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Preface

This manuscript consists of two parts. In the first part, comprising Chapters 1
to 6, we build a theory for entangled radicals, and apply this to generalizations of
Artin’s primitive root conjecture. In the second part, consisting of Chapter 7, we
give an algorithm for enumerating so-called ABC triples and report results from the
ABC@home project, a volunteer computing project that has enumerated all ABC
triples up to 1018.

Artin’s primitive root conjecture, first stated in 1927 and adapted in the 1950s,
concerns the density of prime numbers q for which a fixed integer x 6= 0 generates
the cyclic group F∗q . Artin conjectured that this density exists and is equal to a
constant A times a rational correction factor depending on x that can be given
explicitly [2], with A defined as

A =
∏

p prime

(
1− 1

p(p− 1)

)
≈ 0.3739558 . . .

In 1967 this conjecture was proved by Hooley [16] assuming the Generalized Riemann
Hypothesis.

The algebraic number theory argument behind the conjecture, which we give
in its entirety in Chapter 1, revolves around the degrees of splitting fields Kp of
the polynomials Xp − x and their composita. These degrees are reflected in the
expression p(p− 1) in the constant above.

If we for the moment assume that x is not a perfect power, the mentioned correc-
tion factor is necessary to compensate for the fact that the fields Kp are not always
linearly disjoint. For x = 3 the fields Kp are all linearly disjoint, and in this case the
correction factor is 1. However, for x = 5, the splitting field of X2 − 5 is contained
in the splitting field of X5 − 5 since we have Q(

√
5) ⊂ Q(ζ5).

These unexpected additive relations determine the value of the correction factor.
In 2003, H.W. Lenstra, P. Moree and P. Stevenhagen [31] gave an interpretation of
this factor which served as the basis for the treatment in the present manuscript.

Roots of polynomials of the form Xn − a are called radicals, and following
H.W. Lenstra [19], we shall refer to these unexpected additive relations as entangle-
ment between radicals.

In Chapter 1, Theorem 1.5, we give a generalization of Artin’s primitive
root conjecture to number fields. We give the density as a similar product of a
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8 Preface

constant independent of x, times an explicit rational correction factor. Chapter 1 is
self-contained, and, besides containing the generalization of Artin’s conjecture, acts
as a prelude to the more general theory of entangled radicals covered in Chapter 2.

Let K be a field, K̄ an algebraic closure of K, and B ⊃ K∗ a multiplicative
group of radicals in K̄∗ over K, i.e., elements of K̄∗ of which a power is in K∗.
Let us also assume that K(B) is a Galois extension of K. Then determining the
entanglement is a key ingredient for the computation of the field degree [K(B) : K]
and the Galois group Gal(K(B)/K). The strictly multiplicative structure of B is
much more straightforward. In particular, the index of K∗ in B and the structure
of the automorphism group AutK∗(B) of automorphisms of B that are the identity
on K∗ are much simpler to analyze. This is also apparent in the context of Artin’s
conjecture: if we define Bp = 〈Q∗, ζp, p

√
x〉 for primes p, and B as the group generated

by all Bp, then the structure of AutQ∗(B) is independent of x (again assuming for
the moment that x is not a perfect power), and in fact we have natural isomorphisms

AutQ∗(B) ∼=
∏

p prime

AutQ∗(Bp) ∼=
∏

p prime

(Z/pZ) o (Z/pZ)∗.

Chapter 2 takes one further step back, and covers the setting of any group (in
applications usually a Galois group) acting on a group B of radicals. Groups of
radicals over a field have the property that all finite subgroups (i.e., those consisting
of roots of unity) are cyclic. This property is sufficient for the automorphism group
of the torsion subgroup of B to be abelian, and it turns out to be an essential part
of the theory. In fact, this property is not only sufficient, but also necessary for the
torsion subgroup of B to have an abelian automorphism group. (See Dixon [12],
exercise 3.12 for this result due to G.A. Miller.)

Let B therefore be an abelian group of which all finite subgroups are cyclic, and
let G be a profinite group acting continuously on B, where we give B the discrete
topology. We write BG for the subgroup of B consisting of the invariants under the
action of G, and assume that B/BG is torsion. This extension BG ⊂ B is what we
shall call a Galois radical group extension (Definition 2.7). The condition of B/BG

being torsion encodes that the elements of B are radicals over BG.

One of the main results of this thesis (Theorem 2.25) is that in this generality,
the image of G in Aut(B) is a normal subgroup of AutBG(B) and E =
AutBG(B)/im(G) is abelian. We call E the entanglement group of the action of G
on B.

This result builds on analogues of Kummer theory, Schinzel’s theorem, and other
theorems traditionally used to describe radical field extensions, which we state and
prove in Chapter 2.

A case of special interest is the entanglement group of the maximal radical ex-
tension of a field. We call this the absolute entanglement group, and compute
it in Chapter 3 based on the theory of Chapter 2. The characteristic 0 case of these
results has been announced in the lecture notes for a series of Colloquium Lectures
by H.W. Lenstra [19] at the AMS Annual Meeting in 2006.

In Chapter 4 we explicitly compute entanglement groups over Q, and apply that
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to compute field degrees of radical field extensions of Q. We use the expres-
sions for the entanglement group derived in Chapter 2 to construct a polynomial
time algorithm to compute these degrees, up to an evaluation of Euler’s totient
function ϕ.

In Chapter 5 we then return to Artin’s conjecture. Many variants of Artin’s
conjecture have been described and studied in the literature (see, e.g., [18, 20, 22,
24]). In many of these generalizations, the theory from Chapter 1 can no longer
directly be used, since that only considered roots of square-free order. In Chapter 5
we apply the more general theory of Chapters 2 and 4 to a number of generalizations
of Artin’s conjecture over number fields.

Specifically, we look at so-called near-primitive roots, where we consider the
density of primes q of a number field K where a fixed x ∈ K∗ generates a subgroup
of (OK/q)∗ of index dividing a given integer t. For the case K = Q, this has been
treated by P. Moree [23] building on a result by Wagstaff [35]. Another extension
we study is that of higher rank analogues of Artin’s conjecture, where we
take multiple non-zero elements x1, . . . , xk and consider the set of primes q of K for
which x̄1, . . . x̄k together generate (OK/q)∗. Over the rationals, this is covered by
P. Moree and P. Stevenhagen [24].

Due to the generality of the results of Chapter 2, we can also apply them outside
of the setting of radicals in unit groups of (number) fields. The setting we turn to
in Chapter 6 is that of tori. A torus is an algebraic group closely related to the
multiplicative group Gm, which we considered in Chapters 1 and 5. To satisfy the
requirement that finite subgroups are cyclic, we specifically restrict to rank one
tori over number fields. A point on such a torus can be reduced at almost all
primes, and as a consequence there is an analogue of Artin primitive root densities
in this setting, studied for tori over Q by Chen [7]. We show that our theory of
entangled radicals also applies to this setting, and use it to obtain a generalization
of Artin’s conjecture to rank one tori over number fields.

The final chapter of this manuscript covers an entirely different topic, and is
independent of the first six chapters — except for the central role the word radical
plays in both parts. Here, the radical of a positive integer is defined to be the
product of its prime divisors, without multiplicity. An ABC triple is a triple (a, b, c)
of coprime positive integers satisfying a+ b = c and a ≤ b, and for which the radical
of abc is smaller than c. For example, the smallest such triples are 1 + 8 = 9 and
5+27 = 32. In this chapter, we give bounds for the number of ABC triples, describe
an algorithm for enumerating all ABC triples below a given bound, and report
results from ABC@home, a distributed volunteer computing project that has
enumerated all ABC triples with c < 1018.



10 Preface



Chapter 1

Artin’s primitive root
conjecture for number fields

1.1 Introduction

The unit group of a finite field of n elements is a cyclic group, and it has ϕ(n − 1)
choices of generator. For example, the finite field F11 of 11 elements has ϕ(10) = 4
elements that each generate its unit group. To see if an element x is a generator
of F∗11, we could check that x isn’t a square or a fifth power, 2 and 5 being the
prime divisors of 10, the order of F∗11. We find that the residue classes of 2, 6, 7
and 8 are the four generators of F∗11. We call the integers in these residue classes
primitive roots modulo 11. More generally, we call a rational number x a primitive
root modulo a prime q if q does not divide the denominator of x and x mod q
generates F∗q .

Instead of determining which integers generate the unit group of a given finite
field Fq, we can reverse the question and ask modulo which (or how many) primes q
a fixed integer (or rational number) is a primitive root. For example, 2 is not only a
primitive root modulo 11, but also modulo 3, 5, 13, 19, 29, 37 and numerous other
primes.

Question 1.1. If x is a non-zero rational number, for how many primes q not
dividing the numerator and denominator of x is the unit group of Fq generated by
x mod q?

Only in the simple case when x is −1 or a square, where the answer is finite, can
this question be easily answered. In 1927, Emil Artin conjectured that there should
be an infinite number of primes q modulo which x = 2 is a primitive root, and even
that the set of such q should have a natural density. In the 1950s he adapted his
conjecture for general x ∈ Q∗, and this Artin’s primitive root conjecture was proved
by Hooley in 1967 under the assumption of the Generalized Riemann Hypothesis.

11



12 Chapter 1. Primitive roots in number fields

In this chapter, we will find a similar answer to the following analogue of the
previous Question 1.1 in arbitrary number fields.

Question 1.2. If K is a number field with x ∈ K∗, for how many primes q of the
ring of integers OK of K with ordq(x) = 0 is (OK/q)∗ generated by x mod q?

Let us first turn back to the heuristic argument Artin used to derive his conjec-
tural answer to Question 1.1. Since x is a primitive root modulo q exactly when
ordq(x) = 0 and the index [F∗q : 〈x̄〉] is 1, one may determine for each prime p the
set of primes q for which p divides [F∗q : 〈x̄〉], and remove these infinitely many sets
from the set of all primes to see which primes q are left.

If p is a prime that divides the index [F∗q : 〈x̄〉], then p divides the group or-
der #F∗q , and x mod q is an element of the index p subgroup of p-th powers in F∗q .
In this case, x mod q is the p-th power of p distinct elements of F∗q , so the polynomial
Xp − x splits completely into distinct linear factors modulo q.

Conversely, if Xp−x splits completely into distinct linear factors modulo q, then
x is a p-th power in F∗q and has distinct p-th roots. So, Fq contains a primitive p-th
root of unity, and p divides [F∗q : 〈x̄〉].

We conclude that for prime numbers p and q, we have

p | [F∗q : 〈x̄〉]⇐⇒ Xp − x splits completely into distinct linear factors modulo q.

In other words, the set of primes q modulo which x is a primitive root consists of
those q (coprime to the numerator and denominator of x) that do not split completely
in any of the splitting fields Kp of Xp − x, with p 6= q prime.

The Frobenius density theorem (or alternatively the stronger Chebotarëv density
theorem; see [32]) tells us that the set of primes q that split completely in Kp has a
natural density of 1

[Kp:Q] . If x is not a p-th power, this is equal to 1
p(p−1) .

Artin’s heuristic argument now continues: at each prime p, the condition that
p does not divide the index [F∗q : 〈x̄〉] excludes a fraction of 1

[Kp:Q] of all primes q.

Since for x = 2 the fields Kp are linearly disjoint over Q (embedding all Kp in a
common algebraic closure Q̄), these conditions are independent, and it is reasonable
to assume the set of primes modulo which 2 is a primitive root should have density∏

p prime

(
1− 1

p(p− 1)

)
≈ 0.3739558 . . . , (1.3)

a value that is now known as Artin’s constant.
When computers became sufficiently powerful in the 1950s to verify this density

empirically, Derrick and Emma Lehmer computed for a few small integers x the
number of primes q < 20 000 modulo which x is a primitive root. For x = 2, the
data matched Artin’s conjectured density well. For x = −3 and x = 5 however, the
observed densities were notably higher.

When Artin saw this, he realized that for general x, the conditions at the various
primes p are not always independent. To see why, consider x = 5 and look at
the splitting fields Kp of Xp − 5 over Q for primes p. We have K2 = Q(

√
5) and
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K5 = Q(ζ5,
5
√

5) where ζ5 is a primitive fifth root of unity. In this case we see
that K2 is contained in K5 because we have ±

√
5 = ζ5 + ζ−1

5 − ζ2
5 − ζ−2

5 (The sign
depends on the choice of ζ5.) and therefore Q(

√
5) is a subfield of Q(ζ5). Somewhat

informally, we say that
√

5 and ζ5 are entangled radicals.
If q is a prime that splits completely in K5, then it also splits completely in the

subfield K2. In other words, the primes q that the condition at p = 5 means to
exclude, have already all been excluded by the condition at p = 2. So, the factor
1− 1

5(5−1) in the infinite product must be omitted, and the density of primes modulo

which 5 is a primitive root should be 20
19 times Artin’s constant.

It can be shown that in the case of Question 1.1, where the ground field is Q,
the only dependency between the splitting fields occurs when the discriminant d of
K2 is odd, in which case K2 = Q(

√
x) is contained in Q(ζd) and thus also in Kd,

the compositum of all Kp with p | d. Lang and Tate gave the necessary correction
factor that results from this in 1965 in their preface to Artin’s collected works [2].
To prove this corrected conjecture, one needs to show that imposing countably many
splitting conditions does indeed give rise to a product density as in (1.3). If one uses
the Generalized Riemann Hypothesis to bound the error terms in Frobenius’ density
theorem, this can be done in the way given by Hooley [16]. To date, there is no
unconditional proof.

We now turn to Question 1.2 over a general number field K.
Just as for K = Q, we need to describe the set of primes q that do not split

completely in any of the splitting fields Kp of Xp−x over K. Imposing the splitting
condition in finitely many Kp amounts to prescribing the splitting behaviour in the
compositum Kn of these Kp (inside a fixed algebraic closure K̄), where n is the
product of the primes p considered.

More precisely, a prime q does not split completely in any of the extensions
K ⊂ Kp with p | n if and only if the Frobenius class Frobq in Gn = Gal(Kn/K) is
non-trivial when restricted to any of the subfields Kp ⊂ Kn. So, by the Chebotarëv
density theorem the set of primes q that do not split completely in any extension
K ⊂ Kp with p | n has a density equal to the ratio #Sn/#Gn with

Sn = {σ ∈ Gn : σ |Kp 6= id for all p | n}.

Letting n in the ratio #Sn/#Gn tend to the product of all primes then gives a
conjectured density of primes q modulo which x is a primitive root. Generalizing
Hooley’s work, Cooke and Weinberger showed in [9] that this conjectured density is
the correct density when the Riemann Hypothesis holds for all fields Kn.

In the number field case, there are two complications: the group Gal(Kp/K)
can be significantly harder to compute than for K = Q. Moreover, as we have
already seen over Q, the Galois group Gn = Gal(Kn/K) can be a strict subgroup of
the product

∏
p|n Gal(Kp/K), complicating the computation of this density. In the

general case, Gal(Kn/K) can differ from the product of Gal(Kp/K) in many more
ways than over Q.

The fields Kn are “radical extensions” of K generated by all n-th roots of x. For
such extensions, the Galois group Gn is a subgroup of the automorphism group of
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the multiplicative group generated by these roots.
To make this precise, adjoin all n-th roots of x (in K̄) to the multiplicative

group K∗, resulting in the abelian group Bn = 〈K∗, ζn, n
√
x〉 ⊂ K̄∗. The group

extension K∗ ⊂ Bn is a much simpler structure than the field extension K ⊂ Kn.
For example, adjoining a fifth root of unity to the abelian group Q∗ does not also
give a square root of 5.

We consider Gn = Gal(Kn/K) as a subgroup of the group An = AutK∗(Bn) of
group automorphisms of Bn that are the identity on K∗. This larger automorphism
group is much easier to compute than Gn itself. For one thing, unlike the Galois
group, the group An does always factor as

∏
p|nAp (see Lemma 1.12).

Even though we ignored the additive structure of the fields involved, the differ-
ence between the Galois groups Gn and the groups An is actually quite modest, as
reflected by the following theorem, proved in Section 1.4.

Theorem 1.4. For all n, the Galois group Gn is a normal subgroup of An with
finite, abelian quotient. There is a group E = EK,x such that for all n divisible by
all of a finite set of critical primes, the quotient An/Gn equals E.

This limit group E covers two things. For an individual prime p, the group Gp
may be smaller than Ap, although Theorem 1.4 implies this only occurs for a finite
number of primes. Additionally, E encodes the interdependencies between the local
conditions at all primes p. The entanglement group E admits an explicit description
that we derive in Section 1.3, and the set of critical primes in the theorem is given in
Section 1.4. For example, when K = Q, this set is empty unless the discriminant d
of K2 is odd, in which case it consists of the primes dividing 2d.

The correction factor we need for the density statement has a transparent de-
scription in terms of the finitely many characters χ : E → C∗ that “cut out” the
Galois group Gn of Kn/K from the automorphism group An.

Theorem 1.5. If the Generalized Riemann Hypothesis holds, the density of primes
q of K for which (OK/q)∗ is generated by x mod q exists and it is equal to

CK,x ·
∏

p prime

(1− 1

#Ap
), with CK,x =

∑
χ∈E∨

∏
p prime
χ(Ap) 6=1

−1

#Ap − 1
.

The proof of this theorem occupies most of the rest of this chapter. Afterwards, in
Section 1.5 we give an explicit method to compute the rational correction factor CK,x
with Lemma 1.13, and conclude with several examples.

1.2 Entanglement

In this section we will take a step back from the number theoretic view point of the
previous section, and study the Galois group of normal, separable field extensions
generated by radicals.
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Formally, if K ⊂M is any field extension, we call a subgroup B ⊂M∗ a radical
group over K if B contains K∗ and the quotient group B/K∗ is torsion. This last
condition means that every element of B has a power that is contained in K∗, or in
other words, B consists of radicals over K. The field extension K(B) of K is then
called a radical extension.

The extensions K ⊂ Kn from the previous section are examples of radical exten-
sions, with Bn = 〈K∗, ζn, n

√
x〉 as their generating radical groups. Here ζn denotes a

primitive n-th root of unity in a fixed algebraic closure K̄. We write µn ⊂ K̄∗ for
the group of all n-th roots of unity of K̄.

We will only consider radical groups B satisfying

∀x ∈ B : ∃n ∈ Z>0 : char K - n, xn ∈ K∗ and µn ⊂ B,

and call such groups Galois radical groups. The field extension K(B)/K generated
by such a group of radicals is separable due to the condition char K - n, and normal
since we require B to contain sufficiently many roots of unity, so K(B)/K is a Galois
field extension.

Since any field automorphism of K(B) is defined by its action on B, we can con-
sider Gal(K(B)/K) as a subgroup of the group AutK∗(B) of group automorphisms
of B that are the identity on K∗, also known as K∗-automorphisms.

The K∗-automorphism group genuinely depends on the generating radical group,
and not just on the radical field extension it generates. For example, the radi-
cal group B = 〈Q∗, ζ5〉 over Q has Q∗-automorphism group equal to the Galois
group Gal(Q(ζ5)/Q) ∼= (Z/5Z)∗. However, B′ = 〈Q∗, ζ5,

√
5〉, which generates

the same field as B, has a Q∗-automorphism group isomorphic to AutQ∗(B) ×
AutQ∗(〈Q∗,

√
5〉) ∼= (Z/5Z)∗ × C2. In this case, the Galois group Gal(Q(B′)/Q) is

a normal subgroup of index 2 in AutQ∗(B
′).

In two important cases, the K∗-automorphism group is equal to the Galois group
of the generated field extension.

The first case is that of cyclotomic extensions of Q. If µ is a multiplicative
group of roots of unity of Q̄, the radical group B = 〈Q∗, µ〉 has Q∗-automorphism
group naturally isomorphic to Aut(µ), since any automorphism of µ induces a Q∗-
automorphism of B. Any automorphism of µ also induces a field automorphism
of Q(µ), so here we find that Gal(Q(B)/Q) is equal to AutQ∗(B).

The second important case is the case of Kummer extensions. We call x ∈ K̄∗
a Kummer radical over K if xw is an element of K∗ for some w with µw ⊂ K.
Radical extensions generated by Kummer radicals are called Kummer extensions.
For instance, all Kummer extensions of Q are of the form Q(

√
W ) where we adjoin

all square roots of elements of some set W ⊂ Q∗.

For a group B ⊂ K̄∗ of Kummer radicals, any K∗-automorphism σ of B mul-
tiplies each radical in B with a root of unity of K, and this fully determines σ.
Writing µK for the set of roots of unity of K, the following therefore defines an
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injective homomorphism:

ω : AutK∗(B) −→ Hom(B/K∗, µK)

σ 7−→
(
x 7→ σ(x)

x

)
.

Kummer theory (see, e.g., [17], §VI.8) tells us the following composed map is an
isomorphism:

Gal(K(B)/K)
res−→ AutK∗(B)

ω−→ Hom(B/K∗, µK).

We find that the natural restriction Gal(K(B)/K)→ AutK∗(B) is an isomorphism.
The remainder of this section is devoted to proving the following main structure

theorem.

Theorem 1.6. If B is a Galois radical group over a field K, then the Galois group
Gal(K(B)/K) is a normal subgroup of AutK∗(B) with an abelian quotient.

We write E(B) for this quotient group, and call it the entanglement group of B
over K.

In both the cyclotomic case and the Kummer case, the automorphism group is
abelian. Restricting to the maximal abelian subextension Bab is the main ingredient
of the proof of this theorem, and we can characterise Bab for an arbitrary radical
extension using the following theorem of Schinzel. We state this theorem and prove
two lemmas before proceeding with the proof of Theorem 1.6.

Theorem 1.7. Let F be a field, a ∈ F , and n a positive integer not divisible by
charK. Let w be the number of n-th roots of unity in F . Then, a splitting field of
Xn − a is abelian over F if and only if there exists b ∈ F with aw = bn.

Proof. See [28], or alternatively, Corollary 2.21 in the next chapter.

Lemma 1.8. If C ⊂ D are two radical groups over K that are both Galois, any
K∗-automorphism of C can be extended to an automorphism of D.

Proof. Let ϕ ∈ AutK∗(C) be a K∗-automorphism of C. It follows from Zorn’s
lemma that the set of subgroups of D with an injective homomorphism to D that
extends ϕ has a maximal element M with an injection ψ : M → D.

To show that M is in fact equal to D, assume it is not, and take x ∈ D \M . We
will extend ψ to an injection 〈M,x〉 → D.

First of all, if x is a p-th root of unity, then 〈M,x〉 equals M ⊕ µp and we can
extend ψ with the identity on µp. This contradicts the fact that M is maximal, so
M contains all torsion of D of prime order.

Otherwise, take the minimal k ∈ Z>1 such that xk ∈M and the minimal n ∈ Z>1

such that xn ∈ K∗. The injection ψ maps xk to ζxk for some ζ ∈ D with ζn/k = 1.
Since D is Galois, there exists ξ ∈ D with ξn = 1 and ξk = ζ. We can now define the
injection ψ′ : 〈x〉 → D by x 7→ ξx. Since ψ′(xk) then equals ψ(xk), the injections ψ
and ψ′ are compatible on the intersection of M and 〈x〉.
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The group 〈M,x〉 ⊂ D can be written as a fibered sum (or push-out):

〈M,x〉 ∼= M ⊕〈xk〉 〈x〉.
The pair of injections ψ : M → D and ψ′ : 〈x〉 → D together with the univer-
sal property of this push-out now defines a homomorphism χ : 〈M,x〉 → D that
extends ϕ.

We claim that χ is injective. Since χ multiplies all elements by torsion elements,
the kernel of χ is torsion. However, all elements ζ of D of prime order are contained
in M , so we have χ(ζ) = ψ(ζ) 6= 1. The kernel of χ is therefore trivial, so χ is an
injective homomorphism 〈M,x〉 → D. This contradicts the maximality of M , so M
is equal to D.

The injection ψ : M → D is now necessarily an automorphism, since for any
n > 0 and x ∈ D it permutes the finitely many n-th roots of x.

Let B be a Galois radical extension over K. We will write Btors for the subgroup
of torsion elements of B.

Lemma 1.9. Let x be an element of B and n the minimal positive integer such that
xn ∈ K∗. Then the following are equivalent:

1. ∃w ∈ Z>0 : xw ∈ BtorsK
∗ and µw ⊂ K∗;

2. AutK∗(〈K∗, ζn, x〉) is abelian;

3. Gal(K(ζn, x)/K) is abelian.

Proof.
(1) ⇒ (2). If xw ∈ BtorsK

∗ for a positive integer w with µw ⊂ K∗, then
〈K∗, ζn, x〉 is a subset of B′ = µK̄

w
√
K∗. Since any K∗-automorphism of B′ sends

roots of unity to roots of unity and w-th roots of elements of K∗ to w-th roots of
elements of K∗, there are restriction maps AutK∗(B

′)→ Aut(µK̄) and AutK∗(B
′)→

AutK∗(
w
√
K∗). This implies there is an injective homomorphism from AutK∗(B

′) to
Aut(µK̄)× AutK∗(

w
√
K∗), which, as we saw, is abelian. Finally, by Lemma 1.8, the

restriction map from AutK∗(B
′) to AutK∗(〈K∗, ζn, x〉) is surjective, and therefore

the latter is also abelian.
(2) ⇒ (3). This is trivial since Gal(K(ζn, x)/K) can be considered a subgroup

of AutK∗(〈K∗, ζn, x〉).
(3) ⇒ (1). Since K(ζn, x) is a splitting field of Xn − xn over K, by Schinzel’s

Theorem 1.7 there is an element b ∈ K with xnw = bn if we take w to be the number
of n-th roots of unity in K. Then we have xw ∈ µnb, proving the lemma.

We are now ready to prove Theorem 1.6. The group of radicals

Bab = {x ∈ B : ∃w : xw ∈ BtorsK
∗ and µw ⊂ K∗},

consisting of the elements of B satisfying the conditions from Lemma 1.9, has an
abelian group of K∗-automorphisms AutK∗(Bab). Since Bab contains all roots of
unity in B, any K∗-automorphism of B maps Bab into itself. So, there is a well-
defined restriction map AutK∗(B) → AutK∗(Bab) with kernel AutBab

(B), which is
surjective by Lemma 1.8.
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Thus, we get the following exact sequence.

0→ AutBab
(B)→ AutK∗(B)

res−→ AutK∗(Bab)→ 0.

This sequence is the K∗-automorphism equivalent of the exact sequence of Galois
groups of the tower of extensions K ⊂ K(Bab) ⊂ K(B). Combining the two gives
the following diagram, where the rows are exact and the vertical arrows are injective.
Since the only maps involved are natural injections and restrictions, the squares are
both commutative.

0 Gal(K(B)/K(Bab)) Gal(K(B)/K) Gal(K(Bab)/K) 0

0 AutBab
(B) AutK∗(B) AutK∗(Bab) 0

π

π′

f g h

We can now finish the proof of Theorem 1.6. On the left side of the diagram,
the radical extension K(B)/K(Bab) is a Kummer extension since Bab contains all
roots of unity of B. Therefore, the image of the Galois group Gal(K(B)/K(Bab))
under f is the image of the restriction map

AutK(Bab)∗(K(Bab)∗B)→ AutB∩K(Bab)∗(B).

We claim that this restriction is a surjection. To see this, choose any auto-
morphism σ ∈ AutB∩K(Bab)∗(B). We have that K(Bab)∗B is the following fibered
sum:

K(Bab)∗B = K(Bab)∗ ⊕(B∩K(Bab)∗) B.

The automorphism σ induces an injective homomorphism ϕσ : B → K(Bab)∗B.
By the universal property of the fibered sum, the injection ϕσ together with the
inclusion K(Bab)∗ ⊂ K(Bab)∗B induces an automorphism of K(Bab)∗B that is the
identity on K(Bab)∗ and that extends σ. This proves the claim.

Because K(Bab) is abelian over K, the intersection B ∩ K(Bab)∗ is contained
in Bab by Lemma 1.9. Of course, Bab is also contained in B ∩K(Bab)∗, so we have
Bab = B ∩K(Bab)∗ and we conclude that f is an isomorphism.

On the right side of the diagram, AutK∗(Bab) is abelian, so π′ maps the commu-
tator subgroup H of AutK∗(B) to 1, so H is contained in AutBab

(B). Since f is a
surjection, this implies H is in fact contained in the image of Gal(K(B)/K). From
this we can directly conclude that the image of Gal(K(B)/K) is a normal subgroup
of AutK∗(B) with an abelian cokernel, which concludes the proof of Theorem 1.6.
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1.3 Computing the entanglement groups

Let B again be a Galois radical group over a field K. In the previous section, we
have seen that the entanglement group of B over K is equal to the entanglement
group E(Bab) of the subgroup Bab of B. As mentioned in the proof of Lemma 1.9,
this group Bab is a subgroup of the group generated by all Kummer radicals and
all roots of unity in K̄. If Bab is itself generated by Kummer radicals and roots of
unity and if the characteristic of K is 0, there is an explicit way to describe E(Bab)
as a Galois group, which we give in this section.

All the Galois radical groups that play a role for the results of this chapter are
of this form, but this is not the case in general. As an example, let α be a fourth
root of −4 in Q̄ and consider the radical extension 〈Q∗, α〉 over Q. This is a Galois
radical extension since 1

2α
2 is a primitive 4th root of unity. Its automorphism group

is of order 4 and abelian, but 〈Q∗, α〉 is not generated over Q∗ by a Kummer radical
or a root of unity. We will see in Chapter 5 how to handle this case.

For radical groups over fields of non-zero characteristic we refer to the more
general treatment in Chapter 2 and Chapter 3, and in particular Section 3.4.

Now suppose that K is of characteristic 0 and that Bab = µW is a group gener-
ated by a group of roots of unity µ and a group of Kummer radicals W ⊃ K∗. Since
the Galois group Gal(K(µW )/K) is the kernel of the homomorphism Aut(µW ) →
E(µW ), the image of a group automorphism σ in E(µW ) determines whether or
not σ is the restriction of a field automorphism.

In the examples in the previous section, we saw that any K∗-automorphism of W
can be uniquely extended to a field automorphism of K(W ), and any automorphism
of µ can be uniquely extended to a field automorphism of Q(µ). To determine if
a given element σ ∈ Aut(µW ) is the restriction of an element of Gal(K(µW )/K),
it therefore makes sense to compare the obtained field automorphisms of K(W )
and Q(µ), and see if they are compatible.

To this end, we define the homomorphisms ϕ1 and ϕ2 as follows.

ϕ1 : AutK∗(µW )
res−→ AutK∗(W )

∼−→ Gal(K(W )/K)

ϕ2 : AutK∗(µW )
res−→ Autµ∩K∗(µ)

∼−→ Gal(Q(µ)/Q(µ ∩K∗))

Finally, we write K0 = K(W )∩Q(µ). This is an abelian Galois field extension of Q
since Q(µ)/Q is abelian. We then define ϕ as the difference of ϕ1 and ϕ2:

ϕ : AutK∗(µW ) −→ Gal(K0/Q)

σ 7−→ ϕ1(σ)|K0
· ϕ2(σ)|−1

K0
.

Because Q(µ) is abelian over Q, the subextension K0/Q is also abelian, so ϕ
is a group homomorphism. Furthermore, for σ ∈ AutK∗(µW ), both ϕ1(σ)|(µ∩W )

and ϕ2(σ)|(µ∩W ) are equal to σ|(µ∩W ). Because ϕ is the difference of the two, ϕ(σ)
restricts to the identity on µ ∩W . We see that the image of ϕ is in fact contained
in Gal(K0/Q(W ∩ µ)).
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Theorem 1.10. The homomorphism ϕ induces an isomorphism

ψ : E(µW )
∼−→ Gal(K0/Q(W ∩ µ)).

Proof. For ψ to be well-defined and injective, we show that the kernel of ϕ equals
Gal(K(µW )/K).

We can write AutK∗(µW ) as a fibered product:

AutK∗(µW ) ∼= Autµ∩K∗(µ)×Autµ∩K∗ (µ∩W ) AutK∗(W ).

The two factors are naturally isomorphic to Gal(Q(µ)/Q(µ ∩ K∗)) respectively
Gal(K(W )/K). Using this structure, an element of AutK∗(µW ) can be uniquely rep-
resented by a pair (σ, τ) with σ ∈ Gal(Q(µ)/Q(µ∩K∗)) and τ ∈ Gal(K(W )/K). By
construction of ϕ, the pair (σ, τ) is in the kernel of ϕ if and only if σ|K0 equals τ |K0 .

We now observe that Gal(K(µW )/K) admits the following fibered product struc-
ture:

Gal(K(µW )/K) ∼= Gal(K(W )/K)×Gal(K(W )∩K(µ)/K) Gal(K(µ)/K)

Composing this with the restriction Gal(K(µ)/K)
∼−→ Gal(Q(µ)/K ∩Q(µ)) results

in an isomorphism

Gal(K(µW )/K)
∼−→ Gal(K(W )/K)×Gal(K0/Q(µ)∩K) Gal(Q(µ)/Q(µ) ∩K)

Therefore, we see that the pair (σ, τ) extends to an automorphism of the field
Gal(K(µW )/K) if and only if σ|K0

equals τ |K0
. This implies that the Galois group

Gal(K(µW )/K) is precisely the kernel of ϕ and therefore that ψ is well-defined and
injective.

For the surjectivity of ψ, we show that ψ(AutW (µW )) already gives the full image
Gal(K0/Q(W ∩ µ)). Note that ϕ1(AutW (µW )) is trivial, so we only need to follow
AutW (µW ) through the composite map ϕ2. The restriction map AutW (µW ) →
Aut(W∩µ)(µ) is surjective because µW is the fibered sum of µ and W over µ ∩W ,
using the same argument as in the proof of Theorem 1.6. Its image in Gal(Q(µ)/Q)
then equals Gal(Q(µ)/Q(W ∩ µ)). So, ϕ2(AutW (µW )) is equal to the Galois group
Gal(Q(µ)/Q(µ ∩W )).

Finally, we see that ψ is surjective since the restriction ϕ2(AutW (µW ))|K0
equals

Gal(K0/Q(W ∩ µ)).

1.4 Proof of main results

In this section we tie together the results from the previous two sections to prove
Theorem 1.4 and the main theorem of this chapter, Theorem 1.5.

Let K be a number field, and x ∈ K non-zero. As described in the introduction,
a main ingredient of our computation of the density of primes q of K for which
(OK/q)∗ is generated by x mod q, is determining for squarefree positive integers n
the entanglement groups of the Galois radical groups Bn = 〈K∗, ζn, n

√
x〉 over K.

We will prove Theorem 1.4 by directly proving the following more explicit variant.
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Theorem 1.11. Let w be the product of all primes p with ζp ∈ K, and W the group
of radicals 〈K∗, w√x〉. Let K0 be the maximal subfield of K(W ) that is abelian over
Q, tamely ramified, and unramified at all primes p | w. Let n be a positive squarefree
integer divisible by w and by all primes ramified in K0, and write r = n/w. Then
with µ = µr, the map defined in Theorem 1.10 induces an isomorphism from E(Bn)
to the finite abelian group E = Gal(K0/Q).

Proof. First, we show that we can apply Theorem 1.10 to compute the entanglement
group E(Bn) = E(Bn,ab). We will show that Bn,ab equals µrW .

Since n is squarefree, BtorsK
∗ equals µrK

∗. If y is an element of Bn,ab, then we
have yw ∈ BtorsK

∗ = µrK
∗. Since w and r are coprime, this makes y the product

of an element of µr and a w-th root of an element of K∗.
Theorem 1.10 then gives us an explicit isomorphism from E(µrW ) to the Galois

group Gal(K(W )∩Q(µr)/Q(µr∩W )). Note that since r and w are coprime, W ∩µr
is trivial, so we find an isomorphism

E(Bn)
∼−→ Gal(K(W ) ∩Q(µr)/Q).

Since for a prime p, the field Q(µp) is only (tamely) ramified at p, the field K0

defined in this theorem is equal to K(W )∩Q(µ̂) where µ̂ is the group generated by
primitive p-th roots of unity for all p - w. We see that because n is divisible by w
and by all primes ramified in K0/Q, we have K(W ) ∩Q(µ̂) = K(W ) ∩Q(µr), so
E(Bn) is isomorphic to Gal(K0/Q).

Since K(W ) has finite degree over Q, so does the subfield K0, and we conclude
that the limit entanglement group E = Gal(K0/Q) is finite.

Theorem 1.4 is now a direct corollary of Theorem 1.6 and Theorem 1.11. To
derive the explicit formula for the density, we need one last ingredient.

Lemma 1.12. For every squarefree positive integer n, there is a natural isomor-
phism

AutK∗(Bn) ∼=
∏

p|n prime

AutK∗(Bp).

Proof. Let n be a squarefree positive integer. Since Bp is a Galois radical group,
there is a natural restriction map from An = AutK∗(Bn) to Ap = AutK∗(Bp) for
every prime p | n. Since Bn is generated by all Bp with p | n, the combined map
ϕ : An →

∏
Ap is an injection.

The restriction maps An → Ap are surjective by Lemma 1.8. To see that the
map to

∏
Ap is also surjective, let (σp)p be an element of

∏
Ap. We construct

σ ∈ An with ϕ(σ) = (σp)p as follows: define σ : Bn → Bn by
∏
bp 7→

∏
σp(bp)

(with bp ∈ Bp). Since every element of Bn can be uniquely written as
∏
bp (up to

multiplication with elements of K∗), the map σ is a well-defined homomorphism. It
is invertible because its inverse is given by applying the same procedure to (σ−1

p )p.
We see that σ is contained in An and ϕ(σ) is indeed (σp)p.

This factorization of An into a product of Ap for p | n now allows us to prove
the main density theorem.
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Proof of Theorem 1.5. Recall that the density (under GRH, as described in the in-
troduction) is given by the limit of #Sn/#Gn when we let n tend to all primes. Let
n therefore be a squarefree positive integer that is large enough for E(Bn) to equal
the (finite) entanglement group E = Gal(K0/Q), as defined by Theorem 1.11.

Also recall the definition of Sn:

Sn = {σ ∈ Gn : for all p | n : σ |Kp 6= id}.
As an analogue of Sn inside the K∗-automorphism group An, define

Tn = {σ ∈ An : for all p | n : σ |Bp 6= id}.
We then have Sn = Tn ∩Gn inside An. Also, under the natural isomorphism of

An with
∏
Ap, the subset Tn is mapped to

∏
Ap \ {1}. Now we rewrite #Sn/#Gn

as follows, using the characteristic function 1Gn of Gn inside An.

δn =
#Sn
#Gn

=
#(Tn ∩Gn)

#Gn
=

∑
s∈Tn 1Gn(s)

#Gn

Exploiting the fact that E is abelian, we can rewrite 1Gn .

δn =
1

#Gn#E

∑
s∈Tn

∑
χ∈E∨

χ(s)

Under the natural isomorphism of An with
∏
Ap, the subset Tn is mapped to the

product
∏
Ap \ {1} =

∏
Tp.

δn =
1

#An

∑
χ∈E∨

∏
p|n

∑
sp∈Tp

χ(sp) =
1

#An

∑
χ∈E∨

∏
p|n

−1 +
∑
sp∈Ap

χ(sp)


=

#Tn
#An

∑
χ∈E∨

∏
p|n

1

#Tp

−1 +
∑
sp∈Ap

χ(sp)


Because

∑
sp∈Ap χ(sp) equals #Ap if χ(Ap) is trivial, and 0 otherwise, we get:

δn =
#Tn
#An

∑
χ∈E∨

∏
p prime
χ(Ap) 6=1

−1

#Ap − 1

=
∏
p|n

(
1− 1

#Ap

) ∑
χ∈E∨

∏
p prime
χ(Ap)6=1

−1

#Ap − 1

= CK,x
∏
p|n

(
1− 1

#Ap

)
Taking the limit of n to infinity now gives the desired formula.
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1.5 Explicit densities

Computing the correction factor CK,x explicitly requires determining for each char-
acter χ ∈ E∨ for which primes p the image χ(Ap) is non-trivial. We call a character χ
bad at p in this case. We start this section with an explicit criterion for determining
at which primes characters are bad.

Lemma 1.13. A character χ ∈ E∨ is bad at a prime p if and only if one of the
following two conditions holds:

1. χ is ramified at p, or

2. ζp ∈ K and x 6∈ K∗p and the restriction to K0 of the K-automorphism of
K(w
√
x) given by w

√
x 7→ ζpw

√
x is not in the kernel of χ.

Proof. Let n be large enough for E(Bn) to be isomorphic to E. Recall that the
isomorphism ϕ : An/Gn

∼−→ Gal(K0/Q) is given by ϕ(σ) = ϕ1(σ)ϕ2(σ)−1 as defined
in Section 1.3.

First, let p be a prime. We claim that at least one of ϕ1(Ap) and ϕ2(Ap) is
trivial. If this is not the case, then both AutK∗(Bp ∩W ) and Autµ∩K∗(Bp ∩ µn)
are non-trivial. This first condition implies that Bp/K

∗ has a non-trivial element of
order dividing w, and the second that Bp/K

∗ has an element of order not dividing w.
This contradicts the fact that Bp/K

∗ has prime exponent p.
Now let χ be an element of E∨.
Assume that ϕ1(Ap) is non-trivial. Then ϕ2(Ap) is trivial, and χ is bad precisely

if ϕ1(Ap) |K0= Gal(K(W ) ∩Q(µp)/Q) is not contained in the kernel of χ. This in
turn is equivalent to the first condition from this lemma.

Alternatively, assume that ϕ2(Ap) is non-trivial. In that case, p divides w and
ϕ1(Ap) is trivial. Since K contains ζp, the image ϕ2(Ap) |K0

is trivial if x is a p-th
power in K. Otherwise, it is generated by the automorphism w

√
x 7→ ζpw

√
x. We see

that in this case, χ is bad precisely if the second condition from the lemma holds.

We start by comparing our results with the known (under GRH) densities in the
classical case over Q.

Consider x = 2. Since Q only contains 2 roots of unity, we have w = 2. Using
Theorem 1.11, we see that the limit entanglement group E is Gal(K0/Q) for K0 the
maximal subfield of Q(

√
2) that is abelian over Q, tamely ramified, and unramified

at 2. Since Q(
√

2) is ramified at 2, K0 equals Q, and E is trivial, so the correction
factor CQ,2 is 1. This results in a density of∏

p prime

(
1− 1

p(p− 1)

)
≈ 0.373955 . . . ,

as expected.
Next, we consider K = Q and x = 5. In this case K0 = Q(

√
5) and E =

Gal(K0/Q) is a group of order two. The non-trivial character in E∨ is only ramified
at 5, so it is bad at 5 and potentially at primes dividing w = 2. Since K0 = K(

√
5),
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the automorphism sending
√

5 to −
√

5 is clearly not in the kernel of χ, so χ is indeed
bad at 2.

We find a2 = 2 and a5 = 20, so we have CQ,5 = 1 + 1
19 = 20

19 . This leads
to a conjectured density of 20

19 times Artin’s constant, as was also observed by the
Lehmers.

As an example where K is larger than the rationals, consider the case K =
Q(
√
−7) and x = 21. Since K doesn’t contain any new roots of unity, w equals 2

as before. The field K(w
√
x) = Q(

√
−3,
√
−7) is now abelian and only (tamely)

ramified above 3 and 7, so K0 = Q(
√
−3,
√
−7). We now need to determine at

which primes the four characters in Gal(K0/Q)∨ are bad. We write Gal(K0/Q)∨ =
{id, χ−3

, χ−7
, χ

21
} where χ

t
is such that Q(

√
t) is the invariant field of kerχ

t
. This

yields the following table, where the minus signs indicate at which primes the char-
acters are bad.

2 3 7
1 + + +
χ−3

− − +
χ−7

+ + −
χ

21 − − −

Since a2 = 2, a3 = 6 and a7 = 42, we find CK,x = 1 + 1
5 − 1

41 − 1
5·41 = 48

41 .
To verify this empirically, the following table lists approximations to the density

computed with Sage [30]. For each N in the table, it lists the fraction of primes q
with norm smaller than N for which x̄ = 21 is a primitive root modulo q.

N density
105 0.443679 . . .
106 0.436286 . . .
107 0.437864 . . .
108 0.437940 . . .
109 0.437870 . . .

1010 0.437818 . . .
conjectured 0.437801 . . .

The conjectured density matches the observed approximations well.



Chapter 2

Radical extensions of abelian
groups

2.1 Introduction

In the previous chapter, we used radical extensions of abelian groups to gain insight
into Galois groups. In this chapter we will build on this idea to set up a theory for
automorphisms of such radical group extensions, free from the context of fields. We
will derive analogues of a number of results familiar from Galois theory, including
basic properties of restrictions and extensions of automorphisms, and also a trans-
lation of Kummer theory and Schinzel’s theorem for the classification of abelian
radical extensions.

As we hinted at in the preface, a key property that we require of our groups of
radicals is that all finite subgroups are cyclic. This means that for any prime p,
there are no two linearly independent p-torsion elements, and it implies that the
automorphism group of the torsion subgroup is abelian.

Specifically, let B be an abelian group of which every finite subgroup is cyclic.
We say that an abelian group C ⊃ B is a radical extension of B if the quotient C/B
is torsion and all finite subgroups of C are again cyclic. The cardinality of C/B is
the degree of the extension, and if the degree of the extension is finite, we say that
the extension itself is finite.

In Section 2.2 we will define the concept of a maximal radical extension of B,
and give its universal properties.

In Chapter 1, we studied the action of the absolute Galois group of a field on a
group of radicals. Taking the role of that Galois group in this chapter is an arbitrary
profinite group with a continuous action on B, where we give B the discrete topology.
Write BG for the invariants of B under the action of G. In Section 2.3 we will look
at extensions of the form BG ⊂ B where B/BG is torsion, which we will call Galois
radical extensions of abelian groups.

In Section 2.4 we will then give an analogue of Kummer extensions of fields,

25



26 Chapter 2. Radical extensions of abelian groups

and in Section 2.5 we will show that a Galois radical extension BG ⊂ B has a
maximal abelian sub-extension Bab. This group Bab has the defining properties
that AutBG(Bab) is abelian and that for every sub-extension C with AutBG(C)
abelian, we have that Bab contains C. The main ingredient in the definition and
construction of Bab will be a generalization of Schinzel’s Theorem 1.7.

The main theorem of this chapter is Theorem 2.25 in section 2.6, which is a
generalization of Theorem 1.6 to the setting of this chapter. It states that if G is a
subgroup of Aut(B) such that BG ⊂ B is a radical extension, then G is a normal sub-
group of AutBG(B), and AutBG(B)/G is abelian. We call this quotient AutBG(B)
the entanglement group of B with the action of G.

We conclude the chapter with a number of results giving more explicit expressions
for the entanglement group. These will form the basis for the results of Chapters 3
to 6.

2.2 Maximal radical extensions

In this section we will define the maximal radical extension of an abelian group B
of which all finite subgroups are cyclic, and prove its universal property.

We start with a definition. If B ⊂ C and B ⊂ D are two radical extensions of B,
then a homomorphism from C to D is a B-homomorphism if it is the identity on B.
A B-homomorphism that is a bijection is a B-isomorphism.

Theorem 2.1. Let B be an abelian group of which every finite subgroup is cyclic.
Then there is a group B̄ that has the following properties.

1. The group B̄ is a radical extension of B.

2. For every radical extension C of B, there is an injective B-homomorphism
C → B̄.

Up to a not necessarily unique B-isomorphism, there is exactly one group B̄ with
these two properties. Furthermore, given this group B̄, if B̄ ⊂ F is a radical exten-
sion, then F equals B̄.

Definition 2.2. Let B be an abelian group of which every finite subgroup is cyclic.
We call the group B̄ given by Theorem 2.1 the maximal radical extension of B.

Before proving this theorem by constructing B̄, we first recall the concept of
an essential extension (see e.g., [13], definition A3.10): an abelian group C is an
essential extension of a group B ⊂ C if every non-zero subgroup of C has a non-zero
intersection with B.

Proposition 2.3. Let B be an abelian group of which all finite subgroups are cyclic.
If B ⊂ C is an essential extension, it is a radical extension.

Proof. Let x 6= 0 be an element of C. Then 〈x〉 has a non-trivial intersection with B,
so a multiple of x is contained in B. Therefore, C/B is torsion. It remains to be
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shown that all finite subgroups of C are cyclic, or equivalently, that for every prime p
there is at most one subgroup H ⊂ C of order p.

Suppose p is a prime and H1 and H2 are two subgroups of C of order p. Because
B ⊂ C is essential, H1 ∩B is non-trivial and therefore equal to H1. The same holds
for H2, so H2 ∩B equals H2. All finite subgroups of B are cyclic, so B has a unique
subgroup of order p, equal to H1 and H2.

Theorem 2.4. Let B be an abelian group of which all finite subgroups are cyclic.
Then there exists a divisible abelian group E that is an essential extension of B.
This group E is unique up to a not necessarily unique B-isomorphism and it has
two universal properties: for any essential extension C of B, there is an injective
B-homomorphism from C into E, and for any divisible abelian group F containing
B, there is an injective B-homomorphism from E into F .

Proof. See [13], §A3.4, Corollary A3.9 and Proposition A3.10.

Since a divisible abelian group is the same as an injective Z-module, the group E
given by this theorem is called the injective hull of B (following [13], section A3.4).

We will use the existence of maximal essential extensions to show the existence
of a maximal radical extension B̄ of an abelian group B of which all finite subgroups
are cyclic. We start by considering torsion subgroups of prime order.

If for a prime q the subgroup B[q] of q-torsion of B is trivial, the direct sum
B ⊕ Z/qZ is a radical extension of B, but not an essential extension. We therefore
first define

B′ = B ⊕
⊕

q prime
B[q]=0

Z/qZ.

Next, we define B̄ to be the injective hull of B′. We can now prove that the
group B̄ thus constructed satisfies the properties of Theorem 2.1.

Proof of Theorem 2.1. (1). The extension B ⊂ B′ is a radical extension by construc-
tion, and B′ ⊂ B̄ is an essential extension by definition and therefore also radical
by Proposition 2.3. A radical extension of a radical extension of B is again radical
over B, so B̄ is a radical extension of B.

(2). Define the group C ′ ⊃ C as follows:

C ′ = C ⊕
⊕

q prime
C[q]=0

Z/qZ.

We will construct an injective B-homomorphism C ′ → B̄, which implies the exis-
tence of an injective B-homomorphism C → B̄.

The group C ′ contains B′, and we claim B′ ⊂ C ′ is an essential extension.
Let x be any element of C ′ C, and pick n ∈ Z>0 minimal such that nx is in B.
We have x 6∈ B, so n > 1. If nx is 0, take any prime p | n, and we then have
n
px ∈ C ′[p]\{0} = B′[p]\{0}. Otherwise, if nx is not 0, then nx ∈ B\{0} ⊂ B′\{0}.
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We conclude that B′ ⊂ C ′ is an essential extension, so by Theorem 2.4 there is an
injective D-homomorphism C ′ → B̄.

Next, we show that every group X that has properties 1 and 2 has no non-trivial
radical extensions. Let X be such a group, and suppose X ⊂ F is a radical extension.
Let f be any element of F , and n ∈ Z>0 such that nf ∈ B. By property 2, there is
a B-injection ϕ : F → X. We have nϕ(f) = ϕ(nf) = nf , so n(ϕ(f) − f) equals 0,
and ϕ(f)−f is an n-torsion element of F . Because F and X both have the property
that their finite subgroups are cyclic, they share a unique subgroup of order n, so
we see ϕ(f)− f ∈ F [n] = X[n] ⊂ X. We conclude that f is an element of X, so F
equals X.

We conclude the proof of Theorem 2.1 by showing unicity. If there are two
extensions B ⊂ X and B ⊂ Y both satisfying the properties from the theorem, then
there is a B-injection ϕ : X → Y (by property 1 of X and 2 of Y ). The image
ϕ(X) clearly also satisfies these properties, and ϕ(X) ⊂ Y is a radical extension,
so ϕ(X) equals Y (since ϕ(X) has no non-trivial radical extensions) and ϕ is a
B-isomorphism.

2.3 Galois radical extensions

Since we aim to study Galois groups of fields using similar structures for radical
group extensions, in this section we will explore analogous concepts. We will look at
some of the different properties characterizing Galois field extensions and what these
lead to in our current setting, such as the ground field being the invariant subfield of
some automorphism group, or all embeddings into a fixed algebraic closure having
the same image.

Lemma 2.5. Let C be an abelian group with all finite subgroups of C cyclic. Let
G ⊂ Aut(C) be a subgroup, and write CG for the G-invariants of C. Then the
following three properties are equivalent.

1. CG ⊂ C is a radical extension, i.e., C/CG is torsion;

2. IG · C is torsion, where IG is the augmentation ideal 〈1− σ : σ ∈ G〉 ⊂ Z[G];

3. G acts trivially on C/Ctors.

We start the proof of this lemma with a small proposition about the augmentation
ideal.

Proposition 2.6. Let C and G be as above, and let x be an element of C and x̄ its
image in C/CG. If IG · x or 〈x̄〉 is finite, then IG · x and x̄ are cyclic of the same
order.

Proof. For any positive integer n we have nIG ·x = IG ·nx, so nIG ·x is 0 if and only if
nx is invariant under G. The proposition immediately follows from this observation
and the fact that all finite subgroups of C are cyclic.
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Proof of Lemma 2.5. (1)⇔ (2): This follows directly from the proposition.
(2) ⇔ (3): Both statements are equivalent to G only shifting elements of C by

torsion elements of C.

These properties lead to the following definition.

Definition 2.7. A Galois radical extension is a radical extension B ⊂ C such that
there is a subgroup G ⊂ Aut(C) with B = CG.

Note that despite the name we have given these Galois extensions, there is in
general no one to one correspondence between subgroups of the radical group and
subgroups of its automorphism group. Most extensions generated by elements of
prime order do not have this property, for example: if we take C = Z/pZ for a
prime p > 3, and G = Aut(C) = (Z/pZ)∗, then CG is {1} and C/CG is a Galois
radical extension. It has no subextensions other than C and CG, but G does have
non-trivial subgroups.

This also implies that there are possibly multiple choices for the group G from
the definition.

Galois radical extensions do share a number of properties with Galois field ex-
tensions, some of which are given by the following theorem. Other parallels are
explored in the next two sections.

Theorem 2.8. Let B ⊂ C be a Galois radical extension, and choose a fixed maximal
radical extension B̄ of B. Then the following three statements hold.

1. For every x ∈ C there is an integer n > 0 such that we have nx ∈ B and C
contains an element of order n;

2. All injective B-homomorphisms C → B̄ have the same image;

3. B[2] equals C[2].

Proof. (1.) Let B ⊂ C be a Galois radical extension, write G = AutB(C), and
let x be any element of C. Let k be the order of x̄ ∈ C/B, which is well-defined
because C/B is torsion. Consider the group Z = IG · x ⊂ C. Since C/B is torsion,
Proposition 2.6 implies Z is finite. Because Z is finite, it is cyclic (by assumption
on C). Let z be a generator of Z, and write n for the order of z and Z. Then, again
by the proposition, nx is invariant under G and therefore an element of B. This
means n satisfies the requirements of the statement.

(2.) We will proceed from statement 1. Suppose ϕ1 and ϕ2 are two injective
B-homomorphisms from C to B̄. Let y = ϕ1(x) be an element of the image of ϕ1.
It suffices to show y is in the image of ϕ2.

Since B ⊂ C satisfies statement 1, there is a positive integer n such that nx
is in B and C contains an element z of order n. The image ϕ2(z) in B̄ also has
order n because ϕ2 is an injection. Because ϕ1 and ϕ2 are the identity on B, we
find nϕ1(x) = nϕ2(x) ∈ B ⊂ B̄, which implies that ϕ1(x) equals ϕ2(x)+z′ for some
element z′ of order dividing n. Using that all finite subgroups of B̄ are cyclic, we
conclude that z′ is a multiple of ϕ2(z), so y = ϕ1(x) is in the image of ϕ2.
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(3.) If C contains an element of order 2, that element is unique and therefore
invariant under all automorphisms of C and contained in CG.

Theorem 2.9. If B ⊂ C is a radical extension with B[2] equal to C[2] that satisfies
statement 1 or statement 2 from Theorem 2.8, then it is a Galois radical extension.

Proof. Since the proof of Theorem 2.8 shows that statement 1 implies statement 2,
we only need to show the following statement:

If B[2] equals C[2] and all injective B-homomorphisms C → B̄ have the same
image, then B ⊂ C is a Galois radical extension.

To prove this, it suffices to show that AutB(C), the group of automorphisms of C
that are the identity on B, does not have a set of invariants larger than B.

Suppose x is an element of C \ B of order p > 1 in the quotient C/B. We will
show there is an automorphism σ ∈ AutB(C) with σx 6= x. Since every such x has
a multiple of prime order, we can assume that p is prime without loss of generality.

We start by looking at the sub-extension D = 〈B, x〉 = B⊕〈px〉〈x〉 and classifying
the B-homomorphisms D → B̄.

Not all of these homomorphisms are necessarily injections. Suppose y is an
element of the kernel of ϕ ∈ HomB(D, B̄). Then py is an element of B and also
ϕ(py) = pϕ(y) = 0. However, ϕ is a B-homomorphism, so ϕ restricted to B is
injective. We see that py is 0 and y is p-torsion. We conclude that if there is no
p-torsion in the kernel of ϕ, then ϕ is an injection.

If B contains an element of order p, there will clearly be no p-torsion in the kernel
of any B-homomorphism (since the p-torsion is a cyclic group by assumption).

If B does not contain an element of order p, but D does, then B has index p
in both B + D[p] and in D, so B + D[p] equals D. Then by the same reasoning as
above, #HomB(D, B̄) = #HomB(B +D[p], B̄) equals p, and clearly exactly one of
these homomorphisms is not an injection: the homomorphism sending all elements
of order p to 0.

Note that for p = 2 we cannot be in the latter case, since we have assumed
B[2] = C[2] = D[2]. This means that we have (at least) two different injections ψ1

and ψ2 of D to B̄. These are uniquely defined by the image of x, so ψ1(x) 6= ψ2(x).
Because B ⊂ D is a radical extension, the maximal radical extension B̄ of B is

also a maximal radical extension of D. Its universal property implies ψ1 and ψ2 can
be extended to injections ψ̃1, ψ̃2 from C to B̄.

We have assumed that all such injections have the same image, so ψ̃2 is invertible
on the image of ψ̃1, and σ = ψ̃−1

2 ψ̃1 gives the desired automorphism of C with
σ(x) 6= x.

Example 2.10.

Statements 1 and 2 from Theorem 2.8 are equivalent if the extra condition
B[2] = C[2] (i.e., statement 3) is satisfied, as the above theorems and proofs
show. The necessity of this condition B[2] = C[2] is illustrated by the follow-
ing example where B satisfies statement 2, but not statements 1 and 3 from
Theorem 2.8.
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Let X be the group (Q/Z)×Q, and define C to be the subgroup generated
by x = ( 1

4 ,
1
2 ) and (0, 1). Let B be the (infinite cyclic) subgroup of C generated

by (0, 1). Then B̄ equals X.
We have that C/B is cyclic of order 4, but C has no element of order 4.

We will show that all injective B-homomorphisms ϕ : C → B̄ have the same
image.

Let ϕ be any injective B-homomorphism C → B̄. Then 4ϕ(x) equals (0, 2),
so we find

ϕ(x) ∈
{

( 1
4 ,

1
2 ), ( 1

2 ,
1
2 ), ( 3

4 ,
1
2 ), (0, 1

2 )
}
.

If we have ϕ(x) ∈ {( 1
2 ,

1
2 ), (0, 1

2 )}, then we obtain ϕ(2x) = 2ϕ(x) = (0, 1) =
ϕ((0, 1)) which contradicts the fact that ϕ is an injection. We conclude ϕ(x) ∈
{( 1

4 ,
1
2 ), ( 3

4 ,
1
2 )}.

Since we have ( 1
4 ,

1
2 ) = (0, 1) − ( 3

4 ,
1
2 ) with (0, 1) ∈ B, this implies that

ϕ(C) equals C, independent of the choice of ϕ.

In many cases in this thesis, the base group B is the unit group of a field K. If
K ⊂ L is a field extension and C is a subgroup of L∗, then K∗[2] = C[2] holds, so
one of the conditions of Theorem 2.9 is automatically satisfied.

If K has characteristic zero, then K̄∗ is a divisible abelian group containing non-
trivial p-torsion for every prime p. It follows from Theorem 2.1 that the maximal
radical extension B̄ of B can then be considered a subgroup of K̄∗, with a natural
action of the absolute Galois group Gal(K̄/K). With this action, K∗ ⊂ B̄ is a Galois
radical extension.

Also, if we start from a Galois field extension K ⊂ L, and take C ⊂ L∗ to be the
elements of L∗ of which a power is in K, then C is a Galois radical group extension
of K∗ since C is closed under the action of Gal(L/K) and K∗ ⊂ C is the subgroup
of invariants of the action.

Remark 2.11. If K has positive characteristic p, it is no longer true that the max-
imal radical extension of K∗ can be considered a subgroup of K̄∗, because K̄∗ does
not contain non-trivial p-torsion. We can adjust the definition of radical extensions
to require that all finite subgroups are cyclic of order coprime to p, and likewise
exclude p-torsion and extensions of degree divisible by p from the maximal radical
extension. While we will not go into details, the resulting maximal radical exten-
sion will then again have the required universal properties for this restricted class of
extensions, and also a natural action from the absolute Galois group Gal(Ksep/K)
of K.

2.4 Kummer theory of radical extensions

If B ⊂ C is a radical extension, an automorphism of C that is the identity on B
is called a B-automorphism, and we denote the group of such automorphisms by
AutB(C).

Suppose that B ⊂ C ⊂ D is a tower of abelian groups such that C and D are
both radical groups over B, and C is a Galois radical group over B. By Theorem 2.8,
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for every x in C there is a positive integer n such that y = nx is in B and C has an
element of order n. Any σ ∈ AutB(D) leaves y invariant, so σ(x)−x is an n-torsion
element of B, and therefore in C. So, we see that every B-automorphism of D maps
C into itself. Therefore there is a well-defined restriction map AutB(D)→ AutB(C).

As we already saw in a special case in Lemma 1.8, if D is also Galois over B,
this restriction map is a surjection. This is true in general.

Theorem 2.12. If B ⊂ C ⊂ D is a tower of abelian groups such that C and D are
both Galois radical groups over B, there is a natural exact sequence of groups

0→ AutC(D)→ AutB(D)
res−→ AutB(C)→ 0.

Proof. Since the proof of Lemma 1.8 doesn’t use the fact that the abelian groups in
question are radical groups over (the unit group of) a field specifically, the proof of
that lemma applies to the present theorem unchanged.

If C is a Galois radical extension of B, then C is the injective limit (and union)
of all finite Galois radical extensions D ⊂ C over B. This makes AutB(C) a profinite
group, and the exact sequence given in Theorem 2.12 is an exact sequence of profinite
groups.

Theorem 2.13. Let B ⊂ F be a radical extension of abelian groups, and C and
D two subgroups of F such that B ⊂ C and B ⊂ D are Galois radical extensions.
Then C∩D and C+D are also Galois radical extensions of B and there is a natural
isomorphism of profinite groups

AutB(C +D)
∼−→ AutB(C)×AutB(C∩D) AutB(D).

Proof. Since C and D are both Galois, they satisfy statements 2 and 3 from Theo-
rem 2.8. These two statements directly transfer to C ∩D and C + D, so by Theo-
rem 2.9, these two groups are also Galois over B. For the second part of the theorem,
we use Theorem 2.12, which gives us two restriction maps from AutB(C + D) to
AutB(C) resp. AutB(D) that combine into a natural homomorphism

AutB(C +D)
∼−→ AutB(C)×AutB(C∩D) AutB(D).

It is an isomorphism since an explicit inverse exists:

(f, g) 7→ (c+ d 7→ f(c) + g(d)) ,

This is a well-defined map because (f, g) is in the fibered product.

In the general setting of a radical extension B ⊂ C we call an element x ∈ C
a Kummer radical if there is a positive integer w such that wx is in B and B
contains an element of order w. Generalizing the concept as it was introduced in
Chapter 1, we call a radical extension generated by Kummer radicals a Kummer
radical extension.

Every element of a Kummer radical extension is a Kummer radical, so all sub-
extensions of a Kummer radical extension are also Kummer radical extensions. Note
that by Theorem 2.9 Kummer radical extensions are Galois radical extensions.
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Theorem 2.14. Let G be a profinite group and B be an (additively written) abelian
group with the discrete topology and a continuous G-action given by f : G→ Aut(B).
Assume that all finite subgroups of B are cyclic, and that B is a Kummer radical
extension of BG. Then the image of f is AutBG(B) and AutBG(B) is abelian.

We begin the proof of this theorem with the familiar Kummer pairing, for which
we largely follow Lang [17], §VI.8.

Lemma 2.15. Let C ⊂ D be a Kummer radical extension of finite degree. Then
AutC(D) is an abelian group and there is a bilinear map

AutC(D)×D −→ Ctors

(σ, x) 7−→ σ(x)− x.

The kernel on the left is 1 and the kernel on the right is C.

Proof. Let x be an element of D and w a corresponding positive integer with wx ∈ C
and #C[w] = w. For any element σ ∈ AutC(D) we then find σ(x) − x ∈ D[w] ⊂
Ctors, so the map given is well-defined.

Now fix an element x ∈ D and let σ, τ ∈ AutC(D) be two automorphisms. Note
that because σ leaves the elements of C invariant, we have the identity

σ(τ(x)− x) = τ(x)− x.

This directly implies that στ(x) equals τ(x)+σ(x)−x. From this we see στ(x)−x =
(τ(x)− x) + (σ(x)− x), so the map AutC(D)→ Ctors we get from the pairing with
a fixed x is a group homomorphism.

Now define D′ = 〈C, x〉. This is also a Kummer extension of C, so by the same
reasoning as above, the following map defines a group homomorphism.

AutC(C ′) −→ Ctors

σ 7−→ σ(x)− x.

It is injective, since if an automorphism in AutC(C ′) leaves x invariant, it is the
identity. We see that AutC(C ′) is abelian. If we combine this using Theorem 2.13
for a finite set of generators of D, we see that AutC(D) is abelian.

We continue by fixing σ ∈ AutC(D) and taking x, y ∈ D. Then we can derive
σ(x+y)−(x+y) = σ(x)+σ(y)−(x+y) = (σ(x)−x))+(σ(y)−y). This means that
the map D → Ctors from the pairing with a fixed σ is also a group homomorphism,
and the map AutC(D)×D → Ctors is indeed bilinear.

For the kernel on the left, let σ ∈ AutC(D) be such that for all x ∈ D we have
σ(x)− x = 0. Then clearly σ is the identity.

On the right, let x be an element of D. Then by definition x is in the kernel on
the right if and only if for all σ ∈ AutC(D) we have σ(x)−x = 0. This is equivalent
with x being invariant under AutC(D). Since C ⊂ D is a Galois radical extension,
the invariants of AutC(D) are exactly C. We conclude that the kernel on the right
is C.
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Corollary 2.16. Let C ⊂ D be a Kummer radical extension of finite degree. Then
the automorphism group AutC(D) is abelian of order #(D/C).

Proof. We can invoke duality (specifically, Theorem 9.2 in Chapter 1 of [17]) to see
that the following map induced by the pairing is a group isomorphism.

AutC(D)
∼−→ Hom(D/C,Ctors)

σ 7−→ (x 7→ σ(x)− x)

This directly shows that AutC(D) is an abelian group of order #(D/C).

Proof of Theorem 2.14. Abusing notation, we will write σ(x) for f(σ)(x), for σ ∈ G
and x ∈ B.

We start by proving the theorem in the case that G is finite. The lemma shows
that G/ ker f is abelian, and a similar construction to the one in the lemma gives a
bilinear map of abelian groups

(G/ ker f)×B −→ BGtors

(σ, x) 7−→ σ(x)− x.
The kernel on the left is 1 since we have already divided by ker f . The kernel on

the right is BG by definition.
Since BGtors is finite and cyclic, by duality the following map is an isomorphism.

G/ ker f −→ Hom(B/BG, BGtors)

σ 7−→ (x 7→ σ(x)− x)

Using duality as in the proof of Corollary 2.16 now proves the theorem in the finite
case.

In the general profinite case, note that B is the union of all C with BG ⊂ C ⊂ B
and BG ⊂ C a finite Galois radical extension. This implies that AutBG(B) is the
projective limit of AutBG(C), and in particular we give it the corresponding profinite
topology.

For every C with BG ⊂ C ⊂ B, the induced map ϕC : G → AutBG(C) is
surjective and it factors via G/ ker(ϕC), which is finite since AutBG(C) is finite.
That means the finite case of the present theorem applies to the action G/ ker(ϕC)→
AutBG(C).

As G maps surjectively to each AutBG(C), the image of G is dense in AutBG(B).
The group G is profinite and therefore compact, and its image under the con-

tinuous map to AutBG(B) is therefore also compact. Since AutBG(B) is Hausdorff
because it is also profinite, this compact image is closed. We have already shown it is
dense, so it is equal to the full group, proving that f : G→ AutBG(B) is surjective.
Since additionally AutBG(B) is the projective limit of the abelian groups AutBG(C),
it is itself abelian.

This concludes the proof of Theorem 2.14.
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To compute an automorphism group of a Galois radical extension of abelian
groups B ⊂ C, it is often useful to consider the tower B ⊂ B + Ctors ⊂ C. By
Theorem 2.12 there is an exact sequence

0→ Aut(B+Ctors)(C)→ AutB(C)
res−→ AutB(B + Ctors)→ 0.

Since the restriction map AutB(B +Ctors)→ AutBtors
(Ctors) is an isomorphism, we

in fact have an exact sequence

0→ Aut(B+Ctors)(C)→ AutB(C)
res−→ AutBtors

(Ctors)→ 0. (2.17)

This sequence does not necessarily split, as illustrated by the following example.

Example 2.18.

Let C be the abelian group Z/8Z×Z and B the subgroup generated by (4, 0)
and (1, 2). Note that this is a radical extension since 8C is a subgroup of
B. The torsion of C is of order 8, so Aut(Ctors) is isomorphic to V4. Since
Btors is of order 2 and C has only one element of order 2 (as required), every
automorphism of Ctors automatically leaves the elements of Btors invariant.
We find that AutBtors(Ctors) ∼= V4.

For the step from B + Ctors to C, we see that C is generated by (0, 1) as
an extension of B +Ctors, and that 2 · (0, 1) is in B +Ctors. We conclude that
AutB+Ctors

(C) is of order 2.
Finally, consider the isomorphism σ of C sending (1, 0) to (3, 0) and (0, 1) to

(3, 1). This leaves the elements of B invariant since it satisfies σ(4, 0) = (4, 0)
and σ(1, 2) = (1, 2). Its order is 4 because σ(0, 1) = (3, 1), and σ2(0, 1) = (4, 1).
This means the exact sequence does not split.

Using the exact sequence 2.17, we can count the number of automorphisms of a
Galois radical extension of finite degree.

Theorem 2.19. If B ⊂ C is a Galois radical extension of finite degree, then the
order of the automorphism group AutB(C) equals

#(C/B)
∏

p prime
C[p]6=B[p]

p− 1

p
.

Proof. The automorphism group Aut(B+Ctors)(C) on the left side of (2.17) corre-
sponds to a Kummer extension, so the cardinality of the automorphism group is
equal to #C/(B + Ctors).

On the right side of (2.17), the automorphism group AutBtors(Ctors) is a subgroup
of Aut(Ctors). If we write n = #Ctors and w = #Btors, we see that Aut(Ctors)
is canonically isomorphic to (Z/nZ)∗. Under that isomorphism, AutBtors

(Ctors)
corresponds to the subgroup of elements that are 1 modulo w, of which there are
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exactly ϕ(n)/ϕ(w). So, the order of AutBtors(Ctors) is equal to

n

w

∏
p prime
p|n

p− 1

p

∏
p prime
p|w

p

p− 1
= #(Ctors/Btors)

∏
p prime
C[p]6=B[p]

p− 1

p
.

Multiplying the orders on the left and right sides of the exact sequence 2.17 concludes
the proof of the theorem.

2.5 Abelian radical extensions and
Schinzel’s theorem

Let G be a profinite group and B be an abelian group with the discrete topology
and a continuous G-action. In this section we will give an explicit criterion for when
the image of G in Aut(B) is abelian, as a generalization of Schinzel’s Theorem 1.7.
We will then use it to identify the maximal abelian sub-extension of a Galois radical
extension.

Theorem 2.20. Let G be a profinite group and B be an (additively written) discrete
abelian group with a continuous G-action given by f : G→ Aut(B). Assume B/BG

is a Galois radical extension.
Then, the image of f is abelian if and only if the following holds:

∀x ∈ B : ∃w ∈ Z>0 : wx ∈ Btors +BG and BG has an element of order w.

Proof. First assume that the image of f is abelian. Let x be an element of B. We
will explicitly give an integer w that satisfies the condition from the theorem.

Let I ⊂ Z[G] again be the augmentation ideal, and denote Ix by T . The group T
is finite and cyclic by Proposition 2.6. Let τ be a generator and n its order.

The Z[G]-module T has an annihilator J ⊂ Z[G], which is a two-sided ideal.
As J is also the annihilator of τ , this gives an isomorphism of Z[G]-modules

Z[G]/J ∼=Z[G] T = 〈τ〉,

and since T is cyclic of order n, a unique isomorphism of rings

Z[G]/J ∼= Z/nZ.

Under this isomorphism, the ideal (I + J)/J corresponds to an ideal Ī in Z/nZ.
Now define w | n by Ī = wZ/nZ.

Then the w-torsion of the Z/nZ-module T is cyclic of order w and equal to the
(I + J)/J-torsion of T as a Z[G]/J-module. This is in turn equal to the I-torsion
of T as a Z[G]-module, which is TG. So TG ⊂ BG contains an element of order w,
and the condition that BG contains an element of order w is satisfied.

We have defined w to be in I + J , so wx ∈ Ix + Jx. Since the image of G in
Aut(B) is abelian, we have IJx = JIx = 0. So, the Z[G]-module Jx is annihilated
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by I and therefore contained in BG. Moreover, Ix is contained in Btors, so we
conclude wx ∈ Btors +BG holds, as required. This proves the first implication.

For the converse, assume that for every x ∈ B there exists w ∈ Z>0 such that
wx is in Btors +BG and BG has an element of order w.

The group B is a radical group over BG, so there is a maximal BG-radical
extension B̄. Since all elements of a Kummer radical extension are Kummer radicals,
the subgroup of B̄ consisting of all Kummer radicals is the maximal Kummer radical
extension of B. We call this B̄Kum:

B̄Kum = {x ∈ B̄ : ∃w ∈ Z>0 : wx ∈ BG and BG has an element of order w},

Then from the assumption, it follows that B is a subset of C = B̄Kum + B̄tors.
Since both B̄Kum and BG+B̄tors are Galois radical groups over BG (by Theorem 2.9),
the automorphism group AutBG(C) is a subgroup of the product AutBG(B̄Kum) ×
AutBG(BG + B̄tors) due to Theorem 2.13. The extension BG ⊂ BG + B̄tors is
generated by torsion elements so AutBG(BG + B̄tors) is abelian, and AutBG(B̄Kum)
is abelian by Theorem 2.14, so this product of automorphism groups is abelian. This
implies that AutBG(B), which is a quotient of AutBG(C) by Theorem 2.12, is also
abelian, proving the theorem.

Schinzel’s Theorem 1.7 is a corollary of this theorem:

Corollary 2.21 (Schinzel). Let F be a field, a ∈ F , and n a positive integer not
divisible by charK. Let w be the number of n-th roots of unity in F . Then, the
splitting field Ω of Xn − a is abelian over F if and only if there exists b ∈ F with
aw = bn.

Proof. Define B as 〈F ∗, ζn, n
√
a〉 and apply the theorem to the natural action given

by the map Gal(Ω/F )→ Aut(B). Since this action is faithful, we only need to verify
that there exists b ∈ F with aw = bn if and only if the following condition from the
theorem holds:

∀x ∈ B : ∃w ∈ Z>0 : wx ∈ Btors +BG and BG has an element of order w.

Suppose there is an element b ∈ F with aw = bn. To show that the theorem applies,
it is sufficient to prove the condition for a set of generators of B over F ∗, such as ζn
and a choice of n

√
a. For the root of unity this is immediate.

For x ∈ B with xn = a, we use that we have aw = bn. This implies that xw = ζb
for some ζ ∈ µn. Since µn is contained in B, this shows that xw is in BtorsB

G.
For the other implication, suppose that the condition from the theorem holds.

We will show aw ∈ F ∗n.
Let x ∈ B be such that xn = a. Then by assumption there is a positive integer v

such that F ∗ has an element of order v and xv ∈ BtorsF
∗. Since both xv and xn are

elements of BtorsF
∗, we in fact have xw ∈ BtorsF

∗, since w is a multiple of gcd(n, v).
So, we can choose ζ ∈ Btors such that we have xw ∈ ζF ∗, and we have that ζn is an
element of F ∗w.
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Let m be any common multiple of n and the order of ζ. Then because we have
F ∗[n] = F ∗[w], the orders of (F ∗[m])n and (F ∗[m])w are equal, and therefore these
two subgroups of F ∗ are equal. Since we have ζn ∈ F ∗[m]

w
, we then also have

ζn ∈ F ∗[m]
n ⊂ F ∗n. We now conclude that aw = xnw ∈ F ∗n.

Theorem 2.20 gives a condition for when a group acts in an abelian way on
a radical group extension. This can also be used to characterize the maximal G-
submodule Bab on which a group G acts in an abelian way, shown by the following
definition and accompanying theorem.

Define Bab as follows:

Bab = {x ∈ B : ∃w ∈ Z>0 : wx ∈ Btors +BG and BG has an element of order w}.

Note that this definition does not depend on the choice of G, but only on its
invariants BG.

Theorem 2.22. Let G be a profinite group and B be a discrete abelian group with
a continuous G-action. Assume that B/BG is torsion and all finite subgroups of B
are cyclic.

1. For a G-module C with BG ⊂ C ⊂ B, the image of G in Aut(C) is abelian if
and only if C is a subgroup of Bab.

2. Write [G,G] for the closed subgroup of G generated by the commutators of G.
Then Bab equals B[G,G].

We will use the following proposition in the proof of this theorem.

Proposition 2.23. Let C be a G-module with BG ⊂ C ⊂ B. Then we have Cab =
Bab ∩ C.

Proof. Since BG equals CG and (Btors +BG) ∩C equals Ctors +CG, we can derive
the following expressions for Cab.

Cab = {x ∈ C : ∃w ∈ Z>0 : wx ∈ Ctors + CG and

CG has an element of order w}
= {x ∈ C : ∃w ∈ Z>0 : wx ∈ (Btors +BG) ∩ C and

BG has an element of order w}
= C ∩ {x ∈ B : ∃w ∈ Z>0 : wx ∈ Btors +BG and

BG has an element of order w}
= Bab ∩ C.

Proof of Theorem 2.22. Let C be a G-module with BG ⊂ C ⊂ B. By Theorem 2.20,
the group G acts in an abelian way on C if and only if C equals Cab. Because Cab

is the intersection of Bab and C (Prop. 2.23), the first part of the theorem follows.
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Since the image of G in Aut(Bab) is abelian, Bab is pointwise invariant under
the action of the commutator subgroup [G,G], and so Bab is a subgroup of B[G,G].

For the opposite inclusion, the abelian group G/[G,G] acts on B[G,G] since [G,G]
is a normal subgroup of G. We conclude that G itself acts on B[G,G] in an abelian
way, so by the first part of the theorem, B[G,G] is contained in Bab.

Corollary 2.24. The action of G on B induces a surjection [G,G]→ AutBab
(B).

Proof. The (closed) commutator subgroup [G,G] acts on B, and the extension of
radical groups B over B[G,G] = Bab is a Kummer radical extension. Therefore, by
Theorem 2.14 the induced map [G,G]→ AutBab

(B) is a surjection.

2.6 The entanglement group

As before, let G be a profinite group, and let B be a discrete (additively written)
abelian group with a continuous G-action given by f : G→ Aut(B). Assume B/BG

is a Galois radical extension.
In this section we will prove the following main theorem.

Theorem 2.25. With B and G as above, f(G) is a normal subgroup of AutBG(B)
and AutBG(B)/f(G) is an abelian profinite group.

Definition 2.26. This cokernel AutBG(B)/f(G) is called the entanglement group
of B, and written E(G,B), or E(B) if the group G is clear from the context.

The term reflects how in the case of radical group extensions of the unit group
of a field, certain multiplicatively independent radicals are entangled in the addi-
tive field structure. For example, the radical extensions Q∗ ⊂ 〈Q∗, ζ5,

√
5〉 and

Q∗ ⊂ 〈Q∗, ζ5,
√
−5〉 have the same group structure and hence have isomorphic au-

tomorphism groups. However, when considering them with the natural action of
Gal(Q̄/Q), the corresponding field extensions are Q(ζ5,

√
5)/Q and Q(ζ5,

√
−5)/Q.

These have different degrees due to the additive relation
√

5 = ζ5 + ζ−1
5 − ζ2

5 − ζ−2
5 ,

which has no equivalent for
√
−5. Informally, we say that the radicals

√
5 and ζ5

are entangled. This lower degree of Q(ζ5,
√

5) is reflected in a smaller image of
Gal(Q̄/Q) in the automorphism group, and leads to an entanglement group of or-
der 2.

The map from the automorphism group AutQ∗(〈Q∗, ζ5,
√

5〉) to the entangle-
ment group can be used to determine if a group automorphism extends to a field
automorphism. In this example, this map checks if the action on ζ5 and that on

√
5

are compatible with respect to the additive relation between the two radicals.
For the radical extension Q∗ ⊂ 〈Q∗, ζ5,

√
−5〉, with the action of the absolute

Galois group of Q, the entanglement group is trivial.
Another example of non-trivial entanglement is the radical group extension Q∗ ⊂

〈Q∗, 4
√
−4〉. Note that the square of 4

√
−4 is 2

√
−1, so this extension contains 4th

roots of unity and is therefore a Galois radical extension. The automorphism group
AutQ∗(〈Q∗, 4

√
−4〉) is non-cyclic of order 4.
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On the field side, the extension Q( 4
√
−4)/Q has degree 2, which can be seen by

writing 4
√
−4 as ζ8

√
2 = 1 + i, with corresponding Galois group isomorphic to C2,

and an entanglement group of order 2.
Replacing 4

√
−4 by 4

√
−9 in this example leaves the abelian group structure un-

changed, but removes the additive relation and leads to a trivial entanglement group.
We proceed with the proof of the main theorem.

Proof of Theorem 2.25. A main ingredient in the proof is restricting to the maximal
subgroup Bab ⊂ B for which AutBG(Bab) is abelian, as defined in the previous
section.

Consider the following exact sequence of automorphism groups.

0→ AutBab
(B)→ AutBG(B)

res−→ AutBG(Bab)→ 0

For brevity, we will write N for the commutator subgroup [G,G] in this proof.
As we have seen, the action of G on B induces an action of G/N on Bab with
invariants BG. It also induces an action of N on B with invariants Bab. Adding
those actions (as vertical maps) to the exact sequence above, we get the rows of the
following diagram. These rows are exact, and the squares commute by definition of
the vertical maps.

0 N G G/N 0

0 AutBab
(B) AutBG(B) AutBG(Bab) 0

E(Bab)

π

π′

g f h

ϕ

We proceed analogously to the proof of Theorem 1.6.
On the right side of the diagram, the group AutBG(Bab) is abelian by definition

of Bab and Theorem 2.20, so the image of h is a normal subgroup with abelian
cokernel E(Bab). Let ϕ be the composite homomorphism from AutBG(B) through
AutBG(Bab) to E(Bab). We have to show that ϕ is surjective with kernel f(G).

The image of f is contained in ker(ϕ) because of the commutativity of the right
square of the diagram. To show the other inclusion, take x ∈ ker(ϕ). Then π′(x)
maps to 0 in E(Bab), so it is the image of h. The map π is surjective, so there is an
element y ∈ G with hπ(y) = π′(x). We then have π′f(y) = π′(x), so xf(y)−1 is in
the kernel of π′, which equals AutBab

(B). Because g is a surjection (Corollary 2.24),
there is an element z ∈ N ⊂ G with g(z) = xf(y)−1. It follows that f(zy) = x and
x ∈ f(G).

Surjectivity of ϕ follows immediately from its being composed from two surjective
maps. This shows that f(G) is a normal subgroup of AutBG(B) with an abelian
cokernel and concludes the proof of Theorem 2.25.
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If C is a G-submodule of B containing BG, then by Theorem 2.12 the restriction
map from AutBG(B) to AutBG(C) is a surjection, so there is a natural surjection
E(G,B) � E(G,C). The proof of the theorem shows that this surjection is an
isomorphism if we take C = Bab:

Corollary 2.27. With B and G as in the theorem, E(G,Bab) is equal to E(G,B).

To derive more tangible expressions for the entanglement group, we study how
E(G,B) = E(G,Bab) behaves when Bab is the sum of two smaller G-modules.

Theorem 2.28. Let B, G and Bab be as before, and suppose Bab = C +D with C,
D two G-submodules of Bab. Then the entanglement group E(G,B) = E(G,C+D)
is a part of the following short exact sequence.

0→ AutD∩(BG+C)(D)/im(GC)→ E(G,C +D)→ E(G,C)→ 0,

where GC is the kernel of the map G→ Aut(C) induced by the action of G on B.

Proof. We build up a diagram around the short exact sequence

0→ AutBG+C(Bab)→ AutBG(Bab)→ AutBG(BG + C)→ 0

and the G-action on Bab.
First of all, note that we can replace G by its image in AutBG(Bab). This group

is abelian, so we assume without loss of generality that G is abelian in this proof.
Because C is a G-submodule of Bab, there is an induced map G→ AutBG(BG+C),
and this factors faithfully via G/GC , by definition of GC . On the left side of the
sequence, the subgroup GC acts on Bab and leaves BG and C pointwise invariant,
so the image of GC inside AutBG(Bab) ends up inside AutBG+C(Bab).

This leads to the following commutative diagram of abelian groups.

0

0 GC G G/GC 0

0 AutBG+C(Bab) AutBG(Bab) AutBG(BG + C) 0

f

Because D is a Galois radical extension of DG, we have that D is a Galois radical
extension over D ∩ (BG + C), by statement 1 of Theorem 2.8 and Theorem 2.9.
Therefore, there is a well-defined restriction homomorphism

AutBG+C(Bab)
∼−→ AutD∩(BG+C)(D).

By the fibered sum structure Bab = (BG+C)⊕D∩(BG+C)D, and the same reasoning
as in the proof of Theorem 2.13, this restriction map is an isomorphism.



42 Chapter 2. Radical extensions of abelian groups

The cokernel of f is then given by AutD∩(BG+C)(D)/im(GC). The cokernels
of the middle and right vertical maps are E(G,Bab) and E(G,C) respectively, by
definition. The snake lemma then gives us the desired sequence:

0 · · ·

0 GC G G/GC 0

0 AutBG+C(Bab) AutBG(Bab) AutBG(BG + C) 0

· · · AutD∩(BG+C)(D)/im(GC) E(G,Bab) E(G,C) 0

f

Corollary 2.29. Let B,G and Bab be as in the theorem, and again suppose we have
Bab = C + D with C,D two G-submodules of Bab. Define GC to be the kernel of
the induced map G→ Aut(C).

If we have E(G,C) = 1, then there is an isomorphism

E(G,B)
∼−→ AutD∩(BG+C)(D)/im(GC)

that, for each σ ∈ AutBG(B) and g ∈ G with σ|C = g|C , sends σ̄ ∈ E(G,B) to
σ|D(g|D)−1.

Proof. Note that the existence of an isomorphism follows directly from the theorem
since E(G,C) is trivial. To get the explicit expression for the isomorphism, consider
an element σ ∈ AutBG(B). We proceed by diagram chasing in the diagram from
the proof of the theorem. Since E(G,C) is trivial, the vertical map G/GC →
AutBG(BG + C) on the right side is a surjection, which implies there exists g ∈ G
satisfying g|C = σ|C . By multiplying σ with the inverse of g, we get τ = σg−1 ∈
AutBG(Bab) which acts as the identity on C by construction. This implies that τ
is an element of the subgroup AutBG+C(Bab), on the left side of the diagram, and
by mapping it down to AutD∩(BG+C)(D)/im(GC) we find the unique residue class
there that maps to τ̄ ∈ E(Bab), by commutativity. Because τ and σ differ by an
element of G, we see that τ̄ = σ̄ ∈ E(Bab), concluding the proof of this corollary.

In the case that D is a Kummer radical extension of BG, we can simplify the
quotient we obtained here. First of all, since in that case D contains BG, we can
rewrite D ∩ (BG + C) to the more symmetric BG + (C ∩D). Then, it follows from
Theorem 2.14 (applied on GC acting on W ) that the image of GC in Aut(D) is
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AutWGC (W ), and the following natural restriction map of the quotient is therefore
an isomorphism:

AutBG+(C∩D)(D)/im(GC)
∼−→ AutBG+(C∩D)(D

GC ). (2.30)

Going one step further, we can conclude the following if additionally there is no
cyclotomic entanglement. This is a generalization of Theorem 1.10.

Corollary 2.31. Let B,G and Bab be as in the theorem, and suppose we have
Bab = µ + W with µ a subgroup of Btors and W ⊂ B a Kummer radical extension
of BG. Define Gµ as the kernel of the restriction map G→ Aut(µ).

If we have E(G,µ) = 1, then there is an isomorphism

E(G,B)
∼−→ AutBG+(µ∩W )(W

Gµ)

that, for each σ ∈ AutBG(B) and g ∈ G with σ|µ = g|µ, sends σ̄ ∈ E(G,B) to
σ|WGµ (g|WGµ )−1.

Proof. We start from the previous corollary (2.29), take C = µ and D = W and
apply Equation 2.30.

This description of the entanglement group assumes that Bab can be generated
by roots of unity and Kummer roots. This condition is often fulfilled, in particular
in the case of maximal radical extension which we study in Chapter 3, but we shall
encounter situations where this is not the case later. In those cases, it is possible
to extend B and Bab with extra roots of unity to handle this. We describe this
approach in Propositions 4.9 and 5.6.
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Chapter 3

The absolute entanglement
group

3.1 Introduction

Let K be a field, and choose a fixed separable closure Ksep. Define ∞
√
K∗ ⊂ Ksep∗

as the group of all radicals over K∗ inside Ksep∗. The entanglement group of ∞
√
K∗

with the action of the absolute Galois group G of K is of particular interest. We
refer to this entanglement group as the absolute entanglement group of K, and
write Eabs(K). Recall from Theorem 2.25 and Definition 2.26 that we have the
following exact sequence that defines Eabs(K):

G→ AutK∗(
∞
√
K∗)→ Eabs(K)→ 1.

If K has characteristic 0, this maximal radical extension ∞
√
K∗ coincides with

the group K∗ defined in section 2.2. For characteristic p > 0, the same is true if we
make the adjustments mentioned in Remark 2.11.

If B ⊂ ∞
√
K∗ is any Galois radical extension of K∗, then the restriction map

from AutK∗(
∞
√
K∗) to AutK∗(B) induces a surjection Eabs(K) → E(B), so every

entanglement group over K∗ is a quotient of Eabs(K).

Before stating the main results of this chapter in Section 3.3, we first cover
preliminaries on Ẑ-ideals and Steinitz numbers in Section 3.2. The proofs of the
main results are in Section 3.3 and Section 3.4, with the latter section treating the
case of positive characteristic.

The result for characteristic zero was already announced in the lecture notes
for Colloquium Lectures by H.W. Lenstra on Entangled Radicals [19] at the AMS
Annual Meeting in 2006.

45
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3.2 Preliminaries

In order to state the main results of this chapter, we first introduce some concepts
related to the profinite groups concerned.

We define Z to be the endomorphism ring End(µ) of the group µ of roots of
unity of Ksep. The automorphism group Aut(µ) is then equal to Z∗. Note that if K

has characteristic 0, then Z is isomorphic to Ẑ ∼=
∏
l Zl, and if K has characteristic

p > 0, then it is isomorphic to
∏
l 6=p Zl.

A convenient way to describe closed Ẑ-ideals (and Z-ideals) is given by Steinitz
numbers.

By unique factorization a positive integer can be uniquely written as a product∏
l l
n(l), where l ranges over the prime numbers, and n(l) is a non-negative integer

that is zero at all but finitely many l.
A Steinitz number is a formal expression of the form

∏
l l
n(l), where n(l) is an

element of Z≥0 ∪{∞} and l again ranges over the primes. Here infinitely many n(l)
may be non-zero. Steinitz numbers form a multiplicative monoid, containing the
positive integers.

Given a Steinitz number n and an (additively written) profinite abelian group A,

we define the Ẑ-submodule nA of A by

nA =
⋂
m|n

m∈Z≥1

mA.

Using that A is a product of pro-l-groups, one sees that nA equals (nẐ)A. If A is
a profinite ring, then nA is in fact a closed A-ideal. For multiplicatively written A,
we write An instead of nA.

One can check that this gives rise to an isomorphism between the monoid of
Steinitz numbers and the monoid of closed Ẑ-ideals given by n 7→ nẐ. If I is a
closed Ẑ-ideal, then I is equal to nẐ for the Steinitz number n =

∏
l l
n(l) defined by

n(l) = sup{k ∈ Z≥0 : I ⊂ lkẐ}.

Let us write

S = {Steinitz numbers n =
∏
l

ln(l) with n(p) = 0 if p = char(K) > 0}.

We obtain a bijection

S −→ {closed Z-ideals}
that sends n to nZ.

For a positive integer m, we write µm ⊂ K̄∗ for the m-th roots of unity in K̄. If
n is a Steinitz number in S, we define µn as the union of all finite subgroups µm for
m ∈ Z≥1 with m | n. Every subgroup of µ is of this form for a unique n ∈ S, and
the annihilator AnnZ(µn) of µn in Z is equal to nZ.
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3.3 Main results

We use the notation of µ, Z, S from the previous section. The absolute Galois
group G of K acts on µ, and we define Γ to be the image of G in Z∗ of this action:

Γ = im [Gal(Ksep/K) −→ Aut(µ) = Z∗] ⊂ Z∗.

Also define W as

W = {x ∈ ∞
√
K∗ : ∃w ∈ Z>0 : xw ∈ K∗ and K∗ contains an element of order w},

the “Kummer part” of ∞
√
K∗ over K∗.

Finally, we define w ∈ S to be the Steinitz number for which wZ is the closure
of the Z-ideal generated by {1 − γ : γ ∈ Γ}. If n is a positive integer not divisible
by the characteristic of K, then we have the equivalences

n | w ⇔ ∀γ ∈ Γ : γ ≡ 1 mod n⇔ µn ⊂ µ ∩K.

From this we conclude that µ ∩K equals µw.

Theorem 3.1. There is an isomorphism

Eabs(K)
∼−→

(
Z∗ ∩ (1 + w2Z)

)
/Γw,

that, for each σ ∈ AutK∗(
∞
√
K∗) and g ∈ G with g|W = σ|W , sends σ̄ ∈ Eabs(K)

to σ|µ(g|µ)−1.

In characteristic p > 0 there is in fact an alternative easier description of Eabs(K)
since all entanglement turns out to be visible on the roots of unity.

Proposition 3.2. If K is of characteristic p > 0, the natural restriction map
Eabs(K)→ E(µ) is an isomorphism.

Corollary 3.3. Suppose K has characteristic p > 0. Define the Steinitz number a
by

∀m ∈ Z≥1 : m | a⇔ Fpm ⊂ K.

Then the restriction map Aut(∞
√
K∗) → Aut(µ) induces an isomorphism of the ab-

solute entanglement group of K to

(Z∗ ∩ (1 + wZ))
/
paẐ,

where p is considered as an element of the Ẑ-module Z∗.

The Steinitz number a defined in this Corollary satisfies that for positive integers
m we have m | a⇔ pm− 1 | w, so the Steinitz numbers w and a uniquely determine
each other.
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Example 3.4.

We compute the absolute entanglement group of Q as an illustration of The-
orem 3.1.

We are in characteristic zero, so Z simply equals Ẑ. Also, since Q has ex-
actly two roots of unity, w is the integer 2. The restriction map of Gal(Q(µ)/Q)
to Aut(µ) is an isomorphism, so the image Γ of the action of the absolute Galois

group of Q in Aut(µ) ∼= Ẑ∗ is the full group Ẑ∗.
We now turn to the expression from Theorem 3.1 for the absolute entan-

glement group of Q.

Eabs(Q) ∼=
(
Z∗ ∩ (1 + w2Z)

)
/Γw

Rewriting this with the observations made above, we obtain the following.

Eabs(Q) ∼=
(
Ẑ∗ ∩ (1 + 4Ẑ)

)/
(Ẑ∗)2

Using the fact that we can identify Ẑ∗ with
∏
p Z∗p, we see that Ẑ∗∩(1+4Ẑ)

corresponds to (1+4Z2)×∏p odd Z∗p, since 4 is invertible in Z∗p for odd primes p.

Also, (Ẑ∗)2 corresponds to (1 + 8Z2)×∏p odd(Z∗p)
2.

At the prime 2, the quotient (1 + 4Z2)/(1 + 8Z2) is isomorphic to Z/2Z,
and at odd primes p, the quotient Z∗p/(Z

∗
p)

2 is also isomorphic to Z/2Z. If
we write P for the set of primes, we conclude that the absolute entanglement
group of Q is isomorphic to

E = {±1}P .
An explicit map from A = AutQ∗(

∞
√

Q∗) to E can also be derived from
the theorem.

We start with some notation. For a ∈ Ẑ∗ and p a prime number, we let
(ap ) ∈ {±1} be the Kronecker symbol. Recall that for odd p we have (ap ) = 1

if and only if a is a square mod p, and (a2 ) = 1 if and only if k ≡ ±1 mod 8.
Then, for a prime p, write p∗ = (−1

p )p. Finally, given σ ∈ A, define

aσ ∈ Ẑ∗ as the image of σ|µ under the isomorphism Aut(µ) ∼= Ẑ∗. Note that
for σ ∈ Gal(Q̄/Q) and p prime, we have (aσp ) = 1⇔ σ(

√
p∗) =

√
p∗.

The homomorphism from A to E is then given by

A −→ {±1}P = E

σ 7−→
(
p 7→ σ(

√
p∗)√
p∗
·
(
aσ
p

))
In the remainder of this section we will prove Theorem 3.1. The other two results

on positive characteristic are the topic of Section 3.4.

Proof of Theorem 3.1. The absolute entanglement group Eabs is equal to the entan-
glement group E(Bab) of the maximal abelian part Bab of B = ∞

√
K∗ by Corol-

lary 2.27.
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To determine this entanglement group we proceed via Corollary 2.29.
Recall the definition of Bab, transformed into the typical multiplicative notation

for K∗:

Bab = {x ∈ B : ∃w ∈ Z>0 : xw ∈ Btors ·BG and BG has an element of order w}.

In our situation the abelian group Btors is divisible by integers coprime to the
characteristic p, so we have Bab = µ ·W .

The Kummer part W has no entanglement as E(W ) is trivial by Theorem 2.14,
so with D = µ and C = W we can invoke Corollary 2.29 to get an expression for
the entanglement group E(Bab) and corresponding map from AutK∗(

∞
√
K∗).

We get the isomorphism

ϕ : Eabs
∼−→ Autµ∩W (µ)/im(GW ), (3.5)

where GW is the kernel of the map G→ Aut(W ) induced by the action of G. Still
according to Corollary 2.29, for any σ̄ ∈ E(Bab) with σ ∈ Aut(B), there exists g ∈ G
such that σ|W = g|W , and ϕ(σ̄) is given by σ|µ(g|µ)−1.

To reach the expression from the present Theorem, we will use the following
proposition.

Proposition 3.6. The ideal wZ is the annihilator in Z of µ ∩K, and w2Z is the
annihilator in Z of µ ∩W .

Proof. Since µ ∩W equals µw, we find that AnnZ(µ ∩K) equals wZ.
Next, we remark that because the action of G is continuous, annihilators are

closed Z-ideals and are therefore given by Steinitz numbers, and a Steinitz number
is uniquely defined by the set of positive integers dividing it.

For the second statement, it suffices to show that µ ∩W equals µw2 , or equiva-
lently, that for every positive integer n, the finite group µn is contained in µ ∩W if
and only if n divides w2.

Suppose µ ∩W contains an element of order n. Then there exists m such that
we have xm ∈ µ∩K and µm ⊂ K. This implies that n divides wm and m divides w,
so n divides w2.

Conversely, if n divides w2, then there is a positive integer m | n such that m | w
and n

m | w, which is easy to see per prime. Then any element x of order dividing n
satisfies xm ∈ µ ∩K and µm ⊂ K, so x is in µ ∩W .

A direct corollary of this proposition is that if the number of roots of unity
#(µ ∩K) in K is finite, then w is the integer #(µ ∩K).

We now continue with the proof of the main Theorem 3.1.
Since w2Z is the annihilator in Z of µ∩W , the elements of Z∗ that are 1 mod w2Z

are exactly those that fix µ ∩W pointwise. Therefore Z∗ ∩ (1 + w2Z) is equal to
Autµ∩W (µ).

Recall that GW is the kernel of the map G → Aut(W ) induced by the Galois
action, i.e., the subgroup of G corresponding to the maximal Kummer extension of K
in Ksep. This subgroup GW is the intersection of all subgroups of G corresponding
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to Kummer extensions of finite exponent, which are given by Gn with n ranging
over the positive integers dividing the Steinitz number w.

We conclude that GW is equal to Gw. Since the image of G in Aut(µ) is defined
to be Γ, the image of GW in Autµ is given by Γw.

The expression from this theorem now immediately follows from the map 3.5.

3.4 Positive characteristic

We continue with the proofs of Proposition 3.2 and Corollary 3.3, for the case where
the characteristic p of K is positive.

Proof of Proposition 3.2. Applying the combination of Theorem 2.28 and Equa-
tion 2.30 to C = µ and D = W , we can observe that the absolute entanglement
group fits into the following short exact sequence:

1→ AutBG(µ∩W )(W
Gµ)→ Eabs → E(µ)→ 1 (3.7)

BothWGµ andBG(µ∩W ) are Kummer radical extensions ofBG. We claim these two
groups are in fact equal. By Kummer duality there is a natural bijection between
Kummer radical extensions of BG and Kummer field extensions of K, so we can
proceed by verifying they are both equal to the group of radicals of the same Kummer
(field) extension of K.

We first look at WGµ . The kernel Gµ of the map G→ Aut(µ) is the Galois group
Gal(Ksep/K(µ)), so WGµ equals W ∩K(µ). Now consider the Kummer extension
K(W ) ∩K(µ) over K. Its radical group is given by (K(W ) ∩K(µ))∗ ∩W = W ∩
K(µ)∗ = WGµ , so we conclude by Kummer duality that K(WGµ) = K(W )∩K(µ).

Next we turn to BG(µ ∩W ). This group generates the field K(BG(µ ∩W )) =
K(µ ∩W ).

We will now prove that the fields K(µ ∩W ) and K(W ) ∩K(µ) are one and the
same. To see this, we take the intersection with F̄p.

F = K ∩ F̄p

F̃ = F (µ ∩W )

K

K(µ ∩W )

K̃ = K(µ) ∩K(W )

F̄p

K(µ)
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Since F̄p equals µ ∪ {0}, the maximal Kummer extension F̃ of F inside F̄p is
generated by roots of unity. Since all roots of unity of K are contained in F = K∩F̄p,

this implies that F̃ = F (µ∩W ). The maximal Kummer extension of K inside K(µ)
is given by K̃ = K(µ) ∩K(W ).

Because the roots of unity of K are exactly the roots of unity of F , the maximal
Kummer extension of K inside K(µ) corresponds with the maximal Kummer exten-
sion of F inside F (µ) = F̄p when taking intersections with F̄p. We get the identity

F̃ = K̃ ∩ F̄p, or, F (µ ∩W ) = K̃ ∩ F̄p. We conclude that K̃ equals K(µ ∩W ), as
desired.

Combining these results leads to the fact that the group AutBG(µ∩W )(W
Gµ) is

trivial, and Eabs is equal to E(µ) according to the sequence 3.7.

Proof of Corollary 3.3. It follows from Proposition 3.2 that the restriction map of
AutK∗(

∞
√
K∗) to Aut(µ) induces an isomorphism of Eabs to Autµ∩K(µ)/Γ.

Since wZ is the annihilator of (µ∩K), the elements of Z∗ that fix µ∩K pointwise
are exactly those that are 1 mod wZ. Therefore Z∗∩(1+wZ) is equal to Autµ∩K(µ).

To conclude, recall that Γ is defined as the image of the restriction homomorphism
Gal(Ksep/K) → Aut(µ). Since F̄p equals µ ∪ {0}, this map factors via the Galois
group Gal(F̄p ∩K(µ)/F̄p ∩K) = Gal(F̄p/F̄p ∩K).

Fp

F̄p ∩K

F̄p K

K(µ)

Ksep

The group Gal(F̄p/Fp) is pro-cyclic, and is generated by Frobp. It has H =
Gal(F̄p/F̄p ∩K) as a subgroup. Because F̄p ∩K is the union of its finite subfields,
we have

H =
⋂

Fpm⊂K
m∈Z≥1

Gal(F̄p/Fpm).

Recall that we defined the Steinitz number a ∈ S by

∀m ∈ Z≥1 : m | a⇔ Fpm ⊂ K.

Since Gal(F̄p/Fpm) is generated by (Frobp)
m, we can then conclude that H is

generated by (Frobp)
aẐ and Γ by paẐ.
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Chapter 4

Computing radical field
degrees

4.1 Introduction

One application of entanglement as we defined it in the previous chapter is comput-
ing degrees of radical field extensions of the rationals, e.g., the degree of the field
Q(ζ12,

6
√

6, 4
√
−9) over Q.

Radical expressions like Q(16
√
−4) do not define a unique field: there are multiple

choices for roots, and the fields they generate may not be equal. If we add sufficiently
many roots of unity, then the generated field is uniquely defined, since all choices
for each root differ by a root of unity. In this chapter we assume that our radical
fields contain enough roots of unity, as made precise in the following Question.

Question 4.1. Let c1, . . . , ck be non-zero integers, and a1, . . . , ak be integers greater
than 1. How do we efficiently compute the degree over Q of

K = Q(µa1 ,
a1
√
c1, . . . , µak ,

ak
√
ck)?

Unfortunately, this question is (very likely) difficult to answer. Suppose we take
only a single root, d

√
2, with d the product of two large — and unknown — primes

p and q. Then K is Q(µd,
d
√

2) with degree dϕ(d). Then obtaining the value of
dϕ(d) = d(p−1)(q−1) = d(d+1− (p+q)) allows us to easily solve p and q from the
equations p+ q = d+ 1−ϕ(d) and pq = d. Answering Question 4.1 would therefore
let us factor d, which is presumed to be hard.

We will instead give an algorithm answering a modified question:

Theorem 4.2. There is a polynomial time algorithm that given non-zero integers
c1, . . . , ck, and a1, . . . , ak integers greater than 1, computes the degree of K over
Q(µd), where d is the least common multiple of a1, . . . ak, and K is defined as

K = Q(µa1 ,
a1
√
c1, . . . , µak ,

ak
√
ck).

53
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This algorithm will be stated (proving the theorem) in Section 4.4, combining
results from Sections 4.2 and 4.3.

Following Chapter 2, the basic ingredients will consist of computing an index of
abelian groups, and the order of an entanglement group.

To this end, define the (Galois) radical extension B of Q∗ as follows:

B = 〈Q∗, µd, ai
√
ci : i ∈ {1, . . . , k}〉 ⊂ Q̄∗.

Let E(B) be the entanglement group of B with the action of the absolute Galois
group G of Q, as defined by Definition 2.26. In Section 4.4 we will prove and use
the following proposition.

Proposition 4.3. With notation as above, the following equality holds:

[K : Q(µd)] =
[B : Q∗µd]

#E(B)

The next two sections cover the computation of the factors in this fraction.

4.2 Coprime bases

We start by computing the index [B : Q∗µd] of abelian groups. This is essentially
a matter of Z-linear algebra computation, once we have identified a basis to work
with. Factoring all involved numbers into primes would suffice, but is computa-
tionally prohibitive. A suitable basis is provided by the following theorem due to
D.J. Bernstein.

Theorem 4.4. (D.J. Bernstein, [3, 4]) There is an algorithm with (up to log factors)
linear run time that given a finite set X ⊂ Z>0, computes a set P ⊂ Z>1 of pairwise
coprime positive integers, none of which are perfect powers, as well as a factorization
of each element of X as a product of elements of P.

We call a set P that satisfies these properties a reduced coprime basis for X. In
this chapter, we take P to be the reduced coprime basis of the set consisting of 2,
d, all ai and all ci. Define M to be the abelian group

M = 〈Q∗, ζ2d, d
√
p : p ∈ P〉/Q∗.

Lemma 4.5. Let d, P and M be as above. Then the abelian group M is a free
(multiplicative) Z/dZ-module with basis {ζ2d, d√p : p ∈ P}.
Proof. The Z-module M has exponent d, so it is a Z/dZ-module, and the set
{ζ2d, d√p : p ∈ P} is clearly a generating set.

To show they form a basis, suppose a linear combination ζ
eζ
2d

∏
p∈P(d
√
p)ep = x is

an element of Q∗. Taking the dth power, we find
∏
p∈P p

ep equals (−1)eζxd.
Since the right-hand side is plus or minus a d-th power, the order of all prime

factors of the right-hand side is a multiple of d. Since all p ∈ P are pairwise coprime
and no perfect powers, this implies the exponents ep are multiples of d too.
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We obtain that
∏
p∈P(d
√
p)ep is an element of Q, so ζ

eζ
2d is also in Q, from which

we see that eζ is also a multiple of d. This shows that the set {ζ2d, d√p : p ∈ P} is
Z/dZ-linearly independent.

Determining the index [B : Q∗µd] can be conveniently done via M if every |ci|
can be factored over P. Specifically, define si ∈ {0, 1} and ap,i ∈ Z such that
ci = (−1)si

∏
p∈P p

ep,i .

Let ψ : M −→ (Z/dZ)1+#P be the Z/dZ-module isomorphism that sends m ∈M
to its sequence of coordinates on the basis given by the lemma.

The coordinate vectors of the generators of B/Q∗ are given by:

ψ(ζd) = (2, (0)p∈P) (4.6)

ψ(ai
√
ci) =

(
sid

ai
,

(
ep,id

ai

)
p∈P

)

Theorem 4.7. Let P, M and ψ be as above. Then we have

[B : Q∗µd] =
(2, d)#ψ(B/Q∗)

d
.

Proof. This follows from the existence of the isomorphism from Lemma 4.5. The
index [B : Q∗µd] is equal to [B : Q∗]/[Q∗µd : Q∗]. The index in the denominator
only depends on d, and equals d if d is odd, and d/2 if d is even.

Since we have explicitly written B/Q∗ on a basis of M , we can now compute the
index efficiently, using for example the methods from [8].

4.3 Entanglement

For computing the size of the entanglement group E(B), we recall that E(B) is
equal to E(Bab) (Corollary 2.27), where Bab is defined as

Bab = {x ∈ B : ∃w ∈ Z>0 : xw ∈ BtorsB
G and BG has an element of order w}.

Since BG = Q∗ has exactly two roots of unity, w = 2 suffices and this definition
reduces to

Bab = {x ∈ B : x2 ∈ BtorsQ
∗}. (4.8)

If d is odd, then for all x ∈ Bab, both x2 and xd are contained in BtorsQ
∗, so Bab

is in fact equal to Q∗Btors. This has no entanglement since every automorphism of
Q∗Btors over Q∗ extends uniquely to a field automorphism in Gal(Q(Btors)/Q).

In the rest of this section, we will therefore assume that d is even.
We turn to Corollary 2.31, which gives an explicit description in the case where

Bab is of the form µW where µ consists of roots of unity and W is Kummer. The
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group Bab cannot always be written in this form, but as we shall see, that is always
possible if we slightly enlarge B by adding the 2d-th roots of unity:

B′ = µ2dB = 〈Q∗, µ2d, ai
√
ci : i ∈ {1, . . . , k}〉 ⊂ Q̄∗.

Since B′/Q∗ has exponent d, the torsion subgroup of B′ is contained in µ2d and
therefore equal to it. We can now compute B′ab.

Proposition 4.9. With B′ defined as above, B′ab is equal to µ2d(
√

Q∗ ∩ B′), with√
Q∗ = {x ∈ Q̄∗ : x2 ∈ Q}.

Proof. Analogously to Equation 4.8, we have

B′ab = {x ∈ B′ : x2 ∈ B′torsQ
∗} = {x ∈ B′ : x2 ∈ µ2dQ

∗}.

It is clear that µ2d(
√

Q∗ ∩ B′) is contained in B′ab. For the opposite inclusion,
suppose that x is an element of B′ab. Then we have x ∈ B′ and x2 ∈ Q∗µ2d. Then
x2 can be written as x2 = ζb with b ∈ Q∗ and ζ ∈ µ2d. Taking d-th powers, we get

ζd = x2d

bd
∈ (Q∗)2 because d is even. Since ζd is now in (Q∗)2 and in µ2, we can

conclude that ζd is 1, so ζ is a d-th root of unity. Since now x2 ∈ µdQ∗, we find
that x ∈ µ2d

√
Q∗. This proves the claim.

Following the notation from Corollary 2.31, we will now write µ = µ2d and
W =

√
Q∗ ∩B′ so that B′ab = µW .

Note that Corollary 2.31 allows an amount of freedom in how to distribute ele-
ments that are both roots of unity and Kummer roots. In the definition of µ and W
above, we have chosen to add these roots of unity to both µ and W .

Proposition 4.10. With Gµ = ker(G→ Aut(µ)), we have

E(µ) = 1, and

E(B′) ∼= AutQ∗·〈i〉(W
Gµ).

Proof. Each group automorphism of Aut(µ) can be uniquely extended to a field
automorphism in Gal(Q(µ)/Q), so Gal(Q(µ)/Q) ∼= Aut(µ) and E(µ) is trivial.

Because of that, Corollary 2.31 leads to

E(B′) ∼= AutWG·(µ∩W )(W
Gµ).

Since WG is Q∗ and µ ∩W is 〈i〉, the statement follows.

Using this expression, we can find the order of E(B′) by a computation in-
side M [2], where M (and P) are the objects defined in the previous section. To
determine WGµ we need to look at how Gµ acts on W .

Lemma 4.11. For a positive integer k that can be factored over P, the intersection
Mk = (Q(µk)∗/Q∗) ∩M [2] has F2-basis

B = {
√
−1 if 4 | k} ∪ {√p∗ : p ∈ P with p∗ | k},

where 2∗ = 8 and p∗ = ±p ≡ 1 mod 4 for odd p ∈ P.
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Proof. First of all, note that elements of the reduced coprime basis P are by defini-
tion either 2 or odd, so p∗ is properly defined for all p ∈ P.

For primes q it is well-known that
√
q∗ is an element of Q(µ|q∗|). On odd integers,

both reduction mod 4 and taking square roots (up to the sign of the root) are strictly
multiplicative, so for p = 2 as well as for p odd,

√
p∗ is an element of Q(µ|p∗|). Also,√

−1 is in Q(µ4), so B is contained in Mk. Since elements of P are coprime, B is
also F2-linearly independent.

To see that B generates Mk, consider an element
√
x ∈ Mk. We can choose the

representative in such a way that x is a product of distinct elements of P ∪ {−1}.
Choose an element p ∈ P that divides x, and suppose that p∗ does not divide k.
Let l | p then be a prime number with ordl(p) odd. (Such a prime l exists because p
is not a perfect power.) Then Q(

√
x) is ramified at l, while Q(µk) is not, so

√
x is

not an element of Mk, leading to a contradiction. This shows that
√
x or

√−x (or
both) are in 〈B〉.

If we have 4 | k, then both
√
x and

√−x are elements of 〈B〉, and we are done.
If on the other hand we have 4 - k, then only one of

√
x and

√−x is in Mk, and
therefore we conclude

√
x ∈ 〈B〉.

Proposition 4.12. We have WGµ = W ∩Q(µ2d) and WGµ/Q∗ = (W/Q∗)∩M2d.

Proof. By definition, Gµ is the kernel of the map G → Aut(µ), so in this setting it
is Gal(Q(B)/Q(µ2d)). The subgroup of W invariant under Gµ is then W ∩Q(µ2d).

Since W/Q∗ is contained in M [2], we find (W/Q∗) ∩ Q(µ2d)/Q
∗ = (W/Q∗) ∩

((Q(µ2d)/Q
∗) ∩M [2]) = (W/Q∗) ∩M2d.

For the actual explicit computations, we start by taking the intersection of B′/Q∗

and M [2] inside M to get a basis for the F2-module (B′/Q∗) ∩M [2] = ((B′/Q∗) ∩
(
√

Q∗/Q∗)) ∩M [2] = W/Q∗. Since we then have an explicit basis for W/Q∗ and
M2d inside M [2], we can now compute the order of their intersection, and then also
that of E(B′).

Theorem 4.13. The order of the entanglement group of B′ is given by

#E(B′) =
1

2
#Hom(WGµ/Q∗, µ2) =

1

2
#(WGµ/Q∗).

Proof. Since 〈Q∗,
√
P, i〉 is a Kummer extension over Q∗, there is an isomorphism

AutQ∗(〈Q∗,
√
P, i〉)→ Hom(〈Q∗,

√
P, i〉/Q∗, C2) = M [2]∨.

This isomorphism induces the three isomorphisms AutQ∗(W ) ∼= (W/Q∗)∨, and
AutQ∗(W

Gµ) ∼= (WGµ/Q∗)∨, and AutQ∗·〈i〉(W
Gµ) ∼= (WGµ/(Q∗ · 〈i〉))∨.

The order of this last dual is half the order of (WGµ/Q∗)∨, due to the added
subgroup 〈i〉. Proposition 4.10 then gives the desired equality.
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To compute #E(B), we need to determine if the step from B to B′ introduced
extra entanglement. The following theorem gives a sufficient and necessary condition
for this.

Theorem 4.14. We have

#E(B) = #E(B′) ·
{

1
2 if µ2d 6⊂ B and (WGµ ∩B)/Q∗ 6= (W/Q∗) ∩Md

1 otherwise.

Proof. If B equals B′, we are of course done. So, assume that ζ2d is not in B. Then
we have [B′ : B] = 2 and the kernel of the natural restriction map AutQ∗(B

′) �
AutQ∗(B) equals AutB(B′) and therefore contains exactly one non-trivial automor-
phism σ. The induced surjection E(B′) � E(B) has a kernel generated by the
image of σ, and it has order at most 2.

We can determine the order of this kernel by checking if σ maps to 1 in E(B′).
There is no entanglement in extensions generated by roots of unity over Q (by
Proposition 4.10), so we can use Corollary 2.31 for this.

In this corollary we have seen that the entanglement group E(B′) is isomorphic
to AutWG(µ∩W )(W

Gµ) and that the corresponding homomorphism from AutQ∗(B
′)

to AutWG(µ∩W )(W
Gµ) sends σ to σ|WGµ (g|WGµ )−1 for any g ∈ G with σ|µ = g|µ.

To check if σ maps to 1 in E(B) we can therefore check if g and σ have the same
restriction to WGµ .

Since σ has order 2, and g|µ = σ|µ, the restriction g|WGµ has order at most 2.
We then have for all x ∈WGµ that gx, σx ∈ {±1}x. Therefore, the automorphisms
σ|WGµ and g|WGµ are equal if and only if they have the same groups of invariants.

The automorphism σ|WGµ has group of invariants WGµ ∩B, since we have B =
(B′)〈σ〉.

Since we have g|µ = σ|µ, the invariant field Q(µ2d)
〈g〉 equals Q(µd). The restric-

tion g|WGµ therefore has group of invariants Q(µd) ∩WGµ = Q(µd)
∗ ∩W .

The image of σ in E(B) therefore equals 1, if and only if the two submodules
(WGµ ∩ B)/Q∗ and (W/Q∗) ∩Md of M [2] are equal. The image of σ in E(B) has
order 2 otherwise.

Combining the previous two theorems directly gives the following result for the
order of E(B).

Corollary 4.15. The order of the entanglement group of B is given by

#E(B) = #(WGµ/Q∗) ·
{

1
4 if µ2d 6⊂ B and (WGµ ∩B)/Q∗ 6= (W/Q∗) ∩Md
1
2 otherwise.

Since we have already determined explicit bases for all modules in the condition
of this corollary, computing the order of E(B) from #(WGµ/Q∗) is a straightforward
F2-linear algebra computation.
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4.4 Field degrees

We will complete the proof of Theorem 4.2 in this section.

We recall the definition of the radical extension B of Q∗:

B = 〈Q∗, µd, ai
√
ci : i ∈ {1, . . . , k}〉.

Proof of proposition 4.3. Since B is a Galois radical group over Q∗ by construction,
Theorem 2.25 shows that B — with the Galois action of Gal(Q̄/Q) — has an
entanglement group E(B). Recall that in this case, E(B) is the cokernel of the
natural embedding of Gal(Q(B)/Q) into AutQ∗(B).

We find

[Q(B) : Q(µd)] =
[Q(B) : Q]

ϕ(d)
=

#AutQ∗(B)

ϕ(d)#E(B)
.

Using Theorem 2.19 we conclude

[Q(B) : Q(µd)] =
[B : Q∗]

ϕ(d)#E(B)

∏
p prime

B[p] 6=Q∗[p]

p− 1

p

=
[B : Q∗µd] · [Q∗µd : Q∗]

(d/2) ·#E(B)
=

[B : Q∗µd]

#E(B)
.

Proof of Theorem 4.2. The previous two sections show how to compute the quanti-
ties [B : Q∗µd] and #E(B) in this fraction in the required time. Combining these
statements yields Algorithm 4.16 to compute [Q(B) : Q(µd)].

This algorithm runs in time polynomial in the input. The computation and
factoring over the co-prime basis is polynomial time due to Theorem 4.4. Computing
the intersections and equality inside M [2] is basic linear algebra over F2 with matrix
sizes linear in the input size.

Finally, evaluating the expression from Theorem 4.7 involves computing an order
of a Z/dZ-module D, where the generators of D are written on a basis of the free
Z/dZ-module M of rank, say, r. The computation of this order can be performed
by dividing dr by the index of ((dZ)r + D) inside Zr. Since both the number of
generators of D and the size of each coefficient are linear in the size of the input,
this index can be computed in polynomial time, using for example the methods
from [8].
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Algorithm 4.16.

1. Determine a coprime base P for the set consisting of 2, all ai, and all ci and
factor all these numbers over P.

2. Compute d = lcm{ai} using this factorization.

3. Define the Z/dZ-module M as in Lemma 4.5.

4. Use Equation 4.6 and Theorem 4.7 to compute [B : Q∗µd].

5. If d is odd, then #E(B) = 1. Proceed with step 10.

6. Use Lemma 4.11 to find F2-bases of Md and M2d inside M [2].

7. Use Proposition 4.12 to find WGµ/Q∗ by computing (W/Q∗) ∩ M2d inside
M [2].

8. Compute the intersections (WGµ ∩B)/Q∗ and (W/Q∗) ∩Md inside M [2].

9. Use Corollary 4.15 to compute #E(B).

10. Finally, use Proposition 4.3 to compute [Q(B) : Q(µd)].

Example 4.17.

Consider K = Q(µ12,
6
√

6, 4
√
−9), or, equivalently

K = Q
(
µ12,

12
√

62,
12
√
−36

)
.

Using the notation from throughout this chapter, we get d = 12 and

B =
〈
Q∗, µ12,

12
√

62,
12
√
−36

〉
.

The coprime base for the numbers involved necessarily consists of actual primes
in this case: P = {2, 3}. This means that the free Z/dZ-module M is given
by

M =
〈
Q∗, µ24,

12
√

2,
12
√

3
〉/

Q∗.

Inside this module, we compute the index [B : µ12Q
∗]. On the (ordered)

basis (ζ24,
12
√

2, 12
√

3), the submodule µ12Q
∗ is generated by 〈(2, 0, 0)〉 and B

by 〈(2, 0, 0), (0, 2, 2), (1, 0, 6)〉. Adding 3 · (0, 2, 2) to (1, 0, 6) results in a basis
for B in triangular form:

B = 〈(2, 0, 0), (1, 6, 0), (0, 2, 2)〉 .

From this we see that [B : µ12Q
∗] equals (12/6) · (12/2) = 12.
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We continue with the entanglement group computation, starting with E(B′)
for B′ = 〈B,µ24〉. This takes place in the 2-torsion of M :

M [2] =
〈√
−1,
√

2,
√

3
〉
.

Since
√
−1,
√

2 and
√

3 are all contained in Q(µ24), the intersection M24 =
M [2]∩ (Q(µ24)∗/Q∗) actually equals M [2]. The three roots

√
−1,
√

2 and
√

3
are also all contained in B′, so WGµ/Q∗ = M24 ∩ (W/Q∗) = M24 ∩ B′ also
equals M [2].

As an aside, according to Theorem 4.13 the order of E(B′) is half that of
WGµ/Q∗, so we have #E(B′) = 4. To compute the size of E(B) from this,
we need to determine if (WGµ ∩B)/Q∗ equals (W/Q∗)∩M12. Since

√
3 is not

in B, it is not in the former module, while it is in the latter, so they are not
equal, and #E(B) = 8 · 1

4 = 2.
This leads us to the conclusion[

Q
(
µ12,

6
√

6, 4
√
−9
)

: Q
]

= ϕ(12) · 12

2
= 24.
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Chapter 5

Near-primitive roots and
higher rank

5.1 Introduction

In this chapter we generalize the results from Chapter 1 to a broader setting.

Let K be a number field, and let V ⊂ K∗ be a finitely generated subgroup with
rank(V/Vtors) ≥ 1 and t a positive integer. We consider the set M = M(K,V, t) of
primes q of K satisfying:

• ordq(v) = 0 for all v ∈ V , and

• [(OK/q)∗ : V̄ ] | t.

This is a special case of the broader context considered by H.W. Lenstra [18].
If we take V to be generated by a single element, this element is called a near-
primitive root modulo the primes q satisfying the conditions. Over the rationals,
these densities have previously been computed; see Wagstaff [35] and Moree [23].

If on the other hand we take t = 1, but V generated by multiple elements, this
leads to higher rank analogues of Artin’s conjecture. For K = Q, this topic has been
treated by Cangelmi and Pappalardi [6], and is covered in a way very similar to the
approach in this chapter by Moree and Stevenhagen [24].

The work of Cooke and Weinberger [9] shows that the setM(K,V, t) has a natural
density under the appropriate generalized Riemann hypotheses.

First of all, note that the set of primes q not satisfying the first condition is finite,
since V is finitely generated. After all, it is sufficient to check this condition for a
set of generators of V .

Following the same strategy as in Chapter 1, we will see that the second condition
can also be translated to splitting conditions on radical extension fields of K.

63
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Specifically, for a (rational) prime p, let e(p) be the smallest positive integer such
that pe(p) does not divide t, and define the radical extensions

K∗ ⊂ Bp = 〈K∗, µpe(p) ,
pe(p)
√
V 〉.

Here pe(p)
√
V denotes the group of all elements x in a fixed algebraic closure K̄ of K

that satisfy xp
e(p) ∈ V . Let B be the abelian group generated by all Bp, and let

E = E(B) be its entanglement group with respect to the action of the absolute
Galois group of K.

Theorem 5.1. The entanglement group E = E(B) of B is finite.

As A = AutK∗(B) is naturally isomorphic to the product of all Ap = AutK∗(Bp)
and E is finite, only a finite number of Ap have a non-trivial image in E. This
ensures that the (a priori infinite) product in the correction factor formula below is
in fact a finite product.

Theorem 5.2. Assuming GRH, the set M(K,V, t) has a natural density equal to

C(K,V, t) ·
∏

p prime

(
1− 1

#Ap

)
,

where C(K,V, t) is a rational correction factor given by

C(K,V, t) =
∑
χ∈E∨

∏
p prime
χ(Ap) 6=1

−1

#Ap − 1
.

We prove these two main theorems in the following section.
In this generality, the results from Chapter 1 no longer suffice to give explicit

expressions for E and χ(Ap). In the remainder of the chapter we will address these
issues, using the theory from Chapters 2 and 4.

5.2 Proof of main theorems

In this section we will prove Theorems 5.1 and 5.2. As in the introduction, let K
be a number field, V ⊂ K∗ a finitely generated subgroup with rank(V/Vtors) ≥ 1
and t a positive integer. We will consider the set M = M(K,V, t) of primes q of K
satisfying:

• ordq(v) = 0 for all v ∈ V , and

• [(OK/q)∗ : V̄ ] | t.

First of all, note that the set of primes q not satisfying the first condition is
finite, since V is finitely generated and it is sufficient to check this condition for a
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set of generators of V . We will therefore only consider primes q satisfying the first
condition in the remainder of this section.

For the second condition, let e(p) be the smallest positive integer such that pe(p)

does not divide t. Then for a given prime q of K, the index [(OK/q)∗ : V̄ ] divides t
if and only if for all (rational) primes p the power pe(p) does not divide the index.

For a given prime p with q - p, we have

pe(p) | [(OK/q)∗ : V̄ ]

if and only if

pe(p) | (Nq− 1) and all elements of V̄ are pe(p)-th powers in OK/q

if and only if

q splits completely in K ⊂ K(ζpe(p) ,
pe(p)
√
V ).

We conclude that, up to a finite number, the set of primes M(K,V, t) we are
interested in is the set of primes q of K that do not split completely in any of the

extensions K ⊂ Kp = K(ζpe(p) ,
pe(p)
√
V ) with q - p.

As in Chapter 1, for each individual rational prime p the density of primes
satisfying this condition has a simple expression given by the Chebotarëv density
theorem:

1− 1

[Kp : K]
.

Moreover, we can again combine these conditions at finitely many different primes p
by looking at the splitting behaviour in the compositum.

If we take n to be a product of primes to consider, we define Kn to be the
compositum of the fields Kp for the p dividing n. Also, we define Gn to be the
Galois group Gal(Kn/K), and Sn as

Sn = {σ ∈ Gn : σ |Kp 6= id for all p | n}.

Chebotarëv implies that the set of primes q of K that do not split completely in any
of the p dividing n has a density equal to the ratio #Sn/#Gn.

The results of Cooke and Weinberger [9] also apply in this generality, and show
that if we assume the Generalized Riemann Hypothesis (GRH) for the fields Kn,
the primes in M have a natural density of

lim
n→∞

#Sn
#Gn

.

In this limit the positive integers n are ordered by divisibility.
We will compute these quotients using the tools of radical group extensions and

entanglement developed in the previous chapters. To that end, recall from the
introduction in this chapter the definition of the radical extensions K∗ ⊂ Bp :

Bp =
〈
K∗, µpe(p) ,

pe(p)
√
V
〉
.
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Also, as before, for a positive integer n, we write Bn for the abelian group
generated by all Bp for primes p | n, and B for the abelian group generated by
all Bp.

A key ingredient in the derivation of the conjectured Artin densities in this
chapter is the finiteness of the entanglement group of B with the action of the
absolute Galois group of K, which is provided by Theorem 5.1 and which we prove
here.

Proof of Theorem 5.1. Recall from Chapter 2 that E(B) equals E(Bab), so it suffices
to show that E(Bab) is finite.

Write w for the number of roots of unity in K, and define the integer n as the
product of all primes p satisfying

p | w∆K/Q.

We aim to separate the n-part from the non-n-part of Bab, which we will make
precise below. To this end, note that Bab/K

∗ is torsion, so it is the direct sum
of its p-parts, for which we write (Bab)p/K

∗. For a prime p, this subgroup (Bab)p
consists of the radicals in Bab of p-power order mod K∗. In our current setting,
those correspond exactly to the elements of Bab that are also in Bp. Furthermore,
by Proposition 2.23 we see that Bp ∩Bab equals (Bp)ab. We conclude that

Bab/K
∗ =

⊕
p prime

(Bp)ab/K
∗.

For any prime p, the group (Bp)ab as defined in Section 2.5 is given by

(Bp)ab = {x ∈ Bp : xw ∈ µpe(p)K∗}.

If p is a prime not dividing w, then we have that for any x ∈ (Bp)ab, the order of x̄
in Bp/K

∗ is coprime with w. Therefore xw ∈ µpe(p)K∗ is equivalent to x ∈ µpe(p)K∗.
We obtain that

p - w ⇒ (Bp)ab = µpe(p)K
∗. (5.3)

Now write Cn = (Bn)ab and, since primes not dividing n in particular do not
divide w, define C ′n as

C ′n = 〈K∗, ζpe(p) : p - n〉.

This allows us to decompose Bab as a fibered sum over K∗

Bab = Cn ⊕K∗ C ′n,

and AutK∗(Bab) as

AutK∗(Bab) = AutK∗(Cn)×AutK∗(C
′
n). (5.4)
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Q

F

M= Q(ζpe(p) : p - n)

K

•

K̄

We write M = Q(ζpe(p) : p - n). Consider the following restriction map:

ϕ : Gal(K̄/K) −→ Gal(M/Q).

The invariant field F of the image of ϕ is given by the intersection K ∩M . The
extension F/Q is then unramified at primes p - n since K/Q is unramified there.
Also, F/Q is unramified at primes p | n since M/Q is unramified there. We conclude
that F/Q is unramified at all primes, so F is equal to Q.

Therefore Gal(K̄/K) maps surjectively to the Galois group of M over Q, which
is in turn naturally isomorphic to AutK∗(C

′
n).

Furthermore, the factor AutK∗(Cn) of AutK∗(Bab) is finite, so the image of
Gal(K̄/K) in AutK∗(Bab) is of finite index.

Since E(B) is finite, we know there is an integer n such that E(B) equals E(Bn).
In fact, with some extra work we can extend the strategy followed in the above proof
to give an explicit sufficient condition for such n. While it is not strictly necessary for
Theorem 5.2, we already give the proof here since it builds directly on the previous
arguments.

Theorem 5.5. Again write w for the number of roots of unity in K, and let n be a
positive integer divisible by all primes p satisfying

p | w∆K((Bw)ab)/Q.

Then the natural map E(B)→ E(Bn) is an isomorphism.

Proof. Define Cn and C ′n analogously to how they were defined in the proof of
Theorem 5.1 above: Cn = (Bn)ab and

C ′n = 〈K∗, ζpe(p) : p - n〉.

Because of Equation 5.3, we can see that

K(Cn) = K((Bn)ab) = K((Bw)ab, ζpe(p) : p | n) = K((Bw)ab) ·Q(ζpe(p) : p | n).
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All rational primes ramifying in K((Bw)ab)/Q divide n by definition of n, and
all rational primes ramifying in Q(ζpe(p) : p | n)/Q also divide n. We conclude that
K(Cn)/Q is unramified outside of the primes dividing n.

For brevity, define M = Q(ζpe(p) : p - n). Proceeding entirely analogously to the
reasoning in the proof of Theorem 5.1, the intersection K(Cn)∩M is now equal to Q,
and one can deduce from this that Gal(K(Bab)/K(Cn)) maps surjectively to the
Galois group of M over Q. This group is in turn naturally isomorphic to AutK∗(C

′
n).

We complete the proof assisted by the following diagram of abelian groups with
exact rows and columns, where the first center vertical map is provided by Equa-
tion 5.4.

0 Gal(K(Bab)/K(Cn)) Gal(K(Bab)/K) Gal(K(Cn)/K) 0

0 AutK∗(C
′
n) AutK∗(Cn)×AutK∗(C

′
n) AutK∗(Cn) 0

E(Bab) E(Cn) 0

f

Since the map f : Gal(K(Bab)/K(Cn)) → AutK∗(C
′
n) is a surjection, the map

from E(Bab) → E(Cn) is injective. It is also surjective, and since Cn is defined
as (Bn)ab, this gives the equality claimed by the present Theorem.

Now that we know the entanglement group is finite, we can proceed with the
derivation of the conjectured density formula given by Theorem 5.2.

Proof of Theorem 5.2. The computation of the density with the correction factor in
the form of a character sum can now continue as in Chapter 1.

Recall from the start of this section that we want to compute the limit

lim
n→∞

#Sn
#Gn

.

To express this in terms of An = AutK∗(Bn) rather than in the Galois groups Gn,
define Tn as follows.

Tn = {σ ∈ An : σ|Bp 6= id for all p | n}.
This gives the equality Sn = Tn ∩Gn inside An.

Now assume that n is an integer large enough to have E = E(B) = E(Bn).
(Refer to Theorem 5.5 for an explicit sufficient condition for this.) Then, because E
is an abelian group, the characteristic function 1Gn of Gn inside An is given by

1Gn(s) =
1

#E

∑
χ∈E∨

χ(s).
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We apply this as follows.

#Sn
#Gn

=
#(Tn ∩Gn)

#Gn
=

1

#E#Gn

∑
s∈Tn

1Gn(s)

=
1

#An

∑
s∈Tn

∑
χ∈E∨

χ(s)

We swap the order of the summations, and continue using the multiplicative struc-
ture of Tn.

#Sn
#Gn

=
#Tn
#An

∑
χ∈E∨

∏
p|n

1

#Tp

∑
s∈Tp

χ(s)

Since for all χ we have χ(1) = 1, we can change the inner sum to run over all of Ap.

#Sn
#Gn

=
#Tn
#An

∑
χ∈E∨

∏
p|n

1

#Ap − 1

−1 +
∑
s∈Ap

χ(s)


If χ(Ap) is not trivial, then

∑
s∈Ap χ(s) equals 0. Otherwise, it equals #Ap.

#Sn
#Gn

=
#Tn
#An

∑
χ∈E∨

∏
p prime
χ(Ap)6=1

−1

#Ap − 1

= C(K,V, t)
∏
p|n

(
1− 1

#Ap

)

Since C(K,V, t) does not depend on n, taking the limit of n to infinity gives the
desired expression.

5.3 Explicit density computations

In section 1.3 the exponent of the radical groups in question is squarefree, and we
have used that to decompose Bab as µW with µ a group of roots of unity and W a
group of Kummer roots of elements of K. In the more general context of the present
chapter, Bab cannot be written in this way, but we can extend B with extra roots
of unity to enable this. In Proposition 4.9 we saw how to do this over Q, and the
following Proposition gives the generalization for arbitrary number fields.

Proposition 5.6. Let C ⊂ D be a Galois radical extension such that D/C is of
finite exponent dividing n. Let w be the order of C[n], the n-torsion subgroup of C.
If the order of D[nw] equals nw, then Dab can be decomposed as Dab = µW with
µ = Dtors and W = {x ∈ D : xw ∈ C}.



70 Chapter 5. Near-primitive roots and higher rank

Proof. We first recall the definition of Dab from Section 2.5, adapted to the context
of the proposition.

Dab = {x ∈ D : xw ∈ DtorsC}.
The inclusion µW ⊂ Dab is clear, so we proceed with the opposite inclusion.

Suppose x is an element of Dab, so we have xw ∈ ζC for an element ζ ∈ Dtors.
We aim to show that we have x ∈ µW , or, equivalently, xw ∈ Dw

torsC. Since we
know xn ∈ C, we see ζn/w ∈ xnC ⊂ C, and we have ζn/w ∈ Ctors.

Now consider the quotient map π : Dtors → Dtors/Ctors. The restriction π|D[n]

has kernel C[n] = C[w] of order w, by definition of w and since all finite subgroups
of D (and C) are cyclic. Since D[n] has order n, the image π(D[n]) in Dtors/Ctors

is of order n/w and therefore equal to (Dtors/Ctors)[
n
w ].

Because we have ζ ∈ Dtors and ζn/w ∈ Ctors, we see that ζCtors is in π(D[n]), so
we have ζ ∈ D[n]Ctors. Finally, since #D[nw] = nw, we have that D[n] = D[nw]w ⊂
Dw

tors, and therefore ζ ∈ Dw
torsC. We now conclude that xw ∈ ζC ⊂ Dw

torsC, and
therefore x ∈ µW .

For a prime p, define e′(p) and B′p as

pe
′(p) = pe(p) ·#K∗[pe(p)];

B′p = µpe′(p)Bp =
〈
K∗, µpe′(p) ,

pe(p)
√
V
〉
.

For positive integers n, analogously to the definitions of Bn and Kn, we define
the group B′n as the group generated by all B′p for p | n and the field K ′n as K(B′n).
The radical extensions K∗ ⊂ B′n now satisfy the conditions of Proposition 5.6 by
construction.

Example 5.7.

The following is a typical example in which Bab is not generated by roots of
unity and Kummer roots, but B′ab is. Let l be a rational prime, and let ζl be
a primitive l-th root of unity in a fixed algebraic closure Q̄. Consider the case
K = Q(ζl), V = 〈2lζl〉, t = l.

Then we see that Bl is given by

Bl =
〈
K∗, ζl2 ,

l2
√

2lζl

〉
.

If we choose elements l
√

2 and ζl3 inside K̄, then Bl contains an element
x = ζl3

l
√

2. This element x is contained in Bab, since xl is contained in µl2K
∗.

Since l
√

2 is itself a Kummer root, but ζl3 cannot be written as a Kummer root
times a root of unity inside Bl, we can conclude that x cannot be written in
this way, and Bab cannot be decomposed as a subgroup of roots of unity and
a subgroup of Kummer roots.

The situation changes when we extend Bl to B′l as above:

B′l =
〈
K∗, ζl3 ,

l2
√

2lζl

〉
.
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While x is also an element of B′ab, in this case we clearly do obtain x as a
product of a Kummer root l

√
2 times a root of unity ζl3 inside B′l.

Finally define B′ as the group generated by all B′p, and E′ = E(B′) as its
entanglement group. Besides deriving E from E′, and then evaluating the correction
factor formula from Theorem 5.2, it is also possible to directly compute the correction
factor from E′.

To this end, consider the automorphism group AutB(B′). Since B′ is generated
by a single root of unity that is a Kummer radical over B, the group AutB(B′) is
cyclic. Let σ be its generator. If we then write A′p = AutK∗(B

′
p), the following

theorem gives an expression for the correction factor.

Theorem 5.8. The correction factor C(K,V, t) defined in Theorem 5.2 is equal to∑
χ∈E′∨
χ(σ̄)=1

∏
p prime
χ(A′p)6=1

−1

#Ap − 1
.

Proof. The equivalence of this formula and the one from Theorem 5.2 follows directly
from these two claims:

1. E∨ is equal to {χ ∈ E′∨ : χ(σ̄) = 1};

2. For χ ∈ E∨ ⊂ E′∨ we have χ(A′p) = 1⇔ χ(Ap) = 1.

We prove them in order. For the first claim, note that the kernel of the restriction
map AutK∗(B

′)→ AutK∗(B) is generated by σ. This implies that the kernel of the
induced (surjective) map E(B′) → E(B) is generated by σ̄. Identifying E(B) with
E(B′)/〈σ̄〉 then shows that E∨ consists of the characters in E′∨ that are trivial
on 〈σ̄〉, as claimed.

For the second claim, let χ be a character of E, where we again consider E∨ as
a subgroup of E′∨. Recall that we can factor A′ as

∏
pA
′
p and A as

∏
pAp. This

leads to the following commutative diagram.

A′p Ap

A′ A C∗χ

The group of interest χ(A′p) is the image of the composition

A′p ↪→ A′ � A
χ−→ C∗.

As the commutativity of the diagram shows, this composed map factors via Ap,
so we see that χ(Ap) = 1⇒ χ(A′p) = 1. The opposite implication is trivial, proving
the second claim.
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Example 5.9.

We illustrate this theorem, and the methods in this chapter in general, by
computing an Artin density (assuming GRH).

Take K = Q(ζ3), and x = 8ζ3, and V = 〈x〉, and t = 3. In Example 5.7
we saw that we need to enlarge B with extra roots of unity in this case.
Proposition 5.6 implies that adding 4th and 27th roots of unity is sufficient,
but in this case only adding 27th roots already suffices, as we shall see.

Define B′p for primes p as

B′p = 〈K∗, ζp, p
√
x〉 if p 6= 3, and

B′3 = 〈K∗, ζ27,
9
√
x〉 = 〈K∗, ζ27,

3
√

2〉.

By Theorem 5.5, only the primes 2 and 3 affect entanglement, and E(B′) =
E(B′6) = E((B′6)ab). In fact, B′6 is itself equal to (B′6)ab since it is generated
by roots of unity and Kummer roots.

We have that

B′2 = 〈K∗, ζ2, 2
√

8ζ3〉 = 〈K∗, ζ3
√

2〉; and

B′6 = 〈K∗, ζ27,
3
√

2,
√

2〉.

We now take µ = µ27 and W = 〈K∗, 6
√

2〉. We then obtain B′6 = µW .
Defining GW to be the absolute Galois group of K(W ) = K( 6

√
2), the expres-

sion for the entanglement group we obtain from Corollary 2.31, with C = W
and D = µ, is

E′ = Autµ∩W (µ)/im(GW ).

Since we have µ∩W = µ3 and K(W )∩Q(µ) equals Q(µ3), we see that E′

is trivial.

For all primes p 6= 3, we have #Ap = p(p − 1). For p = 3 on the other
hand, we get #A3 = 9.

Assuming GRH, we then arrive at a density of

∏
p prime

(
1− 1

#Ap

)
=

16

15

∏
p prime

(
1− 1

p(p− 1)

)
.
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Example 5.10.

In the previous example, we took the case from Example 5.7 with l = 3. In
this example we take l = 2, so we get K = Q, and x = −4, and V = 〈x〉, and
t = 2.

As before, we need to add extra roots of unity: in this case 8th roots.
Define B′p for primes p as

B′p = 〈K∗, ζp, p
√
x〉 if p 6= 2, and

B′2 = 〈K∗, ζ8, 4
√
x〉 = 〈K∗, ζ8,

√
2〉.

By Theorem 5.5, only the prime 2 affects entanglement, and E(B′) = E(B′2) =
E((B′2)ab). If we define µ = µ8 and W = 〈Q∗,

√
2〉, then B′2 equals µW , so

(B′2)ab equals B′2.
Define GW to be the absolute Galois group of K(W ) = Q(

√
2). We then

again get the following expression for E(B′) from Corollary 2.31, again with
C = W and D = µ.

E′ = Autµ∩W (µ)/im(GW ).

We have µ ∩W = {±1} and K(W ) ∩Q(µ) equals Q(
√

2), so the image of
GW in Aut(µ) = Aut(µ8) equals 〈ζ8 7→ ζ−1

8 〉.
So E′ is an entanglement group of order 2. Let χ be the non-trivial char-

acter in E′∨.
To compute the correction factor, we use Theorem 5.8. First, take σ to be

the generator of AutB(B′), which sends ζ8 to ζ5
8 . Then the image of σ in E′

is not trivial, since it is not in the image of GW .
Since E(B′) = E(B′2), we see that A′2 can only map surjectively to E′, so

χ(A′2) is not trivial.
Since #A′2 equals 4, this gives a correction factor of

1 +
−1

3
=

2

3
.

For all odd primes, we have #Ap = p(p − 1), so, assuming GRH, we then
obtain the density

2

3

∏
p prime

(
1− 1

#Ap

)
=

2

3
· 3

2

∏
p prime

(
1− 1

p(p− 1)

)
= Artin’s constant.

We conclude this chapter with two remarks on different generalizations of Artin
densities.

One possible generalization is adding a congruence condition to the primes q
considered. (See Moree [21], for K = Q.) This can be translated to a condition on
Frobq in a ray class field F over K. One can in fact handle such Frobenius conditions
for an arbitrary Galois extension F of K, cf. Lenstra [18]. If we extend the radical
group B considered with extra radicals to include the radical part of F , we get extra
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conditions on Frobq inside the automorphism groups An, which in turn lead to a
smaller Tn.

The resulting density does not necessarily permit a character sum formula using
the methods described in this chapter, since the smaller group Tn does not necessarily
factor as a product

∏
p|n Tp. Also, if F is itself not generated by radicals, then the

restriction of the map Gal(F/K) → Gal(F ∩ K(B)/K) to a set C ⊂ Gal(F/K)
closed under conjugation will not in general have fibers of the same size, which will
require extra administration.

For K = Q and a congruence condition modulo n, the ray class field F is in
fact equal to Q(ζn). In this case, the two difficulties described above do not occur,
and we are able to get a character sum formula for the density. For details, we refer
to [20].

In this chapter we have considered the set M = M(K,x, t) of primes q of K
for which an element x ∈ K∗ generates a subgroup of (OK/q)∗ of index dividing t.
Moree [23] considers the set of primes M ′ = M ′(Q, x, t) where this index is equal
to t. The density of M ′ can be derived from M(K,x, t′) for all t′ | t using Möbius
inversion, but there is a more direct way to use the theory from this chapter to
compute it, which is also described in detail for a related method by Lenstra, Moree
and Stevenhagen [20].

For a prime p, we define Cp = 〈K∗, ζpe(p) , p
e(p)√

V 〉 and also the subgroup C ′p =

〈K∗, ζpe(p)−1 ,
pe(p)−1√

V 〉 ⊂ Cp. For a positive integer n we define from these the groups
Cn and C ′n generated by Cp respectively C ′p for all p | n. Define the automorphism
groups An = AutK∗(Cn) and A′n = AutC′n(Cn) ⊂ An. Also let Gn be the Galois
group Gal(K(Cn)/K) and En the entanglement group of Cn with the action of Gn.
Theorem 5.1 applies to this situation, and implies there is a limit entanglement
group E such that if n is divisible by all of a finite set of critical primes, En is equal
to E.

Theorem 5.11. Assuming GRH, the set M ′(K,V, t) has a natural density equal to

C ′(K,V, t) ·
∏

p prime

(
1− 1

#Ap

)
,

where C ′(K,V, t) is a rational correction factor given explicitly by

C ′(K,V, t) =

∏
p|t

#A′p − 1

#Ap − 1


 ∑
χ∈E∨

∏
p prime
χ(A′p)6=1

−1

#A′p − 1

 .

Proof. Using the notation from this chapter, the main difference with Theorem 5.2
is that for a prime p, the set Sp of allowed Frobenius elements at p will no longer be
Gp \ {1}. The condition that led to this at p for index dividing t was:

q does not split completely in K ⊂ K(ζpe(p) ,
pe(p)
√
V ).
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In the case where we are interested in index equal to t, this becomes:

q does not split completely in K ⊂ K(ζpe(p) ,
pe(p)
√
V ), and

q does split completely in K ⊂ K(ζpe(p)−1 ,
pe(p)−1√

V ).

Using Cp and C ′p as defined above the Theorem, this leads to the condition at p
that Frobq in Gal(K(Cp)/K) is an element of the subset Gal(K(Cp)/K(C ′p)) \ {1}.
Translating this to the context of automorphisms of abelian groups, this gives us:

#(Gal(K(Cp)/K(C ′p)) \ {1})
#Gal(K(Cp)/K)

=
#((AutC′p(Cp) \ {1}) ∩Gal(K(Cp)/K))

#Gal(K(Cp)/K)
.

From this expression one can derive a character sum formula for the density,
analogously to the approach followed in the proof of Theorem 5.2 in Section 5.2. To
this end, recall A′p = AutC′p(Cp) and define

Tn = {σ ∈ An : σ|Bp ∈ A′p \ {1} for all primes p | n}.

We then get the following computation, if we assume all primes dividing t also to
divide n.

#(Tn ∩Gn)

#Gn
=

1

#E#Gn

∑
s∈Tn

1Gn(s) =
1

#An

∑
s∈Tn

∑
χ∈E∨

χ(s)

=
#Tn
#An

∑
χ∈E∨

∏
p|n

1

#Tp

∑
s∈Tp

χ(s)

Since for all χ we have χ(1) = 1, we can change the inner sum to run over all of A′p.

#(Tn ∩Gn)

#Gn
=

#Tn
#An

∑
χ∈E∨

∏
p|n

1

#A′p − 1

(
− 1 +

∑
s∈A′p

χ(s)

)
If χ(A′p) is not trivial, then

∑
s∈A′p

χ(s) equals 0. Otherwise, it equals #A′p.

#(Tn ∩Gn)

#Gn
=

#Tn
#An

∑
χ∈E∨

∏
p prime
χ(A′p) 6=1

−1

#A′p − 1

=

∏
p|n

(
1− 1

#Ap

)∏
p|t

#A′p − 1

#Ap − 1


 ∑
χ∈E∨

∏
p prime
χ(A′p)6=1

−1

#A′p − 1


Only the first product now depends on n, and taking the limit of n to infinity

then gives the density of M ′(K,V, t), assuming GRH. We conclude that with the
correction factor C ′(K,V, t) defined in the Theorem, we get the desired expression
for the density.
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Chapter 6

Artin’s primitive root
conjecture for rank one tori

6.1 Introduction

The theory we set up in Chapter 2 is applicable in a wider setting than that of
radicals over fields which we have studied so far. In this chapter, we use it for
division points of rank one tori. After briefly introducing the concept of a torus, we
state analogues of Artin’s primitive root density question and a conjectured density
theorem for rank one tori over number fields. For tori defined over Q, these densities
have previously been computed by Chen [7].

An algebraic group is an algebraic variety with a group operation. A well-known
example is the algebraic group called Gm, defined as an affine variety by the equation

xy = 1

and the group law
(x, y)(x′, y′) = (xx′, yy′).

For any commutative ring R, the map (x, y) 7→ x gives an isomorphism of the
group Gm(R) to the unit group R∗ of R.

Definition 6.1. A torus over a field K is an algebraic group that is isomorphic to
Gr

m over Ksep for some positive integer r. This integer r is called the rank of the
torus.

If an algebraic group G over K is isomorphic to Gr
m for r ∈ Z>0 over a field

L ⊃ K, then we say G is split over L.
If T is a torus of rank r defined over a number field K, the group of division

points of such a torus is given by

{P ∈ T (Ksep) : ∃n ∈ Z>0 : Pn ∈ T (K)}.

77
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The torsion subgroup of this group is isomorphic to (Q/Z)r. To satisfy our condition
on radical group extensions that all finite subgroups are cyclic, we therefore restrict
to tori of rank 1. If K has characteristic 0, the group of division points is then
isomorphic to the maximal radical extension of T (K) as defined by Theorem 2.1. For
characteristic p > 0 this holds if we make the adjustments mentioned in Remark 2.11.

We shall later show that all tori of rank one over a field K can be described as
follows. If f = X2 +aX+ b is a separable monic quadratic polynomial over K, let α
be the zero X of f in the quadratic K-algebra L = K[X]/(f).

We can then define an algebraic group T with equation and group law given by

x2 + axy + by2 = 1;

(x, y)(x′, y′) = (xx′ − yy′b, xy′ + x′y + yy′a).

The map sending a point (x, y) ∈ T (K) to (x−yα) ∈ L gives a group isomorphism
between T (K) and the kernel of the norm map NL

K : L∗ → K∗. In particular, if f
factors as a product of two linear polynomials, then T is isomorphic to Gm over K.
If on the other hand f is irreducible, then T is split over the quadratic extension
field L defined by f .

From here on, let T be the rank one torus defined over a number field K by the
quadratic polynomial f .

Define S to be the set of primes of K that occur in the denominators of the
coefficients of f or in the discriminant of f . Then we say that T has good reduction
at all primes outside of S, in the following sense. For a prime q 6∈ S, the torus T is
defined over the local ring OK,q, given by

OK,q = {x ∈ K : ordq(x) ≥ 0}.

There is then a reduction map which gives a group homomorphism:

T (OK,q)→ T (OK/q).

Since q does not divide the discriminant of f , the equation f taken modulo q defines
a torus T̄ over OK/q. The group T (OK/q) = T̄ (OK/q) is then a subgroup of the
unit group of its (finite) splitting field, and is therefore cyclic.

Also, for a point P of T (K), we have that for almost all primes q the point P
is in T (OK,q) and the reduction P̄ ∈ T (OK/q) is well-defined. Because of these
properties, there is an analogue of Artin’s primitive root density question for rank
one tori.

Question 6.2. If P is a point of T (K), for how many primes q of OK is the group
T (OK/q) generated by P̄?

If T is Gm and K = Q, this is exactly the original question Artin asked. In
this chapter we will work in greater generality, analogously to Chapter 5. With K
a number field and T a rank one torus defined over K, let V be a finitely generated
subgroup of T (K) that is not contained in T (K)tors, and let t be a positive integer.
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We will look at the set M = M(T, V, t) of primes q of K satisfying:

• v ∈ T (OK,q) for all v ∈ V ; and

• [T (OK/q) : V̄ ] | k.

We again reduce this to an expression about automorphism groups of radical
group extensions and their entanglement. Choose a fixed algebraic closure K̄ of K.
As in the previous chapter, for a rational prime p, let e(p) be the smallest positive
integer such that pe(p) does not divide t, and define the radical group extensions

T (K) ⊂ Bp =
〈
T (K), {z ∈ T (K̄) : zp

e(p) ∈ V }
〉
.

We also define Ap = AutT (K)(Bp), and B as the subgroup of T (K̄) generated
by all Bp. The absolute Galois group GK of K acts on T (K̄) as described above,
and this action induces a map GK to A = AutT (K)(B) with as cokernel the abelian
entanglement group E = E(B).

In the present setting, we get the same two main theorems as in Chapter 5.

Theorem 6.3. The entanglement group E(B) of B is finite.

Theorem 6.4. Assuming GRH, the set M(T, V, t) has a natural density equal to

C(T, V, t) ·
∏

p prime

(
1− 1

#Ap

)
,

where C(T, V, t) is a rational correction factor given by

C(T, V, t) =
∑
χ∈E∨

∏
p prime
χ(Ap) 6=1

−1

#Ap − 1
.

We prove these results in Section 6.3. In the remainder of the chapter, we
give results to make the necessary computations explicit, and illustrate this with a
number of examples in Section 6.4.

6.2 Preliminaries

Let K be a field. One can show (see e.g., Borel [5], §8) that there is a covariant
equivalence of categories

{rank r tori over K}
←→

{rank r free abelian groups with continuous Gal(Ksep/K)-action}.

Following the notation from [5], this maps a torus T to X∗(T ) = Mor(Gm, T ).
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We also have the following Galois module isomorphism.

K̄∗ ⊗Z X∗(T )
∼−→ T (K̄)

z ⊗ f 7−→ f(z).

Here the Galois group acts on both factors on the left separately. In particular, a
rank one torus T over K corresponds to the infinite cyclic group with an action of
Gal(Ksep/K), and we choose a fixed generator τ . If the Galois action on τ is trivial,
then T is isomorphic to the torus Gm over K.

If the action is not trivial, then there is a field L of degree 2 over K such
that the action factors via the quotient Gal(L/K) of Gal(Ksep/K) because Aut(Z)
equals {±1}. In this case, T is not split over K, but it is split over L, and more
generally over all fields containing L. Let σ be an element of Gal(Ksep/K). The
Galois action on τ is then explicitly given by

σ(τ) =

{
τ if σ|L = id; and
−τ if σ|L 6= id.

We can use the morphism τ ∈ Mor(Gm, T ) to twist the Galois action on K̄∗.
If z is an element of K̄∗, then, using the Galois module isomorphism above, z ⊗ τ
gives a point on the torus. Since K̄∗ is a multiplicatively written module, we write
zτ = z ⊗ τ . Because τ is a generator of X∗(T ) = Mor(Gm, T ), we then also have
K̄∗τ = K̄∗ ⊗Z X∗(T ), with an induced isomorphism of Galois modules:

K̄∗τ
∼−→ T (K̄)

zτ 7−→ τ(z)

In this chapter, we will view this as an identification, and consider zτ as a point
of T (K̄). This notation allows us to conveniently write the action of Gal(Ksep/K)
on T (K̄) as

σ(zτ ) = σ(z)σ(τ),

where σ(z) is the usual Galois action on K̄.

Note that the map z 7→ zτ gives a bijection of K̄∗ → T (K̄), but this does not
respect the Galois action of Gal(Ksep/K).

In characteristic 0, each non-split rank one torus over K is isomorphic to a
torus Td defined by the norm equation of K(

√
d)/K,

Td : x2 − dy2 = 1,

with multiplication of two points (x, y) and (x′, y′) defined by

(x, y)(x′, y′) = (xx′ + dyy′, xy′ + x′y).
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For one of the two choices of generator τ ∈ X∗(T ), the Galois module isomor-
phism with K̄∗τ is then given as

Td(K̄)
∼−→ K̄∗τ

(x, y) 7−→ (x− y
√
d)τ .

Sending (x, y) to (x+y
√
d)τ would correspond with the other choice of generator

of X∗(T ).

Non-split rank one tori differ from the Gm case in a number of interesting ways
relevant to the topic of this thesis. For example, the torus T−1 defined by x2 +y2 = 1
and splitting field Q(i) has rational 4-torsion. Similarly, the torus T−3 given by
x2 + 3y2 = 1 has splitting field Q(

√
−3) = Q(ζ3) and has rational 6-torsion. This

means radical group extensions over these tori can have greater entanglement groups
than similar examples over Gm, as we shall see in the examples in this chapter.

Another significant way in which they can differ from Gm is that for negative d,
the group of division points of Td(R) is divisible and contains non-trivial p-torsion
for all primes p, so the maximal radical extension of Td(Q) in this case is contained
in Td(R).

We conclude this section with remarks on notation. Let GK be the absolute
Galois group of K, and M a GK-module. Then we can adjoin the Galois module
M to K by defining K(M) as the invariant field of the kernel of the action GK →
Aut(M).

If M is a GK-submodule of K̄∗, then K(M) is the field extension of K generated
by M .

If M is a GK-submodule of T (K̄), or equivalently a Galois radical extension
of T (K) inside T (K̄), then K(M) is the field extension of K generated by the
coordinates of the elements of M .

We have seen that if C is a Galois submodule of K̄∗, then Cτ can be considered
a Galois submodule of T (K̄). For example, if µ is the group of all roots of unity
of K̄∗, then µτ is naturally isomorphic to T (K̄)tors as a Galois module.

Note that the field extension K(µτ ) obtained by adjoining the Galois module µτ

is in general not the same as the field extension K(µ) obtained by adjoining µ to K.
Consider for example the torus T−1 defined by x2 + y2 = 1 over Q, and µ the roots
of unity of Q̄∗. Then the coordinates of µτ are real, and one can in fact show that
for T−1 the field Q(µτ ) is equal to Q(µ) ∩R.

6.3 Proof of main theorems

In this section we will prove Theorems 6.3 and 6.4. The main ingredient for the
correction factor being a rational number is that the entanglement group E(B) of B
as defined in Section 6.1 is finite.

We show this by proving the analogue of Theorem 5.5. As before, if n is a positive
integer, we write Bn for the abelian group generated by all Bp for p | n.
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Theorem 6.5. Write w for the number of torsion points in T (K) and let L be the
splitting field of T . Define the integer n as the product of all primes p satisfying

p | w∆L((Bw)ab)/Q.

Then the natural map E(B)→ E(Bn) is an isomorphism.

Proof. Before we start, note that if T is split over K, then this theorem reduces to
Theorem 5.5, so we assume that T is not split over K.

We now mirror the proofs of Theorem 5.1 and Theorem 5.5. Specifically, define
Cn and C ′n as follows.

Cn = (Bn)ab and

C ′n =
〈
T (K), µτpe(p) : p - n

〉
.

By the same reasoning as for Theorem 5.1, we can decompose Bab and AutT (K)(Bab).

Bab = Cn ⊕T (K) C
′
n

AutT (K)(Bab) = AutT (K)(Cn)×AutT (K)(C
′
n).

Apart from different notation, Equation 5.3 holds in this setting since its proof
is purely group theoretic. Translated, it reads

p - w ⇒ (Bp)ab = µτpe(p)T (K).

Because L(µτ
pe(p)

) equals L(ζpe(p)), we can deduce from the previous statement

that we have:

L(Cn) = L((Bn)ab) = L((Bw)ab, ζpe(p) : p | n) = L((Bw)ab) ·Q(ζpe(p) : p | n).

Now following exactly the reasoning from the proof of Theorem 5.5, we arrive
at the statement that Gal(L(Bab)/L(Cn)) maps surjectively to the Galois group
Gal(Q(ζpe(p) : p - n)/Q), which is naturally isomorphic to Aut(〈µpe(p) : p - n〉).

Since L(Cn) contains L, the action of the absolute Galois group GL(Cn) of L(Cn)
on µτ

pe(p)
is the regular Galois action on µpe(p) , so the Galois action on the torus

induces a surjection GL(Cn) � AutT (K)(C
′
n).

Since the larger Galois group GK(Cn) also acts on T (C ′n), we have a surjection
GK(Cn) � AutT (K)(C

′
n). This factors via Gal(K(Bab)/K(Cn)) since the absolute

Galois group of K(Bab) acts as the identity on C ′n ⊂ Bab.
The proof now concludes exactly as the proof of Theorem 5.5.

Proof of Theorem 6.4. Recall that for a rational prime p, we defined e(p) to be the
smallest positive integer such that pe(p) does not divide t.

Now let q be a prime of K for which T has good reduction and for which V
is contained in OK,q. These conditions only exclude a finite number of primes as
we saw in the introduction, so this does not affect the density. For such a prime,
T (OK/q) is well-defined and V can be mapped to T (OK/q).
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The index [T (OK/q) : V̄ ] now divides t if and only if for all primes p, the index
is not divisible by pe(p). Choose a rational prime p with q - p, and write e = e(p) for
brevity.

We saw in the introduction that T (OK/q) is cyclic, so we find that

pe | [T (OK/q) : V̄ ]

if and only if
pe | #T (OK/q) and V̄ ⊂ T (OK/q)p

e

if and only if

#T (OK/q) has an element of order pe and V̄ ⊂ T (OK/q)p
e

.

This is in turn equivalent with

q splits completely in K ⊂ K(µτpe ,
pe
√
V ) = Kp.

If we write Gn = Gal(Kp/K) and Sn = Gn \ {1}, then our condition for q at p is
that the Frobenius of q in Kp/K is in Sn.

This describes the condition for q we have at the single prime p. To combine
this for multiple primes, let n be a positive integer, and define the field Kn as the
compositum of the fields Kp for p | n. Let Gn be Gal(Kn/K) and define Sn as

Sn = {σ ∈ Gn : σ |Kp 6= id for all p | n}.

Assuming the Generalized Riemann Hypothesis, the work of Murty [25] provides
the analytic number theory argument that the set of primes q satisfying the condition
at every prime has a density, and that the density is equal to the limit

lim
n→∞

#Sn
#Gn

.

The derivation of the formula for the density we give in Theorem 6.4, including
its correction factor as a character sum now proceeds entirely as in the proof of
Theorem 5.2.

6.4 Explicit density computations

In this section we show how to explicitly compute Artin densities, and in particular
the entanglement groups involved.

Let T be a non-split rank one torus over a number field K, and let L be its
splitting field, so L/K is a quadratic extension. Let B ⊃ T (K) be a Galois radical
group extension, and Bab its maximal abelian subextension.

By using the strategy from Section 5.3 if necessary, we may assume that to
compute Artin densities, we can take Bab of the form µτW , where µτ is a group
of torsion division points of T (K̄), and W is a set of Kummer roots of T (K̄) with
T (K) ⊂W .
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Corollary 2.29 (with C = W and D = µτ ) gives us an isomorphism

E(µτW )
∼−→ Autµτ∩W (µτ )/im(GW ).

Here GW is the kernel of the action of the absolute Galois group GK of K on W .
We will come back to the exact map later, and start by considering the image of GW
in Aut(µτ ). To aid in determining this, we start with a group theoretic technical
proposition.

Proposition 6.6. Let G be a group acting on an abelian group M via the map
ϕ : G → Aut(M). Let ε : G → {±1} be a surjective group homomorphism, and
define H to be the kernel of ε. Define the group homomorphism εϕ as follows.

εϕ : G −→ Aut(M)

g 7−→ ε(g)ϕ(g)

Then the following statements characterize εϕG.

• If −1 ∈ ϕH, then εϕG = ϕG.

• If −1 ∈ ϕG \ ϕH, then εϕG = ϕH.

• If −1 6∈ ϕG = ϕH, then εϕG = 〈ϕG,−1〉.

• If −1 6∈ ϕG 6= ϕH, then εϕG, and ϕG and 〈ϕH,−1〉 are the three distinct
index 2 subgroups of 〈ϕG,−1〉 containing ϕH.

ϕH

〈ϕH,−1〉 ϕG εϕG

〈ϕG,−1〉

Proof. First of all, note that exactly one of the four statements applies to any given
situation.

We write G as the disjoint union of H and G \H, so εϕG = εϕH ∪ εϕ(G \H).
Because we have εH = 1, we get εϕH = ϕH. We turn to εϕ(G \H).

Suppose that we have −1 ∈ ϕH. Then there is an element c ∈ H with ϕ(c) = −1.
We see that εϕ(G \H) = ϕc(G \H) = ϕ(G \H). In this case, we get εϕG = ϕG.

Next, suppose that −1 6∈ ϕH, but −1 ∈ ϕG. Then there is an element c ∈ (G\H)
with ϕ(c) = −1. We then have that G \ H = cH, so εϕ(G \ H) = εϕcH =
−1 · −1 · ϕH = ϕH. We get εϕG = ϕH.

For the final two statements, assume −1 6∈ ϕG, and pick an element σ ∈ (G\H).
Then we get εϕ(G \H) = εϕ(σH) = (−ϕ(σ))ϕ(H).

If we then additionally have ϕG = ϕH, then we continue with (−ϕ(σ))ϕ(H) =
−ϕ(σ)ϕ(G) = −ϕ(G), and we get εϕG = ϕG ∪ −ϕG = 〈ϕG,−1〉.
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Finally, if −1 6∈ ϕG 6= ϕH, then ϕG and 〈ϕH,−1〉 contain ϕH with index 2.
Since ϕ(σ) and −1 commute in M , they are both contained in 〈ϕG,−1〉 with index 2,
and there is a third distinct index 2 subgroup, which we claim is εϕG, as shown in
the diagram above.

To see this, note that ϕG = ϕH ∪ ϕ(σ)ϕH, and 〈ϕH,−1〉 = ϕH ∪ −ϕH. The
third subgroup is ϕH ∪−ϕ(σ)ϕH, which is exactly how we had rewritten εϕG.

We use this proposition to determine the image of GW in Aut(µτ ) induced by the
Galois action on µτ . To use the proposition in explicit examples, we first describe
how we can apply it to the context of the torus T , taking G = GW acting on M = µτ .

Let K(W ) be the field obtained by adjoining the coordinates of the points in W
to K. Then GW is the absolute Galois group of K(W ). Recall that L is the splitting
field of the torus T , so it is a quadratic field extension of K. Let H be the absolute
Galois group of L(W ). It is a subgroup of index 2 of GW . Let ε be the unique map
GW → {±1} with kernel H.

We will now use Proposition 6.6 for the action of GW on µ ⊂ K̄ compared to
that of GW on µτ ⊂ T (K̄). The former is the regular Galois action, which we shall
denote by ϕ : GW → Aut(µ), while the latter is the Galois action on points of the
torus, which is then given by εϕ : GW → Aut(µτ ).

We now identify Aut(µ) and Aut(µτ ). Note that the induced diagram is not
commutative:

GW Aut(µ)

Aut(µτ )

ϕ

εϕ
id

We can then use Proposition 6.6 to explicitly obtain the Galois action εϕ of GW
on µτ = T (K̄)tors in terms of the regular Galois action ϕ on the roots of unity µ
of K̄.

In this situation, since −1 ∈ Aut(µ) corresponds to complex conjugation in
Gal(Qab/Q), the condition −1 ∈ ϕG is equivalent to K(W ) ∩ Qab ⊂ R. The
condition −1 ∈ ϕH is similarly equivalent to L(W ) ∩Qab ⊂ R. Also, the condition
ϕG = ϕH is equivalent to K ∩Qab = L ∩Qab.

Example 6.7.

As a first example, we will compute the entanglement group of the maximal
cyclotomic extension of a torus. Specifically, let T be a rank one torus over
a number field K with splitting field L, and let µ be the roots of unity in
K̄. Then µτ is naturally isomorphic as a Galois module to T (K̄)tors. We will
determine E(µτ ) with the action of the absolute Galois group GK of K.

In this example, we are only adjoining torsion points, so take W = T (K).
Using the terminology from above, we get GW = GK and H = GL.
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Let w be the number of roots of unity in K. We take the expression for
the entanglement group from the beginning of this section, and adapt it for
the current example:

E(µτ )
∼−→ Autµτ∩T (K)(µ

τ )/ϕ(GW ).

If we identify Aut(µτ ) with Ẑ∗, the automorphism group Autµτ∩T (K)(µ
τ )

in this expression is identified with (Ẑ∗ ∩ (1 + wẐ)).

Next, write ΓK for ϕGK and ΓL for ϕGL. The proposition then leads to
the following four cases.

If L ∩Qab is real, then εϕGK = ϕGK = ΓK , and we obtain

E(µτ ) =
(
Ẑ∗ ∩ (1 + wẐ)

)/
ΓK .

If L ∩Qab is not real, but K ∩Qab is real, then εϕGK = ϕGL = ΓL, and
we get

E(µτ ) =
(
Ẑ∗ ∩ (1 + wẐ)

)/
ΓL.

If K ∩Qab is not real, and K ∩Qab = L ∩Qab, then εϕGK = 〈ϕGK ,−1〉,
and we obtain

E(µτ ) =
(
Ẑ∗ ∩ (1 + wẐ)

)/
〈ΓK ,−1〉.

Finally, suppose K ∩Qab is not real and K ∩Qab 6= L∩Qab. Write Qab+

for Qab ∩R. Then Gal(L∩Qab/K ∩Qab+) is isomorphic to V4 as depicted in
the diagram on the left below. The field M is the third distinct field between
K∩Qab+ and L∩Qab. The figure on the right shows the Galois groups of Qab

over the fields on the left.

K ∩Qab+

L ∩Qab+ K ∩Qab M

L ∩Qab

Qab

〈ΓK ,−1〉

〈ΓL,−1〉 ΓK ΓM

ΓL

1

If we write ΓM for the image of the absolute Galois group of M to Aut(µ),
we then get

E(µτ ) =
(
Ẑ∗ ∩ (1 + wẐ)

)/
ΓM .

We conclude this chapter by computing a number of Artin densities.
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Example 6.8.

Let T be the torus defined by x2 + 3y2 = 1 over K = Q. Its splitting field is
L = Q(ζ3), and T (Q) contains non-trivial 2-torsion and 3-torsion points so w
equals 6.

We take t = 1 in this example, and let the subgroup V ⊂ T (Q) be generated
by a single point x with affine coordinates ( 13

14 ,
3
14 ) that as an element of L is

written by

xτ =
13 + 3

√
−3

14
.

For the right choice of π ∈ OL, we have ππ̄ = 7 and x = −π/π̄.
The radical extension we work in is

T (Q) ⊂ B = 〈T (Q), µτp ,
p
√
xτ : p prime〉.

For entanglement, only the primes 2, 3 and 7 matter (Theorem 6.5), and
so E(B) = E(Bab) = E(µτ21W ) where W is the subset of Bab given by

W = 〈T (Q), 6
√
xτ 〉.

When adjoining the Kummer square and cube division points of xτ to L,
we get

L(
√
xτ ) = Q(ζ3,

√
−7);

L(3
√
xτ ) = Q(ζ3, ζ7 + ζ−1

7 ); and

L(6
√
xτ ) = Q(ζ3, ζ7 + ζ−1

7 ,
√
−7) = Q(ζ21).

These fields are extensions of degree two over the subfields obtained when
we adjoin these division points to K = Q. These subfields are additionally
real because T (R) contains p-torsion for every prime p and is divisible, and
the maximal radical extension of T (Q) is therefore contained in T (R).

K(
√
xτ ) = Q(

√
21);

K(3
√
xτ ) = Q(ζ7 + ζ−1

7 ) ∩R = Q(ζ7) ∩R = Q(ζ7)+; and

K(6
√
xτ ) = Q(ζ21) ∩R = Q(ζ21)+.

From the expression for the entanglement group E(µτ21W ) from the start
of this section, we see that it is isomorphic to

Autµ3
(µ21)/im(GW ).

Using the reasoning from Proposition 6.6 and Example 6.7, we can com-
pute im(GW ). Using the notation from the proposition, take G to be the
absolute Galois group of K(W ) and H the subgroup of index 2 with invariant
field L(W ), and let ϕ be the natural Galois action of G on µ̂ = K̄∗tors. Since
K(W ) ⊂ Qab is real and L(W ) ⊂ Qab is not real, the proposition states that
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εϕGW is isomorphic to Gal(Qab/L(W )) = ΓL(W ). When restricting that result
from Aut(µ̂) to Autµ3

(µ21), the image of ΓL(W ) is trivial since L(W ) = Q(ζ21),
so the entanglement group is isomorphic to

E = Autµ3(µ21).

This is a cyclic group of order 6.
Recall the definition of Ap for rational primes p, with t = 1 and V = 〈x〉:

Ap = AutT (K)

(
〈T (K), µτp ,

p
√
xτ 〉
)
.

To compute the correction factor in the density formula, we need to com-
pute the image of Ap in E, for p = 2, 3, 7.

We start with A2. This is a group of order 2, generated by the automor-
phism sending

√
xτ to −

√
xτ . We extend this to an automorphism σ of B

with the identity on Ap with p 6= 2. This automorphism in particular fixes
the elements of µτ7 ⊂ Bab. We shift it with a Galois element g ∈ GQ with
g|W = σ|W . Since K(

√
xτ ) = Q(

√
21), we see that we can choose the auto-

morphism g acting on L(W ) = Q(ζ21) as follows.

g : ζ7 7→ ζ−1
7

ζ3 7→ ζ3.

By Corollary 2.31, the image of A2 in E is generated by (σg−1)|µτ21 . This is

〈ζτ7 7→ ζ−τ7 〉 ⊂ Autµ3
(µ21) = E.

So the image of A2 is the unique subgroup of order 2 in E.
Next isA3 of order 3, generated by the automorphism sending 3

√
xτ to ζτ3

3
√
xτ .

We also extend this to an automorphism σ of B with the identity on Ap with
p 6= 3. As with A2 above, σ leaves the elements of µτ7 ⊂ Bab invariant. We
shift this too with a Galois element g ∈ GQ with g|W = σ|W . Because we have
K(3
√
xτ ) = Q(ζ7)+, we see that, for the right choice of ζτ3 and ζ7, we can pick g

to act on L(W ) = Q(ζ21) as

g : ζ7 7→ ζ2
7

ζ3 7→ ζ3.

Again by Corollary 2.31, the image of A3 in E is generated by (σg−1)|µτ21 . This
is now

〈ζτ7 7→ ζ2τ
7 〉 ⊂ Autµ3

(µ21) = E.

So the image of A3 is the unique subgroup of order 3 in E.
We continue with A7. The action of this automorphism group on 7

√
xτ has

no effect on its image in the entanglement group, so we need only consider the
image of

A′7 = AutT (K) (〈T (K), µτ7〉) .
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We extend a generator of this cyclic group of order 6 to an automorphism σ
of B with the identity on Ap with p 6= 7. Since 〈T (K), µτ7〉 ∩W equals T (K),
we see that σ acts as the identity on W , so the image of A′7 in E is generated
by σ|µτ21 , which implies that the map from A′7 to E is in fact an isomorphism,
and A7 maps surjectively to E.

Since E is cyclic of order 6, its dual E∨ is also cyclic of order 6. Let χ be
a generator. From the images of Ap we have determined above, we can now
directly determine for which powers χk of χ and for which primes we have
χk(Ap) = 1, indicated by the symbol + in the table below, and for which we
have χk(Ap) 6= 1, indicated by the symbol −. That information will then let
us evaluate the density correction factor.

2 3 7
1 + + +
χ − − −
χ2 + − −
χ3 − + −
χ4 + − −
χ5 − − −

With #A2 = 2, and #A3 = 3 and #A7 = 42, this results in the following
correction factor, using the formula from Theorem 6.4.

C(T, V, t) = 1− 1

2 · 41
+

1

2 · 41
+

1

41
− 1

2 · 41
+

1

2 · 41
=

42

41
.

For almost all primes p we have that #Ap = p(p − 1), with as the only
exception #A3 = 3. Assuming GRH, this gives a density of

42

41
·
∏

p prime

(
1− 1

#Ap

)
=

42

41
· 4

5

∏
p prime

(
1− 1

p(p− 1)

)
.

The amount of cancellation in the correction factor formula is due to the
almost multiplicative structure of this particular table. If we were to replace
the + symbol in the top-right corner by a − symbol, then we would be able to
factor the formula for the changed correction factor C− as follows, if we define
E∨2 = {1, χ2, χ4} and E∨3 = {1, χ3}.

C− =
−1

#A7 − 1

 ∑
ψ∈E∨2

∏
p=2

ψ(Ap)6=1

−1

#Ap − 1


 ∑
ψ∈E∨3

∏
p=3

ψ(Ap) 6=1

−1

#Ap − 1


Since in fact both the factor for p = 2 and that for p = 3 are 0, we get

C− = 0. The actual correction factor C is therefore the difference between
just the contribution of the top row with a + symbol in the top-right in C
and the contribution of the top row with a − symbol in C−. This leads, as
expected, to 1− −1

41 = 42
41 .
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Example 6.9.

Finally, we consider an example with t 6= 1.
Let T again be the torus defined by x2+3y2 = 1 over K = Q, with splitting

field L = Q(ζ3) and w = 6.
We now take t = 2, and let the subgroup V ⊂ T (Q) be generated by a

single point xτ ∈ T (Q), this time given with sign opposite to the previous
example:

xτ = −13 + 3
√
−3

14
.

So, if we choose π ∈ OL right, we have ππ̄ = 7 and x = π/π̄.
In this example, the radical extensions Bp are given by

B2 = 〈T (Q), µτ4 ,
4
√
xτ 〉; and

Bp = 〈T (Q), µτp ,
p
√
xτ 〉 for p an odd prime.

The primes that affect entanglement are again only 2, 3 and 7. We have
E(B) = E(Bab) = E((B42)ab). Since x has valuation 1 at the prime π of L,
we see that ( 4

√
xτ )2 is not a root of unity times an element of K∗. By the

definition of Bab, this implies the 4th root of xτ is not an element of Bab. So,
we do not need to adjoin extra torsion division points to write (B42)ab as a
product of torsion division points and Kummer roots. Specifically, if we define
W = 〈T (K), 6

√
xτ 〉, we have (B42)ab = µτ84W .

Adjoining the Kummer square and cube division points of xτ to L and K
we get

L(
√
xτ ) = Q(ζ3,

√
7);

L(3
√
xτ ) = Q(ζ3, ζ7 + ζ−1

7 ); and

L(6
√
xτ ) = Q(ζ3, ζ7 + ζ−1

7 ,
√

7).

K(
√
xτ ) = Q(

√
7);

K(3
√
xτ ) = Q(ζ7)+; and

K(6
√
xτ ) = Q(

√
7, ζ7 + ζ−1

7 ).

Note that as in the previous example, adjoining these points to L gives
quadratic extensions of the real fields obtained by adjoining these points to K.

The entanglement group E = E(µτ84W ) is now isomorphic to

Autµ3(µ84)/im(GW ).

Using the same conclusion drawn from Proposition 6.6 in the last example,
we see that the image of GW is given by Gal(Qab/L(W )) = ΓL(W ), restricted
to µ84. Because Q(µ84) is a quadratic extension of L(W ), the image of GW is
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a group of order 2 and E is again an abelian group of order 6. The automor-
phism τ of Q(µ84) that has L(W ) as its invariant field is given by

τ : ζ7 7→ ζ−1
7

ζ3 7→ ζ3

ζ4 7→ ζ−1
4 .

To compute the correction factor in the density formula, we need to compute
the image of Ap in E, for p = 2, 3, 7.

The group A2 now has order 8, but since E has a unique subgroup of
order 2, the computation of the image of A2 in the previous example almost
identically applies here. That computation shows that the image of A2 has
order at least 2, which suffices to show that it has order exactly 2.

The computation for the group A3 of order 3 proceeds exactly the same as
in the last example, and we obtain that A3 is the unique subgroup of order 3
in E.

For A7 we again only need to consider the image of

A′7 = AutT (K) (〈T (K), µτ7〉) .

We extend a generator of this cyclic group of order 6 to an automorphism σ
of B with the identity on Ap with p 6= 7. Since 〈T (K), µτ7〉 ∩W equals T (K),
we see that σ acts as the identity on W , so the image of A′7 in E is generated
by σ|µτ84 . Since the unique subgroup of Aut(µ84) maps injectively to E, the
image of A7 is at least order 3. Therefore consider σ3. This acts on µ84 as
follows:

σ3 : ζ7 7→ ζ−1
7

ζ3 7→ ζ3

ζ4 7→ ζ4

This is not contained in the image of GW which we explicitly computed above,
and the map from A7 to E is therefore surjective.

This leads to the following table.

2 3 7
1 + + +
χ − − −
χ2 + − −
χ3 − + −
χ4 + − −
χ5 − − −
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Because of the same cancellation as in the previous example, the correction
factor is again

C(T, V, t) =
42

41
.

For almost all primes p we have that #Ap = p(p − 1), with as the only
exception #A2 = 8 and #A3 = 2. Assuming GRH, this gives a density of

42

41
·
∏

p prime

(
1− 1

#Ap

)
=

42

41
· 7

4
· 4

5

∏
p prime

(
1− 1

p(p− 1)

)
.



Chapter 7

Enumerating ABC triples

7.1 Introduction

The radical rad(n) of a positive integer n is defined to be the product of the prime
numbers dividing n. We say that positive integers a, b, c form an ABC triple if they
satisfy the following conditions:

• a+ b = c;

• a ≤ b;
• gcd(a, b, c) = 1, and

• rad(abc) < c

The two smallest examples of ABC triples are 1 + 8 = 9 and 5 + 27 = 32, with
radicals 2 · 3 = 6 and 2 · 3 · 5 = 30 respectively. There are in fact infinitely many
ABC triples. For example, for every positive integer n, the sum 1 + (64n − 1) = 26n

defines an ABC triple since 9 divides (64n − 1) and we have rad((64n − 1)26n) ≤
2
3 (64n − 1) ≤ 26n.

The quality q(a, b, c) of an ABC triple is defined as

q(a, b, c) =
log(c)

log(rad(abc))
.

By the fourth condition for ABC triples, this quality is always greater than 1.
The famous ABC conjecture [33] proposed by Masser and Oesterlé in 1985 states

that the limsup of the quality of all ABC triples is equal to 1.
Over the years, it has become popular to search for triples with high quality

[26, 29]. The current record is held by the triple 2 + 310 · 109 = 235 with quality
approximately 1.630, found by Eric Reyssat in 1987.

In this chapter, we report results of the project ABC@home, a distributed com-
puting project built on the BOINC platform [1], for which many people worldwide
contributed computing resources to enumerate all ABC triples with c < 1018.

93
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In Section 7.2 we derive an upper bound for the number of such ABC triples, and
in Section 7.3 we give the algorithm used by ABC@home to perform the enumeration.
After that, in Section 7.4 we describe a number of algorithmic implementation details
to accelerate the process, and finally Section 7.5 contains an overview of the produced
data.

Related efforts have previously been made. In 1993, Elkies and Kanapka used
a similar, but unpublished, algorithm to enumerate all ABC triples below 232 with
quality above 1.2. Their results are no longer available from their original location,
but are mirrored at http://www.abcathome.com/Elkies1993/.

In 2007, Jeroen Demeyer computed all ABC triples with c ≤ 267 ≈ 1.4 · 1020

and quality at least 1.4 (see [11]). His results have been incorporated into the
tables of known ABC triples with quality at least 1.4 maintained by Nitaj [26] and
de Smit [29].

7.2 Bounds

In this section we derive an upper bound for the number of ABC triples.

Theorem 7.1. For every ε > 0, the number of ABC triples a + b = c with c < N
is O(N2/3+ε).

The main ingredient of the proof is the following theorem.

Theorem 7.2. Let α be a real number with 0 < α ≤ 1. Then for every ε > 0, the
number X(N,α) of positive integers x < N with rad(x) < Nα is O(Nα+ε).

Proof. This is Theorem 12 from section II.1 in [34]

Corollary 7.3. Let α be a real number with 0 < α ≤ 1. Then for every ε > 0, the
number Y (N,α) of pairs of coprime positive integers x, y < N with rad(xy) < Nα

is O(Nα+ε).

Proof. Let ε > 0 be an arbitrary positive real number.

Let S be a positive integer, and k an integer with 0 < k ≤ S. Define the set Rk
to be

Rk =
{
x, y ∈ Z≥1 : x, y < N ;

x, y coprime;

rad(x) < NαS−k+1
S ;

rad(y) < Nα kS
}
.

In log rad(x), log rad(y) space, we can depict Rk as the following rectangle.

http://www.abcathome.com/Elkies1993/
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log rad(x)
logN

log rad(y)
logN

α

αα kS

αS−k+1
S

By using Theorem 7.2 twice, for x and y separately, we can for every δ > 0 bound
the order of Rk from above by

#Rk = O(NαS−k+1
S +δNα kS+δ) = O(Nα+ 1

S+2δ).

Since the union
⋃

0<k≤S Rk covers the set we are counting in this Corollary, we

find Y (N,α) ≤ S ·#Rk = O(Nα+ 1
S+2δ).

This holds for every δ > 0 and S, so we can choose them such that 1
S + 2δ < ε

to complete the proof.

It is often convenient to sort the integers in an ABC triple by radical rather than
by size. We use the following notation for that purpose.

Definition 7.4. If a+ b = c is a triple of positive integers, let (x, y, z) be a permu-
tation of (a, b, c) such that

rad(x) ≤ rad(y) ≤ rad(z).

We then define x(a, b, c) = x, y(a, b, c) = y and z(a, b, c) = z.

Proof of Theorem 7.1. Let a+ b = c be an ABC triple with c < N . For brevity, we
write x = x(a, b, c), y = y(a, b, c) and z = z(a, b, c).

We have rad(xy) < rad(xz) < rad(yz), so we can derive

rad(xy)3 < rad(xy)rad(xz)rad(yz)

= rad(xyz)2 < c2 < N2.

We conclude rad(xy) < N2/3.
Given any two coprime positive integers x, y, there are at most 2 ABC triples

({x, y, x + y}, {x, y, |x − y|}) that could correspond to this pair x, y, so we get an
upper bound

#{ABC triples a+ b = c < N} ≤ 2#{x, y ∈ Z≥1 : x, y < N and rad(xy) < N2/3}.

The theorem now immediately follows from Corollary 7.3.
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Lower bound

The following theorem by Sander Dahmen provides an asymptotic lower bound
for the number of ABC triples. It builds on earlier results and methods from
van Frankenhuysen [14] and Stewart and Tijdeman [33].

Theorem 7.5 (S. Dahmen, [10]). For every ε > 0 and N large enough, the number
of ABC triples a+ b = c with c < N is at least exp((logN)1/2−ε).

7.3 Enumeration algorithm

Here we describe the main enumeration algorithm used in the ABC@home project.
The speed of the algorithm we give below is not asymptotically optimal. One

could instead enumerate every potential triple and execute a sub-exponential time
factoring algorithm such as the Quadratic Sieve, or heuristically the General Number
Field Sieve [27], to obtain a run time of O(N2/3+ε) as a consequence of Theorem 7.1.

However, in the search range that is currently feasible, the integers to be consid-
ered are small enough that they can be factored much more efficiently using different
methods. The algorithm from this section does this using a combination of sieving
small factors in blocks of numbers simultaneously, and basic trial division.

Proposition 7.6. For positive integers a and b, the following algorithm enumerates
all squarefree integers x satisfying a ≤ x < b in factored form.

Algorithm 7.7.

1. Create a list of integers r(n) for a ≤ n < b, initialized to r(n) = 1.

2. Create a list of sets P (n) for a ≤ n < b, initialized to P (n) = ∅.

3. Loop over all primes p with p2 < b:

(a) For all n ≡ 0 mod p and a ≤ n < b:

i. Multiply r(n) with p.

ii. Add p to P (n).

(b) For all n ≡ 0 mod p2 and a ≤ n < b:

i. Set r(n) = 0.

4. Loop over all n with a ≤ n < b and r(n) 6= 0:

(a) If r(n) 6= n, add n/r(n) to P (n).

(b) Return the squarefree integer r(n) with its prime factors P (n).

Proof. If an integer n < b is not squarefree, there is a prime p such that p2 | n. Since
we then have p2 ≤ n < b, we set r(n) to 0 in step 3b. Conversely, if r(n) is 0, it can
only have been set to 0 in this step, so n is divisible by the square of a prime. We
conclude that this algorithm indeed returns all squarefree integers between a and b.
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Finally, note that r(n) divides n, so the quantity q = n/r(n) added to the set
P (n) in step 4a is an integer. In fact, q is prime since it has no prime divisors p with
p2 ≤ n/r(n) ≤ n < b. This implies that P (n) indeed contains exactly the prime
divisors of n = r(n) = rad(n).

Before we give the algorithm used to enumerate ABC triples, we first state and
prove a number of elementary propositions that provide limits for steps in the algo-
rithm.

Proposition 7.8. Let n be a positive integer not divisible by primes p with p3 ≤ n.
Then n is either the square of a prime or squarefree.

Proof. Suppose that n is not squarefree and let q be a prime divisor of n with
ordq(n) ≥ 2. Because we have q3 > n, we then find that n/q2 < n1/3, so n/q2 = 1
and n is the square of a prime.

Proposition 7.9. Let n > 1 be an integer not divisible by primes p < P . Then n
is either a prime power or we have rad(n) > P 2.

Proof. If n has only one prime divisor, it is a prime power. Otherwise, since n is
not 1, the radical of n has at least two prime divisors p and q, with p ≥ P and
q > P , the product of which is greater than P 2.

Theorem 7.10. Given integers N , mx, Mx, my, My, and squarefree positive inte-
gers t, g with g | t, Algorithm 7.11 lists exactly all ABC triples a+ b = c satisfying

• c < N ;

• gcd(x, t) = g;

• mx ≤ rad(x) < Mx; and

• my ≤ rad(y) < My,

where x = x(a, b, c) and y = y(a, b, c).

Algorithm 7.11.

1. Pre-compute the list of prime numbers below N1/3.

2. Generate list Lx of square-free integers r with gcd(r, t) = g in [mx,Mx) in
factored form.

3. Generate list Ly of square-free integers coprime with g in [my,My) in factored
form.

4. Generate list X of positive integers < N with radical in Lx.

5. Generate list Y of positive integers < N with radical in Ly.

6. Sort X and Y by size.
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7. Partition X into subsets (X1, . . .) and Y into subsets (Y1, . . .).

8. Loop over pairs of sets (Xi, Yj):

(a) Generate rectangular table with r(x, y) and s(x, y) for x ∈ Xi, y ∈ Yj .
(b) Initialize r(x, y) = 1 (partial radical found so far) and u(x, y) = x + y

(unfactored part).

(c) Loop over all primes p up to a given sieve bound:

i. Sort elements of Xi into their residue classes mod p.

ii. Loop over y ∈ Yj :
A. Find all elements x ∈ Xi such that p | x+ y, using the pre-sorted

list mod p.

B. Divide all factors p from u(x, y).

C. Multiply r(x, y) with p.

(d) Loop over all elements x+ y in the table

i. If x and y are not coprime, skip this triple.

ii. If r(x, y) > c/rad(xy), skip this triple.

iii. Perform trial division by consecutive primes p, updating r(x, y) and
u(x, y) as above, until one of the following occurs.

iv. If p3 > u(x, y), test if u(x, y) is a square and use Prop. 7.8.

v. If p2 · r(x, y) > c/rad(xy), test if u(x, y) is a prime power and use
Prop. 7.9.

vi. In either case, if rad(xyz) > c skip this triple. If rad(x) < rad(y) <
rad(z) return this triple. Otherwise, skip it.

(e) Repeat the above for a table of elements |x− y| for x ∈ Xi, y ∈ Yj .

Proof. From the block structure of the algorithm it is clear that all potential triples
with radicals of x and y in the right range are considered. Propositions 7.8 and 7.9
then ensure that the right ones are returned.

The remaining point of attention is verifying that the list of pre-computed primes
in step 1 is long enough. For listing the squarefree integers using Algorithm 7.7 a
list of primes up to the square root of the upper bound of the interval is sufficient.
Since the radicals of x and y are at most N1/3 and N1/2, respectively, we primes up
to N1/4 suffice for this step.

The trial division loop only needs to loop over primes up to N1/3 since the
loop terminates at the latest when u(x, y) is not divisible by any primes p with
p3 ≤ u(x, y) < N according to Proposition 7.8.

We use this algorithm to enumerate all ABC triples with c < N .

The range of possible values for pairs (rad(x), rad(y)) is determined by the in-
equalities rad(x) < rad(y) and rad(x)rad(y)2 < N :
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1
2 logN

log rad(x)

log rad(y)

rad(y) > rad(x)

rad(x)rad(y)2 < N

1
3 logN

1
3 logN

We have covered this triangle by rectangles, and have distributed the resulting
work units over participating clients using the BOINC framework.

7.4 Implementation details

In this section we describe a number of implementation details that have a significant
impact on performance.

Small prime pre-selection

Algorithm 7.11 processes a block with a prescribed value for gcd(x, t). This allows
us to ensure gcd(x, y) will not contain primes dividing t, which makes the number of
discarded potential triples due to a common factor in x and y significantly smaller.
In practice, we take t = 2 ·3 ·5 ·7 = 210. Adding more primes produced no significant
extra speed-up.

Pre-sorting

In step 6 of Algorithm 7.11, we sort X and Y by size prior to dividing them into
smaller sets. After doing this, some sub-blocks Xi × Yj will only contain integers so
small that they can only lead to triples with c smaller than the radicals considered
in this work unit. We can discard these sub-blocks early.

Division strength reduction

In the sieving stage of the enumeration algorithm, we compute the remainders of a
large number of integers modulo a relatively small set of primes. We have imple-
mented an approach described in [15].
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Theorem 7.12 (Granlund, Montgomery, [15]). Suppose m, p, k are non-negative
integers such that p 6= 0 and

2M+k ≤ mp ≤ 2M+k + 2k.

Then bn/pc = bmn/2M+kc for every integer n with 0 ≤ n < 2M .

We have pre-computed such integers m and k for every prime p < 106 with
M = 64. This allows us to replace an integer division by p by a multiplication with
m followed by an integer division by a power of two.

A remainder operation of n divided by p can then be performed by computing
n− pbn/pc.

Divisibility testing

In the trial division stage, we test divisibility of a large number of integers by a
relatively small number of primes.

Proposition 7.13. Let p < 2M be an odd prime number. Let q satisfy 0 < q < 2M

and pq ≡ 1 mod 2M . Then for every integer n with 0 ≤ n < 2M we have

p | n⇐⇒ nq mod 2M <

⌊
2M

p

⌋
.

Here nq mod 2M is the unique non-negative integer smaller than 2M that is congru-
ent to nq mod 2M .

Proof. Multiplication by p gives a permutation of Z/2MZ and maps the integers
between 0 and b2M/pc to the multiples of p between 0 and 2M . Multiplication by q
gives the inverse permutation, so the proposition follows.

By precomputing q and b2M/pc for all primes p < 106 and M = 64, we can
implement divisibility tests by p as a 64-bit multiplication and a comparison.

Delayed bound checking

The tests 8.d.iv and 8.d.v in the inner loop that check if we can stop processing the
current potential triple are relatively expensive. Instead of performing these tests
after every prime p, we process 16 primes before every test. This empirically proved
a good trade-off between not testing too many primes, and not testing the bounds
too often.

To accommodate this, we have to make the list of pre-computed primes 15 ele-
ments longer than just the primes up to N1/3.
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Prime power testing

In step 8.d.v we have to test if a number is a prime power. Due to the delayed
bound checking described before, we have already tested divisibility by (at least)
the first 16 primes, so we need only consider powers of primes at least 57. Since 5711

is greater than 1018, we additionally only need check up to 10th powers.
We perform tests for squares and cubes by first checking if the number is a

square or cube, respectively, modulo 63, and if so, doing a binary search through
the possible range of roots. These two tests check for any squares and cubes, not
just prime powers.

After repeatedly taking 2nd and 3rd roots, we check if the remaining integer is
a 5th or 7th power of a prime by table lookup in the precomputed set of 902 such
prime powers.

7.5 Data

As part of the ABC@home project a large number of volunteers have executed
the algorithm described in the previous sections. The entire search space for the
enumeration algorithm has been split up into a large number of so-called workunits.
Each of these workunits has been sent to multiple clients to ensure their outputs
match.

Since many workunits are expected to contain no triples, this output check is not
yet sufficiently strong to ensure the clients have properly and completely searched
their section of the search space. To that end, the clients report not only the triples
they found in their section of the search space, but also a number of internal statis-
tics and counters. This is possible since the algorithms are fully deterministic and
platform independent.

The search has resulted in a total of 14 482 065 ABC-triples below 1018. In this
section we show a number of tables and graphs highlighting parts of these data. The
full dataset is available for download from the website at:

http://www.abcathome.com/data/

The first figure (Figure 7.14) shows the number of triples below each power of ten
up to 1018. Figure 7.15 shows the number of triples of a given size graphically, and
additionally shows how many of these triples have quality larger than 1.1, . . . , 1.5.

The next tables show a selection of data on how often specific values of a, b and c
occur in the set of found triples. Figure 7.16 does this for a set of small values of a.
Figures 7.17, 7.18, 7.19 show the most common values for a, b and c for c < 1014,
and c < 1016 and c < 1018, respectively.

The next two tables switch to triples avoiding certain primes. Specifically, Fig-
ure 7.20 gives the number of triples below 1018 where rad(abc) is coprime to a
selection of small integers. Next, Figure 7.21 gives (indirectly) for each integer p the
smallest triple which is not divisible by any odd primes up to and including p.

Figure 7.22 concludes the set of tables with a list of all seven pairs of triples
found with identical quality.

http://www.abcathome.com/data/
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Cover illustration

The image on the cover, which is reproduced on the opposite page, illustrates the
distribution of rad(abc) over rad(a), rad(b) and rad(c). More precisely, let S be the
set of triples x, y, z of (not necessarily positive) coprime integers satisfying x+ y =
z > 0 and rad(|xyz|) < max(|x|, |y|, |z|).

Note that if we would restrict to positive integers here, we would get regular
ABC triples. As it is defined, the set S has 6-fold symmetry: given (x, y, z) ∈ S,
every permutation of {|x|, |y|, |z|} leads to exactly one triple in S by choosing proper
signs.

If (x, y, z) is a triple in S, define r = rad(|xyz|). Then because x, y, z are coprime,
we have rad(|x|)rad(|y|)rad(z) = r and therefore

log rad(|x|)
log(r)

+
log rad(|y|)

log(r)
+

log rad(z)

log(r)
= 1.

If we take an equilateral triangle T with sides 2
3

√
3, and P any point inside T ,

then the sum of the distances of P to the three sides of T equals 1, and these

distances uniquely define P . We can therefore interpret the three fractions log rad(|x|)
log(r) ,

log rad(|y|)
log(r) , log rad(z)

log(r) as coordinates in T .

If the radical of a triple is almost entirely concentrated in a single integer, the
triple lies near a corner of T . If on the other hand the radical is distributed evenly
among the three integers, the triple will lie near the center of T . The image now
displays the distribution over T of triples in S with z < 1018.
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n #
1 1
2 6
3 31
4 120
5 418
6 1 268
7 3 499
8 8 987
9 22 316

10 51 677
11 116 978
12 252 856
13 528 275
14 1 075 319
15 2 131 671
16 4 119 410
17 7 801 334
18 14 482 065

Figure 7.14: Number of triples below 10n.
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Figure 7.15: 10log #{triples with c < 10N , quality > Q}
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a #
1 45 603
2 1 965
3 2 936
4 1 967
5 3 288
6 117
7 3 233
8 1 849
9 3 044

10 143
11 2 929
12 98
13 2 655
14 127

a #
15 222
16 2 026
17 2 347
18 119
19 2 141
20 132
25 3 696
27 2 875
30 8
32 2 065
64 2 006

125 3 435
128 1 894
256 2 175

Figure 7.16: Number of triples below 1018 with given a.

a 10log a # b 10log b # c 10log c #

1 0.0 9255 716 13.5 817 520 14.0 1236
54 2.8 866 519 13.3 753 716 13.5 1095
58 5.6 864 329 13.8 714 1312 13.4 821
56 4.2 862 1113 13.5 693 328 13.4 801

512 8.4 851 520 14.0 662 518 12.6 791
74 3.4 846 1312 13.4 619 329 13.8 704
76 5.1 825 328 13.4 606 1112 12.5 650
52 1.4 819 518 12.6 570 1113 13.5 637
72 1.7 812 715 12.7 570 715 12.7 623
59 6.3 800 1711 13.5 535 519 13.3 611

510 7.0 795 327 12.9 510 246 13.8 586
73 2.5 794 245 13.5 463 327 12.9 550
78 6.8 789 2310 13.6 463 244 13.2 543
53 2.1 757 326 12.4 445 2310 13.6 532
75 4.2 750 246 13.8 438 1711 13.5 497

Figure 7.17: Most frequent values of a, b, c among triples with c < 1014
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a 10log a # b 10log b # c 10log c #

1 0.0 21025 522 15.4 1716 718 15.2 2046
58 5.6 1930 333 15.7 1598 522 15.4 1837
56 4.2 1916 1115 15.6 1591 1115 15.6 1811

512 8.4 1885 718 15.2 1587 1314 15.6 1656
54 2.8 1874 1314 15.6 1380 332 15.3 1628
76 5.1 1869 332 15.3 1352 333 15.7 1606
74 3.4 1860 521 14.7 1262 1912 15.3 1476
78 6.8 1849 717 14.4 1103 521 14.7 1409

712 10.1 1810 1114 14.6 1083 253 16.0 1326
52 1.4 1802 331 14.8 1069 1713 16.0 1304
72 1.7 1733 252 15.7 1056 1712 14.8 1252
59 6.3 1731 520 14.0 1039 520 14.0 1236

510 7.0 1710 1912 15.3 1038 330 14.3 1182
73 2.5 1698 330 14.3 974 1114 14.6 1149

710 8.5 1684 1313 14.5 912 252 15.7 1148

Figure 7.18: Most frequent values of a, b, c among triples with c < 1016

a 10log a # b 10log b # c 10log c #

1 0.0 45603 721 17.7 3731 524 16.8 4104
56 4.2 3999 525 17.5 3448 721 17.7 4075

512 8.4 3995 1117 17.7 3340 1316 17.8 3830
712 10.1 3973 1316 17.8 3006 720 16.9 3566
58 5.6 3969 524 16.8 2960 336 17.2 3399
76 5.1 3946 337 17.7 2950 525 17.5 3287
78 6.8 3919 720 16.9 2927 1117 17.7 3154
54 2.8 3914 336 17.2 2741 1914 17.9 2987
74 3.4 3873 1116 16.7 2381 337 17.7 2870
52 1.4 3696 1914 17.9 2293 1116 16.7 2838

710 8.5 3661 1714 17.2 2245 1714 17.2 2654
72 1.7 3636 335 16.7 2194 3112 17.9 2518

510 7.0 3586 259 17.8 2187 1315 16.7 2391
515 10.5 3560 1315 16.7 2177 259 17.8 2390
516 11.2 3538 523 16.1 2163 2912 17.5 2369

Figure 7.19: Most frequent values of a, b, c among triples with c < 1018
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n #
2 0
3 756 946
5 2 523 717
7 4 194 390

11 6 804 914
13 7 769 311
15 126 233
17 9 207 072
19 9 744 974
21 208 359
23 10 586 016
35 702 418
55 1 152 234

3 · 5 · 7 33 105
3 · 5 · 11 56 056

3 · 5 · 7 · 11 14 314
3 · 5 · 7 · 11 · 13 6 913

Figure 7.20: Number of triples below 1018 with rad(abc) coprime to n.

p triple quality
3 4 + 121 = 125 1.0271
5 169 + 343 = 512 1.1987
7 128 + 4913 = 5041 1.0945

17 751 + 130321 = 131072 1.1486
19 2048 + 705233 = 707281 1.0237
29 263 + 3442688 = 3442951 1.0037
41 271 + 38272753 = 38273024 1.0642
73 137 + 46268279 = 46268416 1.0165

137 8192 + 26171619209 = 26171627401 1.0044
601 3539721569 + 562949953421312 = 562953493142881 1.0895

4871 none with c < 1018

Figure 7.21: Smallest triples with rad(abc) not divisible by any odd primes ≤ p.
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128 + 3645 =
648 + 3125 = 3773

rad(abc) = 2 · 3 · 5 · 7 · 11 = 2310

27 + 12005 =
125 + 11907 = 12032

rad(abc) = 2 · 3 · 5 · 7 · 47 = 9870

637 + 52488 =
2704 + 50421 = 53125

rad(abc) = 2 · 3 · 5 · 7 · 13 · 17 = 46410

729 + 212960 =
81920 + 131769 = 213689

rad(abc) = 2 · 3 · 5 · 7 · 11 · 89 = 205590

8281 + 218700 =
32500 + 194481 = 226981

rad(abc) = 2 · 3 · 5 · 7 · 13 · 61 = 166530

254800 + 23882769 =
2843100 + 21294469 = 24137569

rad(abc) = 2 · 3 · 5 · 7 · 13 · 17 · 181 = 8400210

4645188 + 113348636875 =
20095029775 + 93258252288 = 113353282063
rad(abc) = 2 · 3 · 5 · 7 · 17 · 47 · 53 · 59 · 61 = 32005439130

Figure 7.22: Pairs of ABC triples below 1018 with the same quality.
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Samenvatting

Dit proefschrift bestaat uit twee onafhankelijke delen. In het eerste deel, dat de
Hoofdstukken 1 tot en met 6 beslaat, bouwen we een theorie op om verstrengelde
radicaaluitbreidingen te beschrijven. Deze theorie gebruiken we om generalisaties te
geven van een vermoeden van Artin over primitieve wortels.

Het tweede deel bestaat uit Hoofdstuk 7. In dit hoofdstuk beschrijven we het
algoritme om alle zogeheten ABC-drietallen onder een gegeven grens te bepalen dat
gebruikt is door het gedistribueerde online rekenproject ABC@home.

Om het vermoeden van Artin over primitieve wortels te begrijpen kijken we eerst
naar de machten van 2. Dit is een snel groeiende rij:

21 = 2, 22 = 2× 2 = 4, 23 = 2× 2× 2 = 8, 24 = 16, 25 = 32, enz.

Als we de resten bij deling door het priemgetal 5 nemen van deze rij, dan raken we
in een lus: 2, 4, 3 (8 geeft rest 3), 1 (16 geeft rest 1), 2, 4, 3, 1, enz. We zien dat
we, op 0 na, alle mogelijke resten bij deling door 5 krijgen als macht van 2.

Als we hetzelfde doen met het priemgetal 7 in plaats van 5, is dit niet meer het
geval. De machten van 2 geven wel nog steeds een lus, 2, 4, 1 (8 geeft rest 1), 2, 4, 1,
enz., maar deze lus bevat niet meer alle mogelijke resten op 0 na. In het bijzonder
zal een macht van 2 nooit rest 3, 5 of 6 hebben bij deling door 7.

Rekenen met resten na deling door 5 (of 7) noemen we rekenen modulo 5 (of 7).
Omdat de machten van 2 modulo 5 alle resten op 0 na geven, heet 2 een primitieve
wortel modulo 5. Zoals we gezien hebben is 2 juist geen primitieve wortel modulo 7,
maar bijvoorbeeld 3 wel. We krijgen daarvoor de lus 3, 32 = 9 geeft 2, 33 = 27
geeft 6, en dan verder 4, 5, 1, 3, enz.

Als q een priemgetal groter dan 3 is, zijn er altijd meerdere primitieve wortels
modulo q tussen 1 en q. Zo zijn modulo 5 de getallen 2 en 3 primitieve wortels, en
modulo 7 hebben we 3 en 5.

Zij x 6= 0 een geheel getal. In 1927 formuleerde Artin een vermoeden over hoeveel
priemgetallen q er zijn waarvoor x een primitieve wortel is modulo q.

Deze hoeveelheid is uitgedrukt als een zogeheten dichtheid van priemgetallen.
We kijken voor een getal N welke fractie van de priemgetallen onder de N deze
eigenschap heeft. Als we N dan onbeperkt laten groeien, is het mogelijk dat deze
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fractie convergeert naar een getal d tussen 0 en 1. In die situatie zeggen we dat deze
verzameling priemgetallen dichtheid d heeft.

De redenering achter het vermoeden van Artin is als volgt. Voor het gemak
nemen we hier aan dat het gehele getal x geen macht is. Als x geen veelvoud van q
is, dan vormen de machten van x modulo q altijd een lus waarvan de lengte een deler
van q − 1 is. Als we deze lengte l noemen, dan heet het quotient q−1

l de index van
de lus. Het getal x is nu een primitieve wortel modulo q dan en slechts dan als de
index 1 is.

Een positief geheel getal is 1 precies als het geen priemdelers heeft. We kunnen
dus zien of x een primitieve wortel is door voor elk priemgetal p te controleren of p
een deler is van de index.

Laat p nu een priemgetal zijn. Artin heeft een getaltheoretisch argument ge-
geven om te bepalen voor hoeveel priemgetallen q, het priemgetal p geen deler is
van deze index. Deze redenering staat in zijn geheel in Hoofdstuk 1 van dit proef-
schrift, en de kern van dit argument rust op het begrijpen van de structuur van
de p-demachtswortels van x, zowel modulo q als binnen de complexe getallen. Het
resultaat ervan is dat de dichtheid van de priemgetallen q waarvoor p geen deler van
de index is, gelijk is aan

1− 1

p(p− 1)
.

Als we aannemen dat al deze voorwaarden onafhankelijk zijn van elkaar en we
daarom al deze dichtheden met elkaar vermenigvuldigen, krijgen we het vermoeden
dat de dichtheid van de priemgetallen q waarvoor x een primitieve wortel modulo q
is, gelijk is aan het oneindige product∏

p priem

1− 1

p(p− 1)
=

(
1− 1

2 · 1

)(
1− 1

3 · 2

)(
1− 1

5 · 4

)
· · · ≈ 0, 3739558 . . .

In de jaren ’50 hebben Derrick en Emma Lehmer dit eerste vermoeden met een
computer gecontroleerd voor de priemgetallen tot 20 000. Voor x = 2 bleek dit
numerieke experiment goed overeen te komen met de formule hierboven, maar voor
x = 5 leek de werkelijke dichtheid groter te zijn.

Artin realiseerde zich hierop dat voor x = 5 de voorwaarde voor p = 2 en p = 5
niet onafhankelijk zijn van elkaar. Dit komt door een onverwachte relatie tussen
2-demachtswortels van 5 en 5-demachtswortels van 1 binnen de complexe getallen.
Binnen de reële getallen is er slechts een enkele 5-demachtswortel van 1 (namelijk 1
zelf), maar binnen de complexe getallen zijn het er 5, gegeven door

1, e2πi/5, e4πi/5, e6πi/5, e8πi/5.

We schrijven vaak ζ5 = e2πi/5. Met die notatie zijn de 5-demachtswortels van 1
gegeven door 1, ζ5, ζ

2
5 , ζ

3
5 en ζ4

5 .
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Grafisch vormen deze 5 punten de hoekpunten van een regelmatige vijfhoek op
de eenheidscirkel.

ζ5

ζ2
5

ζ3
5

ζ4
5

i

10
√

5

Het blijkt dat de wortel van 5 te schrijven is in termen van ζ5:
√

5 = (ζ5 + ζ4
5 )− (ζ2

5 + ζ3
5 ).

Immers, het is na te rekenen dat het kwadraat van de formule aan de rechterkant
gelijk is aan 5. Een dergelijke onverwachte relatie tussen wortels (of radicalen)
noemen we verstrengeling van radicalen.

Deze relaties zorgen voor een correctiefactor voor de dichtheid van priemgetallen
q 6= 5 waarvoor 5 een primitieve wortel modulo q is. Dit door Artin aangepaste
vermoeden is in 1967 bewezen door Hooley, onder de aanname van de zogeheten
Gegeneraliseerde Riemann-Hypothese (GRH). Dit is een nog onbewezen diepe ge-
taltheoretische hypothese die gevolgen heeft voor de nauwkeurigheid waarmee we de
verdeling van de priemgetallen kunnen beschrijven. Hij wordt in het bewijs van het
vermoeden van Artin gebruikt om het combineren van de oneindig veel condities bij
priemgetallen p mogelijk te maken.

In Hoofdstuk 1 geven we een generalisatie van het vermoeden van Artin
naar getallenlichamen. Onder aanname van GRH heeft de dichtheid in deze gene-
ralisatie dezelfde vorm van een oneindig product maal een rationale correctiefactor.
Dit hoofdstuk vormt een opzichzelfstaand geheel.

In Hoofdstuk 2 bouwen we een theorie voor verstrengelde wortels op, los van
getallenlichamen. De eenhedengroep van een lichaam heeft de eigenschap dat elke
eindige ondergroep cyclisch is. Dit blijkt een essentiële eigenschap voor de theorie in
dit proefschift. Laat daarom B een abelse groep zijn waarvan alle eindige ondergroe-
pen cyclisch zijn, en G een pro-eindige groep die werkt op B. We schrijven BG voor
de ondergroep van B die invariant is onder de actie van G. Als B/BG torsie is, dan
noemen we B een Galois-radicaaluitbreiding van BG. In Hoofdstuk 2 beschrijven
we een aantal eigenschappen hiervan die sterk lijken op Galoistheorie van lichamen.
Eén van de hoofdresultaten uit Hoofdstuk 2 is dat het beeld van G in AutBG(B)
een normale ondergroep is, met een abels quotient AutBG(B)/im(G). We
noemen dit quotient de verstrengelingsgroep van de werking van G op B.

In Hoofdstuk 3 kijken we naar de verstrengelingsgroep van de maximale radi-
caaluitbreiding van de eenhedengroep van een lichaam K, met de werking van de
absolute Galoisgroep van K. Deze noemen we de absolute verstrengelingsgroep.
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In Hoofdstuk 4 beschrijven we expliciet verstrengelingsgroepen over Q, en ge-
bruiken dit om een algoritme te geven voor het berekenen van de lichaamsgraad
van radicaaluitbreidingen van Q.

In Hoofdstuk 5 geven we een verdere generalisatie van het vermoeden van Artin
over primitieve wortels. We kijken hier naar bijna-primitieve wortels, die niet
noodzakelijk de gehele eenhedengroep van de maximale orde van een getallenlichaam
modolo een priem voortbrengen, maar een ondergroep waarvan de index een gegeven
geheel getal t deelt. Een andere generalisatie die we in dit hoofdstuk beschouwen
is die van hogere rang, waar we een eindige verzameling x1, . . . , xk van niet-0
elementen van een lichaam K nemen, en de dichtheid bepalen van de priemen q
van K, met voor alle xi de eigenschap ordq(xi) = 0, waarvoor x1, . . . , xk samen
(OK/q)∗ voortbrengen.

De algemeenheid van de theorie uit Hoofdstuk 2 stelt ons in staat om in Hoofd-
stuk 6 ook een generalisatie van het vermoeden van Artin voor tori van rang 1
over getallenlichamen te geven. Dit zijn algebräısche groepen die sterk lijken op
de multiplicatieve groep Gm, waarover we in Hoofdstuk 1 en 5 gewerkt hebben. De
eis dat een torus T over een lichaam K rang 1 heeft, zorgt er precies voor dat eindige
ondergroepen van de groep van punten T (K) cyclisch zijn, waardoor de theorie uit
Hoofdstuk 2 van toepassing is.

Het tweede deel van dit proefschrift bestaat uit Hoofdstuk 7. In dit hoofdstuk
beschrijven we een algoritme dat we gebruikt hebben in het gedistribueerde on-
line rekenproject ABC@home om alle zogeheten ABC-drietallen te vinden kleiner
dan 1018. Een ABC-drietal is een drietal positieve gehele getallen (a, b, c) dat voldoet
aan de volgende voorwaarden:

• a+ b = c;

• a ≤ b;

• a, b en c hebben geen gemeenschappelijke priemdelers, en

• het product van de priemdelers van abc is kleiner dan c.

Het product van de priemdelers van een positief geheel getal n noemen we het
radicaal van n, en we schrijven dit als rad(n). De kwaliteit van een ABC-drietal
wordt gegeven door het volgende quotient:

q =
log(c)

log(rad(abc))
.

Deze ABC-drietallen vormen een centrale rol in het ABC-vermoeden, dat een
uitspraak doet over het limietgedrag van de kwaliteit van ABC-drietallen. Het algo-
ritme dat we beschrijven in dit hoofdstuk is in het kader van het ABC@home-project
gebruikt met de hulp van vele vrijwilligers wereldwijd om alle ABC-drietallen klei-
ner dan 1018 te vinden. In Sectie 7.5 sluiten we dit proefschrift af met een aantal
observaties over de 14 482 065 gevonden drietallen.
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