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ABSTRACT
This paper presents the first application of 3D cosmic shear to a wide-field weak lensing
survey. 3D cosmic shear is a technique that analyses weak lensing in three dimensions using
a spherical harmonic approach, and does not bin data in the redshift direction. This is applied
to CFHTLenS, a 154 square degree imaging survey with a median redshift of 0.7 and an
effective number density of 11 galaxies per square arcminute usable for weak lensing. To
account for survey masks we apply a 3D pseudo-C� approach on weak lensing data, and to
avoid uncertainties in the highly non-linear regime, we separately analyse radial wavenumbers
k ≤ 1.5 and 5.0 h Mpc−1, and angular wavenumbers � ≈ 400–5000. We show how one can
recover 2D and tomographic power spectra from the full 3D cosmic shear power spectra and
present a measurement of the 2D cosmic shear power spectrum, and measurements of a set of
2-bin and 6-bin cosmic shear tomographic power spectra; in doing so we find that using the
3D power in the calculation of such 2D and tomographic power spectra from data naturally
accounts for a minimum scale in the matter power spectrum. We use 3D cosmic shear to
constrain cosmologies with parameters �M, �B, σ 8, h , ns, w0 and wa. For a non-evolving dark
energy equation of state, and assuming a flat cosmology, lensing combined with Wilkinson
Microwave Anisotropy Probe 7 results in h = 0.78 ± 0.12, �M = 0.252 ± 0.079, σ 8 =
0.88 ± 0.23 and w = −1.16 ± 0.38 using only scales k ≤ 1.5 h Mpc−1. We also present results
of lensing combined with first year Planck results, where we find no tension with the results
from this analysis, but we also find no significant improvement over the Planck results alone.
We find evidence of a suppression of power compared to Lambda cold dark matter (LCDM)
on small scales 1.5 < k ≤ 5.0 h Mpc−1 in the lensing data, which is consistent with predictions
of the effect of baryonic feedback on the matter power spectrum.
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1 IN T RO D U C T I O N

Light from distant galaxies is gravitationally lensed as a result of
mass perturbations along the line of sight. In the weak-field regime,
away from the critical curve of the lensing mass, the effect is to
change the observed projected ellipticity of light bundles, called
shear, caused by the tidal field generated by the intervening mass;
so-called weak lensing. In our Universe weak lensing of light from
distant galaxies is caused by the distribution of matter in large-scale
structure, an effect called cosmic shear. Because our view of the
Universe is inescapably 3D – we observe galaxies across the sky,
but they are also spread in distance, or redshift – what we observe is
characterized by a 3D cosmic shear field. The use of both the shear
information and the full redshift information is a technique called
3D cosmic shear, and it is the focus of this paper.

3D cosmic shear was first presented in Heavens (2003), where it
was suggested that it may be a particularly sensitive probe of dark
energy. The methodology was further developed in Castro, Heavens
& Kitching (2005), Kitching, Heavens & Miller (2011) and Munshi
et al. (2011). The method works by representing the 3D cosmic
shear field using spin-2 spherical harmonics and spherical Bessel
functions, where the signal is the set of coefficients calculated as a
sum over the measured shears for a population of galaxies. Fisher
matrix predictions for wide-field imaging surveys were made in
Heavens et al. (2006), Kitching (2007) and Heavens, Kitching &
Verde (2007), where it was shown that 3D cosmic shear is a sensitive
probe of the dark energy equation of state because it is a function
of both the geometry of the Universe and of the growth of structure.
In addition to dark energy properties it has been shown that 3D
cosmic shear can measure minimally modified gravity parameters
(Heavens et al. 2007), the total sum of neutrino mass (Kitching et al.
2008a) and possibly even the neutrino hierarchy (de Bernardis et al.
2009; Jimenez et al. 2010). 3D cosmic shear was applied to data as a
proof of concept in Kitching et al. (2007) on the COMBO-17 survey
that covered approximately 1.5 square degrees, and presented a
conditional error on a constant dark energy equation of state w in
line with Fisher matrix predictions.

3D cosmic shear is a method that works in spherical
Bessel/spherical harmonic space (the spherical coordinate analogue
of Fourier space, both being eigenfunctions of the Laplacian oper-
ator), and does not bin information in the redshift direction. There
are several approximations to 3D cosmic shear that have been used
or proposed, the most widely cited being 2D correlation function
analyses and 2D cosmic shear power spectra. The generalization
from 2D correlation functions or power spectra to a series of pro-
jected 2D slices in redshift is referred to as so-called tomography
(e.g. Hu 1999), where intrabin correlations are supplemented with
interbin correlations.1 Each of these is related to 3D cosmic shear
by various steps and approximations namely (1) the Limber ap-
proximation (e.g. LoVerde & Afshordi 2008), (2) a transform from
radial spherical harmonics to 2D Fourier space (Fourier in angle but
real space in redshift direction), on each tomographic slice, (3) a
binning in redshift (Kitching et al. 2011) and possibly (4) a further
Fourier transform from Fourier space to real space in angle. Both
the Limber approximation and redshift space binning result in a loss
of information, whereas the spherical harmonic and Fourier trans-
forms are in principle lossless, but in practice cause the relationship
between radial and angular scales to become more involved. As a

1 The word tomography, meaning a cross-section, slice or image of a prede-
termined plane in the body, is used colloquially in weak lensing to refer to
the power spectra of projected planes integrated along the line of sight.

result 3D cosmic shear has several features that make it a useful
technique, which are as follows.

(i) It does not bin the data in redshift, but uses every galaxy
individually. This has the advantage that information is not lost,
particularly along the direction (redshift) in which discoveries about
dark energy are likely to appear – dark energy affects the rate of
change of the expansion history of the Universe. This is in contrast
to 2D and tomographic methods that bin and average in redshift
thereby losing information.

(ii) It allows for a control of scales included in the analysis in a
rigorous manner, both angular (�) and radial (k) modes can be treated
independently. As a result problematic regions, at small scales, for
example due to inaccuracy in the modelling of the non-linear growth
of structure (e.g. Smith et al. 2003; Takahashi et al. 2012) or baryon
feedback (e.g. Semboloni et al. 2011; van Daalen et al. 2011; Sem-
boloni, Hoekstra & Schaye 2013) in the dark matter density field,
can be down-weighted. This is in contrast to real-space correlation
function techniques where scales are less easy to disentangle, and
2D power spectrum methods where radial modes are necessarily
linked to angular modes through the Limber approximation.

(iii) Because each individual galaxy is used in the estimator,
rather than averaged quantities, uncertainties on individual galaxy
measurements can be used explicitly. In a Bayesian approach this
means including posterior probability information on measured
quantities; for example the photometric redshift probability pg(z)
for each galaxy (as shown in Kitching et al. 2011) also potentially
posterior information on galaxy shapes, or surface brightness dis-
tributions.

(iv) The formalism uses a one-point estimator as the signal data
vector with the cosmological sensitivity encoded in the covariance
(the mean is zero). The one-point estimator encodes the full 3D field.
The covariance is calculated analytically and therefore does not need
to be estimated ad hoc from the data or simulations, which avoids
issues of convergence and limitations due to the finite number of
simulations (see Taylor, Joachimi & Kitching 2013); although this
benefit is eroded somewhat by the assumption in this paper of a
Gaussian likelihood function for the transform coefficients.

In this paper we apply 3D cosmic shear for the first time to a
wide-field weak lensing data set, CFHTLenS (Heymans et al. 2012;
Erben et al. 2013). The CFHTLenS survey covers 154 square de-
grees and uses state-of-the-art weak lensing measurements (lensfit;
Miller et al. 2013) and photometric redshift measurements (BPZ;
Hildebrandt et al. 2012), in addition the combined weak lensing
and redshift measurements are the first to be rigorously tested for
systematics (Heymans et al. 2012). When accounting for masking
and systematics 61 per cent of the data (171 pointings in total) has
been shown to be fit for purposes of cosmic shear science (Heymans
et al. 2012).

This analysis is not a proof of concept but a demonstration that 3D
cosmic shear can constrain cosmological parameters to a level com-
parable to other currently available cosmological probes even over a
relatively small area survey. In addition we extend the methodology
to account for survey masks using a 3D pseudo-C� methodology,
using the formalism which was first presented in Munshi et al.
(2011). 3D cosmic shear techniques have also been investigated by
Ayaita, Schäfer & Weber (2012), and 3D ‘Fourier-Bessel’ approx-
imations to spherical harmonic transforms for spin-0 fields have
been presented in Leistedt et al. (2012).
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This analysis2 is independent of, and conservative in respect to,
the cosmological analysis of CFHTLenS from the 2D and tomo-
graphic correlation function results presented in Kilbinger et al.
(2013), Simpson et al. (2013), Benjamin et al. (2013) and Heymans
et al. (2013), all of which were based on the same software (ATHENA3

and NICAEA4) and the same simulations (Harnois-Déraps, Vafaei &
Van Waerbeke 2012) where each analysis varied the output parame-
ter set. Heymans et al. (2013) present a coarsely binned correlation
function measurement, six bins in redshift, that includes the addi-
tional estimation of a parameter that encodes intrinsic alignment
(IA) systematics (Hirata & Seljak 2004). In this paper we address
IAs by explicitly removing photometrically identified early-type
galaxies from the analysis, which have a non-zero IA signal in Hey-
mans et al. (2013). Similar motivation is found in Mandelbaum et al.
(2011) who found a null IA signal using the WiggleZ dark energy
survey, that had a galaxy sample that was comparable in galaxy type
and redshift selection as the late-type galaxies in CFHTLenS.

This paper is presented as follows. In Section 2 we summarize
the 3D cosmic shear method, in Section 3 we present some approxi-
mations to the data including measurements of 2D and tomographic
power spectra, in Section 4 we present the cosmological parame-
ter constraints. Conclusions are drawn in Section 5. Mathematical
details are presented in a series of appendices.

2 M E T H O D O L O G Y

In a 3D cosmic shear likelihood analysis the data vectors are a set of
spherical harmonic transform coefficients, and it is the covariance
of these coefficients that contains cosmological information. Here
we describe the data vectors, covariance and the likelihood function.

2.1 The data vectors

3D cosmic shear expresses the 3D shear field in terms of its spherical
Bessel/spherical harmonic coefficients (Castro et al. 2005; Heavens
2003, the CFHTLenS fields are small enough to use the flat sky
exponential approximation)

γi(k, �) =
√

2

π

∑
g

eg,ij�

(
kr0

g

)
e−i�.θg W

(
r0
g

)
, (1)

where k are radial wavenumbers and � are angular wavenumbers;
� is a 2D wavenumber on the sky, where � = �x + i�y and � =√

�2
x + �2

y . Equation (1) is a sum over galaxies, weighted by a

spherical Bessel function j�(kr), exponential terms, and an arbitrary
weight function W. eg, i are the ith components of ellipticity, i =
{1, 2}, for galaxy g at a 3D angular and radial coordinate (θg , r0

g );
we use e for the observed quantity and γ as the computed quantity.
One can also use a facultative factor of k in the transform (as used
in Castro et al. 2005) but results are unchanged. This is a one-point
estimator describing a 3D shear field.

As explained in Kitching et al. (2011) r0
g is a distance, not a

redshift, and so requires the assumption of a fixed reference cos-
mology; this assumption is benign since the j�(kr) simply acts as
a weight for both the data and theory. In this paper the distance

2 The software used in this paper, 3DFAST, that includes the 3D cosmic shear
estimators and parameter estimation, is available on request, and more details
are available here http://www.thomaskitching.net
3 http://www2.iap.fr/users/kilbinge/athena
4 http://www2.iap.fr/users/kilbinge/nicaea

r0
g is estimated from the maximum posterior photometric redshift

for each galaxy. This expression assumes a flat sky approxima-
tion (replacement of Ym

� functions with complex exponentials) but
this can in principle be relaxed (see Castro et al. 2005). This ex-
pression also technically assumes a flat Universe through the use
of the spherical Bessel functions but again this can be relaxed re-
sulting in the use of hyperspherical Bessel functions; however the
hyperspherical Bessel function is very close to the spherical Bessel
function (see e.g. Kosowsky 1998), and in any case post-Wilkinson
Microwave Anisotropy Probe (WMAP) our cosmological model is
observed to have only small perturbations about flatness, if at all
(e.g. Hinshaw et al. 2013 constrain �K = −0.0027[+0.0039/ −
0.0038]). Note that the Limber approximation is not equivalent to
a flat sky approximation: the Limber approximation links k and
�-modes by effectively replacing spherical Bessel functions with
delta functions (LoVerde & Afshordi 2008) and is not used here;
the flat sky approximation replaces spherical harmonics Ym

� with
exponentials (Castro et al. 2005).

Equation (1) is calculable from the data, given a set of elliptic-
ity estimates and results in four data vectors which come from the
real and imaginary parts of the ellipticity and exponential terms.
In Kitching et al. (2007) these four data vectors were all used in
the likelihood calculation, however these terms can be separated
into two E-mode data vectors and two B-mode data vectors as
shown in Appendix A, resulting in real and imaginary data vectors:
R[γE(k, �)], I[γE(k, �)], R[γB (k, �)], I[γB (k, �)]. In the cosmolog-
ical analysis the E-mode is expected to contain the signal, whereas
the B-mode should be consistent with shot noise.

For the CFHTLenS analysis (described in Heymans et al. 2012;
Erben et al. 2013; Miller et al. 2013) there are three changes that
must be applied to the catalogues in order to create unbiased esti-
mators of the transform coefficients:

(i) weighting by the shape measurement (lensfit) weight
W (r0

g ) = WL,g ,
(ii) application of the e2 additive calibration correction c2, g,
(iii) application of the multiplicative ellipticity (1 + mg) calibra-

tion correction,

all of which vary for each galaxy g. The lensfit weight is an inverse-
variance weight that encapsulates the confidence in the ellipticity
measurement (galaxies measured with a sharply peaked likelihood
in ellipticity have a higher weight), as well as population variance of
the ellipticity estimates on a galaxy-by-galaxy basis (see Miller et al.
2013, section 3.6). The calibration corrections relate the observed
ellipticity eobs to an estimate of the true ellipticity eg for each galaxy
through a linear relation eg = (1 + mg)eobs + cg for each ellipticity
component. The c term is an empirical bias correction applied to
the CFHTLenS catalogue under the assumption that the expected
value is zero 〈c〉 = 0: the c1 component is consistent with zero but
the c2 term is non-zero. The multiplicative term is signal-to-noise
ratio and galaxy-size dependent and is calibrated with respect to
image simulations of CFHTLenS; Heymans et al. (2012) provide
an empirically fitted formula to simulations to account for this bias.
For the calculation of the spherical harmonic coefficients we first
subtract the additive c2 component from each galaxy ellipticity,
we then modify the spherical harmonic coefficients as described in
Appendix B where we show that the multiplicative term results in a
scaling of the coefficients and also a mixing of the E and B modes
that must be accounted for. In calculating the coefficients we sum
over all galaxies defined in Section 3.
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A further modification to the data vectors is that the angular coor-
dinates on the sky (α, δ) (right ascension and declination) need to be
converted into tangent-plane (flat sky) coordinates (θ x, θ y); this is
achieved using spherical trigonometry using a gnomonic projection
where cos θx = cos2(π/2 − δ) + sin2(δ − π/2) cos α and θ y = δ,
and angles are converted; for each field we use the mean of the
coordinates as the central coordinates for the projection. This pro-
jection is not a limitation of the methodology, but is needed when
making the flat sky assumption in this paper.

2.2 Covariance

2.2.1 Signal covariance

For 3D cosmic shear the transform coefficients have an expectation
value of zero but the expected covariance is non-zero and it is
that which is used as the cosmology-dependent signal (see Section
2.3). As described in Kitching et al. (2011) the lensing part of the
covariance, which assumes only the cosmological principle, but not
Gaussianity, can be written as

CS
� (k1, k2) = (D2

1 + iD2
2)

4

π2c2
A2

∑
g

∑
h

[
j�(k1r

g
0 )j�(k2r

h
0 )

]
×

∫
dz′pg(z′)

∫
dz′′ph(z′′)

×
∫ r(z′)

0
dr̃

∫ r(z′′)

0
d˜̃rFK (r ′, r̃)FK (r ′′, ˜̃r)

×
∫

dk′

k′2
1

a(r̃)a(˜̃r)
j�(k′r̃)j�(k′ ˜̃r)

√
P (k′; r̃)P (k′; ˜̃r),

(2)

where pg(z) and ph (z) are the posterior probabilities that galaxies
g and h are at redshift z. P(k; r) is the matter power spectrum; the
functions FK(r, r′) = SK(r − r′)/[SK(r)SK(r′)] where SK(r) = sinh (r),
r, sin (r) for cosmologies with spatial curvatures K = −1, 0, 1; a(r) is
the dimensionless scalefactor. The pre-factor A = 3�MH 2

0 /2 where
h 0 is the current value of the Hubble parameter and �M is the ratio
of the total matter density to the critical density. Where we label
with a semicolon e.g. P(k; r), the comoving distance is labelling
the time-dependence P(k, r[t]) (Castro et al. 2005). The sums are
over galaxies used to construct the data vectors. This is a slightly
more general expression than that in Kitching et al. (2011) where
here we explicitly include the Fourier derivatives D1 = 1

2 (�2
y − �2

x)
and D2 = −�x�y that convert from potential to shear (see Appendix
A). The covariance then has real and imaginary parts which are not
necessarily equal for each (�x, �y) mode; in the analysis we treat the
real and imaginary parts separately.

The photometric redshift uncertainties for each galaxy enter the
covariance calculation as shown in equation (2). Note that the pho-
tometric uncertainty does not enter into the data vector where the
maximum likelihood redshift for each galaxy is used; the covari-
ance then accounts for the scatter in the data vector caused by this
assumption as discussed in Kitching et al. (2011).

This is the signal part of the covariance of the
γ E(k, �) where CS

� (k1, k2) = 〈R[γE(k1, �)]R[γE(k2, �)]〉 +
i〈I[γE(k1, �)]I[γE(k2, �)]〉. Throughout this investigation we use
CAMB5 to calculate the matter power spectra with the HALOFIT

(Smith et al. 2003) non-linear correction and the module for

5 http://camb.info version 2012 October

Parametrized Post-Friedmann (PPF) prescription for the dark
energy perturbations (Hu & Sawicki 2007; Fang, Hu & Lewis
2008a; Fang et al. 2008b).

2.2.2 Noise covariance

The shot noise part of the covariance is given by Kitching et al.
(2007) as

N�(k1, k2) = σ 2
ε ��

4π2

∫
dzn̄(z)j�(k1r

0)j�(k2r
0), (3)

where n̄(z) = ∑
g pg(z) is the sum of the posterior redshift proba-

bilities, and σ 2
ε is related to the variance of the ellipticity distribution

in the data. The E- and B-mode separation involved in manipulating
the spherical harmonic coefficients for use in the likelihood eval-
uation (see Appendices A and B) causes the variance σ 2

ε ∈ C to
be related to variance of the observed ellipticities as described in
Appendix B. �� is the solid angle, or area, of the survey.

The shot noise is calculated assuming a reference cosmology, for
which we use the best-fitting WMAP7 values (Komatsu et al. 2011);
this is a benign choice as long as the same reference cosmology is
used in the data vector calculations. We do not consider any cross-
terms between the noise and signal, which are expected to be zero
in the absence of source-lens clustering (see e.g. Valageas 2013).

2.2.3 Pseudo-C�

A further sophistication applied here is the accounting for angular
masks in the data. To account for masks we adapt the pseudo-C�

methodology (that has been used in CMB studies; e.g. Hivon et al.
2002) for use with 3D spherical harmonics in Appendix C. Masks
in data act to move power from the angular scale of the masks to
other parts of the power spectrum, this ‘mixing’ of power can be
calculated given the mask and expressed as a mixing matrix M3D

��′ .
Here we multiply the theoretical 3D power by the mixing matrix to
simulate the effect of the mask and compare this with the data; this
results in equations (C3) to (C5), the latter of which is reproduced
here

C̃EE
� (k1, k2) =

(π

2

)2 ∑
�′

(
�′

�

)
M3D

��′ CS
�

(
k1

�′

�
, k2

�′

�

)
, (4)

where C̃EE
� (k1, k2) is the pseudo-C� estimator of the 3D power

and M3D
��′ is the 3D mixing matrix defined in equation (C5); this

is the expression we use to account for the masks, on the theory
side, in the likelihood analysis presented. Alternatively one could
attempt to invert the mixing matrix and apply this to the data to
undo the effect of the masks (although in this case regularization
of the matrix may be required, for example binning in �-mode,
depending on its condition number). The mixing matrix only affects
the signal part of the covariance matrix; the effect of the mask
on the shot noise covariance is a simple area scaling. We show
the mixing matrix calculated for the W1 field (see Section 3 for
a description of the data) in Fig. 1. This formulation, presented
in Munshi et al. (2011), is a generalization of a 2D pseudo-C�

formalism (e.g. Hikage et al. 2011; Kitching et al. 2012, appendix A)
to include a correct weighting over all radial k-modes that contribute
to each convolved �-mode, the application of a 2D mixing matrix
in this case would not be sufficient for a 3D cosmic shear analysis.
The mixing matrix is applied to the real and the imaginary parts of
the signal covariance in the same way, although in principle there
could exist systematics errors that create mixing matrices that do
not have this property (see Kitching et al. 2012).
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Figure 1. Normalized 3D mixing matrix for the W1 field, the colour scale
shows the amplitude of the mixing matrix, and is logarithmic as depicted.

In Kitching et al. (2007) a correction was made to the covariance
matrix to account for the very small angular size of the COMBO-17
field. In this paper we do not apply this correction because the survey
geometry of the CFHTLenS fields is large enough that the correction
factor (F , equation 10 in Kitching et al. 2007) is approximated by
a delta function and also that the mixing matrix formalism itself
consistently accounts for the survey geometry.

We can now define the observed power spectrum as the sum of
the pseudo-C� signal and the noise matrix

C�(k1, k2) = C̃EE
� (k1, k2) + N�(k1, k2), (5)

which we refer to as the 3D cosmic shear power spectrum. Recall
that these are complex valued power spectra.

These covariance estimates represent a significant computational
task: involving 2 nested sums over the galaxy population, five nested
integrals, computation of the matter power spectra, and the matrix
sum with the mixing matrix. Previous implementations (Kitching
et al. 2007) were prohibitively slow (∼ 1 h per cosmology on a
desktop computer in 2007), limitations that have been overcome
in the 3DFAST implementation (∼ 5 s per cosmology on a desktop
computer in 2013; with a parallelized and extendable code) allowing
for exploration of large cosmological parameter sets.

2.3 Likelihood

The likelihood of a complex random field in Fourier or spherical
harmonic space is more involved than simply treating the real and
imaginary parts of the field independently. Here we first describe
the covariance matrix for 3D cosmic shear and then define the
likelihood function.

2.3.1 The affix-covariance

A sophistication that we apply for the first time in a cosmological
context here, is modification to the likelihood function that the
complex nature of the field requires (see Alsing et al. in preparation
for more details). As shown by Picinbono (1996) and Nesser &
Massey (1993) for a normally distributed complex quantity z =

x + iy, where x ∈ R and y ∈ R, the joint probability distribution
for the two quantities must be written as

p(x, y) = p(z, z∗) = 1

π2|A|1/2
exp

(
−1

2
Z†A−1Z

)
, (6)

where Z = (z, z∗)T, and † refers to a Hermitian conjugate. We refer
to the matrix A as the affix-covariance6 (one may also refer to this
as a pseudo-covariance, but we wish to avoid confusion with the
transformation required to account for a survey mask). A contains
two submatrices: the usual covariance matrix � = 〈zz∗T〉 and the so-
called relation matrix R = 〈zzT〉. In general, the covariance matrix
alone is not sufficient to fully specify the second-order statistics of a
complex random variable, and care must be taken when transform-
ing to harmonic space so that all possible correlations are retained.
In particular, the off-diagonal blocks in the affix-covariance which
vanish for a real-space variable may no longer vanish in harmonic
space; this is a common pitfall when dealing with complex random
variables in Fourier or harmonic space. The case when the relation
matrix vanishes is a condition known as second-order circularity,
but this does not apply here.

In the case of 3D cosmic shear we have a data vector that con-
sists of the real and imaginary coefficients γE(k, �) = R[γE(k, �)] +
iI[γE(k, �)] such that we can define the affix-covariance matrix, for
each �-mode, as a 2Nk × 2Nk matrix, where Nk is the number of
k-modes in the coefficients

A�(k1, k2) =
(

� R

RT �∗

)
�

, (7)

which consists of four Nk × Nk blocks that relate to the 3D cosmic
shear power spectra

��(k1, k2) = R[C�(k1, k2)] + I[C�(k1, k2)]

R�(k1, k2) = R[C�(k1, k2)] − I[C�(k1, k2)] (8)

note that the relation matrix R will not depend on the shot noise for
some �-modes as the two contributions will cancel.

2.3.2 Likelihood function

Given the data vectors and the theoretical covariance, the cosmo-
logical parameter likelihood function (assumed Gaussian) can now
be written as

L(p) =
∑

�

1

π2|A�|1/2
exp

[
−1

2

∑
kk′

Z�(k)A−1
� (k, k′)Z�(k′)

]
, (9)

where Z�(k) = (γE[k, �], γ ∗
E[k + Nk, �])T . The sums over � and k

are over the scales defined in Section 4.2. We label the parameters
of interest p.

In the 3D cosmic shear formalism, which uses a one-point data
vector of spherical harmonic coefficients, the covariance itself con-
tains all the cosmological information, and the inverse is exact.
Hence there is no need to estimate the covariance itself from data
or simulations. When the covariance must be estimated this results
(because of the Wishart distribution of the covariance) in the need
for calibration with simulations (see e.g. Taylor et al. 2013) to ac-
count for the Kaufman/Anderson bias (Kaufman 1967; Anderson
2003; see also Hartlap, Simon & Schneider 2007). For the case
of correlation function analyses of the CFHTLenS data Kilbinger

6 Affix is a word that can refer to a complex number (Whittaker & Watson
1990), but it also means ‘fasten’ or ‘attach’.
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Figure 2. Left: the distribution of standard deviations, skewness and kurtosis for the normalized transform coefficients over all �-modes and for all CFHTLenS
fields. We show the distribution of the data (black), the distributions from a Gaussian realization of the data (red) and the analytic expected distribution of
these statistics (solid blue lines) for a data set of this size (see Section 3). Right: a normalized histogram of KS supremum values, over all �-modes from all
CFHTLenS fields, between the distribution of the normalized transform coefficients and a unit Gaussian distribution (black). We compare this with a similar
set of KS supremum values between a unit Gaussian and Gaussian realizations of the data (red), where any difference is due to noise only. These KS supremum
value distributions are consistent (with mean values and errors of 0.17 ± 0.06 and 0.21 ± 0.11).

et al. (2013) used a hybrid ansatz of a combined analytical and esti-
mated covariance, the former does not need to be corrected for the
Kaufman/Anderson bias but the latter does. As discussed in Taylor
et al. (2013) one mitigation approach is to use an analytic covari-
ance, as is done in this paper.

An assumption we make here, that the likelihood function is
Gaussian, is likely to be incorrect in detail on small scales, but for
CFHTLenS this approximation is sufficient. For a survey the size of
CFHTLenS we expect to be in the shot noise-dominated regime for
any individual �-mode, and one may expect that the shear coeffi-
cients will be Gaussian distributed because of the central limit the-
orem acting through the sum that is performed over the real-space
galaxy shear values (that may have a non-Gaussian distribution).
As a test of the Gaussianity of the shear coefficients we examine
their distribution divided by the expected shot noise (equation 3),
what we will refer to as ‘normalized transform coefficients’; which
should have a unit Gaussian distribution. We show in Fig. 2 a his-
togram of the variances, skewnesses and kurtoses of the normalized
transform coefficients over all �-modes over all CFHTLenS fields
(see Section 3 for a description of the data); we compare this to the
expected distribution of these statistics for Gaussian distributed data
of this size (for the expected error on the error see Taylor et al. 2013;
for the skewnesses see Kendall, Barndorff-Nielson & van Lieshout
1998; for the kurtoses see Kenney & Keeping 1962), and also to a
mock realization of the normalized transform coefficients sampled
from a unit Gaussian. We find that there is no significant deviation
from Gaussianity. We do find that �1 per cent of the modes have
a small positive excess kurtosis, but due to the overall weak con-
straints presented in Section 4 this level of non-Gaussianity should
not impact results. In Fig. 5 we also show histograms of the nor-
malized transform coefficients for a representative set of � values,
and averaged over all � values for information. As a quantitative
test of Gaussianity we also perform a Kolmogorov–Smirnov (KS)
comparison between the distribution of the transform coefficients
and the best-fitting Gaussian, and compare this with Gaussian re-
alizations of the data using the best-fitting values. The results of
this KS comparison are shown in Fig. 2, where we again find no
significant deviation from Gaussianity, although the KS test is best
at detecting a shift in the mean of two distributions.

For an isotropic Gaussian field, the harmonic coefficients are
statistically independent and normally distributed, where the mag-
nitude of each coefficient provides an independent estimate for the
power at the scale of the coefficient (this is where the cosmological
constraints stem from in the analysis used in this paper). Isotropy and
the high shot noise ensure that the coefficients are close to Gaussian
distributed, they have an enhanced variance because of non-linear
growth of the power spectrum, and are correlated for different an-
gular modes only through the angular window. All these effects
are all included in the analysis, but we make an approximation, in
assuming a multivariate Gaussian likelihood, that combinations of
coefficients which are uncorrelated are also taken to be statistically
independent.

We assume in the likelihood calculation that the data vector of
shear coefficients is Gaussian distributed, we do not assume Gaus-
sianity of the shear field itself, as stated before equation (2). Since
we use a transform of the field itself, rather than power spectra or
correlation functions, the covariance of the data is a 2-point quan-
tity rather than 4-point. We only require isotropy (not Gaussianity)
to have a diagonal covariance matrix for the matter power spec-
trum, and we include non-linearities by using the non-linear power
spectrum. With 2-point statistics, the assumption of Gaussianity un-
derestimates the (4-point) covariance, but here this is not the case.
Therefore it is sufficient to show that the shear transform coeffi-
cients have a Gaussian distribution, and the analysis shows that this
is the case, with only very small departures from Gaussianity in the
coefficients. The analysis uses the covariance of the shear field as
the cosmologically sensitive statistic, hence if the survey area was
small this could be sensitive to sample variance whereby local fluc-
tuations could result in an inferred cosmology significantly different
from a global description. However because the CFHTLenS survey
is a large area, much large than 1 square degree, such sample vari-
ance effects are expected to be minimal (e.g. Driver & Robotham
2010).

2.4 Tests on simulations

Despite the fact that the covariance does not need to be estimated
from simulations, we nevertheless wished to test the formalism and
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code to confirm that it was performing as expected. To do this
we used the SUNGLASS simulations from Kiessling et al. (2011),
which contain shear and redshift probability information assigned
on a galaxy-by-galaxy basis, which are ideal for the testing of 3D
cosmic shear in principle. For 3D cosmic shear we could not use the
CFHTLenS CLONE (Harnois-Déraps et al. 2012; used in Benjamin
et al. 2013; Heymans et al. 2013, Kilbinger et al. 2013; Simpson
et al. 2013, for calibration of the covariance) because the shears
were computed in a series of discrete redshift slices not from a
full 3D shear field. The SUNGLASS simulations used here consist
of 150 realizations of 100 square degrees with a galaxy number
density of 16 galaxies per square arcminute with a median redshift
of 0.75, and are therefore well matched to CFHTLenS (Heymans
et al. 2012) survey characteristics in terms of number density and
redshift distribution. The simulations however are smaller in terms
of area and do not include an IA model or survey masks, but these are
not insurmountable issues and should be addressed in subsequent
simulations.

However a more serious limitation is that in analysing these
simulations we had to use a limited k and � range. In the radial
direction we set a limit7 of k ≤ 1.5 h Mpc−1, by referring to fig. 3
in Kiessling et al. (2011) where it can be seen that the predicted
tomographic C(�) begins to deviate from the simulated power at � �
1.5r(zbin) where r(zbin) is the comoving distance of the tomographic
bin. Also in Kiessling et al. (2011) a conservative cut in � was used
of 500 ≤ � ≤ 1000; this is the regime where the box size (on the
large scales) and particle resolution (on the small scales) do not
affect the fidelity. The limitations mean that the results of testing on
these simulations are expected to give much larger error bars than
one should get from data – where larger k and � ranges may be used
– which is not limited by simulation resolution effects.

We calculated the likelihood surfaces in the (σ 8, �M) plane over
the 150 simulations, over ranges of 0.1 ≤ σ 8 ≤ 3.0 and 0.1 ≤ �M

≤ 0.9, using the likelihood function described in Section 2.3; all
other cosmological parameters were fixed at the values provided
in Kiessling et al. (2011), where the simulations used σ 8 = 0.8,
�M = 0.27, �B = 0.045, ns = 0.96, and h = 0.71. We find the
mean maximum likelihood values in this test are �M = 0.27 ±
0.020 and σ 8 = 0.82 ± 0.056, which are consistent with the input
cosmology. Within the limitations of the simulations available we
find that the code and method perform as expected, however we
encourage the creation of higher fidelity simulations for further
testing; consistency tests are also performed on the CFHTLenS
data in Section 3.5.

2.5 Parameter estimation

The cosmological parameter estimation that we will present is per-
formed using a Monte Carlo Markov chain (MCMC) algorithm that
uses a Gaussian proposal distribution calculated using the Fisher
matrix for the CFHTLenS survey, which uses the same posterior
redshift information, survey masks, and ellipticity distributions cal-
culated using a fiducial cosmology centred on WMAP7 (Komatsu
et al. 2011) maximum likelihood values. This proposal distribution
is efficient because parameter degeneracies are correctly included,
however it does assume Gaussianity so no curvature in the likelihood
surfaces is captured. The Fisher matrix used is given in Kitching
et al. (2011). We create MCMC chains of �104 evaluations, and
create two chains per cosmology and CFHTLenS field in order to

7 We will use the same limit for the data analysis, but this is a coincidence.

evaluate the Gelman & Rubin (1992) statistic (see Verde 2007 for a
clear explanation of this test), which we find to be consistent with
the chains having converged for all results presented here.8

3 DATA

The CFHTLenS data and catalogue products are described in
Erben et al. (2013), Heymans et al. (2012), Miller et al. (2013)
and Hildebrandt et al. (2012). In this analysis we use all four wide
fields (W1, W2, W3, W4) and reject pointings based on the Hey-
mans et al. (2012) systematic tests: the tests were performed using a
2D correlation function method which should result in a more strin-
gent rejection because the tests will be sensitive to contaminating
effects from all scales, whereas in 3D cosmic shear we reject the
smallest scales explicitly from the analysis. We use the catalogues
presented in Erben et al. (2013) (the CFHTLenS catalogue) with
the shape measurement ellipticities and weights described in Miller
et al. (2013), created using lensfit (Miller et al. 2007; Kitching et al.
2008), and the posterior redshift information described in Hilde-
brandt et al. (2012), created using BPZ (Benı́tez 2000), which were
tested for model fidelity in Benjamin et al. (2013).

The Benjamin et al. (2013) results show that the posterior
pg(z) are consistent with the redshift distributions of galaxies with
known spectroscopic redshifts, and with redshift distributions re-
constructed from a cross-correlation analysis of six photometric
redshift bins; we also refer the reader to fig. 5 of Hildebrandt et al.
(2012). From this analysis we infer that the set of galaxy template
models used in Hildebrandt et al. (2012) are sufficiently complete
such that the pg(z) are accurate representations of the true pho-
tometric error distribution in the range 0.2 ≤ zBPZ ≤ 1.3. Further-
more Benjamin et al. (2013) based their analysis upon correlation
functions. The higher sensitivity of 3D cosmic shear to redshift-
dependent effects may be taken to imply that the method would be
more sensitive to biases in photometric redshifts, however Kitching
et al. (2008) find a similar required error on a global bias for 3D
cosmic shear to requirements for weak lensing power spectrum to-
mography (e.g. Ma et al. 2006). Although the pg(z) were tested in
detail in Benjamin et al. (2013) and Hildebrandt et al. (2012), the
selection of late-type galaxies to avoid IA in this paper (see Section
3.1) may impact the applicability of those results. However, given
the relatively large errors bars, we do not expect this to be significant
for this study.

3.1 Galaxy selection

We make a redshift selection of posterior redshift distributions
pg(z) of those galaxies with maximum-posterior values between
0.2 ≤ zBPZ ≤ 1.3. This is based on the cross-correlation analysis
in Benjamin et al. (2013) who found consistency between spectro-
scopic and narrow band number densities and the summed pg(z)
over these ranges, which is taken as evidence of a low level of in-
fidelity due to model/template error in BPZ. These galaxies have a
weighted median redshift of zm = 0.7, and a mean effective number
density of 11 galaxies per square arcminute over all fields before
any selection.

We make a cut in galaxy type by excluding all galaxies classified
as early-type, with a BPZ type parameter TB ≤ 2. The aim of this
cut is to create a model-independent removal of galaxies with a
large IA signal, based on the analysis of Heymans et al. (2013).

8 MCMC chains are available on request.
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However since the linear alignment model (Hirata & Seljak 2004)
was used in that analysis there is some model dependence. Mandel-
baum et al. (2011) found similar results to Heymans et al. (2013).
We will investigate a more sophisticated 3D IA removal in future
work (see Merkel & Schäfer 2013, for a theoretical study of IAs
within the 3D cosmic shear context).

We use the image masks provided by Erben et al. (2013), and
exclude those galaxies with MASK ≥ 2 as described in Erben et al.
(2013). We make no other selection of galaxies in the CFHTLenS
catalogue. After selection the mean effective number density is 7–8
late-type galaxies per square arcminute over all fields.

3.2 Scales

We test two different ranges of radial scale kmin = 0.001 h Mpc−1

and kmax = 1.5 h Mpc−1 or 5.0 h Mpc−1. The maximum radial scale
of 1.5 h Mpc−1 is defined to avoid the highly non-linear regime
where baryonic effects are expected to become important (see e.g.
White 2004; Zhan & Knox 2004; Jing et al. 2006; Zentner et al.
2008; Kitching & Taylor 2011; Semboloni et al. 2011, 2013; van
Daalen et al. 2011; Yang et al. 2013). The HALOFIT (Smith et al.
2003) predictions also become unreliable at a redshift-dependent
kmax (Giocoli et al. 2010) at similar scales. The higher scale of
5.0 h Mpc−1 will enable a testing of these assumptions, probing the
regime where feedback may be important.

The 3D cosmic shear power spectra probe particular scales in the
matter power spectra; the maximum k-modes that we refer to are
cuts in the data vector but do not probe only those physical scales.
To quantify this we can re-write the k-diagonal part of the lensing
power spectrum in terms of a kernel K that acts on the matter power
spectrum

CS
� (k, k) =

∫
P (k′; z)K(k′, k)dk′, (10)

where K(k′, k) can be inferred in a comparison with equation (2).
In Fig. 3 we show this kernel for several different values of k (for
the W1 field and using a WMAP7 cosmology; see Sections 3 and
4) for several different maximum � values. It can be seen that the
kernel is, to a good approximation, confined to the region k′ � k.
The peak of the kernel is at lower k′ values as is expected because
of the lensing effect being an integration along the line of sight. At
k ∼ 5 h Mpc−1 the impact of a maximum �-mode can be seen; that
results because higher �-modes sample higher k-modes in general.
In the analysis we also use k′ � 10 h Mpc−1 in the integrations.

This analysis is much more conservative than the correlation
function analyses of the same data (Benjamin et al. 2013; Heymans
et al. 2013; Kilbinger et al. 2013; Simpson et al. 2013) where for
example a minimum scale of 0.8 arcmin is used, which is equiv-
alent to a data vector cut of k ≤ 27,000/r(z) � 30 h Mpc−1 for
the closest redshifts, or k � 10 h Mpc−1 at the median redshift.9 A
more conservative correlation function analysis in Kilbinger et al.
(2013) uses a minimum scale of 17 arcmin in the data vector but
the remaining modes still necessarily contain a mix of information
from all physical scales; this is because for a correlation function
method the kernel, a Bessel function J0, 4(�θ ) has significant power

9 See Benjamin et al. (2013) section 4 for a more thorough discussion of this
k-cut for correlation function analyses; however much larger k-modes will
contribute to the interpretation of these because of the very broad kernel used
in this analysis (Bessel functions J0, 4[�θ ]). Here we quote the maximum
scale in the data vector that is used in the likelihood function in such an
analysis, for comparison with the k-cuts used in this paper.

Figure 3. The 3D cosmic shear power spectrum kernel. The four panels
show the kernel with which the matter power spectrum is convolved for
several k-mode values (shown by vertical lines at values 0.5, 1.5, 3.0 and
5.0 h Mpc−1) in the 3D cosmic shear power. For example the range of k-
modes sampled in the matter power spectrum by a k = 0.5 h Mpc−1 value in
the 3D cosmic shear power spectrum are shown in the top panel. The range of
k-modes sampled depends on the maximum �-mode used, and we show the
kernel for three values �max = 2000, 5000 and 10 000. In the cosmological
analysis we use kmax = 1.5 h or 5.0 h Mpc−1 and �max = 5000.

at all scales, so a cut in the data vector at a particular scale does not
translate into a cut in a physical scale.

For the angular scales we use �min = 360 to avoid any residual
systematic effects on scales larger than a single CFHTLenS point-
ing. To sample the 2D �-space we then create modes �x = i�min and
�y = j�min (where i, j ∈ Z) such that the magnitude of the � vector
� =√

�2
x+�2

y is always less than �max = 5000. We use integer multi-
ples of �min for computational reasons, but note that this could limit
the signal-to-noise ratio of the final results. We evaluate the data
vectors and the theoretical covariance at each point in this 2D space,
concatenating those combinations of �x and �y that give the same �,
resulting in 164 independent angular modes. We then sum the like-
lihood values, equation (9), for parameter estimation. In the radial
direction for every �-mode, we use 50 k-modes linearly sampled
between 0.001–5.0 h Mpc−1 (therefore 15 for the k ≤ 1.5 h Mpc−1

cut). The MCMC chain is common for all the data, where at each
point the log-likelihood is summed over all fields.

3.3 3D cosmic shear power spectra

The 3D cosmic shear power spectra are inherently complex 3D
objects in (�, k1, k2) space. In Fig. 4 we show the signal, cosmology
dependent, part of the 3D cosmic shear power spectrum in this
space. This shows the broad features that lower �-modes contain
more power and that as the �-mode increases fewer k-modes are
accessible because of the Bessel function behaviour, that we discuss
further below.

To present the full 3D power spectrum in a more accessible
form we can take conditional cross-sections of this space or make
projections. In Fig. 5 we show, for a representative set of �-modes
for each field, the diagonal part of the power spectra C�(k, k) and
compare this with the square of E-mode data vector values for both
the real and imaginary parts of the power spectrum; these quantities
should be approximately equivalent if the power spectrum is nearly
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Figure 4. 3D representations of the signal part of the 3D cosmic shear power spectra CS
� (k1, k2) (equation 2) averaged over the real and imaginary parts. The

upper panel shows a slice plot through the 3D (�, k1, k2) space plotted on the z, y and x axes, respectively. The slices/cross-sections through the 3D cube in the
top panel are at k = 2.5 h Mpc−1. The lower panel shows the same power spectrum but in an isosurface representation. The colour bar gives the amplitude of
the power at each point in the 3D space for both panels.
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Figure 5. Upper panel: a k-diagonal cross-section through the 3D power spectra. The data points show the real and imaginary values of the transform
coefficients squared γ 2

E (k, �) as a function of k for a representative set of 12 �-modes from the ∼164 �-modes computed for each CFHTLenS field: W1, W2,
W3 and W4, respectively, from top to bottom in rows. The green points and lines are for the imaginary part, and the blue for the real part. The dashed and solid
lines show the diagonal part of the signal and noise covariances, respectively, in the k direction C�(k, k) calculated at a reference WMAP7 cosmology (Komatsu
et al. 2011), for the imaginary (green) and real (blue) parts of the covariance. The rightmost column shows the mean of the same cross-section averaged over
all �-modes for each field, and averaged over the real and imaginary parts. Lower panel: a histogram of the real (blue) and imaginary (green) shear coefficients
for each �-mode in the upper panel, and also averaged over all �-modes, divided by the expected shot noise. The black lines show unit Gaussian distributions.

MNRAS 442, 1326–1349 (2014)



1336 T. D. Kitching et al.

Figure 6. The projected 2D cosmic shear power spectrum for each of the CFHTLenS fields; computed by integrating the full 3D cosmic shear power. The
data points show the E-mode only power as a function of �. The solid line shows the 2D power spectra estimates calculated using a reference cosmology of
WMAP7 (Komatsu et al. 2011). For the W2 field we show the error bar on each point, which are also typical of the other fields. Because of the logarithmic y
axes negative values as a result of noise are not shown. For illustration, in the W4 field only, the grey dot–dashed line shown is the 2D cosmic shear power
spectrum that one would compute from data evaluated on a plane, or from theory if no cut in the radial k-direction were imposed in the Limber-approximated
calculation.

diagonal in the k direction, we scale the quantities by k2 so that one
would have a flat spectrum if there were equal power in each shell
in k space. Not all �-modes have both real and imaginary power
spectra because of the nature of the complex derivatives (D1 and D2

in equation 2) in the � coordinate system.
The dominant feature that one sees in Fig. 5 is the sharp drop in

power at low k for each �, which is expected and is due to the Bessel
function behaviour j�(kr) ≈ 0 for � ≥ kr. In this case for a given k
we expect to find power at k ≥ �/rmax � �/(3000zmaxh −1 Mpc). A
further clear feature is that for any given (�, k) mode the signal-to-
noise ratio of the power spectrum is much less than unity, typically
∼10 per cent (the ratio of the dashed lines to the solid lines in
Fig. 5). We note, however, that in total over CFHTLenS we have
∼200 × 50 × 4 ∼ 40 000 independent modes. This is expected for
a survey of this size, but since the signal-to-noise ratio increases
linearly with the number of galaxies for a particular mode future
surveys may even detect individual modes at signal-to-noise ratio
greater than unity. We also show the same cross-section in k aver-
aged over all �-modes. The consistency of the shot noise part with
the B mode is in agreement with a similar conclusion reached in
a mass-mapping analysis of the same data in van Waerbeke et al.
(2013).

3.4 2D and tomographic cosmic shear power spectra

A further projection that one can make of the 3D power spectrum is
to average over the k-direction to create a purely angle-dependent
representation of the power. In Appendix D we show how one
can compute such 2D, or tomographic, power spectra from the
full 3D case. Using this formalism one could calculate any 2D
autocorrelation or cross-correlation power spectrum between any
pair of redshift bins.

In Fig. 6 we show the 2D projected power when averaging over
the whole redshift range, a ‘2D cosmic shear power spectrum’, for
each of the CFHTLenS fields. We show the sum of E-mode power
averaged over real and imaginary parts with the shot noise subtracted
and compare this to the 2D projected signal calculated with a ref-
erence WMAP7 cosmology (Komatsu et al. 2011). Other 2D power
spectrum analyses for weak lensing have been presented by Pen,
Van Waerbeke & Mellier (2002) using the VIRMOS-DESCART
survey, Brown et al. (2003) using the COMBO-17 survey, and Hey-
mans et al. (2005) using the Hubble Space Telescope GEMS survey.
We do not combine the fields in our visualizations of the data be-
cause such a combination is not a necessity for our analysis; such
a combination is also not trivial because the mixing matrices and
number density vary between fields. The theory curves plotted are
convolved with the mixing matrix, computed from the inhomoge-
neous and non-smooth masks in the data, and hence are not smooth
as may be expected if this was not done.

In Fig. 7 we show a set of tomographic power spectra using both 2
and 6 redshift bins, using the same redshift binning used in Benjamin
et al. (2013; 2-bin) and Heymans et al. (2013; 6-bin) for correlation
function analyses. We show the intrabin or ‘autocorrelation’ power
spectrum for each redshift bin and the interbin or ‘cross-correlation’
power spectrum for each redshift bin combination in the set. It can be
seen that the scaling of the data with redshift matches that expected
from a WMAP7 cosmology (Komatsu et al. 2011); except in the
highest redshift bin where we see some excess of power. There is
more power at high-� for high redshifts, which is what one expects,
the drop in power is seen at �max ≈ kmaxr(z). The overall drop in
power from low to high � is due to the maximum k cut similar
to the 2D case (Fig. 6). The smaller amount of interbin power,
decreasing as the bin separation increases, is also expected as there
is less common lensing material between the bins. Note that this
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Figure 7. Tomographic power spectra for the CFHTLenS W1 field; computed by integrating the full 3D cosmic shear power. The data points show the summed
E-mode power as a function of �. The solid lines show the power spectrum for a WMAP7 (Komatsu et al. 2011) cosmology. The main 21 panels show a 6-bin
tomographic set, the numbers refer to the redshift bin combinations where bins 1 to 6 have redshift ranges 0.2 < z ≤ 0.39, 0.39 < z ≤ 0.58, 0.58 < z ≤ 0.72,
0.72 < z ≤ 0.86, 0.86 < z ≤ 1.02, 1.02 < z ≤ 1.30, respectively (the same as Heymans et al. 2013 who present correlation function tomography); the diagonal
panels show the intrabin power spectra, the off diagonals the interbin power spectra. The smaller set of 3 panels show a 2-bin tomographic set, the labels low
and high refer to the redshift bin combinations where low and high redshift ranges are 0.5 < z ≤ 0.85 and 0.85 < z ≤ 1.30, respectively (the same as Benjamin
et al. 2013 who present correlation function tomography). In the first panel we show the error bars on each point, which are typical for the other bins both sets.
Because of the logarithmic y axes negative values as a result of noise are not shown.

presentation could be extended to an arbitrary number of bins.10

Because the signal-to-noise ratio of the shear transform coefficients
is low in CFHTLenS (see Fig. 5) the projected power spectra also
have a high level of noise; as a consequence points that are scattered
to negative values as a result of noise are not shown in Figs 6 and
7, and we show typical error bars for each point.

If one does not use 3D cosmic shear but instead uses 2D or to-
mographic approximations then it is important to correctly account
for the effect that any cuts made in the radial k-modes have on the
angular �-modes used in both the theoretical calculation and in the
measurement of the power spectra from the data. Cuts in the radial
k-modes on the matter power spectrum for example have, as a re-
sult of the projections and the Limber approximation, an impact on
�-modes in the regime k ≥ �/rmax � �/(3000zmaxh −1 Mpc). Cuts
on radial k-modes therefore result in a suppression of 2D or tomo-
graphic power at a fixed �-mode as power from the cut modes is
removed. This effect is readily computable from theory, either from

10 However ultimately limited by the number of galaxies in the survey. De-
creased photometric redshift precision would increase correlation between
bins but would not limit the number of bins.

the full 3D power spectrum or by making tomographic approxima-
tions (e.g. Hu 1999; Kitching et al. 2011), and indeed it is necessary
to do so because small scales should be removed due to uncertainties
in baryonic feedback, and the non-linear power spectrum.

However, the estimation of a 2D power spectrum from data,
which consistently removes these modes for a correct comparison to
theory, has not been demonstrated until now. In fact the computation
of 2D power, from an inherently 3D field, on a plane will contain
contributions from all k-modes. In Fig. 6 we represent what one
would have computed from data using this procedure, assuming
the Limber approximation with no k-mode cut, with the grey dot–
dashed line: in this case the data would be orders of magnitude away
from the theoretical predictions. One can mitigate this by computing
the theoretical power to larger k values, but such a procedure carries
uncertainties. If one projects the shear field on to a plane then both
the selection function of the galaxies and a correct removal of power
from � ≥ kmaxr(z) would have to be performed. Alternatively one
can use the full 3D transform coefficients, and use the projection
presented in this paper to remove k-modes from the data covariance.
A further point is that the k-mode cuts in the data vector translate
to a particular kernel with which the matter power spectrum is
convolved as discussed in Section 4.2.
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3.5 Systematic tests

There are several systematic tests that one can perform, under partic-
ular assumptions, to determine whether the power spectra calculated
from the data are consistent with expectations.

(i) The B-mode part of the power spectrum should be consistent
with shot noise only (equation 3), because cosmic shear only induces
E-mode power. Therefore the B-mode power minus the expected
shot noise power spectrum should be consistent with zero. This
assumption can break down due to IAs (see e.g. Merkel & Schäfer
2013), but at the level of precision attainable from CFHTLenS,
and the fact that we remove the galaxies that are most likely to be
contaminated with IAs, this is a valid systematic test.

(ii) The cross power spectrum between the E and the B-mode
power should be consistent with zero. A non-zero E–B power spec-
trum would correspond to a mixing of E- and B-mode power which
is expected to be zero, except in some exotic cosmologies (see
Amendola et al. 2013 for a review), or as a result of residual sys-
tematic B-mode power being mixed with the E-mode power through
the application of the mixing matrix.

(iii) For a Gaussian random field the phase of the E- and B-mode
power spectra for a given mode is

φ = atan

(
I[γ (k, �)]

R[γ (k, �)]

)
. (11)

The distribution of phases should be random, and consistent with a
uniform distribution over [0, 2π] (see Coles et al. 2004 for a study
of phases in a CMB study) if there is no preferred direction in the
data (this tests sensitivity to a shift in the origin of the coordinate
system used). The shear coefficients used in the above equation are
the observed shear coefficients (equation A8 in Appendix A) to test
the isotropy of the on-sky shear field.

We show the result of the first two of these systematic tests in Fig. 8
for each of the four fields as a function of �, averaged over k, and
the real and imaginary parts of the power spectra. We find that as
expected each of these tests is consistent with zero.

In Fig. 8 we also show the distribution of the complex phases
of the observed transform coefficients averaged over all � and k-
modes, which we find to be consistent with a uniform distribution
for each field.

4 R ESULTS

We now present the cosmological parameter constraints found from
3D cosmic shear applied to the CFHTLenS data. The cosmological
parameter set we use is a waCDM set with �M, �B, σ 8, h , w0, wa, ns

with others fixed at WMAP7 maximum likelihood values (Komatsu
et al. 2011), we also assume flatness i.e. �DE = 1 − �M, and a sum
of neutrino mass of zero. We also consider a wCDM parameter set
where wa = 0, and a Lambda cold dark matter (LCDM) parameter
set where w0 = −1 and wa = 0. Constraints on other cosmologi-
cal parameters are expected to be dominated by CMB constraints
for this size of lensing survey, except possibly the neutrino mass.
The dark energy equation of state is parametrized using a Taylor
expansion in scale factor such that w(z) = w0 + [z/(1 + z)]wa.

4.1 Priors

We will present the 3D cosmic shear parameter error in combina-
tions with priors from previously analysed cosmological data sets.
These are as follows.

(i) Planck. We include constraints from the Planck 1st year
data. See Planck Collaboration (2013) and the PLAIO11 for
a description of the data products. We use the lowl_lowLike
chains and for the waCDM parameter set use the combination
of Planck+BAO.

(ii) h 0. The constraint on the dimensionless Hubble parame-
ter h = H0/(100 km s−1Mpc−1) = 0.738 ± 0.024 from Riess et al.
(2011). We apply this assuming a Gaussian prior distribution.

(iii) WMAP7+SN+BAO. We include results from Komatsu
et al. (2011) for the CMB in combination with priors used
in that analysis.12 We use the MCMC chains made available
subsequently13that also include information from the Hicken et al.
(2009) supernovae data set (+SN) and BAO information from Per-
cival et al. (2010) (+BAO).

The WMAP7+SN priors we use do not contain systematic errors on
the supernovae constraints. This is addressed in Conley et al. (2011)
who find that the combined WMAP7+SN constraints including
systematic are not biased with regard to Komatsu et al. (2011) (due
to the orthogonality of the CMB and Type Ia SN contours even
when including systematics), but that uncertainties from SN alone
are increased by a factor of 2. Komatsu et al. (2011) included an
h 0 prior from Riess et al. (2009) of h = 0.742 ± 0.036, and we
modify the weights of the WMAP7 MCMC chains to remove the
Riess et al. (2009) h 0 prior and include the Riess et al. (2011) h 0

prior for this paper. In addition we include some physical priors
�M > 0, �B > 0, h > 0, σ 8 > 0 to prevent the MCMC chains
from moving into unphysical parts of parameter space. We also
include (i) the same uniform priors as Kilbinger et al. (2013) of �B

∈ [0.0; 0.1], ns ∈ [0.7; 1.2] and (ii) some priors that result from the
stability of CAMB, where we exclude the ranges �M < 0.05, h < 0.1
and (w0 > −0.5∧wa > 0.8) (see Appendix E).

4.2 Scales

In Fig. 9 we show constraints in the (σ 8, �M) plane for two different
ranges in scale. In this projection we find that results are consistent
when the maximum k is increased from 1.5 to 5.0 h Mpc−1, but
we will see tension later when combined with Planck. Moreover
even over this small change in scale a lower σ 8 is preferred as the
maximum k increases. We show numerical results for a fit to the
function σ 8(�M/0.27)α = constant in Table 1 where we find that
the normalization is affected by a change in scale but that the slope
is unaffected.

One possible explanation for the preference of lower power above
k = 1.5 h Mpc−1 is that the impact of baryonic feedback on the total
matter power spectrum is being seen. van Daalen et al. (2011)
and Semboloni et al. (2011, 2013) used N-body simulations to
investigate the impact of baryons (via AGN feedback) on the matter
power spectrum and provided a functional ansatz for their predicted
effect: we refer to the solid blue lines in Semboloni et al. (2011,

11 http://pla.esac.esa.int/pla/aio/planckProducts.html
12 We use WMAP7 for consistency with other CFHTLenS results, and Planck
for current constraints, we also refer the reader to WMAP9 (Hinshaw et al.
2013) for a further CMB data set that could also be used.
13 Available here http://gyudon.as.utexas.edu/komatsu/wmap7/ and here
http://gyudon.as.utexas.edu/komatsu/wmap7/wacdm+lz/wmap7+h0
+snconst/ for the waCDM parameter set and from here
http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm for the
wCDM parameter set.
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Figure 8. Upper panels: for each of the CFHTLenS fields we show the shot noise subtracted B-mode power (blue points) and the EB cross power spectra
(orange points) Each of these should be consistent with zero. We have binned the �-modes into 6 bins and show the error bar associated with each; we have
shifted the B-mode by a small amount away from the bin centre (used for the EB points) in � for clarity in plotting. Lower panels: for each of the CFHTLenS
fields we show a histogram of the complex phase of the observed shear coefficients (equation 11). Each of these should be consistent with a uniform distribution
over the range [0, 2π], if the data are isotropic. The solid horizontal line shows the expected mean number of modes per bin, and the dashed lines show the
expected 1σ error.

fig. 1) and Semboloni et al. (2013, fig. 5), such that we parametrize
the total matter power spectrum as

P (k, z) =
[
ES

(
PB(k)

PN(k)
− 1

)
+ 1

]
PDM(k, z), (12)

where PDM(k, z) is the original (CAMB) power spectrum as a function
of scale and redshift; PB(k)/PN(k) is the functional form for the ra-
tio of the total matter to dark matter power spectra from Semboloni
et al. (2011), which we assume to be redshift independent over

scales k ≤ 5 h Mpc−1 and the redshift range of CFHTLenS; ES is
an additional parameter that controls the amplitude of the damping
term. As a partial test of the impact of baryons on the cosmic shear
power spectra we show in Fig. 10 the (σ 8, �M) plane using matter
power spectra of the form given in equation (12) for ES = 1 and
3; these two values are meant to be representative of the plausible
range of suppression and encapsulate the original suggested form
and a suppression below which there could be zero power at some
scale, it should be noted however that the upper value of 3 is much
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Figure 9. Constraints in the (σ 8, �M) plane for a wCDM cos-
mology as a function of the range in k-modes used in the anal-
ysis (black contours). We show the wCDM WMAP 7 yr contours
(blue inner lines) for comparison. Contours shown are 2-parameter
1 and 2σ confidence regions. In the left-hand panel the k range is
k ≤ 1.5 h Mpc−1; and in the right-hand panel for k ≤ 5.0 h Mpc−1

more extreme than that expected which is likely to be in the range
0–1. We find as expected that the preferred value of σ 8 increases
as the modelled matter power spectrum is damped. This is not di-
rect evidence of the impact of baryons on the power spectrum, but
we do find better consistency between the k ≤ 1.5 and 5 h Mpc−1

ranges when the baryon functional ansatz is included in the mod-
elling. This is a functional ansatz only, where for example redshift
dependence is not included; however redshift independence is not a
very bad approximation since AGN activity peaks at early times.14

The feedback behaviour should be noted in the interpretation of the
results of all cosmic shear cosmological constraints that use scales
k � 1.5 h Mpc−1.

4.3 wCDM cosmologies

Here we explore the combination of CMB constraints with those
from lensing in comparison with similar combinations from other
cosmological probes in the wCDM parameter space. The CMB
alone (not accounting for lensing of the CMB) suffers from a ge-
ometric degeneracy which means the constraints are large in par-
ticular parameter directions, in particular for �M, h and w. CMB
measurements alone can lift the degeneracy to some degree with
CMB lensing and the ISW effect, but are generally combined with
other cosmological probes in order to take full advantage of the
statistical power of additional data sets.

Figs 11, 12 and Table 1 clearly show that lensing can provide an
independent way to lift CMB degeneracies, to a degree comparable
with current h 0 constraints and the combination of BAO+SN, in
particular for σ 8 and the dark energy equation of state w; but this
depends on the range of scales used. Using scales of k ≤ 1.5 h Mpc−1

only we find that the lensing data does not add any significant
constraining power to the CMB data. However, when using scales
of k ≤ 5 h Mpc−1, and no baryonic feedback correction, the tension
between the slightly lower σ 8 and �M cause the CMB degeneracies
to be lifted, but the posterior is driven to very low �M � 0.2, high
h � 0.8 and high σ 8 � 1.

This is evidence of the modelling of the non-linear scales being
in tension with the modelling of linear scales, or the presence of
an undetected scale-dependent systematic effect. The modelling of
the non-linear clustering, either dark matter or baryonic feedback

14 However it is not clear whether material blown out by AGN activity may,
or may not, be able fall back into its original environment.

are possible sources of plausibly incorrect modelling (see Section
4.2). Alternatively a cosmological model assuming w = −1 is not
correct or needs an additional component: one possible assumption
that could be relaxed is that of no massive neutrino species, which
could cause a suppression of power at scales >1.5 h Mpc−1 (see
Jimenez et al. 2010). This result is unlikely to be caused by residual
IA contamination, because such an effect is expected to impact
all scales, but this is a further possibility. At the current time the
data, and modelling of the baryonic feedback, are not sufficient to
confidently distinguish these possibilities; although one, or more,
of these must be causing the observed effect. As shown in Fig. 11,
we find that when the high-k functional ansatz described in Section
4.2 is included that the lensing constraints are more consistent with
the Planck constraints, and that the degeneracy lifting is relaxed.

4.4 LCDM and waCDM cosmologies

In Fig. 13 we show the 2-parameter projected constraints for the
waCDM set with a kmax = 5.0 h Mpc−1, in each of the 2-parameter
combinations that are accessible in this analyses.15 It is clear
from Fig. 13 that lensing is providing constraints consistent with
Planck+BAO for waCDM cosmologies, but that there is very little
gain over these, even at the 1σ level. In the waCDM parameter
space the constraints from lensing are very broad as the data is not
sufficient to place tight constraints in such a larger parameter space.

In the LCDM parameter space the CMB alone already constrains
most parameters very tightly – the significant geometric degeneracy
in the CMB being lifted by the choice of a cosmological parameter
set that assumes flatness – and so similarly we find that there is
no tension with the Planck results, but also no improvement with
the addition of the CFHTLenS constraints. For comparison we find
that for an LCDM cosmology σ 8(�M/0.27)0.69 ± 0.22 = 1.16 ± 0.27
compared to Planck who find σ 8(�M/0.27)0.46 = 0.89 ± 0.03 using
the same cosmology.

4.5 Comparison with 2D correlation function analyses

Comparing these constraints with those from 2D and tomographic
correlation function analysis of the CFHTLenS data (Benjamin et al.
2013; Heymans et al. 2013; Kilbinger et al. 2013; Simpson et al.
2013) we find similar constraints from the full 3D analysis on some
parameters, for example w (+1.30 − 0.82 in this paper compared
to approximately ±1.0 in Kilbinger et al. 2013 for lensing alone),
despite the fact that we only probe 5 per cent to 16 per cent of
the modes in the matter power spectrum, and ∼20 per cent fewer
galaxies: we use k ≤ 1.5 or 5.0 h Mpc−1 compared to k � 30 h Mpc−1

(see Section 4.2), however this difference results in some subtlety
in the comparison that we describe here.

In Table 1 we show constraints on the empirical relation
σ 8(�M/0.27)α = constant, commonly used to parametrize the am-
plitude and width of the contours in the (σ 8, �M) plane. We find
weaker constraints in the orthogonal direction parametrized by α

(width of the contour, as can be seen by comparing Fig. 13 of this
paper with figs 11 and 5 of Kilbinger et al. (2013) and Heymans et al.
(2013), respectively, for wCDM and LCDM cosmologies) and on
σ 8. 2D correlation functions constrain a long and thin contour in the
(σ 8, �M) plane, and the conservative 3D cosmic shear constraints

15 We note that the predictions of Kitching (2007) are consistent with the
constraints presented here – although the realized survey geometry, number
density and depth were not considered explicitly.
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Table 1. The mean parameter values from an CFHTLenS 3D cosmic shear analysis (this paper) and we quote numbers from 1-bin 2D
correlation function analysis (†Kilbinger et al. 2013, tables 2 and 3) and 6-bin tomographic correlation function analysis (‡Heymans
et al 2013, tables 2 and 3). The upper rows show the lensing-only constraints on the empirical relation σ 8(�M/0.27)α =constant, that
parametrizes the amplitude and width of the (σ 8, �M) contour; see Heymans et al. (2013) table 2 for further values of these under various
assumptions in a �CDM cosmology. The lower rows compare the constraints in a flat wCDM cosmology, with lensing combined with
WMAP7. For the 3D cosmic shear only constraints we quote asymmetric error bars. Note that Heymans et al. (2013) also marginalized
over an IA parameter A, but included 1.5 times as many galaxies. The errors are symmetric 1-parameter 1σ values. ∗Have no allowance
for baryonic feedback effects that are likely to impact constraints using k � 1.5 h Mpc−1.

Parameter flat LCDM Lensing only Analysis and Method

α 0.44+0.24
−0.36 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies

0.46+0.37
−0.36 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies

0.59 ± 0.02 1-bin correlation function† k � 30 h Mpc−1, all galaxies

0.46 ± 0.02 6-bin correlation function
†

A marginalized, k � 30 h Mpc−1, all galaxies

σ 8(�M/0.27)α 1.16+0.27
−0.27 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies

0.69+0.22
−0.22 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies

0.79 ± 0.04 1-bin correlation function† k � 30 h Mpc−1, all galaxies

0.77+0.03
−0.04 6-bin correlation function‡ A marginalized, k � 30 h Mpc−1, all galaxies

flat wLCDM Lensing only

α 0.46+0.23
−0.26 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies

0.39+0.50
−0.29 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies

0.59 ± 0.03 1-bin correlation function† k � 30 h Mpc−1, all galaxies

σ 8(�M/0.27)α 1.14+0.26
−0.30 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies

0.72+0.30
−0.30 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies

0.79 ± 0.07 1-bin correlation function† k � 30 h Mpc−1, all galaxies

w −1.40+1.30
−0.82 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies

−1.41+1.25
−0.80 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies

−1.17+0.80
−1.40 1-bin correlation function† k � 30 h Mpc−1, all galaxies

flat wCDM Lensing+WMAP7

�M 0.252 ± 0.079 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies
0.210 ± 0.069 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies
0.325 ± 0.082 1-bin correlation function† k � 30 h Mpc−1, all galaxies
0.256 ± 0.110 6-bin correlation function‡ A marginalized, k � 30 h Mpc−1, all galaxies

σ 8 0.88 ± 0.23 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies
0.88 ± 0.22 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies
0.77 ± 0.11 1-bin correlation function† k � 30 h Mpc−1, all galaxies
0.81 ± 0.10 6-bin correlation function‡ A marginalized, k � 30 h Mpc−1, all galaxies

w −1.16 ± 0.38 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies
−1.23 ± 0.34 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies
−0.86 ± 0.22 1-bin correlation function† k � 30 h Mpc−1, all galaxies
−1.05 ± 0.34 6-bin correlation function‡ A marginalized, k � 30 h Mpc−1, all galaxies

h 0.78 ± 0.12 3D cosmic shear power spectra k ≤ 1.5 h Mpc−1, no early-type galaxies
0.83 ± 0.12 3D cosmic shear power spectra∗ k ≤ 5.0 h Mpc−1, no early-type galaxies
0.66 ± 0.11 1-bin correlation function† k � 30 h Mpc−1, all galaxies
0.74 ± 0.14 6-bin correlation function‡ A marginalized, k � 30 h Mpc−1, all galaxies

presented in this paper are wider, however some marginalized quan-
tities are determined better by one method, some by the other. One
may expect simple amplitude changes in the lensing signal (such
as changes in the orthogonal direction, or σ 8) to be measured more
accurately for the correlation function analyses, due to the much
larger number of k-modes analysed; and this is supported by the de-
crease in the error as we increase the number of k-modes in the 3D
cosmic shear analysis. However other effects, like shape changes in
the linear part of the power spectrum (determined by combinations
such as �Mh 2) and parameters that change the redshift evolution
of the matter power spectrum or the expansion history such as w,
are more well resolved by 3D cosmic shear at all redshifts. Hence

comparable constraints are expected on these parameters, and in
combination with CMB constraints, even with a smaller number
of total k-modes. We find similar constraints on w comparing 2D
correlation function analyses and 3D cosmic shear indicating that
the extra constraining power from including small angular scales
in the 2D analysis compensates for the constraining power lost
by not analysing the data fully in 3D. The tighter constraints on
�M, h , w also help, through lifting degeneracies, in measuring
other parameters in combination with CMB constraints for exam-
ple σ 8. We also find a higher value of σ 8 than the correlation
function analyses, although results are consistent at the ∼1σ level.
In these comparisons the scale dependence of the power, and the
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Figure 10. Constraints in the (σ 8, �M) plane for a wCDM cosmology for k ≤ 5.0 h Mpc−1, including the functional ansatz from van Daalen et al. (2011) and
Semboloni et al. (2011, 2013) for the effect of baryonic feedback on the matter power spectrum, that we parametrize in equation (12). The left-hand panel
reproduces the plot from Fig. 9 for comparison; the middle panel shows the constraints using the functional ansatz predicted, with no amplitude change ES = 1;
the right-hand panel shows the constraints when using a power spectrum that is damped three times more than that predicted ES = 3. We show the wCDM
WMAP 7 yr contours (blue inner contours) for comparison.

modelling uncertainties at high k values, described in Section 4.2
should be considered.

Finally we note here a further aspect that may contribute to the
differences with 2D and tomographic analyses. The approach of us-
ing the analytic covariance (and one-point estimator) in this paper
does not suffer from noise due to finite number of simulations: the
1656 independent lines of sight in the CFHTLenS CLONE (Harnois-
Déraps et al. 2012) and the 210 data points used in Heymans et al.
(2013) leads to a �4 per cent fractional error on the inverse covari-
ance in their study (using the scaling of Taylor et al. 2013), an error
that is not present in the 3D cosmic shear analysis presented here;
this error could be considered as a lower bound since any other
sources of error or bias in the simulations would not be captured in
this number.

A more quantitative comparison of 2D correlation function
methodology and 3D power spectrum analysis is more complicated
and beyond the scope of this paper; our aim is to present the 3D
cosmic shear results, not to perform a close and comprehensive 2D
correlation function to 3D power spectrum comparison. In partic-
ular for a close comparison with Kilbinger et al. (2013) there are
several differences in their analysis that would have to be consid-
ered. For example a different galaxy selection was made, different
ranges in scale were used.

4.6 Comparison with expected constraints

The constraints from lensing alone presented in this paper are con-
servative in that we remove galaxies that have evidence for an IA
signal, and we remove scales for which there exist uncertainties in
the non-linear modelling of the matter power spectrum. However,
we can predict the expected constraints using such conservative
assumptions and galaxy selections using the Fisher matrix formal-
ism (Kitching, Heavens & Miller 2011; which is also used as the
proposal distribution for the MCMC chains in this paper). We find
that the most tightly constrained plane is in the projected (σ 8, �M)
direction; see Fig. 13, that can be parametrized by σ 8(�M/0.27)α

= constant. In Fig. 14 we show the measured and predicted con-
straints on the parameters α and �M marginalizing over all other
parameters in the wCDM parameter set.

We find that the expected 1σ contours coincide with the mea-
sured constraints. Therefore the analysis, whilst conservative in its
assumptions which leads to broad constraints, is as expected for a

survey the size of CFHTLenS. We also show predictions for surveys
that are 10 and 100 times the area of CFHTLenS, keeping all other
survey characteristics the same, for which we expect significant
gains.

5 C O N C L U S I O N S

In this paper we present the first application of the 3D cosmic shear
method to a wide-field weak lensing survey, CFHTLenS (Heymans
et al. 2012; Erben et al. 2013) and use this method to measure cos-
mological parameters including the dark energy equation of state
parameters w0 and wa. The CFHTLenS data covers 154 square
degrees, of which 61 per cent is unmasked and passes systematics
tests, and has been analysed with the state of art in shape mea-
surement (lensfit; Miller et al. 2013) and redshift estimation (BPZ;
Hildebrandt et al. 2012).

3D cosmic shear, which uses the covariance of the 3D spherical
harmonic/spherical Bessel coefficients of the shear field as its signal,
has a number of useful features over other approaches in that (i) it
does not bin the data, in particular in the redshift direction along
which discoveries of redshift-dependent effects may be found (i.e.
dark energy), (ii) it allows for a control of the angular (�) and radial
(k) modes in the analysis independently which means that non-linear
modes in the matter power spectrum may be explicitly excluded,
(iii) it allows for extra information from individual galaxies to be
used, for example the posterior information in redshift and (iv) it
uses a one-point estimator with an analytic covariance estimate,
and hence in this analysis is not sensitive to estimating the inverse
covariance from simulations. To account for angular masks in the
analysis we present a pseudo-C� method for 3D fields and apply
this to the analytic covariance. This is the first application of a
pseudo-C� method on weak lensing data: previously mask window
functions have been computed for the galaxy power spectrum in
Pen et al. (2003) and were not taken into account in Brown et al.
(2003), Heymans et al. (2005) or Kitching et al. (2007).

One can project the shear field on to 2D planes in redshift, to cre-
ate tomographic slices, and in this paper (and in Kitching et al. 2011)
we show how 2D and tomographic power spectra can be recovered
from the full 3D shear field. Here we apply this and present 2D and
tomographic cosmic shear C(�) power spectra (the first presenta-
tion of a tomographic cosmic shear power spectrum from data). To
reduce IA systematics we exclude all galaxies with BPZ parameter
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Figure 11. The combination of Planck CMB data with the 3D cosmic shear constraints (Lensing; red contours), compared to the combination of Planck
with BAO (Percival et al. 2010; purple contours) and with h 0 (Riess et al. 2011; green contours). We show three projected 2-parameter spaces in a wCDM
cosmology, where wa = 0. Contours shown are 2-parameter 1 and 2σ confidence regions, pink contours show the lensing-only constraints. Note that
the absence of power suppression in the range 1.5 < k ≤ 5.0 h Mpc−1, such as may be provided by AGN feedback results in the posterior being driven
to �M � 0.2, w � 1.5, h � 0.8 and σ 8 � 1.0 for the k < 5.0 h Mpc−1 results. The lower two rows include the high-k functional ansatz discussed
in Section 4.2.
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Figure 12. As the top two rows in Fig. 11 but in combination with WMAP7 priors.

TB ≤ 2 (this preferentially selects late-type galaxies). In the fu-
ture mitigation techniques should be developed to either remove or
account for IAs. 3D cosmic shear uses the redshift posterior proba-
bilities for each galaxy pg(z) in the estimator. We justify our use of
the pg(z) on the analysis of Benjamin et al. (2013) who found that
the redshift probability distributions were unbiased with respect to
a spectroscopic sample of the same galaxies, however that analysis
used a correlation function technique, in only 6 redshift bins and for
all galaxies in the CFHTLenS catalogue. This means that it probed
much smaller scales than in this paper, averaged over all galaxy
types, and used a much coarser redshift sampling. In future the de-
termination of the fidelity of redshift posterior information should
be performed over scales, and with a redshift sampling, matched to
those used in any 3D cosmic shear analysis.

The results we find are not formally in conflict with previous
correlation function (configuration space) analyses of CFHTLenS
(Benjamin et al. 2013; Heymans et al. 2013; Kilbinger et al. 2013;
Simpson et al. 2013). The most interesting finding we have comes
from the ability of 3D cosmic shear to probe rather well-defined
ranges of physical wavenumber. For wCDM cosmologies we find
evidence that there is tension between the lensing constraints that
only use scales k ≤ 1.5 h Mpc−1 and those that use k ≤ 5 h Mpc−1,
where the lensing at smaller scales (higher k) prefers a lower value
of σ 8. Taken at face value in combination with either Planck or
WMAP7 CMB priors the smaller scales lift the CMB degeneracy
and favour w � −1.5, a high value of h � 0.8, a low �M � 0.2
and a high σ 8 � 1.0 in comparison to concordance LCDM values.
This is evidence of either the non-linear modelling being in ten-
sion with the linear model, and/or the cosmological model having a
deviation from the concordance LCDM: possible explanations in-
clude the effects of AGN feedback on the non-linear matter power
spectrum (see Semboloni et al. 2011, 2013; van Daalen et al. 2011),

or an additional component (e.g. a massive neutrino species) that
can suppress power at small scales. We find that when we include
a functional ansatz that models the damping of the matter power
spectrum due to AGN feedback on scales k � 1.5 h Mpc−1, that the
cosmological constraints for the two different ranges of scale are in
better agreement. We leave a full investigation of these possible ef-
fects for future work, but note that one or more of these explanations
is required to explain this observation.
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Figure 13. The cosmological parameter constraints from 3D cosmic shear in the waCDM parameter space with kmax = 5.0 h Mpc−1, with no baryonic
feedback model included. We show each projected 2-parameter combination accessible in this analysis, with the 2-parameter 1σ , 2σ and 3σ confidence regions
shown. Shown are lensing (3D cosmic shear) (black) and Planck+BAO constraints (blue; for waCDM, respectively). We also show the projected 1-parameter
likelihoods for each parameter (the top-most blue and black lines). See Section 4.4 for a discussion of this figure.

Figure 14. The constraints from CFHTLenS 3D cosmic shear only in the (α, �M) plane marginalized over the other parameters in the wCDM parameter set.
This is the plane in which the constraints in the projected (σ 8, �M) plane are uncorrelated, which is parametrized by the function σ 8(�M/0.27)α = constant.
The black contours show the 1σ , 2σ , 3σ constraints from the data, the blue lines show the expected 1σ two-parameter projected constraints in this plane from
a Fisher matrix analysis for CFHTLenS, the green and red lines show the expected constraints for a survey 10 times larger area and 100 times larger in area,
respectively, with all other survey characteristics kept constant.
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We start with the standard relation between shear and the New-
tonian potential � (see Castro et al. 2005 for notation)

γ (θ ) = 1

2
∂∂�(θ), (A1)

where in Fourier space the complex derivative ∂ = ∂x + i∂y can
be written like (�2

y − �2
x) − 2i�x�y (i.e. taking the complex deriva-

tive of ei�.θ ). We can decompose the Newtonian potential into an
E-mode part and a systematic B-mode part in Fourier space
φE + iφB , where φ is the Fourier transform of �. Therefore in
Fourier space the relation between shear and the Newtonian poten-
tial is

γ (k, �) = (D1 + iD2)(φE + iφB ), (A2)

where D1 = 1
2 (�2

y − �2
x) and D2 = −�x�y. These can be expanded

to give

γ (k, �) = R[γ (k, �)] + iI[γ (k, �)] = (D1φE − D2φB )

+ i(D1φB + D2φE), (A3)

where on the left-hand side we have a data vector, with real and
imaginary parts, and on the right-hand side we have theory.

From the data we have four vectors of shear, two real and two
imaginary. Neglecting the weighting functions (which do not affect
this result) these are

γ (k, �) = {R[γ1(k, �)] + iI[γ1(k, �)]} + i{R[γ2(k, �)]

+ iI[γ2(k, �)]}, (A4)

where γ 1 and γ 2 (defined as the shear γ = γ1 + iγ2 inferred from
an observed ellipticity eobs = (a − b)/(a + b)exp(−2iθ ) where a, b
and θ are the semimajor, semiminor axes and orientation; see Miller
et al. 2013) have real and imaginary parts, respectively. These four
components can be written as

γ (k, �) =
∑

g

(e1,g + ie2,g)j�(kr[zf
g ])e−i�.θg

=
∑

g

(e1,g + ie2,g)j�(kr
[
zf
g

]
)[cos(�.θg) − i sin(�.θg)],

(A5)

which gives

R[γ1(k, �)] =
∑

g

e1,gj�(kr
[
zf
g

]
) cos(�.θg)

−I[γ1(k, �)] =
∑

g

e1,gj�(kr
[
zf
g

]
) sin(�.θg)

R[γ2(k, �)] =
∑

g

e2,gj�(kr
[
zf
g

]
) cos(�.θg)

−I[γ2(k, �)] =
∑

g

e2,gj�(kr
[
zf
g

]
) sin(�.θg), (A6)

where R and I mean real and imaginary parts, respectively.
What we want is a shear estimator for E and B modes

γE(k, �) = (D1 + iD2)φE

γB (k, �) = (D1 + iD2)φB. (A7)

The question we address here is how to combine R[γ (k, �)] and
I[γ (k, �)] to generate what we require. Note that from equations
(A3) and (A4) we have

R[γ (k, �)] = (D1φE − D2φB ) = R[γ1(k, �)] − I[γ2(k, �)]

I[γ (k, �)] = (D1φB + D2φE) = I[γ1(k, �)] + R[γ2(k, �)], (A8)

so it is tempting to associate directly γ 1 and γ 2 to the, respectively,
signed parts (e.g. D1φE ≡ R[γ1(k, �)] etc.), however this would not
be correct because it would neglect E- and B-mode power resulting
from a mixture of γ 1 and γ 2. Rearranging equation (A3) gives

φE = 1

D2
1 + D2

2

(D1R[γ (k, �)] + D2I[γ (k, �)])

φB = 1

D2
1 + D2

2

(D1I[γ (k, �)] − D2R[γ (k, �)]), (A9)

so that we find

γE(k, �) = D1

D2
1 + D2

2

{D1R[γ (k, �)] + D2I[γ (k, �)]}

+ i
D2

D2
1 + D2

2

{D1R[γ (k, �)] + D2I[γ (k, �)]}

γB (k, �) = D1

D2
1 + D2

2

{D1I[γ (k, �)] − D2R[γ (k, �)]}

+ i
D2

D2
1 + D2

2

{D1I[γ (k, �)] − D2R[γ (k, �)]}. (A10)

This now links the raw calculated spherical harmonics to an E- and
B-mode representation.

A P P E N D I X B : T H E I M PAC T O F S H A P E
MEASUREMENT BI AS

The shape measurement correction found by Heymans et al. (2013)
(that needs to be applied to the data vector after the measurement
process) is a scalar function, and is defined for each galaxy indi-
vidually, mg. Therefore, it acts in a similar way as a position and
redshift-dependent weight map or mask. Here we show how to
construct unbiased 3D shear coefficients using such a function.

In a similar way to equation (1) we take the transform of
(1 + mg) as

m(k, �) =
√

2

π

∑
g

(1 + mg)j�(kr0
g )e−i�.θg W (r0

g ) = mR(k, �)

+ imI(k, �), (B1)

where we explicitly label the real and imaginary parts of the trans-
form mR and mI. The quantity mg is a function of signal-to-noise
ratio and galaxy size, and therefore may change as a function of
position and redshift. As a result the coefficients m(k, �) may have
structure in both the k and � directions. If the bias was zero for all
galaxies mg ≡ 0 then the transform would result in coefficients that
we label with a zero m0

R(k, �) + im0
I (k, �).

We can therefore write a correct set of shear coefficients, gen-
eralizing the approach of Heymans et al. (2013) to the complex
transform case

γ corrected(k, �) = (R[γ (k, �)] + iI[γ (k, �)])

(
m0

R(k, �) + im0
I (k, �)

mR(k, �) + imI(k, �)

)
,

(B2)

using the notation from Appendix A for the real and imaginary part
of the shear coefficients. This expression corrects the coefficient
using the (1 + mg) factor but ensures that the original coefficients
are recovered in the limit that mg → 0.
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Equation (B2) can be expanded such that

γ corrected(k, �) = (R[γ (k, �)] + iI[γ (k, �)])

(
MR + iMI

MN

)
, (B3)

where MR = mRm0
R + mIm

0
I , MI = m0

I mR − m0
RmI, MN = m2

R +
m2

I , and we have suppressed the variable (k, �) for clarity; note
that if mg = 0 then the imaginary part of the correction is zero
MI = 0 and MR = MN . Using equations (A10) from Appendix
A and substituting the above we can now write corrected E- and
B-mode coefficients as

R[γ corrected
E (k, �)] = MR

MN

R[γE(k, �)] − MI

MN

R[γB (k, �)]

R[γ corrected
B (k, �)] = MR

MN

R[γB (k, �)] + MI

MN

R[γE(k, �)]

I[γ corrected
E (k, �)] = MR

MN

I[γE(k, �)] − MI

MN

I[γB (k, �)]

I[γ corrected
B (k, �)] = MR

MN

I[γB (k, �)] + MI

MN

I[γE(k, �)]. (B4)

Thus we see that the shape measurement bias mixes E and B modes
together, and that this must be corrected for in the coefficients.
The corrected coefficients are used in this paper in the likelihood
analysis.

Finally, the variance of the corrected spherical harmonic coef-
ficients can be related to the variance of the observed ellipticities
by

σ 2
RγE

=
(

D2
1

D2
1 + D2

2

) (
M2

R + M2
I

M2
N

)
σ 2

e

σ 2
IγE

=
(

D2
2

D2
1 + D2

2

) (
M2

R + M2
I

M2
N

)
σ 2

e (B5)

assuming that the variance of the e1 and e2 components σ e are equal,
although this assumption can be relaxed. In Section 2.2.2 we express
the variance above as a complex number σ 2

ε = σ 2
RγE

+ iσ 2
IγE

.

APPENDIX C : PSEUDO-ESTIMATORS IN 3 D

This appendix is based on the formalism first presented in Munshi
et al. (2011), we reproduce the derivation here to match to the
notation used for the covariance and adopt a flat sky approximation.
We show here how a mixing matrix can be defined that, in a forward
convolution with the analytic covariance, results in a ‘pseudo’-
covariance estimate that now accounts for angular masks in a survey.

In 3D cosmic shear we expand in a radial wavenumber k as well
as an azimuthal wavenumber �. Such that in the flat sky limit we
can relate the observed shear, as a function of radius r and sky
coordinate θ , to some spherical harmonic modes as

γ (r, θ ) =
(

2

π

)1/2 ∫
dk

∫
d2�

(2π)2
γ (k, �)j�(kr)ei�.θ (C1)

and its associated inverse. If we assume that the real shear field is
masked by real (scalar) mask K(θ ) such that γ (r, θ ) → γ (r, θ )K(θ)
then the masked coefficients are given by

γ̂ (k, �) =
(

2

π

)1/2 ∫
drr2

∫
d2θγ (r, θ )K(θ)W (r)j�(kr)e−i�.θ .

(C2)

Expanding the unmasked shear field and the mask field in spherical
Bessel coefficients, and integrating over angle, the masked coeffi-
cients can be written in a compact form as

γ̂ (k, �) =
∫

d2�′

(2π)2

∫
dk′K(� − �′)γ (k′, �′)F��′ (k, k′), (C3)

where

F��′ ≡
(

2

π

) ∫
r2drj�(k′r)j�′ (kr)W (r), (C4)

where W(r) is an arbitrary weight function, and K(�) is the Fourier

transform of the mask K(θ) = ∫
d2�

(2π)2 K(�)ei�.θ . Assuming the ex-
tended Limber approximation (LoVerde & Afshordi 2008), which is
sufficient at large � � 100, we can simplify the matrix F by replacing

the Bessel functions with j�(kr) ≈ (
π
2

)1/2 1
�1/2 δD(kr − �).

Taking the covariance of equation (C3) we find that

C̃�(k1, k2) =
∫

d�′ �

�′
1

k2
1k

2
2

M3D
��′ C�′

(
�′

�
k1,

�′

�
k2

)
, (C5)

where M3D
��′ is a mixing matrix

M3D
��′ = �′

(2π)2

∫ 2π

0
dψ |K(L)|2, (C6)

and L2 = �2 + �′2 − 2��′cos (ψ). This expression then takes into
account the full 2D structure of the mask. This is the expression we
use to account for the masks, on the theory side, in the likelihood
analysis presented.

We find that the mask only mixes �-modes in the signal part of the
covariance, not the shot noise part which is only affected through
an area scaling. This can be shown following the derivation of the
shot noise covariance in Kitching (2007).

A P P E N D I X D : 2 D POW E R F RO M 3 D P OW E R

Here we show how 2D and tomographic cosmic shear power spectra
can be calculated from the full 3D cosmic shear power spectrum
C�(k, k′).

We start by defining the projected 2D spherical harmonic coeffi-
cients as

γ 2D
�m (�r) =

∫
dθdφ±2Y

m
� (θ, φ)

∫
�r

drγ (θ, φ, r)W (r), (D1)

where W(r) is some arbitrary weight function; we explicitly label
the integral over r with the range �r, which is the ‘bin width’ of the
2D power to be calculated. Replacing γ (θ , φ, r) with its spherical
harmonic transform we have

γ 2D
�m (�r) =

∫
dθdφ±2Y

m
� (θ, φ)

×
∫

�r

dr

{∫ ∑
�′m′

γ �′m′ (k)j�′ (kr)±2Y
∗m′
�′ (θ, φ)dk

}
W (r).

(D2)

Using the relation between the ±2Y
m
� we find that

γ 2D
�m (�r) =

∫
�r

dr

∫
dkj�(kr)W (r)γ �m(k). (D3)

We simplify this notation by defining T�(k; �r) = ∫
�rdrj�(kr)W(r)

so that

γ 2D
�m (�r) =

∫
dkT�(k; �r)γ �m(k). (D4)
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Figure E1. The projected fraction of points from a 57 grid that did not return a matter power spectrum from CAMB (2012 October, with PPF module). The
colour scale in the (w0, wa) projected plane, that displays the colour associated with the fraction, is applicable to all other projections.

To find the power spectrum we take the covariance of both sides (us-
ing the expressions from Castro et al. 2005, for the power spectrum)
and find that

C2D
� (�ir,�j r) =

∫
dk1dk2T�(k1; �ir)T�(k2; �jr)C�(k1, k2),

(D5)

where we now label a pair of bin ranges in r with (i, j), and C�(k1, k2)
is the usual 3D cosmic shear power spectrum (or the pseudo-power
spectrum defined in Appendix B).

Using the Limber approximation, and with weight W(r) = 1, the
matrix T becomes

T�(k; �r = rmax − rmin) �
( π

2�k2

)1/2
∀ �

rmax
≤ k ≤ �

rmin
,

(D6)

where the range of �r is explicit. For a single bin (all depth or 2D
power spectrum) we have T 2

� (k) � (π/2�k2).

APPENDI X E: CAMB P R I O R S

In this section we present a test of the software CAMB used in
this paper (2012 October, with the PPF module), which was
used to justify some of the prior ranges used. We sampled the
waCDM parameter space on a grid containing 57 points (five
in each parameter direction), in Fig. E1 we show the projected
fraction of these points that did not return a matter power spec-
trum. This functionality is reproduced by a very simple prior:
�M < 0.05∨h < 0.1∨(w0 > −0.5∧wa > 0.8).
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