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1.1 Atherosclerosis of the carotid artery

Atherosclerosis is the primary cause of heart disease and stroke. These cardiovascular
diseases (CVD) are the leading cause of death in the Western world and accounted for 29%
of all deaths in 2010 in The Netherlands. Other major causes of death in The Netherlands
are cancer (31%) and chronic lower respiratory disease (10%) [1]. Due to an increased use
of evidence-based medical therapies and due to changes in risk factors in the population
attributable to lifestyle and environmental changes a decline of 65% in CVD deaths was
achieved from 1950 to 2011. Additionally, the duration of hospital admission was almost
halved in the period from 1994 to 2010. In 2007, the cost of CVD in the Netherlands was
9,3% of the total healthcare budget [2].

Atherosclerosis is a progressive systemic disease which, at an early stage, is character-
ized by the accumulation of lipids, inflammatory cells, and scar tissue in the vessel wall
of large arteries, and, at a later stage, by the formation of plaque lesions inside the ves-
sel wall [3] (Fig. 1.1). Initially, the vessel accommodates for the expanding lesions inside
the vessel wall by an enlargement of the outer wall (outward remodeling) [4]. When the
plaque burden exceeds the capacity of the artery to remodel outward, inward remodeling,
reduction of the lumen size, occurs causing narrowing of the vessel lumen [5]. In case of
severe narrowing, a stenosis, the artery can be occluded blocking the blood stream.

Over time, lesions can progress into larger, complicated plaques. Atherosclerotic
plaques are separated into two categories: stable and unstable plaque, the latter also
called vulnerable plaque. Stable plaques consist of a thick fibrous cap, which is the layer
of extracellular matrix separating the lesion from the arterial lumen, and are rich in extra-
cellular matrix and smooth muscle cells. Vulnerable plaques are rich in macrophages and
foam cells and the fibrous cap is usually weak and prone to rupture [6]. In patients with
vulnerable plaques, rupture of the thin fibrous cap causes the plaque contents to enter
the vessel lumen possibly causing myocardial infarction or stroke.

Individuals who develop atherosclerosis tend to develop it in a number of different

Figure 1.1: a) normal artery, b) buildup of atherosclerotic plaque inside the vessel wall
causes narrowing of the lumen. (image from commons.wikimedia.org)
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Figure 1.2: a) Overview of the common, internal and external carotid artery in the head
and neck, b) cross-section of a normal carotid artery bifurcation, c) carotid bifurcation
with plaque buildup and reduced blood flow (image from commons.wikimedia.org).

types of arteries including the carotid artery. This artery is located in the neck and supplies
the head and neck with oxygenated blood. Inside the neck, the common carotid artery
(CCA) bifurcates into the internal carotid artery (ICA) and the external carotid artery (ECA)
(Fig. 1.2). The ICA runs deeper towards the skull supplying the brain with blood. The ECA
runs closer to the skin and splits into numerous branches that supply the neck and face.
The bifurcation is a common site for atherosclerosis and the buildup of atherosclerotic
plaque can narrow the lumen of the CCA and ICA, decreasing blood flow to the brain, or
a plaque can rupture causing its contents and blood cloths to travel through the circula-
tion to blood vessels in the brain. As the vessel gets smaller, the particles can get stuck
inside the vessel restricting blood flow to parts of the brain. A disruption in blood flow, an
ischemia, causing a shortage of oxygen and glucose in areas in the brain, can result in tem-
porary loss of vision, difficulty speaking, and weakness, numbness or tingling, usually on
one side of the body. This ischemia can be either temporary, yielding a transient ischemic
attack (TIA), or permanent resulting in a stroke. A TIA doesn’t generally cause permanent
brain damage but is considered as a serious warning sign of stroke.

Symptoms of atherosclerosis in the carotid artery are narrowing of the lumen, a thick-
ened vessel wall and the presence of atherosclerotic plaques. There are often no signs
of atherosclerosis in the carotid artery until the occurrence of a TIA or stroke. Diagnos-
tic procedures for carotid artery atherosclerosis are a physical examination and several
tests using noninvasive imaging techniques. During physical examination a stethoscope
is used to listen to the arteries in the neck. If an abnormal sound is heard over an artery,
it may reflect turbulent blood flow which could indicate a stenosis. Non invasive imag-
ing techniques for diagnosis of atherosclerosis include duplex ultrasound imaging, com-
puterized tomography angiography (CTA), magnetic resonance angiography (MRA), and
magnetic resonance imaging (MRI) [7]. Duplex ultrasound uses high-frequency sound
waves to generate real-time images of the structure of the carotid artery. The static images
can show the degree of a stenosis and the presence of plaque lesions, the dynamic images
can be used to detect and quantify a stenosis based on the speed of the blood through
the blood vessel. CTA uses a CT-scanner and the administration of contrast agent to gen-
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erate a 3D image of the arterial structure which can accurately depict stenosis. Similarly,
MRA aims to depict blood inside the body and is used for the evaluation of carotid artery
stenosis. The application of multiple MRI contrast weightings enables the identification
and classification of individual plaque components [8]. A more detailed description of
the diagnosis of atherosclerosis of the carotid artery by MRA and MRI is given in the next
section. Other, invasive, imaging techniques are conventional angiography, digital sub-
traction angiography, intravascular ultrasound and optical coherence tomography. These
techniques require the administration of a contrast medium or the use of a catheter, are
time consuming and include the risk of complications.

Different options are available to treat atherosclerosis. These options include lifestyle
changes, medication, and surgery. Life style changes involve following a healthy diet to
reduce high blood pressure or high blood cholesterol and to maintain a healthy weight,
an increase in physical activity, quit smoking, and managing stress. Medication includes
drugs to lower the cholesterol level or blood pressure and medicines to prevent blood
clots from forming. In case of severe atherosclerosis, surgical procedures to treat carotid
artery disease are carotid endarterectomy (CEA) or carotid artery stenting. In a CEA pro-
cedure, an incision is made on the side of the neck, then the carotid artery is opened
and atherosclerotic plaque buildup on the inside of the carotid artery wall is surgically
removed, restoring normal blood flow to the brain. Carotid artery stenting is a minimally
invasive procedure performed through catheter techniques. Using catheters a small bal-
loon is inflated in the narrowed area of the carotid artery opening the artery for improved
blood flow. A stent is then inserted into the newly-opened area to help keep the artery
from narrowing or closing again.

Stroke, often caused by carotid atherosclerosis, results in considerable morbidity, and
mortality, and costs. Prevention is essential. Patient symptomatology and degree of lu-
minal stenosis are currently the main grounds to perform CEA. However, many patients
undergo CEA with its attendant risks without taking advantage, whereas in other patients,
with a low to moderate degree of stenosis, CEA is probably incorrectly withheld [7]. There-
fore, the focus has changed from stenosis evaluation towards the assessment of vulnera-
ble plaque as morphological features of the plaque itself other than the degree of lumi-
nal narrowing may be important to identify patients at high risk of stroke. Advances in
carotid MRI have enabled the noninvasive assessment of a wide-range of parameters as-
sociated with atherosclerotic disease [9]. Moreover, these parameters are possible can-
didate biomarkers which can be used to evaluate new treatment methods or outcome of
clinical trials.

1.2 Magnetic resonance imaging

The key advantage of MRI over US and CTA is that MRI has the ability to characterize
morphological, structural, and compositional features of atherosclerotic plaque in vivo
[9, 10]. Additionally, MRA provides 3D images of the vessel lumen, allowing detection and
quantification of a luminal stenosis. Furthermore, MRI is noninvasive, does not involve
ionizing radiation, and can be repeated serially to track progression or regression [11].
Drawbacks of MRI are long scanning times and the high cost of the MRI system.

Imaging and plaque characterization of carotid arteries is relatively simple compared
to other major arteries such as the coronary or the femoral arteries. The carotid arteries
are superficial and not subject to significant motion of moving organs [12]. Most imaging
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MRA

MR Vessel wall imaging

Wall dimensions Plaque characterization

Lumen dimension

Figure 1.3: Schematic representation of atherosclerotic disease progress in relation to
magnetic resonance imaging techniques and extractable metrics.

of the vessel wall by MRI has been performed on 1.5T scanners using a carotid coil result-
ing in a voxel size in the order of 0.4 x 0.4 x 3 mm. More recent studies are performed using
a 3.0T scanner enabling increased image quality and resolution (e.g. 0.3 x 0.3 x 2 mm). Be-
cause the carotid arteries are superficial structures, the use of an MR phased array surface
coil has shown to be extremely effective. Coil usage provides higher resolution and higher
signal to noise ratio reducing scanning time [13].

A typical MRI protocol to study the status of atherosclerosis in the carotid artery con-
sists of the application of multiple MR sequences. First a survey scan, generally a fast
sequence, is used to get an anatomical overview of the area of interest. Based on this scan,
the carotid artery of interest is identified and further sequences are planned in which the
imaging volume is centered on the area of interest (e.g. the bifurcation, the atheroscle-
rotic plaque, or the stenosed area). Optionally a TOF or MRA is acquired to enable steno-
sis assessment. Subsequently, several additional vessel wall acquisitions are planned and
acquired to obtain information about the vessel wall morphology and plaque composi-
tion. These vessel wall images are usually scanned perpendicular to the carotid artery and
typically have a high resolution in-plane (0.2-0.4 mm) and a much lower through-plane
resolution (2-3 mm). As illustrated in Figure 1.3, the analysis of both the MRA and vessel
wall images allows the assessment of lumen and vessel wall dimensions as well as char-
acterization of the plaque components. The duration of a multi-sequence MRI protocol,
depending on the number of sequences, can be between 20 and 60 minutes.

Imaging pulse sequences for vascular MRI can be divided into bright blood and dark
blood sequences. In bright blood, flow signal enhancement techniques are used to visu-
alize flowing blood while in black blood imaging the signal of the flowing blood is elim-
inated. Bright blood techniques are used in Phase Contrast MRA and 3D time-of-flight
(TOF) to visualize the lumen and stenosis evaluation in the carotid artery. Quantifica-
tion of lumen size is difficult due to limitations of MRA imaging such as slow blood flow
near the vessel wall and irregular blood flow patterns in the bifurcation. Both effects can
result in unwanted signal loss. The TOF imaging technique can show specific contrast fea-
tures which, in conjunction with black blood imaging, can be helpful in identifying certain
plaque components [13]. Alternatively, contrast-enhanced MRA can be used in which an
MRI contrast agent is injected and images are acquired during the first pass of the agent
through the arteries. The use of contrast-enhanced MRA is more complex, but does result
in images of higher quality than regular MRA or TOF imaging.
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(a) T1w (b) Magnetization-prepared rapid ac-
quisition gradient echo

(c) 3D TOF

(d) T2w (e) T1w post contrast

Figure 1.4: Images from a 3.0T multi-sequence MRI protocol including manual segmen-
tations (orange = calcification, yellow = lipid-rich necrotic core, blue = presence of in-
traplaque hemorrhage).

Black blood imaging techniques are used to create multiple contrast weightings with
the common goal to visualize the vessel wall. Based on these contrast weightings, individ-
ual components inside the plaque can be identified. Common black blood sequences are
T1-, T2-, and proton density (PD) weighted image contrasts, where T1w and PDw images
are especially helpful for evaluation of vessel wall morphology and show good contrast for
fibrous matrix and lipid core [13]. Often a second T1w sequence is acquired after adminis-
tration of gadolinium-based contrast agent which improves the reproducibility and quan-
tification of the lipid-rich necrotic core [9]. Another approach is to develop sequences
which are tailored to identify a specific plaque component. Examples are magnetic reso-
nance direct thrombus imaging [14], magnetization-prepared rapid acquisition gradient
echo [15], and diffusion-weighted magnetic resonance imaging for the detection of lipid-
rich necrotic core [16]. A multi-contrast approach with bright and dark blood sequences
enables comprehensive characterization of individual plaque components. An example is
shown in Figure 1.4.
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1.3 Image derived measures of atherosclerosis

Application of an extensive multi-contrast MRI protocol allows the assessment of mor-
phological, structural and plaque composition features. MRA techniques provide infor-
mation about the vessel lumen enabling stenosis detection and quantification. MRI vessel
wall imaging provides detailed information of the vessel wall and can be used to quantify
morphological features such as average, minimum and maximum vessel wall thickness,
vessel wall area, vessel wall volume and derived metrics such as eccentricity or plaque in-
dex. Plaque index, also referred to normalized wall index, is the ratio between vessel wall
volume against the volume of the whole vessel (lumen and vessel wall volume). Structural
features of the plaque are the status of the fibrous cap and the presence of an ulceration.
Individual plaque components, such as calcification, lipid, intraplaque hemorrhage (IPH),
and loose matrix can be identified and quantified using multi-contrast vessel wall images.
Volumes of different tissue components inside the plaque can be measured and also the
type of plaque according to the AHA classification [17], which is a derived measure based
on the plaque composition, can be obtained.

Measurement of vessel wall dimensions can be used to detect early onset of
atherosclerosis and follow-up measurements of vessel wall dimensions can be used
as an endpoint in clinical trials assessing the effect of pharmacological treatment of sys-
temic atherosclerosis [18]. The fibrous cap status and cap thickness may identify patients
at risk for stroke, which may lead to better patient selection for surgical intervention [19].
The vulnerability of an atherosclerotic plaque, the risk to rupture, can be assessed by
evaluating the size of the plaque and it’s composition [20].

1.4 Manual image analysis

The current practice in clinical research to derive atherosclerotic features from the multi-
contrast vessel wall imaging data is manual processing of the images. Several processing
steps, such as lumen boundary detection, outer wall boundary detection, multi-contrast
image registration, and plaque segmentation, are needed for a complete analysis of all
image data. A common workflow to analyze the image data is as follows:

1. One of the contrast-weightings is defined as reference. Usually this is an image with
clear depiction of the vessel wall, in most studies a T1w image is used.

2. In case the other contrast weightings were acquired at a different resolution or ge-
ometry, these contrast weightings are processed to match the resolution and geom-
etry of the reference image using multiplanar reconstruction.

3. The lumen boundary and outer wall boundary are manually delineated in the refer-
ence image and copied to the other sequences.

4. To correct for possible patient movement while scanning, the other MR sequences
are manually aligned to the reference image by applying a combination of through-
plane translation of the complete image stack and in-plane translations for the in-
dividual image slices. The expert takes into account the appearance of the images
and uses the lumen and outer wall contours as a reference.
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Figure 1.5: Screenshot of the software program VesselMass which can be used for manual
segmentation of the multi-sequence MRI images.

5. Once all images are aligned, regions of plaque can be identified and characterized
by evaluating the relative signal intensities in the available imaging sequences. Vari-
ous schemes for plaque classification have been reported for different imaging pro-
tocols, which can be used to identify regions of calcification, lipid core, IPH, ulcera-
tion, loose matrix and fibrous tissue [19, 21–24]. Alternatively, histological informa-
tion can be used to aid to segmentation of the different plaque components.

The manual image analysis results in an aligned set of vessel wall images including
manual segmentation of the vessel wall and plaque components (e.g. Fig. 1.4. All mea-
sures described in the previous section can be extracted from the manual segmentation.
To perform the manual image analysis a software program is used which contains func-
tionally to view, align and segment the images. An example of such a software program is
VesselMass [25], see Fig. 1.5.

Finally, serial MRI is used to assess progression or regression of atherosclerosis by
comparing vessel wall volume, presence and volume of atherosclerotic plaque compo-
nents over time. Serial MRI is used to study the natural progression of atherosclerosis [26],
effectiveness of drug therapy [27, 28], and the immediate and long-term effects of IPH on
plaque progression in the carotid artery [29].

1.5 Automated image analysis

Manual image analysis is, due to the large amount of image data, a time-consuming pro-
cedure and is subject to inter- and intra-observer variation. Consequently, computerized
segmentation, registration and classification techniques are being investigated to over-
come these limitations. The application of computerized methods is a difficult task due
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to the nature and quality of the vessel wall images, the difficulty of obtaining a gold stan-
dard and variation in scan protocols between scanners and medical centers. Imaging of
the carotid vessel wall requires sub-millimeter resolution which is achieved at the expense
of signal-to-noise ratio and is subject to image artifacts due to blood flow and physio-
logic motion and intensity inhomogeneity caused by the use of surface coils [30]. A gold
standard is often not available as the acquisition of a gold standard, such as histology, re-
quires the patient to undergo surgery. In practice, manual segmentation, which suffers
from inter- and intra-observer variation, is used as a surrogate gold standard. Another
challenge is introduced by the variation in scan protocols between different scanners and
hospitals. A method developed on a set of MR images from one scanner, might perform
poorly on other images because of differences in contrast between the images. Especially
methods for the classification of plaque components, which heavily rely on image con-
trast, are hindered by variation in scan protocols. Therefore, robust computerized meth-
ods are needed which can cope with these challenges and are applicable to a wide range
of MR images.

In the past, different steps of the manual segmentation process have been automated.
Automated segmentation methods for lumen and outer wall boundary segmentation have
been investigated. Reported methods range from interactively guiding a segmentation
algorithm [31,32] to approaches requiring one user interaction per image slice [25] or one
interaction to start the complete segmentation process [33, 34]. Often an MRA or TOF
image is used to perform a rough segmentation of the lumen contours which are then
copied to a vessel wall sequence in which the lumen contours are refined. Subsequently
the outer wall boundary contour is detected with the aid of the information of the lumen
contour. More recent methods focus on detecting the lumen and outer wall boundary
contours simultaneously [35, 36].

Automated image registration methods have been developed to align the multi-
contrast vessel wall images, the fourth step in the manual analysis process. Image
registration was mainly performed in 2D ignoring any patient movement in the through-
plane direction [37–40]. More recent studies applied image registration in 3D allowing for
translation and rotation in all three directions [41,42]. In most studies, a region of interest
around the carotid artery, based on the lumen and outer wall boundaries, was used and
image similarity metrics based on correlation, mutual information, or gradients in the
image were used.

The final step in the analysis is the identification and classification of plaque compo-
nents. Several methods for automated classification of plaque components in the carotid
artery have been described in literature, the majority employing statistical pattern recog-
nition techniques [25, 37, 38, 43]. Commonly a supervised classifier, which is trained on
features and classes extracted from example data, is employed to classify unseen image
data into different plaque components. Characteristic features are signal intensities and
edge information from the multi-contrast MR images, and morphological features such
as local vessel wall thickness and distance to the lumen or outer boundary of the vessel
wall. Before the extraction of signal intensity features, the MR images are normalized to
enabling inter-subject comparison. Preferable the classifier is trained on a training set
and tested on a independent test set. In case the size of the dataset is too small, cross
validation techniques, e.g. leave-one-patient-out, are used.

Currently, no computerized methods have been proposed to aid the comparison of
baseline and follow-up scans of serial MRI studies.
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1.6 Thesis overview

The main goal of this thesis is to develop methods for automated segmentation, regis-
tration and classification of the carotid artery vessel wall and plaque components using
multi-sequence MR vessel wall images. Automated analysis seeks to overcome the draw-
backs of manual segmentation in terms of accuracy, objectivity, reproducibility and time.
The new methods will be clinically validated on patient data and compared to existing
methods where possible.

The structure of the remaining part of this thesis is as follows. First, automated seg-
mentation of the lumen and outer boundary is discussed. Then, automated image regis-
tration is applied to align multi-sequence images and scans of multiple time points. The
third part focuses on several challenges related to the automated classification of plaque
components. Finally, we conclude the thesis by providing the summary, the conclusion
and a future outlook. A detailed overview of the next chapters:

In chapter 2 a new method for automated segmentation of the lumen and outer wall
boundaries in MR vessel wall studies of the common carotid artery was developed and
validated. This new segmentation method was developed using a 3D deformable vessel
model requiring only one single user interaction by combining 3D MR angiography and
2D vessel wall images.

Chapter 3 presents a method for carotid vessel wall volume quantification from MRI
which combines lumen and outer wall segmentation based on deformable model fitting,
described in chapter 2, with a learning-based segmentation correction step to correct for
systematic differences between the automated segmentation method and manual anno-
tations by the expert.

In chapter 4, we introduced automated image registration techniques to correct for
possible patient movement within one scanning session. Furthermore, in chapter 5, im-
age registration was used to align scans from serial MRI studies to enable visual assess-
ment of local changes in vessel wall thickness and progression or regression of different
plaque components over time.

In chapter 6, pattern recognition techniques were introduced to automatically detect
and quantify atherosclerotic plaque components based on in vivo MR imaging data of
the carotid artery in a multicenter study. A supervised classifier was trained using image
features from four MR sequences and morphological features from a training group of
20 patients. The classifier was applied to a testing group of 40 patients and results were
compared with the manual segmentation.

In chapter 7, we investigated the effect of new morphological features, image normal-
ization methods and the composition of the training data for automated plaque classifi-
cation and evaluated the reproducibility of automated classification versus manual seg-
mentation.

Chapters 8 and 9 focus on the evaluation of MR-sequences and the trade-off between
scan duration and automated image segmentation performance. In chapter 8 the im-
age contrast between different plaque components in several high field MR sequences are
evaluated using the Mahalanobis distance measure. In chapter 9 an objective method to
optimize the MR sequence set for plaque classification in carotid vessel wall images using
automated image segmentation is presented.

Chapter 10 provides discussions for each of the previous chapters. In each chapter a
new method was developed and the improvements over existing methods are discussed
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as well as directions for further research. Finally, a general conclusion is drawn and sug-
gestions for future work are given.





Chapter 2

Automatic lumen and outer wall
segmentation of the carotid artery using
deformable 3D models in MR
angiography and vessel wall images

This chapter was published in:

R. van ’t Klooster, P. J. H. de Koning, R. A. Dehnavi, J. T. Tamsma, A. de Roos, J. H. C. Reiber,
R. J. van der Geest. Automatic lumen and outer wall segmentation of the carotid artery
using deformable three-dimensional models in MR angiography and vessel wall images,
Journal of Magnetic Resonance Imaging, Volume 35, Issue 1, Pages 156−65, 2012.
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Abstract

Purpose: To develop and validate an automated segmentation technique for the detec-
tion of the lumen and outer wall boundaries in MR vessel wall studies of the common
carotid artery.

Materials and methods: A new segmentation method was developed using a three-
dimensional (3D) deformable vessel model requiring only one single user interaction by
combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a
3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed
to fit the underlying image data. Image data of 45 subjects was used to validate the
method by comparing manual and automatic segmentations. Vessel wall thickness and
volume measurements obtained by both methods were compared.

Results: Substantial agreement was observed between manual and automatic segmen-
tation; over 85% of the vessel wall contours were segmented successfully. The interclass
correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume.
Compared with manual image analysis, the automated method demonstrated improved
interobserver agreement and inter-scan reproducibility. Additionally, the proposed auto-
mated image analysis approach was substantially faster.

Conclusion: This new automated method can reduce analysis time and enhance repro-
ducibility of the quantification of vessel wall dimensions in clinical studies.



2.1. Introduction 15

2.1 Introduction

Atherosclerosis is a progressive disease which, at an early stage, is characterized by vessel
wall thickening causing outward remodeling, then narrowing of the lumen, and at a later
stage by the formation of plaque lesions inside the vessel wall [3]. In patients with un-
stable plaques, the thin fibrous cap can rupture causing the plaque contents to enter the
vessel lumen causing a stroke. Therefore, accurate assessment of the vessel wall dimen-
sions and composition of the vessel wall is essential for identifying patients at risk. The 3.0
Tesla (T) MRI offers high-resolution noninvasive imaging of the vessel wall of the carotid
artery. For quantitative assessment of the vessel wall morphology and plaque composi-
tion, contours describing the boundaries of the vessel wall are needed [38]. Vessel wall
thickness measurements have been shown to correlate well with ultrasound (US) intima
media thickness measurements (IMT) [33, 44, 45]. IMT has emerged as a marker for car-
diovascular disease and has been used as an endpoint in clinical trials assessing the effect
of pharmacological treatment of systemic atherosclerosis [46,47]. In turn, MRI is also used
in clinical trials [48,49], but compared with US, it offers the advantage that it can provide a
3D image of the vascular structure instead of a 2D image that is dependent on the angle of
insonation [45]. Other advantages of MRI over US are lower measurement variability [45],
enabling smaller sample sizes and potentially shorter study duration in clinical trials.

Currently, quantitative assessment of the vessel wall dimensions is based on manual
tracing of the lumen and outer wall boundaries, which is timeconsuming and subject
to inter- and intra-observer variation. Consequently, computerized segmentation tech-
niques have been developed to overcome these limitations. Reported methods range from
interactively guiding a segmentation algorithm [31, 32] to approaches requiring one user
interaction per imaging section [25] or one interaction to start the complete segmentation
process [33, 34]. Despite the advances in automated vessel wall contour detection tech-
niques, further improvements are needed to improve the accuracy, robustness and speed
of automated quantitative vessel wall analysis. Further improvements might be accom-
plished by applying 3D registration and segmentation techniques, instead of 2D methods
that process each slice independently of all other slices.

Accordingly, the purpose of this study was to develop a highly automated 3D image
segmentation technique for the detection of the lumen and outer wall boundaries in MR
vessel wall imaging studies of the common carotid artery.

We present an automatic segmentation method that uses combined Time of Flight
(TOF) MRA and vessel wall images to segment the vessel wall using deformable 3D tube
models. The combination of the two types of images potentially decreases user interac-
tion, and increases segmentation performance. By using a 3D approach, the image seg-
mentation can take advantage of information in neighboring slices in case there is little
image information in a slice, and in case of isotropic 3D datasets, the method can gain full
advantage of the extra available image information. The performance of this new method
is evaluated by comparing the automatic segmentations with manual segmentations of
carotid vessel wall imaging studies of 45 subjects. In addition, inter-observer variability,
as well as inter-examination reproducibility were investigated for both manual and auto-
mated assessment of vessel wall parameters.
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2.2 Materials and methods

Subjects

Forty-five adult subjects (56% male; 19-79 years old; mean age = 52 years) underwent a
carotid MRI on a 3T scanner (Achieva; Philips, Best, The Netherlands). A variation of car-
diovascular risks was present in the group, but none of the subjects had symptoms of car-
diovascular disease. Ten subjects, randomly chosen from the group of 45 subjects, were
imaged twice, at baseline (T0) and at a maximum of 28 days later (T1), resulting in a total of
55 MR studies. The subjects were imaged in the supine position with the neck positioned
at the isocenter of the magnet. In all subjects the left carotid artery was examined.

MR image acquisition

A scan protocol was applied, which was tailored to obtain a series of oblique axial slices
perpendicular to the course of the left common carotid artery starting at the level of the
flow divider and ending in the common carotid artery, as previously described by Alizadeh
Dehnavi et al [50]. Automated vessel wall contour detection was based on processing of
the TOF-MRA survey scan and high resolution vessel wall images. The TOF-MRA was ac-
quired with the following parameters: 20 contiguous transversal slices, fast gradient-echo
sequence, acquired pixel size = 1 mm x 1.23 mm x 5.0 mm, field of view (FOV) = 300 mm,
echo time (TE) = 3.8 ms, repetition time (TR) = 7.7 ms, and flip angle = 20◦. The parameters
for the vessel wall images, a black-blood sequence, were: an electrocardiograph triggered
dual IR spoiled segmented k-space FGRE sequence, 8 slices, no slice gap, acquired pixel
size = 0.46 mm x 0.46 mm x 2 mm, reconstructed pixel size = 0.27 mm x 0.27 mm x 2 mm,
FOV = 140 mm, TE = 3.6 ms, TR = 12 ms, and flip angle = 45◦. The black-blood sequence
was optimized to achieve maximum contrast between the carotid wall and the vessel lu-
men.

Automatic image segmentation

The automated segmentation algorithm is initialized by specifying the artery of interest
in the MRA image of the neck area. This image provides a global overview of the arterial
structure and allows users to easily identify the artery segment by manually indicating a
proximal and a distal point in one of the image slices or on the maximum intensity projec-
tion of the 3D volume. Based on these two points, the following five steps are performed
automatically, resulting in a segmented vessel wall in the vessel wall images: (1) Detection
of the arterial lumen in the MRA image; (2) Transfer and registration of the MRA lumen
segmentation to the vessel wall images; (3) Refinement of the lumen boundary in the ves-
sel wall images; (4) Estimation of initial outer wall boundary; (5) Detection of the outer
wall boundary in the vessel wall images.

In steps 1, 3, and 5, a segmentation algorithm based on the fitting of a 3D cylindrical
NURBS surface is used.

3D Cylindrical NURBS surface segmentation applied to carotid arteries

A 3D Cylindrical NURBS surface is used to model the anatomy of vascular structures [51,
52] (Fig. 2.1). This model possesses several advantageous properties, such as local control
of shape and the flexibility to describe both simple and complex objects. The surface is
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Figure 2.1: a) Cylindrical NURBS surface (red tube) with local change in shape enforced
by two control points (white points, the control points are connected by straight lines for
illustrative purpose). b) The 2D vessel wall image example showing image forces (white
lines) acting on the control points (white points) and the corresponding lumen contour
(red).

defined by several spatially distributed control points. Increasing the number of control
points allows the creation of more complex surfaces. By moving the control points (see
Fig. 2.1b), the surface can by relocated. For this application, the surface is relocated to fit
the underlying image data by iteratively moving the control points such that the surface is
moved toward edges in the image.

In this study, a tube model is initialized by creating multiple rings with control points
positioned perpendicular to the detected vessel axis. For each ring, the diameter and
number of control points must be specified. The fitting of the surface to the image data
is performed by iteratively moving the control points. The movement of a control point is
derived from image forces acting on nearby surface points. The closer the surface point
is to the control point, the more influence it has on the control point. In each iteration,
an image force is calculated at each surface point. This image force is the desired move-
ment to move the surface point to the structure of interest, for example, an edge, in the
image. The image force at each surface point is calculated as follows and is illustrated in
Figure 2.2: (i) A signal intensity (SI) profile along the surface normal, centered at the sur-
face point is obtained. The SI values are obtained by 3D linear interpolation of the image
information. (ii) The SI profile is analyzed by detecting the strongest edge in a particular
direction.The direction can either be positive, from low to high SI values, or negative, from
high to low SI values. If the direction is not set, the strongest edge is selected. (iii) The im-
age force vector for that surface point is then proportional to the distance of the strongest
edge with respect to the center of the SI profile multiplied by the surface normal.

The exact influence of the surface points on a control point can be calculated ana-
lytically from the description of the NURBS surfaces [53]. The closer the surface point
is located to a control point, the more influence it has on the control point. At the end
of each iteration, the image forces acting on the surface points are applied to the con-
trol points. Finally the position of the control points in each ring is constrained in such a
way that the ordering of the points remains unchanged and a minimum distance between
control points is enforced. The fitting algorithm can be adapted to a specific situation by
changing the width of the SI profile and by selecting a positive or negative edge direction.
The SI profile width represents the search range for edges in the image. If the initial tube
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Figure 2.2: a) Intermediate result of fitting the lumen tube. The green points are the sur-
face points, the white arrow shows the signal intensity (SI) profile along the surface nor-
mal. b) SI profile corresponding to the white arrow and detection of the strongest positive
edge.

surface is expected to be far from the final segmentation, a large SI profile width has to be
chosen.

Detection of the arterial lumen in the MRA image

The automatic image segmentation is initialized by the manual selected proximal and dis-
tal point specifying the artery segment of interest. Subsequently, a 3D curve inside the
arterial lumen and an estimation of the lumen diameter between the indicated points is
found using Wavefront propagation based on fast marching level sets [51, 54, 55]. A tube
model is initialized by generating rings with control points perpendicular to the curve and
fitted to the image data. Each ring was centered on the curve and the diameter was set to
the estimated lumen diameter obtained before. During the fitting, the control points were
allowed to move in 3D space, the width of the SI profile was set to 2 mm, the number of
iterations was 50 and the surface was fitted to edges in the image which are bright inside
the vessel model and dark outside.

Transfer and registration of the MRA lumen segmentation to the vessel wall images

The 3D MRA lumen segmentation is transferred to the 2D vessel wall slices by intersect-
ing the tube model with the vessel wall slices based on their known geometrical relation.
Subsequently, a 2D lumen contour is extracted for each vessel wall slice. Direct transfer of
the tube model to the vessel wall images is not possible because the locations of the con-
trol points do not correspond with the 2D slices. Also, the higher resolution of the vessel
wall images requires the usage of more control points to accurately describe the lumen
boundary. To compensate for possible patient motion during the scanning of the differ-
ent sequences, an automatic registration step is applied before the transfer of the MRA
lumen segmentation to ensure that the extracted lumen contours are correctly aligned to
the lumen boundaries in the vessel wall images.
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The automatic registration is based on the assumption that the lumen boundary is
a dominant circular structure in the vessel wall image near the transferred MRA lumen
contour. A Hough transform, which is an image processing algorithm that can be used
to detect circular structures, was applied to the vessel wall images to generate an image
that has high signal intensities at the center of circular structures. Subsequently, the 3D
MRA lumen tube was translated and rotated to include the highest responses from the
Hough transform inside the tube. Least squares optimization was used to find the best fit
resulting in a 3D tube which is registered to the vessel wall images. In case this registration
step was deemed unsuccessful, the user was able to correct the registration.

Refinement of the lumen boundary in the vessel wall images

The set of registered lumen contours was used to initialize a new tube model in the vessel
wall images. In each vessel wall slice, a ring with control points was created by placing
the control points equidistantly on the registered contour. The tube model is fitted to the
image data with the constraint that the control points were only allowed to move within
the image slice. The width of the SI profile was set to 2 mm, the number of iterations was
50 and the surface was fitted to edges in the image which are dark inside the vessel model
and bright outside. The result of this step is the lumen tube.

Estimation of the initial outer wall boundary

The lumen tube is intersected by the vessel wall slices and for each slice a 2D contour
is extracted. An estimate of the outer wall boundary is found by dilating these contours
from 0.5 to 2.0 mm in steps of 0.05 mm. For each step, the average edge strength under
the contour was calculated, taken into account an edge direction from bright to dark. The
dilated contour with the strongest average edge strength was selected as the initial outer
wall boundary for that slice. This process was repeated for every slice resulting in an esti-
mation of the outer wall boundary.

Detection of the outer wall boundary in the vessel wall images

The outer wall is detected in a similar manner as was done for the lumen boundary. Be-
cause the initial outer wall boundary is estimated at the position of the expected outer
boundary, the SI profile width was limited to 1 mm. The tube surface is fitted to edges in
the image which are bright inside the vessel model and dark outside. An example of the
fitting of the outer tube is given in Figure 2.3.

The final segmentation of the vessel wall is defined by the lumen tube and the outer
tube and is used to derive various quantitative carotid vessel wall parameters, described
below.

Manual image analysis

All images were manually analyzed using the VesselMASS software package [25], by an
experienced radiologist (M1). Ten scans, the T0 group, were analyzed by a second radiol-
ogist (M2). Each observer independently traced the lumen and outer wall boundaries of
the vessel wall in the axial slices of the black-blood sequence. The obtained contours from
observer M1 were used as the gold standard.
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Figure 2.3: Model fitting process for the outer vessel wall shown in 2D. a) T1W image slice.
b) First iteration showing the image forces that act on the control points (white). c) Inter-
mediate result. d) The final result after 50 iterations.

Automatic image analysis procedure

The same set of images was analyzed with the automatic image segmentation method.
To study the effect of initialization on the segmentation result, two users (A1 and A2) in-
dependently analyzed the T0 subset of 10 carotid arteries with the automatic image seg-
mentation algorithm. The automatic image segmentation method was implemented in
C++ and all analyses were performed on a standard PC with a quad-core processor run-
ning at 2.4 GHz (Intel Q6600) and 4 GB of RAM. For both the manual and automatic image
analysis, the duration of the analysis was recorded.

Definition of quantitative parameters

Vessel wall thickness and volume measurements

The vessel wall thickness (VWT) was derived automatically by first determining the cen-
terline between the lumen and outer contour in each vessel wall slice. Then 100 chords
connecting the lumen and outer wall contour were equidistantly sampled perpendicular
to that centerline. For each slice, the median of the length of these 100 chords was cal-
culated, and the average of the measurements of all slices resulted in the VWT. The user
was able to visualize the individual VWT measurement chords in 3D by color mapping the
VWT on the segmentation of the lumen (Fig. 2.4) enhancing visual inspection of the vessel
structure. The vessel wall volume (VWV) was calculated by summing the vessel wall area
in each slice and then multiplying that sum by the slice thickness.

Contour comparison metric

To compare the performance of the automatic segmentations with the reference standard
in more detail, the degree of similarity (DoS) was calculated for the contours in each an-
alyzed image slice [56]. The DoS is defined as the percentage of points that is similar
between two contours. The number of sample points per contour was 100, obtained by
equidistant sampling. Pairs of corresponding points are assumed to be similar if the dis-
tance between two points does not exceed a certain threshold. The threshold was chosen
to be 0.27 mm, which is similar to the reconstructed pixel size (0.27 x 0.27 mm). An exam-
ple is given in Figure 2.5. Similar points are interpreted as successfully segmented, while
dissimilar points need adjustments to match the expert segmentation. The DoS allows
evaluating the lumen and outer contours independent of each other.
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Figure 2.4: Final vessel wall segmentation
showing the lumen with the vessel wall
thickness color-coded on it, the outer wall
(green wireframe) and slice levels (white
lines).

Figure 2.5: Example of a degree of similar-
ity of 73%. The solid line is the reference
contour; the grey band shows the 0.27 mm
margin. The dashed line represents the
computed contour. A total of 73% of the
solid line coincides with the dashed line.

Comparison and statistical analysis

Automatic versus manual segmentation

The performance of the automatic segmentation method was quantified by calculating
the DoS between the automatic segmented and manual contours. The agreement be-
tween both methods was evaluated by calculating the mean, standard deviation and in-
traclass correlations including 95% confidence intervals for the VWT and VWV found by
manual and automatic segmentation. A paired t-test was performed to assess whether the
means of both methods differed. Bland-Altman plots [57] for both parameters were gen-
erated to investigate the limits of agreement between automated and manual analysis. A
P-value smaller than 0.05 was considered significant.

Interobserver agreement and reproducibility

To estimate the interobserver agreement, ten subjects were analyzed twice, each time by
a different observer; this was done for both the manual segmentation as well as the au-
tomatic segmentation method. Bar plots were used to evaluate the variability between
different observers and also the DoS was determined. To assess reproducibility, intraclass
correlations including 95% confidence intervals between the time points T0 and T1 were
determined for the VWT and VWV.
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Table 2.1: Comparison between the automatic and manual segmentation using one man-
ual and one automatic observer.

Manual vs. automatic [n = 45]
Mean of differences ± SD ICC [CI]

VWT (mm) 0.12 ± 0.21 (P < 0.01) 0.690 [0.500-0.817]
VWV (mm3) 45.39 ± 80.16 (P < 0.01) 0.793 [0.682-0.892]
VWT = vessel wall thickness; VWV = vessel wall volume; SD = standard deviation; P , P
value of t-test; ICC = intraclass correlation; CI = confidence interval.

Table 2.2: Interobserver analysis using two manual and two automatic observers.

Inter-observer analysis [n = 10]
M1 vs. M2 A1 vs. A2

Mean of differences ± SD ICC [CI] Mean of differences ± SD ICC [CI]
VWT (mm) -0.04 ± 0.05 (P = 0.02) 0.975 [0.904-0.994] 0.01 ± 0.03 (P = 0.24) 0.986 [0.945-0.997]
VWV (mm3) -7.51 ± 18.69 (P = 0.41) 0.985 [0.942-0.996] 0.95 ± 4.61 (P = 0.53) 0.999 [0.996-0.998]
VWT = vessel wall thickness; VWV = vessel wall volume; SD = standard deviation; P , P
value of t-test; ICC = intraclass correlation; CI = confidence interval.

2.3 Results

Automated versus manual segmentation

The time needed to automatically segment the TOF-MRA and vessel wall images of one
subject was approximately 18 s after indicating the artery of interest. Indication of the
artery of interest was completed within 30 s by the user. A manual analysis took on av-
erage 12 min including visual identification of the artery of interest. The average DoS for
45 studies was 96.2% (± 5.4%) for the lumen contour and 75.3% (± 17.7%) for the outer
contour, which is an average of 85.7% for both contours. The DoS values indicate bet-
ter performance of the automatic segmentation for the lumen than for the outer contour.
The systematic error, standard deviations, P-value of the paired t-test and intraclass corre-
lations, including 95% confidence intervals, for the quantitative measurements are given
in Table 2.1. The automatic segmentation algorithm shows substantial agreement [58] for
both the quantification of VWT and VWV.

Bland-Altman analysis for the quantitative parameters is given in Figure 2.6. The fig-
ures show a small but significant underestimation, as indicated by the paired t-test, of the
VWT and VWV of respectively 10.5% and 11.9% by the automatic segmentation method.
A significant upward trend is observed for the VWT (r = 0.65;P < 0.001) and VWV (r =
0.67;P < 0.001).

Interobserver agreement and reproducibility

Bias of the mean, standard deviations of the difference, and intraclass correlations be-
tween the two pairs of observers (M1 and M2, A1 and A2) and the multiple time points (T0,
T1) are given in Tables 2.2 and 2.3.

The intraclass correlations between different observers show that the analysis repro-
ducibility of the automated segmentation method is higher than the manual segmenta-
tion. The DoS of the lumen and outer contour for manual experts was 97.8% and 92.3%,
these numbers were higher for the automatic observers (A1 and A2); 99.8% for the lumen
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Figure 2.6: Bland-Altman plots showing the comparison between the manual and auto-
matic segmentation for (a) vessel wall thickness (VWT) and (b) vessel wall volume (VWV).

Table 2.3: Scan-rescan analysis using one manual and one automatic observer.

Scan-rescan analysis [n = 10]
T0 vs. T1 (M1) T0 vs. T1 (A1)

Mean of differences ± SD ICC [CI] Mean of differences ± SD ICC [CI]
VWT (mm) -0.06 ± 0.11 (P = 0.13) 0.830 [0.457-0.955] -0.02 ± 0.06 (P = 0.12) 0.940 [0.780-0.985]
VWV (mm3) -12.82 ± 24.62 (P = 0.44) 0.976 [0.908-0.994] -3.62 ± 21.10 (P = 0.60) 0.983 [0.934-0.996]
VWT = vessel wall thickness; VWV = vessel wall volume; SD = standard deviation; P , P
value of t-test; ICC = intraclass correlation; CI = confidence interval.

contour and 99.0% for the outer contour. No significant bias was found in both clinical
measures for the automated method, contrary to the VWT as measured by the manual
observers (Table 2.2). Figure 2.7 shows a smaller bias and variation of the VWT and VWV
measurement with the automatic segmentation method. These results indicate a lower
interobserver variability when compared with the manual segmentation method.

Finally, inter-scan reproducibility was assessed by correlating the clinical measure-
ments found on T0 and T1 (see Table 2.2). The intraclass correlations for both metrics
were higher for the automated segmentation method. Figure 2.7 shows a smaller bias and
variation for the automatic segmentation method indicating better reproducibility of the
automatic method.

2.4 Discussion

In this study, a 3D method was presented for automated segmentation of the vessel wall of
the common carotid artery in combined MRA and vessel wall images. To our knowledge
this is the first approach using a true 3D model which can be applied to both isotropic
and nonisotropic image data. Comparison of the automated method with manual seg-
mentation shows substantial agreement, with slight underestimation and a proportional
error of the vessel wall thickness and volume. Compared with manual image analysis,
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Figure 2.7: Bar plots showing interobserver variation and intra-scan reproducibility of (a)
vessel wall thickness (VWT), (b) vessel wall volume (VWV).

the automated method demonstrated improved interobserver agreement and inter-scan
reproducibility. Additionally, the proposed automated image analysis approach was sub-
stantially faster.

The performance of the automatic segmentation method is similar to existing meth-
ods which are all based on a 2D approach. In line with previous research, automated seg-
mentation of outer contours was shown to be more difficult than lumen contours. Based
on visual inspection, Underhill et al [33] report that 100% and 93% of the lumen and outer
contours were successfully segmented, respectively. However, the detected contours were
not compared with an independent manual reference. In our study, we used the DoS
to compare the automated segmentation results with the manual reference. Using this
stricter metric, 96.2% of the lumen contour was successfully segmented while this was
75.3% for the outer contour. The results of our repeatability study show a smaller vari-
ability for measurement of the VWT compared with the method developed by Underhill
et al.

Adame et al [25] presented a different automated analysis approach, which requires
one user interaction per slice. First, the outer wall is detected by fitting an ellipse to the
image data, and then the lumen contour is found by clustering. Comparison of our results
with this method is not straightforward, because different quantitative measures are used
and our scores are based on a subject level and not on a slice level. However, our method
requires less user interaction and the shape of the outer contour is not constrained to an
ellipse.

In a more recent study [34], it was shown that a decrease in user interaction and an
increase in segmentation performance can be accomplished by combining the MRA and
VWI images. Our method uses a similar workflow but the registration and segmentation
methods are 3D, instead of 2D.

Although image quality varied between and within subjects (Figs, 2.8,2.9,2.10), no im-
ages were excluded from the evaluation and no manual corrections were applied to any
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Figure 2.8: Example where the outer contour was fitted on the strongest edge, indicated
by the arrows, but the manual contour was not drawn on the strongest edge (dotted =
manual, striped = automatic).

Figure 2.9: Example of weak edge information at the outer boundary (indicated by the
arrow). The automatic contour is not attracted by an image edge, although the manual
expert extrapolates the vessel in these areas (dotted = manual, striped = automatic).

of the automatically detected contours. The reported results, therefore, provide a realistic
view on the practical applicability of the proposed analysis method.

Compared with other methods, our method requires minimal user interaction and has
the advantage that it extracts 3D image information instead of acting independently on
each vessel wall slice, which is the case for the existing segmentation methods.

Most of the disagreement in VWT and VWV was caused by small deviations in the seg-
mentation of the outer wall. Small disagreements can be explained by the difference be-
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Figure 2.10: Incorrect segmentation of the outer vessel wall as indicated by the arrow. The
outer tube is fitted to a strong edge which does not correspond to outer vessel wall (dotted
= manual, striped = automatic).

tween the automatic and manual segmentation method. While the automatic method is
designed to fit the tube surface on the strongest edge, a manual observer delineates the
vessel wall based on its visual perception, which is subjective and also depends on the
window/level setting of the display. This means that the observer does not necessarily
draw on the strongest edge, an example can be seen in Figure 2.8; the strongest edge is
not at the location of the outer boundary. The lumen boundary has a sharp edge in the
image and is less sensitive to this effect. The outer boundary, especially for the more thick-
ened vessels, is much more affected, explaining both the observed underestimation and
proportional error in the quantification of the vessel wall dimensions.

Areas in the image with low image contrast are another source of errors. In those areas,
an observer delineates the contours based on his experience and how it should look like,
while the automatic segmentation either does not change its initial shape because there
is no image force guiding the algorithm (Fig. 2.9), or the tube might be attracted by edges
from nearby structures (Fig. 2.10). In our approach, image information from neighboring
slices is taken into account to improve situations where edges are weak or missing.

This study is subject to several limitations. The presented automated method is de-
pendent on the availability of a 3D MRA series. In this study, a Time of Flight MRA image
is used to identify the artery of interest. In case this image is not available, the lumen cen-
ter can also be detected directly in the vessel wall images. However, we did not investigate
the impact on the performance when a MRA image is not present. Also the user inter-
action will become more complex because no global overview of the arterial structure is
present and the artery of interest has to be indicated in the vessel wall slices.

In this study, the common carotid artery was analyzed. The 3D model can be adapted
to support a bifurcating structure [59] including the internal carotid artery, however, ob-
taining good quality black blood vessel wall images in the carotid bifurcation is technically
more challenging [60]. The shape of the carotid artery changes rapidly in the bifurcation
and partial volume effect is very likely to appear when using a slice thickness of over 1
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mm. Isotropic 3D imaging of the bifurcation might overcome this problem.
The next step in the development and validation of this method is to address the ob-

served underestimation and trend. The manual expert does not always draw the outer
boundary on the maximum edge, especially in cases with higher VWT, but uses another
criterion. A potential solution is to change the calculation of the image forces for the seg-
mentation of the outer wall. Outer contours drawn by different manuals observers should
be analyzed to get insight in the average SI profile of the outer boundary. Then the calcu-
lation of the image forces can be adapted by taking that average SI profile into account.

In conclusion, quantification of the vessel wall dimensions is an important tool in the
research of atherosclerosis. Using automated segmentation reduces the processing time
of the analysis and provides reproducible results. Even if manual corrections are needed
in some images, the analysis time is still shorter than doing a complete manual segmenta-
tion. An additional advantage is the visualization of the 3D segmentation results. Different
visualizations of the vessel wall can provide more insight in the condition of the artery be-
cause local shape and characteristics like asymmetry are more easily assessed. This study
was performed with 2D vessel wall slices, but developments of MR pulse sequences are
directed toward true 3D imaging [44,60–62]. In that case, manual segmentation of the im-
age data becomes impractical due to the size of the dataset, while the presented method
is already able to analyze isotropic image data.
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Abstract

We present a method for carotid vessel wall volume quantification from Magnetic Reso-
nance Imaging (MRI). The method combines lumen and outer wall segmentation based
on deformable model fitting with a learning-based segmentation correction step. After
selecting two initialization points, the vessel wall volume in a region around the bifur-
cation is automatically determined. The method was trained on 8 datasets (16 carotids)
from a population based study in the elderly for which one observer manually annotated
both the lumen and outer wall. Evaluation was done on a separate set of 19 datasets (38
carotids) from the same study for which two observers made annotations. Wall volume
and normalized wall index measurements resulting from the manual annotations were
compared to the automatic measurements. Our experiments show that the automatic
method performs comparably to the manual measurements. All image data and annota-
tions used in this study together with the measurements are made available through the
website http://ergocar.bigr.nl.

http://ergocar.bigr.nl
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3.1 Introduction

The prevalence of cardiovascular diseases (CVD) is rising and heart disease is the lead-
ing cause of death in the western world, claiming approximately one out of every five
lives [63]. Atherosclerosis, a disease of the vessel wall, is the primary cause of cardiovascu-
lar disease. Atherosclerotic wall thickening in the carotid arteries can cause a narrowing
or total occlusion of the lumen. Atherosclerotic plaque that does not cause occlusion may
still lead to clinical events because of rupture and development of thromboembolism,
which may subsequently lead to cerebral ischemia [64]. Consequently, much research is
aimed at finding parameters that describe the plaque, and which can be used to improve
risk stratification and for monitoring the progression of atherosclerotic disease. One of
those parameters is the size of the plaque and its relation to the size of the vessel.

Magnetic Resonance Imaging (MRI) is an important means to monitor and quantify
the state of the vessel wall and lumen. Several studies have shown the possibility to visu-
alize the vessel lumen and outer wall on MRI [50, 65–69]. Annotation of both the lumen
border and the outer vessel wall is a laborious task. Therefore, several researchers have
proposed automatic wall segmentation methods e.g. [18, 31]. Although calculating the
volume of the vessel wall is straightforward once a segmentation is made, a comparison
between automatic and manual wall volume measurements has, to the best of our knowl-
edge, not yet been done.

In this paper we present an automatic method to measure carotid wall volume from
MR images. The contribution is five-fold:

1. The automatic method combines a deformable model approach [18] with a
learning-based postprocessing step, in which systematic segmentation errors
of the deformable model fitting are corrected. The idea behind this segmentation
correction was developed by Wang et al [70]. However, whereas the method de-
scribed in [70] was designed for brain structure segmentation, we modified it such
that it can handle vessel-shaped structures.

2. An intensity inhomogeneity correction method is designed to compensate for the
nonuniform sensitivity pattern of the RF surface coils.

3. A training set of eight subjects with manual annotations is used to exhaustively op-
timize a number of algorithm parameters.

4. The final algorithm is evaluated on a different set of 19 subjects, and the auto-
matic results are compared with manual vessel wall volume measurements and
inter-observer variability.

5. All image data used in this study together with the manual and automatic mea-
surements are made available through the website http://ergocar.bigr.nl
(user/pwd: reviewer/PMBVesselWall).

The remainder of this paper is organized as follows. Firstly, Section 3.2 explains the
deformable model fitting and learning-based segmentation correction, and the wall vol-
ume quantification. Section 3.3 describes the image data and the preprocessing steps.
Section 3.4 describes the experiments that were conducted to optimize the parameters
of the method and to evaluate the wall volume quantification. The results of the experi-
ments are given in Section 3.5. Discussion and conclusion are given in Sections 3.6 and
3.7 respectively.

http://ergocar.bigr.nl
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3.2 Methods

Deformable model fitting

The method described by Van ’t Klooster et al [18] was used to create an initial segmenta-
tion of the lumen and outer wall. This method requires a MR Angiography (MRA) image
and a Black Blood (BB) image. The MRA image is used to obtain a robust initial segmen-
tation of the carotid lumen. This segmentation is copied to the BB image and based on
this initialization, the lumen and outer wall are segmented. The MRA and BB images are
assumed to be co-registered (see Section 3.3). The only required user input consists of two
initialization points. Based on these, the method fully automatically fits a deformable sur-
face model of the lumen and the outer wall to the image data. Below, a brief description of
this method is given which is summarized in Figure 3.1. For further details we refer to [18].

The method starts with a two-point initialization: one in the common carotid artery
(CCA) and one in the internal carotid artery (ICA). These two points are used to initialize
a wavefront propagation [51] in the MRA image which results in an approximate center-
line with an associated lumen diameter estimate (green curve in frame 1 of Figure 3.1) at
each centerline position. This centerline together with the diameters is used to initialize
a NURBS surface [51] (blue surface lines in frame 2). The method then performs an op-
timization step in which the boundaries of the NURBS surface are more precisely fit to
the lumen boundaries in the MRA image by searching for the maximum gradient magni-
tude in an intensity profile with a specified length (dLMRA) perpendicular to the lumen
surface (frame 3 shows the location of a profile and frame 4 the corresponding intensities
along the profile; frame 5 shows an update of the initial contour). Only those edges are
selected which have a high value (bright) inside the model and a low value (dark) outside
the model. This optimization step is performed for a given number of iterations (nLMRA).

The lumen NURBS surface found in the MRA image is used to initialize the lumen
segmentation in the BB image (frame 6). Here, the same optimization of the surface fit
to the lumen boundary is performed as in the MRA image (frame 7 and 8), using again a
specified length (dLBB) of the intensity profile and number of iteration steps (nLBB). The
edge direction in this step is set from dark inside the model to bright outside the model.

The estimated lumen surface is expanded and used to initialize the search for the outer
wall. This is done in the same manner as for the BB lumen segmentation, by searching for
the maximum gradient magnitude in an intensity profile with a specified length (dWBB)
for a number of iterations (nWBB). For this segmentation step, the edge direction is set
from bright inside the model to dark outside the model.

Learning-based correction of systematic errors

Using a deformable model to acquire an automatic segmentation limits the precision of
the final segmentation to the flexibility of the used (NURBS) model. In areas where there
is a sudden change in the shape of the vessel, this may lead to errors. Also, the deformable
model approach described in the previous section was originally designed and optimized
for one particular set of images. To compensate for the limitation of the deformable model
and to adjust for the differences in image characteristics when using a different scanner,
surface coil, and/or different MR acquisition parameter settings, we propose to use a post-
processing step in which the segmentation is tailored to a new set of images. The idea
behind this method was developed by Wang et al [70]. We will refer to this method as the
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Figure 3.1: Graphical summary of the deformable model fitting method. An MRA segmen-
tation based on wavefront propagation (1) is used to initialize a NURBS surface (2), which
is fit the to lumen boundary by searching for a maximum gradient magnitude (4) along an
intensity profile (3). The resulting segmentation is used as initialization in the BB image
(6) where it is optimized (7,8) in the same manner as is done in the MRA image.

Learning-Based Segmentation Correction (LBSC) method. As the LBSC method was de-
signed for brain structure segmentation, we modified it to be able to handle vessel struc-
tures. We will refer to this modified method as the Learning-Based Vessel Segmentation
Correction (LBVSC) method.

The LBSC method uses a ground truth segmentation (in our case manual annotations)
to train a classifier that modifies a binary segmentation made by a host segmentation
method (in our case the result from the deformable model fitting described in Section 3.2).
The LBSC method classifies all voxels in a region of interest (ROI), which is created by di-
lating the host segmentation. For each voxel, a feature vector is computed, consisting of:

• all image values in a 5x5x5 neighborhood of the voxel in the MR image (125 features)

• all values in a 5x5x5 neighborhood of the voxel in the host segmentation (125 fea-
tures)

• x, y and z coordinate of the voxel relative to the center of mass of the host segmen-
tation (3 features)

• product of the neighborhood and coordinate features (3∗ (125+125) features)

This leads to a total of 1003 features. The LBSC method trains a classifier on the differ-
ence between the host segmentation and the manual annotation. It thus learns to correct
the errors made by the host segmentation. AdaBoost is chosen as classifier, which com-
bines many weak classifiers (regression stumps) into a single strong classifier [71]. The
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AdaBoost classifier has previously been shown to be successful in the context of medical
image segmentation [72, 73].

For our application, a number of modifications are proposed: We use the signed dis-
tance to the host segmentation’s border and the z-index as spatial features. Since the
carotid artery is roughly perpendicular to the transversal plane, this latter feature is an
approximation of the position along the centerline. For elongated structures like vessels,
these two spatial features seem more appropriate than the distance to the center of mass.
In addition to these spatial features we used the intensity of the BB image and its gradient
magnitude. Instead of using a 5x5x5 neighborhood we used a 7x7x3 neighborhood. The
effect of this neighborhood size, ( f Lx × f Ly × f Lz and f Wx × f Wy × f Wz for the lumen
and outer wall feature neighborhood respectively) on the segmentation accuracy was de-
termined experimentally (see Section 3.4). Thus the two spatial features of the LBVSC
method are:

• signed distance to the boundary host segmentation (1 feature)

• relative z-index (1 feature)

The 441 appearance features are the 7x7x3 neighborhood voxels of:

• the host segmentation (i.e. 0 or 1) (147 features)

• the BB image (147 features)

• the gradient magnitude of the BB image (147 features)

Similar to the LBSC method we also used the product of the spatial and appearance fea-
tures as additional features (2∗(147+147+147)) = 882, leading to a total of 2+441+882 =
1325 features.

Since most errors in the host segmentation are near the boundary of the segmenta-
tion, our LBVSC method only classifies the voxels within a ROI around this boundary. This
region is defined by a morphological dilation minus an erosion of the binary host seg-
mentation using a spherical kernel with radius r Ldilation and r Lerosion for the lumen and
r Wdilation and r Werosion for the outer wall segmentation. The binary host segmentation of
the outer wall includes the lumen area.

When the classifier is trained on the difference between the host segmentation and
the manual annotation (as in the original LBSC method), only the voxels that are not cor-
rectly segmented in the host segmentation get a negative label. If the host segmentation
has large overlap with the manual annotation, this leads to many positive samples and
only a few negative samples. To prevent this unequal class sizes we trained the AdaBoost
classifier directly on the label from the manual annotation, which leads to a better bal-
ance between the classes. To make the classification tractable, only half of the randomly
selected voxels within the ROI are used as samples.

Whereas the output of the deformable model fitting described in Section 3.2 is smooth,
the output of the LBVSC method may have holes or isolated voxels. Therefore a morpho-
logical closing with a kernel radius of 2 voxels is applied to the output of the LBVSC method
and isolated voxels are removed using connected components analysis.
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Vessel wall volume quantification

The vessel wall volume Vwall is quantified in a region of 25 mm in the transversal direction
centered at the bifurcation. The bifurcation point is manually annotated and defined as
the first transversal plane on which two separate lumens (one of the ICA and one of the
External Carotid Artery (ECA) ) are visible. In cases where part of the evaluation region
falls outside the scan range, the evaluation region is restricted by the image boundaries.

Application of the LBVSC method results in a binary mask for the lumen and the outer
wall. The difference of these two masks is defined as the vessel wall. The vessel wall vol-
ume is computed by voxel counting and multiplying the result with the volume of one
voxel.

Besides the volume, a clinically used parameter to quantify the vessel wall Vwall is the
Normalized Wall Index (NWI) which is defined as:

NWI = Vwall

Vlumen +Vwall
(3.1)

where Vlumen is the volume of the vessel lumen. Bigger plaques thus lead to a higher NWI.

3.3 Data specific preprocessing

Data description

The image data of this study is taken from a prospective, population-based study among
subjects aged 45 years and older. This study has been described in detail elsewhere [74].
All participants having a maximum intima-media thickness of more than 2.5 mm (deter-
mined using Ultra Sound [75]) in at least one carotid artery were invited for a carotid MRI
exam. In total, 1072 participants were scanned.

MRI of the carotid arteries was performed on a 1.5-T MR scanner (Signa Excite, GE
Healthcare, Milwalkee, USA) with a bilateral phased-array surface coil. To reduce motion
artifacts, subjects were stabilized in a custom-designed head holder. The total scanning
time was about 30 minutes in which, among others, the following sequences were ac-
quired (see [75] for acquisition details):

• Proton density weighted Fast Spin Echo Black-blood (BB)

• Phase Contrast sequence which consists of an image showing flow in any direction
(PC), a magnitude image (PCMag) and 3 images for the flow in the x, y and z direc-
tion.

The PC is used as MRA image for the deformable model fitting (see Section 3.2) and the
PCMag image is used to register the PC image to the BB image (see Section 3.3). Figure 3.2
shows an example slice of each of these MR sequences.

Inhomogeneity correction

The bilateral phased-array surface coils cause severe intensity inhomogeneity within the
neck. The sensitivity near the skin is much higher than in the middle of the neck. Fig-
ure 3.3c shows a typical example of the intensity profile across the neck in a BB image.
Many popular intensity inhomogeneity correction methods have strong assumptions on
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(a) BB (b) PC (c) PCMag

Figure 3.2: Example slice near the bifurcation of the three different MR sequences used in
this study.

(a) (b) (c)

Figure 3.3: Example of the intensity inhomogeneities caused by a surface coil (a), the same
image after applying the LEMS method (b) and the intensity profiles of the black line in
the original (black, dashed line) and the corrected (gray, solid line) image (c).

the distribution of the modeled bias field. For example, N3 [76] and N4 [77] assume the
distribution of the bias field intensities to be log-normal. Other methods like the one pro-
posed by [78] and [79] assume a slowly varying bias field. These methods do not result in
a satisfactory correction of the intensity inhomogeneities in the case of phased-array sur-
face coils. The method proposed by [80], called Local Entropy Minimization with a bicubic
Spline model (LEMS), was designed to deal with inhomogeneities caused by phased array
surface coils.

The original LEMS method was designed for 2D images. To ensure a smooth bias field
across slices, we extended the method to 3D with the following modifications.

LEMS tries to identify the voxels that do not have any signal as they cannot be used
to estimate the bias field. We estimated the background voxels using the whole 3D im-
age. Furthermore, the 2D slice based estimation of the bias field is smoothed in the slice
direction using Gaussian blurring with a σ of 3 slices.

This way a spatially smooth bias field is obtained as can be seen in Figure 3.4.
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(a) original (b) LEMS (c) LEMS 3D (d) Bias field (e) 3D Bias field

Figure 3.4: Inhomogeneity correction using LEMS and smoothing the estimated correct
field. Sagital slice of (a) the original BB image, (b) after correction using standard LEMS
(c), using LEMS with smoothed bias field, (d) estimated bias field of the standard LEMS
method and (e) estimated bias field with smoothing in the slice direction.

Because the LEMS method uses a multiplicative bias field model, the correction is per-
formed by dividing the original image by the estimated bias field. This can lead to very
large intensity values in the corrected image in regions where the estimated bias field has
small values. The registration between the BB and MRA image (see Section 3.3) is ham-
pered by a few extremely high intensity values within the image, therefore the highest 1%
of the intensities of the corrected image are clamped. Figure 3.3a and 3.3b show an ex-
ample of the BB image before and after inhomogeneity correction, respectively, and the
effect of the correction on the intensity profile can be seen in Figure 3.3c.

Registration

As stated in Section 3.3, the complete MRI exam takes approximately 30 min. Although
the position of the head of the subjects is stabilized using a head-holder, they still have
the ability to move their body, which can cause twisting of the neck. Moreover, cardiac and
breathing motion can also lead to displacement of the arteries in the neck. This motion
leads to small mis-registrations between the different sequences. The lumen and vessel
wall segmentation method described in Section 3.2 requires a registered BB and MRA im-
age. We perform an intensity-based registration method to align the images. The PC im-
age contains very little anatomical information as can be seen in Figure 3.2b and is there-
fore not very well suited for an intensity based registration. The PCMag image (shown
in Figure 3.2c) which is simultaneously acquired with the PC image contains much more
anatomical information. Therefore the PCMag image was registered to the BB image and
the resulting deformation was applied to the PC image.

The registration first performs a rigid registration step to compensate for global dis-
placements. Because the BB image and the PCMag image contain different anatomical
regions, a mask was used for both the fixed and the moving image to indicate the regions
where there should be overlapping information. The rigid registration was followed by
a B-Spline registration [81] using mutual information as similarity metric [82]. For the
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optimization we used an adaptive stochastic gradient descent optimizer [83]. The regis-
tration was performed in a multi-resolution framework with three resolution levels and
was achieved using the ITK [84] based registration toolbox elastix [85].

3.4 Experiments

For the experiments, 27 subjects were randomly selected from the full database. This eval-
uation set was split in a training set of 8 subjects and a test set of 19 subjects. The training
set was used to optimize the parameters of the deformable model fitting (dLMRA, nLMRA,
dLBB, nLBB, dWBB and nWBB) and the LBVSC method (r Ldilation, r Lerosion, r Wdilation,
r Werosion, f Lx × f Ly × f Lz and f Wx × f Wy × f Wz). The test set was used to evaluate the
vessel wall volume and NWI quantification.

Manual annotations

On the complete set of 27 subjects the lumen and outer wall of both the left and the right
carotid artery were annotated manually by observer 1 (ob1). On the test set observer 2
(ob2) performed the same annotations. The manual annotation started with an accurate
definition of the centerline, after which longitudinal contours along this centerline were
drawn in a curved planar reformatted image for both the lumen and the outer wall. These
longitudinal contours were used to create cross-sectional contours perpendicular to the
centerline. The cross-sectional contours were then adjusted to fit the lumen and the outer
wall. More details on the annotation process can be found in [86]. The manual annota-
tions were converted into binary masks for calculating the Dice [87] overlap coefficient
and using the masks in the LBVSC step. The mask generation was achieved by fitting a
surface through the contour points using variational interpolation [88] and voxelizing this
closed surface. The mask of the outer wall contains everything within the outer wall in-
cluding the lumen.

The manual annotations of the ICA do not incorporate the external part in the bifurca-
tion region. Because the automatic method does not differentiate between ICA and ECA
in the bifurcation region, the automatic segmentation may cover a larger part of the lu-
men area within the bifurcation region. This larger automatic segmentation is not wrong,
but would result in errors during the evaluation because the manual ground truth does
not contain the ECA. To make sure that this does not influence the evaluation results, the
ECA region of the bifurcation was masked out and no evaluation was done in that region.

Parameter optimization

Surface distance

Since there is no ground truth definition in the MRA sequence, the values of profile length
dLMRA and the number of iterations nLMRA were chosen such that the resulting segmen-
tation visually provided a good initialization for the BB lumen segmentation.

For the parameter optimization of the deformable model fitting in the BB image, a
distance measure was computed between the NURBS surface and the manual contours.
First, the surface was intersected with the MPR plane (perpendicular to the centerline) in
which the contours were drawn. This created a contour for the automatic segmentation.
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Then the symmetric average Euclidean distance between the manual and automatic con-
tours was calculated. This distance was calculated for all manual contours and the average
was computed for each carotid. The average over all carotid segmentations in the train-
ing set (denoted by δLsurface and δWsurface for the lumen and outer wall segmentation,
respectively) was used as optimization objective.

The dLBB, nLBB, dWBB and nWBB parameters were selected by an exhaustive search,
minimizing δLsurface and δWsurface. First the lumen parameters were optimized and then
the outer wall parameters. The value of dLBB was optimized between 5 and 25 mm in
steps of 2 mm. The number of iterations nLBB was optimized over the following set:
{5,10,15,25,50,75,100,150}. The outer wall parameter dWBB was optimized between 5 and
15 mm in steps of 2 mm and nWBB over the following set: {0,1,2,3,5,7,10,25,50,75}. Each
combination of profile length and number of iterations was tested, leading to 88 lumen
experiments and 60 outer wall experiments.

Learning-based vessel segmentation correction

The influence of the neighborhood size of the features, f Lx × f Ly × f Lz and f Wx × f Wy ×
f Wz, on the resulting segmentation was determined for the following values: 3x3x3, 5x5x3,
5x5x5, 7x7x3, 7x7x5, 7x7x7, 9x9x3, 9x9x5, 9x9x7, 9x9x9. For each of these feature neighbor-
hoods the optimal combination of r Ldilation and r Lerosion, and r Wdilation and r Werosion was
determined. These LBVSC parameters were optimized with respect to the Dice overlap
of the resulting segmentation with the manual segmentation. For each combination of
neighborhood size dilation and erosion radius, a new classifier was trained. As the train-
ing of each classifier took several hours, performing cross-validation on the training set
would take too much time. Therefore each classifier was trained on the complete training
set and the evaluation of the resulting segmentation was also performed on the complete
training set. This may lead to an overestimation of the performance of the LBVSC method.
This is of minor importance, since these experiments are only meant to optimize the di-
lation and erosion parameters, and the true performance will be evaluated on the test set
(see Section 3.5). The dilation and erosion radii were varied over the interval [0,9] mm in
steps of 1 mm. The AdaBoost classifier was trained using 400 iterations.

Evaluation on test set

The algorithm was evaluated on the 38 carotids of the 19 datasets in the test set. We eval-
uated the final segmentation of the lumen and the outer wall by calculating the Dice coef-
ficient for each. This evaluation was done both without the segmentation correction step,
and applying the original LBVC method and our modification, the LBVSC method. The
significance of the difference caused by applying the segmentation correction methods
was tested using a paired t-test.

The vessel wall volumes and NWI from the manual annotations were computed in the
same way as for the automatic segmentation (see Section 3.2). This was done for both
observers that annotated the test set.

The manual and automatic wall volumes were compared by calculating the average
difference between the two volumes, the average difference of the NWI and the stan-
dard deviation of these two difference measures. Also the Pearson and intra-class cor-
relation [89] coefficient were calculated.
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dLBB (mm)
5 7 9 11 13 15 17 19 21 23 25

n
L

B
B

5 0.84 0.77 0.73 0.70 0.69 0.69 0.71 0.90 0.91 0.92 0.93

10 0.76 0.62 0.54 0.51 0.50 0.50 0.51 0.72 0.73 0.74 0.74

15 0.70 0.54 0.46 0.44 0.43 0.43 0.45 0.66 0.66 0.66 0.67

25 0.65 0.47 0.40 0.39 0.39 0.39 0.42 0.63 0.63 0.64 0.65

50 0.70 0.53 0.49 0.46 0.45 0.43 0.46 0.52 0.63 0.71 0.87

75 0.68 0.52 0.48 0.45 0.46 0.45 0.48 0.56 0.78 0.82 0.94

100 0.67 0.50 0.48 0.45 0.46 0.47 0.49 0.59 0.78 0.92 0.96

150 0.65 0.50 0.47 0.45 0.47 0.47 0.51 0.64 0.80 1.30 0.96

Table 3.1: Average surface distance δLsurface for the various settings of profile length dLBB

and the number of iterations nLBB used in the BB lumen segmentation. The minimum
value is shown in bold font.

In these evaluations on the test set both observers were compared to each other and
to the automatic method.

The influence of the number of training sets for the LBVSC method was determined by
increasing this number from 10 until 18 in steps of 2. Because for the eight datasets in the
training set no manual segmentations of the second observer was available, we only used
the manual annotations of the first observer for evaluation. For each training set size (10,
12, 14, 16 and 18 datasets) 10 different random selections of the 38 data sets were made
and the results of these 10 experiments were averaged. Just as in the other evaluations on
the test set we calculated the Dice coefficient between the automatic segmentation of the
lumen and the outer wall.

3.5 Results

Parameter optimization

Deformable model fitting

The PC MRA images used in this study have a lower contrast compared to the TOF images
used in [18]. Especially in the bifurcation area the optimization of the MRA lumen surface
generated a small or “half moon” shaped vessel surface leading to a bad initialization for
the BB lumen segmentation. To handle this problem we drastically reduced the number of
iterations, nLMRA, to 1 and kept the profile length dLMRA to the minimum of 5 voxels. This
gives the NURBS surface less freedom to adjust and results in a more circular cross-section
of the segmented lumen.

Table 3.1 and 3.2 show the results of the optimization experiments for the lumen and
outer wall parameters respectively. The bold, most red cell indicates the optimal value,
i.e the minimal average surface distance δLsurface and δWsurface. We did not perform any
experiments using a profile length of less than 5 mm as this would require the estimation
of a gradient on less than 3 voxels.
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dWBB (mm)
5 7 9 11 13 15

n
W

B
B

0 0.54 0.54 0.54 0.54 0.54 0.54

1 0.52 0.51 0.50 0.50 0.50 0.50

2 0.51 0.50 0.49 0.49 0.49 0.49

3 0.49 0.49 0.50 0.54 0.58 0.62

5 0.48 0.50 0.57 0.67 0.75 0.84

7 0.49 0.53 0.66 0.81 0.93 1.05

10 0.51 0.61 0.82 1.02 1.19 1.34

25 0.62 0.90 1.27 1.59 1.87 2.11

50 0.74 1.12 1.55 1.95 2.28 2.57

75 0.81 1.23 1.69 2.11 2.50 2.83

Table 3.2: Average surface distance δWsurface for the various settings of the profile length
dWBB and the number of iterations nWBB used in the BB outer wall segmentation. The
minimum value is shown in bold font.

3x3x3

5x5x3

5x5x5

7x7x3

7x7x5

7x7x7

9x9x3

9x9x5

9x9x7

9x9x9

0.8

0.9

1

feature neighborhood f Lx × f Ly × f Lz

D
ic

e
ov

er
la

p

(a)

3x3x3

5x5x3

5x5x5

7x7x3

7x7x5

7x7x7

9x9x3

9x9x5

9x9x7

9x9x9

0.8

0.9

1

feature neighborhood f Wx × f Wy × f Wz

D
ic

e
ov

er
la

p

(b)

Figure 3.5: Influence of the feature neighborhood size on the final Dice overlap with the
manual segmentation for (a) the lumen and (b) the outer wall.

Learning-based vessel segmentation correction

Figure 3.5 shows for each neighborhood size the maximum Dice overlap (optained with
optimum settings of the erosion and dilation parameters, which may be different for each
neighborhood size). As can be seen from Figure 3.5 the influence of the feature neighbor-
hood size on the segmentation accuracy is relatively small for both lumen and outer wall.
As the computational costs increase significantly with a growing feature neighborhood we
chose a neighborhood size of 7x7x3, which is computationally feasible and accounts for
the anisotropic voxel size.

Table 3.3 and 3.4 show the Dice overlap values for the 7x7x3 feature neighborhood size
for different combinations of dilation and erosion radii, r Ldilation, r Lerosion, and r Wdilation
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and r Werosion for the lumen and outer wall, respectively. The maximum Dice coefficients
are shown in bold font. The values for a dilation and erosion with zero radius show the
Dice overlap without applying the LBVSC method. The tables for the other feature neigh-
borhood sizes can be found on the website http://ergocar.bigr.nl (user/pwd: re-
viewer/PMBVesselWall). In both Table 3.3 and 3.4 the value for zero dilation and erosion

r Lerosion (voxels)
0 1 2 3 4 5 6 7 8 9

rL
d

il
at

io
n

(v
ox

el
s)

0 78.9 80.4 80.6 80.8 80.8 80.8 80.8 80.7 80.8 80.8

1 85.1 84.7 85.0 85.2 85.2 85.2 85.2 85.2 85.1 85.1

2 86.2 85.7 86.0 86.1 86.1 86.2 86.1 86.2 86.2 86.2

3 87.2 86.8 87.1 87.1 87.1 87.2 87.2 87.2 87.2 87.2

4 88.2 87.9 88.1 88.0 88.1 88.1 88.0 88.1 88.2 88.2

5 88.6 88.5 88.8 89.1 88.9 89.1 88.8 88.9 88.8 88.8

6 88.8 88.3 88.9 88.6 88.7 88.6 88.7 88.9 89.0 89.0

7 88.8 88.0 88.3 88.7 88.6 88.9 88.8 88.7 88.9 88.9

8 88.5 87.7 88.2 88.5 88.3 88.5 88.5 88.5 88.5 88.5

9 88.2 87.6 87.9 88.0 88.1 88.1 88.3 88.2 88.1 88.0

Table 3.3: Average lumen Dice overlap values of the final segmentation for various sizes of
the region around the host segmentation border which is defined by the dilation r Ldilation

and erosion r Lerosion radius. The maximum value is in bold font. The value for zero dila-
tion and erosion is the Dice overlap value for the uncorrected segmentation.

r Werosion (voxels)
0 1 2 3 4 5 6 7 8 9

rW
d

ila
ti

o
n

(v
ox

el
s)

0 81.3 82.2 82.3 82.4 82.3 82.3 82.4 82.3 82.4 82.4

1 85.5 85.6 85.5 85.5 85.5 85.6 85.5 85.6 85.5 85.4

2 86.4 86.4 86.4 86.4 86.4 86.4 86.4 86.4 86.5 86.4

3 87.2 87.3 87.3 87.3 87.3 87.3 87.3 87.3 87.1 87.3

4 87.8 87.9 88.0 87.9 87.9 87.9 88.0 87.9 87.9 88.0

5 88.3 88.3 88.3 88.2 88.3 88.3 88.3 88.3 88.3 88.2

6 88.2 88.2 88.1 88.2 88.2 88.1 88.3 88.3 88.1 88.1

7 87.8 87.9 87.9 87.9 87.9 87.9 88.1 88.0 88.0 88.1

8 87.8 87.7 87.4 87.8 87.7 87.9 87.9 87.6 87.7 87.5

Table 3.4: Average outer wall Dice overlap values of the final segmentation for various
sizes of the region around the host segmentation border which is defined by the dilation
r Wdilation and erosion r Werosion radius. The maximum value is in bold font. The value for
zero dilation and erosion is the Dice overlap value for the uncorrected segmentation.

is the smallest. On the training set the LBVSC method improved the segmentation re-
sult of the deformable model fitting: with any setting of r Ldilation, r Lerosion, r Wdilation and
r Werosion the results was better than r Ldilation = r Lerosion = 0 or r Wdilation = r Werosion = 0.

http://ergocar.bigr.nl
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Lumen
parameter value

nLMRA 1
dLMRA 5
nLBB 25
dLBB 13
f Lx × f Ly × f Lz 7×7×3
r Ldilation 5
r Lerosion 5

Outer wall
parameter value

nWBB 5
dWBB 5
f Wx × f Wy × f Wz 7×7×3
r Wdilation 5
r Werosion 7

Table 3.5: Optimal lumen and outer wall method parameters

Lumen Outer wall
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ob1-ob2 0.90 0.90 – 0.90 – 0.90 0.90 – 0.90 –
ob1-auto 0.83 0.84 0.45 0.86 0.03 0.85 0.86 0.02 0.87 < 0.01
ob2-auto 0.84 0.83 0.64 0.84 0.86 0.83 0.85 0.11 0.86 0.01

Table 3.6: Dice overlap between the different measurements of the test set without seg-
mentation correction and using the LBSC and LBVSC method.

Optimal parameters

Table 3.5 summarizes the optimal method parameters for both the lumen and the outer
wall segmentation.

Evaluation on test set

The average Dice similarity coefficients for the lumen and outer wall are listed in Table 3.6.
The average Dice overlap between the automatic segmentation and both observers is
comparable to the Dice between the two observers. The overlap with the first observer
is higher, which is expected as the automatic method was trained using the segmenta-
tions of this observer. The LBSC method only improved the outer wall segmentation of
the observer on which it was trained. There was no significant difference for the lumen
segmentation. The LBVSC method significantly increased the average lumen overlap for
observer 1 whereas it remained the same for observer 2. For the outer wall the LBVSC
method has a positive effect on the Dice overlap with respect to both observers.

The difference in effect of the LBVSC method between the training (Table 3.3 and 3.4)
and test set (Table 3.6) is explained by the fact that in the former the training set was
used to both train the classifier of the LBVSC method and measure the effect of the LB-
VSC method on the Dice overlap of the resulting segmentation (see also Section 3.4).

Figure 3.6 gives a visual impression of the effect of the LBVSC method on the outer
wall segmentation. The LBVSC method (the dashed red contour) here clearly improved
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the segmentation of the deformable model fitting method (smallest blue solid contour): it
is closer to the manual annotation (solid green contour).

(a) (b)

Figure 3.6: Two examples of the effect of the LBVSC method on the outer wall segmenta-
tion. The green solid line is the annotation by observer 1, the blue solid line is the segmen-
tation from the deformable model fitting method, the dashed red line is the segmentation
after applying the LBVSC method.

In Figure 3.7 the scatter plots of the volume and NWI measurements by observer 1,
observer 2 and the automatic method are shown.

The two large markers in the volume measurements indicate two outliers where ob-
server 1 and observer 2 disagree. Figure 3.8 gives an example slice of these outliers where
observer 1 and 2 disagreed.

The contours shown in Figure 3.8 are the manual annotations of the outer wall for
both observers. It is obvious from these segmentations that in this dataset it is very hard
to determine the location of the outer vessel wall and both observers made a different
choice on what to include in the vessel wall. In the subsequent analysis we removed these
outliers.

Table 3.7 gives the average vessel wall volume and NWI measurements of both ob-
servers and the automatic method without applying the segmentation correction and with
the LBSC and LBVSC method. As can be seen, the automatic segmentation slightly over-
estimated the vessel wall volume when compared to observer 1 and underestimated the
volume when compared to observer 2. Observer 2 on average made larger volume mea-
surements than observer 1. The average vessel wall volume of the automatic method is
between the volumes estimated by observer 1 and observer 2, but was on average closer
to observer 1 on which it was trained. The p-values of the differences between the auto-
matic method with and without the LBVSC method are 0.0005 and 0.1 for Vwall and NWI
respectively.

Table 3.8 shows the differences, Pearson and intra-class correlations of the volume
and NWI measurements. The average difference in the wall volume measurements of the
automatic method with respect to both observers is smaller than the average difference
between the observers. Although the Pearson correlation coefficient of the volume mea-
surements between the observers and the automatic method is not as good as the corre-
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Figure 3.7: Scatter plot of the volume measurements (left column) and normalized wall in-
dex (right column) for observer versus observer 2 (top row), observer 1 versus automatic
method (middle row) and observer 2 versus automatic method (bottom row). In the vol-
ume measurement graphs two outliers are present and shown with big markers. These
outliers are not shown in the NWI graphs because they would stretch the scale too much.
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(a) (b)

Figure 3.8: Example slice from the two outlier datasets. The green contour is from observer
1 and the red contour from observer 2.

ob1 ob2 No correction LBSC LBVSC

Vwall (ml) 0.80±0.21 1.1±0.20 0.78±0.13 0.83±0.11 0.89±0.17
NWI (ml/ml) 0.48±0.05 0.59±0.05 0.51±0.05 0.51±0.05 0.54±0.08

Table 3.7: Average ± standard deviation of vessel wall volume (ml) and normalized wall
index measurements (ml/ml).

Vwall NWI
∆Vwall (ml) Pearson icc ∆NWI (ml/ml) Pearson icc

ob2 - ob1 0.30±0.19 0.83 0.58 0.10±0.04 0.51 0.32
auto - ob1 0.08±0.20 0.51 0.62 0.05±0.07 0.50 0.52
auto - ob2 −0.21±0.15 0.57 0.57 −0.05±0.07 0.54 0.56

Table 3.8: The average volume differences, the Pearson and intra-class correlation coef-
ficients of the volume and NWI measurements between the two observers and the auto-
matic method.

lation between the two observers, the intra-class correlation with both observers is better
than (observer 1) or almost the same as (observer 2) between the two observers.

Looking at the clinically used NWI, the average difference between the measurements
of automatic method and both observers is again smaller than the average difference be-
tween the two observers. Also the correlation coefficients between the automatic method
and both observers are better than or almost the same as the correlations between the
measurements of the two observers.

Table 3.9 shows the Dice overlap between the manual segmentation of the first ob-
server and the automatic method for different size of the training set. The table show that
increasing the size of the training set leads to a small increase in overlap.
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Number of training sets 10 12 14 16 18
Dice lumen 0.84 0.84 0.84 0.85 0.86
Dice outer wall 0.85 0.84 0.84 0.85 0.86

Table 3.9: Influence of the number of training sets used for training the LBVSC method on
the Dice overlap of the lumen and the outer wall, and the NWI

3.6 Discussion

The interobserver measurements presented in this study show that the systematic dif-
ference between the outer vessel wall annotations of two observer can be considerable
(see the scatter plots in Figure 3.7). As we do not have manual annotations of the sec-
ond observer on the training set, it is impossible to train the automatic method on both
observers, or generate a new reference standard based on the combined annotations of
these two observers without compromising the size of the test set. However, the annota-
tion protocol for both observers was the same and the variation between the two observers
can also be expected in clinical practice.

The method described in this paper was designed in order to analyze the MRI data ac-
quired in the context of a population study. This population study uses a 1.5 T MRI scan-
ner and a BB sequence which may not be the best possible sequence for imaging the vessel
wall. Despite these limitations the described automatic method performs comparable to
the observers. In future research it would be interesting to study the effect of different ac-
quisition settings (1.5T vs. 3T, different MR sequences, the use of a head stabilizer) on the
vessel wall quantification. The evaluation described in this study was performed on 19
subjects. For the future we plan a quantification of the vessel wall volume and normalized
wall index on all 1072 subjects that participated in this study. Manual measurements on
this number of subjects becomes infeasible.

The deformable model fitting method enforces a NURBS model on the lumen and wall
boundary, and uses a single image feature (the maximum gradient magnitude) to fit the
model. For the lumen border this is an adequate image feature. The gradient of the outer
wall is less strong, which makes the application of this image feature less successful. The
LBVSC method is not limited to the use of a single image feature, but instead uses many
features to classify the outer wall voxels. This explains the difference in effect of the LBVSC
method on the lumen and outer wall segmentation.

As long as there is a training set on which the LBVSC can be trained, the method de-
scribed in this paper can easily be adapted to other images, acquired on a higher field
MR scanner or using different protocols. If there is a training set consisting of a ground
truth definition of multiple observers, these could be combined using existing methods
like consensus reading or STAPLE [90], but they can also be used to train multiple clas-
sifiers and combine these classifiers into a single stronger classifier using methods de-
scribed in e.g. [91].

3.7 Conclusion

In conclusion, we presented a method that can automatically quantify the wall volume
and normalized wall index of the carotid artery in a region around the bifurcation. The
method consists of a deformable model fitting step and a learning-based correction of
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systematic errors. Intensity inhomogeneities in the MR images were reduced using a 3D-
extended version of the LEMS method. The parameters of both the deformable model
fitting and the LBVSC method have been optimized by extensive experiments using the
manual annotations of a single observer on a training set. Evaluation was performed with
respect to annotations of two observers on a separate test set. Our experiments justify the
conclusion that the automatic method performs comparably to the manual annotations
in terms of wall volume and normalized wall index measurements and can therefore be
used to replace the manual measurements.

All image data, annotations and results from this study are made available through
the website http://ergocar.bigr.nl (user/pwd: reviewer/PMBVesselWall). We chal-
lenge every one to improve our automatic vessel wall volume and normalize wall index
measurements on these datasets and publish their results.

http://ergocar.bigr.nl
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Abstract

Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment
of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using mul-
tiple MR sequences with different contrast weightings. These images allow manual or automated
classification of plaque components inside the vessel wall. Automated classification requires all
sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction
of this motion is performed manually. Previous studies applied automated image registration
to correct for motion using only nondeformable transformation models and did not perform a
detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D
registration method, and to extensively validate this method on a large set of patient data. In ad-
dition, the authors quantified patient motion during scanning to investigate the need for correction.

Methods:: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke
patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort.
Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine
transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and
pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually
segmented by delineating the lumen contour in each vessel wall sequence and were manually
aligned by applying throughplane and inplane translations to the images. To find the optimal
automatic image registration method, different masks, choice of the fixed image, different types
of the mutual information image similarity metric, and transformation models including 3D de-
formable transformation models, were evaluated. Evaluation of the automatic registration results
was performed by comparing the lumen segmentations of the fixed image and moving image after
registration.

Results: The average required manual translation per image slice was 1.33 mm. Translations were
larger as the patient was longer inside the scanner.Manual alignment took 187.5 s per patient
resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to
generate the mask in the fixed image, the remaining sequences are automatically registered with
a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask
with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15
mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A
mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to
the accuracy of the manual alignment procedure. The exact registration parameters and software
were made publicly available.

Conclusions: An automated registration method was developed and optimized, only needing two
mouse clicks to mark the start and end point of the artery. Validation on a large group of patients
showed that automated image registration has similar accuracy as the manual alignment procedure,
substantially reducing the amount of user interactions needed, and is multiple times faster. In con-
clusion, the authors believe that the proposed automated method can replace the current manual
procedure, thereby reducing the time to analyze the images.
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4.1 Introduction

Atherosclerosis is the primary cause of heart disease and stroke. These cardiovascular
diseases are the leading cause of death in the Western world [63]. Atherosclerosis is a pro-
gressive disease which, at an early stage, is characterized by the accumulation of lipids
and inflammatory cells in the vessel wall of large arteries, and, at a later stage, by the for-
mation of plaque lesions inside the vessel wall [3]. Identification of vulnerable plaques,
lesions with a high risk to rupture which in turn can lead to a cardiovascular event such as
stroke, is of high clinical relevance.

Magnetic Resonance Imaging (MRI) of the carotid artery vessel wall is often used to
assess atherosclerosis and is one of the most promising imaging modalities for visualiz-
ing plaque in the carotid artery. It is noninvasive, does not involve ionizing radiation, and
is highly reproducible [92]. Detailed assessment of atherosclerosis in the carotid artery
requires high resolution imaging of the vessel wall using multiple MR sequences with dif-
ferent contrast weightings [93]. A MRI examination of the carotid artery usually starts
with the acquisition of a time of flight (TOF) magnetic resonance angiography sequence
which provides a global overview of the vascular structure. Subsequently, several addi-
tional 2D acquisitions can be planned and acquired to obtain information about the vessel
wall morphology and plaque composition. These vessel wall images are usually scanned
perpendicular to the carotid artery and typically have a high resolution inplane (0.4 mm)
and a significantly lower throughplane resolution (3 mm). Manual or automated analysis
of the vessel wall images allows identification and quantification of the plaque compo-
nents inside the vessel wall. Based on this information, the clinically relevant vulnerable
plaques can be distinguished from stable plaques.

The duration of a multisequence MRI protocol is between 30 and 60 min. Due to pa-
tient movement significant misalignment may occur between the sequences. The effect
of patient motion is especially noticeable inplane; a movement of 1 mm by the patient
can result in a shift of multiple pixels in the subsequent MR sequence. The effect of move-
ment in the throughplane direction is less obvious due to the lower resolution, but is still
present. These translations between different sequences due to patient movement de-
crease the accuracy of plaque quantification and increase the time needed by a human ex-
pert to analyze the images because comparing similar locations between the images is less
straightforward due to the inconsistency in the spatial relation between the sequences.
Therefore, patient movement should be corrected for.

The current way in clinical research to correct patient movement is manual alignment
of the vessel wall images by an expert. First, in one sequence the lumen and outer wall
contours are delineated, followed by manual intrascan image alignment by applying a
combination of throughplane translation of the complete image stack and inplane trans-
lation for individual image slices. The expert takes into account the appearance of the
images and uses the lumen and outer wall contours as a reference. Once all images are
aligned, regions of plaque can be identified and characterized by evaluating the relative
signal intensities in the available imaging sequences. Various schemes for plaque classifi-
cation have been reported for different imaging protocols, which can be used to identify
regions of calcification, lipid core, intraplaque hemorrhage, ulceration, and fibrous tis-
sue [22, 23, 94]. In case the segmentation of the plaque components is performed by an
automated method [20,37,38], accurate alignment of the images is essential since most of
these methods classify pixels in the vessel wall using the signal intensities from the differ-
ent MR sequences, thereby assuming pixelwise correspondence between the images.
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Table 4.1: Literature overview (ROI = region of interest, MI = mutual information).

Study Dataset descrip-
tion

Image similarity
metric

ROI us-
age

Transformation
model

Validation method

Adame et
al. [39]

19 patients, two
MR sequences

Correlation coef-
ficient

Yes 2D translation None

Biasiolli
et al. [40]

Five volunteers +
20 patients, three
MR sequences

Correlation ratio
MI, Gradient MI

Yes 2D translation
+ rotation

Five volunteers:
quantitative valida-
tion. 20 patients:
visual validation.

Hofman
et al. [37]

25 patients, five
MR sequences

Normalized MI Yes 2D translation
+ rotation

None

Liu et al.
[38]

26 patients, five
MR sequences

Active edge map Yes 2D translation 87% correct, no fur-
ther details given.

Fei et al.
[41]

Two volunteers
+ one patient,
three MR se-
quences

Normalized MI Unknown 3D translation
+ rotation

Visual validation

Tang et
al. [42]

48 patients, two
MR sequences

MI Yes First 3D rigid,
then 3D affine

Visual validation

Since manual alignment is a user dependent and a time-consuming procedure, auto-
matic image registration has been applied in a number of studies. An overview of these
studies is given in Table 4.1. In previous work, registration was mainly performed in 2D
[37–40], ignoring any patient movement in the throughplane direction. In all studies, a
region of interest around the carotid artery was used and image similarity metrics based
on correlation, mutual information (MI), or gradients in the image were used. Transfor-
mation models were limited to translation and rotation. Fei et al. [41] performed image
registration in 3D allowing for translation and rotation in all three directions, and Tang et
al. [42] used a 3D affine transformation. It is however to be expected that patient motion
also results in nonrigid deformation of the carotid vessel wall [95, 96]. Another limitation
of the above studies is that the registration results were either assessed visually or no val-
idation was performed. Quantitative validation was performed in only one study on five
healthy volunteers [40]. To overcome the limitations of these studies, 3D nonrigid image
registration methods should be investigated, optimized, and quantitatively validated on a
large set of patient data.

Therefore, the purpose of this study was to investigate patient movement during scan-
ning, to develop an accurate automated 3D registration method, and to perform a quan-
titative validation. The contribution of this study is threefold: (1) the manual alignments
of a large number of studies were analyzed to quantify the average patient movement in
MR vessel wall studies, thereby motivating the need for correction; (2) the development
of an optimal 3D registration method; and (3) to perform a quantitative validation of the
registration results using an independent reference standard on a large population.
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4.2 Materials and methods

Image data

Images from 55 TIA or stroke patients with ipsilateral <70% carotid artery stenosis were
randomly selected from a larger cohort [97]. MR images of the stenosed artery were ob-
tained on a 1.5T scanner using a dedicated carotid surface coil (both Philips Healthcare,
Best, The Netherlands). Five MR pulse sequences were acquired around the carotid bi-
furcation, each containing nine transverse slices: 3D T1-weighted turbo field echo (T1W
TFE), 3D TOF, 2D T2-weighted turbo spinecho (T2W TSE), and pre- and postcontrast 2D
T1-weighted turbo spin-echo images (T1W TSE), with precise acquisition parameters as
described by Kwee et al [98]. For all sequences, the field of view was 100×80 mm, with a
matrix size of 256×205 (inplane resolution, 0.39×0.39 mm), except for the T1W TFE se-
quence (field of view, 100×80 mm; matrix size, 256×163; inplane resolution, 0.39×0.49
mm). The slice thickness of the T1W TFE and TOF sequences was 3.0 mm with no slice
gap. The slice thickness of the T1W TSE and T2W TSE sequences was 2.5 mm with a slice
gap of 0.5 mm. All images were reconstructed to a pixel size of 0.20×0.20 mm inplane.
This study was approved by the institutional medical ethics committee and all patients
gave written informed consent.

Gold standard

An expert observer with four years of experience in vessel wall analysis traced the lumen
boundary of the common or the internal carotid artery in each image slice of each MR
sequence in all 55 studies. During delineation, all sequences were shown to the expert, so
all image information was available to obtain accurate contours. The set of lumen con-
tours form a manual segmentation and are further referred to as the gold standard in the
remainder of the paper.

Manual alignment

A second expert with two years of experience in MRI plaque analysis performed manual
alignment and manual segmentation in all 55 studies. Manual alignment was performed
by aligning the images from the different sequences to the precontrast T1W TSE image.
This sequence is often used to delineate the vessel wall contours and provides a good vi-
sualization of the carotid vessel wall and most plaque components. First, the expert de-
lineated the lumen and outer contours of the common or the internal carotid artery in the
precontrast T1W TSE sequence, which were then overlaid on the other sequences. Next,
the images of the remaining sequences were inspected and a throughplane translation
was applied to the complete image stack if needed. Finally, each image slice was aligned to
the lumen and outer contours by applying an inplane translation. The set of throughplane
and inplane translations defines the manual alignment. The contours which served as an
aid for the alignment were not used in the remainder of this paper. All manual alignments
and segmentations were performed using a dedicated software package (VesselMASS; Lei-
den University Medical Center, Leiden, The Netherlands) [25]. An example of the image
data including manual alignment and lumen contour is shown in Fig. 4.1.
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Figure 4.1: T1W TSE image (left) with delineated lumen contour (white), TOF image with
the T1W TSE lumen contour overlaid showing misalignment (middle), TOF image after
manual alignment (right).

Automatic image registration

The goal of automatic image registration is to determine a spatial transformation that re-
lates positions in one image to corresponding positions in another image. After successful
registration, information from the different images can be compared, combined, or ana-
lyzed [99]. Registration is the process of finding a coordinate transformation T (x) that
makes the moving image IM (T (x)) spatially aligned to the fixed image IF (x). The degrees
of freedom of T (x) determine the types of deformation that can be recovered and these
deformations are defined by the choice of the transformation model [85]. The registra-
tion problem can be formulated as an optimization problem in which a cost function C ,
which is negatively related to an image similarity metric S, is minimized with respect to
Tµ, where Tµ is a parameterization of transformation T and subscript µ represents a vec-
tor that contains the values of the transformation parameters:

µ= argmin
µ

C (Tµ; IF , IM ), (4.1)

C (T ; IF , IM ) =−S(T ; IF , IM ). (4.2)

This minimization problem is commonly solved by employing an iterative optimiza-
tion strategy [100].

There are several choices possible for the transformation model. Performing a 2D
translation per image slice is similar to the process of manual alignment by the expert.
It provides a 2D translation vector for each image slice. Examples of other transforma-
tionmodels are, in order of increasing flexibility, the rigid, the affine, and the nonrigid
B-spline transformation. The rigid transformation treats the image as a rigid body which
can translate and rotate. The affine transformation extends the rigid transformation by
adding scaling and shearing to the model. The nonrigid transformation is modeled as a
weighted sum of B-spline basis functions placed on a uniform control point grid. By mov-
ing the control points of the B-spline functions, the underlying image is deformed. The
B-spline transformation can model local deformations in the image, produces a smooth
transformation, and is computationally efficient [81]. The flexibility of the deformation is
defined by the resolution of the control point grid.
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In the context of the multisequence MR images of the carotid artery, one of the images
is chosen as fixed image and the remaining images will each serve as the moving image.
Each MR sequence has a different image contrast and the set of sequences can be consid-
ered as a multimodal dataset. Therefore, an image similarity metric should be chosen that
is suitable for multimodal image pairs, such as MI (Refs. [101] and [102]) or Normalized
Mutual Information (NMI) [103].

The image similarity metric should only be calculated in a region of interest (ROI)
around the carotid artery, otherwise the automatic registration algorithm might align the
sequences to the dominant neck-air boundary or other structures. The ROI was imple-
mented by defining an image mask centered over the lumen.

In this study, multiple image registration strategies were investigated to find the op-
timal strategy for MR vessel wall images of the carotid artery. Strategies were created by
varying the choice of the fixed image, two different types of the mutual information image
similarity metric, the transformation model and the image mask. The following choices
were investigated:

• Fixed image: A human expert often uses one sequence as a reference. In this dataset,
the precontrast T1W TSE was chosen to be the reference sequence. However, for
automated methods this might not be the best sequence, therefore each of the se-
quences was tested as fixed image.

• Image similarity metric: MI and NMI were tested as image similarity metrics.

• Transformation model: The selected models were 2D translation per image slice,
2D rigid transform per image slice, 3D rigid transform, 3D affine transform, and 3D
B-spline transform. For the 3D B-spline transform, different values of the B-spline
control point grid spacing were evaluated. The investigated values ranged from 2 to
200 mm.

• Mask shape and size: The mask was centered over the lumen in the fixed image
and various mask shapes and sizes were selected. The shape was either a circle or a
square and the respective diameter or width varied from 4 to 40 mm.

Determination of the lumen center in each image slice

The image mask was centered over the lumen in each image slice of the fixed image. In
each slice, the center of the lumen was derived from the gold standard lumen contours.
Additionally, the center of the lumen was derived from automated lumen segmentation
[18]. This automated procedure was applied to the MR sequence which was evaluated as
the best fixed image in section 4.3. The segmentation procedure was started by manually
indicating a point in the lumen center in the first and the last slice, and subsequently the
lumen was segmented. In some cases, a third point was indicated around the bifurcation
to ensure a correct segmentation.

Quantitative evaluation

Evaluation of the automatic registration was performed by comparing the lumen segmen-
tations of the fixed image and moving image after registration. In the case of successful
registration, the lumen segmentations should have a large overlap and a small surface to
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surface distance. The gold standard lumen contours were used for this validation. Both
the overlap and distance between the segmentations were used to quantify the registra-
tion accuracy.

The automatic image registration finds a coordinate transformation which is defined
as a mapping from the fixed image to the moving image. Therefore, the lumen contours
of the fixed image are transformed to the moving image domain, in which both contours
can be compared to each other. Because the transformed contour can move outside the
2D image plane after a 3D registration, it is not possible to compare the contours on a per
slice basis. To be able to compare the results of both 2D and 3D registrations, the lumen
contours were converted into 3D tubular surface meshes. The surface mesh was created
by interpolating a 3D tubular surface through the contours using linear interpolation.

The overlap between the lumen surfaces was calculated using the Dice similarity co-
efficient (DSC) [87]. The DSC was calculated as follows:

DSC = 2|LF T ∩LM |
|LF T |+ |LM | , (4.3)

where LF T represents the transformed lumen segmentation of the fixed image, LM the
lumen segmentation of the moving image, and |·| denotes the number of voxels within the
segmentation. A DSC of 1 indicates perfect overlap between both lumen surfaces, a value
of 0 means that there is no overlap between the surfaces.

The distance between the lumen surfaces was calculated by sampling points on the
surface each 0.05 mm. Sampled points on the transformed fixed lumen surface which
were positioned outside the moving image domain, points above or below the slice stack
of the moving image, were discarded. Then for each point on the transformed fixed lumen
surface, the distance to the closest point on the moving lumen surface was calculated. The
average of the distances was defined as the mean surface distance (MSD):

MSD = 1

n

n∑
i=1

mi nq∈LM

√
||pi −q ||2, (4.4)

where pi is a point on the transformed fixed lumen surface, n is the number of points
on the transformed fixed lumen surface, and q is a point on the moving lumen surface.
A smaller distance indicates a better registration result. The MSD and DSC scores are
summarized by using the median including the interquartile range (IQR) indicated by the
plus minus sign and boxplots. The IQR is the difference between the 75th and the 25th
percentiles. To compare different registration strategies with either the manual alignment
or an automated registration strategy, the Wilcoxon signed rank test was applied to the
MSD and DSC scores. A p-value smaller than 0.05 was considered to indicate statistical
significance.

4.3 Experiments and results

Three experiments were conducted to investigate several aspects of the registration of
multispectralMR vessel wall images of the carotid artery. In the first experiment, the need
for registration was investigated by analyzing the manual alignments performed by the
expert to quantify the amount of patient motion per MR study. In the second experiment,
the automatic image registration method was optimized. In the third experiment, we in-
vestigated if future improvements of the automated methods are possible. We estimated
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Figure 4.2: Average applied manual alignment based on 55 studies and five sequences.
The length of the error bars is two standard deviations.

a lower limit on the registration error by registering the manual lumen segmentations in-
stead of the MR image data.

Manual alignment

The manual alignments applied by the expert were analyzed to investigate the amount of
patient movement within one MR study. For each study, the MR sequences were sorted
in chronological order. Then, for each MR sequence, the average applied translation with
respect to the first acquired MR sequence was measured per slice and averaged over all
slices. As a result, the average translation for the first sequence was zero. This calculation
was performed for each study generating 55 averages per MR sequence. The average and
standard deviation of these 55 averages were calculated for each MR sequence. For the
first ten studies, the time needed to perform the manual alignment was recorded.

The analysis results of the manual alignments are shown in Fig. 4.2. In total, 1980 im-
age slices were manually aligned (nine slices per sequence, four MR sequences, 55 stud-
ies). The average translation per image slice was 1.33 mm. The translations were larger as
the patient was longer inside the scanner. The average duration of the manual alignment
procedure was 187.5 ± 12.4 s per patient.

Automatic image registration

To optimize the automatic image registration method, numerous registration strategies
were processed. Different masks, choice of the fixed image, image similarity metrics, and
transformation models were evaluated. Investigating all permutations of these options
was not feasible due to the required amount of computation time. Therefore, a stepwise
approach was taken. First, the effect of the mask shape and size was investigated. A 3D
rigid body transformation was chosen, MI as metric, and the precontrast T1W TSE im-
age was used as fixed image. Based on the best mask shape and size, all combinations of
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fixed and moving images were investigated, again with the same transformation and im-
age metric. Next, the performance of MI and NMI was compared using the optimal fixed
image. Then, the optimal value of the B- spline control point grid spacing for the 3D B-
spline transformation model was determined. Based on the previously selected registra-
tion options, five different transformation models were investigated. For comparison, the
MSD of the manual alignments was calculated as well as the MSD in case no registration
was applied to the image data. In addition, the DSC was calculated for this experiment.
The best registration strategy was evaluated with a mask created using the lumen center
extracted from the automated lumen segmentation procedure. Finally, the throughplane
translation was quantified for the different 3D registration methods and the amount of
volume change was quantified for the 3D B-spline transformation model.

The registration experiments were performed using a speed optimized beta version of
the publicly available Elastix software [85]. Elastix is an open source toolbox for rigid and
nonrigid registration of images. In this work, a random image sampler, two resolutions
of each 1000 iterations, a trilinear image interpolator, and adaptive stochastic gradient
descent as optimizer [83], were chosen. The exact registration parameters are available
in the parameter file database on the Elastix website with ID Par0018 (http://elastix.
bigr.nl/wiki/index.php/Par0018).

Masks

In Fig. 4.3, a boxplot is shown for the different shapes and sizes of the mask. The opti-
mal circular image mask had a diameter of 10 mm and a MSD of 0.317 ± 0.148 mm. The
optimal square mask had a width of 10 mm and a MSD of 0.324 ± 0.150 mm. In case the
mask was too small, such that it did not contain the complete vessel, or when no mask was
used, large errors appeared. An oversized mask resulted in a larger MSD and an increase
in outliers.

Fixed image

Using the optimal mask, all combinations of fixed and moving images were evaluated.
The results are shown using a color matrix in Fig. 4.4. The median MSD and IQR were
calculated for each combination of fixed and moving image. The overall score of a fixed
image was calculated by accumulating the MSD scores of the four moving image corre-
sponding to the selected fixed image and calculating the median. Using the precontrast
T1W TSE as fixed image resulted in the smallest overall MSD while using the TOF as fixed
image resulted in the highest MSD. For the further experiments, the precontrast T1W TSE
sequence was selected as fixed image.

MI and NMI

Finally, the image similarity metrics MI and NMI were investigated as well as the grid size
for the deformable B-spline transformation. MI as image similarity metric performed
slightly better than NMI, the MSD was 0.317 ± 0.148 and 0.324 ± 0.156 mm for MI and
NMI, respectively.

http://elastix.bigr.nl/wiki/index.php/Par0018
http://elastix.bigr.nl/wiki/index.php/Par0018
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Figure 4.3: Mean surface distance for no mask (“none”), circular and square masks of dif-
ferent sizes. A star on top of a column indicates a significant difference with respect to the
optimal score of that shape (lowest median), which is indicated by a hat. The two gridlines
show the acquired (0.39 mm) and reconstructed inplane pixel size (0.20 mm).

B-spline control point grid spacing

Different values of the B-spline control point spacing were evaluated usingMI as image
similarity metric. A control point spacing of 15 mm for the 3D B-spline transformation
provided the best results (Fig. 4.5), and the results were quite stable for grid spacings in
the range 5-100 mm.

Transformation model

The MSD for the different transformation models using the optimal mask, fixed image,
image metric, and control point spacing is shown in Fig. 4.6. The first column of the box-
plot shows the distance without applying any form of registration (0.590 ± 0.429 mm).
The second column shows the results after manual alignment by the expert (0.271 ± 0.127
mm). The remaining columns show the different transformation models: 2D translation
per image slice (0.303 ± 0.276 mm), 2D rigid transformation per image slice (0.308 ± 0.298
mm), 3D rigid transformation (0.317 ± 0.148 mm), 3D affine transformation (0.307 ± 0.149
mm), and the 3D B-spline transformation (0.288 ± 0.128 mm). The last column shows the
MSD obtained by the best registration strategy using the optimal mask which was initial-
ized by the automatically segmented lumen contours (0.286 ± 0.144 mm). Similarly, the
DSC scores are shown in Fig. 4.7.

The performance of the automated methods increased with an increasing degree of
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Figure 4.4: Color matrix showing the median MSD and the interquartile range of the dif-
ferent combinations of fixed and moving images. The rightmost column shows the overall
score for each selected fixed image.

freedom of the transformation model. The 3D B-spline registration showed the best regis-
tration accuracy and the MSD score was close to the MSD score of the manual alignment
procedure. The differences in DSC were smaller compared to the differences in MSD.
The 2D models showed substantial more outliers and a higher variation in MSD and DSC
scores compared to the 3D models. Visual used to investigate the outliers. The majority
of outliers were caused by poor image quality in either the fixed or the moving image, pul-
sation artifacts, or saturation slabs close to the carotid artery. The saturation slabs were
positioned over subcutaneous fat to reduce ghosting artifacts and over the pharynx to re-
duce swallowing artifacts.

The inplane and throughplane translation as a result of a 3D registration was quanti-
fied by calculating the average translation of the lumen segmentation in these directions
for each 3D registration. The average inplane translation was 1.093 ± 0.913 mm and the
average throughplane translation was 0.738 ± 0.571 mm.

The volume change occurring in the deformable 3D B-spline transformation was
quantified by calculating the average determinant of the Jacobian of the deformation field
within the fixed mask. A value of 1 indicates no volume change, a value of 1.1 indicates
local expansion of 10%, and a value of 0.9 indicates local compression by 10%. The mean
and standard deviation of the Jacobian determinant over all patients was 1.00 ± 0.11,
showing no systematic change in volume.

The computation time for the registration of one MR sequence with the precontrast
T1W TSE sequence was on average 41.4 s for the 2D translation transform (4.6 s per image
slice), 73.8 s for the 2D rigid transformation (8.2 s per image slice), 5.1 s for the 3D rigid
transform, 5.0 s for the 3D affine transform, and 13.0 s for the 3D B-spline transform. The
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Figure 4.5: Mean surface distance for different values of the control point spacing of the
3D B-spline transform. A star on top of a column indicates a significant difference with
respect to the optimal spacing, which is indicated by a hat. The two gridlines show the
acquired (0.39 mm) and reconstructed inplane pixel size (0.20 mm).

registration experiments were performed on a standard PC equipped with an Intel Xeon
processor with four cores running at 2.4 GHz. An example of a 3D B-spline registration is
shown in Fig. 4.8. The postcontrast T1W TSE image shows that throughplane correction
is required for correct alignment.

Lower limit registration accuracy

To investigate the lower limit of the registration accuracy, the real image data of each se-
quence was replaced with a binary mask of the gold standard contours of the lumen of
that sequence. Areas within the lumen were set as foreground (intensity value 1), areas
outside the lumen as background (intensity value 0). These masks were then used as the
fixed and moving images in the registration procedure. Instead of using MI as image sim-
ilarity metric, the sum of squared differences was used. The automatic image registration
was applied on the data to fit the lumen segmentations upon each other. By using the bi-
nary lumen masks, perfect image quality is simulated and the results will show an upper
bound of the registration accuracy using the current choice of registration parameters.

The lower limit MSD and the regular MSD scores are shown in Fig. 4.9. The values of
the lower limit MSD are smaller for transformation models which have more degrees of
freedom, but the medians are in all cases larger than the reconstructed pixel size.



62 Chapter 4. Automated registration of carotid artery vessel wall MRI

None Manual 2DTrans 2DRigid 3DRigid 3DAffine 3DBSpl 3DBSpl_ALS
Transformation model

M
e

a
n

 s
u

rf
a

c
e

 d
is

ta
n

c
e

 [
m

m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
*^ ^ *^ *^ *^ *^ * *^

Figure 4.6: Mean surface distance for all transformation models (None: no alignment,
Manual: manual alignment by the second expert, 2DTrans: 2D translation per image slice,
2DRigid: 2D rigid transform per image slice, 3DRigid: 3D rigid transform, 3DAffine: 3D
affine transform, 3DBspl: 3D B-spline transformation, 3DBspl_ALS: 3D B-spline transfor-
mation with a mask based on the automated lumen segmentation). A star on top of a col-
umn indicates a significant difference with respect to the manual alignment procedure. A
hat on top of the figure indicates a significant difference with the 3D B-spline model. The
three gridlines show the acquired (0.39 mm) and reconstructed inplane pixel size (0.20
mm) and the median MSD (0.27 mm) of the manual alignment procedure.

4.4 Discussion

The main observation of this study is that automated image registration of multicontrast
MR imaging of the carotid vessel wall using a 3D B-spline transform is almost as accu-
rate as the current clinical practice of manual alignment by an expert, with final accuracy
in the order of the inplane voxel size. The required user-interaction to generate the lu-
men masks to focus the registration was reduced from one mouse-click per image slice
to only two or three mouse-clicks per MRI exam. In addition, automated analysis is at
least three times faster than manual alignment of the image data and can potentially be
an order of magnitude faster if run in parallel. This paper has a number of contributions.
First, the need for alignment of multispectral MR vessel wall images of the carotid artery
was quantified. Second, an optimized automatic registration strategy was proposed af-
ter investigating and optimizing different parameters of the registration method. Third, a
validation framework was proposed which allows comparison of registration results with
a gold standard. In addition, an estimate of the maximum performance was derived. This
is the first study to quantify these aspects on a large set of patients.
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Figure 4.7: Dice similarity coefficient for all transformational models (None: no align-
ment, Manual: manual alignment by the second expert, 2DTrans: 2D translation per
image slice, 2DRigid: 2D rigid transform per image slice, 3DRigid: 3D rigid transform,
3DAffine: 3D affine transform, 3DBspl: 3D B-spline transformation, 3DBspl_ALS: 3D B-
spline transformation with a mask based on the automated lumen segmentation). A star
on top of a column indicates a significant difference with respect to the manual alignment
procedure. A hat on top of the figure indicates a significant difference with the 3D B-spline
model.

Analysis of the manual alignment by the expert shows the need for registration of
carotid MRI studies. The average misalignment per image slice is 1.33 mm, but can be
over 2.4 mm, and occurs in all three dimensions. Such a misalignment causes mismatches
in pixel correspondence between MR sequences; for example, a location in the vessel wall
in one MR sequence can correspond to the lumen area in another MR sequence. If the
images are not correctly aligned, manual segmentation of the vessel wall and its compo-
nents might not be accurate, especially at the boundaries of plaque components. In case
an automated plaque segmentation method is applied to the image data, incorrect results
are expected, as these methods classify pixels into plaque components according to their
signal intensity value in the different MR sequences [20, 37, 38, 104].

The different automatic image registration experiments showed in a stepwise fashion
the optimal registration strategy. The building blocks of the registration were optimized to
an automated circular mask with a diameter of 10 mm, 3D B-spline transformation model
with a control point spacing of 15 mm, MI as image similarity metric, with the precontrast
T1W TSE as fixed image. After an indication of the lumen centerline in the T1W image, the
other sequences are automatically registered with a median mean surface error of 0.288
± 0.128 mm. As a reference, the error after manual alignment was 0.271 ± 0.127 mm.
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Figure 4.8: Example of MRI images before (top row) and after registration by the optimal
3D B-spline transformation (bottom row). The fixed image is shown in the first column.
The lumen contour of the fixed image (white) is overlaid on all images. The postcon-
trast T1W TSE image shows that throughplane correction, which is achieved by using a
3D transformation model, is required for correct alignment.
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Figure 4.9: MSD and lower limit mean surface distance (LLMSD) of the different transfor-
mation models (2DTrans: 2D translation per image slice, 2DRigid: 2D rigid transform per
image slice, 3DRigid: 3D rigid transform, 3DAffine: 3D affine transform, 3DBspline: 3D B-
spline transformation). The two gridlines show the acquired (0.39 mm) and reconstructed
inplane pixel size (0.20 mm).
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The computation time for the registration of the MR sequences was 52.0 s per patient.
This is much faster than the time needed for manual alignment, which was 187.5 s per
patient. Average run time can potentially be further reduced by a factor of 3-4 by running
all registrations in parallel.

The shape and size of the optimal image mask should cover the luminal area, the vessel
wall, and its direct surrounding. The experiments have shown that most image informa-
tion necessary for successful registration is contained in this region and that neighboring
structures, such as veins and muscles, do not have an important contribution to the reg-
istration process. The optimal mask, a circular mask with a diameter of 10 mm, is slightly
larger than the dimensions of the carotid artery including the vessel wall. Krejza et al. [105]
reported an average internal diameter of the internal carotid artery of 4.89 and 6.31 mm
for the common carotid artery. The average vessel wall thickness measured by MRI is 0.92
± 0.21 mm in elderly subjects with cardiovascular disease [45].

The selection of the fixed image was investigated and the precontrast T1W-TSE se-
quence was chosen as fixed image. This is the same image that was used by the human
expert as reference. The relatively large MSD for the TOF sequence can be explained by
the lack of vessel wall depiction in this sequence. Also the selection of the postcontrast
T1W TSE sequence as fixed image showed a relatively large MSD. This sequence is always
acquired at the end of the study resulting in a higher chance that the subject will move.
Moreover, the administration of contrast agent might cause discomfort for the patient and
can result in extra patient motion as a reaction to this discomfort. Furthermore, uptake
of the contrast agent results in an increase of heterogeneity in the vessel wall intensities
which might decrease the performance of the MI image similarity metric. The matrix of
MSD scores in Fig. 4.4 shows moderate reflection symmetry. Perfect reflection symmetry
matrix was not expected as the used registration framework is not symmetrical.

After comparing MI and NMI as image similarity metric and optimizing the control
point grid spacing for the 3D Bspline transformation, all transformation models were
compared. The best registration accuracy was achieved by using the 3D B-spline trans-
formation model. Although the medians of the MSD and the Dice overlap do not show
a substantial improvement for the 3D transformations compared to the 2D transforma-
tions, Figs. 4.6 and 4.7 show that the 3D transformations have substantially less outliers.
Clinically, this means that much fewer patients will need manual correction, saving costly
reviewing time by the radiologist. Moreover, analysis of the manual segmentations and
the 3D registration results showed that patient movement occurs in all three directions
and that throughplane translation is in the same order of magnitude as inplane transla-
tion. The nonrigid 3D B-spline transformation model showed an improvement over the
rigid 3D transformations. A nonrigid model can better handle rotation of the neck which
can cause compression and expansion of tissues. Literature indicated that patient move-
ment includes a nonrigid component [95, 96]. Analysis of the deformation fields of the
3D B-spline registrations shows that small local compressions or expansions occur during
registration, but on average there was no change in volume. Finally, Fig. 4.5 shows that
patient motion can be modeled well with a few degrees of freedom.

While the differences in registration accuracy between the different transformation
models are small, a nonrigid 3D transformation model is required to correctly model
patient movement and obtain an accurate alignment. The 3D B-spline transformation
model has the best registration accuracy and the results show that a 3D model is needed
because the throughplane motion is in the same range as the inplane motion. An illustra-
tive example of throughplane motion is shown in Fig. 4.8. The 3D B-spline transformation
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model performs slightly worse than the manual alignment procedure. Visual inspection
of the results showed that most of the differences can be explained by errors of the auto-
mated registration of the 3DTOF sequence caused by the lack of structural information in
this sequence. By excluding the 3DTOF sequence from the experiment, the MSD of the
3D B-spline transformation model approaches the MSD of the manual alignment and is
no longer significantly different. The 3D B-spline registration with the mask based on the
automated lumen segmentation performed similarly to the 3D B-spline registration with
the mask that was based on the manual segmentation. This shows that the automatic
image registration can be applied with minimal user interaction.

The lower limit MSD was found to be slightly larger than the reconstructed inplane
pixel size. The comparison shows that the results of the different registration strategies
are close to the lowest possible MSD. Hence, major reductions in MSD are not expected
by further optimizing or changing the registration strategies, but improvements might still
lead to more accurate registration results possibly beating the manual alignment proce-
dure. The minimum value of the lower limit MSD might be limited by the gold standard
contours. These contours will vary slightly between the MR sequences because of possi-
ble patient movement and human variation in the delineation process. For example, if the
lumen contours in one sequence were drawn slightly larger than in another sequence, it
will not be possible to obtain a MSD of zero.

Compared to previously reported studies on automatic registration methods for
carotid MR vessel wall imaging, this is the first study in which comprehensive exper-
iments were performed on a large set of patient studies using quantitative validation
measures. Only one study performed quantitative validation on simulated neck move-
ments in five volunteers [40]. The authors performed the validation in 2D and assumed
that neck movements through the image plane and tissue deformations in the image
plane were either absent or negligible. However, patient movement occurs in all direc-
tions and as such, a 3D image registration approach has advantages, which is supported
by our findings. Also, as the thickness of imaging slices will decrease in the future due
to technological advancements, the effects of throughplane motion will have a more
prominent effect. Two studies [41, 42] used a 3D-based registration method being a rigid
body transformation or affine transformation. Our results show that such a transforma-
tion model is insufficient to generate a good result. Our data suggest that deformations,
such as bending and stretching [106], should be taken into account when choosing a
registration strategy.

This study is subject to a number of limitations. An image mask centered over the
lumen is required as input for the automatic image segmentation method. This mask
can be created by the application of an automated method to segment the carotid lumen
[18, 34], which requires a minimal user interaction of two or three interactions per MRI
exam as performed in this study.

Motion between slices, which can occur during a 2D acquisition in which the slices are
scanned sequentially, was not investigated. We assume that the effect is small compared
to the motion between MR sequences. During the acquisition of one sequence, the patient
is instructed not to move and most likely will move after completion of the sequence. The
error metrics used in this research cannot detect an erroneous rotation in case the vessel is
mostly circular. However, the MRI acquisition is centered on the bifurcation and the error
metric is sensitive to the rotation of both bifurcations and ellipsoid-shaped vessels. The
registration of the multispectral MR vessel wall images is just one of the steps in the anal-
ysis of atherosclerosis in the carotid artery. The final step of the analysis is the assessment
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of plaque composition inside the vessel wall. Accurate alignment of the images is bene-
ficial for the analysis of the plaque composition. More research should be conducted to
test if there is a difference in outcome of the plaque composition analysis between manual
alignment and automatic image registration.

To conclude, the need for image registration using a 3D deformable transformational
model was shown, and several carefully selected, critical components of the registration
procedure were optimized and quantitatively validated on a large group of patients. The
optimal registration strategy was faster than manual alignment by a human expert, and
with similar accuracy. These results show that automated image registration can replace
the manual alignment, thus reducing the amount of user interactions needed for ana-
lyzing carotid vessel wall images and improving the reproducibility of the analysis. The
proposed method shows high potential for clinical application. The software and the pa-
rameters of the optimal registration strategy are publicly available.

The main findings of this paper, which were acquired with data from a 1.5T scanner,
were validated on a more recent 3.0T dataset. The results of the 3.0T dataset are in line
with the results of the 1.5T dataset and show that the same registration settings can be
applied to newer MRI data. A short report is available in section 4.5.
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4.5 Appendix: 1.5T optimized settings applied to 3.0T data

In the article “Automated registration of multispectral MR vessel wall images of the carotid
artery” a large dataset was used for all the experiments. The dataset consisted of vessel
wall images of 55 patients acquired with a 1.5T MRI scanner. Although 1.5T scanners are
currently the workhorse systems in hospitals and clinics, the use of newer 3.0T scanners
in the clinic is increasing. 3.0T imaging offers the advantages such as higher in-plane
resolution and thinner images slices (e.g. 2 mm versus 3 mm at 1.5T). To validate the main
findings of the article, which were acquired with the 1.5T data, a subset of experiments was
performed on 10 patients scanned with a 3.0T MRI scanner.

Ten datasets with a more up-to-date multi-contrast MRI protocol were collected.
The datasets are from the ParisK study, which is currently running, and were ac-
quired using a 3.0T MRI scanner. The ParisK study is described at the website:
http://clinicaltrials.gov/ct2/show/NCT01208025. Relevant study details are:

• Inclusion criteria: patients with neurological symptoms due to ischemia in the
carotid artery territory and with a carotid stenosis between 30% and 69% according
to the NASCET criteria.

• 3.0T MRI with a multi contrast protocol (T1W pre- and post-contrast, T2W, TOF and
IR-TFE).

• Acquired in-plane pixel size: 0.6 mm, reconstructed pixel size: 0.3 mm, slice thick-
ness: 2 mm.

An experiment similar to the experiment described in section 4.3 and Figure 4.6, the
comparison of different transformation models, was performed using the T1W pre con-
trast image as fixed image and the T1W post contrast image as moving image. An ob-
server performed the manual alignment of the images, another observer created the gold
standard lumen contours. Automated registrations using different transformation models
were performed and evaluated. A circular mask of 10 mm was used, mutual information
as image similarity metric, and a B-spline control points spacing of 15 mm for the 3D B-
spline transformation model. The results are shown in Figure 4.10.

The mean surface distance (MSD) scores of the different transformation models follow
the same trend as the MSD scores in Figure 6 of the paper. The transformation model with
the most degrees of freedom, the 3D B-spline transformation model, has the lowest MSD
and was very close the MSD of the manual alignment procedure. There was no significant
difference between the manual alignment procedure and the 3D B-spline transformation
model (n = 10). The 2D methods showed low MSD scores but had a large variation. Com-
pared to Figure 6 in the manuscript, the overall MSD is lower, probably due to the lower
slice thickness. These findings are in line with the results of the 1.5T dataset and show that
the same registration settings can be applied to newer MRI data.

http://clinicaltrials.gov/ct2/show/NCT01208025
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Figure 4.10: Mean surface distance for all transformation models (None: no alignment,
Manual: manual alignment by the second expert, 2DTrans: 2D translation per image slice,
2DRigid: 2D rigid transform per image slice, 3DRigid: 3D rigid transform, 3DAffine: 3D
affine transform, 3DBspl: 3D B-spline transformation. A star on top of a column indicates
a significant difference with respect to the manual alignment procedure. The three grid-
lines show the acquired (0.6 mm) and reconstructed in-plane pixel size (0.3 mm) and the
median MSD (0.21 mm) of the manual alignment procedure.
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5.1 Introduction

Carotid atherosclerosis is an important cause of ischemic stroke. Assessment of plaque
composition in addition to degree of luminal stenosis can be used to identify patients
with increased risk of stroke and to assess disease progression. Magnetic resonance imag-
ing (MRI) is an excellent non-invasive imaging technique to assess vessel wall morphology
and plaque composition, with good accuracy and reproducibility [26]. Serial MRI of the
carotid artery is used in several studies which focus on measuring the natural history of
carotid artery plaques in symptomatic [26] and asymptomatic [29] patients and effects of
lipid-lowering therapy using statins [27, 28]. Current standard to analyze serial MRI scans
is to compare volume measurements based on manual segmentations of the vessel wall
and plaque components. Before comparing the scans, the scans have to be aligned to
each other on a slice level. Different approaches exist to align scans from different time
points. One study aligns the scans by centering the image stack at each time point over
the plaque [26], another study uses the baseline scan as a reference at the follow-up ses-
sion to ensure targeting the same arterial segment [28]. Alternatively, post processing can
be used to match the axial images from different time points according to their distance
to the carotid bifurcation [27, 29]. Furthermore, comparison between time points is hin-
dered by inconsistent repositioning of the artery from scan to scan in conjunction with
thick image slices. Balu et al. studied the influence of subject repositioning on measure-
ment precision in serial MRI and identified orientation variability as the most important
factor that affected reprodubility [107]. Besides repositioning variability, the current com-
parison of time points is primarily based on volume measurements, which is a limited
representation of the available image data, and no attention is given to local changes or
visual presentation of differences between time points.

Therefore, we present a method for analyzing serial MRI scans which employs 3D im-
age registration and visualization techniques to 1) decrease the measurement variability
caused by inconsistent repositioning and 2) to enable detailed visual inspection of local
differences between time points providing intuitive insight into the disease progression of
an individual patient.

5.2 Methods

Patient

A 71 year old male was admitted to the hospital due to loss of strength and sensation of
the left arm upon awakening. An MRI of the brain revealed several small cortical ischemic
lesions in the region of the right middle cerebral artery. Carotid ultrasound showed an ip-
silateral carotid artery plaque with approximately 30% luminal reduction. A minor stroke
of the right hemisphere was diagnosed. The patient was included in a large prospective
multicenter study to improve diagnosis of mild to moderate carotid plaques (Plaque At
RISK study) [108]. The institutional Medical Ethical Committee approved the study and
the patient gave written informed consent. The patient was followed up for 2 years, dur-
ing which he did not experience new ischemic events.
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Figure 5.1: a) baseline T1w images, b) 2 year follow-up T1w images (red = lumen, green
= outer vessel wall, orange = calcification, yellow = lipid-rich necrotic core, blue = in-
traplaque hemorrhage).

MRI

Carotid MRI examinations were performed 35 days after the event and after 2 years as
previously described [108]. The high-resolution multi-sequence MRI protocol consisted
of five MR sequences: 3D time of flight, 2D T1w turbo spin echo (TSE), 2D T2w TSE, 3D
inversion recovery-turbo field echo (IR-TFE), and post-contrast 2D T1w TSE. Fifteen trans-
verse adjoining slices of 2 mm each, with an in-plane reconstructed pixel size of 0.3 x 0.3
mm, covering the entire plaque were acquired.

Image analysis

The MR images at baseline and follow-up were manually segmented by delineating the
lumen, outer wall, calcifications, lipid-rich necrotic core (LRNC) and intraplaque hem-
orrhage (IPH) according to previously published criteria [108]. Per definition, IPH was
always located within the LRNC. Information from all MRI sequences was taken into ac-
count during the delineation process. The pre-contrast T1w images of both time points
including segmentations are shown in Figure 5.1 and demonstrate a slice offset between
time points at the bifurcation. The offset was manually corrected by applying a through
plane translation of one slice to the follow-up image. To reduce the effect of the high
anisotropy of the data on the measurements, the T1w images and segmented vessel wall
boundaries were interpolated to a slice thickness of 0.5 mm. The vessel wall boundaries
were visually inspected and corrected after interpolation. The interpolated vessel wall
boundaries are used in the next section for the calculation of the vessel wall thickness
and the creation of 3D meshes. The segmentations of the plaque components were not
interpolated.
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Automated image registration

The baseline and follow-up T1w images were aligned to each other using an automated
image registration framework which was optimized for carotid artery MRI scans [109]. Af-
ter registration, point correspondence between the lumen of the baseline and the follow-
up image was obtained, i.e. for each point on the lumen boundary in the baseline image,
the corresponding point on the lumen boundary in the follow-up image is known.

Visualization using 3D surface meshes

The interpolated lumen and outer wall segmentation were converted into 3D surface
meshes. For each point on the lumen mesh, the distance to the nearest point on the outer
wall mesh was calculated resulting in a local vessel wall thickness (VWT) measure. The
VWT is color-coded on the lumen mesh to provide a 3D visualization. The VWT analysis
was repeated for the follow-up segmentation.

By using the point correspondence between the baseline and follow-up lumen, differ-
ences in measurements between baseline and follow-up can be visualized by color coding
this difference on the baseline luminal surface mesh. Similarly, increase or decrease of
plaque components can be visualized by color coding the lumen surface. Presence of a
plaque component was indicated on a lumen mesh point when a plaque component was
present between that lumen mesh point and its closest point on the outer vessel wall.
Nearest neighbor interpolation was used to extract this information from the manual seg-
mentations.

5.3 Results

First, volume and area-based comparison between baseline and follow-up was per-
formed. Lumen volume at baseline was 1.525 ml and 1.507 ml at follow-up, vessel wall
volume 1.634 ml versus 1.577 ml, calcification volume 0.017 ml versus 0.015 ml, and LRNC
0.378 ml versus 0.444 ml. The external carotid artery was excluded from the volume and
area-based measurements. Figure 5.2 shows the slice-based area measurements of the
lumen, outer vessel wall, calcifications and LRNC. The volume and area measurements
demonstrate a mixed result; a consistent increase in LRNC was observed, the other
components showed a small decrease and little variation between baseline and follow-up.

Figure 5.3 shows the 3D visualization of VWT at baseline and follow-up, change in VWT
and progression or regression of LRNC with or without IPH over time. All metrics were
color-coded on the lumen surface and appropriate color maps were chosen. A bipolar
color map was chosen for Figure 5.3c in which gray corresponds to no change, blue to a
decrease and red to an increase in VWT. The strong red regions indicate a clear increase in
VWT. The absence of strong blue regions suggests accurate registration between baseline
and follow-up. The increase in VWT is positively correlated with the presence of LRNC
(Figure 5.3d). The 3D visualizations are interactive which allows the clinician to explore
the results using zoom and rotation.

The change in VWT was quantified for locations inside the vessel wall which were
thickened (VWT > 1 mm) and grouped into locations without and with LRNC (with or
without IPH) (Figure 5.4). The mean change and standard deviation in VWT was -0.02 ±
0.41 mm for thickened vessel wall and 0.36 ± 0.52 mm for the LRNC locations. Wilcoxon
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Figure 5.2: slice-based area measurements for baseline (solid line) and 2 years follow-up
(dashed line) showing lumen area (red), vessel wall area (green), calcifications (orange)
and lipid-rich necrotic core (LRNC) (yellow).

Figure 5.3: a-b) 3D surface meshes showing local vessel wall thickness at baseline and
follow-up, respectively; c) difference in vessel wall thickness over time, d) progression or
regression of lipid-rich necrotic core (LNRC) with or without intraplaque hemorrhage over
time.
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Figure 5.4: boxplot showing difference in VWT between baseline and follow-up for loca-
tions with a thickened vessel wall without and with the presence of lipid-rich necrotic core
(LRNC).

rank sum test demonstrated a significant difference between both groups (P-value <<
0.001).

5.4 Discussion

A new method was introduced to analyze and present serial MRI data of the carotid artery
vessel wall. 3D image registration was used to obtain point correspondence between im-
ages from different time points which enables assessment of local changes in plaque mor-
phology. 3D visualization techniques were applied to present changes in vessel wall mor-
phology using difference maps which were color-coded on a mesh of the lumen segmen-
tation of the baseline image and related to the presence of different atherosclerotic plaque
components in the vessel wall. The bipolar color map of the difference map in Figure 5.3c
allows the clinician to differentiate between small and substantial changes in VWT be-
tween time points. Moreover, the tool can be used to demonstrate a significant increase
in VWT over time for locations with LRNC with or without IPH. Both observations could
not be deducted from the traditional volume or area measurements.

The 3D visualizations provide an interactive and intuitive way to represent measure-
ments extracted from the original image data. In this work visualizations were generated
providing insight in the change in VWT and progression or regression of different plaque
components. Other measurements, e.g. changes in degree of stenosis, can be visualized
using the same methodology. These new visual data analysis tools provide clinicians with
a detailed view of atherosclerotic disease progression of individual patients and can po-
tentially improve understanding of the effect of changes in plaque components on local
plaque progression/regression.

5.5 Conclusion

The presented method to analyze and visualize changes over time for carotid artery MRI is
an improvement over the traditional volume-based analysis as it provides a detailed view
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of local differences between baseline and follow-up scans and increased insight into the
disease progression of an individual patient.
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Abstract

Background and purpose: Automatically identifying carotid plaque composition using
MR imaging remains a challenging task in vivo. The purpose of our study was to compare
the detection and quantification of carotid artery atherosclerotic plaque components
based on in vivo MR imaging data using manual and automated segmentation.

Materials and methods: Sixty patients from a multicenter study were split into a training
group (20 patients) and a study group (40 patients). Each MR imaging study consisted of
4 high-resolution carotid wall sequences (T1, T2, PDw, TOF). Manual segmentation was
performed by delineation of the vessel wall and different plaque components. Automated
segmentation was performed in the study group by a supervised classifier trained on
images from the training group of patients.

Results: For the detection of plaque components, the agreement between the visual and
automated analysis was moderate for calcifications (κ = 0.59, CI 95% [0.36-0.82]) and
good for hemorrhage (0.65 [0.42-0.88]) and lipids (0.65 [0.03-1.27]). For quantification of
plaque volumes, the intraclass correlation was high for hemorrhage (0.80 [0.54-0.92]) and
fibrous tissue (0.80 [0.65-0.89]), good for lipids (0.65 [0.43-0.80]), and poor for calcifica-
tions.

Conclusions: In 40 patients with carotid stenosis, our results indicated that it was pos-
sible to automatically detect carotid plaque components with substantial or good agree-
ment with visual identification, and that the volumes obtained manually and automati-
cally were reasonably consistent for hemorrhage and lipids but not for calcium.
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6.1 Introduction

Accurate information of atherosclerotic plaque morphology and composition is necessary
to distinguish stable from unstable plaques that are likely to cause embolic events [65].
The vulnerability of an atherosclerotic plaque to rupture is believed to be related to its in-
trinsic composition, such as the size of the lipid core and presence of intraplaque hemor-
rhage. In vivo multicontrast high-resolution MR imaging has emerged as a tool capable of
identifying and quantifying the main components of the atherosclerotic plaque [110], in-
cluding hemorrhage, calcifications, lipid core, and fibrous tissue [23,111,112]. Most of the
current imaging studies of atherosclerotic plaques rely on a human observer’s interpreta-
tion of MR images with different contrast weightings, producing measurements that have
been compared with histology assessment [24]. Manual plaque segmentation requires
expertise, is time consuming, and produces results that are subject to interobserver vari-
ability [113]. In contrast, automated classification could yield objective and reproducible
assessment of plaque composition [37, 114].

Promising work in this field has showed that the composition of atherosclerotic carotid
plaques can be objectively determined on ex vivo MR imaging, by means of algorithmic
classifiers [104]. Although ex vivo validation is a critical step in the establishment and vali-
dation of algorithms, it cannot be directly extrapolated to in vivo material, given the lower
image quality and motion artifacts that are inherent to MR images acquired in a clini-
cal setting. Two pilot studies have shown the feasibility of automated plaque analysis in
vivo by comparing the accuracy of the classifiers with that attained by human MR imag-
ing readers, using histology as the standard of reference [37, 38]. Both studies reported
encouraging results that were comparable with, or possibly more accurate than, manual
analysis. However, these previous studies were based on single-center MR imaging data
and relied on a small sample of selected patients with high-grade symptomatic carotid
stenosis scheduled for carotid endarterectomy.

Therefore, the goal of our work was to extend these results to a larger number of pa-
tients for whom markers of plaque instability are essential for therapeutic decision, that is,
patients with either symptomatic moderate stenosis or asymptomatic high grade stenosis,
using MR images acquired in a multicenter setting.

6.2 Materials and methods

Study population

High-Resolution MR Imaging of Atherosclerotic Stenosis of the Carotid Artery (HIRISC) is
an ongoing multicenter prospective study assessing the prognostic value of carotid plaque
vulnerability, as defined on MR imaging, for the prediction of cerebral vascular events. Pa-
tients are eligible for the study if 1) they have symptomatic stenosis (40% to 69%, accord-
ing to NASCET criteria) or asymptomatic stenosis (60% NASCET or greater) of the internal
carotid artery bifurcation; 2) they are not scheduled for endarterectomy within the next
6 months; and 3) they do not have any other major cause of stroke. The study was ap-
proved by the local ethics committee and all patients signed an informed consent form.
From the HIRISC imaging data base, we selected 65 consecutive patients who fulfilled the
following imaging criteria: of the 4 MR images available, 3 had to be excellent, and the
remaining 1 at least good on a subjective 4-level image quality scale (poor, average, good,
or excellent), rated by 2 independent readers. Five patients were excluded because man-
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ual registration of the 4 MR images was not possible because of severe patient motion.
The remaining 60 patients were randomly split into a training group of 20 patients and a
study group of 40 patients. For each patient, the carotid artery qualifying for the HIRISC
study was analyzed. The training group consisted of 10 men and 10 women (mean age
± SD of 72.3 ± 12.4 years), 10 right and 10 left carotid stenoses, 11 symptomatic and 9
asymptomatic stenoses, with an overall mean 48.7 ± 13.2% NASCET degree of stenosis.
The study group consisted of 27 men and 13 women (mean age 71.9 ± 10.2 years), 21
right and 19 left carotid stenoses, 25 symptomatic and 15 asymptomatic stenoses, with an
overall 44.2 ± 14.8% NASCET degree of stenosis. There was no significant difference be-
tween the training group and the study group for any of these parameters (Student t test
for quantitative variables, chi-square test for categoric parameters, level of significance P
< 0.05).

MR imaging protocol

All patients were imaged on a 1.5-T MR unit using the same 4-channel phased-array
carotid surface coil (Machnet BV, Eelde, the Netherlands). Before starting the study, the
MR protocol and acquisition parameters were standardized across platforms (Philips,
Siemens, GE Healthcare). A fast gradient-echo pulse sequence was used in axial, sagittal,
and coronal planes as a localizer. The median sagittal image was used to plan a 2D TOF
gradient-echo sequence. Twenty to 30 sections with a thickness of 4 mm were set to
cover the neck area using the phased array coil. The z-axis coordinates of the qualifying
carotid bifurcation on the 2D TOF images were used to position the following 4 pulse
sequences: 3D TOF, T1WI, PDw, and T2WI. The field of view (130 x 130 mm) was identical
for all 4 sequences. T1WI, T2WI, and PDw images were obtained with double inversion
recovery (ie, black- blood) fast spin-echo sequences with electrocardiographic gating
during free breathing using 8 axial sections (3 mm thick, 0.3 mm gap) centered on the
qualifying carotid stenosis. PDw and T2WI parameters were as follows: repetition time
2 R-R intervals; effective echo time 16-20 ms for PDw and 50 ms for T2WI; acquisition
matrix 256 x 512 (acquired in-plane resolution 508 x 508 µm, interpolated to 254 x 254 µm
by zero-filling in k-space); signal intensity averaged 2; fat suppression. T1WI parameters
were as follows: repetition time 1 R-R interval; echo time 9-10 ms; acquisition matrix 352
x 256 (acquired in-plane resolution 451 x 508 µm, interpolated to 254 x 254 µm by zero-
filling in k-space); signal intensity averaged 3. The 3D TOF sequence used a gradient-echo
pulse sequence with repetition time 30 ms; echo time 6.9 ms; flip angle 20◦, acquisition
matrix 288 x 224, 512 zero-filling (acquired in-plane resolution 451 x 580 µm, interpolated
to 254 x 254 µm by zero-filling in k-space); signal intensity averaged 2; 20 sections of
2.2-mm thickness, 1 slab. Total acquisition time was approximately 25 minutes.

Manual image review

For each patient, the images from the 4 vessel wall sequences were visualized using
QPlaqueMR software (Medis Medical Imaging Systems BV, Leiden, the Netherlands)
and manually coregistered. Two readers, blinded to the results of the automated image
analysis, examined, in consensus, all MR images of the qualifying carotid artery using a
standardized form and published criteria [23,24,115]. For each location, the 4 MR images
(PDw, T2WI, T1WI, TOF) were reviewed together. First, the thickness of the vessel wall
was reviewed. In the case of a thickened vessel wall, the inner and outer boundaries
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were delineated. Next, the vessel wall was segmented as fibrous tissue or as 1 of the
different plaque components, namely, calcifications, hemorrhage, or lipid core. All signal
intensities were compared with the adjacent sternocleidomastoid muscle. Calcifications
were defined as areas of hypointensity on all 4 sequences. Recent and fresh intraplaque
hemorrhages (type 1 and 2, as defined previously) [111] were considered together as
hyperintensities on T1WI and TOF images. Lipid-rich necrotic core and fibrous compo-
nents share the same signal intensity on PDw images, that is, signal intensity isointense
or slightly hyperintense compared with that of the sternocleidomastoid muscle. PDw
and T2WI were compared so as to discriminate between lipids and fibrous component
as follows: lipid core was identified as an area in which the signal intensity dropped
on T2WI, compared with PDw images, whereas fibrous component corresponded to a
relatively high signal intensity area on both sequences.

Calcifications, hemorrhages, and lipid core were considered present if they were ob-
served on at least 1 section. Using the manual drawing features of the QPlaqueMR soft-
ware, area measurements of vessel, lumen, lipids, hemorrhages, and calcifications were
obtained for each location by tracing the boundaries of each component. The fibrous
component area was calculated by subtracting lipid core, hemorrhage, and calcium from
the plaque area. For each component, volumes per artery were calculated by multiplying
the sum of areas from each cross-sectional location by the section thickness plus intersec-
tion gap.

Automated image analysis

A pattern recognition system, developed using PRTools [116] and Matlab (2007b; Math-
Works, Natick, Massachusetts), was used to automatically classify the pixels inside the
vessel wall. Vessel wall pixels were defined by the manually delineated contours of the
lumen and outer wall. First, the vessel wall images were normalized based on the me-
dian signal intensity within a 4×4 cm region of interest centered at the vessel lumen. This
normalization step is required for comparing the different sequences of a single subject
as well as for intersubject comparison. Then, for each pixel within the vessel wall, the
following features were calculated: normalized signal intensity, zero-, first-, and second-
order derivatives at multiple scales from the sequences; distance to the inner and outer
wall; and local vessel wall thickness. Based on these features, a linear discriminant classi-
fier was built for classification of each pixel as being calcium, lipid core, hemorrhage, or
fibrous tissue. This supervised classifier was trained with the images and manual segmen-
tations from the 20 patients of the training group. During the training phase, the features
and their corresponding classes were used to learn statistics describing the data. Subse-
quently, the trained classifier was used to automatically classify the vessel wall contents
of the study group of 40 patients. As in the manual analysis, the presence and volumes of
plaque components were determined.

Comparison between automated and manual segmentation

The 2 methods were compared on a per-patient basis. First, the presence and volumes
of plaque components in each qualifying artery were determined for the whole dataset.
Subsequently, the segmentation results for each patient were assessed by rating whether
a plaque component was present or not. Agreement between the automated and manual
analysis was assessed for the qualitative segmentation (presence or absence) of each com-
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ponent using the κ statistic for dichotomous data and percentage of agreement (similar to
accuracy in binary classification). According to Landis and Koch [58], values of κ between
0.8 and 1 indicate almost perfect agreement; 0.6 to 0.8, substantial agreement; 0.4 to 0.6,
moderate agreement; 0.2 to 0.4, fair agreement; 0.0 to 0.2, slight agreement; and -1.0 to
0.0, poor agreement.

Quantitative assessment was performed by measuring the volume for each plaque
component per artery by both segmentation methods and calculating the intraclass cor-
relation coefficient (ICC) with a 2-way random effect for continuous variables. ICC values
over 0.80 were considered excellent. For all agreement parameters, 95% confidence inter-
val (CI) were calculated. Subsequently, scatterplots for plaque volumes in patients were
generated to visually compare both methods, and the Pearson correlation coefficient was
calculated. A paired Wilcoxon test was used to determine whether the automated and
manual analysis method produced different volumes for each plaque component. A P
value ≤ 0.05 was considered significant. Bland-Altman analysis [57] was also used to as-
sess any size-dependent bias in the measurements between methods, limits of agreement,
and proportional errors.

6.3 Results

Of the 344 sections available in the study group (mean 8.6 per patient), 137 included a
thickened wall with atherosclerotic material, according to the visual analysis. Of the 207
remaining sections, only 2 were positive for lipid core with the automated analysis (1.0
and 0.76 mm3, respectively) and 1 was positive for hemorrhage (2.97 mm3).

Qualitative analysis

In the training set of 20 patients, calcium was visually present in 10 cases hemorrhage in
7 cases, while lipids and fibrous tissue were observed in all 20 cases. There were no sig-
nificant differences in the prevalence of visual detection of each component between the
training set and the study group (P = .65 for calcium, P = .12 for hemorrhage, P = .31 for
lipids). In the 40 patients of the study group (Fig 6.1), calcium was detected by both meth-
ods in 13 patients, hemorrhage in 18 patients, and lipids in all except 2 patients (Table
6.1). The percentage of agreement for calcium and hemorrhage was 80% or higher. The κ
values for calcification and hemorrhage indicated moderate and substantial agreement.
For identification of lipids, the agreement was almost perfect (97.5%), but because this
component was present in almost all plaques, the κ agreement was only substantial (κ =
0.65 [0.03-1.27]).

Quantitative analysis

The ICC (95% CI) between volumes obtained by the 2 methods was poor for calcifica-
tions (0.10 [-0.45-0.60]), excellent for hemorrhage (0.80 [0.54-0.92]), and good for lipids
(0.65 [0.43-0.80]). As shown in Fig 6.2, the correlation between volumes was stronger
for lipids (r = 0.88,P < .01) than for fibrous tissue (r = 0.80,P < .01) and hemorrhage
(r = 0.80,P < .01). For calcifications, the linear correlation coefficient was close to zero
(r = 0.1, not significant). As shown in Table 6.2, the automated approach overestimated
the volume of lipids (P = .01). For small volumes of lipids, the Bland-Altman plot showed
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Figure 6.1: Three illustrative examples of manual and automated segmentation. A, Lipid
core (yellow) corresponds to an area in which the signal intensity dropped on T2WI com-
pared with PDw images. B, Calcifications (orange) correspond to an area of hypointensity
on all 4 sequences. C, Recent hemorrhage (blue) corresponds to an area of hyperinten-
sities on T1WI and TOF images. Note that the automated classifier underestimated the
hemorrhage area.

Table 6.1: Percentage of agreement and κ statistic of the plaque components per patient
(n = 40)

Automated
Plaque Component Manual Absence Presence Agreement κ [95% CI]
Calcification Absence 19 3 80.0% 0.59 [0.36-0.82]

Presence 5 13

Hemorrhage Absence 15 4 82.5% 0.65 [0.42-0.88]
Presence 3 18

Lipid core Absence 1 0 97.5% 0.65 [0.03-1.27]
Presence 1 38



86 Chapter 6. Automated plaque classification

Figure 6.2: Graphs showing scatterplots of the volumes measured with the manual and
automated methods for each component. Each dot corresponds to 1 patient.

good agreement between the 2 methods (Fig 6.3). Conversely, for plaques with large vol-
umes of lipids (> 100 mm3), the plot indicated a clear overestimation of lipid volumes by
automated segmentation compared with manual segmentation. These plaques, in which
the automated segmentation overestimated the lipid volumes, were subsequently ana-
lyzed visually. They corresponded to carotid arteries curving horizontally after the bifur-
cation so that the imaging plane was not perpendicular to the arterial wall. This resulted
in partial volume effects in the images as well as differences in lumen shape between the
MR images, causing low pixel correspondence between the 4 MR images and resulting
in classification errors. There were no statistical differences between volumes obtained
by the 2 methods for the fibrous component or hemorrhage. For the other plaque compo-
nents, the Bland-Altman plots did not show any obvious bias according to the size of these
components, though differences existed between volumes obtained by the 2 methods.

6.4 Discussion

The purpose of this study was to evaluate the efficacy of automated plaque segmentation
for quantifying the main plaque tissue types in carotid arteries on the basis of multicon-
trast MR imaging. In a population of 40 patients with carotid atherosclerosis and high-
resolution MR images acquired in a multicenter setting, our results indicated that 1) it
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Table 6.2: Volume of plaque components

Volume (mm3)
Plaque Component Mean SD Median IQR P value*
Hemorrhage (n = 18)
Manual 112 103 86 21-199 0.16
Automated 90 104 58 13-124

Calcification (n = 13)
Manual 20 18 18 11-26 0.5
Automated 15 17 7 2-23

Lipid core (n = 38)
Manual 73 66 51 33-91 0.01
Automated 125 149 82 19-196

Fibrous tissue (n = 40)
Manual 272 176 229 163-344 0.27
Automated 237 162 216 122-340
Note: IQR indicates interquartile range; n = number of patients for whom a given compo-
nent was detected by both methods. * Paired Wilcoxon test.

Figure 6.3: Bland-Altman graphics showing the differences between volumes obtained by
manual and automated segmentation plotted against the mean of the 2 measurements.
Volumes per patient are expressed in mm3. The dotted lines indicate the average bias and
the dashed lines show the 95% CI (mean bias ± 1.96 SD). For each component, a negative
bias indicates that the automated segmentation overestimates the volumes. A positive
bias indicates that the automated segmentation underestimates the volumes.
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was possible to automatically detect carotid plaque components with substantial or good
agreement with visual identification, and 2) the volumes of plaque components obtained
manually and automatically were reasonably consistent for hemorrhage and lipids but not
for calcium.

Replacing subjective, time-consuming manual segmentation with an automated seg-
mentation alternative has been a long-time goal. Two studies have tested the possibilities
of using supervised classifiers in vivo compared with histology [37, 38] and showed en-
couraging results. In both studies, the algorithm was trained on a small set of patients and
then tested on a group of 12 or 13 patients. Both suggested the benefits of supervised clas-
sifier algorithms for the detection and the quantification of plaque components. It was
even suggested that this approach might be more accurate than manual review of high-
resolution MR images for some of the components. All ex vivo studies and the 2 in vivo
studies have focused on patients scheduled for endarterectomy. Our study focused on a
different population, composed of patients with moderate symptomatic or severe asymp-
tomatic stenosis and not scheduled for endarterectomy. In this population, the benefit of
endarterectomy is still controversial and much is to be expected from markers of plaque
instability [117]. To extend the findings of previous “pilot” in vivo studies, a larger group
of 60 patients was included. Furthermore, these patients were part of a multicenter MR
cohort and this should strengthen the generalization of our findings.

Identification of plaque components

Agreement (and κ coefficients) between the manual and automated segmentation
method for the detection of calcification, hemorrhage, and lipid core was good and
within the range of interobserver variability observed in a previous study dealing with
visual analysis on a similar population [113]. The good results observed for hemorrhage
can be explained by the high contrast presented by this component on the 4 MR images
and by the fact that recent hemorrhage strongly differs from that of other plaque com-
ponents, especially on T1WI and TOF sequences. This also explains the high sensitivity
of the visual detection of hemorrhage on high-resolution MR images compared with
histology reported by others [104, 118]. Visual detection of lipid components is based on
the comparison of 4 MR images, to eliminate calcification and hemorrhage, and subse-
quently on a signal intensity loss between PDw and T2WI [115]. This stepwise analysis
accounts for the difficulties encountered in both visual and automated analysis. However,
the percentage of agreement between the 2 methods for lipids was almost perfect, and the
lower κ value can be explained by the high prevalence of this plaque component [119].
Lipid core was detected in almost all the patients by both the automated and manual
segmentation methods. Histologic and MR studies have also reported a high prevalence
of lipid core, seen in up to two-thirds of plaques [24, 113].

Identifying calcifications using MR imaging is still a difficult task. It relies on differ-
ences in magnetic susceptibility between the mineral components and neighboring soft
tissues. 3D gradient-echo TOF sequences are theoretically the most sensitive, but they are
more affected by artifacts compared with other types of sequences [113]. Moreover, on 3D
TOF sequences, calcifications adjacent to the lumen are difficult to separate from other
plaque components, such as the fibrous cap, because they share the same signal inten-
sity characteristics [113, 120]. However, these issues affect both manual and automated
methods, which could explain why agreement remained reasonable in line with another
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group [114]. Finally, these difficulties may not in fact hamper the prediction of vascular
risk, because the prognostic value of calcifications for embolic risk is still debated [121].

Quantification of plaque components

Agreement between the automated and manual segmentation methods was high for the
quantification of lipid core and hemorrhage and low for calcification, as indicated by the
ICC. The same trend appeared when we calculated the Pearson correlation coefficients
for the volumes of each component. These correlations lie within the range of previously
published values obtained by the only group that distinguished the lipid core from recent
hemorrhage [37]. Another group chose to define necrotic core as regions of lipids and
intraplaque hemorrhage, and consequently only provided global results [38]. The corre-
lations also compare favorably with results obtained visually by 2 observers. However, the
Bland-Altman analysis showed that there is still a considerable discrepancy between the
manual and automated outlining. Hofman et al observed that the human eye underes-
timated the size of hemorrhage and overestimated the size of lipids [37]. This might ex-
plain, in part, the discrepancies between our automated and manual segmentations. The
Bland-Altman plots additionally showed that the consistency between measurements de-
creases for plaques with a large lipid core. Large discrepancies were explained by low pixel
correspondence between the different sequences, causing errors in the automated classi-
fication in patients with a horizontal carotid artery.

Whether calcifications, displayed as a signal intensity loss, should be measured on MR
imaging is controversial [122]. Even though our measurements may not be very accu-
rate, the error theoretically applies to both segmentation methods. It does not explain the
poor agreement observed between measurements obtained by the 2 methods. In line with
this, another group reported a low correlation between manual segmentation and various
classifiers, as well as a poor correlation with histology [37]. This may be related to poor
performance of the supervised classifier. Performance of a supervised classifier is highly
dependent on the training set. The training set should contain sufficient representative
examples of each plaque component. The frequency of calcified plaques and volume of
calcifications in the data we used were small compared with the other 2 components, ex-
plaining, at least in part, the low performance. Indeed, better results were reported in a
study with higher frequency of calcified plaques in the training set [114]. The use of the
postcontrast T1WI sequence may also improve calcium detection [38].

Limitations

Our study has a number of limitations. First, it lacks an ex vivo reference standard to de-
termine absolute accuracy. Even though we found good agreement between the 2 meth-
ods, we cannot rule out the possibility that both methods misinterpreted the images. We
did, however, use a well-documented manual image review procedure that has been ex-
tensively validated against ex vivo references [24, 123]. Second, like others [37, 38], we
selected MR examinations with good quality images among a larger imaging data base.
The results probably depend on image quality and cannot be extrapolated to all high-
resolution MR imaging of human carotid plaques, irrespective of the image quality. Third,
the classifier was trained on a limited training set of 20 patients. The results would po-
tentially have been better with a larger training set, including more samples of hemor-
rhage and calcifications. Fourth, given the low interobserver reproducibility for fibrous
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cap characterization, previously reported on a similar set of images [113], we chose to ex-
clude automated characterization of the fibrous cap (thick, thin, or ruptured), which is a
marker of plaque instability. In our opinion, this goal requires an improvement of the im-
age quality in terms of spatial resolution and contrast. For instance, gadolinium injection
could help distinguish between lipid core and fibrous cap [38, 123]. Fifth, we considered
fresh (type 1) and recent (type 2) hemorrhage together, given the low prevalence of type 1
hemorrhage [118] and the previously reported moderate agreement between automated
and manual segmentations for the identification of these hemorrhage subtypes [114].

Finally, the automated method we used represents one of 4 basic steps in carotid
plaque analysis: lumen boundary detection, outer wall boundary detection, multicon-
trast registration, and plaque segmentation. We have addressed the final step, which is
the most critical for automation. Automated methods for the remaining steps have previ-
ously been reported [10, 25].

6.5 Conclusions

Once automated methods for atherosclerotic plaque segmentation, such as the one pre-
sented here, have been fully validated, a considerable gain in processing time can be ex-
pected, together with elimination of interobserver variability. Automated analysis could
become a clinical tool for the pretherapeutic assessment of atherosclerotic carotid artery
stenoses and, further, could be integrated in longitudinal or transversal studies of large
populations. By providing quantitative measurements of lipids and hemorrhage, auto-
mated methods could improve the reliability of quantitative markers for plaque instability
and ease their use as criteria for assessing the efficacy of treatments stabilizing atheroscle-
rotic plaque.
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Abstract

Purpose: To investigate the effect of the choice of the features and training samples
to the agreement between manual and automated carotid artery plaque classification
in multi-contrast MRI and to evaluate the reproducibility of automated versus manual
plaque segmentation.

Materials and methods: Twenty-three patients with 30-70% stenosis underwent two
carotid vessel wall MR scans within one month. One reader blindly segmented the data
twice to provide the reference standard and training of different classifiers. Three possible
improvements to the base classifier, which utilized conventional features, were investi-
gated: 1) 3D morphological features, 2) intensity normalization strategies, 3) refinement
of the training set by intersecting the repeated reads. A final classifier was constructed by
incorporating the optimal elements from the three improvements.

Results: Compared to the base classifier, the final classifier using the 3D distance to
flow divider feature, intensity scaling as normalization and refined training data, had
significantly better Dice overlap with manual segmentation. Compared to manual seg-
mentation, automated plaque assessment reproducibility, assessed by the intra-class
correlation coefficient, increased from poor to fair for lipid, good to excellent for calcifi-
cation, and fair to excellent for loose matrix.

Conclusion: Automated plaque classification has great potential for monitoring of treat-
ment and plaque progression.
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7.1 Introduction

Rupture of unstable atherosclerotic plaque in the carotid artery is believed to be the pri-
mary cause of transient ischemic attack and stroke [124]. Carotid MR imaging is a promis-
ing non-invasive tool for identification of plaque vulnerability as it provides direct visu-
alizing of the vessel wall providing information on plaque composition and morphol-
ogy in addition to lumen dimensions. Numerous studies have shown that multi-contrast
weighted MRI can distinguish the major components such as calcification, intra-plaque
hemorrhage (IPH) and lipid-rich necrotic core (LRNC) in human carotid atherosclerotic
plaque in vivo [23, 24, 94]. Among these components, IPH and LRNC have been reported
to be strongly associated with plaque rupture and the occurrence of future cerebrovas-
cular events [65]. Currently, MRI-based plaque characterization heavily relies on man-
ual segmentation, which is a labor-intensive procedure and is prone to intra- and in-
terobserver variability. Reproducible automated plaque detection and classification ap-
proaches would greatly increase the clinical applicability of plaque composition quantifi-
cation from multi-contrast MR imaging protocols.

Several automatic algorithms have been proposed for the segmentation of ex vivo
MR images of carotid endarterectomy specimens [43, 104, 125, 126], but translating these
methods to in vivo data is hampered by the decreased resolution, motion and flow arti-
facts typically present in in vivo MR. Recent studies have attempted to develop automated
methods for in vivo MR plaque segmentation. Adame et al [25] used an ellipse-fitting ap-
proach to detect the outer vessel wall boundaries and used fuzzy clustering to detect the
lumen and plaque contours. Liu et al [38] used a maximum-likelihood Bayesian classi-
fier to generate a tissue probability map and used a level set method to define the final
plaque regions. Hofman et al [37] compared the performance of four types of supervised
classifiers, which included a combined classifier that utilized information of neighboring
pixels. Van Engelen et al [127] proposed a supervised classification technique incorporat-
ing the labeling uncertainty of the training pixels. Van ’t Klooster et al [20] evaluated the
efficacy of automatic plaque segmentation on images acquired in a multicenter setting
and demonstrated that automatic quantification could provide important information in
making the therapeutic decision to recommend endarterectomy for patients with moder-
ate symptomatic and severe asymptomatic stenosis. All these techniques employed pat-
tern recognition, which is based on features being derived from the MR images to aid the
separation of the area of interest into plaque components. Generally, signal intensity (SI)
features have been used in these algorithms including normalized SI [20, 25, 37, 38, 127]
and first and second order derivatives at multiple scales [20, 127] from each of the avail-
able contrast weightings (e.g. T1w, T2w, PDw, TOF). In addition, the use of morphological
features have been proposed, including distance to the lumen and outer wall [20, 38, 127]
and local wall thickness [20].

Useful features can adequately characterize and represent each class in the image, pro-
viding relevant information for the classification process. Therefore, the use of critical
features aid discrimination by contributing to the separability of spectral classes in both
supervised and unsupervised pattern recognition. Despite the wide use of existing inten-
sity and morphological features in this domain, there are still several possible improve-
ments related to the choice of features that have not been considered. First, the reported
morphological features are calculated in 2D capturing the location information of compo-
nents such as being adjacent to the lumen, close to the outer wall boundary or deep within
a plaque, but little work has been done in using 3D morphological features. Therefore, it
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is unclear whether the addition of 3D morphological features can enhance the discrim-
inative power of a classifier. Second, the region based normalization method proposed
by Liu et al [38], in which the image intensity was divided by the median signal intensity
within a 4×4 cm2 region of interest (ROI) centered at the lumen, was found to be the pre-
ferred MR signal calibration method applied in most in vivo plaque segmentation studies.
However, there is no clear evidence indicating that this normalization approach is also
the optimal approach since it has not been compared with other intensity normalization
approaches. Furthermore, the quality of the training data can have a large impact on the
performance of a supervised classification process and training samples should provide a
representative description for the classes. However, in many applications, there is no re-
finement conducted in the training data to discard unrepresentative samples which may
have a negative influence on the classifier in learning spectral signatures of the classes.
Additionally, although in vivo studies have demonstrated promising automatic segmen-
tation results indicated by the good agreement between automated plaque classification
and manual plaque delineation [20, 25] or histological findings [37, 38, 127], results on in-
terscan reproducibility of automated plaque classification are lacking.

Accordingly, the purpose of this study was to investigate the effect of the following
strategies on the classification of atherosclerotic plaque components from in vivo carotid
MRI datasets. First, 3D morphological features were incorporated as input to the clas-
sifier in addition to the conventional 2D morphological features. Hence, information of
plaque distributing along the radial, circumferential and axial direction was considered.
Second, several alternative normalized intensity features were evaluated, aiming at mim-
icking the way an expert is interpreting raw MR signal intensities as relative signal inten-
sities. Third, training samples were obtained from the intersection of the plaque segmen-
tations provided by the repeated reviews of the experienced observer to generate a more
reliable classifier. A ground truth provided by histology was not available in this study
because the patients, with moderate atherosclerosis, were not scheduled for carotid en-
darterectomy. In this study, we evaluated the developed automated methods by com-
paring the agreement between automated classification and manual segmentation by an
experienced reader and we evaluated the robustness of the methods by quantifying the
scan-rescan reproducibility.

7.2 Materials and methods

Image data

Twenty-five patients, with one or more atherosclerotic events and 30% to 70% carotid
artery stenosis, identified by duplex ultrasound measurement, underwent a carotid vessel
wall MR exam at baseline and follow-up within one month. No clinical major events were
reported in the period between the two exams. Two patients were excluded because of
poor image quality. The remaining 23 patients’ baseline and follow-up scans, constituting
46 datasets, were used in this study.

All MRI examinations were performed on a 3.0T whole body MR scanner (Intera,
Phillips Healthcare, Best, The Netherlands) using an 8 channel bilateral carotid artery
coil. Details of the imaging protocol have been described previously [128]. In short, a
time of flight (TOF) sequence covering both carotid arteries (FOV = 10×10 cm2, 40 slices
of 2 mm thickness, a segment of 8 cm was scanned) together with ultrasound duplex
data were used for localizing the center of the carotid plaque. Subsequently a stack of
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ECG-gated unilateral axial TOF, PDw, T1w, T2w images were acquired. The FOV (60×60
mm2), acquisition matrix (120×120), non-interpolated pixel size (0.5×0.5 mm2), number
of slices (8), slice thickness (2 mm) and slice gap (0 mm) were identical for all four se-
quences. The black-blood T1w, T2w, and PDw images were acquired with an identical flip
angle (90◦). The repetition time was 2 R-R intervals for T2w and PDw, 1 R-R interval for
T1w; and echo time was 8 ms for T1w and PDw and 50 ms for T2w. The TOF sequence
used the following parameters: flip angle 20◦; echo time 5 ms; repetition time 19 ms.
Overview images showing the image stacks superimposed over the carotid artery were
saved for planning the acquisition of the follow-up scan.

Manual image review

Images of the 46 exams were examined by an experienced MRI reader, who was fully
blinded to the scan session and patient information. To assess the intraobserver agree-
ment, the reader, blinded to the previous annotation result, reanalyzed all the blinded
images two months after the initial review. The manual segmentation result of the initial
review will be called first read and the results of the second review will be called second
read in the remainder of this manuscript. Image sets of each patient obtained from scan
and rescan session were randomized and anonymized to prevent any recall bias when re-
peated reviewing of the same patient. Image review and manual analysis were performed
using VesselMass software (Leiden University Medical Center, the Netherlands) [25, 50].
During the procedure, four contrast weighted images of a given slice were simultaneously
presented. Next, lumen and outer wall boundaries of the common and the internal carotid
artery were manually traced on the T1w image and propagated to the images of other
weightings. T2w, PDw and TOF images were manually registered to the T1w image by
translating each image stack in through-plane direction and each slice in the x and y di-
rection to match the contours of inner and outer wall, such that patient motion between
acquisitions was corrected, resulting in an aligned set of multi-contrast images. Contours
of lipid, calcification, ulceration, hemorrhage and loose matrix were delineated according
to previously described and validated plaque classification criteria [24], and was based on
relative intensities observed in the four sequences, such as lower, higher, or equal to ad-
jacent sternocleidomastoid muscle. To enable the intensity normalization based on the
sternocleidomastoid muscle during the automatic classification, muscle contours were
traced by another reader with over 4 years of experience in carotid MRI image review.

To enable assessment of the scan-rescan reproducibility of plaque classification at a
slice level, registration between scan and rescan sessions was performed. The alignment
of the transverse slices in the repeat scans was performed manually using the T1w series.
First, the corresponding slice in the follow-up scan was found to match the bifurcation
slice in the baseline scan, which was imaged at the location crossing or just next to the
flow divider. This matching procedure was then applied to the other slices from proximal
to distal relative to the carotid bifurcation in the caudo-cranial direction.

Automatic plaque classification

The base classifier

The base classifier was constructed according to the description in a previous study [20].
In brief, a supervised pattern recognition system was trained using the available manual
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segmentation results to automatically classify the plaque contents by using the intensity
and morphological features extracted from multi-contrast MRI. For the 23 patients a total
of 46 datasets were included in the automated analysis. Twelve MRI slices were excluded
because not all contrast weightings were available which resulted in 7±1 (range 3-8) MRI
slices per dataset for which information from all 4 sequences (T1w, T2w, PDw, TOF) was
available. In each slice, the pixels in the carotid artery vessel wall, as defined by lumen and
outer wall boundaries, were extracted to create datasets. For each pixel, the following fea-
tures were calculated: normalized SI of the four sequences, distance to the vessel lumen,
distance to the outer wall and local wall thickness. A linear discriminant classifier (LDC)
that modeled each class as a multivariate Gaussian distribution with an equal covariance
matrix was trained based on the above intensity and morphological features. The classi-
fier was evaluated by using a leave-one-patient out cross-validation approach, in which
all pixel samples in one dataset from baseline or follow-up scan of one patient were used
for testing and all pixel samples in the baseline and follow-up exams of the remaining
22 patients (44 datasets) were used for training. The segmentation provided by the first
read was used to train the classifier, from which the features and a priori probability were
calculated; the reference standard was set by the same read. Each vessel wall pixel was
classified to be one of the six classes: fibrous tissue, lipid, calcification, ulceration, hemor-
rhage, and loose matrix according to the highest posterior probability. A post processing
step was implemented to eliminate isolated pixels. Isolated pixels were relabeled to the
majority class of its neighboring pixels (within a 3×3 window). A pixel was considered to
be isolated if it was the only pixel of a given plaque component in a slice. The automatic
classification experiments were performed using MATLAB 2011b (Mathworks, Natick, US)
and the pattern recognition toolbox PRTools (version 4.2.0) [129].

Strategies for improving the classifier

Three different strategies to improve the base classifier were investigated.

Strategy 1: Incorporation of 3D morphological features

Atherosclerotic plaque predominantly develops at the carotid bifurcation in regions with
relatively low wall shear stress [130]. To explore the effect of adding information about the
axial and circumferential position into the automated plaque classification, we propose
two 3D morphological features: 1) distance to the flow divider and 2) angle to the exter-
nal carotid artery to describe the location of a pixel within the vessel wall relative to the
carotid bifurcating structure. The 3D distance feature (as illustrated in Figure 7.1) is com-
puted as the vertical distance with respect to the flow divider, the location where the com-
mon carotid artery (CCA) separates into the internal carotid artery (ICA) and the external
carotid artery (ECA). The 3D angular feature (as illustrated in Figure 7.2) is computed as
the cosine of the angular position of a pixel with respect to the ECA.

Strategy 2: Intensity normalization approaches

One of the major difficulties associated with MR image segmentation is that image inten-
sities do not have a tissue specific meaning. MR signal intensities may vary significantly
even between images obtained from the same tissue of the same patient at the same scan-
ner with the same imaging protocol. Consequently, a classifier trained based on unpro-
cessed raw MR image intensities may yield poor classification results, as intensities of the
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Figure 7.1: An example of the 3D distance to flow divider feature calculation. Each im-
age slice is labeled as Common (C), Bifurcation (B), or Internal (I) on the T1w image. The
dashed line, solid line and dash dot line show the imaging slice center located at ICA, bi-
furcation and CCA. The 3D distance feature is calculated by subtracting the z-coordinate
of the bifurcation slice from the z coordinate of current slice, and multiplying resulting
difference by the slice thickness. Therefore, locations at the ICA have a positive distance
and locations at the CCA have a negative distance. (a) Example of a single bifurcation slice
in one artery. The bifurcation slice (slice 4) crosses the flow divider, resulting in z coordi-
nate equal to 4. (b) Example of two bifurcation slices in one artery. The bifurcation slices
are above (slice 6) and below (slice 5) the flow divider, resulting in z-coordinate equals to
5.5.

same tissue may differ considerably between the images used for training and testing.
Therefore, raw MRI data must undergo intensity normalization prior to automatic clas-
sification. Intensity normalization for in vivo MR carotid plaque imaging data remains
a challenging problem. The following approaches were evaluated, in which the normal-
ization was performed slice by slice, and their efficacy on plaque tissue classification was
compared.

Normalization based on a square Region of Interest: nROI

Liu et al suggested that the median intensity of 4×4 cm2 square region of interest (ROI)
closely agreed with that of the sternocleidomastoid muscle which is used as the reference
by the human observer [38]. Accordingly, the signal intensity of each image slice was di-
vided by the median signal intensity of the 4×4 cm2 ROI centered at lumen in the current
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Figure 7.2: An example of angle to ECA feature calculation. The top panel (a, b, and c)
shows three consecutive T1w images at the level of the common carotid artery (a), carotid
bifurcation (b) and internal carotid artery (c) and manually annotated contours of lumen
(red), outer wall (green) and region of calcified tissue (orange). The center of the lumen
of the ECA is indicated by a reference point (blue cross). The bottom panel (d, e, and f)
shows the angular feature map calculated from the corresponding slice. The vector v1

(yellow arrow) indicates the direction from the ICA lumen center towards the ECA lumen
and represents the 0 degree angle. The vector v2 (yellow arrow) is pointing from the ICA
lumen center to a vessel wall pixel of interest. The angle θ is the angle between v1 and v2.
In slices where the ECA is not visible in the field of view (a), v1 is derived from the nearest
bifurcation slice. Pixel intensity values of the angular feature map are computed as cosθ,
ranging from -1 to +1, resulting in a low value for pixels far away from the ECA and a value
close to 1 for pixels near the ICA.

slice (Figure 7.3a).This was repeated for all four contrast weightings.

Normalization based on a donut-shaped Region of Interest: nDonut

A circular ROI with a diameter of 4 cm contains relatively more relevant information than
the 4×4 cm2 squared ROI. Moreover, the presence of pathology may potentially distort
the normalization result since plaque composition and lumen size varies from patient to
patient. The lumen and vessel wall area were removed from the circular ROI in each slice,
which resulted in a donut-shaped ROI. MR images of all contrast weightings were divided
by the median signal intensity of the donut shaped ROI centered at the lumen (Figure
7.3b).
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Figure 7.3: (a) The 4×4 cm2 ROI centered at ICA lumen of a T1w image slice. (b) The 4 cm
diameter donut shaped ROI centered at the ICA lumen of a T1w image slice. (c) Manually
traced SCM contour (white) on T1w image.

Normalization based on the sternocleidomastoid muscle: nSCM

Normalization of the signal intensities based on the signal intensity of the nearby stern-
ocleidomastoid muscle is commonly reported as the preferred approach when perform-
ing manual plaque classification [24]. T1w, T2w and PDw images were divided by the me-
dian signal intensity of the manually traced sternocleidomastoid muscle (SCM) (Figure
7.3c). In this approach the TOF images were normalized using the nROI method because
of the poor depiction of the SCM in the TOF images.

Normalization based on intensity scaling: nScaling

Intensity scaling is a common practice for MR intensity standardization in brain segmen-
tation studies [131]. The T1w, T2w, PDw and TOF images were linearly scaled according to
Equation 7.1, in which the 2.5 and 97.5 percentile of the intensity histogram in the donut-
shaped region were mapped to 0 and 1000.

SIscaled = (|SI |−2.5%Donut Imag e)×1000

(97.5%Donut Imag e −2.5%Donut Imag e)
(7.1)

Normalization based on manually annotated fibrous tissue: nManuFibrous

This normalization approach is mimicking the human observer who compares the SI of
a location of interest to the surrounding fibrous tissue when segmenting plaque compo-
nents. T1w, T2w and PDw images were normalized by dividing all intensities by the me-
dian value of the manually identified fibrous tissue region. In this approach the TOF im-
ages were normalized using the nROI method because of the poor depiction of the vessel
wall in the TOF images.

Normalization based on automatically detected fibrous tissue: nAutoFibrous

In practice, it is not possible to know the regions of fibrous tissue prior to the automated
plaque classification. To simulate the procedure of nManuFibrous, we performed a step-
wise normalization. In the first step the nROI normalization was used to perform an initial
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classification of fibrous tissue. In the second step the initial fibrous tissue classification
was used to generate the normalization factor for the T1w, T2w and PDw images. As in the
nManuFibrous method, the TOF images were normalized using the nROI method.

Strategy 3: Refinement of the training samples

In supervised classification, spectral signatures of each class are derived from represen-
tative samples in the training phase. The performance of a classifier can be significantly
influenced by the training data. In this study, a histology guided manual segmentation
was not available. Therefore, to train a more reliable classifier the training samples were
generated from the intersection of the segmentations provided by the two repeated reads
by the reader (first read and second read), which discarded the pixels with unequal labels
between both segmentations. In this trial, the priori probability, morphological and in-
tensity features were calculated from the first read and the second read. Then the priors
and features were averaged respectively and were used to train the classifier. Both sets of
manual segmentations were used as reference standard.

Evaluation of the automated classification results

Agreement

To evaluate the effects of the three proposed strategies including 3D morphology features,
different intensity normalization procedures, and the training set refinement on the au-
tomated plaque classification, the results from different classifiers were compared to the
result from the experienced observer. The agreement between automated and manual
segmentation was assessed using the 2D Dice overlap measure, which is defined as the
area of overlap between the manual and automatic segmentation divided by their mean
area. The 2D Dice was calculated and averaged for the slices in which both the observer
and the classifier detected a given type of tissue. To compare the performance of the base
classifier and the final classifier which incorporated the selected optimal elements from
the three proposed strategies based on the highest automated-manual agreement, we cal-
culated the average 2D Dice. The experimental design is listed in Table 1. To compare the
agreements obtained by different classifiers, the Mann-Whitney test was applied to the 2D
Dice scores. A p-value smaller than 0.05 was considered to be statistically significant.

Reproducibility

To assess the scan-rescan plaque classification reproducibility of the manual and the au-
tomated methods, the intraclass correlation coefficient (ICC) was used. For each plaque
type, areas were measured in all baseline slices and the corresponding follow-up slices.
The ICC was calculated between the baseline areas of all patients and the follow-up ar-
eas. Pixel-wise analysis was not an option because the registration between baseline and
follow up images is not accurate at a pixel level, due to variations in patient position. Ac-
cording to Cichetti et al [132], ICC values between 0.75 and 1 indicate an excellent agree-
ment; 0.69 to 0.74 a good agreement; 0.40 to 0.59 a fair agreement; and below 0.40 a poor
agreement.
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Table 7.1: Experimental setup.

Experiment for evalu-
ation

Variables Constants

3D Morphologic fea-
tures

distance to flow divider; angle to
ECA;

Intensity and 2D morphologic
features; nROI; train by manual
segmentation of first read; evalu-
ate on the test set of first read;

Intensity normaliza-
tion approaches

nROI; nDonut; nSCM; nScaling;
nManuFibrous; nAutoFibrous;

Intensity and 2D morphologic
features; train by manual seg-
mentation of first read; evaluate
on the test set of first read

Training set refine-
ment

train by manual segmentation of
first read; train by manual seg-
mentation of second read; train
by intersection of two reads (first
read and second read);

Intensity and 2D morphologic
features; nROI; evaluate on the
first read and second read sep-
arately then take average from
these two results.

Final classifier 3D feature which introduces
highest improvement; Nor-
malization approach which
introduce highest improvement;
train by best training set;

Intensity and 2D morphologic
features; evaluate on the first read
and second read separately then
take average from these two re-
sults.

Table 7.2: The presence of particular plaque components in 46 datasets based on the man-
ual segmentation provided by the first read.

Lipid Calcification Ulceration Hemorrhage Loose Matrix
Number of datasets that a given
plaque component was detected

20 42 9 3 29

Number of patients that a given
component was detected in both
scan and rescan

6 17 1 1 10

7.3 Results

The results of automated atherosclerotic plaque classification experiments are presented
in Figure 7.4-7.8. In total 304 slices from unilateral carotid arteries (n = 46) from 23 patients
were included in the final analysis. Table 7.2 lists the presence of particular plaque types
in the complete data set based on the manual segmentation of the first read. It shows that
for ulceration and hemorrhage, the number of cases was small and the manual segmenta-
tion reproducibility was poor, which was not sufficient for training the classifier to classify
ulceration and hemorrhage. Therefore, no analysis was performed for these two types of
tissue in this study.

3D morphological features

The agreement between manual segmentation and automated classification based on the
different feature combinations are shown in Figure 7.4. The base classifier using the con-
ventional set of features yielded an average Dice of 0.27 for lipid, 0.34 for calcification,
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Figure 7.4: Results of automated-manual segmentation agreement obtained by classifiers
with different feature combinations. The values between brackets are the number of slices
in which both the manual and automated methods detected a given plaque component.

and 0.43 for loose matrix. After adding the distance to flow divider feature to the base
classifier, the classification agreement improved to an average Dice of 0.35, 0.34 and 0.45
respectively. A substantial improvement in average Dice was observed for lipid. Including
the angle to ECA feature to the base classifier did not result in an improvement in agree-
ment. Including both 3D morphology features to the base classifier resulted in a minor
increase in classification accuracy. No statistical significant difference in the classifica-
tion accuracy was found between the base classifier and the classifiers incorporating 3D
morphological features.

Intensity normalization

Figure 7.5 shows the agreement between manual segmentation and automated classifica-
tion using different intensity normalization methods. The result shows that the effective-
ness of normalization methods ranks in the following order: nScaling ≈ nManuFibrous
> nDonut > nROI > nSCM > nAutoFibrous. The classifier using normalization by lin-
ear scaling (nScaling) yielded a comparable accuracy to the one using the nManuFibrous
method. Compared to the result of the base classifier which used nROI method, the high-
est increase in average Dice provided by the proposed normalization methods was found
for lipid and loose matrix. Application of the nScaling intensity normalization resulted
in a significant increase (p<0.05) in Dice for loose matrix, but no significant increase in
Dice for lipid was found. The classifier using normalization by the automatic classified fi-
brous tissue (nAutoFibrous) produced the lowest average Dice for these two components.
The different normalization methods showed only small differences in average Dice for
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Figure 7.5: Results of automated-manual segmentation agreement obtained by classifiers
with different intensity normalization approaches. The values between brackets indicate
the number of slices in which both the manual and automated methods detected a given
plaque component. The classifier using linear intensity scaling (nScaling) for image nor-
malization resulted in the highest Dice overlap with manual segmentation. * indicates
statistically significant difference (p<0.05) between methods.

calcification.

Training set refinement

Figure 7.6 shows the performance of two classifiers in which the first was trained using the
segmentation of either the first or the second read (black bars), while the second classifier
was trained using the intersection of both reads (white bars). Both classifiers were tested
on the first read and the second read. The final result for each classifier was calculated by
taking the average of the results on the first and the second read. The classifier using the
training data from the intersection of both reads provided better agreement with manual
plaque classification than the one using the training data from a single read. No statistical
significant difference in the classification agreement was found between the classifiers
without and with training set refinement.

Base classifier versus the final classifier

The 3D distance to flow divider feature, the image normalization based on linear intensity
scaling (nScaling), and the training set using the intersection of two reads were integrated
into a final classifier. The result in Figure 7.7a shows the improvement of the final classi-
fier (red bar) compared to the base classifier (blue bar) in average Dice. The final classifier
achieved a significantly higher Dice for lipid (p<0.01) and loose matrix (p<0.01), and a
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Figure 7.6: Results of automated-manual segmentation agreement obtained by classifiers
without and with training set refinement. The values between brackets are the number of
slices in which the both manual and automated methods detected a given plaque compo-
nent.

higher Dice for calcification which was not statistically significant. The higher Dice for
all three plaque components demonstrates that the final classifier is in better agreement
with the manual observer at a pixel level. Figure 7.7a shows that the agreement between
automatic and manual segmentation was lower than the agreement between the repeated
manual delineations (green bar). Figure 7.7b shows three typical examples. In each exam-
ple, a slice was classified by manual analysis, the base and the final classifier. The clas-
sification result from the final classifier showed more overlap with manual analysis than
the classification result from the base classifier for lipid, calcification and loose matrix.
Although the improvements provided by the three proposed strategies were not signifi-
cant in most of the separate experiments, the final classifier which integrated the optimal
elements resulted in a significant improvement over the base classifier.

Scan-rescan plaque segmentation reproducibility

The interscan plaque segmentation reproducibility for the base classifier, the final classi-
fier and the experienced reader, assessed by ICC of area for the major plaque components,
is shown in Figure 7.8. The ICC demonstrates that the final classifier obtained similar re-
producibility as the base classifier and both classification methods achieved a higher re-
producibility in segmenting the scan-rescan images compared to manual segmentation.
Compared to manual analysis, automated plaque component area measurement repro-
ducibility increased from poor to fair for lipid, increased from good to excellent for calci-
fication and increased from fair to excellent for loose matrix.
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Figure 7.7: Results of automated-manual agreement obtained by the base classifier (blue
bar), and the final classifier (red bar) and results of intra-observer agreement obtained
by the experienced reader (green bar). (a) Measurement of averaged Dice, the values be-
tween brackets are the number of slices in which both the manual and automated meth-
ods detected a given plaque component. Stars ** in the figure of Dice indicate statistically
significant differences with p<0.01. (b) Typical examples of manual and automated clas-
sification in one slice for lipid (yellow), calcification (orange), loose matrix (white) and
fibrous tissue (gray). PDw images show the anatomical information of the corresponding
slice.

Figure 7.8: Results of scan-rescan plaque segmentation reproducibility, which were as-
sessed by plaque area ICC, obtained by the base classifier (blue bar), the final classifier
(red bar) and the observer (green bar)
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7.4 Discussion

In this study, we evaluated several methods for automated classification of plaque com-
ponents in the carotid vessel wall from in vivo multispectral MRI. We compared the agree-
ment between automated and manual segmentation and compared the reproducibility
of the proposed methods with the reproducibility of manual segmentation. Our findings
show that the performance of automated classification, in terms of agreement with man-
ual delineation, was improved by 1) using a new 3D morphological feature, the distance to
the flow divider, 2) using linear intensity scaling for the normalization of the images, and
3) using a refined training data based on the intersection of two manual reads. Based on
scan-rescan data and image analysis, it was demonstrated that automated plaque analysis
was more reproducible than manual image review.

Two 3D morphological features, distance to the flow divider and the angle to the ECA,
were introduced in this study. These features provide spatial information of a pixel inside
the vessel with respect to the bifurcating structure of the carotid artery. The aim of these
features is to mimic the behavior of a radiologist. An expert radiologist is able to combine
the image contrast and the prior knowledge of the predilection sites where atherosclerotic
lesions frequently develop to determine the plaque composition. The performance of the
classifier was improved by the addition of the 3D distance to the flow divider feature. This
result shows that plaque formation occurs more frequently near the area of the flow di-
vider. This observation is in line with our expectation from literature. The performance of
the classifier did not improve by adding the other 3D feature, the angle to the ECA, indi-
cating that plaque was not concentrating at a particular location along the circumferential
direction. This observation is inconsistent with our expectation, which might be associ-
ated with the presence of a considerable amount of small plaques in addition to large
plaques in the current data. It can be observed from the annotated carotid images that
large plaques are located far away (at around 180◦) from the ECA in most cases, however,
for small plaques, no angular preference of location is observed.

The choice of intensity normalization plays an important role in in vivo atherosclerotic
plaque segmentation. Intensity normalization is needed to allow comparison of signal
intensities from different images. We compared the classification agreements resulting
from several normalization approaches applied to the same dataset. It was shown that
using the nScaling approach, rather than the nROI approach which is often used in other
studies, resulted in the best agreement, which was indicated by the highest Dice of lipid,
calcification and loose matrix.

The nROI approach [38] is based on the assumption that the median signal intensity
of a 4×4 cm2 ROI centered at the carotid artery is similar to the signal intensity of the adja-
cent SCM. This signal intensity of the muscle is frequently used as reference value during
the manual segmentation procedure. The nROI might therefore be a reliable surrogate for
the SI of the SCM. To test this assumption, Liu et al [38] calculated the ratio between the SI
of the SCM and the median SI of the ROI, and took the average in five contrast weightings:
T1w, T2w, PDw, TOF and T1w post contrast. The mean ratio was equal to 1.07 (±0.11). In
our data, the ratio between the median SI of SCM, obtained using the SCM contours, and
ROI was 1.40 (±0.32) in T1w, 1.15 (±0.22) in T2w, 1.49 (±0.37) in PDw, and 1.01 (±0.18) in
TOF, showing that for the T1w and PDw images, the median SI of the nROI was not similar
to the SI of the SCM. The difference in SI ratios between our study and Liu’s study might
be explained by the differences in the MRI protocol and differences in intensity inhomo-
geneity correction by the MRI scanner. We would expect that the classifier based on nSCM
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would provide a better result of Dice in comparison with the nROI approach, which was
not the case for our data. Therefore, using only the muscle as reference might not be suf-
ficient for manual segmentation, and possibly, the radiologist compares the intensity of
the lesion to that of the muscle and the surroundings (such as fibrous tissue in the vessel
wall) to characterize plaque composition.

The Dice for nDonut was higher than the Dice for nROI, which was in agreement with
our expectation. Compared to nROI, the donut region contains more anatomical infor-
mation, and more importantly, the region of the diseased vessel was removed, so the nor-
malization would not be affected by different degrees of pathology. The nManuFibrous
approach performed better than nDonut, as shown in Figure 7.5. The higher score for
nManuFibrous suggests that during image review, the observer uses the intensity of the
normal vessel wall as reference for determining the component type of a suspect lesion
according to its relative intensity (e.g. hyper-, hypo-, or iso- intensity compared to the
fibrous tissue). However, in practice, the nManuFibrous approach is not feasible as it re-
quires prior knowledge of the regions of fibrous tissue. Instead we evaluated the nAut-
oFibrous approach in which the automated classification of fibrous tissue obtained in an
initial processing step was used for normalization. The nAutoFibrous however resulted
in the lowest Dice of all normalization approaches, which was most like due to inaccura-
cies in the fibrous region detection in the initial multiclass classification and the usage of
misclassified fibrous tissue containing multiple plaque components to generate the nor-
malization factor for reclassification in the second step.

The best Dice was obtained using nScaling which used the same ROI as the nDonut
approach but used a range scaling process based on mapping the lower and higher per-
centiles of the ROI intensity histogram to a standard minimum and a maximum instead
of dividing all signal intensities by the median value.

Another improvement in agreement was achieved by using the refined training data.
The refinement was performed by taking the intersection of the manual segmentations
of the first read and second read to generate the training samples. Using this approach
unreliable training samples were discarded. These samples were pixels that had a different
class label between reads and were mostly located near the lumen or outer wall contour
or at the boundaries of issue types. As pixels near region boundaries may suffer from
partial volume effect, they are not representative of any single tissue type and will have
a negative impact on deriving the spectral characteristics of the classes. Similarly, pixels
that are labeled as different plaque components in the repeated reads are atypical of the
class they are supposed to represent. By training the classifier on the intersection of the
segmentation of two reads, the result produced by the automatic classification would not
be biased towards the opinion of any single interpretation.

The final classifier, which used the improved algorithm through integration of the
most effective elements: 3D distance to the flow divider feature, linear intensity scaling
for image normalization and refined training data, significantly outperformed the base
classifier.

Previous studies [37, 38] used the correlation coefficient between the absolute (or rel-
ative) component areas segmented by the classifier and the observer to evaluate the seg-
mentation agreement, which provided the measurement of the size differences but not
the difference in location. Instead, we utilized the 2D Dice to quantify the classification
agreement on a pixel-by-pixel basis within a slice. We were not able to compare our scores
to the results in other studies [37, 38] which calculated the component area ICC. Never-
theless, our scores were calculated based on metrics which were more sensitive to reflect
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improvements in classified regions on a slice level.
To be able to perform a comprehensive validation of the automatic classification

method not only the classifier’s automated-manual agreement but also the classifier’s
reproducibility should be assessed. Manual segmentation was considered to be the gold
standard for evaluating the automatic classification method as histology was not avail-
able. Therefore, the measurement of the agreement of the classifier was also dependent
on the manual segmentation. Figure 7.7 shows that the agreement between the repeated
manual delineations was higher than the agreement between the manual and automatic
segmentation. However, Figure 7.8 shows that the automatic classification method was
more reproducible than the manual annotation in the setting on the analysis of scan-
rescan image data. Although the observer was reproducible in repeatedly segmenting
the same images, the reproducibility of manual segmentation on the scan-rescan images
was much lower. The automatic classifier, which learned from the expert’s experience
and strictly follows the classification rules based on the multi-contrast properties of the
classes, was more robust to changes in the rescan image. As such, the classifier was more
reproducible in scan-rescan area measurements of tissue components.

One limitation of this study is that there is no histology information to train and evalu-
ate the automated classifier. The performance of the supervised classification is compro-
mised by the limited accuracy of the manual segmentation. However, we used the well-
documented manual plaque segmentation criteria which have been validated against his-
tology, and we also assessed the reproducibility of automated classifier.

In conclusion, this study demonstrates that the agreement of automatic atheroscle-
rotic plaque classification can be significantly improved by using a 3D morphological fea-
ture, normalization based on intensity scaling within a donut-shaped region, and refined
training data. Furthermore, we showed that automatic classification can be more repro-
ducible than the manual segmentation of the scan-rescan images. Therefore, automatic
atherosclerotic plaque classification is a promising technique to provide anatomical and
morphological clinical data complementary information to improve risk stratification,
evaluate treatment strategies and monitor disease progression.
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Abstract

Intra-plaque hemorrhage (IPH) and lipid core, characteristics of rupture prone carotid
plaques, are often visualized in vivo with MRI using T1 weighted gradient and spin echo,
respectively. Increasing magnetic field strength may help to identify IPH and lipid core
better. As a proof of concept, automatic segmentation of plaque components was per-
formed with the Mahalanobis distance (MD) measure derived from image contrast from
multicontrast MR images including inversion recovery spin echo and T1 weighted gra-
dient echo with fat suppression. After MRI of nine formaldehyde-fixated autopsy speci-
mens, the MDs and Euclidean Distances between plaque component intensities were cal-
culated for each MR weighting. The distances from the carotid bifurcation and the size
and shape of calcification spots were used as landmarks for coregistration of MRI and his-
tology. MD between collagen/cell-rich area and IPH was largest with inversion recovery
spin echo (4.2/9.3, respectively), between collagen/cell-rich area/foam cells and lipid core
with T1 weighted gradient echo with fat suppression (26.9/38.2/4.6, respectively). The ac-
curacy of detection of IPH, cell-rich area, and collagen increased when the MD classifier
was used compared with the Euclidean Distance classifier. The enhanced conspicuity of
lipid core and IPH in human carotid artery plaque, using ex vivo T1 weighted gradient
echo with fat suppression and inversion recovery spin echo MRI and MD classifiers, de-
mands further in vivo evaluation in patients.
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8.1 Introduction

Clinically, the degree of stenosis, which is generally identified by angiography, is often
used as a marker for plaques that may give rise to clinical symptoms. However, lumenog-
raphy is regarded to be insufficient for identification of vulnerable plaques for two rea-
sons. Outward remodeling with preservation of lumen size is a characteristic of vulnera-
ble plaques but cannot be identified with lumenography [133]. Second, plaque composi-
tion rather than lumen size appears to determine plaque vulnerability. For identification
of high-risk carotid artery plaque not only the classical markers of plaque vulnerability-
large lipid core (LC), a thin fibrous cap [134], and abundance of macrophages [135] but
also intra-plaque hemorrhage (IPH) has been recognized as an important predictor of
major clinical events, e.g., transient ischemic attack or stroke [111, 118, 136]. MRI is the
most promising technique for visualization of these plaque markers, because each plaque
component generates unique MR contrast in various MR acquisitions, the technique is
noninvasive and depicts the anatomy of the vessel. A substantial number of studies have
been reported on carotid artery plaque MRI both ex vivo [104, 115, 137–139] and in vivo
[118, 123, 136, 140–142]. In most studies, multicontrast weighted MRI is used for charac-
terization of carotid atherosclerotic plaque. In particular, reports have stressed the impor-
tance of T2 weighted (T2w) spin echo (SE) sequences for differentiation between LC and
fibrous tissue [115]. More recently, T1 weighted fast SE and gradient echo (GE) imaging
have gained interest, because these sequences may lead to better visualization and bright
depiction of IPH [111, 118, 136] and LC [11, 23, 140].

With the advent of clinical high field magnets (7 T), interest in the possibilities for in
vivo carotid artery imaging at high field strength has grown. Higher field magnets bring
the advantage of increased SNR or the possibility to increase resolution. Unfortunately,
adjustments to MR sequences or development of novel methods are necessary, as T1 of a
particular tissue increases with increasing field strength, while T2 decreases, necessitating
adjustment of MR sequences to generate optimized contrast. Inversion Recovery Spin
Echo (IR-SE) has a larger potential for visualization of T1 differences than nonprepared
T1 weighted SE or GE [143]. Possibly, sharp delineation of IPH, characterized by short T1,
and differentiation from adjacent stable plaque components at higher field will be better
with the IR-SE technique than with the nonprepared SE or GE technique.

Additionally, early studies have revealed that chemical shift imaging of lipid, aimed
at the narrow frequency range of methylene protons within adipose tissue, could visual-
ize LC [144, 145]. At 9.4 T, T1 weighted GE with chemically selective fat suppression (FS),
aimed at the same frequency range as in the mentioned studies, allowed for better delin-
eation of LC then T1 weighted GE without this FS [146].

To objectively compare the image contrast between different plaque components
amongst different MR sequences, techniques are needed that can quantify image con-
trast, based on absolute signal levels, which may vary across platforms and with coil
configurations. Moreover, such statistical measures can be used in conjunction with
pattern recognition techniques to enable automatic segmentation of plaque components
based on their signal characteristics. In a number of studies, the Euclidean Distance (ED)
measure is used for identification of plaque components (9). An important drawback of
the ED is that the measure cannot be used to compare differently scaled signals from dif-
ferent domains (in this particular case: contrast weightings). The Mahalanobis Distance
(MD) measure is scale-invariant and takes into account correlation of the data [147, 148],
enabling comparison of image contrast between different MR sequences.



112 Chapter 8. MRI of IPH/Lipid Core in Carotid Plaque

Table 8.1: MR acquisition parameters

T2w FSE
T1w T1wFS PDw (intermediate T2w FSE IR-SE IR-SE IR-SE

MR weighting GE GE FSE TE) (long TE) (TI = 400 ms) (TI = 1000 ms) (TI = 1300 ms)
TR (ms) 300 300 3500 3500 3500 5000 5000 5000
TE (ms) 2.14 2.14 8.53 19.76 37.97 3.10 3.10 3.10
ETL - - 8 16 16 - - -
Flip angle (◦) 60 60 90/180 90/180 90/180 90/180 90/180 90/180
Inversion time (ms) - - - - - 400 1000 1300
FOV (mm x mm) 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10
Matrix 256 x 256 256 x 256 256 x 256 256 x 256 256 x 256 256 x 256 256 x 256 256 x 256
Resolution (µm x µm) 39 x 39 39 x 39 39 x 39 39 x 39 39 x 39 39 x 39 39 x 39 39 x 39
Thickness (mm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Number of slices 20 20 20 20 20 1 1 1
Bw (kHz) 152 152 152 152 152 200 200 200
Fat suppression - + - - - - - -
NEX 50 50 50 50 50 6 6 6
AT (h:mm:ss) 1:04:00 1:04:00 1:33:20 0:46:40 0:46:40 2:08:00 2:08:00 2:08:00
ETL: echo train length; FOV: field of view; Bw: bandwidth; NEX: number of excitations; AT: acquisition time.

The first objective of this study is to investigate the added value of IR-SE and T1
weighted GE with FS (T1wFS) to multicontrast weighted MRI at high field for identifica-
tion of unstable plaque components.

The second objective of this study is to compare the MD to the ED between various
human carotid plaque components on various MR weighted images. We hypothesize that
automated plaque classification using a MD measure may result in improved assessment
of plaque components, when compared with the ED measure.

8.2 Materials and methods

MRI

Nine carotid artery specimens (including bifurcation), obtained at autopsy, were 4%
formaldehyde fixated and stored at 4◦C for at least 48 h. Samples were rewarmed to 37◦C
before and kept at 37◦C during imaging. This set of carotid artery specimens was used as
the study set.

The artery samples were imaged in a vertical 9.4 T, 89 mm bore size magnet equipped
with 1500 mT/m gradients and connected to an Avance 400 MR system (Bruker BioSpin,
Ettlingen, Germany) using a quadrature-driven birdcage coil with an inner diameter of 10
mm. Care was taken to remove any air bubbles.

During a couple of pilot experiments at 9.4 T inversion time (TI) was varied and con-
trast between regions which were assumed to contain collagen (fibrous cap) and regions
which were assumed to contain IPH was optimized, while nulling the regions which were
assumed to contain collagen. After some cycles of optimization, these imaging results cor-
responded with histology. The same holds true for the chosen pulse repetition time (TR)
for the T1w GE and the echo time (TE) for the T2w fast spin-echo sequence. During these
pilot experiments, we found that contrast on T1w fast spin echo (FSE) showed no contrast
difference, when compared with T2w FSE with intermediate TE. Therefore, we performed
T1w GE which showed apparently different contrast. Eventually, we came up with the next
panel of six MR sequences: T1 weighted GE with (T1wFS) and without FS (T1w), proton
density weighted (PDw), FSE, T2w FSE with intermediate and long TE and IR-SE. For all
acquisition parameters, see Table 8.1.



8.2. Materials and methods 113

T1 and T2 measurements of fresh and formaldehyde 4%-fixated femoral artery
plaque

The T1 and T2 measurements were arranged to compare T1 and T2 values of plaque com-
ponents of fresh plaque to formaldehyde-fixated plaque and because of the large differ-
ences between reported plaque component T1 and T2 values. Thus, we aimed at useful
application of sequences to the clinical in vivo situation at ultra-high field. Adjustment
of in vitro protocols to the in vivo situation could be based on the differences in T1 and
T2 between fresh and formaldehyde-fixated material. For this reason, we performed T1
and T2 measurements on fresh femoral artery plaque components both before and after
formaldehyde fixation. Three diseased femoral arteries were freshly obtained following
surgery, immediately warmed to 37◦C and imaged. T1 was obtained from a series of IR
images with increasing TIs (20 ms-8000 ms) and a TR of 9500 ms. T2 was obtained from
a series of images obtained with a single-slice multiecho imaging sequence with incre-
mented TEs (4-100 ms) and a TR of 5000 ms. After T1 and T2 measurements (duration 2
h), samples were formaldehyde 4%’ fixated, stored at 4◦C. Forty-eight hours later, T1 and
T2 measurements were repeated at exactly the same slice position using visual landmarks
based on plaque and wall morphology.

Histology

Carotid and femoral artery specimens were decalcified by submersion in ethylenediamine
tetra-acetic acid for 24 h and embedded in paraffin. A total of 10 Îijm axial sections were
cut at 0.5 mm intervals. Hematoxylin & eosin and collagen stainings with Picrosirius red
were performed. Photographs of stained slices (jpeg format) and MR data (ParaVision
4.0 (Bruker Biospin, Ettlingen, Germany) converted to DICOM format) were manipulated
with ImageJ software (W. Rasband, version 1.29, National Institutes of Health, Bethesda,
Maryland, USA). On every histological slice for each recognizable plaque component, a
region of interest (ROI) was traced. All histological slices were evaluated by a research
physician experienced in histopathology, and unambiguous ROIs representing the fol-
lowing plaque components (“truth regions”), were delineated: LC, IPH, collagen, cell-rich
area, foam cells, and calcification. Necrotic areas with cholesterol crystals were identified
as LC. Areas with (remnants of) erythrocytes and fibrin strands on Hematoxylin & eosin
staining were identified as IPH. Closely packed spindle-shaped cells and high densities of
nuclei (both smooth muscle cells and fibroblasts) in the fibrous cap of plaque were iden-
tified as cell-rich areas. Closely packed purple/red strands on Picrosirius Red staining
were identified as collagen. Lipid-laden round cells on Hematoxylin & eosin staining were
identified as foam cells.

Image processing and manual image segmentation

Image segmentation was performed using histology assisted tracing with VesselMass soft-
ware (LKEB, Leiden, Netherlands) and subsequently statistical analysis was performed us-
ing Matlab (The Mathworks, Natick, Massachusetts, USA). The truth regions served as user
input and represent the various “classes” or plaque components.

We used the distance from the carotid bifurcation and the luminal shape and unique
morphology and size of calcification spots as visual landmarks for longitudinal matching
of MRI with histology. The luminal shape and morphology and size of calcification spots
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(a) (b) (c)

Figure 8.1: The influence of the distribution width (a versus b) and scaling (a versus c) of
artificial data with a normal distribution on MD and ED.

were used for correction of orientation and axial matching of MRI with histology. Twenty-
three histological carotid artery sections and six femoral artery sections could be matched
to MR images. After correction of orientation, ROIs were copied from histological images
to longitudinally matching MRI slices and proportionately up-scaled to MR images, ac-
counting for both deformation in the x and y direction in the axial plane. For MR images
of femoral artery plaque representing the T1 and T2 measurement data sets, the mean
absolute signal intensities of the ROIs were plotted against TI or TE. Mono-exponential
recovery functions were fitted to the T1 data sets and mono-exponential decay functions
were fitted to the T2 data sets to obtain the T1 and T2 values, respectively.

Calculation of MD

Quantification of image contrast between different plaque components can be achieved
by calculating the intensity-based distance between the two classes. For each MR se-
quence, the signal intensities of the various plaque components were determined, and
the distance was calculated for all available pairs of plaque components. In this study,
the MD metric is used. MD measures the separation of two groups of objects and takes
into account correlations of the data set (Fig. 8.1a,b). Moreover, it is scale-invariant (Fig.
8.1a,c), so tissue-independent variation of the MR signal will not affect MD and MD may
allow for differentiation of classes based on variably scaled parameters created by differ-
ent imaging modalities.

The plaque region is described by a group of image locations (pixels). For each pixel,
the signal intensities of multiple MR sequences are available. So, each image pixel x cor-
responds to a vector containing the signal intensities of the different MR sequences. The
MD between two plaques, i.e., groups Xi and X j with group means xi and x j , is given as a
matrix calculation in Eq. 8.1 Xi contains all image pixels x of group i .

MDi j =
√

(xi −x j )T S−1(xi −x j ) (8.1)

where:
T = matrix transpose
SâĹŠ1 = Inverse of the pooled covariance matrix of the two groups; this matrix is com-

puted as the weighted average of the two covariance matrices.
As a reference, the equation of the ED between two groups is given:
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EDi j =
√

(xi −x j )2 (8.2)

MDs of all selected ROIs were pooled per weighting and per pair of components. The
MR weighting leading to the highest pooled MD was determined for pairs of plaque com-
ponents including both an established stable and unstable plaque component (lipid core-
cell rich area, lipid core-collagen, IPH-cell rich area, IPH-collagen, foam cells-cell rich
area, and foam cells-collagen) and for the pair lipid core-foam cells.

Automatic segmentation of plaque components

Three carotid artery samples were used to perform two segmentation experiments. In
these experiments, a MD classifier and an ED classifier were used to segment plaque areas.
The classifier was trained by the histology assisted traced truth regions.

1. Each carotid artery sample consisted of four slices. A Mahalanobis [147] and an Eu-
clidean classifier were trained on three slices and then applied to the fourth slice for
automatic segmentation of the plaque components on a pixel-by-pixel basis. This
process was repeated for each carotid artery sample resulting in three automatically
segmented slices (one for each carotid artery sample).

2. The slices of the three carotid arteries, in total 12 slices, were pooled to create a train-
ing set of 11 slices and a test set of one slice. Again, a Mahalanobis and an Euclidean
classifier were trained and applied on the test set. For each carotid artery sample,
the slice of the test set was chosen to be the same slice as used in experiment one,
but the training set consisted of the other 11 slices. This experiment also resulted in
three automatically segmented slices.

An automatic plaque classification experiment with a training set that is fully inde-
pendent of the test set was not possible due to the limited number of carotid samples
containing sufficient plaque components. Segmentation results from both experiments
were compared because in both experiments, the same slices were used as test set.

These procedures were executed for various relevant combinations of MR weightings,
including T1w/T2w/PDw, (T1wFS/T2w/PDw), T1w/T2w/PDw/IR-SE, T1w/T2w/PDw/
T1wFS, and T1w/T1wFS/T2w/PDw/IR-SE.

Sensitivity, specificity, accuracy

The results of the automatic segmentation were compared on a pixel-by pixel basis to
the truth regions of the corresponding slice. Segmentation results from the three carotid
artery samples were averaged for each experiment to determine the sensitivity and speci-
ficity of the classifier for each plaque component. Sensitivity is defined as: the number of
pixels correctly labeled by the classifier as tissue x (true positive pixels) divided by the to-
tal number of pixels labeled tissue x as determined by histological review. The percentage
false negative pixels is (100 - sensitivity(%)). Specificity is defined as the number of pix-
els correctly excluded by the classifier from tissue x (true negative pixels) divided by the
total number of pixels excluded from tissue x as determined by histological review. The
percentage false positive pixels is (100 - specificity(%)). The accuracy was calculated as
the total number of pixels correctly labeled by the classifier divided by the total number of
pixels analyzed.
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Table 8.2: T1 and T2 values of fresh and 4% formaldehyde-fixated atherosclerotic human
femoral artery plaque components at 9.4 T and at 37◦C

Fresh in PBS 4% formaldehyde-fixated Fresh in PBS 4% formaldehyde-fixated
Plaque component T1 (ms) T1 (ms) T2 (ms) T2 (ms)
IPH (old) 827 ± 296 793 ± 158 4.6 ± 0.11 10.9 ± 2.30
IPH (recent) 982 ± 246 833 ± 139 12.1 ± 1.05 15.0 ± 2.15
Lipid core 1110 ± 171 1035 ± 105 10.6 ± 1.97 13.3 ± 2.40
Foam cells 1230 ± 300 1150 ± 62 12.4 ± 1.88 17.4 ± 2.91
Cell rich area 1538 ± 386 1446 ± 41 28.9 ± 3.81 33.4 ± 4.72
Collagen 1578 ± 440 1548 ± 88 25.6 ± 5.82 30.3 ± 3.12
PBS: phosphate buffered saline.
Data are expressed as mean ± SD of three measurements of three sets of components from three plaques.
Thrombus was only encountered in one of these plaques.

8.3 Results

T1 and T2 Measurements of Fresh and 4% Formaldehyde Fixated Plaque

T1 and T2 values measured in fresh and 4% formaldehyde fixated plaque are listed in Table
8.2. T2 values of all components in freshly obtained plaque were shorter when compared
with 4% formaldehyde fixated plaque. T1 values of all components in freshly obtained
plaque were longer when compared with 4% formaldehyde fixated plaque.

Visual inspection of mri of carotid plaque

LC and IPH are visualized best with T1wFS and IR-SE, respectively (Figs. 8.2 and 8.3).
T1wFS creates largest contrast between LC (dark) and other plaque components including
foam cells (brighter). IR-SE shows largest contrast between IPH (bright) and other plaque
components (darker).

Calculation of the MD

Figure 8.4 shows the mean absolute signal intensities of the ROIs corresponding with
plaque components for various carotid artery samples. Samples show large variations of
intensities per plaque component and per MR weighting. The diversity of composition of
an agreed distinct plaque component like LC or IPH, additional to day-to-day differences
of shim settings may cause these variations. However, the relative intensity differences
between plaque components are similar per MR weighting (Fig. 8.4).

Calcification has low signal intensity on all MR weightings. IPH has high signal inten-
sity on IR-SE (TI = 1000 ms) images, while other plaque components show lower signal
intensities on these images. Cell-rich areas have high signal intensity on PDw images,
while other plaque components have lower signal intensities on these images.

On every histological slice for each recognizable plaque component, a ROI (truth re-
gion) was traced, and the mean signal intensities for the ROIs were calculated for each of
the different MR contrast weightings. By calculating the MD for each pair of plaque com-
ponents per MR weighting, a characteristic signature for each plaque component could be
determined. Pooled MDs are shown in Figure 8.5. IR-SE with TI = 1000 ms leads to larger
MD between collagen or cell-rich area and IPH (4.2 and 9.3, respectively), when compared
with other MR sequences. T1wFS appears to lead to larger MD between LC and foam cells
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Figure 8.2: MRI and histology of carotid artery plaque with a large LC: (a) T1w, (b) T1wFS,
(c) T2w, and (d) EVG staining. Conspicuity of LC is enhanced on T1wFS, when compared
with T1w.

or cell rich areas or collagen (4.6, 38.2, and 26.9, respectively), when compared with the
other sequences (Fig. 8.5).

An example of discrimination between lipid, cell rich area, and collagen using both
the ED and the MD is shown in Fig. 8.6. In the presented case, the MD is better able
to discriminate between different plaque components than the ED. Consequently, in this
particular case, the MD metric is preferred to the ED.

Figure 8.7 shows the correspondence of truth regions and automatically segmented
regions in one carotid artery sample after training on three, the first segmentation experi-
ment, and after training on 11 pooled slices, the second segmentation experiment.

The sensitivity/specificity/accuracy of detection of various plaque components (LC,
IPH, cell rich area, and collagen) achieved with various sets of MR weightings is reported in
Table 8.3 for the first segmentation experiment, and Table 8.4 for the second segmentation
experiment, using both the MD- and ED-based classifier.

Segmentation results; First experiment

Large LC in the absence of IPH was easily distinguished with T1w, T2w, and PDw imaging,
while the sensitivity of the detection of LC in the presence of IPH was greatly improved by
replacement of T1w with T1wFS and addition of IR-SE to the standard clinical set of MR
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Figure 8.3: MRI and histology of human carotid atherosclerotic plaque with multiple re-
gions of IPH: (a) T1w, (b) IR-SE (TI = 1000 ms), (c) T2w with intermediate TE, and (d)
Hematoxylin & eosin staining. Arrows indicate IPH. T1w and IR-SE image show bright re-
gions in the plaque corresponding with IPH. IPH on T2w image is dark. IR-SE image shows
highest contrast of IPH.

Table 8.3: Sensitivity, specificity, and accuracy of the first segmentation experiment (see
text for details) of various plaque components achieved with various sets of mr weightings
using a mahalanobis distance- and an euclidean distance-based classifier

Mahalanobis distance Euclidean distance
Set of Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Plaque component MR weightings (%) (%) (%) (%) (%) (%)
Lipid core in T1w/PDw/T2w 75 99 95 76 99 95
presence of IPH T1wFS/PDw/T2w/IRSE 81 98 95 81 98 95
Large lipid core in T1w/PDw/T2w 100 99 100 99 99 99
absence of IPH T1wFS/PDw/T2w/IRSE 100 99 100 99 99 99
IPH T1w/PDw/T2w 56 97 82 56 97 82

T1w/PDw/T2w/IRSE 57 97 82 57 97 82
Cell-rich area T1w/PDw/T2w 87 92 91 89 94 94

T1wFS/PDw/T2w 89 92 92 91 95 94
Collagen T1w/PDw/T2w 82 79 80 87 86 86

T1w/PDw/T2w/IRSE 82 81 82 86 87 87
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Figure 8.4: Absolute signal intensities (y-axis) of various components (x-axis) on T1wFS
(a), PDw images (b), T2w with intermediate TE (c), and IR-SE (with TI = 1000 ms) (d) im-
ages.

Table 8.4: Sensitivity, specificity, and accuracy of the second segmentation experiment
(see text for details) of various plaque components achieved with various sets of mr
weightings using a mahalanobis distance- and an euclidean distance-based classifier

Mahalanobis distance Euclidean distance
Set of Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Plaque component MR weightings (%) (%) (%) (%) (%) (%)
Lipid core T1w/PDw/T2w 79 82 83 63 97 90

T1wFS/T2w 91 90 91 66 99 93
IPH T1w/PDw/T2w 49 71 65 50 55 56

T1w/PDw/T2w/IRSE 50 78 70 50 61 60
Cell-rich area T1w/PDw/T2w 45 98 84 35 100 84

T1wFS/PDw/T2w/IRSE 75 95 91 33 100 84
Collagen T1w/PDw/T2w 44 88 84 65 77 77

T1w/T1wFS/PDw/T2w/IRSE 55 90 86 65 82 81
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Figure 8.5: MD between vulnerable carotid plaque components and stable plaque com-
ponents. a) MD between LC and IPH, foam cells, cell rich areas, collagen. b) MD between
IPH and LC, foam cells, cell rich areas, collagen. c) MD between foam cells and LC, IPH,
cell rich areas, collagen.
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Figure 8.6: ED versus MD of a cloud of data points representing collagen. Each data point
represents a pixel. The ED does not take into account the correlation of the data points
according to the circular form of the iso-distance lines (a), whereas MD does take into ac-
count the correlation of the data points according to the ellipse form of the iso-distance
lines (b). The distances between the group centers of collagen and cell rich area and be-
tween the group centers of collagen and LC (arrows) represent EDs (a and b). The two EDs
measured from collagen to LC and from collagen to cell rich area are nearly similar (a).
However, the MD between collagen and LC is larger than the MD between collagen and
cell rich area as can be observed from the iso-distance lines in b.

weightings (T1w, PDw, and T2w) (Table 8.3). No differences between results of the first
segmentation experiment obtained with ED and MD classifiers were found (Table 8.3).

Segmentation results; Second experiment

Combination of T1wFS with T2w improved the sensitivity, specificity, and accuracy of the
detection of LC, when compared with the standard clinical set. The specificity and ac-
curacy of the detection of IPH were improved by the combination of T1w, T2w, PDw, and
IR-SE, when compared with the standard clinical set. Sensitivity was improved by replace-
ment of T1w with T1wFS and addition of IR-SE to the standard set of MR weightings. Sen-
sitivity and accuracy were improved by replacement of T1w with T1wFS and addition of
IR-SE to the standard set of MR weightings (T1w, PDw, and T2w), with only a minor de-
crease of specificity. Sensitivity of the detection of collagen was improved by addition of
both T1wFS and IR-SE to the standard set of MR weightings (T1w, PDw, and T2w) (Table
8.3).

When the MD classifier in combination with the novel sequence panels was used, the
accuracies of detection of IPH, cell-rich area, and collagen were greatly improved with
comparable accuracy of detection of LC, when compared with application of the ED clas-
sifier (Table 8.3).
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(a) (b)

(c) (d)

Figure 8.7: a) MR image at one slice level of a carotid artery sample. b) Truth regions
drawn on histology and projected to the MR image in a. c) Plaque components assigned
to same regions based on the first automatic segmentation experiment. d) based on the
second segmentation experiment on a pixel-by-pixel basis by a trained classifier (see text
for additional information). Each color represents a different plaque component. Blue:
IPH; red: collagen; white: cell rich area; yellow: LC.

8.4 Discussion

With respect to the first objective of this study, we show that addition of IR-SE to a panel
of MR weighted sequences (T1w GE, PDw FSE, and T2w FSE) leads to better discrimina-
tion between IPH and stable plaque components of formaldehyde-fixated human carotid
artery plaque. The addition of FS to T1w GE leads to better discrimination between LC
and stable plaque components, including foam cells, when compared with T1w GE with-
out FS.

With respect to the second objective, we have performed two segmentation experi-
ments to compare the MD to the ED between various human carotid plaque components
on various MR weighted images. The first experiment shows no superiority of the MD
classifier over the ED classifier. Taking into account the advantage of scale-invariance, it
will not be a surprise that when the training set belonged to the same carotid artery sam-
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ple as the test set, no differences between using MD or ED were found.
The second segmentation experiment reveals that, in case of a partially independent

training set, the suggested novel panels of sequences show higher accuracies of detection
of IPH, cell-rich area, and collagen using the MD classifier than using the ED classifier. No
difference in accuracy was found for the detection of LC.

To our knowledge, a head-to-head comparison between MD and ED classifiers for
plaque classification from multicontrast MRI has not been reported. Automated segmen-
tation with the “Mahalanobis distance-based classifier” provides the possibility to catego-
rize characteristics of atherosclerotic plaques in six components. This MD-based classifier
is a supervised classification algorithm, which calculates in this study the MD from mul-
ticontrast weighted ex vivo MR images. Two segmentation experiments were performed.
In general, the results for the segmentation based on a training set of three slices from the
same carotid artery were slightly better than the experiment where 11 slices from three
carotid artery samples were pooled. However, except for the sensitivity of detection of
IPH and collagen, results of segmentation using the pooled training set approximate the
high values obtained with the first segmentation experiment closely.

T1 and T2 of plaque components

The increase of T1 of tissues with increasing field strength increases the challenge to vi-
sualize T1 differences between plaque components at high field. Adjustment of MR se-
quences to increased field strengths should be based on T1 and T2 values of tissues of
interest at those field strengths. However, there are some conflicting data from various re-
ports on the T1 and T2 values of atherosclerotic plaque components at 9.4 T ( [115, 149]).
Second, previous reports have shown that room temperature and formaldehyde fixation
lead to important T2 changes of fibrous plaque ( [148]). Unfortunately, for this study, fresh
atherosclerotic plaque material was not sufficiently available. We compared T1 and T2
values of femoral plaque components obtained from surgery, measured at 37◦C before
and after 4% formaldehyde fixation. The large range of T2 values found in literature for
a particular plaque component may relate to differences in definition of plaque compo-
nents on histology and the procedure of T1 and T2 measurement (spectroscopic or using
MR imaging) ( [11, 138, 150, 151]).

IPH

Differentiation between IPH and stable plaque components, though possible when us-
ing T1 weighted MR imaging without inversion-preparation, remains difficult according
to the moderate specificity of 74% for the in vivo identification of recent IPH in litera-
ture [118] which is comparable with this study (specificity 71%) when using the standard
set of MR weightings (T1w, PDw, and T2w). However, combination of T1w with inversion
recovery SE in this study resulted in an improvement of the specificity by 14%. At 9.4 T,
thrombus (= old IPH) T1 was reported to be 1180 ms, whereas T1 of fibrous tissue was re-
ported to be ∼ 1800 ms [149]. Application of a method, which is more heavily T1 weighted,
like inversion recovery SE could identify IPH with higher specificity. We achieved in this
study clear identification of thrombus with inversion recovery SE, as a result of efficient
nulling of the signal from stable plaque components. In vivo thrombus imaging has been
achieved previously with a T1w inversion recovery 3D GE sequence at 1.5 T [14,152]. How-
ever, choices which are made in the in vivo situation will be different when compared to
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the ex vivo situation and the TI in those studies was chosen to null the blood signal at 1.5
T [14, 152], leaving suboptimal contrast between IPH and stable plaque components.

Lipid core

The second component of interest in this study was LC. MRI of LC has shifted from direct
lipid imaging with spectroscopic techniques [144, 145] to MRI of the water signal of LC
[153]. T1/T2w GE (TR = 35 ms) images at 1.5 T have been reported to show iso- to hyper-
intensity of LC [23, 154], but T1w GE images (TR = 300 ms) at 9.4 T have been reported to
show iso- to hypo-intensity of LC [146] as is confirmed in this study. The T2 decrease of
LC with increasing field, may explain the low signal intensity of LC on T1w images at 9.4
T. Despite the chosen short TE (2.14 ms), LC has lowest signal, when compared with all
other components except calcification. Therefore, TE appears to be more signal limiting
than TR for T1w GE images, acquired at 9.4 T. The less efficient depiction of LC with T2w
and PDw imaging at 9.4 T may be explained by an increase of T1 for both fibrous tissue
and LC at higher field strength, resulting in increased saturation of the fibrous tissue when
using TR = 3500 ms.

In carotid artery imaging, FS is generally applied to remove strong signals from peri-
adventitious fat which could lead to chemical shift artifacts. We showed that LC was vi-
sualized more accurately using GE including FS, when compared with GE without FS.
FS is thought to have little impact on tissue contrast within atherosclerotic plaque, be-
cause lipids found in atherosclerotic plaque consist primarily of cholesteryl esters and
free cholesterol and not triglycerides as in perivascular fat [155]. Suppression of the small
number of triglycerides in LC with a saturation pulse aimed at the resonant frequency of
methylene protons, was surprisingly effective in increasing conspicuity of LC, suggesting
an effect on relaxation of nearby water protons.

Contrast-enhanced MRI using small gadolinium chelates has shown capability to dif-
ferentiate between LC and fibrous cap. Differentiation was evenly possible or better than
with T2w imaging [142, 156]. However in these studies, difference in enhancement be-
tween fibrous tissue (∼80%) and LC (∼30%) occurred by virtue of presence of neovascula-
ture in fibrous tissue [142], which may vary among plaques.

Effect of resolution on image segmentation

There is a relation between resolution of MRI and segmentation results. Some plaque
components use little space or are mixed up mostly with another component (area of lipid
mingled with fibroblasts). At low resolution, these plaque components cannot be distin-
guished from each other due to partial volume effects. However, at higher resolution, the
partial volume effects will be smaller. Due to the trade-off between signal to noise ratio
and resolution, and the lower signal to noise per unit of acquisition time at lower field,
prolonged scan times are needed to achieve high resolution at lower field. So, differentia-
tion between small foam cell areas, potentially evolving in LC in near future, and LC, and
cell-rich areas may be more practical at higher field strength.

One report suggests that an in vivo in-plane resolution between 156 and 1250 Îijm per
pixel does not impair classification accuracy of human carotid artery plaque components
with MRI [157]. However, the authors also stated that degradation in resolution is most
detrimental to plaques with large numbers of components [157]. The thicknesses of tissue
layers should at least span one pixel, to differentiate them visually [150]. To prevent over-
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estimation of the surface of spot-like plaque components, the diameter should at least
span five pixels [150]. Most importantly, one should keep in mind that the classification
accuracy depends also on the sizes of component areas delineated on histology. If the
delineation of the truth regions has been done in a coarse way, the quality of MR images
will also be less demanding.

However, although we have chosen very small truth regions, we have put a mask on the
other regions of the carotid plaque and wall layers. We have done this because it would be
very time-consuming to categorize the whole plaque and wall area at the resolution of the
truth regions. However, higher specificity, sensitivity, and accuracy are easier to achieve
this way than for the whole area including more ambiguous regions.

MD-based classifier

In this study, segmentation of plaque components was done with a supervised classifica-
tion algorithm, the “Mahalanobis Distance classifier”. Validated automated classification
algorithms help in achieving maximum reproducibility and reliability in longitudinal in
vivo plaque characterization studies. Variation in shim settings and coil configuration
may cause differences in raw signal intensity of the same plaque component between
carotid artery samples and modify contrast between two plaque components. Further-
more, display of the image data may vary due to variety of window level settings and
will determine the size of the image contrast between two plaque components. More-
over, postprocessing software often applies contrast stretching or normalization which
prevents direct comparison of contrast between various MR weightings. Instead of visual
assessment, statistics can be applied to the image data which provide a reproducible and
quantitative assessment of the image contrast. The slightly better performance of the MD
over the ED with respect to detection accuracies of IPH, cell-rich area, and collagen, using
the novel panels of MR sequences suggested in this study, suggests the MD classifier to be
preferred over the ED classifier for identification of plaque components by MRI.

When the ED was used in earlier reports, the measured distance was largely influenced
by contrast weightings with high average signal intensity instead of contrast weightings
with highest image contrast [104]. Earlier reported automatic plaque segmentation meth-
ods using a Gaussian classifier have been successfully applied but needed preprocessing
which included rescaling of all pixels values to a baseline “iso-intensity” [38]. Others have
used specially enhanced cluster analysis [125] or predictive models [158] composed RGB
images out of three ex vivo MR sequences by stretching the image contrast of each se-
quence to an eight-bit color channel. Such a preprocessing step, which can cause loss of
data, is not needed in case the MD is used because it is invariant to scaling. However, the
segmentation algorithm based on the MD classifier is not as mature as the algorithms that
amongst others also take spatial information into account [38, 125, 158].

However, the basic segmentation algorithm showed that the MD is preferred over the
ED because it is invariant to scaling and takes into account the covariance among the vari-
ables. Therefore, it could be a better metric for comparison of outcomes of various MR
weightings than the ED and may compare the same MR weightings obtained at another
MR laboratory without influencing classification results. Therefore, classification algo-
rithms based on MD may be used for multicenter trials focused on longitudinal plaque
characterization and MD is even suitable for comparison of different imaging modali-
ties [159, 160].
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Limitations

There are a number of limitations to this study. Clinical in vivo MRI of carotid arteries is
complicated by decreased resolution, motion artifacts, signals from flowing blood, and
greater spatial variability in MR signal due to the use of surface coils. The automated
classification method for detection of plaque components has not been applied to in vivo
data in this study.

The acquisition time of the IR-SE sequence was very long and can certainly be short-
ened by a multislice FSE instead of a single-slice SE approach and the use of phased-array
surface coils and multiple receivers. The IR-SE sequence was not compared with the direct
thrombus imaging method of Moody et al. [14]. For in vivo experiments, incorporation of
a double IR module into the IR-SE used in this study will lead to dark blood images. This
method might stand the competition with the direct thrombus imaging method of Moody
et al. [14] in the in vivo situation; however, this has yet to be studied.

Performance of the classifier needs to be checked for MR images with lower SNR or
lower resolution, obtained within clinically realistic acquisition times. Lower resolution
will come with shorter acquisition times at the same SNR. At the high in-plane resolution
in this study, the truth regions chosen with scrutinized microscopy were also very small.
Perfect matching between histology and MRI is always difficult, but with the small truth
regions used in this study it even became more challenging. Furthermore, the sample size
was limited and so was the number of carotid artery sections with IPH. Only old IPH and
not fresh/recent IPH were found in this data set because the carotid artery samples were
not obtained from surgery but from autopsy. Second, due to the small number of carotid
artery sections, a real classification experiment using an independent training set and test
set could not be performed. Instead, automatic segmentation based on adjacent slices
of the same carotid artery sample and segmentation based on a combination of slices
from different carotid artery samples was performed. Third, because of the use of novel
sequences and the small number of carotid samples, automatic segmentation was only
performed for small regions corresponding to histological truth regions and not for the
entire plaque. To verify the ability of the automated classification method to character-
ize also regions with ambiguity with respect to the type of plaque component, additional
research is needed using a larger number of carotid artery samples.

8.5 Conclusions

In conclusion, identification of LC and IPH in human carotid artery plaque was improved
ex vivo at 9.4 T with two clinically not commonly used MRI techniques, T1w GE with FS
and IR-SE (TI = 1000 ms). Results of in vivo application of these MRI techniques will have
to be awaited. Automatic plaque segmentation using a supervised classification algorithm
based on the MD was feasible and led to slightly better accuracy of identification of IPH,
cell-rich area, and collagen, showing promise for the MD metric in multicenter trials on
longitudinal plaque characterization.
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Abstract

A typical MR imaging protocol to study the status of atherosclerosis in the carotid artery
consists of the application of multiple MR sequences. Since scanner time is limited, a bal-
ance has to be reached between the duration of the applied MR protocol and the quantity
and quality of the resulting images which are needed to assess the disease. In this study
an objective method to optimize the MR sequence set for classification of soft plaque in
vessel wall images of the carotid artery using automated image segmentation was devel-
oped. The automated method employs statistical pattern recognition techniques and was
developed based on an extensive set of MR contrast weightings and corresponding man-
ual segmentations of the vessel wall and soft plaque components, which were validated by
histological sections. Evaluation of the results from nine contrast weightings showed the
tradeoff between scan duration and automated image segmentation performance. For
our dataset the best segmentation performance was achieved by selecting five contrast
weightings. Similar performance was achieved with a set of three contrast weightings,
which resulted in a reduction of scan time by more than 60%. The presented approach can
help others to optimize MR imaging protocols by investigating the tradeoff between scan
duration and automated image segmentation performance possibly leading to shorter
scanning times and better image interpretation. This approach can potentially also be
applied to other research fields focusing on different diseases and anatomical regions.
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9.1 Introduction

A multi-sequence MRI protocol is widely used to investigate the status of atherosclerosis
in the carotid artery. Atherosclerosis is a progressive disease which, at an early stage, is
characterized by vessel wall thickening causing outward remodeling, followed by narrow-
ing of the lumen, and at a later stage by the formation of different plaque lesions inside the
vessel wall [161]. Identification of vulnerable plaques, lesions with a high risk to rupture,
before the development of cardiovascular events, is of high clinical relevance. These le-
sions are typically soft and contain a large lipid-rich necrotic core (LR/NC) or intraplaque
hemorrhage (IPH) [23], which can both be identified by in-vivo MRI [65]. A typical MR
imaging protocol for assessment of the carotid artery vessel wall consists of the applica-
tion of multiple MR sequences to obtain information about the lumen morphology and a
detailed characterization of the vessel wall [92].

An optimal in-vivo MR imaging protocol should incorporate contrast weightings that
can separate the tissue of interest from surrounding structures, have a sufficiently high
spatial resolution and have a short acquisition time. Since scanner time is limited, a bal-
ance has to be reached between the number of applied MR sequences and how well dif-
ferent plaque components can be distinguished from each other on the resulting images.
Latest developments in this field include the design of new MR pulse sequences, adap-
tion of existing MR sequences to higher field strength, design of specialized carotid coils
and development of 3D isotropic imaging [162]. Consequently, objective evaluation of the
resulting images is needed in order to determine the benefits of these continuous techno-
logical developments and the corresponding increase or decrease in scan time.

In an earlier work, Zhao et al. [163], presented a method to minimize the number of
MR sequences and its impact on manual quantification of plaque lesions in vessel wall MR
imaging studies. However, the proposed method has several drawbacks as the method is
subjective because sets of different MR sequences are evaluated by the same readers in-
troducing bias of the readers to their previous segmentation result. Also, the number of
combinations of sequences that could be evaluated was limited. Cappendijk et al. [94]
used a logistic regression model to determine the optimal MR weighting combination for
plaque assessment enabling objective assessment of different combinations of sequences.
However, assessment was limited to plaque identification; plaque volume was not taken
into account. In addition, no relation was shown between the selected combination of MR
sequences and the total scan duration. In another study by Liu et al. [38] an automated
segmentation algorithm using pattern recognition techniques was applied. In that study
the training of the classifier was performed on the same data as for which it was tested ren-
dering subsequent results unreliable. Again, no relation was shown between the selected
combination of MR sequences and the total scan duration.

Accordingly, the purpose of this study was to develop an objective method to opti-
mize the MR sequence set for classification of soft plaque in vessel wall MR images of the
carotid artery with respect to segmentation accuracy and total scan duration. Instead of
using a human observer to investigate different sets of MR sequences and their impact on
plaque classification, automated image segmentation was employed which is inherently
exhaustive and objective. The method was developed based on an extensive set of MR
contrast weightings and corresponding manual segmentations of the vessel wall and soft
plaque components, which were validated by histological sections. The proposed method
is generic and can also be applied to other fields of research in which multi-spectral image
data, such as multi-sequence MRI, is acquired and automated segmentation algorithms
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are available.

9.2 Materials and methods

Ethics statement

The study was approved by The Cambridgeshire Three Research Ethics Committee. Writ-
ten forms of informed consent were obtained from all subjects before imaging. Sharing of
image data into the public domain was not permitted in the approved study protocol.

Image data

Fifteen patients (11 male, age range 50-89 years), scheduled for carotid endarterectomy,
were pre-operatively scanned using MRI. Color Doppler ultrasound was used for surgical
screening to confirm the presence of stenosis >70%. Carotid specimens were retrieved af-
ter carotid endarterectomy. The endarterectomy specimens were fixed and cryosectioned
to preserve the plaque components. Histological staining was performed with haema-
toxylin and eosin, elastic Van Gieson and nile red. The sections were digitized using a
conventional microscope at 5X magnification (Leica DM LB2, Leica Microsystems, Wet-
zlar, Germany). The histological sections were visually matched with the MRI image data.
For each patient at least one histological section was available which matched the imaging
data. The matching sections served as ground truth for the manual image segmentation.

MR imaging was performed on a 1.5T scanner (Signa HDx, GE Healthcare, Waukesha,
WI) using a bilateral four-channel phased-array carotid coil (PACC, Machnet, Eelde, The
Netherlands). The subject was positioned in the scanner with the carotid coils placed
superficially over the anterior neck to cover the carotid artery centering on the carotid
bifurcation. A vacuum constraining pillow system (Vac Lok Chushion, Oncology Systems
Ltd, UK) was used to restrict head and neck movement.

In total six MR sequences were acquired from which nine contrast weightings were
extracted. A 2D time-of-flight (TOF) angiography sequences was employed to identify
the diseased segment and the position of the bifurcation. High-resolution multi-contrast
axial images were obtained through the disease-affected section of the artery. The pro-
tocol included fat suppressed T1-weighted (T1W), dual echo T2/proton density-weighted
(T2W/PDW) and short-tau inversion recovery (STIR) fast spin echo sequences using car-
diac gated double inversion recovery preparation for blood suppression. Direct Throm-
bus Imaging (MRDTI) was performed using an inversion recovery T1 weighting prepared
3D fast spoiled gradient echo sequence [14]. The MRDTI sequence was acquired in the
coronal plane to negate blood flow effects. A single-shot diffusion-weighted echo-planar
imaging sequence was used to obtain T2W (b = 0 s/mm2) and diffusion-weighted (DW)
images (b = 500 s/mm2) [16]. T2W and DW images were subsequently used to compute
apparent diffusion coefficient (ADC) maps. The three resulting images are further labeled
as DWT2, DWI, and ADC throughout the text. The image slices had a minimum coverage
of 21 mm of the disease-affected section of the artery. A full list of the imaging parameters
is shown in Table 9.1. The MR imaging protocol and subsequent post processing resulted
in nine contrast weightings (TOF, T1W, T2W, PDW, STIR, MRDTI, DWT2, DWI, and ADC)
which were used for further analysis.
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Table 9.1: Carotid MR imaging pulse sequence parameters.

TOF T1W T2W/PDW STIR MRDTI DWT2/DWI
Acquisition 2D TOF 2D FSE 2D FSE 2D FSE 3D FSPGR 2D EPI

- Axial - Axial - Axial - Axial - Coronal - Axial
FOV (cm) 22x22 10x10 10x10 10x10 10x10 16x16
pFOV 1 1 1 1 1 0.5
Matrix 512x512 256x256 256x256 256x256 160x160 128x128
NEX 1 2 2 2 1 16
TR (ms) 16.6 1R-R 2R-R 2R-R 5.7 2200
TE (ms) 4.1 7.7 99.7/7.7 99.7 2.6 75
TI (ms) - - - 150 19.0 -
Slice thickness (mm) 2 3 3 3 1 3
ETL - 12 16 24 1 -
Fat suppression No Yes Yes Yes No Yes
In-plane resolution (mm) 0.86 0.39 0.39 0.39 0.625 1.25
Scan Time (min:sec)1 0:48 5:22 8:24 5:36 2:09 4:42
1Scan times for either a 3D slab or multiple consecutive 2D slices compassing 21mm of
carotid/plaque (assumes heart rate of 60bpm)

Reference standard determined by manual image analysis

An experienced radiologist manually segmented the MR image data using the matching
histological sections as ground truth to form the reference standard. The images from
the nine contrast weightings were processed and manually segmented using the following
steps:

1. T1W images were defined as reference images.

2. The other contrast weightings were processed to match the reference images reso-
lution and geometry using multiplanar reconstruction.

3. The histological sections were visually matched with the image data. For each pa-
tient at least one matching histology section was available.

4. The lumen and outer contours were manually delineated on the T1W images by
an experienced radiologist using CMRtools (Cardiovascular Imaging Solutions, Lon-
don, UK). This software was also used, for subsequent steps 5 & 6, for the manual
alignment of image slices and the delineation of plaque components.

5. The other MR sequences were manually aligned to the T1W image by translating
the image slices in-plane to match the lumen and outer contours resulting in a set
of aligned multi-contrast images.

6. The segmentation of the plaque components was performed by evaluating the im-
ages in the aligned set assisted by the available histology data. The plaque compo-
nent contours were defined on the image where they could be seen most clearly.
The expert manually delineated IPH, LR/NC and calcium regions.

Finally, the contours of IPH and LR/NC were combined and labeled as soft plaque. The
manual image analysis resulted in an aligned set of vessel wall images including manual
segmentations based on histology. The manual segmentation is further referred to as the
reference standard in the remainder of the manuscript.
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Automated image segmentation using statistical pattern recognition

Several methods for segmentation of plaque components in the carotid artery have been
described in literature, the majority employing statistical pattern recognition techniques
[25, 37, 38, 43]. Similarly, a pattern recognition system, developed using PRTools [116] and
MATLAB (2009b, The MathWorks, Natick, MA, USA), was used to automatically classify the
pixels within the vessel wall based on the different MR signal intensities. Vessel wall pixels
were defined by the reference standard; the manually delineated contours of the lumen
and outer wall. A standard PC was used to run the pattern recognition system software.

A pattern recognition system consists of a sensor that gathers the observations to be
classified, a feature extraction mechanism that computes numeric or symbolic informa-
tion from these observations, and a classifier that, based on these features, can classify
the observations into different classes. In this study, the observations included the image
slices of the nine contrast weightings and the manually segmented vessel wall contours.
For each vessel wall pixel a number of features were extracted. These features contained
normalized MR signal intensities and image gradient information. Based on these fea-
tures, each observation was classified as soft plaque, defined as being LR/NC and/or IPH,
or not being soft plaque. Calcium was not identified since the calcium regions were rela-
tively small and the number of examples in the available image data was low.

Feature extraction

Prior to feature extraction, the vessel wall images were normalized by dividing the signal
intensities by the median value of a 4 by 4 cm region of interest located at the lumen cen-
ter [38]. This normalization step is required for comparing the different sequences of a
single subject, as well as for inter-subject comparison. Subsequently, for each pixel inside
the vessel wall the following features were extracted: the normalized signal intensity, zero-
, first and second order derivatives at multiple scales (0.25, 0.5, 1.0 and 2.0 mm) from each
of the vessel wall images. The zero-, first and second order derivative features were cal-
culated using the RecursiveGaussianImageFilter of the open-source Insight Segmentation
and Registration Toolkit (http://www.itk.org). The zero order derivatives are equiva-
lent to blurred versions of the normalized signal intensities, the first and second order
derivatives contain edge and texture information of the images.

Training and testing a classifier

The features of each observation served as input for a classifier. The classifier used is a
Mahalanobis distance classifier, which is a type of Bayes classifier. A similar segmentation
algorithm with a Bayes classifier was presented by Hofman et al. [37]. This is a supervised
classifier that needs example observations and its corresponding classes in order to train
the classifier. During the training phase, the features and the classes were used to learn
statistics describing the example data. Once trained, the classifier can assign a class to
unseen observations. Because of the relatively low number of patients, leave one out cross
validation was used for training and testing the classifier. Data from one patient is used as
the testing set, and the remaining patients are used as the training data. This is repeated
such that each patient in the population is used once as the testing set.

http://www.itk.org
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Figure 9.1: Scheme of the contrast weighting selection and the automatic image segmen-
tation procedure. The procedure is started by the selection of a combination of contrast
weightings. The automated image segmentation method is applied to that combination
of contrast weightings and the reference standard which is based on the manual segmen-
tation. The automated segmentation results are compared with the reference standard.
This automated image segmentation procedure is then repeated for each contrast weight-
ing selection and results of each combination are collected.

Evaluation of each combination of contrast weightings

In this study nine contrast weightings from six different MR sequences were available.
Each possible combination of contrast weightings was investigated by selecting a combi-
nation of weightings and applying the automated image segmentation method as shown
in Figure 9.1. Besides the selection of the set of contrast weightings, no further feature
selection was applied.

For each combination of contrast weightings the automatically segmented soft plaque
volume per patient was compared to the reference standard using Pearson’s correlation.
The correlation coefficient, P-value and confidence interval (CI) were calculated for each
combination of contrast weightings. In addition, the time needed to acquire the MR se-
quences corresponding to the set of contrast weightings, was calculated.

9.3 Results

Image data from 15 patients was analyzed by the manual observer and the automated
image segmentation method. The presence and volumes of the plaque components in
the patient population obtained by manual image analysis are given in Table 9.2.

In total 75 vessel wall slices (five slices per patient) were analyzed using the automated
image segmentation method. The automated segmentation method was repeated for
each combination of contrast weightings. The number of combinations which were tested
was 511 (29 - 1). The selected contrast weightings, correlations, CIs, p-values and corre-
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Table 9.2: Plaque composition of patient population (n = 15).

Plaque component Average volume ± SD (mm3)
Calcium (n = 5) 26.5 (± 15.5)
Hemorrhage (n = 4) 75.6 (± 48.3)
Lipid (n = 14) 142.0 (± 115.8)
SD = Standard Deviation.

Figure 9.2: Comparison between automated segmentation performance, contrast weight-
ing combinations and scan duration. The ten best contrast weighting combinations
ranked by the correlation between the automated image segmentation and the reference
standard are shown using a bar plot. Each bar represents one set of contrast weightings
(contrast weightings are tiled horizontally on the horizontal axis). The total MR scan du-
ration of each set is superimposed using a line plot.

sponding scan durations are available in the Table S1. Figure 9.2 shows the correlation
and total MR scan duration for the ten best contrast weighting combinations.

In Table 9.3 the results are ordered based on the number of contrast weightings used.
The highest correlation is achieved by selecting five weightings. However, while using the
combination of TOF, MRDTI and ADC weightings, the correlation is almost similar to the
highest correlation and the scan time is reduced by more than 60%. Figure 9.3 shows the
difference in plaque segmentation result between using 3 and 5 weightings for one image
slice of the dataset.
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Table 9.3: Correlation between the automated image segmentation and the reference
standard ranked by number of contrast weightings.

Contrast weightings Number of
weightings

Pearson Correlation [CI] P-value MR scan du-
ration [min]

TOF 1 0.711 [0.312-0.897] p = 0.003 0.8
TOF-MRDTI 2 0.860 [0.622-0.953] p < 0.001 3.0
TOF-MRDTI-ADC 3 0.886 [0.683-0.962] p < 0.001 7.7
TOF-MRDTI-ADC-T2W 4 0.885 [0.682-0.961] p < 0.001 16.1
TOF-MRDTI-ADC-PDW-T1W 5 0.887 [0.688-0.962] p < 0.001 21.4
TOF-MRDTI-ADC-PDW-T1W-
T2W

6 0.877 [0.663-0.959] p < 0.001 21.4

TOF-MRDTI-ADC-PDW-T1W-
DWI- DWT2

7 0.878 [0.665-0.959] p < 0.001 21.4

TOF-MRDTI-ADC-PDW-T1W-
DWI-DWT2-T2W

8 0.855 [0.611-0.951] p < 0.001 21.4

Figure 9.3: Automated segmentation results for two sets of contrast weightings includ-
ing MR images and histology. A) segmentation result for the contrast weighting set TOF-
MRDTI-ADC showing the overlap between the automated segmentation method and the
reference standard (green: true positive lesion, blue: false negative lesion, red: false pos-
itive lesion), B) TOF image, C) MRDTI image, D) ADC image, E) segmentation result for
the set TOF-MRDTI-ADC-PDW-T1W, F) T1W image, G) PDW image, and H) the matching
histological slice with elastic Van Gieson staining. The contours of the reference standard
are overlaid on the different MR images (panels B,C,D,F,G). The lumen and vessel wall are
depicted by the red and green contour, soft plaque is depicted by the yellow contour. The
yellow colour in the histological slice in panel H is consistent with the presence of lipid.
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9.4 Discussion

An objective method to optimize the MR imaging protocol for plaque classification in ves-
sel wall images using an automated classifier was presented. Evaluation of the results from
nine contrast weightings showed the tradeoff between scan duration and automated seg-
mentation performance. The presented method has potential for application in a clinical
setting, or may be of value when developing new imaging protocols for clinical research.

The automated image segmentation method is based on pattern recognition and uses
only the vessel wall images and histology based manual segmentations in order to achieve
a direct interpretation of the informational content of these images and the segmentation
performance. While morphology was used to delineate the boundaries of the vessel wall,
no morphological features were used in the automated image segmentation algorithm
to ensure that the segmentation results are directly related to the image information of
the contrast weightings. Also, no feature selection or post processing was used. The per-
formance of the algorithm was in line with previous studies [37, 38]. Furthermore, our
approach is free of the constraints imposed by previous studies which sought to define a
minimal number of sequences using manual segmentation [38,163], specifically the num-
ber of combinations that could be evaluated, observer bias and the lack of an independent
training set.

Performance of the automated segmentation method increased by the number of se-
lected contrast weightings with an optimum at five weightings. Selection of more than
five weightings showed a decrease in performance. Such a behavior is typical for a pattern
recognition system; adding information to the system by selecting more features increases
the performance, but at a certain point the performance stabilizes or decreases because
the extra features do not contain relevant or contradicting information. The first selected
contrast weighting was the TOF image. Both LR/NC and IPH can be identified from this
weighting [23] explaining why this weighting was the first one to be selected by the pre-
sented method. Next, the MRDTI weighting was added to the set; the MRDTI weighting
was reported to be sensitive for the detection of IPH [14]. The third selected weighting was
the ADC image, which can be used to distinguish LR/NC [16] from other plaque compo-
nents and fibrous tissue. Addition of the other contrast weightings provided only a small
improvement which, in our opinion, was not relevant.

This study is subject to a number of limitations. No distinction was made between
IPH and LR/NC. However, if more image data is available, the method can be extended by
either applying the method to each plaque component independently or by pooling the
segmentation results for the different plaque components. In the first case, the optimal se-
quence set for a single plaque component can be investigated. In the second case, the set
of sequences is evaluated with respect to all plaque components. The reference standard
was acquired using manual segmentation by a radiologist and is therefore not completely
objective. The manual segmentation process was assisted by histology reducing the effect
of human variability in the reference standard. There were no matching histology sec-
tions for all image slices. In cases where no matching histology section was available, the
nearest histology section was interpreted in order to perform the delineation of the vessel
wall and plaque components combining the standard assumptions of the relative contrast
weighting of plaque components [92]. Due to the limited size of the dataset, leave-one-
out cross validation was used for the training and testing of the automated segmentation
algorithm. This method provides an approximately unbiased estimate of the classification
performance. A larger dataset, which can be split into a training set and an independent
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testing set, can provide a more reliable estimate of the classification performance. The
presented soft plaque correlation measurements have wide confidence intervals. Because
of these wide intervals it is not possible to indicate whether or not a particular set of ves-
sel wall images is significantly better than another set of images. However, the different
correlations can still be compared and the scan duration should be considered in the in-
terpretation of the results.

In conclusion, a method was presented to objectively evaluate the MR sequence pro-
tocol for the detection of the soft plaque in MR vessel wall images of the carotid artery.
The presented approach allows development and optimization of MR imaging protocols
by investigating the tradeoff between scan duration and automated segmentation perfor-
mance possibly leading to shorter scanning times and better image interpretation. This
approach can potentially also be applied to other research fields focusing on different dis-
eases and anatomical regions.
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Chapter 10

Summary and conclusions

10.1 Summary

In this thesis we developed and evaluated several methods for the automated analysis
of the carotid artery vessel wall using multi-sequence MR vessel wall images to assess
atherosclerosis. Chapter 1 provides a general introduction into atherosclerosis and differ-
ent stages of the disease were described including the importance to differentiate between
stable and vulnerable plaques. Several non-invasive imaging techniques were discussed
and the advantages of multi-sequence MRI were highlighted. A standard workflow for the
manual analysis of these images was presented and existing methods for the automated
analysis of these images were discussed.

A new method to segment the vessel wall boundaries was presented in chapter 2. The
segmentation method uses a 3D deformable vessel model requiring only minimal user
interaction by combining 3D MRA and 2D vessel wall images. Comparison of the au-
tomated method with manual segmentation showed substantial agreement with slight
underestimation and a proportional error of the vessel wall thickness and volume. How-
ever, the automated method demonstrated improved interobserver agreement, improved
inter-scan reproducibility and was substantially faster. Advantages over existing methods
were that the method uses a true 3D model, which can be applied to both isotropic and
non-isotropic image data, instead of segmenting the vessel wall boundaries in each im-
age slice independently, as was done in other methods. This property is especially helpful
in areas where the edges of the vessel wall are vague or poorly defined as in the bifurca-
tion area. In case of a vague or missing edge in an image slice, edge information from
neighboring slices is taken into account to guide the model to the correct location. The
same effect applies to the bifurcation area, where most segmentation methods have the
tendency to expand into the ECA, but this effect is limited for the 3D vessel model as edge
information from neighbouring image slices is used during the model fitting.

In chapter 3, the underestimation of the 3D deformable vessel model segmentation
method was addressed by adding a postprocessing step in which systematic segmentation
errors were corrected by using a learning-based vessel segmentation correction method.
This method can correct systematic errors caused by differences in image characteristics
when using different MR acquisition parameter settings or different scanning equipment,
and can correct for the limited flexibility of the 3D segmentation model. The application
of the learning-based vessel segmentation correction method showed a small improve-
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ment for the segmentation of the lumen boundary and a major improvement for the outer
wall. After adding the learning-based segmentation correction step, the segmentation re-
sults were comparable to the manual annotations in terms of vessel wall dimensions and
can therefore be used to replace the manual measurements speeding up the current anal-
ysis. Additionally, this development opens up possibilities for population studies with a
large number of subjects where manual measurements becomes infeasible. Moreover, the
learning-based segmentation correction method is potentially a powerful tool which can
be applied to other automated segmentation problems. It can be used to adapt an auto-
mated segmentation result to an observer (e.g. the observer draws the contours on the
rise of the edge, while the automated method searches for the strongest edge), or to adapt
an existing method to different images.

The main theme of chapters 4 and 5 is image registration, the automated alignment,
of the multi-sequence MR images within one scan session and between scan sessions. In
chapter 4, the need for image registration was shown by quantification of patient motion
during one scan session. This quantification showed that the average misalignment is
considerable and that patient movement occurs in all three dimensions. Different auto-
mated image registration experiments were performed in which several carefully selected,
critical components of the registration procedure were optimized and quantitatively vali-
dated on a large group of patients. The optimal registration strategy was faster than man-
ual alignment by a human expert, and provided similar accuracy. The results showed that
automated image registration can replace the manual alignment procedure. This is the
first study in which patient motion was quantified, a 3D deformable transformation model
was used, and the registration experiments were validated on a large set of patient studies
using quantitative measures. Additionally, the optimal registration strategy was validated
on a more recent 3.0T dataset. The results of the 3.0T dataset were in line with the results
of the 1.5T dataset showing that the same registration strategy can be applied to newer
MRI data.

In chapter 5 image registration is used to improve the comparison of baseline and
follow-up images in serial MRI studies. Traditionally, observers either visually match each
image slice of the baseline study with an image slice of the follow-up study and compare
area measurements of the vessel wall and plaque components, or do not perform any
matching and compare volume metrics based on the whole vessel. In both cases, only
a small part of the available image information is used in the analysis. In our approach,
3D image registration was used to obtain point correspondence between images from dif-
ferent timepoints. Using this correspondence, measurements in the baseline study can
be related to measurements in the follow-up study in high detail. Additionally, 3D vi-
sualization techniques were applied to present local changes in vessel wall morphology
using difference maps which were color-coded on a mesh of the lumen segmentation of
the baseline image. This approach is an improvement over the traditional volume-based
image comparison and provides a detailed view of local differences over time improving
insight into the disease progression of an individual patient.

In chapters 6 to 9 pattern recognition techniques were applied for the analysis of
atherosclerotic plaque components in MR vessel wall images. In Chapter 6, a study was
presented in which an automated segmentation method was used to classify plaque com-
ponents based on in vivo MRI from a multicenter study. The automated segmentation
method employed a supervised classifier which was trained using intensity and gradient
information from the MR sequences and morphological information such as local vessel
wall thickness. The results indicated that it was possible to automatically detect carotid
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plaque components with substantial or good agreement with visual identification, and
that the volumes obtained manually and automatically were reasonably consistent for
hemorrhage and lipids but not for calcium. The current results show that automated seg-
mentation in a multicenter study is feasible provided MR protocols and acquisition pa-
rameters are standardized between centers. The results are promising, but improvements
are still needed as the agreement between automated and manual segmentation was rea-
sonable. The current results can serve as an initial segmentation to speed up the manual
segmentation procedure.

In chapter 7 the effect of 3D morphological features, image normalization strategies
and composition of the training set on the accuracy and reproducibility of supervised
plaque classification was investigated. Image normalization is often performed using the
median signal intensity value of a 4x4 cm2 square region of interest around the lumen,
which is a surrogate measure for the signal intensity of the sternocleidomastoid muscle
which is used as reference during manual segmentation of plaque components. Our re-
sults showed that a normalization approach using intensity scaling provided better re-
sults than the region of interest based approach. Interestingly, our results also showed a
low agreement between the median value of the 4x4 cm2 region of interest and the median
value of the sternocleidomastoid muscle. The agreement between manual and automated
segmentation was significantly improved by using the 3D distance to the flow divider fea-
ture, normalization based on intensity scaling and a training set based on the intersection
of two repeated reads. Finally, the results showed that automated segmentation is more
reproducible than manual segmentation.

In chapter 8 pattern recognition techniques were applied to investigate the added
value of two MR sequences at high field, inversion recovery spin echo and T1 weighted
gradient echo with fat suppression, for identification of unstable plaque components.
Instead of using the Euclidean distance measure, the Mahalanobis distance measure
was used to quantify contrast between plaque components in MR sequences. The Ma-
halanobis distance measure is scale-invariant and takes into account the covariance
between the samples, enabling comparison of image contrast between different MR se-
quences which is not possible while using the Euclidean distance measure. As a proof of
concept, two automated segmentation experiments were performed using an Euclidean
distance classifier and a Mahalanobis distance classifier. The experiments showed a
better performance for the Mahalanobis classifier.

Chapter 9 presents another application of pattern recognition techniques for multi-
sequence vessel wall imaging. In this chapter, automated segmentation was used to ob-
jectively evaluate an MR sequence protocol for the detection of soft plaque in the carotid
artery. The approach allows development and optimization of an MR imaging protocol
by investigating the tradeoff between scan duration and automated segmentation perfor-
mance possibly leading to shorter scanning times and better image interpretation. This
approach can be easily generalized and can therefore potentially be applied to other re-
search fields focusing on different diseases and anatomical regions.

10.2 Conclusion

The main goal of this thesis was to develop methods for automated segmentation, regis-
tration and classification of the carotid artery vessel wall and plaque components using
multi-sequence MR vessel wall images.
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Several novel automated image segmentation and registration techniques have been
developed. For each technique, existing methods were discussed to identify the need for
developing a new method. Subsequently, the results of the new method were compared to
existing methods where possible. All techniques were developed and validated using rele-
vant patient data and reference standards. Manual segmentations created by experienced
observers were used as reference standard and were in some cases based on histology
data. At the end of each chapter, clinical implications were discussed by answering ques-
tions such as; what is the required user interaction to initialize the segmentation method?,
how do the results compare to manual segmentation?, what is the decrease in analysis
time?, and how does the technique fit into the current clinical research workflow?

To conclude, novel automated methods were developed which contributed to each
step in the analysis of multi-contrast MR vessel wall images. Therefore, the main goal of
this thesis has been realized.

10.3 Future directions

The work presented in this thesis is an important contribution to the automated analysis
of multi-sequence MR vessel wall imaging of the carotid artery. However, given the cur-
rent methodology, fully automated image analysis is not yet feasible, therefore motivating
future research. Several possibilities exist to expand the current work: 1) The automated
segmentation of the vessel wall boundaries is currently performed based on edge infor-
mation of one contrast weighting. This method can be extended to include edge informa-
tion from multiple contrast weightings possibly improving segmentation performance. 2)
The 3D vessel model should be extended towards a full 3D bifurcation model to obtain a
comprehensive description of this important region without having to correct for errors
caused by the external carotid artery. 3) Another challenge is the automated segmenta-
tion of plaque components. The segmentation results are highly dependent on the choice
of MR sequences and the quality of the acquired images. As these two factors are often
difficult to control, a semi-automated approach should be investigated which speeds up
the analysis time while preserving the segmentation performance of the observer. Addi-
tionally, the latest developments in T1, T2 and T2* mapping techniques should be closely
monitored. These techniques allow the measurement of absolute T1, T2 and T2* relax-
ation times which are tissue specific biophysical MR properties. The quantitative proper-
ties, as opposed to working with relative signal intensities, promise a major contribution
to automated classification of plaque components. 4) Develop a new workflow which is
not analogue to the manual segmentation workflow. This might result in a different or-
dering of the segmentation steps or in hybrid approaches. Potential examples of hybrid
approaches are the simultaneous segmentation of the vessel wall boundaries and regis-
tration of the multi-contrast images, and the simultaneous detection of the vessel wall
boundaries and plaque components.

The availability of “good” datasets is currently limited. A good dataset should include
a large number of MRI scans, preferably over 50, with sufficient image quality. Ideally, his-
tology should be obtained and used as gold standard to assist the manual segmentation
process. Alternatively, in case no histology is available, the image data should be analyzed
by multiple trained observers who score the data individually and also perform a consen-
sus reading. Acquiring such a dataset takes time as patients have to be recruited, scanned,
and all data needs to be manually segmented. It would be helpful to the community to cre-
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ate such as dataset and make it available to other research groups. A possible vehicle to
do so is to organize a “challenge”. A challenge allows different research groups to develop
and test algorithms on a standardized set of data using a common evaluation framework.

A future direction on a higher level is to focus on treating the image data as a 3D vol-
ume instead of processing each image slice independently. As thinner image slices and
isotropic datasets are becoming more popular, 2D segmentation methods will become
computationally more intensive and can only take advantage of image information within
the slice. Moreover, the analysis of patient movement and the automated registration re-
sults from chapter 4 showed the importance of a 3D approach. In the process of devel-
oping 3D segmentation methods, one has to be vigilant as a typical vessel wall imaging
dataset is highly anisotropic and extensive use of interpolation can degrade the reliability
of the results. Finally, as isotropic datasets are becoming more popular, manual segmenta-
tion becomes impractical, motivating the need for automated 3D segmentation methods.

Researchers developing image processing methods should work in close collaboration
with MR pulse sequence developers and the clinicians who perform the MRI scanning.
Various parameters, such as design choices in the MR pulse development, choice of ap-
plied MR sequences, setup of the scan protocol and slice planning, can have a substantial
impact on the manual or automated analysis result of the image data. For example, an MR
pulse sequence developer can focus on increasing the in-plane image resolution, which
has a positive impact on the manual segmentation result, or put his effort into decreas-
ing the slice thickness, which is more favorable from an image processing point of view.
A good collaboration between the different parties will greatly contribute to a good end
result.

Finally, the importance of a good software tool, which supports both the manual seg-
mentation and automated analysis including correction of intermediate results, should
not be underestimated. A good tool allows clinicians to efficiently view the image data
and perform manual segmentations. These segmentations can then be used for the de-
velopment and validation of new segmentation methods, which, in turn, can be added to
the software tool to support the clinician. And, although the ultimate goal is to develop
fully automated segmentation methods, results of newly developed segmentation meth-
ods will always need thorough visual verification and ideally limited manual corrections.





Samenvatting en conclusies

Samenvatting

In dit proefschrift zijn verschillende methoden ontwikkeld en geëvalueerd voor de au-
tomatische analyse van de vaatwand van de halsslagader op basis van multi-sequentie
MRI beelden van patiënten met de ziekte atherosclerose. Hoofdstuk 1 geeft een alge-
mene introductie van de ziekte atherosclerose en bespreekt verschillende stadia van deze
ziekte waaronder het belang om onderscheid te maken tussen stabiele en kwetsbare pla-
ques ("vulnerable plaques"). Verschillende niet-invasieve beeldvormingstechnieken zijn
besproken en de voordelen van multi-sequentie MRI zijn toegelicht. Een standaard work-
flow voor de handmatige analyse van deze beelden werd gepresenteerd en bestaande me-
thoden voor de geautomatiseerde analyse zijn besproken.

Een nieuwe methode voor de segmentatie van de vaatwandcontouren is gepresen-
teerd in hoofdstuk 2. De segmentatiemethode maakt gebruik van een 3D-vervormbaar
vaatwandmodel en vereist slechts minimale gebruiksinteractie door het combineren van
de 3D MRA en 2D vaatwandbeelden. Vergelijking van de automatische methode met ma-
nuele segmentaties toonde een substantiële overkomst met een lichte onderschatting en
proportionele fout van de dikte en het volume van de vaatwand. De geautomatiseerde
methode toonde echter een betere interobserver overeenkomst, een betere inter-scan re-
produceerbaarheid en was aanzienlijk sneller. Ten opzichte van bestaande methoden
biedt de nieuwe methode het voordeel dat er een volwaardig 3D-model gebruikt wordt
dat kan worden toegepast op isotrope en niet-isotrope beelden in plaats van het segmen-
teren van de vaatwandcontouren in elke slice (2D beeldplak) afzonderlijk, zoals bij andere
methoden gebeurd. Deze eigenschap is vooral krachtig in gebieden waar de grenzen van
de vaatwand vaag of slecht gedefinieerd zijn zoals in het bifurcatiegebied. Bij een vage
of ontbrekende gradiënt in een slice, wordt informatie uit naburige slices gebruikt om het
model naar de juiste locatie te sturen. Dit effect heeft ook toegevoegde waarde in het bifur-
catiegebied, waar de meeste segmentatiemethoden de neiging hebben om een deel van
de arteria carotis externa te segmenteren. Dit wordt beperkt doordat het 3D-vaatmodel
informatie uit naburige slices gebruikt tijdens het fitten van het model.

In hoofdstuk 3 wordt een techniek beschreven waarmee de onderschatting van de
segmentatiemethode uit hoofdstuk 2 gecorrigeerd wordt middels een postprocessing stap
waarbij systematische segmentatie fouten worden gecorrigeerd met behulp van patroon-
herkenningstechnieken. Deze techniek kan systematische fouten corrigeren die worden
veroorzaakt door verschillen in beeldkenmerken zoals het gebruik van verschillende MRI
acquisitie parameterinstellingen of andere scanapparatuur, en kan corrigeren voor de be-
perkte flexibiliteit van het 3D-vaatwandmodel. De toepassing van de correctiestap toonde
een kleine verbetering van de segmentatie van de lumen contouren en een aanzienlijke
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verbetering voor de contouren van de buitenwand. Toepassing van de correctiestap re-
sulteerde in segmentatieresultaten met gelijke nauwkeurigheid aan die van handmatige
annotaties. De verbeterde methode kan worden gebruikt om handmatige metingen te ver-
vangen en zodoende de huidige analyse te versnellen. Bovendien biedt deze ontwikkeling
mogelijkheden voor bevolkingsonderzoek met een groot aantal personen waar handma-
tige segmentatie niet haalbaar is. Ook is de correctiestap potentieel een krachtig hulp-
middel dat kan worden toegepast op andere automatische segmentatieproblemen. De
methode kan worden gebruikt om automatische segmentatieresultaten aan te passen aan
een expert (bijv. de expert tekent de contouren op de start van de gradiënt, terwijl de ge-
automatiseerde methode zoekt naar de sterkste gradiënt), of om een bestaande methode
aan te passen aan andere beelden.

Het thema van hoofdstukken 4 en 5 is beeldregistratie, het automatisch op elkaar
passen van beelden, van multi-sequentie MRI beelden binnen een scansessie en tussen
scansessies. In hoofdstuk 4 wordt de noodzaak van beeldregistratie aangetoond door de
beweging van de patiënt gedurende een scan sessie te kwantificeren. Hieruit bleek dat
de gemiddelde fout in uitlijning van de beelden aanzienlijk is en dat beweging van de
patiënt in alle drie dimensies plaatsvindt. Verschillende automatische beeldregistratie ex-
perimenten werden uitgevoerd waarbij zorgvuldig geselecteerde kritische componenten
van de registratieprocedure werden geoptimaliseerd en kwantitatief geëvalueerd op een
grote groep patiënten. De optimale beeldregistratie strategie was sneller dan handmatige
uitlijning van de beelden door een expert en was even nauwkeurig. Deze resultaten tonen
aan dat automatische beeldregistratie de handmatige uitlijning procedure kan vervangen.
Dit is de eerste studie waarin de mate van beweging van de patiënt is gekwantificeerd, een
3D-vervormbaar transformatie model is gebruikt en waarbij de registratie-experimenten
gevalideerd zijn op een grote set patiëntstudies met behulp van kwantitatieve metrieken.
Daarnaast werd de optimale registratiestrategie gevalideerd op een recentere 3.0T data-
set. De resultaten van de 3.0T dataset waren in overeenstemming met de resultaten van
de 1.5T dataset en laten zien dat dezelfde registratiestrategie ook kan worden toegepast
op nieuwere MRI beelden.

In hoofdstuk 5 wordt beeldregistratie toegepast om de vergelijking van baseline en
follow-up beelden in longitudinale MRI studies te verbeteren. Experts proberen de slices
van de baseline studie visueel naast de slices van de follow-up studie te leggen en ver-
gelijken vervolgens oppervlakte metingen van de vaatwand en plaquecomponenten, of
ze voeren geen correctie uit en vergelijken volumemetingen van het gehele bloedvat. In
beide gevallen wordt slechts een klein deel van het beschikbare beeldinformatie gebruikt
in de analyse. In de voorgestelde aanpak wordt gebruik gemaakt van 3D-beeldregistratie
om puntcorrespondentie tussen beelden van verschillende tijdspunten te verkrijgen. Met
behulp van de deze correspondentie kunnen metingen in het baseline beeld worden ge-
koppeld aan metingen in het follow-up beeld op een gedetailleerd niveau. Vervolgens
worden 3D-visualisatie technieken toegepast om lokale wijzigingen in vaatwandmorfolo-
gie te presenteren door de gevonden verschillen in kleur te coderen op een maas van de
lumen segmentatie van het baseline beeld. Deze aanpak is een verbetering ten opzichte
van de traditionele volume gebaseerde metingen en biedt een gedetailleerde weergave van
lokale vaatwandveranderingen tussen twee tijdsmomenten. Deze aanpak kan het inzicht
in de progressie van de ziekte van een individuele patiënt verbeteren.

In hoofdstukken 6 tot en met 9 worden patroonherkenningstechnieken toegepast
voor het analyseren van atherosclerotische plaquecomponenten in MRI vaatwandbeel-
den. Hoofdstuk 6 beschrijft een studie waarbij automatische segmentatie is gebruikt om
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plaquecomponenten te classificeren op basis van in-vivo MRI beelden in een multicenter
studie. De automatische segmentatiemethode maakt gebruik van een lineaire classifier
die wordt getraind met intensiteit en de gradiënt informatie van de MRI beelden en
morfologische informatie zoals de lokale vaatwanddikte. De resultaten tonen aan dat
het mogelijk is om plaquecomponenten in de vaatwand automatisch te detecteren met
substantiële of goede overeenstemming met visuele identificatie en dat de handmatig
en automatisch verkregen volumes redelijk consistent zijn voor bloeding en lipiden,
maar niet voor kalk. De huidige resultaten laten zien dat automatische segmentatie in
een multicenter studie haalbaar is mits de MRI protocollen en acquisitie parameters
gestandaardiseerd worden tussen de centra. De resultaten zijn veelbelovend, maar ver-
beteringen zijn nog steeds nodig aangezien de overeenkomst tussen automatisch en
handmatig gesegmenteerde volumes nog niet goed genoeg is. De huidige resultaten
kunnen dienen als een initiële segmentatie om de handmatige segmentatie procedure te
versnellen.

In hoofdstuk 7 wordt het effect van 3D morfologische kenmerken, beeldnormalisa-
tie strategieën en de samenstelling van de training dataset op de nauwkeurigheid en de
reproduceerbaarheid van de automatische plaqueclassificatie onderzocht. Beeldnorma-
lisatie wordt vaak uitgevoerd met behulp van de mediaan van de signaalintensiteiten in
een vierkant gebied van 4x4 cm2 gecentreerd rondom het lumen. Deze waarde dient als
surrogaat voor de signaalintensiteit van de musculus sternocleidomastoideus, welke als
referentie wordt gebruikt tijdens de handmatige segmentatie van plaquecomponenten.
Onze resultaten toonden dat normalisatie middels het schalen van de intensiteiten betere
resultaten gaf dan de mediaan gebaseerde aanpak. Interessant is ook dat onze resultaten
een slechte overeenkomst toonden tussen de mediaanwaarde van het 4x4 cm2 gebied en
de mediaan van de musculus sternocleidomastoideus. De overeenkomst tussen handma-
tige en geautomatiseerde segmentatie werd aanzienlijk verbeterd door het gebruik van de
3D-afstand-tot-het-bifurcatiepunt informatie, normalisatie gebaseerd op het schalen van
de intensiteiten en een training set gebaseerd op de intersectie van twee herhaalde ma-
nuele segmentaties. Tenslotte toonden de resultaten aan dat automatische segmentatie
reproduceerbaarder is dan handmatige segmentatie.

In hoofdstuk 8 worden patroonherkenningstechnieken toegepast om de toegevoegde
waarde van twee MRI sequenties bij hoge veldsterkte, inversion recovery spin echo en T1
gewogen gradiënt echo met vet onderdrukking, te onderzoeken voor de identificatie van
instabiele plaquecomponenten. In plaats van de Euclidische afstandsmaat, wordt de Ma-
halanobis afstandsmaat gebruikt om het contrast tussen plaquecomponenten in MRI se-
quenties te kwantificeren. De Mahalanobis afstandsmaat is schaal-invariant en houdt re-
kening met de covariantie tussen de datapunten, waardoor het, in tegenstelling tot de
Euclidische afstandsmaat, mogelijk is om het contrast tussen plaquecomponenten in ve-
schillende MRI sequenties met elkaar te vergelijken. Als proof of concept, werden twee
geautomatiseerde segmentatie experimenten uitgevoerd met een classifier die de Euclidi-
sche afstandsmaat gebruikt en een classifier die de Mahalanobis afstandsmaat gebruikt.
De experimenten toonden betere resultaten voor de classifier gebruikmakend van Maha-
lanobis afstandsmaat.

Hoofdstuk 9 geeft nog een toepassing van patroonherkenningstechnieken op multi-
sequentie vaatwandbeelden. In dit hoofdstuk wordt automatische segmentatie gebruikt
om een MRI sequentie protocol ten behoeve van de detectie van soft plaque in de hals-
slagader objectief te evalueren. De aanpak maakt het mogelijk om een MRI-protocol te
optimaliseren door het onderzoeken van de afweging tussen de duur van de scan en de
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geautomatiseerde segmentatieresultaten. Dit kan potentieel leiden tot kortere scantij-
den en betere beeldinterpretatie. Deze aanpak kan eenvoudig worden gegeneraliseerd en
kan mogelijk worden toegepast op andere onderzoeksgebieden die zich richten op andere
ziekten en anatomische gebieden.

Conclusie

De doelstelling van dit proefschrift was het ontwikkelen van methoden voor de automati-
sche segmentatie, registratie en classificatie van de vaatwand van de halsslagader en pla-
quecomponenten op basis van multi-sequentie MRI vaatwandbeelden.

Er zijn verschillende nieuwe geautomatiseerde segmentatie- en registratietechnieken
ontwikkeld. Voor elke techniek werden bestaande, veelal handmatige, methoden bespro-
ken om de noodzaak aan te tonen voor het ontwikkelen van een nieuwe methode. Vervol-
gens werden de resultaten van de nieuwe methode vergeleken met bestaande methoden
waar mogelijk. Alle technieken werden ontwikkeld en gevalideerd met behulp van rele-
vante patiëntgegevens en referentiestandaarden. Manuele segmentaties, gemaakt door
ervaren experts, werden gebruikt als referentiestandaard en waren in een aantal gevallen
gebaseerd op histologische informatie. Aan het eind van elk hoofdstuk, werden klinische
implicaties besproken door vragen te beantwoorden zoals: Wat is de vereiste interactie
van de gebruiker om de segmentatiemethode te starten; hoe vergelijken de resultaten
zich met de handmatige segmentatieresultaten; is er een afname van de analysetijd; en
hoe past de nieuwe techniek in de workflow van het huidige klinisch onderzoek?

In dit proefschrift zijn nieuwe geautomatiseerde methoden ontwikkeld die hebben bij-
gedragen aan elke stap in de analyse van multi-contrast MRI vaatwandbeelden. Samen-
vattend kan gesteld worden dat hiermee de doelstelling van dit proefschrift is behaald.

Toekomstperspectief

Het werk gepresenteerd in dit proefschrift vormt een belangrijke bijdrage aan de auto-
matische analyse van multi-sequentie MRI vaatwandbeelden van de halsslagader. Volle-
dig automatische beeldanalyse is echter nog niet haalbaar gezien de huidige stand van
de techniek en motiveren vervolgonderzoek. Er zijn verschillende mogelijkheden om het
huidige werk uit te breiden: 1) De geautomatiseerde segmentatie van de vaatwandcon-
touren wordt momenteel uitgevoerd op basis van gradiënt informatie van een enkele MRI
sequentie. De methode kan worden uitgebreid door gebruik te maken van de gradiënt
informatie uit meerdere contrast wegingen, dit leidt mogelijk tot betere segmentatieresul-
taten. 2) Het 3D-vaatmodel kan worden uitgebreid naar een volledig 3D-bifurcatiemodel
om een betere beschrijving van deze belangrijke regio te verkrijgen zonder te hoeven cor-
rigeren voor fouten die worden veroorzaakt door het negeren van de aanwezigheid van
de arteria carotis externa. 3) Een andere uitdaging is de automatische segmentatie van
plaquecomponenten. De segmentatieresultaten zijn sterk afhankelijk van de keuze van
MRI sequenties en de kwaliteit van de verkregen beelden. Omdat deze twee factoren vaak
lastig onder controle zijn te krijgen, dient een semi-automatische aanpak, die de analyse-
tijd reduceert en de segmentatieprestaties van de expert behoudt, te worden onderzocht.
Bovendien is het belangrijk om de laatste ontwikkelingen in T1 , T2 en T2* mapping tech-
nieken nauwlettend te volgen. Deze technieken maken het mogelijk om de absolute T1 ,
T2 en T2* relaxatietijden te meten. Dit zijn weefselspecifieke magnetische biofysische ei-
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genschappen. Deze kwantitatieve eigenschappen, in tegenstelling tot het werken met re-
latieve signaal intensiteiten, beloven een belangrijke stap in de automatische classificatie
van plaquecomponenten. 4) Het ontwikkelen van een nieuwe workflow die niet analoog
is aan de handmatige segmentatie workflow. Dit kan resulteren in een andere volgorde
van de segmentatie stappen of in een hybride aanpak. Mogelijke voorbeelden van een hy-
bride aanpak zijn de simultane segmentatie van de vaatwandcontouren en registratie van
de multi-contrast beelden of de simultane detectie van de vaatwandcontouren en plaque-
componenten.

De beschikbaarheid van “goede” datasets is momenteel beperkt. Een goede dataset
bevat een groot aantal MRI-scans, bij voorkeur meer dan 50, van voldoende beeldkwali-
teit. Idealiter wordt histologie verkregen en gebruikt als gouden standaard om het hand-
matig segmentatie proces te ondersteunen. Indien er geen histologie beschikbaar is, moe-
ten de beelden worden geanalyseerd door meerdere getrainde experts die de beelden in-
dividueel scoren en gezamenlijk een consensus analyse uitvoeren. Het verwerven van
een dergelijke dataset kost veel tijd omdat er patiënten geïncludeerd en gescand moe-
ten worden, en alle beelden manueel gesegmenteerd moeten worden. Het zou waardevol
zijn voor de gemeenschap om een goede dataset te verzamelen en deze beschikbaar te
maken voor onderzoeksgroepen. Een mogelijke manier om dit te bewerkstelligen is het
organiseren van een challenge, een westrijd. Door een challenge te organiseren kunnen
verschillende onderzoeksgroepen algoritmes ontwikkelen en testen aan de hand van een
gestandaardiseerde set van beelden met behulp van een gemeenschappelijk evaluatie fra-
mework.

Een aanbeveling voor toekomstig onderzoek op een hoger niveau is om de beelden
als een 3D volume te behandelen in plaats elke slice afzonderlijk. Aangezien de slice-
dikte steeds dunner wordt en het gebruik van isotrope datasets toeneemt, zullen 2D-
segmentatiemethoden steeds meer rekenkracht vereisen en kunnen deze methoden al-
leen gebruik maken van beeldinformatie aanwezig in de desbetreffende slice. Bovendien
is het belang van een 3D-benadering gedemonstreerd met de analyse van de beweging
van de patiënt en met de geautomatiseerde registratieresultaten uit hoofdstuk 4. Tijdens
het ontwikkelen van 3D-segmentatiemethoden, moet men in het achterhoofd houden dat
een typische MRI vaatwand dataset zeer anisotroop is en dat bij veelvuldig gebruik van
interpolatie de betrouwbaarheid van de resultaten achteruit kan gaan. Tenslotte wordt
manuele segmentatie door de toename van het gebruik van het isotrope datasets onprak-
tisch, welke de behoefte motiveert voor automatische 3D-segmentatiemethoden.

Onderzoekers die werken aan beeldverwerkingsmethoden moeten nauw samenwer-
ken met MRI pulssequentie ontwikkelaars en de artsen die de MRI-scans uitvoeren. Ver-
schillende parameters, zoals ontwerpkeuzes in de MRI puls-ontwikkeling, de keuze van
toegepaste MRI sequenties, opzet van het scanprotocol en de sliceplanning, kunnen een
aanzienlijke impact hebben op de resultaten van de manuele of automatische beeldana-
lyse. Zo kan bijvoorbeeld een MRI pulssequentie ontwikkelaar zich richten op het verho-
gen van de beeldresolutie in het beeldvlak, hetgeen een positieve invloed heeft op het ma-
nuele segmentatieresultaat, of zich richten op het verminderen van de slice dikte, hetgeen
gunstiger is vanuit een beeldverwerkings perspectief. Een goede samenwerking tussen de
verschillende partijen zal sterk bijdragen aan een beter eindresultaat.

Tenslotte moet het belang van een goede software tool, welke zowel manuele segmen-
tatie als automatische analyse ondersteund inclusief het corrigeren van tussenresultaten,
niet worden onderschat. Een goede tool geeft clinici de mogelijkheid om efficiënt beel-
den te bekijken en manuele segmentaties uit te voeren. Deze segmentaties kunnen ver-
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volgens worden gebruikt voor de ontwikkeling en validatie van nieuwe segmentatieme-
thoden, die op hun beurt kunnen worden toegevoegd aan de software tool om de arts te
ondersteunen. En, hoewel het uiteindelijke doel is om volledig geautomatiseerde segmen-
tatiemethoden ontwikkelen, vereisen de resultaten van nieuw ontwikkelde segmentatie-
methoden altijd een grondige visuele verificatie en idealiter slechts beperkte handmatige
correcties.
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