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COMPACT GROUPS OF POSITIVE OPERATORS ON BANACH

LATTICES

MARCEL DE JEU AND MARTEN WORTEL

Abstract. In this paper we study groups of positive operators on Banach lat-
tices. If a certain factorization property holds for the elements of such a group,
the group has a homomorphic image in the isometric positive operators which
has the same invariant ideals as the original group. If the group is compact in
the strong operator topology, it equals a group of isometric positive operators
conjugated by a single central lattice automorphism, provided an additional
technical assumption is satisfied, for which we have only examples. We obtain
a characterization of positive representations of a group with compact image
in the strong operator topology, and use this for normalized symmetric Banach
sequence spaces to prove an ordered version of the decomposition theorem for
unitary representations of compact groups. Applications concerning spaces of
continuous functions are also considered.

1. Introduction and overview

In this paper we continue our efforts, initiated in [6], to develop a theory of
strongly continuous positive representations of locally compact groups in Banach
lattices. In [6] we investigated positive representations of finite groups. We showed
that a principal band irreducible positive representation of a finite group in a
Riesz space is finite dimensional, and that the representation space is necessar-
ily Archimedean. Furthermore, we classified such irreducible representation and
showed that each Archimedean finite dimensional positive representations is an or-
der direct sum of irreducible positive representations. Here we go a step further and
consider strongly continuous positive representations of compact groups in Banach
lattices. Given the relative ease with which unitary representations of compact
groups can be treated, this is the natural step to take and one would like to achieve
a better understanding of issues related to irreducibility and decomposition in this
context. Since the image of such a representation is a group of positive operators, we
examine groups of positive operators, and since the image is compact in the strong
operator topology, we are especially interested in compact (in the strong operator
topology) groups of positive operators. In fact, most of the work in this paper is
aimed at a better understanding of such compact groups. Once this is achieved,
the transition to strongly continuous positive representations with compact image
is not complicated.

There are not too many papers on groups of positive operators. In [4], uniformly
bounded groups of positive operators on Cc(Ω) and C0(Ω) are investigated in detail,
where Ω is a locally compact Hausdorff space. These groups are studied using group
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actions on the underlying space Ω and group cohomologymethods. Amongst others,
it is shown in [4, Example 4.1] that a strongly continuous positive representation of
a compact group on C0(Ω) equals an isometric strongly continuous representation
conjugated by a single central lattice automorphism, a result which we obtain as a
special case of a more general statement; cf. Theorem 4.1 below.

In the case where the group G is compact in the strong operator topology, which
is the main focus of our paper, a basic result is [10, Theorem III.10.4]. It was
published in [8], which in turn is based on unpublished lecture notes by H.P. Lotz.
It gives information concerning the structure of G as well as the Banach lattice G
acts on, under the additional assumption that the action has only trivial invariant
closed ideals. Amongst others, it states that the pertinent lattice can be found
between C(G/H) and L1(G/H), for some closed subgroup H of G, and the group
acts as the group of left quasi-rotations induced by the natural action of G on G/H .

By studying the spectrum of lattice homomorphisms, [11] also contains some
results about groups of positive operators, in particular it is shown in [11, Corol-
lary 3.10] that a uniformly bounded group of positive operators on a Banach lattice
is discrete in the norm topology, a result we obtain in the special case of groups
which are compact in the strong operator topology on certain sequence spaces, cf.
Corollary 5.6 below.

Beyond these results not much seems to be known. Naturally, there is a theory
of one-parameter semigroups of positive operators, see, e.g., [2], but we are not
aware of issues of irreducibility or decomposition into irreducibles being considered
in detail for such semigroups.

In this paper we study groups of positive operators, or equivalently, groups of
lattice automorphisms, with the property that every element can be written as a
product of a central lattice automorphism and an isometric lattice automorphism.
Remarkably enough, in the Banach lattices we consider in this paper, every lattice
automorphism is such a product. However, there are Banach lattices for which this
fails, cf. Example 3.1. The Banach lattices for which this holds true, as shown in
this paper, include the normalized symmetric Banach sequence spaces (Section 5)
and spaces of continuous functions (Section 6). Moreover, in these spaces we have
a concrete description of both the central lattice automorphisms and the isometric
lattice automorphisms. In the general case, for all groups with the aforementioned
factorization property, we show that there is a group of isometric lattice automor-
phisms with the same invariant ideals as the original group, cf. Theorem 3.2. This
is applied to the Banach sequence spaces mentioned above, where the isometric
lattice automorphisms are easily described as permutations operators, and with-
out too much effort one thus obtains a decomposition of a positive representation
of an arbitrary group in such a Banach sequence space into band irreducibles, cf.
Theorem 5.7. This result is reminiscent of the familiar decomposition theorem for
strongly continuous unitary representations of compact groups into finite dimen-
sional irreducible representations, but here the representation need not be strongly
continuous, the group need not be compact, and the (order) irreducibles can be
infinite dimensional.

Suppose the original group of automorphisms with the above factorization prop-
erty is compact in the strong operator topology. As a first thought, we can equip
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the Banach lattice E with an equivalent lattice norm ||| · |||, defined by

|||x||| :=
∫

G

‖Tx‖ dT ∀x ∈ E,

where dT denotes the Haar measure on the compact group G. Under this norm,
the group G is now easily seen to be a group of isometric lattice automorphisms.
However, by changing the norm, the isometries change as well, and any nice de-
scription of the original isometries need not survive this transformation. Hence
this does not seem useful. Instead, we impose an additional technical assumption
(Assumption 3.3) on the Banach lattice. Under this assumption, which we show to
hold for normalized symmetric Banach sequence spaces with order continuous norm
and spaces of continuous function, we can actually show that such a compact group
is isomorphic as a topological group with the aforementioned group of isometric
lattice automorphisms with the same invariant ideals. Moreover, we can character-
ize such groups G: they are precisely the groups of the form G = mHm−1, for a
unique compact group H of isometric lattice automorphisms, and a (non-unique)
central lattice automorphismm, cf. Theorem 3.8. This is especially useful whenever
we have a nice description of the central lattice automorphisms and the isometric
lattice automorphisms, as in the spaces mentioned above. Along the same lines,
one can show that positive representations with compact image in such spaces are
precisely the conjugates of isometric representations, cf. Theorem 4.1. Moreover, in
the case that we have a positive representation in a normalized symmetric Banach
sequence space with order continuous norm or in ℓ∞ as in Theorem 5.7, and the
positive representation has compact image, the irreducible bands are finite dimen-
sional, so that the analogy with unitary representations of compact groups is then
complete. For positive representations with compact image in spaces of continuous
function, one cannot in general obtain such a direct sum type decomposition as
in Theorem 5.7, and further research is necessary to see whether there is still a
structure theorem for such representations in terms of band irreducible ones. As a
preparation, we include a number of results on the invariant closed ideals, bands
and projection bands for these representations.

The structure of this paper is as follows.
In Section 2 we introduce the basic notation and terminology. After establishing

a few facts on groups of invertible operators and representations, we give a new
proof of the fact that the center of a Banach lattice is isometrically algebra and
lattice isomorphic to C(K), for some compact Hausdorff space K. We also obtain
some results on integrating strongly continuous center valued functions. In Sec-
tion 3 we consider groups of lattice automorphisms for which every element is the
product of a central lattice automorphism and an isometric lattice automorphism.
We immediately obtain that there exists a group of isometric lattice automorphisms
having the same invariant ideals as the original group. Then we state the technical
Assumption 3.3, and under this assumption we are able to show one of our main
results, Theorem 3.8, which states that every group of lattice automorphisms with
this factorization property, and which is compact in the strong operator topology,
equals a group of isometric lattice automorphisms conjugated by a central lattice
automorphism. Using similar ideas, it is shown in Section 4 that positive rep-
resentations with compact (in the strong operator topology) image are isometric
positive representations conjugated with a central lattice automorphism. We then



4 MARCEL DE JEU AND MARTEN WORTEL

show that two positive representations with compact image are order equivalent if
and only if their isometric parts are (isometrically) order equivalent. In Section 5
we define and examine normalized symmetric Banach sequence spaces. We show
that all lattice automorphisms on such spaces are a product of a central lattice
automorphism and an isometric lattice automorphism, and that, if the space has
order continuous norm, the technical Assumption 3.3 holds. Then we apply the
results from Section 3 and Section 4 to characterize compact groups of lattice au-
tomorphisms and positive representations with compact image. We also obtain
Theorem 5.7, the aforementioned ordered version of the decomposition theorem
for unitary representations of compact groups. Finally, in Section 6, we examine
the Banach lattice C0(Ω) for locally compact Hausdorff spaces Ω. Again we show
that all lattice automorphisms are a product of a central lattice automorphism and
an isometric lattice automorphism, and that Assumption 3.3 holds, and we apply
the results from Section 3 and Section 4 to characterize compact groups of lattice
automorphisms and positive representations with compact image. We finish with
Proposition 6.7, which characterizes invariant closed ideals, bands and projection
bands of positive representations with compact image.

2. Preliminaries

In this section we discuss various facts concerning the strong operator topology,
groups of invertible operators, positive representations, the center of a Banach
lattice, and integration of strongly continuous center valued functions.

If X is a Banach space, then L(X) denotes the bounded operators on X , and
this space equipped with the strong operator topology will be denoted by Ls(X).
Subsets of Ls(X) are always assumed to be equipped with the strong operator
topology. It follows from the principle of uniform boundedness that compact sub-
sets of Ls(X) are uniformly bounded. In this topology multiplication is separately
continuous, and the multiplication is simultaneously continuous when the first vari-
able is restricted to uniformly bounded subsets. The next lemma is concerned with
the continuity of the inverse.

Lemma 2.1. Let X be a Banach space and H ⊂ Ls(X) be a set of invertible

operators such that H−1 is uniformly bounded. Then taking the inverse in H is

continuous.

Proof. Let M > 0 satisfy
∥

∥T−1
∥

∥ ≤ M for all T ∈ H , and let (Ti) be a net in H
that converges strongly to T ∈ H . Let x ∈ X , then x = Ty for some y ∈ X , and
by the strong convergence of Ti to T ,

∥

∥T−1
i x− T−1x

∥

∥ =
∥

∥T−1
i (Ty − Tiy)

∥

∥ ≤M ‖Ty − Tiy‖ → 0.

�

Corollary 2.2. Let X be a Banach space and let H ⊂ Ls(X) be a compact set and

a group of invertible operators. Then H is a compact topological group.

Proof. Compact subsets of Ls(X) are uniformly bounded, so the corollary follows
from Lemma 2.1 and the simultaneous continuity of multiplication on uniformly
bounded subsets of Ls(X). �

As a consequence, the group H in Corollary 2.2 has an invariant measure, a fact
which will be instrumental in the proof of the key Lemma 3.7 below.
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We continue with another lemma involving the strong operator topology, to be
used in Lemma 3.5.

Lemma 2.3. Let X be a Banach space, and let A,B ⊂ Ls(X) be equipped with the

strong operator topology, such that T1S1 = T2S2 if and only if T1 = T2 and S1 = S2,

for all T1, T2 ∈ A and S1, S2 ∈ B. Define pA : A · B → A and pB : A · B → B by

pA(TS) := T and pB(TS) = S, for TS ∈ A · B. Let C ⊂ A · B be a subset such

that pA(C) is uniformly bounded and all elements of pB(C) are surjective. Then,

if pB restricted to C is continuous, pA restricted to C is continuous as well.

Proof. LetM > 0 satisfy ‖T ‖ ≤M for all T ∈ A and S ∈ B with TS ∈ C. Suppose
pB restricted to C is continuous, and let (TiSi) be a net in C that converges strongly
to TS ∈ C, where (Ti) is a net in A and T ∈ A, and (Si) is a net in B and S ∈ B.
Let x ∈ X , then x = Sy for some y ∈ X , and

‖Tix− Tx‖ = ‖TiSy − TSy‖
≤ ‖TiSy − TiSiy‖+ ‖TiSiy − TSy‖
≤M ‖Sy − Siy‖+ ‖TiSiy − TSy‖ ,

which converges to zero by the continuity of pB and the strong convergence of (TiSi)
to TS. �

Let E be a (real) Banach lattice. Being regular operators on a Banach lat-
tice, lattice automorphisms of E are automatically bounded, and the group of
lattice automorphisms of E equipped with the strong operator topology will be
denoted by Aut+(E). The subgroup of isometric lattice automorphisms is denoted
by IAut+(E). Equipped with the strong operator topology, we will denote these
spaces by Aut+s (E) and IAut+s (E), and subsets of Aut+s (E) and IAut+s (E) are
always assumed to have the strong operator topology.

Definition 2.4. LetG be a group and E a Banach lattice. A positive representation

of G in E is a group homomorphism ρ : G→ Aut+(E).

For typographical reasons, we will write ρs instead of ρ(s), for s ∈ G.
Suppose ρ : G→ Aut+(E) and θ : G→ Aut+(F ) are positive representations in

the Banach lattices E and F . A positive operator T : E → F is called a positive

intertwiner of ρ and θ if Tρs = θsT for all s ∈ G, and ρ and θ are called order

equivalent if there exists a positive intertwiner of ρ and θ which is a lattice automor-
phism. We call them isometrically order equivalent if there exists an intertwiner in
IAut+(E).

We call a positive representation ρ of G in E band irreducible if the only ρ-
invariant bands are {0} and E. Projection band irreducibility, closed ideal irre-
ducibility, etc., are defined similarly.

In this paper we are, amongst others, concerned with subgroups of Aut+s (E).
By the above, Aut+s (E) is a group with a topology such that the multiplication is
separately continuous. We present a useful lemma about such groups, which can
also be found in [3, Lemma 2.4].

Lemma 2.5. Let G and H be two groups with a topology such that right multipli-

cation is continuous in both groups, or such that left multiplication is continuous

in both groups. Let φ : G → H be a homomorphism. Then φ is continuous if and

only if it is continuous at e.
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Proof. Assume that right multiplication is continuous in both groups. Let φ be a
homomorphism which is continuous at e and let (ri) be a net in G converging to
r ∈ G. Then rir

−1 → e by the continuity of right multiplication by r−1 in G, and
so

φ(ri) = φ(rir
−1)φ(r) → φ(r),

where the continuity of right multiplication by φ(r) in H is used in the last
step. The case of continuous left multiplication is proved similarly, writing
φ(ri) = φ(r)φ(r−1ri). �

We continue by examining the center Z(E) of a Banach lattice E, which, as in
[7, Definition 3.1.1], is defined to be the set of regular operators m on E satisfying
−λI ≤ m ≤ λI for some λ ≥ 0. With Zs(E) we denote Z(E) with the strong
operator topology. Central operators are often multiplication operators in concrete
examples, e.g., if 1 ≤ p ≤ ∞ and (Σ, µ) is a finite measure space, then each central
operators m on Lp(µ) is a multiplication operator by an element of L∞(µ), cf. the
example following [7, Definition 3.1.1], and this is why we use the notation m for
these operators. The center of a Banach lattice is in all respects isomorphic to
a space of continuous function, which is the context of the next proposition. For
its proof and that of Corollary 2.7, we recall some terminology. If E is a Banach
lattice, then Orth(E) denotes the orthomorphisms of E, i.e, the order bounded
band preserving operators ([1, Definition 2.41]). An f -algebra is a Riesz space E
equipped with a multiplication turning E into an associative algebra, such that if
x, y ∈ E+, then xy ∈ E+, and if x∧ y = 0, then xz ∧ y = zx∧ y = 0 for all z ∈ E+

([1, Definition 2.53]).

Proposition 2.6. Let E be a Banach lattice. Then the center Z(E) equipped with

the operator norm is isometrically lattice and algebra isomorphic to the space C(K)
for some compact Hausdorff space K, such that the identity operator I is identified

with the constant function 1.

Proof. By [7, Theorem 3.1.11], the operator norm of m ∈ Z(E) is the least λ ≥ 0
such that −λI ≤ m ≤ λI, i.e., it equals the order unit norm corresponding to the
order unit I, and so by [7, Proposition 1.2.13] Z(E) is an M -space with order unit
I. Then the well-known Kakutani Theorem ([7, Theorem 2.1.3]) yields an isomet-
ric lattice isomorphism of Z(E) with a C(K) space such that I corresponds to 1.
Moreover, by [7, Theorem 3.1.12(ii)] Z(E) = Orth(E), which is an Archimedean
f -algebra by [1, Theorem 2.59]. Clearly C(K) is an Archimedean f -algebra with
unit 1. By [1, Theorem 2.58] the f -algebra structure on an Archimedean f -algebra
is unique, given the positive multiplicative unit, and this implies that the corre-
spondence between Z(E) and C(K) must be an algebra isomorphism. �

This proposition is stated in [11, Proposition 1.4], where a reference to [5] is
given for the proof. The development of the theory since the appearance of [5]
enables us to give a proof as above.

If E is a Banach lattice, then ZAut+(E) denotes the set of central lattice au-
tomorphisms, i.e., ZAut+(E) = Aut+(E) ∩ Z(E). Note that ZAut+(E) does not
denote the center (in the sense of groups) of Aut+(E)! As before, ZAut+s (E) denotes
ZAut+(E) equipped with the strong operator topology. In the following corollary
we collect a few properties of ZAut+(E) as they follow from the isomorphism in
Proposition 2.6. If K is a compact Hausdorff space, then C(K)++ denotes the
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strictly positive functions in C(K), or equivalently, the positive multiplicatively
invertible elements of C(K).

Corollary 2.7. Let E be a Banach lattice. Under the isomorphism Z(E) ∼= C(K)
from Proposition 2.6, we have ZAut+(E) ∼= C(K)++. Consequently, ZAut+(E) is

a group, and

Z(E) = ZAut+(E)− R
+ · I = ZAut+(E)− ZAut+(E).

Proof. Suppose m corresponds to an element of C(K)++. Then m−1 corresponds
to an element of C(K)++ as well, and so m is positive with a positive inverse and
hence a lattice automorphism, i.e., m ∈ ZAut+(E). Conversely, let m ∈ ZAut+(E).
Then m corresponds to a positive function in C(K). Since Z(E) = Orth(E), [7,
Theorem 3.1.10] shows that, ifm ∈ Z(E) is invertible in L(E), its inverse is in Z(E)
as well. So m−1 ∈ Z(E) ∼= C(K), which is only possible if m corresponds to an
element ofC(K)++. The final statement now follows from C(K) = C(K)++−R

+·1.
�

The next lemma yields an isometric action of the group of lattice automorphisms
on the center of a Banach lattice.

Lemma 2.8. Let E be a Banach lattice. Conjugation by elements of Aut+(E)
induces a group homomorphism from Aut+(E) into the group of isometric algebra

and lattice automorphisms of Z(E). If H ⊂ Aut+s (E) is a uniformly bounded set

such that H−1 is also uniformly bounded and A ⊂ Zs(E) is uniformly bounded, then

the map H × A → Zs(E) defined by (T,m) 7→ TmT−1 is continuous. Moreover,

if T ∈ Aut+(E) is fixed, then m 7→ TmT−1 is a continuous algebra and lattice

automorphism of Zs(E).

Proof. Let T ∈ Aut+(E) and m ∈ Z(E), and take λ ≥ 0. Then

−λx ≤ mx ≤ λx ∀x ∈ E+ ⇔ −λT−1y ≤ mT−1y ≤ λT−1y ∀y ∈ E+

⇔ −λy ≤ TmT−1y ≤ λy ∀y ∈ E+,

hence conjugation by elements of Aut+(E) maps Z(E) isometrically into itself. The
conjugation action is obviously an algebra automorphism, and if m is positive, then
TmT−1 is positive as well, so conjugation is positive with a positive inverse, hence
a lattice automorphism. The second statement follows from Lemma 2.1, and the
continuity of m 7→ TmT−1 follows from the separate continuity of multiplication
in the strong operator topology. �

Finally, we need a proposition for weak integration of strongly continuous center
valued functions. If X is a Banach space, (H, dh) a compact Hausdorff probability
space, with which we mean a compact Hausdorff space equipped with a not nec-
essarily regular Borel probability measure, and g : H → X a continuous function,
then [9, Theorem 3.27] shows that there exists a unique element of X , denoted by
∫

H
g(h) dh, defined by duality as follows:

〈
∫

H

g(h) dh, x∗
〉

=

∫

H

〈g(h), x∗〉 dh ∀x∗ ∈ X∗.(2.1)

Moreover,
∫

H
g(h) dh ∈ co(g(H)). By applying functionals it easily follows that

bounded operators can be pulled through the integral, and that the triangle in-
equality holds.
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The above vector valued integral will be used in the next proposition to define
an operator valued integral. The Banach space part of the next proposition is a
standard argument, which we repeat here for the convenience of the reader.

Proposition 2.9. Let (H, dh) be a compact Hausdorff probability space, E a

Banach space and f : H → Ls(E) a continuous map. Then the operator
∫

H
f(h) dh : E → E, defined by

(
∫

H

f(h) dh

)

x :=

∫

H

f(h)x dh ∀x ∈ E,

where the second integral is defined by (2.1), defines an element of L(E) satisfying
∥

∥

∫

h
f(h) dh

∥

∥ ≤ suph∈H ‖f(h)‖. If S, T ∈ L(E), then

(2.2) S

(
∫

H

f(h) dh

)

T =

∫

H

Sf(h)T dh.

Moreover, if E is a Banach lattice and f(H) ⊂ Z(E), then there exist λ, µ ∈ R such

that f(H) ⊂ [λI, µI], and for such λ and µ we have
∫

H
f(h) dh ∈ [λI, µI] ⊂ Z(E).

Proof. Note that f(H) is uniformly bounded by the principle of uniform bounded-
ness. The computation

∥

∥

∥

∥

(
∫

H

f(h) dh

)

x

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

H

f(h)x dh

∥

∥

∥

∥

≤
∫

H

‖f(h)x‖ dh ≤ sup
h∈H

‖f(h)‖ ‖x‖

shows that the linear operator
∫

H
f(h) dh is bounded and that its norm satisfies

the required estimate. By applying elements of E and functionals, and using the
properties of the E-valued integral, (2.2) easily follows.

Now assume E is a Banach lattice and f(H) ⊂ Z(E). By the uniform bound-
edness of f(H), there exist λ, µ ∈ R such that f(H) ⊂ [λI, µI]. Suppose λ and
µ satisfy this relation, then we have to show that (

∫

H
f(h) dh)x ∈ [λx, µx] for all

x ∈ E+, which is equivalent with
∫

H

λx dh ≤
∫

H

f(h)x dh ≤
∫

H

µx dh.

Now f(h)x−λx ∈ E+ for all h ∈ H by assumption, and since E+ is a closed convex
set, the properties of the E-valued integral imply that

∫

H
[f(h)x− λx] dh ∈ E+ as

well. The second inequality follows similarly. �

3. Groups of positive operators

In this section we will relate certain groups of lattice automorphisms to groups
of isometric lattice automorphisms. The main assumption on these groups is that
every element in the group can be written as a product of a central lattice au-
tomorphism and an isometric lattice automorphism. Examples of Banach lattices
where this assumption is always satisfied are normalized symmetric Banach se-
quence spaces, such as c0 and ℓp for 1 ≤ p ≤ ∞, where the fact that lattice au-
tomorphisms map atoms to atoms easily implies the above property, cf. Section 5,
and spaces of continuous functions, where there is a well-known characterization
of lattice homomorphisms in terms of a multiplication operator and an operator
arising from a homeomorphism of the underlying space, cf. Section 6. When this
assumption is satisfied, we are able to show that there exists a group of isometric
lattice automorphisms which has the same invariant ideals as the original group,
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cf. Theorem 3.2. The main result, Theorem 3.8, shows that, under the technical
Assumption 3.3, for every compact group G of lattice automorphisms in which ev-
ery element can be written as a product of a central lattice automorphism and an
isometric lattice automorphisms, there exist a unique compact groupH of isometric
lattice automorphisms and a non-unique central lattice automorphism m such that
G = mHm−1.

We start by showing that a certain set of lattice automorphisms is actually a
group, and, in fact, a non-trivial semidirect product. Recall that the group of
isometric lattice automorphisms of a Banach lattice E is denoted by IAut+(E),
that the group of central lattice automorphisms of E is denoted by ZAut+(E),
and that equipped with the strong operator topology these spaces are denoted by
IAut+s (E) and ZAut+s (E). The space ZAut+(E) · IAut+(E) equipped with the
strong operator topology is denoted by ZAut+s (E) · IAut+s (E).

Obviously, IAut+(E) is a group, and, although not quite so obvious, ZAut+(E)
is also a group by Corollary 2.7. Now suppose mφ ∈ ZAut+(E) · IAut+(E),
then (mφ)−1 = φ−1m−1 = (φ−1m−1φ)φ−1, which is in ZAut+(E) · IAut+(E)
by Lemma 2.8. In a similar vein, if m1φ1,m2φ2 ∈ ZAut+(E) · IAut+(E),
then m1φ1m2φ2 = m1(φ1m2φ

−1
1 )φ1φ2 ∈ ZAut+(E) · IAut+(E). Hence

ZAut+(E) · IAut+(E) is a subgroup of Aut+(E).
Moreover, the representation of an elementmφ ∈ ZAut+(E)·IAut+(E) is unique,

and to show this it is sufficient to show that ZAut+(E)∩ IAut+(E) = {I}. So sup-
pose m ∈ ZAut+(E) is an isometry. Then ‖m‖ =

∥

∥m−1
∥

∥ = 1, and taking into
account the isometric isomorphism of Z(E) with a C(K) space of Proposition 2.6,
the continuous function corresponding to m must be unimodular. Since this func-
tion is also positive, it must be identically one, and so m = I.

By Lemma 2.8 the group IAut+(E) acts on ZAut+(E) by conjugation, and
for φ ∈ IAut+(E) and m ∈ ZAut+(E), this action will be denoted by φ(m), so
φ(m) = φmφ−1. We can form the semidirect product ZAut+(E)⋊ IAut+(E), with
group operation

(m1, φ1)(m2, φ2) := (m1φ1(m2), φ1φ2).

Using that φ(m) is the conjugation action of φ ∈ IAut+(E) on m ∈ ZAut+(E),
it easily follows that the map χ : ZAut+(E) ⋊ IAut+(E) → ZAut+(E) · IAut+(E)
defined by χ(m,φ) := mφ is a group isomorphism.

All in all, it is now clear that ZAut+(E) · IAut+(E) is a subgroup of Aut+(E),
and that it is isomorphic with ZAut+(E) ⋊ IAut+(E). If necessary we iden-
tify ZAut+(E) ⋊ IAut+(E) and ZAut+(E) · IAut+(E) through χ. The map
p : ZAut+(E) · IAut+(E) → IAut+(E) defined by p(mφ) := φ is the projection
onto the second factor of the semidirect product, which is a group homomorphism.

In the rest of this section we will assume that the group of lattice automorphisms
under consideration is contained in ZAut+(E) · IAut+(E). For certain sequence
spaces and spaces of continuous function, we will show that ZAut+(E) · IAut+(E)
equals the whole group of lattice automorphisms, cf. Section 5 and Section 6, but
the next example, which was communicated to us by A.W. Wickstead, shows that
there is a simple Banach lattice, not every lattice automorphism of which is a
product of a central lattice automorphism and an isometric lattice automorphism.

Example 3.1. Consider R
2 with the usual ordering, and norm

‖(x, y)‖ := max{|y|, |x| + |y|/2}, so that it becomes a Banach lattice with
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the standard unit vectors having norm one. Hence (x, y) 7→ (y, x) is the only
possible nontrivial isometric lattice automorphism, but this map is not isometric
since ‖(1, 2)‖ = 2 whereas ‖(2, 1)‖ = 5/2. Therefore (x, y) 7→ (y, x) cannot be a
product of a central lattice automorphism and an isometric lattice automorphism,
since it is not a central lattice automorphism.

Theorem 3.2. Let E be a Banach lattice and G ⊂ ZAut+(E) · IAut+(E) a group.

Then p(G) is a group of isometric lattice automorphisms, with the same invariant

ideals as G.

Proof. Let m ∈ Z(E) and x ∈ E+. Then there exists a λ ≥ 0 such that
−λx ≤ mx ≤ λx, and so mx is contained in the ideal generated by x. This
fact extends to all x ∈ E by writing x = x+ − x−, and so m leaves all ideals in E
invariant.

Now let mφ ∈ G, with m ∈ ZAut+(E) and φ ∈ IAut+(E), let x ∈ E and let
I ⊂ E be an ideal. Since m,m−1 ∈ Z(E), by the above x ∈ I if and only if mx ∈ I,
and so I is invariant for mφ if and only if I is invariant for φ = p(mφ). �

We will now examine groups G ⊂ ZAut+s (E) · IAut+s (E) which are compact (in
the strong operator topology). In this case we can say much more than Theorem 3.2,
if the following assumption on the Banach lattice is satisfied.

Assumption 3.3. If p : ZAut+s (E) · IAut+s (E) → IAut+s (E) denotes the group
homomorphism mφ 7→ φ, then p|G is continuous for any compact subgroup
G ⊂ ZAut+s (E) · IAut+s (E).

The next proposition allows us to associate compact subgroups of IAut+s (E) with
compact subgroups of ZAut+s (E) · IAut+s (E).

Proposition 3.4. Let E be a Banach lattice satisfying Assumption 3.3. Let

A be the set of compact subgroups G ⊂ ZAut+s (E) · IAut+s (E), and let B
be the set of pairs (H, q), where H ⊂ IAut+s (E) is a compact subgroup and

q : H → ZAut+s (E)·IAut+s (E) is a continuous homomorphism such that p◦q = idH .

Define α : A→ B and β : B → A by

α(G) := (p(G), (p|G)−1), β(H, q) := q(H).

Then for each G ∈ A, G 7→ p(G) is an isomorphism of compact groups, and α and

β are inverses of each other.

Proof. If G ∈ A, then by Assumption 3.3 ker(p|G) is a compact subgroup of
ZAut+s (E), which is isometrically isomorphic with the group C(K)++ of strictly
positive continuous functions on some compact Hausdorff space K by Corollary 2.7.
By the principle of uniform boundedness, compact subgroups of ZAut+s (E) are uni-
formly bounded, and obviously the only uniformly bounded subgroup of C(K)++ is
trivial, hence p|G is a group isomorphism. Moreover it is a continuous bijection be-
tween a compact space and a Hausdorff space, hence (p|G)−1 is continuous. Clearly
p ◦ (p|G)−1 = idp(G), so α is well defined.

Let G ∈ A, then β(α(G)) = β(p(G), (p|G)−1) = G. Conversely, let (H, q) ∈ B,
then α(β(H, q)) = α(q(H)) = (p(q(H)), (p|q(H))

−1), and since p◦ q = idH it follows

that p(q(H)) = H and that (p|q(H))
−1 = (p|q(H))

−1 ◦ p ◦ q = q. �

By the above proposition the compact subgroups G ⊂ ZAut+s (E) · IAut+s (E)
are parametrized by the pairs (H, q) of compact subgroups H ⊂ IAut+s (E) and
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continuous homomorphism q : H → ZAut+s (E)·IAut+s (E) satisfying p◦q = idH . We
will now investigate such maps q, for a given compact subgroupH of IAut+s (E). The
condition p ◦ q = idH is equivalent with the existence of a map f : H → ZAut+(E)
such that q(φ) = f(φ)φ, for φ ∈ IAut+(E). We now describe the relation between
the continuity of f and the continuity of q.

Lemma 3.5. Let E be a Banach lattice satisfying Assumption 3.3, let

H ⊂ IAut+s (E) be a compact group and let q : H → ZAut+s (E) · IAut+s (E) be a

group homomorphism of the form q(φ) := f(φ)φ, for some map f : H → ZAut+s (E).
Then q is continuous if and only if f is continuous.

Proof. Suppose f is continuous. Then q is the composition of f and the identity map
with the multiplication in Aut+s (E). Since f(H) is compact it is uniformly bounded,
and multiplication in the strong operator topology is simultaneously continuous if
the first factor is restricted to uniformly bounded sets. Therefore q is continuous.

Conversely, suppose that q is continuous. Then q(H) is a group and it is com-
pact. Moreover q(H) is uniformly bounded, and so f(H), the set of first coor-
dinates of q(H), is also uniformly bounded, since ‖f(φ)‖ = ‖f(φ)φ‖ = ‖q(φ)‖ for
φ ∈ IAut+(E) by the fact that φ is an isometric automorphism. Since the projection
onto the second coordinate is continuous on q(H) by Assumption 3.3, Lemma 2.3
yields the continuity on q(H) of the projection onto the first coordinate. It follows
that f is continuous as a composition of q and the projection of q(H) onto the first
coordinate. �

We continue describing the structure of maps q as above. For φ, ψ ∈ H we have
q(φψ) = f(φψ)φψ and

q(φ)q(ψ) = f(φ)φf(ψ)ψ = f(φ)φ(f(ψ))φψ.

Hence q being a homomorphism is equivalent with f(φψ) = f(φ)φ(f(ψ)) for all
φ, ψ ∈ H , and such maps are called crossed homomorphisms. We will first show
that the image of such crossed homomorphisms is bounded from below.

Lemma 3.6. Let E be a Banach lattice, let H ⊂ IAut+s (E) be a compact group and

let f : H → ZAut+s (E) be a continuous crossed homomorphism, i.e., a continuous

map such that f(φψ) = f(φ)φ(f(ψ)) for all φ, ψ ∈ H. Then there exists an ε > 0
such that f(φ) ≥ εI for all φ ∈ H.

Proof. Since f(H) is compact and hence uniformly bounded, there exists some
λ > 0 such that, for all φ ∈ IAut+(E),

(3.1)
∥

∥φ(f(φ−1))
∥

∥ =
∥

∥f(φ−1)
∥

∥ ≤ λ,

since φ acts isometrically on Z(E) by Lemma 2.8. We identify ZAut+(E) with
C(K)++ for some compact Hausdorff space K, using Corollary 2.7. Then (3.1)
implies

(3.2) 0 < φ(f(φ−1)) ≤ λ

pointwise on K.
By taking φ = ψ = I in the definition of a crossed homomorphism, we obtain

f(I) = f(I)f(I) and so 1 = f(I). For arbitrary φ ∈ IAut+(E) we obtain

1 = f(I) = f(φφ−1) = f(φ) · φ(f(φ−1)),
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and so f(φ) ≥ 1/λ pointwise on K by (3.2), which establishes the lemma with
ε = 1/λ. �

To characterize the continuous crossed homomorphisms, we will use the following
lemma. It can be viewed as an analytic version of [6, Lemma 4.2], which is a
standard argument in group cohomology.

Lemma 3.7. Let E be a Banach lattice, and let H ⊂ IAut+s (E) be a compact group.

Let f : H → ZAut+s (E) be a strongly continuous map. Then f is a continuous

crossed homomorphism, i.e., a continuous map such that f(φψ) = f(φ)φ(f(ψ)),
where φ(m) denotes the conjugation action of φ ∈ Aut+(E) on m ∈ ZAut+(E),
if and only if there exists an m ∈ ZAut+(E) such that f(φ) = mφ(m)−1 for all

φ ∈ H.

Proof. Suppose f is a continuous crossed homomorphism. The group H is a com-
pact topological group by Corollary 2.2, and so we can equip H with its normalized
Haar measure dψ. By Proposition 2.9 there exist λ, µ ∈ R such that f(H) ⊂ [λI, µI]
and by Lemma 3.6 we may assume that λ > 0. We use Proposition 2.9 to define
m :=

∫

H
f(ψ) dψ and also to conclude that this integral is in [λI, µI]. By Corol-

lary 2.7, [λI, µI] ⊂ ZAut+(E), and so m ∈ ZAut+(E). Then, for φ ∈ H , by the
left invariance of dψ and the fact that bounded operators can be pulled through
the integral by (2.2),

φ(m) = φ

(
∫

H

f(ψ) dψ

)

=

∫

H

φ(f(ψ)) dψ

=

∫

H

f(φ)−1f(φψ) dψ

= f(φ)−1

∫

H

f(ψ) dψ

= f(φ)−1m,

showing that f(φ) = mφ(m)−1. Conversely, any f defined as above is continuous
by Lemma 2.8, and such an f is easily seen to be a crossed homomorphism. �

Putting everything together yields the following.

Theorem 3.8. Let E be a Banach lattice satisfying Assumption 3.3, and let

G ⊂ ZAut+s (E) · IAut+s (E) be a compact group. Then there exist a unique compact

group H ⊂ IAut+s (E) and an m ∈ ZAut+(E) such that

G = mHm−1.

Conversely, if H ⊂ IAut+s (E) is a compact subgroup and m ∈ ZAut+(E), then

G ⊂ ZAut+s (E) · IAut+s (E) defined by the above equation is a compact subgroup of

ZAut+s (E) · IAut+s (E).

Proof. By Proposition 3.4, the compact subgroups of ZAut+s (E) · IAut+s (E)
are precisely the groups q(H), where H is a compact subgroup of IAut+s (E)
and q : H → ZAut+s (E) · IAut+s (E) is a continuous homomorphism satisfying
p ◦ q = idH . As a consequence of Lemma 3.5 and Lemma 3.7, we see that the
compact subgroups of ZAut+s (E) · IAut+s (E) are precisely the groups of the form
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{mφ(m)−1φ : φ ∈ H} = mHm−1, where H is a compact subgroup of IAut+s (E),
and m ∈ ZAut+(E). This establishes the theorem except for the uniqueness of H .
As to this, if G = {mφ(m)−1φ : φ ∈ H}, for a compact group H ⊂ IAut+s (E)
and m ∈ ZAut+(E), then, in the notation of Proposition 3.4, G = β(H, q), where
q(φ) = mφ(m)−1φ for φ ∈ H . Since (H, q) = α(β(H, q)) = α(G), this implies that
H = p(G). Hence H is unique. �

Note that, given a compact subgroup G ⊂ ZAut+s (E) · IAut+s (E), the compact
subgroup H ⊂ IAut+s (E) is unique, but the elementm ∈ ZAut+(E) in Theorem 3.8
is obviously not unique, e.g., both m and λm for λ > 0 generate the same G.

4. Positive representations with compact image

In this section we will apply the results from the previous section, in particular
Proposition 3.4 and Lemma 3.7, to representations of groups with compact (in the
strong operator topology) image in Banach lattices satisfying Assumption 3.3.

Theorem 4.1. Let E be a Banach lattice satisfying Assumption 3.3, let G be a

group and let ρ : G→ ZAut+s (E) · IAut+s (E) a positive representation with compact

image. Then there exist a unique positive representation π : G→ IAut+s (E) and an

m ∈ ZAut+(E) such that

ρs = mπsm
−1 ∀s ∈ G.

The image of π is compact. Conversely, any positive representation

π : G→ IAut+s (E) with compact image and m ∈ ZAut+(E) define a positive repre-

sentation ρ with compact image in ZAut+s (E) · IAut+s (E) by the above equation.

In this correspondence between ρ and π, ρ is strongly continuous if and only if

π is strongly continuous.

Proof. Since ρ(G) is compact, Proposition 3.4 applies, and so, combining this with
Lemma 3.7, p : ρ(G) → p ◦ ρ(G) has an inverse of the form q(φ) = mφ(m)−1φ for
some m ∈ ZAut+(E) and all φ ∈ p◦ρ(G). We define π := p◦ρ, then π has compact
image, and for s ∈ G,

ρs = (q ◦ p)(ρs) = q(πs) = mπs(m)−1πs = mπsm
−1.

This shows the existence of π. The uniqueness of π follows from the uniqueness of
the factors in ZAut+(E) and IAut+(E) in

ρs = mπsm
−1 = [mπs(m)−1]πs.

The remaining statements are now clear. �

Note that, as in Theorem 3.8, π is unique, but m is not. Given the positive
representation with compact image π, m1 and m2 induce the same positive rep-
resentation with compact image if and only if m−1

1 m2 commutes with πs for all

s ∈ G, i.e., if and only if m−1
1 m2 intertwines π with itself.

Any representation as in Theorem 4.1 is, by that same theorem, obviously order
equivalent to an isometric representation. In fact, we can say more. The next
proposition has the same proof as [6, Proposition 4.6].

Proposition 4.2. Let E be a Banach lattice satisfying Assumption 3.3, let G be a

group and, using Theorem 4.1, let ρ1 = m1π
1m−1

1 and ρ2 = m2π
2m−1

2 be positive

representations of G with compact image in ZAut+s (E) · IAut+s (E), where π1 and
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π2 are isometric positive representations with compact image in IAut+s (E), and

m1,m2 ∈ ZAut+(E). Then ρ1 and ρ2 are order equivalent if and only if π1 and π2

are isometrically order equivalent.

Proof. In this proof we use semidirect product notation. Suppose that ρ1 and ρ2

are order equivalent and let T = (m,φ) ∈ Aut+(E) be a positive intertwiner. Then,
for all s ∈ G,

ρ1sT = (m1π
1
s (m1)

−1, π1
s)(m,φ) = (m1π

1
s (m1)

−1π1
s(m), π1

sφ)(4.1)

Tρ2s = (m,φ)(m2π
2
s (m2)

−1, π2
s) = (mφ(m2)φ(π

2
s (m2)

−1), φπ2
s ),(4.2)

and since these are equal, φ is a positive isometric intertwiner between π1 and π2.
Conversely, let φ be a positive isometric intertwiner between π1 and π2. Then,

by taking m = m1φ(m2)
−1 and T = (m,φ) ∈ Aut+(E), it is easily verified that,

for all s ∈ G,

(m1π
1
s(m1)

−1π1
s(m), π1

sφ) = (mφ(m2)φ(π
2
s (m2)

−1), φπ2
s ),

and so, by (4.1) and (4.2), T intertwines ρ1 and ρ2. �

5. Positive representations in Banach sequence spaces

In this section we consider positive representations of groups in certain sequence
spaces. First we show that every lattice automorphism can be written as a product
of a central lattice automorphism and an isometric lattice automorphism. We are
also able to show that a large class of sequence spaces satisfy Assumption 3.3, and
an application of the results from Section 3 and Section 4 then yields a description
of compact groups of lattice automorphisms and of positive representations in these
spaces with compact image. Using Theorem 3.2, we obtain a decomposition of pos-
itive representations into band irreducibles, cf. Theorem 5.7. If the representation
has compact image, then the irreducible bands in the decomposition in Theorem 5.7
are finite dimensional.

We consider normalized symmetric Banach sequence spaces E, by which we
mean Banach lattices of sequences equipped with the pointwise ordering and lattice
operations such that if x ∈ E and y is a sequence such that |y| ≤ |x|, then y ∈ E
and ‖y‖ ≤ ‖x‖, permutations of sequences in E remain in E with the same norm,
and the standard unit vectors {en}n∈N have norm 1. Important examples are the
classical sequence spaces c0 and ℓp for 1 ≤ p ≤ ∞.

If x is a sequence, then x>N denotes the sequence x but with the first N co-
ordinates equal to 0; similarly, x≤N denotes the sequence x with the coordinates
greater than N equal to 0.

We will now show that a normalized symmetric Banach sequence spaceE satisfies
Aut+(E) = ZAut+(E) · IAut+(E). A lattice automorphism must obviously map
positive atoms to positive atoms, so for each T ∈ Aut+(E) and n ∈ N, there exist
a unique m ∈ N and λmn > 0 such that Ten = λmnem. Since each x ∈ E+ is
the supremum of the x≤N for N ∈ N, the linear span of atoms is order dense,
and hence the above relation determines T uniquely. Therefore T can be written
as the product of an invertible positive multiplication operator and a permutation
operator. We identify the group of permutation operators with S(N), so each
φ ∈ S(N) corresponds to the operator defined by (φx)n := xφ−1(n) for x ∈ E

and n ∈ N. The multiplication operators are identified with ℓ∞, and by (ℓ∞)++

we denote the set of elements m ∈ ℓ∞ for which there exists a δ > 0 such that
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mn ≥ δ for all n ∈ N. We conclude that there exist an m ∈ (ℓ∞)++ and a
φ ∈ S(N) such that T = mφ. Conversely, an operator defined in this way is a
lattice automorphism. Obviously T is a central lattice automorphism if and only
if its permutation part is trivial, and so the central lattice automorphisms equal
(ℓ∞)++. By Corollary 2.7 the center Z(E) equals ℓ∞. Obviously S(N) = IAut+(E),
and so Aut+(E) = (ℓ∞)++ · S(N) = ZAut+(E) · IAut+(E).

For φ ∈ S(N) and m ∈ ℓ∞, define φ(m) ∈ ℓ∞ by φ(m)i := mφ−1(i), the sequence
m permuted according to φ. Then, for n ∈ N,

φmφ−1en = φmeφ−1(n) = φmφ−1(n)eφ−1(n) = mφ−1(n)en = φ(m)nen = φ(m)en,

which shows that m 7→ φ(m) equals the conjugation action of φ on m.
We will now show that Assumption 3.3 holds, if E has order continuous norm.

We will actually show more, namely that p : Aut+(E) → S(N) is continuous. The
following lemma is a preparation.

Lemma 5.1. Suppose E is a normalized symmetric Banach sequence space. Then

the strong operator topology on S(N) ⊂ Aut+s (E) is stronger than the topology of

pointwise convergence. If E has order continuous norm, then the topologies are

equal.

Proof. If φ, ψ, ψ′ ∈ S(N) and (φi) is a net in S(N) converging pointwise to φ, then
ψφiψ

′ → ψφψ′ pointwise, so multiplication is separately continuous in the topology
of pointwise convergence. We show that the identity map from S(N) equipped with
the strong operator topology to S(N) equipped with the topology of pointwise
convergence is continuous, and by Lemma 2.5 we only have to verify continuity at
the identity. Let (φi) be a net in S(N) converging strongly to the identity, and
suppose there is an n ∈ N such that φi(n) does not converge to n. If i is such that
φi(n) 6= n, then |φien − en| ≥ en and so

‖φien − en‖ ≥ ‖en‖ = 1.

It follows that φien does not converge to en, which is a contradiction. This shows
that φi converges pointwise to the identity.

Now suppose that E has order continuous norm. We will show that the iden-
tity map from S(N) equipped with the topology of pointwise convergence to S(N)
equipped with the strong operator topology is continuous, for which we again only
have to verify continuity at the identity. Let (φi) be a net in S(N) converging
pointwise to the identity. Let x ∈ E and ε > 0. Since |x|>N ↓ 0 for N → ∞, by the
order continuity of the norm we can choose N such that ‖x>N‖ = ‖|x|>N‖ < ε/2.
Choose j such that φi is the identity on all indices n ≤ N , for all i ≥ j. Then, for
all i ≥ j,

‖φix− x‖ ≤ ‖φi(x>N )‖+ ‖x>N‖ < ε

2
+
ε

2
= ε,

hence φi converges strongly to the identity. �

This lemma can be used to show that Assumption 3.3 holds, if E has order
continuous norm.

Lemma 5.2. Let E be a normalized symmetric Banach sequence space with order

continuous norm. Then the homomorphism p : Aut+s (E) → S(N) is continuous.

Proof. Again by Lemma 2.5 it suffices to show continuity at the identity. So let
(miφi) be a net in Aut+s (E) that converges strongly to the identity, and suppose
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φi does not converge to the identity. Then by Lemma 5.1 there is an n ∈ N such
that φi(n) does not converge to n, and, for i such that φi(n) 6= n, we obtain

‖miφien − en‖ =
∥

∥

∥
mieφ−1

i
(n) − en

∥

∥

∥
≥ ‖en‖ = 1.

This contradicts the assumption that miφi converges strongly to the identity, and
so φi does converge to the identity. �

Note that ℓ∞ is a normalized Banach sequence space and hence satisfies
Aut+(ℓ∞) = ZAut+(E) · IAut+(E). It does not have order continuous norm, but
it is isometrically lattice isomorphic to C(K) for some compact Hausdorff space K
by Kakutani’s Theorem, and in Section 6 we will show, in Lemma 6.3, that such
spaces also satisfy Assumption 3.3.

Now we can apply the theory of the previous sections, in particular Theorem 3.8,
Theorem 4.1 and Proposition 4.2, to obtain the following characterization of com-
pact subgroups of Aut+s (E) and of positive representations with compact image.

Theorem 5.3. Let E be a normalized symmetric Banach sequence space with order

continuous norm or ℓ∞, and let G ⊂ Aut+s (E) be a compact group. Then there exist

a unique compact group H ⊂ S(N) and an m ∈ (ℓ∞)++ such that

G = mHm−1.

Conversely, if H ⊂ S(N) is a compact group and m ∈ (ℓ∞)++, then G ⊂ Aut+(E)
defined by the above equation is a compact subgroup of Aut+s (E).

Theorem 5.4. Let E be a normalized symmetric Banach sequence space with order

continuous norm or ℓ∞, let G be a group and let ρ : G → Aut+s (E) be a positive

representation with compact image. Then there exist a unique isometric positive

representation π : G→ S(N) and an m ∈ (ℓ∞)++ such that

ρs = mπsm
−1, ∀s ∈ G.

The image of π is compact. Conversely, any positive representation π : G → S(N)
with compact image andm ∈ (ℓ∞)++ define a positive representation ρ with compact

image by the above equation. In this correspondence between ρ and π, ρ is strongly

continuous if and only if π is strongly continuous.

Moreover, if ρ1 = m1π
1m−1

1 and ρ2 = m2π
2m−1

2 are two positive representations

with compact image, where π1 and π2 are isometric positive representations with

compact image and m1,m2 ∈ (ℓ∞)++, then ρ1 and ρ2 are order equivalent if and

only if π1 and π2 are isometrically order equivalent.

Corollary 5.5. Let E be a normalized symmetric Banach sequence space with

order continuous norm or ℓ∞, and let G be a connected compact group and let

ρ : G→ Aut+s (E) be a strongly continuous positive representation. Then ρs = I for

all s ∈ G.

Proof. We know from Theorem 5.4 that ρ = mπm−1 for some strongly continuous
isometric positive representation π : G → S(N) and some m ∈ (ℓ∞)++. For each
n ∈ N, by strong continuity the orbits {πsen : s ∈ G} ⊂ {em : m ∈ N} are
connected. Since for n 6= k, ‖en − ek‖ ≥ 1, the set {en : n ∈ N} is discrete. Hence
the orbits consist of one point and π is trivial. But then ρ = mπm−1 is trivial as
well. �
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Corollary 5.6. Let E be a normalized symmetric Banach sequence space with

order continuous norm or ℓ∞, and let G ⊂ Aut+s (E) be a compact group. Then

there exists a δ > 0 such that, if T, S ∈ G, T 6= S implies ‖T − S‖ ≥ δ.

Proof. If φ 6= ψ ∈ S(N), then ‖φ− ψ‖ ≥ 1, and so the corollary follows from
Theorem 5.3. �

In [11, Corollary 3.10], by studying the spectrum of lattice homomorphisms, this

corollary is shown with δ =
√
3 sup{‖T ‖ : T ∈ G}, for arbitrary uniformly bounded

groups of positive operators in complex Banach lattices.
Now we will examine invariant structures under these strongly continuous posi-

tive representations. In a Banach lattice with order continuous norm, the collection
of bands and the collection of closed ideal coincide by [7, Corollary 2.4.4]. All bands
in Banach sequence spaces are of the form {x ∈ E : xn = 0 ∀n ∈ N \A} for some
A ⊂ N; this follows easily from the characterization of bands as disjoint comple-
ments. Clearly this collection coincides with the collection of projection bands and
the collection of principal bands. We call a series

∑∞

n=1 xn in a Riesz space un-
conditionally order convergent to x if

∑∞

n=1 xπ(n) converges in order to x for every
permutation π of N.

Theorem 5.7. Let E be a normalized symmetric Banach sequence space, let G be

a group and let ρ : G → Aut+(E) be a positive representation. Then E splits into

band irreducibles, in the sense that there exists an α with 1 ≤ α ≤ ∞ such that the

set of invariant and band irreducible bands {Bn}1≤n≤α (if α <∞) or {Bn}1≤n<∞

(if α = ∞) satisfies

(5.1) x =

α
∑

n=1

Pnx ∀x ∈ E,

where Pn : E → Bn denotes the band projection, and the series is unconditionally

order convergent, hence, in the case that E has order continuous norm, uncondi-

tionally convergent.

Moreover, if ρ has compact image and E has order continuous norm or E = ℓ∞,

then every invariant and band irreducible band is finite dimensional, and so α = ∞.

Proof. We define the isometric positive representation π := p◦ρ : G→ S(N), which
has the same invariant bands as ρ by Theorem 3.2. It follows immediately from the
above parametrization of the bands of E that the irreducible bands are given by
the orbits π(G)en of the standard unit vectors en. In the case that ρ(G) is compact
and E has order continuous norm or E = ℓ∞, the map p|ρ(G) is continuous, so these
orbits p(ρ(G))en are compact in E, and hence consist of finitely many standard unit
vectors, and so the irreducible bands are finite dimensional and there are countable
infinitely many of them. The unconditional order convergence of the series (5.1)
follows from the fact that |π(x)|≥N ↓ 0 as N → ∞ for any permutation π of N. �

In the order continuous case, the series (5.1) need not be absolutely convergent,
which can be seen by taking the trivial group acting on a normalized symmetric
Banach sequence space with order continuous norm not contained in ℓ1 and taking
an x ∈ E not in ℓ1.
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6. Positive representations in C0(Ω)

In this section we consider the space C0(Ω), where Ω is a locally compact Haus-
dorff space. First we show that every lattice automorphism of C0(Ω) is the product
of a central lattice automorphism and an isometric lattice automorphism. We will
also show that C0(Ω) satisfies Assumption 3.3, from which we obtain a charac-
terization of compact groups and representations of positive groups with compact
image, using the results from Section 3 and Section 4. As we will explain be-
low, contrary to the sequence space case one cannot expect to find a direct sum
type decomposition of an arbitrary strongly continuous positive representation into
band irreducibles for general C0(Ω). More investigation is necessary to determine
whether these representations are still built up, in an appropriate alternative way,
from band irreducible representations. As a preparation for such future research,
we collect some results about the structure of invariant ideals, bands and projection
bands, cf. Proposition 6.7.

Analogously to the sequence space case from Section 5, we will start by show-
ing that Aut+(C0(Ω)) = ZAut+(C0(Ω)) · IAut+(C0(Ω)). Elements of Homeo(Ω),
the group of homeomorphisms of Ω, are viewed as elements of Aut+s (C0(Ω)) by
φx := x ◦ φ−1 for x ∈ C0(Ω). The set of multiplication operators by continu-
ous bounded functions is denoted by Cb(Ω), and by Cb(Ω)

++ we denote the el-
ements m ∈ Cb(Ω) such that there exists a δ > 0 such that m(ω) ≥ δ for all
ω ∈ Ω. It follows from [7, Theorem 3.2.10] that every T ∈ Aut+(C0(Ω)) can
be written uniquely as a product of an element m ∈ Cb(Ω)

++ and an operator
φ ∈ Homeo(Ω), so T = mφ. Conversely, any T defined in this way is a lattice
automorphism. It is easy to see that T ∈ Z(C0(Ω)) if and only if its part in
Homeo(Ω) is trivial, so Cb(Ω)

++ is the group of central lattice automorphisms, and
by Corollary 2.7, Z(C0(Ω)) ∼= Cb(Ω). Obviously Homeo(Ω) = IAut+(E), and so
Aut+(C0(Ω)) = Cb(Ω)

++ ·Homeo(Ω) = ZAut+(C0(Ω)) · IAut+(C0(Ω)).
For φ ∈ Homeo(Ω) and m ∈ Cb(Ω)

++, define φ(m) := m ◦ φ−1 ∈ Cb(Ω)
++.

Then, for ω ∈ Ω and x ∈ C0(Ω),

φmφ−1x(ω) = mφ−1x(φ−1(ω)) = m(φ−1(ω))φ−1x(φ−1(ω)) = m(φ−1(ω))x(ω),

so φ(m) equals the conjugation action of φ on m.
Our next goal is to show that Assumption 3.3 is satisfied, and for that we have

to examine Homeo(Ω). The topological structure of Homeo(Ω) can be described
by the following lemma, the proof of which is given by [12, Definition 1.31], [12,
Lemma 1.33] and [12, Remark 1.32].

Lemma 6.1. The strong operator topology on Homeo(Ω) equals the topology with

as subbasis elements of the form

U(K,K ′, V, V ′) := {φ ∈ Homeo(Ω) : φ(K) ⊂ V and φ−1(K ′) ⊂ V ′}
with K and K ′ compact and V and V ′ open. A net (φi) in Homeo(Ω) converges

to φ ∈ Homeo(Ω) if and only if ωi → ω ∈ Ω implies that φi(ωi) → φ(ω) and

φ−1
i (ωi) → φ−1(ω).

Before we can show the validity of Assumption 3.3 for C0(Ω), we need a small
lemma.

Lemma 6.2. Let (mi) be a net in Cb(Ω)
++ and (φi) be a net in Homeo(Ω) such

that miφi converges strongly to the identity. If ωi → ω ∈ Ω, then φ−1
i (ωi) → ω.
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Proof. Suppose that there exists a net (ωi) converging to ω such that φ−1
i (ωi) does

not converge to ω. By passing to a subnet we may assume that there exists an open
neighborhood U of x such that φ−1

i (ωi) /∈ U for all i. Take a compact neighborhood
K of x such that K ⊂ U , then by passing to a subnet we may assume that ωi ∈ K
for all i. By [12, Lemma 1.41], a version of Urysohn’s Lemma, there exists a function
x ∈ Cc(Ω) such that x is identically one on K and zero outside of U . Then

‖miφix− x‖ ≥ |[miφix](ωi)− x(ωi)|
= |mi(ω)x(φ

−1
i (ω))− x(ωi)| = |0− 1| = 1,

which contradicts the strong convergence of miφi to the identity. �

Recall that p : Aut+(C0(Ω)) → Homeo(Ω) denotes the map mφ 7→ φ.

Lemma 6.3. Let G be a compact subgroup of Aut+s (C0(Ω)). Then the map

p|G : G→ Homeo(Ω) is continuous.

Proof. Again by Lemma 2.5 it is enough to show continuity at the identity. So sup-
pose that (mi) is a net in Cb(Ω)

++ and (φi) is a net in Homeo(Ω) such that (miφi)
is a net in G converging strongly to the identity. By Lemma 2.1 the inverse map in
G is continuous, and (miφi)

−1 = φ−1
i (m−1

i )φ−1
i also converges to the identity. We

have to show that φi converges to the identity in Homeo(Ω). Let ωi → ω ∈ Ω. By
applying Lemma 6.2 twice we obtain φ−1

i (ωi) → ω and φi(ωi) = (φ−1
i )−1(ωi) → ω.

This is precisely what we have to show by Lemma 6.1. �

Hence Assumption 3.3 is satisfied, and once again we can apply the results of
Section 3 and Section 4, in particular Theorem 3.8, Theorem 4.1 and Proposition
4.2, to obtain the following.

Theorem 6.4. Let Ω be a locally compact Hausdorff space and let

G ⊂ Aut+s (C0(Ω)) be a compact group. Then there exist a unique compact group

H ⊂ Homeo(Ω) and an m ∈ Cb(Ω)
++ such that

G = mHm−1.

Conversely, any compact group H ⊂ Homeo(Ω) and m ∈ Cb(Ω)
++ define a compact

group G ⊂ Aut+s (C0(Ω)) by the above equation.

Theorem 6.5. Let Ω be a locally compact Hausdorff space, G a group and

ρ : G → Aut+s (C0(Ω)) a positive representation with compact image. Then

there exist a unique isometric positive representation π : G → Homeo(Ω) and an

m ∈ Cb(Ω)
++ such that

ρs = mπsm
−1 ∀s ∈ G.

The image of π is compact. Conversely, any positive representation

π : G→ Homeo(Ω) and m ∈ Cb(Ω)
++ define a positive representation ρ with com-

pact image by the above equation. In this correspondence between ρ and π, ρ is

strongly continuous if and only if π is strongly continuous.

Moreover, if ρ1 = m1π
1m−1

1 and ρ2 = m2π
2m−1

2 are two positive representations

with compact image, where π1 and π2 are isometric positive representations with

compact image and m1,m2 ∈ Cb(Ω)
++, then ρ1 and ρ2 are order equivalent if and

only if π1 and π2 are isometrically order equivalent.
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A part of this result is obtained in [4, Example 4.1], by using group cohomology
methods on group actions on the set Ω.

Contrary to the sequence space case, our results do not, in general, lead to a de-
composition of positive representations with compact image into band irreducibles.
Indeed, if the trivial group acts on C[0, 1], then every band in C[0, 1] is invariant,
but since every nonzero band properly contains another nonzero band, there are
no invariant band irreducible bands. However, we can still say something about
the various invariant structures of such representations, and for this we need a
characterization of these structures in C0(Ω).

Lemma 6.6. Let Ω be a locally compact Hausdorff space. Every closed ideal

I ⊂ C0(Ω) is of the form

I = IS = {f ∈ C0(Ω) : f(S) = 0}
for a unique closed S ⊂ Ω. Hence S 7→ IS is an inclusion reversing bijection

between the closed subsets of Ω and the closed ideals of C0(Ω). The ideal IS is a

band if and only if S is regularly closed, i.e., S = int(S), and it is a projection band

if and only if S is clopen.

Proof. [7, Proposition 2.1.9] and [7, Corollary 2.1.10] show this statement for Ω
compact, and the proof also works if Ω is locally compact. �

The next result may serve as in ingredient in the further study of positive repre-
sentations in C0(Ω). If π : G→ Homeo(Ω) is a map, then a subset S ⊂ Ω is called
π-invariant if πs(S) ⊂ S for all s ∈ G.

Proposition 6.7. Let G be a group and let ρ : G → Aut+(C0(Ω)) be a positive

representation, and define π := p ◦ ρ : G→ Homeo(Ω). Then the map S 7→ IS from

Lemma 6.6 restricts to a bijection between the π-invariant closed subsets S ⊂ Ω
and the ρ-invariant closed ideals of C0(Ω). By further restriction, this induces a

bijection between the π-invariant regularly closed subsets of Ω and the ρ-invariant
bands of C0(Ω), and between the π-invariant clopen subsets of Ω and the ρ-invariant
projection bands of C0(Ω).

Proof. By Theorem 3.2 the invariant ideals of ρ(G) are the same as the invariant
ideals of π(G) ⊂ Homeo(Ω), and so we may assume that ρ = π. Let S ⊂ Ω
be a π-invariant closed subset. Then, for all f ∈ IS , s ∈ G and ω ∈ Ω,
πsf(ω) = f(π−1

s (ω)) = 0, and so IS is a π-invariant closed ideal of C0(Ω).
Conversely, let IS be a π-invariant closed ideal of C0(Ω) for some closed S ⊂ Ω.

Let ω ∈ Ω, then for all f ∈ IS and s ∈ G, f(πs(ω)) = π−1
s f(ω) = 0, and so

πs(ω) ⊂ S, hence S is π-invariant. This shows the statement about closed ideals,
and the statements about bands and projection bands follow immediately from
Lemma 6.6. �
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