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Abstract Resistance to pesticides is an increasing problem in
agriculture. Despite practices such as phased use and cycling
of ‘orthogonally resistant’ agents, resistance remains a major
risk to national and global food security. To combat this
problem, there is a need for both new approaches for pesticide
design, as well as for novel chemical entities themselves. As
summarized in this opinion article, a technique termed
‘proteochemometric modelling’ (PCM), from the field of
chemoinformatics, could aid in the quantification and predic-
tion of resistance that acts via point mutations in the target
proteins of an agent. The technique combines information
from both the chemical and biological domain to generate
bioactivity models across large numbers of ligands as well
as protein targets. PCM has previously been validated in
prospective, experimental work in the medicinal chemistry
area, and it draws on the growing amount of bioactivity
information available in the public domain. Here, two poten-
tial applications of proteochemometric modelling to agro-
chemical data are described, based on previously published
examples from the medicinal chemistry literature.
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Introduction

In agriculture, resistance to pesticides forms a complex and
growing problem, which includes the development of resis-
tance to insecticides [17], fungicides [16], as well as herbi-
cides [7, 25, 6]. For each of these resistance types, a multitude
of different resistance mechanisms are possible, all of which,
however, lead to phenotypic resistance (i.e. the concentration
of pesticide needed to kill the pests is higher for resistant
variants compared to wild type). Commonly observed resis-
tance mechanisms are similar to those observed in microbial
and cancer mechanisms of resistance; examples include in-
creased expression of efflux proteins, increased expression of
metabolizing proteins, and point mutations in the protein
targeted by the agrochemical agent [8, 10, 24]. Due to the
spectrum of possible adaptations in the target organism, it is
difficult to capture and model all potential forms of resistance
for a certain compound in a model a priori, which is analogous
to antibiotic and anti-cancer drug resistance. Out of these
possibilities, the current opinion article will deal specifically
with the impact of point mutations at the ligand-binding site
and their effect on resistance. This is an area for which there is
prior successful experience in the medicinal chemistry and
drug design field, including prospective experimental valida-
tion of the models developed. Here, previous research of the
authors as well as other related groups will be outlined, with
the aim to transfer these methods also to the world of agro-
chemical research [22, 20].

Complementary ligand and target information

The binding affinity between a ligand (e.g. a small molecule or
RNAi) [26, 1], and a target (usually a protein, but potentially a
ribosomal target) [18], is governed by properties of both ligand
and target (and the physiological environment, e.g. ionic
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strength and pH). Hence, it follows that changes to either one of
the binding partners will, in most cases, translate into a differ-
ence (weaker or stronger binding) in affinity and subsequent
efficacy. This mechanism is also exploited when a candidate
molecule is optimized through iterative design of synthetic
molecules to have a high affinity towards a desired protein
target via quantitative structure-activity relationship (QSAR)
studies, which is a standard technique during lead optimization
in drug discovery. In the context of agrochemistry, extending
this principle from single targets to multiple targets would be
equivalent to optimizing a candidate molecule towards the
desired pest, while avoiding unwanted effects, e.g. in humans
(as well as other species). This procedure exploits the differ-
ences in the sequences and structures between the targets in
these species (corresponding to a variation on the target side). In
order to now model the activity of multiple ligands against
multiple targets, ‘proteochemometric modelling’ (PCM) can
be used, a computational technique that simultaneously uses
properties of both ligand and target space. Hence, PCM can be
used to make predictions for unknown ligands as well as
unknown protein targets (Fig. 1; for reviews see [15, 23]). For
clarity, these new sequences could be an orthologous sequence
from a new pathogen or new sequences generated under
selective pressure giving rise to resistant pathogens. The reader
is referred to recent reviews and references therein for an over-
view of the more general concept of computational models of
bioactivity and (QSAR) models (these include an overview of

various applicable machine learning algorithms and descriptors)
[23, 5]. Previously, PCM has been successfully applied to model
the impact of protein mutations on the resistance of viruses to
drugs. Examples include the human immunodeficiency virus
(HIV), also including prospective experimental validation [14,
22, 20], as well as the dengue virus [19]. Given that the problem
at hand is similar—in both cases, the impact of sequence
mutations/differences of a target protein on ligand binding or
efficacy needs to be understood—we anticipate that the concept
of PCM will also be transferable to the field of agrochemicals,
possibly with some domain-dependent modifications.

Resistance models

The first aim of PCM is to model the bioactivity of ligands
against large number of related proteins, which allows the
scientist to anticipate the bioactivity spectrum of a molecule
in a multidimensional fashion. In the literature, it has been
shown that multitarget models combining ligand and target
properties (i.e. PCM models) generally perform better than
single target models, which are trained on ligand-only prop-
erties (i.e. conventional QSAR models) [14, 19, 22, 23, 20].
Moreover, the multitarget nature of these models allows ratio-
nalization of resistance, as these models were able to
deconvolute the individual contributions of amino acid sub-
stitutions (Fig. 2a [20]) or substructures within ligands that

Fig. 1 Schematic overview of proteochemometric modelling (PCM).
The technique uses chemical properties from multiple ligands (e.g.
ethiprole), target properties from multiple proteins (e.g. gamma-
aminobutyric acid (GABA) receptor subunit beta-3 [4]), and their respective
bioactivity values. From these data, a statistical model is generated. After
validation, this model can predict the bioactivity of untested compounds on

the targets included in the model, in order to (1) select a compound active on
a particular protein target; (2) predict which protein a particular compound
will show activity against; or (3) for the prospective selection (‘virtual
screening’) of compounds with a desired bioactivity profile against a set of
proteins and its mutants
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vary across a chemical series (Fig. 2b [22]). For instance in the
case of HIV protease, it is known that residue 82 can mutate
from the wild-type valine to a threonine, and that this simple,
conservative, single-point mutation leads to (cross) resistance
amongst all clinical inhibitors with the exception of Darunavir
[12]. PCM models have been able to reproduce these results,
as shown in Fig. 2a.

In the case of agrochemistry, the authors are of the opinion
that the nature of the PCM technique would be equally suited
to identify potential agrochemicals that have the most
favourable resistance profile. Similarly, models could be used
to deconvolute contributions of mutations to an increase or
reduction of resistance displayed by individual mutants.

Multispecies models

Knowledge on the relationship between homologues tar-
gets in different species can be exploited using PCM,
which is of relevance either in cases where off-target
effects of a compound in a species needs to be avoided,
but also importantly where the aim is to target multiple
distinct species in a designed spectrum of activity.
Previously, a proof-of-concept study [21] employed a
single bioactivity model to simultaneously model both
the human and rat orthologues of the adenosine receptors
(G protein-coupled receptors) using data from the
ChEMBL [9] database. The model was able to identify
several novel ligands that were experimentally validated,

and one of the ligands showed high affinity in the
nanomolar range. Upon further inspection, it could be
found that the selection of this ligand from a database
was likely due to information from other species,
underlining the value of integrating as much information
from bioactivity space as reasonably possible. In Fig. 3a,
a multidimensional scaling analysis (MDS) of the similar-
ity between these eight proteins is shown. From the fig-
ure, it is apparent that orthologues (genes closely related
in sequence and having the same function in different
species) are more similar in the particular definition used
than paralogues (genes which are similar in sequence but
which have different functions in the same species).
Constructing multispecies models on this type of data allows
the rationalization of differences in activity between different
species, as well as its application for compound design (such
as in the above study). As is the case in the application to
resistance, this model interpretation can be performed both
from the ligand (chemical) point of view and from the target
(protein or RNA) point of view, leading on the one hand to the
elucidation of chemical features to guide compound optimi-
zation, and on the other hand to mutations driving resistance
from the protein side.

These approaches are also transferable to the pesticide
field. Analogous to the aforementioned adenosine recep-
tors, gamma-aminobutyric acid A (GABA-A) ligand-
gated ion channels can be aligned to capture and represent
the (dis)similarities between species. These ion channels
form the target for phenylpyrazole insecticides, and resis-
tance has been demonstrated through point mutations

Fig. 2 Proteochemometric models can be interpreted biologically (a) and
chemically (b). a Displays the average contribution of individual amino
acid substitutions to resistance measured as a fold change. Fields are
coloured green when the combination of mutation and inhibitor is more
sensitive, and red when the combination is resistant. The columns repre-
sent clinical HIV protease inhibitors; the rows represent point mutations
in the following notion: wild-type residue, residue position, and mutated
residue (e.g. V82T, valine to threonine at position 82). It can be observed
that individual mutations can have different effects on different inhibitors,

many of which could be related to experiment (see main text for details).
b Shows the average contribution of chemical substructures to pEC50.
The bars are positive if the respective feature contributes positively to
bioactivity, and negative where the feature leads to lower activity. The y-
axis indicates the average contribution over all present ligands (451) and
mutants (14). This information can be used to guide compound selection
as well as optimization in cases where bioactivity against multiple protein
targets needs to be taken into account. (Fig. adapted from [20] and [22])
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[2, 4, 3]. An MDS of the similarity between mammalian
and insect isoforms of these complexes is shown in
Fig. 3b, illustrating that mammalian channels are more
similar to each other than they are to their insect counter-
parts. Furthermore, the selected arthropods display a larg-
er variation between species than do the selected mam-
mals. As it was previously demonstrated that it is possible
to model the protein similarity space shown in Fig. 3a (for
the adenosine receptors), it stands to reason that it is
feasible to model the space shown in Fig. 3b (representing
the GABA-A ion channels). PCM models are agnostic of
the particular target and application area they are used
in—their applicability depends on the amount of data
available both from the chemical and biological side
(however, this requirement should not be neglected).
Hence, the data visualized in Fig. 3b should allow for the
construction of a predictive model that can predict activity
(and toxicity) of candidate compounds on GABA-A in the
species included in the analysis, in a manner similar to the
adenosine receptors described above.

Finally, it should be noted that the ribosome has gained
significant attention as a druggable target (specifically for
antibiotics) [18]. It has been shown that bacteria can gain
resistance via multiple diverse mutations in 23S ribosomal
RNA [11, 13]. Yet a complementary mode of action leading to
novel pesticides should provide a useful addition to

established modes of action and increase the resistance
threshold.

Conclusions

In summary, PCM is a versatile quantitative modelling tech-
nique for interactions between ligands and their biological
targets. In the current opinion paper, we highlight application
of the technique and precedence for success from related fields
and sketch applications to the agrochemical context, comprising
insecticides, fungicides, and herbicides. Based on the prospec-
tive experimental validation that has been performed for en-
zymes and receptors in previous studies, such work is likely to
be successful. Firstly, there is the modelling and prediction of
resistance towards pesticides by weeds, fungi, or insects. A
second application is the prediction of activity of pesticides or
other agricultural chemicals in organisms were this is undesired
(‘off-targets’). Finally, the technique can be used in virtual
screening in the identification of potential new agrochemicals,
aimed at a higher resistance threshold (broader activity against
multiplemutants), or potential agrochemicals anticipated to have
less toxic effects on non-pest species. We anticipate a great
future for studies in this area, as the cost of sequencing (which
directly relates to the generation of protein-side descriptors)
continues to drop and the amount of bioactivity data available

Fig. 3 Multidimensional scaling (MDS) plots demonstrating the similar-
ity between protein families in different species. The further points are
located from each other, the more dissimilar they are. a Full protein
similarity between the different adenosine receptor isoforms (orthologues
and paralogues) for human and rat. Orthologues (identical function genes
in different species) are more similar than paralogues (different function
but sequence related genes in the same species). b Full similarity between
the GABA-A ligand-gated ion channels in mammals and a selection of
arthropods. The plot illustrates that mammallian receptors are more

similar to each other than they are to their insect counterparts, and that
insects amongst themselves display a large variation. As it was previously
demonstrated that it is possible to model the protein similarity space
shown in (a) it stands to reason that it is feasible to model the space
shown in (b). Information of this type can be used (and has been used
[21]) in PCM modelling to anticipate, and predict, bioactivity of ligands
against orthologues of a protein frommultiple species, which is useful for,
e.g. off-target modelling
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increases, both of which increases our ability to generate
predictive PCM models considerably.
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