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C H A P T E R 1

INTRODUCTION

The subject of this thesis is unconventional phases of matter in strongly correlated

materials.

1.1 Strong correlations and topological states of mat-

ter

In the course of the past decade or so, a new and exciting field of condensed matter

physics has opened up and expanded rapidly. It is the field of topological states of

matter, which is centered around a material class called the topological insulators.

The birth and subsequent development of this field was precipitated by a simple yet

profound question: does the existance of an energy gap uniquely define the insulating

state? It was believed that in a way, the atomic insulator (where electrons are uniquely

associated to an atomic site and do not move), the band insulator (where an integer

number of Bloch bands are filled and separated from empty bands by an energy gap)

and, for instance, the vacuum essentially define the same insulating state in the sense

that it takes a finite amount of energy to create an excitation in the ground state.

However, as was shown in a series of seminal papers [1–5], the mere existance of an

energy gap does not uniquely define the insulating state. It turns out that insulating

states may be classified according to a global poperty, that for a given Hamiltonian
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describing the insulating system, is obtained from the mapping from the Brillouin

zone to the space of occupied energy bands corresponding to the Hamiltonian.

This classification is rather different from the way in which we are used to think

about distinguishing phases of matter. The traditional way to distinguish phases of

matter is due to Landau and assumes the presence of a local order parameter which

represents the breaking of a symmetry. For instance, the crystalline solid breaks

the translational symmetry of the underlying quantum Hamiltonian, while the longe-

range magnetic order breaks rotational symmetry. The broken symmetry in a super-

conductor is related to the more subtle concept of gauge invariance. Hence, distinct

phases break different symmetries. In contrast, the additional quantum numbers insu-

lators may acquire in their ground state are given by a topological invariant, a global

quantity. This invariant does not change when the system is smoothly deformed. The

qualification smooth here pertains to the energy gap, which has to remain finite during

deformation.

As such, the quantum numbers connected to the topological invariant of the sys-

tem are insensitive to microscopic details, and the physical properties associated to

these quantum numbers are uniquely robust. The fundamental property of a topo-

logical insulator material is the presence of gapless boundary or edge excitations at

interfaces with topologically distinct systems, such as the vacuum itself. As the topo-

logical character cannot change without closing the energy gap, there must be gapless

states precisely at the interface between electronic systems with different topology.

Examples of this bulk-edge correspondence, which have been famously confirmed

in experiment, include the spin-filtered one-dimensional edge states of the Quantum

Spin Hall effect [6, 7] and the Dirac cone surface states of three dimensional time-

reversal invariant topological insulators [8, 9]. While these two examples, and many

others, can be understood from the theory of non-interacting electron band structure,

topological states of matter are by no means restricted to non-interacting or weakly

interacting systems. An increasing amount of attention is given to material systems

where interactions are important. Even more, topology and strong interaction have a

long and rich history. Indeed, the fractional quantum Hall effect [10] is a consequence

of electron-electron interaction and the quantum Hall liquids hosting this effect are

said to be topologically ordered [11]. The work reflected in this thesis is part of

the general effort to study and understand the role and consequence of topology in

(strongly) correlated materials.

In what follows, the very basis physics of topological states of matter is introduced

with a focus on aspects that are relevant to the remainder of this thesis.
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1.1.1 Integer and Fractional Quantum Hall effects

In this part of the introduction we review the basics of electrons in a (strong) magnetic

field with two purposes in mind. As the second part of this thesis deals explicitly with

lattice versions of both integer and fractional quantum Hall effects, some details of

the continuum versions will be helpful. In subsequent chapters an understanding will

then be developed of how they may be realized in a crystalline solid without external

fields. In addition, the quantum Hall effects, in particular the Integer one, are a good

starting point to uncover and explain the key role played by topology in electronic

structure theory [12].

Previously in this introductory chapter, we have noted that lattice fermion model

will be employed to describe electrons in solids. Here we briefly depart from that and

consider free electrons subject to a magnetic field without any reference to a periodic

crystal lattice. In fact, one of the questions addressed in this thesis is how and in

what form do the Integer and in particular the Fractional Quantum Hall effects of the

continuum description carry over to the crystal lattice description.

The Hamiltonian for free fermions in two dimensions is simply given by the ki-

netic energy term as

Ĥ =
1

2m

∑

α

p̂2α, (1.1)

where p̂α is the momentum operator canonically conjugate to the position operator

r̂α, α = x, y. In a magnetic field given by the vector potential Aα(r̂) we make the

Peierls substitution, which amounts to

Π̂α = p̂α − eAα(r̂) = −i~∂α + |e|Aα(r̂). (1.2)

This changes the Hamiltonian to simply to Ĥ =
∑

α Π̂
2
α/2m. Due to the presence

of the vector potential, the operators Π̂j do not commute between themselves but

instead are found to obey the canonical commutation relation

[Π̂α, Π̂β ] = [p̂α + |e|Aα(r̂), p̂β + |e|Aβ(r̂)]
= −i~|e|Fαβ (1.3)

where Fαβ = ∂αAβ−∂βAα is the field strength. We are interested in the situation of

a uniform magnetic field B perpendicular to the plane in which the electrons live, i.e.

the ẑ direction. In general the magnetic field is given by Bλ = ǫλµνFµν/2, meaning

that Fµν = ǫµνλBλ. In particular this implies for a uniform field Bz ≡ B in the

ẑ direction that [Π̂α, Π̂β ] = −i~|e|Bǫαβz. Defining the fundamental characteristic

length scale in the system, the magnetic length, as l =
√
~/(|e|B), we can write

[Π̂α, Π̂β ] = −i~2ǫαβz/l2. (1.4)
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Figure 1.1: (left) Schematic illustration of the (classical) electronic cyclotron orbits

in the presence of a magnetic field pointing in the z-direction. (right) Schematic il-

lustration of the electronic Landau levels, i.e. the equidistant quantized energy levels,

in the presence of a magnetic field.

Since Hamiltonian consists of the quadrature of operators obeying a canonical

commutation relation one can diagonlize the Hamiltonian in the same way as the

harmonic oscillator. We define the raising and lowering operators as

â† =
l√
2~

(Π̂x + iΠ̂y), â =
l√
2~

(Π̂x − iΠ̂y), (1.5)

which obay [â, â†] = 1, we simple derive that the Hamiltonian takes the form Ĥ =
~ωc(â

†â + 1
2 ) with ωc = |e|B/m the corresponding frequency. We have thus

achieved the diagonalization of the single-particle Hamiltonian, yielding energies

En = ~ωc(n + 1
2 ). Here n labels the energy levels, which are generally referred

to as Landau levels, n = 0 corresponding to the lowest Landau level (LLL).

However, to fully characterize the quantum problem and account for all degen-

eracies, it is helpful to quickly revisit the classical cyclotron orbits. Classicaly, the

position of a particle and its velocity in a circular orbit are given by

~r = ~R+ r0(cos(ωct), sin(ωct), 0),

~v = r0ωc(− sin(ωct), cos(ωct), 0) (1.6)

where ~R denotes the coordinates of the center of the orbit and r0 is the radius of

the orbit. Here ωc is the cyclotron frequency of the orbit, which is equal to one

used above. Classically momentum and velocity are related by me~v = ~p. Using
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equation (1.6) we may identify

px
meωc

= −r0 sin(ωct) =
l2Bpx
~

,

py
meωc

= r0 cos(ωct) =
l2Bpy
~

(1.7)

which has the consequence of Eq. (1.6) taking the simply form

~R = ~r − l2

~
(~p× ẑ). (1.8)

This relation between classical variables leads to the definition of the so-called guid-

ing center operators R̂x and R̂y in the quantum case as

R̂α = r̂α − l2

~
(~Π× ẑ)α = r̂α − l2B

~
ǫαβzΠ̂β . (1.9)

These guiding center operators obey the commutation relation

[R̂α, R̂β ] = il2ǫαβz (1.10)

In addition, it is a simple matter to demonstrate that the dynamical momentum oper-

ators and guiding center operators commute with one another

[R̂α, Π̂β ] = [r̂α − l2

~
ǫαµzΠ̂µ, Π̂β ] = i~δαβ + i~ǫαµzǫµβz = 0 (1.11)

This has the consequence that the guiding center operators commute with the Hamil-

tonian. One can construct momentum operators canonically conjugate to the guiding

center operators, which are defined as

K̂α = Π̂α − ~

l2
(ẑ × ~̂r)α = Π̂α − ~

l2
ǫαzβ r̂β . (1.12)

which are easily found to satisfy [R̂α, K̂β] = i~δαβ . In addition, in the same way as

above, the commutator with the dynamical momentum vanishes, [Π̂α, K̂β] = 0.

To summarize this brief exposition, the single-particle Hamiltonian may be diag-

onalized by constructing raising and lowering operators frmo the dynamical momenta

and both the guiding center operators and their canonically conjugate momenta com-

mute with the Hamiltonian. For electrons in a uniform magnetic field we expect

translational invariance to hold. When constructing operators that implement these

translations we cannot use the dynamical momenta as generators, since they do not
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commute with the Hamiltonian, i.e. [Π̂α, Π̂β ] = −i~2ǫαβz/l2. The momenta K̂α do

however commute with the Hamiltonian and the operator that implements a transla-

tion of a single particle by ~a is

T̂ (~a) = eiaαK̂α/~. (1.13)

The momenta K̂α do not commute between themselves, which has the profound con-

sequence that different translations do not commute with each other

[T̂ (~a), T̂ (~b)] = −2 sin

(
1

2l2
ẑ · (~a×~b)

)
T̂ (~a+~b). (1.14)

This commutation relation is known as the magnetic translation algebra or Girvin-

MacDonald-Platzman (GMP) algebra [13] and lies as the heart of Quantum Hall and

Fractional Quantum Hall physics [14]. In particular, it is precisely this relation that

is responsible for the Aharonov-Bohm phase electrons pick up when encircling mag-

netic flux.

The GMP algebra can be recast in a different form by first defining a density

operator based on the guiding center operators

ρ̂(~q) = eiqαR̂α , (1.15)

and since the guiding center operators are related to their conjugate momenta by the

relation

R̂α =
l2

~
ǫαzβK̂β (1.16)

one may easily verify that the density operators thus defined satisfy an algebra equiv-

alent to the one for the translation operators, given specifically by

[ρ̂(~q), ρ̂(~q′)] = −2 sin

(
1

2l2
ẑ · (~q × ~q′)

)
ρ̂(~q + ~q′). (1.17)

Hence, the GMP algebra is also satisfied by density operators constructed from the

guiding center operators. Why these play a crucial role in particular for the fractional

quantum Hall physics in the presence of interactions may be seen by considering the

electron density operators ρ̄(~p) = exp(ipαr̂α) projected into the lowest Landau level.

If P̂ is the projector into the LLL, it is a simple matter to verify that

P̂ eipαr̂α P̂ = e−q
2l2/4ρ̂(~q). (1.18)

We thus draw the consequential conclusion that the GMP algebra is obeyed by density

operators when they are projected to the lowest Landau level. It may be argued in a
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similar way that this holds for any Landau level labeled by n, however the LLL is the

most prominent one, in which the fractional quantum Hall effect is observed.

The GMP algebra is of great importance for the physics of both the integer and

the fractional Quantum Hall effect. Neglecting the interactions between electrons we

may express the contribution of Landau level n to off-diagonal Hall conductivity in

the form of the Kubo formula as [15]

σnxy =
e2~

im2
e

1

2πl2Nφ

∑

n′ 6=n

∑

m,m′

〈n,m|Π̂x|n′,m′〉〈n′,m′|Π̂y|n,m〉 − (x↔ y)

(En − En′)2
,

(1.19)

and using the relation Π̂α = ime[Ĥ, r̂α]/~ together with P r̂αP = R̂α for any Lan-

dau level, one can derive

σnxy = − ie2

2πl2Nφ~

∑

m

〈n,m|[R̂x, R̂y]|n,m〉 = e2

h
. (1.20)

We conclude that each filled Landau level contributes one quantum of e2/h to the Hall

conductivity [16]. This is a direct consequence of the underlying noncommutative

GMP algebra.

There is another way in which the GMP algebra is of crucial importance, which

concerns the physics of the fractional quantum Hall effect, i.e. the explicit inclusion

of Coulomb interactions. An electron-electron interaction of the form V (~ri − ~rj)
translates into a Hamiltonian term

∑

i6=j
V (~ri − ~rj) ∼

∑

~q

V (~q)
∑

i<j

ei~q·(~ri−~rj) (1.21)

where we have taken the system to live on torus geometry, the reciprocal lattice vec-

tors ~q being related to the generators of the torus. The fractional quantum Hall effect

is most clearly observed for rather large magnetic fields, in which case the degeneracy

of a single Landau level is huge and one may restrict the Hilbert space to the lowest

Landau level. The interaction takes the form

∑

~q

∑

i<j

V (~q)ρ̂i(~q)ρ̂j(−~q)e−q
2l2/2, (1.22)

with ρ̂i(~q) the aforementioned projected density operators. As the Hamiltonian is

purely expressed in terms of these density operators, it is certainly not surprising that

their algebraic properties and the organization of Hilbert space following from them

are fundamental to the physics of the fractional quantum Hall effect. The algebra ex-

pressed in equation (1.17) is therefore at the heart of bringing the fractional Quantum
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Hall effect from the continuum (electrons in a strong magnetic field) to the lattice

(electrons in a periodic crystal with a band structure), which is the subject of part II

of this thesis.

1.1.2 Chern Insulators and their generalizations

A key feature of Landau levels that was highlighted above is their contribution to

the quantized Hall conductivity σxy = e2/h, when a Landau level is completely

filled [16]. Focusing on a single Landau level for the moment, we may express this

property in a response equation given by

Ji = σHǫ
ijEj , (1.23)

where Ji is the current in the i-direction and Ei the i-th electric field component.

This can actually be generalized to include the time t component, which gives the

response equation

Jµ = σHǫ
µνλ∂νAλ. (1.24)

One may functionally integrate this to obtain an effective action of the form

S[Aµ] =
σH
2π

∫
d2~rdt ǫµνλAµ∂νAλ. (1.25)

This action describes the fundamental low-energy electromagnetic field theory of the

quantum Hall state [17].

One way – perhaps an unsual way – to make a connection to general topological

states of matter is to ask the question: are there more states of matter that have an

action of this form as their low-energy effective theory? Or, to reformulate this ques-

tion, are there other insulators that have the same electromagnetic response equation?

The answer to this question is “yes”, and this affirmative answer is the first step to-

wards a much broader class of distinct insulating states that cannot be adiabatically

connected to the trivial atomic insulator.

Imagine we are given a material system governed by the Hamiltonian Ĥ =∑
k Ψ̂

†(~k)H(~k)Ψ̂(~k) (suppressing orbital and spin indices for convenience), and we

are told that this defines an insulator. Then we may first obtain its Green’s function

G, given by

G(ω,~k) = [ω + iδ −H(~k)]−1, (1.26)

and proceed to calculate the following quantity [18]

C =
1

4π

∫

BZ

d2kdω ǫµνλTr [G∂µG−1G∂νG−1G∂λG−1], (1.27)
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where ∂µ ≡ ∂/∂kµ. It can be proven that C is necessarily an integer [16, 18] and

in addition is it clearly a “global” object, as it involves integration over the whole

Brillouin zone (BZ). What does C have to do with equation (1.25)? The answer to

that question can be expressed in a simple yet profound equation (setting ~ = e = 1
for the moment),

σH =
C

2π
, (1.28)

or in words, the integer C is the constant coefficient that multiplies the action and

consquently determines the physical response, i.e. the Hall conductivity. As C is

restricted to be integer, the Hall conductivity is quantized. For the Quantum Hall

state induced by an external magnetic we have σH = C = 1, while in general it may

be any number. For ordinary insulators one has C = 0.

For the sake of clarity and definiteness we may particularize to the situation of a

two-band Hamiltonian, which can be expanded in the space Pauli matrices ~τ as

H(~k) = ε(~k)I2 + ~d(~k) · ~τ . (1.29)

This Hamiltonian has energies E±(~k) = ε(~k) ± |~d(~k)|, which we assume to corre-

spond to an insulator (minE+(~k) > maxE−(~k), ~k ∈ BZ), and since ε(~k) multiplies

the (2 × 2) identity matrix I2, the eigenstate structure only depends on ~d. Indeed,
~d(~k) contains the information on the topological character of the electronic ground

state of the system. Taking the Hamiltonian of equation (1.29) and substituting it into

equation (1.27) yields an expression of C in terms of ~d(~k)

C =
1

4π

∫
d2k ǫαβγ d̃α∂xd̃

β∂yd̃
γ . (1.30)

Here d̃α(~k) = dα(~k)/|~d(~k)| is the normalized ~d vector. The normalized vector d̃α(~k)
has unit length and thus lives on a sphere, which means we may interpret it as a

mapping from the Brillouin zone, a 2-torus T 2, to the sphere S2. The integrand

in equation (1.30) is nothing but the Jacobian of this mapping, which implies that C
counts the number of times the image of the mapping wraps around the sphere, which

is clearly an integer and cannot change under smooth deformation of the mapping

given by
~̃
d(~k). This establishesC as a topological invariant [18]. The integer invariant

C is generally referred to as the Chern number, a term borrowed from mathematics.

It has become customary to refer to insulators with nonzero C as Chern insulators.

Chern insulators are systems in the same universality class as the quantum Hall state,

and thus fundamentally distinct from “ordinary”, or atomic insulators.

As a spoiler for chapter 7, an example of a Chern insulator having C 6= 0 is

H(~k) = cos k1τ
x + cos k2τ

y + cos k3τ
z . (1.31)
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t
′
< t t

′
> t

d
x

dy

d
x

dy

winding 1winding 0 �d(�k)�d(�k)

Figure 1.2: The two different topological sectors of the 1D Peierls chain discussed

in the text. Left, the situation t′ < t in which case the d-vector does not wrap around

the circle as one traces the 1D Brillouin zone (equivalent to a circle). Right, on the

other hand, the situation t′ > t, in which case the d-vector wraps around the circle

once.

Here ki = ~k · ~xi (i = 1, 2, 3) and ~xi are lattice vectors of length a making an angle

2π/3 with each other. It corresponds to electrons hopping on the triangular lattice

with a flux of φ = π/2 threading each triangle. Using equation (1.30) one finds that

for this Hamiltonian the insulating round state is characterized by C = 1.

At this point a few comments with regard to equation (1.25) are in order. First,

by looking at the integrations we notice that this action applies to a two-dimensional

(2D) system. Consequently, all considerations above apply to 2D systems. Second,

it can be checked by looking at the transformation of the electromagnetic fieldAµ un-

der time-reversal, that the actions represents a time-reversal symmetry broken state.

These observations are a manifestation of the crucial importance of both symmetry

and dimensionality in classifying topological phases. The class of systems defined

by nonzero C must live in 2D and do not require any symmetry. Other topological

phases, which can exist in for instance one or three dimensions and have distinct phys-

ical properties, often require the presence of a symmetry. To illustrate this we briefly

review a famous example in 1D, the Peierls chain realized in polyacetylene [19].

Imagine a 1D chain of atoms with alternating hopping integral t and t′, where one

is weaker and one is stronger t > t′ (or t < t′). This is graphically shown in Fig. 1.2,

where the two different cases are shown on the right (left) side. The alternation of

stronger and weaker bonds mandates a two-site unit cell, with atoms A and B, and

the Hamiltonian describing this system can again be expanded in Pauli matrices, now

representing the sublattice degree of freedom,

H(k) = ~d(k) · ~τ, ~d(k) = (t+ t′ cos k, sink, 0) (1.32)
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Crucially, since hopping takes place only between A and B atoms, we have dz(k) =

0. This forces the ~d vector to be in the x− y plane and it defines a mapping from the

1D Brillouin zone, i.e. the circle, to the 2D plane. It is easy to check that for t 6= t′

the system is insulating. The topological nature of this insulating state is revealed by

taking a closer look that the mapping from the circle to the x− y plane defined by ~d.

The loop mapped out in the x − y plane either encircles the origin or it does not. In

Fig. 1.2, for both t < t′ and t > t′, the lower left square shows the red loop traced

out by the ~d-vector as function of ~k. The origin is special because there ~d = 0 and the

insulating gap would vanish. If the loop does not enclose the origin, such as in the

left of Fig. 1.2, we can smoothly deform it to a single point, representing the atomic

insulator, without closing the energy gap. However, if ~d(k) does enclose the origin,

see right side of Fig. 1.2, we cannot do so, and this situation defines a topologically

distinct state. In essence, since we must exclude the origin from the plane; we are

classifying mappings from the circle to the circle, which are known to come with an

integer index: the number of times the image wraps around the target circle. This is

schematically depicted in the lower right boxes of Fig. 1.2, where the red “circles” are

mapped to the black circles and either wrap around the black circle once (right) or not

at all (left). For the Peierls Hamiltonian expressed in equation (1.32) the topological

winding number is therefore 1.

How do symmetry and dimensionality manifest themselves? A symmetry con-

strains the Hamiltonian so that the ~d-vector cannot have a z-component. The symme-

try is a chiral symmetry and expressed as an anti-commutation relation

{H, τz} = 0. (1.33)

This relations forces dz(k) = 0 and it furthermore ensures that every state |ψ〉 of en-

ergyE has a partner τz at energy −E. If dz(k) was not forced to be zero, but allowed

to take arbitrary values, then our argument for distinguishing loops would not hold

anymore. Any loop could be smoothly contracted to a point by using the z-component

of the ~d-vector. In other words, instead of classifying mappings from a circle to a cir-

cle, we would be classifying mappings from the circle to the sphere. Mappings of

the latter kind are all trivial, as they can always be continuously deformed to a single

point on the sphere [20].

Symmetry and dimensionality are fundamental. One of most prominent symme-

tries permitting a topological classification of insulators in 2D and in 3D is time-

reversal symmetry [1–5, 21, 22]. Up until now, we have discussed topological clas-

sifications based on integers. The Chern number C can take any integer value, and

the [dx(k), dy(k)] vector may in principle encircle the origin any number of times,

depending on the form of the Hamiltonian.

Time-reversal symmetry, however, leads to a Z2 classification, which is to say that

there are only two flavors, trivial and nontrivial – topological and non-topological [1–
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5]. Real materials belonging to the class of nontrivial systems are then generally

refered to as time-reversal invariant topological insulators. Dimensionality is again

important. In two dimensions a time-reversal invariant topological state is referred to

as the Quantum Spin Hall state [1, 23]. The physical manifestation of the topolog-

ical nature of the electronic state is the existance of an odd number of spin-filtered

counterpropagating edge state pairs. The locking of propagation direction and spin

polarization implies the requirement of spin-rotation symmetry breaking, at least par-

tially. Not surprisingly, strong spin-orbit coupling plays a key role in the field of

topological insulators. In chapter 10 we will see examples of precisely such two-

dimensional Quantum Spin Hall states, where the spin-rotation symmetry breaking

comes from electronic interactions. In three dimensions spin-rotation symmetry must

be completely broken in order for an insulator to be a topological insulator. The phys-

ical consequence of non-trivial topology in three dimensions is the presence of an odd

number of two-dimensional Dirac fermions at a sample surface. This is forbidden in a

genuinely two-dimensional electronic system [24]. In both two and three dimensions

we see that odd and even (edge or surface states) are clearly distinguished when it

comes to the physical manifestation of non-trivial topology, which essentially defines

the Z2 classification of time-reversal invariant topological insulators.

Other symmetries giving rise to topologically insulating systems with robust phys-

ical properties mandated by their topological character are particle-hole symmetry

and the product of time-reversal and particle-hole symmetry, often called sublattice

symmetry or chiral symmetry. The robustness follows from the fact that disorder may

respect these symmetries and therefore cannot harm the physical consequences of the

topological nature of a quantum state. A complete classification based on these three

symmetries has been achieved and has resulted in the “periodic table” of topological

insulators [21, 22].

1.2 Strongly correlated electrons and electronic degrees

of freedom

Generally speaking there are two points of departure for describing electrons in solids.

One is to start from the free electron gas and subject the electrons to a weak periodic

potential originating from the crystal lattice. Wave functions obtained by solving

Schrödinger’s equation are perturbed and modified by the periodic potential, which

results in the typical band structure of crystalline solids. The other is to picture the

electrons as still associated to the atoms of the crystal and construct the electron wave

function from corresponding atomic orbital functions. Due to the periodic array of

atoms, the atomic wave functions overlap and electrons may tunnel, or “hop”, from
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atom to atom. The latter approach is referred to as the tight-binding description of

electrons, as they are considered to be tightly bound to the atomic sites of the lattice.

Which perspective to adopt depends to a large extent on what objective one has

set out to achieve. In this thesis we will work with the tight-binding description,

or alternatively called lattice fermion model, as it is the method of preference for

addressing materials with strong correlations between electrons from a model Hamil-

tonian perspective. The prototype of such a model Hamiltonian, designed to capture

the essential physics of strongly correlated electrons, is the famous Hubbard model.

The Hubbard model is given by the following equation

ĤHM =
∑

ij

tijψ̂
†
iσψ̂jσ − µ

∑

i

n̂i + U
∑

i

n̂i↑n̂i↓ Hubbard Model (1.34)

and here ψ̂†
iσ (ψ̂jσ) are second-quantized operators which create (annihilate) an elec-

tron at lattice site i with spin σ, where σ can take the values “↑” and “↓”. The matrix

tij represents the overlap integral of atomic wave functions on site i and site j. In the

most simple cases one only considers finite overlap between nearest neighbor sites

which is taken to be uniform, i.e. tij → t. In general however the most important

assumption is translational invariance tij = t−i+j . The chemical potential µ controls

the particle number, as n̂i =
∑
σ ψ̂

†
iσψ̂iσ is the number operator.

The third term represents the repulsive Coulomb interaction between electrons

and assigns an energy penalty of U to two electrons sitting on the same atomic site.

Fermi statistics require these electrons to have opposite spin. This form of the inter-

action term is a substantial simplification as it only takes into account the Coulomb

interaction of electrons at the same site. In general, for electrons in close proximity

yet different atomic sites there is a repulsive Coulomb force as well, however the

screening effect causes the longe-range part of the Coulomb interaction to be weak,

which justifies the retaining of only on-site repulsion.

Despite its apparent simplicity, the above Hamiltonian is notoriously hard to

solve. Nevertheless, advanced and often involved numerical as well as analytical

techniques have achieved considerable progress in applying the Hubbard model to

the physical phenomena in real materials. One general approach is to focus on the

regime of very strong interaction, i.e. U ≫ t. In this strong coupling regime doubly

occupancy of the same site is very strongly disfavored. In particular at half filling

Hilbert space is most conveniently organized by the number of doubly occupancies.

The lowest energy sector is the one with no doubly occupied sites. As charge excita-

tions are very expensive in terms of energy, the proper picture of this sector of Hilbert

space is that of localized spins. The effective interaction between these localized
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Figure 1.3: Illustration of spin configurations that represent the classical ground state

of the Heisenberg spin model on the square lattice (left) and the triangular lattice

(right). On the square lattice spins are anti-parallel on neighboring sites, realizing the

collinear anti-ferromagnet. Due to frustration of the triangular lattice the spins do not

order in a anti-parallel collinear pattern, but make an angle of 2π/3 with one another.

spins is captured by the Heisenberg Hamiltonian which takes the form

ĤHB =
∑

ij

Jij~si · ~sj Heisenberg Hamiltonian (1.35)

where the spin operators ~si are given in terms of fermions as

~si = ψ̂†
iσ~σσσ′ ψ̂iσ′ , (1.36)

where the the vector ~σ represents the spin Pauli matrices, i.e. ~σ = (σx, σy, σz). That

the effective interaction between spins should have this form may be understood by

considering virtual processes out of and back into the singly occupied subspace. If

electrons on neighboring sites occupy opposite spin states, virtual processes with am-

plitude ∼ t2/U ≃ J are allowed by the Pauli principle and electrons can lower their

energy in this way. Hence, in the general case one has Jij = J = +|J | and the

effective interaction is anti-ferromagnetic. A virtual process of this kind is also re-

ferred to as a superexchange process, and the Heisenberg Hamiltonian is alternatively

named superexchange Hamiltonian. In strong coupling and at half filling the system

is an insulator, as there are no charge excitations, and the Heisenberg Hamiltonian

pertains solely to the magnetic state of the system. The canonical approach that leads
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to an understanding of the magnetic ground state is to consider the electron spin ~si
as a very large spin, i.e. |~si| ≫ 1, and treat it a classical spin. The latter means that

we disregard for the moment that it actually represents an operator acting on a finite

dimensional Hilbert space, but instead picture it as a classical O(3) vector pointing in

any direction in space. Particularizing to the simple square crystal lattice, and keep-

ing only nearest neighbor magnetic interactions (J
∑ ~Si · ~Sj), it is straightforward

to deduce that the (classical) energy on each bond is minimized by anti-parallel spin,

i.e. J ~Si · ~Sj = −JS2 if ~Si = −~Sj , S being the magnitude of the spin. On the square

this leads to the anti-ferromagnetic spin state, as depicted in Fig. 1.3.

The situation is different for a different crystal lattice, the triangular lattice (see

Fig. 1.3). Due to lattice connectedness it is not possible to have spins on all neigh-

boring sites aligned anti-parallel consistently. This is an example of frustration: the

energy cannot be simultaneously minimized on each and every bond. The solution to

this problem is for the spins to arrange so as to optimally relieve the frustration, in

this particular case by making angles of 2π/3 with each other. This noncollinear but

coplanar order is thus a consequence of frustration.

The example of the triangular lattice already hints at the key role the crystal struc-

ture plays in the manifestation of magnetism in real materials. Even more compli-

cated behaviour is expected and observed for kagome lattice compounds, or com-

pounds which approximately realize a kagome structure. The kagome lattice consists

of corner sharing triangles, which directly results in a macroscopic degeneracy of

(classical) magnetic ground states. From the triangular lattice we learned that on

each triangle the spins are coplanar but make an angle of 2π/3. For corner sharing

triangles this does not fix all spins and a huge number of configurations satisfying the

energetic constraints exist. This is reflected in thermodynamic quantities and leads to

exotic phenomena such as spin-liquid behaviour.

Even though the pictorial representation of spins as classical arrows such as in

Fig. 3.3 provides an intuitive understanding of the magnetism observed in materials,

one should not forget that the electron spin is a quintessentially quantum mechanical

object. The assumption of large spin, |~si| ≫ 1, is not at all justified for the elec-

tron spin, which has length 1/2. Quantum corrections need to be taken into account

and the general recepy to do that is spin-wave analysis. Spin-waves are collective

excitations on top of the ordered classical state, in the same way as lattice distortions

(phonons) are collective modes corresponding to the ordered crystal. Depending on

the lattice structure, quantum fluctuations may either give corrections to the classical

state, or completely invalidate the classical description and necessitate new physical

concepts. Away from half filling, when one cannot think of all sites as being occupied

by precisely a single electron, hopping processes become possible again, as their will

be empty sites (for either electrons or holes). In this case the Heisenberg Hamiltonian
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needs to be supplemented with a hopping term

ĤDLU =
∑

ij

tijP̂ ψ̂
†
iσψ̂jσP̂ + ĤHB, Doped Large U Model (1.37)

and the projection operators P̂ make sure that doubly occupied sites are excluded.

The most drastic simplification of the Hubbard model given in equation 1.34 is its

single-band nature. Orbital degeneracy is however ubiquitous in real materials and

neglecting the orbital degree of freedom of electron wave-functions can be a major

distortion of reality. In some cases that may be legitimate and sufficient to capture

the essential features, as for instance in many cuprates, where only the dx2−y2 or-

bital is close to the Fermi level. In many cases however, in particular widely studied

d-electron systems, orbital degeneracy is an unavoidable source of complicated be-

haviour.

A prime example of the relevance of orbital physics are the Mn and Co ions. The

Mn may exist in a Mn4+ or Mn3+ valence state. In the latter case the t2g orbital

manifold contains three electrons and is separated from the the eg orbitals by a cubic

crystal field originating from the local octahedral oxygen environment. Hund’s rule

coupling aligns the three spins in the t2g sector, effectively creating a larger S = 3/2
localized “core” spin, and putting the remaining electron in an eg orbital. The splitting

between eg and t2g is generally large, justifying the assumption of localized t2g spins.

This particular physical picture will reappear many times in the remainder of this

thesis. Figure 1.4 schematically summarizes these considerations for d-electrons in a

cubic environment.

A simple model Hamtiltonian that captures the essentials of an eg electron inter-

acting with a large localized spin is given by the Kondo-Lattice or Double-Exchange

Hamiltonian,

ĤKLM =
∑

ij

tijψ̂
†
iσψ̂jσ + JKondo

∑

i

~Si · ~si, Kondo Lattice Model (1.38)

which explicitly couples an electron spin ~si to a “core” spin ~Si on every site i. Even

though this simplified version does not even take into account the orbital flavor of itin-

erant electron, it certainly derives from orbtal physics. This double-exchange model

has proven very successful in particular in describing Mn based materials, where

large JKondo leads to wide range of ferromagnetic metal in the phase diagram. The

ferromagnetic tendency build into this model, as opposed to the anti-ferromagnetic

interaction of the Heisenberg model, and the corresponding transition to a ferromag-

netic metal is intimitely related to the observed colossal negative magnetoresistance

in these materials. The Kondo-Lattice model of equation (1.38) is at the heart of Part

I of thesis. In Chapter 2 the Kondo-Lattice model will be discussed in more details
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Figure 1.4: Illustration of the significance of electronic orbital degrees of freedom.

The five-fold degenerate d-levels are split by the crystal field with cubic symmetry

into an Eg and a T2g manifold, two-fold and three-fold degenerate, respectively. In a

manganese ion, three electrons occupy the T2g manifold, with their spins aligned by

Hund’s coupling. The itinerant electron(s) in theEg manifold effectively “see” a spin

of length 3/2, as is shown on the right in the red box. Depending on the strength of the

coupling to this localized spin, the itinerant electrons can be either both aligned and

anti-aligned, the latter costing energy, or can only be aligned (very strong coupling).

and different approaches to apply and study it in specific cases will be presented.

Then, in Chapters 3 and 4 the Kondo-Lattice model and its derivative version, the

Double-Exchange model will be the starting point for addressing the physics of in-

teracting local moments and itinerant electons on the honeycomb and checkerboard

lattice, respectively. It will be demonstrated how lattice topology and competing or-

dering tendencies (ferromagnetic vs. antiferromagntic) lead to a rich magnetic and

electronic phase diagram.

Increasing the degree of complexity and taking full account of orbital degeneracy

leads to an involved Hamiltonian with a number of distinct interaction terms. It is

precisely such a Hamiltonian that will be the object of study in Part II of this thesis.

Due to the spatial anisotropy of p- and d-orbitals, the overlap integrals between them

depend both on the orbital and the direction of hopping, contrary to the s-orbitals.

Hopping between a dxz and a dxy orbital is different in the x-direction than it is in

the z-direction. Even more, electrons may also hop from one dxz state to a dxy state

via ligand oxygen orbitals. Hence, the kinetic part of the Hamiltonian is now given
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by

ĤMOK =
∑

ij

tγγ
′

ij ψ̂†
iγσψ̂jγ′σ, Multi Oribtal Kinetic Hamiltonian (1.39)

(summation of Greek indices implied), where γ (γ′) denote the orbital degree of

freedom. Taking the simple cubic lattice as an example, and assuming only nearest

neighbor hopping, we must distinguish three different matrices, tγγ
′

x̂ , tγγ
′

ŷ and tγγ
′

ẑ .

They represent hopping in the x, y and z directions, respectively, and are generally

all different yet related by symmetry.

The repulsive on-site Coulomb interactions can be expressed by the following

Hamiltonian

ĤC = U
∑

i

n̂iγ↑n̂iγ↓ + (U ′ − J/2)
∑

i,γ<γ′

n̂iγn̂iγ′ − 2J
∑

i,γ<γ′

~siγ · ~siγ′

+ J ′
∑

i,γ<γ′

(
ψ̂†
iγ↑ψ̂

†
iγ↓ψ̂iγ′↓ψ̂iγ′↑ + hc

)
Coulomb Hamiltonian (1.40)

The various terms represent (i) the intra-orbital Coulomb repulsion, given by a Hub-

bard U , energetically penalizing two electrons occupying the same orbital with op-

posite spin quantum numbers, (ii) the inter-orbital Coulomb repulsion, given by U ′−
J/2, energetically penalizing two electrons on the same site but in different orbitals,

(iii) Hund’s rule coulpling, given by J , favoring alignment of electron spins occupy-

ing different orbitals, and (iv) the pair hopping term, given by J ′, changing the orbital

flavor of a doubly occupied orbital.

Together with the kinetic term this interaction Hamiltonian constitutes a rather

involved model of interacting electrons in solids. One may again assume very strong

coupling and diagonalize the interaction Hamiltonian first, after which perturbatively

including the hopping Hamiltonian generally yields a spin-orbital superexchange

Hamiltonian. The latter will be SU(2) invariant in the spin sector, but will depend

in a non-symmetric way in the orbital degree of freedom, which is consequence of

the intrinsic spatial anisotropy of the orbitals. An alternative approach is to employ

a mean-field decoupling of the Coulomb Hamiltonian. This is the method of choice

used in Part II of this thesis.

1.3 This thesis

Based on this general introduction to two important concepts, i.e. strong electron

correlations and topology, we give a brief overview of the content of this thesis.
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Part I of this thesis reports on a study of the Kondo-Lattice model, i.e. the model

that describes interacting spins and electrons, on the honeycomb (chapter 3) and

checkerboard (chapter 4) lattices. The honeycomb lattice is a two-dimensional bi-

partite lattice, while the checkerboard lattice is two-dimensional spin-ice lattice and

hence frustrated.

Part II deals with the question whether coupling between localized magnetic mo-

ments and itinerant electrons can lead to lattice Quantum Hall effects. The specific

focus will be on looking into model systems which can exhibit Fractional Quantum

Hall effects and the importance of electronic orbital degrees of freedom will be ad-

dressed.

Part III provides a symmetry classification of density wave orders emerging from

electronic interactions, with the aim of obtaining insight into the possibilities of re-

alizing interaction-induced topological states of matter. Chapter 8 will introduce the

subject and will summarize the main results and conclusions of chapters 9 and 10.

Chapter 11 summarizes once again from a slightly different perspective.
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C H A P T E R 2

INTRODUCTION

2.1 Interacting electrons and spins

The Kondo lattice model (KLM) is probably the most celebrated starting point for

the investigation of the interplay between localized spins and itinerant electrons [25].

It provides the canonical explanation for the Kondo effect and for the heavy-fermion

behaviour observed in many materials [26]. Furthermore, the KLM and its cousin,

the double-exchange (DE) model, have proven very powerful in understanding and

explaining the properties of manganese-based oxides. The abundance of relevant

literature on this subject is nicely summarized in [27,28]. The manganese ion Mn3+

provides perhaps the best example of a (large) local spin interacting with an itinerant

conduction electron, which is a consquence of the orbital degeneracy present in 3d
systems and the particular valence of Mn3+.

Motivated by the search for topologically non-trivial states of matter, several

groups have studied the itinerant KLM on frustrated lattices, such as the triangular

or the pyrochlore one, and have shown that due to the strong geometrical frustration

scalar-chiral types of magnetic ordering emerge [29–33]. In addition, the KLM has

rather recently come into focus as a good framework to address unusual transport

phenomena in spin ice pyrochlores [34–37].

All these distinct examples highlight the broad relevance and applicability of the

KLM to a wide range of material classes.
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2.2 Kondo Lattice and Double Exchange models

As already briefly introduced in chapter 1, the simplest Hamiltonian that captures the

interaction of itinerant electrons and spins is given by

Ĥ =
∑

ij

tijψ̂
†
iσψ̂jσ + JKondo

∑

i

~Si · ~si, (2.1)

where ~si is the spin of the itinerant electron and ~Si represents the localized spin.

The coupling may be anti-ferromagnetic (AFM) if JKondo > 0 or ferromagnetic (FM)

if JKondo < 0. Writing the electron spin in terms of the creation and annihilation

operators we arrive at the Hamiltonian

Ĥ =
∑

ij

tij ψ̂
†
iσψ̂jσ + JKondo

∑

i

ψ̂†
iσ
~Si · ~σσσ′ ψ̂iσ′ , (2.2)

which we may call the quantum Kondo Lattice model. In some cases it is important

to include an explicit AFM coupling of the localized spins , i.e. JAFM

∑
ij
~Si · ~Sj , in

order to capture a strong AFM tendency caused by superexchange processes.

Generally, the electron spin will be coupled to a localized spin of arbitrary length

S. In case S becomes large, it makes sense to approximate the local spin degree of

freedom by a classical spin variable. The assumption of classical spins is justified in

Mn based compounds, for instance, where the electron spin is coupled to a local spin

of length S = 3/2, consisting of three t2g spins perfectly aligned. In the rest of this

chapter we will work from this assumption as well, but just for the moment we keep

the theory general and write the combined action of electrons and spins as

S[ ~S, ψ̂†, ψ̂] = Ss[ ~S] + Se[ ~S, ψ̂†, ψ̂]. (2.3)

In this expression, the variables ~S , ψ̂† and ψ̂ should be understood as spin and fermion

coherent states. Ss[ ~S] is the Berry phase term of the spin coherent state path integral,

encoding its quantum nature. Its specific form is irrelevant for our purposes as we

will proceed to neglect quantum effects of the local spins. The electronic action is

simply given by Se =
∫ β
0
dτ [

∑
ψ̂†(∂τ − µ)ψ̂ + Ĥ], with β the inverse temperature.

With this action the partition function reads

Z =

∫
D[ ~S]

∫
D[ψ̂†, ψ̂] e−Ss−Se (2.4)

Indeed, for large spins S it is justified to neglect the time depedence of the spin field

and the Berry phase term Ss, and one is left with a bilinear fermionic action coupled
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to a classical time-independent field. Such an action is similar in its structure to

a Hubbard-Stratonovich decoupled Hubbard model with space-time dependent spin

quantization axis [38, 39], and as a result may be used to describe a very broad class

of phenomena. In the present case, where we model the interaction of electrons and

spins, we can use the bilinearity of the action to calculate the fermionic trace exactly,

Ze =

∫
D[ψ̂†, ψ̂]e−

∑
x,x′ ψ̄(x)Ĝ

−1(x,x′)ψ(x′) = Det [Ĝ−1]. (2.5)

The determinant still depends on the spin fields and the full partition function requires

an integration over the spin variables. For brevity we have collected all indices in the

variable x. The full fermionic Green’s function can be decomposed as

Ĝ−1(x, x′) = Ĝ−1
0 (x, x′) + K̂(x, x′), (2.6)

where Ĝ−1
0 (x, x′) denotes the free electron Green’s function (when they are not inter-

acting with the classical spins), and K̂(x, x′) denotes the Kondo coupling controlled

by JKondo.

Calculating the full partition function is still a difficult problem, even though we

can evaluate the fermionic trace in principle. In order to extract information from

the partition function and calcualte observables it is necessary to employ approxi-

mation schemes. In the following we discuss two limits that will play a key role in

the next two chapters. The first is the limit of weak-coupling, where we suppose

that JKondo/t ≪ 1. In this limit we may expand the fermionic determinant in the

Kondo coupling and obtain an effective free energy for the spins. In the other limit,

t/JKondo ≪ 1, allows for a perturbative expansion in the inverse of the Kondo cou-

pling, yielding an effectively spinless Hamiltonian, which depends on the classical

spin variables. The latter can be studied by numerical Monto Carlo simulations. We

note here that in the case of classical spins the sign of the Kondo coupling is immate-

rial.

2.2.1 Perturbation in JKondo/t

In case of weakly coupled conduction electrons and spins, JKondo/t ≪ 1, we can

expand the determinant Det [Ĝ−1] in powers of the small parameter JKondo/t. An

effective action, or free energy F , for the spins can be defined as e−βF = Det [Ĝ−1],
from which it easily follows that

F = − 1

β
lnDet [Ĝ−1] = − 1

β
Tr [ln Ĝ−1]. (2.7)
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Expanding this in the Kondo coupling strength and subtracting the bare electronic

part one obtains the general expression

F − F0 = F (2) + F (4) +O(J6
H). (2.8)

The second order term represents the conduction electron mediated spin-spin inter-

action and is generally refered to as the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction. Its explicit form is given by

F (2) = − 1

β
Tr [Ĝ0K̂Ĝ0K̂] = −J2

Kondo

∑

~p

χ0(~p) ~S(~p) · ~S(−~p) (2.9)

where the sum is over all momenta and

χ0(~p) =
∑

k,iω

Ĝ0(iω,~k + ~p)Ĝ0(iω,~k)/(βN) (2.10)

is the susceptibility, with N the number of lattice sites. Since we are dealing with

classical spins at this stage, the saddle-point of the spin effective action is simply

given by the maximum (or degenerate maxima) of the susceptibility.

In case the non-interacting electronic Fermi surface exhibits special structure,

such as nesting at a particular wave-vector ~Q, then this will be reflected in the sus-

ceptibility. A very illustrative example is the triangular lattice at filling n = 3/4,

where the bare Fermi surface is hexagon inscribed in the Brillouin zone hexagon [30].

The Fermi surface is nested by three inequivalent momentum vectors which lead to

logarithmically diverging susceptibility as function of temperature. The system gains

the most energy by using all three degenerate order parameter components equally,

as this fully gaps out the Fermi surface. In fact, the divergent susceptibility suggests

that electrons will self-organize spontaneously into a spin-density wave composed of

the three ordering vectors as a consequence of interactions. A mean-field decoupling

of an interacting Hubbard model, where the mean field takes the place of the local

moments, can be employed to test this hypothesis, which has indeed been confirmed

in case of the triangular and hexagonal lattices [30, 40].

2.2.2 Perturbation in t/JKondo

If the coupling between conduction electrons and spins is very strong then it makes

sense to focus on this Kondo coupling first and then proceed to ask how the itineracy

of the electrons alters the picture. It is straightforward to convince oneself that the

Kondo term mandates all electronic spins to be perfectly aligned with the local spins.

As the sign of the Kondo coupling does not matter for classical spins, we focus on

perfect alignment only without loss of generality.
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The assumption of perfect alignment of spins is accounted for in a convenient

way by defining the spin quantization axis locally on every site. For each site we

then has the spin states | ↑, (θi, φi)〉 and | ↓, (θi, φi)〉, where θi and φi are the polar

and azimuthal angles representing the spin ~Si. Transforming to the local quanti-

zation is achieved by the SU(2) representation of a rotation of the z axis to ~n =
(cosφi sin θi, sinφi sin θi, cos θi), which takes the form

U(θi, φi) = e−iφiσ
z/2e−iθiσ

y/2. (2.11)

By construction this rotation operator diagonalizes the spin-conduction electron in-

teractions,

U(θ, φ)σzU †(θ, φ) = ~S(θ, φ) · ~σ, (2.12)

at the cost of making the hopping processes spin-dependent in terms of the local

quantization. Explicit expressions of the matrix U and the spin-conduction electron

interaction ~S(θ, φ) · ~σ in terms of the angles (θi, φi) are

~S(θ, φ) · ~σ =

[
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

]
,

U(θ, φ) =

[
cos θ2 e−iϕ sin θ

2

eiϕ sin θ
2 − cos θ2

]
. (2.13)

With these explicit expression we can evaluate the hopping term in terms of the angles

{θi, φi}. The spin-dependent hopping matrix tσσ
′

ij , where σ and σ′ label spin-up and

spin-down in the local basis, becomes

tσσ
′

ij = tiju
σσ′

ij = tij
(
U †(θi, φi)U(θj , φj)

)
, (2.14)

where the angle-dependence is contained in the uσσ
′

ij functions, which can be read off

from the matrix product as

uσσij = cos
θi
2
cos

θj
2

+ sin
θi
2
sin

θi
2
eiσ(φj−φi)

uσσij = σ

(
cos

θi
2
sin

θj
2
e−iσφj − sin

θi
2
cos

θi
2
e−iσφi

)
. (2.15)

So far we have not made any approximations but just rewritten the problem in

terms of basis states obtained from diagonalizing the spin-conduction electron inter-

action. Under the assumption that JKondo/t is very large, we can integrate out the

spin-down states, as excitations into the spin-down sector of Hilbert space will be
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heavily penalized energetically. Integrating out the spin-down or anti-aligned states

yields an effectively spinless Hamtiltonian which reads

Ĥ =
∑

ij

tij(θij , φij)ψ̂
†
i ψ̂j + JAFM

∑

i,j

~Si · ~Sj , (2.16)

where

tij(θij , φij) ≡ tiju
↑↑
ij = tij(cos

θi
2
cos

θj
2

+ sin
θi
2
sin

θi
2
ei(φj−φi)). (2.17)

An AFM interaction between the localized spins is perturbatively generated at order

∼ t2/JKondo. This Hamiltonian, given in equation 2.16 is generally refered to as the

Double-Exchange (DE) model. It describes electrons strongly interacting with local-

ized spins in such a way that their spin is always tied to the local spin. The kinetic

part favors FM alignment of the local spins, as the electrons gain kinetic energy, in

such spin configuration. The AFM interaction, which generically models a perturba-

tively generated interactions between spins, or an intrinsic AFM interaction driven by

superexchange, obviously favors anti-ferromagnetism. It is the competition between

these two tendencies that is at the heart of the rich and sometimes unexpected physics

observed and predicted for systems with spin-electron interactions.

The DE Hamiltonian still depends parametrically on the spins and in order to

determine the spin-electron ground state or calcualte correlation functions, one must

still integrate over all spin configurations in the partition function. For classical spins

the path integral measure is simply an integration over the spin variables {θi, φi}, i.e.

∫
D[ ~S] =

N∏

i

(∫ π

0

dθi sin θi

∫ 2π

0

dφi

)
(2.18)

Calculating the partition function or correlation functions exactly or even analytically

is impossible and one must resort to numerical routines to extract information from

the system. The method of choice is classical Monte Carlo where the spin config-

uration space is sampled according to standard Monte Carlo techniques [27, 28]. In

these Monte Carlo simulations, the fermionic problem is diagolized exactly on a finite

cluster, which amounts to calculating the fermionic trace in the path integral exactly.

The fermionic trace then enters as a weight factor for the sampling of classical spin

configurations.
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THE HONEYCOMB LATTICE MAGNET

3.1 Introduction

The physics of the KLM on non-frustrated lattices, such as the square and cubic one,

has been studied extensively. In particular the limit of strong coupling and large

localized moments, where the KLM goes over into the double-exchange (DE) model,

is directly relevant to the colossal magnetoresistance effect in perovskite manganites

[28,41–45]. In such cases, the competition between DE and antiferromagnetic (AFM)

superexchange can lead to canted spin states or phase separation [28]. Although the

honeycomb lattice is also bi-partite, it has the smallest possible coordination number

for proper 2D lattices. That the honeycomb lattice can support physical phenomena

fundamentally different from square lattices, is illustrated by recent Quantum Monte

Carlo calculations [46], which identify a novel spin-liquid phase for the Hubbard

model on the honeycomb lattice, a finding supported by analytical studies [47–49].

In this chapter, we investigate the consequences of the competition between AFM

superexchange and ferromagnetic (FM) DE on the honeycomb lattice. We find that

two exotic ground states exist between the trivial, fully FM and AFM phases. In the

first, nearer to the FM state, the spins self-organize into FM hexagons that are coupled

antiferromagnetically. Since the hexagonal rings form a frustrated triangular lattice,

their order is reminiscent of the Yafet-Kittel state [50]. The competition between
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isotropic magnetic interactions thus causes geometric frustration to emerge in a non-

frustrated lattice.

For slightly stronger AFM interactions, we find the exact groundstate to consist

of independent FM dimers containing one electron each. Apart from the require-

ment that the alignment of adjacent dimers be AFM, they are independent. The

groundstate of this N -spin system therefore has a high degeneracy ∝ 2
√
N . While

the macroscopic degeneracy ∝ eαN in (spin) ice is caused by the local symmetry

of the frustrated tetrahedra [51, 52], our
√
N exponent indicates the presence of an

‘intermediate’ symmetry – a symmetry between local and global [53]. It is remark-

able that this highly degenerate groundstate manifold arises as an emergent effect in

a Hamiltonian that itself does not have such a symmetry.

In many materials, the essence of the electronic structure is captured by inter-

acting spins and electrons on a honeycomb lattice. Interactions between impurity

magnetic moments on the honeycomb lattice of graphene have been intensely stud-

ied in a Ruderman-Kittel-Kasuya-Yosida (RKKY) framework [54–56] and using the

KLM [57]. Going beyond RKKY is even more important in transition metal oxides,

e.g., Bi3Mn4O12(NO3) [58–62] or Li2MnO3 [63], with Mn ions on a honeycomb

lattice.

3.2 Model and method

The Hamiltonian corresponding to the one-band DE model in the presence of com-

peting AFM superexchange interactions on a honeycomb lattice is

H = −
∑

〈ij〉
tij(ψ̂

†
i ψ̂j +H.c.) + JAF

∑

〈ij〉

~Si · ~Sj , (3.1)

where ψ̂†
i and ψ̂i are the fermionic creation and annihilation operators, respectively.

In accordance with the DE scheme these fermions have their spin aligned with the on-

site spins ~Si. The on-site core spins are treated as classical spins with |~Si| = 1 and

thus can be specified by their polar and azimuthal angles (θi, φi). Both sums are over

nearest neighbors. Due to the alignment of electron spin to the core spins, the hopping

amplitude depends on the direction of the core spins, tij = t0[cos(θi/2) cos(θj/2)+
sin(θi/2) sin(θj/2)e

−i(φi−φj)] [28]. The strength of the AFM super-exchange is

given by JAF and all energies are in units of the hopping amplitude t0. To guar-

antee an unbiased search for groundstate candidates, we employ a well-established

hybrid method of exact diagonalization (ED) for the bilinear fermionic part of the

Hamiltonian and Monte Carlo (MC) for the classical spins [28]. Each MC config-

uration is defined by a given core spin texture and Markov chains are generated by
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A-sublattice B-sublattice

a) b)

Figure 3.1: Schematic view of (a) the honeycomb lattice and (b) the brick-wall

lattice having the same topology.

diagonalizing the fermionic problem for each configuration update. We also make

use of the travelling cluster approximation (TCA), which has proven its validity and

success in earlier studies on a similar class of models [43–45], to go to larger lattice

sizes. We report here results based on calculations on anN = 122 honeycomb lattice,

using a cluster of size Nc = 62. In the MC routine we use ∼ 104 steps for equilibra-

tion and the same number of steps for thermal averaging. We focus on the case of a

half-filled band, which refers to 1/2 an electron per site, equivalent to quarter-filling

in the spinful problem. For selected parameter values, the MC procedure was further

refined by an optimization routine that diminishes thermal fluctuations [64].

To identify the magnetically ordered states, we calculate the spin structure factor

S(~q) =
1

4N2

∑

i,j

〈~Si · ~Sj〉ei~q·(~ri−~rj), (3.2)

where 〈. . .〉 is a thermal average and ~ri is the position space vector of site i. For a

clear understanding of the real-space structure of the magnetic states it is helpful to

look at S(~q) on a square geometry [see Fig. 3.1(b)]. A specific long-range ordering

is expressed as the point in the Brillouin zone where the structure factor shows a

peak. To analyze the electronic properties we compute the density of states (DOS) as

D(ω) = 〈 1
N

∑
k δ(ω− ǫk)〉 and approximate the delta-function by a Lorentzian with

broadening γ.

3.3 Results

In the absence of super-exchange interaction (JAF = 0), the spins order ferromagnet-

ically, as expected from the DE mechanism. The fermionic problem is then equivalent
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to non-interacting spinless electrons on a honeycomb lattice, giving rise to a disper-

sion and DOS that is well-known from graphene [see Fig. 4.2(a)]. Introducing a

small JAF still leads to a FM ground state. At JAF ≈ 0.14, the FM state becomes

unstable and gives way to a state with S(~q) peaked at 2
3 (π, 0) (and the points related

to it by symmetry). and with the peculiar four-peak DOS shown in Fig. 4.2(b). Real-

space snapshots show that a superlattice formed of hexagons emerges at low temper-

atures T , as depicted in Fig. 3.3(a). This result was corroborated by zero-temperature

optimization of the spin pattern. Spins within one hexagon are almost FM, the al-

lowed energies for electrons moving on a six-site ring are −2t0 cos 0 = −2t0 and

−2t0 cosπ/3 = −t0, with twice as many states at −t0, which gives precisely the

DOS seen in Fig. 4.2(b). Coupling between the hexagons is AF, but since they oc-

cupy a frustrated triangular lattice, see Fig. 3.3(a), perfect AFM order is not possible.

The hexagons instead are at an angle of ≈ 2π/3, corresponding to the Yafet-Kittel

state [50] well known for the triangular lattice, leading to the signals at 2
3 (π, 0) in

S(~q). Thus a geometrically frustrated triangular lattice emerges spontaneously from

isotropic, competing interactions on the non-frustrated honeycomb lattice.

For 0.18 ≤ JAF . 0.25, we find a state consisting of classical dimers. The dimers

each consist of two spins aligned in parallel, they cover the lattice in such a way that

the neighboring dimers are anti-parallel with respect to each other. In Fig. 3.3(b) and

3.3(c) we show two possible dimer configurations. In this spin texture, the electron

kinetic energy reduces to that of uncoupled two-level problems, having only two

eigenenergies ±t0. The DOS is therefore given by D(ω) = δ(ω − t0)/2 + δ(ω +
t0)/2, in excellent agreement with MC calculations [see Fig. 4.2(c)]. The dimer state

can be understood as a trade-off between the FM ordering and the AFM ordering:

the electrons are allowed to populate all the −t0 levels (which is more favorable

compared to AFM) and the spins are anti-parallel with respect to two of their nearest

neighbors (which is more favorable compared to FM).

Interestingly, the dimer ground state of this quantum system has a macroscopic

degeneracy, i.e., there is a macroscopically large number of ways to cover the lattice

by dimers such that the neighboring dimers are anti-parallel. One way to see the de-

generacy is to start covering lattice rows in Fig. 3.1(b) by dimers. It is easy to see

that having fixed the dimer pattern in the 1st row, there are two independent ways of

covering each subsequent row, giving 2
√
N−1 states for a N -site lattice. The fact that

there is thus no long-range order along the y direction of the brick-wall is reflected

in S(~q), which becomes finite along lines in momentum space, as in compass mod-

els [65–68]. In the 2D compass model, different degenerate configurations can be

reached by flipping a row of spins. The corresponding
√
N operators commute with

the compass Hamiltonian and thus define an intermediate symmetry, i.e., between a

local, gauge-like (∝ eN ) symmetry and global one (independent of N ) [53]. The
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Figure 3.2: (a)-(d) DOS at low, intermediate and high temperatures for different

values of JAF (γ = 0.04). In (a) the T = 0.001 curve shows the DOS of free

fermions on a honeycomb lattice in the thermodynamic limit. In (d) the T = 0.001
curve represents a gapped insulating phase, the seemingly finite DOS at EF being a

broadening effect. Except for the FM phase, all ground states are gapped.

magnetic order parameter that obeys the intermediate symmetry is consequently of

nematic type. In the dimer state, the minimal symmetry operations involves transla-

tion of all spins in two adjacent zig-zag rows by one lattice spacing, σij 7→ σij+1

[σij is the spin at site (i, j)]. An example for two dimer configurations connected

by such an operation is given in Figs. 3.3(b) and 3.3(c), where the second and third

rows were shifted. However, this operator does not commute with the Hamiltonian

Eq. (4.1), and the intermediate symmetry is thus rather a property that emerges in

the system’s ground state, similar to the case of striped phases at fractional filling in

the regime of narrow bandwidth and small Jahn-Teller coupling in a model used for

manganites [69]. This intermediate macroscopic degeneracy should lead to a large

specific heat at low temperature.

For strong super-exchange coupling, there is a continuous way in which the dimer

state can approach the AFM ordered state, captured by a canting angle θ [see Fig.
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a) b)

θ
d) c)

Figure 3.3: (a) Snapshot from MC simulations supplemented by optimization rou-

tines showing an emergent triangular lattice (black circles) formed by FM hexagons

at JAF = 0.14. Spins within each hexagon are almost FM, a small canting angle

between groups of three is illustrated by shading. The colored spins illustrate the

2π/3-angle order of the Yafet-Kittel state. Schematic view of, (b)-(c) two dimer

states related by a translational symmetry (see text), and (d) a canted dimer state.

3.3(d)], which is the angle between the two spins forming a dimer in the pure dimer

phase. The spins remain antiparallel to those of the neighboring canted dimers.

In this way, the two-level dimer systems remain uncoupled. The hopping ampli-

tude between the two spins in the dimer is renormalized by the DE mechanism to

t0 cos(θ/2). The DOS for a canted dimer state is consequently given by D(ω) =
δ(ω − t0 cos(θ/2))/2 + δ(ω + t0 cos(θ/2))/2, as can indeed be observed in the

DOS for JAF = 0.50 shown in Fig. 4.2(d). The canted-dimer groundstate has a gap

∝ cos(θ/2) at the chemical potential, which shrinks as θ approaches π for JAF → ∞.

At finite T , the two peaks widen and merge due to thermal spin fluctuations, leading

to a metal with reduced band width, see Fig. 4.2(d). This canted state retains the

macroscopic degeneracy inherent to the AFM dimer state discussed above – also this

ordering is therefore of nematic type.
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Figure 3.4: (a) T -JAF phase diagram at half-filling obtained by MC for a 12 × 12
lattice. (b) The energy of the various states: “alm. FM” refers to a spiral with the

longest wavelength supported by the lattice, converging to FM in the thermodynamic

limit. Similar finite-size effects are reported in doped 1D and 2D lattices [70]. “Hex”

denotes the emergent Yafet-Kittel order between hexagons depicted in Fig. 3.3(a),

the energy was optimized with respect to the canting angle within the hexagons.

“Dimers” and “C. Dim” are the highly degenerate FM and canted dimer states, and

“AFM” denotes perfectly AFM order. The black crosses are energies obtained by

unbiased MC and a subsequent energy optimization.

3.4 Discussion

Our results are in good agreement with elementary energy considerations. The energy

per site varies as 3JAF /2 and −JAF /2 for the FM and the dimer states, respectively.

This would imply a phase transition at JAF ≈ 0.15, the FM state is indeed stable for

JAF . 0.14 and the dimers for JAF & 0.18. In between, the emergent Yafet-Kittel

state, with a more complex energy dependence, is favorable, see Fig. 3.4(b). The

energy per site for the canted dimer state is −(2JAF − cos(θ)JAF + t0 cos(θ/2))/2.

By differentiating with respect to the canting angle θ, one easily obtains that canting

becomes favorable for JAF ≥ 0.25 and that the optimal energy is then given by

−3JAF /2−t20/(16JAF ). This is reflected in the behavior of the ordering temperature

for the dimer state, which starts decreasing at JAF = 0.25 [see Fig. 3.4(a)].

The results are summarized in Fig. 3.4. In the finite-T phase diagram Fig. 3.4(a),

phase boundaries for the FM and quasi-AFM regions are obtained by determining the

inflection point in the 〈M〉(T ) and 〈M〉(T ) (M denotes staggered magnetization)

curves. The onset of dimer and other phases is determined by tracking the temperature
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dependence of the spin structure factor and the characteristic features in the DOS.

Figure 3.4(b) compares the ground-state energies of the various phases and perfectly

agrees with the unbiased numerical data, indicating that we have identified the ground

states correctly.

In a full quantum treatment of the spin system additional quantum fluctuations

can affect the stability of these ordered phases. Here one anticipates the FM building

blocks (hexagons and dimers) to be robust as they are stabilized by a substantial DE

energy, and the FM state remains an eigenstate of the hexagon (dimer) for quantum

spins. The Yafet-Kittel ordering between the large total spins of the hexagons is ex-

pected to be more classical, and thus robust, than for S = 1/2, where it is found

for T → 0 [71]. If one can describe the magnetism of a dimer state by an effec-

tive NN AFM Heisenberg model, then this model remains the same if one performs

the operation illustrated in Fig. 3.3. The emergent symmetry would thus commute

with the effective low-energy Hamiltonian so that the corresponding degeneracies are

preserved.

3.5 Conclusions

We conclude that the isotropic double-exchangemodel with competing super-exchange

interactions on the non-frustrated honeycomb lattice has an unexpectedly rich phase

diagram with exotic magnetic phases. In one of these, FM rings become the essential

building blocks, which form a frustrated triangular lattice and are antiferromagneti-

cally coupled. The stabilization of such frustrated spin states on a bipartite honey-

comb lattice, without explicit frustration, is so far unique and an example of geomet-

rical frustration emerging from competing interactions. Another novel phase consists

of FM dimers ordered antiferromagnetically and has a 2
√
N degeneracy. This is remi-

niscent of compass models, but in the present case the corresponding symmetry is not

a property of the Hamiltonian given a priori, but rather a property that emerges in the

systems ground state [65–69]. These phenomena are not only relevant in a theoretical

context, immediately raising the question which other models share such features and

how further residual interactions might affect the degeneracy, but pertains in partic-

ular to honeycomb manganese oxides, which form a promising class of materials to

realize these novel types of highly frustrated states harboring macroscopic degenera-

cies.
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THE CHECKERBOARD LATTICE

MAGNET

4.1 Introduction

The study of topologically non-trivial states of matter is one of the hottest topics

in present-day condensed-matter physics. Topological states require a theoretical

paradigm that goes beyond the concept of global symmetry breaking as laid out by

Landau. It is remarkable that the theoretical predictions on the existence of various

topologically ordered states have rather swiftly led to the discovery of an entirely new

class of materials, the topological insulators [1, 3, 4, 72]. Recent pioneering experi-

ments have confirmed the key signatures of non-trivial topology in certain materials,

e.g. spin-momentum-locked undoubled Dirac fermions [9, 73, 74] and the Quantum

Spin Hall (QSH) effect [7]. These topological insulators are time-reversal (TR) in-

variant generalizations of the first, much older, topological state of matter, the famous

Integer Quantum Hall (IQH) states [16,75] that are induced by a magnetic field, which

obviously breaks TR symmetry.

In a seminal work in 1988, Haldane established that a magnetic field is not re-

quired to induce states with the same topology as IQH states [76]. It was shown that

adding complex hopping to a graphene-like Hamiltonian for electrons on a honey-

comb lattice opens up topologically nontrivial gaps at the Dirac points, which yields
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a topologically ordered, insulating state, referred to as a Quantum Anomalous Hall

(QAH) state. An important feature of QAH states are edge channels, in which cur-

rent can run only in one direction. This is in contrast to QSH states, where each edge

has two channels carrying currents in opposite directions, one for each spin [77].

QAH states would thus allow very robust, dissipationless charge transport along edge

channels, as backscattering would be completely suppressed. However, while sig-

natures of QAH behavior have been reported in some compounds [78–80], the only

QAH state so far reported has very recently been realized in ‘molecular graphene’,

a nanostructure tailored to this purpose [81]. Other approaches suggested so far are

spin-orbit coupled magnetic semi-conductors [82], spin-orbit coupled ad-atoms on

graphene [83], or spin-polarized QSH states [77].

The experimental difficulty is mirrored by the frailty of theoretical mass-generating

mechanisms for a graphene-like kinetic energy with a linear dispersion at the Fermi

level. TR-symmetry breaking via (magnetic) order requires rather specific and strong

longer-range Coulomb interactions [84], because the Dirac cones’ vanishing density

of states at the Fermi level renders interaction-driven ordered states energetically less

favorable. QAH states can more readily be induced in models with a finite density of

states [30,32,85], especially in cases of quadratic band crossings [86], as for instance

found in the checkerboard lattice, which exhibit a weak-coupling instability [86–88].

We will show here that the ground state of itinerant electrons strongly coupled to

localized spins on a checkerboard lattice is given by massless Dirac fermions or by

a chiral QAH state, depending on parameters. The spin texture underlying the QAH

state has a net ferromagnetic (FM) moment, flipping the FM polarization therefore

allows both to induce the QAH state from Dirac fermions and to switch between

ground-states of opposite chirality. This possibility to control an edge current by an

external magnetic field is an attractive feature in the context of spintronics.

4.2 The itinerant checkerboard lattice magnet

We model the itinerant electrons coupled to localized core spins by a one-band double-

exchange (DE) model with a competing antiferromagnetic (AFM) super-exchange

interaction,

Ĥ = −
∑

〈ij〉
tij(ψ̂

†
i ψ̂j +H.c.) + JAFM

∑

〈ij〉

~Si · ~Sj , (4.1)

where ψ̂†
i (ψ̂i ) creates (annihilates) a fermion on site i. Our discussion will for sim-

plicity first focus on infinite Hund’s rule perfectly aligning the fermion spin to the lo-

calized spins ~Si, but the main results remain valid for finite and even weak coupling,

as discussed later. We investigate here the checkerboard lattice, shown in Fig. 4.1(b),
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Figure 4.1: (a) Shows the arrangement of tetrahedra that gives rises to the hopping

topology of the checkerboard lattice. Spins of the flux phase in the tetrahedral unit

cell are also shown (b) Ordered pattern of spins in the coplanar flux phase repre-

sented on the projected checkerboard lattice. (c) Representation of the spins in the

“umbrella” spin-chiral state, as obtained with MCMC+optimization for a 16x16 lat-

tice with JAFM = 0.105, where δ = 0.148 compared to 0.141 as would be expected

analytically; all spins have been translated to a single site.
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whose first Brillouin zone (BZ) is given by (kx, ky) ∈ {|kx+ky| ≤ π}∩{|kx−ky| ≤
π}. Both “straight” and “diagonal” edges are here included in the sum over 〈ij〉. This

equivalence of the bonds arises when the chequerboard lattice is seen as reflecting the

hopping topology of connected tetrahedra, see Fig. 4.1(a). Since such tetrahedra are

building blocks in various frustrated structures, e.g. the pyrochlore lattice of quasi

one-dimensional compounds [89], understanding their frustration is of high inter-

est. We have verified that the results remain intact for weaker “diagonal” hoppings.

Stronger diagonal hopping favors a Néel-type ordering, where the electron-spin sys-

tem decouples into one-dimensional diagonal chains with van Hove singularities at

the band edges.

In the absence of charge carriers or for strong AFM coupling JAFM → ∞, the

Heisenberg term dominates. We may define a plaquette spin ~SP as the sum over all

spins of a crossed plaquette

~SP = ~S1 + ~S2 + ~S3 + ~S4. (4.2)

Then the Heisenberg term in the Hamiltonian can be expressed in terms of plaquette

spins only, which gives

JAFM

∑

〈ij〉

~Si · ~Sj =
JAFM

2

∑

P

~SP · ~SP − JAFMN (4.3)

where N is the number of sites and the sum is over all crossed plaquettes P . Clearly,

the lowest energy is obtained whenever ~SP = 0 for all crossed plaquettes. Since a

macroscopic number of configurations fulfill these local constraints, the ground state

manifold (GSM) is highly degenerate. For Ising spins, these local constraints, ~SP =
0, are equivalent to the requirement of “two up-two down” spins on each crossed

plaquette [90]. This is akin to the “two in-two-out” rule, the ice rule, that governs the

magnetic energetics in three-dimensional spin-ice systems, which remain disordered

down to the lowest temperatures. The spin-ice rule ~SP = 0 on the checkerboard leads

to an even larger class of ground states, if Heisenberg spins instead of Ising spins are

considered, as is the case in the present work.

Doping with itinerant charge carriers can (partly) lift the macroscopic degeneracy

of the GSM [91] because the kinetic energy competes with the ice-rule constraints

due to the double-exchange mechanism: For classical on-site spins (with |~Si| = 1),

which are specified by polar and azimuthal angles (θi, φi), the effective hopping am-

plitude is modified by the relative spin orientation as tij = t[cos(θi/2) cos(θj/2) +
sin(θi/2) sin(θj/2)e

−i(φi−φj)] [27], where the bare hopping amplitude t is our unit

of energy. For the uniform ferromagnet, the electronic bands correspond to those of
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spinless free fermions on the checkerboard, given by the expressions

E+(~k) = 2t

E−(~k) = −2t(1 + cos k1 + cos k2) (4.4)

where ki = ~k · ~xi (i = 1, 2) with ~xi the Bravais lattice vectors. The density of states

(DOS), D(ω) = 〈 1
N

∑
k δ(ω − ǫk)〉, is shown in Fig. 4.2(a). In this work we con-

sider here the average density of one electron per two sites, where the kinetic energy

has the strongest impact. We use Markov Chain Monte Carlo (MCMC) simulations

to anneal the classical spins, where the probability of a spin configuration is given

by the free energy of the effective fermionic Hamiltonian, as obtained by exact di-

agonalization [27]. We have performed calculations on lattices with N = 82, 122,

162, and 202 sites. MCMC calculations were supplemented with an energy optimiza-

tion in order to suppress thermal fluctuations [64] and complemented by an analytic

weak-coupling analysis.

4.3 Results for half-filling

4.3.1 Massless Dirac fermions through lifting of the spin-ice de-

generacy.

For large super-exchange coupling JAFM ≫ 1, the magnetic order is expected to be-

long to the highly degenerate GSM fulfilling ~SP = 0. Our MCMC calculations show

that the kinetic energy lifts this degeneracy completely and picks out the particular

coplanar, but non-collinear, state that is schematically depicted in Fig. 4.1(b). Non-

diagonal bonds connect orthogonal spins, while diagonal bonds connect AFM spins,

effectively excluding them from the hopping term. Going around a square plaque-

tte, the electrons pick up a phase eiπ, corresponding to a TR invariant flux of π, and

this special “flux” phase has been shown to arise in models for high-Tc superconduc-

tors [92,93] and in the double-exchange models on the square lattice [94–97]. On the

unfrustrated square lattice, it competes with the Néel state for strong JAFM [94–96],

but since it fulfills the ice-rules, it remains stable for JAFM > 0.12 on the checker-

board lattice.

The DOS of the flux phase shows semi-metallic behaviour [see Fig. 4.2(b)] that

originates from two Dirac points in the spectrum. Low-energy excitations are de-

scribed by a relativistic Dirac equation, in full analogy with graphene [98]. The core-

spin texture Λi = (θi, φi) of the flux phase can be written as Λi = (π/2, (i− 1)π/2)
with i = 1, 2, 3, 4 [see Fig. 4.1(a)]. Even though the magnetic texture has a 4-site unit

cell, the two-site electronic unit cell need not be enlarged as the system is electroni-

cally equivalent to a π-flux state. The electronic Hamiltonian, in the (ψ†
A, ψ

†
B) basis
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Figure 4.2: Electronic density of states of (a) the FM (spinless) phase, (b) the “flux”

phase (in red) and spin-chiral umbrella phase for various δ (see text). The inset of

(a) shows the BZ (black solid line) and the Fermi surface (red solid) of the non-

interacting checkerboard lattice at quarter filling. The two vectors ~Qa = (π, 0) and
~Qb = (0, π) perfectly nest the Fermi surface. (c) Spin susceptibility χ0( ~Qa) =

χ0( ~Qb) for various temperatures.

may then simply be represented by a momentum dependent vector function ~d(~k) and

the three Pauli matrices ~τ = (τx, τy , τz) as

H(~k) = ~d(~k) · ~τ. (4.5)

where the compontents of the ~d-vector are given by

dx(~k) = − t√
2
(cos(k1 + k2) + cos k1 + cos k2 − 1)

dy(~k) = − t√
2
(sin(k1 + k2) + sin k1 + sink2)

dz(~k) = 0 (4.6)

Note that the explicit specification of the ~d required a gauge convention for the fic-

titious flux threaded through the square. Here we choose the convention of putting

the phase eiπ = −1 on one single bond of each square. The electronic energy bands

corresponding to this Hamiltonian are shown in Fig. 4.3(a). The two inequivalent

Dirac points, or valleys, are located at ~M± = (±π/2, 0).
Expanding around the Dirac points yields an effective low-energy Hamiltonian.
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Defining the spinor Ψ(~q) as

Ψ(~q) =




ψA( ~M+ + ~q)

ψB( ~M+ + ~q)

ψA( ~M− + ~q)

ψB( ~M− + ~q)


 (4.7)

we may write the Dirac Hamiltonian as

H(~q) = ~vF (−qxνzτx + qyτ
y), (4.8)

having chosen the set of Pauli matrices ν to operate on the valley degree of freedom

and vF =
√
2t. This is equivalent to graphene, with two valleys around which the

electrons are described by the Dirac equation. In fact, one may define a set of Hamil-

tonians which connect the square lattice to both the π-flux phase and graphene [99]. If

instead of the dx-component specified above, we would have dx(~k)[f ] = −t(cos(k1+
k2) + cos k1 + cos k2 − f), with −1 ≤ f ≤ 1, then f = 1 corresponds to a simple

square lattice dispersion, while f = 0 corresponds to graphene. Obviously f = −1
gives the π-flux phase. For any value of f except f = 1 the electronic dispersion

exhibits Dirac points. One important difference to graphene is that we have here

no spin degeneracy, as the spin degree of freedom was integrated out by tying the

fermion spin to the core spins.

4.3.2 Massive QAH Dirac fermions.

Having established that electronic kinetic energy selects a unique non-collinear pat-

tern for the checkerboard double-exchange magnet, which has a graphene-like Dirac

spectrum, we consider next what happens upon an increase of the itineracy. Low-

ering JAFM, we find that the magnetic interactions enforcing the tetrahedron rules

are overcome by the electronic kinetic energy for JAFM . 0.12. The transition is

continuous and can be understood as a tilting of the flux-pattern out of the plane,

forming an ”umbrella”. An example is shown in Fig. 4.1(c): the spins fall along

four directions, whose projections onto the x-y plane mirror the “π-flux”-phase pat-

tern, but there is an additional FM component along the z axis. The spins can be

described using an Ising variable s = ±1 (which will turn out to correspond to

a scalar spin chirality) and a continuous parameter δ giving the tilting along ∓z:

{Λsi (δ)} = (π/2 + δ, s(i− 1)π/2), where i = 1, 2, 3, 4 again runs around a crossed

plaquette. A similar scenario, but with an 8-site unit cell and Chern numbers ±2,

arises on a square lattice with longer-range couplings when nearest-neighbor hop-

pings are strongly modulated [97].
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The scalar spin chirality of the state is defined as

χ =
∑

T

~Si · ~Sj × ~Sk, (4.9)

where the sum is over all triangles T of the checkerboard lattice, and ~Si · ~Sj × ~Sk is

taken in the counter-clockwise direction. The chirality as function of δ is plotted in

the inset of Fig.4.3(b) for umbrella states Λ±, it is χ ≈ −sδ for small δ. The label

±s decides the sign of the chirality for δ > 0 and is related to a (counter-)clockwise

rotation of the spin projection onto the x-y plane. The umbrella states, in addition

to a continuous spin rotation symmetry, thus also break a discrete Z2 symmetry. As

a discrete symmetry can also be broken at finite temperature in 2D, chiral ordering

may be possible even without long-range magnetic ordering [100].

Tilting the spins breaks TR symmetry for the electronic degrees of freedom, as

fluxes through elementary plaquettes are related to the solid angle subtended by the

spins surrounding the plaquette. Calculating the hoppings in the umbrella states, we

find that hopping on the straight bonds is given by ts1 = e−siπ/4(1 − si sin δ)/
√
2,

with

|ts1| =

√
(1 + sin2 δ)/2 ≡ t1

φs1 = arctan(−s sin δ)− sπ/4 ≡ φs (4.10)

[see Fig. 4.1(c)]. In addition, hopping along the diagonal bonds is no longer vanishing

but t2 = − sin δ, independent of chirality. This leads us to the effective electronic

Hamiltonian of general structure

Hs(~k) = ǫ(~k)τ0 + ~d(~k) · ~τ (4.11)

where τ0 is the unit matrix and with the functions ǫ(~k) and ~d(~k) given by

d0(~k) = −t2(cos k1 + cos k2),

d3(~k) = −t2(cos k1 − cos k2)

d1(~k) = −t1 [cosφs(1 + cos(k1 + k2) + cos k1 + cos k2)

sinφs(− sin(k1 + k2) + sin k1 + sink2)]

d2(~k) = −t1 [cosφs(sin(k1 + k2) + sin k1 + sin k2)

sinφs(1 + cos(k1 + k2)− cos k1 − cos k2)] (4.12)

The Hamiltonian above for the π-flux is recovered for δ = 0, implying φs = π/4 and

t2 = 0. This amount to a different gauge choice than the one leading to the expression
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in equation (4.6). From the DOS [Fig. 4.2(b)] and the band structure [Fig. 4.3(a)], it

is clear that finite δ 6= 0 opens a gap for the Dirac cones. Since the hoppings are

complex and the diagonal bonds have been activated, both TR and parity symmetries

are broken, allowing a QAH state [101]. To establish that the gapped state is indeed

topologically non-trivial, we calculate the Chern number of the occupied band (for a

generalband n Cn = 1
2πi

∮
∂BZ

d~k · ~A(~k), where ~A(~k) = 〈n~k|∇~k|n~k〉 is the Berry

connection) and find C = sgn(t2)sgn(sin 2φs). Chirality and Chern number hence

perfectly correlate and we observe that inverting the magnetic polarization δ → −δ
flips both the spin chirality and the Chern number. The off-diagonal Hall conductivity

as a function of chemical potential, obtained from Eq. (4.12) for δ = 0.3, is shown

in Fig. 4.3(b). Figure 4.3(c-e) shows the effect of non-trivial topology on the edge

of the system: chiral edge states connect valence and conduction band. As can be

seen by comparing Figs. 4.3(d) and 4.3(e), the direction of the edge currents can be

reversed by inverting the spin chirality. Particularly appealing would be a system

with a ground state still in the “massless” flux phase, but close to the transition to the

QAH state, where a topological gap could be opened by a small magnetic field, and

the direction of the edge currents could be manipulated by its orientation.

The observation that spin configurations of the umbrella states are continuously

connected to the coplanar flux phase suggests that the electronic QAH state can be

understood from the low-energy physics of the electrons at the Dirac points. In gen-

eral, when the low-energy electronic theory is described by two inequivalent Dirac

fermions there are four possible mass terms that may gap out the spectrum [102].

Three of those are compatible and correspond to a one-component charge density

wave instability (sublattice potential) parameter and a two-component bond-density

wave instability. The fourth possibility to open a gap is a time-reversal symmetry

breaking perturbation. The latter case applies to the present situation, in full corre-

spondence with the original proposal for the graphene lattice [76]. We will demon-

strate this by analyzing, in the spirit of Ref. [76], the system in a presence of an exter-

nal magnetic field B and then take the limit of B → 0. Focusing on the low-energy

theory of the spinless model, ~q = ~k − ~Mγ (γ = ±), we introduce the magnetic field

by way of a Peierls substitution ~qα → Π̂α (α = x, y), where Π̂α is the dynamical

momentum whose components satisfy the commutation relation [Π̂x, Π̂y] = ieB~.

We obtain two independent Hamiltonians for the two Dirac points,

Ĥγ = vF (Π̂1γτ
x + Π̂2γτ

y) +mγτ
z (4.13)

, which indeed has the structure of the relativistic Dirac equation in a magnetic field.

As can be seen by comparing to Eq. (4.12), our mass term mγ = 2γt2 is a direct

consequence of finite t2 = − sin δ, and thus of finite chirality δ 6= 0. Operators Π̂1γ
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Figure 4.3: (a) The band structure of the gapless flux phase (red) and the insulating

chiral phase (blue, δ = 0.3) along a path in the Brillouin zone specified in the inset.

(b) Quantized Hall conductivity in the chiral state (δ = 0.3), when the Fermi level is

in the gap, the quantized value depends on the chirality of the spin state. The inset

shows the calculated chirality of the states Λ±, where dashed (solid) corresponds to +
(−). (c-e) Spectrum of the flux phase calculated for a strip geometry, which explicitly

shows the edge states at the open boundary. (c) π-flux phase (δ = 0.0) exhibits edge

states similar to graphene. (d,e) Chiral gapped phase (δ = 0.2); chiral edge states

connect valence and conduction bands. The states drawn with solid (dashed) lines

lives on the top (bottom) edge. The chirality in (e) is reversed with respect to (d), the

right- and left-moving states are consequently exchanged.
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and Π̂2γ are derived from Π̂α and satisfy the commutation relation

[Π̂1γ , Π̂2γ ] = −iγ sin(2φs)eB~ (4.14)

Relativistic Dirac fermions in a magnetic field are known to exhibit zero modes in

their spectrum [103], which cause the charge density imbalance in the ground state,

potentially leading to an integer QAH effect. Here, the zero modes have energy

E0,γ = −γmγsgn(sin 2φs)sgn(eB), (4.15)

and the spectrum is asymmetric when m+ and m− have opposite sign. Following

Haldane, we obtain the off-diagonal conductivity in the limit B → 0, σxy = νe2/h,

where

ν =
1

2
sgn(sin 2φs)[sgn(m+)− sgn(m−)] = sgn(t2)sgn(sin 2φs). (4.16)

Hence, the gapped QAH umbrella state can be interpreted as Dirac fermions becom-

ing massive, with masses of opposite sign, indeed, the dz(~k) component of Eq. (4.12)

has opposite sign at the two Dirac points (±π/2, π/2). A sublattice potential, which

also gaps out the Dirac fermions, would in contrast lead to equal masses, and the edge

states would not cross the chemical potential.

4.3.3 Weak Hund’s rule coupling.

Up to this point we have studied Hamiltonian in Eq. (4.1), which assumes a very

strong coupling between localized and itinerant electronic spins.Here we discuss in

more detail the case when the coupling between localized and itinerant spins, Hund’s

rule coupling, is finite. The Kondo Lattice Hamiltonian then reads

Ĥ = −t
∑

〈ij〉,α
(ψ̂†
iαψ̂jα +H.c.)− JH

∑

i

~Si · ψ̂†
iα~σαβ ψ̂iβ , (4.17)

where the vector of Pauli matrices ~σαβ refers the spin of the itinerant electrons and

i, j label the sites of the lattice. Half filling in the spinless case corresponds to quarter

filling in the spinful case, where the the Fermi surface of free fermions on the checker-

board lattice is a square, as shown in the inset of Fig. 4.2, and where the DOS shows

a van Hove singularity, see main panel of Fig. 4.2. We still consider classical spins

(Si ≫ 1), so that we can fix the magnitude S and absorb that into JH. As was shown

in the main text, in the infinite JH limit the flux phase is stable over a very large range

of parameter space. We now consider this phase from the finite JH perspective. The

spin configuration of the flux phase corresponds to two ordering vectors ~Qa = (π, 0)
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and ~Qb = (0, π) [95] and the magnetic state is hence generally referred to as 2q or

double-Q ordering. As is shown in Fig. 4.2 of the main text, these ordering vectors

perfectly nest the Fermi surface of the free-fermion checkerboard bands at quarter

filling. When considering finite JH the unit cell is quadrupled in the double-Q phase

and we can write the order parameter as

~S(~ri) = [Sa cos( ~Qa · ~ri),Sb cos( ~Qb · ~ri), 0]. (4.18)

Since the double-Q phase is essentially a coplanar phase, we choose the z-component

of the order parameter zero, wihtout loss of generality. Sa and Sb are equal in mag-

nitude but can differ in sign. The vector ~ri is the real space position of lattice site

i. Observe that the collection of lattice positions {~ri} define a square grid that is

spanned by elementary vectors ~a1 = (1, 0) and ~a2 = (0, 1) which necessitates the

use of both ordering momenta ~Qa and ~Qb. Due to the checkerboard topology of the

hopping pattern the lattice has a basis and hence acquires sublattice structure. The

Bravais lattice is spanned by ~x1 = (1, 1) and ~x2 = (−1, 1) and the momenta ~Qa
and ~Qb are equivalent in the checkerboard lattice Brillouin zone, as may be seen in

Fig. 4.2(a) (inset), i.e. the sum of ordering vectors is equal to a reciprocal lattice

vectors, ~Qa + ~Qb = ~G ∼= ~0, and same holds for all combinations of additions and

subtrations. In particular it means that ~Qa ∼= ~Qb which inspires to simplify notation

by setting ~Qa = ~Qb ≡ ~Q.

In order to study the electronic Hamiltonian in the background of spin configura-

tion in momentum space, the most convenient approach, we need to take into account

the two-sublattice structure properly. In particular, the spin configuration may be

specified by

~Si =

[
~SiA
~SiB

]
=

[
Sa~ux
Sb~uy

]
ei
~Q·~ri , (4.19)

where here i labels the unit cell, ~ri denotes the corresponding lattice vector, and spin

fields that live on each sublattice ~Siξ , ξ = A,B have been defined. The vectors ~ux,y
are unit vectors in the x- and y-direction respectively. For the electronic operators we

write the two-component operators ψ̂†
i = (ψ̂†

iA, ψ̂
†
iB), again i labeling the unit cell.

The Hamiltonian, as compared to Eq. (4.17), then reads

Ĥ = −t
∑

〈ij〉,α
(ψ̂†
iξαH

ξη
ij ψ̂jηα − JH

∑

iξ

~Siξ · ψ̂†
iAα~σαβ ψ̂iξ (4.20)

where ξ and η both label sublattice indices. Substituting the spin configuration given
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in Eq. 4.19 into the Hamtiltonian it takes the form

Ĥ =
∑

~k,α

ψ̂†
α(
~k)H(~k)ψ̂α(~k)− JHSa

∑

~k

ψ̂†
Aα(

~k)σxαβ ψ̂Aβ(
~k + ~Q)

−JHSb
∑

~k

ψ̂†
Bα(

~k)σyαβ ψ̂Bβ(
~k + ~Q). (4.21)

As a consequence of translational symmetry breaking the unit cell is doubled and the

dimension of the Hamiltonian and momentum dependent fermion operators is eight,

due to sublattice and spin degrees of freedom and translational symmetry breaking.

We may however use symmetry arguments to block diagonalize the Hamiltonian into

4× 4 blocks. We can decompose the Hamiltonian as

Ĥ(~k) = Φ̂†
I H(~k)Φ̂I + Φ̂†

IIH(~k)Φ̂II (4.22)

where the fermion operators Φ̂I and Φ̂II are given by

Φ̂I =




ψ̂A↑(~k)

ψ̂A↓(~k + ~Q)

ψ̂B↑(~k)

ψ̂B↓(~k + ~Q)


 , Φ̂†

II =




ψ̂A↓(~k)

ψ̂A↑(~k + ~Q)

ψ̂B↓(~k)

−ψ̂B↑(~k + ~Q)


 . (4.23)

The reason for this is that we may rotate the spin state by an angle π about the x axis

and have that followed by a rotation by π on the B-spins only about the z axis. These

transformations exchange the two states while leaving the Hamiltonian invariant. In

order to wrote down the Hamiltonian H(~k) we need the hopping Hamiltonian on the

checkerboard, which we write here as

M(~k) = −t
[

2 cos(kx + ky) 1 + T ∗
xT

∗
y + T ∗

y Tx + (T ∗
y )

2

1 + TxTy + TyT
∗
x + (Ty)

2 2 cos(kx − ky)

]
, (4.24)

where we define for convenience Tx = eikx and Ty = eiky . We will also need

M(~k + ~Q), which reads

M(~k + ~Q) = −t
[

−2 cos(kx + ky) 1− T ∗
xT

∗
y − T ∗

y Tx + (T ∗
y )

2

1− TxTy − TyT
∗
x + (Ty)

2 −2 cos(kx − ky)

]
.

(4.25)
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The Hamiltonian H(~k) is then specified by

M(~k) =




MAA(~k) −JHSa MAB(~k) 0

−JHSa MAA(~k + ~Q) 0 MAB(~k + ~Q)

MBA(~k) 0 MBB(~k) iJHSb
0 MBA(~k + ~Q) −iJHSb MBB(~k + ~Q)


 , (4.26)

This Hamiltonian can be diagonlized and we obtain bands as shown in Fig. 4.4. The

bands structure shows the Dirac points at quarter filling of the spinful system. We

find the Dirac points emerging for infinitesimal JH, indicating that the formation of

this spin configuration will be due to a weak-coupling instability. Indeed, at quarter

filling, the Fermi surface of fermions on the checkerboard lattice is nested by pre-

cisely the ~Q vector. In order to see whether the susceptibility indeed diverges we

calculate the RKKY interaction between the classical spins mediated by the elec-

trons. The RKKY interaction mediated by the electrons between the spins is given

by Ω(2) = −J2
H

∑
~p χ0(~p)S

α(−~p)Sα(~p) and is thus determined by the spin suscep-

tibility χ0(~p) = −∑
n

∑
~k Tr[Ĝ0(~k, iωn)Ĝ0(~k + ~p, iωn)]/(2N), where Ĝ0(~k, iωn)

is the non-interacting electronic Green’s function. The temperature dependence of

χ0(π, 0) and χ0(0, π) is shown in Fig. 4.2, clearly showing divergent behaviour at

quarter filling.

In the same way as above we can write down the order parameter for the umbrella

magnetic ordering. We add a uniform magnetization in the z-direction and the order

parameter becomes

~S(~ri) =
[
Sa cos( ~Qa · ~ri),Sb cos( ~Qb · ~ri),Sc

]
. (4.27)

Here once again Sa and Sb are equal in absolute value but may differ in sign. The

additional constraint now is S2
a + S2

b + S2
c = 1. It is straightforward to write down

the modification of the momentum space Hamiltonian

δH =




−JHSc
JHSc

−JHSc
JHSc


 , (4.28)

With this modification the Dirac points in the band structure become massive.

Our model is appropriate to describe a lattice of connected tetrahedra, see Fig. 4.1(a),

e.g. as a two-dimensional projection of the three-dimensional pyrochlore lattice. This

implies equivalent couplings on both “straight” and “diagonal” bonds. We find that

weaker hopping on the diagonal bonds does not alter the physics qualitatively, while
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Figure 4.4: Spectrum corresponding to the finite Hund’s rule coupling Hamilto-

nian 4.26, where the coupling constant is JH/t = 2.

stronger diagonal hopping favors a Neel-type ordering, where the electron-spin sys-

tem decouples into one-dimensional diagonal chains with van Hove singularities at

the band edges.

4.3.4 Discussion and conclusions.

In conclusion, we investigated the interplay of itinerant electrons with a frustrated

AFM spin background on the checkerboard lattice using Monte-Carlo methods and

analytic approaches. The electron kinetic energy selects a unique magnetic ground

state, the π-flux phase, from the macroscopically degenerate spin-ice manifold opti-

mizing the AFM interactions. Its electronic states feature massless Dirac fermions.

Both a magnetic field and slightly stronger kinetic energy can induce a spin chirality,

from which the Dirac fermions inherit a topologically nontrivial mass.

The Kondo-lattice model on the checkerboard model thus provides a direct re-

alization of Haldane’s proposal for obtaining a QAH state [76]. QAH states on the

checkerboard lattice have also been proposed as candidates for hosting an anomalous

fractional quantum-Hall–like state [87, 104, 105]. This require nearly dispersion-

less bands; in the present scenario, additional longer-range hopping −2t3(cos 2kx +
cos 2ky) can give a ratio of band gap vs. band width of ≈ 5 for δ = 0.3. While

this is considerably less than ratios achievable by tuning all parameters [87] or in

t2g-orbital systems [106,107], it is comparable to eg [106] systems or a square-lattice

model [108].

Interestingly, the QAH state’s chirality is coupled to a FM spin polarization and



52 The checkerboard lattice magnet

the direction of the edge currents can thus be switched by a magnetic field, an alluring

property for quantum spintronics applications. Such a magnetic field would also tend

to suppress magnetic domains with opposite FM moment and chirality. However,

magnetic domains with opposite uniform ferromagnetic component would also be

very interesting, because the domain walls separating them are expected to provide

one-dimensional chiral transport channels. In addition, recent work has shown that

topological defects of the spin texture, e.g. Z2 vortices, carry electronic midgap states

representing fractionally charged excitations [109].

4.4 Results for general filling

4.4.1 Introduction

In the previous section we have focused exclusively on a specific density of itinerant

charge carriers, i.e. one electron per two sites. As advertised in the introduction,

results we also obtained for more general, mostly commensurate, electron fillings

and in this section we report and discuss these results.

As in the analysis so far, we assume that the localized spins are Heisenberg spins

with fixed length and can therefore point in any direction. It is worth considering

the case of Ising spins for the moment in order to get a feeling for the effect of dop-

ing charge carriers into the Coulomb phase. In particular, we will demonstrate that

within our framework of finite cluster MCMC, the magnetism induced by electrons

in the Coulomb phase is purely collinear. When the classical spins are restricted to

be collinear and are subjected to the ice-rule constraint by assuming JAF to be by

far the largest energy scale, each spin configuration can be regarded as consisting of

one-dimensional loops. This is a property of the Coulomb phase. As Ising spins may

point either up or down, the loops emerge as a collection of spins pointing in the same

direction and connected by bonds. Hence, a given spin configuration satisfying the

spin-ice rules may be equivalently specified by a loop covering of the lattice [90].

These loops may be thought of as the extended degrees of freedom of the Coulomb

phase. In the absence of electrons, properties of the peculiar magnetic Coulomb phase

can be elucidated by studying statistical characteristics of loop coverings [90]. Elec-

trons added to the systems of spins are constrained to move within these loops only,

as hopping between anti-parallel spins is not possible. Consequently, the electronic

energetics reduce to an effective one dimensional band dispersion. Specifically, a

loop of length N has energy levels

E(k) = −2t cos(ak), k = j × 2π/N, with j = 0, . . . , N − 1 (4.29)

which implies that short loops have a very discrete set of energy levels. The energy
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levelE = −2t always exists indepedent of loop lengthN and for a very low electron

density it is expected that each loop only hosts one electron in precisely this level.

The problem of Ising spins coupled to itinerant electons has been addressed by

Jaubert et. al. [91] who identified certain limiting cases where analytical arguments

can be employed to predict properties of itinerant electrons in the Coulomb phase.

Spins were explicitly taken to be Ising variables and the energy scales were chosen

such that the electron kinetic energy was much smaller than the Hund’s rule cou-

pling between electrons and localized spins, which in turn was assumed to be much

smaller than the anti-ferromagntic coupling between the spins. The ice-rule ~SP = 0
was therefore a priori enforced. Building on the approach outlined so far in this chap-

ter we investigate the question of what spin-electron ground states are stabilized as

function of the anti-ferromagnetic coupling JAFM and electron doping n. Employing

the hybrid scheme of MCMC and exact diagonalization (ED) of the fermions allows

for an unbiased test of the assertions and predictions that are based analytical argu-

ments. Whereas the latter are valid for general system sizes but do not always take

into account constraints imposed by the periodic lattice, the ED+MCMC approach is

limited to finite clusters and manifestly respects lattice constraints.

To clearly distinguish this work from the previous preliminary studies, we briefly

comment on the various parameters of the model. In this section we consider elec-

tron fillings n = p/q, by which we mean p electrons per q sites, and we study

the DE model on the checkerboard lattice as function of the anti-ferromagnetic cou-

pling JAFM. We define two general regimes, the “Coulomb phase regime” for which

JAFM ≫ t, and the “itinerant regime”, for wich JAFM ≪ t. In the itinerant regime

JAFM may not be strong enough to enforce the ice-rules and resulting spin state may

not be part of the set of loop coverings. As we have consistently done in this chapter

so far, we consider Heisenberg spins ~Si, as opposed to Ising spins. Consequently

we do not a priori restrict the spin states to consitute a collinear loop covering of

the lattice even in the Coulomb phase regime. Any state (or degenerate collection of

states), collinear or not, satisfying the ice-rules may be singled out by the electrons

as the ground state (manifold). We have already observed in the previous section

that at n = 1/2 electrons single out a non-collinear state as the ground state, which

nevertheless respects the ice-rules. As is reflected in the DE model, we continue

to assume a large energetic coupling between localized classical spins and itinerant

electron spins.

In what follows we present results for commensurate fillings n = 1/4 and n =
3/4, as well as n = 3/8 and n = 5/8. The dispersion of the checkerboard lattice

magnet is not particle-hole symmetric and hence n and 1−n need to be treated sepa-

rately. After having discussed these commensurate fillings we discuss the interesting

intermediate fillings.
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(a) (b)

Figure 4.5: The 2 different collinear spin arrangements for the case of n = 1/4
and n = 3/4 (colours indicate up and down) ; (a) spins around a non-crossed square

plaquette are FM, in such a way that the FM squares are decoupled from one another;

(b) spin state found for n = 1/4 at small JAF , FM squares are now crossed squares

and hence the “up” (and “down”) squares are no longer decoupled.

4.4.2 The n = 1/4 and n = 3/4 fillings

The most obvious filling to be considered beyond one electron per two sites is one

electron per four sites. For large JAF , the Coulomb phase regime, the spin state must

obey the ice-rule constraint ~SP = 0 and contribute an energy per site of −JAF . This

is confirmed by the numerical calculations, which consistently show a robust “loop-

crystal” phase consisting of an ordered arrangement of loops of length 4 only. The

term “loop crystal” is defined as a covering of the lattice of loops of equal length.

The two flavors of loops, i.e. up and down loops, are arrangemed in an Neel type

pattern, which is schematically shown in Fig. 4.5(a) The reason for the stability of

this state is the discreteness of the electronic spectrum in case of a 4-loop. Applying

the elementary formula (4.29), he eigenvalues are simply ǫ = {−2t, 0, 0, 2t} and with

one electron per chain it can occupy the E = −2t level. The density of states of this

state is shown on Fig. 4.2(e). This turns out to be the energetically most favorable

ground state even (and especially) for the case of n = 3/4, since the two additional

electrons can occupy the zero energy levels and the total energy is not raised. For

both fillings n = 1/4 and n = 3/4 we conclude from the numerical simulations

that 4-loop crystal is the unique ground state in the Coulomb phase regime. This is

consistent with the analytical result that at these fillings the lowest energy loop-crystal

is the one with loop length 4.

When JAF is lowered and we approach the itinerant phase, we find that the 4-loop

state is very robust for n = 3/4 and only gives way to the fully FM state very close to

JAF = 0. The situation is very different for electron filling n = 1/4, due to the inher-
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ent particle-hole asymmetry. At this electron filling, for small JAF , (JAF . 0.13),

we find a spin state similar to the 4-loop crystal, but with the loops residing on the

crossed plaquettes, see Fig. 4.5(b). One observes that in this way the loops of the

same flavor (up or down) are no longer decoupled but form a true 2D extended struc-

ture which resembles the so-called square-octagon lattice. The spin configuration is

therefore not a Coulomb phase loop covering of the lattice and explicitly breaks the

ice-rule. Note that this configuration corresponds to two disconnected 2D lattices on

which electrons can hop, one for up spins and one for down spins. Each. Each energy

level is therefore (at least) twofold degenerate. The density of states of this state is

shown in Fig. 4.2(e) and the energies are given by

E1(~k) = −1−
√
5 + 4 cos kx cos ky

E2(~k) = 0

E3(~k) = −1 +
√
5 + 4 cos kx cos ky

E4(~k) = 2. (4.30)

A simple observation suffices to conclude that electronically this state is more favor-

able than the 4-loop crystal state, in which the electronic energy per site is E/N =

−t/2 (energy per loop is −2t). By filling the lowest energy band E1(~k) the energy

per site E/N =
∫
dω ωD(ω) (D(ω) =

∑
k δ(ω − E1(~k))/N ) is strictly lower than

−t/2 as E1(~k)/4 ≤ −t/2, where the equality holds for ~k = (π, 0). This however

comes at a magnetic cost, as the spin state is not a loop covering satisfying the ice-

rules. A simple calculations shows that the magnetic energy per site is +JAF , which

is why this state is only stable for small JAF . We can obtain the value of JAF where

the transition should occur by equating the two expression for the energy per site

−1

2
t− JAF = JAF + 2 ·

∫ −2t

−4t

dω ωD(ω)

→ JAF = −1

4
t−

∫ −2t

−4t

dω ωD(ω) (4.31)

and from this we get JAF = 0.148, which is close to the value obtained from nu-

merical simulations. Elementary energetics are equally sufficient to conclude that the

state depicted in Fig. 4.5(b) does not show up at n = 3/4. Electrons would fill the

first three bands, leading to an electronic energy per site of −t/4, while the 4-loop

crystal is already more favorable electronically and in addition satisfies the ice-rules.

Our numerical simulations confirm that the extended spin state is absent from the

ground state phase diagram at n = 3/4. In fact, we find no other intermediate state

that interpolates between the Coulomb phase 4-loop covering and the fully developed
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Figure 4.6: Density of states corresponding to the l = 4 and l = 8 loop states. (left)

Plot of the densities of states of the two distinct spin configurations at filling n = 1/4.

In red: the decoupled l = 4 loops with discrete energy levels shown in Fig. 4.5(a).

In blue: extended 2D states originating from 4-loops on crossed plaquettes as shown

in Fig. 4.5(b). (right) Density of states corresponding to all states made up of l = 8
loops presented in Fig. 4.8

ferromagnetic state at JAF = 0. Evidence suggests that for any finite JAF the 4-loop

covering emerges as the ground state.

Before we continue to discuss the commensurate fillings n = 3/8 and n = 5/8,

we explicitly state the observation that in the Coulomb phase regime (JAF ≫ t) the

ground state is in fact a (collinear) loop covering over the lattice. Even though we

started with Heisenberg spins, which for n = 1/2 arrange themselves non-collinearly

in the presence of electrons, the ground state for n = 1/4 and n = 3/4 is collinear

and since it satisfies the ice-rule it must be loop covering. Hence we see the first

example of the itinerant electron-induced emergence of new degrees of freedom, the

1D loops with flavor index, out of a collection of Heisenberg spins.

4.4.3 The n = p/8 fillings

The next commensurate fillings we consider are part of the series n = p/8, where p is

integer. The cases p = 2, 4, 6 we have already treated and hence we focus on p = 3, 5
here. We first consider p = 3, 5. In the Coulomb phase regime where JAF ≫ t we

find the ground state configuration, both for n = 3/8 and n = 5/8, to be an l = 8 loop

crystal, i.e. a covering of the lattice by loops of length l = 8. Hence, similar to the

fillings n = 1/4 and 3/4 numerical evidence shows that the electrons induce a spin
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)b()a(

Figure 4.7: Two different realizations of l = 8 loops at fillings n = 3/8 and n =
5/8; (a) loop structure that we refer as type I, (b) loop structure of type II

configuration from loop covering manifold. On a perdiodic lattice the loop covering

must be compatible with the lattice geometry, which leads to a loop crystal. A loop

of length l = 8 has discrete energies ǫ = {−2t,−
√
2t,−

√
2t, 0, 0,

√
2t,

√
2t, 2t}

causing the electronic energy per site to be E/N = −t(1 +
√
2)/4 both for n = 3/8

and n = 5/8. Note that for these fillings the l = 8 loop crystal is energetically more

favorable than the l = 4 loop crystal. From the numerical simulations we find two

different realizations of the l = 8 loops, which are schematically depicted in Fig. 4.7.

In both cases, Fig. 4.7(a) and Fig. 4.7(b), we oberve that two loops of different flavor

necessarily come together and cannot be separated. The lattice is then covered by

pairs of l = 8 loops with opposite flavor. These two realization of l = 8 loops on

the checkerboard lattice differ from each other in the following way that is relevant

to the question of degeneracy of ground states. Taking the pair of loops depicted in

Fig. 4.7(a) we see that both a relfection in the x-axis and a relfection in the y-axis

changes the flavor of the loops. The spin-down loop is converted into spin-up and

vice versa. To fix nomenclature we refer to this pair of loop as type I. Instead, the

pair of loops in Fig. 4.7(b) is mirror symmetric with respect to reflection in the y-

axis. We comment on this disctinction in more detail below, when discussing the

degeneracies of the l = 8 loop crystal ground state manifold.

The electron fillings n = 1/8 and n = 7/8 are special in the sense that at these

fillings the l = 4 and l = 8 loops crystals are degenerate electronically. In case of the

l = 4 loops the two out of every four loops have the electronic state at energy ǫ = −2t
occupied, while for the l = 8 loops each loop has the ǫ = −2t level occupied. Even

more, precisely at these fillings is possible for the system to choose two loops of

length l = 6 and l = 10 instead of a pair of length l = 8. The number of loops is

conserved, which means that electronically the energy does not change. In addition,

such an arrangement is compatible with constraints imposed by the periodic lattice.

The question of ground state degeneracy becomes relevant for the fillings n = 3/8
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and n = 5/8, as there is an emergent symmetry of the ground state manifold asso-

ciated to the covering of the lattice with l = 8 loops. This emergent symmetry is

related to the fact that for a pair of intrinsically connected l = 8 loops, one may invert

the flavor index. How that works is best demonstrated by making use of Fig. 4.8(a,b).

Fig. 4.8(a) shows a piece of an l = 8 loop crystal where the pairs of l = 8 have been

arranged in a highly regular fashion. If one thinks of the loop covering as a covering

of entire rows, then one realizes that once the first row is fixed (i.e. covered), there are

two distinct choices for covering the second row. The choice which is alternative to

Fig. 4.8(a) is depicted in Fig. 4.8(b). In Fig. 4.8(b) the flavor of the loops in the sec-

ond row has been inverted, i.e. up and down loops have been flipped, and shifted so

as to satisfy the ice-rule constraint. We can define the process of going fro Fig. 4.8(a)

to Fig. 4.8(b) as flipping of one row of l = 8 loops. We observe that one may equiv-

alently have flipped a column instead of a row. It is however crucial to realize that

once a row (or column) has been flipped a sense of direction has been introduced and

even though one can still flip individual other rows (columns), it is not possible to

flip columns (rows) as they are no longer unambiguously defined. Consequently, the

emergent symmetry is defined as the arrangement of rows (or columns) with respect

to each other, i.e. the flipping, and connects two distinct states of the l = 8 loop

ground state manifold. As it involves one entire row (or column) this is a symmetry

operation intermediate between local and global in the same way as was observed in

case of the honeycomb lattice (see earlier this chapter). This emergent intermediate

symmetry hence causes degeneracy of the ground state manifold to scale exponen-

tially with linear dimensions of system size. If N is the number of atomic sites, the

degeneracy scales as ∼ 2
√
N .

We have already commented on the two distinct ways of forming pairs of insep-

arable l = 8 loops, which we labeled type I and type II for convenience. In the

previous paragraph it was implicitly assumed that only loop pairs of type I cover the

lattice (the focus on Fig. 4.8[a,b]). The observation remain valid however when al-

lowing for both types to occur in a loop configuration. It is nevertheless important

to make the distinction between the two, as l = 8 loops of type II immediately im-

ply a sense of direction. This is most easily understood from Fig. 4.8(c,d). In both

these schematic represenations of loop coverings both types of l = 8 loops occur.

It is straightforward to convince oneself that once loops of type II occur, as in the

second column of Fig. 4.8(c), the entire column must be of type II as it is impossible

to connect loops of type I and type II in one column without violating the ice-rule

constraint. Hence the orientation of loops of type II fixes a sense of direction. Conse-

quently, only columns can be flipped with respect to Fig. 4.8(c), as demonstrated in

Fig. 4.8(d) where the third column is flipped. In addition Fig. 4.8(c) shows that the

number of columns (or altnatively rows) of type II l = 8 loops must be even for a
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periodic lattice and the same is true for type I l = 8 loops. This follows from the fact

that in the third column of Fig. 4.8(c), the l = 8 loop pair has changed flavor, with-

out however the necessary translation by two lattice sites required for true flip. This

implies that for a loop crystal that is consistent with the ice-rule to exist, the linear

dimension of the system in one of the two orthogonal directions must be a multiple

of 8, while in the other direction it must be a multiple of 4. In other words, if Lx and

Ly are the number of atomic sites in the x, y directions, respectively, then Lx = 8l̃x
and Ly = 4l̃y or vice versa.

The numerical calculations at filling n = 3/8 and n = 5/8 provide clear evidence

for ground states that fall outside the class of Ising loop coverings of the lattice. While

in case of Ising loops of fixed length, l = 8 in case of the filling presently under con-

sideration, the loops are purely local objects and hence force electrons to be locally

confined, we find a spin configuration that is fully extended in one linear dimension

of the lattice, but nevertheless strictly degenerate with a local loop of length l = 8.

The spin configuration is depicted in Fig. 4.8(e), where again red (blue) indicates

spin up (down), i.e. pointing into the plane or out of the plane, but the black arrows

are in plane spins which are orthogonal to the up and down spins, instead of (anti-

)parallel. As a consequence of the orthogonality electrons can hop along the full

one-dimensional chain, here extended along the y-direction. It is quite remarkable

that the dispersion of electrons hopping along this particular one-dimensional chain

does not have any momentum dependence and leads to flat bands, which are located

precisely at the energies ǫ = {−2t,−
√
2t,−

√
2t, 0, 0,

√
2t,

√
2t, 2t}. We thus con-

clude that even though this spin configuration is a departure from collinearity, it is

nevertheless degenerate with it. We further observe that we may also define a “flip”

for this extended 1D structure, which corresponds to inverting the in plane spins, as

represented in Fig. 4.8(f).

To conclude the exposition of the results for n = 3/8 and n = 5/8, we focus on

the itinerant regime where JAFM ≪ t. As was the case for n = 1/4 and n = 3/4
there is a clear difference between n = 3/8 and n = 5/8. For filling n = 5/8 we find

no transition to a spin state that does not respect the ice-rule as JAFM → 0, except

for the fully spin polarized FM state at JAFM ∼ 0. Instead, and in line with results

for n = 1/4, we find that a spiral state is stabilized with spiral angle δφ = 2π/8 =
π/4. The spiral state is fully coplanar and breaks the ice-rule constraint. Due to the

coplanar nature we may specify the state by setting all {θi} angles π/2 and write the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Different spin states found for n = 3/8 and n = 5/8; (a) shows a spin

texture of l = 8 loops constructed by using only building blocks of type I; (b) spin

texture of type I l = 8 loops where we have “flipped” the lower row with respect to

(a); (c) spin texture of l = 8 loops that is built out of type I and type II chains, the

latter are shown in column 2; (d) same as in (b) but here we flipped the 3rd column; (e)

a spin state built out of type I and type III building blocks, the type III building blocks

is a infinite 1D loop consisting of up and down spins (blue and red) and spins in the

plane plane orthogonal to the up and down direction as shown in the 2nd column; (f)

same as in (e) but where the black planar spin pairs have been flipped.
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{φi} as

φ(2i,2j) = δφ(i + j)

φ(2i+1,2j) = δφ(i + j − 1)

φ(2i,2j+1) = δφ(i + j − 1)

φ(2i+1,2j+1) = δφ(i + j + 1) (4.32)

where (i, j) label the sites in the x and y direction respectively.

4.4.4 The intermediate fillings

Until now we have focused on the commensurate fillings n = p/8, whith p =
1, 2, 3, 5, 6, 7 and found from numerical calculations that in the Coulomb phase regime

the spin ground states belong to the set of loop coverings of the lattice. It is intrigu-

ing to depart from commensurability and look at electron densities which interpolate

between the commensurate densities. Here we will present numerical results ob-

tained for a specific density region, which is 1
4 ≤ n < 3

8 , and comment on densities
1
4 ≤ n < 3

8 . As we have observed the ground states to be loop coverings of the lat-

tice at commensurate fillings, it is natural to first consider the question which of the

loop crystals would be favored at intermediate fillings if the choice was only between

them. It is a simple matter to work out the energy per site ǫi(n) for loops of length

l = i (i = 4, 8) as function of filling. The two loop crystals are degenerate up to

filling n = 1/8, where the l = 4 loop crystal becomes lower in energy. At filling

n = 1/4 all −2t levels are filled for the l = 4 loops, while for l = 8 loops we may

keep filling the ǫ = −
√
2t levels up until filling n = 3/8, after which the energy

per site can not be further decreased by adding electrons. This can be more precisely

summarized as

0 ≤ n <
1

8
ǫ4(n) = ǫ8(n) = −2tn

1

8
≤ n <

1

4
ǫ4(n) = −2tn, ǫ8(n) = −1

4
tn−

√
2t(n− 1

8
)

1

4
≤ n <

3

8
ǫ4(n) = −1

2
t, ǫ8(n) = −1

4
tn−

√
2t(n− 1

8
)

3

8
≤ n <

1

2
ǫ4(n) = −1

2
t, ǫ8(n) = −1

4
t(1 +

√
2), (4.33)

and these density dependencies are graphically represented in Fig. 4.10(a) by the

green and blue solid lines. We stress that in the Coulomb phase regime, when spin

configurations are loop coverings, all these relations are particle-hole symmetric in

the sense that filling n yields the same results as 1 − n. With respect to the range
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1
4 ≤ n < 3

8 Fig. 4.10(a) shows that energies per site of the l = 4 loops and the l = 8
loops may be connected by a straight line which lowers the energy with respect to

both single loop length crystals. This Maxwell construction indicated that it is more

favorable to mix loops of length l = 4 and l = 8 in the intermediate region. A

mixture of loops of length l = 4 and l = 8 respects all lattice constraints, as two

l = 8 loops may be locally converted into four l = 4 loops. This was also noted

in Ref. [91]. Schematically the coexistance of both loop lengths is represented in

Fig. 4.9(a,b). The local conversion of loops may be understood from energetics by

starting from two l = 8 loops and removing one electron. Keeping the two l = 8
loops and depopulating one ǫ = −

√
2t level is then more favorable than creating four

l = 4 loops and populating the ǫ = −2t levels and one ǫ = 0 level. Removing another

electron shifts the balance towards the conversion into l = 4 loops. Consquently, the

conversion process is connected to the removal or addition of two electrons and hence

a total charge of 2e−.

It is interesting to observe that the ground states found from unbiased MC sim-

ulations are indeed mixtures of loops of length l = 4 and loops of length l = 8.

Fig. 4.10(a) shows that the energy per site obtained from numerical calculations is

precisely on the line interpolating between the two loop crystals. Monte Carlo snap-

shots confirm that spins states are mixtures of both loop states. Below we will discuss

this “phase separation” and ground state degeneracies related to it in more detail. Due

to the observed symmetry around half filling the conclusions hold for 5
8 ≤ n < 3

4 .

We have already mentioned that for n = 1/8 the spin states consisting of loops of

length l = 8 and l = 4 are degenerate. Even more, we observed that in principle two

l = 8 loops may be converted into loops of length l = 6 and l = 10, for which there

exists a consistent embedding into the periodic lattice. For the fillings below n = 1/8
the l = 8 and l = 4 loop coverings remain degenerate as decreasing the amount of

electrons amounts to depopulating the ǫ = −2t energy levels. In principle any loop

configuration that is compatible with the lattice constraints and has the property that

there are more loops than electrons is energetically equivalent.

4.4.5 Summary of results

We now summarize some of our key results.

A first key result is the fact in the Coulomb phase regime, where the magnetic

energy of the localized spins enforces the ice-rule constraint in the spins, we find the

spin states at general filling n to be loop coverings of the lattice. The loops are 1D
collinear chains of spins as up and down spins are disconnected from each other in

the sense that electrons cannot hop between them. This is different from the specific

filling n = 1/2, where spins organize in a coplanar orthogonal state leading to an

intrinsically 2D electronic state [110]. We thus observe that classical Heisenberg
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(a) (b)

Figure 4.9: Examples of patches of the collinear spin arrangements found for fillings

in between n = 1/4 and n = 3/8 (and also n = 5/8 and n = 3/4), (a) two 8-loops

have been converted into 4 4-loops, (b) a local flip has been performed to switch

the positions of the adjacent 4-loops and 8-loops: one example of the freedom to

distribute the 4-loops.

spins behave effectively as Ising spins on a checkerboard lattice when coupled to

electrons. Fig. 4.10(a) corroborates this observation graphically by showing that the

energy per site obtained from MC simulations indeed matches the energies per site of

the l = 4 and l = 8 loop crystal states. For pure AFM (classical) spin models on the

checkerboard lattice, the ground state manifold is infinitely degenerate. All states that

satisfy the ice-rule are energetically equivalent. In case of Ising spins the set of ground

states is given by all loop coverings of the lattice, and for Heisenberg spins such as

considered here the degeneracy is even larger. When coupling the spins to electrons

we observe that this degeneracy is lifted, to an extent which depends on filling. It

was already reported that for n = 1/2 a unique spin configuration is selected which

minimizes the electronic energy while respected the magnetic ice-rule. The same

degree of degeneracy lifting is found at n = 1/4 (and n = 3/4), where the l = 4
loop state is formed. This constitutes a unique state in the same way as the Neels

state is the unique ground state of the AFM nearest-neighbor Heisenberg model on

the square lattice. The situation is different for the commensurate filling n = 3/8
(and n = 5/8) which leads to l = 8 loop states. Here we found the degeneracy to

be proportional to linear system size (square root of number of atomic sites), as there

exists an emergent “symmetry” operation indermediate between local and global.

For electron densities between n = 1/4 and n = 3/8 where the mixture of l = 4
and l = 8 loops was found the degeneracy is even larger as the loop conversion

is a purely local process. This restores an extensive degeneracy of ground states

for these fillings which comment on more specifically below. For electron densities

n = 1/8 and smaller, where the l = 4 and l = 8 loops are fully degenerate, the

ground state degeneracy is bounded from below by the degeneracy of the l = 8
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Figure 4.10: Energy per site for two different values of JAF , (a) JAF = 0.8; (b)

JAF = 0.1. (a) Here the magnetic phases are dominated by the super-exchange

interaction and we find the 4-chains, 8-chains and the flux phase (the latter at n =
1/2), (b) for small JAF new phases show up only for n < 1/2 that do not have

magnetic energy −JAF per site; the electronic spectra have genuine 2D character.

MC results are shown for 12x12 lattice.

loop crystal. Ground states which are arbitrary mixtures of l = 4 and l = 8 loops

are energetically equivalent, the ratio between the two types of loops is however not

density controlled. In addition, for very low densities, other configurations become

accessible, as long as the number of loops exceeds the number of electrons and the

spin configurations respects constraints imposed by the lattice structure. A third key

result is the identification of spin states that are stabilized in the itinerant regime. We

have found that when the AFM superexchange between spin is decreased the ground

state spin configurations lead to an extended 2D electronic state. For filling n = 1/4
this is collinear state depicted in Fig. 4.5(b) and for n = 3/8 it is a coplanar spiral

state with spiral angle δφ = π/4.

A fourth key result is the observation that while in the Coulomb phase regime

where spin configurations are loop coverings and consequently n and 1 − n are

equivalent, in the itinerant phase densities n and 1 − n are not equivalent and the

particle-hole asymmetry of the checkerboard lattice manifests itself. It is remarkable

and surprising that for n > 1/2 no spin states that interpolate between the Coulomb

phase loops states and the fully polarized FM state occur. For n > 1/2 we find no

JAFM dependence on the ground states and conclusions valid in the Coulomb phase

remain valid down to JAFM ∼ 0.
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C H A P T E R 5

TOPOLOGICAL BANDS AND ORBITAL

DEGREES OF FREEDOM

5.1 Introduction

Investigating the repercussions of topology on the electronic states in condensed mat-

ter systems has a long and rich history. The Integer Quantum Hall (IQH) effect,

discovered [75] in 1980, was soon understood to be a profound manifestation of the

topological properties of the Landau levels. The quantized Hall conductance was

shown to be a topological invariant that classifies the ground state [16]. Later that

decade, Haldane [76] showed that the IQH state is not restricted to two-dimensional

(2D) electron gases in a strong magnetic field. It can also be realized in lattice systems

without Landau levels, by introducing electrons on a lattice with complex hoppings

that break time-reversal symmetry. In recent years, topologically nontrivial electronic

phases were moreover discovered in time-reversal invariant insulators [1, 3, 4, 72],

leading to the Quantum Spin Hall effect in 2D [6,7] and to the existence of protected

2D Dirac fermions on the surface of 3D topological insulators [12,111] and a related

quantum Hall effect [112].

These presently much studied 2D and 3D topological insulators are time-reversal

invariant lattice systems that can therefore be perceived as a further generalization

of the Quantum Hall states. The generalization of Fractional Quantum Hall (FQH)



68 Topological bands and orbital degrees of freedom

states, the fractional counterpart of the IQH states, was considered only very re-

cently [87, 108, 113]. Such a lattice FQH effect will be quite different from the

ordinary FQH in 2D electron gases, for instance requiring a variational wavefunc-

tion distinct from the Laughlin wave function [114–116], and it can occur without

magnetic field and potentially at high temperature [87, 108, 113]. Its realization in

a material system would offer an exciting prospect for quantum computation, since

the presence of non-Abelian FQH states allows for the creation of topologically pro-

tected qbits [117]. Creating the analogue of the FQH effect in a lattice system re-

quires the fractional filling of topologically nontrivial bands, which should be very

narrow [87,108,113], so that the electron-electron interactions can dominate over the

kinetic energy and induce FQH states [104].

The theoretical approach used to progress toward this goal so far relies on the

fine-tuning of the electron kinetic energy in model Hamiltonians containing bands

with the correct topological properties [87, 108, 113]. Such a flattening procedure

of the bands usually requires tuning (very) long-range hopping parameters to a set

of quite peculiar strengths, which in real materials represents a rather formidable

challenge from an experimental point of view.

We consider orbital degrees of freedom as an alternative agent for band flatten-

ing. Orbitals naturally occur in many transition metal (TM) compounds, which at

the same time feature strong electron-electron interactions [118]. We concentrate on

manganites, where Mn3+ ions are in a high-spin 3d4 configuration, with three elec-

trons in the more localized t2g states forming a spin of 3/2 and one electron in either

of the two more itinerant eg orbitals ferromagnetically coupled to this spin. Apart

from other 3d systems besides Mn, the versatile class of TM oxides also contains

4d and 5d materials with orbital degrees of freedom, of which ruthenates [119] and

iridates [120, 121] are important examples.

We will show that in the presence of a chiral spin texture, such an orbital make-up

leads to nearly flat topologically nontrivial bands. It is well established that geometric

frustration may stabilize non-coplanar spin-chiral magnetic textures when itinerant

electrons couple to localized spins [29–33]. The Berry phase acquired by the elec-

trons then leads to topologically nontrivial bands [30,31,78,85,97]. The pronounced

spatial anisotropy of the eg and t2g orbitals strongly affects the symmetry of hop-

ping integrals, even suppressing hopping completely along some directions.This can

result in very flat bands like the dispersionless bands found in several multi-orbital

TM compounds – a number of antiferromagnetic phases in cubic manganites are sta-

bilized by such a mechanism [122, 123]. Here, we report a strong orbital-induced

flattening of topological bands in spin-chiral phases on frustrated kagome and trian-

gular lattices, demonstrating that orbital degrees of freedom of transition-metal ions

generically provide a route to realizing a lattice version of the FQH effect. We also

present indications that residual interactions can then induce a FQH state.
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Figure 5.1: (a) Chiral spin ordering on the triangular lattice. (b) Spins forming a

regular tetrahedron, numbers refer to sites in (a). (c) Flux-phase state on the kagome

lattice. The unit cell is indicated by the dashed hexagon and the gauge choice by

arrows; a flux φ threads each triangle. (d) Nearest-neighbor hopping geometry in lat-

tices with triangular symmetry. Grey lines illustrate the oxygen octahedra, black front

facets illustrate the triangular geometry. Thick dotted, dashed and solid lines indicate

the bonds corresponding to the hopping matrices T̂1, T̂2, and T̂3. Two d3z2−r2 (top)

and dx2−y2 (bottom) orbitals are also shown.
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5.2 Chiral spin ordering

We first summarize the situation on the triangular and kagome lattices for mobile

charge carriers without orbital degrees of freedom in presence of a nontrivial spin-

texture. The Kondo Lattice Model, which describes the interaction between localized

(t2g) spins and itinerant (eg) electrons, exhibits a topologically nontrivial chiral spin

state on the triangular lattice [30–32]. This state has a four–sub-lattice ordering, il-

lustrated in Fig. 5.1(a) and a finite scalar spin chirality 〈~S1 · ~S2× ~S3〉 6= 0 for spins on

the corners of triangles. The situation then becomes equivalent to electrons hopping

on a triangular lattice with a fictitious gauge flux of φ = π/2 threading each triangle,

see Fig. 5.1. The effective electronic Hamiltonian has a two-site unit cell [30] and

two bands, with Chern numbers ±1, are separated by a gap. On the kagome lattice,

a staggered flux pattern, shown in Fig. 5.1, can result from topologically nontrivial

spin states, where a flux φ threads each triangle and a flux −2φ each hexagon [85].

Time-reversal symmetry is broken for φ 6= 0, π and two gaps open, leading to three

bands. The middle band has zero Chern number, but the lowest and highest are topo-

logically nontrivial withC = ∓sgn(sinφ) [85]. However, all topologically nontrivial

bands have a considerable dispersion on both lattices, which we will now show to be

substantially reduced by the presence of an orbital degree of freedom.

5.3 Orbital degrees of freedom

In many TM oxides, the TM ions are inside oxygen octahedra, which are edge-sharing

in a triangular lattice, see Fig. 5.1. The cubic symmetry splits the TM d levels into

three t2g and two eg orbitals. We focus mainly on the latter, but later also demonstrate

an analogous effect for the former. Collecting the eg orbital degree of freedom in a

pseudo-spin τz = ±1 object we write

|eg〉 =
[
|3z2 − r2〉
|x2 − y2〉

]
≡

[
|z〉
|x〉

]
. (5.1)

Along the ~a1 = (0, 1) direction, indicated by a dotted line in Fig. 5.1, hopping for eg
orbitals conserves orbital flavor and is given by t (t′) for the |x2 − y2〉 (|3z2 − r2〉)
orbital. This is captured by the hopping matrix acting on the orbital pseudospin

T̂1 =

[
t′ 0
0 t

]
. (5.2)

Hoppings along the other two bonds are obtained by a rotation in orbital space, which

are representations of real space rotations in pseudospin space. As the pseudospin
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Figure 5.2: Top: kagome lattice, bottom: triangular lattice. Left: bands of a strip

geometry, clearly showing the chiral edge states of the flattened bands. Right: off-

diagonal Hall conductivity as function of chemical potential, providing the Chern

numbers for the flat bands. For the Kagome lattice t′ = −0.46, ∆ = 2.75, φ = π/4
and for the triangular case t′ = −0.46, ∆ = 2.5.
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must transform as a real representation rotations over an angle θ are implemented by

the matrix e−iθτ
y

. Using this one may obtain for the other directions ~a2 and ~a3

T̂2 =
1

4

(
t′ + 3t

√
3(t′ − t)√

3(t′ − t) 3t′ + t

)
,

T̂3 =
1

4

(
t′ + 3t −

√
3(t′ − t)

−
√
3(t′ − t) 3t′ + t

)
, (5.3)

We use t as unit of energy and vary the material-dependent ratio t′/t between −1 and

1, concentrating on t′/t < 0 inferred from direct overlaps of the orbitals. For our

fillings of approximately one electron per site, the Jahn-Teller effect is important and

can induce a uniform crystal field

ĤJT = ∆(n̂x − n̂z) (5.4)

lifting orbital degeneracy.

Even though the spin pattern underlying the chiral spin state on the triangular

lattice has a four-site unit cell, the electronic Hamiltonian has only a two-site unit

cell and can thus be described by a 2 × 2 matrix if the original model is a one-band

model. [30] With an underlying multi-orbital Hamiltonian, this becomes a Hamilto-

nian matrix consisting of four blocks (H11(~k), H12(~k), H21(~k) and H22(~k)), where

the blocks refer to the lattice sites of the spatial unit cell and are matrices in orbital

space, leading to

H(~k) =

[
HJT +H11(~k) H12(~k)

H21(~k) HJT +H22(~k)

]
(5.5)

where the blocks are given by

H11 = −H22 = −2T̂1 cos(~k · ~a3), (5.6)

H12 = H†
21 = −2T̂2 cos(~k · ~a1)− 2iT̂3 cos(~k · ~a2)

The hopping matrices Ti are the 2 × 2 matrices Eq. (5.3) for eg electrons defined

above. The matrices HJT given by the crystal field refer to Eqs. (5.4). Figure 5.2

shows the energy bands calculated for a strip geometry, with periodic boundary con-

ditions in one direction and two edges in the orthogonal direction. For a large enough

crystal-field splitting ∆ > t, t′, a gap separates bands with different orbital char-

acter. Within each subsystem, chiral magnetic order induces a further splitting into

two topologically nontrivial bands with Chern numbers C = ±1. This is unambigu-

ously indicated by the topological edge states connecting the bands with C > 0 and
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C < 0 in Fig. 5.2(a). The transverse Hall conductivity σnxy is shown in Fig. 5.2(b)

and directly reflects the topological character of the bands. The Hall conductivity is

calculated as

σnxy = −i
∑

~k,m 6=n

〈m~k|Jx|n~k〉〈n~k|Jy|m~k〉 − h.c.

(En(~k)− Em(~k))2
f(En(~k)) (5.7)

where |n~k〉 are the eigenstates of the Hamiltonian (n being the band index) andEn(~k)
are the corresponding eigenvalues. The current operators Ji are obtained from

Ĵi =
∑

~k

ψ̂†(~k)
∂H(~k)

∂ki
ψ̂(~k). (5.8)

The topological character of the bands is related to the Hall conductivity by the iden-

tity

σnxy =
e2

h
Cn =

−ie2
2πh

∫

BZ

d2k Tr [Fxy]

=
−ie2
2πh

∫

BZ

d2k
∑

n∈occ

∂xAnn
y − ∂yAnn

x (5.9)

where Cn is the Chern number of the n-th band. The non-Abelian Berry connection

Amn
i is defined as

Amn
i = −i〈m~k|∂i|n~k〉, (5.10)

from which the field strength Fmn
ij is derived as

Fij = ∂iAj − ∂jAi + i[Ai,Aj ]. (5.11)

The gap between the topological bands is smaller in the upper ( x2 − y2) sector,

but robust between the two 3z2 − r2 bands below the crystal-field gap. The upper

band of the 3z2 − r2 sector with C = −1, has a weak dispersion, becoming nearly

flat for t′ ≈ −t/2, see Fig. 5.2(a). The figure of merit quantifying the flatness is the

ratio of the gaps M separating it from other bands to its band width W . Here we

monitor both the ‘topological’ gap (M+), which is induced by chiral order and the

‘trivial’ crystal-field gap (M−1), which separates it from the x2 − y2 sector above.

Figure 5.3(a) shows these ratios depending on t′ and ∆, the relevant figure of merit is

the smaller of the two ratios M+/W and M−1/W . It is appreciable in a broad range

of ∆ and t′, reaching a maximum of ∼ 4.25 for ∆ = 2.5 and t′ = −0.45.
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Figure 5.3: (a) The smallest band gap over bandwidth ratios for eg electrons the

triangular lattice, for the gaps M+ and M− indicated in Fig. 5.2(a). (b) The same

for t2g electrons on a triangular lattice and (c) for eg on the kagome lattice. Orbital

splittings are indicated by ∆.

In addition to eg orbitals we may also consider t2g orbitals. Collecting them in a

vector again we write

|t2g〉 =



|xy〉
|xz〉
|yz〉


 ≡



|a〉
|b〉
|c〉


 . (5.12)

The t2g-hopping matrices are given by the expressions

T̂1 =



t′ 0 0
0 0 t
0 t 0


 , T̂2 =



0 0 t
0 t′ 0
t 0 0


 , T̂3 =



0 t 0
t 0 0
0 0 t′


 , (5.13)

and consist of inter-orbital hopping t (primarily via ligand oxygen ions [124]) and

orbital-conserving hopping t′ due to direct overlap [125]. In a three-fold symmetry,

the t2g manifold is further split into one a1g and two e′g states separated by a crystal

field ĤJT. The crystal field related to elongating or shortening the octahedra is natu-

rally expressed in the {a1g, e′g+, e′g−} basis reflecting the triangular symmetry. It is

then explicitly given by ĤJT = ∆(n̂eg+ + n̂eg− − 2n̂a1g )/3, which can be expressed

in the original {xy, xz, yz} basis via the basis transformation defined in Ref. [125]

and becomes

HJT = −∆

3




0 1 1
1 0 1
1 1 0



 (5.14)
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Qualitatively, we find similar behavior as for eg orbitals, but the figure of merit

reaches M/W ≈ 14, see Fig. 5.3(b). This extraordinarily large M/W reflects the

very large spatial anisotropy of t2g hopping integrals, well-known in triangular vana-

dates [124] and cobaltates [125].

After discussing the triangular lattice, we now come to eg orbitals on the kagome

lattice illustrated in Fig. 5.1(b). The lattice has a three-site unit cell, and one proceeds

with an approach analogous to the two-site unit cell discussed above. The sublattices

of the kagome lattice are labeled as A, B and C, and taking the orbital degree of

freedom into account the fermion operator becomes

ψ̂†(~k) = (ψ̂†
Az(

~k), ψ̂†
Ax(

~k), ψ̂†
Bz(

~k), ψ̂†
Bx(

~k), ψ̂†
Cz(

~k), ψ̂†
Cx(

~k))

and the Hamiltonian is given by

H(~k) =




M0 M1 M†

3

M†
1 M0 M2

M3 M†
2 M0



 (5.15)

where the orbital matrices M take the form

M0 = HJT

Mi(~k) = 2T̂i cos(~k · ~ai)e−iφ/3. (5.16)

Bands are again separated by the crystal field into two parts with a different orbital

character, see Fig. 5.2. While the x2− y2 sector is hardly gapped, the 3z2− r3 sector

shows three sub-bands with C = 0,±1 similar to the one-band model [85]. Again,

the topological character can be inferred from edge states and is confirmed by the

Hall conductivity shown in Fig. 5.2(d) and as for the triangular lattice, the top band

of the 3z2 − r3 sector (with C = +1) is very flat for t′ ≈ −t/2. The figure of

merit M/W is plotted in Fig. 5.3(c); it reaches values up to ∼ 3.5 for ∆ = 2.75 and

t′ = −0.45, compared to W/M . 1 in the one-band model without orbital degrees

of freedom.

5.4 FQH state induced by residual interactions

After showing that orbital degrees of freedom can lead to flat bands with Chern num-

ber C 6= 0, we analyze the impact of Coulomb repulsion on the triangular-lattice eg
system. We include electron-electron interactions

Ĥint = U
∑

i

n̂ixn̂iz + V
∑

〈i,j〉,αβ
n̂iαn̂jβ , (5.17)
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depending on flux inserted for (a) U = 2, V = 1, and (b) U = 4, V = 2. The

ED results presented here were obtained for a 2 × 6 system with t′/t = −0.46 and

∆ = 1.5.

where n̂iα is the electron density in orbital α on site i, U acts on electrons occupying

two orbitals on the same site, and V gives the nearest-neighbor (NN) interaction.

It should be noted that the nearest-neighbor interaction V is defined on the original

underlying triangular lattice, i.e., the same interaction V acts both between the two

real-space sites of the same unit cell and between sites in different unit cells, if these

sites are nearest-neighbors on the triangular lattice. Following Refs. [104, 108], we

use Exact Diagonalization (ED) to study signatures of FQH-like states for a filling

1/3 of the topologically nontrivial flat band. When adding these interactions to the

Hamiltonian, we have to take into account thatU implies an additional energy cost for

electrons in the energetically higher x2 − y2 orbitals, thus changing the crystal field

splitting ∆. In our ED calculations, we therefore reduce ∆ from the value ∆ = 2.5
that would give the flattest band.

Exact diagonalization studies were only performed for the eg triangular lattice

model, because this case has the smallest unit cell of the models considered here.

Even so, only very small systems are accessible. We use Nx × Ny real-space sites,

giving Nc = Ns/2 = Nx × Ny/2 unit cells of the chiral phase, but Nsp = 2Ns
“generalized” orbitals determining the size of the Hilbert space. There is no spin

degree of freedom, i.e., we study spinless fermions. The filling is the one expected

to correspond to the simplest FQH state, i.e., ν = 1/3 filling of the nearly flat band.

Since this band is close to half filling, this also implies a total filling of 1/3, i.e., an

electron number of Ne = Nsp/3.

Due to the large number of “generalized” orbitals per unit cell and due to the

fact that our total electron filling is closer to half filling (which additionally increases
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Figure 5.5: Lowest energies of the interacting eg system on the triangular lattice for

the various total momenta of the 6× 2 lattice for a few parameter sets, t′/t = −0.46

the size of the Hilbert space), the lattice sizes accessible are considerably smaller

than for models considered previously. [104, 108] Since we need the total number of

sites to be divisible by 3 in order to obtain 1/3 filling and since we also want bot

Nx and Ny to be even, we consider a 2 × 6 “ladder” (Nc = 6, Nsp = 24). For

simplicity, we “distort” the triangular lattice and assume the x direction to lie along

~a1 and the y direction along ~a2 to be orthogonal, the third nearest-neighbor bond is

still determined by ~a3 = ~a1 − ~a2.

The Hamiltonian is invariant under translations, hence total momentum consti-

tutes a good quantum number. Figure 5.5 shows the lowest two eigenvalues within

the sectors corresponding to the total momenta possible on a 6 × 1 chain (the two

sites in y-direction define the two-site unit cell in real space), and one clearly sees

three low-energy states separated from the remaining spectrum by a gap. We find

an approximate threefold ground-state manifold, which is an indication for the topo-

logical degeneracy of a FQH state. The three “ground states” cross each other upon

inserting a magnetic flux [126], see Fig. 5.4. Adiabatic flux insertion is implemented

by dividing the total flux φ in smaller phases φ/Nx added to each hopping process,

which is equivalent to using twisted boundary conditions and preserves translational

invariance. This replaces the two hopping matrices whose corresponding lattice vec-

tors have a component along ~a1, i.e., T1 and T3 by T1eiφ/Nx and T3eiφ/Nx . Figure

4 in the main text shows the evolution of the ground state manifold as function of



78 Topological bands and orbital degrees of freedom

the inserted flux. The system assumes an equivalent, yet not identical, state after

one unit φ = 2π of flux is threaded through the system, meaning that states in the

ground state manifold have switched places. After 3 periods of flux insertion, where

3 corresponds to the inverse of the filling fraction, ν−1, with ν = 1/3, we recover

an identical situation as zero flux. This is in agreement with results for other mod-

els [105,108]. Figure 5.6 shows the same for various other parameter sets, indicating

that the behavior is stable. This level crossing of the degenerate many body ground

state manifold reveals the existence of the FQH ground state, provided that the spec-

tral gap persists in the thermodynamic limit, in order to unambiguously exclude a

charge density wave [105].

5.5 Discussion

The flattening due to the orbital degrees of freedom presented here can be further

enhanced by introducing and fine-tuning longer-range hopping integrals, as in one-

band models. Perfectly flat and topologically nontrivial bands (M/W → ∞) can in

principle be obtained by allowing for arbitrarily long-range hoppings [87]. We do not

explore this here, as we aim to show that the anisotropy inherent in d-orbital degrees

of freedom can robustly flatten topological bands even with purely NN hopping, and

obtain flattening ratios up to M/W ≈ 4 (M/W ≈ 14) for eg (t2g) systems.

Orbital degrees of freedom are directly relevant to numerous well-known TM sys-

tems. Manganese compounds alone, which closely correspond to the eg model stud-

ied here, occur in a variety of crystal structures: in simple cubic or square lattices in

La1−xSrxMnO3 and LaSrMnO4, honeycomb in e.g. Li2MnO3 or (Bi3Mn4O12)NO3

but also in strongly frustrated pyrochlore lattices as in e.g. Ti2Mn2O7 and in trian-

gular lattices as in YMnO3. The pyrochlore lattice, in particular, is realized by the

B-site TM ions in the very common spinel crystal structure, and can be thought of

as consisting of kagome and triangular layers stacked along the (1, 1, 1) direction.

Singling out the triangular or kagome layers, possibly via chemical substitution or

controlled monolayer growth, may thus lead to systems similar to the ones studied

here.

A FQH ground state needs an interaction V that exceeds the bandwidth (V > W ),

but remains smaller than the gap (V < M ) so that bands are not mixed. Fortunately,

TM oxides have substantial Coulomb interactions and NN repulsion V can become

as large as or larger than the hoppings. On the other hand, is is almost always smaller

than onsite repulsion, which increases one of the two gaps delimiting the flat band.The

remaining challenge is thus to keep the effective interaction small compared to the

gap separating the bands with C = ±1. A large figure of merit M/W provides a

large window for this separation of energy scales W < V < M and our ED results
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Figure 5.6: Lowest energies of the interacting eg system on the triangular lattice,

depending on flux inserted for various parameter sets. (c) and (e) are given in the

main text as Fig. 4(a,b). The ED results presented here were obtained for a 2 × 6
system with t′/t = −0.46.
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in Fig. 5.4 suggest that one indeed has some flexibility in this regard, as interactions

differing by a factor of two lead to similar results. The crystal field splitting needed to

obtain the desired flattening can be varied by applying (chemical) pressure. Finally,

many of these materials, manganites in particular, are easy to dope which allows

control of the (fractional) band filling.

Theoretically, there is no fundamental objection to the realization of lattice FQH

states, but it remains an intriguing challenge from an experimental and practical point

of view. We have demonstrated here that d-orbital degrees of freedom, ubiquitous in

TM compounds, substantially narrow the topologically nontrivial bands of electrons

moving in a background of non-coplanar spins. The separation of energy scales is

comparable to that achievable by long-range hopping, and we find signatures of a

FQH-like ground state. In the search for the lattice FQH effect, geometrically frus-

trated TM compounds with an orbital degree of freedom thus come to the fore as a

promising class of candidate systems.



C H A P T E R 6

t2g TRIANGULAR LATTICE SYSTEMS

6.1 Introduction

The Integer Quantum Hall (IQH) effect [75] is a prime example of an electronic

state that cannot be classified within the traditional framework of symmetry break-

ing, but is instead characterized by a topological invariant [16]. It is by now theo-

retically well established that an external magnetic field is in principle not needed

and that states within the same topological class as IQH states can be realized in

lattice models, if time-reversal symmetry is broken by other mechanisms, e.g., by

complex electron hoppings [76]. Related topologically nontrivial Quantum Spin-Hall

(QSH) states even occur in systems where time-reversal symmetry is not broken at

all [1, 3, 4, 72, 127], see Refs. [12, 111] for reviews. At present, many intriguing fea-

tures intrinsic to topologically non-trivial states have been observed in the absence

of magnetic fields, such as the metallic Dirac cones at the surface of a topological

insulator [74, 128], or the QSH effect in quantum wells [6, 112].

Fractional Quantum Hall (FQH) states [10] are topological states that can be seen

as composed of quasi-particles carrying an exact fraction of the elementary electronic

charge [114]. Apart from the fundamental interest in observing a quasi-particle that

behaves in many ways like a fraction of an electron, some FQH states also have

properties relevant to fault-tolerant quantum computation [129]. Very recently [87,
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Figure 6.1: Triangular perovskite lattice and t2g orbitals. Oxygen octahedra are indi-

cated by lines, with black lines illustrating the front facets. Thick dotted (dashed,

solid) lines indicate nearest-neighbor bonds along lattice vector a1 (a2, a3). (a)

Shows two dxy orbitals (top) and one dxz and dyz orbital (bottom). In (b), the orbitals

reflecting the three-fold lattice symmetry are shown: The two e′g orbitals (bottom),

which differ by their complex phases, will turn out to be half filled, while the a1g
orbital (pointing out of the plane, see top) forms nearly flat bands with non-trivial

topological character that can support spontaneous FQH states.

108, 113], it was suggested that lattice-FQH states [115] may similarly arise without

a magnetic field, in fractionally filled topologically nontrivial bands.

In contrast to the IQH and QSH effects, which can be fully understood in terms

of non-(or weakly-)interacting electrons, interactions are an essential requirement for

FQH states, which places demanding restrictions on candidate systems: One needs a

topologically nontrivial band that must be nearly flat – similar to the highly degener-

ate Landau levels – so that the electron-electron interaction can at the same time be

large compared to the band width and small compared to the gap separating it from

other bands [87,108,113]. If the requirements can be fulfilled, however, the tempera-

ture scale of the FQH state is set by the energy scale of the interaction. This can allow

temperatures considerably higher than the sub-Kelvin range of the conventional FQH

effect, which would be extremely desirable in view of potential quantum-computing

applications.

In all recently proposed model Hamiltonians [87, 106, 108, 113, 130, 131], the

topological nature of the bands was introduced by hand and model parameters were

carefully tuned to obtain very flat bands. On the other hand, topologically nontrivial

bands can in principle emerge spontaneously in interacting electron systems [84],

e.g., for charge-ordered systems [132] or for electrons coupling to spins in a non-

coplanar magnetic order [78, 133]. We demonstrate here that such a scenario indeed

arises in a Hubbard model describing electrons with a t2g orbital degree of freedom

on a triangular lattice: a ground state with topologically nontrivial and nearly flat

bands is stabilized by onsite Coulomb interactions, and upon doping the flat bands,

longer-range Coulomb repulsion induces a FQH state.
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6.2 t2g orbitals on the triangular lattice

The building blocks of our system are oxygen octahedra with a transition-metal (TM)

ion in the center, the most common building block in the large and versatile mate-

rial class of TM oxides. In this case the local symmetry around a TM ion is cubic,

with ligand oxygens forming an octahedron, as depicted in Fig. 6.2(a). This splits

the degeneracy between the d levels, because the two eg orbitals point toward the

negatively charged oxygens, while the three t2g levels have their lobes in between.

Consequently, the energy of eg levels is higher. Depending on the total electron fill-

ing, the valence states may be found in either manifold. We are here discussing the

situation where the three t2g levels share 2.5 to 3 electrons and the eg levels are empty.

Furthermore, we consider the case of a layered triangular lattice, as can be realized in

compounds of the form ABO2.

In this geometry, the octahedra are edge sharing and electrons (or holes) can

hop from one TM ion to its neighbor either through direct overlap or via the lig-

and oxygens. The hopping symmetries can be most easily worked out using the

usual basis functions for the t2g states, |xz〉, |yz〉, and |xy〉 [124, 125] and following

Refs. [134,135]. Considering hopping for bonds along the ~a1 direction and choosing

the local coordinate system such that this corresponds to the (1, 1) direction in the

x-y plane, one finds that direct hopping td is only relevant for the xy orbital and con-

serves orbital flavor. Due to the 90◦ angle of the TM-O-TM bond, oxygen-mediated

hopping t0 is, on the other hand, mostly via the oxygen-pz orbital and mediates pro-

cesses between xz and yz states, thereby always changing orbital flavor. Hoppings

along the other two, symmetry-related, directions ~a2 and ~a3 are obtained by symme-

try transformations.

These hoppings can then be expressed in orbital- and direction- dependent matrix

elements tα,β~aj
, where α and β denote orbitals (xz, yz, and xy) and ~aj the direction.

They are given by

T̂~a1 =




tdd 0 0
0 0 t0
0 t0 0



 , T̂~a2 =




0 0 t0
0 tdd 0
t0 0 0



 ,

T̂~a3 =




0 t0 0
t0 0 0
0 0 tdd



 (6.1)

for NN bonds along the three directions ~a1, ~a2, ~a3. The two hopping processes are

expected to be of comparable strength, but with |td| . |t0| for 3d elements, and will

typically have opposite sign. [125]

If the width of a triangular layer made of octahedra is compressed (extended),

the energy of the highly symmetric orbital state |a1g〉 = (|xz〉+ |yz〉+ |xy〉)/
√
3 is
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raised (lowered) with respect to the remaining orbital doublet (e′g), see Fig. 6.2(b) for

illustration. This energy shift can be written as

ĤJT = −∆JT(n̂eg+ + n̂eg− − 2n̂a1g )/3 (6.2)

and depends on the Jahn-Teller effect as well as on the lattice. [125] Especially for

large splitting between a1g and e′g states, which may also be enhanced through on-

site Coulomb interactions, see Section 6.3 and also 7.2, it is more appropriate to

use a basis that reflects the triangular lattice symmetry. We thus go over into the

(a1g, e
′
g,1, e

′
g,2) basis, which is done via [125]




a1g
e′g,1
e′g,2



 = Û




xz
yz
xy



 =
1√
3




1 1 1
1 ei2π/3 e−i2π/3

1 ei4π/3 e−i4π/3








xz
yz
xy



 . (6.3)

The transformed hopping matrices T̃~ai are then obtained from Eq. (6.1) as

T̃~a1 = Û †T̂~a1Û =
1

3




3t0 + δt δt δt
δt δt 3t0 + δt
δt 3t0 + δt δt



 ,

T̃~a2 = Û †T̂~a2Û =
1

3




3t0 + δt δt ω δt ω−1

δt ω−1 δt (3t0 + δt)ω
δt ω (3t0 + δt)ω−1 δt



 ,

T̃~a3 = Û †T̂~a3Û =
1

3




3t0 + δt δt ω−1 δt ω
δt ω δt (3t0 + δt)ω−1

δt ω−1 (3t0 + δt)ω δt



 , (6.4)

where δt = tdd − t0 and ω = ei2π/3. Observe that the intra-orbital hopping of the

a1g state is the same in all three lattice directions, as expected for a1g symmetry.

However, we also see that hopping elements mix all three orbitals. We set here n < 3
and choose t > 0 [125] as unit of energy, but analogous results hold for n > 3, t < 0,

and tdd → −tdd, ∆JT → −∆JT due to particle-hole symmetry.

6.3 Multi-orbital interacting model

In TM oxides, Coulomb interaction is substantial compared to the kinetic energy of

t2g orbitals and spin-orbital physics induced by correlations are known to be rich in

t2g systems on triangular lattices [124, 136]. We take into account the onsite inter-

action including Coulomb repulsion U (intra-orbital) and U ′ (interorbital) as well as
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(a) (b)

Figure 6.2: (a) Illustration of a triangular-lattice plane built of edge-sharing oxygen

octahedra. (b) The five d orbitals of the transition-metal ion in the center are split

into an eg doublet and a t2g triplet due to the local cubic symmetry; the latter is

further split into one a1g state and an e′g doublet. (The splitting between the latter is

exaggerated here for visibility.)

Hund’s-rule coupling J . The Hamiltonian corresponding to the kinetic energy of the

t2g electrons is given by

Ĥint =
∑

ij,αβ

tαβij ψ̂
†
iασψ̂jβσ + hc (6.5)

where the matrix tαβij depends on the direction and orbital flavor and is constructed

from the previously explicitly defined T̃~ai . The full Coulomb interaction interaction

for equivalent t2g orbitals reads

Ĥint = U
∑

i,α

n̂iα↑n̂iα↓ + (U ′ − J/2)
∑

i,α<β

n̂iαn̂iβ − 2J
∑

i,α<β

~siα · ~siβ

+J ′
∑

i,α<β

(
ψ̂†
iα↑ψ̂

†
iα↓ψ̂iβ↓ψ̂iβ↑ + hc

)
(6.6)

where U = U ′+2J and J ′ = J holds in the case of equivalent t2g orbitals. The spin

operators ~siα are defined as

~siα = ψ̂†
iασ~σσσ′ ψ̂iασ′ . (6.7)

We concentrate on the regime of interest, where the a1g orbital is separated from the

eg doublet by a sizable ∆JT and does not have to be equivalent. As long as intraor-
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bital interaction (controlled by U ) and Hund’s rule coupling (controlled by J) dom-

inate over interorbital interaction (U ′ − J/2) and crystal-field splitting (∆), doubly

occupied orbitals will be suppressed and the last term in Eq. (6.3) will consequently

not be important and hence neglected.

To study the magnetic and ordbital ordering of these t2g orbitals on the triangular

lattice we employ a mean-field approximation with a decoupling into expectation

values of densities 〈n̂iασ〉 = 〈ψ̂†
iασψ̂iασ〉 for site i, orbital α, and spin σ [30,137]. For

the interacting term ~siα ·~siβ the fact that we only keep densities has the consequence

that

−2J
∑

i,α<β

~siα · ~siβ → −2J
∑

i,α<β

ŝziαŝ
z
iβ . (6.8)

This apparent breaking of SU(2) invariance can be restored by defining the spin

quantization axis locally. The fact that the spin-quantization axis is not the same at

all sites implies that the hopping no longer conserves the new spin. Instead, hopping

acquires as spin-dependent factor tαβij → tαβσσ
′

ij = tαβij u
σσ′

ij , [28] with

u↑↑ij = cicj + sisje
−i(φi−φj), (6.9)

u↓↓ij = cicj + sisje
i(φi−φj), (6.10)

uσσ̄ij = σ(cisje
−iσφj − cjsie

−iσφi),

where σ̄ = −σ and ci = cos θi/2, si = sin θi/2 and the set of angles {θi} and

{φi} are the polar and azimuthal angles corresponding to {~si}, respectively. As one

can see, these effective hoppings can become complex, and it has been shown that

non-coplanar spin configurations can endow the electronic bands with a nontrivial

topology. [30,85] Additionally, the itinerant electrons mediate an interaction between

the localized spins, which typically competes with antiferromagnetic spin-spin inter-

actions; on frustrated lattices, this competition can resolve itself in non-coplanar –

and thus topologically nontrivial – phases [30–32, 100]. There is no reason for spins

in different orbitals, but on the same site, to point in different directions, as the only

interactions between spins are FM, i.e., we can use the same local quantization axis

for all orbitals, which is why we decomposed tαβij → tαβij u
σσ′

ij . In the case of doubly

occupied orbitals, one spin can be seen as lying antiparallel and from now on “↑”

(“↓”) denotes a spin parallel (antiparallel) to the local quantization axis.
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The mean-field decoupling then takes the specific form

U
∑

i,α

n̂iα↑n̂iα↓ → U
∑

i,α

〈n̂iα↑〉n̂iα↓ + n̂iα↑〈n̂iα↓〉 − 〈n̂iα↑〉〈n̂iα↓〉

(U ′ − J

2
)
∑

i,α<β

n̂iαn̂iβ → (U ′ − J

2
)
∑

i,α<β

〈n̂iα〉n̂iβ + n̂iα〈n̂iβ〉 − 〈n̂iα〉〈n̂iβ〉

−2J
∑

i,α<β

ŝziαŝ
z
iβ → −2J

∑

i,α<β

〈ŝziα〉ŝsiβ + ŝziα〈ŝziβ〉 − 〈ŝziα〉〈ŝziβ〉 (6.11)

Due to the last term Eq. (6.3), an electron in orbital β feels a FM coupling to a “clas-

sical localized spin” with length
∑

α6=β〈ŝiα〉 that points along the local quantization

axis.

6.4 Mean field phase diagram

We use numerical optimization routines to find the spin pattern with the lowest en-

ergy among all orderings with unit cells of up to four sites, including all patterns

considered in Ref. [31] of the main text. We search for mean-field solutions which

break translational symmetry such that the unit cell is either tripled or quadrupled. In

each step, the mean-field energy is calculated self-consistently for a lattice of 16× 16
(four-site unit cell) or 24 × 16 (three-site unit cell). (For selected points in param-

eter space, we also used larger lattices and did not find a significant difference.) In

order to minimize the impact of our approximations on the symmetries of the orbital

degrees of freedom, we perform the mean-field decoupling in the {a1g, e′g+, e′g−} ba-

sis, where the symmetry between the half-filled e′g+ and the quarter-filled a1g orbitals

(for the fillings discussed here) is already broken by the crystal field. We verified that

decoupling directly in the {xy, xz, yz} basis, where all three orbitals have the same

electronic density, leads to qualitatively identical and quantitatively very similar re-

sults.

For simplicity, we present here results for J/U = 1/4 and the relation U ′ =
U − 2J between the Kanamori parameters was used, but we have verified that the

results presented remain robust for other choices.

For wide parameter ranges (see below), the ground state is the non-coplanar spin-

chiral phase illustrated in Fig. 6.4(a,b). As demonstrated in the context of the Kondo-

lattice model [30, 31], this magnetic order leads to topologically nontrivial bands,

which can also be seen in the one-particle bands shown in Fig. 6.4(c). The chemical

potential lies within the a1g states of the lower Hubbard band, where the electron spin

is mostly parallel (labelled by ↑) to the direction defined by the spin-chiral pattern.
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Figure 6.3: Stability of the spin-chiral phase and flatness of the topological bands

depending on parameters of the Hamiltonian. In (a), shaded areas in the tdd-∆JT

plane indicate a spin-chiral ground state Fig. 6.4(a,b) for U/t = 12, white areas have

a different ground state. Shading indicates the figure of merit M for the flatness of

the upper chiral subband, bright thick lines bound the region with M ≥ 10. (b)

shows M depending on tdd for selected sets of U and ∆JT. Where the “Mott gap”,

which separates the flat topologically non-trivial band from the upper Hubbard band,

becomes very small, M is determined by the minimal gap separating the band of

interest from other bands. J = U/4 and t = 1 were used in all cases.

Dashed and dotted lines decorate states living on the top and bottom edges of a cylin-

der, they cross the chiral gap exactly once as one left- and one right-moving edge

mode, indicating the different Chern numbers associated with the two bands directly

above and below the chemical potential.

Figure 6.4(c) also indicates that the upper chiral subband has a very small width,

∼ 14 times smaller than the chiral gap. One can quantify the band flatness by a figure

of merit M given by the ratio of the gap to the band width. Its dependence on various

parameters of the Hamiltonian is shown in Fig. 6.3. It peaks at M > 40, but the

more striking observation is that it is above 5 or even 10 for wide ranges of U , ∆JT

and tdd, in contrast to many other proposals that require carefully fine-tuned parame-

ters [87, 104, 106, 108, 113, 130, 131]. Nearly flat chiral bands are thus very robust in

this system and both their topological character and their flat dispersion emerge spon-

taneously with purely onsite interaction and short-range hopping, without spin-orbit
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Figure 6.4: (Color online) Spin-chiral magnetic phase with topologically nontrivial

bands stabilized by onsite Coulomb interactions in t2g electrons on a triangular lat-

tice. (a) Chiral magnetic order, the sites of the unit cell are labeled by 1 to 4. (b) The

spins on the four sites can be seen as pointing to the corners of a tetrahedron, i.e., the

pattern is non-coplanar. (c) One-particle energies on a cylinder (periodic boundary

conditions along x) in the mean-field ground state of the t2g multiorbital Hubbard

model, which is given by the pattern shown in (a). States drawn in black (grey) have

more (less) than 33% a1g character, dashed and dotted lines indicates edge states with

more than 33% of their weight on the top (bottom) row of sites. The arrows ↑ (↓) in-

dicate states with electron spin mostly (anti-)parallel to the local quantization axis,

which can be seen as the lower (upper) Hubbard band. The filling is 2.5 electrons per

site, slightly less than half filling. Parameters used were t = 1, tdd = 0, U/t = 12,

J/t = 3, ∆JT/t = −6. The figure of merit M , which is given by the ratio of the gap

separating the two a1g subbands of the lower Hubbard band and the band width of

the highest subband of the lower Hubbard band, is M ≈ 14.
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coupling or any explicit breaking of time-reversal symmetry.

In order to understand the origin of the spin-chiral state, it is helpful to look at the

one-band Kondo-lattice model (KLM), which describes itinerant electrons coupled to

localized spins. The KLM supports spin-chiral phases because of frustration between

ferromagnetism (driven by double exchange, i.e., the kinetic energy of the electrons)

and antiferromagnetism (driven by superexchange between the localized spins) on

many frustrated lattices like the triangular [30–32, 100], pyrochlore [33], and face-

centered cubic [29] lattices. Our model can be related to the KLM by noting that the

half-filled e′g levels are far from the chemical potential and act as a localized spin to

which the electrons in the a1g orbital are coupled via Hund’s rule coupling. The anti-

ferromagnetic superexchange arises through excitations into the upper Hubbard band.

Consequently, it is suppressed by a larger Mott gap and the ground state becomes fer-

romagnetic for U & 24|t|, as in the KLM with a large Kondo gap [31,100]. In a large

window 6 . U/|t| . 24, the balance of kinetic energy and superexchange stabilizes

a spin-chiral ground state and flat bands with M > 5 are found for a window of

8 . U/|t| . 20.

Finally, we note that the fact that onsite interactions U and J are only large, but

not infinite, is important for the spin-chiral ground state: For very large U and J ,

the ground state becomes a ferromagnet. [107] This can be related to the fact that

the Kondo-lattice model requires either finite JKondo [31] or additional AFM inter-site

superexchange [32] to support a spin-chiral instead of a FM state. At finite onsite in-

teractions, virtual excitations with doubly occupied e′g orbitals are possible and lead

to second-order processes that are similar to the effective longer-range hoppings dis-

cussed above. In such a process, an e′g electron hops into an occupied e′g state at a

NN site, creating a (virtual) intermediate state with energy ∝ U + J ≈ U ′ +3J , and

hops back in the next step. Such a process yields an energy gain ∝ t2e′g/(U + J) and

is only possible if the spins of the two involved electrons, which occupy the same or-

bital in the intermediate state, are opposite. The mechanism thus effectively provides

the needed AFM intersite superexchange and the spin-chiral state becomes stable for

wide parameter regimes, including ranges supporting nearly flat upper chiral sub-

bands. [107]

6.5 Conclusions

The possibility of a spontaneous FQH effect without a magnetic field is currently

intensly discussed, and various models have been suggested [87, 104, 106, 108, 113,

130, 131]. In these proposals, the necessary topological character of the bands was

introduced by hand, the flatness of the bands needed fine-tuning and the underlying

lattices were often rather exotic; an experimental realization appears therefore chal-
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lenging. We have shown here that in strongly correlated t2g orbitals on a triangular

lattice, bands with the desired properties emerge spontaneously for wide parameter

ranges and support FQH ground states. Both t2g systems and triangular lattices occur

in various TM oxides, and signatures of the unconventional integer QH state have

been reported for a triangular-lattice palladium-chromium oxide [80]. This harbors

the prospect that a suitable material can be synthesized in this highly versatile ma-

terial class. As such a material is by default strongly correlated, one also naturally

expects an inter-site Coulomb repulsion that is strong enough to stabilize spontaneous

FQH states in the absence of a magnetic field.
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C H A P T E R 7

TRIANGULAR LATTICE FRACTIONAL

CHERN INSULATOR MODEL

7.1 Introduction

The Fractional Quantum Hall effect is one of the most peculiar and intriguing states

of matter. Discovered in 1982 [10], not very long after the Integer Quantum Hall

effect [75], it has continued to fascinate condensed matter physicists until the present

day. The key experimental characteristic of the integer quantum Hall effect is the

emergence of quantum Hall plateaus, plateaus in the off diagonal Hall conductivity

σxy as function of magnetic field at integer multiples of the quantum of conductance

e2/h, while the longitudinal conductivity vanishes. At particularly strong magetic

fields, plateau structures are observed at non-integer, i.e. fractional (for the purpose

of this chapter we will assume rational, p/q) values and these are known as the Frac-

tional Quantum Hall effect. While the integer effect can be understood purely in

terms of single-particle state physics (see also Chapter 1), its fractional counterpart

is a consequence of electron-electron interaction. Even more, as the degeneracy of a

magnetic Landau level scales with the magnetic field, in a very strong magnetic field

all electrons will be in the lowest Landau level (LLL) and the repulsive Coulomb

interaction will be the only remaining energy scale. Hence, even though superfi-

cially similar judging from their experimental signature, the integer and fractional
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Quantum Hall effect are fundamentally distinct, with the fractional QHE presenting

a much more difficult problem due to its quartic Hamiltonian structure.

The fascination with the Fractional Quantum Hall effect derives from its special

features as a rather exotic quantum state of matter. The fractional Quantum Hall state

constitutes an incompressible liquid, which sets it apart from states of matter that

are classified according to broken symmetries represented by a local order parame-

ter. An example of the latter, which naturally competes with the fractional Quantum

Hall state in the presence of strong electron repulsion, is the Wigner crystal, a charge

ordered state. The fractional Quantum Hall ground state is topologically ordered,

implying a ground state degeneracy which depends on the topology of the manifold

on wich it lives (torus, sphere, ect.). The FQH effective field theory is therefore

not of Ginzburg-Landau type, but is instead a topological Chern-Simons field theory

accounting phenomenologically for its physical characterics. In addition, the quasi-

particles of these states have fractional charge and obey anyonic statistics, [138, 139]

which can be either Abelian or non-Abelian, the latter fulfilling an essential condition

for fault-tolerant quantum computation. [129]. In particular these quasiparticle prop-

erties have attracted a great deal of attention and have triggered considerbable effort

in uncovering the deep physics of the FQHE.

As a consequence of the recent and tremendous surge in interest in topological

states of matter, caused by the discovery of topological insulators [12,111], new direc-

tions in fractional quantum Hall physics have been explored. In particular, since the

topological insulators can be regarded as generalizations of the quantum anomalous

Hall insulator, which belongs to the IQH universality class, the following question

presented itself: can the FQHE be generalized to situations where external magnetic

fields are absent and lattice effects cannot be ignored? This question was first ad-

dressed by [87,108,113]. In case of the continuum FQHE, Hilbert space is organized

according to the Landau level spectrum which originates from the magnetic field.

Adding interactions to the LLL yields the FQHE. In case of a lattice model described

by a tight-binding hamiltonian Ĥ the first prerequisite for any hope of a possible

generalized FQHE is the presence of isolated bands with nontrivial topology. Or,

in other words, the band structure corresponding to Ĥ needs consist of a band with

nonzero Chern numberC (see Chapter 1), separated from other bands by a full energy

gap. That such Hamiltonians exist in principle has been demonstrated already long

ago by Haldane in 1988 [76], but the past decade has witnessed an impressive effort

in devising proposals for realizing such a Hamiltonian in experimentally accessible

conditions. One such realization may be found in strongly spin-orbit coupled semi-

conductor materials that are ferromagnetically ordered [77, 82]. Another possibility

arises through the coupling of itinerant electrons to localized magnetic moments [85],

for example the Kondo-lattice model on the triangular lattice supports a non-trivial

magnetic texture, which induces an integer-quantized Hall conductivity of the itin-
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erant electrons [30]. Note that nonzero Chern number C immediately implies the

breaking of time-reversal symmetry, which is reassuring, as the uniform magnetic

field breaks time-reversal in the continuum.

While the above is unambiguously sufficient to generalize integer quantum Hall

physics to lattice systems without fields, fractional quantum Hall physics puts more

restrictions on potential generalization schemes. If we focus on a band that has

nonzero Chern number (is has become custom to call such a band Chern band), and

compare it more closely to a Landau level, we observe that the Chern band is gener-

ally dispersive, a Landau level however is perfectly flat, i.e. all single-particle states

have the same energy. This is of considerable significance, as it renders the interac-

tions to be the only energy scale of the problem en thus by definition the dominant

one. The interactions select the fractional quantum Hall liquid out of the macroscop-

ically degenerate manifold of single-particle states. Adding interactions to a Chern

band would seem to lead to a competition between kinetic and interaction energy

scales, which potentially spoils the emergence of a liquid state. Hence, in order for

the Chern band to mimick the Landau level as much as possible, one should require

the former to have a very small bandwidthW as compared to the interaction strength

V . To put it differently, minimally dispersive or flat Chern bands are expected to be

the best candidates for hosting a lattice FQHE. Furthermore, the ordinary FQHE is

most clearly observed in a strong magnetic field, which causes a large energy gap be-

tween Landau levels and concentrates all electrons in the LLL. Landau level mixing

is negligible. It would consequently seem natural to demand that that band gap ∆
which separates the Chern band from any other band is much larger than the interac-

tion energy scale V . Summarizing, the following hierarchy of energy scales would

need to be fulfilled to provide proper conditions for fractional quantum Hall physics

confined to a Chern band

∆ ≫ V ≫ W, F ≡ ∆/W ≫ 1. (7.1)

With this perspective in mind, the first studies of FQH generalization were un-

dertaken [87, 104, 105, 108, 113, 131, 140]. Chern insulator models with the correct

energy scale hierarchy were identified and first signatures of fractional quantum Hall

type physics were obtained with numerical methods. Starting from a Chern insulator

given by the non-interacting Hamiltonian

ĤCI =
∑

~K

ψ̂†
α(
~k)Hαβ(~k)ψ̂β(~k), (7.2)

interactions were added by including

Ĥint =
∑

ij

V αβij n̂iαn̂jα =
∑

~q

V αβ(~q)ρ̂α(~q)ρ̂β(−~q), (7.3)
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and the standard approach has been to isolate the Chern band explicitly and project

the interactions into that band. This requires normal ordering first and then pro-

jecting onto band n with corresponding energy En(~k), obtained afterdiagonalization

of the Bloch Hamiltonian H(~k). The eigenstates are |~k, n〉 = γ̂†n(~k)|0〉. The nor-

mal mode operators and orbital operators are related by a matrix U(~k) that contains

the eigenvectors of the matrix H(~k) in its columns, γ̂†n(~k) = ψ̂†
α(
~k)Uαn(~k) with

Hαβ(~k)Uβn(~k) = En(~k)Uαn(~k). The interaction becomes

Ĥint =
1

N

∑

~k,~k′

∑

~q

V αβ(~q)ψ̂†
α(
~k + ~q)ψ̂†

β(
~k′ − ~q)ψ̂β(~k

′)ψ̂α(~k)

=
1

N

∑

~k,~k′

∑

~q

V n1n2n3n4(~q,~k,~k′)γ̂†n1
(~k + ~q)γ̂†n2

(~k′ − ~q)γ̂n3
(~k′)γ̂n4

(~k) (7.4)

with

V n1n2n3n4(~q,~k,~k′) =
∑

α,β

V αβ(~q)U †
n1α(

~k + ~q)U †
n2β

(~k′ − ~q)Uβn3
(~k′)Uαn4

(~k). (7.5)

From the general form of this expression it is clear that the interaction contains in-

terband scattering events. With the separation of energy scales properly in place it

has become common practice to focus exclusively on the given Chern band n, ne-

glecting the its dispersion, i.e. En(~k) → En and keeping only the terms n1 = n2 =
n3 = n4 = n. This approach, which then lends itself to exact diagonalization (ED)

studies is in contrast to the method explained later in this chapter and implemented

in [107, 141]. In the final section of this chapter we discuss the numerical signatures

of FQH physics in these Chern insulators in somewhat more detail.

In the wake of these first steps towards a lattice generalization of the FQHE –

quickly dubbed the Fractional Chern Insulator (FCI) – the question of what consti-

tutes good Chern bands has been addressed in more detail. Is it just the hierarchy

of energy scales in a Chern insulator, or can and should one identify constraints of

an entirely different quality? This specific question was first considered by [142]

and soon after reconsidered by [143–145]. The central results of these works is the

derivation of constraint on Berry curvature fluctuations of the Chern insulator model.

The key idea is that in the continuum the density operators projected onto the LLL

satisfy the GMP algebra (see again Chapter 1) and in order to keep the analogy with

the LLL upright, the density operators of a Chern insulator projected into the (nearly

flat) Chern band, should obey an equivalent algebraic relation. The orbital dependent



7.2 Multi-orbital nearly flat band model 97

density operator is given by

ρ̂α(~q) =
1√
N

∑

~k

ψ̂†
α(
~k + ~q)ψ̂α(~k), (7.6)

and projecting this into the Chern band labeled by n, summing over α, gives

ρ̃(~q) ≡ P̂nρ̂(~q)P̂n =
1√
N

∑

~k,α

U †
nα(

~k + ~q)Uαn(~k)γ̂
†
n(
~k + ~q)γ̂n(~k) (7.7)

The central result obtained from aforementioned investigation of the algebraic rela-

tions of projected density operators is that in the long wave-length limit, i.e. ~q, ~w
small, and in cases when the Berry curvature may be approximated by its average,

the ρ̃(~q) satisfy

[ρ̃(~q), ρ̃(~w)] ≈ −i(~q × ~w) · ẑ 2πC

(2π/a)2
ρ̃(~q + ~w). (7.8)

This is identical to the long wave-length limit of the GMP algebra obeyed by pro-

jected density operators in the LLL. The crucial insight that the algebra of density

operators reveals, is that once the GMP is valid in the Chern band for long wave-

lengths, one may assume it to be valid at all wave-lengths in the thermodynamic

limit, thereby establishing an a posteriori correspondence between the FCI and the

FQH physics [142, 143].

Having discussed in considerable detail the prerequisites for FCI physics in Chern

insulators, we state the purpose and content of this chapter. Previous chapters have

demonstrated how nearly flat topological bands can arise in multi-orbital models of

correlated oxides. In this chapter we map the multi-orbital model onto an effective

single-orbital model, which nevertheless captures the essential features of the Chern

insulator and subsequently can be used for detailed numerical study into possible FCI

signatures. It will be argued that obtained triangular lattice Chern insulator shows

robust features of FCI physics.

7.2 Multi-orbital nearly flat band model

In previous chapters it was shown that both eg and t2g orbital manifolds in octahe-

dral coordination can reduce the bandwidth of topologically nontrivial bands. For a

schematic illustration of orbital degeneracy in d-electron systems see Fig. 6.2. In par-

ticular, this was discussed for the spin-chiral phase arising in Kondo-lattice models

on the triangular lattice at quarter and three-quarter fillings. While the flat band of
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interest mixes both the 3z2 − r2 and the x2 − y2 orbitals in the eg case, it is domi-

nated by a particular orbital state in the t2g manifold, the a1g state. We recall that the

trigonal crystal field splits the t2g manifold in an e′g-doublet and the nondegenerate

a1g level. The fact that the flat mean-field Chern band of the multi-orbital model has

predominantly a1g character suggests that one may capture the essential physics. The

program of this chapter is to systematically arrive at a simple Chern insulator model

that may be used for extensive numerical calculations probing its suitability as host

of FCI states. We will start from realistic multi-orbital models, in particular the band

structure obtained from the mean-field treatment of local Coulomb interaction terms,

as detailed in the previous chapter.

We focus exclusively on the t2g triangular lattice model. In addition to an orbital

degree of freedom, we consider coupling to a localized spin ~Si, modelled by a Kondo-

lattice model, where the kinetic energy is given by hopping elements tαβij taken from

the matrices Eq. (6.1) or Eq. (6.4). This situation is described by

Ĥ =
∑

〈i,j〉,σ
tαβij ψ̂

†
iσαψ̂jσβ − JKondo

∑

i,α

~Si · ~̂siα (7.9)

where α and β are orbital indices, ψ̂iσα (ψ̂†
iσα) annihilates (creates) an electron with

spin σ in orbital α at site i, and ~̂siα is the corresponding vector of orbital electronic

spin operators. JKondo couples the itinerant electrons to a generic localized spin ~Si, the

origin of which is left unspecified for the moment, but will be discussed extensively

later. (It will turn out to be the spin degree of freedom of the t2g electrons themselves,

as may be expected from 6). The coupling is assumed to be FM, as one would expect

from Hund’s-rule coupling. However, we are furthermore going to consider ~Si as a

classical spin, in which case AFM coupling to ~Si would lead to the equivalent results.

7.2.1 Integrating out the spin-degree of freedom

For classical spins and large JKondo, it is convenient to go over to a local spin-

quantization axis, where “↑” (“↓”) refers to parallel (antiparallel) orientation of the

electron’s spin to the local axis. This simplifies the Kondo term to

ĤKondo = −JKondo

∑

i,α

~Si · ~̂si,α = −JKondo

2

∑

i,α

(n̂α↑ − n̂α↓) , (7.10)

where n̂↑
α (n̂↓

α) is the electron density at site i in orbital α with spin (anti-) parallel to

the localized spin. This local spin definition is particularly convenient when going to

the limit of large JKondo, where one immediately finds the low-energy states as given

by only “↑” electrons.
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On the other hand, the fact that the spin-quantization axis is not the same at all

sites implies that the hopping no longer conserves the new spin. Instead, hopping

acquires as spin-dependent factor tαβij → tαβσσ
′

ij = tαβij u
σσ′

ij , [28] with

u↑↑ij = cicj + sisje
−i(φi−φj), (7.11)

u↓↓ij = cicj + sisje
i(φi−φj), (7.12)

uσσ̄ij = σ(cisje
−iσφj − cjsie

−iσφi),

where σ̄ = −σ and ci = cos θi/2, si = sin θi/2 and the set of angles {θi} and

{φi} are the polar and azimuthal angles corresponding to {~Si}, respectively. As one

can see, these effective hoppings can become complex, and it has been shown that

non-coplanar spin configurations can endow the electronic bands with a nontrivial

topology [30, 85].

In line with the approach extensive outlined elsewhere in this thesis, we may

assume strong coupling between the local moments and the itinerant electrons and

take the limit of infinite Hund’s rule coupling. In this case, one only keeps the ↑
electrons parallel to the local spin-quantization axis and electrons effectively become

spinless fermions. For the chiral spin pattern in Fig. 6.4, which has been found as

the ground state of triangular Kondo-lattice models [30–32, 100], the Berry phases

between the four sites of the magnetic unit cell can be parametrized as

u↑↑1,2 = u↑↑3,4 =
1√
3
, u↑↑1,3 = −u↑↑2,4 =

1√
3

(7.13)

u↑↑2,3 = u↑↑4,1 = −u↑↑3,2 = −u↑↑1,4 =
i√
3
.

Constructing the tight-binding hopping Hamiltonian from these effective hoppings of

the now effectively spinless fermions (which still have an orbital degree of freedom)

reveals that even though the unit cell corresponding to the spin configuration contains

four sites, the unit cell of the fermions can be reduced to two sites.

Combining the phases Eq. (7.13) with the hoppings given by Eqs. (6.1) or (6.4)

and the crystal-field splitting Eq. (6.2) still gives a non-interacting model that can be

easily solved in momentum space. One finds that large |∆JT|, see Eq. (6.2), strongly

reduces the dispersion of one subband. This can also be seen in Fig. 7.1(a), which

shows the one-particle energies obtained on a cylinder. Figure 7.1(a) also reveals the

edge states crossing some gaps, indicating the topologically nontrivial nature of these

bands. Calculating Chern numbersC corroborates this and gives C = ±1. The band

flatness can be expressed in terms of a figure of merit

F =
min(∆JT,∆c)

W
, (7.14)
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Figure 7.1: Flat lower chiral subband in the Kondo-lattice model with infinite Hund’s

rule coupling (double-exchange model). (a) Shows the one-particle energies of three

t2g orbitals coupled to localized spins, where the latter form a spin-chiral phase on

a triangular lattice, [30–32, 100] see Fig. 6.4. The system is a cylinder, i.e., periodic

boundary conditions along y-direction and open boundaries along x. The horizontal

axis is the momentum in the direction with periodic boundaries. The gaps ∆JT and

∆c denote the gaps due to crystal-field splitting EJT and to the chiral spin state. (b)

shows the figure of meritM , see Eq. (7.14), for the lower a1g subband. The curves for

crystal-field splittings EJT = 4, 4.5, and 5 were already given in Fig. 3(b) of Ref. [?]

and are repeated here for convenience.
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where ∆JT and ∆c are the two gaps separating the narrow band of interest from

the other orbitals and from the subband with opposite Chern number and W is the

width of the narrow band. As was pointed out in chapter 5, the lower subband can

here become very flat, and as can be seen in Fig. 7.1(b), the flatness can be further

improved by going to larger crystal fields and reaches values M ≈ 28.

7.2.2 Integrating out the orbital degree of freedom

As these very flat bands can be achieved for large separation EJT between the a1g
and e′g states and as the band of interest then has almost purely a1g character, it is

natural to assume that one should be able to capture the most relevant processes with

an effective a1g model. (This is in contrast to the situation starting from eg orbitals,

where one finds intermediateEJT to be optimal. In that case, the nearly flat bands can

only be obtained if both orbitals contribute weight and one cannot easily reduce the

situation to a one-band system.)

The impact of the e′g levels on the effective a1g dispersion can be taken into

account in second-order perturbation theory. This includes processes where a hole

hops from the a1g orbital at site i to an e′g state at j and back again to an a1g state

at a third site i′, which may or may not be the same as i. The denominator of these

terms is the crystal-filed energy EJT and the numerator is obtained from the products

T̃ abi T̃ baj + T̃ aci T̃ caj (with a designating a1g and b, c the e′g states). In order to evaluate

the second-order hopping between sites i and i′, these orbital hoppings have to be

multiplied by the product of the Berry phases u↑↑i,j and u↑↑j,i′ from Eq. (7.13) for all

paths connecting i and i′ via one intermediate site j 6= i, i′. Due to destructive

interference, processes connecting NN and next-nearest neighbor (NNN) sites cancel

while effective third-neighbor hopping, where there is only one path, remains. Since

third-neighbor spins in the chiral phase are always parallel, the total Berry phase

of this process is 1 in all directions, however, the hopping via a spin of different

orientation in the middle reduces the hopping amplitude by |u↑↑|2 = 1/3, leading to

t3 = −2(t0 − tdd)
2

27∆JT

. (7.15)

A third-neighbor hopping ∝ ∑
i cos 2

~k · ~ai turns out to have almost the same dis-

persion as the chiral subbands and can consequently almost cancel it in one subband.

As its strength can be tuned by tdd and ∆JT, very flat subbands can be achieved, see

Fig. 7.1(b).
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Figure 7.2: Figure of merit M , see Eq. (7.14), for finite Hund’s-rule coupling

JKondo/t0 and EJT = 6to. The bands designated as “upper” and “lower” refer to

the two subbands of the a1g states with spin parallel to the localized spin, which are

separated by the gap opening in the spin-chiral phase, see Fig. 7.1(a).

7.2.3 Mapping the mean-field solution to a Chern insulator

While the previous section has illustrated how one can understand the occurrence of

nearly flat bands in a three-orbital double-exchange model, i.e., for infinite Hund’s

rule coupling to some localized spins, this section will discuss finite Hund’s rule

and take the single-particle spectrum obtained from the mean-field calculation as a

starting point for deriving an effective hopping model. Figure 7.2 shows the figure

of merit for the band flatness Eq. (7.14) for a few sets of hopping parameters and

for ∆JT = 6t0 depending on Hund’s rule coupling JKondo to the localized spin, see

Eq. (7.10). As can be seen in Fig. 7.2, the upper subband of the a1g sector can

now become nearly flat. (For JKondo ≫ |∆JT|, one can of course still find flat lower

subbands, as discussed above.)

The flatness of the upper subband can be explained by similar effective longer-

range hoppings in second-order perturbation theory, this time also taking into account

intermediate states with an electron in the upper Kondo band, i.e. with antiparallel

spin. These additional terms can go either via the a1g or via the e′g orbitals and involve

combined Berry phases of the form u↑↓ij u
↓↑
ji′ . Again, one has to sum over all possible
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intermediate sites j and finds

t1 =
3t+ δt

3
+ 2

(3t+ δt)2

9

1

E2
− 2

δt2

9

1

E3
, (7.16)

t2 = 2
(3t+ δt)2

9

1

E2
− 2

δt2

9

1

E3
, (7.17)

t3 = 2
(3t+ δt)2

27

1

E2
+ 4

δt2

27

1

E3
+ 2

δt2

27

1

E1
. (7.18)

The NN, NNN and third-neighbor hoppings are here denoted by t1, t2, and t3. E1 =
∆JT, E2 = JKondo, and E3 = JKondo − ∆JT give the excitation energies of the in-

termediate states with (i) a hole in the e′g states with spin parallel, (ii) an electron in

the a1g states with spin anti-parallel and (iii) an electron in an e′g state with spin anti-

parallel. Like the bare NN hopping, these effective hopping-matrix elements acquire

an additional Berry phase u↑↑ii′ in the Hamiltonian, which only depends on the relative

orientation of spins on the initial and final sites. NNN hopping t2 via the upper Kondo

band does not drop out, and NN hopping becomes renormalized.

The flat chiral subbands that have been observed in a three-orbital t2g Hubbard

model on the triangular lattice [107] arise in situations similar to the finite-JKondo

scenario. Above we have shown that a mapping to the Kondo-lattice model can

be constructed and that the physics of the flat band is captured by taking the other

into account perturbatively. The key point of the mapping is the observation that

large crystal-field splitting ∆JT, see (6.2), leads to an orbital-selective Mott-insulator,

where the e′g levels are half-filled and far from the Fermi level, while the states near

the Fermi level have almost only a1g character. The orbital degree of freedom is

consequently quenched, because orbital occupations are already fully determined. A

charge degree of freedom remains, as the a1g orbital contains one electron per two

sites. Charge fluctuations of the half-filled eg levels, however, are suppressed due to

the large Mott gap between their occupied and empty states. They can thus be de-

scribed as a spin degrees of freedom, and the situation is further simplified, because

they form a total spin with S = 1 due to Hund’s rule. The a1g electron is likewise

coupled via FM Hund’s rule to this spin. This situation – mobile carriers coupled via

FM Hund’s rule to localized spin degrees of freedom – is well described by a FM

Kondo-lattice model.

7.3 Triangular lattice Chern Insulator

As we have discussed in the previous section, the most realistic route to nearly flat

bands with nontrivial topology on the triangular lattice arises at finite Hubbard/Kondo
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Figure 7.3: (a) Schematic illustration of the 4-site unit cell of the magnetic config-

uration on the triangular lattice where the the number labels correspond to the spins

represented in (b). (c) shows the effective single-orbital spinless model, which is that

of fermions hopping on the triangular lattice with each triangle threaded by a flux of

φ = π/2

coupling, where effective second-neighbor hopping is generated in addition to NN

and third-neighbor terms. However, the exposition in previous sections has demon-

strated that all essential features of the band structure can be captured by using just

NN and third-neighbor hoppings. As the purpose of this chapter was to arrive a sim-

ple Chern insulator model that both captures the essential features of a more realistic

multi-orbital model of correlated oxides, and meets all requirements for showing FCI

physics, we adopt the a1g model with NN and third-NN hopping for simplicity.

The essential ingredients for the triangular lattice Chern insulator model are spin-

less fermions coupled to an effective compact U(1) gauge field Aij . In other words,

the fermions hop in the presence of an effective flux threading the triangles. The

Hamiltonian of these fermions in momentum space is given by

HCI(~k) = 2t
∑

j

cos kj τ
j + 2t′

∑
τ0 cos 2kj , (7.19)

where~aj (j = 1, 2, 3) denote the unit vectors on the triangular lattice, kj ≡ ~k ·~aj , and

t and t′ are the NN and third-neighbor hopping, which can be related to Eqs. (7.13)

and (7.15) for the double-exchange scenario, to Eqs. (7.16) and (7.18) for finite onsite

interactions, or which can be taken as fit parameters. Pauli matrices σj and unit matrix

σ0 refer to the two sites of the electronic unit cell in the chiral state. The unit cell and

the topologically non-trivial bands are due to the symmetry breaking involved in the

underlying magnetic order. The dispersion of Eq. (7.19) is

E±(~k) = ±2t

√∑

j

cos2 kj + 2t′
∑

j

cos 2kj . (7.20)

Figure 7.3 shows pictorially how the lattice fermion model with fluxes is connected
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to the spin ordered state. As panel (c) indicates, the Berry phases coming from the

noncoplanar spins lead to a uniform flux arrangement that is equivalent to a uniform

magnetic field perpendicular to the lattice. This is in contrast to other Chern insulator

models which have a net flux of zero through the unit cell, while non-trivial fluxes

do thread the individual plaquettes. This distinction must be qualified with a note of

caution, however. On a lattice, the concept of “average” field is ill-defined, as one

may always thread elementary flux quanta through selected plaquettes, which cannot

change the physics, but does change the notion of net average field. In particular, in

the present case we may group the triangles in sets of four and thread a additional flux

of 2π through one of those four triangles, changing the plaquette flux to −3π/2 and

making the average field zero. With this remark in mind, we choose however to think

about this triangular Chern insulator model as fermions in a uniform magnetic field.

From this connection we may immediately deduce that the unit cell should contain

two atoms. The triangular lattice can be thought of as a square lattice with additional

diagonal hoppings. It is a well established fact for the square lattice that in a magnetic

field corresponding to flux φ = 2πφ̃, with φ̃ = p/q, the unit cell is q times larger. In

this case a square plaquatte (two triangles) has flux φ̃ = 1/4 + 1/4 = 1/2 and the

unit cell is doubled.

The Hamiltonian written in equation (7.19) is not in Bloch form, i.e. it does not

satisfy H(~k + ~G) = H(~k), where ~G is any reciprocal lattice vector. We wish to

bring our Hamiltonian to Bloch form in order to probe to what extent we may expect

this particular Chern insulator model to be a good candidate to host Fractional Chern

insulator states. The introductory section already provided ways to interrogate the

non-interacting Chern insulator model and will expand on that now. For convenience

we make use of the aforementioned equivalence between the present Chern insulator

model and lattice fermions on the square lattice in a magnetic field. The momentum

space Hamiltonian of such fermions can be written as

H(~k) = −t
[

2 cosky −i(TyTx + T ∗
y )− (1 + Tx)

i(T ∗
y T

∗
x + Ty)− (1 + T ∗

x ) −2 cosky

]
, (7.21)

with the definitions Tx = ei2kx and Ty = eiky . For details we refer the reader to

Appendix B, and to references [146,147]. As a consequence of the flux the reciprocal

lattice vectors of the magnetic Brillouin zone are ~G1 = (π, 0) and ~G2 = (0, 2π)
in units of the inverse lattice constant. By construction, see the Appendix B, this

Hamiltonian is in Bloch form.

In the introduction it was shown that fluctuations in the Berry curvature of the

band one wishes to address are expected to be critical for the potential emergence and

stability of FCI states resembles ordinary Fractional Quantum Hall states. We there-

fore calculate the Berry curvature of the occupied band of model expressed in 7.21.



106 Triangular lattice Fractional Chern Insulator model

0.5

−0.5
0

−0.5
0

0.5
1

ky/πkx/π

Fxy

-0.4

-0.2

 0

 0.2

 0.4

Figure 7.4: Plot of the Berry curvature in the rectified rectangular Brillouin zone of

the triangular lattice Chern insulator model given by Hamiltonian (7.21).

For a tight-binding approach such as in the present case, the most convenient way

to calculate the Berry curvature is borrowed from lattice gauge theory and was first

introduced in [148]. The great advantage is the manifest invariance under electron

wave function gauge transformations. This circumvents the cumbersome procedure

of dividing the Brillouin zone in patches and finding a smooth gauge on each patch.

If we take the lattice dimension in the i direction to beNy , then we define a Brillouin

zone grid ofNx×Ny. We let ~n ∈ ZNx ×ZNy represent a site on the grid correspond-

ing to momnetum ~k = (πnx/Nx, 2πny/Ny). Then we define the so-called U(1) link

variables as

Ai(~n) =
〈n, k~n|n, k~n+~ui

〉
|〈n, k~n|n, k~n+~ui

〉| , (7.22)

where i = x, y, ~ui is unit vector in the i direction and we write k~n to denote the

momentum ~k corresponding to the grid point ~n. The field strength, or the Berry

curvature, corresponding to these link variables is then expressed as

Fxy(~n) =
1

2π
Im ln Ax(~n)Ay(~n+ ~ux)A−1

x (~n+ ~uy)A−1
y (~n). (7.23)

One may for instance obtain the Chern number by performing a sum on ~n, i.e.

C =
∑
~n Fxy(~n), resembling the integral formula in the continuum. The Berry

curvature this obtained is presented in Fig. 7.4. The most prominent observation we

can make is that while there are fluctuations and the Berry curvature is not constant,

these fluctuations do not show any singular or sharp features. To qualify this state-

ment further we compare the Berry curvature of the triangular lattice CI to the Berry

curvature of a simple two-orbital square lattice CI model. The latter is captured by a
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Figure 7.5: Plot of the Berry curvature for the model in (7.24) for different masses

m: (a) m = 0.8, (b) m = 1.9

Hamiltonian

H(~k) = sin kxτ
1 + sin kyτ

2 + (cos kx + cos ky −m)τ3. (7.24)

Without discussing the physical content of this model in too much detail, we stress

that the parameter m, a mass parameter, controls a transition from a topologically

trivial regime to a topological regime with Chern number −sign(m). In particular,

at m = 2 the system is gapless and described by a low-energy Dirac theory. Close

to m = 2 m has the interpretation f a Dirac mass. For |m| > 2 the insulator is

trivial, i.e. C = 0, while for |m| < 2 the insulator has Chern number −sign(m). In

Fig. 7.5(a) and 7.5(b) we have plotted the Berry curvature for two different values of

m, namely m = 0.8 [7.5(a)] and m = 1.9 [7.5(b)]. The crucial observation to be

made here is the emergence of a singularity in the Berry curvature at the Dirac point

as the Dirac mass approaches zero (gapless state). Such behaviour would be expected

close to a topological phase transition and it is precisely such type of singular or

sharp behaviour that one wishes to avoid in a CI if it is to be a good candidate for FCI

physics. Indeed, atm = 0.8, far away from the Dirac regime the situation is similar to

our triangular lattice CI model, where deviations from constant curvature are present

yet smooth. In fact, all CI models that have come into view as good candidates for

FCI states on various lattices, have been shown to have Berry curvatures similar to

one shown in Fig. 7.4 [87,113,140]. One quantitative measure of the Berry curvature

fluctuations is to calculate the standard deviation of the Berry curvature, σFxy . We

find for the triangular lattice CI model σFxy = 0.061, which is very similar to values

reported for the by now highly popular kagome CI model, see for instance [149].

To conclude this section, we come to the energetics of the triangular lattice CI.

We return to the model expressed in equation (7.19) and we use the effective NN

hopping t as unit of energy; the band flatness can then be tuned by varying the ratio

t′/t.
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Figure 7.6: (a) Energy dispersion E(~k) for t′/t = 0.2. The inset shows the path

taken through the first Brillouin zone. (b) Flatness ratio M , see Eq. (7.14), as a

function of t′/t. The flatness ratio has been calculated from the dispersion along the

high-symmetry directions shown in the inset on the left.

The longer range hopping t′ determines the flatness of the bands of Hkin, which

can be expressed by the figure of merit M , see Eq. (7.14). Figure 7.6 shows M
depending on t′, and one sees that ratios M & 20 can be reached for t′ ≈ 0.2.

Such flatness ratios can reasonably be achieved in the low-energy bands of a strongly

correlated t2g system on a triangular lattice [107]. Changing the sign of t′ simply

mirrors the dispersion vertically, i.e. it is then the upper band that becomes nearly

flat. When going away from maximal M , the bands for smaller and larger t′ differ

qualitatively: For t′ < 0.2, the Fermi surface (FS) at some fillings is almost perfectly

nested.

7.4 Discussion and outlook

In the previous section we have developed and analyzed the triangular lattice Chern

Insulator model from a non-interacting perspective. We have addressed the question

to what extent this particular model fulfills the criteria for making a connection to the

continuum Landau level problem. In order to address the question whether ground

states of the CI model with interactions included actually resemble Fractional Quan-

tum Hall states one has to resort to numerical methods. The most prominent of such

numerical approaches is exact diagonalization (ED) of the Hamiltonian on a finite size

cluster. Another procedure in principle appropriate to study interacting CI models is

density-matrix renormalization group (DMRG) analysis, which to date has not been
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used extensively, however. In the introductory section we already mentioned that

to obtain FCI states the CI model is supplmented with density-density interactions,

which for the present triangular lattice CI may be taken simply as (see [107, 141])

Hint = V
∑

〈i,j〉
n̂in̂j . (7.25)

There are two basic implementations of ED which have been used to study FCI

states in lattice CI models. The most commen implementation uses single-particle

states labeled by momentum quantum number as basis states, whereas the other ap-

proach uses real space orbitals as basis states (see [149, 150] and references therein).

When using single-particle momentum eigenstates the kinetic part of the Hamilto-

nian is already diagonal and one needs to construct the interacting part in this basis

in order to diagonalize the Hamiltonian. As such it is analogous to ED studies of

the continuum problem, in which the single-particle Hilbert space consists of Lan-

dau orbitals labeled by angular momentum, and the Coulomb interaction is expanded

in this basis. Another approach is to use the real space orbitals corresponding to

the operators ψ̂i . In that case the interactions as given by equation (9.44) [or equa-

tion (7.3)] are diagonal and one needs to construct the kinetic part of the Hamiltonian

in this basis. The latter approach has been used in ED studies of the triangular lattice

CI [107,141]. A widely used simplification when working in single-particle momen-

tum space is to project out all but the flat band and in addition neglect the dispersion

of this band. Working in real space effectively forces to keep the full band structure

of the non-interacting CI and therefore allows to probe the interplay of energy scales.

In order to identify FCI states, i.e. states that are lattice analogs of the Fractional

Quantum Hall states, one looks for spectral features that are characteristic for the

Fractional Quantum Hall universality class. For instance, when the flat band is filled

with a filling fraction ν = 1/q, the ground state should be q-fold degenerate on the

torus. On the lattice this is necessarily a quasi-degeneracy, the splitting of the ground

state manifold should nevertheless vanish exponentially in the thermodynamic limit.

In addition, in this limit the gap to the excited state should remain finite. Another

probe of the FQH universality class is the response of the spectrum to a twist in

the boundary conditions. As this represents flux threading through the handles of

the torus, the ground state manifold should not be mixed with excited states upon

changing the twist angle. Quasi-degenerate ground states switch places as function of

inserted flux and are mapped back to themselves only after insertion of q elementary

flux quanta. As a specific example of these two probes of FCI states we present results

for the triangular lattice CI in Fig. 7.7 [107, 141]. The left panel, Fig. 7.7(a) shows

the energy spectrum as function of total momentum, which remains a good quantum

number in the presence of interactions. Three ground quasi-degenerate ground states
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Figure 7.7: FCI state induced by NN Coulomb repulsion V in the triangular lattice

CI model Eq. (7.19). (a) Energy depending on total momentum ~k for V/t = 1.0.

(b) Energy depending on a flux φy added whenever an electron goes once around the

whole lattice in y direction. Each addition of φ = 2π leads to an equivalent state,

6π to the same state. Lattice size is 4 × 6 sites (12 two-site unit cells), parameters

in Eq. (7.19) are t′/t = 0.2. The filling of the flat band is ν = 1/3. On the right a

pictorial representation of flux insertion by adding a phase eiφy/Ny or eiφx/Nx to the

hopping.

are clearly separated from the rest of the spectrum by an energy gap, as expected for a

filling of ν = 1/3. The right panel Fig. 7.7(b) shows the evolution of the ground state

energies as function of adiabatic flux insertion. The spectral flow, i.e. ground states

evolving into equivalent states after a single elementary flux quantum, only returning

to the same state after q = 3 flux quanta, is in agreement with the behaviour of FQH

states.

Yet another very powerful way to identify lattice analogs of FQH states is to

count zero modes (ground and quasi-hole states) per momentum sector [105, 143].

For FQH states the number of zero modes per momentum sector can be obtained

without diagonalizing the Hamtiltonian by just using the generalized Pauli princi-

ple applicable to the particular type of FQH state, e.g. Laughlin, composite fermion

(CF), Moore-Read, ect. If the ground and quasi-hole states found by diagonalizing

the FCI Hamiltonian are to be lattice analogs of the FQH states, they should obey

these counting rules, as they follow from universal principles. To illustrate how such

counting works for ground states we take the simplest case of a Laughlin state at fill-

ing ν = 1/3, system size Nx ×Ny = 4× 3 and number of electrons Ne = 4. There

are 12 total momenta and we organize them in a linear array with increasing jx, i.e.
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[(jx = 0, jy = 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), . . .]. The counting rule or

generalized Pauli principle applicable to this case dictates that no more than one elec-

tron can occupy three consecutive orbitals, respecting periodic boundary conditions

in j. There are three different ways of distributing 4 electrons over 12 orbitals re-

specting these rules. Summing the total momenta we obtain the three total momenta

(jx, jy) = (2, 0), (2, 1), (2, 2). Comparing this to the specific case of the triangular

lattice CI, such as presented in Fig. 7.7, which has the appropriate system size and

number of electrons, using that j = jx ·Ny + jy, we observe that the counting agrees

with numerical data.

We conclude this chapter by mentioning two features of Chern Insulator and Frac-

tional Chern Insulator models that clearly set them apart from the continuum Landau

level problem in an external magnetic field. In Chapter 1 it was demonstrated that

each filled Landau level contributes e2/h to the Hall conductivity and a Landau level

therefore has Chern number one. Chern insulators mimic this in the sense that an

electronic band has nonzero Chern number. While the Chern number of an elec-

tronic band in most CIs is indeed one, it is possible to construct a model in which

Chern bands have higher Chern number. These bands are topologically distinct from

Landau levels, as they differ in topological index. This allows for the possibility to

study Fractional Quantum Hall physics starting from a Chern band with higher Chern

number, a possibility which does not exist for magnetic field induced Landau levels.

A second intriguing generalization of ordinary Fractional Quantum Hall physics

is to consider Quantum Spin Hall insulators instead of Chern Insulators. For the

present purpose, a Quantum Spin Hall insulator may be thought of as two copies of

a Chern insulator, with opposite Chern character the spin-up and spin-down states

(assuming there is an invariant spin-rotation axis). Combining CIs in such a way

restores time-reversal invariance and adding interactions to a fractionally filled band

may lead to a time-reversal invariant analog of incompressible fractional quantum

Hall liquids.

These two examples of possible generalizations point to exciting potential of FCIs

to uncover new physics and lead to the discovery of new states of matter.
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C H A P T E R 8

INTRODUCTION

Interactions of various degrees of freedom such as for instance electronic, lattice

and spin degrees of freedom, are at the root of many intriguing phenomena in con-

densed matter physics. Interactions between electrons for example, can lead to metal-

insulator transitionswhich may occur in combination with magnetic or orbital order-

ing. Both electron-electron and electron-phonon interactions can cause electrons to

condense into a superconducting state, while (effective) interactions between spins

are the origin of a plethora of distinct magnetic phases.

The study of these phenomena and their relation to strong correlations has a long

and rich history. Depending on the energy scale of the electronic correlations as

compared to the electron itineracy set by the electron bandwidth, it is appropriate to

address the role of correlations either by treating the hopping of electrons as a pertur-

bation to the interacting problem which is solved first, or by assuming the electrons

in the vicinity of the Fermi surface to be perturbed by the repulsive interations be-

tween them. In the latter case the starting point is the non-interacting Fermi-liquid

ground state and the prime objects of interest are the Fermi surface instabilities to-

wards different types of electronic condensation driven by interactions. Charge or

spin density wave formation are both examples of particle-hole condensation, while

superconductivity originates from condensation of particle-particle pairs.

There are different ways to approach the investigation of electronic ordering ten-

dencies, i.e. the fate of the Fermi liquid when subject to interactions. Particularly in
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the weak-coupling regime, a mean field Hartree Fock approach is a well-suited first

step to study the effect of correlations at zero temperature. A multitude of different

schemes to subsequently include the effect of quantum fluctuations exist, all having

their own advantages and drawbacks. Other more advanced methods, such as various

incarnations of renormalization group schemes [151, 152], allow for an even more

general and unbiased search for possible Fermi surface instabilities. These theoreti-

cal methods are at the heart of understanding the complicated behaviour of materials

for which such (strong) interactions and multiple degrees of freedom are important,

sharing the basic philosophy of departing from the non-interacting Fermi-liquid and

then unraveling the electronic instabilities towards order. The insight such methods

provide has been been of great benefit for material classes and areas of condensed

matter as disparate as for instance high temperature superconducticity in the cuprates

or iron pnictides [153,154], multiferroics [155–157], Colossal Magnetoresistant man-

ganites [27, 28] and other complex oxides [158].

Quite a number of materials which exhibit interesting and complicated behaviour

due to strong electronic correlations have a layered and effectively two-dimensional

structure with square symmetry. One can think of the high-temperature cuprate and

iron-pnictide superconductors. However, prototypical systems with hexagonal sym-

metry, of which the triangular, honeycomb and kagome lattices are perhaps the most

prominent representatives, have also attracted increasing attention recently due to the

large variety of novel and unconventional interaction-driven electronic condensates

proposed in such systems. These include chiral superconductivity [159], uniaxial

and chiral spin density waves [30, 160–163] and chiral nematic phases [164, 165]. In

particular particle-hole condensation with nonzero angular momentum is an exciting

prospect in the context of hexagonal symmetry systems [165, 166].

The richness of the reported and anticipated phase diagrams derives from the ex-

istence of multidimensional irreducible representations with d-wave symmetry. The

components of these may be combined to give to rise to intricate phases. In addition,

lattices with hexagonal symmetry have a nested Fermi surface when doped to the

van Hove points of the band structure. The nesting vectors are the three inequivalent

M -point vectors of the hexagonal Brillouin zone (see Fig. 9.4), and the possibility to

have order parameters corresponding to different M -point vectors leads to a further

increase in complexity. The (near) nesting of the van Hove Fermi surface byM -point

vectors in combination with a diverging density of states is a feature common to tri-

angular lattice, honeycomb lattice and kagome lattice systems, suggesting a similarly

common phenomenology of electronic instabilities for these systems with hexagonal

symmetry.

The examples above highlight the importance of both electron correlation and

symmetry to explain and understand the electronic properties of complex materials:

electron correlations are the driving force behind a strikingly diverse collection of
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electronic ordered states, while symmetry shapes the playing field of electronic or-

dering.

The aim of this paper is to explore these concepts in the context of a branch of

condensed matter physics where electronic interactions are not immediately respon-

sible for the physical effects under study, the field of topological states of matter,

in particular the field of the topological insulators [1–5, 12, 111]. Topological in-

sulators are electronic insulating states which are distinct from ordinary insulators.

Ordinary insulators are materials which can in principle be adiabatically turned into

an atomic insulator, where every atom is uniquely associated to an atom and there-

fore cannot move. Topological insulators are bulk insulators which have conducting

edge or boundary modes, the presence of which directly follows from the topological

character of the insulating state and is captured by a topological quantum number, i.e.

a topological invariant. The physics of topological insulators can be understood by

relying simply on non-interacting electron band theory: the topological character of

an insulator is determined by and calculated from the single-particle electronic band

structure [1–5]. The most prominent class of materials unambiguously identified as

topological insulators both in theory and experiment is that of semi-conductors with

strong spin-orbit coupling [12,111]. The formation of a topologically insulating state

can, however, also be driven by electron-electron interactions in the sense that inter-

actions induce particle-hole condensation with a topologically nontrivial condensate

mean field band structure [84]. Such a scenario has been considered in case of the

two-dimensional (2D) honeycomb [84, 167, 168], kagome [169, 170] and checker-

board lattices [86], as well as the three-dimensional (3D) diamond lattice [171].

In 2D there are two distinct topological phases which may be dynamically gener-

ated by interactions, a Quantum Anomalous Hall (QAH) state and a Quantum Spin

Hall (QSH) state. The former requires the absence of time-reversal symmetry, while

the latter requires the presence of time-reversal symmetry in addition to the (partial)

breaking of spin rotation symmetry.

Even though topological insulators are classified based on a topological invari-

ant instead of a local symmetry-broken order parameter, symmetry is nevertheless

of great significance for the classification of topological states, as symmetry dictates

which type of topological invariant may or may not be nontrivial. The QSH state, for

instance, is an example of a symmetry-protected topological state, i.e. a state which

requires the presence of a symmetry to make its distinction from a topologically triv-

ial insulator meaningful. Indeed, the QSH state cannot be adiabatically deformed to

the trivial (atomic) insulator without closing the energy gap, provided time-reversal

symmetry is preserved. For interaction-induced insulators this implies that the sym-

metry of the condensate order parameter will is decisive for the possibility of the

insulator to be topologically nontrivial. Apart from time-reversal symmetry, other

symmetries such as point group symmetries can play a key role [172]. This makes
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the symmetry characterization of electronic condensates a prerequisite for identifying

interaction-induced topological insulators, which is the goal of the rest of this paper.

In addition to the topological insulators, there is a class of topological states of

matter called topological semimetals. These are electronic states with band structures

exhibiting isolated touching points of two bands in momentum space. In 3D such

semimetals are referred to as Weyl semimetals [173–176], as the electronic spectrum

disperses linearly at the degeneracy points and the low-energy description of elec-

trons takes the form of a two-component Dirac equation called the Weyl equation.

This means that the degeneracies, i.e. the Weyl points, must come in pairs which are

separated in momentum space. In 2D there exist two prominent types of topolog-

ical semimetallic states. The first is the 2D version of the Weyl semimetal, i.e. a

pair of linearly dispersing Weyl nodes separated in momentum space. The other is a

single degeneracy with quadratic dispersion close to the degeneracy, which is charac-

terized by a nonzero topological winding number when going around the degeneracy

in momentum space [177]. Such a degeneracy is generally called a quadratic band

crossing (QBC) point. In 3D the Weyl points are robustly protected as long as they

remain separated in momentum space (momentum must be a good quantum number)

since the topological invariant protecting each node does not require the presence

of symmetries to be well-defined. In contrast, in two dimensions additional sym-

metries are required to protect the degeneracy which defines the semimetal, as no

meaningful topological numbers can be defined without a symmetry constraint. The

latter may come from the familiar time-reversal, particle-hole or point group symme-

tries. Interestingly, it was shown recently in the context of the simple square lattice

that previously unnoticed symmetries, in particular combinations of translations and

point group elements, can also protect a topological semimetallic state [178].

This establishes yet another crucial link between correlation-induced electronic

states and symmetry. The symmetry of the order parameter will determine whether

or not a given ordered state can protect spectral degeneracies defining a topologi-

cal semimetal. A simple and well-known example of precisely such a semimetallic

state is the square lattice dx2−y2-density wave (DDW), believed to be relevant for

cuprate pseudogap physics, which induces a pair of Weyl points in the condensate

spectrum. Having identified which symmetry or combination of symmetries protects

the semimetal, be it a 2D Weyl semimetal or a QBC, gives insight into the effect

of the breaking of such symmetries on the low-energy description. Dirac nodes and

QBC points may be gapped out by masses, and a QBC point may be split into two

Dirac points. It is a very interesting and relevant question to what extent symmetries

and symmetry breaking by itself determine the fate of these particular semimetallic

states.

Motivated by these considerations, i.e. (i) the increasing attention focused on

unconventional exotic electronic orders, (ii) their potential for hosting topologically
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nontrivial states such as topological insulators and topological semimetals, and (iii)

the key role played by symmetry, we set out to systematically investigate and orga-

nize all possible interaction-induced electronic orders of the two dimensional square

lattice and the three prime hexagonal lattices based on lattice symmetry. We focus

on condensates of particle-hole pairs only, i.e. density waves of the form 〈ψ̂†(~k +
~Q)ψ̂(~k)〉 [166], and consider finite but commensurate ordering momenta ~Q, which

lead at most to quadrupling of the unit cell. In the present work we restrict ourselves

to 2D. The result of systematically organizing density wave orders in terms of basis

functions of point group representations, employing the machinery of group theory,

may be concisely summarized as follows. It provides a comprehensive and unified

framework to predict and uncover (i) the possibilities for topological Mott insulating

states and topological semimetallic states, and (ii) the effects of symmetry breaking

condensation on the low-energy spectrum.

Considering the length and scope of the present work, it may be helpful to the

reader to have a clear description of the organization of the paper, in addition to a

summary of the main results presented in this work. This will be provided in the next

section. We stress that in this work we do not aim to show or prove that any particular

density wave state is the ground state of any particular model. Instead, our aim is

to guide and complement such studies by identifying possible states which can and

cannot arise due to interactions and their properties, on the basis of symmetry. The

density waves of particle-hole condensed pairs that will be presented in this work are

therefore candidates for variational ground states in specific models, in addition to

being interesting objects of study in themselves from the viewpoint of symmetry and

topology.

8.1 Overview

In this part of this thesis we present a symmetry perspective on density wave orders in

two dimensions. In this section we give an overview of the organization of the paper

and we familiarize the reader with the main results and conclusions of this work.

The key idea behind the symmetry perspective developed in this work is to orga-

nize different types of density wave order, i.e. site order, bond order and flux order,

according to their transformation properties under point group operations or extended

point goup operations. Extended point groups are obtained from the ordinary point

group by including the effects of translational symmetry breaking and unit cell en-

largement. Since we anticipate the breaking of translational symmetry by condensa-

tion at finite ordering vector, we must resort to extended point groups for a proper

description of lattice symmetry breaking. The extension of a point group is generated

by adding the translations which are no longer invariant translations to the rotations
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and reflections of the “bare” point group. Extended point groups only depend on the

symmetry class of a given lattice (defining the bare point group), and the ordering

vectors ~Q, as the latter determine the group of invariant translations. Density wave

states can then be organized as basis functions of irreducible representations of the

extended point group. For any specific lattice it is possible to find all irreducible rep-

resentations contained in the enlarged unit cell, for each of the three types of order, by

simply using elementary tools of group theory. This yields a symmetry filtered list of

possible orderings [see for instance equations (9.88)-(9.90), or (9.131)-(9.136)]. The

main purpose of the present work is to find out how much insight into the electronic

properties of density waves can be derived from such an organization.

Let us illustrate the idea of such an organization here by considering an example

of bond order on the square lattice. Assuming a quadrupling of the unit cell due to

density wave modulations, the enlarged square lattice unit cell contains eight bonds.

This implies eight distinct bond density waves and we will see in Section 9.3 that

these are grouped in 1D and 2D representations. For instance, one such 2D repre-

sentation corresponds to a doublet of bond order waves characterized by alternating

weaker and stronger hoppings in the x and y directions [166]. In case of the x direc-

tion the density wave can be expressed as

〈ψ̂†
σ(
~k + ~Q)ψ̂σ′ (~k)〉 = i∆px sin kxδσσ′ , (8.1)

where σ (σ′) label the spin degree of freedom, ∆px is the order parameter or the

strength of density wave, and ~Q = (π, 0). Under a fourfold rotation this state trans-

forms into the state with sinky on the right hand side and momentum ~Q = (0, π) on

the left hand side. These two states, conveniently labeled px and py , are the partners

of a 2D representation of the extended point group. Note that under a translation

over one lattice constant in the x direction, the px state is odd, while the py state is

even. This is what gives the two px and py density waves the interpretation of basis

functions of irreducible representations of the extended group.

If we think of these two density waves as basis functions of a particular repre-

sentation, we realize that nothings prevents us from choosing a different basis, i.e.

performing a basis transformation on these basis functions. Using the labels px and

py , we could express a possible change of basis intuitively as px → px + py and

py → px − py . As the density waves px and py transform into each other under

rotations, combining them in some way gives the hope that the combination is in-

variant under rotations, or at least even or odd under bare point operations. Whether

or not such a combination exists follows directly from group theory in the following

way. If we for the moment call the representation of the extended point group px and

py belong to E, then we can ask how E decomposes in terms of representations of

the bare point group, which is a propor subgroup of the extended one. If E decom-
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poses into two 1D irreducible representations of the bare point group, the answer is

yes, such a combination exists. In the present case, the answer is indeed affirmative,

and skipping ahead to Fig. 9.3(a)-(b) will show these specific density waves. An ex-

ample of an extended point group doublet for which such a decomposition does not

exist is obtained from equation (8.1) by simply substituting the ordering momentum
~Q = (π, π) for both sin kx and sinky . These density waves will be discussed in

more detail in Section 9.3.1. In organizing the density waves according to symme-

try, we will consistently seek to write density wave states in a basis which respects

the subdivision of extended point group representations into distinct bare point group

representations. We will elucidate the physical meaning of such a subdivision.

The great advantage of group theory is that one can obtain the symmetry of den-

sity wave states without the knowledge of explicit expressions such as equation (8.1).

By simply applying representation theory one can find the distinct density waves and

their symmetry properties, and we will argue and show in this work that this informa-

tion alone is sufficient to make strong statements with regard to the electronic proper-

ties of the density waves, such as for instance a symmetry-mandated correspondence

to a Dirac mass in the low-energy description of the (mean field) electronic structure.

In this paper we apply this scheme of listing density waves by extended point

group symmetry to four lattices, the square lattice and three lattices with hexagonal

symmetry, i.e. the triangular, honeycomb and kagome lattices. In all those cases we

distinguish three kinds of possible orderings, which are site or charge order, bond

order and flux order. Site order and bond order refer to a modulated redistribution of

charge between lattice sites, ∼ 〈ψ̂†
i ψ̂i〉, and a modulated strengthening or weakening

of bond overlaps, ∼ Re 〈ψ̂†
i ψ̂j〉, respectively. By flux order we mean a modulated

arrangement of spontaneously generated orbital currents. In the presence of flux order

the elementary plaquettes of a lattice (squares in case of the square lattice, hexagons

in case of the honeycomb lattice) are threaded by fluxes which are indstinguishable

from external magnetic fluxes. However, as they are spontaneously generated and

do not originate from external fields, they must average to zero over the enlarged

unit cell. The fluxes derive from the imaginary part of bond order condensation,

∼ Im 〈ψ̂†
i ψ̂j〉, but due to the gauge freedom associated with imaginary hoppings it

is the fluxes which consitute the fundametnal objects specifying the order. We will

therefore treat fluxes on equal footing with sites and bonds and thus provide a gauge

invariant framework for treating all possible density wave orderings of particle-hole

pairs.

Armed with the symmetry filtered listing of various orderings we proceed to sys-

tematically obtain explicit expressions for the density waves for selected cases. We

investigate the mean field or single-particle band structures and this analysis will pro-

vide the foundation for the following general results and conclusions.
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(i) We show how extended point group symmetries, sometimes in combination

with the time-reversal operation, protect isolated spectral degeneracies and hence es-

tablish the states exhibiting these degeneracies as (topological) semimetals. In case

of the square lattice, we will demonstrate the key role played by translations, which

are naturally embedded in the extended point groups. In contrast, using again the

structure of extended point groups, we will show how such degeneracy protection is

generally not possible for systems with hexagonal symmetry. Instead, for systems

with hexagonal symmetry we will show (i) the emergence of point group symmetry

protected QBCs in case of M -point ordering and (ii) the emergence of Dirac nodes

protected by extended point group operations, in particular and crucially the transla-

tions broken by finiteQ ordering, but are resurrected as symmetries due to global spin

rotations. We therefore propose extended point group elements dressed with global

spin rotations as another class of hidden symmetries with the potential to protect

semimetallic states.

(ii) Semimetals generally have special low-energy theories in the vicinity of the

degeneracy point. We have mentioned the canonical examples of Weyl nodes and

QBC points. Such semimetals may arise just from lattice topology (honeycomb and

kagome lattices), or from condensation (dx2−y2 density wave on the square lattice).

In all these cases lattice symmetries, possibly in conjunction the anti-unitary time-

reversal operation, protect the degeneracy. In the present work we address the impact

of symmetry breaking by density wave formation on the low-energy theory of these

semimetals. In particular, for a Dirac theory, as the low-energy description of two

Weyl nodes are colloquially referred to in 2D, we will demonstrate a robust connec-

tion between the abstract symmetry classification of density waves and their spectral

effects at low energies. For instance, the two Dirac nodes can be gapped out by a

mass term, or they can be energetically split by making the two nodes inequivalent.

Alternatively, the two nodes can be shifted in momentum space by terms that have

the appearance of static gauge fields. We will argue, based on a careful study of both

a square and hexagonal symmetry Dirac theory, that the point group representations

to which distinct density waves belong decide to what low-energy term they couple.

In addition, the dimensionality of these representations is directly related to the de-

generacy of the density waves at low energies. As an illustration and a spoiler for

Section 9.4.1, we point out that the two well-known Kekule bond distortions of the

graphene lattice are partners of a 2D representation of the extended point group, and

enter as equivalent (compatible) masses in the low-energy description.

(iii) In the context of a Dirac theory, apart from Dirac mass terms leading to an

energy gap, another set of interesting low-energy terms is given by the pseudomag-

netic gauge fields. It is known in the community of graphene physics, the prime

example of a condensed matter system hosting Dirac fermions, that strain applied to

the graphene sheet as well as its intrinsic corrugation and ripples manifest themselves



8.1 Overview 123

as gauge fields [179]. These are different from the ordinary electromagnetic gauge

field as they do not break time-reversal symmetry, but if they acquire a spatial de-

pendence they lead to pseudo-Landau level quantization in a way analogous to the

magnetic field-induced Landau levels. Recently it was demonstrated that strain fields

in graphene can be naturally grouped together with translational symmetry broken

charge density waves to form the components of a non-Abelian gauge field coupled

to the low-energy Dirac theory [180]. This marked the first example of a set of den-

sity waves being identified as components of an SU(2) gauge structure. In addition,

it was argued that such gauge field components are dynamically generated if one of

them causes pseudo-Landau level quantization, as they can gap out the pseudo Lan-

dau levels. Such an SU(2) gauge structure in principle exists for any Dirac theory.

It is however not immediately obvious what microscopic physical states, such as the

charge density waves in graphene, will correspond to it. In this work we address this

question and show how symmetry paves the way for a direct identification of the den-

sity waves manifesting themselves as gauge fields. The identification rule we find is

simple and pertains to any given lattice. If a density wave state transforms as a 2D
representation of the bare point group (not the extended point group), then it corre-

sponds to low-energ gauge field component, and the same is then true for its partner.

We will see how this rule emerges from a careful study of the square lattice π-flux

state and the honeycomb lattice, and then see its application in action in case of the

kagome lattice.

(iv) We will present an extensive study and analysis of hexagonal lattice M -point

orders, i.e. ordering tendencies expected when doping these systems to the van Hove

points of band structure. We specifically focus on the honeycomb lattice, the triangu-

lar lattice and the kagome lattice, but we will find that the main features of M -point

ordering, such as degeneracy protection, the form of effective low-energy theories

and spectral gap opening, are not lattice specific. Particle-hole condensation at fi-

nite M -point vectors causes the extended point group representations to be all 3D.

Hence, for any such representation there are three degenerate density wave com-

ponents transforming into each other, which may be applied indepedently to lower

condensation energy. We show how further organizing these three components ac-

cording to transformation properties under rotations and reflections only, i.e. con-

structing basis functions of the bare point group representations, allows for general

and lattice independent predictions concerning the mean field spectrum. In partic-

ular, we demonstrate that the most symmetric way of applying the three degenerate

components either leads to fully gapped out Fermi surface, or a symmetry protected

QBC.

For hexagonal lattice M -point order we will also give a more detailed overview

of spin triplet, i.e. spinful, density waves [166]. Taking the spin degree of freedom

into account explicitly introduces the notion of dressing lattice operations with rota-



124 Introduction

tions in spin space in order to form density waves transforming as irreducible point

group representations. Furthermore, as mentioned before, this dressing of transla-

tions or reflections with spin rotations can “resurrect” symmetries which appear to be

broken for spinful ordering at finite order vectors. In addition, we will make contact

with recent literature addressing hexagonal lattice M -point order, to show that (spin)

density wave orders obtained from symmetry considerations in some cases precisely

coincide with the orderings proposed to occur in specific interacting fermion models.

(v) Since there is an intimate connection between symmetry and topology, the

symmetry-based organization of density wave orders is particularly helpful in iden-

tifying electronic states which can come with topological quantum numbers. The

two basic topological insulating states of matter in 2D, the QAH effect and the QSH

effect, critically rely on the absence and presence of time-reversal symmetry, respec-

tively. Lattice symmetries provide further constraints. A QAH effect cannot occur if

the systems has a reflection symmetry. This limits the class of states possibly hosting

a QAH, which in turn affects the interaction-induced QSH scenario of [84], as this is

essentially predicated on the assumption of one QAH per spin species. The symmetry

organization of density waves allows for a direct identification of putative topological

Mott insulators and we demonstrate this for each lattice we consider.

We will show how for each of the hexagonal lattices considered, there is an M -

point flux ordered state which hosts a QAH effect. We will furthermore discuss the

various possibilities for spinful versions of this order, which in case of translational

symmetry broken M -point order are not limited to the obvious version of one QAH

copy per spin species with oppossite sign.

Point group symmetries were shown to give rise to another type of topological

quantum numbers in 2D, which is quantized electric polarization [172]. Symmetry

severely constrains the possible nontrivial values of this quantized polarization and

we will discuss which density waves are compatible with these quantum numbers and

if so check whether they possess them.

(vi) In this work we propose a new class of highly symmetric time-reversal in-

variant spin-bond ordered states existing in hexagonal lattice systems. As mentioned

under (e), for each of the hexagonal lattices considered we find an M -point flux or-

dered state. We will put forward a particular way of creating a spinful version of these

states, which fully breaks spin rotation symmetry, but recovers all lattice symmetries

broken in the flux ordered state. The lattice symmetries can be dressed with global

spin rotations to yield good symmetries again. In particular, we will show how trans-

lational symmetry is essentially recovered. Remarkably, due to the full recovery of

all lattice symmetries, there is a symmetry protected fourfold degeneracy at the M ′

points of the reduced Brillouin zone. Apart from this isolated degeneracy point, the

nested Fermi surface at the van Hove filling is fully gapped. The resulting semitallic

state is a new type of Dirac semimetal, characterized by three Dirac theories instead
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of the usual single theory, one for each inequivalent M ′ point. We will show how

seemingly trivial mass gaps give rise to a QSH state.

This concludes the preview summary of the content of this part of the thesis as

well as its main results and conclusions. The aspects of particle-hole condensation

listed above are the subject of this paper and will de developed in the remaining part

of it. The organization of the main content of this work is as follows. In Section 9.1

we present the mathematical prerequisites for studying electronic lattice symmetries.

We explicitly incorporate translational symmetry breaking due to condensation at

finite wave vectors. In addition, we explain how the topological quantum numbers of

electronic states can be computed. In Section 9.2 we give a detailed introduction to a

mean field treatment of electron correlation, presented in a way particularly suited for

the symmetry perspective of density waves adopted in this work. Following the mean

field theory, Section 9.3 covers the density wave classification of square lattice density

waves. After having obtained all possible condensates, we zoom in on the dx2−y2
and dxy density waves to show how their degeneracies are symmetry proteced and

in what way symmetry breaking affects the low-energy description defined by these

degeneracies. Section 9.4 then treats the density waves of hexagonal lattices, starting

with the honeycomb lattice, which is discussed in most detail, then proceeding to

the kagome lattice and closing with the triangular lattice. In case of the honeycomb

and kagome lattices three types of density waves will be treated, (i) translationally

invariant condensates (zero ordering vector), (ii) K-point order, and (iii) M -point

order. K-point order affects the Dirac nodes, while M -point order is relevant for van

Hove filling. For the triangular lattice we only discuss M -point order. Chapter 10

then gives an introduction to hexagonal lattice M -point spin triplet order, i.e. spinful

density waves.

Chapter 11 summarizes the results and concludes part III of this thesis.
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C H A P T E R 9

DENSITY-WAVE STATES FROM A

SYMMETRY PERSPECTIVE IN TWO

DIMENSIONS

9.1 Electronic lattice symmetries

The present section will discuss in detail the mathematical prerequisites for studying

the effect of lattice symmetries. We will introduce relevant notation which will be

used throughout the paper. Some aspects presented below may be rather technical

(even though conceptually straightforward) and upon first reading this section may

just be glossed over.

9.1.1 Space group symmetries

In this work we will be mainly concerned with two-dimensional systems and we

therefore describe the necessary formalism in this setting. The material presented in

this section is very straightforwardly generelized to 3D or even arbitrary dimension,

and at the very end of this work we comment on how the content and conclusions of

this work may carry over to 3D.
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We denote the atomic positions in the crystal lattice by ~ri, where i is a label for

the atomic site. The atomic position can be decomposed in terms of the Bravais lattice

as

~ri = ~x+~li, (9.1)

where ~x is a Bravais lattice vector and ~li denotes the position of the i-th atom with

respect to the unit cell vector ~x. The latter can be written in terms of its generators as

~x = ~xn1n2
= n1~x1 + n2~x2. (9.2)

Here the vector ~n = (n1, n2) ∈ Z
2 is integer-valued and specifies a given Bravais

lattice site. In the following we will occasionally use vectors ~n, ~m, . . . to refer to unit

cells. For a lattice with Nsl different sublattices, i.e. Nsl atoms in the unit cell, there

are Nsl distinct ~l vectors.

Space groups consist of all spatial symmetries of the crystal lattice and here we

assume that the space group is symmorphic, meaning that we can always find an ori-

gin such that all space group elements are generated by translations and point group

operations, which are themselves symmetries. Translations will be written as T (~x),
representing a translation over lattice vector ~x and point group operations will be

written as R. In two dimension, to which we particularize unless stated otherwise,

and for spinless fermions the dihedral groups Dn are identical to the groups Cnv ,

wich instead of an in-plane twofold rotation axis, contain a mirror relfection. In the

rest of this paper we assume the symmetry group to be Cnv . For spinful fermions

the two symmetry groups must be distinguished as the twofold rotation and reflec-

tion act differently on the spin degree of freedom. For the most part, this difference

is not important for our purposes, we have however included some details on it in

Appendix C.3. In the following we will assume the equivalence of Dn and Cnv , but

whenever appropriate or necessary we will comment on the differences. For a Cnv
symmetric system, any element of the space group can be written in terms of the four

generators T (~x1), T (~x2), Cn and σv , where Cn is the n-fold rotation and σv is a re-

flection. Any element may then be specified by T (~x1)
m1T (~x1)

m2Cm3
n σm4

v and point

group operations R can be written as R = Cm1
n σm2

v .

The effect of a point group symmetry on an atomic position is represented as

R~ri = R~x + R~li. As this operation is a symmetry, R~ri is another atomic position,

but possibly an inequivalent one. Hence we have R~ri = ~r′j = ~x′ + ~lj . It is not

necessarily true that ~x′ = R~x, the difference must however be some lattice vector ~ti,
~x′ = R~x+~ti. ~ti depends on the atom in the unit cell, hence the label i. It thus follows

that R~ri = R~x+ ~ti +~lj .
We now wish to find the transformation properties of the field operators and the
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Hamiltonian. The creation and annihilation field operators are given by

ψ̂σ(~ri) = ψ̂σ(~x+~li) = ψ̂iσ(~x) ≡ Ψ̂(~x),

ψ̂†
σ(~ri) = ψ̂†

σ(~x+~li) = ψ̂†
iσ(~x) ≡ Ψ̂†(~x) (9.3)

Here we use the index σ to denote any additional internal degree of freedom, which is

in this work will invariably be the electron spin, but in principle one may think of σ as

representing the collection of internal degrees of freedom including also an electron

orbital degree of freedom (p, or d-orbitals for instance). For convenience we also

collec the operators ψ̂iσ(~x) in the vector operator Ψ̂(~x). Note again that i labels the

sublattice degree of freedom, which we explicitly distinguish from the other degrees

of freedom. DefiningN as the number of unit cells, the Fourier transform of the field

operators is given by

ψ̂iσ(~k) =
1√
N

∑

~x

ψ̂σ(~x+~li)e
−i~k·~x =

1√
N

∑

~x

ψ̂iσ(~x)e
−i~k·~x, (9.4)

We choose this definition of the Fourier transform, as opposed to the common tight

binding Fourier exponentials e−i
~k·(~x+~li), to ensure that H(~k + ~G) = H(~k). Below

we briefly discuss this gauge choice, which one should be aware of when evaluating

symmetry properties. We define the operators ÛR and their Hermitian conjugates as

acting on the field operators to implement the point group symmetryR. Then one has

ÛRψ̂σ(~ri)Û
†
R =

∑

σ′

U o
Rσσ′ ψ̂σ′(R~ri) =

∑

j,σ′

U o
Rσσ′U sl

Rijψ̂jσ′ (~x′) (9.5)

HereU o
R is a unitary matrix that acts in the space of internal orbital degrees of freedom

(hence the superscript o). The matrix U sl
R acts in sublattice space. One observes

easily that the combined effect on the orbital and sublattice space can be represented

as U†
R = U o

R ⊗ U sl
R. To deduce the transformation properties of the field operators in

momentum space, we note that ~x + ~li = R−1(~x′ + ~lj), where ~x′ = R~x + ~ti. Thus

we get

ÛRψ̂iσ(~k)Û
†
R =

∑

j,σ′

∑

~x

U o
Rσσ′U sl

Rijψ̂jσ′ (~x′)e−i
~k·~x

=
∑

j,σ′

∑

~x

U o
Rσσ′U sl

Rij ψ̂jσ′ (~x′)e−iR
~k·R~x

=
∑

j,σ′

∑

~x

U o
Rσσ′U sl

Rijψ̂jσ′ (~x′)e−iR
~k·(~x′−~ti)

=
∑

j,σ′

U o
Rσσ′U sl

Rije
iR~k·~tiψ̂jσ′ (R~k) (9.6)
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For convenience we define the new matrix U sl
R(
~k) to include the ~k-dependencies

U sl
R(
~k) = diag(eiR

~k·~t1 , . . . , eiR
~k·~tNsl )×U sl

R. Then we can write concisely ÛRΨ̂(~k)Û †
R =

U o
R⊗U sl

R(
~k)Ψ̂(R~k) ≡ U†

RΨ̂(R~k), with a proper redefinition of UR to incorporate the
~k dependence.

The translationally invariant Hamiltonian is generically written as

Ĥ =
∑

i,j,σ,σ′

∑

~x,~x′

ψ̂†
iσ(~x)Hiσ,jσ′ (~x− ~x′)ψ̂jσ′ (~x′)

=
∑

i,j,σ,σ′

∑

~k

ψ̂†
iσ(
~k)Hiσ,jσ′ (~k)ψ̂jσ′ (~k) ≡

∑

~k

Ψ̂†(~k)H(~k)Ψ̂(~k) (9.7)

Under the symmetry operation the Hamiltonian transforms as

ÛRĤÛ
†
R =

∑

i,j,σ,σ′

∑

~k

(URHU†
R)iσ,jσ′ (~k)ψ̂†

iσ(R
~k)ψ̂jσ′ (R~k), (9.8)

and since this is a symmetry we must have ÛRĤÛ
†
R = Ĥ , which implies

UR(~k)H(~k)U†
R(
~k) = H(R~k). (9.9)

The composition of two point group symmetries gives another element of the

point group, i.e. if R1 and R2 are symmetries, then so is R3 = R2R1. This is of

particular importance if we think of the point group as being generated by just two

elements. The effect of such a product of symmetries (first applyingR1, then R2) on

the field operator is, using equation (9.6),

ÛR3
Ψ̂(~k)Û †

R3
= ÛR2

ÛR1
Ψ̂(~k)Û †

R1
Û †
R2

= U†
R1

(~k)U†
R2

(R1
~k)Ψ̂(R2R1

~k). (9.10)

Not only does this demontrate that one should be careful with the order in which

matrix multiplications must take place, it also shows that if and only if R~k∗ = ~k∗

for some ~k∗ in the Brillouin zone and all R of the point group, do the UR form a

representation of the group, i.e. UR3
= UR2

UR1
. If a proper subgroup of the point

group leaves a certain ~k∗ invariant, then the UR will form a representaion of that

subgroup.

9.1.2 Gauge dependencies

We now examine in more detail the gauge choice that is contained in the definition

of the Fourier transform of the creation and annihilation operators. The choice of

the previous section, as mentioned, reflects the requirement H(~k + ~G) = H(~k). A
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common choice in tight-binding analyses is (supressing generalized orbital indices

for clarity)

ψ̂i(~k) =
1√
N

∑

~x

ψ̂(~x+~li)e
−i~k·(~x+~li)

=
1√
N

∑

~x

ψ̂i(~x)e
−i~k·(~x+~li) =

e−i
~k·~li

√
N

∑

~x

ψ̂i(~x)e
−i~k·~x. (9.11)

It is easy to see that the two choices are indeed related by gauge transformation of the

form

A(~k) = diag(ei
~k·~l1 , . . . , ei

~k·~lNsl ),

A†(~k) = diag(e−i
~k·~l1 , . . . , e−i

~k·~lNsl ) (9.12)

We immediately deduce that the momentum dependent Hamiltonian in the new basis

is written in terms of the previous choice as

H′(~k) = A†(~k)H(~k)A(~k) (9.13)

The vectors ~li decribe structures within the unit cell and it is therefore obviously

not true that inner products with reciprocal lattice vectors will give multiples of 2π.

Hence, H′(~k + ~G) 6= H′(~k). This has the following consequence. Since the two

Hamiltonians are unitarily equivalent, the spectrum is unaltered and will be fully

revealed in the first Brillouin zone. The eigenstates however will not be periodic as

expected, and show a repetitive pattern not equal to the first Brillouin zone. This

should be taken into account when doing calculations, but will not be reflected in

quantities of physical significance.

Repeating the same calculation as above to find the transformation properties of

state operators, we deduce that

ÛRψ̂i(~k)Û
†
R =

∑

j

∑

~x

U sl
Rijψ̂j(~x

′)e−i
~k·(~x+~li) =

∑

j

∑

~x

U sl
Rijψ̂jσ′ (~x′)e−i

~k·R−1(~x′+~lj)

=
∑

j

∑

~x

U sl
Rijψ̂j(~x

′)e−iR
~k·(~x′+~lj) =

∑

j

U sl
Rijψ̂jσ′ (R~k), (9.14)

From which we conclude that with this gauge choice the matrix UR is completely

momentum indepdent and only contains the permutation of all the atoms in the unit

cell: U ′
RH′(~k)U ′†

R = H′(R~k).

It is important to be aware of this difference when studying invariant ~k-points,

i.e. momenta for which R~k∗ = ~k∗ mod ~G. In that case one often needs precisely
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H(~k + ~G) = H(~k), so that

UR(~k∗)H(~k∗)U†
R(
~k∗) = H(R~k∗) = H(~k∗ mod ~G) = H(~k∗). (9.15)

9.1.3 Lattice symmetries and translational symmetry breaking

When translational invariance is lost due to the interaction-induced formation of a

density-wave state, the explicit operation of lattice symmetries is slightly altered.

Here we show explicitly how translational symmetry breaking affects the action of

lattice operations (which may even no longer be symmetries) within the formalism

developed above. In light of content of this work, we demonstrate this for a specific

case of translational symmetry breaking, where the generators of the remaining trans-

lations are at most doubled with respect to the fully symmetric ones, i.e. ~x1 → 2~x1
and/or ~x2 → 2~x2. This amounts to a quadrupled unit cell at most. The considerations

are completely general however, and apply equivalently to situations where the unit

cell is tripled, which is natural in systems with hexagonal symmetry.

The mean field Hamiltonian for given density-wave order is then written as

Ĥ =
∑

~k∈rbz

χ̂†(~k)H(~k)χ̂(~k). (9.16)

where the spinor χ̂ is given by

χ̂(~k) = χ̂µj(~k) =




χ̂0j(~k)

χ̂1j(~k)

χ̂2j(~k)

χ̂3j(~k)


 =




ψ̂j(~k)

ψ̂j(~k + ~Q1)

ψ̂j(~k + ~Q2)

ψ̂j(~k + ~Q3)


 . (9.17)

The momenta ~Qµ satisfy the relations 2 ~Qµ = ~0 mod ~G and ~Q1 + ~Q2 + ~Q3 =
~0 mod ~G. For convenience we set ~Q0 = ~0. Note that these algebraic relations

pertain to the case of unit cell quadrupling. Different algebraic relations hold for

other patterns of translational symmetry breaking, the scheme does not depend on the

specific form of these relations.

We derive that a point group operation acts on the spinor components as

ÛRχ̂µi(~k)Û
†
R = ÛRψ̂i(~k + ~Qµ)Û

†
R = U sl

Rij(
~k + ~Qµ)ψ̂j(R~k +R~Qµ) =

U sl
Rij(

~k + ~Qµ)ψ̂j(R~k + ~Qν) = U sl
Rij(

~k + ~Qµ)U
sb
Rµν χ̂νj(R

~k) =


U sl
R(
~k)

. . .

U sl
R(
~k + ~Q3)




µν

U sb
Rνηχ̂η(R

~k), (9.18)
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Here U sb
R is a matrix that acts on the momentum components µ of the spinor χ̂. The

point group operationR generally permutes the momenta ~Qµ that represent the trans-

lational symmetry breaking (sb) and the symmetry breaking matrix U sb
R implements

this permutation. We stress that in the case of translational breaking we do not have

the freedom to multiply the matrix U sl
R(
~k) = diag(eiR

~k·~t1 , . . . , eiR
~k·~tNsl )×U sl

R by an

overall factor e−iR
~k·~t1 . The latter is allowed in the absence of translational symmetry

breaking since an overall global displacement of the unit cell is immaterial. When

translational symmetry is broken ~tj may no longer be good translations.

Based on the above we can write down an expression for the symmetry condition

of the translationally broken mean-field Hamiltonian in momentum space. If we de-

note the mean-field Hamiltonian as H(~k) and the matrix representing the symmetry

operation by Ũ†(~k), which is defined as ÛRχ̂(~k)Û
†
R = Ũ†(~k)χ̂(R~k), then we have

ŨR(~k)H(~k)Ũ†
R(
~k) = H(R~k) (9.19)

Here ~k is restricted to the reduced BZ (RBZ). Care must be taken when analyz-

ing invariant ~k-points in the reduced BZ, as these points are not invariant points in

the original BZ. Using the periodicity of the RBZ is consequently nontrivial. To

demonstrate this, let us imagine that we are considering a momentum ~k∗ that is

left invariant in the RBZ by the symmetry operation R. Then we would naively

have χ̂µ(R~k
∗) = χ̂µ(~k

∗). This is not correct however. The correct relation reads

χ̂µ(R~k
∗) = χ̂µ(~k

∗ + ~Grbz), where ~Grbz is a reciprocal lattice vector of the RBZ. For

the cases we have restricted ourselves to from the outset, which is commensurate ~Qµ,

the reciprocal lattice vectors of the RBZ are precisely the ~Qµ vectors. To see this

one observes that they all get folded onto Γ by definition and thus must correspond

to reciprocal lattice vectors. This means that we must have ~Grbz = ~Qµ. In addition

we know that given the commensurability assumptions the vectors ~Qµ form a group

under addition. From this we conclude that the addition of a RBZ reciprocal lattive

vector just permutes the χ̂µ, i.e. χ̂µ(~k
∗ + ~Grbz) = U eq†

µν χ̂ν(~k
∗). The matrix U eq

µν

implements the equivalence of momenta in the RBZ. In particular, this means for a

symmetry operationR that

H(R~k∗) = H(~k∗ + ~Grbz) = U eq†H(~k∗)U eq (9.20)

and hence that

U eqŨR(~k∗)H(~k∗)Ũ†
R(
~k∗)U eq† = H(~k∗). (9.21)

We note in passing that it is a straightforward, albeit possibly tedious, matter to

change to a gauge for which H(~k + ~Grbz) = H(~k), where H(~k) is the mean-field
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Hamiltonian of the translational symmetry broken state. One may choose ~Q1 and ~Q2

as generators of the reciprocal lattice, for which we have χ̂(~k+ ~Q1) = U eq†
1 χ̂(~k) and

χ̂(~k+ ~Q2) = U eq†
2 χ̂(~k). Clearly χ̂(~k+ ~Q1+ ~Q2) = U eq†

1 U eq†
2 χ̂(~k) = U eq†

2 U eq†
1 χ̂(~k),

implying that U eq†
1 and U eq†

2 commute and are simultaneously diagonalizable. For

2 ~Q1 = 2 ~Q2 = 0 we have in addition (U
eq
1 )2 = (U

eq
2 )2 = 1 mandating the eigenval-

ues to be eiφµ with φµ = 0, π. One now sets φµ = ~k · ~x1,2 so as to match correct

value for ~Q1 · ~x1,2 = 0, π and ~Q2 · ~x1,2 = 0, π simultaneously. This then defines the

gauge transformation needed to compensate the eigenvalues of U eq
1 and U eq

2 .

We close this section by showing that an analogous expression can be derived for

the tight-binding gauge, i.e. H̃(~k) = A†(~k)H(~k)A(~k). In that case we obtain

ÛRχ̂µi(~k)Û
†
R = ÛRψ̂i(~k + ~Qµ)Û

†
R =

U sl
Rij ψ̂j(R

~k +R~Qµ) = U sl
Rijψ̂j(R

~k + ~Qν + ~Gµ) =

U sl
Rij(~Gµ)U

sb
Rµν ψ̂j(R

~k + ~Qν) = U sl
Rij(~Gµ)U

sb
Rµν χ̂νj(R

~k) =


U sl
RA†(~0)

. . .

U sl
RA†(~G3)




µν

U sb
Rνηχ̂η(R

~k), (9.22)

where the crucial point to notice here is that R~Qµ = ~Qν + ~Gµ with ~Gµ some recip-

rocal lattice vector which has an effect on the state operator via A†(~Gµ). This fully

specifies the action of symmetry operations on state operators in the tight-binding

gauge.

9.1.4 Topological characteristics of fermionic states

We now come to a brief discussion of the topological character of fermionic states.

One of the main purposes of this work was to shed light on the connection between

lattice symmetry and spectral properties. Symmetry broken density wave states may

cause a spectral gap to open, in which case the ground state will be insulating for

the appropriate filling. The presence of discrete symmetries can give rise to addi-

tional topological quantum numbers of the ground state and here we are interested in

the topological structure based on lattice symmetries [172, 176, 181]. The symmetry

classification of particle hole condensates proposed and worked out here allows for

a characterization of these condensates in terms of additional topological quantum

numbers. In characterizing the condensates we will rely on the theoretical framework

developed in Refs. [172, 182]. Here we will merely summarize some the results re-

ported in those works and adapt them slighty to the language and definitions presented

here.
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It is convenient to rewrite the real space basis functions as |~x, j〉 = ψ̂†
j(~x)|0〉,

where for convenience we collect all local degrees of freedom (sublattice, orbital,

spin) in the label j. After diagonalization of the Bloch Hamiltonian H(~k) one obtains

the spectrum En(~k) where n labels the band. The eigenstates are |~k, n〉 = γ̂†n(~k)|0〉.
The normal mode operators and orbital operators are related by a matrix U(~k) that

contains the eigenvectors of the matrix H(~k) in its columns, γ̂†n(~k) = ψ̂†
j(
~k)Ujn(~k)

with Hij(~k)Ujn(~k) = En(~k)Uin(~k). For the orbital operators we have the relation

ÛRψ̂i(~k)Û
†
R = U†

Rij(
~k)ψ̂j(R~k),

ÛRψ̂
†
i (
~k)Û †

R = ψ̂†
j (R

~k)URji(~k) (9.23)

which implies for the normal mode operators

ÛRγ̂nÛ
†
R = U †

ni(
~k)U†

Rij(
~k)Ujm(R~k)γ̂m(R~k),

ÛRγ̂
†
n(
~k)Û †

R = γ̂†m(R~k)U †
mj(R

~k)URji(~k)Uin(~k) (9.24)

These relations hold in an equivalent way for the mean-field normal modes γ̂†n(~k) =

χ̂(~k)Ujn(~k) (we use the same symbols as no confusion is expected), resulting from

the mean-field Hamiltonian. Based on the expressions for the operation of symme-

tries on χ̂(~k) given in the previous sections, we simply have to substitute ŨR(~k) for

UR(~k). To establish a connection with results of [172], we define the sewing matrix

BR(~k) corresponding to an operation R as

ÛRγ̂
†
n(
~k)Û †

R ≡ γ̂†m(R~k)BRmn(~k) (9.25)

which may be expressed alternatively as

BRmn(~k) = 〈R~k,m|ÛR|~k, n〉. (9.26)

For condensate state which have an energy gap at the relevant filling (and under the

assumption thatR is indeed a symmetry) the sewing matrix will not mix occupied and

unoccupied bands and therefore it is block diagonal. One can use equation (9.1.4) to

write an expression for the sewing matrix in terms UR,

BR(~k) = U †(R~k)UR(~k)U(~k). (9.27)

Note that the three matrix appearing in the product are not individually block diagonal

in the space of (occupied and unoccupied) bands. From this specific expression it is

however immediately obvious that the sewing matrix is unitary. Hence, due to the
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block diagonal structure, the sewing matrix is unitary when restricted to the space

of occupied bands. In accordance with custom we restrict ourselves to the space of

occupied bands.

There are two distinct types of additional quantum numbers an insulating state

can, or cannot, acquire in two dimensions as a consequence of lattice point group

symmetries. The first is the Chern number C, an integer which labels the Quantum

Hall universality class of the insulating state. Nonzero Chern number will lead to a

quantized Hall response when an electric field is applied, expressing the fact that the

Chern number, a topological index, physically corresponds to the Hall conductivity

σxy . The Chern number is defined as

C =
1

2π

∫

bz

d~k Tr [Fxy(~k)], (9.28)

whereFxy(~k) is the momentum space field strength corresponding to the non-Abelian

Berry gauge connectionAnmi (~k), i = x, y. The latter is given by the expression

Anmi (~k) = −i〈~k, n|∂i|~k,m〉 (9.29)

and the field strength is calculated in the standard way as

Fij(~k) = ∂iAj(~k)− ∂jAi(~k) + i[Ai(~k), Aj(~k)] (9.30)

where i, j = x, y and ∂i ≡ ∂/∂ki. The non-Abelian nature of the connectionAi and

the field strength Fij comes from the band indices n,m, which refer to the occupied

bands only. The trace in equation (9.28) should therefore be understood as restricted

to the space of occupied bands.

To see how point group symmetries constrain the Chern number one first derives

the transformation of the field strength Fij under such a point group operation, which

is

Fi′j′(R~k) = ∂i′Aj′ (R~k)− ∂j′Ai′(R~k) + i[Ai′(R~k), Aj′ (R~k)] =

Ri′iRj′jBR(~k)Fij(~k)B†
R(
~k). (9.31)

From this general transformation rule it follows that

Fx′y′(R~k) = Det [R]BR(~k)Fxy(~k)B†
R(
~k), (9.32)

which yields when tracing over the occupied bands

Tr [Fx′y′(R~k)] = Det [R]Tr [Fxy(~k)]. (9.33)



9.1 Electronic lattice symmetries 137

This relation can be directly used to deduce that if the system has a symmetry which

is improper, i.e. Det [R] = −1, the Chern number must vanish [172]. Hence, in

2D only insulating states which have rotational symmetries Cn are allowed to have

nonzero Chern number. Incidentally, as was demonstrated earlier [177], the presence

of time-reversal symmetry leads to the relation Tr [Fxy(−~k)] = −Tr [Fxy(~k)] and

mandates vanishing Chern number in the same way. Physically this is not surprising

as the quantum Hall response equation itself is time-reversal odd.

Point group symmetries not only force the Chern number to be zero in some cases,

they can also be used to calculate it modulo an integer number [172]. For instance, in

case of C4 symmetry, the Chern number is given by a product of eigenvalues of C4

and C2 modulo 4. Specifically, if we label the eigenvalue of C4 at the square lattice

Brillouin zone center Γ by η4(Γ), the C4-eigenvalue at the Brillouin zone corner,

denoted as Q1 (see Fig. 9.1), by η4(Q2), and the C2 eigenvalue at Q2 by η2i(Q2) (or

equivalentlyQ3), then we have

eiπC/2 =
∏

i∈occ

η4i(Γ)η4i(Q1)η2i(Q2) (9.34)

(i indexing the bands) which shows that the Chern number C is determined by the

eigenvalues of point group operations. Due to the exponential eiπC/2 it is only de-

termined modulo 4 in case of a C4 symmetric insulating state. More generally, for a

Cn invariant system (n = 2, 3, 6), the Cherm number is determined by the rotational

eigenvlues ηn at high symmetry point modulo n [172, 183]. In case of a C3 invariant

state the expression reads

ei2πC/3 =
∏

i∈occ

η3i(Γ)η3i(K+)η3i(K−) (9.35)

where K+ and K− are the vertices of the hexagonal Brillouin zone, see Fig. 9.4. We

note in passing that the presence of inversion symmetry alone (C2) the parity of the

Chern number C can be obtained from the inversion eigenvalues.

In order to evaluate these expressions in the context of translational symmetry

broken density wave states, it is helpful to realize the that the product eigenvalues

originates from the determinant of the sewing matrix, for example
∏
i∈occ η3i(Γ) =

Det [BC3
(Γ)]. In general, suppose that ~k∗ is one of the invariant momenta, i.e.

R~k∗ = ~k∗, then we know from section 9.1.3 that ÛRγ̂
†(~k∗)Û †

R = γ̂†(R~k∗)BR(~k∗) =
γ̂†(~k∗)U eqBR(~k∗) ≡ γ̂†(~k∗)B̃R(~k∗). Using the expression for the sewing matrix as

given in equation 9.27, we have

B̃R(~k∗) = U eqU †(R~k∗)ŨR(~k∗)U(~k∗) = U †(~k∗)U eqŨR(~k∗)U(~k∗). (9.36)
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From equation 9.21 it follows thatU eqŨR(~k∗) commutes with the Hamiltonian, mean-

ing thatU(~k) diagonalizesU eqŨR(~k∗) as well (or can be chosen to do so). This shows

that Det [B̃R(~k∗)] is equal to the product of eigenvlues ofU eqŨR(~k∗). The matrixU eq

should not be overlooked here.

The second kind of quantum numbers point group symmetric insulators can have

in two dimensions is a set of two fractionally quantized numbers p1 and p2 which

correspond to the electric charge polarization in the unit cell [172], defined as

~P = p1~x1 + p2~x2. (9.37)

As polarization is generally only well-defined up to a lattice constant, one has 0 ≤
pi < 1. The expression for the polarization parameters is

pi =
1

2π

∫ 1

0

dk1

∫ 1

0

dk2Tr [Ai(k1 ~G1 + k2 ~G2)]. (9.38)

It should be stressed that these are only meaningful if the Chern number vanishes.

This is a priori guaranteed for states with reflection symmetries or time-reversal sym-

metry. Ref. [172] discusses exhaustively how symmetry constrains the allowed values

for p1 and p2. That lattice symmetries should put constraints on electric polarization

is most easily seen in one dimensionen, where the only symmetry is inversion. If the

polarization is p the inversion requires p = −p + en with n integer due to fact that

polarization is only defined up to a lattice vector. It follows that there are only two

allowed values of electric polarization, 0 and e/2, which constitute distinct topolog-

ical classes. Very similar reasoning using symmetries restricts the values of electric

polarization in two dimensions. For instance, for C6 symmetry p1 and p2 are nec-

essarily integer and therefore there is no nontrivial charge polarization. Other con-

straints will be discussed and applied directly when specific lattice symmetry groups

are considered in following sections. If symmetry allows for nontrivial polarization

then appropriate symmetry eigenvalues at high symmetry points in the Brillouin zone

can be used to calculate the pi. In case of C2 these eigenvalues formulas read

(−1)2p1 =
∏

i∈occ

η2i(Q2)

η2i(Γ)
, (−1)2p2 =

∏

i∈occ

η2i(Q3)

η2i(Γ)
(9.39)

These may be used as well in case of C4 insulating states, in which case p1 = p2. In

case of a C3 invariant system the formula reads

ei2πp1,2 =
∏

i∈occ

η3i(K+)

η3i(K−)
. (9.40)
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Yet a third topological number is given by the Z2 number which distinguishes

time-reversal invariant trivial insulators from the QSH state in two dimensions (a

generalization exists for 3D) [1,3,184]. The crucial symmetry that allows for the def-

inition of this number is time-reversal symmetry, i.e. time-reversal symmetry needs

to be preserved to give rise to a meaningful Z2 topological classification of 2D (and

3D) insulators. A Z2 classification implies there are only two flavors: trivial insula-

tors and nontrivial insulators. The Z2 index ν is obtained as follows

(−1)ν =
4∏

n=1

δn. (9.41)

In general the δn, which take values ±1 and where n labels one of the four time-

reversal invariant momenta of the 2D BZ, are not easy to obtain, however, the pres-

ence of inversion symmetry (C2 in 2D) allows for a straightforward determination

based on the formula

δn =
∏

i∈occ

η2i(Γn). (9.42)

Here Γn denote the time-reversal invariant momenta, η2i is again the C2 eigenvalue

of the i-th band and the sum is over all occupied bands with the understanding that

we only sum over one of the degenerate Kramers partners, which necessarily have

the same eigenvlues. Wewill use this formula in Section 10.

9.2 Interactions and mean-field theory

The particle-hole condensates discussed in this paper are candidate ground states for

interacting Hamiltonians on the respective lattices. It is therefore time to take a closer

look into interacting lattice fermion models and build a genereal mean-field theory

which may be used to test which condensates appear in the mean-field phase diagram

for a given choice of interaction.

9.2.1 General formalism

We start from the assumption that the lattice has a basis, but neglect the internal orbital

degree of freedom. The non-interacting part of the Hamiltonian is then written as

Ĥ0 =
∑

ij

∑

~k

ψ̂†
i (
~k)Hij(~k)ψ̂j(~k). (9.43)
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Here and in the rest of this section we will explicitly write the sums over indices i, j
as adherence to the summation convemtion may be confusing. For the interacting

part of the Hamiltonian we take a density-density interaction of the form

Ĥint =
1

2

∑

ij

∑

~x,~x′

Vij(~x− ~x′)n̂i(~x)n̂j(~x
′)

=
1

2

∑

ij

∑

~q

Ṽij(~q)ρ̂i(~q)ρ̂j(−~q), (9.44)

Here n̂i(~x) = ψ̂†
i (~x)ψ̂i(~x) and we have assumed translational invariance of interac-

tions, expressed in Vij(~x−~x′) which only depends on the difference ~x−~x′. Observe

that we have suppressed spin indices here and excluded an onsite interaction of the

type Un̂↑(~x)n̂↓(~x). This type of interaction is valid for spinless systems to which

we will restrict ourselves in this section so as to avoid unnecessary complication at

this stage. In the next section we treat the spinful case. As mentioned elsewhere, we

will touch on triplet spin-density waves only occasionally in the bulk of this paper

and in the last section we take more detailed but far from exhaustive look at triplet

condensates. For now we particularize to spinless fermions. Note also the appear-

ance of the factor 1/2 in front of the sum. This is due to the fact that we will find

it convenient to enforce Vij(~x) = Vji(−~x), which has the consequence that each

combination n̂i(~x)n̂j(~x
′) occurs twice.

The momentum dependent density-operator is defined as

ρ̂i(~q) =
∑

~k

ψ̂†
i (
~k + ~q)ψ̂i(~k), (9.45)

and the Fourier transformed interaction reads explicitly

Ṽij(~q) =
1

N

∑

~x

Vij(~x)e
−i~q·~x. (9.46)

Note that so far we have not made any assumptions on the range of the interac-

tion. The property Vij(~x) = Vji(−~x) is expressed in momentum space as Ṽji(~q) =

Ṽ ∗
ij(~q) = Ṽij(−~q). As it is written now it generally contains interactions between

nearest-neighbors, next nearest-neighbors, ect. In any specific model calculation one

will always terminate this sequence somewhere and we therefore we write the inter-

action in momentum space as a series in which each term represents a distict range,

Ṽij(~q) =
1

N

∑

n

VnΓ
(n)
ij (~q), n = 1, 2, . . . (9.47)
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where, for instance, V1 corresponds to the interaction between nearest neighbors only.

We stress that the nearest neighbor interaction pertains to the underlying lattice, and

thus may be active between unit cells as well as within the unit cell.

Writing the the interaction term of equation (9.44) in terms of field operators

explicitly we easily get

∑

ij

∑

~q,~k,~k′

ψ̂†
i (
~k + ~q)ψ̂i(~k) Ṽij(~q) ψ̂

†
j (
~k′ − ~q)ψ̂j(~k

′). (9.48)

In the weak-coupling limit, anticipating density-wave order of some kind, it is legit-

imate to employ a Hubbard-Stratonovich (HS) decouplig of the interaction and look

for the saddle-point solution. To that end we introduce two kinds of HS fields, one for

charge order and one for bond order. At the same time, we make an assumption con-

cerning the type of translational symmetry breaking, by specifiying the set of ordering

vectors ~Qγ which will feature in the expecation values 〈ψ̂†(k + Qγ)ψ̂(k)〉. Conse-

quently, the Ansatz for the HB fields corresponding to charge order are specified by

the expression

∑

i,γ,~k

∆∗
iγ ψ̂

†
i (
~k − ~Qγ)ψ̂i(~k) +

∑

i,γ,~k

ψ̂†
i (
~k + ~Qγ)ψ̂i(~k)∆iγ −

∑

i,j,γ

∆∗
iγ Ṽ

−1
ij ( ~Qγ)∆jγ ,

(9.49)

and the saddle-point equations read

∆∗
iγ =

∑

j,~k

〈ψ̂†
j (
~k + ~Qγ)ψ̂j(~k)〉Ṽji( ~Qγ)

∆iγ =
∑

j,~k

Ṽij( ~Qγ)〈ψ̂†
j (
~k)ψ̂j(~k + ~Qγ)〉, (9.50)

which are obviously equivalent due to Ṽ ∗
ij = Ṽji. In general, the order parameters

∆iγ are complex, which suggests that the degrees contained in them are twice the

number of lattice orbitals labeled by i times the number of ordering vectors labeled

by γ. For site order this would not seem right, and indeed, given the set of ~Qγ ,

one may deduce relations showing the correct number of degrees of freedom. For

instance, in case of 2 ~Qγ = 0, it is easy to show that the ∆iγ are real.

For bond order we follow a similar recipy, by first arranging the interaction in a

suitable fashion

−
∑

ij

∑

~q,~k,~k′

ψ̂†
i (
~k + ~q)ψ̂j(~k) Ṽij(~k − ~k′) ψ̂†

j (
~k′)ψ̂i(~k

′ + ~q). (9.51)
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Note the minus sign coming from the anti-commutation of fermion operators. For

the interaction as given in (9.44) and (9.47), the functions Γ
(n)
ij (~k − ~k′) contained

in Ṽij(~k − ~k′) are separable. Specifically, one can write Γ
(n)
ij (~k − ~k′) as a sum of

products of basis functions of irreducible representation of the lattice point group.

This yields the expression

Γ
(n)
ij (~k − ~k′) =

∑

I,r
λ
(n,Ir)
ij (~k)λ

(n,Ir)∗
ij (~k′) (9.52)

where the sum is over irreducible representations labeled by I and its basis functions

r (an irreducible representation may have more than one basis function). A term in

the expansion defined by (9.47) then takes the form

−Vn
N

∑

ij

∑

~q,~k,~k′

∑

I,r
ψ̂†
i (
~k + ~q)ψ̂j(~k)λ

(n,Ir)
ij (~k) λ

(n,Ir)∗
ij (~k′) ψ̂†

j (
~k′)ψ̂i(~k

′ + ~q).

(9.53)

Sticking with a term such as this one, we introduce the bond HS fields ∆
(n,Ir)
ijγ and

∆
(n,Ir)†
ijγ as

−
∑

i,j,γ,~k

∑

I,r

[
∆

(n,Ir)∗
ijγ λ

(n,Ir)∗
ij (~k) ψ̂†

j (
~k)ψ̂i(~k + ~Qγ)+

ψ̂†
i (
~k + ~Qγ)ψ̂j(~k)λ

(n,Ir)
ij (~k)∆

(n,Ir)
ijγ

]

+
N

Vn

∑

γ,I,r
∆

(n,Ir)∗
ijγ ∆

(n,Ir)
ijγ (9.54)

for which we have the saddle-point equations

∆
(n,Ir)∗
ijγ =

Vn
N

∑

~k

〈ψ̂†
i (
~k + ~Qγ)ψ̂j(~k)〉λ(n,Ir)

ij (~k)

∆
(n,Ir)
ijγ =

Vn
N

∑

~k

λ
(n,Ir)∗
ij (~k)〈ψ̂†

j (
~k)ψ̂i(~k + ~Qγ)〉. (9.55)

As a consequence of translational symmetry breaking, we restrict the sum over mo-

menta ~k,~k′ to momenta in the reduced Brillouin zone. At the same time we must

include a sum over the momenta ~Qµ for each of the momentum summations. For the
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charge order parameter fields this yields explicitly

∆iγ =
∑

j,µ,~k∈rbz

Ṽij( ~Qγ)〈ψ̂†
j (
~k + ~Qµ)ψ̂j(~k + ~Qγ + ~Qµ)〉

=
∑

j,µ,~k∈rbz

Ṽij( ~Qγ)〈χ̂†
µj(
~k)χ̂[µ+γ]j(~k)〉. (9.56)

We have used the definition χ̂µi(~k) = ψ̂†
i (
~k + ~Qµ) already introduced in Section

9.1.3. By [µ + γ] we mean the index ν that is the result of ~Qγ + ~Qµ = ~Qν . Hence,

the momenta must be added and not the indices µ and γ itself. The mean-field part of

the Hamiltonian corresponding to charge order then reads
∑

i,µ,γ,~k∈rbz

[
∆∗
iγ χ̂

†
µi(
~k)χ̂[µ+γ]i(~k) + χ̂†

[µ+γ]i(
~k)χ̂µi(~k) ∆iγ

]
−

∑

i,j,γ

∆∗
iγ Ṽ

−1
ij ( ~Qγ)∆jγ .

(9.57)

This mean field part of the Hamiltonian containing the coupling of (charge) order

parameters to the spinors χ̂, together with the free part H0(~k) constitutes the full

mean field Hamiltonian of equation (9.16). The formalism laid out in the previous

section can now be used to investigate the structure of symmetry breaking induced by

the mean fields.

Clearly a similar expression may be written down for bond order, but instead of

quoting the general result we think it will be illustrative to work out a specific case

and see the formalism outlined above at work directly. We will do so in Section 9.2.3.

We close this section with some general remarks on the order parameters in-

troduced above. By defining them such that they are labeled by the momenta ~Qγ ,

we have separated them automatically into translationally invariant and translational

symmetry broken components. Both for bond and site order, the γ = 0 compo-

nent corresponds to translationally invariant orders, while nonzero γ 6= 0 compo-

nents signal the breaking of translational symmetry. The main purpose of the present

mean-field theory is to find out which condensates transforming as irreducible rep-

resentations of the relevant symmetry are contained in the solutions of the saddle-

point equations, i.e. the site and bond order parameters. The translationally invariant

components γ = 0 are written in the sublattice space basis and in order to find the

irreducible representations contained in the order parameters we only have to project

on the sublattice functions.

9.2.2 Interactions with spin

In this section we present the generalities of a mean-field theory for spinful interacting

lattice fermion models. Based on the work already done in the first part of this section,
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it is rather straightforward to include the spin degree of freedom and thereby provide

a way to discuss, classify and test the stability of triplet particle-hole condensates.

There is one main difference with the spinless case, and we already commented

on this following equation (9.44), which is the presence of an on-site Hubbard repul-

sion. Fermionic statistics allows each site to be occupied by two electrons of opposite

spin species, a situation which will however lead to an energetic penalty customarily

labeled U . The onsite Hubbard Hamiltonian reads

ĤU = U
∑

i,~x

n̂i↑(~x)n̂i↓(~x). (9.58)

This term can be rewritten so as to allow for a decoupling in charge and spin order

parameter fields separately. One easily finds that the onsite Hubbard term can be

expressed as

ĤU ∼ U
∑

i,~x

[ψ̂†
iσ(~x)ψ̂iσ(~x)]

2 − U
∑

i,~x

[ψ̂†
iσ(~x)~σσσ′ ψ̂iσ′ (~x)]2. (9.59)

Here and in the following we adopt the convention that spin indices appearing twice

are assumed to be summed over, as this should not cause any confusion. The first

term of equation (9.59) is a product of density operators, i.e.
∑

σ n̂iσ(~x), and hence

can be decoupled using a charge order field. The second term is written in terms of

spin operators, i.e. ψ̂†
iσ(~x)~σσσ′ ψ̂iσ′ (~x) ∼ ~si with σi a set of Pauli matrices acting in

spin space, and corresponds to spin ordering. Transforming to momentum space, the

first term of equation (9.59) is written as

U
∑

i

∑

~q,~k,~k′

ψ̂†
iσ(
~k + ~q)ψ̂iσ(~k)ψ̂

†
iσ′ (~k

′)ψ̂iσ′ (~k′ + ~q), (9.60)

while the second term, containing the spin operators, takes the form

U
∑

i

∑

~q,~k,~k′

ψ̂†
iσ1

(~k + ~q)σaσ1σ2
ψ̂iσ2

(~k)ψ̂†
iσ3

(~k′)σaσ3σ4
ψ̂iσ4

(~k′ + ~q). (9.61)

In the same way as before we anticipate translational symmetry breaking with order-

ing vectors ~Qγ forming a closed algebra under addition, and we proceed with the HS

decoupling for the charge part to arrive at

∑

i,γ,~k

∆0∗
iγ ψ̂

†
iσ(
~k)ψ̂iσ(~k + ~Qγ) +

∑

i,γ,~k

ψ̂†
iσ(
~k + ~Qγ)ψ̂iσ(~k)∆

0
iγ −

∑

i,γ

∆0∗
iγU

−1∆0
iγ .

(9.62)
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We introduce the spinful HS fields ∆a
iγ in the decoupling of the spin order term (9.61)

as

−
∑

i,γ,~k

∆a∗
iγ ψ̂

†
iσ(
~k)σaσσ′ ψ̂iσ′(~k + ~Qγ)

−
∑

i,γ,~k

ψ̂†
iσ(
~k + ~Qγ)σ

a
σσ′ ψ̂iσ′ (~k)∆a

iγ +
∑

i,γ

∆a∗
iγNU

−1∆a
iγ . (9.63)

Here a = 1, 2, 3 labels the direction in spin space and a sum over a is understood

in expressions where the spin label appears twice. If we now let a take the values

a = 0, 1, 2, 3 and define σ0 as the identity matrix, then the self-consistent saddle-

point equations for charge and spin order can be compactly written as

∆a∗
iγ =

U

N

∑

~k

〈ψ̂†
iσ(
~k + ~Qγ)σ

a
σσ′ ψ̂iσ′ (~k)〉

∆a
iγ =

U

N

∑

~k

〈ψ̂†
iσ(
~k)σaσσ′ ψ̂iσ′ (~k + ~Qγ)〉. (9.64)

We observe that the onsite interaction U can induce charge density waves and spin

density waves, which the current scheme treats on equal footing. Any form of bond

order is not possible for an onsite interaction only, and in order to look for a spinful

generalization of bond ordering, we revisit the longer range density-density interac-

tions of equation (9.44) including the spin degree of freedom.

The starting point is straightforward, as we only need to write the spin labels

explicitly,

ĤV =
1

2

∑

ij,σσ′

∑

~x,~x′

Vij(~x− ~x′)n̂iσ(~x)n̂jσ′ (~x′), (9.65)

here the sum over spin indices is written explicitly due to the number operators.

Transforming to momentum space we then have

∑

ij

∑

~q,~k,~k′

ψ̂†
iσ(
~k + ~q)ψ̂iσ(~k) Ṽij(~q) ψ̂

†
jσ′ (~k

′)ψ̂jσ′ (~k′ + ~q). (9.66)

This term, which is quartic in the fermion operators, can be decoupled in charge order

parameters and bond order parameters, something which we alread y demonstrated

for the spinless case. In the presence of spin, the bond order parameters can be

further catergorized as order parameters with no spin structure and order parameters
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corresponding to combined spin-bond order. The former is just a trivial generalization

of equation (9.49) and the HS decoupling defining the order parameters ∆0
iγ reads

∑

i,γ,~k

∆0∗
iγ ψ̂

†
iσ(
~k)ψ̂iσ(~k + ~Qγ) +

∑

i,γ,~k

ψ̂†
iσ(
~k + ~Qγ)ψ̂iσ(~k)∆

0
iγ −

∑

i,γ

∆0
iγV

−1
ij ( ~Qγ)∆

0
jγ .

(9.67)

We have chosen the same notation∆0
iγ for the order parameter fields as equation (9.62),

since these two terms may indeed be collected into a single terms for charge order

without spin structure. The self-consistent saddle-point equations for such charge

order easily follow from equation (9.50) and take the form

∆0∗
iγ =

∑

j,~k

〈ψ̂†
jσ(
~k + ~Qγ)ψ̂jσ(~k)〉Ṽji( ~Qγ)

∆0
iγ =

∑

j,~k

Ṽij( ~Qγ)〈ψ̂†
jσ(
~k)ψ̂jσ(~k + ~Qγ)〉. (9.68)

Rearranging terms in equation (9.66) yields an interaction quartic in fermion opera-

tors which can be decoupled in the bond order channel,

−
∑

ij

∑

~q,~k,~k′

ψ̂†
iσ(
~k + ~q)ψ̂jσ′ (~k) Ṽij(~k − ~k′) ψ̂†

jσ′ (~k
′)ψ̂iσ(~k

′ + ~q). (9.69)

Further manipulations of this interaction term lead to a form which makes the spin

structure of the bond order explicit. Again using the Pauli matrices σa = (σ0, σ1, σ2, σ3)
we find the interaction to be equal to

−1

2

∑

ij

∑

~q,~k,~k′

ψ̂†
iσ1

(~k + ~q)σaσ1σ2
ψ̂jσ2

(~k) Ṽij(~k − ~k′) ψ̂†
jσ3

(~k′)σaσ3σ4
ψ̂iσ4

(~k′ + ~q).

(9.70)

Based on this interaction we can follow the same recipy for HS decoupling as in

the spinless case, and apply it to each of the spin components a. Without explicitly

writing the HS decoupling, we give the self-consistent saddle-point equations for the

spinful bond order parameters, now labeled by a in addition to (n, Ir, i, j, γ),

∆
a(n,Ir)∗
ijγ =

Vn
N

∑

~k

〈ψ̂†
iσ(
~k + ~Qγ)σ

a
σσ′ ψ̂jσ′ (~k)〉λ(n,Ir)

ij (~k)

∆
a(n,Ir)
ijγ =

Vn
N

∑

~k

λ
(n,Ir)∗
ij (~k)〈ψ̂†

jσ(
~k)σaσσ′ ψ̂iσ′(~k + ~Qγ)〉.

(9.71)
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9.2.3 Example: honeycomb and triangular lattice

In order to show how the mean-field theory presented above may be used in a spe-

cific case we take the honeycomb lattice as an example. We will look at two sets of
~Qµ, the K-points and the M -points. A mean-field theory incorporating translational

symmetry breaking has been applied to the honeycomb lattice before [167, 168, 185]

by working directly with a six site unit cell. This would correspond to ~Qµ = ~K± in

our case and we must of course obtain the same results in this case.

For the honeycomb lattice we first specify an explicit form for the interaction

Ṽij(~q). The honeycomb lattice has two sublattices, A and B, and the indices i, j
run over these values. We take a nearest neighbor V1 and a next-nearest neighbor

interaction V2 into account. In defining Vij(~x) (and consequently Ṽij(~q)), we should

be careful to comply with the counting convention specified by equation (9.44), and

in case of the nearest neighbor interaction we set

VAB(0) = VAB(~x2) = VAB(−~x1) =
VBA(0) = VBA(−~x2) = VBA(~x1) = V1 (9.72)

and all other matrix elements are zero. This leads to the Fourier transformed expres-

sion

Γ
(1)
ij (~q) = Γ(1)(~q)δiAδjB + Γ(1)∗(~q)δiBδjA

Γ(1)(~q) = 1 + ei~q·~x2 + e−i~q·~x1 . (9.73)

For the next-nearest neighbor interaction we make the following choice

VAA(~x1) = VAA(~x2) = VAA(~x1 + ~x2) =

VAA(−~x1) = VAA(−~x2) = VAA(−~x1 − ~x2) = V2 (9.74)

and the same for VBB . In Fourier space we then have

Γ
(2)
ij (~q) = δijΓ

(2)(~q) = 2δij(cos q1 + cos q2 + cos q3), (9.75)

where qi = ~q · ~xi and we have set ~x3 = −(~x1 + ~x2). Before going very specifically

into the case of ordering at the K-points and subsequently M -points, we write down

the decomposition of Γ
(1)
ij (~k−~k′) and Γ

(2)
ij (~k−~k′) in terms of the λ

(n,Ir)
ij (~k), as these

apply generally both to cases. It suffices to derive relevant expression for Γ(1)(~k−~k′)
and Γ(2)(~k − ~k′). We obtain as a general expansion

Γ(1)(~k − ~k′) = λ(1,A1)(~k)λ(1,A1)∗(~k′) + ~λ(1,E2)(~k) · ~λ(1,E2)∗(~k′)

Γ(2)(~k − ~k′) = λ(2,A1)(~k)λ(2,A1)∗(~k′) + ~λ(2,E2)(~k) · ~λ(2,E2)∗(~k′)

λ(2,B1)(~k)λ(2,B1)∗(~k′) + ~λ(2,E1)(~k) · ~λ(2,E1)∗(~k′).

(9.76)
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The functions λ(1,Ir)(~k) are given explicitly in Appendix A

With this preliminary work out of the way we are in a position to particularize

to a certain set of ordering vectors. As advetised we focus on K-point ordering first,

and as such we work with the state operator basis



χ̂0i(~k)

χ̂1i(~k)

χ̂2i(~k)


 =




ψ̂i(~k)

ψ̂i(~k + ~K+)

ψ̂i(~k + ~K−)


 . (9.77)

Let’s consider charge order first. It is straightforward to find thatΓ
(1)
ij (0) = 3(δiAδjB+

δiBδjA) and that Γ
(1)
ij ( ~K+) = Γ

(1)
ij ( ~K−) = 0. As there is no contribution to ∆i1 and

∆i2 from the nearest neighbor interaction, the nearest neighbor interaction will cause

translational symmetry breaking. For the next-nearest neighbor interaction we easily

find that Γ
(2)
ij (0) = 6δij and Γ

(2)
ij ( ~K+) = Γ

(2)
ij ( ~K−) = −3

√
3δij . Observe that these

are all real. The order parameters of equation (9.50) become

∆i0 = 3
V1
N

∑

µ,~k

(δiAδjB + δiBδjA)〈χ̂†
µj χ̂µj〉+ 6

V2
N

∑

µ,~k

δij〈χ̂†
µj χ̂µj〉

∆i1 = −3
√
3
V2
N

∑

µ,~k

δij〈χ̂†
µj χ̂[µ+1]j〉

∆i2 = −3
√
3
V2
N

∑

µ,~k

δij〈χ̂†
µj χ̂[µ+2]j〉, (9.78)

where we did not write the momentum dependence of the expectation values explic-

itly. From this is more or less directly follows that the order parameters ∆i1 and ∆i2

are not indepedent, but equivalent. Using the additive properties of the ~K± vectors

we find that ∆∗
i1 = ∆i2. This is fully consistent with the expectation that the charge

order parameters must contain six independent degrees of freedom, corresponding to

the six sites in the enlarged unit cell.

We proceed in the same way for bond order. For the nearest neighbor bond order

the order parameters read (again suppressing some momentum dependence)

∆
(1,A1)
ijγ =

V1
N

∑

µ,~k

[
λ(1,A1)∗(~k)δiAδjB〈χ̂†

µjχ̂[µ+γ]i〉+ λ(1,A1)(~k)δiBδjA〈χ̂†
µj χ̂[µ+γ]i〉

]
,

~∆
(1,E2)
ijγ =

V1
N

∑

µ,~k

[
~λ(1,E2)∗(~k)δiAδjB〈χ̂†

µj χ̂[µ+γ]i〉+ ~λ(1,E2)(~k)δiBδjA〈χ̂†
µjχ̂[µ+γ]i〉

]

(9.79)
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For nearest neighbor bond order we expect nine complex degrees of freedom, cor-

responding to the nine bonds in the enlarged unit cell. Since we have three basis

functions of irreducible representations and three degrees of freedom coming from

γ, we immediately see that they represent the independent degrees of freedom. Note

that ~∆
(1,I)
ABγ and ~∆

(1,I)
BAγ are not independent but related by complex conjugation. Very

similar expressions hold for next-nearest neighbor bond order, which are all diagonal

in sublattice space. For instance, the (2, A1) order parameter reads

∆
(2,A1)
ijγ =

V2
N

∑

µ,~k

λ(2,A1)∗(~k)δij〈χ̂†
µj χ̂[µ+γ]i〉, (9.80)

For next-nearest neighbor bond order we expect nine complex order degrees of free-

dom for each of the sublattices. Since we now have six basis functions of irreducible

representations, we seem to have twice too many. It is however straightforward to

show that all the ∆
(2,I)
ij0 are real and that ∆

(2,I)
ij1 and ∆

(2,I)
ij2 are not independent.

Hence, we have the correct number of degrees of freedom.

Instead of the ordering vectors ~K± we may anticipate a different pattern of trans-

lational symmetry breaking, and choose the three M -point ordering vectors, which

we just label ~Qµ (see Section 9.4.1). The mean field spinor then has four momentum

components and reads




χ̂0i(~k)

χ̂1i(~k)

χ̂2i(~k)

χ̂3i(~k)


 =




ψ̂i(~k)

ψ̂i(~k + ~Q1)

ψ̂i(~k + ~Q2)

ψ̂i(~k + ~Q3)


 . (9.81)

Apart from this difference, we need to evaluate Ṽij( ~Qµ) for the three M -point mo-

menta. Doing this we find that the charge order parameters take the form

∆i0 =
1

N

∑

µ,~k

[6V2δij + 3V1(δiAδjB + δiBδjA)]〈χ̂†
µjχ̂µj〉

∆i1 =
1

N

∑

µ,~k

[−2V2δij + V1(δiAδjB + δiBδjA)]〈χ̂†
µj χ̂[µ+1]j〉

∆i2 =
1

N

∑

µ,~k

[−2V2δij − V1(δiAδjB + δiBδjA)]〈χ̂†
µj χ̂[µ+2]j〉

∆i3 =
1

N

∑

µ,~k

[−2V2δij + V1(δiAδjB + δiBδjA)]〈χ̂†
µj χ̂[µ+3]j〉. (9.82)
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Note that in this case the nearest neighbor interaction in principle contributes to the

order parameters describing translational symmetry breaking, which was different for

ordering at ~K . Insofar as bond order is concerned, we can simply copy the expres-

sions from equations (9.2.3) and (9.80), but we must interpret the sum over ordering

vectors to run over ~Qµ.

As an illustrative example of a spinful mean field theory we apply the general

expressions to the specific case of the triangular lattice. Choosing the triangular lattice

we can for the moment avoid the additional complication of sublattice structure. We

assume the presence of an onsite repulsion U and a nearest neighbor repulsion V1 =
V . For the nearest neighbor repulsion we find that the Fourier transform is given by

Ṽ (~q) = V Γ(1)(~q)/N = 2V (cos q1+cos q2+cos q3)/N , and evaluated at the orderig

momenta ~Qµ it gives Γ(1)( ~Qµ) = −2, while clearly Γ(1)(0) = 6. We therefore have

for the charge order parameters

∆0
0 =

U + 6V

N

∑

µ,~k

〈χ̂†
µσχ̂µσ〉

∆0
γ=1,2,3 =

U − 2V

N

∑

µ,~k

〈χ̂†
µσχ̂[γ+µ]σ〉, (9.83)

Where we have written the expectation values in terms of the mean field spinor com-

ponents χ̂µσ = ψ̂σ(~k + ~Qγ), while suppressing the momentum dependence. Spin

density wave order parameters can only originate from the onsite repulsion and we

simply have

∆a=1,2,3
γ =

U

N

∑

µ,~k

〈χ̂†
µσσ

a
σσ′ χ̂[γ+µ]σ′〉. (9.84)

We are left with bond order, which can be spinful or without any spin structure. The

function Γ(1)(~k − ~k′) is written as sum of products of irreducible representations

in a manner exactly equal to the honeycomb lattice next nearest neigbor function

Γ(2)(~k−~k′) given in equation (9.76). In total there are six irreducible representations

to be summed over, for the sake of brevity we limit ourselves to writing down two of

corresponding order parameters explicitly. For the triangular lattice they are

∆a(1,A1)
γ =

V

N

∑

~k

λ(1,A1)(~k)〈χ̂†
µσσ

a
σσ′ χ̂[γ+µ]σ′〉,

~∆a(1,E2)
γ =

V

N

∑

~k

~λ(1,E2)(~k)〈χ̂†
µσσ

a
σσ′ χ̂[γ+µ]σ′〉. (9.85)
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9.3 Condensates of the square lattice

We now take a closer look at the density wave states of the square lattice. As adver-

tised in previous sections, the focus will be on their symmetry and the way in which

they alter the low-energy electronic properties of the band structure.

An important aspect of density-wave orders is the breaking of translational sym-

metry by modulations at finite wave vector. Condensation of particle-hole pairs at fi-

nite vector leads to a reduced group of invariant translations as one has to remove the

broken translations from the Bravais lattice translational symmetry group. This en-

larges the unit cell of the system. In case of the simple square lattice, it is well known

that charge or spin density-waves at ordering vector ~Q = (π, π) double the unit cell

and, consquently, reduce the Brillouin zone to half of its size. When analyzing space

group symmetries in such a situation it is appropriate to add the broken translations,

which are no longer part of the set of invariant translations, to the point group of the

Bravais lattice. This generates the extended point of the lattice, the point group of

the enlarged unit cell, which has its own group structure and additional irreducible

representations. We may put this differently by noting that generally, to find the point

group of a given space group S one constructs the factor group G/T by factoring

out all the translations T , the group of invariant translations. Translational symmetry

breaking removes elements from T , which reappear as distinct cosets of G/T . A

more detailed introduction of extended point groups is given in Appendix C. At this

point it suffices to develop an intuitive understanding of the basic structure of ex-

tended point groups, so let us briefly consider an illustrative example of translational

symmetry breaking. Suppose we anticipate ordering at wave vector ~Q = (π, π), a

sensible expectation at half filling of the square lattice as Q nests the Fermi surface.

In that case the generators of good translations, i.e. the group of invariant transla-

tions, are T (~x1 + ~x2) and T (~x1 − ~x2). Hence, T (~x1) is no longer a good translation

and consequently becomes a member of the point group. The number of point group

elements are doubled and new irreducible representations emerge, on top of the ex-

isting bare point group representations. Note that T (~x1) is its own inverse, as 2T (~x1)
belongs to the group of invariant translations. By the same token, even though T (~x2)
is no longer a good translation, it can be written as T (~x1)−T (~x1−~x2) and therefore

belongs to the same coset as T (~x1).

In the following presentation of square lattice density waves, we will not restrict

ourselves to the single ordering vector ~Q = (π, π), but instead consider more general

multiple-Q ordering using the triplet of ordering momenta ~Q1 = (π, π), ~Q2 = (π, 0)

and ~Q3 = (0, π), which are shown in Fig. 9.1. This set of ordering momenta has the

useful property that it is closed under addition. Specifically, the additive algebraic

properties are 2 ~Qµ = 0 (for each µ = 1, 2, 3), which makes them nicely commensu-
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Figure 9.1: (Left) Brillouin zone of the square lattice. The momenta ~Q1 = (π, π),
~Q2 = (π, 0), and ~Q3 = (0, π) are marked by bold red dots (Right) Outer black

square represents the square lattice Brillouin zone. Red rotated square inscribed in

the square lattice Brillouin zone marks the nested Fermi surface at half filling and

at the same time corresponds to reduced Brillouin zone for translational symmetry

breaking at wave vector ~Q1. Inner black square represents the reduced Brillouin zone

for multiple ~Q ordering and ~q0 = (π, π)/2 denotes the location of the degeneracy

point of the dx2−y2 density-wave state.

rate, and ± ~Q1 ± ~Q2 ± ~Q3 = 0. This choice of ordering vectors immediately implies

that the unit cell is at most four times as large and as a consequence the three trans-

lations T (~x1), T (~x2) and T (~x3) ≡ T (~x1 + ~x2) become members of the extended

(point) symmetry group C′′′
4v . The character table of this group listing the irreducible

representations of this group is given in Appendix C and taken from [186]. Note that

we altered notation with respect to [186] so as to conform to the definitions used in

this work.

In this section dealing with the square lattice density waves, having fixed the set

of commensurate ordering vectors, we start by listing all possible site, bond and flux

ordered states by means of group theory. As advertised in Section 8.1 this will set

the stage for establishing a connection between symmetry and electronic properties.

We will demonstrate this in two separate subsections, the first of which provides a

discussion of the specific form of the various density waves. The second then focuses

on the way in which these density waves alter and affect the electronic (mean field)

band structure.

There are three types of distinct orderings to consider in the context of lattice

models and these are site or charge order, bond order, and time-reversal symmetry

breaking flux order. Strictly speaking, the latter is also a form of bond ordering, as

it is the hopping amplitudes which become complex. In order to properly account

for gauge equivalence of seemingly different orderings, we distinguish them here
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and treat them seperately. Having specified the structure of translational symmetry

breaking simple group theory arguments suffice to obtain a general organization of

density-wave states according to symmetry, without having to write down explicit

expression for them. For the square lattice with an enlarged unit cell containing four

sites, we collect these four sites in a vector with elements {si}4i=1 corresponding to

the sites. Point group operations permute this set. A representation Ps (s for site

order) of the extended point is constructed by associating each element of the group

with a permutation P s
ij which acts on the si. In the same way we label the eight

bonds by {bi}8i=1 and construct a representation Pb. The permutations in both cases

act explicitly as

s′i =
∑

j

P s
ijsj , b′i =

∑

j

P b
ijbj. (9.86)

These representations are clearly reducible ad may be decomposed into irreducible

representations using the character table of the symmetry group. For site order we

obtain the following decomposition

Ps = A1 ⊕B′
2 ⊕ E5. (9.87)

The only representation also appearing in the point group C4v is A1, while the others

are representations specific to the groupC′′′
4v . Hence, the translationally invariant con-

tent of this decomposition is A1, which is not surprising as the only possible trans-

lationally invariant charge order on the square lattice is a uniform excess or defect

charge. The other two representation correspond to translational symmetry broken

charge order. It is not hard to convince oneself that the s-wave charge order at ~Q1

transforms as B′
2.

For bond order we find that the representationPb has the following decomposition

Pb = A1 ⊕B1 ⊕ E′
1 ⊕ E3 ⊕ E5, (9.88)

where we find the translationally invariant content to beA1⊕B1, as expected. We will

come back to the translationally variant part when we discuss the specific condensates

corresponding to these representations.

We move on to flux states on the square lattice. In order to find the distinct flux

states transforming according to irreducible representations of the symmetry group

we associate a flux φi to each square plaquette of the lattice. Then the problem of find-

ing the permutation corresponding to a given group member is similar to the problem

of site order square lattice, since we have four fluxes as well as four sites. The crucial

difference is that in case of fluxes reflections invert the sign of the fluxes and give

rise to a minus sign in φ′i =
∑

j P
φ
ijφj . In addition, we must enforce the constraint
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that the sum of fluxes in the (enlarged) unit cell is zero, up to integer multiples of the

elementary flux quantum 2π. This originates from the fact that density-wave states

coming from interactions cannot cause magnetic field configurations with nonzero

average. Decomposing the square lattice flux representation Pφ we obtain

Pφ = A2 ⊕A′
2 ⊕ E2, (9.89)

The translationally invariant content is simply given by A2, which by definition cor-

responds to a state with the same flux φ pierced through each hexagonal plaquette.

Given the constraint that the flux through the unit cell must be zero up to integer mul-

tiples of 2π, we have φ/(2π) ∈ Z. There is one other state fulfilling the constraints,

which is a π-flux state given by φ = π. This is a consequence of the compact nature

of the (electromagnetic) gauge field on the lattice, meaning that π = −πmod 2π. The

π-flux state [92, 187] has become a ubiquitous state in condensed matter with rele-

vance to many seemlingly disparate fields. Is preserves time-reversal invariance and

transforms asA1, as any point group operation leaves the state invariant up to a gauge

transformation. We will come back to it in more detail below. As will be shown be-

low, the representation A′
2 corresponds to a staggered flux state, of which the π-flux

state may also be thought of as a particular case (since π = −π on a lattice).

Insofar as bond ordered states are concerned, to this point we have limited our-

selves to the bonds connecting nearest neighbors of the square lattice. We will find

this too restrictive as it excludes interesting density waves representing diagonal bond

modulations. Including the diagonal bonds in the bond vector bi adds another 8 bonds

and yields the decomposition

Pb = 2A1 ⊕B1 ⊕B2 ⊕A′
1 ⊕B′

2 ⊕ E′
1 ⊕ E2 ⊕ 2E3 ⊕ E5. (9.90)

The double appearance of A1 comes from the fact that next-nearest neighbor (diag-

onal) and nearest neighbor bonds are never mixed by point group operations, and so

we might have different bond strengths for both without lowering the symmetry. We

will find the state corresponding to the A′
1 representation to be particularly interest-

ing. It corresponds to the square lattice dxy state, and as such is closely related to the

dx2−y2 state, which is the A′
2 state of the flux order decomposition (9.89).

To conclude these more general considerations using just group theory, and be-

fore we come to the explicit expression for quite a number of the density wave states

listed here, we demonstrate based on the elementary example of the square lattice

case how the symmetry organization serves the purpose of identifying states with

topological quantum numbers. In section 9.1.4 we presented two distinct possibil-

ities for topological quantum numbers, the Chern number (connected to quantized

off-diagonal conductivity) and electric polarization. Prerequisites for nonzero Chern

number are time-reversal symmetry breaking and the absence of any reflection sym-

metries, which means we must consider the flux states given in equation (9.89). The



9.3 Condensates of the square lattice 155

state corresponding to A′
2 certainly breaks all reflections, but as can be seen from the

character table of C′′′
4v , it is even under any reflection followed by T (~xi). The trans-

lation may be thought of as a form of gauge transformation, leaving the Hamiltonian

unitarily equivalent to itself under reflections, which mandates zero Chern numbers

in the same way as pure reflection do. Hence, this state by itself cannot have nonzero

Chern number. The same is true for the states belonging to E2, which are even under

T (~x1 + ~x2)σv .

Concerning electric polarization, we see that we may restrict the attention to states

which transform as 1D representations of C4v , as these are the only ones which have

at least C2 symmetry. This considerably limits the possibilities, as for site order we

only have the stateB′
2 and for bond order the statesA1 andB1 contained in E3 which

have the potential to acquire nontrivial quantum numbers, should they be insulating.

The will investigate these possibilities below.

9.3.1 The density waves of the square lattice

It is now time to look at the explicit form density-wave orders transforming according

to the representations just presented. We note once again that we mainly focus on spin

singlet states, but we comment briefly on triplet states at the end of this section. We

have stated that we are interested in density-waves at modulation vectors ~Qµ, with
~Qµ defined above. A general density-wave state is then specfied by

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′ (~k)〉 = ∆µ(~k)δσσ′ (9.91)

Above we have commented on the special commensurability conditions of the or-

dering vectors ~Qµ, which are summed up as 2 ~Qµ = 0 and ± ~Q1 ± ~Q2 ± ~Q3 = 0.

From these properties one can easily obtain compatibility conditions of density-wave

states. In particular, the fact that 2 ~Qµ = 0 leads to (see also [166])

∆µ(~k + ~Qµ)

∆∗
µ(
~k)

= 1, (9.92)

or, to put it in a different form, writing ∆µ(~k) = ∆µfµ(~k) explicitly, fµ(~k +
~Qµ)/f

∗
µ(
~k) = ∆∗

µ/∆µ. In addition there are relations between the different ~Qµ,

due to ± ~Q1 ± ~Q2 ± ~Q3 = 0. We have for instance

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′(~k)〉 = ∆1(~k) = 〈ψ̂†

σ(
~k + ~Q2 + ~Q3)ψ̂σ′ (~k + ~Q2 + ~Q2)〉 =

〈ψ̂†
σ(
~k + ~Q2 + ~Q3)ψ̂σ′(~k + ~Q3 + ~Q3)〉 (9.93)
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from which it easily follows that

〈ψ̂†
σ(
~k + ~Q3)ψ̂σ′ (~k + ~Q2)〉 = ∆1(~k − ~Q2) =

〈ψ̂†
σ(
~k + ~Q2)ψ̂σ′ (~k + ~Q3)〉∗ = ∆∗

1(
~k − ~Q3) (9.94)

Similar relations obviously hold for the other combinations of ordering momenta and

thus we obtain the additional relation

∆µ1
(~k − ~Qµ2

) = ∆∗
µ1
(~k − ~Qµ3

), µ1 6= µ2 6= µ3 (9.95)

Armed with these general relations we proceed to explicit expression of density-wave

states on the square lattice.

The simplest and almost trivial example of an s-wave state at momentum ~Q1 is

given by

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′ (~k)〉 = ∆CDWδσσ′ . (9.96)

This state is a site ordered state with no momentum dependence, hence the com-

monly used label s-wave, and represents the staggered charge-ordering as is shown

graphically in Fig. 9.2(a). In the decomposition of equation (9.87) is belongs to the

representation B′
2. Substituting the ordering momentum ~Q2 or ~Q3 for ~Q1 yields the

remaining two charge-density waves, which are partners belonging to the representa-

tion E5.

There are a number of p-wave type bond orders contained in the decomposition of

equation (9.88). Two of them are associated to the ordering vector ~Q1 and are given

by

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′(~k)〉 = i∆

E′

1
px sin kxδσσ′ ,

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′(~k)〉 = i∆

E′

1
py sin kyδσσ′ . (9.97)

Here we have chosen ∆E′

1 real and therefore a factor of i is necessary due to equa-

tion (9.92). We give these states the label E′
1 as they belong to this representation,

and the fact that these are imaginary p waves underlines the time-reversal invariance

of these bond orders. Figures 9.2(c)-(d) show these two p waves graphically. The px
state of this doublet is seen to correspond to alternating weaker and stronger bonds

in the x direction, like a Peierls distorted state, only modulated in the y direction as

well. Another time-reversal invariant bond order contained in equation (9.88) is the

doublet

〈ψ̂†
σ(
~k + ~Q2)ψ̂σ′(~k)〉 = i∆E3

1 sin kxδσσ′ ,

〈ψ̂†
σ(
~k + ~Q3)ψ̂σ′(~k)〉 = −i∆E3

2 sin kyδσσ′ . (9.98)
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Figure 9.2: Graphical representation of some of the density wave states discussed in

the main text, labeled by their irreducible representations. Red (blue) bonds represent

stronger (weaker) bonds. All states have ordering vector ~Q1 and black dots in the

center of the squares denote the origin. (a) Site ordered, or charge-density wave state,

(b) dx2−y2 state (which is a flux state), (c)-(d) Two partners of the bond ordered

doublet E′
1.
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It can be easily checked that these density-wave states transform as partners of E3,

which means that under twofold rotations C2 they transform into themselves instead

of acquiring a minus sign as strict p-wave states would. We choose not to label them

explicitly as px and py waves as the decomposition of E3 in terms of irreducible

representations of C4v is E3 = A1 ⊕B1. The E3 doublet is shown in Fig. 9.3(a)-(b).

Exchanging ~Q2 and ~Q3 in equation (9.98) yields a time-reversal symmetry break-

ing doublet given by

〈ψ̂†
σ(
~k + ~Q3)ψ̂σ′ (~k)〉 = −∆E2

px sin kxδσσ′ ,

〈ψ̂†
σ(
~k + ~Q2)ψ̂σ′ (~k)〉 = ∆E2

py sin kyδσσ′ . (9.99)

These are real p waves and we must therefore look at equation (9.89) in order to

identify the irreducible representation corresponding to this doublet and we find that

it is E2, a doublet of flux states, which we show in Fig. 9.3(c)-(d) in the A2 ⊕ B2

basis. To complete the identification of flux states in the decomposition (9.89), we

have the d-wave staggered flux given by

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′ (~k)〉 = ∆dx2

−y2
i(coskx − cos ky)δσσ′ . (9.100)

The dx2−y2 state is well-known in the context of high temperature superconductivity,

as it has been discussed in connection to pseudogap physics in cuprates [188] and

was found much earlier to be a mean-field solution of the Hubbard model [92, 189].

As we have already assigned theE2 doublet and this state clearly breaks translational

symmetry, it must be the A′
2 state, the staggered flux as shown in Fig. 9.2(b). Di-

rect evaluation of the relevant point group operations confirms this. Its time-reversal

invariant d-wave cousin which was also mentioned earlier already is

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′(~k)〉 = ∆dxy sin kx sin kyδσσ′ . (9.101)

Note that they are just cousins and not partners of a two-dimensional representation

in the context of square symmetry. The dxy state transforms as A′
1 as contained in

the decomposition (9.90) since it is a next-nearest neighbor bond density-wave state.

To complete the square lattice nearest-neighbor bond density-wave states we give an

expression for the doublet states corresponding to E5. These are

〈ψ̂†
σ(
~k + ~Q3)ψ̂σ′(~k)〉 = ∆E5

px cos kxδσσ′ ,

〈ψ̂†
σ(
~k + ~Q2)ψ̂σ′(~k)〉 = ∆E5

py cos kyδσσ′ . (9.102)

Despite its appearance it makes sense to label them as p-waves, as they are odd under

C2, which is a consequence of the fact that E5 = E1 when decomposed in terms of

C4v .
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Figure 9.3: Graphical representation of square lattice density wave states at ordering

vectors ~Q2 and ~Q3. (a) and (b) show the bond ordered doublet states belonging to

E3, expressed so as to transform as A1 and B1 of the bare point group. (c) and (d)

show the flux states belonging to E2, expressed in the A2 and B2 basis.
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This completes the listing of density-wave states transforming as the represen-

tations in the decompositions of equations (9.87) and (9.88). In addition we have

mentioned one state coming from equation (9.90), i.e. the dxy state, as there is a nat-

ural connection to the dx2−y2 state. Not only are they both d-wave states, their mere

symmetry properties indicate that for a combined idx2−y2 + dxy a topological quan-

tum number can be defined. Indeed, we had noted in the beginning of this section

that the state idx2−y2 transforms as A′
2 and is thus even under reflections followed

by translations. The combination idx2−y2 +dxy changes this because dxy transforms

as A′
1. The difference is entirely due to reflections. The dxy state is even under re-

flections but odd under translations by a primitive lattice vector (T (~x1) or T (~x2)).
Hence, reflections are manifestly broken in an idx2−y2 + dxy state. The same is true

for time-reversal symmetry, i.e. the time-reversal operation cannot be compensated

by a translation, which is the case for a pure idx2−y2 state. This allows for the Chern

number, the topological quantum number of the state, to be nonzero and it was in-

deed found that the chiral idx2−y2 + dxy density-wave is a gapped Chern insulator

state [190, 191]. We thus see how the organization of density waves in terms of sym-

metry serves one of the purposes laid out in the introduction. It leads in a direct way

to the identification of states that can acquire additional quantum numbers of topo-

logical nature. In this case it leads us to known result, but in what follows we hope to

demonstrate the general usefulness of the approach. A second intent of the symmetry

perspective is to extract information on the low-energy properties of the symmetric

parent state for a given filling. How the organization above serves this purpose we

discuss in the next section.

As we have mentioned the Chern insulating chiral id + d density wave state,

we briefly comment on possible nontrivial spinful triplet states of the square lattice.

Even though these are known results, they however will set the stage for similar

observations in case of other lattices. Just to ease ourselves into the possible triplet

states, we recall the simplest and most obvious triplet state, i.e. the antiferromagnetic

spin-density wave at ~Q1, which is the triplet version of s-wave site order,

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′ (~k)〉 = ∆SDWσ

3
σσ′ . (9.103)

We might have chosen a generic spin direction ~s ·~σσσ′ , but we shall not be concerned

with global spin rotation equivalence of spin density wave states. A time-reversal

invariant version of the dx2−y2 state is given by

〈ψ̂†
σ(
~k + ~Q1)ψ̂σ′(~k)〉 = ∆σdx2

−y2
i(coskx − cos ky)σ

3
σσ′ . (9.104)

This σidx2−y2 state may be thought of as two copies of the spinless dx2−y2 state, with

inverted fluxes for the two spin species. Time-reversal invariance follows from the

inversion of both spin and flux under time-reversal. The σidx2−y2 is a semimetallic
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state with isolated Dirac nodes, the spinless version of which will be discussed in

more detail in the next section. For now it suffices to note that the combination

σidx2−y2 + dxy , in the same way as its spinless counterpart, is a gapped state with

nontrivial topological character [191]. Its explicit expression reads

〈ψ̂†
α(
~k + ~Q)ψ̂β(~k)〉 = ∆QSH

[
i(coskx − cos ky)σ

3
σσ′ + sin kx sinkyδσσ′

]
,

(9.105)

Its topological character follows from a simple and well-established argument, which

uses the spin-projected Chern numbers C↑ and C↓. The latter are well-defined since

σ3 represents good quantum numbers. Time-reversal symmetry requires C↑ + C↓ =
0, but their difference is nonzero,C↑−C↓ = ±2, indicating that the insulating density

wave state is in the Quantum Spin Hall universality class [1, 23].

9.3.2 Spectral properties and low energy effects

As laid out in the introductory sections, one of purposes of studying the symme-

try of condensates is to uncover any direct relation between the preserved or broken

symmetries of condensates and their impact of the electronic spectrum. Now that

we have discussed quite a number of specific density wave orders in the previous

section, we can turn to the question of spectral properties. Naturally, the starting

point is the spectrum of electrons on the square lattice, which is trivially given by

E(~k) = −2t
∑
i cos ki where i = x, y. We focus on half filling, a filling at which the

Fermi surface is nested by the wave vector ~Q1 = (π, π), a widely known property.

This is graphically depicted in Fig. 9.1. As a consequence of this nesting property, it

is reasonable to expect condensates at ordering vector ~Q1 to have strongest impact on

the Fermi surface, possibly creating a full energy gap, as the mean-field Hamiltonian

will now contain terms coupling states at momenta ~k and ~k + ~Q1, i.e. terms such

as ψ̂†(~k)ψ̂(~k + ~Q1). Let us therefore look into these states in particular. Indeed,

a textbook example of a square lattice density wave state leading to insulating be-

haviour is the staggered charge ordered state, given in 9.96 and its spinful cousin the

(weak-coupling) antiferromagnet. The condensate functions are of s-wave type, i.e.

∆CDW for the charge density wave and ∆SDWσ
3 for the (triplet) spin density wave,

and therefore nodeless.

States which do have nodes in momentum space are the d-wave states given by

condensate functions ∆dx2
−y2

(~k) = ∆dx2
−y2

i(cos kx − cos ky) and ∆dxy (
~k) =

∆dxy sin kx sin ky [see the equations (9.100) and (9.101)], and these nodes coincide

with the Fermi surface. The spectral consequence of this is the presence of remaining

degeneracies at isolated points on the Fermi surface. Except for the isolated nodes,

the spectrum is gapped out. For both of these d-wave states the degeneracies occur
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at high symmetry points, which is connected to the symmetric nature of the conden-

sate functions. We will now show explicitly that these degeneracies are protected by

lattice symmetries. Based on the classification of these states in terms irreducible

representations of the extended point group C′′′
4v it is not all too diffcult to establish

which symmetries mandate the presence of degeneracies.

We recall the expression for the dx2−y2 state, which is

〈ψ̂†(~k + ~Q1)ψ̂(~k)〉 = ∆dx2
−y2

i(cos kx − cos ky), (9.106)

The nodes of this condensate function are located at the two inequivalent moment

~q0 = (π, π)/2 and ~q′0 = (−π, π)/2. The node at ~q0 is shown in Fig. 9.1. The mean

field fermion operators are given generically in equation (9.17) and for ordering at
~Q1 we simply have

χ̂(~k) =

[
χ̂0(~k)

χ̂1(~k)

]
=

[
ψ̂(~k)

ψ̂(~k + ~Q1)

]
. (9.107)

In order to study the robust symmetry protection of the degeneracies, we take ~q0 as an

example and abbreviate the fermion operator at this point as Φ̂ = χ̂(~q0). The density

wave state dx2−y2 preserves a number of symmetries and one can simply look up the

representation A′
2 in the character table to see what operations, or what combination

of operations, constitutes a symmetry. A subset of these symmetries leave the point

~q0 invariant and can therefore be used to derive constraints on the coupling between

the two degenerate states at ~q0. Two of such symmetries are the inversion C2, and

the combination of the reflection σ1d = C4σv and T (~x1), where σv is the reflection

sending (x, y) → (x,−y) (for the precise and more detailed definition of the point

group operations see Appendix A and C). Separately the reflection and the translation

are broken, but the combination is preserved. Equation (9.18) can now simply be

applied to obtain the effect of these symmetries on Φ̂ and we find

C2 → χ̂(−~q0) = χ̂(~q0 − ~Q1) = τ1Φ̂

T (~x1)σ1d → τ3Φ̂. (9.108)

Here τ i is a set of Pauli matrices acting on the two-component state Φ̂. From these

relations it straightforwardly follows that the presence of these symmetries protects

the degeneracy at ~q0. At ~q0 the mean-field Hamiltonian must commute with both

τ1 and τ3 and the only matrix which has this property is the unit matrix. This is

fully analogous to the protection of the degeneracy at the Dirac point of the honeycob

lattice, which is explicitly demonstrated in Appendix A. In the present example of the

dx2−y2 density wave, it is possible to show the protection of the degeneracy at ~q0 by a
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single symmetry. Time-reversal symmetry T is broken for the dx2−y2 density wave,

but as Fig. 9.2(b) shows, the combination of T and T (~x1) is preserved, and maps ~q0
to itself. The action of T T (~x1) on Φ is

T T (~x1) → Kτ3τ1Φ̂, (9.109)

withK complex conjugation, from which one obtains the condition τ3τ1H∗(~q0)τ1τ3 =
H(~q0). This requires H(~q0) to be proportional to the identity, proving that the degen-

eracy is symmetry protected.

In a very similar way one can show the symmetry protection of the degeneracy

at ~q1 = (π, 0) existing in the dxy state. Both time-reversal and the fourfold rotation

C4 are symmetries and it is straightforward to deduce that these act on χ̂(~q1) as

Kτ3τ1χ̂(~q1), precluding a coupling between the two degenerate states at ~q1. Below

we comment in more detail on the special role of the fourfold rotation C4 [86].

In the vicinity of the degeneracies present in the two examples of d wave states,

the mean-field dispersion resembles that of Dirac fermions in case of the dx2−y2 , and

a quadratic band crossing in case of dxy. Hence we may reformulate the symme-

try protection by stating that both the massless Dirac fermions in one case, and the

quadratic band crossing are point group symmetry protected. Because of this, it is a

natural and certainly interesting question to ask how additional symmetry breaking

affects these low-energy descriptions.In accordance with the general theme of this

work, that is the question we will address in the next two sections. We assume that

we are deep inside the d wave states and will study in which way various symme-

try broken density wave orders change the low energy properties of these “root” or

“parent” states. This approach is similar to a recent study of band structure effects on

superconducting states [192], where different “parent states” in principle competing

with superconductivity were considered in order to study their impact on supercon-

ducting instabilities.

Dirac fermions of the π-flux state

A particularly interesting parent density-wave is the dx2−y2 density-wave state giving

rise to Dirac nodes in the low-energy spectrum. Let us abbreviate the strength of the

density wave, i.e. the order parameter ∆dx2
−y2

, as ∆ for convenience. The nodes

appear for arbitrary strength |∆| with different Fermi velocities for two orthogonal

directions in momentum space, however, the specific value |∆| = 2t realizes the

π-flux state on the square lattice. For illustrative purposes we take this value to cor-

respond to the parent state and study the low-energy physics which is governed by a

Dirac Lagrangian from a symmetry perspective. Suppressing spin indices we recall
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the expression for the d wave state

〈ψ̂†(~k + ~Q1)ψ̂(~k)〉 = ∆i(cos kx − cos ky), (9.110)

and as we are interested in the low-energy Dirac physics we must include ψ̂(~k+ ~Q2)

and ψ̂(~k + ~Q3), which are coupled as

〈ψ̂†(~k + ~Q2)ψ̂(~k + ~Q3)〉 = ∆i(cos kx + cos ky). (9.111)

The fermions field in terms of which we write the Hamiltonian is now properly four-

dimensional and reads explicitly

χ̂(~k) =




χ̂0(~k)

χ̂1(~k)

χ̂2(~k)

χ̂3(~k)


 =




ψ̂(~k)

ψ̂(~k + ~Q1)

ψ̂(~k + ~Q2)

ψ̂(~k + ~Q3)


 . (9.112)

For convenience we abbreviate the cosine functions as c+(~k) ≡ cos kx + cos ky
and c−(~k) ≡ cos kx − cos ky . The Hamiltonian is block diagonal as χ̂0 and χ̂1 are

decoupled from χ̂2 and χ̂3, i.e.

H(~k) =

[
M1(~k)

M2(~k)

]
, (9.113)

with the blocks given by

M1(~k) = −2tc+(~k)τ
3 − 2tc−(~k)τ

2

M2(~k) = 2tc−(~k)τ
3 + 2tc+(~k)τ

2 (9.114)

where τ i is a set of Pauli matrices. As is well-known, the spectrum corresponding to

this Hamiltonian has a doubly-degenerate Dirac node at ~q0 = (π/2, π/2), analogous

to the case of graphene. Expanding the Hamilotnian around this point yields the linear

block diagonal structure

M1(~q0 + ~q) = vF (qxτ
3 + qyτ

2)

M2(~q0 + ~q) = −vF (qyτ3 + qxτ
2), (9.115)

where we have rotated ~q with respect to ~k by π/4. The linearized Dirac Hamiltonian

corresponds to the Dirac spinor defined as Φ̂(~q) = χ̂(~q0 + ~q). It is convenient to
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employ a basis transformation in order to express the Hamiltonian in a simple form.

Making the substitution

Φ̂(~q) →
[
1

e−iπτ
1/4

]
Φ̂(~q) ≡

[
1

g

]
Φ̂(~q), (9.116)

achieves this and the transformed Hamiltonian reads

H(~q) = vF (qxτ
3 + qyν

3τ2), (9.117)

where νi denotes another set of Pauli matrices acting on an effective valley space.

More specificially, the τ i mix the states χ̂0,1 and χ̂2,3 between themselves, and the

νi mix the two sets. The Hamiltonian of equation (9.117) has the familiar Dirac form

and one question we may ask is what are the possible Dirac masses and what do they

correspond to physically. It is straightforward to determine the possible masses by

finding combinations νiτ j which anticommute with both τ3 and ν3τ2 [102]. All of

the matrices τ1, ν1τ2 and ν2τ2 have this property and, in addition, anti-commute

between themselves. They constitute compatible masses which add in quadrature.

There is another mass matrix, ν3τ1, which anti-commutes with τ3 and ν3τ2 but not

with the other masses. Hence, this is a competing mass.

In order to establish a connection between the density-wave states discussed ear-

lier and the present low-energy description of the π-flux state, we analyze the sym-

metry properties of the mass matrices and other fermion bilinears. The recipy for this

analysis follows directly from the gerenal considerations of Section 9.1 as we will

now demonstrate. As such, it is similar to the approach described in [186]. Using the

results of Section 9.1 we evaluate the effect of operations in C′′′
4v on χ̂(~q0). As this is

a point of high symmetry in the reduced Brillouin zone, we obtain a representation of

the group, which can be fully specified by the action of the generators of the group.

These are the translation T (~x1), the rotation C4 and the reflection σv . The only yet

crucial difference with respect to general discussion of Section 9.1 is the fact that in

case of the π-flux state symmetry operations may need to be supplemented by a gauge

transformation, the combination of which leaves the Hamiltonian invariant. Taking

this into account and using equation (9.18) we find

T (~x1) → −iGν3τ3χ̂(~q0)
C4 → iν3τ3V χ̂(C4~q0)

σv → −iGτ3χ̂(σv~q0) (9.118)

where V originates from the interchange of χ̂2 and χ̂3 and G is the necessary gauge

transformation. They are given by

V =

[
1

τ1

]
, G = ν1g = ν1e−iπτ

1/4. (9.119)
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As discussed earlier, even though ~q0 is invariant under all operations in the reduced

BZ, it is not so in the original BZ, and we must therefore bring it back to itself by

adding proper reciprocal lattice vector of the reduced BZ. Consequently, we find

χ̂(C4~q0) = χ̂(~q0 + ~Q2) = ν1χ̂(~q0)

χ̂(σv~q0) = χ̂(~q0 + ~Q3) = ν1τ1χ̂(~q0). (9.120)

In a similar manner we can obtain the representation of time-reversal, which also

should be supplemented by a gauge transformation in the present case. One finds

T → GKχ̂(−~q0) = GKτ1χ̂(~q0), (9.121)

where K is complex conjugation. As these expressions determine the action of the

group generators, the action of the group is fully specified. Simplifying the combina-

tions of Pauli matrices somewhat we obtain the following set of operators acting on

Φ̂, where we stress that is not the transformed Φ̂ defined by equation (9.116),

T (~x1) → −igν2τ3Φ̂
C4 → −iν2τ2V Φ̂

σv → gτ2Φ̂

T → gKν1τ1Φ̂. (9.122)

Then, using the unitary transformation expressed in equation (9.116), we obtain a rep-

resentation of the group that can be used to classify all fermion bilinears Φ̂†
iMijΦ̂j

withM some tensor product of Pauli matrices, i.e. Mij = (νkτ l)ij . Let us first take a

look at the mass matrices, which are of particular interest. The mass term τ1 is found

to transform according to B′
2. In addition, we find that the masses ν1τ2 and ν2τ2

transform as partners of the two-dimensional representation E3. From this it imme-

diately follows which density-wave states presented in Section 9.3.1 correspond to

these mass terms and will therefore gap out the parent π-flux state. These are, re-

spectively, the site ordered state at ordering vector ~Q1 given in equation (??) and the

bond order doublet transforming as E3, which is the real bond order doublet con-

tained in the decomposition (9.88) and which we will see below is a flux-preserving

generalization of equation (9.98). Here we observe how the symmetry of interaction-

induced density wave orders allows for a direct identification of the impact of such

density wave states at low energies. The three masses just identified are full analogs

of masses (insulating states) in graphene [193–195]. We will analyze this connection

in more detail below when we come to the honeycomb lattice itself, but for complete-

ness we already mention what they correspond to in graphene. The site ordered state

is trivially seen to correspond to a site ordered state on the honeycomb lattice, with
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Irreps of C′′′
4v B′

2 E3 E2 E′
1 E5

Irreps of C4v B2 A1 ⊕B1 A2 ⊕B2 E1 E1

Basis functions τ1 ν1τ2, ν1, τ2, 1√
2
(ν1 − ν2τ1),

ν2τ2 ν2 ν3τ3 1√
2
(ν2 − ν1τ1)

Table 9.1: This table summarizes the identification of low-energy fermion bilinears

as basis functions of irreducible representations of C′′′
4v . In addition we present the

irreducible representations of C4v contained in those of C′′′
4v .

a charge imbalance between the two sublattices (hence sometimes referred to as sub-

lattice potential). The other two masses can be mapped onto the Kekule bond order

in graphene.

Before we move on to establish a connection between other density-wave states

listed in Section 9.3.1 and the Dirac matrices, we comment on the explicit expres-

sions for mass generating density-wave states. The nature of the parent state we are

considering here, i.e. the π-flux state, prevents us from directly associating the ex-

pressions written down in Section 9.3.1 with the mass matrices presented here. This

is a consequence of the π-flux threading each square and the fact that some symmetry

operations must be dressed with gauge transformation in order to leave the Hamil-

tonian invariant. The mass matrices ν1τ2 and ν2τ2 are time-reversal invariant and

must therefore correspond to a flux-preserving density wave state. The doublet of

equations (9.98) and (9.99) by themselves are not π-flux-preserving (even though the

doublet (9.98) clearly preserves zero flux, the parent). We must therefore form ap-

propriate linear combinations in order to form states that transform as E3 under the

symmetry operations of the parent state. We find that the following linear combina-

tions have this property

〈ψ̂†
σ(
~k + ~Q2)ψ̂σ′(~k)〉 = −iη1∆η1η2(sin kx + iη2 sin ky)δσσ′ ,

〈ψ̂†
σ(
~k + ~Q3)ψ̂σ′(~k)〉 = ∆η1η2(sin kx + iη2 sin ky)δσσ′ .

(9.123)

Here ηi = ± and we have not only formed combinations of theE2 andE3 doublets as

specified by (9.98) and (9.99), we have also constructed the condensates so as to form

basis functions of the twoA1 representations ofC4v contained inE3. This is reflected

in the appearance of px + ipy functions. As there are two indices ηi both taking two

values, they represent four distinct condensates. Let’s first take η1 = +. Then we find

that the two density-wave states η2 = ± are precisely the flux-preserving mass terms

transforming as E3 = A1 ⊕ B1. Hence, these are the condensate functions which
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directly correspond to the Dirac masses ν1τ2 and ν2τ2. Since they were obtained

by taking linear combinations of E1 and E2 functions of the zero flux root state,

it is natural to expect that we may form very similar linear combinations to obtain

expressions for doublet functions belonging to E2 of the π-flux state. Indeed, taking

η1 = − yields the two (η2 = ±) partners of the E2 representation, which do change

the flux away from π. The Dirac matrices ν1 and ν2 provide the low-energy fermion

bilinears belonging to these states. They are not masses which gap out each of two

Dirac cones, but instead split the two Dirac cones in energy. One may call them

masses in “valley space”.

Now that we have seen how density wave states, based on symmetry arguments,

have the interpretation of Dirac masses at low energies, we proceed to establish a

connection between some other density-wave states and Dirac matrices. In particular

the doubletsE′
1 andE5, which are part of (9.88) and were defined in the previous sec-

tion, have an interesting low-energy structure. Taking the E′
1 as an example, we may

find Dirac matrices which transform as partners of this representation, by requiring

that they are odd under the translations T ( ~x1) and T ( ~x2), while being odd under C2

as well. Two matrices satisfying these constraints are τ2 and ν3τ3, which are indeed

the partners of E′
1. Similar reasoning leads to the combinations of Dirac matrices

(ν1 − ν2τ1)/
√
2 and (ν2 − ν1τ1)/

√
2 belonging to E5. As such, they correpond

to the terms in the low-energy coming from the density waves transforming accord-

ingly. What is the precise structure of these terms? To see this, we first define the

three Dirac matrices Ω1 = ν1τ3, Ω2 = ν1τ3 and Ω3 = ν3. Note that these satisfy the

su(2) algebra [Ωi,Ωj ] = 2iǫijkΩk, and we can therefore use them as gauge charges

of an SU(2) gauge field Aα as Aα = AiαΩ
i (α = x, y) and couple this gauge field to

the low-energy Dirac fermions of the π-flux state as

H(~q) = ~vF
[
τ3(qx − AixΩ

i) + ν3τ2(qy −AiyΩ
i)
]
. (9.124)

Looking at what the products τ3Ωi and ν3τ2Ωi amount to, we see that one precisely

obtains ν1, ν2 and ν3τ3 in case of the former, and ν2τ1, ν1τ1 and τ2 in case of

the latter. This leads to the conclusion that density wave states transforming as E′
1

and E5 enter to lowest order as gauge-fields in the low-energy Dirac theory of the

parent π-flux state. As such they do not gap out the linear Dirac nodes, but shift

them away from ~q0 in the Brillouin zone. Non-Abelian gauge fields appearing in a

low-energy Dirac theory of a condensed matter system have been discussed in the

context of graphene [180] (to which we come back later) and we observe here that

the translational symmetry broken density wave states belonging to the E′
1 and E5

representation are direct square lattice analogs of these.

Table (9.1) summarizes the identification of Dirac matrices as basis functions of

irreducible representations. In essence, as was demonetrated above, this table al-

lows to directly interpret the effect of interaction induced site or bond ordered states
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on the low-energy theory of the fully symmetric patent state, the π-flux state. Ta-

ble (9.1) highlights an important conclusion which follows from the symmetry anal-

ysis presented here and which will reappear in the context of hexagonal lattices. All

condensates which belong to representations that can be reduced in terms of “bare”

point group representations (C4v for the square lattice) as 1D representations enter as

masses in the low-energy description, either in valley space or providing a full spec-

tral gap. This was demonstrated for E3 = A1 ⊕ B1, which lead to genuine masses

and therefore spectral gaps, and E2 = A2 ⊕ B2, states of which have the effect of a

valley-mass. In contrast, condensates transforming according to representations that

contain only 2D representations of the “bare” point group are found to correspond to

gauge fields in the context of a low-energy Dirac description. These statements will

be found to hold true for hexagonal lattices with symmetry protected Dirac points as

well, such as the honeycomb and kagome lattice. In addition, we will find a more gen-

eral connection between condensate functions transforming as 1D representation and

the presence of spectral gaps when looking at nested Fermi surfaces of the hexagonal

lattice free dispersions.

Quadratic band crossing

After this extensive exposition on the π-flux root state, we come now to the second

parent state of interest. Whereas the π-flux state is essentially a dx2−y2 state, the

other state we focus on is the dxy state given in equation (9.101). Assuming we are

very deep inside the dxy state and writing the strength as ∆ = t2 we start from the

following root state

〈ψ̂†(~k + ~Q1)ψ̂(~k)〉 = t2 sin kx sin ky,

〈ψ̂†(~k + ~Q2)ψ̂(~k + ~Q3)〉 = −t2 sin kx sin ky (9.125)

We choose to work again in the four-dimensional spinor basis specified in equa-

tion (9.112). As was the case for the π-flux state, the Hamiltonian is block diagonal,

with the blocks defined as Mi. The low-energy theory (at half filling) of the dxy state

is that of a quadratic band crossing (QBC) at Γ, i.e. an isolated degeneracy in the

vicinity of which the dispersion is quadratic. The QBC exists in the M2 block of the

Hamiltonian, which reads

M2(~k) = 2t(cos kx − cos ky)τ
3 − t2 sin kx sin kyτ

1, (9.126)

while the M1 block contains the high-energy modes at Γ. Hence, for the low-energy

description we need to project into the subspace spanned by χ̂2 and χ̂3 and the low-
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energy spinor is then given by

Φ̂(~q) =

[
χ̂2

χ̂3

]
=

[
ψ̂( ~Q2)

ψ̂( ~Q3)

]
(9.127)

The low-energy Hamiltonian for small momenta ~q takes the form

H(~q) = 2t(q2x − q2y)τ
z − 2t2qxqyτ

1, (9.128)

which directly follows from (9.126). We have seen above that the dxy state transforms

according to A′
1, which essentially means that it is odd under the translations T (~xi).

The action of the generators of the group C′′′
4v on the low-energy degrees of freedom

is derived in the same way as before [see again equation (9.116)], and after projecting

onto the low-energy subspace

T (~x1) → −τ3Φ̂
C4 → −iτ2Φ̂
σv → τ3Φ̂

T → KΦ̂. (9.129)

Based on the action of these operators we can deduce the effect on the dxy root

state, of density waves which lower the symmetry. Two well-known properties of

QBC points [86] follow immediately from them. The first is that an energy gap is

forbidden by time-reversal invariance. The opening of a gap would come from a

constant term in (9.128) proportional to τ2, which is odd under time-reversal. The

second is the protection of the QBC by C4 symmetry. In general a perturbation may

split the QBC into two Dirac points, which is not possible however in the presence

of C4 symmetry [86]. Intuitively this is obvious, as the splitting in two nodes away

from Γ clearly violates fourfold rotational symmetry. From the above relations we

see that C4 is the only operation acting as τ2, which anticommutes with both τ1

and τ3, making them both odd under a fourfold rotation, precluding a constant term

proportional to these matrices. Hence, the combined operation of time-reversal and

fourfold rotation robustly protects the QBC at Γ in the RBZ.

We observe that the matrix τ1 is odd under the vertical reflection σv and would

therefore transform as B′
2. Indeed the CDW at ordering vector ~Q1 couples to such a

term. This would correspond to a splitting of the QBC point into two Dirac points.

The time-reversal odd matrix τ2, the only matrix available to open up a spectral gap,

couples to the density staggered flux state of equation (9.100). For any generic QBC

point a spectral gap can only be opened by breaking time-reversal symmetry. This is

due to the fact that a gapped QBC intrinsically carries a nonzero Chern number [86],
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which is not compatible with time-reversal invariance. These two density waves, i.e.

the B′
2 and the A′

2 state, are both modulated by ~Q1 and therefore directly affect the

QBC point due to the relation 〈ψ̂†(~k + ~Q1)ψ̂(~k)〉 = 〈ψ̂†(~k + ~Q2)ψ̂(~k + ~Q3)〉. The

same is true for the time-reversal invariant bond order doublet of equation (9.97). As

these are p-wave states they enter in the low-energy description as qxτ
2 and qyτ

2,

where the momentum dependence ensures time-reversal invariance.

9.4 Condensates of hexagonal lattices

The second class of lattices for which we present an extensive and detailed discussion

of the symmetry organization of particle-hole condensation are the hexagonal lattices.

Two-dimensional lattices with hexagonal symmetry play are ubiquitous in condensed

matter physics, the honeycomb lattice realized in graphene being the highlight exam-

ple. The kagome lattice, to name another well-known example, has attracted much

attention since materials which have this basic lattice structure are considered to be

prime candidates for intriguing physics such as spin liquid behaviour. At the same

time, recent studies of hexagonal lattice fermion models with strong electronic in-

teractions point towards new and unconventional correlated electronic phases, which

are believed to originate from the hexagonal symmetry of such systems. With this in

mind, in this section we will apply the method outlined in Section 9.1, and applied to

the square lattice in 9.3, to three specific lattices, the honeycomb lattice, the kagome

lattice and the triangular lattice.

The hexagonal lattices all have a triangular Bravais lattice and their first Brillouin

zone takes the shape of a hexagon, which is shown in Fig. 9.4. In the followig we

will focus on translational symmetry breaking at two different sets of commensurate

wave vectors. The first set consists of the corners of the Brillouin zone hexagon, a set

which contains two inequivalent wave vectors ~K+ and ~K−, the socalled K-points,

see Fig. 9.4. The second set consists of the centers of the hexagon faces, the so-called

M -points, also shown in Fig. 9.4. There are three inequivalent M -points and we

will write them as ~Qµ, with µ = 1, 2, 3. The algebraic properties under addition are

distinct for these two sets of ordering momenta. The K-points are related by ~K− =

2 ~K+ and 3 ~K+ = 0, from which it follows that ~K− = − ~K+. Observe that the K-

points are generated by a single vector ~K+ (or ~K− obviously). The M -points in the

hexagonal Brillouin have the property 2 ~Qµ = 0, which is equivalent to ~Qµ defined

for square symmetry systems. Indeed, the M -points satisfy ± ~Q1 ± ~Q2 ± ~Q3 = 0.

The difference with respect to the square lattice ~Qµ is that all M -points are mixed by

point group operations, while ~Q1 (= (π, π)) is always mapped to itself for systems

with square symmetry. Translational symmetry breaking at the K-points amounts a
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tripling of the unit cell and is expected in case of the honeycomb and kagome lattices

when these systems are doped to the Diracpoints of band structure, as K connects

the Dirac nodes in momentum space. In contrast, translational symmetry breaking at

the M -points leads to a quadrupled unit cell, and is expected to occur for all three

hexagonal lattices when their band structure is filled to the van Hove points.

The rest of this section is divided into three parts, corresponding to the three lat-

tices that will be discussed. The first part deals with the honeycomb lattice, while

the second and third part focus on the kagome and triangular lattice, respectively.

The most detailed treatment will be presented for the honeycomb lattice, as it will

serve to highlight the features common to all three lattices. All three parts start with

a group theoretical analysis of all the possible site, bond and flux density waves and

then proceed to finding the explicit forms of these density waves in order to char-

acterize their electronic properties. The honeycomb lattice part is subdivided into

five distinct parts, the first three of which discuss the density waves of translationally

invariant, K-point, and M -point density waves, respectively. In particular M -point

ordering on the honeycomb lattice will treated in great detail as we will introduce

a formalsism for obtaining density waves of definite symmetry that will find more

general application in the context of the other hexagonal lattices. The last two parts

focus on the spectral characterization of these density waves and its connection to

the representations to which they belong. For K-point order the relevant low-energy

description of the electronic systems is a Dirac theory located at those K-points and

we will carefully study how the various density waves enter in such a Dirac theory,

in a similar fashion as for the square lattice. For M -point order the relevant starting

point for describing low-energy electrons is a hexagonal Fermi surface, energetically

located at the van Hove points of band structure, and nested by theM -points. We will

derive and present an effective low-energy theory around those M -points and show,

using only symmetry arguments, how density wave states enter in such an effective

description. Both of these parts are based on the honeycomb lattice, but the results

and conclusions presented there apply to all hexagonal lattices. For this reason, the

discussion of the kagome and triangular lattices will be more brief as we can draw

from insight gained in the context of the honeycomb lattice. Specifically, in case of

the kagome lattice we will combine the explicit construction of symmetric density

waves and their impact on the mean field spectrum for the purpose of illustrating

the power and utility of the lattice symmetry organization of the density waves. We

will do the same for the triangular lattice, in which case we content ourselves with

M -point ordered states, for the most part because we use the triangular lattice as the

prime example illustrating spinful M -point condensates in Chapter 10.
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Figure 9.4: (Left) Outer black lined hexagon denotes the first Brillouin zone of

hexagonal lattices (for instance honeucomb, kagome, but also triangular lattices).

Bold red dots mark the M -point ordering vectors ~Qµ (for the definition see Ap-

pendix A) and the red hexagon connecting these M -points denotes the Fermi surface

at a specific lattice depedent filling fraction, which in case of the honeycomb lattice

would be 3/8. Inner black hexagon denotes the reduced Brillouin zone corresponding

toM -point order (b) First Brillouin zone of the hexaginal lattices, with bold blue dots

denoting the hexagon vertices ~K±. Inner black rotated hexagon denotes the reduced

the reduced Brillouin zone corresponding to ordering at ~K±.

9.4.1 Honeycomb lattice

The honeycomb lattice is a lattice structure which has acquired fame since the iso-

lation of single-atom graphite layers now known as graphene [98, 196]. The honey-

comb lattice has a triangular Bravais lattice with a two-atom unit cell, and we follow

the convention of labeling the atoms A and B. Details of Bravais and reciprocal

vectors in addition to the real space positions of the unit cell atoms, definition of

real space origin and lattice symmetries are given in Appendix A. We will first look

at translationally invariant density-wave states, and then proceed to discuss transla-

tional symmetry broken states, at K-points and M -points respectively. Before we

go into the details of these classes of condensates we employ straightforward group

theory methods to derive which irreducible representations are expected for a given

choice of translational symmetry breaking. As was the case for the square symmetry

groups, translational symmetry breaking removes a certain set of translations from

the translational symmetry group corresponding to the Bravais lattice. Adding these

translations to the point group of the original Bravais lattice gives the extended points

groups. In case of the hexagonal space group lattices, these extended groups are C′′
6v

and C′′′
6v for K-point ordering and M -point ordering, respectively. The number of

primes pertain to the number of translations added to the point group C6v . For more

details we refer to Appendix C.
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For density wave states at both K- and M -points we distinguish site order, bond

order and flux states. Let us defer flux states for the moment and focus attention on

site and bond order first. The general procedure is to label all sites and bonds within

the unit cell by si and bi, respectively. The index i runs over the number of sites

or bonds in the unit cell, which depends on the modulation (ordering) vectors under

consideration. For instance, for K-point ordering, we have 6 sites in the unit and 9

bonds. We then construct a representation of the extended point groups by associating

each element of the group with a permutation P s,b
ij , which follows from the way the

group element permutes the sets {si}6i=1 and {bi}9i=1, i.e.

s′i =
∑

j

P s
ijsj , b′i =

∑

j

P b
ijbj. (9.130)

These representations, denoted as Ps,b, may be decomposed into irreducible represen-

tations using the character table of the symmetry group. The decomposition then tells

us how all possible condensates may be organized according to their transformation

properties under symmetry group elements.

In case of site order at the K-points we find the following decomposition in terms

of irreducible representations of C′′
6v

PK
s = A1 ⊕B2 ⊕G′, (9.131)

whereas we find for M -point ordering

PM
s = A1 ⊕B2 ⊕ F1 ⊕ F4, (9.132)

which in this case is a decomposition in terms of irreducible representations of C′′′
6v .

These two decompositions share the combinationA1⊕B2 which is the translationally

invariant content of the decomposition. It is not surprising that this is also contained

in the decomposition of larger reducible representations of translational symmetry

broken states. The combination A1 ⊕ B2 may also be obtained in a direct manner

by focusing exclusively on the translationally invariant unit cell structures. The two

sublattices corresponding to the A and B are either left invariant or interchanged

by an element of C6v , yielding a two-dimensional reducible representation of the

symmetry group. Decomposing it in terms of irreducible representations simply gives

A1 ⊕ B2. As a spoiler of what follows, we note that B2 corresponds to a charge-

density wave that corresponds to the sublattice potential often discussed in the context

of graphene.

Repeating the same procedure for bond ordering we obtain for K-point ordering

PK
b = A1 ⊕ E2 ⊕ E′

1 ⊕G′, (9.133)
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and for ordering at the M -points we find

PM
b = A1 ⊕ E2 ⊕ F1 ⊕ F3 ⊕ F4. (9.134)

Here we observe that the translationally invariant content is A1 ⊕ E2. At this stage

we leave these results for what they are, but will come back to them extensively when

we discuss the explicit expressions of the density-wave states transforming according

to the representations featuring in the decompositions derived here.

We now go into the details of flux states on the honeycomb lattice. In order

to find the various flux states transforming according to irreducible representations of

the relevant symmetry group we associate a flux φi to each hexagonal plaquette of the

honeycomb lattice. As such, the problem of finding the permutation corresponding to

a given is similar to the problem of site order on the triangular lattice, with the crucial

difference that reflections invert the flux and give rise to a minus sign. In addition,

we must again enforce the constraint that the sum of fluxes in the unit cell is zero up

to integer multiples of the elementary flux quantum 2π. Working out the permutation

representation and decomposing it into irreducible representations of C′′
6v we find

PK
φ = A2 ⊕ E′

2. (9.135)

The translationally invariant content is simply given by A2, which by definition cor-

responds to a state with the same flux φ pierced through each hexagonal plaquette.

To find the flux patterns contained in E′
2 we first decompose it in irreducible repre-

sentations of C6v and find E′
2 = A2 ⊕B2.

An analogous calculation for flux patterns coming from M -point ordering yields

the decomposition

PM
φ = A2 ⊕ F2, (9.136)

where the F2 representation can be further decomposed into A2 ⊕ E2.

In the same way as for the square lattice, we can use the obtained representations

for the different types of ordered states to analyse whether or not additional quantum

numbers connected to topological characteristics can in principle be acquired by the

condensates. The simplest task to identify orderings that are compatible with nonzero

Chern number. We stress that we do not assume anything with regard to the spectral

properties such as the existance of an energy gap, which is a necessary condition of a

well-defined integer Chern number. Based on symmetry alone it is possible to narrow

the possibilities down considerably. In particular, as was noted in Section 9.1.4, time-

reversal symmetry mandates vanishing Chern number and therefore we are forced to

consider the flux states. The translationally invariant state we already excluded, which

leaves us with E′
2 in case of K-point ordering, and F2 in case of M -point ordering.
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We had already taken the effort of decomposing them further in terms of C6v and

found that both in case of K-point and M -point ordering there is a state A2 which

breaks all reflections. Both are contained in larger dimensional representations of

C′′
6v and C′′′

6v , the partners of which are mixed by the point group translations T (~xi).
Hence, translations cannot compensate the odd reflections as was the case for the

square lattice. These states are therefore genuine candidates for nontrivial topology

and we will investigate this specifically once we have obtained explicit expression for

them.

Insofar as quantized electric polarization is concerned, hexagonal symmetry re-

stricts the possibilities. We iterate that hexagonal symmetry here refers strictly to the

rotations and reflections, the bare point group elements. As stated in section 9.1.4,

when C6 rotational symmetry is present, no nontrivial electric polarization is possi-

ble. The threefold rotational symmetry C3 restricts the polarization p1 = p2 to be

multiples of 1/3. If, in addition, there exists a reflection (or two-fold rotation from

D3) then it precludes nontrivial polarization if one of the lattice vectors ~xi is in the

reflection plane (or one of its C3 equivalents). The point group C6v has four rep-

resentations which have C3 symmetry, which are all the 1D representations. Two

must be excluded as they have C6 in addition. Two other are B1 and B2, only one

of which admits nontrivial polarization due to the reflection. Which one depends on

the translational symmetry breaking, in the sense that for K-point ordering the unit

lattice vectors are 2~x1 + ~x2 and ~x1 + 2 ~x2. For M -point ordering they are 2~x1 and

2~x2, which has the consequence that for translationally invariant order and order at

M -points B2 states admit nontrivial polarization, while B1 states admit nontrivial

polarization for K-point order. Based on these considerations we conclude that for

site order the C3 symmetric state contained in the M -point triplet F4, which is a B2

state may have nontrivial polarization. For bond order we have theK-point candidate

B1 contained in E′
1 and the M -point candidateB2 contained in F4.

Before we start building the general particle-hole condensates on the honeycomb

lattice, we note that we will use the matrix functions τ i (Pauli matrices), which oper-

ate on the sublattice degree of freedom.

Translationally invariant singlet states at Γ

We start by considering translationally invariant states, some of which are nontrivial

due to the sublattices of the honeycomb lattice. A general density-wave state with

sublattice structure can then be written as

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ~∆(~k) · ~τijδσσ′ (9.137)

Here the τ -matrices are Pauli matrices acting on the sublattice degree of freedom

i, j = A,B. The simplest translationally invariant state we can write is the CDW
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state which makes the two sublattices inequivalent and breaks inversion symmetry.

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆CDWτ

3
ijδσσ′ (9.138)

The Pauli matrix τ3 transforms according to B2 and this CDW state consquently

transforms as B2. Note that ∆CDW = ∆∗
CDW. Intuitively this is immediately obvious,

since the two sublattices are inequivalent and hence all operations that exchange A
and B sites no longer constitute symmetries.

Next we look at translationally invariant bond-order states. There are three bonds

in the unit cell which transform into each other under point group operations. In

accordance with equation (9.133) we expect a one-dimensional representation A1,

which corresponds to the fully symmetric state, and a two-dimensional d-wave-like

representation E2. The state transforming as A1 is simply a uniform renormalization

of the bond strength and therefore the overlap integral (hopping). The other two bond

density-wave states transform accoring to d-wave functions (E2) and are given by

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆x2−y2

3
τx

2−y2
ij (~k)δσσ′

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆xy√

3
τxyij (~k)δσσ′ (9.139)

Here the matrix τx
2−y2(~k) is defined as

τx
2−y2(~k) =

[
fx2−y2(~k)

f∗
x2−y2(

~k)

]
, (9.140)

and τxy(~k) is defined similarly. The functions fx2−y2 and fxy are given by

fx2−y2(~k) = (−2e−i
~k·~δ1 + e−i

~k·~δ2 + e−i
~k·~δ3)eiϕ(

~k)

fxy(~k) = (e−i
~k·~δ2 − e−i

~k·~δ3)eiϕ(
~k). (9.141)

which may be immediately recognized as real d-wave combinations of the three ex-

ponentials ei
~k·~δi , which transform into each other under the operations of the point

group. The exponential e−iϕ(
~k) ≡ e−i

~k·~δ1 is included to enforce the gauge choice of

equation (9.4). We adopt the convention of including the factor e−iϕ(
~k) explicitly so

as not to risk obscuring the three nearest-neighbor exponentials.

What we have not discussed in the introdcution to this honeycomb lattice section,

are bond density waves which emerging on next-nearest neighbor bonds. All bond or-

der decompositions, equations (9.133) and (9.134), pertain to nearest neighbor bonds

connecting the two sublattices. Even though we have not derived the decompositions,
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we nevertheless briefly discuss the next-nearest neighbor bond order since it plays an

important role in the literature [84, 167, 168]. Intra-sublattice bond order intabilities

have been at the heart of recent studies on topological particle-hole condensates on

the honeycomb lattice.

We proceed to writing kj = ~k · ~xj where ~xj are the Bravais lattice vectors (see

also Appendix A.3 for more on these definitions). Using this, we can directly write

orbital momentum basis functions which transform as 1D representations under all

elements of the point group.

fA1
(~k) = cos k1 + cos k2 + cos k3

fB1
(~k) = sin k1 + sink2 + sin k3 (9.142)

These functions may be combined with sublattice functions (Pauli matrices) to con-

struct states with specific symmetry. Let us start by considering the most famous ex-

ample of a condensate functions that may be constructed in such a way. We can com-

bine fB1
with τ3, which transform as B1 and B2, respectively, to obtain a density-

wave state that transforms as A2 = B1 ⊗ B2, as expected from the character table.

The expression for the condensate reads

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆A2

fB1
(~k)τ3ijδσσ′ (9.143)

Note that we need to have (∆A2
)∗ = ∆A2

hence we have one real parameter. This

state does not break any rotational symmetries, however, the point group reflections

are all broken, together with time-reversal symmetry. The state described by this con-

densate function has a gapped mean-field spectrum and is in fact precisely the state

introduced by Haldane [76] in order to demonstrate as a matter of principle that a

Quantum Hall effect can occur in a lattice system in the absence of external mag-

netic fields. It has been argued in the literature that such a density wave state indeed

emerges from next-nearest neighbor interactions in a mean field treatment [84].

Another example of a density wave state we can form simply by combining func-

tions of specific symmetry, is a state which does not break any lattice symmetries,

but does however break the particle-hole symmetry of the bare honeycomb lattice. It

is obtained by combining the fA1
function with the unit matrix δij . The condensate

function reads

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆A1

fA1
(~k)δijδσσ′ (9.144)

Also in this case one has (∆A1
)∗ = ∆A1

.

As we are considering intra-sublattice bond order, the two available sublattice

functions are δij and τ3ij . Combining them with the two orbital momentum functions

fA1
and fB1

yields four different states, two of which we have just discussed. The
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others must have symmetries B1 = A1 ⊗ B1 and B2 = B2 ⊗ A1. The condensate

functions are then give by

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆B1

fB1
(~k)δijδσσ′ ,

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆B2

fA1
(~k)τ3ijδσσ′ (9.145)

Note that the second of these two transforms as B2, which is the same as the site

ordered state of equation (9.138). Hence, already anticipating the conclusion of Sec-

tion 9.4.1, this density wave state opens up a gap in the mean-field spectrum.

Translational symmetry breaking at ~K±

We move on to translational symmetry broken states at wave-vector ~K± = ±(4π/3, 0).
We will start with site order and then discuss bond-density wave orders. For site or-

der we expect states corresponding to representations contained in (9.131). As we

already found the translationally symmetric A1 and B2 states, we are left to identify

the G′(= E1 ⊕ E2) states.

In the case of site order the relevant sublattice functions are τ0 = δ and τ3. We

will look for condensates which transform as G′ and are simultanesouly organized as

partners ofE1 andE2 contained inG′. Such condensates are pedagogically derived in

real space. We start from a properly modulated state on the A-sublattice (suppressing

spin indices for the sake of brevity)

〈ψ̂†
A(~x)ψ̂A(~y)〉 = ∆cos( ~K · ~x)δ~x,~y. (9.146)

Since the little group of ~K± is C3v (see also above) it is sensible to first build a set of

three objects which transform into each other under the threefold rotation. Doing this

for the expectation value in equation (9.146) we find the two related states

C3 → 〈ψ̂†
A(~x)ψ̂A(~y)〉 = ∆cos( ~K · ~x+ ϑ)δ~x,~y

C−1
3 → 〈ψ̂†

A(~x)ψ̂A(~y)〉 = ∆cos( ~K · ~x+ 2ϑ)δ~x,~y

(9.147)

where ϑ = 2π/3 = −i lnω. In general, for three objects |a〉, |b〉, |c〉 related by a

three-fold rotation, one may form a fully symmetric combination, i.e. |a〉+ |b〉+ |c〉
and a doublet of states transforming as partners of the two-dimensional representation

of C3v . The latter doublet is written as |E, 1〉 = (−2|a〉+ |b〉+ |c〉)/3 and |E, 2〉 =
(|b〉 − |c〉)/

√
3. Now if we make the identification |a〉 = cos( ~K · ~x) ≡ cos a, |b〉 =

cos( ~K ·~x+ϑ) ≡ cos b and |c〉 = cos( ~K·~x+2ϑ) ≡ cos c an expression for the doublets

ofE1 and E2 is immediately obtained. We are left with finding expressions for the B
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sublattice. They are fixed by the character table of C6v in the sense that the character

table tells us that the partners of E1 are odd under C2, while the partners of E2 are

even. As the inversionC2 exchanges sublattices this uniquely fixes 〈ψ̂†
B(~x)ψ̂B(~y)〉. Is

is important to realize that the threefold rotation C3 mapsA and B atoms to different

unit cells. This is reflected in the expression for the condensate expectation value on

the B-sublattice, which read (−2 cos c + cos b + cos a)/3 and (cos b − cos a)/
√
3.

Transforming to momentum space yields expressions for the four density wave states

transforming as G′ = E1 ⊕ E2, i.e. for E2 (reinstating spin)

〈ψ̂†
iσ(
~k + ~K+)ψ̂jσ′ (~k)〉 =

∆1
x2−y2

3
(−2 + ω + ω2)τ ijδσσ′

〈ψ̂†
iσ(
~k + ~K+)ψ̂jσ′ (~k)〉 =

∆1
xy√
3
(ω2 − ω)τ ijδσσ′ , (9.148)

and for the E1 doublet

〈ψ̂†
iσ(
~k + ~K+)ψ̂jσ′ (~k)〉 = ∆2

xz

3
(−2 + ω + ω2)[ττ3]ijδσσ′

〈ψ̂†
iσ(
~k + ~K+)ψ̂jσ′ (~k)〉 =

∆2
yz√
3
(ω2 − ω)[ττ3]ijδσσ′ . (9.149)

Note that 〈ψ̂†
iσ(
~k + ~K+)ψ̂jσ′ (~k)〉∗ = 〈ψ̂†

jσ(
~k + ~K−)ψ̂iσ′ (~k)〉. Here the matrix τ

accounts for the fact that threefold rotations do not preserve the honeycomb unit cell

and is given by

τ =

[
1

ω

]
. (9.150)

One observes that in momentum space the d-wave nature of these doublets is reflected

in the combinations of phases (−2 + ω + ω2)/3 and (ω − ω2)/
√
3. They are easily

seen to be equal to (−2 + ω + ω2)/3 = −1 and (ω − ω2)/
√
3 = i. Based on this it

is also straightforward to see that the symmetric combination cos a+cos b+cos c→
1+ω+ω2 vanishes. This is not surprising as the symmetric combination, combined

with either τ0 or τ3 would transform as a 1D representation and there are no such

translational symmetry broken states, as we learned from (9.131). Before we proceed

to bond order, we note that

(−2 cosa+ cos b+ cos c)/3 ∼ cos( ~K · ~x)
(cos b− cos c)/

√
3 ∼ sin( ~K · ~x), (9.151)

which relates the density wave states derived here purely on symmetry grounds to

CDWs discussed in the context of graphene [180]. These CDWs were shown to
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Figure 9.5: Graphical representation of some density wave orders on the honeycomb

lattice. (a)-(b) denote the flux states which are partners of the E′
2 doublet, while (c)-

(d) denote the bond ordered states transforming as E′
1, which are nothing but the

two linearly independent Kekule distortions known to gap out the honeycomb Dirac

fermions.

correspond to non-Abelian gauge fields in the low-energy theory of graphene, which

we will comment on more extensively below. In addition, this reduction shows that

starting with a cosine in equation (9.146) did not constitute a loss of generality.

After having exhaustively discussed and classified site order based on symmetry,

we move on to translational symmetry broken bond order. It makes sense to explicitly

distinguish nearest-neighbor and next-nearest neighbor bond order and we choose

to focus mainly on the former. In fact, the decomposition of bond order states in

equation (9.133) refers to nearest neighbor bond order exclusively. The translational

symmetry broken content of the decomposition isE′
1⊕G′, which may be decomposed

further into A1 ⊕B1 ⊕E1 ⊕E2 in terms of representations of C6v. In the following

we identify the states corresponding to these representations and we will see that they

are actually very familiar states.

We start with some general relations which hold for any hexagonal symmetry

system with sublattices. A general bond order state is specified by the expectation

value

〈ψ̂†
iσ(
~k + ~K±)ψ̂jσ′ (~k)〉 = [∆̂±(~k)]ij , (9.152)

where ∆̂±(~k) is a matrix valued function in sublattice space. Using the properties of
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the ~K± one can deduce the following relations

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k + ~K±)〉 = [∆̂±(~k)]

†
ij

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k + ~K∓)〉 = [∆̂±(~k + ~K∓)]ij

〈ψ̂†
iσ(
~k + ~K∓)ψ̂jσ′ (~k)〉 = [∆̂±(~k + ~K∓))]

†
ij

〈ψ̂†
iσ(
~k + ~K∓)ψ̂jσ′ (~k + ~K±)〉 = [∆̂±(~k + ~K±)]ij

〈ψ̂†
iσ(
~k + ~K±)ψ̂jσ′ (~k + ~K∓)〉 = [∆̂±(~k + ~K±)]

†
ij (9.153)

In particular, these constraints imply for the honeycomb lattice that bond order is

fully determined by [∆̂±(~k)]AB = ∆±(~k) and we only need to specify these two

functions to distinguish different condensates. In addition, time-reversal invariance

imposes the constraint ∆−(~k) = (∆+(−~k))∗ on the condensate functions. As long

as this constraint is satisfied the density wave states will be part of the decomposition

in (9.133).

We first look at the states corresponding to the E′
1 doublet. The two partners of

this doublet are contained in the functions

∆+(~k) = ∆E′

1
ω2(e−i

~k·~δ1 + ω2e−i
~k·~δ2 + ωe−i

~k·~δ3)eiϕ(
~k),

∆−(~k) = ∆∗
E′

1
ω(e−i

~k·~δ1 + ωe−i
~k·~δ2 + ω2e−i

~k·~δ3)eiϕ(
~k). (9.154)

The order parameter ∆E′

1
is complex and the two partners of the doublet are given

by the real and imaginary parts of the order parameter ∆E′

1
. We find in addition that

the real and imaginary parts are precisely the states transforming as A1 and B1 of

the group C6v . What is the interpretation of these states? They are actually very

familiar bond ordered states on the honeycombl lattice, as they are nothing else than

the Kekule distortions of the hopping texture [197]. This is not very hard to believe, as

the Kekule pattern is known to be tied to a tripling of the unit cell, and by inspecting

a typical Kekule bond modulation it is easy to identify it as a state that is even under

all rotatations and reflections (for properly chosen origin), therefore transforming as

A1. In graphene, the hallmark condensed matter example of a honeycomb lattice, the

Kekule modulations have been discussed as perturbations generating a mass for the

low-energy Dirac fermions. We will come back to the low-energy description of this

E′
1 doublet from the perspective of symmetry.

Before we take a closer look at the precise structure of the E′
1 doublet functions,

we show that the time-reversal breaking doublet E′
2 which is part of the flux state

decomposition of equation (9.135), is easily obtained by using the time-reversal odd-

ness condition ∆−(~k) = −(∆+(−~k))∗. Indeed, the E′
2 flux doublet is simply given
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by

∆+(~k) = ∆E′

2
ω2(e−i

~k·~δ1 + ω2e−i
~k·~δ2 + ωe−i

~k·~δ3)eiϕ(
~k),

∆−(~k) = −∆∗
E′

2
ω(e−i

~k·~δ1 + ωe−i
~k·~δ2 + ω2e−i

~k·~δ3)eiϕ(
~k). (9.155)

While not as widely known as the Kekule distortion, these states have been discussed

as time-reversal symmetry broken states with nontrivial topological characteristics

emerging as mean-field solutions of an interacting honeycomb lattice model away

from half filling [185, 198]. Based on the symmetry classification presented here it

is now straightforward to see why one of these states permits additional topological

quantum numbers. As we had noted in the beginning of this section, the flux doublet

E′
2 is further decomposed in terms of the rotational and reflection elements as E′

2 =
A2 ⊕ B2. Hence only one of these flux states breaks all reflections allowing for

nontrivial topological Fermi surface properties [177]. In particular, if such a state

would induce gaps in the spectrum, the Chern number may be nonzero. The spectral

effects of all density waves constructed from K-point momenta will be discussed in

more detail in Section 9.4.1, but here we already disclose that the A2 state is not

gapped, making the Chern number a meaningless quantity. However, one may still

calculate the off-diagonal (Hall) conductivity and find that it is nonzero in case of the

A2 state [185], but not quantized. Any unbroken reflection would necessarily imply

vanishing Hall conductivity.

In the introductory part of this section, where we showed which irreducible rep-

resentations are contained in the site, bond and flux order representations for a given

type of translational symmetry breaking, we had identified one state which may have

quantized electric polarization. This is the B1 bond order state coming from the E′
1

doublet. The mean field spectrum of this state is in fact gapped, as it is one of the

Kekule partners. However, a simple argument shows that evaluating equation (9.40)

must yield a trivial result for the appropriate filling (half filling). As the B1 state

belongs to the doublet E′
1 with the A1 state as its partner, it is possible to adiabati-

cally deform one state into th other without closing the energy gap, indeed a known

property of the two Kekule distortions. Hence, the B1 state must have the same topo-

logical characteristics as the A1 state.

Before we continue and look at density wave states at M -point wave vectors, we

make three comments. The first comment concerns the bond order doublets. From

the general decompostion of K-point bond order in equation (9.133), it is clear that

in addition to the aforementioned translational symmetry broken doubletE′
1, there is

a collection of states transforming as G′ = E1 ⊕ E2. These are easily constructed

from the functions of the Kekule modulations, by just taking the usual d-wave and

combinations, (x2−y2, xy) and (xz, yz). For instance, theE2 condensates are given
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by

∆x2−y2
+ (~k) = ∆x2−y2

ω2

√
3
(−2e−i

~k·~δ1 + ω2e−i
~k·~δ2 + ωe−i

~k·~δ3)eiϕ(
~k),

∆xy
+ (~k) = ∆xyω

2(ω2e−i
~k·~δ2 − ωe−i

~k·~δ3)eiϕ(
~k) (9.156)

where (∆x2−y2 ,∆xy) are both real in this case, and ∆−(~k) is given by the time-

reversal invariance condition. d-wave doublets that break time-reversal invariance

do not need to be considered as they cannot give any new state. This immediately

follows from equation (9.135), which states that the only distinct flux states are A2

and E′
2, which we have already identified.

The second comment we wish to add concerns the precise structure of the trans-

lational symmetry broken condensate functions. Sticking to the Kekule bond order

functions given in equation (9.154), and rearranging terms by working out the com-

plex factors ω and ω2, we can write ∆±(~k) (for the Re∆E′

1
state) as

∆+(~k) ∼ [−λ(1,E2)∗
1 (~k)− iλ

(1,E2)∗
2 (~k)],

∆−(~k) ∼ [−λ(1,E2)∗
1 (~k) + iλ

(1,E2)∗
2 (~k)] (9.157)

This rearrangement shows that the E′
1 condensates are specific linear combinations

of the doublet orbital functions ~λ(1,E2), which are explicitly given in Appendix A.

In light of the earlier discussion of charge order, we can go one step further and

present the coefficients of the terms in a more suggestive form. It was shown that

−1 = (−2+ω+ω)/3 and i = (ω−ω2)/
√
3, which we may collect in a vector ~dE2 .

In this way we can write the functions ∆±(~k) as

∆+(~k) ∼ [~dE2 · ~λ(1,E2)(~k)]∗,

∆−(~k) ∼ ~dE2 · ~λ(1,E2)(−~k). (9.158)

Written in this way, the nature of these condensates as basis functions which trans-

form as A1 andB1 under operations of the groupC6v is most apparent. For instance,

simple inner products of vectors transforming asE2 will be functions transforming as

A1. In general, taking inner products as ~dE2 ·M~λ(1,E2) is expected to yield functions

transforming as 1D representations for M = τ0, τ2, while choosing M = τ1, τ3

gives the two partners of a 2D representation. This holds true for the case of the

Kekule distortions, as [~dE2 · ~λ(1,E2)]∗ and [~dE2 · τ2~λ(1,E2)]∗ indeed correspond to

Re∆E′

1
and Im∆E′

1
, respectively.

We therefore observe how the condensate functions are structured in terms of

group theory.
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Translational symmetry breaking at ~Qµ

This part deals with the second set of hexagonal lattice ordering vectors leading to

translational symmetry broken density waves, the M -points of the hexagonal Bril-

louin zone. We have shown that in case of the honeycomb lattice there are six dis-

tinct translational symmetry broken site ordered states and nine distinct bond ordered

states. For site order they transform as F1 ⊕ F4, which is sensible as F4 = B2 ⊗ F1.

The sublattice function relevant for site order is τ3 and it indeed transforms as B2. In

what follows we systematically derive the density-wave states transforming as these

representations, where we first focus on site order and then move on to bond order.

More specifically, the aim will be to derive condensate functions that transform as

the representations of the bare point group C6v contained in the Fi repesentations of

C′′′
6v . We anticipate this to be the most convenient basis in which to express the density

wave states so as to relate their symmetry properties to spectral properties at relevant

densities. Before we start with site order however, it is helpful to go through some

generalities of ordered states with modulation vectors ~Qµ, i.e. the M -point vectors.

This general setting will allow to derive the symmetric states in a straightforward

way.

To express the most general real space modulations given a certain set of wave

vectors ~Qµ one needs the linearly independent functions cos( ~Qµ ·~x) and sin( ~Qµ ·~x).
In the case ofM -point vectors the functions sin( ~Qµ·~x) are identically zero, as 2 ~Qµ =

0 which leaves only two possible values for the inner products ~Qµ · ~x = 0, π. Hence

one only requires the cosine functions, which incidentally is consistent with the unit

cell quadrupling. The three functions cos( ~Qµ · ~x) may be conveniently collected in

a vector ~ξ(~x) as ξµ = ξµ(~x) = cos( ~Qµ · ~x). We stress here that this pertains to

all lattices with hexagonal symmetry. Even more, one can now deduce the effect of

space group operations on the vector ~ξ and exploit this later. Translations for instance

are given by ξµ(~x+~xj), which is easily seen to reduce to ξµ(~x+~xj) = [Gj ]µνξν(~x),
where Gj is some matrix depending on j and summation over repeated indices is

implied. We define and find that

~ξ(~x+ ~x1) = G1
~ξ(~x) =




−1

−1
1



 ~ξ,

~ξ(~x+ ~x2) = G2
~ξ(~x) =




1

−1
−1



 ~ξ,

~ξ(~x+ ~x1 + ~x2) = G3
~ξ(~x) = G1G2

~ξ (9.159)

All Gj commute, square to one, and multiplying two of them gives the third.
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With regard to point group operations, any point group element may be uniquely

written in terms of two generators, i.e. Cm2

6 σm1
v . We thus need the action of the

generators on ~ξ. We first look at the rotational generator and define the matrix X to

correspond to the permutation of ξµ as a consequence of C6, i.e.

~ξ(C6~x) = X~ξ(~x), X =



0 0 1
1 0 0
0 1 0


 (9.160)

Note that X has the property X3 = 1 and thus X−1 = X2. In addition the relation

X−1 = XT holds, whereXT is the transpose. It thus follows that ~ξ(C3~x) = XT ~ξ(~x)

and ~ξ(C2~x) = ~ξ(~x). For the reflection σv we have that

~ξ(σv~x) = Y ~ξ(~x), Y =




0 0 1
0 1 0
1 0 0



 (9.161)

Some useful relations between the Gj and X and Y are collected in Appendix C.2.1.

As stated, the aim for both site and bond order is to derive condensate functions

based on their transformation properties under point group operations alone. In the

case of site order we may start with the most general real space M -point condensate

〈ψ̂†
iσ(~x)ψ̂jσ′ (~y)〉 = ∆ ~ζi · ~ξ(~x) δ~x,~yδijδσσ′ (9.162)

where the two real vectors ~ζA and ~ζB fully specify the site ordered state, each vector

giving the linear combination of ξµ functions on sublattice. The idea now is to derive

constraints on the ~ζi given a set of symmetries the density wave state should preserve

or break. The symmetry constraints we should impose follow directly from the de-

composition of F1 and F4 in terms of representations of C6v and we simply find that

F1 = A1 ⊕ E2, while F4 = B2 ⊕ E1. It is best to start with the 1D representations

A1 and B2. A look at the character table of the group C6v , which is given in Ap-

pendix ??, tells us that all functions transforming as any of the four 1D irreducible

representations must be even under the threefold rotations. It seems therefore natural

to first impose this condition. The effect of a point group operation R is to act on

the vectors ~ζi with a matrix composed of the Gi, X and Y elements. In case of the

threefold rotation we fond that they act as

C3 : ~ζA → G2X
T ~ζA

C−1
3 : ~ζA → G3X~ζA = (G2X

T )2~ζA (9.163)
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and similarly, the effect of the threefold rotations on ~ζB is given by

C3 : ~ζB → G3X
T ~ζB

C−1
3 : ~ζB → G1X~ζB = (G3X

T )2~ζB (9.164)

From this, and the fact that (G2X
T )3 = (G3X

T )3 = 1, we conclude that the fol-

lowing choice will correspond to a density wave state symmtric under the threefold

rotations

~ζA → 1

3
(1 +G2X

T +G2X
TG2X

T )~ζ′A

~ζB → 1

3
(1 +G3X

T +G3X
TG3X

T )~ζ′B (9.165)

The three diagonal reflections do not change the sublattices either and we can look at

the constraints they impose on the newly defined ~ζ′i. We derive that all three reflec-

tions lead to the same constraint on each of the ~ζ′i , which are given by

XTY ~ζ′A = ~ζ′A

G3Y ~ζ
′
B = ~ζ′B (9.166)

Note that in principle we should have allowed states to be even or odd under reflec-

tions, but the two states we are after are both even under reflections and we therefore

exclude the odd states. The constraints coming from these reflections already narrow

the choices for ~ζ′i down. Indeed, both XTY and G3Y should be interpreted as ele-

ments of SO(3) acting on the vectors ~ζ′i , and it is certainly not surprising that both are

reflections in SO(3). Reflections leave a plane invariant and equation (9.166) con-

sequently restricts the ~ζ′i to lie in precisely the invariant plane. That still leaves two

independent degrees of freedom and we need further constraints to find the unique

solutions corresponding to states of symmetry A1 and B2. Point group elements left

to consider all exchange sublattice, and in case of for instance the inversion C2, we

obtain the relations

G3
~ζ′A = ±~ζ′B

G3
~ζ′B = ±~ζ′A, (9.167)

which may be combined to give the trivial relation (G3)
2~ζ′A = ~ζ′A. Triviality follows

from (G3)
2 = 1. Also note that in case of inversion we need to distinguish A1 and

B2, as the latter is odd. We find that the definitive constraint can be derived from the
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sixfold rotation, which leads to

X~ζ′A = ±~ζ′B
G3
~ζ′B = ±~ζ′A. (9.168)

These expressions can be combined to give G3X~ζ
′
A = ~ζ′A. Again interpreting the

matrix G3X as an SO(3) element, we see that it describes a rotation of the vector

it acts on. In particular the constraint G3X~ζ
′
A = ~ζ′A means that the vector ~ζ′A is

left invariant by the rotation G3X , from which it directly follows that ~ζ′A must be

proportional to the axis of rotation and therefore is uniquely fixed up to a sign. The

vector ~ζ′B is then immediately determined by the constraints as well. We find that the

solutions for ~ζ′i are given by

~ζ′A =
1√
3




−1
−1
1



 , ~ζ′B = ± 1√
3




1
−1
−1



 (9.169)

where the overall sign (which is immaterial) has been fixed by fully specifying ~ζ′A.

The relative sign distinguishing between A1 and B2 is incorporated in ~ζ′B , consistent

with the sublattice function τ3. At this point we should remember that the condensate

functions were formulated in terms of ~ζi and we should use equation (9.165) to obtain

these vectors. We find that the ~ζi are exactly equal to the ~ζ′i, i.e. ~ζi = ~ζ′i . One way to

explain this seemingly surprising fact is to note that the constraints coming from the

sixfold rotationC6 are the same for both ~ζi and ~ζ′i . Since these constraints, expressed

in equation (9.168), are strong enough to uniquely fix both ~ζi and ~ζ′i , we conclude

that they must be the same. At the same time this raises the question why one would

consider the constraints coming from C3, or σd, in the first place. The reason is that

considering the action of C3 yields the building blocks for constructing the doublets

contained in F1 and F4, as will be demonstrated just below.

First we write down the condensate functions in momentum space now that we

have found the ~ζi. Based on the above they can simply be expressed as

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = 1√

3
∆F1

A1
ζµi δijδσσ′

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = 1√

3
∆F4

B2
ζµi τ

3
ijδσσ′ (9.170)

Before we come to the specific expressions of the doublets, we take an alternative

look at the way to derive the ~ζ′i and in particular why it is helpful to define the ~ζ′i
with equation (9.165). By looking at the action of the threefold rotation we identified
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three objects transforming into each other under threefold rotations. Forming the

symmetric combination for each of the sublattices led to equation (9.165). Taking the

A sublattice as an example we can define the matrix of the symmetric combination

as P , i.e. P = (1 + G2X
T + G2X

TG2X
T )/3. Then we find that P 2 = P and

therefore P is a projector having two possible eigenvalues, 0 and 1. It follows that

a nontrivial (zero) solution for ~ζ′i must belong to the subspace mapped to 1, while it

simultaneously shows that necessarily ~ζi = ~ζ′i . This subspace is found to be spanned

specisely by ~ζ′A given in equation (9.169), while an exactly analogous calculations

confirms that for the B sublattice the nontrivial subspace is spanned by ~ζ′B given in

equation (9.169). The kernel of P (for the A-sublattice), i.e. the subspace mapped to

0, is found to be spanned by





1√
2




1
−1
0



 , 1√
6




1
1
2







 , (9.171)

which corroborates that there are no more site ordered states corresponding to 1D
representations of C6v .

The doublets contained in F1 and F2 can be simply obtained by first defining a

triple of vectors for each sublattice which transform into each other under the three-

fold rotations. Per the above they are given by

~ζAa =
1

3
(G2X

T )a~ζ′A, ~ζBa =
1

3
(G3X

T )a~ζ′B , (9.172)

where a = 1, 2, 3. It is crucial to note that the ~ζ′i here are different from the ones just

found for the 1D representations. The task here is to find the proper ~ζ′i consistent with

d-wave and/or p-wave symmetry doublets E2 and E1. For each sublattice we expect

doublet functions of the form x2 − y2 ∼ (ζai1 + ζai2 − 2ζai3)/
√
3 and xy ∼ ζai1 − ζai2.

In order to find the proper ~ζ′i we define the matrices

Px2−y2 =
1

3
(−2 +G2X

T +G2X
TG2X

T )

Pxy =
1

3
(G2X

T −G2X
TG2X

T ) (9.173)

and similarly for B of course. For these objects we derive the relations P 2
x2−y2 =

−Px2−y2 and P 2
xy = Px2−y2 , where the latter leads additionally to P 4

xy = −Px2−y2 .

The property P 2
x2−y2 = −Px2−y2 implies that Px2−y2 is also a projector of some

form, having eigenvalues −1 and 0. Examining the kernel of the linear mapping

Px2−y2 and the subspace corresponding to eigevalue −1, we find that the vector
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[−1,−1, 1]T/
√
3 now spans the kernel, while the subspace given in Eq. (9.171) is

the eigenspace corresponding to eigenvalue −1. This provides two indepedent vec-

tors that are valid choices for ~ζ′A. Repeating the same calculation for the B-sublattice

we find that the vector [1,−1,−1]T/
√
3 is in the kernel of Px2−y2 , while the sub-

space





1√
2




1
1
0



 , 1√
6




−1
1
−2







 , (9.174)

constitutes the −1 eigenspace. The relation between ~ζ′A and ~ζ′B is then fixed by

considering the inversion C2. As found earlier we have G3
~ζ′A = ±~ζ′B . Hence, if we

fix

~ζ′A =
1√
2




1
−1
0



 , ~ζ′B =
1√
2




−1
−1
0



 (9.175)

we can incorporate the sublattice sign difference by using τ3. Note that we could

have chosen the other vector, i.e. [1, 1, 2]T/
√
6 and correspondingly for B, but as it

turns out this does not generate anything new.

We are now in a position to write down the expressions for two doublets, one of

which transforms as E2 in F1 and the other as E1in F4. The former doublet reads

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = 1√

3
∆x2−y2(ζ

µ
i1 + ζµi2 − 2ζµi3)δijδσσ′

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = 1√

3
∆xy(ζ

µ
i1 − ζµi2)δijδσσ′ , (9.176)

whereas the latter takes the form

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = 1√

3
∆xz(2ζ

µ
i3 − ζµi1 − ζµi2)τ

3
ijδσσ′

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = 1√

3
∆yz(ζ

µ
i1 − ζµi2)τ

3
ijδσσ′ (9.177)

A similar approach leads to the construction of symmetric bond density wave

order. Again the explicit derivation is most conveniently carried out in real space.

We expect translational symmetry broken states transforming as F1 ⊕ F3 ⊕ F4, and

proceeding as before to express them in a basis consistent with the decompositions in

terms of C6v , we set out to find basis functions of A1 ⊕ B1 ⊕B2 ⊕ 2E1 ⊕ E2.
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Figure 9.6: Site, bond and flux ordered density wave states on the honeycomb lat-

tice with M -point vector modulations. (a), (b) Site ordered states with A1 and B2

symmetry. (c) Flux ordered state with A2 symmetry. (d)-(f) Bond ordered states with

A1, B2 and B1 symmetry, coming from F1, F4 and F3, respectively.
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The starting point are bond order condensate functions parametrized by ~ζi with

i = 1, 2, 3,

〈ψ̂†
Aσ(~x)ψ̂Bσ′ (~y)〉 = Λ+∆ ~ζ1 · ~ξ(~x) δ~x,~yδσσ′

〈ψ̂†
Aσ(~x)ψ̂Bσ′ (~y)〉 = Λ+∆ ~ζ2 · ~ξ(~x) δ~x−~x1,~yδσσ′

〈ψ̂†
Aσ(~x)ψ̂Bσ′ (~y)〉 = Λ+∆ ~ζ3 · ~ξ(~x) δ~x+~x2,~yδσσ′ . (9.178)

The action of point group operations provides us with constraints on the ~ζi, which we

summarize here more concisely than in the case of site order. The threefold rotations

give relations ~ζ2 = G2X
T ~ζ1 and ~ζ3 = (G2X

T )2~ζ1. The sixfold rotations give

the relations G2X~ζ1 = ±~ζ3 = ±(G2X
T )2~ζ1 and XT ~ζ1 = ±~ζ2 = ±G2X

T ~ζ1.

Both lead to the same constraint G3
~ζ1 = ±~ζ1. The diagonal reflections all impose

the constraint G3Y ~ζ1 = ±~ζ1, while the vertical reflections impose the constraint

Y ~ζ1 = ±~ζ1. All these constraints can be solved to obtain solutions for ~ζ1 = ~ζ,

for which we may as well drop the index, since there is only one to consider. The

equation G3
~ζ = ~ζ gives the immediate and unique solution

~ζ =




0
1
0



 , (9.179)

and it is a simple matter to check that this state transforms as A1 by evaluating the

other constraints. The equation G3
~ζ = −~ζ on the other hand, admits a solution

of the form ~ζ = [ζ1, 0, ζ3]
T . The constraints of the reflections lead to the relations

ζ1 = ±ζ3, or in other words

~ζ =
1√
2




1
0
±1


 . (9.180)

Evaluating the constraints it is straightforward to check that the solution with +1
corresponds to the B1 representation, while the −1 solution corresponds to the B2

representation.

In momentum space the condensate functions are generically expressed as

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = [∆̂µ(~k)]ij , (9.181)

where the ∆̂µ(~k) should be read as a matrix in sublattice space. Using the properties

of the ordering momenta ~Qµ we establish the relations

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k + ~Qµ)〉 = [∆̂µ(~k)]

†
ij

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k + ~Qµ)〉 = [∆̂µ(~k + ~Qµ)]ij , (9.182)
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and, in addition we easily find that

〈ψ̂†
iσ(
~k + ~Qγ)ψ̂jσ′ (~k + ~Qν)〉 = [∆̂µ(~k + ~Qν)]ij , (9.183)

where µ 6= ν 6= γ. These relations fully fix the bond order density-wave state in terms

of the four matrices ∆̂µ(~k). These matrices are however not independent, which

follows directly from 〈ψ̂†
iσ(
~k+ ~Qµ)ψ̂jσ′ (~k)〉 = [∆̂µ(~k+ ~Qµ)]

†
ij . Bond ordered states

on the honeycomb lattice are therefore specified completely by the four complex

functions [∆̂µ(~k)]AB = ∆µ(~k).
In order to write down explicit condensate functions, we recall that we defined

~ζa = (G2X
T )a~ζ, (9.184)

where the label a corresponds to one of the three elementary bonds, and per the above

we have three independent choices for ~ζ, one for each of the states transforming as

1D representations. The bond density waves corresponding to A1, B1 and B2 are

then simply obtained by substituting the appropriate ~ζ of equations (9.179)-(9.180)

into (9.184) first and then write

∆µ(~k) = (ζµ1 e
−iδ1·~k + ζµ2 e

−iδ2·~k + ζµ3 e
−iδ3·~k)eiϕ(

~k). (9.185)

The doublets are simply obtained by forming d-wave type combinations ∼ ζ1 + ζ2 −
2ζ3 and ∼ ζ1 − ζ2. This then completes the description of the condensate functions

encoding bond order coming from the decomposition (9.134).

This brings us to the final case of honeycomb lattice M -point order we discuss

here, which is the flux ordered state contained in the flux decomposition of equa-

tion (9.136) and transforming as A2. The good news is that we already went through

quite some effort when deriving symmetric bond ordered states and an explicit ex-

pression for the A2 flux ordered state is almost directly obtained by making the con-

densate function of equation (9.185) imaginary. We thus write

∆µ(~k) = i(ζµ1 e
−iδ1·~k + ζµ2 e

−iδ2·~k + ζµ3 e
−iδ3·~k)eiϕ(

~k), (9.186)

and the only task left is to check which one of the three choices for ~ζ given in equa-

tions (9.179)-(9.180)yields a state with nonzero flux. As there is no other flux ordered

state transforming as a 1D representation according to equation (9.136), we know

that two of the three choices for ~ζ correspond to a state which is gauge-equivalent to a

bond ordered state already obtained. Checking symmetries we find that ~ζ = (1, 0, 1)T

generates the A2 symmetric state when substituted into equation (9.184) and (9.186).

In the introductory part of this honeycomb lattice section we have argued that the

A2 flux ordered state is symmetry-compatible QAH effect. Now that we have an ex-

plicit expression of this density wave state, we can analyze the mean field spectrum
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and find out whether it does indeed host a QAH effect. The first point to address is

the insulating nature of the ground state. We find that the presence of the density

wave does indeed open up a full spectral gap, thus making the ground state insulat-

ing. The second question is whether or not the Chern number, which characterizes

the topological nature of the insulating state, is nonzero. To this end we simply em-

ploy formula (9.35) to conclude that the insulating ground state is indeed a Chern

insulator. This is an interesting result, as it demonstrates that a Chern insulator on the

honeycomb lattice can in principle be realized with purely nearest neighbor hoppings,

modulated by M -point ordering vectors. On top of that, the exposition of M -point

order on the kagome and triangular lattices following below will highlight that such

a Chern insulating is not a peculiarity of the honeycomb lattice, but exists for all lat-

tices with hexagonal symmetry. Finally, in Section 10 we will explain in detail how

these flux ordered states on various lattices transforming as A2 have very interesting

spinful generalizations, such as for instance QSH states.

As this flux ordered state is of wider interest than just the honeycomb lattice or its

concomitant Quantum Anomalous Hall effect, we take a closer look at the functions

∆µ(~k) of equation (9.186). Substituting the ~ζa one finds

∆1(~k) =i(e
−iδ1·~k − e−iδ3·

~k)eiϕ(
~k)/

√
2,

∆2(~k) =i(e
−iδ3·~k − e−iδ2·

~k)eiϕ(
~k)/

√
2,

∆3(~k) =i(e
−iδ1·~k − e−iδ2·

~k)eiϕ(
~k)/

√
2. (9.187)

Inspecting the structure of these condensate functions, we see that they have the form

of a d-wave function. The two particular exponentials appearing for each of the ~Qµ
are the ones which get mapped onto each other by the reflections leaving the respec-

tive ~Qµ invariant. The relative sign difference ensures relfection symmetry breaking.

We therefore note for future reference, that for each ~Qµ, the condensate functions

(∆µ(~k) in this case) should tranform as representations of C2v . This is the com-

plementary momentum space view on constructing density wave states with specific

symmetry, which we will come back to in Section 9.4.3 as well.

To conclude this section on the honeycomb lattice we address the remaining

open question regarding topological quantum numbers associated toM -point ordered

states. In the beginning of this honeycomb lattice section we had identified two can-

didate states with C3 symmetry to have quantized electric polarization. Both states

have B2 symmetry and derive from F4 representations. One is the site order state of

equation (9.170) and the other is a bond order state, which is obtained from equa-

tion (9.185) by substituting the proper ~ζi. The B2 site ordered state is found not to

be gapped, but instead to have an isolated, albeit accidental, degeneracy. The B2

bond order state is gapped, however we find the ground state not to have quantized
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fractional polarization according to an evaluation of equation (9.40). Hence, there

are no M -point condensates with nontrivial polarization quantum numbers on the

honeycomb lattice.

Low-energy description: Dirac points

One of the most famous and intriguing characteristics of the honeycomb lattice, is

the conic degeneracy of the electronic spectrum at the Brillouin zone vertices [76,

98, 199, 200]. In the vicinity of these degeneracies, which are located at momenta
~K± = ±(4π/3, 0) (see Fig. 9.4) and are often referred to as “valleys”, the low-

energy electronic degrees of freedom can be described by a Dirac Hamiltonian of a

massless particle. Indeed, expanding the unperturbed Hamiltonian of electrons hop-

ping on a honeycomb lattice around ~K± in small momenta ~q one finds the low-energy

Hamiltonian [199]

H(~q) = ~vF (qxν
3τ1 + qyτ

2) (9.188)

(where vF =
√
3ta/(2~)) acting on the Dirac spinor Φ̂(~q) which is defined by

Φ̂(~q) =




ψ̂A( ~K+ + ~q)

ψ̂B( ~K+ + ~q)

ψ̂A( ~K− + ~q)

ψ̂B( ~K− + ~q)


 . (9.189)

Here we have chosen the Pauli matrices τ i to act on the sublattice degree of freedom,

while the set of matrices νi acts on the valley degree of freedom. One often finds it

convenient to express the Dirac Hamiltonian in a different basis, a basis which corre-

sponds to the chiral representation of the Dirac theory. This is achieved by exchang-

ing the A and B sublattice in one of the valleys [the matrix V of equation (9.119)

implements this transformation], such as ~K−. In the chiral representation one then

has

H(~q) = ~vF ν
3~q · ~τ . (9.190)

Note that other basis choices, such as the valley isotropic basis, have also found use

in the literature [200].

The spectral degeneracy at the Brillouin zone vertices ~K± is required by point

group symmetries [76, 201, 202], as is explained and demonstrated in Appendix A.

The breaking of point group symmetries, such as for instance the threefold rotation

C3, will allow the degeneracy to move away ~K±, or will lead to the lifting of the

degeneracy and consequently the opening of a spectral gap, which is allowed when
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the reflection σv is broken. Even in case of rotational symmetry breaking, i.e. C3,

the gapless Dirac nodes are still protected by the combination of inversion C2 and

time-reversal symmetry T , but they are no longer required to be located a ~K±. In the

langauge of [201], point group symmetries cause the degeneracies to be essential at

the invariant points ~K±, while they are accidental under T C2.

The peculiar electronic properties of the honeycomb lattice have been known

since long [199], but since the isolation of graphene [196], a single one-atom-thick

layer of graphite realizing the two-dimensional honeycomb lattice structure, inter-

est in the fundamental aspects of graphene physics has surged massively. Due to its

particular low-energy electronic Dirac structure graphene has become a prime con-

densed matter playground to study and observe phenomena usually confined to the

realm of high-energy physics. In addition, an impressive amount of research has been

dedicated to the unique potential of graphene for technological application. Good re-

views of graphene physics include [98, 179, 200, 203]. One of the main challenges is

to make graphene semiconducting by opening a controllable spectral gap, which in

the language of Dirac theory means making the low-energy electrons massive. Both

from the fundamental and the applied perspective, the Dirac Hamiltonian of equa-

tion (9.190) is generally the starting point to study the electronic properties of elec-

trons on the honeycomb lattice. What we will attempt here is, far from redisovering

widely known facts about the low-energy description of honeycomb lattice electrons,

to establish a connection between the symmetry properties of lattice density waves,

i.e. intrinsic condensed matter phenomena, and the impact at low energies of these

density waves. In doing so we adopt the same approach as for the square lattice

π-flux state in Section 9.3.2. We first classify all Dirac fermion bilinears based on

their transformation properties under lattice symmetries and then associate them to

the site, bond and flux ordered density waves modulated by ~K-vectors. Based on this

symmetry connection, and using the results of the square lattice Dirac theory, will ar-

gue for very general statements regarding the lattice symmetry properties of density

waves and their low-energy interpretation.

In case of the honeycomb lattice, the effect of the generators of the group C′′′
6v

on the Dirac spinor (9.189) can be worked out to obtain a full representation of the

symmetry group. In the same way as for the square lattice these are then used to

classify the fermion bilinears Φ̂†
iMijΦ̂j based on extended point group symmetry.

The specifics of this can be found in the Appendix, as the technical details are not

of general interest, and here we will simply draw from these results. Incidentally, a

discussion of fermion fields not very dissimilar to the present one has appeared in the

context of electron-phonon coupling in graphene [204, 205].

We divide the Dirac matrices and the density waves into two groups, i.e. one

which collects all translationally invariant states and the other group collects the trans-

lational symmetry broken states. Starting with states that do not break translational
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invariance, we find that in the chiral representation there are two mass terms, i.e.

Dirac matrices which anti-commute with ν3τ1 and ν3τ2 and these are given by ν3τ3

and τ3. It is shown in Appendix A.3 that ν3τ3 is time-reversal invariant and trans-

forms as B2, while τ3 breaks time-reversal and transforms as A2. This allows for the

immediate identification of these mass matrices with density wave states. Both the

site ordered state of equation (9.138) and the next nearest neighbor bond ordered state

of equation (9.4.1) transform as B2 and therefore correspond to a mass term in the

low-energy theory. It is indeed a very well-known fact that making the two sublattices

of graphene energetically inequivalent will open up a spectral gap. The time-reversal

breaking bond density wave of equation (9.143) transforms as A2 and thus corre-

sponds to the mass matrix τ3. Such a mass term was first discussed by Haldane [76]

who went on to show that such a Dirac mass leads to a topologically nontrivial in-

sulating state, providing the first example of a Quantum Hall state without external

magnetic fields.

There are three more Dirac matrices which commute with the translations T (~x1)
and T (~x1 + ~x2) and these are ν3, τ1 and τ2. The matrix ν3 transforms as B1 and we

can identify it with the bond ordered state of equation (9.4.1). This state preserves the

reflections which leave the valleys ~K± invariant and we therefore expect the degen-

eracies not to be preserved as well. It does however make the valleys inequivalent,

which causes the Dirac points at ~K+ and ~K− to be no longer degenerate.

The two Dirac matrices (τ1, τ2) form a doublet together, transforming as E2.

We have found the the bond order components (∆x2−y2 ,∆xy) of equation (9.4.1) to

have precisely this symmetry and we therefore identify the doublet with this unit cell

preserving bond order doublet. Working out the low-energy term in the low-energy

mean field spectrum we find that

HE2
= −∆x2−y2τ

1 +∆xyν
3τ2. (9.191)

This may be rewritten slightly and combined with the free low-energy Hamiltonian

of equation (9.190) to obtain

H0 +HE2
= ~vF

[
ν3τ1(qx −A5xν

3) + ν3τ2(qy −A5yν
3)
]
, (9.192)

where ~A5 has been introduced as an axial gauge field. It couples to an axial gauge

charge ν3, which can be recognized as γ5 when writing everything in Lorentz covari-

ant form (see for instance [102, 206]). We thus conclude that the two density-wave

partners correspond to an axial gauge field at low energies

(∆x2−y2 ,∆xy) ↔ (A5x,−A5y). (9.193)

Axial gauge fields in a honeycomb lattice system have been discussed to great extent

in the context of strain fields in graphene [98, 179]. In fact, recent experimental
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data shows the observation of such strain engineered gauge fields in graphene-like

systems [81].

Proceeding to the translational symmetry broken states, we first observe that they

all couple the two valleys and will therefore correspond to Dirac matrices proportional

to ν1 or ν2. Let us get organized by listing all Dirac matrices of this form. Tey are

ν1τ i and ν2τ i, where i = 0, 1, 2, 3 and so includes the unit matrix τ0. Density wave

states which break translational symmetry we found to transform as G′ = E1 ⊕ E2

for site order,E′
1⊕G′ = A1⊕B1⊕E1⊕E2 in case of bond order andE′

2 = A2⊕B2

in case of flux order. We therefore have to consider the doublets E′
1 and E′

2, which

are further decomposed into 1D irreducible representations, and G′ which consists

of two 2D representations.

Starting with the two doublets E′
1 and E′

2, it is shown in Appendix A.3 that the

two Dirac matrices ν1 and ν2 transform according to E′
1 and the matrices ν1τ3 and

ν2τ3 transform according to E′
2. The former are time-reversal invariant while the lat-

ter break time-reversal symmetry. In addition, in Appendix A.3 we write the explicit

basis functions of the representations A1, A2, B1 and B2 contained in E′
1 and E′

2.

Based on this we can write down the low-energy effective mean field Hamiltonian for

the E′
1 states as

HKekule = (∆
E′

1

A1
cos θ −∆

E′

1

B1
sin θ)ν1 + (∆

E′

1

A1
sin θ +∆

E′

1

B1
cos θ)ν2. (9.194)

where θ = π/3. As these terms correspond to the condensate expressions of equa-

tion (9.154), we have chosen to label the Hamiltonian HKekule. Indeed, it may be

simply checked that both ν1 and ν2 anti-commute with the Dirac matrices of equa-

tion (9.190) and therefore constitute compatible masses. The two matrices ν1τ3 and

ν2τ3 on the other hand, do not enter as masses and do not open up a spectral gap. In-

stead they enter equivalently as ν3, shifting the Dirac nodes energetically with respect

to each other.

What is left to consider is the set of Dirac matrices corresponding to the G′-
symmetric density wave states. The remaining translational symmetry breaking Dirac

matrices are ν1τ1, ν2τ1, ν1τ2 and ν2τ2, which indeed transform as a quartet accord-

ing to G′. The low-energy Dirac structure of G′ symmetric states is most powerfully

demonstrated and explained by combining all Dirac matrices, and hence density wave

states, which transform as 2D representations of the point group C6v . We had found

the doublet (τ1, τ2) to transform as E2 and together with the G′ = E1 ⊕ E2 sym-

metric matrices we have the six terms

τ1, τ2, ν1τ1, ν2τ1, ν1τ2, ν2τ2. (9.195)

A key observation is that all of these Dirac matrices can be generated by the triple

(ν1, ν2, ν3) in the following way. The two Dirac matrices appearing in (9.190) are
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ν3τ1 and ν3τ2. The multiplication ν3τ1νi and ν3τ2νi then straighforwardly give all

six Dirac matrices listed here. This means for the low-energy Dirac Hamiltonian that

we can write a general expression incorporating the effect of these density waves,

which reads

H(~q) = ~vF
[
ν3τ1(qx −AixΩ

i) + ν3τ2(qy −AiyΩ
i)
]
. (9.196)

Here we have defined the three matricesΩi ≡ νi, which then obey the su(2) algebraic

relations generating the SU(2) gauge field ~Ai, i.e. [Ωi,Ωj ] = 2iǫijkΩk. We can

put this differently by saying that density waves transforming as E2 or G′, all 2D
irreducible representations of C6v , act as components of a non-Abelian gauge field in

the low-energy description of the mean field spectrum.

The equations (9.148) and (9.149) provide explicit expressions for the site ordered

states transforming as G′ and per the above we can conclude that they enter, together

with the bond ordered state of equation (9.4.1), as the components of one non-Abelian

gauge field ~Ai. The identification of translational symmetry broken charge density

waves as components of a gauge was already reported in [180], which highlighted the

possibility of a condensed matter realization of non-Abelian gauge fields in graphene.

What we have shown here is how symmetry can be used to establish wich density

wave states correspond to gauge field components in the low-energy description of

the electronic degrees of freedom. In demonstrating this, we have used the same

approach and reasoning as for the case of the square lattice in Section 9.3.2, which

dealt with the Dirac theory of the π-flux state with C4v . The key observations which

hold true in both cases and are therefore independent of symmetry class (square or

hexagonal), can be summed up as follows.

When the low-energy electronic spectrum exhibits symmetry protected Dirac points,

then the impact of additionally induces density waves on the low-energy Dirac theory

can be predicted based on the lattice symmetry breaking properties of such density

waves. Density waves which are either even or odd under the rotations and reflections,

i.e. transform as 1D representations, will either correspond to a Dirac mass gap-

ping out the spectrum, or lift the degeneracy between the inequivalent Dirac nodes

(the valleys). Density waves which have a partner and transform together as a 2D
represntation of the group of rotations and reflections will have the low-energy inter-

pretation of gauge fields. Constant gauge fields merely shift the Dirac nodes away

from their high symmetry mandated location, while spatially dependent gauge fields

give rise to pseudo-Landau level quantization [180]. We propose that these state-

ments have general validity, indepedent of lattice and symmetry class. This means

that decompositions such as in equations (9.131) and (9.133) already provide quite

some information on properties of the mean field spectra, without the need to calcu-

late them. For any specific lattice one may proceed to derive the lattice symmetry
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group representation on the Dirac spinor Φ̂ in order to classify the fermion bilinears

in terms of lattice symmetries and obtain a more detailed identification of density

waves and Dirac matrices. The full potential of such a symmetry perspective will be

demonstrated with the help of a specific example below when we discuss the kagome

lattice.

Low-energy description: Van Hove-singularities

The Dirac points at ~K± provide a natural low-energy setting for discussing the impact

of density wave states at these ordering momenta, as they couple the two inequiva-

lent Dirac points. For the low-energy physics to be captured by the relativistic Dirac

equation, the filling needs to be appropriate, i.e. one electron per two sites in case

of spinless fermions. Ordering at the M points, contrary to K-point ordering, is

expected not to couple the Dirac points, but instead couple Fermi surface arcs at fill-

ing n = 3/8. At this particular filling the Fermi surface on the honeycomb lattice

is a hexagon inscribed in the Brillouin zone hexagon, as shown in Fig. 9.4, and is

perfectly nested by the three vectors ~Qµ. The M -point vectors ~Qµ are also shown

in Fig. 9.4 and are explicitly given in Appendix A. Condensation at finite M -point

wave vectors is therefore expected to be relevant for this filling, and possibly other

commensurate fillings n = p/8. We furthermore anticipate that such M -point con-

densation will address the the nested Fermi surface in an analogous way as (π, π)
ordering in case of the nested Fermi surface of the square lattice at half filling. We

recall that the two s-wave condensates, i.e. charge and spin density waves, gap out

the full Fermi surface, while the two d-wave condensates gap out the Fermi surface

except for isolated points in momentum space. Here we take a detailed look at how

M -point condensates alter the spectrum by focussing on energies and fillings appro-

priate for the nested hexagonal Fermi surface. We stress that even though we present

the results in the honeycomb lattice setting, they pertain to all hexagonal lattices, a

point we come back to below.

Figure 9.7(a) shows the folding of the nested Fermi surface in the reduced Bril-

louin zone for M -point ordering. In the reduced Brillouin zone the Fermi surface

constists of line segments connecting Γ to all M ′-points of the reduced Brillouin

zone. It follows from the folding that each line segment is doubly degenerate in the

reduced zone. The symmetry of density wave orders will determine the way in which

the Fermi surface is altered. In general we expect two scenarios in the presence of

at least a three-fold symmetry C3 of the physical system. They are schematically

depicted in Fig. 9.7(b). The right side shows a full lifting of the Fermi surface de-

generacy at generic ~k, except for the high symmetry points Γ and M ′, whiich may

or may not have residual degeneracies protected by symmetry. The left figure depicts

the scenario of a shifting and change in shape of the degenerate acrs in momentum
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Figure 9.7: (Above) Folding of the Brillouin zone as a consequence of M -point

order. Outer dashed transparent hexagon represents the hexagonal Brillouin zone,

red transparant hexagonal is the M -point nested Fermi surface. Inner solid black

hexagon is the reduced Brillouin zone and red lines in the reduced Brillouin zone

represent the folded Fermi surface, which is doubly degenerate everywhere in the

reduced BZ except Γ where it is treefold degenerate. (Below) A schematic picture of

the possible effect of particle-hole condensation on the (mean field) spectrum with on

the right the gapping out of the Fermi surface, i.e. lifting of the degeneracies, possibly

except for high symmetry points Γ and M ′. On the left the possible shifting of the

degenerate arcs, a situation which requires the breaking of time-reversal symmetry.
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space. It is clear that this is only possible when time-reversal symmetry and the six-

fold rotation C6 are broken. In what follows we will focus on the first scenario as

the singlet density waves we have identified so far cannot lead to the second scenario.

We come back to the second scenario in the context of triplet condensates.

At the high symmetry points Γ and ~M ′
µ degeneracies may be symmetry protected

and due to this we examine these isolated points in more detail. Let us start with Γ
and construct an 8-dimensional spinor Φ̂Γ as

Φ̂Γ =




ψ̂j(~0)

ψ̂j( ~Q1)

ψ̂j( ~Q2)

ψ̂j( ~Q3)


 , (9.197)

with j = A,B. In the absence of any particle-hole condensation all point group

operations C′′′
6v are good symmetries and we can build a representation of this group

by considering how the generators of C′′′
6v act on Φ̂Γ. For the translation T (~x1) we

have

T (~x1) →




1
−1

−1
1


 Φ̂Γ, (9.198)

while the six-fold rotation C6 leads to the matrix

C6 →




τ1

τ3τ1

τ3τ1

τ1


 Φ̂Γ, (9.199)

and the reflection σv gives rise to

σv →




τ1

τ1

τ1

τ1


 Φ̂Γ. (9.200)

These operations define a reducible representation of C′′′
6v which can be decomposed

into irreducible representations asA1⊕B2⊕F1⊕F4. The two one-dimensional rep-

resentations correspond to high energy modes coming from ψ̂j(~0) = χ̂0j(~0), while

the two 3D representations correspond to the folded M -points at Γ. The honeycomb

lattice with nearest neighbor hopping only is particle-hole symmetric and a nested
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Fermi surface exist both at filling n = 3/8 and n = 5/8. Each of the two 3D rep-

resentations corresponds to one of these fillings. The dimensionality of these two

irreducible representations mandates a threefold degeneracy at Γ, which is just a re-

statement of the intuitively clear fact that energy levels at M -point in the original

Brillouin zone must be degenerate for C6v symmetry. When translational symme-

try is broken by M -point ordering we are forced to consider the group of remaining

symmetries and see how this group will affect degeneracies. If the group of remain-

ing symmetries is C6v , i.e. the density wave still has C6v symmetry, we decompose

F1 ⊕ F4 further into irreducible representations of C6v , which we already know to

result inA1⊕B2⊕E2⊕E1. From this we conclude that while the three-fold degen-

eracies in general will be lifted, two-fold degeneracies must remain at Γ. We can go

one step further and assume an even smaller group of remaining symmetries, which

is C3v . There are two distinct possibilities corresponding to the two distinct sets of

reflections which are part of C6v . To put it differently, the particle-hole condensate

lowering the symmetry down to C3v may transform as B1 or B2 of C6v . In case of

the former, i.e. B1, we find that F1 ⊕ F4 = A1 ⊕ A2 ⊕ 2E, while in the latter we

find that F1 ⊕ F4 = 2A1 ⊕ 2E. Hence, even in case of C3v symmetry the two-fold

degeneracies are protected.

In the same way we can study the M ′-points of the reduced Brillouin zone (see

Fig. 9.7). The symmetry group is different from the Γ point, as the M ′-points are left

invariant only by the inversion C2 and two reflections, leading to a little group C2v .

The groupC2v only has 1D representations and therefore cannot protect degeneracies

by itself. If translations are inlcuded to generate the group C′′′
2v degeneracies are

protected. Details are presented in Appendix A as they are of less significance. For

our purposes at this point it is sufficient to conclude that particle-hole condensation

will generally lift the M ′-point degeneracy as it breaks translations.

Based on these considerations we make predictions concerning the spectral effects

of particle-hole condensates with specific symmetries. For reasons of definiteness

let us focus on the lower part of the honeycomb lattice spectrum, i.e. the filling

n = 3/8. All condensates constructed from ~Qµ components that transform as 1D
representations ofC6v haveC3v as a remaining symmetry group, except forA2 states

which we discuss separately below. Therefore, at Γ the three-fold degeneracy will

generically be lifted and result in a non-degenerate energy level plus a two-fold level.

Symmetry does not tell us a priori what the order is, i.e. whether the non-degenerate

level is higher in energy or lower, but it is clear that there are only these two options.

If the degenerate level is lower in energy, then for reasons of band connectivity we

expect a full energy gap to develop. In contrast, if the non-degenerate level is lower in

energy the existance of a Fermi surface is expected. These two different situations are

graphically depicted in Fig. 9.8, where we plot the lowest four electron bands along

a path in the reduced BZ for the site ordered density wave state transforming as A1
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Figure 9.8: Folding of the Brillouin zone as a consequence of M -point order. Red

lines in the reduced Brillouin zone represent the folded Fermi surface.

of equation (9.170), by way of example. Black and red spectra correspond to positive

and negative sign of ∆F1

A1
, respectively. At the relevant filling n = 3/8 we see that

the two spectra differ precisely as expected and the order in which the doublet and

non-degenerate level split is apparently controlled by the sign of ∆F1

A1
.

In order to gain more insight into the way particle-hole condensation affects the

nested Fermi surface, effect let us take a closer look at the low energy description

at Γ. First, we organize the components of Φ̂Γ according to the triplets F1 and F3.

Using obvious notation, we find that

Φ̂F1
=




χ̂1A − χ̂1B

χ̂2A + χ̂2B

−χ̂3A + χ̂3B



 , Φ̂F4
=




χ̂1A + χ̂1B

χ̂2A − χ̂2B

−χ̂3A − χ̂3B



 , (9.201)

where Φ̂F4
is relevant operator for n = 3/8, while is Φ̂F1

is a basis for the three-fold

degeneracy at n = 5/8. Expanding the Hamiltonian to second order in momentum

and projecting into the bases Φ̂F1
and Φ̂F4

we obtain

H(~q) = ±




−q1q3

−q2q1
−q3q2



 , (9.202)

where+ (−) refer toF1 (F4). We continue to rewrite the basis states Φ̂F ≡ [Φ̂1, Φ̂2, Φ̂3]
T

in such way that they will be the proper basis states of the representations A1/2 and
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E of C3v . This gives the generic states

Φ̂A =
1√
3
(Φ̂1 + Φ̂2 + Φ̂3) (9.203)

Φ̂E =

{
1√
6
(Φ̂1 + Φ̂2 − 2Φ̂3)
1√
2
(−Φ̂1 + Φ̂2)

. (9.204)

Writing the Hamiltonian of equation (9.202) in this basis we obtain the diagonal

blocks HA(~q), which is given by

HA(~q) = ∓(q1q3 + q2q1 + q3q2)/3, (9.205)

and HE(~q) which after implementing a unitary transformation is given by

HE(~q) = ±1

4
q2 ± 1

4

[
(q2x − q2y)τ

3 + 2qxqyτ
1
]

(9.206)

Note that the blocks coupling these two sectors do not vanish. The clear advantage of

the present basis is revealed when expressing the possible spectral impact of general

density wave states. For all density wave states that have at least C3v symmetry, the

allowed term in the low-energy Hamiltonian at Γ reads

H =



∆A

∆E

∆E


 . (9.207)

It is the sign of ∆A −∆E that determines whether or not a gap will open up. At the

filling n = 3/8 a gap opens up if ∆A −∆E > 0, while it is the other way around at

n = 5/8.

Armed with this general framework we are in a position to take a specific look at

the density wave states that were derived in the previous section. Starting with site

ordered states, we recall that there are two states with ~Qµ components which have

residual C3v symmetry. These are states transforming as A1 and B2, both given in

equation (9.170). The lower part of the spectrum of theA1 is presented in Fig. 9.8 and

we have already pointed out the significance of the sign of the density wave strength

∆F1

A1
. We note here that the situation is exactly opposite for n = 5/8 to the one at

n = 3/8. When a gap is opened up at n = 3/8, then a degeneracy remains at n = 5/8
originating from the fact that the energetic order of the non-degenerate level and the

degenerate levels is the same for both fillings. The B2 state exhibits a threefold

degeneracy at Γ, both at n = 3/8 and n = 5/8, and this is a purely accidental fact.

The degeneracy is not symmetry protected. Apart from this degeneracy at Γ, the

Fermi surface is completely gapped out.
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Coming back again to the A1 site ordered state and restricting ourselves to n =
3/8, we notice that in case of ∆A − ∆E < 0 the description of low-energy exci-

tations close to Γ is fully governed by the Hamitonian HE(~q), which we recognize

to have the generic structure of a quadratic band crossing (QBC) Hamiltonian. The

emergence of such a QBC point in the context of M -point ordering was first noticed

in Ref. [163], which derived the QBC Hamiltonian for uniaxial spin density wave

with ~Qµ-vector modulations. In the present case we have established the existence of

a QBC purely based on symmetry arguments and the particular case of the uniaxial

spin density wave follows from these more general arguments. Indeed, even though

we have have assumed the absence of any structure in spin space so far, the result of

Ref. [163] is readily understood based on the present discussion. The uniaxial spin

density wave of [163] and [160, 162] can be thought of as two copies of the A1 site

order state, one for each spin species with opposite sign. Hence, the spectrum is pre-

cisely that shown Fig. 9.8, where the colors can be interpreted as spin up and spin

down bands. We have shown that the QBC point arising from particle-hole conden-

sation is protected by the residual C3v symmetry, which in case of the uniaxial spin

density wave may be considered to apply to each species separately. In Section 10 we

will discuss the symmetries of spin triplet condensates in more detail in the context of

M -point order on the triangular lattice. Here we just conclude that in the spinless case

the only option apart from the appearance of a full spectral is gap, is the emergence

of a QBC point in the low energy description of the M -point.

We have obtained three bond ordered states with residual C3v symmetry, an A1,

B1 and B2 state, originating from the triplets F1, F3 and F4, and collective repre-

sented in equation (9.185). Per the above, we can ask a simple question to find out

what the spectral effects of these density waves are. What is the sign of ∆A −∆E?

We find the remarkable result that for bothB1 andB2 symmetric bond density waves

the non-degenerate level is higher in energy then the degenerate doublet at n = 3/8
(and vice versa for n = 5/8), amounting to the opening of a full energy gap. For

these two states this is independent of the sign of ∆F3

B1
or ∆F4

B2
and as a result the sit-

uation of a QBC point does not occur. Even the simple triplet version of these bond

density waves, which is just two copies of the density wave state for each spin species

but with opposite sign, is gapped due the sign indepedence. In addition, we can ar-

gue that the spectral gaps caused by these distinct density waves are compatible, in

the sense that if a density wave develops which is an arbitrary combination of these

states, the total energy gap is always larger than the individual gaps. This follows in

part from the fact that to lowest order, the structure of the low-energy Hamiltonian at

Γ associated to the density waves, is given by equation (9.207), in a basis which is

valid for all three density waves. Since we find that both these bond orders have the

same order of energy levels, the values of ∆A −∆E simply add. We find the same

to be true at the M ′-points, which indeed shows that the gaps are compatible. In case
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of the A1 bond density wave both situations ∆A −∆E > 0 and ∆A −∆E < 0 can

occur, depending on the sign of ∆F1

A1
. It is therefore not necessarily compatible with

the B1 and B2 induced gaps, but instead, its spectral impact is equivalent with the

site ordered A1 state. In particular, creating a uniaxial spin-bond ordered state out of

the A1 state results in a QBC point for one spin species and gapped excitations for

the other.

Up to this point the emphasis has been on the assumption of residual C3v sym-

metry, which holds for the states we have considered to far. We have not treated the

case of C6 symmetry (representation A2), or the doublet states contained in the F
representations of C′′′

6v . If only C6 rotational symmetry is left no degeneracies can

be symmetry protected as Abelian groups such as C6 have only 1D representations.

We had derived one density wave with C6 symmetry, given in equation (9.186). In-

deed, the mean field spectrum of this density wave does not show any degeneracies

at Γ or M ′. Following equation (9.186) it was already noted that the spectrum is

fully gapped, with nontrivial topological ground state. Insofar as the doublets are

concerned the remaining symmetry is at most C2v , which cannot lead to any symme-

try protection of degeneracies either. An interesting common property of all doublet

states we have verified, is that none of them lead to an immediate opening of a mean

field spectral gap. Instead, we find that doublet states transforming as partners of E1

or E2 all have a mean field spectrum with a remaining Fermi surface at the van Hove

filling for weakly developed density waves.

We conclude this discussion of the spectral effects of M -point modulated density

waves at the Van Hove filling, by stressing the general validity and applicability of

the results presented here. The dispersion of electrons hopping on the triangular or

kagome lattices, two other ubiquitous examples of lattices with hexagonal symmetry,

exhibits the same Fermi surface with Van Hove singularities for appropriate fillings

as the honeycomb lattice. The ~Qµ vectors again connect arcs of the Fermi surface and

M -point order is therefore expected to alter the spectrum in similar ways as outlined

above. In order to gain deeper insight into the general, i.e. lattice independent, feau-

tures of M -point order, we review a number of observations detailed above which

hold true for the triangular and kagome lattice as well.

Based on the example of the honeycomb lattice, we showed that in the absence

of translational symmetry (extended point group elements T (~x1) and T (~x2) are bro-

ken) the two-fold degeneracy at the M ′-points and the threefold degeneracy at Γ are

generally lifted. This statement only relies on symmetry, as it follows from the dimen-

sionality of irreducible representations, and therefore directly applies to other lattices

with hexagonal symmetry. In particular, by focusing on the Γ point, we have demon-

strated that in the presence of at least C3v symmetry, a two-fold degeneracy at Γ is

protected. For any of the lattices with hexagonal symmetry the Van Hove singulari-

ties are located at Γ of the reduced Brillouin zone and the state vectors corresponding
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to this subspace can be denoted as Φ̂F ≡ [Φ̂1, Φ̂2, Φ̂3]
T . Full symmetry makes these

three states partners of a 3D representations causing the three-fold degeneracy. Low-

ering the symmetry down to C3v lifts this degeneracy to a 2 + 1 degeneracy, with

corresponding states given by equation (9.203). The low-energy theory in terms of

these basis states takes the generic form presented in equations (9.205) and (9.206),

meaning in particular that all C3v symmetric density waves will enter as (9.207). The

sign of ∆A − ∆E will then determine whether a full gap exists or the low-energy

theory is captured by a QBC theory. Hence, many of the spectral effects and effective

low-energy descriptions of electronic degrees of freedom in the presence of density

wave states ar very general. We will come to this briefly in Section 9.4.3) when fo-

cusing on the triangular lattice. It should be stressed though that these considerations

are based on symmetry. There may be accidental degeneracies at Γ or even M ′ in

addition to the degeneracies required by symmetry.

9.4.2 Kagome lattice

After this long and detailed discussion of honeycomb lattice density waves, we focus

attention on the second example of a well-known lattice with hexagonal symmetry,

the kagome lattice. The kagome lattice has three inequivalent sites in its unit cell, in-

stead of two in case of the honeycomb lattice, wich leads to more possibilities for both

site and bond ordered states. The specific aim of this section is not only to provide the

symmetry-based framework for classifying kagome lattice density waves, but also to

highlight the utility and power of the lattice symmetry perspective. The insight into

the strong link between organizing density waves as basis functions of irreducible

representations and physical electronic properties of these condensates, gained both

from the the square lattice and honeycomb lattice cases, will be applied to the kagome

lattice. Therefore, the structure of this kagome lattice section will be as follows. We

start by listing the decompositions of site, bond and flux order in the same way as

for the square and honeycomb lattices, and both for K-point ordering and M -point

ordering. Then we briefly discuss the prominent features of the free kagome lattice

spectrum which make the kagome lattice a desirable object of study. These are the

presence of Dirac fermions at the touching of the lowest two bands, a QBC point at

the touching between the upper two bands, and van Hove singularities in combina-

tion with a nested Fermi surface in each of the lower two bands. Armed with the

decompositions of site, bond and flux order we can make predictions concerning the

mean field spectral effects of the condensates. Before we then come to a more elab-

orate discussion of translationally invariant order, i.e. K-point order, and M -point

orderings, we introduce the sublattice functions, i.e. the kagome lattice equivalents

of the Pauli matrices τ i, and show how their transformation properties can be used

to straightforwardly write down explicit condensate functions corresponding to the
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irreducible representations obtained from group theory. The more detailed discussion

of density waves, the construction of their explicit expression and electronic proper-

ties is divided into two parts. The first part deals with translationally invariant and

K-point ordered density waves, as both of these classes affect the low-energy physics

at the Dirac points, while the second part will deal withM -point ordering relevant for

Fermi surface instabilities at van Hove fillings. In both of these parts we will not at-

tempt an exhaustive characterization of all density waves, but instead limit ourselves

to interesting examples. In case of the honeycomb lattice we have discussed the mean

field spectrum of the density waves in a separate section. Here we integrate this part

into the discussion of the density waves, their explicit form and their characteristics.

Following the same group theoretical recipy that was used for the honeycomb

lattice, details of which are presented in Appendix C, we find the irreducible repre-

sentations of the extended groups C′′
6v and C′′′

6v present in the decompostions of site,

bond and flux order representations. The decomposition for kagome lattice site order

with K-point ordering vectors is given by

PK
s = A1 ⊕ E2 ⊕ E′

1 ⊕G′ (9.208)

whereas we have for M -point ordering

PM
s = A1 ⊕ E2 ⊕ F1 ⊕ F3 ⊕ F4. (9.209)

The translationally invariant content of these two decompositions is A1 ⊕ E2, which

shows that in addition to the trivial A1 state there is a translationally invariant site or-

der doublet. ForK-point order the translational symmetry broken states transform as

E′
1⊕G′, which differs from the honeycomb lattice decomposition [equation (9.131)]

in the presence of E′
1 states. Both the K-point and M -point site order decomposi-

tions are seen to be identical to the honeycomb lattice bond order decompositions, i.e.

equations (9.133) and (9.134), which is a consequence of the kagome lattice being the

line graph of the honeycomb lattice.

Moving on to bond order decompositions, we find that K-point order can be

broken up into the following representations,

PK
b = A1 ⊕B2 ⊕ E1 ⊕ E2 ⊕ E′

1 ⊕ E′
2 ⊕ 2G′, (9.210)

while the M -point order decomposition reads

PM
b = A1 ⊕B2 ⊕ E1 ⊕ E2 ⊕ 2F1 ⊕ F2 ⊕ F3 ⊕ 2F4. (9.211)

The translationally invariant part of the decomposition, i.e. A1⊕B2⊕E1⊕E2, tells

us that there is a 1D representation present, in addition to the fully symmetric A1

state. We come back to these decompositions below, after we have briefly introduced
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the low-energy physics corresponding to electron filling fractions where these density

waves are expected to have significant impact.

The third type of order, flux order, leads to the following decomposition for trans-

lational symmetry breaking at K

PK
φ = 2A2 ⊕B1 ⊕ E′

2 ⊕G′, (9.212)

and for translational symmetry breaking at M -points one finds

PM
φ = 2A2 ⊕B1 ⊕ 2F2 ⊕ F3. (9.213)

Contrary to all the other examples of flux order decompostions we have seen so far,

the translationally invariant part contains the representation A2 twice. This suggests

the possibility of a realizing a density wave state breaks both time-reversal symmetry

and all reflections, while at the same time leading to a flux pattern that averages to

zero over the unit cell and corresponding to an insulating QAH state. The existance

of such a state has in fact been known for some time [85], and here we see why it is

particular to the kagome lattice. In addition to this QAH state, symmetry-based flux

order decompositions teach us there are translational symmetry broken candidates

for such insulators, which are contained in E′
2 = A2 ⊕ B2 (K) and F2 = A2 ⊕ E2

(M ). From the symmetry of these density waves we can actually make more precise

statements concerning their characteristics as we now proceed to argue in the context

of low-energy spectral effects.

In case of the kagome lattice there are a number of interesting electron fillings

worth considering, reflecting the spectral features of electrons hopping in the kagome

lattice. For the filling n = 1/3 the Fermi surface consists of isolated points, i.e. Dirac

points, which are located at the vertices of the Brillouin in the same way as for the

honeycomb lattice. Therefore, in much the same way we can expand the spectrum

around these Dirac points to obtain an effective Dirac theory capturing the electronic

properties at low energies. The only technical difference is the fact that at both ~K±
one has to project the three-component eigenstates into the subspace corresponding

to the Dirac nodes. If we label the set of states spanning the space of the Dirac

nodes as |+, j〉 and |−, j〉 (j = 1, 2) for ~K+ and ~K−, respectively, then we derive a

Dirac Hamiltonian which has exactly the same structure as for the honeycomb lattice

(details in Appendix A.4),

H(~q) = ~vF ν
3~q · ~τ , (9.214)

[compare also equation (9.190)] where here we have
√
3at/~. The Dirac spinor is
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given by

Φ̂(~q) =




ψ̂1( ~K+ + ~q)

ψ̂2( ~K+ + ~q)

ψ̂1( ~K− + ~q)

ψ̂2( ~K− + ~q)


 . (9.215)

As the structure is indeed equal to the honeycomb lattice Dirac theory, we can bor-

row the interpretation of Dirac matrices νiτ j from Section 9.4.1, where it should be

understood that the νi act on the valley degree of freedom, i.e. ±, and τ j on the

effective sublattice degree of freedom labeled by j = 1, 2. For instance, we direactly

conclude that the Dirac matrices ν3τ3, ν1 and ν2 constitute the compatible Dirac

masses, while ν1τ3 and ν2τ3 make the two valleys inequivalent by separating the

two nodes in energy.

Can the symmetry decompositions of equations (9.208), (9.210) and (9.212) as-

sist us in assigning the density waves to the Dirac matrices describing their effect at

the Dirac nodes? The answer to this question is yes. Let us look at site order and

take the states E′
1 = A1 ⊕B1 as an example. These can be written as basis functions

of 1D representations of the bare point group C6v and according to our proposition

they must therefore couple to mass matrices. Indeed, as site order does not break

time-reversal symmetry, valley mass terms must be excluded. As is detailed in Ap-

pendix A.4, an organization of the Dirac masses in terms of lattice symmetries indeed

establishes the Dirac masses ν1 and ν2 as terms coupling to E′
1 = A1 ⊕ B1. This

immediately implies the same interpretation of the bond density waves transforming

as E′
1. Furthermore, there is a bond density wave which does not break translational

symmetry and transforms as B2. We can directly assign it the same character as

the honeycomb lattice site order state with that same symmetry, i.e. the third Dirac

mass. Another assignment that is easy to make in light of the symmetry perspective,

is that of the translationally invariant site order doublet E2 as a gauge field compo-

nent. Some of these states have been found and discussed in mean field treatments

or related studies [169, 170, 207]. The symmetry perspective adopted here provides

a complete classification of density waves and their mean field spectral effects in the

context of a Dirac theory.

Apart from Dirac nodes at filling n = 1/3 the kagome lattice spectrum exhibits

two other types of spectral regimes which we have already encountered in this study.

At filling n = 2/3, when two of the three bands are filled, the second filled band

and the upper empty touch at the Γ point, making this degeneracy point a QBC.

Even though this is an interesting property of the kagome lattice, as all the generic

and peculiar features of a QBC apply directly, we will not address this point in more

detail for the kagome lattice. Instead, we will be interested in the other special fillings
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fractions, i.e. n = 3/12 and n = 5/12, which are the van Hove fillings of the kagome

band structure. At these van Hove points the Fermi surface is shape-equivalent to

the Fermi surface of the honeycomb and triangular lattice for corresponding fillings,

meaning a hexagon nested by the three inequivalentM -point vectors.

Before we zoom in on the specific density waves both at K-points and at M -

points and explain how to obtain explicit expressions using symmetry, it will be help-

ful to take a look at the kagome generalizations of the Pauli matrices, i.e. matrices

which encode the sublattice structure of the lattice. For any lattice with two sublat-

tices the Pauli matrices (in this work we consistently use the set τ i) form a set of

functions which transform as irreducible representations of the point group. In case

of the kagome lattice, which has three sublattices, the appropriate set of functions is

the the collection of Gell-Mann matrices. The latter span the space of 3 × 3 Her-

mitian matrices and are listed in Appendix A.4. We have organized them in three

distinct sets, i.e. ~Λa, ~Λb, and ~Λc. The first two sets only have off-diagonal elements

and therefore connect two sites, making them bond order functions. The set ~Λa is

real while ~Λb is imaginary, meaning that the former preserves and the latter breaks

time-reversal symmetry. The third set collects matrices with diagonal entries oonly

and therefore pertains to site order. We can extract the irreducible representations of

the point group C6v contained in these three sets and with this information one can

straightforwardly write down condensate function, which will be demonstrated in the

next subsection.

We use the set ~Λa as example. Using equation 9.6, in particular the matrices

U sl
R (R being an element of the point group), we can derive how the ~Λa transform

under point group operations. In the present case of the kagome lattice, the matrices

U sl
R are generated by the two permutations X and Y as defined in equations (9.160)

and (9.160). Take the six-fold rotation C6 for instance. It corresponds to U sl
C6

= X
and we therefore have

U sl†
C6

Λ1aU
sl
C6

= XTΛ1aX = Λ3a, (9.216)

and similarly we find for the other Λa that Λ2a → Λ1a and Λ3a → Λ2a. This can be

summarized as

C6 → X~Λa. (9.217)

We can proceed in this way to find the representation of C6v acting on ~Λa, which for

definiteness we write as Pa. It is then a simple matter to decompose Pa into irredu-

cuble representations and one finds Pa = A1 ⊕ E2, which does not surprise given

the translationally invariant content of the bond order decompositions. Repeating the

same calculation for the representation Pb acting on ~Λb we find that Pa = A2 ⊕ E2.

Similarly we find ~Λc to transform according to E2.
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We are now in the possession necessary ingredients to find and characterize the

kagome lattice density waves and we wil do so in the next two sections. Instead of

aiming for a complete listing of all density obtained from group theory, we will focus

on the most illustrative cases in order to demonstrate the utility and relevance of the

symmetry-based organization.

Density waves at Γ and ~K±

Consider first the site ordered doublet E2 of equation (9.208) representing a transla-

tionally invariant state. Since it transforms as E2 it is d-wave-like. We have seen that

there is precisely such a doublet among the sublattice matrix functions, given by ~Λc,
and as these are the only functions corresponding to site order, we can directly use

them to write down the condensate functions

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆x2−y2 [Λ1c]ijδσσ′

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆xy[Λ2c]ijδσσ′ . (9.218)

As a density wave doublet, which does not couple the low-energy Dirac nodes, we

expect the presence of these condensates to alter the mean field spectrum at the Dirac

points as an effective axial gauge field. This is analogous to the bond orderE2 doublet

of the honeycomb lattice. Indeed, such site ordered states we indeed found to have

the interpretation of an axial gauge field at low energies [169, 207], and in the chiral

representation chosen here (just as for the honeycomb lattice) the Dirac matrices are

τ1 and τ2.

There is one bond ordered state and one flux ordered state we wish to mention

explicitly here. Both transform as 1D representations, do not break translational

symmetry, and both are obtained from the sublattice functions ~Λb which break time-

reversal symmetry. For bond order these sublattice should acquire a momentum de-

pendence and for each functions we are naturally presented two choices, i.e. cos ki
and sinki, where ki = ~δi · ~k with ~δi the nearest neighbor vectors defined in Ap-

pendix A.4. It is important to note here that the use of the sine and cosine functions

imply the standard tight-binding gauge, which we have avoided consistently through-

out this paper. In this particular case we temporarily adopt this gauge as it makes the

presentation a great deal more transparent. For instance, it easy to convince oneself

that the cosine functions, cos ki, transform into each other under point group oper-

ations and are always even. The sine functions on the other hand, sinki transform

into each as well, but acquire a minus sign for the six-fold rotations the reflection

σd (and its threefold equivalents). We can exploit this to construct combinatons of

sublattice and orbital momentum functions which yield the condensate functions of
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desired symmetry. As an example consider the combination

sin k1Λ1b + sink2Λ2b + sin k3Λ3b. (9.219)

It is a symmetric superposition of Λb matrices and therefore its basic symmetry is

A2, as the decomposition of Pb shows. However, the sine functions provide addi-

tional minus signs for all the elements which are odd under B1. This leads to an

overall symmetry of ∼ B1 ⊗ A2 = B2, and we have consequently identified the B2

bond order state. Note that the sine functions compensate the oddness of ~Λb under

time-reversal. Physically this density wave corresponds to alternating bond modula-

tions. Depending on the strength of the density wave, the order parameter ∆B2
, the

up triangles acquire stronger (weaker) bonds while the down triangles have weaker

(stronger) bonds.

In constrast, the cosine functions preserve time reversal and are even under all

point group operations (they do of course transform into each other). Hence, forming

an analogous combination with the cos ki one obtains

cos k1Λ1b + cos k2Λ2b + cos k3Λ3b, (9.220)

which inherits all its symmetry from the ~Λb set, i.e. it transforms as A2. We have

therefore identified the time-reversal breaking A2 flux ordered state.

For completeness we write down the full condensate functions for both density

wave states,

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆B2

(
∑

n

sinknΛnb)ijδσσ′

〈ψ̂†
iσ(
~k)ψ̂jσ′ (~k)〉 = ∆A2

(
∑

n

cos knΛnb)ijδσσ′ . (9.221)

We had already identified theB2 state as a Dirac mass, i.e. the τ3τ3 matrix, and based

on symmetry it is a rather simple matter to identify theA2 state with the time-reversal

breaking mass τ3, sometimes known as Haldane mass.

Let us now consider translational symmetry broken density waves with K-point

ordering vectors. Here we will limit ourselves to site ordered states as they provide

particularly nice examples of the way in which symmetry arguments can be employed

to find explicit expressions for density waves.

Consider first the site ordered doublet E′
1. We know from the honeycomb lattice

that this representation can be further decomposed as E′
1 = A1 ⊕ B1, meaning that

it contains two states transforming as 1D representations of the bare point group. All

1D representations of the hexagonal point group preserve the threefold rotation C3

and, in addition, the ordering vectors ~K± are invariant under the threefold rotations.
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This motivates the definition of a vector of phase factors, which was already encoun-

tered in equation (9.158), in order to describe the translational symmetry breaking at

K . Such a vector of phase vectors is given by

~d =

[
d1
d2

]
=

1√
2

[ 1√
3
(ω + ω−1 − 2)

ω − ω−1

]
(9.222)

Here the cubic roots of unity, ω, ω−1 and 1 come from the Fourier transform of the

real space cosine functions cos( ~K · ~x + jϑ) which modulate the site order. The key

point to stress here is that the vector ~d can be thought of as (i) encoding the K-

point modulations, and (ii) to transform as the 2D representationE of the groupC3v ,

which is the group that leaves unit cells invariant. At the same time, the sublattice

matrices ~Λc transform as E as well. This allows for a rather elegant derivation of

condensate functions. It is clear that in order write down these function we need

a sublattice part (the ~Λc matrices) and a translational symmetry breaking part (the

vector ~d). Both transform as E and therefore products of them will transform as

E⊗E = A1⊕A2⊕E. The 1D representationsA1⊕A2 correspond to theA1⊕B1

representations of C6v that are contained in E′
1. Using standard recipies from group

theory designed to obtain basis functions of tensor product representations, we find

straightforwardly

A1, A1 ∼ d1Λ1c + d2Λ2c

A2, B1 ∼ d1Λ2c − d2Λ1c. (9.223)

These expressions are all we need as ingredients for the condensate functions belong-

ing to the doublet E′
1. They take the form

〈ψ̂†
iσ(
~k + ~K±)ψ̂jσ′ (~k)〉 = ∆A1

(d1Λ1c ± d2Λ2c)ijδσσ′

〈ψ̂†
iσ(
~k + ~K±)ψ̂jσ′ (~k)〉 = ∆B1

(d1Λ2c ∓ d2Λ1c)ijδσσ′ . (9.224)

Note that 〈ψ̂†(~k+ ~K+)ψ̂(~k)〉 is related to 〈ψ̂†(~k+ ~K−)ψ̂(~k)〉 by complex conjugation

and therefore these are not independent.

These two charge density waves modulated by K-point vectors are the kagome

lattice equivalents of the honeycomb lattice Kekule bond ordered states. They share

the same symmetry and consequently they also have the same impact on the low-

energy electrons. Indeed, as we already mentioned, they correspond to the com-

patible Dirac masses ν1 and ν2. In fact, these site ordered states have been found

in a mean field study of the kagome lattice where the band structure was doped to

the Dirac points [169]. Based on symmetry grounds we concluded that there is an

equivalent correspondence between the bond ordered states with E′
1 symmetry and
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the Kekule bond density waves of the honeycomb lattice. For both these types of

density waves we therefore expect the same intriguing physics to be possible as for

the Kekule distortions. Most notably, topological defects in the order parameter of

the two compatible mass states should come with fractionally charged excitations and

anyonic statistics.

In case of the honeycomb lattice we had found the translational symmetry broken

site ordered states to correspond to low-energy gauge fields. This originated from

their point group representation, which we found to be G′ = E1 ⊕ E2. Site ordered

states of the same symmetry exist for the kagome lattice, as equation (9.208) shows,

and they have the same low-energy interpretation. All charge density waves on the

kagome lattice constituting doublets, i.e. E2 ⊕G′, are components of a non-Abelian

SU(2) gauge field within the low-energy Dirac theory. The translationally invariant

states we already identified and it is straightforward to find the other two doublets.

Actually, one of them we already obtained when decomposing the products of ~d and
~Λ into E⊗E = A1⊕A2⊕E. The doublet on the right hand side is one of the gauge

field components. Using the same group theory recipy the condensate functions of

the doublet are spanned by

E ∼
{
d1Λ1c − d2Λ2c

d1Λ2c + d2Λ1c
. (9.225)

Translationally symmetry breaking at ~Qµ

Let us finally come to the M -point ordered density waves, which are composed of

the ordering vectors ~Qµ pictorially shown in Fig. 9.4 and specified for the kagome

lattice in Appendix A.4. We will discuss the site ordered, bond ordered and flux

ordered states of equations (9.209), (9.211) and (9.213), but instead of presenting

the derivation of explicit based on the real space formalism laid out in Section 9.4.1,

we will show these density waves graphically and analyse their mean field spectral

characteristics based on symmetry. In the same way as for K-point order this will

serve to illustrate that obtaining information on electronic properties is intimitely

related to knowing the symmetry of a density wave state.

As was highlighted in Section 9.4.1, the honeycomb lattice has been presented

as a study case for both K-point and M -point order, but the general conclusions

apply to all hexagonal lattices. In particular, the low-energy description of electronic

degrees of freedom at the M -points given in Section 9.4.1 is valid for the kagome

lattice as well. The kagome lattice has two van Hove fillings corresponding to the

saddle points of band structure with a Fermi surface looking exactly like Fig. 9.7.

These fillings are given by n = 3/12 and n = 5/12. In the same way as for the

honeycomb lattice we can project into the low-energy subspace at Γ by choosing



9.4 Condensates of hexagonal lattices 217

A1 B1B2

Figure 9.9: Graphical representation of kagome lattice site order with M -point or-

dering vectors . (upper left) the A1 state, (upper right) the B2 state and (below) the

B1 state.

state vectors that transform according to the 3D representations Fj . This yields the

generic basis states Φ̂F ≡ [Φ̂1, Φ̂2, Φ̂3]
T , the explicit form of which in terms of χ̂µj

depends on the lattice and the specific van Hove filling. We can always perform a

basis transformation which leaves us with the combinations

Φ̂A =
1√
3
(Φ̂1 + Φ̂2 + Φ̂3) (9.226)

Φ̂E =

{
1√
6
(Φ̂1 + Φ̂2 − 2Φ̂3)
1√
2
(−Φ̂1 + Φ̂2)

. (9.227)

We have demonstrated that in case of C3v symmetry, the double degeneracy of the

Φ̂E is protected. For the kagome lattice, as well as for the honeycomb lattice, the

only allowed term in the low-energy Hamiltonian is

H =




∆A

∆E

∆E



 . (9.228)

Having reviewed these basic features of M -point spectral features, we come to the

specific density wave states.

The translational symmetry broken content of the kagome lattice site order de-

composition is F1 ⊕ F3 ⊕ F4 and this gives the 1D bare point group representations

A1, B1 and B2. The density wave states transforming as such are shown in Fig. 9.9.

TheA1 state has the same mean field spectral properties as the honeycomb lattice A1

states, both the site and bond ordered states. The sign of the order parameter ∆F1

A1

determines the sign of ∆A −∆E and therefore decides between a gap and a QBC at

the lower van Hove filling (n = 3/12), while at n = 5/12 the doublet is always lower

in energy leading to a QBC. In case of the B1 and B2 states we find the mean field
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A1

B2

Q1

Q2

Q3

Q1

Q2

Q3

Figure 9.10: Graphical representation of kagome lattice bond order with M -point

ordering vectors. We show the three individual components of F1 (above) and F4

(below) which transform as basis functions of these representations, in addition to the

combination of these three components yielding the A1 and B2 states, respectively.

We label the three components by their corresponding ordering vectorQµ. As before,

red (blue) bonds represent stronger (weaker) bonds.
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spectrum not to depend on sign of the order parameter, in accordance with results of

the honeycomb lattice. The mean field spectrum of the B1 shows QBC’s at both can

Hove fillings while in case of the B2 state the lower van Hove point is gapped out

and the one at n = 5/12 shows a QBC. We note that in both cases, B1 and B2, the

low-energy terms are not first order in the desnity wave strength (order parameter),

but higher order.

Moving on to bond order, we recall that the translational symmetry broken states

transform as 2F1 ⊕ F2 ⊕ F3 ⊕ 2F4. Note the appearance of the F2 representation,

which we had only encountered in time-reversal symmetry breaking flux order de-

compositions so far. A closer look at these states reveals that they can be organized

in two series, wich are 2F1 ⊕ F2 and 2F4 ⊕ F3, where the second is obtained from

the first by multiplication with B2. As mentioned, explicit expression are worked

out in Appendix A.4, and here we show them graphically in Figs. 9.10, 9.11 and

9.12. For convenience and completeness we have chosen not only to show the 1D
states contained in the Fi representations, but instead to show the three components

transforming as Fi as well.

The generic spectral features of these states again depend on symmetry only. The

mean field spectra of both the A1 states derived from the two F1 representation and

given in Figs. 9.10 and 9.11 depend on the sign of the order parameter, which in case

of the van Hove filling n = 3/12 always decides between a gap and QBC. For the

other van Hove filling, n = 5/12, the A1 state of Fig. 9.11 always leads to a QBC.

The mean field spectra of the two B2 states obtained from these states (shown the

same figures) does not depend on the sign of the order parameter. For both of these

states the van Hove point at n = 3/12 is gapped out as the doublet is lower in energy.

Instead, at n = 5/12 a QBC emerges, with an accidental degeneracy of the doublet

Φ̂E and Φ̂A state in case of the B2 state given in Fig. 9.10.

The other two bond order representations related to each other are F2 and F3,

wich contain the 1D representations A2 and B1. They are shown in Fig. 9.12. The

appearance of a time-reversal invariant state with A2 symmetry is new. So far we

only found flux ordered states with A2 symmetry. For the latter type of states we

noticed that degeneracies are in general not protected as the point group is Abelian.

In the presence of time-reversal symmetry the situation changes and we can use the

low-energy description at Γ to elucidate how. In the absence of C3v symmetry the

doublet states Φ̂E corresponding to the Hamiltonian (see also Section 9.4.1)

HE(~q) = ±1

4
q2 ± 1

4

[
(q2x − q2y)τ

3 + 2qxqyτ
1
]

(9.229)

are no longer protected by pure point group operations. However, the combination

of C6 symmetry and time-reversal symmetry robustly protects a QBC [86] and the

double degeneracy is therefore still protected. This is indeed relfected in the mean
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A1

B2

Q1

Q2

Q3

Q1

Q2

Q3

Figure 9.11: Same as in Fig 9.10, but for the other F1 and F4 represetations con-

tained in the bond order decomposition.
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A2

B1

Q1

Q2

Q3

Q1

Q2

Q3

Figure 9.12: Same as in Fig 9.10 and Fig. 9.11, but for the F2 and F3 bond order

representations. The A2 and B1 states that can be formed as linear combinations of

the three components are shown as well.
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Figure 9.13: Graphical representation of kagome lattice flux order with M -point

ordering vectors. On the left and right we show the two independent flux ordered

states which transform as A2 and come from the two F2 representations contained in

the flux order decompositions.

field spectrum. In particular, in case of the A2 density wave state the low-energy

theory at both van Hove points is that of a QBC. In contrast, for theB1 state the order

of singlet and doublet is such that a gap emerges for both van Hove points. For both

states the sign of the order parameter is immaterial.

Finally, we come to M -point flux order on the kagome lattice. There are two

independentF2 representations contained in the flux order decomposition, both lead-

ing to A2 time-reversal breaking 1D representations. In Fig. 9.13 we show these two

independent A2 states. For both states the original three-fold degereacy at Γ is fully

lifted and no degeneracies remain. Both of these states can and do in fact lead to a

fully gapped mean field spectrum and an insulating QAH ground state.

The kagome latticeM -point states provide additional evidence that the symmetry

of density wave allows to make specific statements regarding the low-energy elec-

tronic properties. They show that while details may depend on lattice, states of the

same symmetry have the same generic features, independent of lattice.

9.4.3 Triangular lattice

In this last part of the present section focusing lattices with hexagonal symmetry, we

turn to the simplest of them, the triangular lattice. Even though the lattices consid-

ered up to this point, honeycomb and kagome, have already served to uncover the

general structure and shared features of density waves on hexagonal lattices at spe-

cific ordering vectors, for completeness, but most of all as a warm up for the spin

triplet condensates, we treat the triangular lattice case as well. The triangular lattice

does not have a sublattice, which makes it similar to the square lattice. Nevertheless,

its hexagonal symmetry puts it on the same footing with the honeycomb and kagome

lattices, as we will demonstrate below. The hexagonal symmetry of the triangular
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lattice is its most fundamental property in the context of density waves.

Contrary to the honeycomb and kagome cases, we will restrict ourselves to order-

ing at the M -points. As mentioned, all three hexagonal lattices here presented have

a Fermi surface nested by the ~Qµ vectors and a logarithmically diverging density of

states for appropriate filling. For the triangular lattice this filling is n = 3/4 and we

therefore present the potential condensates for this filling in what follows.

The recipy is well-established and familiar by now, and we content ourselves with

quoting the symmetry decomposition for site, bond and flux order. For site order we

find the irreducible representations A1 and F1, i.e.

PM
s = A1 ⊕ F1. (9.230)

The triangular lattice has no basis and M -point ordering quadruples the unit cell,

which yields the four distinct site ordered states. We have already seen a number

of times that the representation F1 decomposes further into A1 and E2 of the point

group C6v . For bond order we find the decomposition

PM
b = A1 ⊕ E2 ⊕ F1 ⊕ F3 ⊕ F4, (9.231)

which is equal to the decomposition for honeycomb bond order. Not surprising, as

there is an equal number of bonds in the enlarged unit cell and both lattices do have

the same symmetry. Hence, in the same way as for the honeycomb lattice, there will

be three condensates transforming as 1D representations of C6v , which are A1, B1

and B2, coming from F1, F3 and F4, respectively. To conclude, in case of flux order

we find

PM
φ = A2 ⊕B1 ⊕ F2 ⊕ F3. (9.232)

For the purposes of this work we will be interested exclusively in the state trans-

forming as A2 and coming from the triplet F2. This state has the potential of hav-

ing nonzero Chern number, see Section 9.1.4, and based on the results obtained for

honeycomb and kagome lattices, we strongly suspect that it will be a gapped state

carrying a QAH effect.

For triangular lattice condensates, the compatibility and consistentie relations of

equations (9.92) and (9.95) carry over in the same form. In addition, since we focus

on M -point ordering, the definitions and formalism of Section 9.4.1 apply directly to

the present case.

Starting with site order we can write the generic condensate expression in real

space as

〈ψ̂†
σ(~x)ψ̂σ′(~y)〉 = ∆ ~ζ · ~ξ(~x) δ~x,~yδσσ′ , (9.233)
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We are looking for a state which respects all operations of C6v and this leads im-

mediately to the requirements that X~ζ = ~ζ and Y ~ζ = ~ζ. The is only one vector

satisfying this and it is ~ζ = (1, 1, 1)T/
√
3. The density wave corresponding to F1

and transforming as A1 is therefore given in momentum space as

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′(~k)〉 = 1√

3
∆F1

A1
δσσ′ . (9.234)

The site ordered doublet contained in F1 is straightforwardly obtained by solving the

equation (−2 +X +XT )~ζ = ~ζ, but we will leave it at this for now and continue to

bond order.

In line with the approach so far we write down a general real space expression

and evaluate the constraints imposed by symmetry. For the bonds in the ~x1 direction

we can write down the general bond order form

〈ψ̂†
σ(~x)ψ̂σ′ (~y)〉 = ∆ ~ζ · ~ξ(~x) (δ~x+~x1,~y + δ~x,~y+~x1

)δσσ′ . (9.235)

For the other bond directions, ~x2 and ~x3, the corresponding expressions are automat-

ically obtained using the threefold rotation, which yields X~ζ and XT ~ζ respectively.

In order to find the unique expressions for ~ζ corresponding to the translational sym-

metry broken states A1, B1 and B2 we study the effect of the inversionC2. The state

transforming as A1 should be invariant under inversion, while the other two should

be odd. Applying C2 we find the condition G1
~ζ = ±~ζ and this immediately fixes

the ~ζ vectors. The solution associated to the plus sign is given by ~ζ = (0, 0, 1)T and

constitutes the A1 state. There are two solutions associated to the minus sign, which

are given by ~ζ = (1,±1, 0)T/
√
2 and they correspond to B1 (+) and B2 (−).

In order to write compact expressions in momentum space we define the triad

of vectors ~ζ1 = ~ζ , ~ζ2 = X~ζ and ~ζ3 = XT ~ζ , where ~ζ is one of the three vectors

just identified. Furthermore, we define the functions cos kj = cos~k · ~xj with ~x3 =

−~x1 − ~x2. Then, choosing ~ζ = (0, 0, 1)T , we have the A1 condensate expression

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′(~k)〉 = ∆F1

A1
ζµj cos kjδσσ′ . (9.236)

Very similar expressions are then simply obtained for the B1 and B2 states. Substi-

tuting the proper vectors ~ζ one has

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′(~k)〉 = i∆

F3/4

B1/2
ζµj sin kjδσσ′ (9.237)

The last state of the triangular we present here is the flux state transforming as A2

and coming fromF2. We must have imaginary hoppings in this state and we therefore

start from the Ansatz

〈ψ̂†
σ(~x)ψ̂σ′ (~y)〉 = ∆ i~ζ · ~ξ(~x) (δ~x+~x1,~y − δ~x,~y+~x1

)δσσ′ . (9.238)
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Again the other directions are obtained using the threefold rotation. The state A2

must be invariant under the inversion C2 and we find this demand to yield the con-

straint G1
~ζ = −~ζ, which we have seen to give solutions ~ζ = (1,±1, 0)T/

√
2.

Evaluating the action of the reflection σv shows that the correct choice for A2 is
~ζ = (1,−1, 0)T/

√
2. In momentum space the condensate expression is

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′ (~k)〉 = i∆F2

A2
ζµj cos kjδσσ′ . (9.239)

Inspecting the momentum space expressions just derived from a real space per-

sective, we see that for each order parameter component ~Qµ they transform according

to an irreducible representation of the group of ~Qµ, which is C2v. Indeed, cos k2 is

invariant under all operations leaving ~Q1 invariant. In the same way the functions

sin k3± sin k1 and cos k3− cosk1 transform according to irreducible representations

of C2v . Individually these components are basis functions of the 3D Fi representa-

tions of C′′′
6v and forming proper comninations gives basis functions of the 1D and

2D representations of Fi. In particular for the triangular lattice, which has no basis,

an alternative way to construct the condensates is therefore to work directly in mo-

mentum space, find functions transforming as the group of the wave vector ~Qµ use

the compatability and consistency relations of equations (9.92) and (9.95) and form

the proper combinations.

We close this section with some remarks on the spectral effects of the site, bond

and flux ordered states. To this end we can use the general features of the low-energy

structure applicable to a Fermi level close to the Van Hove singularities of hexagonal

lattices, which we discussed in the context of the honeycomb lattice in section 9.4.1.

First, we note that at the Van Hove singularities the perfectly nested Fermi surface

(only nearest-neighbor hopping) has exactly the same form in the reduced Brillouin

zone as depicted in Fig. 9.7. The relevant high symmetry points, where degenera-

cies may be symmetry protected are the Γ point and the M ′ points. The degeneracy

protection is the same as was found for the honeycomb lattice. Specifically, in the

presence of full C′′′
6v symmetry, the two-fold degeneracy at each M ′ point is pro-

tected, while breaking of translational symmetry lift this degeneracy in general. At

the Γ point, the representation of the symmetry groupC′′′
6v on Φ̂Γ = [χ̂0, χ̂1, χ̂2, χ̂3]

T

can be decomposed into A1 ⊕ F1. Losing translational symmetry but retaining C6v

symmetry then yields 2A1 ⊕E2, which is replaced with 2A1 ⊕E in case of residual

C3v symmetry. Furthermore, as was mentioned already in section 9.4.1, expanding

the dispersion around the Γ gives the same low-energy structure that was obtained for

the honeycomb lattice. At Γ the basis states corresponding to the non-degenerate and
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doubly degenerate levels are given by

Φ̂A =
1√
3
(ψ̂( ~Q1) + ψ̂( ~Q2) + ψ̂( ~Q3)) (9.240)

Φ̂E =

{
1√
6
(ψ̂( ~Q1) + ψ̂( ~Q2)− 2ψ̂( ~Q3))

1√
2
(−ψ̂( ~Q1) + ψ̂( ~Q2))

. (9.241)

In terms of these states, the lowest order term of density wave states in the effective

low-energy theory is precisely given by equation (9.207). Therefore, it is again the

sign of ∆A − ∆E which decides between the two possibilities of a full gap and a

symmetry protected QBC point. For the triangular lattice, we find that both the site

ordered and the bond ordered A1 states lead to either a gap or a QBC depending

on the sign of ∆F1

A1
, in way equivalent to honeycomb lattice A1 site order. The two

bond ordered states transforming as B1 and B2 both have a threefold degeneracy at

Γ, which is consequence of the sine functions: at Γ the density wave state does not

alter the Hamiltonian. This degeneracy is not symmetry protected. To conclude we

mention here that the flux ordered state A2 gaps out the full Fermi surface. Due to

the absence of reflection symmetries there is no two-fold degeneracy at Γ. Direction

calculation reveals that the energy gap at filling n = 3/4 is a nontrivial gap and the

insulating state hosts a Quantum Hall effect marked by a nonzero Chern number.
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INTRODUCTION TO TRIPLET STATES:

SPIN-DENSITY WAVES

10.1 General considerations

The purpose of the present section is to provide more insight into triplet particle-

hole condensates, i.e. density wave states which break spin rotation symmetry. Up

until this point spin triplet states have been mentioned only occasionally and briefly,

such as QSH effects obtained from QAH effects (see for instance section 9.3.1), or

uniaxial spin density waves obtained from charge order (see section 9.4.1). All of

these examples have in common that they constitute the simplest class of spin triplet

states, more or less trivially obtained from spinless states. Indeed, in essence they

can be thought of as two copies of spinless states, one for each spin species, but with

opposite sign for the two species. To put this more succinctly, they are obtained from

the singlet states by replacing all δσσ′ with σ3
σσ′ .

In quite a number of cases, such as the QSH effects, these triplet states are de-

generate with the singlet states on a mean field level, precisely because the former

comprise two copies of the latter. A notable exception are the uniaxial spin density

waves of section 9.4.1, where the relative sign difference of the two copies is reflected

in a different energy spectrum for the two species. Spinful condensates proportional

to σ3 break spin rotation symmetry partially, and for this reason are certainly proper
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triplet states. However, the unbroken generator of spin rotations σ3 signals that they

far from exhaust the possible triplet condensates. Therefore, we take a closer look

at spin triplet states in this section. We stress that we have no intention of being

complete, but merely wish to present some of the general aspects of spinful conden-

sates which go beyond the partial breaking of spin rotation reflected in the exchange

δσσ′ ↔ σ3
σσ′ . We will do so with the help of selected lattices and example con-

densates. We will restrict ourselves to lattices with hexagonal symmetry and focus

exclusively on ordering at the M -points. This will serve the purpose of demonstrat-

ing the most salient features characteristic of nontrivial triplet states. Specifically, the

focus will be on two main concepts connected to the full breaking of spin rotation

symmetry. The first is the possibility to dress lattice symmetries which are broken

in the condensed state with a unitary global spin rotation, restoring them as symme-

tries. The second is the existance of time-reversal invariant spin-bond density waves,

which will be introduced as a novel class of candidate interaction-induced topological

insulators as well as topological semimetals. Both of these concepts will be shown

to illustrate how the symmetry structure of spin density waves can be lifted from the

spinless (spin rotation invariant) density waves.

In section 9.2.2 the foundations for a spinful mean field theory were presented,

providing a possible context for the emergence of spinful density waves from elec-

tronic correlations in the same way as for spinless (or spin rotation invariant) case.

Indeed, the triplet condensates may be taken as candidate ground states for mean

field treatments, or considered variational states in the context of other approaches.

In this section we repeatedly seek to establish a connection between a systematic de-

velopment of spin rotation symmetry broken density waves and results from recent

literature, which has reported a number of such density waves as dominant electronic

instabilities or mean field ground states.

When it comes to lattice symmetries in two dimensions, the symmetry groupsDn

and Cnv are distinct in the presence of spin degrees of freedom. In section 9.1.1 we

have mentioned this distinction briefly and referred to the Appendix for details. As

the differences do not significantly alter the observations and conclusions to come, we

do the same here and content ourselves with focusing on the main features of lattice

symmetries in the presence of spin, which are shared between the groups Dn and

Cnv . Lattice symmetries act in spin space as a unitary SU(2) matrix associated to

the SO(3) element acting on spatial coordinates. In addition, time-reversal symmetry

now takes the form T = eiπσ
2/2K, which has important the property T 2 = −1.

Triplet condensates therefore necessarily break time-reversal invariance, as all the

three Pauli matrices σi are odd under time-reversal. Notice however that in case of the

uniaxial density waves, i.e. ∼ σ3, applying a global spin rotation after time-reversal

(a rotation of π around for instance the x axis) brings the state back to itself. Hence,
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the time-reversed mean field Hamiltonian is unitarily equivalent to itself, effectively

restoring time-reversal symmetry.

This brings us to the broader principle of spin rotation equivalence, which we

take some time to introduce here before zooming in on specific lattices and particular

states. For any spinful condensate a global spin rotation cannot change the spectrum

or the free energy as the interacting Hamiltonian is SU(2) invariant. For the mean

field Hamiltonian this means that a global spin rotation yields a unitarily equiva-

lent Hamiltonian which necessarily has the same spectrum. When considering lattice

symmetries such as rotation, reflection and translation, global spin rotation equiv-

alence comes into play in an important and consequential way. There are spinful

density waves which have the property that the application of a lattice operation can

be compensated by a global spin rotation. To put it in a different way, application of

a lattice operation may result in a physical state which is related to the initial state by

a global spin rotation. Let us make this statement more specific and tangible. We are

going to study condensates of hexagonal lattices with M -point ordering only, and we

therefore recall that the real space M -point modulation functions have been defined

as ~ζ ·~ξ(~x) and fully specify a given type ofM -point order. A general spinful ordering

needs three of these functions, one for each spin direction. Instead of a vector ~ζ it

therefore makes sense to use a matrix M = Miµ to encode the degrees of freedom

for spinful M -point order, where i = 1, 2, 3 corresponding to σi, i.e.

σiMiµξµ(~x), (10.1)

which can alternatively and more concisely written as ~σ · ~M(~x) = ~σ · ~Mµξµ(~x).

Lattice symmetries can be represented by their action on ~ξ. For instance, we have seen

thatX~ξ(C3~x) = ~ξ(~x) andG1
~ξ(~x+~x1) = ~ξ(~x). In particular translational symmetry

was always broken for M -point modulations. To see how global spin rotations can

come to the rescue, let us take such a translation, i.e. T (~x1), as an example. The

effect of the translation on the spin order is

~σ · ~M(~x+ ~x1) = σiMiµ[G1]µνξν(~x). (10.2)

We would like this to be equal to a global spin rotation R (depending on G1) of the

form

~σ · R ~M(~x). (10.3)

Therefore, the translation T (~x1) can be compensated by a global spin rotation if and

only if the following relation is satisfied

σiMiµ[G1]µνξν(~x) = σiRijMjµξµ(~x). (10.4)
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This relation expresses the condition that the action on ~ξ can be carried over to ~M
and therefore to ~σ. In other words, the translation can be compensated by a global

rotation if G1 acting on M from the right is identical to some O(3) matrix G̃1 acting

on M from the left, i.e. on its spin indices. Suppose for instance we have M11 =
M22 = M33 = 1 and all other elements zero. Then M is simply the identity andG1

commutes with it so that R = G1. The translation can be compensated by a rotation

of π around the z-axis, as this is the interpretation of G1 as an element of O(3). This

follows from the fact that a general O(3) matrix R acting on M gives ~σ · R ~M(~x),
and we can associate an SU(2) matrix U with R such that

~σ · ~M = U †~σ · (R ~M)U. (10.5)

In contrast, had we chosen instead M31 = M32 = M33 = 1 and all other elements

zero, the condition of equation (10.4) cannot be fulfilled and translational symmetry is

manifestly broken. The physical significance of these two seemingly arbitrary choices

for M will be clarified below when discussing the triangular lattice.

The concept of global spin rotation equivalence and its connection to lattice sym-

metries has appeared before in the context of classical spin models [208]. There it

was employed to derive classical spin states which are invariant under all lattice op-

erations, modulo a global spin rotation. Since translations are a subset of the lattice

operations, these “classical spin liquids” must necessarily have a uniform spin length

at every site. In the present case, where we study electronic density wave states, we

find these fully symmetric spin density waves as a subset of a larger class of spinful

density waves, which also includes spin-bond density waves and translational sym-

metry broken spin density waves, the uniaxial spin density waves being an example

of the latter.

A key difference between the classical spin liquids of [208], i.e. classical spin

states invariant under all lattice operations up to an O(3) rotation, and electronic

spinful density waves is the treatment of improper global rotations needed to pro-

mote lattice operations to symmetries. Elements ofO(3) are divided into two groups,

the proper and improper rotations, which are distinguished by their determinant, i.e.

Det [R] = ±1. Improper elements can always be written as the product of a proper

rotation R′ ∈ SO(3) and the inversion operations, R = −R′. The relevance if this

distinction follows from the need to associate an SU(2) matrix U with R, which is

only possible for proper R. In particular this means that if R is improper, the state is

odd under the operations corresponding to R, i.e.

~σ · (R ~M) → −~σ · (R′ ~M) = −U~σ · ~MU †, (10.6)

where the matrix U is the SU(2) equivalent of R′. In case of hexagonal lattice M -

point we already observed in Section 9.4.1 that an O(3) representation of the group
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of lattice symmetries is generated by their action on ~ξ(~x). The generators of this

representation areGi,X ,XT and Y . Equation (10.4) states that it is these generators

which determine R. Only the element Y is improper, implying that all reflections are

associated with an improper rotation. Below we will illustrate in specific cases how

this affects the electronic symmetries of given density waves.

10.2 Triangular lattice triplet states

Spin density waves in hexagonal lattice systems modulated by the M -piont vectors

are currently attracting much attention, with the triangular lattice being one of the

most prominent represenatives of lattices with hexagonal symmetry. One of the first

examples of such a novel spin density wave state, proposed in the context of pre-

formed classical local moments coupled to electrons, has been a noncoplanar chi-

ral spin state [30]. It was shown in [30] that this state can also be thought of as a

proper density wave spontaneously formed by onsite Hubbard-like interactions, in

the same spirit which is at the heart of the present framework. The chiral spin den-

sity wave gaps out the electronic spectrum and leads to a Quantum Anomalous Hall

ground state. In later works, the problem of spin density wave physics was revis-

ited in a broader setting, pertaining to more general lattices with hexagonal lattices

with hexagonal symmetry [160], but taking the honeycomb lattice as an example.

Already briefly mentioned in section 9.4.1, the main result of this work and subse-

quent studies [162,163] was the prediction of a thermal phase transition to a uniaxial

translational symmetry broken spin density wave. In all of the hexagonal lattices we

consider in this work, both types of spin density wave states, the uniaxial and the chi-

ral density waves, fit into the scheme of lifting particle-hole triplet condensates with

specific symmetry from the corresponding spinless site ordered states. More specifi-

cally, they can be understood by consering a single root state, the A1 symmetric site

ordered state for each of the lattices. This is most easily demonstrated for the case of

the triangular lattice.

10.2.1 Spin density wave states

The A1 symmetric site ordered state was given in equation (9.234). There are two

rather straightforward ways to take this as a root state and make it spinful. One is

obvious: just create two copies for both spin species and give them a relative minus

sign. This yields

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′ (~k)〉 = 1√

3
∆uniax σ

3
σσ′ , (10.7)
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and it exactly corresponds to the uniaxial spin density wave. It represents a manifestly

translational symmetry broken state, preserving however C6v (or alternatively D6)

symmetry, up to global rotation. In real space we can denote it as

σ3M3µξµ(~x), M31 = M32 = M33 = 1. (10.8)

Following equation (10.4) we have already discussed this possibility as a case where

translations cannot be saved by global spin rotations. This is different for the second

way of incorporatig the spin degree of freedom, which is

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′(~k)〉 = 1√

3
∆chiral σ

µ
σσ′ . (10.9)

Each of the order parameter components ~Qµ is associated with a different spin Pauli

matrix, and in real space this can be represented as

σiMiµξµ(~x), M = I, (10.10)

where I is the unit matrix. Now translations can be compensated by global spin rota-

tions and the point group operations must be combined with global spin rotations as

well to leave the spin density wave invariant. In particular, the effect of reflections on
~ξ always contains the element Y , which we have mentioned to be an improper ele-

ment ofO(3). Indeed, −Y is a rotation of π around the z-axis, followed by a rotation

of −π/2 around the y-axis. Hence, the chiral spin density wave state is odd under

all reflections, indeed a necessary condition to host a QAH effect which is a property

well-established for this particular spin density wave [30] and its generalizations to

other hexagonal lattices [40, 209, 210].

10.2.2 Spin-flux ordered states

As a second class of spinful condensates on the triangular lattice, we now focus on

a particularly interesting combination of spin and flux ordered states. Spin density

waves break time-reversal symmetry and so does flux order. Above we have seen that

the chiral spin density waveof equation (10.9) causes a spectral gap and leads to a

QAH effect. The same is true for the flux ordered state contained in the decomposi-

tion (9.232) and explicitly defined in equation (9.239). This motivates the question

whether symmetric combinations of spin and flux order exist, which are possibly en-

ergetically favorable and host nontrivial physical effects. Since both constituents of

such spinful flux ordered states, i.e. the spin part and the flux part, are time-reversal

odd, the combination of the two should be time-reversal symmetric. Even more strik-

ingly, not only are such states be time-reversal invariant, lattice symmetries such as
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reflections and translations which are broken by the constituent orders may be resur-

rected, as global spin rotations can be employed to bring the mean field Hamiltonian

back to itself. We will now demonstrate this using two examples on the triangular

lattice, which however easily generalize to other well-known hexagonal lattices, i.e.

the honeycomb and kagome lattices.

In case the triangular lattice we have derived a flux ordered state transforming as

A1 and given in equation (9.239). Translational symmetry is manifestly broken in this

state. To see how appropriate spinful versions of this state can be constructed which

recover (part of) the broken lattice symmetries, it is most convenient to adopt the

real space perspective [see also equation (9.238)]. This requires three matrices Mi,

one for each bond direction, in the same way as three ~ζj are required for any bond

order including flux order. Following equation (9.238) it was shown that flux order

is specified by ~ζ1 = ~ζ , ~ζ2 = X~ζ and ~ζ3 = XT ~ζ with ~ζ = [1,−1, 0]T . Spin-bond

ordered states are then generically specified by

σi[Mj ]iµξµ(~x), (10.11)

and here we construct them explicitly by embedding the ~ζj in the matrices Mj .

One such embedding yields a highly symmetric electronic state and it is obtained

by putting the ~ζj on the diagonal of the corresponding Mj , with all off-diagonal

elements zero. As both the Mj matrices and the Gj matrices representating the

translations only have diagonal elements, they commute, having the consequence that

translations can be compensated by global proper spin rotations. Mathematically this

embedding can be concisely written as

[Mj ]iµ = ζµj δiµ. (10.12)

The flux ordered state of equations (9.238) and (9.239) is odd under all reflections.

In the presence of spin structure global spin rotations can recover these symmetries.

Taking the reflection σv as an example, we have that

~σ ·Mj · ~ξ(~x) → ~σ ·Mj · Y ~ξ(~x), (10.13)

where it is important to note that the reflection exchanges j = 1 and j = 2 and maps

j = 3 to itself. We then find that M3Y = −YM3 and M1Y = −YM2, which

proves that the proper rotation −Y compensates for the reflection, reinstitating it as a

symmetry. Hence, the only symmetry broken by this particular density wave state is

spin-rotation symmetry.

A second natural embedding of the ~ζj is to associate each of the ~ζj with a differ-

ent direction in spin space, i.e. to choose a different spin projection for each bond

direction ~xj . This can be concisely captured by the expression

[Mj ]iµ = ζµj δij , (10.14)
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where δij associates the spin label i with the bond label j. This however has the

consequence that the matrices Mj are not diagonal, which precludes the recovery

of translational invariance. Even though translational invariance is now manifestly

broken, we can recover the reflections as M3Y = −YM3 and M1Y = −YM2

still holds. We conclude that this embedding yields a spin-rotation symmetry and

translational symmetry broken state, which preserves the C6v (or D6) operations.

The real space perspective is perhaps the most convenient in highlighting the sym-

metry properties. Transforming to momentum space gives the condensate functions

given by

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′ (~k)〉 = i∆Diracζ

µ
j cos kj σ

µ
σσ′ , (10.15)

(no summation over µ on the right hand side) in case of the first embedding, and

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′(~k)〉 = i∆QSH

∑

j

ζµj cos kj σ
j
σσ′ , (10.16)

in case of the second embedding. The spectral properties of the mean field Hamil-

tonian corresponding to these spin-flux (or spin-bond) ordered states turn out to be

rather intriguing. We now discuss them in more detail, which will explain the labeling

∆Dirac and ∆QSH. We start with the highly symmetric state given in equation 10.15.

The mean field spectrum of the highly symmetric state given in equation (10.15)

is presented in Fig. 10.4. We observe that the spectrum consists of four bands, which

is a consequence of a combined time-reversal symmetry and inversion symmetry,

mandating a two-fold degeneracy for each energy level at every ~k. The high sym-

metry of this state leads to additional spectral degeneracies, the most notable being

the four-fold degeneracy at all the M ′ points. The nested Fermi surface at filling

n = 3/4 is gapped out except for these isolated remaining degeneracies at the M ′

points, which we soon show follows from the fact that all lattice symmetries are es-

sentially preserved. In that sense, the remaining degeneracies are very similar to

the isolated degeneracies of the staggered flux order on the square lattice [see equa-

tion (9.100) and Section 9.3.2]. In the latter case, degeneracies at isolated points in

the reduced Brillouin zone define Dirac nodes, i.e. in the vicinity of these points the

dispersion is linear. The same is true in the present case. At each of the three M ′

points of the low-energy excitations are described a pair of Dirac nodes transform-

ing into each other under the time-reversal operation, which is the reason we have

denoted the state as ∆Dirac. The square lattice staggered flux state breaks some lat-

tice symmetries, in addition to time-reversal symmetry, but preserves spin rotation

symmetry. The present spin-flux ordered state does not break any lattice symmetries

and preserves time-reversal, but it breaks spin rotation symmetry. Furthermore, the

low-energy theory of the staggered flux state consists of two Dirac nodes instead of
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Figure 10.1: (a) Energy bands of the triangular lattice in the presence of the triplet

density wave state given in equation (10.15). At the ~M ′ points in the reduced Bril-

louin zone the red circles point to the Dirac nodes. (b) Mean field spectrum of the

equivalent state on the honeycomb lattice.



236 Introduction to triplet states: spin-density waves

six (two for each of the three M ′ points). In that respect, the spin-flux ordered state

is reminiscent of the three dimensional spin-orbit coupled diamond lattice model [3],

which at half filling gives rise to a low-energy 3D Dirac theory at three inquivalent

points in the 3D Brillouin zone. We come back to this reminiscence below.

We first show explicitly that the Dirac nodes at the ~M ′ points are protected by

the symmetries which leave them invariant. Crucially, this includes the translations

combined with global spin rotations and we use the relation between lattice opera-

tions and spin rotations establsihed in Appendix C.3. For the sake of definiteness we

choose ~M ′
2 to demonstrate the degeneracy. The basis state at the ~M ′

2 point takes the

form

Φ̂ ~M ′ =




ψ̂σ( ~M
′
2)

ψ̂σ( ~M
′
2 +

~Q1)

ψ̂σ( ~M
′
2 +

~Q2)

ψ̂σ( ~M
′
3 +

~Q3)


 , (10.17)

where σ labels the spin degree of freedom. In order to analyse the effect of lattice

symmetries we choose a set of Pauli matrices σi to act on the spin degree of freedom,

a set of matrices τ i to act within the blocks ( ~M ′
2, ~M

′
2+ ~Q1) and ( ~M ′

2+ ~Q2, ~M
′
2+ ~Q3),

and a set matrices νi to act on the block degree of freedom. It turn out to be convenient

to start with the inversion C2, which has the effect

C2 →




ψ̂σ(− ~M ′
2)

ψ̂σ(− ~M ′
2 + ~Q1)

ψ̂σ(− ~M ′
2 +

~Q2)

ψ̂σ(− ~M ′
3 +

~Q3)


 = ν1Φ̂ ~M ′

. (10.18)

From this we conclude that the Hamiltonian at ~M ′
2 can only have terms σiτ j or

σiτ jν1, where it is understood that i, j = 0, 1, 2, 3. The translation T (~x2) is asso-

ciated with G2 and can be compensated by a rotation around the x-axis by π, which

gives

T (~x2) → −iσ1ν3Φ̂ ~M ′ . (10.19)

This leaves us with allowed terms τ j , σ1τ j , σ2τ jν1 and σ3τ jν1. The translation

T (~x3) is associated with G3 and a rotation by π around the y-axis will make it a

symmetry. The action on the basis state is

T (~x3) → −iσ2τ3Φ̂ ~M ′ , (10.20)
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which leaves us with the following allowed terms

τ3, σ1τ1, σ1τ2, σ2ν1, σ2τ3ν1,

σ3τ1ν1, σ3τ2ν1. (10.21)

What is left to consider is the two reflections which leave ~M ′
2 invariant. We consider

C2σv , which leads to

C2σv → −ieiπσ2/4σ3




1
1

1
1


 Φ̂ ~M ′ . (10.22)

The spin rotation −ieiπσ2/4σ3 is the global spin rotation necessary to compensate Y .

This transformation leads to the immediate exclusion of the terms σ2τ3ν1 and σ2ν1.

The term τ3 is clearly left invariant. The other four terms must be combined in order

to represent invariant terms, and the final terms which are allowed by symmetry are

τ3, τ1(σ1 − σ3ν1), τ2(σ1 − σ3ν1). (10.23)

Subjecting them to a basis transformation e−iπσ
1ν1/4eiπσ

3/8 brings them into a very

simple form, and we obtain σ1τ1, σ1τ2 and τ3. These three matrices anti-commute

between each other and this leads to the conclusion that the most general symmetry

allowed Hamiltonian at the ~M ′-points, H = m1σ
1τ1 + m2σ

1τ2 + m3τ
3, has two

eigenvalues ±
√
m2

1 +m2
2 +m2

3, with each eigenvalue being fourfould degenerate.

This proves that the fourfold degeneracy at the ~M ′ points is in fact symmetry

protected. As we have already shown in quite a number of cases before, such as the

square lattice π-flux state in Section 9.3.2, one can take the low-energy Dirac de-

scription of this spin-flux state as a starting point for studying the effect of additional

symmetry breaking. We recall that in case of the square lattice π-flux state all lattice

symmetries were left unbroken, because a gauge transformation could be employed

to bring the Hamiltonian back to itself. In the present case a global spin rotation acts

as the unitary operation bringing the Hamiltonian back to itself, and in the same way

as was presented in Section 9.3.2 we can list the effect of lattice symmetry breaking

in terms of the Dirac language. A key aspect of the lattice symmetric spin-flux state

is the need to be careful to account for the spin rotation symmetry breaking and the

nontrivial spin structure of the Dirac spinors. We leave such a detailed account of the

low-energy Dirac theory following from the spin-fux state for future study.

Let us now come to the second spin-flux state given in equation (10.16) and in

equation (10.14). We had already observed that translational symmetry is broken
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Figure 10.2: Energy bands of the triangular lattice in the presence of the triplet

density wave state given in equation (10.16). The black (red) spectrum corresponds

to the density wave strength ∆QSH = −0.4 (∆QSH = 0.4). An energy gap emerges in

case of ∆QSH < 0 at the ~M ′ points in the reduced Brillouin zone and an evaluation

of the inversion eigenvalues (C2 eigenvalues) at these ~M ′ shows that the insulating

ground state is a QSH state. Note that all bands are doubly degenerate due to the

presence of both time-reversal and inversion symmetry. Inset shows the path through

the reduced BZ.
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in this state and we therefore do not a priori expect any degeneracies at the M ′-
points other than the ones required by the presence of both time-reversal and inversion

symmetry. The mean field energy bands are presented in Fig. 10.2, where we show

two different spectra corresponding to positive and negative sign of the density wave

strength. The spectra show that indeed no additional degeneracies exist and in case of

∆QSH < 0 a full energy gap is emerges, which is however second order in the density

wave strength. For the resulting insulating state we can calculate the Z2 topological

invariant written in equation (9.42) and we find that this state is a non-trivial QSH

state.

This shows that embedding flux order in a spinful setting can lead to two distinct

time-reversal invariant topological states of matter: a 2D symmetry protected Weyl

semimetal and an insulating QSH state. Both of these spinful density waves preserve

all point group symmetries, but they differ with respect to translations. The 2D Weyl

semimetal preserves all translations, which is the origin of its symmetry protection.

10.3 Honeycomb lattice

In order to inspire confidence in the general applicability of the results on M -point

ordered triplet density waves in systems with hexagonal symmetry, which we have

presented with the help of the triangular lattice above, we briefly show how these

results carry over to the honeycomb lattice. Specifically, we will discuss the honey-

comb lattice realizations of the uniaxial and chiral spin density waves, as they have

generated considerable interest recently [40, 160, 162, 163]. In addition, we show

explicitly that the fully symmetric spin-flux ordered state exists on the honeycomb

lattice as well and has the same key properties as on the triangular lattice.

In the same way as for the triangular lattice, the starting point for the spin density

waves are the expressions for the site ordered states derived in Section 9.4.1. Site or-

dered states transforming as irreducible representations of the lattice symmetry group

were specified by two vectors, i.e. ~ζA and ~ζB [see equations (9.169) and (9.170)], and

the job here is to embed them in two matrices MA and MB representing the spin

order. With this sublattice degree of freedom taken into account, the general spin

ordered state is written as

σi[Mj ]iµξµ, (10.24)

and using that general form we can write the uniaxial spin density waves obtained

from the site order expressions as

[MA]3µ = ζµA, [MB]3µ = ±ζµB. (10.25)
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We had found two site ordered states transforming as 1D representations of C6v , an

A1 state and a B2, which are distinguished by the relative sign between the sublat-

tices. In case of uniaxial spin density wave order, this is captured by the overall sign

of MB , as equation (10.25) shows. The specific uniaxial spin density wave reported

in [160, 162, 163] is corresponds to the choice [MB]3µ = +ζµB and breaks transla-

tional symmetry but preserves the rotations and reflections. The mean field spectral

properties, in particular the emergence of a QBC point at Γ [163], have been men-

tioned already in Section 9.4.1, as they follow straightforwardly from considering the

two spin species separately.

The second choice for embedding the ~ζj in the matrices Mj is to put the vectors

on the diagonal of the corresponding matrices. This can be simply written as

[MA]iµ = ζµAδiµ, [MB]iµ = ±ζµBδiµ. (10.26)

As we have already observed in case of the triangular lattice spin density waves,

the fact that the matrices Mj only have diagonal entries has the consequence that

the effects of lattice translations can be compensated by global spin rotations. Both

spin states (distinguished by ±) are therefore translationally invariant. The state con-

structed from the A1 site ordered state, i.e. the + choice, still preserves all rotations,

but breaks all reflections as they can only be compensated by improper elements of

O(3) and therefore this spin density wave has lower symmetry then its site ordered

parent state (A2 instead ofA1). The other spin density wave, coming from theB2 site

ordered state, becomes a B1-symmetric state. The broken reflections become good

symmetries again, as the improper O(3) rotation necessary to bring the state back

to itself provides an additional minus sign. In turn, the minus sign coming from the

improper rotation is respondible for the breaking of the σd reflections.

The spin density wave transforming as A2 first appeared in the literature as the

honeycomb lattice generalization of the chiral triangular lattice spin density wave [40].

Indeed, it has the same symmetry properties and since it breaks all reflections in ad-

dition to time-reversal, it can host a Quantum Anomalous Hall effect. In [40] it was

demonstrated that the formation of this noncoplanar spin density wave gaps out the

Fermi surface at the van Hove singularities and the the insulating ground state is in-

deed a Chern insulator. Furthermore, it was shown in [163] that the emergence of the

noncoplanar electronically insulating spin density wave at very low temperatures can

be understood starting from the uniaxial spin density wave. The low-energy theory

of the electronic degrees of freedom takes the form of a QBC point, as was noted in

Section 9.4.1, and when the uniaxial spin density wave starts to develop noncopla-

nar components at low temperatures [160] this introduces a time-reversal breaking

mass in the low-energy description. A gapped QBC point necessarily leads to a QAH

ground state. Hence, we see how the spin density waves we simply obtained from
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site ordered states transforming as 1D representations of the point group, are related

to each other and are found to be the lowest energy states in both a mean-field treat-

ment [40] and a Ginsburg-Landau free energy approach [160].

It is interesting to note another property of the noncoplanar spin density waves

specified by equation 10.26 and which transform as A2 and B1 under rotations and

reflections. As was mentioned, these spin density waves are translationally invariant

up to global spin rotations. In fact, if one considers them as classical spin states,

they are invariant under all lattice symmetries, as the proper or improrer nature of

the O(3) rotation needed to compensate a given lattice operation is immaterial. As

such, these two spin states are examples of what has been named regular magnetic

orders [208], i.e. classical spin states which preserve all lattice symmetries up to a

global spin rotation. In [208] all regular magnetic orders were derived for the trian-

gular, honeycomb and kagome lattices and it is a simple matter to check that all spin

states with a quadrupled unit cell, meaning ordering at the M -points, coincide with

the spin density waves we construct from site-order by embedding them in a trans-

lationally invariant way. The formalism developed and presented in Section 9.4.1

to find the ordered M -point states thus systematically yields the specific subset of

regular magnetic orders modulated by M -point vectors.

We conclude this brief overview of honeycomb lattice spin triplet density waves

by commenting on the honeycomb lattice version of the spin-flux state which we

introduced above for the triangular lattice. We simlpy start from the M -point or-

dered flux state which transforms as A2, which was obtained from triplet F2 in Sec-

tion 9.4.1. The spinful version of this state, which preserves all lattice symmetries and

time-reversal symmetry, is straightforwardly obtained by associating each ~Qµ with a

different σµ, giving

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = [∆̂µ(~k)]ijσ

µ
σσ′ , (10.27)

(no sum implied on the RHS). The explicit expression of the ∆̂µ(~k) have been given

in 9.4.1 following equation 9.186 and can just be taken from there. The mean field

energy bands of the honeycomb spin-flux ordered state are presented in Fig. 10.4(b),

which immediately shows the resemblance between the honeycomb and triangular

lattice spectra. In fact, the main point we wish to stress here is that the key features of

the electronic symmetries and spectra are shared between these hexagonal symmetry

spin-flux orders. While spin-rotation symmetry is broken, lattice symmetries are all

preserved up to global spin rotation and time-reversal symmetry is recovered by com-

bining flux and spin type order. At the same time, the low-energy theory is in both

cases (in all cases in fact) governed by a Dirac equation at each of the M ′-points.
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10.4 Common features of condensates with M -point

order

To conclude this section on M -point spin triplet density waves with hexagonal sym-

metry, we the take the opportunity to summarize and review some of the key features

of such density waves.

The exposition of spinful density waves presented above has made it clear how

spin density waves with specific symmetry, i.e. transforming according to irreducible

representations of the lattice symmetry group, can be obtained from corresponding

spinless density waves. In case of the pure spin density waves (no bond or flux order),

we have demonstrated both for the triangular and the honeycomb lattices that site

ordered states can be taken as “parent” states, by embedding them in a spinful setting.

Site ordered states with M -point ordering vectors on the triangular lattice transform

according to the representation F1 = A1 ⊕E2 (see Section 9.4.3), while honeycomb

lattice site order was shown to be decomposed as F1⊕ = A1 ⊕ B2 ⊕ E1 ⊕ E2

(see Section 9.4.1). Only focusing on the 1D representations (it would work in the

same way for 2D representations), i.e. the two A1 states and the B2 state, we have

outlined two ways of constructing spin density waves of dinstinct symmetry. The first

may be referred to as the uniaxial scheme, in which the spin density waves inherit

the symmetry from the site ordered states, i.e. they are also A1 and B2 states but

break spin-rotation invariance partially. The second would be chiral scheme, in which

the symmetry of the spin density waves changes from A1 to A2 and B2 to B1 (=
B2⊗A2) as compared to the parent site order. In the chiral scheme the resulting spin

density wave states are non-coplanar. These schemes can be directly applied to the

kagome lattice, for which we derived the 1D site order representations A1, B1 and

B2. From these we can construct a set of uniaxial spin density waves of the same

symmetry (A1, B1 andB2), or a set of chiral spin density waves with representations

obtained from multiplication by A2 (A2, B2 and B1).

Let us take a closer look at the unaxial A1 and chiral A2 spin density waves on

each of these three lattices. The spin density waves are graphically represented in

Fig. 10.3. On the left side of (a)-(c) we show the uniaxial A1 states, from which we

see that while on the triangular and honeycomb lattices the spin lengths are not equal,

the spin moments of the kagome lattice state are of equal length. The spin length of all

the states on the right side of Fig. 10.3(a)-(c) is necessarily equal due to translational

invariance. We observe a deep connection between the three unaxialA1 and chiralA2

spin density waves, as we find that they not only have the same symmetry, but also the

same electronic properties. The uniaxial spin density waves (see also Section 9.4.1)

all share the same low-energy description at Γ of the reduced (folded) Brillouin zone.

Specifically, for appropriate fillings these are semimetallic states with a QBC point for
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(a)

(b)

(c)

(d)

Figure 10.3: Spin density waves of hexagonal lattices with A1 and A2 symmetry

obtained from embedding site order in a spinful setting (a) A1 (left) and A2 (right)

density waves of the triangular lattice, and the same for (b) the honeycomb lattice

and (c) the kahome lattice. (d) shows the non-coplanar spins of the A2 states of the

triangular and honeycomb lattices (left), and the kagome lattice (right).
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Figure 10.4: Honeycomb lattice energy bands for the B1 chiral spin density wave.

Thin dashed lines correspond to the free honeycomb band structure, solid thin lines to

a weakly developedB1 spin density wave and thick solid lines to a density wave with

considerable strength. Between the lowest two bands a (doubly degenerate) Dirac

node appears at K ′
+.

one of the spin species, also referred to as half metallic states [160], while excitations

involving the other spin species are gapped. Instead, the chiral spin density waves are

all gapped for appropriate fillings and the insulating ground state is a QAH state. As

was pointed out in [163], the A1 and A2 spin density waves are closely related in the

sense that a smooth interpolation from theA1 state to the gappedA2 exists, which has

the low-energy interpretation of gapping out the QBC point by a manifest breaking

of time-reversal symmetry. The symmetry perspective developed in this work reveals

and formalizes both the deep connection between the A1 and A2 density waves and

the lattice independence of their (low-energy) electronic properties.

Interestingly, not only the A1 and A2 spin density waves have properties which

transcend the lattice specific setting, but also the two chiral B1 spin density waves on

the honeycomb and kagome lattices. Incidentally, such a state does not exist for the

triangular lattice. At the van Hove fillings these states lead to a change in shape of the

Fermi surface that is schematically captured by the lower left part of Fig. 9.7. This is

in agreement with symmetry, as time-reversal symmetry is broken by the spin density

wave and B1 symmetry implies that the reflection planes bisecting the vertices of the

BZ are still good reflection planes, while the other set of reflections is broken. The

most important feature of the mean field spectrum corresponding to these states, both
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on the hobeycomb and the kagome lattice, is the appearance of Dirac nodes at K ′
+

(or K ′
−, depending on the sign of the order parameter) in the form isolated touchings

between the lowest two bands. That they should appear only at one of the two valleys

which are each others time-reversal partners is again in agreement with the breaking

of this symmetry.

A different class of spinful density waves is derived from spin rotation invariant

bond ordered states, or, more specifically flux ordered states. The structure of this

derivation is essentially the same as for the pure spin density waves. Starting from

the A2 flux ordered states, which exist for all three hexagonal lattices considered in

this work and come from the F2 representation, we have discussed three schemes of

constructing spin rotation symmetry breaking density waves. The first is straightfor-

ward and involves the global exhange of δσσ′ and σ3
σσ′ (the “two copies with opposite

sign” scenario), creating an insulating time-reversal invariant density wave with the

same mean field spectrum for up and down electrons, but opposite Chern numbers

C↑ −C↓ 6= 0. The second scheme amounts to assigning a different spin Pauli matrix

σi to each of the three hopping directions of a hexagonal lattice, i.e. ~xi. This spin-

flux ordered state fully breaks spin rotation symmetry, and translational symmetry,

while preserving all point group operations. The mean field spectrum is gapped and

corresponds to a QSH state. In the third scheme one assigns a different Pauli matrix

σi to each of the three M -point ordering momenta ~Qµ. For the triangular lattice we

showed in detail how such an embedding preserved all lattice symmetries, including

the translations that are broken in the M -point flux ordered state. As a consequence

of this high degree of symmetry there are protected degeneracies at the M ′ points of

the reduced Brillouin zone, in addition the Kramers degeneracy mandated by time-

reversal symmetry. The spectrum disperses linearly in all directions around these

M ′ points making this particular spin-flux ordered state a Dirac semimetal. Time-

reversal symmetry requires two degenerate Dirac nodes per M ′ point. To summarize

these three schemes, all of them yield time-reversal invariant yet spin rotation sym-

metry broken density waves. In case of the first two, they transform as A1 but break

translational symmetry. The third scheme of constructing spinful bond density waves

results in a fully lattice symmetric state. Again, these statements apply to all three

lattices and should be considered a property of the hexagonal symmetry class more

than of particular lattices.

The highly symmetric nature of the Dirac semimetal is a result of the embedding

of theA2 flux ordered state in a spinful setting. It allows for translations to be dressed

with global spin rotation to be become good symmetries again, inspite of the underly-

ing M -point order. Furthermore, the reflections broken in the flux state become good

symmetries again, because they come dressed with improper rotations restoring the

them as symmetries. The protection of the Dirac semital at the M ′ critically relies

on the presence of translational symmetry, as we have seen in Section 9.4.1. This not
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Figure 10.5: (left) Schematic representation of the double Dirac nodes at the three

inequivalentM ′-points of the reduced hexagonal Brillouin zone in the presence of the

spin-flux density wave. (right) Schematic representation of the double Dirac nodes at

the three equivalent K ′
+-points in the presence of B1 symmetric spin density wave

order on for instance the honeycomb or kagome lattice.

only illustrates the principle of global spin rotation equivalenceitself, i.e. applying

lattice operations yields a unitarily equivalent Hamiltonian, but it also exemplifies its

importance for protecting topological semimetals.

The fully lattice symmetric spin-flux density wave states and the B1 spin density

wave states are two examples of classes of states for which translational symmetry

is preserved. In both cases translational invariance plays a role in the protection

of the semimetallic Dirac points and their twofold degeneracy. Both semimetallic

states constitute new symmetry-protected topological semimetals. One breaks time-

reversal symmetry the other preserves it. The two Dirac theories are schematically

summarized in Fig. 10.5. In case of the time-reversal symmetric spin-flux state the

low-energy Dirac theory consists of six Dirac nodes, two for each inequivalent M ′

point. Instead, the B1 symmetric time-reversal breaking states have a double node at

the K ′
+ (or K ′

−) point.

The concept of global spin rotation equivalence in relation to lattice symmetries

was introduced for classical spin models in [208], which coined the notion of clas-

sical spin liquids. They are defined as classical spin states which do not break any

lattice symmetries, up to a global O(3) spin rotation. In [208] a projective symmetry

group analysis was employed to systematically derive spin states which satisfy this

condition for selected lattices. For hexagonal lattices, a subset of these classical spin

liquids is build from M -point ordering vectors. This subset of classical spin liquids

is automatically generated as a by-product of the symmetry organization of density
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waves detailed in this work. To see this, let us go back again to spin density waves

obtained from site order. In the second scheme of embedding, i.e. the chiral scheme,

we put the vectors specifying site order ~ζi (i labeling the sublattice) on the diagonal

of the corresponding matrix Mi, which restores translational invariance. If instead

of constructing a an electronic spin density wave, i.e. ~σ · ~Mi, for the which the Z2

content of O(3) = Z2 × SO(3) matters, we construct a classical spin state ~Sj(~x) of

the form

~Sj(~x) = ~Mj(~x) = [ ~Mj ]µξµ(~x), (10.28)

we have obtained a classical spin liquid. To put it differently, if we interpret the chiral

spin density waves as classical spin states, they satisfy the criteria for a classical spin

liquid. Take for instance the kagome lattice. The kagome lattice allows for three M -

point ordered classical spin liquids [208], which are immediately obtained from the

three site ordered states A1, B1 andB2 by putting the vectors ~ζi (see Section ) on the

diagonal of Mi. We therefore close by mentioning that classical spin liquids may be

obtained in straightforward manner by taking the 1D site order representations and

embedding appropriately in spin space. Of course this requires specifying M -point

order ahead of time.
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SUMMARY AND CONCLUSIONS

In this final section we give an account of the main results and conclusions that follow

from this work. We summarize and discuss the key results of our work point by point.

(i) In this work we presented a detailed discussion of 2D particle-hole conden-

sates from a symmetry perspective. For the square lattice and three representative

hexagonal lattices we have decomposed all possible density waves for specified trans-

lational symmetry breaking based on lattice symmetries, yielding an arganization of

these density waves in terms of basis functions of irreducible representations of the

extended and bare points groups. Differentiating between site order (charge density

waves), bond order (time-reversal preserving bond density waves), and flux order

(imaginary bond density waves) has allowed for a gauge invariant classification of all

distinct density waves just using a group theory toolkit.

(ii) The organization of density waves in terms lattice symmetries provided the

framework to identify topological states of matter induced by interactions. In two

dimensions there are two main classes of topological states: the QAH states which

break time-reversal symmetry, and the QSH states which preserve time-reversal sym-

metry but must break spin rotation symmetry at least partially. When looking for

candidate QAH states it is therefore sufficient to consider flux ordered states and

spin density waves as these are time-reversal breaking states. Furthermore – and

this is where the symmetry organization proves very powerful – only density wave

formation breaking all reflection symmetries of the system can lead to QAH states,
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meaning that only states transforming as A2 allow for Chern insulators. Such states

are straightforwardly identified within the group theoretical scheme producing a list

of all possible flux ordered states of a given lattice and a given set of broken transla-

tions. We have demonstrated how known and well-studied flux ordered QAH states

on for instance the honeycomb and kagome lattices (Haldane state [76] and chiral

spin state [85]) follow directly from deriving and constructing flux states with proper

symmetry.

In addition to these well-known QAH states, all of which do not break trans-

lational symmetry, we have shown the existance of a new class of QAH states of

lattices with hexagonal symmetry, i.e. the flux ordered density waves. Guided purely

by symmetry arguments we have identified flux density waves with M -point order-

ing vectors transforming as A2 and leading to an insulating condensate ground state.

Another class of M -point modulated QAH states on hexagonal lattices is given by

the noncoplanar chiral spin density waves discussed in Section 10. The existence of

such chiral states and their spontaneous QAH effects was shown for the triangular

and honeycomb lattices in the context of local moment Kondo-Lattice [30, 40] and

interacting single-band Hubbard models [160]. In the present work we show how

these particular examples are part of a fundamental sequence of M -point hexagonal

lattice spin density waves with a A2 symmetry that do not break translational sym-

metry in spite of finite wave vector condensation. We refer to these states as part of

a fundamental sequence since they all follow from the same underlying symmetry

principle. Applying this principle to the kagome lattice, we identify a kagome lattice

spin density wave with exactly the same properties.

In the context of interaction-driven topological insulating states the numerous

possibilities arising from M -point order are particularly interesting as precisely the

M -point vectors nest the Fermi surface of hexagonal lattices at the van Hove fillings

where the density of states diverges. This inpsires hope that even infinitesimal inter-

actions induce such states due to dominant instabilities towards such states. In fact,

such an argument was put forward in case of triangular and honeycomb lattice spin

density waves [160]. In contrast, interaction-induced topological states originating

from low-energy Dirac fermions becoming massive, for instance within a mean field

treatment of the honeycomb [84, 168], square [167] and kagome lattices [169, 170],

require finite and large interaction strengths as a consequence of the linearly vanish-

ing density of states at the Dirac points. This makes the scenario of spontaneously

gapping out Dirac cones problematic, as recently shown in Refs. [211], because quan-

tum fluctuations prevent the QAH state from fully developing.

The two sequences of hexagonal symmetry M -point ordered QAH states, i.e.

flux order and spin density wave order, are of great significance for the second kind

of topological states in 2D, i.e. the QSH states. In this work we have explained how

QSH states are trivially obtained from QAH states by constructing two copies of the
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latter for each of the two spin species with a relative sign difference. In that case

the condensate function is proportional to ~N · ~σ, with ~N the vector order parameter

in spin space. This implies spin rotation symmetry around ~N is not broken, leading

to a quantized spin Hall conductance. Full breaking of spin rotation symmetry, for

instance by Rashba-type terms, does not immediately destroy the QSH state, but is

generally harmful to its existence, as is signaled by the spin Hall conductance being

no longer quantized [1]. In this work we propose a class of hexagonal spin triplet

condensates which constitute QSH phases characterized by a matrix order parameter

R instead of a vector ~N and fully break spin rotation symmmetry. They derive from

a combination of spin and flux ordering with M -point ordering vectors.

(iii) In this work we have demonstrated how interaction-induced semimetallic

states are protected by lattice symmetries and the anti-unitary time-reversal sym-

metry. We have focused on two types of semimetallic states in 2D, which are the

Weyl semimetals (alternatively referred to as Dirac semimetal) and the QBC points.

Both are characterized by topological winding numbers which rely on the presence

of symmetries to make their definition and use meaningful. Our symmetry analysis

of density waves provides a comprehensive and systematic framework to determine

the symmetries which protect isolated degeneracies definining the semimetal. Both

translations and global spin rotations can act as degeneracy protecting operations in

combination point group elements.

In case of the square lattice the two density waves which are semimetals, dx2−y2
(Weyl or Dirac semimetal) and dxy (QBC), transform as 1D representations of the

extended point group and one may therefore select symmetries thereof to prove the

spectral degeneracy at high symmetry points of the Brillouin zone. For square lat-

tice systems combinations of (bare) point group operations and translations can form

good symmetries protecting degeracies. This is different in case of hexagonal lattice

systems, where we found global spin rotations to have the potential to protect degen-

eracies for spinful M -point ordered condensates. In particular, we have seen how

the chiral spin density waves are in fact translationally invariant states regardless of

finite ordering vector condensation, which is a consequence of global spin rotations

compensating the translation. Perhaps most remarkably, we have demonstrated how

M -point modulated spin-flux density waves become symmetry protected semimetal-

lic states and the protection crucially relies on global spin rotation equivalence.

In the presence of these spin-flux density waves, the nested hexagonal Fermi sur-

face at van Hove fillings is gapped out except for the protected degeneracies located

located at each of the inequivalent M ′ points of the reduced BZ (see Fig. 9.7). De-

generacies at the M ′ points are only protected if none of the lattice symmetries are

broken. Indeed, we found in Section 9.4.1 that the degeneracy at M ′ is generally

lifted by translational symmetry breaking. For the spin-flux density waves transla-

tions combined with (unitary) global spin rotations are symmetries and key in pro-
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tecting the degeneracy. The spin-flux density waves only break spin rotation sym-

metry and preserve all lattice symmetries. The low-energy description around the

degeneracy points at M ′ takes the form of a Dirac theory, but instead of the common

double-node theory, it is a six-node theory, i.e. two nodes for each inequivalent M ′

point. As such the spin-flux density waves constitute a new 2D semimetallic state.

Interestingly, it is possible to superimpose a spin rotation and time-reversal invariant

density wave on this Dirac semital with the result of gappig out the Dirac nodes yield-

ing an insulating QSH ground state. This is contrary to the canonical example of a

spin-orbit coupling-induced Dirac mass in the spin-rotation invariant low-energy the-

ory of graphene [1, 23]. In the latter case it is the breaking of spin rotation symmetry

which induces a QSH mass gap.

In addition to these time-reversal invariant semimetallic states with six Dirac

nodes, we have shown the emergence of another distinct semitallic state from time-

reversal breaking spin density wave formation. Both the honeycomb and kagome

lattices allow for translationally invariant M -point spin density waves with B1 sym-

metry. The mean field spectrum of such a state is allowed to have Dirac nodes only

at the K ′
+ points of the reduced BZ, but not at the K ′

−. We have found precisely

this situation to occur for the B1 M -point ordered spin density waves: two Dirac

nodes at the equivalent K ′
+ points (and none at K ′

−) for commensurate electron fill-

ings, which are however not equal to the van Hove fillings. As such, representing

a time-reversal broken state, these density waves would appear to be similar to the

square lattice dx2−y2 state. It is however a truly distinct state, as it manifestly breaks

time-reversal, instead of preserving a combination of time-reversal and translation. It

therefore constitutes another new semimetallic state of hexagonal lattice systems.

We have seen examples of the second type of semimetals, the QBC points, in the

context of both the square and hexagonal lattices. As noted, in case of the square

lattice the dxy state gives rise to a QBC point which is protected by a fourfold rota-

tion and time-reversal symmetry. We have demonstrated that a QBC point can occur

in hexagonal lattice systems for various cases of M -point ordering, as long as the

system has C3v symmetry. In particular, we have identified the occurance of QBC

points as one of two possibilities in case of such M -ordering with C3v symmetry

within a low-energy description at the Γ point of the reduced BZ. Such a low-energy

description is independent of the specific lattice. Generically QBC points can be de-

stroyed by breaking the symmetries that protect it. Specifically, the opening of a gap

is intrinsically connected to time-reversal symmetry breaking and it was shown re-

cently [163] how the QBC of a uniaxial A1 M -point ordered spin density wave is

gapped out by developing a finite scalar spin chirality, reducing the symmetry to A2.

In the present work we embed this result in a general low-energy theory for M -point

ordering in hexagonal lattices based on symmetry.

(iv) We have established a robust connection between the symmetry of density
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waves and their low-energy interpretation within the framework of a Dirac theory.

The back bone of this connection is the rule which assigns density waves transforming

as 1D representations the meaning of generalized masses, either gapping out the

spectrum or making the two valleys inequivalent. In turn, density waves transforming

as 2D representations have the interpretation of gauge field components in the low-

energy Dirac theory, shifting the Dirac nodes in momentum space. We have shown in

case of the kagome lattice, where we apply this rule, how decomposing site, bond and

flux order using group theory is sufficient to determine the nature of their electronic

properties.

In particular, the symmetry organization of density waves provides a straightfor-

ward way to find density waves states which enter as gauge field components in the

Dirac theory. Such states may arise as a consequence of electronic interactions, but

could alternatively be induced by application of external fields such as strain or mod-

ulated substrate potentials [180]. Knowledge of which states correspond to gauge

fields allows to assess in which systems such gauge fields may be generated by ei-

ther one of those mechanisms. This opens up the possibility to address and study the

physics of non-Abelian SU(2) fields in a condensed matter setting in a general way.

(v) The organization of density waves as basis functions of irreducible represen-

tations of extended point groups reveals their degeneracies. Density waves which are

partners belonging to a larger dimensional extended point group representation will

be energetically degenerate. If there is a dominant electronic instability towards the

formation of such a state, then it applies to all partners in the representation. An il-

lustrative example of such kind of partnership is given by the two independent hexag-

onal lattice K-point density waves corresponding Kekule masses (see Sections 9.4.1

and 9.4.2). Both for the honeycomb and kagome lattices these transform as E′
1, a 2D

representation of C′′
6v . This is reflected in the low-energy theory as they correspond

to compatible Dirac mass gaps, making them energetically equivalent.

For hexagonal lattice M -point ordering the irreducible representations of the ex-

tended point groupC′′′
6v are all three-dimensional, a consequence of the three inequiv-

alent M -points. The three partners of such a representation are energetically equiv-

alent from an electronic instability point of view. If the system gains condensation

energy by the formation of one of such states in the triplet, then it will gain energy

linearly and independently by forming the other partners as well. This is why our con-

vention of decomposing these 3D representations into sums of representations of the

bare group is particularly useful and relevant. Each of those triplets is decomposed as

the sum of a 1D and a 2D representation and the 1D representation corresponds to a

state which is the most symmetric superposition of the partners which transform into

each other under rotations (in other words behave as the ~Qµ vectors). We therefore

expect these states, i.e. states transforming as 1D bare point group representations, to

develop from electronic instabilities favoring the given triplet representation. Hence,
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the symmetry organization gives insight into condensation energetics.

(vi) A large part of this work is devoted to hexagonal lattice density waves. We

have discussed three prominent examples of hexagonal lattices and have found re-

markable similarities. Again focusing on the case of M -point ordering, we have

shown explicitly that density waves of the same symmetry have the same physical

properties, independent of the lattice considered. To give an example, the uniaxial

spin density waves of A1 symmetry, which exist for all three lattices considered, are

topological semimetals with a QBC point in either the spin-up or spin-down sector.

The chiral spin density waves with A2 symmetry, which are closely related to the

uniaxial A1 spin density waves, are all gapped for appropriate filling and correspond

to a Chern insulating state. In addition, for both the honeycomb and kagome lattices

there is a noncoplanar spin density wave with B1 symmetry which induces Dirac

points at the K ′
+ (or K ′

−) points for commensurate fillings (n = 1/8 for honeycomb,

n = 1/12 for kagome). All of these key electronic characteristics are connected to

the symmetry of the (spin) density wave and transcend the lattice specific setting. The

same is true for the time-reversal invariant spin-flux density waves. We have explic-

itly shown the equivalent electronic properties for such a state on the triangular and

honeycomb lattices. We found these particular density waves to break no other sym-

metry than spin-rotation symmetry, leading to a new kind of 2D semimetallic state

not specific to a lattice structure.

The importance of symmetry rather than lattice structure also manifests itself in

the context of K-point ordering. For instance, both for the honeycomb and kagome

lattices, we found that anyE′
1 doublet corresponds to two independent yet compatible

Dirac masses. In case of the honeycomb lattice there only exists such a bond order

doublet, while for the kagome lattice there is a site and bond order doublet. In the

same way any E′
2 doublet leads to a Dirac valley inequivalence, separating the Dirac

nodes in energy but not in momentum.

These examples mentioned here highlight the general conclusion that density

waves with the same symmetry affect the electronic properties in the same way if

the low-energy description of the electronic degrees of freedom is equivalent. In-

deed, all the hexagonal lattices have an M -point nested Fermi surface at van Hove

fillings and both the kagome and honeycomb spectra exhibit Dirac nodes. It is the

symmetry of the density waves which is decides what happens to the electrons close

to the Fermi surface or Fermi points.
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A P P E N D I X A

DETAILS OF LATTICES

In the present Appendix we collect all details and relevant definitions pertaining to

the four lattices that have been treated in the main text. These include explicit expres-

sions for lattice vectors, reciprocal lattice vectors, special ordering momenta, and the

Hamiltonians for lattice fermions hopping on the respective lattices. We first give the

details of the square lattice and then present details of the hexagonal lattices. In case

of the triangular and honeycomb lattices we include expressions for the mean field

orbital momentum basis functions. For both the honeycomb and kagome lattices we

also provide a more detailed derivation of the lattice symmetries of Dirac matrices,

the results of which are used in the main text. In case of the kagome lattice we pro-

vide more details on explicit expressions for density wave states discussed in main

text.

Before we come to the individual lattices, let us list a number of general defini-

tions applicable to all lattives in order to avoid repetition. In Section 9.1.1 the lattice

basis vectors were defined as ~x1 and ~x2. In expressions for Hamiltonians in momen-

tum space it is convenient to abbreviate the inner products ~k · ~xi as ki and we will

consistently do so. In addition, we write Ti for the exponentials Ti ≡ ei
~k·~xi .
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�x1

�x2

�x3
�x1

�x2

Figure A.1: Schematic picture of two of the four lattices considered in this work.

(left) the square lattice, (right) triangular lattice. Lattice basis vectors are represented

as thick back arrows, the hexagonal lattices also show ~x3 = −~x1 − ~x2. The curved

dashed arrows indicate the fourfold (C4) and sixfold (C6) rotations of the square and

hexagonal lattices, respectively.

A.1 Square lattice

The square Bravais lattice is defined in terms of the lattice basis vectors

~x1 = a

[
1
0

]
, ~x2 = a

[
0
1

]
, (A.1)

which generate the translations T (~x1) and T (~x2). Here a is the lattice constant,

i.e. the distance between two nearest neighbors of the square lattice. The reciprocal

lattice is a square lattice in momentum space generated by the vectors

~G1 =
2π

a

[
1
0

]
, ~G2 =

2π

a

[
0
1

]
, (A.2)

A schematic picture of both the real space lattice and the reciprocal lattice is presented

in Figs. A.1 and A.3. As is shown in Fig. A.1, in this work we choose to place the

origin at the center of a square. We found this to be the most convenient choice,

in addition to being consistent with the (obvious) choices made for the hexagonal

lattices (see below). This choice does however have the consequence that the atomic

positions are displaced from the Bravais lattice vectors by an amount

~l =
a

2

[
1
−1

]
. (A.3)

Contrary to the convention of equating the atomic positions and Bravais lattice vec-

tors, the present choice implies that point group operations must be associated with a
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nontrivial lattice translation ~t when acting on an atomic position. For example, refer-

ring to Section 9.1.1, we have C4
~l = ~x2 + ~l where ~t = ~x2. This minor complication

notwithstanding, it is the most convenient and consistent convention.

The square lattice Hamiltonian Ĥ and corresponding electronic dispersion are

simply given by

Ĥ =
∑

~k

E(~k)ψ̂†(~k)ψ̂(~k), E(~k) = −2t

2∑

i=1

cos ki. (A.4)

A.2 Triangular lattice

The triangular Bravais lattice is generated by the two lattice basis vectors

~x1 =
a

2

[
1√
3

]
, ~x2 =

a

2

[
1

−
√
3

]
, (A.5)

and in addition to these we define for convenience the (linearly dependendent) lattice

vector ~x3 = −~x1−~x2. Again, a is the lattice constant. In case of the triangular lattice

we choose the origin to at one of the Bravais lattice points, as indicated in Fig. A.1

on the upper right.

The reciprocal lattice of a triangular lattice is a triangular lattice and the reciprocal

lattice vectors are given by

~G1 =
2π

a

[
1

1/
√
3

]
, ~G2 =

2π

a

[
1

−1/
√
3

]
. (A.6)

The corresponding first Brillouin zone is graphically shown in Fig. A.3. The M -

point ordering momenta ~Qµ are shown in Fig. A.3 by full red dots and their explicit

expressions are

~Q1,3 =
π

a
√
3

[
±
√
3

1

]
, ~Q2 =

2π

a
√
3

[
0
1

]
. (A.7)

The triangular lattice Hamiltonian Ĥ and corresponding electronic dispersion are

simply given by

Ĥ =
∑

~k

E(~k)ψ̂†(~k)ψ̂(~k), E(~k) = −2t

3∑

i=1

cos ki. (A.8)
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A.2.1 Mean field orbital momentum basis functions

In Section 9.2.3 we have discussed how to set up a triangular lattice spinful mean-field

theory anticipating translational symmetry breaking due to finite ~Qµ ordering vectors.

The nearest neighbor interaction Vij required a decomposition into the orbital mo-

mentum functions transforming as irreducible representations of the hexagonal point

group. Here we list these functions explicitly.

In general the orbital momentum functions λ(n,Ir)(~k) are labeled by n (n-th near-

est neighbor) and Ir (irreducible representation I and partner r). In case of the tri-

angular lattice we have only considered n = 1 and found that we need to sum over

four irreducible representations, two of them 1D and two of them 2D. The 1D rep-

resentation A1 and the 2D representation E2 functions are constructed from cosine

functions and take the form

λ(1,A1)(~k) =
1√
3
(cos k1 + cos k2 + cos k3)

~λ(1,E2)(~k) =
1√
2

[ 1√
3
(−2 cos k1 + cos k2 + cos k3)

cos k2 − cos k3

]
.

(A.9)

Instead, the 1D representation B1 and the 2D representation E1 functions are con-

structed from sine functions and read

λ(1,B1)(~k) =
1√
3
(sin k1 + sin k2 + sin k3)

~λ(1,E1)(~k) =
1√
2

[ 1√
3
(−2 sink1 + sin k2 + sin k3)

sink2 − sin k3

]
.

(A.10)

The triangular lattice function Γ(1)(~k − ~k′) can therefore be expanded in separable

functions λ(1,Ir)(~k) and λ(1,Ir)(~k′) as

Γ(1)(~k − ~k′) =
∑

I,r
λ(1,Ir)(~k)λ(1,Ir)(~k′) (A.11)

with I = A1, E2, B1, E1. Since all functions are real we have suppressed the com-

plex conjugation operation.

A.3 Honeycomb lattice

The Bravais lattice of the honeycomb lattice is a triangular lattice and the honeycomb

lattice unit cell contains two inequivalent atoms, which are labeled as the A and B
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Figure A.2: Schematic picture of two of the four lattices considered in this work.

(left) the honeycomb lattice, (right) kagome lattice. Lattice basis vectors are repre-

sented as thick back arrows, the hexagonal lattices also show ~x3 = −~x1 − ~x2. The

curved dashed arrows indicate the sixfold (C6) rotations of the hexagonal lattices.

sublattices. The unit vectors of the triangular Bravais lattice are taken to be the same

as in Eq. (A.5),

~x1 =
a

2

[
1√
3

]
, ~x2 =

a

2

[
1

−
√
3

]
, (A.12)

where a is again the lattice consant, which in case of the honeycomb lattice is not the

distance between nearest neighbors (i.e. the carbon-carbon distance in graphene). As

was the case for the triangular lattice, we define ~x3 ≡ −~x1 − ~x2. The origin is taken

to be the center of a hexagon and two vectors ~lA and ~lB , specifying the positions of

the A and B atoms in the unit cell with respect to the origin, are given by

~lA =
a

2

[
1

−1/
√
3

]
, ~lB =

a

2

[
1

1/
√
3

]
. (A.13)

Taking theA sublattice as a reference sublattice, we define the three nearest neighbor

vectors connecting the sublattices as

~δ1 = ~lB −~lA, ~δ2 = ~δ1 − ~x1, ~δ3 = ~δ1 + ~x2. (A.14)

The reciprocal lattice of a triangular lattice is a triangular lattice, as was noted previ-

ously, and in the case of the honeycomb lattice the reciprocal lattice vectors coincide

with those of the triangular lattice,

~G1 =
2π

a

[
1

1/
√
3

]
, ~G2 =

2π

a

[
1

−1/
√
3

]
. (A.15)
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The electronic honeycomb lattice Hamiltonian is given by

Ĥ =
∑

~k

ψ̂†
i (
~k)Hij(~k)ψ̂j(~k), (A.16)

where i, j label the sublattices and the ~k-dependent matrix takes the form

H(~k) = −t
[

0 1 + T2 + T ∗
1

1 + T ∗
2 + T1 0

]
(A.17)

with the Ti as defined at the beginning of this appendix. It is a very well-known

fact that the honeycomb band structure displays band touchings at the Brioullin zone

vertices ~K± which are given by

~K± =
4π

3

[
±1
0

]
. (A.18)

At these isolated band touchings, which are protected by lattice symmetries (c.f. sec-

tion A.3.1), the electronic bands disperse linearly, and the nodes are therefore referred

to as Dirac points, or K-points. These Dirac points are shown in Fig. A.3 on the left

side by large blue dots. In the main text we have discussed K-point ordering on the

honeycomb lattice.

The M -point ordering momenta are the same as for the triangular lattice (and

shown in Fig. A.3) and we quote them here again for completeness

~Q1,3 =
π

a
√
3

[
±
√
3

1

]
, ~Q2 =

2π

a
√
3

[
0
1

]
. (A.19)

A.3.1 Point group protection of honeycomb Dirac points

In the Brillouin zone of the honeycomb lattice (one may think of graphene), or any

other lattice with point group C6v such as triangular and kagome, there are special
~k points that are left invariant under certain point group operations. Of particular,

even profound, interest are the corners of the Brillouin zone hexagon given by ~K±
(see previous subsection), also called K-points or valleys. The terminology valley is

inspired by the fact that at these points H( ~K±) = 0, leading to a degeneracy in the

spectrum. The little cogroup of each ~K± isC3v and consists of the threefold rotations

C3 = C2
6 and C−1

3 = C4
6 of the honeycomb lattice and the three reflection bisecting

the bonds of the hexagon. These reflections exchange the A and B sublattice. The

group C3v admits a two dimensional irreducible representation, which is realized by
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Figure A.3: Depiction of the Brillouin zones of the hexagonal lattices (left) and the

square lattice (right). The reciprocal lattice vectors are denoted as ~G1 and ~G2. The

special commensurate ordering momenta are indicated. For both the square and the

hexagonal lattices there is a set ~Qµ (full dots), while in case of the hexagonal lattices

there is a second set of two ordering vectors ~K+ and ~K− (open dots).

the matrices UR of equation (9.6) with R ∈ C3v. Also note the remark following

equation (9.10). In fact, by working out these matrices we derive the representation

for ~K+ as

UI =
[
1 0
0 1

]
, UC3

=

[
ω 0
0 ω−1

]
, UC−1

3
=

[
ω−1 0
0 ω

]
,

Uσv1 =

[
0 1
1 0

]
, Uσv2 =

[
0 ω
ω−1 0

]
, Uσv3 =

[
0 ω−1

ω 0

]
. (A.20)

where we defined ω = e2πi/3. Strictly speaking, the representation for ~K− is ob-

tained by ω ↔ ω−1. These matrices act on the Hamiltonian at the K-points, i.e.

H( ~K±), which can be expanded in Pauli matrices τ i. As ~K± are invariant points

under R we have URH( ~K±)U†
R = H( ~K±), or [UR,H( ~K±)] = 0. We may take UC3

and Uσv1 to show that this mandates H( ~K±) = I and the degeneracy is therefore pro-

tected exactly at ~K± making it an essential degeneracy. To demontrate the vanishing

of the commutator we just have to observe that Uσv1 = τ1 and UC3
contains τ3. The

only matrix commuting with both is the unit matrix.

A.3.2 Symmetry of Dirac matrices

In this part we provide more details on the low-energy theory of the honeycomb

lattice at half filling, which is described by a 2D Dirac Lagrangian. For an extensive

discussion on the connection to 2 + 1D QED see [206]. Here we will be concerned
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with symmetries of the dicrete point groups C6v and C′′
6v and more specifically the

symmetry properties of low-energy spinor bilinears.

The low-energy theory in the vicinity of the two inequivalent valleys ~K± is ob-

tained by expanding the dispersion around these valleys ~K± in small momenta ~q.

One obtains the Dirac Hamiltonian

H(~q) = ~vF (qxν
3τ1 + qyτ

2) (A.21)

(where vF =
√
3ta/(2~)) acting on the spinor Φ(~q) which is given by

Φ̂(~q) =




ψ̂A( ~K+ + ~q)

ψ̂B( ~K+ + ~q)

ψ̂A( ~K− + ~q)

ψ̂B( ~K− + ~q)


 . (A.22)

The set of Pauli matrices νi acts on the valley degree of freedom and the τ i matrices

on the sublattice degre of freedom. Exchanging A and B sublattice for the ~K− by a

unitary transformation we obtain the chiral representation of the low-energy Hamil-

tonian

H(~q) = ~vF ν
3~q · ~τ . (A.23)

This chiral basis is the basis in which we will state the results. As the Dirac points

have been folded to Γ the effect of the generators of the space is found by making use

of equation (9.18). The generators may be used directly to generate all operations in

the space group. Note that

Φ̂ ≡ Φ̂(~0) =




χ̂A1(~0)

χ̂B1(~0)

χ̂A2(~0)

χ̂B2(~0)


 . (A.24)

With this it is straightforward to dedude that the translation operator T (~x1) acts as

T (~x1) →




ω
ω

ω−1

ω−1


 Φ̂, (A.25)



A.3 Honeycomb lattice 265

(again ω = e2πi/3) while the six-fold rotation C6 acts as

C6 →




1
ω

1
ω−1


 Φ̂, (A.26)

note that this is diagonal in valley space as the six-fold rotation exchanges ~K±. The

reflection σv acts as

σv → τ1Φ̂. (A.27)

In addition to the space group generators it will be convenient to classify low-energy

bilinears based on their transformation property under time-reversal. Hence, time-

reversal is found to be represented by

T → Kν1Φ̂, (A.28)

where K denotes complex conjugation. Note that this implies that ν3τ1 and τ2 are

both odd, as they should be. They are coupled linearly to ~q, which is also odd.

The free Dirac Hamiltonian consists of the matrices ν3τ1 and τ2. Spectral gaps

are generated by Dirac matrices which anti-commute with these. It is a simple matter

to find the four matrices which have this property, and they are found to be τ3, ν3τ3,

ν1τ1 and ν2τ1. Using the action of time-reversal one easily sees that while ν3τ3 is

odd, the other three are even under time-reversal. The time-reversal invariant Dirac

matrices all anti-commute between themselves and together with ν3τ1 and τ2 they

constitute the set of maximally anti-commuting Hermitian 4 × 4-matrices. Based

on the action of the generators of the symmetry group, we can assign the masses to

representations of C′′′
6v and C6v . Taking the time-reversal invariant masses first, we

find that τ3 transforms as B2, while ν1τ1 and ν2τ1 are partners of the representation

E′
1. The latter can be decomposed intoA1⊕B1 and the following linear combinations

are found to correspond to this decomposition

A1 → cos θν1τ1 + sin θν2τ1

B1 → − sin θν1τ1 + cos θν2τ1, (A.29)

where θ = π/3 The time-reversal breaking mass term ν3τ3 is found to transform as

A2. There are three Dirac matrices which lift the degeneracy between the valleys,

but preserve the twofold degeneracy within each valley and since they distinguish the

valleys at ~K± which are related by time-reversal, all three are time-reversal symmetry

breaking. The three matrices are ν3, ν1τ2 and ν2τ2. The matrix ν3 can be shown



266 Details of lattices

Irreps of C′′
6v

Irreps of C6v A2 B1 B2 E1 E2

(standard) ν3τ3 ν3 τ3 ν3τ1, τ2 τ1, ν3τ2

(chiral) τ3 ν3 τ3τ3 ν3τ1, ν3τ2 τ1, τ2

E′
1 E′

2 G′

A1 ⊕B1 A2 ⊕B2 E1 ⊕ E2

ν1τ1, ν2τ1 ν1τ2 , ν2τ2 ν1 , ν2, ν1τ3 , ν2τ3

ν1, ν2 ν1τ3 , ν2τ3 ν1τ1 , ν2τ1, ν1τ2 , ν2τ2

Table A.1: This table summarizes the identification of low-energy fermion bilinears

as basis functions of irreducible representations of C′′′
6v . In addition we present the

irreducible representations of C6v contained in those of C′′
6v .

to transform according to B1, while ν1τ2 and ν2τ2 are partners of E′
2. They can be

written as basis functions transforming as A2 and B2 in the following way

A2 → sin θν1τ2 + cos θν2τ2

B2 → cos θν1τ2 − sin θν2τ2. (A.30)

Of the remaining six Dirac matrices, two are diagonal in valley space, while the

other four exchange valleys. The former are τ1 and ν3τ2, which are time-reversal

invariant and are partners of E2. Indeed, as they do not originate from a coupling of
~K± they should correspond to the translationally invariant content of the symmetry

classification. The set of matrices which do originate from coupling are ν1, ν2, ν1τ3

and ν2τ3, all of which are time-reversal invariant. Together they transform as G′ of

the group C′′′
6v .

A.3.3 Lifting of degeneracies at M ′ points

We now present the details of degeneracy protection and lifting at the M ′ points of

the reduced BZ corresponding to M -point order, i.e. order parameter components at
~Qµ. It was mentioned in Section 9.4.1, if the translations T (~xi) and the M ′-invariant

elements C2v are good symmetries then two-fold degeneracies at the M ′ points are

protected, while in case of C2v symmetry only, i.e. broken translations, there are no

symmetry protected degeneracies. Here we demonstrate this explicitly. The recipy is
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by now familiar and we write the state operator at ~M ′ = ~Q2/2 as.

Φ̂M′ =




ψ̂j( ~M
′)

ψ̂j( ~M
′ + ~Q1)

ψ̂j( ~M
′ + ~Q2)

ψ̂j( ~M
′ + ~Q3)


 . (A.31)

The action of the translations T (~x1) and T (~x2) (up to global U(1) phases) is easily

derived to be

T (~x1) →




1
−1

−1
1


 ≡ ρ3ν3 (A.32)

where the matrix entries should be understood as 2×2 unit matrices (τ0) and we have

introduced another set of Pauli matrices ρi to generate the 8× 8 representation. Then

T (~x2) is given by ρ3. For the C2 element we derive

C2 →




τ1

−τ1
τ1

τ1


 ≡ ρ1ν3τ1. (A.33)

Symmetry dictates that the Hamiltonian at M ′ must commute with these elements.

Taking just these translation and the inversion we simply see that the only allowed

terms are ν3τ1 and ν3. This observation already completes the task of proving that

two-fold degeneracies must exist, since any linear combination of these two terms

will be proportional to ρ0. Hence, all eigenvalues of must appear twice. We check

whether the two reflections σv and C2σv give any additional constraints. For σv we

find

σv →




τ1

τ1

τ1

τ1


 ≡ ρ1ν3τ1, (A.34)

and we may use the expression for C2 to derive the action of the other reflection. We

find no further symmetry constraints on the energy levels at M ′.
Breaking the translations leads to the symmetry group C2v , which does not have

any 2D irreducible representation and therefore cannot protect degeneracies. Ignor-

ing the constraints coming from the translation above, one observes that more terms

are allowed on the Hamiltonian which in general will lift the degeneracies.
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A.3.4 Mean-field momentum functions

In the same way as for the triangular lattice in Section A.2.1 we present the explicit

orbital momentum fucntions which are used to decompose the nearest neighbor or

next-nearest neighbor interactions. In Section 9.2.3 the basic structure of a mean

field theory for both K-point and M -point order on the honeycomb lattice was dis-

cussed. Here we give explicit expressions for orbital momentum functions λ
(n,Ir)
ij (~k)

corresponding to Γ
(1)
ij (~k − ~k′) and Γ

(2)
ij (~k − ~k′).

The decomposition of the nearest neighbor interaction function Γ
(1)
ij (~k− ~k′) con-

sists of two irreducible representations. The first, A1, is 1D and the second, E2, 2D.

The orbital momentum functions are given by

λ
(1,A1)
AB (~k) =

1√
3
(1 + e−ik1 + eik2)

~λ
(1,E2)
AB (~k) =

1√
2

[ 1√
3
(−2 + e−ik1 + eik2)

e−ik1 − eik2

]
. (A.35)

Note that we would have λ
(1,A1)
BA = λ

(1,A1)∗
AB and the formula for the decomposition

is given in Eq. (9.52).

The Bravais lattice of the honeycomb lattice is a triangular lattice and we can

therefore directly infer the orbital momentum functions which decompose the next-

nearest neighbor function Γ
(2)
ij (~k − ~k′) from the triangular lattice case. Note that

we can write λ
(n,Ir)
AA = λ

(n,Ir)
BB = λ(n,Ir). The orbital momentum functions read

explicitly

λ(2,A1)(~k) =
1√
3
(cos k1 + cos k2 + cos k3)

~λ(2,E2)(~k) =
1√
2

[ 1√
3
(−2 cos k1 + cos k2 + cos k3)

cos k2 − cos k3

]

λ(2,B1)(~k) =
1√
3
(sin k1 + sin k2 + sin k3)

~λ(2,E1)(~k) =
1√
2

[ 1√
3
(−2 sink1 + sin k2 + sin k3)

sink2 − sin k3

]
,

(A.36)

i.e. there are the same four irreducible representations as in the triangular lattice

nearest neighbor case.
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A.4 Kagome lattice

The kagome lattice is another lattice with hexagonal symmetry, meaning that the

Bravais lattice is triangular. However, the kagome lattice unit cell contains three

inequivalent atoms, which are labeled by their sublattice index A, B and C. We

choose the generators of lattice translations as

~x1 = a

[
1√
3

]
, ~x2 = a

[
1

−
√
3

]
, (A.37)

where a is taken as the length of a bond, i.e. the distance between nearest neigh-

bors. In terms of a these vectors are half of the triangular and honeycomb lattice

vectors. Hence, the reciprocal lattice vectors are twice as large as was the case for the

triangular lattice, and are given by

~G1 =
π

a

[
1

1/
√
3

]
, ~G2 =

π

a

[
1

−1/
√
3

]
. (A.38)

We take the origin to be the center of a hexagon of the kagome lattice and three vectors
~lA, ~lB and ~lC specifying the positions of the atoms in the unit cell with respect to the

origin are given by

~lA =
a

2

[
1

−
√
3

]
, ~lB =

a

2

[
3

−
√
3

]
, ~lC = a

[
1
0

]
. (A.39)

Taking theA sublattice as a reference sublattice, we define the three nearest neighbor

vectors connecting the sublattices as

~δ1 = ~lB −~lA, ~δ2 = ~lC −~lB, ~δ3 = ~lA −~lC . (A.40)

In addition to these vectors we also define the vectors connecting next-nearest neigh-

bors on the kagome lattice. They are given by

~δ′1 = ~lC − 2~lA, ~δ′2 = −2~lC +~lA, ~δ′3 = ~lA + 2~lC . (A.41)

The momentum dependent Hamiltonian of electrons hopping between nearest

neighbors on the kagome lattice then takes the form

H(~k) = −t




0 1 + T ∗
1 T

∗
2 1 + T ∗

1

1 + T1T2 0 1 + T2
1 + T1 1 + T ∗

2 0


 (A.42)

with the familiar definition of Ti. It is not uncommon in the context of the kagome lat-

tice to take into account hopping between next-nearest neighbors in the tight-binding
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Hamiltonian. This removes the perfect flatness of the top band. The momentum de-

pendent Hamiltonian matrix H′(~k) corresponding to next-nearest neighbor hopping

reads

H′(~k) = −t′



0 T ∗

1 + T ∗
2 T2 + T ∗

1 T
∗
2

T1 + T2 0 T ∗
1 + T1T2

T ∗
2 + T1T2 T1 + T ∗

1 T
∗
2 0



 . (A.43)

In Section 9.4.2 we have intruced the matrix functions Λi which act on the sublat-

tice degree of freedom and which are generalizations of the Pauli-matrices τ i. They

are 3× 3 matrices and constitute the set of matrices spanning the space of Hermitian

matrices, known as the Gell-Mann matices. Explicitly they read

Λ1a =




0 1 0
1 0 0
0 0 0



 , Λ2a =




0 0 0
0 0 1
0 1 0



 , Λ3a =




0 0 1
0 0 0
1 0 0





Λ1b =




0 −i 0
i 0 0
0 0 0



 , Λ2b =




0 0 0
0 0 −i
0 i 0



 , Λ3b =




0 0 i
0 0 0
−i 0 0





Λ1c =
1√
3




1 0 0
0 1 0
0 0 −2



 , Λ2c =




1 0 0
0 −1 0
0 0 0



 . (A.44)

The first two sets, ~Λa and ~Λb correspond to bond ordered states as they connect

different sublattices, while the third set ~Λc represents nontrivial charge order. Their

symmetry properties are summarized and discussed in Section 9.4.2.

A.4.1 Low-energy theory and symmetry of Dirac matrices

The kagome lattice allows for two different types of low-energy description, de-

pending on filling. As was mentioned in the main text (see Section 9.4.2), at filling

n = 1/3 the spectrum is equivalent to that of the honeycomb lattice with conic de-

generacies at the Dirac points ~K±. These isolated band touchings can be described

by a Dirac theory fully analogous to the honeycomb lattice by projecting the linearly

expanded Hamiltonian onto the eigenstates at ~K±, which we denote as |+, j〉 and

|−, j〉 (j = 1, 2) for ~K+ and ~K−, respectively. Then, in the basis

Φ̂(~q) =




ψ̂1( ~K+ + ~q)

ψ̂2( ~K+ + ~q)

ψ̂1( ~K− + ~q)

ψ̂2( ~K− + ~q)


 . (A.45)
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one can obtain the same low-energy Hamiltonian as the one corresponding to the

honeycomb lattice Dirac points,

H(~q) = ~vF ν
3~q · ~τ , (A.46)

of course for a proper choice of |±, j〉. Here the set of Pauli matrices νi acts on

the valley degree (±) of freedom and the τ i matrices on the “sublattice” degree of

freedom labeled by j. Note that vF =
√
3at/~.

We now proceed to derive the lattice symmetry transformation properties of the

low-energy Dirac matrices. To this end, we first derive the action of the generators of

the group C′′′
6v on the spinor

χ̂ ≡
[
χ̂j1
χ̂j2

]
=

[
ψ̂j( ~K+)

ψ̂j( ~K−)

]
, (A.47)

and then project that action into the low-energy subspace. Following the standard

recepy described in Section 9.1, it is straightforward to dedude that the translation

operator T (~x1) acts as

T (~x1) →




ω
ω

ω
ω−1

ω−1

ω−1



χ̂, (A.48)

(again ω = e2πi/3) while the six-fold rotation C6 acts as

C6 →




1
ω−1

ω
1

ω
ω−1



χ̂, (A.49)

note that this is diagonal in valley space as the six-fold rotation exchanges ~K±. The

reflection σv acts as

σv →




ω−1

ω
1

ω
ω−1

1



χ̂. (A.50)
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In order to evaluate the symmetry properties of the Dirac matrices νiτ j we need

to project the 6 × 6 matrices given above into the low-energy subspace spanned by

|±, j〉. IfU± are the matrices that contain the eigenvectors of H( ~K±) in their column,

we construct the matrixU = Diag(U+, U−) and evaluateU †V U , where V is a matrix

of equation (A.51) and (A.53). Reading off the low-energy blocks fromU †V U yields

for the translation

T (~x1) →




ω
ω

ω−1

ω−1


 Φ̂, (A.51)

while the six-fold rotation C6 takes the form

C6 →




1
ω−1

ω
1


 Φ̂, (A.52)

note that this is off-diagonal in valley space as the six-fold rotation exchanges ~K±.

The reflection σv acts as

σv → τ1χ̂. (A.53)

Time-reversal only exchanges ~K+ ↔ ~K− and is thus easily seen to be represented in

the low-energy subspace as

T → Kν1Φ̂, (A.54)

where K denotes complex conjugation.

This representation is very similar to and for some operations coincides with the

representation of the extended point group derived for the honeucomb lattice. This

is not all that surprising since the lattices are closely related. A consequence of the

similarity of the representations is that we find the transformation properties of the

Dirac matrices precisely coincide with those of honeycomb lattice in the chiral repre-

sentation. These were summarized in Table A.1 and we refer the reader to the second

of the two rows. The chiral representation is applicable here since we have chosen the

eigenstates |±, j〉 accordingly. This concludes the discussion of the transformation

properties of Dirac matrices in case of the kagome lattice.



A P P E N D I X B

LATTICE FERMIONS IN MAGNETIC

FIELDS

B.1 Magnetic translation algebra on the lattice

In this appendix we present some details of lattice fermions models in a magnetic

field. We specify the lattice sites of the square lattice by ~n = (nx, ny) ∈ Z
2. The

Hamiltonian for the triangular lattice in a square geometry is given by

Ĥ = T̂x + T̂y + T̂x+y + hc, (B.1)

where the translation operators T̂i are given by

T̂i =
∑

~n

ψ̂†(~n+ ~ui)e
iθi(~n)ψ̂(~n). (B.2)

The presence of the compact lattice vector potential θi(~n) represents the magnetic

field. In lattice gauge theory these (exponentiated) objects are sometimes referred to

as link variables, i.e. Uij = eiaij . We choose to work with the representation θi(~n),

which is related to the continuum vector potential ~A as

θi(~n) =
e

~

∫ ~n+~ui

~n

~A · d~l. (B.3)
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One may observe the identification a~n+~ui,~n = θi(~n). Note that we write ~ui to indi-

cate a unit vector in the i-direction. The lattice field strength for a square plaquette is

give by

∇~n × θ = θx(~n) + θy(~n+ ~ux)− θx(~n+ ~uy)− θy(~n) = 2πφ. (B.4)

Calculating the field strength for the elementary triangles allows for an expression of

θx+y(~n) in terms of θx(~n) and θy(~n),

πφ = θx(~n) + θy(~n+ ~ux)− θx+y(~n)

= θx+y(~n)− θx(~n+ ~uy)− θy(~n), (B.5)

from which one immediately obtains

θx+y(~n) = θx(~n) + θy(~n+ ~ux)− πφ

= θx(~n+ ~uy) + θy(~n) + πφ (B.6)

It is a straightforward matter to show that T̂x and T̂y do not commute, but in fact

satisfy

T̂yT̂x = ei2πφT̂xT̂y. (B.7)

The is the lattice analog of the noncommutative nature of translation operators in

the continuum which is discussed in Chapter 1. Neither T̂x nor T̂y commute with

the Hamiltonian and we wish to find translation operators that do commute with the

Hamiltonian, generally given by

T x =
∑

~n

ψ̂†(~n+ ~ux)e
iχx(~n)ψ̂(~n)

T y =
∑

~n

ψ̂†(~n+ ~uy)e
iχy(~n)ψ̂(~n). (B.8)

By explicitly demanding that the following commutators vanish

[T x, T̂x] = [T x, T̂y] = [T x, T̂x+y] = 0, (B.9)

one obtains expressions for χi(~n) as

χx(~n) = θx(~n) + 2πφny

χy(~n) = θy(~n)− 2πφnx. (B.10)
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Even though these translation operators commute with the Hamiltonian, the do not

commute between themselves,

[T x, T y] 6= 0. (B.11)

One finds that instead they obey (in the Landau gauge, see below)

T xT y = ei2πφT yT x. (B.12)

If the flux φ is rational and given by p/q, p and q being relatively prime, then one

finds

T
q

xT y = ei2qπφT yT
q

x = T yT
q

x. (B.13)

(note that the asymmetry of T x and T x in this expression is due to the gauge choice).

Hence, the operators T
q

x and T x commute between themselves and the Hamiltonian

and can acquire quantum numbers under the Hamiltonian.

B.2 Diagonalization of the Hamiltonian

In order to diagonalize the Hamiltonian we first need to specify a gauge. Two gauge

choices will be discussed here, the Landau gauge, often the gauge of choice in the

continuum, and the symmetric gauge. The Landau gauge, in the continuum and its

lattice equivalent, is written as

~A = Bx~uy, θx(~n) = 0, θy(~n) = 2πφnx, (B.14)

whereas the symmetric gauge takes the form

~A =
B

2
(x~uy − y~ux), θx(~n) = −πφny, θy(~n) = πφnx (B.15)

We treat the Landau gauge first. Fourier transforming yields

ψ̂(~p) =
1√
NxNy

∑

~n

e−i(pxnx+pyny)ψ̂(~n). (B.16)

whereNi is the number of lattice sites in the i direction and ~p is the lattice momentum.

The momentum is defined as Nipi ∈ [0, 2π, 4π, . . . , Ni2π). The Hamiltonian in the

Landau gauge takes the form

Ĥ = −t
∑

~n, ~n′

ψ̂†(~n′)M~n′~nψ̂(~n) + hc (B.17)
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with the matrix M~n′~n defined as

M~n′~n = δ~n′,~n+~ux
+ δ~n′,~n+~uy

ei2πφnx + δ~n′,~n+~ux+~uy
ei2πφ(nx+1/2) (B.18)

which becomes in momentum space

Ĥ = −t
∑

~p,~p′

ψ̂†(~p′)M~p′~pψ̂(~p) + hc (B.19)

with the momentum space matrix M~p′~p defined as

M~p′~p = e−ipxδ~p′,~p + (e−ipy + eiπφe−i(px+py))δp′x,px+2πφδp′y,py . (B.20)

It is clear the Fourier transforming does not diagonalize the Hamitonian, as different

momentum sectors are still coupled due to δp′x,px+2πφ. Remembering that φ = p/q
we can remedy this by defining (kx + 2πφj, ky) = (px, py) with j = 0, . . . , q − 1

and at the same time make ψ̂(kx + 2πφj, ky) ≡ ψ̂j(kx, ky) = ψ̂j(~k). This amounts

to making the Brillouin zone q times smaller in the x direction, while making the real

space unit cell q times larger. We note is passing that this only works if and only if

p and q are relatively prime, as only in this case the prescription (kx + 2πφj, ky) =
(px, py) allows to access the full range 0 ≤ px < 2π. The M matrix is rewritten as

Mj′j
~k′~k

= Mj′jδ~k′,~k

Mj′j = e−i(kx+2πφj)δj′,j + (e−iky + eiπφ(1−2j)e−i(kx+ky))δj′,j+1 (B.21)

with Hamiltonian

Ĥ = −t
∑

~k,j,j′

ψ̂†
j′(
~k)Mj′jψ̂j(~k) + hc ≡ −t

∑

~k,j,j′

ψ̂†
j′(
~k)Hj′j(~k)ψ̂j(~k) (B.22)

At this point we particularize to the situation φ = 1/2, which is the relevant case for

the Chern insulator model discussed in this thesis. We have values j = 0, 1 and it is

a simple matter to show that in this basis one has

H(~k) = −2t coskxτ
3 − 2t coskyτ

1 + 2t cos(kx + ky)τ
2 (B.23)

In general, the magnetic Brillouin zone is restricted to 0 ≤ kx < 2π/q as a conse-

quence of the folding expressed in (kx + 2πφj, ky) = (px, py), meaning that the re-

ciprocal lattice vector in the x direction is ~G1 = (2π/q, 0). The example of φ = 1/2

shows that the Hamiltonian as written in B.23 does not satisfy H(~k + ~G1) = H(~k).
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This is easy to understand by looking at how the field operators respond to a shift by
~G1 in momentum space.

ψ̂j(~k + ~G1) = ψ̂(kx + 2π/q + 2πφj, ky)

= ψ̂(kx + 2π(pj + 1)/q, ky)

= ψ̂(kx + 2πφj′, ky) (B.24)

where j′ and j are related by (pj+1)mod q = pj′ mod q, or p(j′− j)−1 = 0mod q.

An example is illustrative and we take φ = p/q = 3/5. It may be verified that j = 0
is mapped to j = 2, j = 1 to j = 3, j = 2 to j = 4, j = 3 to j = 0 and j = 4 to

j = 1. Collecting the ψ̂j(~k) in the vector operator Ψ̂(~k), we have the general relation

Ψ̂(~k + ~G1) = U †Ψ̂(~k). (B.25)

The matrix U † effectively operates as a translation operator of the index j by an

amount j∆ given by the solution of pj∆ − 1 = 0mod q. Note that periodic boundary

conditions apply. The eigenvalues of a translation operator are given by ei2πj∆l/q ,

with l ∈ [0, 1, . . . , q−1). If V is the matrix that diagonalizesU † such that V †U †V =
D with D a diagonal matrix with the eigenvalues on the diagonal, then we have the

relation

Φ̂(~k + ~G1) = DΦ̂(~k) (B.26)

where Φ̂(~k) = V †Ψ̂(~k), which is the first part of the gauge transformation on the

state operators. The second part is achieved by defining a new matrix D(~k) =

Diag(d1, . . . , dq), with dl = eikxl. We observe that D(~G1) = D, which we use

to define D†(~k)Φ̂(~k), which is invariant under ~k → ~k + ~G1. Hence, we obtain a

Hamiltonian obeying H̃(~k + ~G1) = H̃(~k) by defining

H̃(~k) = D†(~k)V †H(~k)V D(~k) (B.27)

For the particular case of φ = 1/2 this amounts to

V = e−iπτ
2/4, D(~k) =

[
1

eikx

]
, (B.28)

which yields V †τ1V = τ3, V †τ2V = τ2 and V †τ3V = −τ1. It is straightforward

to use these relations to obtain the transformed Hamiltonian.

We proceed to discuss the case of the symmetric gauge in a similar fashion. Again

we write the Hamiltonian using the matrix M and obtain

M~n′~n = δ~n′,~n+~ux
e−iπφny + δ~n′,~n+~uy

eiπφnx + δ~n′,~n+~ux+~uy
eiπφ(nx−ny) (B.29)
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Using the same Fourier transform as before one derives in momentum space

Ĥ = −t
∑

~p,~p′

ψ̂†(~p′)M~p′~pψ̂(~p) + hc (B.30)

with the momentum space matrix M~p′~p defined as

M~p′~p = e−ipxδp′x,pxδp′y ,py−πφ + e−ipyδp′x,px+πφδp′y,py

+e−i(px+py)δp′x,px+πφδp′y,py−πφ. (B.31)

Since we still have φ = p/q we are forced to fold the Brillouin zone according to the

rule (kx+πφjx, ky+πφjy) = (px, py), which amounts to a magentic Brillouin zone

given by 0 ≤ kx < π/q and 0 ≤ ky < π/q. Substituting the definition of these new

momenta into the matrix of equation (B.2), we derive

Mj′j
~k′~k

= Mj′jδ~k′~k = δ~k′~k

(
e−ikxe−iπφjxδj′x,jxδj′y,jy−1+

e−ikye−iπφjyδj′x,jx+1δj′y,jy + e−i(kx+ky)e−iπφ(jx+jy)δj′x,jx+1δj′y,jy−1

)
, (B.32)

where we have written j to denote the double index (jx, jy). The label j takes values

in j ∈ [0, 1, . . . , 2q × 2q − 1), which means that we have considerably increased the

dimensionality of the of the state operator Ψ̂(~k) = ψ̂j(~k) as compared to the Landau

gauge.
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BASIC ELEMENTS OF GROUP THEORY

The purpose of this appendix is to collect and summarize all the basic elements of

group theory required to follow and understand the symmetry analysis presented in

the main text. The following brief overview is therefore far from exhaustive, but it

serves to introduce notation and the main concepts, in particular the extended point

groups.

The group of all symmetry operations leaving a given Bravais lattice invariant is

the space group S. It consists of all translations T , an Abelian subgroup of S, and

the point group G. The point group can be viewed as the factor group of the space

group, i.e. G = S/T . Throughout this work we denote general point group elements

by R, meaning that R ∈ G. Translations over a lattice vector ~x [see equation (??)]

are written as T (~x). The translation subgroup T is generated by two elements, which

are T (~x1) and T (~x2) corresponding to the two lattice vectors ~x1 and ~x2. The point

group G, which for our purposes is always Cnv with n generally beig either 4 or 6,

is generated by two elements. These are the n-fold rotation Cn and the reflection

σv . The relfection σv is always taken as the operations which reflects in the x-axis,

i.e. (x, y) → (x,−y). Any element R ∈ G can then be written as R = Cm1
n σm2

v .

Consequently, the space groupS is generated by lements T (~x2)
m4T (~x1)

m3Cm2

6 σm1
v .

Note that point group operations and translations do not commute, but instead satisfy

T (~x)R = RT (R~x).
In the main text we exclusively talk about the point groups Cnv . For spinless

particles in 2D these groups are exactly equivalent toDn, which are groups generated
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by the n-fold rotation Cn and a non-commuting two-fold rotation C′
2 around the x-

axis. Hence, C′
2 takes the place of σv , leaving all algebraic relations invariant. Below

we comment on the distinction between Cnv and D6 in the presence of the electron

spin.

C.1 Translational symmetry breaking and “extended”

point groups

The central theme of this work is interaction-induced translational symmetry break-

ing. In particular we have classified translational symmetry broken site, bond and

flux ordered states based on lattice symmetries. Translational symmetry breaking

removes a subset of translations from the full group of translations T , leading to re-

duced group of invariant translations which we denote as T̃ . Having estabslished this

new group of invariant translations (which is smaller than T ), we can take the space

group and again calculate the point by G̃ = S/T̃ . The point group G̃ is larger than

G, as it contains elements of T no longer part of T̃ . In particular, if t1 ≡ T (~x1) is no

longer part of T̃ , it belongs to the extended point group G̃.

Both for the case of the square and the hexagonal Bravais lattice we consider

translational symmetry breaking such that T̃ is generated by T (2~x1) and T (2~x2).
This means that T (~x1) = t1, T (~x2) = t2 and T (~x1 + ~x2) = t3 are added to the

point group. To illustrate this more clearly, let us take the hexagonal group C6v as an

example. This group has 12 elements, but the group C′′′
6v (three primes indicate three

broken elmentary translations), which also contains t1,2,3, contains 48 elements, i.e.

48 = 12 + 3 × 12. Algebraic properties of these elements can be worked out using

T (~x)R = RT (R~x) and the fact that titj = |ǫijk|tk. In particular, the conjugacy

classes of the group C′′′
6v can be calculated and the character table can be obtained

in the standard way. As the point group C6v is a proper subgroup of C′′′
6v all irre-

ducible representations of C6v will also appear as irreducible representations of C′′′
6v ,

in addition to new irreducible representations originating from the nontrivial transla-

tions. The character tables of the groupsC′′′
6v (hexagonal) and C′′′

4v (square) are given

in Table C.6 and Table C.7, respectively. They can the used in the standard way to

decompose any representation into irreducible representations.

A distinct extended point group is obtained if we anticipate translational sym-

metry breaking of a hexagonal lattice which triples the unit cell. In that case the

translations T (~x1) = t1, T (~x1 + ~x2) = t2 (redefining the ti) are added to the point

group, leading to the group C′′
6v . The procedure for obtaining the character table is

exactly the same, however one should be careful to implement the correct algebraic

relations between these t1 and t2. Specifically, they are each others inverse. The
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Point group C2v I C2 σv σ′
v

x2 + y2, z2 z A1 1 1 1 1
xy Lz A2 1 1 −1 −1
xz Ry, x B1 1 −1 1 −1
yz Rx, y B2 1 −1 −1 1

Table C.1: Character table of the point group C2v .

character table of C′′
6v is given in Table C.5.

C.2 The point groups C4v and C6v

In the main text we discuss square and hexagonal lattice systems. The square lattice

systems have symmetry group C4v , while the hexagonal lattices have point group

C6v . We have already mentioned that each of these groups can be generated by two

elements. In case of C4v these are C4 and σv . All other point group operations can

be written in terms of these generators as follows

C2 = C2
4 , C−1

4 = C3
4 ,

σv1 = σv, σv2 = C2σv σd1 = C4σv, σd2 = C−1
4 σv. (C.1)

These operations are graphically shown on the left side of Fig. C.1.

In case of C6v the generators of the group are C6 and σv . The other point group

operations can be written in terms of them as

C3 = C2
6 , C2 = C3

6 , C−1
3 = C4

6 , C−1
6 = C5

6 ,

σv1 = σv, σv2 = C3σv σv3 = C−1
3 σv,

σd1 = C6σv, σd2 = C2σv σd3 = C−1
6 σv. (C.2)

These operations are shown in Fig. C.1 as well, on the right side.

We note again that if we exchange σv and C′
2, i.e. a rotation of π around the x-

axis instead of a reflection, but keep the algebraic structure of group elements defined

in (C.1) and (C.2) then we obtain the (dihedral) groups D4 and D6. The irreduble

representations ofC4v andC6v are listed in the character tables of Table C.1, C.1, C.3,

and C.4.
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Point group C4v I C2 2C4 2σv 2σd

x2 + y2, z2 z A1 1 1 1 1 1
Lz A2 1 1 1 −1 −1

x2 − y2 B1 1 1 −1 1 −1
xy B2 1 1 −1 −1 1

(xz, yz)
(x, y)

(Lx, Ly)

}
E 2 −2 0 0 0

Table C.2: Character table of the point group C4v .

σd1

σd2

σd3

σv3 σv2

σv = σv1 σv = σv1

σv2

σd1

σd2

Figure C.1: Graphical representation of the point group symmetries of 2D square

lattices (left) and hexagonal lattices (right). The reflections are given in terms of the

generatorsC4,6 and σv in the text of the present appendix.

C.2.1 M -point representation of hexagonal symmetry operations

In Section 9.4.1 we have introduced a particular representation of the hexagonal sym-

metry groups which proved very helpful in deriving condensate functions transform-

ing as irreducible representations. Here we come back to this representations and

provide some additional details, such as commutation relations for various elements.

The representation is defined by the actions of the rotations, reflections, and trans-

lations on the the linearly independent functions cos( ~Qµ · ~x), where ~Qµ (µ = 1, 2, 3)

are the three M -point vectors. The are collected in the 3-dimensional vector ~ξ =
ξµ(~x) = cos( ~Qµ · ~x). As was shown in Section 9.4.1, we can obtain a repre-

sentation of the lattice symmetry group by considering the effect of all lattice op-

erations on the vector ~ξ. Taking the translations, the effect of which is given by

ξµ(~x + ~xj), we find three matrices Gj (j = 1, 2, 3) corresponding to ~xj , such that
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Point group C3v I 2C3 3σv

x2 + y2, z2 z A1 1 1 1
Lz A2 1 1 −1

(xz, yz)
(x2 − y2, xy)

}
(x, y)

(Lx, Ly)

}
E 2 −1 0

Table C.3: Character table of the point group C3v .

Point group C6v I C2 2C3 2C6 3σd 3σv

x2 + y2, z2 z A1 1 1 1 1 1 1
Lz A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 −1 1
B2 1 −1 1 −1 1 −1

(xz, yz)
(x, y)

(Lx, Ly)

}
E1 2 −2 −1 1 0 0

(x2 − y2, xy) E2 2 2 −1 −1 0 0

Table C.4: Character table of the point group C6v .

ξµ(~x+ ~xj) = [Gj ]µνξν(~x). Hence, for a given translation the effect on ~ξ is given by

Gj , i.e. Gj~ξ. The three matrices take the form

G1 =



−1

−1
1


 , G2 =



1

−1
−1


 , G3 = G1G2. (C.3)

Not surprisingly, all the Gj commute, square to one, and multiplying two of them

gives the third. This follows from the M -point vectors, which have the same proper-

ties under addition. Another way of understanding this is to say that M -point order

implies a quadrupled real space unit cell, meaning that an even number of elementary

translations must always leave the system invariant.

Regarding the point group operations, we only need the actions of the generators

C6 and σv on the vector ξ. In the main text we defined the matrix X to correspond to

the permutation of ξµ as a consequence of C6, i.e.

~ξ(C6~x) = X~ξ(~x), X =




0 0 1
1 0 0
0 1 0



 (C.4)



284 Basic elements of group theory

Note that X has the property X3 = 1 and thus X−1 = X2. In addition the relation

X−1 = XT holds, where XT is the transpose. For the reflection σv we had defined

an element Y such that

~ξ(σv~x) = Y ~ξ(~x), Y =



0 0 1
0 1 0
1 0 0


 (C.5)

With the explicit matrix expression at hand it is a simple matter to show that (XY )2 =
1, from which all algebraic relations between X and Y follow.

We now proceed to list some helpful algebraic commutation properties of the Gj
and X . It is a simple matter to derive or check that

G2X = XG1, G1X
−1 = X−1G2

G1X = XG3, G3X
−1 = X−1G1

G3X = XG2, G2X
−1 = X−1G3. (C.6)

In the same way we have for the Gj and Y

G2Y = Y G1

G1Y = Y G2

G3Y = Y G3. (C.7)

We close by mentioning that the representation of C6v in terms of X and Y is

reducible and the decomposition is given by A1 ⊕E2. However, the elements Gj , X
and Y generate a representation of C′′′

6v , which is irreducible and equal to F1.

C.3 Symmetry properties with spin

Chapter 10 deals with spinful condensates or triplet condensates. The description of

these condensates requires taking into account the point (or space) group respresena-

tions acting on the spinor degree of freedom. In terms of equation (9.6) of the main

text, one needs to consider the matrix U o
R acting on the spinor degree af freedom. It

is a matrix belonging to SU(2).
As was already mentioned before, for spinless particles the groups Cnv and Dn

may be considered identical, as indeed both send (x, y) → (x,−y) under the reflec-

tion (Cnv) in the x − z plane or the twofold rotation about the x-axis (Dn). In the

spinful case, there is a difference however, since reflections and rotations act in dif-

ferent ways. The transformation properties for the n-fold rotation about the z-axis are
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Conjugacy class C′′
1 C′′

2 C′′
3 C′′

4 C′′
5 C′′

6 C′′
7 C′′

8 C′′
9

Representative I t1 C2 C3 t1C3 C6 σv t1σv σd

A1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 −1 −1 −1
B1 1 1 −1 1 1 −1 1 1 −1
B2 1 1 −1 1 1 −1 −1 −1 1
E1 2 2 −2 −1 −1 1 0 0 0
E2 2 2 2 −1 −1 −1 0 0 0
E′

1 2 −1 0 2 −1 0 2 −1 0
E′

2 2 −1 0 2 −1 0 −2 1 0
G′ 4 −2 0 −2 1 0 0 0 0

Table C.5: Character table of the point groupC′′
6v . Translations t1 and t2 correspond

to T (~x1) and T (~x2), respectively. The irreducible representations that arise as a con-

sequence of the added translations areE′
1 (2D),E′

2 (2D) andG′ (4D). The conjugacy

classes consist of the elements: C′′
1 = {I}, C′′

2 = {t1, t2}, C′′
3 = {C2, tiC2}, C′′

4 =
{C3, C

−1
3 }, C′′

5 = {tiC3, tiC
−1
3 }, C′′

6 = {tiC6, tiC
−1
6 , C6, C

−1
6 }, C′′

7 = {3σv},

C′′
8 = {3t1σv, 3t2σv}, C′′

9 = {3σd, 3tiσd}.

straightforward to deduce, using the standard formula for SU(2) rotations. A rotation

about an axis n̂ by an angle θ is given by

U = e−iθn̂·~σ/2 = cos
θ

2
− i sin

θ

2
n̂ · ~σ (C.8)

Applying this formula to the n-fold rotations (where we take n = 4, 6 for definite-

ness), which are rotations about the z-axis, the rotation matrix becomes e−iπσ
3/n and

the Pauli matrices transform as

Cn : σ3 → σ3; σ± → e±i2π/nσ± (C.9)

This is true for bothCnv andD6. The distinction between the two groups comes from

the reflections (Cnv) or the two-fold rotations (D6). For the group Dn the two-fold

rotation is also simple to write down. A rotation of π about the x-axis is given by

−iσ1 and thus we have

C′
2 : σ2,3 → −σ2,3; σ1 → σ1 (C.10)

For the reflection on the other we need to take into account that a magnetic moment

like spin can be thought of as generated by a small current loop. A spin pointing in
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the x-direction may be thought of as a current loop in the z − y plane and hence a

reflection in the x − z plane changes the current direction. The spin will be rotated

by π. One observes that the only direction that does not change is a spin pointing in

the y-direction. The transformation properties follow:

σv : σ1,3 → −σ1,3; σ2 → σ2 (C.11)

We therefore observe that the transformation properties of the reflections and two-fold

rotations differ and therefore define distinct point groups.

Another way of understanding the difference between C6v is to view both C6v

and D6 as subgroups of Oh, i.e. the group of all symmetries of the cube. It is known

that all elements of Oh may be written as a product of a proper rotation and the

inversion operation. Rotations rotate pseusovectors such as angular momentum and

the electron spin, however, the inversion operation does nothing to a pseudovector.

Therefore, in order to find out what member of SU(2) corresponds to σv andC′
2, one

needs to find out what proper rotation make up these elements. In the first case it is a

rotation about the x-axis and in the second case it is a rotation about the y-axis.

We stress here again that while details do depend on this difference in the spin-

ful case the main conclusions reached in this work do not depend on whether the

symmetry group is C6v or D6.

C.3.1 Spinful M -point representation of hexagonal symmetry op-

erations

An important concept introduced in Chapter 10 is global rotation equivalence. For

spinful condensates point group operations and translations may need to be combined

with a global spin rotation in order to make them good symmetries. We have only

treated spinful condensates constructed from M -point vectors in hexagonal systems

and the connection between elements of C′′′
6v and global U(2) rotations (not SU(2))

is established via the 3 × 3 matrices Gj , X and Y (see Section C.2.1) acting on ~ξ.

This connection is explicitly expressed in equation (10.5) of the main text.

The mapping from the 3×3 representation, i.e. matrices which can be interpreted

as rotation matrices of O(3), to the space U(2) preserves the algebraic structure and

defines another representation, with the electron spin wavefunctions as basis func-

tions. It is straighforward to associate a U(2) matrix to an O(3) rotation matrix, by

determining the rotation axis and angle. For instance, the translation elementG1 cor-

responds to a rotation about the z-axis by π. Hence, the associated U(2) matrix is
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Conj. class C′′′
1 C′′′

2 C′′′
3 C′′′

4 C′′′
5 C′′′

6 C′′′
7 C′′′

8 C′′′
9 C′′′

10

Repres. t1 C2 t1C2 C3 C6 σv t1σv σd t1σd1

A1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 −1 −1 −1 −1
B1 1 1 −1 −1 1 −1 1 1 −1 −1
B2 1 1 −1 −1 1 −1 −1 −1 1 1
E1 2 2 −2 −2 −1 1 0 0 0 0
E2 2 2 2 2 −1 −1 0 0 0 0
F1 3 −1 3 −1 0 0 1 −1 1 −1
F2 3 −1 3 −1 0 0 −1 1 −1 1
F3 3 −1 −3 1 0 0 1 −1 −1 1
F4 3 −1 −3 1 0 0 −1 1 1 −1

Table C.6: The point group C′′′
6v . Translations t1 and t2 correspond to T (~x1)

and T (~x2), respectively. t3 = T (~x1 + ~x2). The irreducible representations

that arise as a consequence of the added translations are F1, F2, F3 and F4, all

three-dimensional. The conjugacy classes consist of the elements: C′′′
1 = {I},

C′′′
2 = {t1, t2, t3}, C′′′

3 = {C2}, C′′′
4 = {tiC2}, C′′′

5 = {tiC3, tiC
−1
3 , C3, C

−1
3 },

C′′′
6 = {tiC6, tiC

−1
6 , C6, C

−1
6 }, C′′′

7 = {3σv, t1σv2, t2σv3, t3σv1}, C′′′
8 =

{t1σv, t2σv, t2σv2, t3σv2, t1σv3, t3σv3}, C′′′
9 = {3σd, t2σd1, t3σd2, t1σv3}, C′′′

10 =
{t1σd1, t3σd1, t1σd2, t2σd2, t2σd3, t3σd3}.

−iσ3. We simply find for all translations.

G1 → e−iπσ
3/2 = −iσ3

G2 → e−iπσ
1/2 = −iσ1

G3 → e−iπσ
2/2 = −iσ2. (C.12)

The matrixX , interpreted as rotation matrix, corresponds to a rotation by 2π/3 about

the axis n̂ = (1, 1, 1)/
√
3. We can decompose it into two separate rotations about the

z and y-axes (Euler rotations) and obtain the SU(2) matrices

X → e−iπσ
2/4e−iπσ

3/4

XT → eiπσ
3/4eiπσ

2/4. (C.13)

Note that these are elements of SU(2) since X and XT are proper rotations. This is

different for Y , which has determinant −1. Therefore −Y is a proper rotation which
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can be identified with an element of SU(2). One finds that

−Y → eiπσ
2/4e−iπσ

3/2 = −ieiπσ2/4σ3, (C.14)

which completes the mapping ofGj ,X and Y ontoU(2) matrices. This mapping is at

the heart of analyzing symmetry properties of spinful condensates. In particular, the

appearance of an extra minus sign for Y is what causes some reflections to constitute

good symmetries in the presence of spin, as explained in Chapter 10.
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Conjugacy class C′′′
1 C′′′

2 C′′′
3 C′′′

4 C′′′
5 C′′′

6 C′′′
7 C′′′

8 C′′′
9 C′′′

10 C′′′
11 C′′′

12 C′′′
13 C′′′

14

Representative I t1 t3 C2 t1C2 t3C2 C4 t1C4 σv t3σv t1σv t2σv σd1 t1σd1

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
B1 1 1 1 1 1 1 −1 −1 1 1 1 1 −1 −1
B2 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1
E1 2 2 2 −2 −2 −2 0 0 0 0 0 0 0 0
A′

1 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 −1
A′

2 1 −1 1 1 −1 1 1 −1 −1 1 1 −1 −1 1
B′

1 1 −1 1 1 −1 1 −1 1 1 −1 −1 1 −1 1
B′

2 1 −1 1 1 −1 1 −1 1 −1 1 1 −1 1 −1
E′

1 2 −2 2 −2 2 −2 0 0 0 0 0 0 0 0
E2 2 0 −2 2 0 −2 0 0 −2 0 0 2 0 0
E3 2 0 −2 2 0 −2 0 0 2 0 0 −2 0 0
E4 2 0 −2 −2 0 2 0 0 0 2 −2 0 0 0
E5 2 0 −2 −2 0 2 0 0 0 −2 2 0 0 0

Table C.7: Character table of the point group C′′′
6v . Translations t1 and t2 correspond to T (~x1) and T (~x2), respectively.

t3 = T (~x1 + ~x2). The conjugacy classes consist of the elements: C′′′
1 = {I}, C′′′

2 = {t1, t2}, C′′′
3 = {t3}, C′′′

4 = {C2},

C′′′
5 = {t1C2, t2C2}, C′′′

6 = {t3C2}, C′′′
7 = {C4, C

−1
4 , t3C4, t3C

−1
4 }, C′′′

8 = {t1C4, t1C
−1
4 , t2C4, t2C

−1
4 }, C′′′

9 =
{σv1, σv2}, C′′′

10 = {t3σv1, t3σv2}, C′′′
11 = {t1σv1, t2σv2}, C′′′

12 = {t2σv1, t1σv2}, C′′′
13 = {σd1, σd2, t3σd1, t3σd2} and

C′′′
14 = {t1σd1, t1σd2, t2σd1, t2σd2}.
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[63] J. Bréger, M. Jiang, N. Dupré, Y. S. Meng, Y. Shao-Horn, G. Ceder, and C. P.

Grey, Journal of Solid State Chemistry 178, 2575 (2005).

[64] R. Yu, S. Yunoki, S. Dong, and E. Dagotto, Phys Rev B 80, 125115 (2009).

[65] A. Mishra, M. Ma, F.-C. Zhang, S. Guertler, L.-H. Tang, and S. Wan, Phys Rev

Lett 93, 207201 (2004).

[66] M. Biskup, L. Chayes, and Z. Nussinov, Commun Math Phys 255, 253 (2005).

[67] Z. Nussinov, M. Biskup, L. Chayes, and J. van den Brink, Europhys Lett 67,

990 (2004).
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[83] H. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Phys Rev Lett

108, 056802 (2012).

[84] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys Rev Lett 100,

156401 (2008).

[85] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys Rev B 62, R6065 (2000).

[86] K. Sun, H. Yao, E. S. Fradkin, and S. A. Kivelson, Phys Rev Lett 103, 046811

(2009).

[87] K. Sun, Z.-C. Gu, H. Katsura, and S. Das Sarma, Phys Rev Lett 106, 236803

(2011).

[88] S. Uebelacker and C. Honerkamp, Phys Rev B 84, 205122 (2011).

[89] P. Schobinger-Papamantellos, J. Rodrı́guez-Carvajal, and K. H. J. Buschow,

Journal of Magnetism and Magnetic Materials 310, 63 (2007).

[90] L. D. C. Jaubert, M. Haque, and R. Moessner, Phys Rev Lett 107, 177202

(2011).

[91] L. D. C. Jaubert, S. Piatecki, M. Haque, and R. Moessner, Phys Rev B 85,

054425 (2012).

[92] I. Affleck and J. B. Marston, Phys Rev B 37, 3774 (1988).

[93] J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli, Phys Rev Lett 101, 186402

(2008).



296 BIBLIOGRAPHY

[94] M. Yamanaka, W. Koshibae, and S. Maekawa, Phys Rev Lett 81, 5604 (1998).

[95] D. Agterberg and S. Yunoki, Phys Rev B 62, 13816 (2000).

[96] H. Aliaga, B. Normand, K. Hallberg, M. Avignon, and B. Alascio, Phys Rev

B 64, 024422 (2001).

[97] X. Chen, S. Dong, and J. M. Liu, Phys Rev B 81, 064420 (2010).

[98] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.

Geim, Rev Mod Phys 81, 109 (2009).

[99] Y. Hatsugai, T. Fukui, and H. Aoki, Phys Rev B 74, 205414 (2006).

[100] Y. Kato, I. Martin, and C. D. Batista, Phys Rev Lett 105, 266405 (2010).

[101] M. Onoda and N. Nagaosa, J Phys Soc Jpn 71, 19 (2002).

[102] S. Ryu, C. Mudry, C.-Y. Hou, and C. Chamon, Phys Rev B 80, (2009).

[103] R. W. Jackiw, Phys Rev D 29, 2375 (1984).

[104] D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nat Commun 2, 389 (2011).

[105] N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).

[106] J. W. F. Venderbos, M. Daghofer, and J. van den Brink, Phys Rev Lett 107,

116401 (2011).

[107] J. W. F. Venderbos, S. Kourtis, J. van den Brink, and M. Daghofer, Phys Rev

Lett 108, 126405 (2012).

[108] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys Rev Lett 106, (2011).

[109] R. A. Muniz, A. Rahmani, and I. Martin, arXiv (2011).

[110] J. W. F. Venderbos, M. Daghofer, J. van den Brink, and S. Kumar, Phys Rev

Lett 109, 166405 (2012).

[111] X.-L. Qi and S.-C. Zhang, Rev Mod Phys 83, 1057 (2011).

[112] C. Bruene, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L.

Chen, X.-L. Qi, Z. X. Shen, S.-C. Zhang, and L. W. Molenkamp, Phys Rev

Lett 106, 126803 (2011).

[113] E. Tang, J.-W. Mei, and X.-G. Wen, Phys Rev Lett 106, 236802 (2011).



BIBLIOGRAPHY 297

[114] R. B. Laughlin, Phys Rev Lett 50, 1395 (1983).

[115] X.-L. Qi, Phys Rev Lett 107, 126803 (2011).

[116] Y.-L. Wu, N. Regnault, and B. A. Bernevig, Phys Rev B 86, 085129 (2012).

[117] S. Das Sarma, M. H. Freedman, and C. Nayak, Phys Rev Lett 94, 166802

(2005).

[118] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).

[119] Z. Fang, K. Terakura, and N. Nagaosa, New J Phys 7, 66 (2005).

[120] G. Jackeli and G. Khaliullin, Phys Rev Lett 102, 017205 (2009).

[121] D. Pesin and L. Balents, Nat Phys 6, 376 (2010).

[122] J. van den Brink, G. Khaliullin, and D. Khomskii, Phys Rev Lett 83, 5118

(1999).

[123] T. Hotta, M. Moraghebi, A. Feiguin, A. Moreo, S. Yunoki, and E. Dagotto,

Phys Rev Lett 90, 247203 (2003).

[124] H. Pen, J. van den Brink, D. Khomskii, and G. Sawatzky, Phys Rev Lett 78,

1323 (1997).

[125] W. Koshibae and S. Maekawa, Phys Rev Lett 91, 257003 (2003).

[126] D. J. Thouless, Phys Rev B 40, 12034 (1989).

[127] B. A. Bernevig and S.-C. Zhang, Phys Rev Lett 96, 106802 (2006).

[128] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat Phys 5,

438 (2009).

[129] C. Nayak, S. H. Simon, A. Stern, M. H. Freedman, and S. Das Sarma, Rev

Mod Phys 80, 1083 (2008).

[130] X. Hu, M. Kargarian, and G. A. Fiete, Phys Rev B 84, 155116 (2011).

[131] Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D. N. Sheng, Phys Rev Lett 107,

146803 (2011).

[132] S. Nishimoto, M. Nakamura, A. O’Brien, and P. Fulde, Phys Rev Lett 104,

196401 (2010).



298 BIBLIOGRAPHY

[133] P. Matl, N. Ong, Y. Yan, Y. Li, D. Studebaker, T. Baum, and G. Doubinina,

Phys Rev B 57, 10248 (1998).

[134] W. A. Harrison, Electronic Structure and Properties of Solids (W.H. Freeman,

San Francisco, 1980).

[135] J. C. Slater and G. F. Koster, Phys Rev 94, 1498 (1954).

[136] B. Normand and A. M. Oles, Phys Rev B 78, (2008).

[137] T. Nomura and K. Yamada, J Phys Soc Jpn 69, 1856 (2000).

[138] F. Wilczek, Phys Rev Lett 49, 957 (1982).

[139] F. D. M. Haldane, Phys Rev Lett 67, 937 (1991).

[140] Y.-L. Wu, B. A. Bernevig, and N. Regnault, Phys Rev B 85, 075116 (2012).

[141] S. Kourtis, J. W. F. Venderbos, and M. Daghofer, Phys Rev B 86, 235118

(2012).

[142] S. A. Parameswaran, R. Roy, and S. L. Sondhi, Phys Rev B 85, 241308 (2012).

[143] B. A. Bernevig and N. Regnault, Phys Rev B 85, 075128 (2012).

[144] M. O. Goerbig, Eur Phys J B 85, 15 (2012).

[145] R. Roy, arXiv (2012).

[146] Y. Hatsugai and M. Kohmoto, Phys Rev B 42, 8282 (1990).

[147] B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Su-

perconductors (Princeton University Press, Princeton and Oxford, 2013).

[148] T. Fukui, Y. Hatsugai, and H. Suzuki, J Phys Soc Jpn 74, 1674 (2005).

[149] E. J. Bergholtz and Z. Liu, arXiv (2013).

[150] S. A. Parameswaran, R. Roy, and S. L. Sondhi, arXiv (2013).

[151] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schoenhammer,

arXiv (2011).

[152] C. Platt, W. Hanke, and R. Thomale, arXiv (2013).

[153] E. Dagotto, Rev Mod Phys 66, 763 (1994).



BIBLIOGRAPHY 299

[154] G. R. Stewart, Rev Mod Phys 83, 1589 (2011).

[155] S.-W. Cheong and M. V. Mostovoy, Nat Mater 6, 13 (2007).

[156] R. Ramesh and N. A. Spaldin, Nat Mater 6, 21 (2007).

[157] K. F. Wang, J. M. Liu, and Z. F. Ren, Adv Phys 58, 321 (2009).

[158] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura,

Nat Mater 11, 103 (2012).

[159] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat Phys 8, 158 (2012).

[160] R. Nandkishore, G.-W. Chern, and A. V. Chubukov, Phys Rev Lett 108, 227204

(2012).

[161] R. Nandkishore and A. V. Chubukov, Phys Rev B 86, 115426 (2012).

[162] G.-W. Chern, R. M. Fernandes, R. Nandkishore, and A. V. Chubukov, Phys

Rev B 86, 115443 (2012).

[163] G.-W. Chern and C. D. Batista, Phys Rev Lett 109, 156801 (2012).

[164] M. L. Kiesel, C. Platt, and R. Thomale, Phys Rev Lett 110, 126405 (2013).

[165] A. V. Maharaj, R. Thomale, and S. Raghu, Phys Rev B 88, 205121 (2013).

[166] C. Nayak, Phys Rev B 62, 4880 (2000).

[167] C. Weeks and M. Franz, Phys Rev B 81, 085105 (2010).

[168] A. G. Grushin, E. V. Castro, A. Cortijo, F. de Juan, M. A. H. Vozmediano, and

B. Valenzuela, Phys Rev B 87, 085136 (2013).

[169] J. Wen, A. Rueegg, C. C. J. Wang, and G. A. Fiete, Phys Rev B 82, 075125

(2010).

[170] Q. Liu, H. Yao, and T. Ma, Phys Rev B 82, 045102 (2010).

[171] Y. Zhang, Y. Ran, and A. Vishwanath, Phys Rev B 79, 245331 (2009).

[172] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys Rev B 86, 115112 (2012).

[173] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys Rev B 83,

205101 (2011).

[174] A. A. Burkov, M. D. Hook, and L. Balents, Phys Rev B 84, 235126 (2011).



300 BIBLIOGRAPHY

[175] A. A. Burkov and L. Balents, Phys Rev Lett 107, 127205 (2011).

[176] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys Rev Lett 108, 266802

(2012).

[177] F. D. M. Haldane, Phys Rev Lett 93, 206602 (2004).

[178] J.-M. Hou, Phys Rev Lett 111, 130403 (2013).

[179] M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys Rep 496, 109

(2010).

[180] S. Gopalakrishnan, P. Ghaemi, and S. Ryu, Phys Rev B 86, 081403 (2012).

[181] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys Rev B 88, 085406 (2013).

[182] K. Sun and E. S. Fradkin, Phys Rev B 78, 245122 (2008).

[183] T. L. Hughes, E. Prodan, and B. A. Bernevig, Phys Rev B 83, 245132 (2011).

[184] L. Fu and C. L. Kane, Phys Rev B 76, 045302 (2007).

[185] E. V. Castro, A. G. Grushin, B. Valenzuela, M. A. H. Vozmediano, A. Cortijo,

and F. de Juan, Phys Rev Lett 107, 106402 (2011).

[186] M. Serbyn and P. A. Lee, Phys Rev B 87, 174424 (2013).

[187] X.-G. Wen, F. Wilczek, and A. Zee, Phys Rev B 39, 11413 (1989).

[188] S. Chakravarty, R. Laughlin, D. Morr, and C. Nayak, Phys Rev B 63, 094503

(2001).

[189] G. Kotliar, Phys Rev B 37, 3664 (1988).

[190] P. Kotetes and G. Varelogiannis, Epl-Europhys Lett 84, 37012 (2008).

[191] C.-H. Hsu, S. Raghu, and S. Chakravarty, Phys Rev B 84, 155111 (2011).

[192] W. Cho, R. Thomale, S. Raghu, and S. A. Kivelson, Phys Rev B 88, 064505

(2013).

[193] C. Chamon, C.-Y. Hou, R. W. Jackiw, C. Mudry, S.-Y. Pi, and A. Schnyder,

Phys Rev Lett 100, 110405 (2008).

[194] B. Seradjeh, C. Weeks, and M. Franz, Phys Rev B 77, (2008).

[195] B. Seradjeh and M. Franz, Phys Rev Lett 101, (2008).



BIBLIOGRAPHY 301

[196] K. S. Novoselov, A. K. Geim, A. V. Morozov, D. Jiang, Y. Zhang, S. V.

Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

[197] C.-Y. Hou, C. Chamon, and C. Mudry, Phys Rev Lett 98, (2007).

[198] A. Cortijo, A. G. Grushin, and M. A. H. Vozmediano, Phys Rev B 82, 195438

(2010).

[199] G. W. Semenoff, Phys Rev Lett 53, 2449 (1984).

[200] C. W. J. Beenakker, Rev Mod Phys 80, 1337 (2008).

[201] K. Asano and C. Hotta, Phys Rev B 83, 245125 (2011).

[202] J. L. Manes, F. Guinea, and M. A. H. Vozmediano, Phys Rev B 75, (2007).

[203] N. M. R. Peres, Rev Mod Phys 82, 2673 (2010).

[204] J. L. Manes, Phys Rev B 76, 045430 (2007).

[205] D. M. Basko, Phys Rev B 78, 125418 (2008).

[206] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Int J Mod Phys B 21, 4611

(2007).

[207] H. M. Guo and M. Franz, Phys Rev B 80, 113102 (2009).

[208] L. Messio, C. Lhuillier, and G. Misguich, Phys Rev B 83, 184401 (2011).

[209] G.-W. Chern, A. Rahmani, I. Martin, and C. D. Batista, arXiv (2012).

[210] H. Ishizuka and Y. Motome, Phys Rev B 87, 081105 (2013).

[211] M. Daghofer and M. Hohenadler, arXiv (2013).



302 BIBLIOGRAPHY



SAMENVATTING

Voor een groot aantal vaste stoffen geldt dat hun eigenschappen slechts kunnen wor-

den begrepen door de (soms sterke) wisselwerking tussen de elektronen in die vaste

stof in beschouwing te nemen. Wisselwerkingen ofwel interacties tussen de elektro-

nen, voortvloeiend uit de repulsieve Coulomb-kracht, zijn namelijk verantwoordelijk

voor een grote verscheidenheid aan fysische verschijnselen en materiaaleigeschap-

pen. Men kan denken aan Mott-isolatie, diverse vormen van magnetisme, orbitaal-

ordening, ferro-elektriciteit en supergeleiding. In dit proefschrift bestuderen we in-

teracties tussen elektronen op verschillende manieren en kijken we specifiek naar het

karakter van de elektronische grondtoestand.

In het eerste deel van dit proefschrift bestuderen we de wisselwerking tussen

gelokaliseerde elektronen en anderzijds elektronen die door het kristalrooster kun-

nen bewegen. Gelokaliseerde elektronen behoren toe aan een specifiek atoom in het

kristalrooster en vormen (gelokaliseerde) spin momenten. Een dergelijke wisselwerk-

ing zorgt er in het algemeen voor dat de gelokaliseerde spin momenten de neiging

hebben allemaal in dezelfde richting te wijzen, dat wil zeggen een “ferromagne-

tische” toestand te realiseren. De interactie tussen de gelokaliseerde spin momenten

zelf daarentegen, is van “anti-ferromagnetische” aard en heeft daarom de neiging om

deze spin momenten in tegenovergestelde richting te laten wijzen. Het systeem kan

niet tegelijk aan beide neigingen toegeven omdat ze met elkaar in strijd zijn. Af-

hankelijk van de materiaal-specifieke relatieve grootte van die twee met elkaar strij-

dige interacties vindt het systeem een middenweg. Een dergelijk compromis kan lei-

den tot nieuwe en interessante magnetische en elektronische toestanden. Voor zowel

ferromagnetische en anti-ferromagnetische toestanden kunnen we altijd een as vin-

den waarlangs we alle spins kunnen leggen. Dat soort toestanden heten “collineair”:

alle spins liggen op één lijn. Toestanden waarvoor dat niet geldt, maar waarvoor alle

spins in één vlak liggen heten “coplanair” (coplanar). Dan zijn er nog toestanden

waarvoor ook dat laatste niet geldt, en die worden doorgaans aangeduid met de term

“niet-coplanair” (non-coplanar). Zulke toestanden zijn zeldzaam, maar kunnen juist

ontstaan als gevolg van met elkaar strijdige interacties.



In de hoofdstukken twee tot en met vier laten we zien hoe nieuwe interessante

magnetische toestanden worden gevormd als compromis tussen met elkaar strijdende

interacties. Een belangrijke factor bij het vinden van een dergelijk compromis blijkt

de structuur van het kristalrooster te zijn. Als het kristalrooster “gefrustreerd” is geeft

dat vaak aanleiding tot niet-coplanaire toestanden. De magnetische energie van een

verzameling spins op een rooster wordt meestal uitgedrukt als som over de energie

van naburige paren spins. Een gefrustreerd rooster is een rooster waarvoor geldt dat

de magnetische energie niet voor elk paar naburige spins minimaal kan zijn. Hoofd-

stuk drie bespreekt de spin-elektron interactie voor een hexagonaal grafeen-rooster,

ook wel kippengaasrooster genoemd, en dat is een voorbeeld van een rooster dat juist

niet gefrustreerd is. Hoofdstuk vier behandelt vervolgens het gefrustreerde schaak-

bordrooster (in het Engels “checkerboard”). Niet alleen is dit een voorbeeld van een

gefrustreerd rooster, het heeft ook de eigenschap dat de magnetische interactie tussen

de spins geen unieke toestand selecteert die de laagste energie heeft. Er bestaat een

hele verzameling magnetische toestanden die de totale magnetische energie mini-

maliseren. Elektronen die met de gelokaliseerde spins wisselwerken veranderen dat

en kiezen een speciale toestand als unieke grondtoestand.

Waarom zijn deze bijzondere magnetische toestanden die onstaan door de wissel-

werking van gelokaliseerde spins en niet-gelokaliseerde elektronen interessant? De

reden is de volgende: als de spins niet allemaal in een vlak liggen (een niet-coplanaire

toestand) en de elektronen door deze magnetische toestand bewegen, dan lijkt het

voor hen net alsof ze door een echt magneetveld bewegen. Van elektronen in een

magneetveld weten we dat dit leidt tot de speciale Landau-kwantisatie van de en-

ergieën en het Quantum Hall Effect. Het Quantum Hall Effect kan ook optreden

zonder magneetveld in het geval elektronen met spins wisselwerken die een mag-

neetveld nabootsen. Die eigenschap maakt van de materialen waarin dit verschijnsel

voorkomt topologische isolatoren. Topologische isolatoren zijn elektrisch isolerende

materialen die speciale geleidende randtoestanden hebben.

In het tweede deel van dit proefschrift gaan we een stap verder en kijken we naar

mogelijkheden om niet alleen het Quantum Hall Effect zonder magneetveld na te

bootsen in magnetische materialen, maar het Fractionele Quantum Hall Effect. Het

Fractionele Quantum Hall Effect in een twee-dimensionaal elektrongas ontstaat als

gevolg van de sterke interactie tussen elektronen in het laagste “Landau-level”, de

volkomen vlakke elektronenband die onstaat als gevolg van het magneetveld. Nu we

weten dat een dergelijke elektronenband ook kan ontstaan zonder magneetveld, rijst

de vraag of de mogelijkheid bestaat dat effectieve interacties tussen elekotronen in

die band tot een Fractioneel Quantum Hall Effect kunnen leiden. Op die vraag wordt

in de hoofstukken vijf tot en met zes ingegaan en we tonen aan dat die mogelijkheid

inderdaad bestaat.

In het derde deel van dit proefschrift kiezen we een ander perspectief om het effect
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van elektron correlaties te onderzoeken. Het vetrekpunt is de vrije bandenstructuur

van het materiaal, die afhangt van het kristalrooster. De dichtheid van electronen

bepaalt het Fermi-oppervlak en we stellen de vraag hoe interacties de bandenstruc-

tuur dicht bij dat Fermi-oppervlak veranderen. We gaan ervan uit dat de interacties

tussen elektronen aanleiding geven tot elektronische ordening die beschreven kan

worden met dichtheidsgolven. Dat kunnen ladingsdichtheidsgolven, spindichtheids-

golven, maar ook paardichtheidsgolven of fluxdichtheidsgolven zijn. Al deze dicht-

heidsgolven klassificeren we op grond van de roostersymmetrieën die zij behouden

of breken. Vervolgens laten we voor zowel roosters met dezelfde symmetrie als een

vierkant rooster, als roosters met dezelfde symmetrie als een driehoeksrooster zien

dat de symmetrie van een dichtheidsgolf al heel veel vertelt over de elektronische

eigenschappen van de dichtheidsgolf. In het bijzonder leert de symmetrie van de

dichtheidsgolf ons veel over het topologische karakter van de bandenstructuur die bij

de dichtheidsgolf hoort. Daarmee kunnen we een licht laten schijnen op de manier

waarop, en onder welke omstandigheden, interacties tussen elektronen topologische

toestanden der materie induceren.
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Stellingen

behorende bij het proefschrift

Integer and Fractional Quantum Hall effects in Lattice Magnets

1. Meetkundige frustratie van interacties vloeit niet uitsluitend voort uit de struc-

tuur van een kristalrooster, maar kan ook ontstaan als gevolg van een competi-

tieve wisselwerking tussen enerzijds gelokaliseerde magnetische momenten en

anderzijds bewegende elektronen in een kristalrooster dat niet gefrustreerd is.

dit proefschrift, hoofdstuk 4

2. Met elkaar wisselwerkende gelokaliseerde magnetische momenten en bewe-

gende elektronen in een driehoekig kristalrooster, beschreven met een effectief

Kondo-rooster model, kunnen leiden tot een elektronische grondtoestand die

equivalent is met de “Quantum Hall”-toestand. In het geval de bewegende

elektronen zich in verschillende orbitalen bevinden, kan hun bandenstructuur

de Quantum Hall Landau levels zodanig nabootsen, dat effectieve interacties

binnen een dergelijke band een “Fractional Quantum Hall”-toestand induceren.

dit proefschrift, hoofdstuk 5, 6 en 7

3. Dichtheidsgolven van verschillende aard, zoals ladings-, paar- of fluxdicht-

heidsgolven, zijn condensaten van deeltjes en gaten die geı̈nduceerd worden

door wisselwerking tussen elektronen. Door alle mogelijke dichtheidsgolven te

classificeren op basis van de symmetrieën van het kristalrooster kan men sterke

uitspraken doen over de eigenschappen van de elektronische grondtoestand,

in het bijzonder het “gemiddelde veld”-spectrum van deze dichtheidsgolven,

zonder verdere vergelijkingen op te lossen.

dit proefschrift, hoofdstuk 9



4. Symmetrische spindichtheidsgolven op roosters met hexagonale symmetrie kun-

nen worden verkregen uit de symmetrische ladingsdichtheidsgolven. De elek-

tronische eigenschappen van deze spindichtheidsgolven hangen niet af van de

specifieke structuur van het rooster, maar slechts van de transformatie-eigenschappen

onder de roostersymmetriegroep.

dit proefschrift, hoofdstuk 10

5. De voorspelling van chirale spintoestanden op roosters met hexagonale sym-

metrie is zeer interessant en het wordt hoog tijd voor een experimentele beves-

tiging daarvan.

6. De ontdekking van topologische toestanden van materie en in het bijzonder

de topologische isolatoren illustreert hoe vaste stoffen dikwijls de laboratoria

zijn waar concepten uit de hoge-energie fysica kunnen worden geobserveerd

en getest.

Hasan & Kane, Rev. Mod. Phys. 82, 3045 (2010); Qi & Zhang, Rev. Mod.

Phys. 83, 1057 (2011)

7. Het heeft de belangstelling voor topologische isolatoren behoorlijk geholpen

dat er niet lang na hun ontdekking materialen als zodanig geı̈dentificeerd zijn

in het experiment.

8. Het kan heel gunstig zijn om als theoretisch natuurkundige voor te lopen op het

experiment, maar de vraag is hoe ver.

9. “Iets kan zijn verzonnen en daardoor juist bestaan. Dat soms iets niet verzon-

nen is, neemt men zomaar aan.”

Herman Finkers, uit “Na de pauze”

10. Geld wordt niet verdiend of verloren, maar slechts verplaatst, van de ene illusie

naar de andere.

Jörn Venderbos

Leiden, maart 2014




