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ABSTRACT

Context. Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution.
Aims. We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high
resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to
existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample.
Methods. The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of
the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar
spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum.
Finally we present two methods for analysing the position spectrum using either direct measurement of the tilt or a cross-correlation
analysis.
Results. For stars with large apparent diameter and using a spectrograph with a small plate scale, we show that it is possible to
determine the stellar position angle directly within 10◦ with a signal-to-noise ratio of the order of 6. Under less favourable conditions,
i.e. larger plate scale or smaller stellar diameter, the cross-correlation method yields comparable results.
Conclusions. We show that with the currently existing instruments, it is possible to determine the stellar position angle of at least
50 stars precisely, mostly K-type giants with apparent diameter down to 5 milliarcseconds. If we consider errors of around 10◦ still
acceptable, we may include stars with apparent diameter down to 2 mas in the sample that then comprises also some main sequence
stars.
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1. Introduction

Angular momentum vectors are usually assumed to be randomly
oriented during the star formation process, leading to a uni-
form distribution of stellar spin axis orientations. However, there
might be a physical process – for instance magnetic fields (Joos
et al. 2012) – that would lead to a preferred orientation on the
scale of a star forming region despite chaotic stellar formation
(Bate et al. 2010). As a result, measuring the absolute orienta-
tion of the stellar spin axis would provide valuable information
for constraining the models for stellar formation and stellar evo-
lution, such as spin axis distribution inside a stellar cluster, spin
axes alignment of binaries, and evolution of the stellar spin axis
orientation with the age of the star.

The spin axis orientation is defined by two angles: inclina-
tion i, which is the angle formed between the spin axis and the
line of sight with the observer, and the position angle, which is
the projection of the spin axis on the sky and measured from
north to east. In this paper we concentrate on determining the
position angle.

For eclipsing objects, such as binary stars or a star with an
exoplanet, measuring the Rossiter-McLaughlin effect, i.e. the
dimming of light as a function of wavelength, provides addi-
tional information on the system geometry. During the eclipse, a
portion of the rotating star is blocked by its companion, causing a
weakening in the corresponding Doppler component of the stel-
lar absorption lines. The shape of this spectral distortion depends
on the angle between the stellar spin axes, in the case of binaries,
or stellar and orbital spin axes, in the case of exoplanets.

This effect is currently exploited in many cases of transit-
ing exoplanets to deliver the spin-orbit alignment. However, the
associated error is quite important. To date, the mean error to
spin-orbit measurements is close to 10◦. There are no constraints
available for the orientation of the absolute stellar spin axis.

The technical improvements in long baseline interferometry
during the past decade have opened the possibility of resolving
and imaging stellar surfaces quite accurately. Several teams have
observed the absolute spin axis orientation of a dozen early-type
stars: Altair (Monnier et al. 2007), Vega (Peterson et al. 2006),
and Achenar (Domiciano de Souza et al. 2003). The spin axis
orientation is actually a by-product of determining the gravi-
tational limb darkening coefficient for these fast rotating stars.
Gravitational limb darkening causes a shift of the photocentre
towards the poles. The amplitude of the shift is highly depen-
dent on the rotational velocity of the star. For slowly rotating
objects, which are mainly late-type stars, the method soon be-
comes unreliable because the shift is no longer measurable.

Chelli & Petrov (1995) devised an alternative interferometric
method of determining the position angle on large, slowly ro-
tating stars using differential interferometry. The method com-
bines speckle interferometry and spectroscopy. They show that
using a high-to-moderate-resolution spectrograph, coupled with
an interferometer, the position angle could be measured within
10◦ precision. The method was tested successfully on Aldebaran
(Lagarde et al. 1995). However, owing to the short speckle in-
tegration time, its use remained limited to the brightest stars
(Lagarde, priv. comm.).
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There is currently a lack of observational methods for deter-
mining stellar spin orientation for slowly rotating stars. We in-
vestigate the potential of spectro-astrometry to measure the posi-
tion angle of these stars, with focus on late-type giants. We aim
here to define the optimal conditions, instrumental and obser-
vational, in order to accurately measure, within 10◦ errors, the
position angle of a large sample of stars and the required signal-
to-noise ratio (S/N).

Spectro-astrometry concentrates on the spatial information
contained in the spectrum by measuring the wavelength depen-
dent position of the photocentre of an object. It is a powerful tool
that allows us to reach sub-diffraction resolution using standard
directly-fed spectrographs from otherwise unresolved sources.
In addition, it is an instrumentally easy method, since it only
requires a stable spectrograph and a detector. However, it also
requires a special observing practice, since different slit orienta-
tions are required for the analysis. Nonetheless it can be applied
to a wide variety of science cases. It has been used successfully
in the study of unresolved binaries (Bailey 1998; Baines et al.
2004), of outflows from young objects down to the AU scale
(Takami et al. 2004), and of jets from brown dwarfs (Whelan &
Garcia 2008). Furthermore, Voigt & Wiedemann (2009) applied
the method for mapping stellar spots on red giant surfaces using
C1.

In a long-slit spectrograph, the spatial information is con-
served from the slit to the detector. Indeed the spatial scale on
the detector can be directly derived from the optics of the spec-
trograph. The position of the photocentre is determined either
by fitting a 1D Gaussian over the order or by a weighted arith-
metic mean for each wavelength. As a result, even if the source is
unresolved, as long as it presents an asymmetric spectral energy
distribution, the position of the photocentre will diverge from the
continuum at certain wavelengths. Furthermore, it can be mea-
sured to sub-pixel precision. The only limitation is set by the
pixels inhomogeneities of the detector and the S/N. The preci-
sion reached in the position of the photocentre is approximated
by σ = 0.5 × FWHM × S/N−1.

For instance, with an average seeing of 1”, assuming a de-
tector with an one-to-one conversion from photon to electron, a
single exposure can achieve up to 40 000 photons counts in the
spectrum. Then using the previous formula, the precision in the
position is estimated close to 2.5 milliarcs (mas). This scale is
comparable with the apparent diameter of our closest or largest
neighbour stars.

This paper is organised as follows. In Sect. 2, we define a
2D model for stellar rotation adapted for use in the spectro-
astrometric analysis. In Sect. 3, we describe the simulation set-
up for the construction of the 2D spectrum and the extraction of
the spectro-astrometric signal. Section 4 presents the results of
our simulations, which are discussed in Sect 5.

2. Two-dimensional stellar rotation model

The 2D Doppler model for stellar rotation is a tool for converting
the star from the slit coordinates (Xs, Ys) into the detector coor-
dinates (λ, Yd). It is based on the demonstration of rotational line
broadening by Gray (1976) except that we take the spatial size
of the star and the orientation of the stellar spin axis with respect
to the slit into account.

We made the following assumptions. The projected position
angle of the slit on the sky is known at any time by the observer.

1 Cryogenic high Resolution Infrared Échelle Spectrograph.

Fig. 1. Notation conventions adopted in this paper showing the cross-
section of the star projected on the sky. The absolute stellar position
angle PAstar is defined from north to east. The slit is represented by the
spatial axis Ys, which may not be aligned with the northern axis by an
angle PAslit. ψ is the angle formed between the slit axis and the stellar
position angle.

The star rotates as a rigid body around its spin axis with an an-
gular velocity Ω, counted positively counter-clockwise. In addi-
tion, we define ψ as the projected angle on the sky between the
stellar spin axis and the slit spatial axis Ys, counted as positive
from north to east. The notations are defined in Fig. 1. Finally,
each point of the star is described by the coordinates X and Y
linked to the stellar diameter by the straightforward relation:
X2 + Y2 = R2

star where Rstar is the angular radius of the star.
The wavelength shift caused by the stellar rotation is calcu-

lated for each point of the star projected on the slit and includes
the rotation of the reference frames of the star and the slit:

δλD(X,Y, ψ) =
Ω sin i λ

c
(X cosψ − Y sinψ) . (1)

Since spectro-astrometry allows us to reach the milliarcsecond
scales, the star can no longer be considered as a point source
on the slit even if it is not resolved. Its spatial extension is pre-
served along the spatial axis. However, a broadening along the
spectral axis is translated into a broadening of the absorption
lines. Indeed variations in the position Xs cause changes in the
incident angle α of the grating, which are in turn translated into
wavelength shifts. Using the Étendue relation between star and
grating, Dφstar = L cosα δα, where D is the diameter of the tele-
scope and L the effective grating length, and inserting it into the
differential of the grating equation m δλ = d cosα δα, where m is
the spectral order and d the grating constant, we obtain the geo-
metrical shift as a function of the parameters of the spectrograph:

δλgeo(X) =
dDφstar(X)

mL
· (2)

The parameter φstar is the apparent angular diameter, in arcsec-
onds, of the star on the slit without the seeing disk. This is noted
directly X from now on. For nearby slowly rotating stars, with
Vrot < 20 km s−1, observed with a high resolution spectrograph,
R > 60 000, the geometrical shift is typically two orders of mag-
nitude lower than the Doppler component.
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Fig. 2. Shape of the line broadening function in dependency of ψ. The model assumes a rotational velocity Vrot sin i = 5 km s−1, an apparent radius
Rstar = 5 mas, and a limb-darkening coefficient ε = 0.9. The spectrograph parameters, used for the geometrical shift, are a telescope size of 1 m,
an incoming angle α of 65◦, a standard grating constant, and an observation in the 100th order.

The total wavelength shift for each point on the star is then
the sum of both contributions δλD and δλgeo:

∆λ(X,Y, ψ) =
dDX
mL

+
Ω sin i λ

c
× (X cosψ − Y sinψ) . (3)

The overall shape of the intensity distribution is evaluated here
by a linear limb-darkening law:

Ic = Io(1 − ε + ε cos µ) (4)

where Io is the intensity at the centre of the star, ε the limb-
darkening coefficient and µ the angular limb distance defined as

cos µ =

√
R2

star −
(
X2 + Y2)/Rstar. (5)

Substituting X from Eq. (3) into Eq. (5), the right term of the
linear limb-darkening law is then

D(λ,Y, ψ) =
Ic(λ,Y, ψ)

Io
(6)

= 1 − ε + ε

√
R2

star −

((
∆λ(X,Y,ψ)−K Y

K′

)2
+ Y2

)
Rstar

where K and K′ are two constant terms resulting from the refor-
mulation of Eq. (3). The shape of the intensity distribution now
depends on sinψ as seen in Fig. 2. It is a slanted ellipse with an
inclination angle ξ:

tan ξ =
Vrot sin i λ sinψ

c Rstar
· (7)

To determine the stellar position angle, it is required that the
dependency of ξ on sinψ be measured.

If we collapse the profile along the spectral direction, we
would retrieve the classical broadening profile used in traditional
spectroscopy.

3. Simulation set-up

An observed 2D spectrum is the convolution of the intrinsic stel-
lar spectrum and the rotational model, and it is further affected
by instrumental and seeing effects:

Iobs = {Iint(λ,Y) ⊗ D(λ,Y,Vrot sin i, ψ)} ⊗ S eeing(λ,Y). (8)
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Fig. 3. Step-by-step explanation of the position angle determination:
spectra are recorded for different slit angles. Top: the 2D spectrum of
one absorption line, tilted as a function of ψ. The tilts are exagger-
ated here in order to be visible. Middle: the position spectrum measured
around the absorption line presenting the typical displacement of stellar
rotation. Bottom: using the maxima of the displacement on the posi-
tion spectrum, we fit a sine function whose phase is the stellar position
angle. Here PAstar was set at 12◦.

For simplicity we included here the instrumental profile to the
atmospheric effects on the term S eeing. The working principle
of the method is described in Fig. 3. The inclination of the ro-
tational profile is transmitted to the stellar absorption lines in
the observed spectrum: they are tilted by a small angle in de-
pendency to sinψ. The tilt is expected to be in the sub-pixel
range. However, it has a unique signature on the position spec-
trum since it causes an identical displacement for all the stel-
lar lines (see Fig. 4). The amplitude of the displacement of the
photocentre is proportional to the line inclination. The absolute
position angle of the star (PAstar) is retrieved by monitoring the
variation in the line tilt that has the dependency of

sinψ = sin(PAslit + PAstar). (9)
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Fig. 4. Top: intensity spectrum extracted from the synthetic 2D spec-
trum of the cool giant for ψ = 90◦. Middle: corresponding position
spectrum. The pixel plate scale is Ps = 0.2′′/pixel, the seeing is set
at 1′′(S eeing = 5 Ps) and the S/N of the 2D spectrum is fixed to 150.
In this example the apparent stellar diameter is set to be as large as
Aldebaran’s: 20 mas, which permits a visual identification of the dis-
placement of the photocentre at the line position. Bottom: errors on the
position spectrum in mas.

3.1. Construction of the 2D spectrum

As an intrinsic 1D stellar spectrum, we took a synthetic 
spectrum (Hauschildt & Baron 2005) calculated for a cool giant
like Aldebaran using the following parameters: an effective tem-
perature of 4000 K, a surface gravity log(g) = 1.8, and solar-like
metallicity. It was calculated under the assumption of thermal
equilibrium in the outer layers of the stellar atmosphere. The
synthetic spectra has an average resolution of 120 000 over a
wavelength range of 5 nm in the visible. The 1D spectrum is ex-
panded homogeneously in the spatial direction by matrix multi-
plication with a Gaussian profile that corresponds to the apparent
stellar diameter.

The instrument is simulated using a standard R2 reflection
grating for a cross-dispersion spectrograph and a spectral order
of interest of m = 100. The remaining parameters describing the
instrument, i.e. length, incident angle, and primary mirror size,
are chosen in order to match the desired spectral resolution.

The resolution of the spectrograph is set by binning the
synthetic data. Consequently, we explored two resolutions of
60 000 and 120 000 for a constant stellar rotation velocity of
5 km s−1. In addition, we also varied the apparent stellar di-
ameter from 2.5 mas to 30 mas (equivalent to the diameter of
Betelgeuse), and the plate scale, Ps, from 0.086′′/pix as used

in C – M2 (Kaeufl et al. 2004) to 0.5′′/pix repre-
senting the Thüringer Landessternwarte Spektrograph (hereafter
TL-Spectrograph). We assumed that the plate scale is generally
defined according to the local seeing conditions on site, with
a sampling of five pixels per stellar full width half maximum
(FWHM). Finally the resulting spectrum is convolved again with
a seeing function defined in the (λ,Yd) coordinates. The simula-
tions were done under the assumption of optimal slit configu-
ration; i.e., the slit width is always smaller than or equal to the
seeing FWHM. Furthermore, the seeing does not bend the spec-
tral lines. We discuss later how the results are affected in a real
case and how to analyse them consequently.

Finally Gaussian noise is applied to the 2D spectrum. All
simulations presented here are realized with a raw S/N of 150 un-
less noted otherwise. The raw S/N is estimated as the photon
noise over the spectral order.

3.2. Signal extraction

The position spectrum B(λ) is retrieved by measuring the posi-
tion of the photocentre using an arithmetic weighted mean:

B(λ) =

∑
i yiFi∑

i Fi

δB(λ) =

√∑
i Fi(yi − B(λ))2)

(
∑

i Fi)2 ·

The intensity spectrum is obtained by collapsing the 2D spec-
trum along the spatial direction. We studied two different me-
thods of retrieving the amplitude variations of the signal from
the position spectrum.

In the first method, we directly measured the amplitude vari-
ations of the position of the photocentre for one deep and narrow
absorption line. The errors in the amplitude are derived directly
from the seeing FWHM and the S/N of the spectrum. However,
this method can only be applied if the signal amplitude is signi-
ficantly higher than the scatter of the continuum.

The second method uses a cross-correlation analysis to
extract the signal amplitude and to monitor its variations.
The noiseless position spectrum can be derived from the
intensity spectrum I(λ) via the contrast of the spectrum
|(dI (λ,Vrot sin i)/dλ)2|:

B(λ, ψ) =
dI (λ,Vrot sin i)

dλ
× F(Rstar, S eeing) × sinψ (10)

where F is dependent on both S eeing the average seeing FWHM
during the observation run and the apparent size of the star. It is
assumed to be constant during the observation for a given ori-
entation. The interpretation of Eq. (10) implies that only deep
thin lines, which are characterized by a high contrast value, will
maximize the displacement on the position spectrum.

Therefore, we calculated the cross-correlation function be-
tween the position spectrum B(λ, ψ) and the derivative of the
intensity spectrum dI(λ)/dλ to retrieve the amplitude variations.
For each slit orientation, we extracted the maximum of the cross-
correlation function Cxy, which should be located at the centre of
the line. The errors of the cross-correlation function were calcu-
lated using σ = (1 − Cxy)2/(2W) where W is the average line
width in pixel. In the next section, we discuss the validity of this
formula for the error estimations.

2 Multi-Applications Curvature Adaptive Optics.
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Table 1. Predictions for the signal detection

Plate scale
Rstar 0.1′′/pix 0.15′′/pix 0.2′′/pix 0.5′′/pix
2.5 mas N.V. N.V. N.V. N.V.
5 mas 2% 1.3% N.V. N.V.
10 mas 4% 2.6% 2% N.V.
15 mas 6% 4% 3% 1.2%

Notes. Signal detection predictions, giving the photocentre displace-
ment in percentage of a pixel. Any displacement below 1% is accounted
as not visible (N.V.)

Finally we applied a Levenberg-Marquardt algorithm ()
from Markwardt (2009) on the selected points to perform the
least-square fit of the sine function as illustrated in Fig. 3. The
retrieved phase of the fit yields the value of the absolute stellar
position angle.

4. Results

4.1. Expectations

The measured displacement on the position spectrum is always
smaller than the apparent stellar radius. Figure 4 illustrates this
phenomenon. With the given pixel plate scale, Ps, of 0.2′′/pixel,
and a stellar radius of 10 mas, one could expect a maximum
displacement of the photocentre of δ = Rstar/Ps = 0.05 pixel
to occur when slit and spin axis are orthogonal. However, the
measured displacement is always more than two times smaller.
This has been verified for all slit orientations independently of
the input parameters.

Consequently, we use δ < 0.5 × Rstar/Ps as a rule-of-thumb
for the maximal displacement of the deepest thin lines. We use
this relation as an upper limit for whether the displacement can
be observed, i.e. when δ ≥ 0.01 pixel. We consider here that
a displacement below one percent of a pixel may no longer be
detectable owing to pixel inhomogeneities in the detector. As a
result, we can predict those configurations where it should not
be possible to retrieve the position angle, as seen in Table 1, and
compare these predictions to the following simulation results.

The simulation also gives us a means to study the accuracy
and the precision of the extraction. We consider a good detection
to be when the retrieved position angle is within 10◦ of the input
value. Measures with errors over 15◦ are considered as poor.

4.2. Direct extraction

The direct extraction method only requires the position spectrum
for the analysis. It relies on measuring the photocentre displace-
ment directly from the position spectrum. When the spectro-
astrometric signal is at least twice stronger than the continuum,
which occurs when the ratio stellar radius over pixel plate scale
is maximized, this method delivers position angle estimates up
to 2◦ accuracy. The relevant simulation results are shown in
Table 2. On the plate scale and in stellar radius range where,
according to the previous predictions, the determination of the
position angle is possible, the measure yields an accuracy of 2◦.
In addition, for a field of view of 1′′/pix for a stellar radius of
2.5 mas, the extracted value still gives a reasonable order of mag-
nitude with an error of about 10◦.

Table 2. Retrieved position angles using direct extraction

PAmeasured − PAtrue (in deg)
Rstar 0.086 ′′/pix 0.1′′/pix 0.15 ′′/pix
2.5 mas 7.6 ± 10.9 10.3 ± 10.9 –
5 mas 0.6 ± 3.7 2.4 ± 7.0 –
10 mas 2.2 ± 1.8 1.5 ± 3.9 –0.7 ± 17.2
15 mas –2.9 ± 1.2 –2.8 ± 2.9 2.11 ± 14.7

Notes. Only the relevant results are given here. Configurations with
higher plate scale deliver errors above 30◦ for the position angle.

4.3. Cross-correlation extraction

Unlike the direct extraction, the cross-correlation extraction
makes use of both the intensity and the position spectrum.
Indeed, the cross-correlation function is calculated between the
position spectrum and the derivative of the intensity spectrum.

The mathematical evaluation of the cross-correlation errors
has been discussed by Zucker (2003) who proposes using a like-
lihood estimator. This approach to estimating the errors was
studied in our simulations. However, it yields extremely high er-
rors for the cross-correlation function when slit and spin axis are
parallel, where it is expected that the cross-correlation function
remains close to nought owing to the absence of signal in the po-
sition spectrum. We have tried to modify the relation of Zucker
(2003) for our case, in order to limit the error amplitude when
the cross-correlation function is close to zero, but such that it
is still sensitive to slight fluctuations when the cross-correlation
function is close to one, by using the formulaσ = (1−Cxy)2/2W.

The cross-correlation method delivers slightly better results
than the direct method, especially when the signal does not
dominate the position spectrum. As illustrated in Fig. 5 for small
plate scales and large stellar diameters, i.e. when the signal is
potentially directly measurable, then the accuracy of the deter-
mined position angle is comparable to what is achieved using
the direct extraction method. In addition, when the ratio Rstar/Ps
approaches or is less than 1%, the retrieved value of the posi-
tion angle is dominated by more than 10◦ errors. However, while
any plate scale above 0.15′′/pix leads to very imprecise and in-
accurate angles in the direct extraction method, this threshold
is moved towards larger plate scales with the cross-correlation
method. For instance, for a stellar radius of 15 mas and a plate
scale of 0.40′′/pixel leading to a Rstar/Ps ratio of 3.75%, the re-
trieved position angle is 2◦±7◦ which is still within the 10◦ error
range.

The simulations produced similar results for the high res-
olution case R = 60 000 with identical rotational velocity, so
these are not reproduced here. It implies that as long as the spec-
trograph resolves the rotational broadened stellar lines, it is not
necessary to go for higher resolution. As a result the choice of
the resolution of the spectrograph is set by the rotational velocity
of the target star.

4.4. Refinement of the cross-correlation analysis

In practice, at high S/N, the cross-correlation errors are highly
dependent on the noise in both the position and intensity spec-
trum. They are thus caused mostly by photon noise. Therefore,
several spectra at identical orientation ψ and similar S/N
should deliver identical cross-correlation functions. This prop-
erty was incorporated in the model by creating a set of ten
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Fig. 5. Left panel: accuracy of the cross-correlation method using the errors of a single cross-correlation function. Right panel: accuracy of the
refined method using the standard deviation between several cross-correlation functions for identical slit orientation as error estimate. The absolute
stellar position angle is estimate for a high resolution spectra (R = 120 000) and for increasing apparent stellar radii. Filled squares: Rstar = 1 mas;
filled triangles: Rstar = 2.5 mas; circles: Rstar = 5 mas; filled diamonds: Rstar = 10 mas and stars: Rstar = 15 mas. To improve the visibility of the
error bars, the points for a given plate scale are slightly dispersed around that value.

noise-independent simulated 2D spectra per orientation. For
each 2D spectrum from a set, slight variations in the seeing were
allowed, and the noise properties were calculated anew to repro-
duce real observing conditions as much as possible. The spec-
tra are reduced as before, extracting both position and intensity
spectrum. Each matching pair of position and intensity spectra
are then cross-correlated as previously performed. Finally the
errors are calculated as the standard deviation of the different
cross-correlation functions.

This analysis method requires a specific observing strategy
where, for each orientation, a set of spectra is recorded. Instead
of co-adding the spectra, each is reduced independently to gain
statistical information on the noise of the global measure. In the
case of a Coudé spectrograph, where the uncorrected slit ori-
entation varies with the hour angle, the number of consecutive
exposures may be limited in order to keep a relatively constant
value of ψ ± 5◦ per set.

By using this method, the large error bars observed previ-
ously in Fig. 5 are lowered and the accuracy of the measure is
improved. This is directly related with the choice of the errors es-
timate: while for small plate scale we expect a strong signal at or-
thogonal slit-spin orientations, this signal decreases for increas-
ing plate scales. As a result the maxima of the cross-correlation
function may no longer be close to one. Figure 5 illustrates the
new determined position angles using ten spectra at identical ori-
entation to build the errors of the cross-correlation functions per
orientation. The S/N for each individual spectrum is constant for
a given orientation.

The refined method uses the noise properties of a set of spec-
tra to evaluate the cross-correlation errors. As a result, the accu-
racy of the retrieved measurement of the position angle is im-
proved, and the corresponding errors are divided by a factor two
compared to the unrefined method. Only when the signal is al-
ready very strong does it not improve the measurement made
by the direct method. In addition, the detection limit estimated
earlier of 1% of a pixel displacement is also reached. Indeed, as
illustrated in Fig. 5, the position angle retrieved for the 5 mas

radius star, at the largest plate scale is still within our acceptable
error range. This emphasizes how the choice of the instrument
is relevant for a given target in order to optimize the validity of
the measure of the absolute stellar position angle. Finally, using
the refined error evaluation method, even stars with 1 mas radius
could be observed with fewer than 10◦ errors in the measured
position angle.

4.5. Signal-to-noise

The previous results were obtained with a raw S/N in the
2D spectra around 150. We made the assumption that the spec-
tra are dominated by photon noise. In that case, the raw S/N is
estimated as the square root of the mean peak value of the order.
However, the real S/N of the data is determined from the cross-
correlation function. Using the method described in the previous
section to calculate the errors of the cross-correlation, the true
S/N of our data is then S/N = p̄/δp, where p̄ is the average peak
value of the cross-correlation function, and δp the error calcu-
lated for this point.

To emphasize the relation between raw S/N and true S/N, we
let the raw S/N vary for one stellar radius at one fixed spectro-
graph plate scale, and measured both the true S/N from the cross-
correlation function, and the extracted position angle. For each
given raw S/N, the simulation was run 100 times to assess the
detection robustness. The results are summarized in Table 3. To
reach a 3σ detection, a raw S/N of 100 is necessary. However the
scatter in the retrieved position angles remains large, with more
than 10◦. Nevertheless, this also shows that detections above
the 5σ threshold are also possible without resorting to spectra
co-addition.

4.6. Potential targets

The refined cross-correlation method opens the possibility of de-
termining the stellar position angle for a large sample of stars.
The potential target should satisfy three constraints. First it has
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Table 3. Scatter in the retrieved position angles.

Raw S/N True S/N 3σ scatter
100 3.0 11.35
134 4.4 7.74
163 5.0 5.17
190 5.8 4.47
256 8.3 3.76

Notes. The 3σ scatter is calculated from the distribution of the retrieved
position angles for increasing signal.

to have a large number of deep spectral lines for the cross-
correlation method to deliver the best measurements. This condi-
tion is fulfilled by G-type and cooler stars. Second, the apparent
diameter of the star should be big enough – from our simula-
tion results at least 2 mas. Finally, the stellar lines should re-
main as narrow as possible. The last constraint points towards
slowly rotating stars, but also towards low turbulences in the stel-
lar atmosphere.

Figure 6 illustrates the spectral class distribution of the
potential targets. Most targets are K giants. However, a few
sub-giants and super-giants could also be observed. The main-
sequence stars are identified as slowly rotating A-type stars.
Consequently, the potential targets span a large sample of evolu-
tion states at the end of a star’s life.

5. Discussion

The simulations performed previously assumed, for simplicity,
optimal observing conditions and a basic stellar model. The re-
sults are now compared to real observations: non-optimal ob-
serving conditions and more realistic stellar properties. We first
investigated the impact of seeing and instrumental variations on
the results.

5.1. Impact of seeing and instrumental profile

The shape and the size of the seeing point spread function
(PSF) are likely to fluctuate during an observing night. Owing
to the short time-scale for seeing variations, the seeing FWHM
can change drastically between two consecutive exposures.
Brannigan et al. (2006) did an intensive study of the influence of
seeing and slit width on the position spectra. We summarize the
main ideas here. If the seeing FWHM is smaller or on scale with
the slit width, it causes artefacts in the spectrum. These can have
a shape similar to the stellar rotation signature once it has been
reduced. In order to limit and to remove these artefacts, they
recommend using a very narrow slit. This condition has already
been implemented in our model by stating that the slit width is
five times smaller than the seeing FWHM. In addition, they ad-
vise the observers to take spectra at anti-parallel slit orientations,
e.g. 0◦ and 180◦. Indeed, artefacts are in theory independent of
the slit orientation and remain constant while the stellar signal
is inverted at 180◦ slit orientation. Artefacts are thus removed
from the position spectrum by subtracting anti-parallel orienta-
tions while the stellar signal adds up.

Moreover, the instrumental profile is also likely to add fur-
ther distortions in the spectral lines. For instance, slight astig-
matism or misalignment in the camera optics can lead to a small
tilt, a bending, or a displacement of the lines along the spatial di-
rection. It is then necessary to distinguish the target signal from
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Fig. 6. Properties of the potential target candidates for the spin axis de-
termination. The sample is limited here to stars with apparent diame-
ters larger than 0.75 mas. Mostly of the potential candidates are cool
K-giants. A large majority of the main sequence stars are slowly rotat-
ing A-type stars.

the one caused by the instrument. If the slit width is very narrow
compared to the mean seeing FWHM, the instrument profile is
the main contributor to the lines distortion. With a careful anal-
ysis of the spectra, it is, however, possible to disentangle the
stellar rotation signal from the instrumental artefacts. We take as
example the case where the instrumental profile induces a line
tilt comparable in amplitude to the stellar rotation signal. The
instrumental tilt is then present on all the lines of the spectrum.
It superimposes the stellar tilt on all but the telluric lines by using
the latter as the reference for the state of the instrumental profile,
the stellar tilt is retrieved. As illustrated in the Fig. 7, the stel-
lar lines do not have the same cross-correlation functions as the
telluric lines, despite an instrumental tilt. In addition, since the
instrumental profile varies on a long time scale (several tens of
minutes if the spectrograph is directly attached to the telescope,
to a few hours if it is stored in a confined room) it is approxi-
mately constant between two consecutive slit orientations. As a
result, variations in the stellar line tilt can still be monitored.

In practice, it may not always be possible to have a very nar-
row slit width compared to the seeing FWHM. In such cases,
the artefacts induced by seeing on the spectra can no longer
be ignored, and it is a necessity to take spectra at anti-parallel
slit orientations to remove those artefacts. The short time scale
of the seeing fluctuation means that it is not possible to take
two consecutive images with exactly identical seeing conditions,
which compromises the anti-parallel subtraction. As a result, we
launched the development and use of an additional optic, a dif-
ferential image rotator, whose purpose is to project two images
of the star next to each other at different orientations on the slit
(Lesage et al. 2012). The two resulting spectra would then be
taken with identical seeing conditions and are suitable to anti-
parallel subtraction.

5.2. Limb-darkening

We used a linear limb-darkening law for our model that pro-
duces a satisfactory approximation, considering the precision
of our measure. The wavelength dependence of the limb dark-
ening coefficient was not implemented in the model. As the
apparent stellar limb increases with wavelength, so does the
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Fig. 7. Disentangling the instrumental and the stellar contribution to the line tilt. Left panel: the stellar rotation induces a line tilt in the opposite
direction to the instrumental tilt. Right panel: the stellar rotation induces a line tilt in the same direction as the instrumental tilt. The simulated
stellar position angle is PAstar = 75◦. Maximum displacement is expected for φ = −15◦ and 195◦. Each cross-correlation function is calculated by
selecting only telluric and stellar lines respectively. The instrumental contribution remained constant between the two slit orientations.

spectro-astrometric signal. On average, using the measurement
of Lafrasse et al. (2010), the apparent diameter increases around
6% from the B to the K band.

5.3. Stellar spots

Stellar spots have already been mapped using spectro-astrometry
on TW Oph, a C5.5 star, and RS Vir, a M6 star, by Voigt &
Wiedemann (2009) using the C instrument. In their method,
the stellar rotation was a source of error that had to be removed
before analysis. They included the line tilt caused by the rotation
in the instrumental PSF and applied PSF decorrelation. As a re-
sult, only the signal of the spot remained. In our case, the spot is
a perturbation source, whose impact has to be ascertained.

Firstly, if the spot and the star have identical absorption spec-
tra, differing only by the spot temperature, then the continuum
of the position spectrum is homogeneously shifted towards the
spot, when it is a hot spot, and away from the spot if it is a cool
spot. However, spot and star usually do not have identical spec-
tra since the cool spot allows the observer to see more deeply
into the star’s interior and be affected by different elements than
at the surface. There are two possibilities for the photocentre to
be shifted significantly: either when the star has an absorption
line while the spot has none or when the spot is absorbing at a
wavelength where the star is not. The spot itself has no influence
on the tilt of the line.

We now assume a single circular spot of intensity Ispot(λ) on
the stellar surface. The stellar intensity is noted I∗(λ). The radius
of the spot is characterized by a = Rspot/Rstar. The position of
the spot along the slit direction is defined by b = yspot/Rstar. In
a case without limb darkening and using these two parameters
and a simple barycentric relation, the displacement B(λ) of the
photocentre is calculated via

B(λ) =
Rstar b Ispot(λ) a2

a2Ispot(λ) + I∗(λ) (1 − a2)
· (11)

According to this equation, maximum displacement is expected
when I∗(λ) tends towards 0, B(λ) being proportional to ys pot the
position of the spot on the star. The latter cannot be greater than
the stellar radius. The spectro-astrometric signature presents a

unique shift in the photocentre towards the spot at the wave-
length of the stellar absorption line. The displacement amplitude
remains smaller than the rotational signal because the former is
proportional to the spot position on the stellar surface.

5.4. Differential rotation

According to predictions (Kitchatinov & Rudiger 1998), K gi-
ants are susceptible to presenting differential rotation in their
atmosphere. Recent measurements by Weber & Strassmeier
(2005) have shown that the relative differential parameter α,
which defines the rotation gradient from the equator velocity Ωo
to the pole as a function of the solar latitude l

Ω(l) = Ωo(1 − α sin2 l), (12)

is α ≤ 0.05 for K0 to K2 giants. Relation (12) was implemented
in Eq. (1) by setting Y = Rstar sin l.

However, since some of our potential target stars are F and
G giant stars, we allowed α to vary between 0 and 0.4. Strong
differential rotation visibly affects the shape of the Doppler ro-
tation profile, as seen in Fig. 8. The faster rotating equator de-
forms the elliptical profile towards an asymmetrical profile. This
effect is then reflected in the position spectrum at the slit angle
supposed to maximize the spectro-astrometric signal. This effect
is reproduced in Fig. 9. For low values of α, the retrieved dis-
placement maxima still follow a sine curve, but for increasing
α values, the larger displacements are clipped.

The presence of differential rotation in the star affects the
profile of the amplitude variations by cutting the extreme of
the sine curve. We suspect that it remains possible to determine
the position angle using the remaining portion of the profile for
α up to 0.3 by dramatically increasing the sampling of ψ. In ad-
dition, there are several existing methods, e.g. the Fourier trans-
form method used by Reiners & Schmitt (2004) on cool stars,
to look for differential rotation in stars that could be applied be-
forehand to ensure that the observed target presents minimal or
moderate differential rotation. Were the star to present important
differential rotation, the observing strategy would then include
additional slit position in order to sample sufficiently the general
profile, and adding differential rotation to the model fit.
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Fig. 8. Doppler profile in the case of differential rotation for three values of ψ = 0◦, 60◦ and 240◦. The rotation rate at the equator is set at 5 km s−1,
and the relative differential parameter α = 0.2.
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Fig. 9. Evolution of the signal amplitude with increasing differential ro-
tation parameter. The signal maxima are extracted directly from the po-
sition spectrum, using an optimized configuration.

6. Conclusion

We have shown that stellar rotation induces a sub-pixel tilt in
the stellar spectral lines whose inclination depends on the abso-
lute stellar position angle. By using a spectro-astrometric anal-
ysis of high resolution spectra, we proved that it is possible to
determine the absolute stellar position angle with 10◦ accuracy
for a moderate sample of stars. Our simulations demonstrated
two possible ways to retrieve the spectro-astrometric signal, i.e.
direct measurement of the photocentre displacement or cross-
correlation analysis. The appropriate method depends on the S/N
of the spectra, the observing set-up, i.e. the spectrograph’s plate
scale, the target, i.e. the apparent stellar diameter, and the slit
width. However, we have shown that there is a optimal combi-
nation between plate scale and stellar radius that optimizes the
detection rates for a constant raw S/N.

According to our results, with an instrument like CRIRES,
which provides a plate scale of 0.086′′/pix when coupled with
an adaptive optic, it is possible to determine the position angle of
stars with apparent diameter down to 2 mas with errors that are
lower than 10◦. The observations should be taken for at least four
different slit angles, and can be obtained either sequentially with
seeing effects, or simultaneously using additional instrumenta-
tion. This represents a sample of about 100 targets, from A-type

main sequence to various K-type giants, including a handful of
known spectroscopic binaries. Probing the stellar position an-
gle for these targets would provide a first step in answering two
of the original questions: can the stellar spin axis change with
the stellar evolution, and how well are the spin axes of binaries
aligned.
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