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We implement the effective field theory (EFT) approach to dark energy and modified gravity in the
public Einstein-Boltzmann solver CAMB. The resulting code, which we dub EFTCAMB, is a powerful and
versatile tool that can be used for several objectives. It can be employed to evolve the full dynamics of
linear scalar perturbations of a broad range of single field dark energy and modified gravity model, once the
model of interest is mapped into the EFT formalism. It offers a numerical implementation of EFT as a
model-independent framework to test gravity on cosmological scales. EFTCAMB has a built-in check for
the fulfillment of general stability conditions such as the absence of ghost and superluminal propagation of
perturbations. It handles phantom-divide crossing models and does not contain any quasistatic
approximation, but rather evolves the full dynamics of perturbations on linear scales. As we will show,
the latter is an important feature in view of the accuracy and scale range of upcoming surveys. We show the
reliability and applicability of our code by evolving the dynamics of linear perturbations and extracting
predictions for power spectra in several models. In particular we perform a thorough analysis of fðRÞ
theories, comparing our outputs with those of an existing code for ΛCDM backgrounds, and finding an
agreement that can reach 0.1% for models with a Compton wavelength consistent with current
cosmological data. We then showcase the flexibility of our code studying two different scenarios.
First we produce new results for designer fðRÞ models with a time-varying dark energy equation of
state. Second, we extract predictions for linear observables in some parametrized EFT models with a
phantom-divide crossing equation of state for dark energy.
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I. INTRODUCTION

An outstanding problem faced by modern cosmology is
cosmic acceleration, i.e. the phase of accelerated expansion
recently entered by the Universe [1,2], for which we still
lack a satisfactory theoretical explanation. Within the
context of General Relativity (GR), an accelerated expan-
sion can be achieved adding an extra ingredient in the
energy budget of the Universe, commonly referred to as
dark energy (DE). The latter can be static, as in the standard
cosmological model (ΛCDM), or dynamical. Alternatively,
one can conceive models that modify the laws of gravity on
large scales in order to achieve self-accelerating solutions
in the presence of negligible matter. We will refer to the
latter with the general term “modified gravity” (MG).
A plethora of models addressing the phenomenon of
cosmic acceleration have been proposed and analyzed in
the past fifteen years [3–6], and it has become increasingly
evident that the dynamics of perturbations will offer pre-
cious information to discern among candidate models,
breaking, at least partially, the degeneracy that characterize
them at the background level [7–15].
Anticipating a wealth of high-precision, large-scale

structure data from ongoing and upcoming surveys, such
as Planck [16], SDSS [17], DES [18], LSST [19] and

Euclid [20], it is important to identify a model-independent
way of testing the theory of gravity against the evolution of
linear cosmological perturbations. To this extent, several
proposals have been put forward and analyzed in the past
years [21–51]. In this paper we focus on a recent proposal
which applies the effective field theory (EFT) formalism to
the phenomenon of cosmic acceleration [52–54]; see also
[55–62] for previous work in the context of inflation, large-
scale structure and quintessence. The formalism is based on
an action constructed in unitary gauge out of all operators
that are consistent with time-dependent spatial diffeomor-
phisms and are ordered according to the power of pertur-
bations and derivatives. At each order in perturbations,
there is a finite number of such operators that enter the
action multiplied by time-dependent coefficients to which
we will refer as EFT functions. The background dynamics
is determined solely by three EFT functions, that are the
coefficients of the three background operators; while the
general dynamics of linear scalar perturbations is affected
by a total of six operators, and can therefore be analyzed in
terms of six time-dependent functions. Despite this model-
independent construction, there is a precise mapping that
can be worked out between the EFTaction and the action of
any given single field DE/MG model that introduces a
single scalar field and has a well defined Jordan frame
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[63,64]. Therefore, as wewill elaborate in this paper, the EFT
formalism can be used in two ways: as a general model-
independent framework to test the theory of gravity on large
scales, studying the effects of the different operators and the
constraints that canbeput bydata on their coefficients and as a
unifying language to analyze specific single scalar field DE/
MG models, once the chosen model is mapped into the EFT
framework. We refer the reader to [52,63,64] for a detailed
discussion of the assumptions and limitations of this frame-
work, an illustration of themapping and a complete inventory
of the models that can be cast in the EFT language. Here we
shall highlight that one of the assumptions on which the EFT
is built is the validity of the weak equivalence principle, as
discussed in [52,53], which limits is range of applicability to
models for which a Jordan frame, where all matter minimally
couples to gravity, can be defined. Despite of the inherent
limitations, the EFT framework includes most of the viable
approaches to the phenomenon of cosmic acceleration that
will undergo scrutiny with upcoming cosmological surveys.
We shall mention, among others, the Horndeski class which
includes quintessence, k-essence, fðRÞ, covariant Galileon,
the effective four-dimensional limit of DGP [65] and more.
We modify the publicly available Code for Anisotropies

in the Microwave Background (CAMB) [66,67], creating
what we will refer to as EFTCAMB, which will be publicly
released soon. The latter is a full Einstein-Bolztmann code
that can be used to investigate the implications of the
different EFToperators on linear perturbations as well as to
study perturbations in any specific dark energy or modified
gravity model that can be cast into the EFT language, once
the mapping is worked out. Such a code will be of great use
for upcoming cosmological surveys, such as Euclid
[20,68], that aim at testing the underlying theory of gravity
on large scales.
One of the virtue of the code is that it does not rely on any

quasistatic (QS) approximation but still allows for the
implementation of specific single field models of DE/MG.
When fitting to data or performing forecasts for upcoming
surveys, one generally focuses on subhorizon scales and
neglects the time derivatives of the gravitational potentials
and scalar fields with respect to their spatial gradients; i.e.,
one assumes the QS regime. In Fourier space, this brings the
Einstein and scalar field equations to an algebraic form and
simplifies significantly both the theoretical and the numerical
setup.Awidely used parametrization ofmodified gravity that
relies on the QS approximation is the one introduced in [69]
and commonly referred to as the BZ parametrization. While
theQSdescription of thegrowthof structure generally gives a
good representation of the evolution on subhorizon scales
(see e.g. [70] for an analysis in fðRÞ gravity), and signifi-
cantly reduces the computing time, it might loose out on
some dynamics at redshifts and scales that would leave an
imprint within the reach of some ongoing and upcoming
surveys [71,72]. At the level of model-independent tests of
gravity, implementations that do not employ the QS

approximation are the parametrized post-Friedmann (PPF)
modules of [24,73] as well as MGCAMB [74,75]. The
former uses a full set of equations for all linear scales,
obtained by the interpolation between the superhorizon and
the QS regime and it relies on three free functions and one
parameter; however, in order to study specific models, one
needs toworkout interpolations and fits to the these functions
and parameters for each case. The latter relies on a generic
parametrization of the Poisson and anisotropy equation to
form a complete and general set of equations for all linear
scales, allowing for model-independent analysis of modified
growth such as those of [35,40,49]; however, one has to
restrict to the QS regime in order to study a specific model.
We shallmention also ISiTGR[76,77],which is an integrated
set of modified modules for use in testing whether observa-
tional data are consistent with general relativity on cosmo-
logical scales. EFTCAMB is a full Einstein-Boltzmann code
which does not rely on any QS approximation and is very
general in terms of models and parametrizations that it can
handle. We will illustrate the importance of allowing for full
dynamics in view of upcoming data in Sec. VA 2, by
showing how, for some models, the time dependence of
the scalar d.o.f. can have a non-negligible effect on the
lensing of the cosmic microwave background (CMB)
detected by Planck [78].
Our code solves the full Klein-Gordon equation for the

Stückelberg field, which in the EFT formalism encodes the
departures from the standard cosmological model, as
opposed to macroscopic hydrodynamic and fluid treat-
ments [44,79,80]. This allows us to maintain an approach
that is closer to the true nature of the theory as well as to
have a direct control and easier interpretation of the
possible instabilities related to this d.o.f. as we discuss
in Sec. IVA. Furthermore, with our method we can easily
evolve perturbations in models that cross the phantom
divide, as we will illustrate in Sec. V B.
We focus on cosmological observables of interest for

ongoing and upcoming surveys, in particular showing
outputs of our code for the CMB temperature-temperature
autocorrelation, the CMB lensing potential autocorrelation,
the cross correlation between temperature and lensing
potential for the CMB and the matter power spectrum.
We consider several models. To start with, we focus on
fðRÞ models that reproduce a ΛCDM expansion history
and we compare our outputs to those of the common
implementation of these theories in MGCAMB [70,74,75].
This allows us to perform a consistency check of our code
as well as to identify some peculiar features in the power
spectra contributed by the subhorizon dynamics of the
scalaron, which is neglected by the QS implementation of
fðRÞ in MGCAMB. We then extend to designer fðRÞ
models with more general expansion histories, considering
both a constant but different than −1 and a time-varying
dark energy equation of state. We analyze in details all the
imprints of these models on the different observables.
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Finally, we switch gears and instead of adopting a known
model of modified gravity, we study some ghost-free power
law parameterizations of the EFT background functions
that display a phantom-divide crossing background. The
examples that we present should highlight the versatility of
our EFTCAMB code: it can be used to evolve the full
dynamics of linear perturbations for any given DE/MG
model that can be cast into the EFT language, without the
need to resort to the QS approximation; it provides a
powerful and versatile tool to implement the EFT formal-
ism as a model-independent parametrization to test gravity
with large-scale structure; it allows us to investigate some
poorly understood models which are permitted by the
symmetries and stability conditions of EFT, such as the
phantom-divide crossing ones.
Finally, let us note that while our setup takes into account

all contributions from operators that are at most quadratic in
the perturbations, for the numerical analysis of this paper
we focus on models that involve only background oper-
ators, leaving the analysis with second order terms for
future work. For a previous investigation of cosmological
implications on a subset of models within the framework of
effective field theory of cosmic acceleration see [81].
The paper is organized as follows. In Sec. II we review the

effective field theory of dark energy framework and we
discuss both its formulation in unitary gauge and the one in
which the scalar field is manifest via the Stückelberg trick. In
Sec. III we describe how EFTCAMB deals with the back-
ground cosmology. In Sec. IV, we present the equations for
scalar linear perturbations, we discuss some general theo-
retical requirements for the stability of the theory and review
the cosmological observables of interest. In Sec. V we
present numerical results, including an in depth comparison
of our outputs to those of MGCAMB for fðRÞ models, new
results for designer fðRÞ with time-varying dark energy
equation of state and some EFT parametrizations with a
phantom-divide crossing. We conclude in Sec. VI.

II. EFFECTIVE FIELD THEORY OF
DARK ENERGY

We define the action of the effective field theory of dark
energy [52,53] in unitary gauge, Jordan frame and con-
formal time, as follows:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
½1þΩðτÞ�RþΛðτÞ−a2cðτÞδg00

þM4
2ðτÞ
2

ða2δg00Þ2− M̄3
1ðτÞ
2

a2δg00δKμ
μ−

M̄2
2ðτÞ
2

ðδKμ
μÞ2

−
M̄2

3ðτÞ
2

δKμ
νδKν

μþ
a2M̂2ðτÞ

2
δg00δRð3Þ

þm2
2ðτÞðgμνþnμnνÞ∂μða2g00Þ∂νða2g00Þþ…

�

þSm½χi;gμν�; (1)

where m0 is the bare Planck mass, R is the Ricci scalar,
a2δg00 ¼ a2g00 þ 1, δRð3Þ, δKμν and δKμ

μ are the pertur-
bations respectively to the upper time-time component of
the metric, the three dimensional spatial Ricci scalar, the
extrinsic curvature and its trace. The functions Ω, Λ and c
are free functions of the conformal time coordinate τ and
are the only ones which affect the background dynamics,
hence the name background operators. The vector nμ is the
normal to surfaces of constant time. M2, M̄1, M̄2, M̄3, M̂2

and m2 are functions of time with dimensions of mass.
These are second order operators which contribute only to
the equations for perturbations. The ellipses in the action
stand for higher order terms. Our notation follows more
closely that one of [53], however we work in conformal
time and we multiply the Ricci scalar by 1þ Ω instead of
simply Ω for reasons of accuracy in the numerical calcu-
lations that we will perform. Sm is the action for all matter
fields. We work in the Jordan frame with 1þ Ω para-
metrizing the conformal coupling to gravity, while in the
Einstein frame the same function would describe the
coupling of the scalar d.o.f. to matter. The EFT formalism
is based on the assumption of the weak equivalence
principle which ensures the existence of a metric univer-
sally coupled to matter fields and therefore of a well defined
Jordan frame [52,53].
For a detailed explanation of how this action (1) is

constructed we refer the reader to [52,56]. Here we shall
briefly mention that it is built out of the only terms that are
consistent with the unbroken symmetries of the theory, i.e.
time-dependent spatial diffeomorphisms, and are organized
in powers of the number of perturbations and derivatives.
Such action encompasses all single scalar field dark energy
and modified gravity models, minimally and nonminimally
coupled. A matching between EFT functions and specific
single scalar field DE/MG models has been provided
in [52,53,63,64].

A. The Stückelberg field

In action (1) the extra dynamical scalar d.o.f. that one
expects both in modified gravity and dark energy models, is
hidden inside the metric. The unitary gauge is particularly
suited for the construction of the most general action to
describe all single field dark energy and modified gravity
models. However, in order to study the dynamics of
perturbations it is more practical to disentangle the scalar
d.o.f from the metric ones. This can be achieved via the
Stückelberg technique. Operationally, one restores the time
diffeomorphism invariance by mean of an infinitesimal
time coordinate transformation which introduces a scalar
field, commonly referred to as the Stückelberg field, that
realizes the symmetry nonlinearly. We work in conformal
time, so in our case the time diffeomorphism reads:

τ → τ þ πðxμÞ; (2)
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while spatial coordinates are left unchanged. In the
context of EFT of Inflation [59], the Stückelberg field is
associated to the Goldstone boson, while in the effective
field theory of dark energy the time translation invariance is
no longer realized by the Goldstone scalar mode. Under
this procedure, time-dependent functions are modified
according to

fðτÞ → fðτ þ πðxμÞÞ ¼ fðτÞ þ _fðτÞπ þ f̈ðτÞ
2

π2 þ… (3)

and are typically Taylor expanded in π. Throughout the paper
dots indicate derivations with respect to conformal time.

Furthermore, operators that are not fully diffeomorphism
invariant transformaccording to the tensor transformation law,
generating dynamical terms for π. For a complete description
see [52,53,59]. To keep the resulting action at second order in
perturbations, the functions multiplying the background
operators, i.e.fΩ;Λ; cg, areTaylor expandedup to the second
order, while the functions multiplying second (and higher)
order operators are expanded to zero order.
Let us illustrate how the mechanism works for the

background operators, by giving the explicit form of the
resulting action in terms of the Stückelberg field, up to
second order in perturbations

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
½1þΩðτ þ πÞ�Rþ Λðτ þ πÞ − cðτ þ πÞa2

�
δg00 − 2

_π

a2
þ 2Hπ

�
δg00 −

1

a2
− 2

_π

a2

�
þ 2_πδg00

þ 2g0i∂iπ −
_π2

a2
þ gij∂iπ∂jπ − ð2H2 þ _HÞ π

2

a2

�
þ � � �

�
þ Sm½gμν�; (4)

where the scale factor has already been Taylor expanded
according to Eq. (3). We give the explicit expression of the
contributions to action (4) from second order operators in
Appendix A. We will use action (4) to derive the linearly
perturbed Einstein equations in Sec. IV. Please notice that
our Stückelberg field is defined with respect to to con-
formal time, therefore there is a factor of a of difference
with respect to the Stückelberg field of [52,53].

III. THE BACKGROUND

Varying the background part of the action (1) or,
equivalently (4), with respect to the metric and assuming
a flat FLRW metric one obtains the following equations:

H2 ¼ a2

3m2
0ð1þ ΩÞ ðρm þ 2c − ΛÞ −H

_Ω
1þΩ

; (5)

_H ¼ −
a2

6m2
0ð1þΩÞ ðρm þ 3PmÞ

−
a2ðcþ ΛÞ
3m2

0ð1þ ΩÞ −
Ω̈

2ð1þ ΩÞ ; (6)

where H ¼ _a=a and ρm and Pm are, respectively, the
energy density and pressure of the matter components,
for which we assume a perfect fluid form with the standard
continuity equation:

_ρm ¼ −3Hðρm þ PmÞ: (7)

Eqs. (5)–(6) can be recast in the following, more conven-
tional, form

H2 ¼ a2

3m2
0ð1þ ΩÞ ðρm þ ρQÞ; (8)

_H ¼ −
a2

6m2
0ð1þΩÞ ðρm þ 3Pm þ ρQ þ 3PQÞ; (9)

if one defines

ρQ ≡ 2c − Λ −
3m2

0H _Ω
a2

; PQ ≡ Λþm2
0

a2
ðΩ̈þH _ΩÞ:

(10)

The latter can be interpreted as, respectively, the energy
density and pressure of the effective dark fluid. Combining
Eqs. (7), (8) and Eq. (9) one obtains the following
continuity equation for this dark component:

_ρQ ¼ −3HðρQ þ PQÞ þ
3m2

0

a2
H2 _Ω; (11)

which tells us that the energy density ρQ is conserved
only in the case of Ω ¼ const., i.e. a minimally coupled
theory.
The EFT formalism offers a bridge between theory and

data which can be used to test gravity on large scales via the
dynamics of linear cosmological perturbations. To this
extent, one can use a designer approach to fix a priori
the background evolution and use Eqs. (5)–(6) to determine
two of the EFT background functions fΩ;Λ; cg in terms of
the third one. It turns out to be convenient to solve for c and
Λ in terms of Ω:
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c ¼ −
m2

0Ω̈
2a2

þm2
0H _Ω
a2

þm2
0ð1þΩÞ
a2

ðH2 − _HÞ

−
1

2
ðρm þ PmÞ; (12)

Λ ¼ −
m2

0Ω̈
a2

−
m2

0H _Ω
a2

−
m2

0ð1þ ΩÞ
a2

ðH2 þ 2 _HÞ − Pm:

(13)

A. Code implementation of the background cosmology

As stated in the Introduction, we envisage our code to
serve two purposes. One being the application of the EFT
framework in a model-independent way, to study the effect
of the different operators in action (1) on the dynamics of
linear perturbations; and eventually constrain the time-
dependent coefficients multiplying these operators. And the
second one, having a versatile full Boltzmann code to study
the evolution of perturbations in virtually any single field
dark energy and modified gravity model for which a
mapping to the EFT formalism can be worked out. The
twofold nature of the code translates into the following
two different procedures for the implementation of the
background:

(i) pure EFT: we fix the expansion history and we
choose a viable form for ΩðτÞ [82]. We then use the
EFT designer approach discussed above to get c;Λ
and either (10) or the prescription described below
[see Eq. (16)] to get the Q quantities.

(ii) mapping EFT: we focus on a particular dark
energy or modified gravity model, e.g. fðRÞ; in this
case the optimal way to proceed is to solve the
background equations of the chosen model (which
could involve a designer approach) and then use
the mapping to the EFT formalism as described
in [52,53,63,64] to reconstruct the corresponding
EFT functions and Eqs. (10) to obtain the Q
quantities (10).

We will give explicit examples of the two cases above in
Sec. V, when we present numerical results of our code.
For the actual implementation of the pure EFT cases, we

fix the expansion history to

H2 ¼ 8πG
3

a2ðρm þ ρDEÞ; (14)

with

ρDE ¼ 3H2
0M

2
PΩ0

DE exp

�
−3

Z
a

1

ð1þ wDEða0ÞÞd ln a0
�
;

(15)

where wDE represents the equation of state of the effective
dark energy component and can be set accordingly to the

model that one wants to study. In particular we will
consider the following three cases:

(i) wDE ¼ −1, corresponding to a ΛCDM expansion
history;

(ii) wDE ¼ const ≠ −1, we will refer to this case as
wCDM;

(iii) wDEðaÞ ¼ w0 þ wað1 − aÞ, i.e. the CPL parametri-
zation [83,84], where w0 and wa are constant,
respectively the value and the derivative of wDE
today.

From a comparison of (8), (9) with (14), (15), one obtains
the following correspondence:

ρQ ¼ ð1þ ΩÞρDE þ Ωρm; PQ ¼ ð1þΩÞPDE þ ΩPm:

(16)

After fixing wDE, we use (16) to determine the Q quantities;
we then choose an ΩðτÞ and use (12) and (13) to get c and
Λ. Let us note that the quantity ρDE represents one possible
way of modeling the contribution of the dark component,
alternative to the quantity ρQ introduced above. The Q and
DE quantities coincide in the caseΩ ¼ 0, i.e. when the dark
sector is minimally coupled to gravity. However, when
Ω ≠ 0, Eq. (10) gives a more proper representation of the
effective scalar d.o.f. of the dark sector, taking into account
the coupling to matter and the corresponding exchange of
energy between the dark and the matter sectors. In fact, the
continuity equation (11) and that one for (15) coincide
when _Ω ¼ 0, while for _Ω ≠ 0 the density ρQ receives an
extra contribution from the coupling to matter. We
choose to formulate the designer approach for our code
in terms of ðρDE; wDEÞ, which allows for a more direct
implementation of the background cosmology in CAMB.
However, we express the equations for linear perturbations
in terms of the Q quantities, as it is usually done in the EFT
framework, since those better represent the contributions
to the evolution of perturbations from the EFT dark
component.
While in the linearly perturbed equations of the next

section we keep c and the Q quantities, we implicitly
assume that once the background is fixed, those will be
expressed in terms of the expansion history and Ω via a
combination of (12), (13) and (16) for the pure EFT cases,
and via the matching recipe and (10) in the mapping
EFT cases.
Before concluding this section, we shall comment on a

fundamental difference between the pure and mapping EFT
cases. In the former, the designer approach serves solely the
purpose of fixing the background, and therefore only the
EFT functions fΩ;Λ; cg; when studying the dynamics of
linear perturbations, one needs to independently choose a
form for the EFT functions multiplying second order
operators, (which of course includes the case in which
all those coefficients are set to zero). In the mapping case
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instead, once the model is chosen and the corresponding
background is solved, one can reconstruct all the time-
dependent coefficients in the EFT action through the
matching procedure, including the higher order ones if
the model under consideration involve them. Therefore
in the mapping case, once the model is specified one has all
the necessary ingredients to study the dynamics of cos-
mological perturbations.

IV. SCALAR LINEAR PERTURBATIONS

We shall now derive the linearly perturbed Einstein
equations that are needed in order to evolve scalar pertur-
bations in CAMB. We work in synchronous gauge with the
line element given by

ds2 ¼ aðτÞ2½−dτ2 þ ðδij þ hijdxidxjÞ�; (17)

where the scalar mode of hij in Fourier space can be
decomposed into

hij ¼
Z

dk3eik·x½k̂ik̂jhðk; τÞ þ ðk̂ik̂j − 2δijηðk; τÞÞ�;
(18)

with h denoting the trace of hij. Unless explicitly stated
otherwise, we work with Fourier transforms of all cosmo-
logical perturbations.
While the functions fΩ;Λ; cg are the only ones affecting

the background dynamics in the EFT formalism, when we
move to linear perturbations, more operators come into
play; indeed, all the remaining functions in action (1), or
equivalently (A1), that multiply second order operators,
will also affect the dynamics of linear perturbations. For the
sake of brevity, here we focus on the terms contributed by

background operators and we list the contributions from
second order operators in Appendix A.
Starting from the action in terms of the Stückelberg field

(4), and simplifying the background terms, to linear
order in scalar perturbations we have the following:

time-time Einstein equation:

k2η ¼ −
a2

2m2
0ð1þΩÞ ½δρm þ _ρQπ þ 2cð _π þHπÞ�

þ
�
Hþ

_Ω
2ð1þ ΩÞ

�
kZ

þ
_Ω

2ð1þ ΩÞ ½3ð3H
2 − _HÞπ þ 3H _π þ k2π�; (19)

momentum Einstein equation:

2

3
k2ðσ� − ZÞ ¼ a2

m2
0ð1þ ΩÞ ½ðρm þ PmÞvm þ ðρQ þ PQÞkπ�

þ k
_Ω

ð1þ ΩÞ ð _π þHπÞ; (20)

space-space off-diagonal Einstein equation:

k _σ� þ 2kHσ� − k2η ¼ −
a2PΠm

m2
0ð1þ ΩÞ

−
_Ω

ð1þ ΩÞ ðkσ� þ k2πÞ; (21)

space-space trace Einstein equation:

ḧ ¼ −
3a2

m2
0ð1þ ΩÞ ½δPm þ _PQπ þ ðρQ þ PQÞð _π þHπÞ� − 2

�
_Ω

1þΩ
þ 2H

�
kZ þ 2k2η

− 3
_Ω

ð1þ ΩÞ
�
π̈ þ

�
Ω̈
_Ω
þ 3H

�
_π þ

�
H

Ω̈
_Ω
þ 5H2 þ _Hþ 2

3
k2
�
π

�
; (22)

π field equation:

cπ̈ þ ð_cþ 4HcÞ _π

þ
�
3

2

m2
0
_Ω

a2
ðḦ − 2H3Þ − 2 _HcþH_cþ 6H2cþ k2c

�
π

þ ckZ −
m2

0
_Ω

4a2
½ḧ − 4k2ηþ 6kHZ� ¼ 0; (23)

where 2kZ ≡ _h and 2kσ� ≡ _hþ 6_η are the standard
CAMB variables [85]. As we will discuss shortly in
Sec. IVA, it is important to demix the degrees of
freedom in order to perform the appropriate stability
analysis of perturbations in the dark sector [52].
Namely, one shall substitute for η and ḧ using
Eq. (19) and (22), respectively, in order to obtain the
following equation:
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�
cþ 3m2

0

4a2
_Ω2

ð1þΩÞ
�
π̈ þ

�
3m2

0

4a2
_Ω

ð1þ ΩÞ
�
Ω̈þ 4H _Ωþ ðρQ þ PQÞa2

m2
0

�
þ _cþ 4Hc −

_Ω
2ð1þΩÞ c

�
_π

þ
�
3

4

m2
0

a2
_Ω

ð1þ ΩÞ
�ð3 _PQ − _ρQ þ 3HðρQ þ PQÞÞa2

3m2
0

þHΩ̈þ 8H2 _Ωþ 2ð1þ ΩÞðḦ − 2H3Þ
�

− 2 _Hcþ
�
_c −

_Ω
2ð1þ ΩÞ c

�
Hþ 6H2cþ

�
cþ 3m2

0

4a2
_Ω2

ð1þ ΩÞ
�
k2
�
π

þ
�
cþ 3

4

m2
0

a2
_Ω2

ð1þ ΩÞ
�
kZ þ 1

4

_Ω
ð1þΩÞ ð3δPm − δρmÞ ¼ 0: (24)

In our numerical code, we set the standard initial conditions
for matter components and curvature perturbations in the
radiation dominated epoch, at a time when the corres-
ponding momentum mode reenters the horizon. For the
Stückelberg field instead, we set initial conditions at a later
time, corresponding to aπ ¼ 0.01. The reasons for this
choice are several. First of all, we are interested in the late
time accelerating universe and we typically want our theory
to reproduce standard GR at early times (a < aπ). In other
words, we expect the Stückelberg field not to be excited at
early times. This fact also makes initial conditions for this
scalar field less motivated at deep redshift, when the other
matter components initial conditions are instead well
defined. Finally, from the numerical point of view, the
system is more easily controlled since, not evolving the π
equation at early times, we avoid some potential high
frequency dynamics that would make the integration time
longer, while keeping track of the underlying mode of
evolution of the scalar field. Indeed, since the equation of
motion for the Stückelberg field, (24), is coupled to metric
and matter perturbations, which behaves as an external
driving source, we set the π field to trace the dynamics of
the source at times earlier than aπ. In this way we can get
regular and proper initial conditions for the π field at aπ ,
while avoiding potential high frequency dynamics around
the underlying growing mode which anyhow are not
expected to leave imprints on physical observables.

A. Stability of perturbations in the dark sector

In this subsection we shall focus on some requirements
for theoretical stability that can be enforced on the EFT
functions to ensure that the underlying gravitational theory
is acceptable. To this purpose we implement in our code a
consistency check for the fulfillment of such stability
conditions. For the following discussion it is more
convenient to write the π field equation as follows,

AðτÞπ̈ þ BðτÞ _π þ CðτÞπ þ k2DðτÞπ þ Eðτ; kÞ ¼ 0; (25)

where the coefficients fA;…; Eg can be easily read from
Eq. (24) (and the results of Appendix A if second-order
operators are at play. In that case also A, B and D may

display k dependence). Relying on the discussion of [56],
we place the following theoretical constraints:

(i) 1þ Ω > 0: this condition on the nonminimal cou-
pling function is required in order to ensure that the
effective Newtonian constant does not change sign.
Violating this condition, classically, would imply a
Universe quickly becoming inhomogeneous and
anisotropic [86,87], while at the quantum level it
will correspond to the graviton turning into a
ghost [88].

(ii) A > 0: this second condition follows from requiring
that our effective scalar d.o.f. should not be a ghost,
i.e. the corresponding kinetic energy term should be
positive. At the classical level there is no serious
danger in this situation while at the quantum level
the underlying physical theory can show instability
of the vacuum [89].

(iii) c2s ≡D=A ≤ 1: the third condition ensures that the
sound speed of π does not exceed the speed of light
to prevent scalar perturbations from propagating
superluminary. This condition is no longer true
when treating, for example, Lorentz violating
theories [90].

(iv) m2
π ≡ C=A ≥ 0: last, we enforce the mass of the

scalar d.o.f. to be real [91], to avoid tachyonic
instabilities. In fðRÞ gravity, that we consider in
Sec. VA, this condition is necessary to guarantee a
stable high-curvature regime [14].

The above conditions could be relaxed in certain cases
depending on the specific theory of gravity one is interested
in and, of course, our code can be easily edited to check
different stability requirements. Let us briefly comment on
this. The first two conditions are quite general and can
be relaxed just in elaborated models that can associate a
physical meaning to the negative branch of A and 1þΩ.
Furthermore, their positive and negative branches are
disconnected so that no theory can allow these two
quantities to cross zero as this will violate the mathematical
consistency of the initial value problem for Eqs. (8) and
(24). The last two conditions are milder and more strictly
related to the particular theory one wants to test. Therefore,
they can be relaxed in many ways if the EFT formalism is
used to test some peculiar model that naturally permits their
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violation. In this regards, we recall, among others,
cosmological models which allow for viable DE models
in Lorentz violating theories [92,93] and rolling tachyon
condensates [6,94–97].
As pointed out in [56], there are other types of

instabilities that can be studied efficiently within the
EFT framework. We leave their thorough investigation
for future work.

B. Observables

In view of using our code to test gravity with upcoming
and future cosmological surveys, the observables of interest
are all the two-point auto- and cross correlations between
weak lensing (WL), galaxy clustering (GC) and cosmic
microwave background (CMB) temperature and polariza-
tion anisotropy. We refer the reader to [74] for a thorough
discussion of these observables and the corresponding
angular power spectra. In this paper we show outputs of
our code for the temperature-temperature autocorrelation,
the CMB lensing potential autocorrelation, the cross
correlation between temperature and lensing potential for
the CMB and the matter power spectrum.
It is expected that the dynamics of the Stückelberg field

will mainly affect the time evolution of the metric potentials
and matter perturbations at late times. Therefore we expect
to see the more noticeable effects in observables such as the
Integrated Sachs-Wolfe (ISW) effect of the CMB and WL.
The former is a secondary anisotropy induced by the
time evolution of the Weyl potential (ψ ≡ ðΦþΨÞ=2 in
Newtonian gauge1) at late times. The latter involves the
distortion of light rays when they pass close to clustering
objects, such as galaxies and clusters; it is sourced by the
spatial gradients of the Weyl potential. During the accel-
erated epoch, no significant polarization modes of the CMB
photon are generated, therefore we will not consider
them here.
The CMB temperature angular spectrum can be

computed via the line of sight integration method [98],

CTT
l ¼ ð4πÞ2

Z
dk
k
PðkÞjΔT

lðkÞj2; (26)

wherePðkÞ ¼ Δ2
RðkÞ is the primordial power spectrum and

the radiation transfer function,

ΔT
lðkÞ ¼

Z
τ0

0

dτeikμðτ−τ0ÞSTðk; τÞjl½kðτ0 − τÞ�; (27)

is sourced by

STðk; τÞ ¼ e−κ
�
_ηþ σ̈�

k

�
þ g

�
ΔT;0 þ 2

_σ�
k
þ _vB

k
þΠ

4
þ 3Π̈
4k2

�

þ _g

�
σ�
k
þ vB

k
þ 3 _Π
4k2

�
þ 3

4k2
g̈Π; (28)

where τ0, μ, κ, g, ΔT;0, vB and Π are, respectively, the
present conformal time, angular separation, optical depth,
visibility function, intrinsic CMB density perturbations at
the last scattering surface, velocity of baryonic matter and
total anisotropic stress of normal matter (which includes
CMB photons, massless and massive neutrinos). Since the
recombination of electrons and protons happens very fast,
the visibility function g peaks sharply at that early moment,
so we do not expect the Stückelberg field to affect the terms
proportional to the visibility function and its derivatives. As
already discussed, the only relevant term of (28) for our
analysis is the ISWone, which can be expressed as follows:

σ̈� þ k_η ¼ −2H _σ� − 2 _Hσ� þ
vm

1þ Ω
a2ðρm þ PmÞ

m2
0

−
1

kð1þΩÞ
d
dτ

�
a2P
m2

0

Π
�

(29)

þ kπ
1þ Ω

a2ðρQ þ PQÞ
m2

0

þ
_Ω

1þ Ω

�
kHπ − _σ� þ

1

kð1þ ΩÞ
a2P
m2

0

Π
�
:

(30)

As for WL, we calculate its angular power spectrum
following the convention of [85,99],

Cψψ
l ¼ 4π

Z
dk
k
PðkÞ

�Z
χ�

0

dχSψðk; τ0 − χÞjlðkχÞ
�
2

;

(31)

where the source Sψ is given in terms of the transfer
function of the Weyl potential ψ , i.e.:

Sψðk; τ0 − χÞ ¼ 2Tψðk; τ0 − χÞ
�
χ� − χ

χ�χ

�
; (32)

Tψ ðk; τÞ ¼
_σ� þ kη
2

¼ 1

2

�
−2Hσ� þ 2kη −

1

kð1þ ΩÞ
a2P
m2

0

Π

−
_Ω

1þΩ
ðσ� þ kπÞ

�
: (33)

Conventionally, the line of sight integral in the lensing
source is expressed in terms of comoving distance χ. Here

1where we assume the following convention for the Newtonian
gauge: ds2 ¼ a2ðτÞ½−ð1þ 2ΨÞdτ2 þ ð1 − 2ΦÞdx2�. The gauge
transformations between Newtonian and synchronous gauges are
given by Ψ ¼ _σ�=kþHσ�=k, Φ ¼ η −Hσ�=k.
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χ� is the comoving distance of the source objects. In this
paper we will focus on CMB lensing, for which the source
object is a single distant plane (since the electron-proton
recombination is approximately instantaneous); i.e.,
χ� corresponds to the comoving distance to last scattering
surface. At leading order, the relationship between comov-
ing distance and conformal time reads χ ¼ τ0 − τ. Since
ISW and WL are sourced by the same potential, one being
sensitive to time derivatives and the other to spatial
gradients of the Weyl potential, it is expected that the
two effects are strongly correlated and this correlation
produces a nonzero cross spectrum CTψ

l [100],

CTψ
l ¼ 4π

Z
dk
k
PðkÞ

�Z
τ0

0

dτeikμðτ−τ0Þe−κð _Φþ _ΨÞ

× jl½kðτ0 − τÞ�
Z

τ0

τ�
dτSψ ðk; τÞjl½kðτ0 − τÞ�

�
; (34)

with τ� denoting for the conformal time at recombination.
Finally, the matter power spectrum can be computed via

PðkÞ ¼ 2π2

k3
PðkÞΔTðkÞ2; (35)

with the matter transfer function defined as [101]

ΔTðkÞ ¼
δmðk; z ¼ 0Þδmð0; z ¼ ∞Þ
δmðk; z ¼ ∞Þδmð0; z ¼ 0Þ ; (36)

which describes the evolution of matter density perturba-
tions through the epochs of horizon crossing and radiation
or matter transition. A proper calculation of ΔTðkÞ requires
that in our code we take all types of nonrelativistic matter
into account and follow the growth of each mode outside
and inside the horizon.

V. NUMERICAL RESULTS

In this section we showcase the reliability and scope of
EFTCAMB by comparing it with an existing code, as well
as producing some interesting new results. While we have
all the necessary ingredients to consider models which
involve also second order operators in action (1), for the
numerical analysis of this paper we focus on the cases that
involve only the background operators. The examples that
we present should convey the wide range of applicability of
our code.
We will first focus on fðRÞ models and compare our

code to the common implementation of these theories in
MGCAMB [70,74,75], restricting to ΛCDM expansion
history. Then, we extend to designer fðRÞ models with
generic constant and time-varying dark energy equation of
state in the part of this section devoted to new results. As we
will illustrate with an example in the fðRÞ case, given the
accuracy of ongoing and upcoming surveys, as well as the

range of scales that they cover, in order to extract
predictions about observables such as CMB lensing, it is
important to employ a code that evolves the full dynamics
of the system on linear scales, without employing the QS
approximation. This is one of the qualities of our code
which allows for an implementation of the full dynamics of
a given model, without the need of reducing to the QS
regime.
EFTCAMB of course can be used also to fulfill the true

purpose the EFT formalism has been envisaged for, i.e. a
framework for model-independent tests of gravity on
cosmological scales. To this extent, presumably one fixes
the expansion history as discussed in [52,53] and briefly
reviewed in Sec. III, and then focuses on the dynamics of
cosmological perturbations studying the effects of the
different operators in action (1). In this case it is necessary
to select some parametrization for the functions of time
multiplying the operators under consideration. Restricting
to the background operators, we show the outputs for
power law parameterization of the remaining EFT free
functionΩðaÞ with a phantom-divide crossing background.
Throughout this paper we will always use the following

cosmological parameters: H0¼ 70Km=s=Mpc, Ωb¼ 0.05,
Ωc ¼ 0.22, TCMB ¼ 2.7255 K.

A. f ðRÞ gravity: Comparison and new results

As an illustration of how EFTCAMB can be used in its
mapping EFT version, we shall perform a thorough
analysis of fðRÞ models. Let us start briefly reviewing
the theory of fðRÞ gravity. We consider the following
Lagrangian in Jordan frame,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; (37)

where fðRÞ is a generic function of the Ricci scalar and the
matter sector is minimally coupled to gravity. These models
can be mapped into the EFT formalism via the following
matching [52]:

Λ ¼ m2
0

2
½f − RfR�; c ¼ 0; Ω ¼ fR: (38)

For a detailed discussion of the cosmology in fðRÞ
theories we refer the reader to [10,11,14,102]. Here we will
briefly review the main features that are of interest for our
analysis. The higher order nature of the theory translates
into having an extra scalar d.o.f. which can be identified
with the field fR ≡ df=dR, commonly dubbed the scalaron
[103]. Implementing the matching to EFT, we have that
Stückelberg field for fðRÞ theories is given by π ¼ δR=R
[52], which can be easily related to the perturbation of the
scalaron, δfR.
Viable fðRÞ models need to satisfy certain conditions of

stability and consistency with local tests of gravity [14],
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which can be inferred from the conditions in Sec. IVA once
the matching (38) is implemented. Finally, given the higher
order of the theory, it is possible to reproduce any given
expansion history by an appropriate choice of the fðRÞ
function [10,14]. In other words, fðRÞ models can be
treated with the so-called designer approach which consists
in fixing the expansion history and then using the
Friedmann equation as a second order differential equation
for f½RðaÞ�. As we will recap shortly, generically one finds
a family of viable models that reproduce this expansion; the
latter are commonly labeled by the boundary condition at
present time, f0R. Equivalently, they can be parametrized by
the present day value of the function:

B ¼ fRR
1þ fR

H _R
_H −H2

: (39)

Let us recall that the heavier the scalaron, the smaller B0

and jf0Rj.

1. Comparison with MGCAMB in a ΛCDM background

We shall start comparing our results for fðRÞ theories
with those of the publicly available MGCAMB code
[74,75]. Since we construct our code on the CAMB version
of March 2013, in order to make a senseful comparison we
use an updated version of MGCAMB based on the same
version of CAMB and developed by the authors of [104].
MGCAMB relies on two functions of time and scale to

parametrize deviations in the Poisson and anisotropy
equations, closing the system of equations for matter in
conformal Newtonian gauge with the two following equa-
tions:

k2Ψ≡ −
a2

2M2
P
μða; kÞρmΔm;

Φ
Ψ
≡ γða; kÞ: (40)

In order to evolve perturbations in fðRÞ models one has to
specify the corresponding forms for μða; kÞ and γða; kÞ, and
this can be achieved by taking the QS limit of the linearly
perturbed equations, which corresponds to neglecting time
derivatives of the metric potentials and of the scalar field, as
well as focusing on subhorizon scales k ≫ H. In this limit
we have

k2Ψ ¼ −
1

1þ fR

1þ 4fRR=ð1þ fRÞk2=a2
1þ 3fRR=ð1þ fRÞk2=a2

a2ρmΔm

2M2
P

;

Φ
Ψ

¼ 1þ 2fRR=ð1þ fRÞk2=a2
1þ 4fRR=ð1þ fRÞk2=a2

: (41)

On subhorizon scales the dynamics of linear perturbations
in fðRÞ is generally described sufficiently well by this QS
approximation [70]. Equations (41) have inspired the
following parametrization [69,70,75,105],

μBZða; kÞ ¼ 1

1 − B0Ωmas−1=2
1þ 2=3B0ðk=H0Þ2as
1þ 1

2
B0ðk=H0Þ2as

;

γBZða; kÞ ¼ 1þ 1=3B0ðk=H0Þ2as
1þ 2=3B0ðk=H0Þ2as

; (42)

to which we will refer as the BZ parametrization that
consists in assuming

fRR
1þ fR

≡ B0

6H2
0

asþ2: (43)

A standard way of extracting predictions for cosmologi-
cal observables and comparing fðRÞ models to data is the
one of modeling the late-time universe by inserting Eq. (42)
into MGCAMB, leaving B0 as a free parameter and fixing
s ¼ 4 [74]. Let us recall that a fðRÞ model defined by
Eq. (42) with a constant value for s will not in general be
capable of reproducing the full ΛCDM expansion history.
However, it works as a good approximation for each epoch
alone [36], as can be inferred from Eq. (43). Indeed a
reasonable value of s is given by s ≈ 5 during radiation
domination, s ≥ 4 during matter domination and s < 4
during the late time phase of accelerated expansion. For
small values of B0, it is customary to fix s ¼ 4 as discussed
in [70], however here we will reexamine this choice in view
of the precision and extent of upcoming surveys.
In order to compute observables for these theories with

MGCAMB it suffices to fix the expansion history to that of
ΛCDM, s ¼ 4 and input (42) for μ and γ for several choices
of B0. EFTCAMB, on the contrary, does not rely on the
quasistatic BZ parametrization, but rather solves the full
equations; therefore even after fixing the expansion history
to ΛCDM we need to feed the code a form for the EFT
functions. We consider the following two cases:

(i) BZ case: From Eq. (43) we read off the implications
of the BZ parametrizations for fðRÞ and then we
reconstruct the corresponding Ω and Λ to input in
the full equations for linear perturbations. We again
stress that our code does not rely on any QS
approximation;

(ii) Designer case: We implement in our code the fðRÞ
designer approach to reconstruct viable fðRÞmodels
that mimic the ΛCDM expansion history and de-
termine the corresponding Ω;Λ via the match-
ing, Eq. (38).

The BZ case allows us to make a check of reliability of our
code with minimal changes with respect to the way fðRÞ
theories are treated in MGCAMB. The designer case
corresponds to a proper full treatment of fðRÞ models
and therefore let us fully exploit the potential of our code,
avoiding spurious effects due to the BZ approximation; this
will allow us to check the accuracy of the QS approxima-
tion in fðRÞ models to a new extent. The latter case
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corresponds to the proper treatment of the background
operators in the mapping EFT cases.
Let us start with the BZ case. Using the matching

formulas (38) we see that the BZ ansätz (43) can be
mapped into the EFT formalism as follows:

Ω ¼ −1þ e−
3B0Ωmas−1

2ðs−1Þ ¼ −
3

2

B0Ωmas−1

s − 1
þOðB2

0Þ;
Λ
m2

0

¼ −
ρDE
m2

0

þ B0H2
0

×
27a4Ω2

m − 9Ωmasð4a3ðs − 4ÞΩΛ þ ðs − 1ÞΩmÞ
4a4ðs − 4Þðs − 1Þ

þOðB2
0Þ: (44)

As in MGCAMB, we fix s ¼ 4 and we use different
values of B0 ranging from very large ones (B0 ¼ 2) to very
small ones (B0 ¼ 10−3). The comparison of the temper-
ature spectra from the two codes is shown in the upper
panel of Fig. 1. As we can clearly see the agreement on
small scales is very good (≲0.01%) and remains under
control (≲0.1%) even on very large scales for small values
of B0 (≲0.01). We get some tension between the two codes,
(relative difference >1%), at low multipoles for large
values of B0 (≳0.1). This is partially due to the way we
treat the background in this case; first of all when B0 ≳ 1
the correction term in (44) cannot be neglected anymore.
For example, for B0 ¼ 2 this introduces an order of
magnitude approximation error in Ω and Λ. Secondly,
there is some fictitious dynamics of the scalar d.o.f., excited
by the fact that the BZ parametrization (43) does not give an
exact representation of the background dynamics. We also
expect this discrepancy to be partially due to the fact that
the QS approximation inherent in the treatment of fðRÞ in
MGCAMB does not give a full account of the ISW effect.
However, in order to make meaningful statements about the

latter, we need to make a comparison between the output of
MGCAMB and the output of EFTCAMB with the full
treatment of the background, i.e. consider the designer case
mentioned above.
Let us then abandon the BZ parametrization for our

background cosmology and rather adopt the designer
approach that allows us to reconstruct all the viable
fðRÞ models that reproduce a ΛCDM expansion history.
As mentioned earlier, fðRÞ models are able to reproduce
any given expansion history by means of a designer
approach firstly discussed in [10] and later generalized
to include radiation and a time varying dark energy
equation of state in [14]. The Friedmann equation for
fðRÞ theories can indeed be written as a second-order
differential equation for f½RðaÞ�, namely,

f00 −
�
1þH0

H
þ R00

R0

�
f0 þ R0

6H2
f ¼ −

R0

3M2
PH

2
ρDE; (45)

where primes denote differentiation with respect to In a,
and ρDE is the energy density of the effective dark energy
component. The procedure consists then in fixing the
expansion history by choosing an equation of state of dark
energy wDEðaÞ, determining the corresponding energy
density like in (15) and solving Eq. (45) for f. For any
given expansion history the solution will consist in a family
of fðRÞ models labeled by B0. We implement this pro-
cedure in EFTCAMB and show the output in Fig. 2; for the
ΛCDM and wCDM cases one can notice that the recon-
structed fðRÞ are in agreement with those of [10]. We show
also the results for the case of a CPL background.
We start with a ΛCDM expansion history, consider

different values of B0 and compare our results with those
of MGCAMB in the lower panel of Fig. 1. The overall
agreement for values of B0 < 0.1 is within 0.1% in the high
multipoles regime and within 1% in the low multipoles
regime. For larger values, i.e. B0 ≳ 1 (which are in tension
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FIG. 1 (color online). Upper panel: comparison between the temperature anisotropy angular power spectra of EFTCAMB and
MGCAMB for fðRÞ models with a ΛCDM expansion history but different values of B0 and modeled via the BZ approach described in
Sec. VA 1. Lower panel: same comparison for the case of a designer fðRÞmodel with ΛCDM background. For a detailed interpretation
of the plots see Sec. VA 1.
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with constraints from current data [104,106–108]) we
notice that at large scales there is a better agreement, while
on smaller scales we get some systematic offset. In what
follows we analyze this discrepancy using B0 ¼ 2 which
emphasizes the offset of the codes and facilitates the
investigation.
We choose to investigate the source of the above

mentioned discrepancy by comparing the functions
μðz; kÞ and γðz; kÞ in the BZ parametrization (42) to those
inferred from our code. The latter are obtained evolving the
full dynamics for the designer fðRÞ model in EFTCAMB
and then substituting the perturbations into Eqs. (40),
therefore we indicate them with a subscript “des.” In
Fig. 3 we plot all these quantities in the ðz; kÞ space, as
well as the fractional difference between the BZ and
designer quantities both for μ and for γ. Overall we get
good agreement between the BZ quantities and our
designer ones, reproducing the known pattern of recovery
of the standard GR behavior at early times on large scales,
and having some significant deviations from the standard
behavior on small scales at late times. After a more careful
look, we see that on superhorizon scales the differences
between μBZ(γBZ) and μdes (γdes) are relatively small and are
simply due to the fact that our full-Boltzmann code catches
some well known dynamics of the scalaron at those scales,
and the return to GR is not as exact as in the quasistatic BZ
where it is imposed a priori. On smaller scales, in particular
on scales around the Compton wavelength of the scalaron,
the fractional difference plot shows some nontrivial
differences between the BZ and designer quantities. In
other words, at late times and on scales around the
Compton one, EFTCAMB is able to catch some dynamics
of the scalaron which is not entirely negligible and perhaps
is the source of the discrepancies that we noticed in the

CMB lensing spectrum on small scales. The latter appears
especially in models for which the Compton wavelength of
the scalaron is close to the horizon scale and the subhorizon
and sub-Compton regimes are not clearly distinguished.
To investigate the nontrivial subhorizon dynamics fur-

ther, we introduce the following indicator:

ξ≡ _π

Hπ
; (46)

which quantifies deviations from quasistaticity for the
scalar degree of freedom. In this context with quasistaticity
we mean the fact that time derivaties of the quantities of
interest can be neglected. We plot ξ in the left panel of
Fig. 4; from that contour plot one can notice that the
scalaron has some dynamics on superhorizon scales, it then
slows on scales of the order of its Compton wavelength and
finally resumes evolving in time below the latter scale,
especially at low redshift. Let us stress that ξ is a good
indicator of whether one can neglect the time derivatives of
the scalar field, but does not necessarily carry information
on the dynamics of the metric potentials and therefore on
the overall validity of the QS approximation. The latter will
depend on how the scalar field couples with gravity and the
matter sector. In the right panel of Fig. 4 we plot the
behavior of π as a function of redshift for four different
scales, comparing it with the evolution of the source term in
Eq. (25). The curves confirm what we inferred about the
dynamics of π from the behavior of the indicator ξ; on very
large scales the scalaron evolves slowly, following the
source term at early times and then almost stops evolving at
extremely late times. On the other hand, on smaller scales,
the field evolves slowly at early times, tracking the source
and continues to evolve even at later times eventually
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crossing zero at some point. At this point the QS approxi-
mation for the dark sector breaks down because the field
becomes very small while its derivatives remains finite.
To summarize, we see that the strongest deviations from

the BZ parametrization of fðRÞ gravity are found close to
the Compton wavelength of the scalaron. Below this scale,
depending on the value of B0, the dynamics of the scalar
field might be non-negligible even if we are on subhorizon

scales; and depending on the coupling of π to gravity and
dark matter, this might generate a nonstandard dynamics of
matter perturbations. We expect deviations from QS, para-
metrized predictions to show up in cosmological observ-
ables around k2c ¼ 6H2

0=B0 which is roughly the Compton
scale today. For what concerns the CMB, this effect will
show up, for very large values of B0, both on very large
scales due to the differences induced on the ISW effect and

10 5 10 4 10 3 10 2 10 1
0

2

4

6

8

10

k Mpc 1

z

0.1 1 10

100

1

10 2

10 4

10 6

10 8

z

FIG. 4 (color online). Left: time and scale dependence of ξ Eq. (46), which is the quantity we introduce as an indicator of the
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on small scales due to the modified evolution of perturba-
tions that will influence the lensing of the CMB. As the
value of B0 decreases the Compton wavelength will move
to scales that just contribute to the lensing, but the
magnitude of the effect will decrease as well. In the end,
for small values of B0, this will just introduce some very
small, negligible, discrepancies that we can see in Fig. 1.
We however stress that ongoing experiments, such as
Planck, and forthcoming ones, like Euclid, are expected
to be much more sensitive to these effects which will have
to be properly accounted for when extracting predictions
for the observables of interest.

2. Designer f ðRÞ models on non-ΛCDM background

In this section we shall use EFTCAMB to compute the
power spectra of different cosmological observables for
fðRÞ models that mimic more general expansion histories.
As above, after choosing an expansion history, we recon-
struct viable models via an implementation in our code of
the fðRÞ designer approach and the matching formulas
(38). We consider a wCDM expansion history with

w0 ¼ −0.7, a CPL model with w0 ¼ −0.7, wa ¼ −0.3
and we compare the results with those of the ΛCDM
models analyzed in VA 1. In all cases we fix B0 ¼ 1 in
order to make the various effects clearly visible. In
particular we choose the parameters of the CPL model
in order to resemble a cosmological constant at high
redshift while evolving toward the wCDM case at late
times.
We show the power-spectra observables calculated with

our code in Fig. 5 and in what follows we give a detailed
overview of each result. The first, top left, panel shows the
ISW part of the CMB temperature power spectrum. On
these angular scales we notice the effects of a modified time
evolution of the gravitational potentials at late times, that
results in an overall suppression of power at low multipoles.
This effect will, however, be shaded by cosmic variance
which lowers the statistical significance of these deviations.
In fact, we expect differences from the ΛCDM behavior at
small scale to acquire a primary role in testing alternative
models with ongoing and upcoming surveys [109]. We
zoom in on the modifications to CTT

l at small scales in the
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FIG. 5 (color online). Power spectra of several cosmological observables for fðRÞ models mimicking both ΛCDM and non-ΛCDM
expansion histories. The red solid line represents predictions for the ΛCDM model while the black solid one stands for a wCDM with
w0 ¼ −0.7 (shown only in the bottom right panel). Dashed lines portray designer fðRÞ models with different expansion histories but
same boundary condition B0 ¼ 1: the long-dashed dark blue line corresponds to models with a ΛCDM background, the short-dashed
blue to models with a wCDM background with w0 ¼ −0.7 and the dashed-dotted light blue to models with a CPL background with
w0 ¼ −0.7 and wa ¼ −0.3. Upper panels: CMB temperature power spectra; central panels: lensing-temperature cross correlation (left)
and the lensing potential power spectra (right); lower panels: total matter (left) and CMB temperature power spectra (right) for
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top right panel, where we can more clearly see the part of
the temperature power spectrum which is influenced by
gravitational lensing. As expected, we notice that the
change in the expansion history shifts the position of the
peaks and reduces their amplitudes, while the modification
of gravity could further smear the acoustic peaks in the
lensing part. This can be clearly seen in the lower right
figure which compares explicitly the resulting temperature
spectra from CAMB and our designer EFTCAMB in
ΛCDM and wCDM background. The impact of modifica-
tions of gravity on the CMB lensing potential is shown in
the center right figure where we plot Cψψ

l ; one can
appreciate that the different expansion histories change
the angular size of the lenses slightly shifting the position of
the peak, while the different dynamics of perturbations
greatly impact the amplitude of the spectrum. Ongoing
CMB experiments like Planck, ACT and SPT [78,110,111]
have directly measured this observable, and in the upcom-
ing future they will measure it with even greater accuracy,
so to this extent codes like ours, that evolve the full
dynamics and capture interesting features at those scales
of the CMB spectrum, will be very useful.
Another quantity which is greatly influenced by modi-

fication of gravity is the power spectrum of the cross
correlation between temperature and lensing potential, i.e.

CψT
l . As we already commented, the evolution of the Weyl

potential sources both the ISW and weak lensing effect
inducing a correlation between these two. From the center
left panel of Fig. 5 one can notice that for the ΛCDMmodel
the cross correlation is large and positive, while for fðRÞ
models with a ΛCDM expansion history but B0 ¼ 1, the
cross correlation oscillates around zero. Interestingly, the
signal can be increased by changing the expansion history
while keeping B0 ¼ 1; in this case the cross correlation will
become large and negative.
Finally, we shall comment on the effects that appear in

the total matter power spectrum. In the bottom left panel of
Fig. 5 we can appreciate that as soon as B0 is different from
zero the spectrum is shifted, both in amplitude and in scale,
with respect to the ΛCDM one. In addition a nonstandard
expansion history changes the amplitude of the spectrum at
the peak and also the slope at smaller, but still linear, scales
as we can see comparing the light blue lines to the dark blue
ones. Interestingly, we can clearly see that the CPL model
lies between the ΛCDM and the wCDM one; the amplitude
of the peak, which is influenced by the early time expansion
history, lies close to the ΛCDM one while the slope at
smaller scales, which is affected by the late time evolution
of matter perturbations, stays close to the wCDM model as
w is approaching w0 ¼ −0.7.
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B. Pure EFT parametrizations with
phantom-divide crossing

In this subsection we shall use our code to explore
deviations from ΛCDM cosmology parametrized with the
EFT language. We will focus on models that contain only
background operators. On the lines of Sec. III for the pure
EFT cases, we fix the desired expansion history and we
make a choice for ΩðaÞ, deriving the remaining quantities
from the EFT designer procedure.
In this paper we consider power laws for Ω, leaving the

analysis of the perturbations for other viable choices [82]
for future work. Specifically we set:

ΩðaÞ ¼ Ω0an; (47)

which gives an Ω analogous to the one of the BZ para-
metrization of fðRÞ models when Ω0 ¼ −B0Ωm=2 and
n ¼ 3. We fix the expansion history to be the one of a dark
energy model displaying an extreme phantom-divide cross-
ing which is a phenomenological feature that is naturally
and consistently accounted for by the EFT approach. Let us
stress that with our code we have checked that these models
satisfy the stability constraints listed in Sec. IVA. In this
case, given that we are not choosing a specific model of
DE/MG, but rather a form for Ω, these stability require-
ments acquire the meaning of a validity check on the time
dependence of the EFT functions in view of the corre-
sponding behavior of the perturbations. In particular, the
stability conditions will constrain the parameter space
describing the expansion history, (w0; wa), and Ω, in this
case n, offering a complementary constraining power.
We plot the resulting power spectra in Fig. 6 for two ghost

free phantom models: n ¼ 1, 4 and Ω0 ¼ −0.3 in two
different background specified by (w0 ¼ −1.2, wa ¼ 0.3)
and (w0 ¼ −1.5, wa ¼ 0.5). Aside from the wide array of
phenomenological changes that we commented in the pre-
vious section we shall outline here some interesting features.
We can notice that the CMBpower spectrum at small scales is
mostly influenced by the change in the expansion history
while all the other observables are more sensitive to the
change in the power lawexponent. Between the linear (n ¼ 1)
and the nonlinear (n ¼ 4) models we can see a pronounced
qualitative difference while the different expansion histories
induce just quantitative changes. This is particularly clear in
the ISW part of the CMB temperature power spectrum, in the
lensing potential and in the lensing-temperature cross corre-
lation. Interestingly enoughwe see that the effects on the total
matter power spectrum are limited even if the models that we
considered are chosen to be rather extreme. At last we notice
that no pathological feature arises in these spectra associated
to the crossing of the phantom divide.

VI. CONCLUSIONS

The effective field theory of cosmic acceleration enc-
loses all single field dark energy and modified gravity

models within a single parametrization, offering a useful
tool to investigate the underlying theory of gravity on large
scales in a model-independent way. In this effective
approach the Lagrangian is constructed following precise
and general rules based on the unbroken symmetries of the
theory, i.e time-dependent spatial diffeomorphisms. As
such, the resulting action contains a finite number of
operators at every order in perturbations and derivatives,
with each operator multiplied by a free time-dependent
function. We referred to the latter as the EFT functions.
Three of such operators, equivalently three functions of
time, contribute to the background dynamics, while the
others affect only the behavior of perturbations. Any model
of DE/MG that introduces a single scalar field and has a
well defined Jordan frame (postulated by the validity of the
weak equivalence principle) can be mapped precisely into
the EFT language via a matching procedure on the EFT
functions.
In this paper we presented an implementation of the EFT

framework in the publicly available CAMB code. The
resulting product, which we dubbed EFTCAMB, is a full
versatile Einstein-Boltzmann code which allows a thorough
investigation of linear scalar cosmological perturbations in
general theories that approach the phenomenon of cosmic
acceleration. Our code has several advantages.
Making manifest the multifaceted nature of the EFT

formalism, the code we have developed can serve very
different purposes. Given the matching of a DE/MG model
with the EFT functions, one can use EFTCAMB to evolve
the full dynamics of scalar perturbation on all linear scales
in the chosen model. In this paper we gave an example of
this by studying the dynamics of perturbations in viable
fðRÞ models with different expansion histories. In the
future we plan to implement a built-in matching to popular
models of dark energy and modified gravity. Depending on
the tests one is interested in performing, EFTCAMB can be
used also to implement parametrized EFT models, where
one does not specify any theory, but rather chooses
different ansätze for the EFT functions and explore their
impact on cosmological observables. In this paper we have
shown some examples with parametrized models involving
only the EFT background functions. However, our setup is
more general than that and it includes contributions from all
second-order operators. We leave a thorough investigation
of the cosmological implications of all EFT operators
affecting linear perturbations for future work.
EFTCAMB does not rely on any QS approximation,

solving instead the full dynamics of scalar perturbations on
all linear scales. The latter is an important feature for
several reasons; it allows the exact implementation of any
given single field DE/MG model that can be cast into the
EFT language, without need of resorting to subhorizon
approximated expressions which often correspond to sol-
utions of the theory. It also ensures that we do not miss out
on any potential subhorizon dynamics of the scalar d.o.f.
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which in some cases could be non-negligible and could
leave an imprint on cosmological observables within the
reach of ongoing and upcoming surveys. To this extent, we
presented an example of signature on the small scales of the
CMB lensing potential angular power spectrum from the
subhorizon dynamics of the scalaron in fðRÞ models.
Effects like the latter will be measured at increasing
accuracy in the next years, and our code offers a way to
exploit these data as complementary tests of gravity.
Our code can handle very general expansion histories,

ranging from the ΛCDM one to phantom-divide crossing
ones. In this paper we presented results for models with a
ΛCDM, wCDM and CPL background (including phantom-
divide crossing models). The time-varying case is imple-
mented in such a way that the contribution to perturbations
coming from the evolutionof thedark energy equationof state,
is consistently taken into account. Finally, our code has a built-
in check for theoretical viability of the model under consid-
eration. In other words, in order to ensure that the underlying
theory of gravity is physically acceptable we impose on the
EFT operators some stability conditions and the code auto-
matically checks that they are satisfied before proceedingwith
the evolution of the equations. In particular we require: a
positive Newtonian constant, absence of ghost instabilities,
absence of superluminary propagating perturbations and,
finally, a positive mass of the extra scalar degree of freedom.
Let us briefly recap the numerical results presented in this

paper. We started comparing our code with the outputs of
MGCAMB for fðRÞ theories in a ΛCDM background. To
this extent, we focused on the CMB temperature angular
spectrum and showed an agreement of the two code within
0.1% for values of the scalaron Compton wavelength
consistent with existing bounds from Planck. For larger
values ofB0 we found some tension both at the low and high
multipoles; the former is due to the fact that not relying on
any QS approximation, EFTCAMB gives a more accurate
account of the ISW effect. To investigate the latter discrep-
ancy instead, we considered the functions μðz; kÞ and γðz; kÞ
Eqs. (40), commonly used to parametrize deviations from
GR and implemented in MGCAMB. We compared their
shape in ðz; kÞ space as reconstructed from the full evolution
of the perturbations in our code, to their form under the BZ
approximation (42) employed to study fðRÞ in MGCAMB.
This comparison showed that EFTCAMB catches the mild
dynamics of the scalaron at early times and on large scales,
as well as some nontrivial dynamics on scales around and
below the Compton wavelength. We confirmed this by
analyzing the time and scale dependence of a quantity that
we propose as an indicator of quasistaticity in the dark
sector, Eq. (46). After this thorough check of consistency
with MGCAMB, we moved on to fully exploit the flexi-
bility of the EFT framework applying our code to two
different dark energy scenarios. First, as an example of what
we called the mapping EFT approach, we extended the
implementation of the fðRÞ designer approach to more

general expansion histories like the wCDM and CPL one,
examining the effects of the combined change in the
background dynamics and in the growth of structure on
cosmological observables like the CMB temperature and
lensing power spectra (auto- and cross correlation), and
matter power spectrum. Second, we used the pure EFT
approach, i.e. we chose an expansion history and a para-
metrized form for the EFT function Ω and again explored
signatures on power-spectra observables. In this case we
focused on backgrounds with a phantom-divide crossing
demonstrating how within the EFT framework there is no
special pathology arising when wDE ¼ −1 is crossed.
Let us conclude with some remarks about future direc-

tions. We envisage several applications of our code. To start
with, we plan to build-in into the code the matching to
several dark energy and modified gravity models and
perform parameter space exploration on some of these
models. We will perform an analysis of viable parametrized
EFT models based also on the findings of [82], as well as a
thorough investigation of the validity of the QS approxi-
mation on subhorizon scales for general models of dark
energy. We also plan to make the code publicly available in
the near future. We believe that EFTCAMB will be a very
useful tool to explore the full dynamics of perturbations in
single scalar field approaches to the phenomenon of cosmic
acceleration, providing upcoming surveys such as Euclid
with a powerful code to perform both model-dependent and
-independent tests of gravity on large scales.
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APPENDIX: CONTRIBUTIONS FROM
SECOND-ORDER OPERATORS

The effective field theory of dark energy action in
conformal time with the π field manifest through the
Stückelberg trick, up to second-order operators, reads
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where ∇̄ indicates three dimensional spatial derivatives.
Note that the conformal scale factor has been already
Taylor expanded in π according to Eq. (3).
In what follows we list the contributions to the linearly

perturbed equations of Sec. IV from the second order
operators in (A1). Let us make an itemized list where for
each operator we list its contributions to the rhs of Eq. (19)
by Δ00, to the rhs of Eq. (20) by Δ0i, to the rhs of Eq. (21)

by Δij;i≠j, to the rhs of Eq. (22) by Δii and to the lhs of
Eq. (23) by Δπ. Notice that in order to perform a correct
stability analysis on the equation for π, along the lines of
Sec. IVA, it is important to demix the degrees of freedom;
specifically, once the contributions from all operators have
been taken into account, one needs to use the Einstein
equations to substitute for any ḧ; η; σ� appearing in the final
form of the equation for π.
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