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1
I N T R O D U C T I O N

In the Oxford Dictionary the metabolome is defined as: the total number
of metabolites (the small molecules that are intermediates or products as a
result of a metabolic reaction) present within an organism, cell or tissue. This
definition covers the three key factors of metabolomics, the research field in-
vestigating the composition, role and function of the metabolome [140]. In the
analysis of the definition of the metabolome we first identify the biological
origin of the research field which can vary with regards to the type of biolog-
ical question, and therewith connected, the type of samples that are analyzed.
This can range from small individual cells to cells clusters to tissue slices to all
sorts of biofluids like blood, urine or cerebrospinal fluid. Secondly, the term
metabolite implies some form of identification of the chemical compounds be-
ing studied. Popular profiling and identification methods range from Nuclear
Magnetic Resonance (NMR) to Mass Spectrometry (MS). Recently in particu-
lar fragmentation trees obtained with the MSn [61, 106] approach are used to
assign identities to the data features obtained with MS-based profiling tech-
niques. The total number refers to the number of identified (and unidentified)
chemical (metabolic) features and their concentration levels that are detected
with the same analytical techniques mentioned before.

To obtain biological interpretable results these three important types of infor-
mation (identity, quantity, and biological relevance) on a metabolite (Figure 1)
are equally important and interact strongly. For a good understanding of the
biological context the identity of the metabolites must be known. Conversely,
identification of metabolites can be greatly improved by including biological in-
formation [58]. Furthermore proper (relative) quantification of the metabolites
in question [139, 91] is necessary for a better understanding and modeling of
the chemical processes of the biological system of interest, i.e. hypothesis gen-
erating metabolomics. Even though determination of the quantities of metabo-
lites is not a necessity in all metabolomics experiments, it is very helpful for
proper biological interpretation.
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introduction

Figure 1: The three key factors of metabolomics: Biological relevance, Identity
and Quantity and their interactions.

The word metabolome itself is a construct of the words metabolism and genome
[47] and hints to the hierarchy within cell biology: the metabolome is the re-
sult of a whole range of chemical and regulation processes that are the re-
sult of the interaction of other biochemical organization levels such as the
genome and their interaction with the environment. For example, changes
in a cells physiological state as a result of gene deletion or overexpression are
the complex result of processes at the transcriptome and the proteome and
ultimately metabolome level[65, 126, 55]. For example, hard to detect multi-
factorial changes in the genome resulting in a disease may be easier detected
by changes in the metabolite concentrations. This amplification of effects indi-
cates the strength of metabolomics.

Contrary to proteomics and genomics the chemical structures and, therefore,
physicochemical properties, observed within the metabolome are much more
diverse. The proteome and genome consist of well-defined structural build-
ing blocks (i.e. amino acids and nucleotides respectively, although possible
post-translational modification and epigenetics have to be taken into account).
The diversity in the metabolome combined with the fact that metabolites are
known to participate in many different biological pathways, reactions and pro-
cesses challenges determination and biological interpretation in metabolomics.
Without the proper biological knowledge there is no (bio-) logical explanation
even if discriminating metabolites are found. The ubiquitous presence of flu-
ids like for example blood at various places of possible biologically relevant
processes, complicates the interpretation of metabolic activity in isolation even
further[93] as they are not specific to any part of the body. To study a se-
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1.1 mass spectrometry

lected part of cellular metabolic networks in a targeted manner, more recently
tracer-based metabolomics has been developed as a new experimental data
acquisition approach[77].

1.1 mass spectrometry

Hyphenated mass-spectrometry (GC, CE or LC-MS) has become the pre-
dominant technology for determining metabolite abundances, mainly because
of its sensitivity allowing the measurement of low abundant metabolites in
small sample volumes. In Figure 2 the schematic of a time-of-flight (TOF)
mass spectrometer (MS) detector is shown. The analytes are ionized in the ion
source and separated by the applied electric field E (between grid A and B)
in which the ions are differentially accelerated depending on their mass and
charge. The time it takes to reach the detector (from B to C (length L)) is char-
acteristic for the mass/charge ratio of an ion. Ions with a lower mass (having
the same charge) are accelerated more and reach the detector earlier due to
E = 1

2 mv2 and consequently m = 2E
v2 . v is the velocity i.e. the measured time

(t) it takes for ions to travel the distance L.

Figure 2: Schematic of a linear Time of Flight (TOF) mass spectrometer, heavier
ions (with same charge) travel proportionally slower than lighter ions
in an electric field.

When all ions have reached the detector a mass spectrum can be generated
(Figure 3). The intensity on the y- axis corresponds to the number of ions that
were detected with a specific mass (the x-axis).
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Figure 3: A typical (part of a) mass spectrum.

A drawback in MS is that each metabolite has its own response factor, i.e. the
signal depends on the number of molecules but also on the type of molecule.
For example two metabolites showing up in a mass spectrum with each of its
(e.g.) protonated molecule having an intensity of 106 do not necessarily have
the same concentration when they are introduced into the MS. This depends
on factors like solubility, ionizability, fragmentation, etc. [4], which are differ-
ent for the different metabolites. In addition, mass-dependent discrimination
can occur due to the mass spectrometer. Furthermore, the response factor for
a certain metabolite is matrix dependent, i.e. dependent on the composition
of the solvent (in which various compounds can be present) when introduced
into the MS, and consequently can vary over different samples creating dif-
ferences in measured responses for identical metabolite concentrations[6, 79].
With other words, in two different human plasma samples the same metabo-
lite with the same concentration can have different responses. The complex
interactions between analyte and the matrix, in which it was measured, can
have a significant effect on the response in the MS; this is often referred to
as ion suppression/enhancement effects. To compensate for these variations,
correction of the response using internal standards is needed. These internal
standards should have the same chemical behavior as the analyte but should
be detected separately from the analyte of interest. The best internal stan-
dard for a certain metabolite is the stable isotopically-labeled (D, 13C or 15N)
metabolite itself[78]. Once added to the sample the response of the (isotopi-
cally labeled) internal standard can be used for correction of different kinds of
chemical and instrumental variations like sample treatment differences, pipet-
ting errors, storage effects, ion suppression etc.. The ratio between the peak
intensities of the analyte and internal standard gives an indication of the rela-
tive (to the selected internal standard) concentration of the analyte. Absolute
quantification of the actual concentration levels (e.g. µmol

µl , g
kg etc.) in all samples

of the study can only be calculated if a calibration line for the metabolite of
interest was included during measurement. For increased separation the MS
is often hyphenated to a separation technique, e.g. gas chromatography (GC),
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1.2 quantification

liquid chromatography (LC) or capillary electrophoresis (CE). In addition to
an improved separation of analytes of interest, possible matrix effects and con-
sequently ion suppression effects may be significantly reduced this way.

1.2 quantification

To get reliable quantitation (preferably absolute) the observed differences
between the different analyzed samples should not be hampered by analytical
variation and should be attributed only to real biological differences of interest.
Consequently any further (data) analysis then solely can focus on interpreting
these differences. The quantifiable response for a metabolite is the product of
its concentration and a metabolite specific response factor. The response factor
however, is affected by matrix effects which necessarily need to be minimized.
The common ways to characterize these matrix effects are either by post col-
umn infusion methods or post-extraction spiking methods[23, 87]. Because the
first method only characterizes the matrix effects qualitatively, the quantitative
assessment using the second method is more common. With both methods
however, the characterisation is biased towards a set of known metabolites
only. In metabolomics where typically hundreds to thousands of (also uniden-
tified) metabolites are measured, it is very uncommon to measure (internal)
standards for each of these metabolites. This would be very laborious and
thus expensive. In addition, it is not known a priori, which metabolites are of
interest for the study at hand. As a consequence often platforms are used that
cover a wide range of metabolites whose identity is not known in advance (so
called untargeted platforms). In these cases usually at least one internal stan-
dard per class of metabolites is included to enable relative quantitation (e.g.
on lipid per lipid class in lipidomics[53]).

The choice of a proper internal standard influences the estimated (relative)
concentration of the compounds in question. Figure 4a shows the peak areas
of L-Leucine and two internal standards that were added in replicated (GC-
MS) measurements[8, 48] of over 100 identical reference samples (technical
replicates [32], i.e. the complete analytical process rather than repeat injections
of the same sample). Because the measurements concern the same sample,
the ratio between the analyte and the internal standard (IS) should remain
constant. The ratios of L-Leucine with the internal standards are plotted in
Figure 4b. It is clear that correction with Leucine-D3 generates an almost
constant value. However, it is also obvious that correction with a less suitable
internal standard (in this case Phenylalanine-D5) can have a dramatic effect on
the estimated relative concentration of L-Leucine.
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Figure 4: (a) The peak areas of L-Leucine and 2 internal standards for a series
repeated measurements (112 technical replicates) of a QC sample. (b)
The ratio plot of L-Leucine with each of the two internal standards.

If the ideal internal standard is not available or used, there are four levels
of correction to consider to estimate the relative concentration: between ana-
lytes within one sample, between analytes over samples measured within one
batch and, when many samples need to be measured that cannot be processed
within one batch, between analytical batches of samples, and finally, when
there is also a substantial time difference between measurements of sample
sets, between studies correction. The common factor in all of these four levels
is (acquisition) time and in specific all kinds of instrumental and environmen-
tal variations like matrix differences, sample degradation, different apparatus
but also preprocessing/integration variation that have changed in this time.
The challenge in metabolomics is to minimize these variations for as many as
possible different metabolites. It is at this stage that metabolomics greatly ben-
efits from statistics (e.g. experimental design [67], data analysis) but of course
also from improved analytical sample preparation and analysis methods. With
regards to analytical methods, one could think of using a different analytical
setup (e.g. post-column infusion techniques [23]) that would quantify suppres-
sion effects for a whole range of metabolites but also other optimizations of
experimental conditions like concentration levels of the added internal stan-
dard [104, 105, 10] can be considered. Statistically, a (mathematical) solution
could be to construct virtual internal standards based on a (multivariate/lin-
ear) combination of internal standards to normalize the responses of unknown
compounds. Finally, to improve comparison over analytical batches of sam-
ples and between studies appropriate reference samples could be used[54].
The choice which samples to use as a reference would be a clear result of the
combined efforts in analytics and statistics.

1.3 integration

Even if all analytical and instrumental settings are optimized, one issue in
analyzing MS data that is often left untouched is the integration step itself.
The principle to translate the area under the (unimodal and non-overlapping)
curves to areas belonging to 2 different components as shown in Figure 5a is
evident.
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1.3 integration

Figure 5: (a) Unimodal extracted ion chromatogram (EIC). (b) Bimodal EIC,
(where) should the peaks be separated?

In case of bimodality or multi-modality curves (e.g. due to not fully separated
isomers) things get more complicated and arbitrary decisions have to be made
(Figure 5b); solutions are to calculate the sum of the total peak are under the
curve, split them in the middle or try to fit the signal by (two or more) sep-
arate peaks (i.e. by deconvoluting them). Once a choice has been made the
software has to be parameterized accordingly. Different (MS) vendors provide
own software packages for integration and it is at this point where the differ-
ent software packages show different outcomes for almost identical cases as
depicted in Figure 6 (a and b).

Figure 6: The unexpected behavior with automated integration software. (a)
The peak is split in three separate peaks. (b) The two right peaks are
combined.

In Figure 6 the same cases of multi-modal peaks are split in different ways
using slightly different integration settings. Arguably in cases like this one
option is to improve the chromatography but that is unfortunately not always
possible, and is anyway time consuming. However, are such overlapping peaks
really a problem? This depends on the type of research that is performed. If
the aim is to extract known compounds/peaks only, the integration results
can be validated by eye and manually adjusted if necessary, however, this is a
time-intensive, and therefore expensive, process. If the approach is an untar-
geted profiling of analytes then there is no bias towards any specific analytes
and consequently no (analyte) specific processing steps are there to configure.
Visual optimization of integration parameters therefore is very difficult and
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manual curation procedures as in targeted data processing is hardly feasible.

Despite the limited number of compounds reported and expensive manual
data curation, targeted approaches are widely used. Obvious reasons are that
the targeted metabolites/compounds are known which is very important for
the data interpretation, and the possibility to quantify them (using internal
standards and reference compounds) often with better precision and accuracy
then in untargeted modes. To a large extent this is also due to the lack of
appropriate software that would enable untargeted extraction and integration
without introducing artifacts and errors. As a result, integration is often lim-
ited to a set of known metabolites (targets) only and in most cases vendor
software is used for such targeted data processing.

1.4 statistics and data analysis

In metabolomics statistics are applied throughout the whole process of an-
alyzing samples, from method development to data analysis. Experimental
designs are applied to setup a study in such a way to minimize the number
of experiments while retaining the maximum amount of information[67]. Re-
peated measurements of samples are used to statistically indicate whether or
not the analytical platform functions within specification[37]. To this extent,
often, for each specific metabolomics study, a pooled sample (a so-called Qual-
ity Control sample) from all samples of that study is created and repeatedly
measured. As mentioned earlier, correction steps are necessary to compare
metabolites between and over samples. Depending on the type of sample,
the way it was measured etc., a whole range of statistically data pretreatment
(normalization) methods are offered to improve ultimately the biological inter-
pretation of the data[127]. Actually most, if not all, statistics (in metabolomics)
are performed to remove/indicate analytical variation in metabolites (features)
that are measured. Those features that do not meet the pre-defined criteria
are usually removed from the dataset and further data analysis/interpretation
is continued with a smaller set of reliable metabolites. This removal does not
necessarily improve biological interpretation but the complexity of follow-up
(data) analysis can be reduced considerably.

In univariate statistics the focus is on one variable at a time and the results
are relatively easy to interpret from a statistical point of view (e.g. the effect of
the variable is significant or not using T-tests[89]). As a consequence univari-
ate statistics methods -are widely accepted, especially in clinical settings[147,
100]. Because changes in biological samples are often multifactorial[147, 100],
metabolomics data should be analyzed using multivariate statistics as well. In
contrast to univariate statistics multivariate statistics focusses on simultane-
ously analyzing a set of variables. The (relative) importance of the individual
variables in answering the biological question is not always that straightfor-
ward and easy to determine but the multivariate profiles however, often do
reveal important variables that would have not appeared relevant based on
univariate statistics only. After proper quantification, principal component
analysis (PCA) is often used to do pattern recognition and visualize observed
group differences[86] and methods like partial least squares − discriminant
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1.5 scope and outline of this thesis

analysis (PLS-DA)[142] are commonly used to relate these differences to spe-
cific metabolites. Using statistical modeling of properly quantified metabolites,
(multivariate) metabolic networks can even be inferred[44]. Because of the lim-
ited number of samples in comparison to the huge amount of variables (e.g.
metabolites) that are measured, multivariate models easily lead to overfitted
results (i.e. perfect fits are found, but the predictive power of the model is
limited). The results are hugely aided by variable selection methods to se-
lect the important from the less important variables and cross-validation and
permutation[142] procedures to prevent this overfitting when building predic-
tive multivariate models.

1.5 scope and outline of this thesis

In the previous paragraphs some typical challenges were discussed that re-
searchers are faced with when handling data from metabolomics studies using
untargeted mass spectrometry based data. The aim of this thesis was to de-
velop concepts and methods to extract qualitative and quantitative information
about metabolites from untargeted mass spectrometric data. For this, different
methods were developed to obtain quantitative metabolite data in large stud-
ies using GC-MS, LC-high resolution MS (HR-MS) and direct infusion high
resolution mass spectrometry. The different methods address different parts
in the metabolomics workflow, i.e. data -acquisition, data pre-processing up to
data-analysis.

As the performance of analytical systems can vary, different methods of
normalization to improve quantification for known and unknown compounds
were developed. In Chapter 2 it is demonstrated that for (relative) quantifica-
tion of metabolites in GC-MS metabolomics studies, in the absence of matched
stable isotopes, per metabolite normalization based on a single internal stan-
dard is not enough to correct for analytical batch-to-batch differences. This
is especially troublesome in large scale metabolomics studies where many
samples need to be measured and consequently many analytical batches are
needed. Furthermore, even within a single analytical batch a clear trend in the
response for specific metabolites was observed. A statistical procedure based
on repetitive measurements of identical samples (i.e. technical replicates) is
suggested that corrects for these batch-to-batch differences even for metabo-
lites without a proper internal standard.

In the search for biomarkers for Diabetic Kidney Disease (DKD) in Chapter
3 LC-MS data of urine samples of an epidemiological study were analyzed.
Data acquisition was for that data set unfortunately suboptimal, and various
variations in the data were present making (relative) quantification of this un-
targeted data set difficult. Still, after extensive data preprocessing, a clean data
set was obtained suitable for data analysis. It was shown that multivariate sta-
tistical modeling was advantageous over univariate modeling for the discovery
of biomarkers for this data set. Penalized logistic regression models were used
to create a predictive model. Double-cross validation was used to reveal poten-
tial new biomarkers.
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In Chapter 4 a method has been developed and demonstrated for the pro-
cessing of another type of very complex metabolomics data, i.e. metabolomics
data obtained by direct infusion mass spectrometry. It was demonstrated that
with the preprocessing method that was developed, biological relevant results,
i.e. the characterization of different development stages of zebrafish embryos,
could be extracted from these very complex metabolomics data. Feature iden-
tification was solely based on accurate mass and therefore the samples were
recorded with a very high mass resolution. The method developed was based
on the binning tools developed for LC-MS (Chapter 5) by aligning the masses
over samples which enabled further automated data analysis. Internal stan-
dard correction for the unknown features was based on the same strategy as
described in Chapter 2. In the absence of quality control samples however,
the relative standard deviation (RSD) was calculated using replicated measure-
ments.

The integration problems that were observed during pre-processing of un-
targeted LC-MS data from earlier experiments (including those reported in
Chapter 3), led to the awareness of the lack of good software to integrate peaks
in such data sets. The freely available software options required much exper-
tise to configure and were not robust enough to quantify metabolites present
at low intensities with good precision and accuracy. In Chapter 5 therefore a
new approach was introduced to integrate samples acquired using LC-time-of-
flight-MS. The samples were automatically processed one-by-one to facilitate
(future) parallel processing. With only a few parameters that need to be set the
user interaction is kept to a minimum, but at the same time obtaining reliable
quantitative data on peak areas of known and unknown metabolites.
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2
A N A LY T I C A L E R R O R R E D U C T I O N U S I N G S I N G L E P O I N T
C A L I B R AT I O N F O R A C C U R AT E A N D P R E C I S E
M E TA B O L O M I C P H E N O T Y P I N G

abstract

Analytical errors caused by suboptimal performance of the chosen platform
for a number of metabolites and instrumental drift are a major issue in large
scale metabolomics studies. Especially for MS-based methods, which are gain-
ing common ground within metabolomics, it is difficult to control the analyti-
cal data quality without the availability of suitable labeled internal standards
and calibration standards even within one laboratory. In this paper we suggest
a workflow for significant reduction of the analytical error using pooled cali-
bration samples and multiple internal standard strategy. Between and within
batch calibration techniques are applied and the analytical error is reduced sig-
nificantly (increase of 25% of peaks with RSD lower than 20%) and does not
hamper or interfere with statistical analysis of the final data.

Kloet, F.M. Van Der, Bobeldijk, I, Verheij, E.R and R.H. Jellema. Analyti-
cal Error Reduction Using Single Point Calibration for Accurate and Precise
Metabolomic Phenotyping. Journal of Proteome Research. 2009 Nov;8(11):5132-
41
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analytical error reduction

2.1 introduction

Recently there has been an explosion of analytical methods developed and
applied in different metabolomics related research areas, such as nutrition
research[90, 13, 135, 35] , drug discovery[63], optimization of fermentation
processes [132, 131] and for breeding [24] of plants. In all these applications
it is important to be able to understand and control factors that contribute
to errors in the data and result in poor data quality. The total variation in a
dataset is a function of different sources of variation[128]. The biological vari-
ation is present by design of the study and selection criteria of the subjects. In
some cases, additional ’biological’ variation can be introduced by differences
in sample collection and sample storage [111, 25] Samples drawn from biolog-
ical systems such as a microbiological fermentation or from body fluids like
blood or urine are highly susceptible to changes due to biological reactions
that take place, especially when the environment of the sample changes. It is
therefore essential that changes in metabolites are minimized during sampling
and sample preparation [131] in order to obtain a snap-shot representation of
the biological system at the time of sampling. From an analytical point of view
the data is of a much higher quality than years ago thanks to the efforts of
instrument vendors to obtain more reproducible data, but it is still not enough.
The analytical errors should be controlled as much as possible and reduced to
a minimum and should not be confused with biological differences within the
studied system.

2.1.1 Sources of analytical variation

A large part of the analytical variation is caused by suboptimal performance
of the chosen platform for (sub-)sets of metabolites and instrumental drift. The
ability of a method to detect a specific metabolite (i.e. its performance) is a
complex interplay of its physical and chemical properties and is also partially
dependent on the sample composition (matrix, e.g. ion suppression in MS
based systems [11]) and in many cases on its concentration. Analytical vari-
ation for an individual analyte caused by differences in sample composition
(matrix effect during extraction, derivatisation and analysis) can be removed
only by using stable isotope labeled internal standards. The isotope labeled
equivalent of the analyte performs the same as the original analyte and there-
fore differences in measured peak intensities for the isotope can directly be
related to instrumental errors or sample preparation errors. Internal standards
that are added before any sample preparation has been performed allow for
correction of instrumental drift and sample preparation errors. Instrumental
drift is especially important when a large number of samples are concerned,
albeit within one batch or when they have to be divided over a number of
batches. If instruments need to be cleaned within a series of measurements
on samples of the same study, the data suffers from systematic differences be-
tween the batches. The severity of the systematic differences of course depends
on the platforms being used and to a great extent on the chemical properties
of the individual metabolites. Instrumental drift or offset between batches can
be corrected for by internal standards or by calibration standards as is often
done in bio-analysis or in targeted metabolite profiling [14]. In metabolomics
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where hundreds of (also unidentified) metabolites are measured it is very un-
common to measure calibration standards for each of these metabolites. This
would be very laborious and thus expensive, but equally important is the fact
that beforehand it is not always clear which metabolite is of interest for the
study at hand. In order to assess the data quality of all of these metabolites the
use of pooled study (QC) samples has been described recently in the literature
[28, 37]. In this approach pooled samples are analyzed regularly in between
the individual study samples, several times within each batch. As a pooled
study sample reflects the average metabolite concentrations within a study,
this sample contains the same compounds (e.g. metabolites) as all the other
samples. The performance of the analytical platform for all the compounds can
be assessed by calculating the relative standard deviation (population standard
deviation divided by the population mean) in these pooled samples [129, 28].
Various approaches to detect artifacts are described in Burton et al.[18]. Most
of them however depend on visual inspection. Descriptions of data quality
improvements are quite scarce. This paper describes a workflow for signifi-
cant reduction of the analytical error using these pooled QC samples. Based
on a multiple internal standard strategy and moreover between and within
batch calibration techniques the analytical error is reduced significantly and
will thus not hamper statistical analysis of the final data. Although this paper
focuses on GC/LC-MS measurements and peak areas, it should be noted that
the solution presented here is generic.

2.2 workflow and methods

For an effective removal of different sources of analytical variation the pre-
processing steps should follow a specific sequence. The first step is the data
normalization using an internal standard. This step reduces the differences in
sample extraction (which can be caused by slight differences in the composi-
tion of the samples) and also differences in the volumes injected. Especially
the latter issue is of importance when injecting such low volumes as 1-2 µl.
The second step is the removal of between-batch and within-batches batch
offsets and drifts. This step can only be omitted if each metabolite has a struc-
tural analogue IS that corrects for all offsets and drifts, which is not the case
in metabolomics analysis. The final steps consist of the combination of data
from replicate sample analysis and removal of noise [13] and biomass correc-
tion [141]. The biomass correction neutralizes differences in response due to
sample weight or volume (e.g. weighed liver tissue or dry matter within a sus-
pension). As the biomass correction is a per-sample multiplicative correction
it does not matter at which stage this is performed. The current paper focuses
on the normalization using a single internal standard from a set of internal
standards and the removal of between and even within batch differences by
means of single point calibration using pooled quality control (QC) samples.
These calibration techniques effectively render these QC samples, now used
for calibration, useless for an independent assessment of the systems perfor-
mance. To give an independent (unbiased) performance index it is suggested
that in addition to these calibration samples additional QC samples should be
measured as well which are used for validation of the results. The systematic
approach of data pre-processing allowed the workflow to be implemented in a
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analytical error reduction

fully automated environment.

2.2.1 Used symbols and terminology

Terminology

Internal standard: There are several definitions of internal standards and sur-
rogates in the literature describing analytical methods. In this publication in-
ternal standard is a compound added to the sample before a critical step in
the analysis. Depending on the method, the internal standard can be added
before or during the extraction of the sample, derivatisation steps, etc.. An
internal standard is not necessarily an isotope labeled version of an analyte
but can also be structurally related to one or more analytes but not naturally
occurring in the samples of interest. If a method covers analytes from different
compound classes, multiple internal standards preferably covering all classes
should be used.

Batch: a group of samples that has been extracted, derivatised (if applicable)
and analysed together at the same time and using the same chemicals, same
storage conditions.

QC sample: sample prepared by pooling aliquots of individual study samples,
either all or a subset representative for the study. The QC sample has (should
have) an identical or a very similar (bio) chemical diversity as the study sam-
ples. If insufficient sample volumes are available (e.g. rodent studies), samples
collected outside the study but from a similar origin can be used. The QC sam-
ples are evenly distributed over all the batches and are extracted, derivatised
(if applicable) and analysed at the same time as the individual study samples
as part of the total sequence order.

QC calibration sample: sample chemically identical to the QC sample (from the
same pool), prepared in the same way as QC samples. QC calibration samples
are used for external calibration.

QC validation sample: sample chemically identical to the QC sample (from the
same pool), prepared in the same way as QC samples. QC validation samples
are solely used to monitor the result of all the data pre-processing steps and
the quality of the full method. They are not used for external calibration.

Peak: For the purpose of this publication we use a broader definition of peak.
A peak can be a single feature (intensity of a mass/ion or a different signal
at a retention time or shift) or can be a sum of features (summed intensity of
several ions at the same retention time). In our examples one peak represents
one compound or metabolite detected in the data.

Analytical performance: The ability of an instrument to accurately detect a spe-
cific chemical component.
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2.2 workflow and methods

Assumptions

The method described in the procedure below focusses on peaks. The study
samples vary in concentration for several peaks. For the purpose of this publi-
cation and all the procedures described here, we assume that response factors
and the analytical performance of the internal standards and individual ana-
lytes are not influenced by the sample differences. In other words, the analyt-
ical performance of the method for all the individual analytes observed in the
pooled QC sample will be the same in all other individual study samples.

Used symbols

i index number for samples
p Chromatographic peak (chemical component)
Cp,i Concentration of peak p for sample i
Fp Response factor for peak p
Fp(t) Response factor for peak p at time point t
Fp,i Response factor for peak p for sample i
Gp,i Transformed form of Fp,i after internal standard correction
Xp,i Measured response of peak p for sample i
Xis,i Measured response of internal standard peak is for sample i
X′p,i Relative response after internal standard calibration of peak p
X′qc,p,b Relative response after internal standard calibration of peak p

for QC calibration samples in batch b
X′′p,i Relative response after internal standard calibration and batch

calibration of peak p for sample i
Ap,b Average amplification relative response factor for peak p in

batch b
cf p,b Calibration factor for peak p in batch b

αp,b,qc Slope for linear estimate of QC calibration values for peak p in
batch b

βp,b,qc Intercept for linear estimate of QC calibration values for peak
p in batch b

Gp,b,i Linear estimate of QC calibration values for peak p for sample
i in batch b

Z Smoothed estimate of QC calibration values for a single peak
in a single batch

2.2.2 Internal Standard normalization

When focussing on MS analysis, it is generally difficult to model the ex-
traction (derivatisation), MS ionisation and fragmentation variability of a com-
pound by the behaviour of an internal standard with very different physical-
chemical properties. This is especially the case when compound and reference
belong to chemically different classes (e.g. glucose-d7 is a good representative
for glucose but chances are high that it is not suitable for valine or a lipid).
Theoretical and practical experiences indicate a positive effect from the use of
a cocktail of stable isotope labelled internal standards with the same chemical
diversity as the metabolites detected in the samples and exploit the close chem-
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ical similarity (e.g. glucose-d7 is also expected to be a good internal standard
for fructose and other hexoses). One could argue which internal standards, if
more are included, should be used to adequately correct the errors in the mea-
sured responses of the individual metabolites. Sysi-Aho et al.[122] suggest
selecting the best internal standard based on similarity between the distribu-
tions of the available internal standards and the compounds that are measured.
Measurements that are performed at a later stage are then corrected using the
preferred internal standard. This way however, real-time analytical variation is
not included in the internal standard selection process which may result in sub-
optimal error correction. We suggest using analyte responses in quality control
(QC) samples, regularly analyzed in between the study samples, as means to
find the best internal standard. Using the relative standard deviations (RSDs)
of the analyte response in the QC samples to quantify the amount of analytical
variation, the best internal standard is the one that gives a minimum relative
standard deviation.

In general, the response of a detector for a peak p can be defined as a product
of its concentration Cp and a response factor Fp specific to this compound. For
sample i the measured response Xp,i is defined as shown in Equation 1.

Xp,i = Cp,i · Fp (1)

In an ideal situation Fp is constant and therefore measurements with a con-
stant Cp,i have identical responses. The RSD of QC samples for each peak
would then be zero.
Internal standards are routinely used to correct systematic errors in the mea-
sured response by transforming the measured response Xp,i into a relative
response X′p,i using the measured response Xis of the internal standard is as
denoted in Equation 2.

X′p,i =
Xp,i

Xis,i
(2)

This transformation and its error correcting effect is based on the assump-
tion that for a perfect internal standard the sensitivity of the instrument for
compound p is directly related to the sensitivity of the instrument for internal
standard IS. In case of a non ideal standard, the corrective effect is not pre-
dictable. It may range from almost as good as the ideal internal standard to
an actual increase of the error. In typical metabolomics methods the correc-
tive effect of internal standards is highly variable because the number and the
chemical diversity of the analytes exceed that of the internal standards (only a
few metabolites form a perfect pair with a certain internal standard in a typical
dataset).

The RSD for the QC samples is calculated using Equation 3, in which the
standard deviation (σX′p,qc

) (after internal standard correction) is divided by the
average (<>) relative response after internal standard correction(< X′p,qc >)

RSDp,qc =
σX′p,qc

< X′p,qc >
(3)

The best internal standard is the one that results in a minimal RSD. This
RSD is calculated per peak. When measurements are divided over multiple
batches the relative standard deviation is calculated over all QC samples.
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2.3 batch calibration

2.3 batch calibration

Adjustments of the analytical instrument (e.g. maintenance, cleaning, tuning
etc.) between batches of samples can be the cause of analytical errors that can-
not be corrected for using solely internal standard calibration. This behaviour
exerts itself in different response factors between and even within batches. We
suggest that QC samples describe this type of analytical variation adequately
and as a result, QC samples can be used as a means to correct for it. This type
of correction is referred to as batch calibration.

2.3.1 Mean and median correction (between-batch)

Assuming that the measurement errors in a single batch are randomly dis-
tributed, then different batches can be compared and corrected using the aver-
age or median value of the QC samples in a batch. The average amplification
relative response factor per peak per batch (Ap,b) can be written as the average
(¡ ¿) of the responses after internal standard correction of the QC samples per
batch (Equation 4).

Ap,b =< X′p,qc,b > (4)

The between batch calibration concerns the adjustment of the amplification
factor cfp,b per peak with respect to a reference batch (in Equation 5 batch 1 is
taken as reference).

cfp,b =
Ap,1

Ap,b
(5)

The error between measurements in a single batch is assumed to be a ho-
moscedastic and random effect and therefore the same offset correction factors
obtained from the QC samples can be transferred to the samples that are mea-
sured in between the different QC samples per batch.

X′′p,b,i = cfp,b · X
′
p,b,i (6)

As an alternative, the median can be used for determining the batch correc-
tion factor (in Equation 4) instead of the average. This has advantages over
the mean in being a more robust measure. However, most parametric (statisti-
cal) tests, that for example facilitate outlier detection, are focussed on averages
which makes the use of the average advantageous.

2.3.2 Linear regression (within-batch)

In many cases the response of the QC samples is not randomly distributed
within a sequence of measurements and a notable drift can exist. In such
cases the mean or median correction method will quite adequately correct for
differences between batches but poorly for samples within a batch. If it is
assumed that the behaviour between two consecutive QC samples is linear it
can be modelled using first order regression. Mathematically, Equation 1 still
holds but now Fp is not a constant factor but dependent on the time point
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at which the sample was measured within a sequence. Equation 1 has to be
rewritten to Equation 7.

Xp,i(t) = Cp,i(t) · Fp(t) (7)

Assuming that the analysis time of each sample is the same, time is equiva-
lent to injection order and Equation 7 reduces to Equation 8.

Xp,i = Cp,i · Fp,i (8)

After internal standard normalization has been performed the definition of
QC calibrated data follows Equation 9, in which Gp,i is the transformed form of
Fp,i after internal standard correction. The data are not calibrated for between
batch differences. This is done as the final step.

X′′p,i = cfp,i · X
′
p,i = X′p,i ·

1
Gp,i

(9)

Because for each batch the correction factor is different, Equation 9 translates
into Equation 10.

X′′p,b,i = cfp,b,i · X
′
p,b,i = X′p,b,i ·

1
Gp,b,i

(10)

The estimated trend of the (relative) response for the QC samples per peak
within a batch can be written as a function of injection order that is adjusted
for slope β, and an intercept α (Equation 11).

X′p,b,qc = βp,b,qc · ib,qc + αp,b,qc (11)

In case of a first order regression the factors α and β can be calculated using
regular linear regression. Although higher order regression methods can be
applied they heavily depend on the number of QC samples that are measured
and are more sensitive to outliers. Using the regression coefficients from Equa-
tion 11 an estimate of the QC response can be calculated at each injection point
i within a batch. In order to make a good estimation the QC samples should
be distributed evenly within the measurements in a batch to ensure a good
representation of the total drift during a batch and measured at each start and
end of a batch to prevent extrapolation (errors).

Gp,b,i = βp,b,qc · ib + αp,b,qc (12)

Using this estimated trend, the relative response after internal standard cali-
bration, per batch, is divided by this trend (Equation 13)

X′′p,b,i = cfp,b,i · X
′
p,b,i =

X′p,b,i

Gp,b,i
≡ X′′p,i (13)

2.3.3 Linear smoother

The assumption that the data between consecutive QC samples, within a
batch, behave in the exact linear manner has a drawback if only a few QC sam-
ples measurement points are available or the QC samples exhibit too much
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Figure 1: The effect of different values of λ on the smoothed estimate Z of an
arbitrary trend exhibited by QC samples (e.g. f (x) = x2). The black
stippled line, where λ = 105 is used, is a horizontal line through the
mean value of the QC samples. The blue dotted line, λ = 10, is a
smoothed line that follows the general trend of the QC samples. The
green line, λ = 0, follows the exact pattern of the QC samples.

variation (noisy data) for a significant linear trend. Linear correction would
still improve the overall quality but could also introduce new analytical vari-
ation. In such cases the drift would best be described by a smoothed trend.
Eilers[29] has shown that discrete penalized least squares can be used to esti-
mate a smoothed trend. λ is the smoothing parameter where a larger λ results
in a smoother estimate of the regression line Z. For really large values of λ,
Z will result in a horizontal line (Figure 1, the black stippled line). This is
a favourable characteristic because in cases of these large λs it is the only as-
sumption that can be made (i.e. there’s no overall linear relation between the
QC samples). For small values of λ however, Z follows the trend exhibited by
the QC samples (Figure 1, the blue dotted line). When no penalty is imposed
the smoothed estimate Z follows the exact pattern of the QC samples (Figure
1 the green line).

To find an appropriate value for the penalty, λp has been made proportional
to the residual error of the linear estimate (Gp,b) and the actual QC sample
values (X′′p,b,qc) (Equations 11 and 12). Anything else than a perfect linear fit
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results in a smoothed estimate of the trend between consecutive QC samples.
The final QC trend is removed via

X′′p,b,i =
X′p,b,i

Z′p,b,i
(14)

Finally the calibrated response is calibrated for between batch differences
using the math as described in Equations 4 through 6. In this case however,
X′p,i is substitued by X′′p,i.

2.4 experimental

2.4.1 Data sets

To demonstrate the use of QC samples for the determination of the best
internal standard and batch (between and within) calibration techniques two
different datasets were used.
Data processing was performed using the MSD ChemStation E02.00.493 (Ag-
ilent technologies, Santa Clara, CA, USA). Based on many previous studies a
target table is pre-defined containing matrix and study specific (metabolites
with known and unknown identities). Each peak is characterized by its reten-
tion time and selected specific m/z value. For each study an update of the
retention times (and in limited cases m/z) values is prepared. A limited num-
ber of selected chromatograms are compared to a chromatogram of a reference
sample (sample that is analysed in each study). Peaks that have not been ob-
served previously are added to the target table. Artefacts of the method are
removed from the data as well as (multiple) entries for a single (identified)
metabolite caused by different derivatization products of which the perfor-
mance is known to be irregular. For plasma, typically 120-200 metabolites are
reported. Even though this procedure is quite time-consuming, we believe it
gives more reliable data than peak picking procedures or most deconvolution
procedures with less missing values and less peaks. During acquisition of both
datasets the following compounds were used as internal standards: Alanine
d4 (ALA-D4), Cholic acid d4 (CA-D4), Leucine d3 (LEU-D3), Phenylalanine
d5 (PHE-D5), Glutamic acid d3 (GLU-D3), Dicyclohexylphtalate (DCHP), Di-
fluorobiphenyl (DFB), Trifluoroacetylantracene (TFAA). All compounds were
purchased from Sigma (Zwijndrecht, the Netherlands).

Example metabolomics study 1

A nutritional intervention study that involved 36 volunteers. Volunteers
were divided into 4 groups and received 4 different treatments: A, B, C and
D, including placebo. A cross-over design was used in this study, with each
group receiving each of the treatments, in a randomized order [7]. At the
end of each treatment period each subject received an oral lipid challenge test,
after which several blood samples were collected. Plasma samples collected
within this study were analysed using different metabolomic platforms includ-
ing the GC-MS method as described by Koek et al.[72] From the challenge
test, only samples from treatment groups A and B were analysed by GC-MS
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and this data is used for the application demonstration of the developed work-
flow and methods. Plasma samples (100 µl) were extracted with methanol and
after evaporation the metabolites were derivatized (oximation and silylation).
8 different internal standards were added to the samples before the different
sample preparation steps. The number of individual study samples analysed
by GC-MS was 504. The samples were analysed in 18 batches, each batch con-
tained 28 study samples (all timepoints from two subjects, randomized per
subject) and 3 pooled QC samples. Each study sample was injected once; each
QC sample was injected twice per batch. The QC injections were distributed
evenly in the batch: at the start of the batch, after approximately every 6 sam-
ples and at the end of each batch. Besides these QC samples, additional QC
validation samples were included. Each batch contained 1 QC validation sam-
ple. At the end of the analysis, a 19th batch was included, which contained
a real replicate analysis of the complete time profile of two selected subjects.
For this purpose a separate aliquot of the samples was extracted, derivatised
and analysed. Data processing was performed as described above. 145 peaks
(excluding internal standards) were reported.

Example metabolomics study 2

An inflammation modulation study with placebo and diclofenac was per-
formed in parallel [144]. Each group had 10 volunteers. 19 volunteers com-
pleted the treatment. Blood samples were taken after an overnight fast on
days 0, 2, 4, 7 and 9. Subjects underwent an oral glucose tolerance test (OGTT)
on day 0 and day 9 of the study. Blood samples were taken just before (0
minutes) and 15, 30, 45, 60, 90, 120 and 180 minutes after the administration
of the glucose solution (75 grams). The samples taken at day 9 were analysed
using the same analytical methods described for example study 1. The num-
ber of individual study samples analysed by GC-MS was 361 (19 volunteers,
19 timepoints per volunteer), each sample was analysed twice, resulting in 722

sample injections. The samples were analysed in 26 batches, each batch con-
tained 35 injections including QC samples. Batch 1 started with all samples
of one of the subjects, timepoints randomized, followed by the randomized
replicate measurements of the same subject until the maximum of 29 (sample)
injections was reached. The next batch started with the remaining (replicate)
samples of the previous subject followed by the, timepoint randomized, full
set of samples of the next subject etc. In this way for each subject at least
one replicate of the full time profile was analysed within one batch. The QC
injections were distributed evenly in the batch: at the start of the batch, after
approximately every 6 sample injections and at the end of each batch. No
additional QC validation samples were measured. To assess the effect of the
different preprocessing steps the replicated measurements were used. Data
processing was performed as described above. 137 peaks (excluding internal
standards) were reported.

Data extraction

Both example studies were processed using a target approach. The target
table was adjusted 3 times for retention time shifts caused by shortening the
column by several centimeters after each batch.
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Data processing

Prototyping of the correction methods was executed in Matlab version 2007b[50].
The final implementation of the software was done in SAS version 9.1.3[52] as
stored procedures complementary to a data warehouse (SAS) in which the
study data were captured.

2.4.2 Results and discussion

Internal Standard normalization

The number of internal standards is dependent on the analytical method
with a minimum of 1 and no maximum. To mimic the behaviour of the an-
alytes structure analogues and stable isotope labelled compounds were used
added as internal standards. In our example study we used 8 internal stan-
dards and applied our selection method to select the most suitable one. Table
1 shows the results of the selection method on the RSD values of the QC cal-
ibration samples. That the RSD indeed seems to be functioning as a good
criterion for the selection of the best internal standard is shown in Table 2 in
which examples are shown of the internal standard that was selected as best
for a number of identified metabolites in metabolomics study 1. In all cases
where an analyte had an own deuterated internal standard, this standard was
selected, as it also gives the lowest RSD in the QC validation samples. For com-
pounds with no deuterated analogue a structurally related IS was selected, e.g.
LEU-D3 was selected for the corrections of both leucine and isoleucine, for
alanine, ALA-D4 is selected. For some aminoacids within this study, the the
deuterated analogue gives a slightly higher RSD than a different deuterated
IS ( 8% vs 5%). Within this study this is the case for glutamate, for this com-
pound PHE-D5 is selected as the IS giving the lowest RSD in the QC validation
samples. Within this study, not all the reported metabolites have a suitable IS
structurally. For example the detected fatty acids are less volatile and elute
later in the chromatogram. For these matabolites the described procedure
chooses apolar and/or late eluting internal standards such as DFB or DCHP
as the most suitable. It should be noted that each metabolite might have sev-
eral suitable IS within the approach giving similar RSD values. Therefore the
chosen IS can differ from study to study, depending on the dataset.

RSD Corrected for 1 IS (DCHP) corrected for best IS
0%-10% 26% 58%

10%-20% 32% 24%
20%-30% 27% 10%
>30% 16% 8%

Table 1: Frequency distribution of RSD values of QC calibration samples from
the first example study. The effect of the ’best’ internal standard clearly
translates into more peaks with lower RSD values.

Each of the peaks was assigned a best internal standard (1 out of 8) using
the criterion as described in Equation 3. After the normalization step with
the appropriate internal standard, the PCA score plot (Figure 2) shows cluster-
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Figure 2: PCA score plot of QC calibration samples from the first example
study after internal standard normalization. Different colours refer
to the different batches. The data are autoscaled. Two clusters are
visible; one before cleaning the MS source (left) and one after the
cleaning procedure (right).

ing of the different QC samples per batch. Furthermore, the plot shows that
there’s a significant difference between two clusters of batches. Investigation
reveals that the group on the left hand side are batches 1-9 whilst the remain-
ing batches 10-19 are plotted on the right hand side; it coincides with the fact
that the MS source was cleaned after the 9th batch. This behaviour emphasizes
that QC samples (indeed) characterize the systems state (or can be used to do
so). It also leads to the conclusion that remaining variation due to between-
batch and/or within-batch differences is insufficiently corrected for using the
normalization procedure with internal standards.

Metabolite IS selected as best
Alanine ALA-D4

Leucine LEU-D3

Isoleucine LEU-D3

Glutamic acid PHE-D5

C16:1 Fatty acid DFB
C16:0 Fatty acid DCHP
C17:0 Fatty acid DCHP

Table 2: Examples of the selected best internal standard for a selection of
metabolites found in the first example study.
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Batch calibration

Figure 3a shows a part of a time order profile plot of a specific metabolite
from the second example study. The real samples are represented by the blue
triangles and the QC samples by the red crosses, the green lines represent
the smoothed estimate for the trend exhibited by the QC samples. Each verti-
cal dashed line represents the start of a new batch. The figure clearly shows
the effect of analytical errors that are introduced during measurements. Even
though the data was corrected for the best internal standard, for some metabo-
lites such as this example, large between-batch and within-batch differences
still exist for the QC samples. The study was not set up for quantification
purposes but it is apparent that for any further (statistical) analysis this type
of error should be removed. In order to do so, a smoothed trend, per batch,
was fitted through the QC samples. Figure 3b shows the results of the same
metabolite after the batch calibration step. The RSD value of this metabolite
for the QC samples dropped from 13.7% after internal standard correction to
2.1% after the additional batch correction step. The QC samples follow an al-
most horizontal line indicating that the within batch calibration was applied
successfully. Furthermore, it also shows that the offset differences between
the batches have been removed. The resulting variation is mainly due to the
actual compositional differences between the samples (different subjects and
different timepoints).
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Figure 3: A part of the time order plot of a specific metabolite from the second
example study after internal standard normalization (a) and batch
calibration (b). The study samples are represented by triangles and
the QC samples by crosses. The vertical dashed lines represent the
start/end of a batch. The green lines represent the smoothed estimate
of the QC samples. Fig. a shows the data after best internal standard
normalization. Offset differences and within batch trends are clearly
visible. Fig. b shows the same data but now after additional batch
calibration. The QC samples clearly follow a horizontal line and no
offset differences between batches are visible.
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Validating the results

The availability of QC calibration, QC validation samples and replicated
sample measurements allow for a triple validation check. The performance
statistics used are as follows:

1. Improvement of RSD in the QC calibration samples

2. Improvement of RSD in the (independent) QC validation samples

3. Improvement of differences between samples with different composition
(representative replicates)

The effect induced by the different calibration steps on the RSD value of the
QC validation samples from the first example study is shown in Table 3. The
table shows the distribution of the number of metabolites when the RSD range
is divided into 4 classes. For replicated measurements the results are shown
in Table 4. The results in Table 3 and Table 4 are comparable, the removal
of between and within batch differences using the real-time variation informa-
tion embedded within pooled QC samples shows a significant impromevent
in observed RSD values.

RSD Raw data IS calibrated IS + batch calibrated
0%-10% 12% 58% 81%

10%-20% 59% 24% 16%
20%-30% 16% 10% 3%
>30% 13% 8% 0%

Table 3: Frequency distribution of RSD values of the QC validation samples
from the first example study. The IS normalization and batch cali-
bration steps clearly have a favourable effect on the RSD frequency
distribution of these samples.

RSD Raw data IS calibrated IS + batch calibrated
0%-10% 49% 53% 72%

10%-20% 36% 32% 21%
20%-30% 8% 8% 7%
>30% 8% 7% 1%

Table 4: Frequency distribution of RSD values of duplicated measurements of
real samples from the second example study. The calibration steps
show the same positive effect on the frequency distribution of ’RSD’s
of these replicate measurements as the QC validation samples.

Visualizing information potential

To get a global idea about the information potential within the study data,
a scatter plot of the analytical performance versus its reproducibility for all
metabolites in a given data set is a remarkably elegant and simple method for
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depicting the improved data quality obtained with the QC calibration method.
An example for GC-MS data from the second example study is shown in an
Information Density plot (ID plot) (Figure 4 a and b). The x-axis shows the
RSD, and the y-axis shows the correlation between replicates. The correlation
is both a measure of data quality and the range of observations. For example,
a metabolite with a relatively large RSD (e.g. 50%) and a large concentration
range (e.g. one order of magnitude between lowest and highest) typically has
a good replicate correlation. On the other hand a metabolite with an excellent
RSD (e.g. <10%) may have a very poor replicate correlation if its concentration
in all samples is identical.

These plots visualize the proportion of good quality data (left of the vertical
line / limit) and the proportion of metabolites with a wide concentration range
(above the horizontal line / limit). The upper-left corner contains the most in-
formation rich metabolite data and it is obvious that the QC correction indeed
shifts metabolites towards the lower (good) RSD region and results in more
metabolites in the upper left hand corner region. Similar results are obtained
if the concentration range is used instead of the replicate correlation coefficient.
Depending on the objective of a metabolomics study these plots may be used
in various ways for variable selection prior to statistical analysis of the data.

It is important to understand that the variability of the QC samples should
represent the variability of the study samples. Therefore, the QC samples
should be handled as if they were study samples which means for example that
reuse of ’old’, already extracted and derivatised QC samples is not a very good
idea because it will induce an extra source of variation that is not present in the
study samples. For large, long duration studies we suggest preparing sufficient
number of QC aliquots, such that an identical sample is used throughout the
whole study. Hereby we assume that the influence of the storage of the QC
sample over longer periods of time has a negligible effect on the composition
of the sample

2.4.3 Recommendations

Internal Standard normalization

The most important descriptors of data quality are accuracy and precision.
Standards and calibration curves are typically not used in unbiased metabolomics.
This makes it impossible to assess the accuracy of the method for all the
metabolites measured, identified and unidentified, and as a consequence it is
equally impossible to improve the accuracy for one or more metabolites. The
described procedure focuses on improving data precision, which is equivalent
to minimizing the RSD. From the point of view of optimising data quality it
would be beneficial to use a cocktail/mix of deuterated internal standards that
have structures that are analogue to the ones that have to be analyzed.

Batch calibration

QC samples that are generally used to assess the performance of the system
are now used for calibration purposes. To obtain a calibration model, at least
2 QC calibration samples should be measured per batch, one at the beginning
and one at the end of each batch. To increase the robustness and reliability of
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a

b

Figure 4: Information Density plot (ID plot), a scatter plot of the analytical per-
formance versus its reproducibility for all metabolites for data from
the second example study. Fig a. shows the results after internal stan-
dard normalization, Fig b. shows the results after internal standard
normalization and batch calibration.
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such a model more QC calibration samples should be measured per batch. The
actual number of QC samples depends on the individual analytical method, its
robustness and performance characteristics and the availability of QC material.
There should be a balance between the number of QC samples and the number
of study samples in order to keep the analysis efficient and low cost. The
number of replicate injections per QC sample should be equal or similar to the
number of injections per individual study sample. It is also clear that outliers
in QC samples can adversely affect the outcome.

2.5 conclusion

Results from metabolomics studies can be improved using a single point
calibration based upon results obtained from pooled QC samples that are re-
peatedly measured in between study samples. This one point calibration is
indispensable when large scale metabolomics studies are performed and both
within and between batch differences become a problem due to instrumental
and environmental changes during measurements. We have shown that two
types of QC samples are required whereby the first type, calibration QC sam-
ples, is used to perform a one point calibration, and the second type, validation
QC samples, is used to assess how well the calibration procedure improved
the data quality. We have shown that it is feasible to increase the number of
metabolites with a relative standard deviation for replicated measurements be-
low 10% from 49% of the peaks to 72%. As a result, the induced or biological
variation in the study samples becomes more apparent and more meaningful
statistical models can be build from the corrected data.
We have also shown that the RSD in the QC samples before and after internal
standard correction is a good measure to find the best match between a given
metabolite and the set of internal standards that were spiked in the sample.
This is a practical alternative to using a separate (isotope labeled) internal stan-
dard for each metabolite, which is not feasible due to costs and availability.
For large data sets, it is a difficult task to obtain an idea about the informa-
tion content of the data and to make a comparison between a before and after
correction situation. For this purpose, we suggest and demonstrate a new
method for presentation of the total dataset focusing on the analytical vari-
ability (RSD) and the concentration or intensity range of the metabolites. The
example shown in this paper clearly shows an improved information content
after correction of the raw data with internal standards and QC samples.

The methodology presented here was applied to GC-MS data but is applica-
ble also to other datasets obtained with other analytical techniques. A future
perspective for further development of the methodology lies in the fusion of
datasets obtained from different studies or different instruments. A copy of the
MATLAB[50] prototyping code is available on request from the corresponding
author.
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D I S C O V E RY O F E A R LY- S TA G E B I O M A R K E R S F O R
D I A B E T I C K I D N E Y D I S E A S E U S I N G M S - B A S E D
M E TA B O L O M I C S ( F I N N D I A N E S T U D Y )

abstract

Diabetic kidney disease (DKD) is a devastating complication that aects an
estimated third of patients with type 1 diabetes mellitus (DM). There is no
cure once the disease is diagnosed, but early treatment at a sub-clinical stage
can prevent or at least halt the progression. DKD is clinically diagnosed as
abnormally high urinary albumin excretion rate (AER). We hypothesize that
subtle changes in the urine metabolome precede the clinically signicant rise
in AER. To test this, 52 type 1 diabetic patients were recruited by the FinnDi-
ane study that had normal AER (normoalbuminuric). After an average of 5.5
years of follow-up half of the subjects (26) progressed from normal AER to
microalbuminuria or DKD (macroalbuminuria), the other half remained nor-
moalbuminuric. The objective of this study is to discover urinary biomarkers
that differentiate the progressive form of albuminuria from non-progressive
form of albuminuria in humans. Metabolite proles of baseline 24 h urine sam-
ples were obtained by Gas Chromatography-Mass Spectrometry (GC-MS) and
Liquid Chromatography-Mass Spectrometry (LC-MS) to detect potential early
indicators of pathological changes. Multivariate logistic regression modeling
of the metabolomics data resulted in a profile of metabolites that separated
those patients that progressed from normoalbuminuric AER to microalbumin-
uric AER from those patients that maintained normoalbuminuric AER with an
accuracy of 75% and a precision of 73%. As this data and samples are from
an actual patient population and as such, gathered within a less controlled en-
vironment it is striking to see that within this profile a number of metabolites
(identified as early indicators) have been associated with DKD already in liter-
ature, but also that new candidate biomarkers were found. The discriminating
metabolites included acyl-carnitines, acyl-glycines and metabolites related to
tryptophan metabolism. We found candidate biomarkers that were univari-
ately significant different. This study demonstrates the potential of multivari-
ate data analysis and metabolomics in the field of diabetic complications, and
suggests several metabolic pathways relevant for further biological studies.

Kloet, F.M. van der, F.W.A. Tempels, N. Ismail, R. van der Heijden, P.T. Kasper,
M. Rojas Chertó, R. van Doorn, G. Spijksma, M. Koek, J. van der Greef , V.P.
Mäkinen, C. Forsblom, H. Holthöfer, P.H. Groop, T.H. Reijmers and T. Han-
kemeier, 2011. Discovery of earlystage biomarkers for diabetic kidney dis-
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ease using ms-based metabolomics (FinnDiane study). Metabolomics, 2012

Feb;8(1):109-119.
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3.1 introduction

As the number of patients with diabetes increases, diabetic kidney disease
(DKD) is a growing public health problem. An estimated third of type 1 dia-
betic patients will develop DKD over the course of several decades after dia-
betes onset [33, 40]. These diabetes patients have a 10-fold risk of premature
death due to cardiovascular and other circulatory diseases, and the risk in-
creases even more for those who develop renal failure [83, 39, 118]. Typical
clinical manifestations of DKD include increased urinary albumin excretion
rate (AER) and rising blood pressure, histological manifestations include the
Kimmelstiel-Wilson nodules in the glomerulus [68]. DKD cannot be cured at
present, but improved glycemic control and aggressive treatment of high blood
pressure can halt the progression of the disease, especially when administered
at an early stage of DKD [5, 124]. AER is the primary diagnostic biomarker for
DKD in clinical practice. Elevated levels of AER measured at follow-up times
with respect to the AER levels measured at baseline indicate if a patient is suf-
fering a progressive form of DKD. For healthy individuals it is not uncommon
to find elevated levels of AER which are clinically at the edge of microalbu-
minuria, but have no damage of the kidney function, therefore AER is not an
early predictive marker or a quantitative measure of the kidney function at an
early stage of kidney disease [20]. It may be possible that subtle alterations in
metabolic pathways precede the changes that manifest as macroalbuminuria.
These changing levels of the related low-molecular weight metabolite proles
may therefore be useful as early markers of a progressive form of DKD. Mass
Spectrometry-based metabolomics has been extensively applied in disease di-
agnostics [123, 56]. Nevertheless, there are only a handful of similar studies
of human DKD [85, 84, 146] most of which were based on serum samples
and differentiated between patients suffering from DKD and a healthy con-
trol group. In this study, urine samples from 52 Type 1 diabetic patients from
the FinnDiane Study that were clinically defined as having a normal AER (
<30 mg/24h, [85]) were profiled. Half of this group (26 patients) suffered
from the progressive form of albuminuria; the other half did not show a pro-
gression in albumin excretion. Both Gas ChromatographyMass Spectrometry
(GC-MS) and Liquid ChromatographyMass Spectrometry (LC-MS) were used
to analyze a wide range of metabolites in these urine samples. The data was
from an actual patient population measured within a less controlled environ-
ment. As changes in biological samples are often multifactorial [147, 100], both
univariate and multivariate data analyses were used. The multivariate metabo-
lite profiles to differentiate between the two groups were found using logistic
regression (LR) with variable selection. Based on MSn fragmentation experi-
ments (LC-MS only), manual interpretation combined with database searches
we could identify several of the discriminating compounds that may be rele-
vant for further biological studies.
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3.2 experimental

3.2.1 Samples

At baseline, Type 1 diabetic patients were recruited by the Finnish Diabetic
Nephropathy Study Group (FinnDiane). The initial data collection was cross-
sectional (serum and urine samples), but with longitudinal records of albumin-
uria and clinical history. These study patients suering from Type 1 diabetes
mellitus had an age of onset below 35 years and a transition to insulin treat-
ment that occurred within a year after onset. The classication of renal status
was made centrally according to urinary albumin excretion rate (AER) in at
least two out of three consecutive overnight or 24 h-urine samples. Absence of
diabetic kidney disease was dened as AER within the normal range (AER <20

g/min or <30 mg/24h). Prospective clinical data were available for a subset of
patients, all being male. There were 26 subjects that progressed from normal
AER to microalbuminuria (PR) and had urine samples available at the time
having normal AER. 26 clinically group-matched (age, diabetes duration, base-
line albuminuria status, sex) non-progressive AER (NP) subjects were selected
as study reference. Subjects for this group (NP) that had a long follow-up
were preferentially included. Table 1 shows some clinical characteristics of
these subjects for the non-progressive AER and progressive AER groups. A
more detailed table is included in the supplement (Table S31).

Clinical parameters
(Normoalbuminuric)

Non-progressive Progressive
Number of samples (Male) 26 26

Age (years) 36±9 35±10

Blood pressure (mm Hg) 80/132±8/10 83/132±11/15

BMI (kg/m2) 25±2 27±3

Serum creatinine (µmol/l) 88±14 86±13

AER (mg/24 h) 12±6 14±7

HbA1c(%) 8±1 9±1

Diabetes duration (years) 27±6 18±11

Follow-up time (years) 6±1 5±2

Table 1: Clinical characteristics of the subjects at baseline.

GC-MS

All urine samples were processed and analyzed once using a randomized
sample sequence over multiple batches. After every 6

th study sample a Quality
Control (QC) sample was injected. The QC sample was obtained by taking an
aliquot of the same volume of all urine samples from this study. They were
prepared once and measured in duplicate. All urine samples were analyzed
with GC-MS according to the method described below.
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LC-MS

The urine samples of the normal AER subjects were split into two aliquots,
which were independently processed by the sample-pre-treatment. Each ex-
tract was subsequently analyzed by LC-MS once so that for each sample from
the normal AER group in total two LC-MS analyses were obtained. A pooled
QC sample (the same as for GC-MS) was analyzed after every 6

th sample.

3.2.2 Materials

GC-MS

For the GC-MS analysis, pyridine and N-methyl-N-trimethylsilyl triuoroac-
etamide were obtained from Mallinckrodt Baker BV (Deventer, The Nether-
lands) and Alltech (Breda, The Netherlands), respectively. Standards were
purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands).

LC-MS

For the LC-MS method, LC-MS grade acetonitrile (AcN) and MS-grade water
were obtained from Biosolve (Valkenswaard, The Netherlands). All standards
were purchased from Sigma-Aldrich, except for phenylalanine-d5, which was
from C/D/N Isotopes Inc. (PointeClaire, Quebec, Canada). Acetic acid, formic
acid and sodium hydroxide were obtained from Biosolve (Valkenswaard, The
Netherlands), Acros Organics (Geel, Belgium) and Merck (Darmstadt, Ger-
many), respectively.

3.2.3 Sample preparation

Initial sample preparation

Urine samples (stored at -80
◦C) from FinnDiane were thawed at room tem-

perature, homogenized using a vortex and centrifuged at 7500 g for 20 minutes.
Specic volumes from the supernatant (typically 100 or 50 L) were taken and
10 vol% aliquots of a 1M acetic acid solution (adjusted to pH 6.0 with solid
sodium hydroxide) were added and stored in vials. Samples were then stored
at -80

◦C prior to method specic sample preparation.

GC-MS specic sample preparation

Sample preparation for GC-MS analysis was done similar to the method de-
scribed elsewhere [73]. In short, samples and standard urine solutions were
thawed at room temperature and homogenized using a vortex. All 80 µL sam-
ples were mixed with 10 µL solutions containing the internal quality stan-
dards leucine-d3, glutamic acid-d3, phenylalanine-d5 and cholic acid-d4 (each
present at a concentration of about 250 µg/mL in methanol/water (1:4 v/v))
and subsequently lyophilized at 37

◦C in autosampler vials. The internal qual-
ity standards alanine-d4 and glucose-d7 in pyridine (each about 250 µg/mL)
were added to the dry extracts prior to oximation. Oximation (90 min at 40

◦C)
was performed after adding 20 µL of a 56 mg/mL ethoxyamine hydrochloride
solution in pyridine and 20 L of pyridine to the extracts. Next, a 10 µL mixture
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of triuoracetylanthraceen, dicyclohexylphthalate (DCHP) and diuorobiphenyl
(each at a concentration of 250 µg/mL in pyridine) was mixed with the extracts
and the mixtures were silylated for 50 min at 40

◦C with 200 µL of N-methyl-
N-trimethylsilyl triuoroacetamide. Then the samples were centrifuged (500 g
for 20 min) and the supernatant was taken for analysis by GC-MS. The nal
GC-MS prepared samples were containing standards at a concentration of 10

ng/mL each. More details are given in the supplement.

LC-MS specic sample preparation

The FinnDiane urine samples were thawed at room temperature and sub-
sequently mixed using a vortex. Next, the urine was centrifuged (7500 g for
10 minutes) at room temperature. To obtain the LC-MS samples, 35 µL of
the supernatant was transferred into an autosampler vial and mixed with 10

µL of the internal standards mix (valine-d8, phenylalanine-d5, tryptophan-d5,
thymine-d4 and reserpine in water at a concentration of 21, 21, 21, 35 and
7 µg/mL, respectively) and 25 µL water. For the validation of the LC-MS
method (see supplement), two urine samples of one normoalbuminuric dia-
betic and one healthy volunteer were mixed in a 1:1 ratio. To 500 µL urine, 100

µL of a solution of 1 M acetic acid (adjusted to pH 6.0 with sodium hydroxide),
50 µL of the internal standards mix (valine-d8, phenylalanine-d5, tryptophan-
d5, thymine-d4 and reserpine in water at a concentration of 60, 60, 60, 100, 20

µg/mL, respectively) and a varying volume of the calibration mix (phenylala-
nine, tryptophan and salicylamide in water at a concentration of 100 µg/mL)
were added. Subsequently, water was added so that nally 1000 µL of validation
sample was obtained for each calibration concentration. The samples were cen-
trifuged (7500 g for 10 min) and the supernatant was analyzed by the LC-MS
method. More details are given in the supplement.

3.2.4 Identification of metabolites

High resolution mass spectra were acquired using the 1200 Agilent gradi-
ent LC system coupled to a linear ion trapFourier transform (LTQ-FT) hybrid
mass spectrometer and a LTQ-orbitrap mass spectrometer (both from Thermo
Fisher Waltham, MA) Both systems were equipped with an ionmax ESI source.
Spectra were recorded only in positive ESI centroid ion mode, with a source
temperature of 275

◦C, source voltage of 4 kV and a sheath gas of 40 AU.

FT

LTQ-FT was setup for a MS3 scanning method. Resolution was set to 12500

for all events to decrease scan time. Scan event one was a full scan with a
scan range from 120 to 1000 m/z. Scan event two was set to fragment one of
the targeted masses with a CID energy of 35% and isolation width of 1.5 m/z.
Scan event three was set to Data Dependent Scan where it was set to fragment
the most intense ion from scan event two with CID of 35% and isolation width
of 1.5 m/z. All spectra were recorded in FT-mode with a typical mass accuracy
of <1.5 ppm for both full scan and MS/MS spectra.
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Orbitrap

The LTQ-orbitrap was setup for (MS3) HCD fragmentation measurements.
Resolution was set to 7500 for all events to decrease scan time. Scan event one
was setup for a full scan with a scan range from 120 to 600 m/z. Scan event
two was set to fragment one of the targeted masses in HCD fragmentation
mode with a HCD energy of 30% and isolation width of 1.5 m/z. Scan event
three was set to fragment one of the targeted masses in HCD fragmentation
mode with a HCD energy of 50% and isolation width of 1.5 m/z. All spectra
were recorded in FT-mode with lock masses 279.15909 and 391.28429 m/z in
full scan. Mass accuracy in full scan spectra was <2 ppm and in HCD MS-MS
spectra <4ppm.

Interpretation of the spectra

The spectra were collected and molecular formulae were then calculated by
an in-house developed software tool using MS3 fragmentation data. Spectra
together with molecular formulae were further interpreted manually. The com-
pounds that were identified were confirmed by comparison to spectra found
in databases such as HMDB and by authentic standards where possible.

3.2.5 Data Processing and analysis

GC-MS

After sample analysis with GC-MS a target table of all relevant peaks (with
known and unknown identity) was constructed. For this, a standard target
table containing over 300 entries of endogenous plasma metabolites and urine
specific peaks was used ultimately leading to a target list of 144 compounds.
These compounds were integrated using a reconstructed ion chromatogram of
a characteristic ion of each compound. The internal standards were quantified
in the same manner. The GC-MS data have been corrected for internal standard
response using DCHP followed by QC correction as described earlier [1].

LC-MS

After analysis of all samples using LC-MS a small subset of samples that
contained 2-3 samples of each albuminuric class was used for screening com-
pounds using software provided by Bruker-Daltonics (DataAnalysis). The m/z
resolution was set to 0.01 Da, the minimum S/N ratio was set to 3 and to pre-
vent integration problems the retention time window was set to 20 seconds.
This resulted in a target list of about 600 features, where each feature was
characterized by a retention time and a mass, and which could represent a
metabolite. One metabolite can have multiple features. This target list was
used as input for the software package Quant-Analysis by Bruker-Daltonics to
create Extracted Ion Chromatograms (EICs) for all peaks for all LC-MS sam-
ples. In this way a peak table was constructed that was further narrowed down
by removing features that had lots of missing values or no response at all in
the QC samples [13]. As the dead time of the LC-MS method was 1 minute,
features detected with retention times lower than 2 minutes were discarded.
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Features with large differences in retention time (RSD higher than 5%) were
removed as well. This resulted in a final peak table of 106 features. For the
LC-MS data the response has been corrected using the most optimal internal
standard as described earlier [1].

GC-MS and LC-MS sample normalization

For further statistical analysis the feature representing glucose (indicative
for diabetes) was removed from the data. For healthy subjects the response of
urine samples is often normalized by its creatinine level. In the case of vary-
ing degrees of kidney failure (i.e. microalbuminuric or macroalbuminuric), the
creatinine levels cannot be used for normalization because they show irregu-
lar behavior due to diabetes and/or medication. Furthermore, a recent report
shows that the creatinine concentration may vary over a large scale and that
variances in urinary metabolite concentrations are not due to urine dilution
effects; rather, they reflect actual metabolite variances [56, 109]. To circumvent
this, as a means of normalization per sample, row scaling (i.e. subject normal-
ization) was applied by taking the sum of the peak areas of all the components
measured and dividing the response of each metabolite in a sample by this
sum [66]. For LC-MS measurements duplicates were averaged per metabolite
after visual inspection. All data were auto-scaled prior to further multivariate
statistical analysis.
All multivariate data analyses were performed using Matlab 2008a [51]. The
PCA charts were created using the PLS-toolbox 5.5.2 from Eigenvector Re-
search [49].

3.3 results and discussion

3.3.1 Data processing and quality

The LC-MS method was set up and successfully validated for urine (for de-
tails, see supplement), while the GC-MS method validation results were pub-
lished earlier [73]. To monitor the stability of the analytical system, quality
control (QC) samples were measured during both GC-MS and LC-MS analy-
ses. In these QC samples the responses of each compound should be constant
over time. The stability of the response per compound is expressed in Relative
Standard Deviation (RSD) values, in which case for each metabolite the stan-
dard deviation of the response in all QC samples is divided by the average of
the response in all QC samples. Large RSD values of response indicate poor
repeatability, which can be assigned to instability of the analytical system or
due to other variations such as instability of the analyte, etc. For GC-MS a
total of 144 compounds were measured of which 106 had an RSD of less than
10% in the QC samples. The remainder was predominantly in the RSD range
of 10-20% (for 9 compounds the RSD value was larger than 30%). For LC-MS,
106 features were found of which 65 had an RSD value of 10-20% and of which
the remainder was predominantly in the 20-30% RSD range (for 8 compounds
the RSD value was larger). 130 compounds (GC-MS) and 89 features (LC-MS)
were selected for further data analyses based on RSD values less than or equal
to 25%.

40



3.3 results and discussion

3.3.2 GC-MS results

Univariate tests for significant difference between non-progressive and pro-
gressive AER subjects (t-tests and Wilcoxon tests [89] were executed for each
compound at a 95% significance level. The probability of a Type I error (i.e.
the error of rejecting a null hypothesis when it is actually true) was further
reduced using the Bonferroni approach by setting the significance level to
α=0.05/130≈0.00039. None of the tested compounds showed a significant dif-
ference.

Principal Component Analysis (PCA), an unsupervised multivariate data
analysis method, was used to investigate whether there was an apparent metabolomic
separation between the non-progressive normo AER subjects vs. the progres-
sive AER subjects. Using the GC-MS data of all metabolites, PC1 vs. PC2 did
not show any clear separation between the two groups, whereas PC1 vs. PC3

(Figure 1) showed some clustering of the two classes.

Figure 1: PCA score plot of the GC-MS data of urine from normal AER subjects
using 130 compounds.

Because no clear separation was visible in the PCA score plot, supervised
multivariate data analysis was used. As the classification problem had a di-
chotomous outcome (progressive or non-progressive), we used multivariate
Logistic Regression (LR) in which the data was modeled in such a manner
that the predicted outcome was always bounded between zero and one (corre-
sponding with the 2 groups) [142, 41]. The choice of Logistic Regression was
made because an ordinary linear regression method assumes that in the pop-
ulation a normal distribution of error values around the dependent variable
is associated with each independent variable, and that the dispersion of the
error values for each of these independent values is the same. However, the
distribution of errors for any independent value cannot be normal when the
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distribution has only two values [95]. To prevent over-fitting we used cross-
validation followed by permutation tests. The choice of Logistic Regression in
combination with variable selection allowed us to deal with the heterogeneity
of the data and obtain stable cross validated models (for details see supple-
ment).

The comparison between normal AER PR and normal AER NP subjects ren-
dered a cross-validated Logistic Regression model with an accuracy of 65%
and a precision of 64%. Ultimately 65 out of the 130 available metabolites
were left in the final model. Accuracy can be viewed as the overall effective-
ness of a classifier and precision as class agreement of the prediction with a
specific class (e.g. progressive, non-progressive) [119]. Details regarding the
cross-validation, the exact definition of accuracy and precision can be found in
the supplement (Table S33).

To obtain a list of candidate biomarkers that form the predictive metabolic
profile using this multivariate model, the significant contribution of each of
these biomarkers to the model and the model itself was evaluated as described
below. Permutation tests by means of randomizing the class membership
vector were performed to evaluate the significance of the Logistic Regression
model differentiating the non-progressive from the progressive normoalbumin-
uric subjects (see Supplement). The unpermuted model showed a tendency
towards being significant (16 out of 100 permuted models gave equal or bet-
ter classification results). Furthermore, using the regression vectors obtained
from the permutation tests the significance of the contribution to the Logistic
Regression model for each of the 65 compounds was determined. In total 34

compounds were found to be significant with a p-value lower than 0.05 (at
most 5 out of 100 permuted models had a larger regression coefficient than
the unpermuted model, see Supplement). Table 2 lists those compounds (21

in total) that were identified from this list of 34 compounds, ranked by their
significance, together with their up-regulation (i.e. the relative concentration
increased for the PR samples compared to the NP samples), their multivariate
p-value and t-test p-value.
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t-test
Compound Up-regulationa Significanceb P-value
4-Oxoprolinec -1 0 0.03

Pseudouridined
1 0 0.41

3,4,5-Trihydroxypentanoic
acide

-1 0 0.09

Deoxyfructosec
1 0 0.80

3-Hydroxy-3-(3-
hydroxyphenyl) propanoic
acide

1 0 0.58

L-Valined
1 0.01 0.25

2,3-Dihydroxy-3-
methylbutanoatec

-1 0.01 0.27

5-Hydroxymethyl-2-
furancarboxylic acide

-1 0.02 0.09

Galactonic acide -1 0.02 0.01

2-Hydroxyvaleric acidc
1 0.02 0.58

N-formylproline or N-
ethylprolinec

-1 0.02 0.00

2-Hydroxyglutaric acidd
1 0.02 0.51

N-(3-
hydroxybenzoyl)glycinee

1 0.02 0.47

L (+) Arabinosed -1 0.03 0.13

Benzoic acidd -1 0.03 0.04

3-Hydroxyphenylacetic
acidd

-1 0.03 0.01

Glucuronide compoundc
1 0.03 0.32

D-Glutamicacidd -1 0.05 0.04

Gluconicacidd
1 0.05 0.04

Glycolicacidd -1 0.05 0.05

L-Cystined
1 0.05 0.37

a Increased concentration for progressive subjects, i.e. positive for progression:
1, decreased concentration for progressive subjects: -1
b The number of times that the metabolite in a permuted model had a larger
regression coefficient than the unpermuted model divided by the total number
of permutations executed
c Compounds were characterized, and only the class of metabolite could be
suggested
d Compounds were identified, and the identity confirmed by an authentic
standard
e Compounds were annotated based on elemental composition and by com-
parison to reference libraries

Table 2: Metabolites discriminating progressive and non-progressive normal
AER subjects using the logistic regression of GCMS data
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3.3.3 LC-MS results

With a Bonferroni corrected of 0.00056 (0.05/89), 3 out of the 89 features
showed significantly different group means with either a t-test or a Wilcoxon
test (Figure 2). As most of the statistically relevant features so far had not been
identified in our lab for the LC-MS method, they were subjected to identication
using high resolution MS and multi-stage MS/MS (see Experimental). Table 3

lists these 3 compounds, their respective p-values and their up-regulation (i.e.
the relative concentration increased for the PR samples compared to the NP
samples).

P-value

Compound t-test Wilcoxon Up-regulationa

Substituted carnitineb
0.00000592 0.00000368 1

Hippuric acidc
0.00003066 0.00004267 -1

S-(3-oxododecanoyl)
cysteaminec

0.00004540 0.00003714 1

a
1 means increased concentration for progressive subjects, i.e. positive for pro-

gression, -1 means decreased concentration for progressive subjects
b Compounds were characterized, and only the class of metabolite can sug-
gested
c Compounds were annotated based on elemental composition and MS/MS
(e.g. by comparison to reference libraries)

Table 3: The 3 metabolites that show a statically relevant difference between
the group means of the progressive group and non-progressive nor-
moalbuminuric group

The PCA score plot of LC-MS results of the normal AER subjects (Figure
3) showed some clustering along the diagonal of the rst and second princi-
ple component of the progressive and non-progressive subjects. Analogue to
the GC-MS data analysis, LR with variable selection was used. The result-
ing model contained 42 features. The accuracy of the cross-validated Logistic
Regression model for the binary classication of NP vs. PR was 75% with a pre-
cision of 73%. To evaluate the significance of metabolites contributing to the
LC-MS based LR model differentiating between non-progressive and progres-
sive normoalbuminuric subjects, and the model itself, permutations test were
performed. The model was found to be significant; only 4 out of 100 permuted
models gave equal or better classification results (see Supplement). Using the
regression vectors from the permutation tests, the significance of each of the 42

features was determined. 14 features were significant (at most 5 out of 100 per-
muted models had a larger regression coefficient than the unpermuted mode,
see supplement). High resolution MS and multi-stage MS/MS (see Experi-
mental) were used to identify these features. Table 4 lists 8 of these 14 features
that were identified ranked by significance, together with their up-regulation
(i.e. the relative concentration increased for the PR samples compared to the
NP samples) and the univariate t-test p-value. Literature study revealed that
several compounds that were identified with a multivariate significance higher
than a p-value of 0.05 could be linked to DKD. As these compounds also con-
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tributed to the model, these compounds were added to Table 4. Note that the
compounds that showed a univariate significance were also included in the LR
model (Table 4).

Figure 2: Boxplots of the 3 compounds that showed significant group means.

Figure 3: PCA score plots of the LC-MS data of the urine samples from Normal
AER subjects using 89 features.
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t-test
Compound Up-regulationa Significanceb P-value
Tryptophanc

1 0 0.00

Salicyluric acidc
1 0.01 0.09

Substituted carnitined
1 0.01 0.00

S-(3-oxododecanoyl)
cysteaminee

1 0.01 0.00

Hippuric acide -1 0.02 0.00

Substituted carnitined
1 0.02 0.00

N-methyl guanosinee
1 0.04 0.00

Substituted carnitined
1 0.05 0.00

Kynurenic acidc
1 0.08 0.18

2-(2-
phenylacetoxy)propionylglycinee

1 0.09 0.45

substituted carnitined -1 0.09 0.36

Indoleacetic acidc -1 0.1 0.15

3-methylcrotonylglycinee
1 0.1 0.03

Heptanoylcarnitined
1 0.1 0.00

a Increased concentration for progressive subjects, i.e. positive for progression:
1, decreased concentration for progressive subjects: -1
b The number of times that the metabolite in a permuted model had a larger
regression coefficient than the unpermuted model divided by the total number
of permutations executed
c Compounds were characterized, and only the class of metabolite could be
suggested
d Compounds were identified, and the identity confirmed by an authentic
standard
e Compounds were annotated based on elemental composition and by com-
parison to reference libraries

Table 4: Identified compounds from the metabolites discriminating most be-
tween progressive and non-progressive normoalbuminuric subjects us-
ing logistic regression model of LCMS data

3.3.4 Strengths and weaknesses

Both GC-MS and LC-MS data suffer from heterogeneity in the (samples of
the) study population. The origin of this heterogeneity is the result of multiple
factors, the main ones are: (i) the diculty to obtain an exact kidney phenotype,
as discussed in the introduction; AER is the primary diagnostic biomarker
in clinical practice, but its usefulness as an early marker is limited due to
high natural variance [20] ; and (ii) the uncontrolled environment in which the
urine samples were taken (e.g. urine metabolite concentrations depend on diet,
variation due to slight differences in sampling 24 hour urine, etc.). This het-
erogeneity and the small number of prospective samples severely complicated
proper statistical analyses. In cross-validating the binary classication models,
the leave two out strategy was used (1 sample was left out for each class). In
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order to select those features/compounds in the model that were specific for
the whole dataset and not just for a few samples, a variable selection method
(see above) was included. It turned out that when a subset of variables was
used more accurate predictive models were obtained that were less susceptible
to dierent training/test-set schemes (data not shown). Although the number
of prospective samples is small the nature of the data (i.e. urine samples at
an early stage of diabetic kidney disease) and the fact that some of the found
biomarkers were already related to DKD the obtained results certainly give
rise to future research.

3.3.5 Biological context of the new candidate biomarkers

Reviewing the metabolites in Table 2 it is interesting to note that many of
the GC-MS compounds are carboxylic compounds and/or acidic metabolites
that are prevalently detected in urine [76] (5-hydroxyme-thyl-2-furancarboxylic
acid , benzoic acid and hippuric acid). Others are endogeneous amino acids
(valine, serine). From the identified compounds, we have not found any doc-
umented direct relation to DKD. Deoxyfructose could be related to a phe-
nomenon called diabetic stress in which deoxyglucosone is converted to the
less reactive deoxyfructose [71]. Galactonic acid has been associated with di-
abetic retinopathy [59]. Rainey et al. already suggested an interaction of 5-
hydroxymethyl-2-furancarboxylic acid with galactonic acid [92].
The metabolites in LC-MS (Table 4) are either: (1) acylcarnitines, (2) acyl-
glycines, (i.e. salicyluric acid, hippuric acid, (2-phenylacetoxy- propionyl)
glycine and 3-methylcrotonylglycine) and (3) compounds related to the trypto-
phan metabolism (i.e tryptophan, indoleacetic acid and kynurenic acid).
It is perhaps not that straightforward to link the metabolites to a specific path-
way as a recent study already demonstrated that many of the acylglycines and
tryptophan metabolites in mammalian blood have shown a relation to gut mi-
crobiome [143] which could explain a presence in urine by regular excretion.
In general, acyl-carnitines are formed in the fatty acid metabolism pathway to
transport the long-chain acyl groups of fatty acids into mitochondria, where
these groups are broken down through β-oxidation to acetate to obtain energy
via the citric acid cycle. Under normal homeostasis conditions, carnitine is
eliminated by excretion in urine, in both free and esteried forms, mainly as
acetylcarnitine [22]. A higher acylcarnitine to carnitine ratio in urine in rela-
tion to plasma is suggested to be the result of a less ecient reabsorption of
acylcarnitines or of a renal acylation of carnitine followed by leakage of the
locally formed acylcarnitine product into urine [133, 134, 103] .
Glycine conjugation is an eective detoxication system for preventing accumula-
tion of acyl-CoA esters in several inherited metabolic disorders. Acylglycines
in urine have been reported as the direct expression of accumulation of the
correspondent acyl-CoA esters in the mitochondrion [15].
Tryptophan metabolism changes with DKD have been reported before [15],
where tryptophan plasma concentration in animals with experimental renal
failure decreased while a simultaneous increase of metabolites related to the
kynurenine pathway (e.g. kynurenic acid) in plasma were observed. It was
demonstrated in animals that the content of kynurenic acid in kidneys is the
highest among all tissues [81]. Furthermore, it has been known that kynurenic
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acid is the main metabolite excreted from organism (rats) by means of tubular
secretion. In renal failure this mechanism is considerably impaired, which in
consequence leads to excessive accumulation of this substance in the organism
[98].
Of interest are the elevated levels of 2-(2-phenylacetoxy)propionyl-glycine in
the progressive patients. In the absence of medium chain acyl-CoA dehydrox-
ygenase (MCAD) phenylpropionacid is converted to phenylpropionglycine in-
stead of benzoic acid. Phenylpropionglycine is detected only in the urine of
MCAD-deficient patients and has been used as a biomarker for the diagnosis
of this condition [143]. However, in summary, it should be mentioned that
further research is required to investigate the biochemical context of all the
candidate biomarkers in more detail.

3.4 conclusions

It was demonstrated that based on LC-MS measurements of urine samples
a statistically significant multivariate model could be constructed to distin-
guish between progressive and non-progressive subjects within the normal
AER group with an accuracy of 75%. Many of the compounds contributing
to the model could be grouped in one of three classes, i.e. acyl-carnitines,
acyl-glycines and compounds related to the tryptophan metabolism. All of
the compounds that were measured that show a univariate significant differ-
ence between the two groups were included in the metabolic profile defined by
the multivariate model. The metabolic profile also included metabolites that
did not show a univariate significant difference and emphasizes the additional
benefit of multivariate statistics over univariate statistics alone in preventing
overlooking candidate biomarkers. Future research will focus on the discovery
of additional biomarkers using complementary metabolomics platforms and
the validation of the explorative biomarker proles with a validation set. In
addition, more effort will be directed to the biological interpretation: it will be
investigated which pathways were involved in the biochemical changes associ-
ated with the onset, development and progression of DKD, and whether these
changes are the same during onset and progression, or if different changes
of biochemistry occur at the different stages of DKD, e.g. due to the disease
pathology or due to the use of medication after onset of DKD. In summary,
the results obtained demonstrate the potential of metabolomics in the study of
diabetic complications, as subtle changes in the urine metabolome precede the
clinically signicant rise in AER.
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S3

S U P P L E M E N T T O D I S C O V E RY O F E A R LY- S TA G E
B I O M A R K E R S F O R D I A B E T I C K I D N E Y D I S E A S E U S I N G
M S - B A S E D M E TA B O L O M I C S ( F I N N D I A N E S T U D Y )

s3.1 experimental

s3.1.1 Material

Table S31 shows the detailed clinical characteristics of the subjects for the
non-progressive AER and progressive AER groups.

s3.1.2 Data acquisition

GC-MS

GC-MS analysis is performed as described in [73]. The derivatized samples
were analyzed with an Agilent 6890 gas chromatograph (Agilent Technologies,
Waldbronn, Germany) coupled to an Agilent 5973 mass selective detector. Sam-
ple volumes of 1 uL were injected in a DB5-MS capillary column (30 m x 250

µm i.d., 0.25- µm film thickness; J&W Scientific, Folson, CA, USA) using PVT
injection (Gerstel CIS4 injector) in the splitless mode. The temperature of the
PTV was 70

◦C during injection, and 0.6 min after injection, the temperature
was raised to 300

◦C at a rate of 2
◦C/s and held at 300

◦C for 20 minutes.
Initially, the GC oven temperature was 70

◦C, 5 minutes after injection the GC
oven temperature was increased at a rate of 5

◦C/min to 320
◦C and then

held constant for 5 minutes. Helium was used as carrier gas and pressure
programmed such that the helium flow was kept constant at a flow rate of 1.7
mL/min. Detection was achieved using MS detection in the electron impact
mode and full scan monitoring mode (m/z 15-800). During the elution of urea,
the detector was shortly switched off. The temperature of the ion source was
set at 250

◦C and that of the quadrupole at 200
◦C.

LC-MS

The pretreated urine samples were analyzed using a 1200 Agilent gradient
LC system, consisting of a degasser, a binary pump and an autosampler. A
T3 column (C18, 2.1 x 100 mm, 3 µm particles; Waters, Milford, MI, USA) was
employed at room temperature for analysis. Mobile phase A consisted of a
mixture of water/acetonitrile/formic acid in a ratio of 99:1:0.1 (v/v/v) and
mobile phase B was a mixture of water/acetonitrile/formic acid in a ratio of
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Normoalbuminuric

non-progressive progressive
Number of samples 26 26

Age (years) 36 ± 9 35 ± 10

Diastolic blood pressure (mm Hg) 80± 8 82 ± 11

Systolic blood pressure (mm Hg) 132± 10 132 ± 15

BMI (kg/m2) 25 ± 2 27 ± 3

Serum creatinine (mol/l) 88 ± 14 86 ± 13

Albumin Excretion Rate (mg/24

hr)
12 ± 6 14 ± 7

HbA1c (%) 8 ± 1 9 ± 1

Diabetes duration (years) 27 ± 6 18 ± 11

Follow-up time (years) 6 ± 1 5 ± 2

Urine volume in 24 hr (ml) 2236 ± 709 2153 ± 612

Collection time of urine in 24 hr
(minutes)

1396 ± 78 1399 ± 83

Albumin concentration (mg/l) 6 ± 4 7 ± 3

Antihypertensive medication 6 2

ACE Inhibitor 4 2

Angiotensin 2 receptor blocker 0 0

Betablocker 2 0

Diuretic medication 1 1

Other antihypertensive 0 0

Lipid lowering medication 4 4

Calcium blocker 1 2

Waste Hip Ratio 1 ± 0 1 ± 0

Age onset (years) 9 ± 7 17 ± 8

Insuline dose per kg body weight 1 ± 0 1 ± 0

esitmated Glucose Disposal Rate
(mg/(kg*min)

6 ± 3 6 ± 2

Trigliceride 1 ± 0 2 ± 2

Total cholesterol (mmol/l) 5 ± 1 5 ± 1

HDL cholesterol (mmol/l) 1 ± 0 1 ± 0

Smoker 7 6

Table S31: Detailed clinical characteristics of all subjects.
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1:99:0.1 (v/v/v). A gradient program with a total flow rate of 250 µL/min
was used (Table S32). Urine samples were in the autosampler tray at 4 oC and
for each run 5µL sample was injected. A short piece of PEEK tubing (0.005

i.d.) connected the column with the divert valve of the BrukerMicrOToF (Bruk-
erDaltonics, Bremen, Germany). The divert valve directed a calibration sol-
vent (isopropanol/water/formic acid/1M sodiumhydroxide) in a 50:50:0.2:0.5
(v/v/v/v) ratio, delivered at a flow rate of 50 µL/min by an LKB pump (Phar-
macia, Uppsala, Sweden)) to the LC sprayer on the mass spectrometer during
the first and last minutes of the run, while the column effluent went to waste.
During the remainder of the time, the valve directed the column effluent to the
LC sprayer, while the calibration solvent went to waste. Spray settings of the
ToF detector were: endplate offset -500 V, capillary voltage -4900 V, nebulizer
gas pressure 1.6 bar, dry gas flow 8.0 L/min and dry temperature 150

◦C.

Time(min) A(%) B(%)
0 100 0

2 100 0

10 85 15

15 40 60

20 40 60

22 2 98

27 2 98

28 100 0

30 100 0

Table S32: LC-MS gradient program.

s3.1.3 Multivariate Logistic Regression and variable selection

Logistic regression in combination with regularization was implemented us-
ing the Matlab code written by M. Schmidt [112]. All calculations were per-
formed in Matlab 2008a ([51]).

Ordinary linear regression method assumes a normal distribution of error
values around the predicted variable associated with each independent vari-
able and that the dispersion of the errors is the same. When the distribution
of the predicted variable only has two possible outcomes, the distribution of
errors for any independent value cannot be normal. As a consequence linear
regression faces a problem when dealing with a dependent variable with a
ceiling and a floor: the same change in an independent variable has a differ-
ent effect on the dependent variable (Y) depending on how close a predicted
value is to the real value of Y (i.e. is non-linear) [95]. Using Logistic regres-
sion (LR) this non-linearity problem has been overcome using an appropriate
transformation function (Logit).

To explain the LR, it is useful to assume that a sample (i) has a probability
(Pi) of belonging to a class, where Pii=1 means i belongs to class 1 and Pi=0, i
does not belong to the class (i.e. the dichotomous dependent variable that is
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modeled). The odds (O) of a sample (i) belonging to a class is defined as the
ratio of the probability to one minus the probability:

Oi = [
Pi

1− Pi
] (15)

Consequently, the probability is expressed as:

Pi = [
Oi

1 + Oi
] (16)

Based on these formulas, the probability can never equal or exceed one:
no matter how large the odds become in the numerator, they will always be
smaller by one than the denominator. Of course, as the odds become large, the
gap between the odds and the odds plus 1 will become relatively small and the
probability will approach (but not reach) one. Conversely, the probability can
never fall below zero. As long as the odds equal or exceed 0, the probability
must equal or exceed zero. This way, the probability can never equal or exceed
one and conversely, the probability can never fall below zero. The smaller
the odds in the numerator become, the larger the relative size of the 1 in the
denominator. The probability comes closer and closer to zero as the odds come
closer and closer to zero.

In order to use a regress the dependent variable the floors and ceilings have
to be removed. Taking the natural log of the odds (Li, the Logit) eliminates the
floor of 0 and transforming probabilities into odds eliminates the ceiling of 1.

Li = ln[
Pi

1− Pi
] (17)

Consequently, the probability is expressed as:

Pi =
eLi

1 + eLi
(18)

Without this floor and ceiling, a linear relationship between the independent
variables (xi) and Logit can be computed. In our case, we use multivariate
linear regression, in which the Logit is modeled as

Li = β0 + β1xi,1 + β2xi,2 + ... + βkxi,k (19)

The probability of a sample belonging to a class is calculated as

Pi,β =
eLi

1 + eLi
=

eβ0+β1xi,1+β2xi,2+...+βkxi,k

1 + eβ0+β1xi,1+β2xi,2+...+βkxi,k
(20)

The modeling process minimizes the sum between the probability Pi and the
real class assignment (yi) class for all samples (i) by selecting a proper β (the
regression vector) via:

min =
n

∑
i=1
|yi − Pi,β|2 (21)

In order to reduce the number of variables and to create a more robust model
(i.e. select those features/compounds that were specific for the whole dataset
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to model and not just for a few samples), a penalty (λ) is added [41], Equation
21 now changes to

min =
n

∑
i=1
|yi − Pi,β|2 + λ|β|2 (22)

As the penalty λ becomes higher, the search for a minimum will force coef-
ficients to be smaller and ultimately set to 0 (i.e. certain variables will not
contribute to the model). Variables that have a small or no effect at all on
the classification results are the first that will be removed from the regression
model by setting the coefficient to zero. Dependent on the value of λ more or
less variables are included in the model.

s3.1.4 Cross-validation

Proper values for penalty λ were obtained by using cross-validation together
with variable selection. This can be viewed as a two-step process:

Step 1 In case of the non-progressive vs. progressive data 26 non-progressive
and 26 progressive samples were used. The leave-two-out method was used
(1 sample from each class). The data was split into 26 subsets. 25 out of the
26 subsets were used to create a logistic regression model. With this model a
prediction of the left-out-set was made. This process was repeated 26 times
(i.e. for each subset) so ultimately for each sample a prediction was available.
The regression vector of each model was stored.

Step 2 Because the Logistic Regression was penalized to reduce the number
of variables, the modeling from step 1 was repeated several times. Each time
with a different penalty λ ranging from exp(-2) to exp(2) in steps of 0.1 (in total
41 times). The optimal value for λ was determined by plotting the classifica-
tion error (for the left-out-sets) against λ and locating the minimum. In case of
the non-progressive vs. progressive data, 26 regression vectors were obtained.
The average over all these regression vectors was taken as the final classifi-
cation result. From this average regression vector the importance or ranked
contribution of each variable (i.e. metabolite) to the classification model was
calculated.

s3.1.5 Accuracy and precision

To explain these terms it is useful to setup a confusion matrix (Table S33) for
two possible outcomes [119].

The ability of the classification model to correctly predict the class a sub-
ject belongs to is described by its accuracy. The accuracy is defined as the
proportion of true results (both true positive and true negative) in the whole
population.

accuracy =
TP + TN

TP + FP + TN + FN
(23)

An accuracy of 100% means that the predicted values are exactly the same as
the observed values. For a classification model the number of false positives
(i.e. subjects that do not progress but are predicted as suffering from the pro-
gressive form of albumin excretion) has to be minimal and is indicated by its
precision. The precision is defined as the proportion of the true positives (i.e.
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subjects that suffer from progression that are correctly predicted) against all
the positive predicted results (both true positives and false positives).

precision =
TP

TP + FP
(24)

s3.2 results

s3.2.1 Results of method validation

The suitability of the LC-TOFMS system for quantitative and semi-quantitative
measurements was evaluated by constructing a calibration curve from a mix-
ture of tryptophan, phenylalanine and salicylamide that was spiked in urine
samples, as described in the manuscript. These samples, spiked in a concentra-
tion range of 0 10 ng/µL, were analyzed in the presence of deuterium-labeled
analogues (d5-tryptophan and d5-phenylalanine) as internal standards or an
internal standard analogue eluting close to the calibrant (d5-tryptophan in the
case of salicylamide) in duplicate, while each level was also prepared in du-
plicate. For all calibrants, two calibration curves were realized by plotting
the peak area against the injected concentration and the area ratio (analyte vs.
complementary internal standard) against the injected concentration. Good
linearity (peak area of the calibrant versus concentration) was observed for all
calibrants over the measured concentration range. Limits of detection (LODs)
and limits of quantification (LOQs) were determined using the slopes of the cal-
ibration curves and the peak area standard deviation of the 0.3 ng/µL spiked
urine sample (for salicylamide), or, because of significant endogenous levels of
calibrants that are present, the peak area standard deviation of a urine sample
spiked with 0.3 ng/µL deuterium-labeled calibrant (for tryptophan and pheny-
lalanine). LODs were defined as 3.3 times the ratio of standard deviation and
calibration curve slope, while LOQs were 10 times that ratio. For salicylamide,
tryptophan and phenylalanine, LODs (in µg/ml) were 0.04, 0.05 and 0.05, re-
spectively. LOQs were determined to be 0.11, 0.15 and 0.15 for salicylamide,
tryptophan and phenylalanine, respectively. In order to assess possible losses

actual
value

Prediction outcome
p n total

p′ True
Positive

False
Negative

P′

n′ False
Positive

True
Negative N′

total P N

Table S33: Confusion matrix for two possible outcomes p (positive) and n (neg-
ative)
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Figure S31: Prediction results obtained by permutation test of GC-MS model
for non-progressive vs. progressive AER.

during the sample preparation steps (i.e. mixing, centrifugation and dilution),
urine samples were spiked with calibrants before and after these steps (hav-
ing a concentration of 3 ng/µL of all calibrants). On each of three days, the
samples were prepared three times and all measured in duplicate. Compari-
son of the samples spiked before and after the preparation steps revealed that
peak areas differed less than 10 percent for the three calibrants. These results
indicated an acceptable deviation of the measured concentrations due to the
performed sample preparation steps. Repeatability was evaluated by analyz-
ing three preparations of the urine sample with calibrant concentrations of 3

ng/µL in duplicate on three consecutive days. Within each day, repeatability
of the calibrant peak areas was well within 5 percent, while the repeatability
between the days was 10 to 15 percent.

s3.2.2 Permutation tests

In order to test the predictive ability of the Logistic Regression models for
non-progressive vs. progressive Normal AER, permutation tests were per-
formed. This was done for both GC-MS as LC-MS data sets. The permutation
test consisted of a randomization of the class vector followed by the creation
of a Logistic Regression model with variable selection. This was repeated 100

times. Figure S31 shows the distribution of the classification errors for all 100

permutations for the GC-MS data.

In case of the GC-MS based model, 16 out of 100 permuted models gave
lower classification results than the unpermuted model. The significance of
the unpermuted model hence shows a tendency towards significance (p-value
= 0.16 = 16/100).

Figure S32 shows the distribution of the classification errors for all 100 per-
mutations but now for the LC-MS data. In this case only 4 out of 100 permuted
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Figure S32: Prediction results obtained by permutation test of LC-MS model
for non-progressive vs. progressive AER.

models gave better classification results than the unpermuted model which
makes this model significant (p-value = 0.04 = 4/100).

s3.2.3 Significance testing of the compounds/features

In order to test the significance of a coefficient in a regression vector its con-
tribution was compared to the contributions to regression vectors generated by
permutated models. The hypothesis is that if coefficients found in the unper-
muted model do not differ from those generated by permuted models there
is no significant contribution. Figure S3 shows 3 individual cases in which a)
there is no significant contribution (p-value � 0.05 and b) there is significant
contribution (p-value ≤ 0.05) and c) there is almost a significant contribution
(p-value >0.05 and ≤0.10). The Logistic Regression model for non-progressive
vs. progressive AER based on GC-MS data showed 34 significant compounds.
The Logistic Regression model based on LC-MS data showed 14 significant
compounds.
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(a) no significance

(b) significant

(c) almost significant

Figure S33: significance testing of variables using permutation results. a) no
significance, b) significant and c) almost significant
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R A P I D M E TA B O L I C S C R E E N I N G O F E A R LY Z E B R A F I S H
E M B RY O G E N E S I S B A S E D O N D I R E C T
I N F U S I O N - N A N O E S I - F T M S

4.1 abstract

Single zebrafish eggs were rapidly profiled using High Resolution-Direct
Infusion-nanoelectrospray-Mass Spectrometry with limited sample prepara-
tion and without separation. The analysis time per sample is around 1 minute.
Using this approach the different developmental stages of zebrafish eggs can
be characterized by their active metabolites. Five different development stages
with distinct metabolic fingerprints could clearly be observed when untargeted
analysis is performed and the data are plotted using Principal Component
Analysis (PCA). Using this approach early embryogenesis is followed with
a time resolution of 1 hour and 102 features proved relevant. Of these, sig-
nificant number of putatively identified compounds has not been reported
earlier to have any association with early zebrafish embryogenesis yet. The
onset of gene expression and the increase in energy requirement is reflected
by the measured metabolome complementing earlier reported transcriptomics
studies from a systems biology point of view. By deyolking and dechoriona-
tion eggs at two early developmental stages, we were able to observe distinct
changes in localized metabolism.

Robert-Jan Raterink∗, Frans Meindert van der Kloet∗, Jiajie Li, Niels Abraham
Wattel, Marcel Johannes Maria Schaaf, Herman Peter Spaink, Ruud Berger,
Robert Jan Vreeken, Thomas Hankemeier. Rapid metabolic screening of early
zebrafish embryogenesis based on direct infusion-nanoESI-FTMS, Metabolomics,
2013, 9(4):864-873

∗ Equally contributing authors
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4.2 introduction

In the past decade the Zebrafish (Danio Rerio) has become a popular verte-
brate model system for studying human development and disease [2, 88, 38].
This is because the development of the zebrafish is very similar to the em-
bryogenesis in higher vertebrates, including humans. But unlike mammals,
zebrafish develop from a fertilized egg to an adult outside the female in a
transparent egg. This makes it possible to observe developing embryos from
the single cell to the entire organism level [110]. The development time of
the embryo is fast (after about 2 days most common vertebrate specific body
features can be seen including brain, eyes, ears and all internal organs) and
the number of offspring is large (100-200 eggs per mating). Moreover, because
they are small, available in large numbers and maintained at low cost, zebrafish
embryos are ideal as model systems in high-throughput whole organism pre-
clinical drug screening and toxicology studies as less drug is required, a larger
number of animals can be used and less ethical issues are associated [97, 121].
Therefore, the zebrafish embryo can bridge the gap between cell assays and
rodent assays. The external and rapid development as well as transparency
of zebrafish embryos is ideal for observable phenotype-based screening at cel-
lular and organ-tissue level using live imaging, for example using a Complex
Object Parametric Analyzer (COPAS)[21]. Although these phenotypic changes
are adequate for specific drug-induced biological responses, they dont reveal
system-wide responses and are not sufficient in elucidating the mode of action
or potential toxicity of drugs[121]. With the ever increasing interest in study-
ing biological systems in a holistic manner (systems biology) the necessity for
delivering qualitative and quantitative data of complete biological systems for
which zebrafish offer many advantages becomes clear [3]. Metabolomics is
a powerful tool within systems biology and investigates the complex interac-
tions of the metabolism and metabolic networks [31, 130, 19]. One of the great-
est strengths of metabolomics is the ability to capture a molecular snapshot
of metabolites as reactants, intermediates or products of (enzyme-mediated)
biochemical reactions. Metabolomics complements genomics, transcriptomics
and proteomics for metabolites are in a unique position as they are building
blocks for all other biochemical structures including proteins (amino acids),
genes and transcripts (nucleotides) and cell walls (lipids) [107, 27].

So far, the number of metabolomics studies on zebrafish embryos is limited
[94, 42, 96, 116, 43]. Most of these studies included chromatography which is
time consuming and therefore less suitable for fast & high-throughput meta-
bolic screening. Recent studies outlined the power of High-Resolution-DI-MS
(HR-DI-MS) metabolomics on other complex samples [34, 82, 12, 26]. Most of
these studies were performed using flow injection ESI-MS and therefore did
not explore the advantages of nanoESI over normal ESI with respect to ion-
ization efficiency and ion suppression effects [30]. In this paper we describe
a rapid metabolic profiling method of zebrafish eggs, based on lysis of single
zebrafish eggs and subsequent HR-DI-nanoESI-MS analysis. A clear metabolic
distinction between developmental stages in early embryogenesis is described
and up-and down regulation of some important primary metabolites is shown.
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By deyolking and dechorionating the embryos, we were able to highlight local-
ized and time resolved metabolism.

4.3 materials and methods

4.3.1 Chemicals and materials

Methanol was from Biosolve (Valkenswaard, The Netherlands). Water was
obtained from a Millipore high purity water dispenser (Billerica, MA, USA).
All solvents were HPLC grade. The labeled amino acids (”Cell Free” amino
acid mix (20 AA) (U-13C, 98%+; U-15N, 98%)) were bought from Cambridge
Isotope Laboratories (Andover, MA, USA) and added to the samples at a con-
centration of 1µg/mL. Reserpine (also used as internal standard) was supplied
by Fluka (Buchs, Switzerland) and added to the samples at a concentration of
500ng/mL.

4.3.2 Whole embryo experiments

Two wild type (strain A/B) parent groups were maintained under standard
zebrafish aquarium conditions [75]. Since many cell differentiation and pheno-
topic processes occur within 48 hours after fertilization, the following 5 early
developmental stages were chosen: the 4-cell (1hpf), 64-cell (2hpf), 1k (3hpf),
50%Epiboly (5hpf) and the 18-somites stage (18hpf) For each of the five devel-
opmental stages 8 eggs were analyzed separately in triplicate.

Lysation protocol for the whole embryo

1. The egg was optically selected under a microscope in the relevant devel-
opmental stage and pipetted to a 1.5 mL eppendorf tube. As much as
possible of the egg water was removed.

2. The egg was washed 3 times with 1 mL demineralized H22O.

3. 100µL (9:1, v/v methanol:water) including the internal standards (1µg/mL
Labeled amino acids+ 500ng/mL Reserpine) was added. Immediately
the sample was snap-frozen in liquid nitrogen for 2 minutes. This step
should quench metabolism and precipitate the proteins.

4. After snap-freezing the sample was sonicated for 2 minutes to lyse and to
homogenize the sample and visually inspected to confirm homogeneity.
In case of non-homogeneity the sample was snap-frozen and sonicated a
second time.

5. Precipitated proteins were spun down by centrifuging the lysate at 16.1rcf
at 0

◦C. The supernatant (80µL) was used for DI-MS analysis.

4.3.3 Deyolking and dechorionating experiments

Two developmental stages 1kcell (3hpf) and somite (18hpf)) of the same wild
type were measured (pool of n=10) in triplicate.
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Figure 1: Photomicrograph of zebrafish embryos: (left) 1k-cell stage and (right)
somite stage. In both stages some of the embryos were dechorionated
in order to perform the deyolking

Dechorionating

1. The chorion of the egg was removed mechanically by a tweezer and was
put in a 1.5mL eppendorf tube. Using this methodology only the mem-
brane of the chorion could be analysed. The same lysation protocol as
described above was used however, instead of 100 µL , now 1mL of sol-
vent+IS (since it was a pool of 10 egg instead of a single egg) was added
and no washing was done (since it would remove parts of the sample).

Deyolking

1. After dechorionating the egg only consists of the yolk with its cells (see
Figure 1). The yolk was removed by adding a Ringer solution to the egg
and pipetting it up-and down a few times.

2. Subsequently, the sample was centrifuged for 5 minutes at 0.8rcf (to seg-
regate the cells) and the supernatant (including the yolk) was pipetted
away. This way only the cells of the embryo could be analyzed.[110].

3. 1 mL of IS was added to the pallet and the same lysation protocol was
used as described above.

Deyolking

1. First the non-fertilized egg (only 3hpf stage) was dechorionated resulting
in only the yolk with its fluid. This way also the fluid in the yolk could
be analyzed.

2. 1 mL of IS was added and the same lysation protocol was used as de-
scribed above.

In the deyolking experiments again also whole-eggs were included as a refer-
ence.

4.3.4 MS Analysis

The analyses were performed by DI-nanoESI-MS in the positive ion mode
using the automated Advion NanoMate Triversa system (type A chip) coupled
to a LTQ-FT Ultra (Thermo Fisher Scientific). Eppendorf 96 well plates were
used on which all the samples were randomly distributed. Of each sample 5µL
was infused using a pressure of 0.2PSI and an electrospray voltage of 1.48kV
in the positive ion mode.
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Mass spectra were recorded using three scan ranges containing 20 scans: 50-
250; 250-500; 500-1000 m/z (in this order) at a resolution of 100.000. Separate
scan ranges instead of one full scan range was chosen in order to enhance sen-
sitivity. The MS was tuned with inlet capillary temperature of 120

◦C, capillary
voltage of 35V and the tube lens voltage of 50V. For tandem MS as well as for
the deyolking experiments an LTQ-Orbitrap XL (Thermo Fisher Scientific) was
used with inlet capillary temperature of 120

◦C, capillary voltage of 25V and
the tube lens voltage of 80V.

4.3.5 Data processing

The first 10 scans (approximately 10 seconds) of every sample were aver-
aged using XCalibur software (version 2.0.7; Thermo Fischer). These average
scans were stored in separate files. In some samples no spray or no stable
spray was obtained, i.e. no average scan could be made. These samples were
discarded from further processing. Using a resolution of 100.000 (at 400 m/z)
each sample typically resulted in 5 to 10 thousand unique features in the av-
erage spectrum. In contrast to hyphenated MS data, the drawback of DI-MS
data is that all masses co-elute. Aligning features over samples now is solely
based on accurate mass. To align the masses across the different samples we
created mass-bins of very small sizes (0.0003 Da) and assigned the different
masses to the nearest bin. For a mass range of 50 to 250 m/z this generated
approximately 650.000 mass bins.
All data analysis was done using Matlab (version 2011a 64bit; MathWorks). In
order for the data to be analyzed in Matlab the Xcalibur averaged spectra files
were converted to mzXML format (ReAdW version 4.3.1).

4.4 results and discussion

Our primary goal was to explore the possibility of discerning developmental
stages in zebrafish embryogenesis by applying HR-DI-nanoESI-MS analysis on
lysed eggs. Therefore, reproducible and high quality MS data should be gen-
erated and preferably an automated data processing tool is required.
The implementation of these (automated) tools, viz., acquisition and process-
ing strategy, forms an integral part of the proposed method. After binning,
empty and almost empty features were removed. This reduced the number of
features from 650.000 to 30.000. To reduce analytical variation as much as pos-
sible, the data was normalized by selecting the optimal internal standard for
each compound from the mix of internal standards. This selection was based
on the minimization of the RSD of the response of replicate measurements [1].
Beckmann et al. [12] normalized the data by using the total ion current, how-
ever with our data this would reduce group differences which is not desirable.
To enable statistical interpretation, features that showed consistency per group
were selected [46]. Features were considered consistent if they were either
present or absent in all samples for a group. However, as we were interested
in changes between developmental stages, we allowed for, at most, one missing
feature in the replicates of a particular developmental stage. This step further
reduced the number of possible features to 5.000. As we anticipate differences
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Figure 2: Histograms showing the technical reproducibility of the measure-
ments. 45% of the 102 features has an RSD<25%.

between the samples to be apparent in the most abundant metabolites for that
sample, we focused on the top 100 features per sample reducing the number
of features of interest to 200. Out of these 200 features, 102 showed signifi-
cant differences in concentration between the different developmental stages.
As observed in other complex samples in other research [82], the lowest mass
range (50-250 m/z) showed a clear clustering of the different developmental
stages (see figure 3). This would indicate that at least small molecules relate to
metabolic variations between the ages of the embryo.

4.4.1 Robustness/validation of the analytical method

Metabolomics often deals with differential analysis of fingerprints([82]) to
highlight biomarkers. Especially, when a large number of analytes is taken into
consideration absolute quantitation is only reported in some cases. In order to
be able to give some indication of the analytical rigor of the method, the RSD
of repeated measurements, for example using QC samples is often reported.
In the absence of QC samples , the RSD was calculated for each feature using
a RSD approach based on multiple sets of replicated measurements ([86]) and
classified in one of the six possible classes (0-0.1,0.1-0.25,0.25-0.35,0.35-0.5,0.5-1
and >1). The result of this inter-assay reproducibility for the 102 features is
displayed in Figure 2. As can be seen almost half of these features showed an
RSD lower than 25%.

One could argue that by focusing on the top N features too much informa-
tion is being discarded. For example, tryptophan, hypoxanthine, carnosine,
methionine, aspartic acid, propionylcarnitine, dimethyllysine, methyllysine,
acetyllysine and serine were discarded (see supplementary Figure S41). How-
ever, including lesser abundant features invariably led to higher RSD values for
these new features. This could be explained by ion suppression effects: as we
measured crude, complex samples containing various compound classes and
compound sizes as a result of lysis of the whole embryo. As a comparison:
yeast has an estimated 1100 metabolites which is expected to be significantly
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Table 1: RSD values of the 27 (putatively) identified features. The features that
were not found in the cited references were ticked as new in the last
column.

less than the metabolome of a whole zebrafish embryo([27]). This together
with using nanoESI lead to quite some sample-loss due to, e.g., clogging of
the nanoESI emitter, which resulted in a loss of replicates. Nevertheless, by
discarding the missing variables from the dataset, still 102 features were ex-
tracted which revealed the developmental stage differences (Figure 3). (FDA
suggest that for LC-MS profiling an RSD of 20% is acceptable [27]).

4.4.2 Identification of metabolites

Out of the significant 102 features 27 separate metabolites (36 features; in-
cluding all adducts) were putatively identified (see table 1). Identification was
based on 1) search of HR-MS data against HMDB (Human Metabolome project
Data Base) and 2) searching MS/MS data against HMDB comparison to stan-
dards. After the first HMDB search 171 possible structures were found of
which 21 were unique and 150 isomers. From those 150 remaining isomers, 6

were identified using tandem MS and subsequent database search or compari-
son to standards.

Table 1 shows all the putatively identified features, with their associated RSD
values. Remarkably, the potassium adducts nearly always shows the best RSD,
followed by the sodium adducts and finally the protonated molecule. As our
samples are not acidified, alkali adducts are not suppressed. The reason for the
pre-dominant potassium adducts is most likely due to relative high potassium
concentration inside the cell as opposed to the relative high concentration of
sodium outside living cells

From several of the 27 (putatively) identified features the boxplots with their
up-or down regulation are shown in Figure4. Still 63% of the 102 significant
features remained unidentified. This confirms that further research is required
to expand the zebrafish metabolome database in order to increase identifica-
tion using DI-MS methods([96]).

4.4.3 Biological relevance

In order to evaluate the possibility of using this technology for early finger-
printing of zebrafish embryos, different stages after fertilization were analyzed
using this approach. 1,2,3,5 and 18 hours post fertilization (hpf) were tested.
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Figure 3: 3 PCA score plots indicating a visible difference between 5 different
developmental stages. For these plots only one PCA model was cre-
ated using all samples and only those features with an RSD <30%.
The blocks represent the 18hpf stage, the diamonds the 5hpf stage.
The circles represent the 1, 2 and 3 hpf respectively
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The PCA in figure 3 shows the somite stage (18hpf) as the most distinctive
group as well as having the most within-group variation. The fact that this
stage is most distinctive from the other groups can be explained by the fact
that different tissue types and organs (i.e. nervous system, skin, blood, and
heart) begin to form at this stage. Since small time differences result already
in differences of organ formation this will lead to biological variations in the
different samples, explaining why this time point has the most variation in
the metabolome measurements. Thus, as Chen et al. [96] remarked, the dif-
ferences in the metabolome between the early embryonic stages may reflect
the embryological properties of the cells. These results show that the zebrafish
embryonic metabolome reflects differentiation. With our method we were able
to observe a post fertilization time-trend with a time resolution of 1hpf. The
metabolic shift between 1, 2, 3 and 5hpf can be clearly observed indicating that
in early embryogenesis the metabolome changes quickly and significantly. As
can be seen, the metabolome of the first three stages (1, 2 and 3hpf) closely
resemble each other. This suggests that zygotic gene transcription only begins
at the onset of the midblastula transition (3hpf)[60].

The boxplots in Figure 4 allows us to go more into depth regarding the biol-
ogy during early embryogenesis. Interestingly, the increase in concentration of
dimethylarginine can be a result of the enhanced methylation and acetylation
metabolism of lysine and arginine which play an important role in histone
activity and gene expression [113, 136] When we searched for other methy-
lated and acetylated forms of lysine and arginine by discarding the described
missings data cleaning step (resulting in a larger data subset) we also found
increasing trends for dimethyllysine, methyllysine and acetyllysine (see sup-
plemental Figure S41). Although we are aware these analytes did not make it
to the best 102 features, these findings correlate to the onset of gene expression
at 3 hpf. The increased concentration of spermine dialdehyde could reflect the
turnover of the polyamine spermine which plays a role in normal and neo-
plastic growth as well as the (uni)directional transport of molecules by GAP
junctions which is an important process in early embryogenesis [99, 137].

It can also be observed that the concentrations of several amino acids and
biogenic amines are increasing during early embryogenesis. Apparently the
embryos are able to release amino acids from storage proteins to provide the
cells with building blocks and energy already in an early stage. Some of these
reveal more than a 10-fold change going from 1hpf to 18hpf. In the 18hpf
stage the rise of most of the amino acids is the largest. This could be explained
by the increase in energy requirement for evoked muscle contraction start-
ing at around 18hpf [108]. Isovaleraldehyde, vinylacetylglycine could reflect
the degradation of branched chain amino acids like valine and (iso)leucine,
both associated with the increase in energy requirement. The concentration
of hypoxanthine (see supplemental Figure S41) is decreasing which can be ex-
plained by the enhanced DNA/RNA synthesis via xanthine, as also indicated
by the decrease of guanine.

Some metabolites, like acetylcarnitine and creatine, show up- as well as-
down regulation within the five developmental stages. The observed trends of
almost all of our identified features is supported by the observations of previ-
ous publications [42, 116]. Moreover, features that are indicated as new in table
1(arginine, acetylasparctic acid, carnitine, dimethylarginine, dopamine, FAPy-
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Figure 4: Boxplots of the up-and down regulation of some of the (puta-
tively) identified metabolites through the five different developmen-
tal stages (for arg, his, actylcarnitine, lys, dimethylarg and spermine
dialdehyde the (M+H)+ plot is shown, for tyr, glu, creatine,phe, pro,
leu, val, ala, homoserine, asparagine, phophoethanolamine, acetylas-
parctic acid the (M+K)+ plot is shown, and for isovaleraldehyde the
(M+NH4)+ plot is shown. The y-axis represents the ratio of the ana-
lyte/ optimal internal standard
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Figure 5: Bar-plots showing the mean of the different embryonic location at
the age of 3hpf and 20hpf. W=whole embryo; C=chorion membrane;
Z=zygote part; NF=dechorionated non-fertilized embryo (=yolk).
The y-axis represents the ratio of the analyte/ optimal internal stan-
dard.

adenine, indoleacetic acid, isovaleraldehyde, phosphoethanolamine, quinone,
safrole, spermine dialdehyde, vinylacetylglycine) were exclusively found with
our method and not in the aformentioned references. This indicates the poten-
tial of HR-DI-MS for metabolic profiling purposes.

4.4.4 Deyolking

To obtain more insight in the biology of early embryogenesis, a series of
deyolking experiments were performed in order to zoom in on the localization
of metabolism.

Figure 5 shows several bar-plots of the group means of metabolites that
were also (putatively) identified in the previous section. Hypoxanthine and
carnitine (metabolites which were discarded using our data cleanup steps (see
supplemental Figure ??)) showed a down-regulation trend during embryoge-
nesis). The charts confirm the same developmental trends as observed earlier.
Because of the limited number of replicates that was measured (3 times) the
statistical power is limited but ANOVA calculations showed that no significant
difference between the zygote part and the whole egg could be detected. This
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could indicate that most of the metabolites and most of the metabolic conver-
sions take place in the zygote part.

4.5 concluding remarks

Using our rapid metabolic fingerprinting method we were able to distin-
guish metabolic profiles of early developmental stages of zebrafish embryos.
Interestingly, the onset of gene expression and the increase in energy require-
ment is reflected by the measured metabolome confirming that from a systems
biology point of view metabolomics complements transcriptomics. After data
cleanup, only those features were selected that showed consistent behavior
within each developmental stage resulting in 102 features. PCA revealed that
periods of 1 hour time shifts post fertilization could be differentiated from each
other. In total 27 out of the 102 features were (putatively) identified. Although
unambiguous identification is beyond the scope of our approach, identification
on 6 of these 27 extracted features was pursued using standards and tandem
MS. Several trends of the putatively identified metabolites are included and
almost all of these findings are supported by previous publications. Moreover
our method exclusively found several new features. By deyolking and dechori-
onating we showed the potential of this method to enable more in-depth stud-
ies on localization of metabolism. We conclude that HR-DI-MS is suitable for
rapid metabolic profiling on zebrafish embryos. However, to improve robust-
ness and obtain more high-quality features fast sample preparation methods
are required.
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A N E W A P P R O A C H T O U N TA R G E T E D I N T E G R AT I O N O F
H I G H R E S O L U T I O N L C - M S D ATA

abstract

Because of its high sensitivity and specificity, hyphenated mass spectrome-
try has become the predominant method to detect and quantify metabolites
present in bio-samples relevant for all sorts of life science studies being exe-
cuted. In contrast to targeted methods that are dedicated to specific features,
global profiling acquisition methods allow new unspecific metabolites to be an-
alyzed. The challenge with these so-called untargeted methods is the proper
and automated extraction and integration of features that could be of rele-
vance. We propose a new algorithm that enables untargeted integration of
samples that are measured with high resolution liquid chromatography mass
spectrometry (LC-MS). In contrast to other approaches limited user interac-
tion is needed allowing also less experienced users to integrate their data. The
large amount of single features that are found within a sample is combined to a
smaller list of, compound-related, grouped feature-sets representative for that
sample. These feature-sets allow for easier interpretation and identification
and as important, easier matching over samples. We show that the automatic
obtained integration results for a set of known target metabolites match those
generated with vendor software but that at least 10 times more feature-sets are
extracted as well. We demonstrate our approach using high resolution LC-MS
data acquired for 128 samples on a lipidomics platform. The data was also
processed in a targeted manner (with a combination of automatic and manual
integration) using vendor software for a set of 174 targets. As our untargeted
extraction procedure is run per sample and per mass trace the implementation
of it is scalable. Because of the generic approach, we envision that this data
extraction lipids method will be used in a targeted as well as untargeted anal-
ysis of many different kinds of TOF-MS data, even CE- and GC-MS data or
MRM. The Matlab package is available for download on request and efforts
are directed towards a user-friendly Windows executable.

Frans M van der Kloet, Margriet Hendriks, Thomas Hankemeier, Theo Reij-
mers, A new approach to untargeted integration of high resolution LC-MS
data, Anal Chim Acta. 2013 Nov 1;801:34-42. doi: 10.1016/j.aca.2013.09.028.
Epub 2013 Sep 23.
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5.1 introduction

The systems biology framework aims at describing the behavior of biologi-
cal systems (e.g. organisms, organs, cells) as a whole rather than the behav-
ior of their (functional) biochemical components in isolation. During the last
decade functional analysis of the transcriptome, proteome, and metabolome
has increased [16, 31]. Because the metabolome is expected and found to
be more sensitive to environmental (diet, drug, lifestyle) perturbations than
the transcriptome or proteome, the emphasis on the phenotype at a more
global systems biological level has shifted the focus towards the metabolome
[16, 69, 65, 64, 36, 55, 120]. With this increasing awareness of the importance
of the metabolome, the number of methods to detect and quantify metabo-
lites is increasing. Hyphenated mass-spectrometry (GC, CE or LC-MS) has
become the predominant technology for determining metabolite abundances,
mainly because of its sensitivity allowing the measurement of low abundant
metabolites in small sample volumes. Targeted modes of data acquisition (MR-
M/SRM) allow the MS to detect pre-selected compounds with an even higher
sensitivity but at the same time have a limit (determined by the maximum
MS/MS scan experiments possible) on the list of target compounds reported.
The full scan data acquisition mode however, enables a wider, untargeted cov-
erage of different metabolites.

Despite the limited number of compounds reported, targeted approaches are
wide spread. Obvious reasons are the added advantage of data interpretation
of known metabolites/compounds and the possibility to quantify them (using
internal standards) often with better precision and accuracy then in untargeted
modes. To a large extent the lesser use of untargeted approaches is also due to
the lack of appropriate software that would enable untargeted extraction and
integration without introducing artifacts and errors. As a result, integration
is often limited to a set of known metabolites (targets) only and in most cases
vendor software (MassLynx[138], Compass DataAnalysis[17], MassHunter[1]
etc.) is used.

The lack of software that enables untargeted integration has been recog-
nized by various academic groups and different algorithms and solutions have
been suggested. For GC-MS measurements Metabolite Detector[45] or TNO-
Deco[57] and Metalign[80] could be used and for high-resolution LC-MS soft-
ware like XC-MS[115], Metalign[80] or MZmine[62] are available. However,
these solutions do require specific user input, sometimes even sample specific,
and often much user experience is needed before the data is properly extracted
and integrated. All LC-MS untargeted solutions result in a huge list of fea-
tures sometimes with additional putative identification (e.g. XC-MS). Several
packages extract and/or report features based on differential analysis between
sample groups (e.g. diseased vs. healthy). This not only limits the scalability
but renders the method useless if no such grouping factor exists.

In this paper we describe a method for untargeted feature extraction and in
addition we propose a new strategy that addresses the aforementioned short-
comings. The method is able to integrate untargeted data, can be incorporated
in an automated environment and with only a few parameters to configure,
the user interaction is kept to a minimum. Our proposed strategy is a two-
step approach that in fact automates common analytical practice. The first
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step after feature extraction is based on per sample grouping of single fea-
tures to feature-sets according to their isotopic patterns and retention times.
Here, we introduce the term feature-set as a group of two or more features in
a single sample with isotopically related masses that share the same retention
time. The second step of our strategy consists of matching these feature-sets
over samples. This way more constraints are imposed on the search space to
increase the probability for a proper match over samples. Conversely, noisy
signals have a lower chance of being propagated.

We demonstrate our method using data obtained with full scan global li-
pidomics profiling acquired with high-resolution LC-MS (Quadrupole Time-
Of-Flight (qTOF)). Lipid profiles are especially challenging for untargeted pro-
cessing due to the presence of a large number of isomers. We compare our
untargeted integration results for a set of known compounds to those that
were obtained by vendor software (the reference set) and those obtained us-
ing XC-MS[115]. The developed Matlab package is available for download on
request and efforts are directed towards a user-friendly Windows executable.

5.2 workflow (and methods)

Comparable to any software package that analyzes hyphenated MS data, the
basic workflow comprises reading data, detecting, extracting and integrating
peaks and relating them over samples. For a list of known targets, i.e. com-
pounds with known masses and retention times this seems a straightforward
task. Integration however, is complicated by issues like retention time shifts,
bad chromatographic separation of isomers, bad peak shapes, noise and small
shifts in registered masses. In vendor software, to deal with these issues, the
target specific mass- and/or retention time windows are manually adjusted
and other, vendor specific integration settings are optimized. Even if the in-
tegration results in untargeted methods are invariant to some of these issues,
mass and retention time windows still need to be defined before matching
over samples can be performed. How large these shifts will be, depends on
the method that was used to acquire the data; e.g. flow rate, mobile- and
stationary phase changes etc.

To summarize all the steps we have taken schematically, the full workflow
of our feature extraction procedure for a single sample is shown in Figure 1.
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Figure 1: The workflow of per sample feature extraction and grouping; In the
first stage each mass trace is scanned for the presence of one or more
features. In the second part the features are combined according to
their mass and retention time

5.2.1 Detection and extraction

The starting point and the heart of our feature extraction method is cen-
troided hyphenated MS data. The vast amount of data stored in samples ac-
quired in full profile at high resolution puts a huge strain on computers. To
keep file sizes significantly smaller and retain as much information as possible
the mass spectra are often acquired in centroid mode. In this mode the aver-
age m/z value is determined for every mass peak and only the intensity at the
average m/z value is stored. Figure 2a shows the two dimensional (mass and
retention time) response area of a peak that has been reconstructed from full
profile data. Figure 2b shows the same peak but now after centroiding.
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Figure 2: (A) reconstructed peak from profile data and (B) reconstruction of
the same peak as (A) but now after centroiding.

One of the disadvantages of (high resolution) data acquired in centroided
mode is the complexity to create chromatographic profiles of mass peaks be-
cause of mass centroids that fluctuate from scan to scan. Binning algorithms
have been developed to compensate for these fluctuations [115]. To circumvent
complex mass binning routines but still take advantage of the smaller data (file)
sizes we re-calibrated full profile data (acquired on a TOF-MS) before applying
our developed mass-centroiding step. Details can be found in the Supporting
information.

The number of features per mass trace is determined by counting the num-
ber of contiguous signal containing blocks in that trace; a contiguous signal
containing block was defined as showing intensity higher than the noise level
in 5 or more subsequent scans. Different vendors (Waters, Agilent, Absciex
and Thermo) claim that at least 8 - 15 points across a peak should be used
for quantification; we therefore considered 5 to be on the safe side considering
the start and end of the peak could be below the noise level. The noise level
was determined per scan as N times the mode (most occurring intensity) of all
registered intensities for that scan. This N is configured by the noise-threshold-
factor parameter which is set to 3 by default. Effectively this means that if
baseline separation is observed as illustrated in Figure 3a, the two peaks of the
single mass trace are split into two separate features (Figure 3b and 3c). If the
two peaks are not separated, only one feature is extracted by default. For the
centroided data-set that contains only mass traces that contain a signal, this
means that for every mass channel at least one feature is extracted. In order to
split peaks that are not baseline separated, e.g. badly separated isomers, the
feature extraction routine is extended by an optional to use split routine. In
case of bi- or multimodality this split routine splits the feature at local minima
(i.e. points where the first derivative is zero) into one or more features (Sup-
porting Information Figure S52). The sensitivity of this parameter is defined
by the so-called split-ratio variable. The value for this split-ratio is bound be-
tween 0 and 1 and the optimal value may vary per study. A certain split-ratio
value picks up on dips between two peaks in the EIC that have an intensity at
least split-ratio times the maximum intensity of the feature and splits it into
multiple separate features. Higher values make this routine less sensitive to
these dips. Integrated areas are obtained by accumulating the intensity values
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over the retention time window for every feature. After the retention time (RT)
of the maximum intensity for all features has been determined, the data is
summarized as a list of features and their integrated areas, i.e. mz@RT:area.
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Figure 3: The transformation of the data from mass traces to features: two
unimodal peaks from A form two features (B and C).

5.2.2 Grouping of features to feature-sets

To increase the probability of correctly matching features over samples, the
features in each sample are first combined to feature-sets based on a rule set.
The most common rules are based on isotopic patterns and possible adduct
information. For extracting known targets one could include reference mass
spectra. In this paper we group features by 13C isotopic pattern matching
only [125] (M+1,M+2,M+3 etc.); the isotopic masses of a chemical compound
share a similar chromatographic pattern and have maximum intensity at the
same (plus or minus one single scan) retention time. In contrast, features that
show an irregular chromatographic profile (like noise) likely do not have an
isotopic mass with the same chromatographic profile (i.e. maxima at the same
position) and are therefore not grouped. The choice not to include adduct
information at this stage is by design. Adducts do not necessarily share the
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same chromatographic profile in the same sample as they are concentration
dependent and their concentration is influenced by matrix effects (i.e. different
samples), e.g. if more salts are in the sample/solvent adducts are more or
less abundant. For data analysis purposes the adduct information should be
analyzed separately. The lower block of Figure 1 depicts the flowchart of this
grouping procedure. For every single feature the theoretical isotopic mass
values are generated. By repeated comparison, features match only if the mass
corresponds to one of the generated isotopic mass values. If a match is found
they are grouped as a feature-set. The mass range is determined by the mass-
resolution parameter which is determined by the resolution setting of the MS
the data was acquired on.

5.2.3 Comparing over samples

After all samples have been processed in the manner as described above,
comparison over multiple samples is done based on a match of the feature-
sets only. When no feature-set match was found in certain cases, the search
was continued in the list of single features. By selecting only feature-sets, low
abundant and noisy signals are removed. Every feature-set is matched against
the remaining feature-sets using repeated pairwise comparison. The matching
algorithm is configured by two parameters; retention-time-window and mass-
resolution. Feature-sets only match if the mass values of the feature-sets and
the retention time are within range. If more than one match is found for the
same sample (e.g. isomers), the match with a retention time closest to the
reference retention time is selected. The script below describes the process of
matching over samples in pseudo code
LOOP OVER SAMPLES -> S

LOOP OVER FEATURE -SETS in SAMPLE S -> FS

SELECT MAIN MASS in FS -> M

SELECT RETENTION TIME in FS -> RT

LOOP OVER OTHER SAMPLES -> OS

FIND feature -sets IN OS WHERE MAIN MASS is M +/- mass resolution

AND RETENTION TIME = RT+/- retention time window -> ID

IF SIZE(ID)>1

FIND feature -sets closest to RT -> ID

END

IF NOT FOUND

FIND single -features IN OS WHERE MAIN is M +/- mass resolution

AND RETENTION TIME = RT+/- retention time window -> ID

IF SIZE(ID)>1

FIND feature -sets closest to RT -> ID

END

END

HOUSEKEEPING: LINK FS of sample S to ID of sample OS

END

END

END

Depending on the study and type of analysis, i.e. biomarker analysis, tar-
geted featured extraction etc. feature-sets for which no match in any of the
other samples was found can optionally be removed.

The proposed approach requires little prior knowledge about the samples.
This guarantees the generic applicability of the approach. However some user
input cannot be avoided. Low abundant peaks can be in- or excluded depend-
ing on the noise-threshold-factor. Samples, where components (e.g. isomers) are
not baseline separated, can be processed by an optional step which requires
the setting of the split-ratio parameter. Matching features within and between
samples not only requires a retention-time-window but also a mass-resolution to
be defined. The mass-resolution parameter in both the feature grouping as in the
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feature-set matching step is the same. Changing the values of these parameters
will influence the feature grouping and feature-set matching over samples but
in fact, they solely depend on the manner the data are acquired and the mass
spectrometer that was used and therefore have to be defined only once.

In contrast to an absolute mass window, we prefer to use the term resolu-
tion. For a time-of-flight (TOF) detector the resolution is constant over the
mass-range[145]. With a resolution of 10,000 at 200 Da, peaks that are 0.02

Da (=200/10,000) apart can be resolved, however, at 1,000 Da this changes to
0.1 Da. With only 4 parameters to configure (that are at most study specific)
this untargeted processing approach requires a very low level of user input.
The settings for most of these parameters follow from practical/experimental
settings and need no tweaking. The mass-resolution is defined by the mass
resolution set when acquiring mass spectra by the MS system and is as such
known before the data needs to be integrated. In our case the MS system was
a qTOF which was set to a resolving power of 10,000. The noise-threshold-factor
was kept to the default value, meaning that signals having a value above 3

times the noise value are considered to be peak candidates [89]. The noise
level value itself is automatically determined. The retention-time-window was
set to +/- 3 seconds which could be deduced from the chromatographic per-
formance of the method we used. The optimal value for split-ratio follows from
the expected co-elution of isomeric compounds and whether or not one wishes
to separate (split) them or combine them.

5.3 experimental

The software was written in Matlab 2011a (64 bit) using the bioinformatics-
, image processing- and statistical toolboxes. All calculations were done on a
DELL workstation equipped with a 4 core Intel c© Xeon c© CPU X5482 @3.2 GHz
processor and 16GB of memory running Windows 7 Professional 64 bit.

To demonstrate the proposed method, its functionality was tested using data
of a clinical study obtained from a global lipid platform measured in positive
mode[53]. The spectra obtained from this method are amongst the most com-
plex to analyze and extract since the intensity range of the different co-eluting
compounds per scan can differ in orders of magnitude (3-5 times) together
with the presence of a large number of isomers. Figure 4 illustrates a typical
example of a mass spectrum obtained from this LC-MS platform; it is clear that
many compounds are co-eluting (Figure 4a) but also that these co-eluting com-
pounds (with different elemental composition) have isotopic and ionic masses
that are almost similar and are therefore difficult to integrate accurately and
reproducibly (Figure 4b at 707.55 Da).
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Figure 4: A typical mass spectrum obtained from LC-MS lipidomics platform.
A: the full scan range shows the huge dynamic range. B: an enlarge-
ment showing interference of (isotopic) masses of co-eluting com-
pounds at 707.55 Da(A) reconstructed peak from profile data and (B)
reconstruction of the same peak (as a) but now after centroiding

In order to demonstrate the effectiveness of our integration method we com-
pared our results in two different ways. To demonstrate the quantitative ca-
pabilities for a set of known compounds we compared our results against
the reference optimized targeted and manually controlled quantification us-
ing proprietary vendor software. Secondly we compared our untargeted re-
sults against the commonly used XC-MS method for these aforementioned
compounds.

The 128 samples (16 QC, 112 study samples) were processed using propri-
etary vendor software (Agilent, MassHunter QuantAnalysis 4.0) for a list of
known targets (174, including 8 internal standards and 8 calibrants) which
made them a perfect test-case (the reference set). To compare our integration
results to the reference set we included all the 128 samples.

The study samples originated from subjects that underwent bariatric surgery;
before and after treatment. For only a few number of patients all sample points
were contained in this analytical batch. Earlier multivariate (unpublished) anal-
ysis on this sub-set of samples indicated a clear treatment effect. To demon-
strate the added value of the unknown (untargeted) data we limited ourselves
to this group of samples only (24 in total) for further statistical analysis.

The data were acquired on a LC-MS from Agilent (profile qTOF 6530) that
was set to a mass resolving power[145] of 10,000. All the mass spectra were
recorded in full scan mode and centroided mode simultaneously. Quantitation
using Agilent QuantAnalysis[1] is limited to centroided data only. For the
automatically generated feature extraction we used uncompressed full scan
profile data. The uncompressed full scan profile LC-MS data were converted
from the proprietary .d MassHunter format from Agilent to mzXML format
using trapper[74] software (version 4.3.1 (build Sep 9 2009 12:29:13)) before
importing in Matlab to run our integration software.

For comparison purposes the same mzXML files were also processed by
XC-MS. The configuration parameters of XC-MS were optimized especially
for processing high resolution LC-MS spectra from lipidomics samples. Even
though these computations were performed on a machine with more internal
memory (Dell Poweredge 1950, 2x quad core CPU, 40 GB memory), not all
files could be processed. In order to still be able to make a fair comparison
we selected 70 samples (16 QCs and 54 study samples) to be processed by XC-

81



a new approach to untargeted integration

MS. We assured that all metabolites from the reference dataset were present
in these samples and compared the XC-MS integration results to the reference
set results for these 70 samples.

5.4 results and discussion

5.4.1 Feature extraction, grouping and comparison over samples

The mass spectra were acquired at a mass resolving power of 10,000, con-
sequently the mass-resolution parameter was set to 10,000. Because we wanted
to compare the results to those obtained by vendor software using highly op-
timized integration parameters for some compounds, the optional split-ratio
was set to a very sensitive 0.01. This meant that if features contained two or
more peaks with intensities as small as 1% of the highest peak in that feature
it was split into multiple features. For every sample the automatic feature
extraction method yielded approximately 100,000 single features. After the
feature grouping step, approximately 13,000 combinations of 2 or more fea-
tures were generated. This way, at least more than 26,000 (2x13,000) features
per sample remained for comparison over samples. We allowed a retention-
time-window of 3 seconds to match feature-sets over samples what resulted in
a list of 210 thousand feature-sets over all 128 samples. The final list of feature-
sets was approximately 16 times larger (210,000/13,000) than the list created
per individual sample and indicated that the different samples contained sam-
ple specific/unique feature-sets. When masses and/or retention times of the
same compound between samples deviate more than what is expected, it is
likely that these 210,000 feature-sets include mismatches. We assume that by
the right choice of the mass and retention time window the number of mis-
matches is limited. The use of quality control samples enables the selection
of robust feature-sets (i.e. smaller than 0.2 RSD) and as such removes mis-
matches. Most of the feature-sets are detected in 50%-55% of all samples. 1005

feature-sets were detected in all samples. The distribution of the presence of
each feature-set in all 128 samples (study + QC) is shown in Figure S53 of the
Supporting information.

5.4.2 Targeted results vs. untargeted results

To demonstrate the capability of our extraction method to successfully ex-
tract and integrate we focused on a list of known targets and calibrants that
were processed using vendor software (MassHunter Quant Analysis 4.0). By
means of comparing the characteristic mass values of the feature-sets and the
retention times to those of the known targets, 171 of the 174 targets from our
manually optimized integration method were found in the feature-sets. The
3 missing targets could be traced back in the list of single features. Investiga-
tion confirmed that no isotopic patterns for these targets could be found. For
comparison over different samples purposes the windows for mass range and
retention time range were set to 10,000 and 10 seconds respectively. The al-
lowed retention time window of 10 seconds ensured that we would definitely
find the corresponding feature-sets. In Figure 5 we plotted a typical result of
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peak areas that were integrated using the vendor software against those found
by our untargeted method (the area of the characteristic feature only); the
smaller the spread around the diagonal, the higher the similarity. Some more
examples are included in the Supporting Information (Figure S54). Overall
very good Pearsons correlations ( >0.8) between our method and the reference
method were obtained.

Figure 5: Comparison between untargeted integrated areas (y-axis) and areas
obtained with vendor software for a known target (x-axis).

Figure 6a shows the distribution of correlations between our method and
the conventional method for all targeted lipids; it was clear that most of the
targets show high correlation. To reduce the obvious influence of higher in-
tensity values, the data were first log10 transformed before calculating the cor-
relation (Pearson) between the targeted and untargeted approach. For some
feature-sets a rather low correlation was found (e.g.<0.7); further investigation
revealed that in these cases the peaks were actually split into multiple fea-
tures indicating bi- or multi-modality (e.g. isomers) which was not the case in
the reference method where the isomers were integrated as a total. Arguably,
higher split ratios would result in more comparable results to the conventional
vendor software but actually our aim is to detect compounds as good as pos-
sible as opposed to what would be achievable with the vendor software. For
one feature-set there was almost no correlation, however it was confirmed that
this target was not detected (at all) for many samples in the reference set. In-
ternal standards (8) and calibrants (8) were not included in this summary as
they showed almost no variation over samples rendering correlation values in-
appropriate to compare both integration approaches. Of the remaining known
targets (174-8-8-2=156) 73% (114) had a correlation higher than 0.9 and 87%
(138) had a correlation higher than 0.8. Figure 6b shows the relation between
the correlations found and the average peak intensity for the known targets;
no clear relation between intensity and observed correlation could be observed.
Low correlations were due to isomeric compounds as mentioned earlier.
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distribution of correlation between untargeted and
conventional approach for the known targets
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Figure 6: A: The distribution of the correlations between the untargeted and
targeted results. The low correlations are the result of the sensitive
split function. In 73% the correlation was higher than 0.9. B: The
same correlations vs. the average intensity of the known peaks. There
is no clear relation between lower intensity and lower correlation.

To compare our untargeted approach to an alternative commonly used un-
targeted approach, 70 samples were analyzed with XC-MS. This resulted in a
list of 1558 single features. Using the same mass and retention time ranges
as earlier with our software (i.e. 10,000 and 10 seconds) only 131 of the 174

target features were found. The correlation of the integrated areas for those
targets that were found with those from the reference set (107 of them had a
correlation higher than 0.9) was comparable to our untargeted approach but in
general, XC-MS seems to have issues detecting peaks with low average peak
intensity. One could argue that different settings for XC-MS should be used
but the settings were already optimized for analysis of comparable lipidomics
data which had been a very time consuming process by itself.

5.4.3 Untargeted results

Our untargeted integration method generated a lot more data than the 174

known targets and up to now the feature extraction, grouping and sample
comparison did not include any study or sample information and as such
could be considered really untargeted. To reduce the number of feature-sets
to an easier to interpret and handle amount we included available analytical
sample and study (design) information to post-process the feature-set list.

Depending on the types of samples that are measured, a biological question
that needs to be answered (if any), several post-processing steps were possi-
ble using sample and study design information[13]. In our case, we focused
on only those feature-sets for which a signal was detected in all quality con-
trol samples. This hugely reduced the number of feature-sets from 210,000 to
approximately 3,200, a conservative estimate of at least 10 times the number
of known-targets. Figure 7 shows the relation between the RSD values of the
peak areas of the characteristic mass of the feature-set determined by repeated
measurements of the QC samples (RSDQC) vs. the average peak area for these
3,200 feature-sets. We again confirmed that all known targets from the target
list were still present (Supporting Information Figure S55). In Figure 7 the ad-
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ditional feature-sets are plotted from which we first removed any feature-set
possibly related to a known target (e.g. other molecular adducts (NH4, Na and
K) and molecular ions in case a molecular adduct was used to quantify). For ex-
ample, if for a known target with mass M there was a feature-set with the same
retention time and mass M+18.033823, M+22.98922 or M+38.963158 for NH4,
Na or K respectively, it was removed. This was done for the purposes of this
study only to demonstrate if the remaining feature-sets not related to known
targets also contain biological information using PLS-DA modeling later. The
vertical and horizontal dotted lines indicate the 20% RSDQC level and the aver-
age intensity of the lowest abundant known target respectively (Ilow = 18,620

AU).

Figure 7: RSD in QC samples per feature set vs. log10 of average intensity of
that feature set for all the unknown feature-sets that were present in
all QC samples and not related to any known target.

It was observed that the average intensities of approximately 55% of the
3,200 feature-sets were above Ilow and that almost 50% had an RSDQC lower
than 20%, which from a data analysis point of view would be of interest at
least to include in the analysis[117]. To indicate the added value of the extra
feature-sets without entering the realms of a full data-analysis, we focused
on four different subsets of feature-sets; the known targeted feature-sets (156

feature-sets), a sub-set of unknown feature-sets with characteristics similar to
the known targets (RSDQC <20% and average intensity >Ilow, 1,175 feature-
sets) and unknown feature-sets that could biologically be very interesting too
because of their low abundance(e.g. oxidized lipids etc.) , (RSDQC <20% and
average intensity <Ilow). In the fourth sub-set all feature-sets from the three
other sub-sets were combined.

To compare the biological information content in either sub-set four different
PLS-DA models[9], were build. For these models we focused on the sub-group
of 12 subjects before and after bariatric treatment (see experimental) and ob-
ject centered the data to remove inter patient variability. To limit the effect of
overfitting all four models were double cross validated[114] and to get more
realizations of the classification error different randomization schemes were
used[41]. All four models, created with one latent variable, were highly pre-
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dictive (specificity and selectivity were both 1) and performed equally with no
misclassification (accuracy=1). This confirmed that relevant biological informa-
tion was also contained in the new non-targeted found feature-sets.

To quantify the added value of the new feature-sets we ranked the most
important variables of the PLS-DA models according to their selectivity ratio
(SR)[101, 102]. To disclose the most important variable with respect to the re-
sponse variable the selectivity ratios translates the PLS model regression vector
to information suitable for easy (univariate) interpretation. In Figure 8 the top
20 most important feature-sets are ranked according to their SR value obtained
from the combined PLS-DA model. Most (10) of the high ranking feature-sets
were part of the new found feature-sets confirming their potential biological
relevance, also with respect to the known targets. Furthermore 5 feature-sets
originating from the low-abundant group were found in this top 20 underlin-
ing their biological potential.

Figure 8: RSD in QC samples per feature set vs. log10 of average intensity of
that feature set for all the unknown feature-sets that were present in
all QC samples and not related to any known target.

5.5 discussion

As we demonstrated the effectiveness of our approach we realize that this is
not the only software that is capable of doing untargeted analysis using high
resolution LC-MS spectra. What makes this method different however, is that
only a very limited amount of expert knowledge is required to use this method
and the untargeted implementation to the very end. Subsequent matching of
feature-sets instead of single features across samples arguably increases the
probability of a proper match. Using only isotopic patterns we generated a lot
of feature-sets and eliminated a lot of single features. In our demonstration we
kept the rule-set as small as possible. The advantage of incorporating as little
information as possible is that we were able to focus at feature extraction per
sample which makes up-scaling for future implementations relatively easy.

The amount of feature-sets could be reduced even further by applying adduct
rules or for GC-MS extended to a whole range of co-eluting features (possibly
database driven). Using the framework of single sample feature extraction and
grouping to feature-sets we envision that this approach can also form the base
for automated CE-MS analysis which is hampered by huge migration time
shifts across samples.
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The number of unique feature-sets over all 128 samples (∼210,000) was large
and therefore difficult to interpret and handle (for any statistical modeling and
reporting). This reveals an intrinsic complication that untargeted analysis ap-
proaches face. This however does not have to be problematic if clever sampling
schemes and study designs are used. For routine analysis one could for exam-
ple select only those feature-sets that are stable in repeated measurements of
the same sample or QC samples like we did in this case. If the study is fo-
cused on biomarker discovery the QC approach could be unsafe and different
approaches could be followed (e.g. pooled QC samples per class).

Another aspect of our approach is the potential risk of missing out on fea-
tures that do not show any discernible isotopic pattern across all samples in-
cluded and therefore end up in the list of single features. The advantage of
the focus on feature-sets in our opinion clearly outweighs this risk. However
when small metabolites (e.g. low number of C atoms) are expected with low
abundance single features should and can be included.

Even though we demonstrated the biological potential (i.e. relevance) of
these additional unknown features, the outcome of our data analysis was
purely driven by emphasizing the contrast between the new feature-sets and
the known-features. For this reason no reference was made to the identity of
the selected feature-sets.

The software was demonstrated for data from a TOF mass spectrometer.
The software has been extended to allow for non-equidistant sampling points
in cases the data was acquired on an FT or Orbitrap mass spectrometer. In
contrast to R (runtime environment for XC-MS), Matlab is not freely available
and licenses would be required to run our integration tool.

5.6 conclusions

We introduced a new method to integrate high resolution full scan profil-
ing LC-MS data in an untargeted manner. To demonstrate the effectiveness
of our strategy of only comparing feature-sets over samples we used complex
lipidomics full scan profiling LC-MS data of 128 samples. We compared the
automatically integrated areas for a set of 174 known target lipids to those
obtained by optimized and manually controlled quantification using vendor
software. For 87% of the targets the correlation between the sample areas de-
termined by vendor software and the untargeted approach was higher than
0.8. For 73% of the targets the correlation was higher than 0.9. Low corre-
lations were found for isomer peaks that were integrated as one peak using
vendor software or peaks that showed no discernible isotopic pattern. No
clear relations between the correlation and average peak area were observed.
The high correlations are impressive since the integration parameters for the
different lipids (e.g. combining/splitting of isomers) in the vendor software
have been highly optimized over a period of years. Furthermore, it indicates
that even if the only interest is in known compounds for reasons like direct
biological interpretability, our approach can still be applied. The untargeted
method extracted at least 10 times more feature-sets than the known target
lipids. PLS-DA models based on either the additionally found feature-sets or
on the extracted known targets performed equally. Based on selectivity ra-
tios we showed that the most important feature-sets were contained in the set
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of higher abundant unknown feature-sets, confirming the potential biological
relevance of these feature-sets found and thus indicating the added value of
untargeted integration. The method proposed is fully automated and almost
no user interaction is needed which makes it a perfect candidate for inclusion
in a data pre-processing pipeline. As the extraction is on a per-sample base
the method is highly scalable when more computers/processors are available.
The grouping of features to feature-sets is specific to high resolution mass
spectrometry data. We envision that this method can be extended to facili-
tate GC-MS feature extraction by using database information and automated
CE-MS integration by adding the necessary alignment routines. A copy of the
Matlab package is available on request from the corresponding author.
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S U P P L E M E N T T O A N E W A P P R O A C H T O U N TA R G E T E D
I N T E G R AT I O N O F H I G H R E S O L U T I O N L C - M S D ATA

s5.1 re-calibration of profile data

To explain why a specific mass for a compound has a bandwidth and not
one exact mass it is convenient to recall some of the basics of time of flight
mass spectrometry; depending on the mass over charge ratio (m/z) it takes
longer to reach the detector (reflectron). Peak broadening occurs because not
all of the (identical) molecules get desorbed at the same time in the same place
(in the reflector). In Figure S51a this peak broadening is demonstrated with
a mass spectrum of a molecular ion and its (2) isotopic masses. The numbers
above the peaks indicate the m/z value that was determined. Figure S51b
displays the same part of the mass spectrum but now a number of scans later.
Even though the masses look very alike they are not the same.

Figure S51: A: part of a profile mass spectrum at point x. B: the same part of
the mass spectrum some scans later. The masses are not exactly
the same for each scan

The masses were determined from the time that it took to reach the detector
(Time of Flight). Consequently this meant that the bulk of the compound in the
different scans reached the detector at a slightly different time with each scan.
Since a lock mass calibration fluid (922.0098 Da) was post-column infused to
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the sample, every scan contained this absolute reference mass. We recalibrated
the mass values using this lock mass.
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Figure S52: a bimodal peak, e.g. no separation at baseline level, results in 2

separate features after using the optional split function (b and c).
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Figure S53: The distribution of the feature-sets found in study and QC samples,
most of the feature-sets are found in 50-55% of all samples.
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Figure S54: comparison between untargeted integrated areas (y-axis) and ar-
eas obtained using a target list with vendor software (x-asis). The
squares indicate QC samples, the crosses the regular samples.
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Figure S55: the RSD in QC samples for the feature-sets belonging to the known
targets vs log10 average intensity of that feature-set
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6
S U M M A RY A N D F U T U R E P E R S P E C T I V E S

The aim of this thesis was to develop concepts and methods to extract qual-
itative and quantitative information about metabolites from untargeted mass
spectrometric data of biological samples. Several typical challenges in data
handling were addressed that prevent a straightforward interpretation (data
analysis) of the data acquired with different types of mass spectrometric-based
metabolomics methods (GC-MS, LC-MS, CE-MS or DI-MS) methods. The crit-
ical parameters causing variation in quantitative results were identified and
studied at different stages in the metabolomics workflow such as data acqui-
sition (Chapter 2), data pre-processing (Chapters 2, 4 and 5) and data anal-
ysis (Chapters 3 and 5). Different methods and concepts were developed to
address these and to improve the quantitation of metabolites and the compari-
son between metabolite data in different samples of the same study measured
at different moments or between studies. The methods developed focused
on improved normalization, data pre-processing of untargeted analysis and
data pre-processing of high resolution direct infusion mass spectrometry data.
Furthermore it was demonstrated that even for metabolomic studies with few
samples cross-validation of multivariate models can be very time consuming
and parallel implementation on a (large) cluster of computers is the way to
make such computations feasible.

All methods were developed in such a way that they can be used as an
automated module within the data processing pipeline. In Chapter 2 it was
shown that quantification of metabolites in metabolomics studies greatly can
be improved using single point calibration. The abundance of each metabo-
lite is related to a predefined amount of internal standard added to each sam-
ple. This one-point calibration is indispensable when large-scale metabolomics
studies are performed, in which both within and between batch differences be-
come a problem due to instrumental and environmental changes during the
measurements of the large number of samples. By repeated measurements
of a representative sample for the study, usually pooled Quality Control (QC)
samples, we demonstrated that the relative standard deviation (RSD) of in-
dividual metabolites in these QC samples before and after internal standard
correction is a good measure to find the best match between a given metabo-
lite and a set of internal standards that were spiked in the sample. This is a
practical alternative to using a separate (isotope labeled) internal standard for
each metabolite, which is often not feasible due to high costs and/or limited
availability of such standards. It was shown that two types of QC samples are
required whereby the first type, the calibration QC samples, is used to perform
a one-point calibration, and the second type, validation QC samples, is used
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to assess how well the calibration procedure improves the data quality. As a
result, the biological variation in the study samples becomes more apparent,
and more meaningful statistical models can be built.

In Chapter 3 it was demonstrated that based on untargeted LC-MS measure-
ments of urine samples a statistically significant multivariate model could be
constructed to distinguish between progressive and non-progressive subjects
within the normal urinary albumin excretion rate (AER) group with 75% ac-
curacy. The metabolic profile defined by the multivariate model included all
of the measured compounds that showed a univariate significant difference
between the two groups. The profile, however, also included metabolites that
did not show a univariate significant difference and emphasizes the additional
benefit of multivariate statistics over univariate statistics alone in preventing
overlooking candidate biomarkers. Key for multivariate modeling however is
proper model validation and permutation testing.

We demonstrated the use of rapid metabolic fingerprinting for rapid deter-
mination of metabolic changes in Chapter 4 and we were able to distinguish
metabolic profiles of early developmental stages of zebrafish embryos using
High Resolution Direct Infusion Mass Spectrometry (HR-DI-MS). Actually, in
this project data preprocessing was not the focus of the project at the beginning,
but the lack of automated data pre-processing of this type of data initiated the
development of the method described in this chapter. The huge number of
features that were generated in a single mass spectrum made clear that some
kind of unique (virtual) reference point (e.g. a feature appearing in all samples)
over the samples was needed. After careful data preprocessing and analysis,
we were able to isolate 102 features that showed consistent behavior within
each developmental stage. Principal Component Analysis revealed that early
development stages of zebrafish embryos could be differentiated from each
other. In total 27 out of the 102 features were (putatively) identified. Several
observed trends of these putatively identified metabolites were supported by
previous publications. But more importantly, with our method several new fea-
tures were discovered as being relevant during early development of zebrafish
embryos. It could be concluded that HR-DI-MS is suitable for rapid meta-
bolic profiling on zebrafish embryos. However, to improve robustness and
obtain more high-quality features better, fast but appropriate sample prepara-
tion methods are required.

In Chapter 5 a new method to integrate high resolution full scan profiling
LC-MS data in an untargeted manner is introduced. To demonstrate the effec-
tiveness of the strategy of only comparing feature-sets over samples we used
complex lipidomics full scan profiling LC-MS data. The automatically inte-
grated areas for a set of known target lipids were compared to those obtained
by optimized and manually controlled quantification using vendor software.
i.e. which were considered as the reference data. Very high correlations with
the reference data were observed which was impressive since the integration
parameters for the different lipids (e.g. combining/splitting of isomers) in the
vendor software have been highly optimized over a period of years. The un-
targeted method extracted at least 10 times more feature-sets than the known
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target lipids and PLS-DA models based on either the new found feature-sets
or on the extracted known targets performed equally well. Selectivity ratios
however, showed that the most important discriminating feature-sets were con-
tained in the set of higher abundant unknown feature-sets, confirming the
potential biological relevance of these feature-sets found and thus indicating
the added value of untargeted integration, as these allow also the detection of
metabolites and lipids at low concentrations, and include also so far unknown
metabolites. The proposed integration method requires only a very limited
amount of expert knowledge and is fully automated with almost no user inter-
action which makes it a perfect candidate for inclusion in a data pre-processing
pipeline. Because the extraction and integration method is implemented on a
per-sample base, the method is highly scalable when more computers/proces-
sors are available. We envision this method to be extended to also facilitate
GC-MS feature extraction but also enable automated CE-MS data analysis that
suffers from huge migration time shifts between samples.

With respect to the title of this thesis, one may ask the question whether
quantification of untargeted mass spectrometry data was significantly improved
by the methods described in this thesis, and are these methods suitable for me-
tabolomics research project? The answer is complex as the developed methods
indeed improved the quantification of metabolites and allowed to identify and
deal with the sources of analytical variation, but more developments are re-
quired.

The inclusion of multiple internal standards in untargeted profiling methods
is essential and it should always be investigated which internal standards to
use. Often there is a high correlation between the added internal standards.
This is partly due to the way the samples are prepared (i.e. adding a mix of
internal standards as one solution). Ion suppression can jeopardize quantifi-
cation. The experimental setup to qualitatively screen for regions that suffer
from matrix effects using post column infusion is very interesting. Infusing
a mixture of reference signals could then act as calibration points and correct
for the amount of suppression at that point in time, i.e. acting as internal stan-
dards.

The huge number of additional features that was generated using the untar-
geted integration method also introduces a new challenge: what is the right
strategy to analyze these features, which feature-set is good, which is not?
To test this, often, like we did, the reproducibility in repeated measurement
of pooled quality control (QC) samples is used. If however the focus is on
biomarker discovery such a strategy is riskful. The nature of a pool of QC
samples is that it is an average of all metabolites that can be expected. But
what if the (unknown) biomarker that we are looking for is too much diluted
in this average sample? If the concentration of a biomarker is close to the quan-
tification limit, and if it is only present in one of several classes of a (clinical)
study, the concentration in the pooled QC sample may be so low that the RSD
values of repeated measurements in the QC samples are unacceptable high
and the biomarker will be excluded for further data analysis. In cases like
these, a pooled reference sample per sample class group would be beneficial.
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RSDs can then be determined per sample class and data-analysis would be
enriched with metabolites that otherwise would not have passed the criteria.
Consequently the standard data acquisition protocol should be adjusted ac-
cordingly for future metabolomic studies by including multiple class-specific
QC samples. Experiments should quantify/qualify this dilution effect and as-
sess whether pooled QC samples per control group are more representative
than overall pooled QC samples for all metabolites in both groups. In these
experiments the response of the QC pool per group(s) should be compared to
the response of the combined (regular) pooled QC sample over a large number
of measurements to mimic the experimental variations of a large metabolomics
study as much as possible.

The importance of the QC samples becomes more and more apparent but
the limited amount of material often prohibits re-measurement in different
studies but sometimes there is not even enough material available to create an
adequate QC pool for the original study. In such cases it would be of much
interest to evaluate the response of different types of reference samples. Do
these reference samples behave adequately for QC monitoring and QC correc-
tion and/or would they act as good validation samples to test the QC correc-
tion and IS correction steps? It would be even more interesting to evaluate if
these references samples could be used as transfer samples to create so-called
transfer models and enable direct comparisons between different studies.

In Chapter 5 feature-sets like molecular adducts that were related to known
lipids were explicitly left out not to influence the model prediction. But what
if they were also included? It is known that in some matrices (e.g. different
samples, experimental conditions) adducts are more easily created then in oth-
ers. It could be expected that the sum of all compound related masses could
improve the quantitative comparison between the different samples and mini-
mize matrix effects, another hypothesis worthwhile to test in the future.

In conclusion, significant progress in the data processing of MS-based meta-
bolomics data was achieved in this thesis, but much progress still has to be and
will be made in this field. The ever increasing computing power enables ever
more complex data extraction, data processing and data analysis procedures.
The popularity of untargeted methods is likely to increase as a consequence of
the development of new software, complex deconvolution algorithms, higher
mass accuracies and reference databases. And such untargeted methods allow
the detection of a target list of metabolites. But even though fewer compounds
are measured and/or reported, targeted methods will always have its advan-
tages (e.g. less processing time), especially when high throughput of samples
is of concern. The success of an analytical platform hugely depends on the
ability of the subsequent data (pre)processing steps to obtain high quality data.
This dependency will always be there but new data (pre)processing techniques
may also inspire technical changes and/or different analytical setups. In con-
clusion, metabolomics research should be approached as an integrative effort
combining knowledge on the biological question, sample processing and data
acquisition and data processing, and subsequent data analysis, to ultimately
answer biological questions.
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de Angelis, Florian Kronenberg, Thomas Meitinger, Hans-Werner
Mewes, H-Erich Wichmann, Klaus M Weinberger, Jerzy Adamski,
Thomas Illig, and Karsten Suhre. Genetics meets metabolomics: a
genome-wide association study of metabolite profiles in human serum.
PLoS genetics, 4(11):e1000282, November 2008.

[37] H.G. Gika, G.A. Theodoridis, J.E. Wingate, and I.D. Wilson. Within-day
reproducibility of an hplc-ms-based method for metabonomic analysis:
application to human urine. Journal of proteome research, 6(8):3291–303,
2007 Aug.

[38] W Goessling, T E North, and L I Zon. New waves of discovery: model-
ing cancer in zebrafish. Journal of clinical oncology : official journal of the
American Society of Clinical Oncology, 25(17):2473–2479, 2007.

[39] Per-henrik Groop, Merlin C Thomas, John L Moran, Johan Wade, Lena M
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[85] VP Mäkinen, Pasi Soininen, Carol Forsblom, Maija Parkkonen, Petri In-
gman, Kimmo Kaski, Per-henrik Groop, Mika Ala-korpela, and Study
Group. Diagnosing diabetic nephropathy by 1 H NMR metabonomics
of serum. Magnetic Resonance Materials In Physics Biology And Medicine,
19(6):281–296, 2006.

[86] Luc Massart and Bernard Vandeginste. Chemometrix: a textbook. Elsevier
Science, 1991.

[87] B K Matuszewski and M L Constanzer. Strategies for the Assessment of
Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS
/ MS. Analytical chemistry, 75(13):3019–3030, 2003.

[88] A H Meijer and H P Spaink. Host-pathogen interactions made trans-
parent with the zebrafish model. Current drug targets, 12(7):1000–1017,
2011.

[89] James N Miller and Jane C Miller. Chemometrics for Analytical Chemistry.
Trans-Atlantic Pubns, 5th edition, 2005.

[90] Sofia Moco, Jacques Vervoort, Raoul J. Bino, Ric C.H. De Vos, and Raoul
Bino. Metabolomics technologies and metabolite identification. TrAC
Trends in Analytical Chemistry, 26(9):855–866, October 2007.

[91] John a Morgan and David Rhodes. Mathematical modeling of plant
metabolic pathways. Metabolic engineering, 4(1):80–9, January 2002.

[92] J.E Mrocheck and W T Jr. Rainey. Identification and Biochemical Sig-
nificance of Substituted Furans in Human Urine. Clinical Chemistry,
18(8):821–828, 1972.

[93] Jeremy K Nicholson, Elaine Holmes, James M Kinross, Ara W Darzi,
Zoltan Takats, and John C Lindon. Metabolic phenotyping in clinical
and surgical environments. Nature, 491(7424):384–92, November 2012.

106



bibliography

[94] E S Ong, C F Chor, L Zou, and C N Ong. A multi-analytical approach
for metabolomic profiling of zebrafish (Danio rerio) livers. Molecular
bioSystems, 5(3):288–298, 2009.

[95] Fred C Pampel. Logistic Regression: A primer. Sage Publications, Thou-
sand Oaks, London, New Delhi, 2000.

[96] C Papan and L Chen. Metabolic fingerprinting reveals developmental
regulation of metabolites during early zebrafish embryogenesis. Omics :
a journal of integrative biology, 13(5):397–405, 2009.

[97] C Pardo-Martin, T Y Chang, B K Koo, C L Gilleland, S C Wasserman,
and M F Yanik. High-throughput in vivo vertebrate screening. Nature
methods, 7(8):634–636, 2010.

[98] D Pawlak, A Tankiewicz, P Mysliwiec, and W Buczko. Tryptophan
Metabolism via the Kynurenine Pathway in Experimental. Nephron,
pages 328–335, 2002.

[99] A E Pegg. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic
regulator. American journal of physiology. Endocrinology and metabolism,
294(6):E995–1010, 2008.

[100] Yang Qiu, Dilip Rajagopalan, Susan C Connor, Doris Damian, Lei Zhu,
Amir Handzel, Hu Guanghui, Arshad Amanullah, Steve Bao, Nathaniel
Woody, David MacLean, Kwan Lee, Dana Vanderwall, and Terence Ryan.
Multivariate classification analysis of metabolomic data for candidate
biomarker discovery in type 2 diabetes mellitus. Cytokine, pages 337–
346, 2008.

[101] Tarja Rajalahti, Reidar Arneberg, Ann C Kroksveen, Magnus Berle, Kjell-
Morten Myhr, and Olav M Kvalheim. Discriminating variable test and
selectivity ratio plot: quantitative tools for interpretation and variable
(biomarker) selection in complex spectral or chromatographic profiles.
Analytical chemistry, 81(7):2581–90, April 2009.

[102] Tarja Rajalahti and Olav M Kvalheim. Multivariate data analysis in phar-
maceutics: a tutorial review. International journal of pharmaceutics, 417(1-
2):280–90, September 2011.

[103] Charles J Rebouche and Hermann Seim. Carnitine metabolism and its
regulation in microorganisms and mammals. Structure, pages 39–61,
1998.

[104] Daniela Remane, Markus R Meyer, Dirk K Wissenbach, and Hans H
Maurer. Ion suppression and enhancement effects of co-eluting ana-
lytes in multi-analyte approaches : systematic investigation using ultra-
high-performance liquid chromatography / mass spectrometry with
atmospheric- pressure chemical ionization or electrospray ion. Rapid
Communications in Mass Spectrometry, pages 3103–3108, 2010.

[105] Daniela Remane, Dirk K Wissenbach, Markus R Meyer, and Hans H
Maurer. Systematic investigation of ion suppression and enhancement ef-
fects of fourteen stable-isotope-labeled internal standards by their native

107



bibliography

analogues using atmospheric-pressure chemical ionization and electro-
spray ionization and the relevance for multi-anal. Rapid Communications
in Mass Spectrometry, pages 859–867, 2010.
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S A M E N VAT T I N G

Daar waar genomics zich bezighoudt met het genoom, proteomics met het
proteoom, houdt men zich in het vakgebied metabolomics bezig met het me-
taboloom. Het metaboloom beschrijft het geheel van metabolieten; tussen- of
eindproducten die ontstaan nadat een chemische stof in een biologisch sys-
teem een chemische omzetting (stoffwisseling) heeft ondergaan. Metabolieten
worden gekenmerkt door hun (kleine) molecuulgrootte. De diversiteit aan
chemische eigenschappen van de metabolieten is essentieel voor de rol die
metabolieten spelen bij de verschillende biologische reacties in een biologisch
systeem. Karakterisatie en biologische interpretatie van het metaboloom zijn
daardoor een zeer grote uitdaging.

Vanwege de gevoeligheid en het vermogen om veel verschillende chemi-
sche verbindingen te kunnen detecteren is massa spectrometrie een detectie
methode die uitermate geschikt en veel gebruikt wordt binnen metabolomics.
Met een massa spectrometer (MS) is het mogelijk om op basis van de massa
en intensiteit van karakteristike ionen verkregen van een molecuul de verschil-
lende verbindingen in het metaboloom te identificeren en kwantificeren. Wan-
neer deze methode vooraf gegaan wordt door een scheidingsmethode (bijv.
gas chromatografie, liquid chromatografie (LC) of capillaire elektroforese kun-
nen verbindingen met gelijke massas van karakteristieke ionen op basis van
(andere) chemische eigenschappen toch van elkaar gescheiden worden.

Het nadeel van het gebruik van een massa spectrometer is dat de kwan-
tificatie van de metabolieten zeer gevoelig is voor de sterk variërende samen-
stelling van de te meten monsters (maar ook voor verschillen in experimentele
meetcondities (bijv. de temperatuur tijdens het meten). Om toch de con-
centratie van verbindingen in een monster betrouwbaar te kunnen bepalen
worden één of meerdere referentie componenten met bekende concentraties
toegevoegd. Dit referentie component is idealiter een natuurlijk isotoop (13C of
15N gelabeld) van de component in kwestie die zich in chemisch opzicht gelijk
zal gedragen als de ongelabelde component maar op basis van hun verschil-
lende massa onderscheiden kan worden. Om metingen tussen verschillende
apparaten te kunnen vergelijken worden referentie monsters, d.w.z. monsters
van gelijke (en soms volledig bekende) samenstelling, gebruikt.

Het aantal gedetecteerde unieke massa’s voor één enkel monster varieert
maar detectie van meer dan 10.000 massa’s is niet uitzonderlijk. Het absoluut
kwantificeren van zoveel componenten door het toevoegen van de juiste na-
tuurlijke isotopen gelabelde standarden zou niet alleen praktisch een onhaal-
bare situatie opleveren maar ook erg prijzig zijn. Bovendien is de identiteit
van alle unieke massas op voorhand vaak niet bekend. In dit geval wordt de
concentratie van geı̈dentificeerde massas vaak uitgedrukt in relatieve concen-
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traties t.o.v. een referentie component die representatief is voor een bepaalde
chemische klasse van verbindingen. De focus op kwantificering (of detectie)
van bekende componenten wordt targeted genoemd. Vanwege de grote che-
mische verscheidenheid aan mogelijke metabolieten zijn er veel verschillende
analytische platforms nodig om een zo volledig mogelijk metaboloom te meten.
Hoewel targeted de meest wijd verspreide methode is binnen metabolomics,
sluit deze aanpak het ontdekken van nieuwe metabolieten juist uit. Voor onder-
zoek naar nieuwe, nog onbekende metabolieten wordt de untargeted methode
gebruikt. In dit geval is er in het algemeen geen sprake van een voorkeur voor
specifieke componenten en wordt de groep van te detecteren metabolieten juist
zo groot mogelijk gehouden. Dit gaat dat vaak ten koste van het vermogen om
de metabolieten goed te kunnen kwantificeren.

In dit proefschrift wordt de ontwikkeling van methoden en concepten be-
schreven om zowel kwalitatieve als kwantitatieve metabolomics gegevens te
extraheren uit untargeted massa spectra data verkregen van biologische mon-
sters. De biologische monsters kunnen variëren van kleine individuele cellen
tot clusters van cellen of een coupe van weefsel of verschillende lichaamsvloei-
stoffen zoals urine, bloed of cerebrospinale vloeistof. Een algemene inleiding
van dit onderzoek is gegeven in hoofdstuk 1.

In hoofdstuk 2 wordt beschreven hoe de kwantificatie van de metabolieten
significant verbeterd kan worden wanneer naast de te meten biologische mon-
sters bepaalde referentie monsters worden meegenomen tijdens de analyse.
Systematische variaties die optreden tijdens analyses van grote series van mon-
sters (die soms weken tot wel maanden kunnen duren) kunnen niet alleen in
kaart worden gebracht maar ook worden gecorrigeerd door slim gebruik te
maken van deze referentie monsters.

In hoofdstuk 3 tonen we aan dat multivariate statistiek gebruikt kan wor-
den om predictieve modellen te maken van untargeted metabolomics data. In
dit geval beschrijft het model de kans, op basis van het metabole profiel van
de gemeten urine, dat de persoon in kwestie een progressieve vorm van nier-
falen heeft. De multivariate modellen bevatten informatie over de metaboli-
eten die ook in de univariate modellen als statistisch significant naar voren
komen maar ook metabolieten die univariaat juist niet significant bleken te
zijn. Het valideren van de multivariate modellen is echter niet eenvoudig en
kan zeer tijdrovend zijn maar door de ontwikkelde parallelle implementatie
van het predictie model en gebruikmakend van de supercomputer faciliteiten
bij SARA niet onmogelijk.

De kracht van een snelle untargeted metabole vingerprint wordt aangetoond
in hoofdstuk 4. Door het ontbreken van een scheidingsmethode is de identi-
ficatie alleen gebaseerd op massa (spectra). In dit hoofdstuk worden massa
spectra van zebravisjes in verschillende beginstadia van hun ontwikkeling na
bevruchting met elkaar vergeleken. In dit hoofdstuk laten we zien hoe en dat
de verschillende embryonale stadia van elkaar onderscheiden kunnen worden
d.m.v. metabolomics data.

Het feit dat targeted methoden in metabolomics wijdverbreid zijn is onder
andere het gevolg van het ontbreken van automatische methoden om untar-
geted data te kunnen verwerken. In hoofdstuk 5 wordt een nieuwe methode
geı̈ntroduceerd waarmee hoge resolutie LC-MS data geı̈ntegreerd kan worden
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op een volledig automatische manier. De resultaten van deze nieuwe methode
komen sterk overeen met de huidige gebruikte semi-automatische standaard
(targeted) aanpak. Naast de subset van bekende targets levert de nieuwe me-
thode echter ook een scala aan onbekende componenten op die ook biologisch
relevante informatie bevat.

In de hiervoor genoemde hoofdstukken is significante progressie beschre-
ven in het verwerken van untargeted, op MS gebaseerde, metabolomics data
maar tegelijkertijd wordt ook duidelijk dat er nog veel verbeterd kan worden.
In hoofdstuk 6 staan algemene conclusies en perspectieven voor toekomstig
onderzoek.

.
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