as obstacles for cell motion. The quantitative analysis of the rm-states reveals a
negative correlation of the exponent αT

rm and of the motion velocity vT
rm with the spatial

density of the pillar arrays. While the distributions and the mean values of αT
rm exponents

are similar for low (T1) and intermediate (T2) density areas, the mean value is lower for
dense regions (T3) (α α≈ ≈ 1.21T T1

rm
2

rm , α = 1.15T3
rm , for reference α = 1.30D2

rm ). The
distribution of the exponents αT

rm broadens for the high density region (T3) (compared to
(T1) and (T2)), where extremely low values are reached for a large number of data points
(figures 2(D)–(F) and table S1). A similar trend can be observed for the mean values of
migration velocities vT

rm (see table 1). The distribution of the velocities vT3
rm shows a distinct

shift to lower values compared to less dense pillar regions. Correspondingly, the mean
value of angular persistence of cell migration in random mode significantly increases for
the high density regime T3 compared to T1 and T2 arrays (figures 2(J)–(L) and table 1).
Also, the probability for rm-states for high density (T3) areas =P 74.9%T3

rm is significantly
lower than the respective probabilities =P 79.6%T1

rm for low density (T1) areas and
intermediate density (T2) areas (PT 2

rm = 83.8%). In addition, the diffusion coefficient

analogue decreases for high density areas (T3), compared to (T1) ( μ= −D 0.0084 m sT3
2 1

and μ=  −D 0.0090 m sT1
2 1 ). Compared to cell migration on flat substrates, in trigonal

lattices the probability for rm-modes as well as the mean velocity in this migration state is
lowered and the angular persistence of cell motion is significantly reduced (table 1). Taken
together, these results reflect the ‘diffusion-like’ character of random probing migration
phases, analogue to a passive drift of particles in crowded media: While at high pillar
densities the probability for rm-states is reduced in general, the increase in the crowdedness
of the environment dampens the particular random motion processes and thus lowers the
αT
rm exponent values, as well as the diffusion coefficient analogue DT (see figure S3).

Accordingly, during rm-modes, pillars act as obstacles for cell motion.
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Cell trapping at intermediate density regime in isotropic pillar lattice structure

Another important observation is the reduced probability of performing dir-runs for cells
migrating in the intermediate density (T2) areas of the trigonal pillar lattices, as compared to the
regions of low (T1) and high (T3) pillar density. Here, the inter-pillar distance is in the regime
of the typical diameter of Dd cells, so that cells are often attached to several pillars
simultaneously. In this constellation, a cell displaces its center of mass back and forth from one
pillar to the other (figure 2(B)). In terms of l-MSD analysis, these cell events are classified as
rm-modes, exhibiting low values of the diffusion coefficient analogue, as compared to the
migration phases of cells on flat surfaces, which are not ‘caged’ by topographic cues. Due to
this phenomenon, the mean value of diffusion coefficient analogue DT reaches its minimum,
and the mean duration of rm-modes τT

rm reaches its maximal value in the intermediate density
(T2) region. On the other hand, the probability PT

dir and the exponent αT
dir of the dir-runs show

the lowest values in the intermediate regime (T2). Additionally, the mean persistence time of

dir-runs is minimal in this region τ =( )108.0 sT 2
dir . The effect of cell trapping in intermediate

density regimes originates from the cell ‘attachment’ to several pillars at the same time. In this
constellation, a stable cell polarization to one particular direction is impeded, and the cell is
temporarily trapped in between several pillars, as described in former work [31]. From such a
‘trapped’ state the cell can only escape by an occasional, strongly asymmetric repolarization, or
sensing of distant pillars with exceptionally long protrusions.

Cell migration in micro-pillar hexagonal arrays of varying side length

To investigate the influence of the local geometric structure of the quasi-3D environment on cell
migration, we analyze cell trajectories in micro-pillar arrays of hexagonal lattice geometry (H-
arrays) exhibiting a spatial density gradient. H-arrays are congruent with trigonal lattices, where
the pillar at the center of each hexagon structure is missing, as shown by figures 3(A)–(C).
Please consider that the microscopy images are tuned to track the position of the fluorescently
labeled cells, thus hiding the high uniformity of the actual pillar dimensions.

In trigonal lattices, cells sense a topographically isotropic environment, i.e. the spatial
distribution of surrounding pillars is independent of the cell position. By comparison, in the H-
arrays the perceived geometry of the surroundings is anisotropic and depends on the position of
the cell within the hexagon (honeycomb). In order to extract comparable pillar densities for the
analysis of cell migration in hexagonal lattices as in the trigonal lattices, we redefine the three
spatial density regimes as a function of hexagon side length r to r > 16 μm (H1),
16 μm > r > 10 μm (H2), and 10 μm > r (H3) representing low, intermediate and high pillar
density in H-arrays, respectively. Again, the inter-pillar distance of intermediate (H2) density
region is close to the mean diameter of a Dd cell, while in the low (H1) and in high (H3) density
regions, it is comparable to half and to twice the size of these cells, respectively.

General pillar-density dependent cell migration mechanisms

In hexagonal pillar lattices with gradients in inter-pillar distance (H-arrays), l-MSD analysis of
cell trajectories (N= 47 cells, n= 27 700 data points) yields analogue trends as for the cell
migration behavior observed in trigonal pillar arrays (T-arrays). In detail, the probability for dir-
runs Pdir, the local-MSD exponents αdir and αrm, as well as the persistence of dir-modes τdir and

13

New J. Phys. 16 (2014) 075012 M Gorelashvili et al



Figure 3. Cell migration in hexagonal lattices of varying pillar density regimes. Cell
motility state characteristics for cells migrating in anisotropic hexagonal pillar lattices of
low (H1), intermediate (H2) and high density (H3). (A), (B), (C) Typical trajectories of
D. discoideum cells (green), with phases of directed run states and random probing
highlighted in red and blue, respectively. Cells are shown for time points t1 = 0min and
t2 = 83min, with corresponding center of mass positions in blue (t1) and orange (t2).
White circles highlight positions of the pillars, which are of uniform shape and constant
diameter of 4 μm. (D), (E), (F) Distributions of alpha exponents of dir-runs (red), rm-
modes (blue) and all values (black), describing the character of cell motion in different
density regimes. (G), (H), (I) Corresponding distributions of instantaneous velocities
during dir-runs (red) and rm-modes (blue). The overall distributions of instantaneous
velocities are shown in black. Insets show velocity distributions of dir-runs, fitted by
log-normal distribution function. (J), (K), (L) Angular persistence of cell migration
during directed runs (red) and random migration modes (blue). The overall distributions
are shown in black.
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the mean instantaneous velocity during rm-modes vrm exhibit analogue dependence on the pillar
density in both types of pillar arrays (table 1). This result suggests that there are general
mechanisms controlling cell migration by spatial density in the quasi-3D environment,
independent of lattice geometry: contact-controlled pillar-to-pillar guidance during dir-runs and
diffusive-like character of rm-modes appear in trigonal as well as in hexagonal arrays of
gradient spatial density. In both lattices the migration states show similar dependence on the
pillar density. For reference, table 1 shows respective migration parameters for cell migration
in 2D [31]. Reduced probability of topography-induced cell migration confinement in high
(H3) density regions leads to increased cell motility in this density regime. The corresponding
mean value of DH is 10–12% higher in high density (H3) regions compared to the low
(H1) and intermediate density (H2) regions ( μ= −D 0.0068 m sH1

1, μ= −D 0.0066 m sH2
1

and μ= −D 0.0075 m sH3
1).

Influence of topographic anisotropy on cell migration

However, there is also a strong difference in cell migration within the two lattice types. Notably,
the absolute values of cell migration parameters are strongly affected by different lattice
structures. In particular, the probabilities of dir-runs in H-arrays are less than half compared to
T-arrays, and to flat substrates (see table 1). In addition, the distributions of the exponents αH

dir

and αH
rm exhibit a shift to smaller values compared to the corresponding values of αT

dir and αT
rm

(figures 3(D)–(F) and table 1). Further, the dir-runs in H-arrays are less persistent in terms of
state duration and migration direction (Δφ) than in trigonal pillar lattices. Specifically, the
duration τdir is reduced by 23–33% as compared to T-arrays (and by 36–54% as compared to
flat substrates). The distinct suppression of dir-runs in H-arrays is related to the locally
anisotropic structure of the cells’ environment. Therefore, the trapping of cells in between
several pillars as described above is more probable in hexagonal arrays than in trigonal lattices
(see supplementary data, movie S3). Due to the absence of the pillars at the center of each
hexagon, the probability for a cell to sense other pillars as topographic stimuli and escape from
the trapped state is significantly lowered. Correspondingly, in H-arrays a strong increase in the
mean duration of random probing modes τrm is found. Compared to the respective values found
for T-arrays, the values of τrm are increased by ∼40% for low (H1) and intermediate (H2)
regions and even 94% for the high (H3) density region (and by 78–132% as compared to 2D
substrate) (table 1). Further, the values of the diffusion coefficient analogue DH are decreased
by 10–25% with respect to DT. Thus, although in H-arrays cells can migrate in regions
containing fewer obstacles than in the trigonal lattices, cells exhibit reduced motility in terms of
the diffusion coefficient analogue DH.

Another interesting observation concerning the hexagonal lattices is the overall increase in
instantaneous velocities of the dir-runs, as compared to T-arrays, in spite of the reduced
probability and mean duration of dir-runs. This means that in H-arrays the rare pillar-to-pillar
runs are performed at velocities vH

dir higher than vT
dir(but still lower than v2D

dir ). This effect can be
explained by the absence of center pillars in the hexagons: As the cells sense less topographic
stimuli sideways while migrating in dir-run mode, they continue their runs with less disturbance
and change of direction.

In summary, we find local anisotropy of lattice structure in H-arrays strongly influences
cell migration, leading to a more complex variety of behavior, compared to our findings in
isotropic trigonal arrays.
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Figure 4. Cell migration in pillar lattices of trigonal and hexagonal lattice geometry.
Angle distributions of directed (red) and random (blue) cell motion in trigonal versus
hexagonal lattices of large (A) (B), intermediate (C) (D) and small (E) (F) inter-pillar
distances. Direction of increasing pillar density is indicated by a black arrow. Blue and
red arrows indicate directions of long-term (12 h) cell drift along the gradient in inter-
pillar distances in trigonal arrays (A), (E). (G) and (H) illustrate the effect of lattice
geometry on contact-induced directed runs in trigonal versus hexagonal pillar fields,
respectively. Pillars are shown in gray, cells are shown in green, possible directions of
contact-induced runs in isotropic trigonal pillar lattices and anisotropic hexagonal
lattices are illustrated by arrows. The resulting peaks in the angular distributions are
highlighted by way of example for the intermediate density regimes (C) and (D). (G)
shows possibilities for cells to either continue a dir-run (a), or to leave a migration-
confined rm-state (b) upon sensing a pillar. In the trigonal lattices (a) yields a 60° peak
distribution, while (b) adds peaks every 30° (C). (H) illustrates possible way for a cell to
perform a succession of dir-runs in a hexagonal lattice, leading to peaks in angular
distributions every 30° (D).
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In particular, the probability of topographic cell trapping is significantly increased. Further,
due to topographic anisotropy in H-arrays, instantaneous velocities of dir-runs exhibit higher
values than in T-lattices, indicating a bias in cell migration behavior.

Effect of pillar density gradients in trigonal and hexagonal pillar arrays

The above findings reveal that cell motility states are sensitive to the spatial density and local
geometry of the cell environment. We identified different mechanisms how cell migration is
influenced by the topographic properties of the pillar lattices. To investigate topographic
guidance mechanisms in detail, we analyzed the direction of cell motion as a function of both
lattice constant and local geometry of the pillar arrays. Therefore, we compared angular
distributions of cell motion during dir-runs and rm-modes in both types of pillar lattices.

Cell guidance by topographic cues

To investigate topographic guidance of cells induced by the gradient in pillar density, we
analyze all migration directions with respect to dir-runs and rm-modes, along (parallel to) the
pillar density gradient. As a most important result, our data reveal cell guidance in T-arrays
(isotropic lattices) towards regions of intermediate pillar density. This bias of cell migration is
governed by dir-run states on the one side, coming from low pillar density regions, and by rm-
cell motion on the other side, coming from high pillar density regions. In detail, we find that in
trigonal pillar arrays, cells preferably migrate from low density areas (T1) towards more dense
(T2) regions (see figure 4(A)) in dir-run mode. Further, we find that during random probing in
high density (T3) regions, the migration direction towards intermediate density area is favored
(see figure 4(E)). Together, these findings substantiate an overall cell drift to the intermediate
density region, which is confirmed by long-term experiments on cell migration in the T-arrays
(see last paragraph). We seeded Dd cells (N= 249 cells) in trigonal micro-pillar arrays with a
gradient in lattice constant and performed spatial distribution statistics of cell positions with
respect to the three density regions (T1, T2 and T3) at time points t0 = 0 h and t1 = 12 h. Before
starting the measurement, we waited 20min to let the cells settle firmly, in order to run the
experiment from equilibrium conditions. This way, we minimized convection flows and a
possible bias by floating of cells. In order to identify non-biased cell migration behavior, we
accordingly kept the experimental setting from any mechanical disturbance during the
measurement. At time point t0 = 0 h, we find a homogeneous cell distribution over all density
regions of the T-arrays. Compared to the time point t0, at t1 = 12 h the number of cells found in
the intermediate pillar density region (T2) increased by 12%, while it decreased by 3% in the
low density region (T1) and by 33% in the high density region (T3). To account for cell
proliferation during the measurement duration, the acquired cell numbers at time point t1 = 12 h
are weighted with the proliferation factor of 1.3. Similar long-time experiments in hexagonal
pillar lattices with a gradient in pillar density confirm this trend of a net migration of cells
towards regions of intermediate pillar density over 12 h. By these results we show that in both
trigonal as well as hexagonal lattices with gradients in pillar density, cells tend to invade an
intermediate density regime. For longer times, we expect this general trend to progress.
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Effect of pillar lattice geometry on cell guidance

In order to investigate mechanisms of the topography-induced cell guidance with respect to the
lattice geometry, we analyze the distribution of velocity vector angles of all migrating cells in
trigonal and in hexagonal pillar arrays, as shown in figures 4(A)–(F). Please note that, by tilt of
the trigonal lattice structure of 30° against the gradient in pillar density, we separate guidance
effects along the gradient from guidance effects related to the lattice geometry, i.e. the
directions of the lattice vectors. More precisely, the peaks in angular distribution of dir-runs
reflect the geometry of the pillar arrays (figures 4(A), (C), (E)), indicating pillar-to-pillar runs in
directed migration mode (red).

These peaks originate from the fact that a cell has a significantly increased probability to
perform a dir-run upon finding a migration target, i.e. another pillar. In the trigonal pillar
lattices, the following mechanisms contribute to the appearance of the peaks. At first, a cell
performing a contact-induced pillar-to-pillar run follows a direction along a pillar lattice vector.
This mechanism leads to peaks at 60° angles, respectively, as illustrated by cell (a) in sketch
principle of figure 4(G). Secondly, if a cell is trapped between several pillars in rm-state, as
described above, sensing another pillar can trigger a switch to a dir-run state and to migration
leaving the ‘trap’. In this case, the cell starts the run somewhere between the pillars, as
illustrated by cell (b) in figure 4(G). In the trigonal array with equilateral triangles the
probability for the new migration direction is tilted by 30° against the lattice vectors, thus
resulting in peaks at 30° angles, respectively.

For a cell in the hexagonal pillar field, the lattice geometry provides a reduced number of
choices for contact-induced runs between next neighbor pillars, compared to trigonal lattices (T-
arrays: six options, H-arrays: three options). This results in a distinct 30°-angle distribution of
dir-run peaks in H-arrays, as illustrated by figure 4(F). Corresponding to the above explanation,
the peaks are most pronounced for angular distributions in intermediate density regions,
respectively (figures 4(C) and (D)), showing that for cells performing pillar-to-pillar runs the
migration direction is most precise when the inter-pillar distance approximately corresponds to
the cell diameter. Moreover, in H-arrays, the reflection of lattice geometry by the angular
distribution of dir-runs is more pronounced than in T-arrays (figures 4(B), (D), (F)). This
highlights again the effect of the different lattice geometries: in comparison to the isotropic
trigonal lattice, in the anisotropic hexagonal array the number of pillars perceived by a cell
during dir-runs is lower and thus, the cell polarization and the run towards a target pillar is less
disturbed (figures 4(G), (H); see supplementary data movie S2).

In contrast, distinct contact guidance of cells by the pillars is lacking during rm-modes:
The angular distributions of random migration phases (blue) in both trigonal and hexagonal
arrays do not exhibit a correspondence to lattice geometry (figures 4(A)–(F)). These results are
in good agreement with the findings by Arcizet et al [31].

Conclusions

In this work we investigate the influence of the quasi-3D environmental topography on cell
migration in order to reveal the underlying mechanisms of cell guidance by local topography.
For that purpose, two parameters of the quasi-3D environment are systematically varied: the
spatial density and the local geometrical structure. In our experiments, we study amoeboid
migration of Dd cells within micro-pillar arrays under controlled variation of lattice constant
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and lattice geometry. In particular, we compare cell migration in trigonal, isotropic pillar lattices
to hexagonal, anisotropic pillar arrays. Based on our observations, we identify general
mechanisms governing amoeboid cell migration in quasi-3D environments. We consolidate our
findings in a model for the controlled modulation of the two states of amoeboid migration,
directed runs and random probing motion.

Effect of spatial density on cell motility

We discriminate cell motion characteristics in three regimes of spatial density with respect to
the mean cell size and the cells’ radius of sensing. Specifically, the lattice constants range from
values close to half the average diameter of a cell to twice the cell size. Our results reveal that
spatial density clearly influences amoeboid cell migration modes of directed runs and diffusive-
like random probing. Strikingly, directed pillar-to-pillar runs of the cells are facilitated by a high
pillar density. This effect is caused by the increased probability for a cell to contact multiple
pillars at the same time while performing directed runs, effectively triggering cell polarization.
Consolidating this result with the concept of contact-controlled modulation of cell motility,
pillars are sensed as attractive topographic stimuli by the cells. In contrast, the random probing
motion of cells migrating in arrays of high pillar density shows a diffusive-like character. Here,
the mobility is significantly damped by an increasing pillar density, and pillars rather act as
obstacles for cell motion. Notably, we find that in a regime where the inter-pillar spacing is in
the range of the average cell diameter, cell migration is often confined to small areas in between
three and five pillars. As revealed by our analysis, this effect is density-related and results from
the geometry of the cell–pillar constellation. Here, the competing attraction by simultaneous
pillar contacts inhibits cell polarization that could lead to an escape to the side. Thus, cells are
dynamically trapped, moving back and forth between the pillars, without covering large
migration distances.

Effect of local geometry on amoeboid migration

To get a detailed view on the specific effect of the local environment geometry on cell
migration, we compare cell migration behavior in pillar fields of similar spatial density, but with
different lattice structures. Interestingly, we observe distinct changes in the migration behavior
upon variation of the pillar lattice geometry: While the density-related effects on cell motility
states are analogue in both environments, the absolute values of the migration parameters are
strongly affected by the local geometry of the pillar arrays. Significantly, in hexagonal,
anisotropic pillar arrays we find a drastic reduction of the overall cell motility. In particular, the
probability of a cell to perform a directed run is significantly decreased for the hexagonal pillar
arrays. This effect is the result of an increased occurrence of cell trapping in hexagonal lattice
geometry, as compared to the trigonal lattices. Due to the modified lattice geometry with the
pillar in the center of each hexagon missing, the cells that are in contact with pillars sense fewer
topographic attractive stimuli. This lack of topographic attractors prohibits polarization and
thus, cell migration to the side. Accordingly, the area probed by cell motion is reduced, even
though the hexagonal lattice basically provides the cells with more space due to the missing
center pillar. Interestingly, the same geometric condition leads to a more pronounced pillar-to-
pillar guidance along the lattice vectors in terms of increased velocity and directional
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persistence. This effect is due to the fact that in hexagonal pillar fields, directed cell motion is
less disturbed by side attraction.

Topographic guidance of amoeboid cell migration

Our results show that the different topographic influences on amoeboid migration result in
guidance of migrating cells. The observed effects reflect the changes in spatial density and local
lattice geometry of the pillar fields. In order to investigate the mechanisms of density-gradient
guidance, we analyze the angle distributions of the migration directions in trigonal pillar fields
with respect to the amoeboid motility modes. By that, we demonstrate that in the low density
regime the influence of the local topography on the probability for directed runs is prevalent,
leading cells out of these regions towards higher pillar densities. By contrast, in the high density
regime, the pillars act as obstacles for the diffusive-like random probing motion. This leads to
net shifts of cell positions to lower densities. Consolidating these results, we find that cells tend
to invade regions where the inter-pillar spacing is close to the mean cell diameter.

In terms of guidance by the lattice geometry, we show that the angle distributions of the
directed run states reflect the directions of the lattice vectors. This effect is more pronounced for
the hexagonal lattice, due to the pronounced pillar-to-pillar guidance. In effect, we demonstrate
how the analysis of amoeboid cell migration can yield information on the topographic structure
of the cell environment, holding interesting perspectives for further investigations.

Perspectives

Our results provide detailed insights into the mechanisms governing amoeboid cell migration in
interaction with the topographic structure of 3D environments. We show that cell migration
behavior in specific environments can be predicted in detail by the design of quantitative assays.
Thoroughly controlled guidance of amoeboid cell migration holds great prospects for medical
applications, such as the design of analytical assays for immune cells and smart materials for
wound treatment.

Upon transfer of this piloting approach to migration studies of other cell types, the concept
is promising for the development of therapeutics and novel materials for regenerative medicine
or tissue engineering. In particular, topographic control of mesenchymal cell migration may
offer new opportunities for the design of implant materials upon variation of the density and
geometrical properties of micron-scaled surface patterns [35].
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