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Drug Discovery  
 
 

Discovery of new medicines has transitioned from serendipity to rationality 

over a period of time. A drug may be referred to as a substance that is either used in 

diagnosis, prevention or treatment of a disease and which carries out a physiological 

effect when ingested or otherwise introduced into the body. A drug carries out its 

action by binding to a therapeutic target.1 The pharmaceutical industry today invests 

between 10-20% of annual sales revenue in research and development, far greater 

as compared to other research-based sectors. The discovery of a drug molecule 

takes about 10 years and these timelines have led to a rise in the financial 

expenditure, estimated to be more than $500 million. These higher costs are 

associated with a significant risk, since many drug candidates fail to reach the clinic. 

Newer strategies are needed at an early stage of the drug discovery process to 

reduce the risk of failure and successfully identify potential drug candidates. Two 

main broad types of screening strategies are typically employed to find optimal drug 

candidates at a preclinical stage - phenotypic screening and target-based screening.  

Phenotypic v/s Target based Screens 

Phenotypic screening looks at the effects, or phenotypes (a set of observable 

characteristics of a disease), induced by the compounds in cells, tissues or whole 

organisms whereas target based screens measures the effect of compounds on a 

target protein using in vitro assays. Phenotypic screening leads to the identification of 

a small molecule that either modifies or alters disease phenotype by acting on an 

unknown target or by acting simultaneously on one or more targets. However, the 

challenge with phenotypic screening is that the subsequent determination of a 

relevant target or targets that interact with the candidate molecule has proven slow 

and difficult. 2,3  
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The strength of target based screening is that the small molecule screening 

strategies can be applied against a known target (mostly in high-throughput formats). 

One can also apply molecular knowledge to investigate specific mechanisms such as 

if a binding of a drug results in an inhibition or activation of the target protein. Recent 

advances in molecular biology and chemical genomics have led to the identification 

of novel drug targets that are implicated in a number of diseases. As a result, 

phenotypic screens are now largely replaced by target based screens. The initial 

stage of target-based drug discovery programs consists of many sequential and 

iterative steps as illustrated in Figure 1.�,��Most pharmaceutical companies carry out 

multiple target-based screens in a drug discovery pipeline to achieve desired 

success in the drug development. 2,3�

 

 

Figure 1. Outline of initial stages involved in a target based drug development. 

A. Target Identification/Validation 

One of the important steps in developing a new drug is the identification of a 

protein target and validating its role in a particular disease. A “target” is a protein 
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whose activity in the cell is associated with the onset or progression of a particular 

disease. A ‘ligandable’ target is one which is accessible to the putative drug 

molecule, be that a small molecule or larger biologicals. The understanding of 

fundamental processes and cellular networks associated with the target protein and 

cellular changes caused upon activation/inhibition of the target has been the�

underlying approach to identify suitable targets for drug intervention. Validation of 

new drug targets is the process of physiologically, pathologically and 

pharmacologically evaluating the effects of a molecule on a protein target implicated 

in disease. Target validation can be performed at a molecular, cellular or the whole 

animal level.�
�    

B. Hit Discovery 

The main goal of the hit discovery stage is to identify small molecules or hits 

that harbor the potential to modulate the functional activity of the target protein. A hit 

is defined as a compound which exhibits desired activity in a small molecule screen 

against a target protein and whose activity can be confirmed upon retesting. Many 

potential screening approaches exist to discover hits. Most commonly used 

approaches are high-throughput screening (HTS), fragment and/or knowledge based 

screening.6,7  

 High-throughput screening (HTS) is the process of testing a large number (at 

least 10’s of thousand to a few million) of diverse ‘drug-like’ or ‘lead-like’ chemical 

structures (molecular weight between 250 - 600 Da) against disease targets to 

identify hits using binding, enzymatic or cellular assays.���� The emphasis in HTS is 

to select those compounds that bind to the target protein with a higher 

potency/binding affinity (typically <1 µM). Therefore, desired compounds need to 

make a sufficient number of appropriate interactions (such as hydrogen bonding, 
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hydrophobic and ionic interactions etc.) within the active site of a protein target.��
��
�� 

However, HTS has potential limitations.  As HTS involves screening of large 

compound libraries, it becomes difficult to monitor the quality of compounds and 

manage the chemical diversity space of the HTS library (the chemical diversity space 

refers to the extent of variety in the atomic composition within a set of compounds). 

Inevitably, HTS screening decks may contain molecules that are not drug-like i.e. 

highly lipophilic and with poor aqueous solubility. As a result, hits that come from 

HTS consist of a large number of false positives (compounds that cause aggregation, 

are reactive molecules or redox active), false negatives and compounds with poor 

ADMET properties (absorption, distribution and metabolism). The inappropriate 

physico-chemical properties of compounds have led to high attrition rates during drug 

development (the attrition rate reflects the level of loss of new candidate drugs during 

the process from pre-clinical to clinical and through their clinical development).14-16 

The compounds with higher molecular weight and lipophilicity are the main drivers for 

attrition of molecules as they directly influence the ADMET properties. To reduce 

attrition rates, Lipinski and coworkers17 have proposed the famous “Rule of Five” 

(defined below).17 The rule provides the framework to develop drugs with better 

aqueous solubility and oral bioavailibility. The rule of 5 is the outcome from the 

analysis of physico-chemical properties of more than 2000 drugs and drug-like 

molecules in clinical trials. The rule concludes that a drug-like molecule is more likely 

to be membrane permeable and easily absorbed by the body if it matches the 

following criteria:  

• Molecular weight < 500 

• The compound's lipophilicity, expressed as a quantity known as ClogP (the 

calculated logarithm of the partition coefficient between water and 1-octanol), 
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< 5. 

• The number of groups in the molecule that can donate hydrogen atoms to 

hydrogen bonds (usually the sum of hydroxyl and amine groups in a drug 

molecule) < 5. 

The number of groups that can accept hydrogen atoms to form hydrogen bonds 

(estimated by the sum of oxygen and nitrogen atoms) < 10. 

Another potential limitation of HTS is that large compound libraries represent 

only a tiny fraction of chemical diversity space. It is estimated that there are about 

1060-200 possible drug-like compounds of HTS size (250-600 Da) while there are only 

approximately 109 possible molecules with 11 or fewer heavy atoms (C, N, O and F). 

This suggests that screening of 1,000 low molecular weight molecules (< 16 heavy 

atoms per compound) might sample total chemical space more effectively than 

screening 1,000,000 more typical, higher molecular weight HTS compounds (< 36 

heavy atoms per compound).  This poor sampling by HTS libraries has limited the 

confidence in finding of good starting points for subsequent optimization and 

development. There are various examples in several drug discovery projects where 

HTS has failed to generate meaningful potential hits. There is a constant need for 

alternative approaches so as to overcome the problems posed by HTS.18,19  

The fragment-based drug discovery (FBDD) approach is able to overcome the 

limitations posed by HTS and is an established method used within the 

pharmaceutical industry to develop drugs against a variety of diseases. FBDD 

involves the generation of very small molecular weight compounds (fragments) 

libraries that are screened at high concentrations. These fragments are then 

elaborated or grown into potent drug molecules. FBDD combines a stepwise 

medicinal chemistry approach and takes into account the structural aspect of the 
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biological targets to enable efficient hit to lead development (a lead molecule is a 

chemically optimized fragment hit with a better binding affinity to the protein target 

and is a more drug-like compound). FBDD is the primary approach in the work 

described in this thesis and will be described in detail in a later section.20  

Focused or knowledge-based screening involves selecting from the chemical 

library smaller subsets of molecules that are likely to have activity against the target 

protein. This selection of molecules is based on the prior knowledge of the target 

protein from literature and from the chemical classes that are likely to have activity at 

the drug target.5-7�

C. Hit to Lead and Lead optimization 

Once a set of hits is obtained from compound screening, the next step is to 

narrow down which compounds are the best to progress. The initial refinement or 

also termed as “hit validation” is to generate dose-response curves in a suitable 

assay for each hit.4 A validated hit should ideally act reversibly with the drug target. It 

is important to initiate a drug discovery program with small simple molecules as the 

follow-up medicinal chemistry efforts tend to improve the potency at the expense of 

an increase in the molecular weight of a compound.8,9 The goal of the lead 

optimization phase is to maintain favorable ADMET properties while improving the 

deficiencies (chemical groups that are not critical for binding affinity) of the lead 

structure. The success of drug discovery programs largely depends on the 

successful development of lead series as these are pursued as potential drug 

candidates for subsequent studies. The availability of 3D structural information on the 

target protein-small molecule complexes is crucial at this stage of drug development 

as its inclusion allows developing lead compounds with better potency and favorable 

physico-chemical properties.  



 

���
�

Fragment Based Drug Discovery 

Fragment based drug discovery (FBDD) is an established method. FBDD has 

significantly developed since last 10 years and a large number of pharmaceutical 

companies and academic groups are now actively involved. Despite being only few 

years in existence, FBDD has been able to deliver drug candidates in a timely 

fashion and there are approved drugs already on the market in addition to several 

clinical and pre-clinical drug candidates against a variety of protein targets. An 

extensive list of fragment-derived compounds has entered the clinical trials from 

various pharmaceutical companies. The current list contains 16 compounds in Phase 

I, 11 compounds in Phase II and 1 compound in Phase III clinical trials. One drug 

discovered from the fragment-screen has received FDA approval and is marketed 

under the name Zelboraf. The drug was discovered at Plexxikon Inc. and developed 

in partnership with Roche. The drug has shown dramatic clinical results and extends 

life of patients with a deadly form of skin cancer. More details on the clinical trial 

progression of fragment derived compounds is reviewed elsewhere.20,23  

FBDD starts with screening of small molecules, called “fragments” i.e. the 

minimal recognition motifs or molecular anchors.20 The origins for FBDD approach 

can be traced to a paper by Williams Jencks, in which it was proposed that weakly 

binding fragments can form high quality interactions (high binding energies per unit of 

molecular mass) with the target and later these fragments can be optimized to deliver 

highly potent lead-like molecules. Nakamura and Abeles applied FBDD approach 

and demonstrated that indeed it was possible to obtain potent HMG-CoA inhibitors 

when starting from weakly binding fragments.��
���/@=�fragment based drug discovery 

process, in general consists of three stages: 
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1) Fragment library - in which a fragment collection is assembled  

2) Fragment screening- in which the fragment library is screened�on a purified 

protein target using an array of biophysical techniques that are able to detect 

weak, non-covalent binding to the target of interest and 

3) Fragment elaboration- during which validated fragments are developed in 

lead compounds guided by structure based drug design (SBDD) and 

biochemical data.  

 

             Fragment based approaches offer a number of attractive features: (i) a 

significantly larger proportion of chemical space can be sampled within a fragment 

library (usually ~103 fragments) than with the ~105−106 larger molecules typical for 

an HTS campaign. As a result, less number of compounds (about a few hundred up 

to a few thousand) are typically screened against the target protein (ii) fragments are 

small and have a greater probability of correctly matching the binding site of the 

target protein by forming high quality interactions. As a large number of atoms in a 

fragment hit are involved in direct protein-binding interaction, fragments are 

considered to be highly ligand efficient binders {Ligand efficiency (LE) is a 

measurement of the binding energy per atom of a ligand to its target protein and is a 

valuable metric to small molecules with different sizes} (iii) the chemical optimization 

of fragment hits (parameters such as potency, target selectivity, ADMET properties 

and LEs > 0.3) can be achieved when the protein-ligand binding interaction is 

structurally validated and (iv) fragments in a library are chosen such that they exhibit 

good aqueous solubility and should lead to fewer false positives arising from 

aggregation, a common problem encountered in HTS programs.18,19,23,24  
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Fragment Library 

Although Lipinski’s rule of 5 provides useful guidelines to maximize an oral 

drug candidate success in the drug development, it may not be relevant to assess 

optimum properties of lead-like molecules. It has been reported that the libraries 

containing compounds with molecular weight 100-350 Da and clogP of 1-3 do result 

in hits which can be optimized into lead molecules with favorable drug-like properties. 

This suggests that smaller is better for efficient drug development. Fragment 

molecules in a library typically are compliant with the “Rule of Three” as proposed by 

Congreve and colleagues.24,25 Rule of 3 is used as the selection criteria and include 

physico-chemical characteristics such as molecular weight < 300 Da (~150-300 Da), 

fewer number of heavy atoms and a limited number of hydrogen bond donors ��3 

and the number of hydrogen bond acceptor ≤ 3. Other criteria include the solubility, 

ClogP ≤ 3 and the number of rotatable bonds ≤ 3.23,24 

 

Fragment Screening 

Fragment hits are simple molecules and tend to bind weakly to the target 

protein. The typical binding affinities exhibited by fragment hits range between 0.01-

10 mM. Hence, to detect weak fragment hits, sensitive biophysical techniques are 

required. NMR (Nuclear Magnetic Resonance) and X-ray crystallography are 

commonly used techniques as they are able to detect hits within a range of binding 

affinities. The application of X-ray crystallography as a screening tool depends on 

number of factors such as availability of a large amount of protein, and access to 

synchrotron and time involved to screen for crystallization conditions.26,27 Other 

techniques like mass spectrometry, high concentration functional screening, 

calorimetry, surface plasmon resonance (SPR) and NMR based screening methods 



 

���
�

may be easier to set-up for small molecule screening. 28-32 Significant importance 

should also be laid on choosing an appropriate biophysical technique for screening of 

fragments. For example, as noted by Jhoti and colleagues, only about 5% of the 

fragment population needs to interact with the protein to be detected as an NMR hit, 

whereas in X-ray crystallography experiments a fragment needs to have at least 70% 

occupancy of the binding site to be defined as a hit. Also, NMR can detect hits with 

solubilities lower than their potency for the target protein.33 To avoid the loss of any 

potential hits that come from a particular screening method and to aid in reliable 

identification of hits, often two or more techniques are employed early in the FBDD 

process.  

NMR as a screening tool in FBDD 

The popularity of NMR as a screening technique in the drug discovery process 

is increasing due to its sensitivity for the detection of the low affinity compounds. This 

section will mainly focus on NMR methods that are capable of detecting binding of 

small molecules to a protein target by screening of a compound library. NMR based 

screening can be implemented as ligand- or protein-detected methods.34� It is 

necessary to introduce some basic NMR concepts for a better understanding of the 

methods described in the later sections of this chapter.  

 

Basic Concepts for Ligand detected NMR Methods: 

Magnetization 

The nuclear magnetic resonance (NMR) spectroscopy experiment involves using 

energy in the form of electromagnetic radiation to transit the excess alpha nuclei (low 

energy ground state) into the beta state (high energy excited state). The energy in 

the form of radio waves is appropriate for the low energy transition involved in NMR. 
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This energy is at a specific resonance frequency that depends on the strength of the 

applied external magnetic field and the magnetic properties of NMR active nuclei. 

The term ‘magnetization’ in NMR is simply the sum of all the individual nuclear 

magnetic moments possessed by respective nuclear spins in presence of the 

externally applied magnetic field. There is a very small energy difference between α 

(low energy ground state) and β (high energy excited state) energy states of a 

nuclear spin orientation in a magnetic field and this results in a very small excess 

population of nuclei in the ground state (Boltzmann distribution). For example, the 

population difference is only on the order of 1 in 105 for 1H spins in an 11.7T 

magnetic field. It is this small difference in the population that is responsible for an 

NMR signal.35.36  

Relaxation 

Relaxation in NMR is an important process and an understanding is required 

for proper measurement of the NMR spectra. Any spin system that is not in the 

equilibrium state will relax back to its Boltzmann distribution. This happens via two 

mechanisms called spin-lattice relaxation and spin-spin relaxation. The spin-lattice 

relaxation is a process by which the spins exchange energy with their surrounding 

medium. This can be pictured as a movement of the bulk magnetization of spins back 

into the direction of the external magnetic field. It is therefore also called longitudinal 

relaxation or T1-relaxation. The spin-spin relaxation is characterized by the loss of 

coherence among the spins. The spin-spin relaxation is also called transverse 

relaxation or T2-relaxation.35,36� 

Chemical Exchange 

 As the binding of a small molecule ligand to the protein requires exchange 

between the free and the bound states, the resulting binding kinetics and exchange 
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rates affect the properties of the NMR spectra. The interconversion between the 

bound and free states is dependent on the Larmor frequency of the observed nucleus 

and field strength.If the exchange is slow i.e. in slow exchange as per NMR time 

scale (NMR time scale depends on the strength of the magnetic field and a particular 

experimental set-up), two separate resonances can be observed for the free and the 

bound state. In the intermediate exchange regime, target resonances that are 

sharp/intense at low ligand concentrations, broaden and sometimes disappear as the 

ligand concentration is increased. These broadened resonances reappear at high 

ligand concentrations and perhaps exhibit a small chemical shift. In “fast exchange” 

regime the spectral characteristics in the bound state are transferred to the free state 

of the ligand. The observed resonances are the population weighted averages of the 

signals of the free and the bound state and a single sharp signal can be detected.35-37  

Intrinsic NMR characteristics of a protein and a small molecule ligand 

The detection and characterization of protein-ligand interactions require 

different NMR techniques depending on the binding affinity, molecular weight and 

chemical exchange between free and bound state. A protein target exhibits 

characteristic properties such as slow diffusion, fast relaxation due to slower tumbling 

and fast spin-diffusion (spontaneous exchange of magnetization among nearby 

nuclear spins). A small molecule ligand possesses opposite properties such as fast 

diffusion, slower relaxation and negligible spin diffusion. In a protein-ligand complex, 

the properties of the bound ligand become similar to that of the protein. Acquisition of 

1D 1H NMR spectra of a ligand in the presence and absence of the protein may 

indicate binding via broadening of the resonance signal and/or loss of signal intensity 

of the ligand resonances. Most NMR assays exploit these differences in the 

properties of the ligand caused by its binding to the protein.36,37 
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Ligand detected NMR Methods 

NMR is a sensitive technique for probing the binding interaction of target 

protein with a small molecule or fragment using ligand-based NMR detection 

methods. Ligand-observed NMR methods are routinely used to generate hit matter (a 

primary set of compounds that bind the target protein). There are a number of ligand 

detected methods that are based on the acquisition of simple 1D 1H NMR 

experiments. There are two ways to detect ligand binding by ligand-detected NMR: 1) 

exploiting the difference in the tumbling of the ligand in the presence and absence of 

the protein targets (ligands that are bound to the protein will experience slower 

mobility and altered relaxation parameters). CPMG experiments and TINS (Target 

Immobilized NMR Screening) are good examples.38,39,40 In CPMG (Carr-Purcell-

Meiboom-Gill) experiment, a simple measure as the observation of a reduction in the 

intensity of the ligand proton resonance observed only in the presence of the protein 

target is considered as an indicator for ligand binding.38,39 TINS (Target immobilized 

NMR screening) is one of the technologies used extensively in the work described in 

this thesis and will be described in detail below.40 2) the transfer of 1H magnetization 

from protein to the bound ligand (only ligand molecules that bind to the protein will 

experience the magnetization transfer). STD and WaterLOGSY are routinely used 

techniques that exploit the magnetization transfer.41,42 There are a number of 

approaches that are developed to detect ligand binding such as diffusion editing, 19F 

fluorine screening and competition binding studies (provides information on the 

binding site) that can be implemented but will not be discussed here.26,43  

TINS 

TINS exploits the enhanced transverse relaxation rate (measure of how fast 

the spins exchange energy in transverse plane and this is responsible for a true 
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linewidth of an NMR signal) of the ligand caused by binding to a protein target 

immobilized on a solid support. The difference in the transverse relaxation rate 

between protein bound and free state of ligand is at least 2 orders of magnitude. Use 

of a reference protein along with the target protein eliminates those fragments that 

exhibit non-specific interactions to the protein surface. Target and reference proteins 

are immobilized on a commercially available resin. A flow-injection, dual-cell sample 

holder is placed into the magnet into which repeated cycles of mixtures of fragments 

about 3-6 fragments per mix are injected simultaneously on both the immobilized 

target and the reference cells. After injection, flow is stopped and NMR data are 

acquired followed by extensive washing prior to the next injection. In TINS, a small 

quantity of protein target is used and a fragment library of ~2000 compounds can be 

screened in less than 5 days. The change in the signal amplitude caused by the 

interaction of the fragment with either the target protein or the reference protein is 

termed as the TINS effect.12,40,44,45� TINS can also be set-up in competition mode 

allowing one to rapidly characterize the ligand binding site using a known competitor. 

TINS NMR screening has been successfully applied to diverse classes of protein 

targets including kinases, viral RdRP's (RNA dependent RNA polymerase), GTPases 

and also to challenging membrane proteins. The technique is sensitive, robust and 

efficient for the detection of weak binders. 

STD and WaterLOGSY 

The saturation transfer difference (STD) experiment is widely adopted for 

screening purposes and was developed originally by Mayer and Meyer.41 The STD 

experiment is the difference between two separate experiments. In a first experiment 

so called “on resonance”, the protein proton magnetization is saturated (saturation 

pulse equalizes the population difference between the ground and the excited state 
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and as a result no NMR signal is observed) by a train of selective rf (radio frequency) 

pulses. The saturation is placed on the isolated resonances of the protein, usually 

around the methyl region (~0.0 to -1.0 ppm) such that these do not overlap with the 

ligand resonances. The selective saturation of e.g. the methyl 1H’s is then transferred 

to nearby protons within the protein via intramolecular 1H-1H cross relaxation 

pathways, referred to as spin diffusion. When a ligand binds to the protein, the 

saturation is transferred via intermolecular 1H-1H cross relaxation at the binding 

interface. These saturated ligand molecules upon dissociation from the target protein 

are exchanged back into solution where their saturated state persists. As more ligand 

molecules are exchanged on and off the protein, the population of the saturated 

ligand builds up in solution. In another experiment so called “off resonance”, the 

saturation is applied far away from protein resonances, e.g. at 100 ppm, such that no 

saturation of the protein is observed. The “off resonance” spectrum is used as a 

reference. The “on resonance” and “off resonance” experiments are acquired in an 

interleaved fashion and then subtracted. The resulting difference spectrum between 

the “on resonance” and “off resonance” experiments yields only those ligand 

resonances that experience saturation arising exclusively from the ligand binding to 

the target protein. STD experiments have several advantages: i) STD experiments 

can be carried out with less protein concentration (~1-5 µM) compared to other ligand 

detected NMR methods, (ii) compounds can be screened in mixtures (iii) ease of 

implementation and (iv) applicability to large molecular weight targets.43 Mayer and 

co-workers46 have also demonstrated that STD can be used for group epitope 

mapping in which only those specific protons of the ligand that are closer to the 

protein surface experience a higher degree of saturation. This type of information can 

be vital to medicinal chemists to guide ligand elaboration.37,46  
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There are potential pitfalls with STD technique that need to be considered 

before implementing to a protein-ligand system. The STD effect is limited by the 

exchange regime. To get maximum sensitivity of STD signal, ligand has to dissociate 

at a faster rate, this is caused by the difference in the relaxation rate of the ligand 

when free and when bound to the protein target. During STD experiment, one 

assumes that protein is 100% saturated. However, this may not be always true as the 

saturation is also lost to solvent protons and other saturated protein protons. Also, 

some protein targets are suboptimal for STD, in which another similar approach, 

WaterLOGSY (WaterLOGSY (Water-ligand Observed via Gradient SpectroscopY) 

may be more effective.41,43 In WaterLOGSY experiment, the saturation pulse is 

applied at the resonance frequency of the bulk water. The transfer of saturation is 

achieved from water to the protein target and subsequently from protein target to the 

ligand. This transfer relies on the presence of bound water molecules within ligand 

binding site of the protein.  It is to be noted that the ligand observed NMR techniques 

are dependent on the “fast exchange regime” between the ligand and the target 

protein. A ligand that is bound tightly is in “slow exchange” and is not suitable for 

detection by ligand observed NMR methods.37,43 

  

Fragment Elaboration and Structure Based Drug Design 

Typically, FBDD campaigns are combined with structure-based drug design 

(SBDD). SBDD has emerged as a new tool in medicinal chemistry. Identification of 

initial fragments from a direct binding assay is most useful if it is also supported by 

structural information such as the binding site of the fragment. The initial fragment 

hits can be considered as building blocks of a complex series of lead compounds. 

The evolution and growing of fragment hits to tighter-binding molecules can be 
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achieved by designing of small subset of compounds that make additional specific 

interactions within the binding site of the target protein. SBDD requires the three 

dimensional structure or closely related structure of a homolog or a NMR derived 

structure of the target protein, preferentially complexed with a ligand. The 3D 

structure of the protein-ligand complex reveals the binding mode and the 

conformation of a compound under investigation and indicates the essential 

molecular interactions determining its binding affinity. Small molecules could be 

modeled into a binding pocket of the drug target using various computational tools.37-

39,51 As noted by Hajduk and Greer, the inclusion of structural information derived 

from methods such as X-ray crystallography and NMR could dramatically influences 

the success of fragment based drug design.24 The ability to increase the potency of 

inhibitors nearly triples with the aid of structure-based design. The development of 

selective inhibitors for cyclin-dependent kinase-2 (CDK-2), Src-kinase,  matrix 

metalloproteinase 3  and Hsp90 are very good examples where SBDD have helped 

to achieve potent compounds.52-55 Fragment-based screening coupled with structure-

based drug design provides a powerful combination for maximizing the 

representation of chemical diversity space and generating novel, potent inhibitors for 

various protein targets.  

The FBDD approach has been highly successful and to date at least 25 drugs 

derived from FBDD and have entered the clinical trials.�One drug discovered from the 

fragment-screen has received FDA approval and is marketed under the name 

Zelboraf. The drug was discovered at Plexxikon Inc. and developed in partnership 

with Roche. The drug has shown dramatic clinical results and extends life of patients 

with a deadly form of skin cancer.20,23,47 A particularly impressive example was the 

development of inhibitors of the protein–protein interaction between Bcl-XL and its 
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partner proteins. The initial work was published in 2005 showing how very potent 

inhibitors (< 100 nM) were discovered starting from the identification and subsequent 

NMR structure determination of two weak fragments with 300 �M and 4 mM affinities, 

respectively.49 The example shows how FBDD has the potential to deliver drugs even 

for protein-protein interaction targets. A more recent application was the identification 

of small molecule binding to a novel site on the protein survivin.50 The structure of an 

NMR-derived protein–ligand complex was determined for one of the fragments 

obtained from a fragment screen and subsequent optimization allowed the 

identification of compounds with affinities of < 100 nM. These compounds are 

suitable probes for understanding the role of the novel binding site in cancer 

biology.48,50 About 13 different institutions reported the development of more than 50 

potent compounds (IC50 < 100 nM; IC50 is the concentration of an inhibitor required 

for 50% inhibition of an enzyme) against different protein targets starting from weakly 

binding fragments.22 There are many successful examples of application of FBDD to 

obtain high affinity leads which are reviewed elsewhere.20,21 

 

X-ray Crystallography as a Structural Tool 

To date, X-ray crystallography has been the main driver for structure 

determination purposes. Soaking of small molecules into protein crystals is a 

successful approach to obtain high resolution 3D structural information of the protein-

small molecule complexes. There have been many examples where the use of X-ray 

crystallography has aided the successful discovery of nanomolar potent inhibitors 

against protein targets such as p38 MAP kinase, β-secretase, urokinase, Src-kinase, 

cyclin dependent kinase-2 (CDK2) to name a few.56 The X-ray structure of the 

fragment bound to the protein provides the final binding evidence and, in addition, it 
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delivers the relevant structural information for initiating lead optimization via 

medicinal and/or combinatorial chemistry attempts. However, in practice, it is not 

always possible to obtain protein-small molecule costructures because of different 

experimental causes. The set-up for X-ray based structure determination is not trivial 

and is both resource and time intensive. Common problem is faced with the 

interpretation of electron density maps determined from X-ray diffraction experiments 

(An electron density map is a three-dimensional description of the electron density in 

a crystal structure, determined from X-ray diffraction experiments). This can be 

ambiguous and even at resolution of 1.5 to 2.5 Å, there are uncertainties in the 

placement of amino acid residues like asparagine, glutamine and histidine because 

of their internal pseudo-symmetry. In the case of asparagine and glutamine, the side-

chain N and O atoms will have similar electron densities, and in the case of histidine, 

the N and C atoms of the imidazole ring will usually be indistinguishable (and 

consequently the side-chains of these residues can typically be built in two 

orientations). Errors in the placement of ligands (including fragments) in 

macromolecular crystal structures can also arise from several causes. Non-

covalently bound compounds may exhibit greater thermal motion or conformational 

disorder than the surrounding protein, leading to poor electron density.57-60 Artifacts 

may be generated by the crystallization process itself. Potential blocking of the target 

site by crystal contacts (interchain or intermolecular contacts that occur solely as a 

result of crystallization) can result in false-negatives upon soaking ligands. Similarly, 

residues surrounding the site of interest could be held in an inappropriate 

conformation for ligand binding, or could be blocked by other ligands.61 Additionally, 

crystals that are grown at extremes of pH may not yield ligand-binding modes 

observed at physiological pH due to protonation/deprotonation of susceptible side-
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chains. Also, not all protein targets can be crystallized and may not be amenable for 

crystallography set-up. NMR spectroscopy has proven to be an alternative choice 

and in some cases an appropriate technique to obtain 3D structural information on 

the protein-ligand complexes.  

 

NMR Spectroscopy as a Structural Tool 

NMR plays an important role in the process of identification of fragment hits 

and developing them into high affinity and selective compounds. Protein-detected 

NMR methods can be implemented to provide critical 3D structural information in a 

timely manner to advance compounds through the fragment hit-to-lead stage. NMR 

offers broad capabilities that can suit the type of information needed. Protein based 

NMR methods compares the changes in the NMR parameters of the protein 

resonances in the presence and the absence of compounds. Such methods are not 

only capable of detecting the ligand binding but also provide structural information on 

where a ligand binds on a protein. Protein-detected experiments usually require 

isotope-labelled (15N-labelled or 15N/13C labelled) target protein at higher 

concentrations (0.1 - 1 mM), but can afford high-resolution structural data about the 

protein and the complex. Unfortunately, there is an upper size limit for proteins (30-

60 kDa, depending on the isotope labelling and the spectrometer) whose resonances 

can be observed and assigned by NMR.35-37  

 

Basic concepts for Protein detected NMR methods 

Isotope Labeling 

As the NMR phenomenon relies on the existence of nuclear spin, nuclei with 

an even mass and atomic number are NMR inactive (not visible in a NMR spectrum). 
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For study of biomolecules, the most important nuclei are with spin quantum number, I 

= 1/2 are 1H, 13C, 15N, 19F and 31P. For proteins, the overlap caused by the number of 

1H resonances can be resolved by using heteronuclear correlation NMR methods 

(e.g. 1H-15N and 1H-13C HSQCs) achieved by the isotopic enrichment of nitrogen and 

carbon isotopes in a protein sample. Another important nucleus often employed in 

protein sample preparation is the deuteron, 2H. Replacing protons with the deuterons 

in a protein slows down the relaxation process and simplifies the NMR spectrum by 

reducing the proton density.  

Resonance Assignment 

 The prerequisite to any detailed protein-detected NMR study is the resonance 

assignment of the target protein. The resonance assignment refers to associating 

each resonance signal in a NMR spectrum to a specific nuclear spin. 

Multidimensional NMR experiments allow carrying out the backbone and side-chain 

assignment procedure by making through bond connections between the protons, 

nitrogen and carbon atoms, thereby linking all the atoms of the entire protein amino 

acid chain. An example of an assigned 2D [1H, 15N] HSQC spectrum of N-terminal 

ATPase domain of Hsp90 in which each resonance signal is associated to backbone 

nuclei (1H and 15N) of an amino acid residue in the protein sequence. This work was 

carried out in Chapter 4 of the thesis and HSQC spectrum with assignments is shown 

in Figure 2. The combination of 15N, 13C and 2H isotope labeling has expanded the 

size of proteins amenable to NMR analyses.36,37 �
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         Figure 2. A 2D [1H,15N] HSQC spectrum of N-terminal ATPase domain of Hsp90 
displayed with backbone (1H and 15N) resonance assignments.  

 

The following sections describe various NMR methods that are capable of 

delivering 3D structural information on a protein ligand complex and also mention 

some recent developments in NMR that will give an overview of the research work 

performed in this thesis. 

 

Low Resolution Structural Information by Protein Observed NMR  

Advancing fragment hits with high micromolar to low millimolar binding 

affinities can be achieved efficiently if there are readily available 3D structures, X-ray 

or NMR, of the target protein and fragment hits. One particularly powerful and 

efficient method to map the ligand binding site at low resolution is through the use of 

NMR based chemical shift perturbation (CSP) data. The CSPs are typically obtained 

using a heteronuclear single quantum coherence spectroscopy (HSQC) experiment. 

Some details of the process are provided below.  
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The [1H-15N HSQC] spectrum of a protein contains resonances which 

correspond to the amide group of each amino acid residue except proline. Of all the 

different NMR parameters that change upon complex formation, CSPs are easiest to 

measure and are routinely employed to determine the binding location of the ligand. 

When a ligand is titrated, the amide group of amino acids within the protein that are 

close to the ligand will experience a change in their local chemical environment. This 

change (a CSP) is translated by a shift in the position of resonance signal for the 

respective amide group of the amino acid. A chemical shift map is generated which 

represents CSPs in a quantitative manner (the combined magnitude of 1H and 15N 

chemical shift differences for an affected residue into one parameter). This map 

allows identifying those amide groups whose environment is most affected due to the 

binding of a ligand. The map will also include those residues that are indirectly 

affected by ligand induced changes in the protein. These CSPs result mainly from the 

increased sensitivity of amide groups to pH and/or small changes that occur in the 

hydrogen bonding patterns of protein backbones upon ligand binding. If a three 

dimensional structure (X-ray or an NMR structure) and resonance assignments for 

the target protein are available, CSP mapping will show a clear surface patch of 

affected residues on to the protein structure. This can become a reliable indicator of 

the binding location of a ligand.36,37,43  

The CSP data usually shows clearly where a ligand binds to the target but 

structural information obtained by such an approach is often of low resolution and not 

of sufficient detail to calculate precisely the orientation of a ligand in the binding site, 

the level of detail that would be obtained by a complete structure determination of the 

protein –ligand complex.  Still, there is valuable information, and using the CSP 

information to perform restrained docking (inclusion of CSPs as ambiguous restraints 
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in a docking program) can be a first step towards utilizing shift information for a 

protein–ligand costructure.62,63 Many computational programs have been 

implemented to localize a ligand binding site based on purely on the CSP analysis. 

McCoy and Wyss have developed a program j-surf based on the fact that since many 

drug molecules have aromatic rings, chemical shift perturbations are in part caused 

due to ring current shifts induced by ligand.�� By quantifying the spatial dependence 

of ligand ring current effects and local magnetic fields of the neighboring spins, ligand 

binding site on the protein can be accurately characterized.43,63,64  

A nice extension of chemical shift mapping called “SAR (structure-activity 

relationships) by NMR” has been developed by Fesik and co-workers.65 In this 

approach a library of fragments can be screened to identify those molecules that bind 

to two distinct but neighboring binding locations. These weakly binding molecules (or 

their analogs) can be linked into one that binds with much more higher affinity to the 

protein. This approach was successful in the finding of high affinity small molecule 

inhibitors of drug targets like BACE-1, FKBP, stromelysin, urokinase and many 

more.20,23,65  

 

High Resolution Structural Information on Protein-Ligand 

Complexes by NOEs 

NMR has become a firmly established method for determining the three 

dimensional structures not only of proteins but also of protein-protein, protein-nucleic 

acid and protein-small molecule complexes. The focus in this section is to introduce 

recently developed NOE based applications of NMR to obtain structural information 

on the location of the binding site and the conformation of the bound ligand.  

Structure determination by high resolution NMR has traditionally relied on the 
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use of Nuclear Overhauser Enhancement (NOEs) derived distance restraints. 

Structures of proteins up to 20-30 kDa and protein-small molecule complexes can be 

determined successfully by NMR. NOEs provide a mechanism for both inter- and 

intramolecular magnetization transfers. The magnitude of the NOE enhancement 

between two nuclei spins is inversely related to the internuclear distance (r-6) 

between them. Therefore, NOE related experiments have been widely used for 

determining three dimensional structures of protein and protein–ligand complex as 

well as for deriving dynamic information for the protein-ligand interactions.43,36,37,66  

 

trNOEs, ILOEs and INPHARMA 

One of the ways to obtain the conformation of the bound ligand is by 

measurement of transferred NOEs (trNOEs).66 Protein targets have long correlation 

times due to large molecular weight. This allows rapid build up of NOE and extensive 

spin diffusion. By contrast, ligands are small molecules and have slow NOE buildup 

and negligible spin diffusion. This implies that if a NOESY experiment is carried out 

on a protein-ligand complex, in the presence of excess amount of ligand, NOEs 

within the free ligand develop very slowly, whereas NOEs within the bound ligand 

develop much more rapidly as it is in complex with the protein. The exchange of the 

ligand between the bound and free state will produce free ligand (with intense signals 

and chemical shifts at the positions of free ligand) displaying NOEs characteristic of 

the bound state. This is a very useful experiment, since it provides conformational 

information on the bound ligand but the information is measured from the easily 

observed and assigned free ligand signals, and is unambiguous.67 Clear advantages 

of this approach include 1) no requirement of prior information about the target 

protein 2) consumption of less amount of protein (~20-50 µM), and 3) ease of 
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spectral analysis as the observed ligand resonances are of much higher intensity 

compared to the protein resonances. This is due to presence of ligand concentration 

of at least 5-10 fold excess to that of the protein. Another experiment, also called an 

ILOE (interligand overhauser effect) relies on the transfer of the magnetization 

between two nuclei on different ligands which are known to occupy adjacent pockets 

on the protein. ILOEs were demonstrated first for a ternary complex of coenzyme A, 

chloramphenicol and chloramphenicol acetyltransferase.69,70 Sledz et al. have 

demonstrated the ILOE approach in fragment based inhibitor design.70 The main 

limitation of ILOE experiments is that magnetization transfer pathway caused by spin 

diffusion to protons of the protein (ligand1-protein-ligand2 instead of ligand1-ligand2) 

might cause two ligands to appear closer than is in reality. Hence the distance 

restraints obtained by ILOE measurements should be treated with caution otherwise 

they may lead to inaccurate structural information.37   

  In contrast to trNOE and ILOEs, a method which uses spin diffusion as a way 

to determine the relative orientation of two competing ligands in the binding site is 

INPHARMA (Interligand NOEs for PHARmacophore MApping). Here, the cross-

relaxation (magnetization of two different spins that are close (< 5 Å) to each other) is 

transferred via spin diffusion between ligand A and protein protons when ligand A is 

bound. When ligand A dissociates and ligand B binds in the same binding site, the 

magnetization is transferred from protein protons to ligand B. In this way structural 

information on one of the ligands bound to the protein can be obtained provided the 

structure of the other ligand is available.71 It should be realized that NOESY 

experiments such as trNOEs, ILOEs and INPHARMA are only applicable when the 

given protein-ligand interaction is in the fast exchange regime.  
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The clearest information on the binding site and orientation of the ligand can 

be obtained by direct observation of the resonances of the bound ligand. When 

isotopically labeled protein or a ligand is available, ligand and protein resonances can 

be observed separately by measurement of isotope-edited or filtered NOESY 

experiments. These experiments take advantage of the presence of natural isotopic 

abundance of the ligand and can be applied to protein-ligand systems that are in both 

fast- and slow-exchange regimes. Intermolecular NOEs are observed by observing 

one proton dimension which is filtered to protons attached to the 12C to observe 

ligand resonances and other proton dimension which is 13C edited to select for 

protein resonances.  The structure calculations can be performed using the distance 

restraints obtained from intermolecular NOEs between the complex, if the 3D 

structure of protein is known.36,37,43 

Despite its promise, it is to be realized that NMR structure determination 

process remains nontrivial as well as laborious and time consuming. It requires 

acquisition of a suite of multidimensional NMR experiments. It could take about 1-2 

months to obtain a complete 3D structure of a protein-ligand complex provided other 

considerations like sample preparation and stability are optimized.  It is also to be 

realized that the application of NMR is usually constrained due to molecular weight 

limit of the target protein. The NMR spectra for large proteins typically are of poor 

sensitivity (broader spectral resonances caused by faster relaxation properties) and 

resolution (higher spectral complexity arising from the increased number of nuclear 

spins). Recent adaptations such as (a) the development of cryogenically cooled NMR 

probes, (b) protein deuteration which result in narrower resonances, (c) 

implementation of TROSY (Transverse relaxation-optimized spectroscopy), 

CRINEPT, CRIPT based NMR pulse sequences,72,73 (d) increase in the lifetime of an 
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NMR signal by selective 13C labeled methyl group labeling of isoleucine, leucine and 

valine groups (caused by the long T2 relaxation times exhibited by the methyl groups) 

and (e) advances in paramagnetic NMR have partly addressed the limitations 

imposed by higher molecular weight proteins.36,37 

 

Paramagnetic NMR 

  Paramagnetic based relaxation enhancement is a technique that is based on 

the interaction of an unpaired electron with a nearby nuclear spin. The electronic 

relaxation time,  (the longitudinal relaxation time of the unpaired electron spin) is 

much shorter than for protons and typically ranges from microseconds down to 

picoseconds. There are two ways in which paramagnetic effects can be observed on 

the nuclear spin. One is from isotropic paramagnetic centers which give only an 

increase in the transverse relaxation rate (PRE) of nuclei. The other is from 

anisotropic centers that cause a shift in the resonance of the nuclei (Pseudo Contact 

Shifts, PCS).  

Paramagnetic Relaxation Enhancement (PRE) 

Paramagnetic centres with slow electronic relaxation cause strong nuclear relaxation 

and thus broadening of the resonance signal. This is called paramagnetic relaxation 

enhancement (PRE).37,74 Paramagnetic effects are measured by differences between 

the NMR spectra of a target molecule bound to paramagnetic probe and bound to 

diamagnetic probe. A paramagnetic center containing an unpaired electron, e.g. a 

nitroxide radical, is attached via a disulphide linkage to an engineered cysteine 

residue and invariably causes broadening of the resonances due to the enhanced 

transverse relaxation rate (T2) of the nuclei in close proximity. The PRE effect is 

distance dependent and proportional to r-6, where r is the distance between the 
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unpaired electron and the nuclear spin.  

Pseudocontact Shifts (PCS) 

The anisotropy of the paramagnetic effect is described by the magnetic 

susceptibility tensor, and causes pseudocontact shifts. The PCS is angle/orientation 

dependent and proportional to r-3 distance. The r-3 distance dependence of the PCS 

in comparison to the r-6 dependence of the PRE, allows PCSs to be measured for 

nuclear spins that are far away (> 20 Å). The paramagnetic effects can be converted 

into distance restraints which can be used to dock the binding partners. This enables 

new possibilities for the analysis of protein-protein and protein-small molecule 

interactions.75  

 

Application of Paramagnetic NMR Methods  

The application of paramagnetic NMR in structural biology is increasingly 

becoming important as it can provide different levels of structural information.  

 

Application of PRE to Study Ligand Binding  

Paramagnetic NMR can be used to obtain low resolution information on the 

binding site of the fragments as demonstrated by Janke and co-workers.76 They have 

demonstrated an PRE-based approach called  SLAPSTIC (spin labels attached to 

protein sidechains as a tool to identify interacting fragments) to obtain 3D structural 

information. In this approach, paramagnetic, organic radicals such as TEMPO, are 

covalently linked to the side chain of specific amino acids (lysine, cysteine, 

methionine, histidine or tyrosine). This approach uses a spin labeled compound as a 

first-site ligand. Screening of this complex allows identification of compounds that 

bind simultaneously with the first spin-labeled compound. This is of special interest in 
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drug discovery and optimization process, because linking of two compounds that 

bind in proximity can result in compounds with significantly higher affinity. The 

principal advantages for this approach are its robustness to identify second site 

binders, low protein requirements and high spectral sensitivity.�However, SLAPSTIC 

requires considerable knowledge of the protein 3D structure, confirmation that spin 

label attachment does not compromise the binding site on the protein target and the 

relaxation enhancement only results if two ligands bind simultaneously to the protein 

target and at neighboring sites.76 A further extension is also presented in chapter 3, 

where a PRE based approach is developed for a GTPase to obtain 3D structural 

information on the binding site of biologically active compounds. 

 

Application of PCS to Study Ligand Binding  

Recently, a paramagnetic NMR based approach has been developed by our 

group in which 3D co-structures of small molecule bound to a protein can now be 

readily determined using paramagnetic PCS data.77 Here, a co-structure of the target 

protein, FKBP12 bound to initial fragment hit was obtained using PCS datasets. 

These structures allowed determination of the binding site and the orientation of the 

ligand. The PCS-driven result was then compared and found in close agreement with 

independently NOE-derived structure of the same FKBP12-ligand complex. A major 

advantage of this method is no labeled protein is required. Thus, it can be applied to 

larger molecular weight protein targets that are suboptimal for the resonance 

assignment procedure.   

 

Selective Isotope Labeling of Methyl Groups 

 Recent advances in NMR spectroscopy of high molecular weight proteins 
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have been strongly connected to the development of optimal isotope labeling 

techniques. Of particular interest are the experimental protocols that have been 

developed to obtain protein samples that are deuterated but selectively protonated at 

specific sites (amide protons and certain methyl group containing residues). There 

are several advantages of using methyl groups as probes, (i) the residues containing 

methyl groups occur frequently throughout the protein sequence and at ligand 

binding sites81 (ii) methyl groups have favorable NMR relaxation properties so that 

even for protein targets with high molecular weights, NMR spectra are of higher 

sensitivity and resolution80 (iii) data interpretation is simplified due to less overlap of 

the resonances in the NMR spectra and (iv) methods to produce ILV selectively 

labeled samples in E. coli are robust and economical.79,80  

 

Applications of Methyl Group Labeling   

Tugarinov and co-workers80 have shown that by selective labeling it is 

possible to obtain sidechain methyl and amide resonance assignments and calculate 

the global fold of a protein, Malate Synthase G (MSG), which has a molecular weight 

of 82 kDa.80 The global fold of MSG was calculated using NOEs between methyl-

methyl, methyl-amide and amide-amide groups. In such an application Hajduk and 

co-workers81 have shown that the methyl groups of Leu, Val and Ile residues in a 

protein can be selectively 13C labeled and 13C/1H chemical shift perturbations can be 

monitored to detect ligand binding. Both these examples show that the selective 

labeling procedure extends the size of the molecular systems that can be 

investigated by NMR and methyl groups can be used as probes to detect ligand 

binding. To broadly extend the approach to study ligand binding by selective labeling, 

Otten and coworkers82 have demonstrated an economical way to label methyl groups 
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of all methyl containing residues (leucine, valine, isoleucine methionine, threonine 

and alanine) in a protein. This type of labeling achieves a better coverage of the 

binding site of the protein. However, it should be noted that methods to produce 

selectively labeled protein samples are currently applicable using E. coli.�  

In order to increase the efficiency of utilizing methyl groups as probes to detect 

ligand binding, steps to automate the methyl group assignment procedure have been 

undertaken. These methods are either based on the availability of the crystal 

structure of the protein and make use of the NOESY experiment or paramagnetic 

NMR to define the methyl group network. Appropriate paramagnetic tags are placed 

on the protein surface through engineered cysteine residues to get complete 

coverage of the PRE effects for the methyl groups within the protein structure. 

Methods also have been developed that demonstrate the use of through-space 

paramagnetic effects combined with NOESY experiments to rapidly obtain methyl 

assignments, if a crystal structure of the protein target is known. 83-87 Similarly, Otting 

and co-workers84 as well as Skinner and co-workers87 have developed tools that use 

paramagnetic pseudo-contact shifts to directly obtain ILV sidechain assignments.78,83-

87   

Various academic groups have demonstrated that selectively isotope labeled 

groups of the protein can be used to collect intermolecular NOEs with its binding 

partner in order to obtain structural information. However, these methods have one of 

the following limitations: 1) they require prior information of the binding site so as to 

appropriately label residues on the target, 2) resonance assignment is based on the 

pattern of observed CSPs induced by ligand binding 3) requirement for large number 

of intermolecular NOEs and/or 4) extensive computer calculations to generate 

structures that match the experimental data. To address these limitations, a method 
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to generate protein-ligand structures that is based on a combination of selective 

amino acid labeling and collection of only few intermolecular NOEs is presented in 

chapter 3 of this thesis.89 �

  

Scope and Outline of Thesis 

NMR methods that provide a better understanding of protein-ligand 

interactions are critical in the early stages of drug discovery. Traditional NMR 

methods used to obtain 3D structural information tend to be slow and labor intensive. 

The main area of this thesis was to develop and implement efficient solution based 

NMR approaches that provide 3D structural information on the protein-ligand 

complexes and could be readily applied in early stages of preclinical drug discovery. 

Below is the brief overview of all the chapters that describe the research work 

performed in this thesis.  

  Chapter 2 describes the application of TINS screening to discover small 

molecule ligands that bind the ETS-domain of TEL (TELETS). TEL is a DNA binding 

protein and involved in the transcriptional regulation of the other proteins and a 

therapeutic target for tumorigenesis.90-92 Biochemical and structural analyses were 

performed using protein observed NMR, SPR (Surface Plasmon Resonance) and 

gel-shift assay to demonstrate DNA binding activity of TEL. Three fragment hits 

generated by the TINS methodology were then validated by protein observed NMR to 

obtain low-resolution structural information on the binding site of these fragments. 

Interestingly, these primary hits occupy the same binding spot on the protein as the 

DNA and when used at high concentrations in gel-shift assay have the potential to 

disrupt the DNA binding capability of TELETS. These novel fragments represent 

valuable starting points for further elaboration and hit development against TEL.  
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   In Chapter 3, a fragment based drug discovery approach is applied to Rit1 

GTPase, a validated target for Rheumatoid Arthritis.93,94 In this chapter the results 

obtained from fragment based screen, crystallization, analoging, hit development and 

structural study on the most potent compound are discussed. One main obstacle in 

the project was to obtain 3D structural information on the Rit1-ligand complexes. 

Substantial efforts to crystallize the complex were not successful due to low solvent 

content of the protein crystals and cracking of protein crystals in the presence of the 

most potent compound. To address this issue, a solution based approach was 

necessary and a paramagnetic NMR based approach was sought, whereby a spin 

label was introduced on GDP. Paramagnetic studies using the GDP-spin label 

followed by docking calculations propose a novel mechanism by which the 

compound inhibits GDP-GTP exchange of Rit1. The PRE based method in this 

chapter presents an alternative to obtain binding site information on the protein-

ligand complex when other high resolution techniques fail.  

 In Chapter 4, a solution NMR method was developed to obtain 3D structures 

of a protein-small molecule complex in rapid and efficient manner. The NMR method 

makes use of a small molecule that binds in the ATP binding pocket of the N-terminal 

domain of Hsp90 that was discovered by TINS NMR screening.40,80,95 The main goal 

was to use this protein-ligand system to develop an efficient way to obtain 3D 

structural information on protein-ligand complexes. This chapter demonstrates how a 

combination of selective methyl group labeling, standard NMR experiments and 

computational docking can be used to rapidly determine the 3D structure of a small 

molecule bound “weakly” to a protein target. The approach requires only a sparse set 

of intermolecular NOEs and is an alternative to traditional NMR approaches that 

involve uniform isotope labeling.  
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 Finally, concluding remarks about the research work in this thesis are 

presented in Chapter 5. Each molecular system investigated is overviewed and the 

different approaches that were employed are presented. The prospects and possible 

applications of the study are also discussed.  
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Abstract 

The discovery of small molecule ligands help in the design of inhibitors against a 

protein target involved in a particular disease. Here, we present a study in which we 

have applied a fragment based screen against a potential tumor angiogenesis target, 

TEL. TEL and its associated network proteins are involved in control of the 

development of blood circulatory system. TEL is a transcription repressor that 

functions through bind of its C-terminal ETS domain to DNA which sterically blocks 

the access of transcription factors to the promotor. The development of specific 

inhibitors which would disrupt DNA binding is desirable as this would lead to loss of 

downstream signaling cascade. Here, we have characterized the DNA binding of 

TEL-ETS domain using protein-observed NMR, gel retardation and surface plasmon 

resonance. Of a number of fragment hits, three were further validated using protein-

observed NMR. Chemical shift mapping revealed that these fragments share the 

same binding interface as the DNA. Furthermore, we see that the presence of 

fragments at a high concentration in the gel retardation assay disrupts the DNA 

binding capability of TEL. These fragments provide valuable starting entities to 

develop potent compounds against TEL with a novel mechanism which in turn could 

lead to loss of formation of blood vessels in tumors. 
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Introduction 

  Activation and repression of the transcription of eukaryotic genes during cellular 

development and/or response to extracellular stimuli, is a highly organized event 

involving assembly of many protein complexes at promoters and enhancers.1 

Amongst various signal dependent transcriptional regulators, the ETS-family of 

proteins is one of the largest known involved in proliferation, differentiation and 

tumorigenesis.2 ETS1 is the founding member of this family and the name “ETS” is 

derived from the avian erythroblastosis virus E26, which carried “v-ets' (E twenty-six) 

oncogene.3 Many of the members are known to activate transcription but the ETS 

family also includes transcriptional repressors.2 One of the known repressors is TEL 

which was identified due to its fusion to the 3' -half of the gene encoding the platelet 

derived growth factor β receptor in chronic myelomonocytic leukemia.4 The 

transcriptional repression may involve one of the following mechanisms. The 

repressor may act by 1] directly binding to the activation domain of a transcriptional 

activator, 2] by displacing an activator from activation site, 3] indirectly by altering the 

chromatin structure and accessibility of a region on the DNA or 4] interfering with the 

basic transcriptional machinery.2   

  Structurally, TEL possesses an evolutionarily conserved ETS-domain which binds 

DNA sequences with a GGAA/T core motif.5 In fact, most of the ETS proteins 

recognize a consensus 5' -GGAA/T-3' motif within the context of a 9- to 10-bp DNA 

sequence. 3,6,7 TEL also carries a PNT (Pointed or SAM) domain at the N-terminus 

which is observed to influence not only the DNA binding but its interaction with other 

regulatory proteins. The PNT domain of TEL is capable of forming a stable head to 

tail polymer and hence most likely the full length TEL also has the ability to 

polymerize. This ability of the PNT domain to cause self-association of the protein 
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also results in the constitutive activation of the tyrosine kinase activity of fusion 

protein TEL-ABL, TEL-platelet derived growth factor β receptor and TEL-JAK2, a 

property that is essential to their transforming and leukemogenic properties.4,8-11 On 

other hand, the role of the ETS-domain of TEL, here after refered as TELETS, in DNA 

binding is influenced by an autoinhibitory mechanism in which a flanking C-terminal 

helix sterically blocks the monomeric ETS-domain. A conformational change is then 

likely to be necessary in order to carry out DNA binding. It has also been proposed 

that TEL displays a conformational equilibrium between two structural states 1] 

where the C-terminal helix is in the inhibitory conformation and 2] where it is in an 

uninhibited conformation thus not interfering with the DNA binding.4   

    In addition to structural features, the functional importance of TEL is realized by 

the fact that it is also a therapeutic target to inhibit tumor angiogenesis. TEL is 

indispensable for endothelial sprouting and normal development of the Danio rerio 

blood circulatory system. TEL acts by regulating the transcription of various 

angiogenesis inhibitors and executes its function in conjunction with CtBP (Carboxy 

terminal binding protein). The complex of TEL-CtBP helps in the conditioning of the 

endothelial cells for angiogenesis. This conditioning is achieved by regulating the 

balance between stimulatory and antagonistic sprouting cues. One of the plausible 

hypotheses is also considered where the interaction of CtBP with the PxEIM motif of 

C-terminal helix of TEL leads to increased DNA binding affinity of TEL. By this way, 

TEL is able to block the transcription of other essential proteins thought to control the 

development of blood vessels to tumorigenic tissues. Clearly, the development of 

specific inhibitors that would either disrupt the DNA or CtBP binding of TEL would 

open the way for the development of therapeutic strategies to inhibit pathological 

angiogenesis.12   
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  In this work we have demonstrated the binding of the TELETS domain to DNA by 

protein observed NMR, a gel retardation assay and surface plasmon resonance. With 

a view to find small molecule inhibitors for TELETS that would potentially disrupt the 

DNA binding and hence downstream signaling cascade, we have applied a fragment 

based screen to generate a set of primary hits. In fragment based drug discovery 

(FBDD) approach, a larger portion of chemical structure space is explored with a 

smaller number of compounds. Since the fragments are small and much simpler than 

drug-like molecules, the fragment methodology enables to discover molecules which 

bind more efficiently on the protein surface. A fragment based screen was carried out 

using TINS screening of a fragment library consisting of commercially available 

compounds.13-16 Three fragments hits from the screen were further validated using a 

protein observed NMR approach and gel retardation assay. Using chemical shift 

mapping through protein-observed NMR experiments, we were able to obtain the 

binding site of the fragments. Interestingly, the binding surface for the DNA and 

fragments mapped onto the 3D structure of TELETS available in the protein data bank 

(PDB 2DAO) revealed that the fragments bind at a similar binding interface as the 

DNA. Furthermore, we have shown that the presence of high concentration of the 

fragments in the gel retardation assay disrupts the DNA binding capability of TELETS 

domain.13  

Results   

Target immobilized NMR screening of TEL-ETS domain: 

  We employed TINS (Target Immobilized NMR screening) screening as a primary 

screen for hit generation on TELETS domain.14 TELETS and the reference protein, Akt 

PH domain were purified and immobilized via primary amine coupling as described in 

the experimental section. The PH domain of Akt was chosen as the reference protein 
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because it represents a typical protein surface, yet devoid of any specific small 

molecule binding sites. Further, the use of reference protein in TINS eliminates very 

weak and non-specific binders which otherwise might lead to false positives in the hit 

identification process.  The functionality of immobilized TEL was determined by 

repetitive injection of a fragment that appeared as a hit during initial part of the 

screening procedure.15  

     

 A fragment library consisting of 1364 commercially available fragments was 

screened against TELETS.16 The fragment library was screened by repeated cycles of 

injection of various mixes of fragments, which consisted of 3 to 5 compounds per 

mix, into both the cells of a dual-cell packed with immobilized TELETS domain and the 

reference protein. After a mix was injected, the flow was stopped and the NMR data 

was acquired. TINS NMR experiments consisted of using spatially selective 

Hadamard pulse sequences and the results were analyzed as described.14,15 The 

fragments were washed out prior to the next injection of a new fragment mix. The 

binding of a fragment to a protein molecule immobilized on the solid support causes 

broadening of the resonances from that fragment. As a result a fragment binding 

specifically to TELETS domain could be detected by simple reduction in the height of 

all the NMR signals from that fragment in the presence of  TELETS relative to that in 

the presence of a reference protein (Figure S1). The fragment screen resulted in the 

identification of 103 unique hits for TELETS domain resulting in a hit rate of 7.5%. 

Sequential Backbone resonance assignments 

  The sequential backbone assignment for the TELETS was achieved by acquiring 

standard triple resonance NMR experiments. Although the solution structure of the 

TELETS domain is deposited in the pdb (Figure S2), there are no published resonance 
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assignments that are available. The sequential backbone assignments were obtained 

by correlation of Cα and Cβ chemical shifts of i and i-1 residues to the amide 1H and 

15N resonances using HNCACB, CBCAcoNH, HNCA and HNcoCA spectra. Overall, 

the spectra were of good quality and 82% of the backbone sequential assignment 

was obtained.   

Characterization of TEL-DNA binding   

  The DNA binding of TELETS was characterized using three different approaches. We 

have used protein-observed NMR, gel-retardation and surface plasmon resonance.  

DNA binding by Protein-observed NMR 

   We employed a frequently used protein observed 2D-heteronuclear single quantum 

coherence (HSQC) NMR method wherein increasing concentrations of the 

compound is titrated into uniformly 15N labeled protein and changes in the NMR 

spectra are followed in presence and absence of the compounds.17,18 In order to 

assess the DNA binding capability of TELETS , an oligonucleotide  consisting of 10 

base pairs containing the TELETS recognition site was titrated into the 15N isotopically 

labelled TELETS. A short oligo nucleotide sequence (5’-ACAGGAAGTG-3’) was 

purposely chosen for the NMR study. The oligonucleotide was titrated at three 

protein to oligo ratios of 1:2, 1:4 and 1:6. Significant chemical shift perturbations 

(CSPs) are observed in the 2D [1H,15N] HSQC NMR spectrum upon addition of the 

DNA as seen in Figure 1.17,18 It is also observed that at a protein to oligo ratio of 1:4, 

the binding is saturated as the position of the CSP does not change beyond that 

concentration. The upper limit for the binding affinity is estimated to be around 80-

100 µM. The availability of the sequential backbone assignment of the protein 

allowed us to map the specific residues involved in DNA binding onto the available 

solution structure of the protein (PDB 2DAO). Figure 2 shows the DNA binding 
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interface of TELETS domain based on the observed CSPs. Figure 2A shows the 

binding map of all the residues that show significant chemical shift perturbations in 

the presence of DNA. The key protein residues involved in the binding are I40, L46, 

G51, K54, S65, R66, Y71, Y72, R84, F87, T101, L112 and S113. The numbering of 

the residues here is same as PDB 2DAO. Overall, the protein-DNA complex seems 

to be in the fast exchange regime on an NMR time scale. Some broadening of the 

resonance peaks is observed when concentration of DNA is gradually increased.  

 

Figure 1. The characterization of DNA binding using protein-observed NMR. [A] The overlay 
of the 2D [1H, 15N] HSQC spectra of TELETS in the absence of DNA (black) and in the 
presence of the DNA (red). The concentration of the protein used was 60 µM. [B] The 
concentration dependent chemical shift perturbation observed for residue R84 in the 
presence of the increasing protein to DNA ratios is shown. In black is the free protein. The 
red, blue and pink represent protein to DNA ratios of 1:2, 1:4 and 1:6 respectively. 
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Figure 2.  The determination of protein-DNA binding interface. A] Chemical shift mapping of 
the residues involved in the DNA binding as obtained by titration of increasing concentrations 
(Δδ, (CSPdifference) > two times standard deviation + Δδavg) of the DNA into 15N labeled TEL 
and observed by 2D HSQC NMR. The mapping of the residues was performed using the 
available structure of TEL (2DAO) B] The electrostatic surface potential (blue-positive 
charge, red- negative charge) of the protein. The figure was created in PyMOL 19 
 

Gel retardation assay 

   The DNA binding to TELETS was characterized using a gel retardation assay.  To 

investigate DNA binding using gel retardation, increasing amounts of the protein 

were titrated into a 32P-labelled- DNA oligonucleotide containing three ETS-binding 

sites (5’-AAACAGGAAGTGAGAACAGGAAGTGAGAACAGGAAGTGG-3’). 

Subsequently, DNA binding was analyzed using a gel retardation assay. As seen in 

Figure 3, the migration of the labeled oligonucleotide was retarded indicating that the 

protein binds to the DNA. The DNA binding of the protein is only visible upon titrating 

higher concentration of protein indicating that TELETS on its own binds comparatively 

more weakly than the full length TEL harboring the N-terminal PNT-domain.4 It is also 

observed in Figure 3 that two bands (a lower band representing unbound 

oligonucleotide and a higher band representing protein-DNA complex) are seen for 

DNA to protein ratios between 1:40 to 1:200. To quantitate the binding affinity of the 

protein-oligonucloetide interaction, we further characterized the complex by SPR 
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(Surface Plasmon Resonance) assay.  

 

 

 

Figure 3.  The DNA binding by TELETS using gel retardation assay. TELETS was titrated into a 
constant amount of 32P labeled oligonucleotide at indicated ratios. The position of the DNA-
protein complex is denoted by arrow. The retardation of the DNA can be clearly seen upon 
titrating higher concentration of the protein, indicative of the complex formation. 
 

Surface Plasmon Resonance 

  The characterization and affinity determination of DNA binding to TELETS by SPR 

was achieved by immobilizing the protein on the chip surface to an immobilization 

level of around 9000 RU. Following the immobilization, increasing concentrations of 

the same oligonucleotide used in the gel retardation assay (with three recognition 

sites) were injected in a single cycle manner. The binding response at each 

concentration was then plotted against the DNA concentration and KD was 

determined by a 1:1 binding model using GraphPad Prism software (Figure 4). The fit 

yielded a KD of 1.9 µM. The affinity appears to be tighter than that estimated from the 

NMR titration. This difference in the KD is likely due to the presence of three  -GGAA- 

recognition sites on the oligonucleotide used in the SPR assay compared to one in 

the oligonucleotide used in the NMR titration.   
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Figure 4. The determination of the DNA binding affinity of TELETS using SPR.   [A] The  
sensorgram obtained by single cycle injections of increasing concentrations of DNA (1 µM, 5 
µM, 7.5 µM, 10 µM, 15 µM) onto immobilized TELETS . The green line corresponds to the 
background response.  [B] Shows the graph obtained by a fit to 1:1 binding model as 
analyzed by GraphPad prism software and exhibited a KD of 1.9  µM.  
 

Validation of fragment hits by HSQC 

The validation of fragment binding to TELETS was carried out by protein observed 

NMR using HSQC experiment (described earlier). The main goal at this stage was to 

validate a limited number of fragments that would be easier to follow-up by medicinal 

chemistry (Fragments for which commercial analogs were available and those that 

can be easier to undergo synthetic chemistry). Three fragments as shown in Figure 5 

were selected from a set of hits for this purpose. The resulting CSPs observed upon 

addition of the fragments were then mapped onto the available TELETS solution 

structure (PDB 2DAO). Interestingly, a similar region of TELETS is affected upon 

addition of all three fragments. As seen in Figure 6, CSPs for these fragments are 

localized mainly on the protein surface which is common to DNA binding (Figure 3A). 

The key residues that show significant chemical shift perturbations are N44, R56, 

K63, R66, A67, R69, I76, F87, T101 and S113 for fragments 1 and 2. For fragment 3, 
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the key residues that gave significant chemical shift perturbations were V15, G51, 

S66, I77, E80, F87, T101, L112 and S113.  

 

 

Figure 5. The chemical structures of fragment hits that were employed for follow-up studies 
after the initial TINS screen on TELETS. Fragment 4 is not a hit and was used as a control 
for gel retardation assay.16 

 

 

Figure 6.  Chemical shift mapping of the protein residues involved in fragment binding to 
TELETS. The chemical shift perturbations (in red) caused by the presence of the indicated 
fragment hit as determined by [1H,15N] HSQC NMR are mapped onto the available PDB 
structure of TELETS  (2DAO). The most significant chemical shift perturbations (Δδ > two 
times standard deviation + Δδavg) are shown.17,18 The figure was created in PyMOL.19 
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Disruption of the DNA binding to TELETS by fragments in gel retardation assay 

  In order to investigate the effect of fragments on oligonucleotide binding, we carried 

out gel retardation assay. First, TELETS and oligonucleotide were incubated to form a 

stable complex at a DNA to protein ratio of 1:200. Subsequently, fragments 2 and 3 

were added and the reaction mixture was further incubated for 2 hrs at room 

temperature. The reaction mixture for fragment 1 showed signs of precipitation and 

as a result was not considered for further characterization. As a control, a fragment 

that did not appear as a hit in the TINS screen was also used. As seen in Figure 7, in 

the presence of 10 mM of the fragment, DNA binding to TELETS is significantly 

reduced. In the presence of control fragment, the DNA binding is not affected 

indicating the specificity of the fragments that bind to the TEL-ETS domain.  

 

Figure 7. Disruption of DNA binding observed in the presence of validated fragment hits 2 
and 3. The final concentration of the respective fragment in the reaction mixture is indicated. 
Fragment 4 was not a hit in the TINS screen and was used as a control. The asterisk (*) 
indicates a reaction without added fragment with equal percentage of DMSO. The disruption 
of oligonucleotide binding is clearly seen at fragment concentrations of 10 mM and 
comparatively less at a lower fragment concentration (5 mM).  
 

Discussion and Conclusions 

   Here we report a study that focuses on the interaction of small molecules with 

TELETS. To date there are no known inhibitors that disrupt the TEL-DNA binding. To 

identify potential fragment hits, we have applied a fragment based screen by NMR 

using a library of 1364 molecules.14,16 The advantage of screening molecular 
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fragments rather than drug-sized molecules is that a dramatically larger portion of 

chemical structure space is explored with a smaller number of compounds.  

  In the study presented here, the interaction of the DNA oligonucleotide with TELETS 

was analyzed using protein observed NMR, gel retardation assay and SPR. The 

binding affinity for the DNA was determined to be 1.9 µM. To find small molecule 

inhibitors that would target the DNA binding site, it would be first necessary to obtain 

a structural basis for the binding of TELETS -DNA complex. We have used protein-

observed HSQC NMR to obtain low resolution information to define the DNA binding 

interface of TELETS. The CSP data obtained from the [1H,15N] HSQC experiment 

clearly demonstrate that DNA binding to TELETS is mediated by a highly positively 

charged protein interface. Of a number of fragments hits discovered from the TINS 

NMR screen, three fragments were further selected from medicinal chemistry point of 

view (fragments that can be easily chemically modified). These were further 

characterized and validated for binding using protein-observed NMR experiments as 

described earlier. Interestingly, the ligand induced chemical shift changes clearly 

illustrate that all three fragments bind at the DNA binding interface. The commonality 

of the binding site between the fragments and the DNA is also reflected in the gel 

retardation assay. The presence of fragments 2 and 3 at high concentrations in the 

assay caused significant disruption of TELETS -DNA binding. The use of high 

concentrations was necessary and indicates that the fragments weakly interact with 

TELETS. This is not surprising as these are starting points and not elaborated 

compounds.  

Inhibitors that would specifically disrupt DNA binding should lead to loss of the 

downstream signaling cascade and influence the transcription repressor function of 

TEL. This would allow transcription of other proteins that might play a critical role in 
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the regulation of angiogenesis in tumors tissues.12 The functional inhibition of the 

TELETS-DNA complex exhibited by the validated fragments 2 and 3 in gel retardation 

assay suggests they might be starting points to develop tool compounds to enable 

further target validation studies. However, the selectivity of these fragment hits 

against the ETS- domain of other proteins and in the presence of CtBP, remains to 

be tested.  

Experimental Section 

Protein expression and purification: 

C-terminal hexahistidine tagged- TELETS (1-118 as per numbering in the PDB-

2DAO; 334-452, the numbering as per UniProt ID P41212) was cloned into pET28a 

and cultures in LB medium containing kanamycin (50 µg/mL) at 37°C in E.coli strain 

BL21 (DE3) (Stratagene). Protein expression was induced at an OD600 of 0.6 with 

0.5 mM IPTG and growth was continued for 4 hours at 30°C. The cell pellets were 

collected by centrifugation at 5000 rpm for 30 minutes. The cell pellets were 

resuspended in 50 mM sodium phosphate (pH 8.0), 300 mM NaCl, 10 mM imidazole, 

1 mM β-mercaptoethanol and stored at -80°C. Cells were lysed by addition of 50µl 

lysozyme  (50 mg/mL) followed by incubation for 1 hour at 4°C and passing through 

French press at 1500 psig twice. The recovered lysate was centrifuged at 35000 rpm 

at 4°C for 45 minutes using a Beckman Ti35 rotor. The supernatant was applied to a 

5 mL HisTrap HP Ni2+ affinity column (GE healthcare) equilibrated in the 

manufacturer's suggested binding buffer supplemented with protease inhibitor PMSF. 

The column was washed with 50 mM sodium phosphate (pH 8.0), 300 mM NaCl, 200 

mM imidazole, 1 mM β-mercaptoethanol and protein was eluted with 50 mM sodium 

phosphate (pH 8.0), 300 mM NaCl, 10 mM imidazole and 1 mM β-mercaptoethanol. 

The eluted fractions were further purified on a Superdex G75 equilibrated with buffer 
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of 25 mM HEPES pH 7.5, 100 mM NaCl, 1 mM EDTA and 1 mM β-mercaptoethanol.  

  

TINS NMR screening 

  C-terminal hexahistidine tagged- TELETS (334-452) was cloned into pET28a and 

expressed in E.coli strain BL21(DE3) (Stratagene). The protein was first purified on 

Ni-Hitrap FF (GE lifescience) followed by purification on Superdex G75 with buffer of 

25 mM HEPES pH 7.5, 100 mM NaCl, 1 mM EDTA and 1 mM β-mercaptoethanol. 

TELETS (334-452) and Akt PH domain (aa 1-123) were immobilized via amine-

coupling to 500 µL Actigel-ALD resin (Sterogene) in 25 mM Hepes pH 7.5, 100 mM 

NaCl and 2 mM MgCl2 at 4°C using the coupling reagent provided by the 

manufacturer. The immobilization efficiency was above 90% and the final 

concentrations of the immobilized targets were typically in the range of 100 µM. TINS 

NMR experiments were performed on a 500 MHz Bruker NMR spectrometer using 

spatially selective Hadamard pulse sequences and analyzed as described 

previously.14-16,20,21 

 

Enzyme Mobility Shift Assay 

  The DNA binding to TELETS was detected using a gel retardation assay.  The 

indicated amount of protein was diluted in a buffer consisting of 10 mM HEPES, pH 

7.8, 2 mM MgCl2, 0.1 mM EDTA, 100 µg/mL bovine serum albumin, 15% glycerol, (0-

0.8) µg/mL poly(dI-dC) (Boerhringer Mannheim) and 2 mM dithiothreitol in a total 

volume of 15 µL. 20 fmol of the 32P-labeled DNA oligonucleotide in 5 µL was added, 

incubated on ice for 30 minutes and applied to a non-denaturing 8% Tris-glycine 

acrylamide gel containing 2% glycerol. Electrophoresis was performed at 80V for 20 

minutes and subsequently 120V for 40 minutes at 4°C in 25 mM Tris-HCl, pH 8.5 and 
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200 mM glycine. The gel was dried and radioactivity was detected using a 

phosphorimager (Biorad).    

  The three validated fragments determined as hits to TELETS domain from TINS NMR 

screening were subjected to gel shift assay analysis. The indicated concentrations of 

the fragment were added to the reaction mixture and incubated for 2 hours at room 

temperature. The amount of DMSO in the controls was matched to the equivalent 

amount in the presence of a fragment.  

 

NMR backbone sequential assignment 

Uniform 13C, 15N labeling of TEL-ETS domain was achieved by expression of 

C-terminally hexahistidine tagged TELETS (aa 334-452) in E.coli BL21 (DE3) cell 

grown in M9 minimal medium supplemented with 15NH4Cl and 13C-D-Glucose (CIL) 

as a sole nitrogen and carbon source.  The protein was purified as described above. 

The protein was concentrated down to 0.7 mM in 25 mM HEPES pH 7.5, 100 mM 

NaCl, 1 mM EDTA and 1 mM β-mercaptoethanol. In order to perform sequential 

assignment of backbone amide, the following experiments were acquired at 296K on 

a 600MHz BRUKER DMX NMR spectrometer equipped with a TXI cryo-probe; [1H, 

15N]-HSQC, HNCO, HNCaCb, CbCaCONH, HNCaCO, HNCA, and HNCOCA . The 

acquired data was processed using nmrpipe and visualized on Sparky.22,23 The 

assignment process was guided by the predicted chemical shifts calculated by 

SHIFTX in automatic assignment program MARS using PDB-2DAO as an input 

structure.24,25 

 

Chemical shift perturbation and generation of binding site 

15N labeled C-terminal hexahistidine tagged TELETS (aa 334-452) in E.coli BL21 
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(DE3) cell grown in M9 minimal medium supplemented with 15NH4Cl as a sole 

nitrogen source, and purified as described above. The [1H,15N]-HSQC were acquired 

at 296K on a 600MHz Bruker DMX NMR spectrometer equipped with a TXI cryo-

probe. The NMR sample was prepared in 25 mM HEPES pH 7.5, 100 mM NaCl, 1 

mM EDTA and 1 mM β-mercaptoethanol. The typical NMR sample contained 0.130 

mM of the protein, fragments at various concentrations (see text) and 5% d6-DMSO. 

The pH of the samples was adjusted carefully within +/- 0.05 units after addition of 

the compound. During the experiment, total of 128 indirect increments with 16 scans 

per increments were acquired. The data was processed using Topspin 1.2/2.1 

(Bruker) and visualized on Sparky.23 Chemical shift perturbations in [1H, 15N]-HSQC 

were calculated based on the (Δδ > two times standard deviation + Δδavg) for change 

in 1H and 15N ppm value between in the presence and absence of a compound. The 

potential binding sites of a compound were mapped onto the surface of the TEL-ETS 

domain (PDB-2DAO) structure using chemical shift perturbation data and viewed in 

PyMOL.19  

 

Surface Plasmon Resonance studies  

 DNA binding to TELETS domain was tested using surface plasmon resonance on a 

T200 biacore instrument (GE healthcare). Initially, pH scouting was performed to 

determine the optimum pH for protein immobilization on the CM5 chip surface. 

Following immobilization of the protein to required response units (6000 RU), 

increasing concentrations of DNA were titrated in a single cycle kinetic mode. The 

buffer conditions used was 25 mM HEPES pH 7.5, 100 mM NaCl, 1 mM EDTA and 1 

mM β-mercaptoethanol + 3% DMSO. The analysis was performed using a Biacore 

evaluation software and GraphPad Prism software. 
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Figure S2. The NMR structure of TELETS domain (PDB-2DAO) 
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Chapter 3 

Inhibition of Small GTPases by Stabilization of the 

GDP Complex, a Novel Approach applied to Rit1, 

a Target for Rheumatoid Arthritis 
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Linda Manning3, Anna A. Rzepiela4, Martin Andrews2, Flip J. Hoedemaeker3 and Gregg 

Siegal1,5*  

��'=A<=F�$FKLALML=�G>��@=EAKLJQ
�'=A<=F�0FAN=JKALQ
�'=A<=F
�L@=�)=L@=JD9F<K��
��"9D9H9?GK�)1
�(=;@=D=F
��=D?AME��
��&=Q�+
��EKL=J<9E
�L@=�)=L@=JD9F<K��
��+QPAK��AK;GN=JQ
��=D>L
�L@=�)=L@=JD9F<K�
��5G�AG
�'=A<=F
�L@=�)=L@=JD9F<K�

�

�
�
�

�
�
�
�

(9FMK;JAHL�LG�:=�KM:EALL=<�LG�L@=�%GMJF9D�G>�(=<A;AF9D��@=EAKLJQ�
 
 



 

���
�

Abstract 
 

A fragment based drug discovery approach has been used to discover 

phthalimide-based inhibitors of a novel Rheumatoid Arthritis (RA) protein target Rit1, 

a member of the Ras superfamily of small GTPases. NMR screening and a 

nucleotide exchange biochemical assay were used to discover and validate fragment 

hits with IC50’s in the millimolar range (1,2) that specifically inhibit the interconversion 

between the GDP bound “inactive form” and the GTP bound “active form” of Rit1. 

Elaboration of fragment hits yielded compounds with IC50’s of ~180 µM (16e, 17e and 

18c) in the biochemical assay. A crystal structure of the binary Rit1:GDP complex 

was solved to 2.3 Å resolution, however, it proved impossible to obtain crystals with 

any of the Rit1 inhibitors. Instead alternative, NMR-based methods in combination 

with molecular docking were employed to obtain 3D structural information on the 

ternary complex of Rit1·GDP and inhibitor 18c. The docking solutions show that 18c 

exchanges between two binding sites that lie very close to the GDP binding pocket of 

Rit1. The docked structures further reveal a novel mechanism of action, where in one 

of the binding modes, 18c causes a steric occlusion of the GDP and likely inhibits its 

dissociation. 
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INTRODUCTION 

Rheumatoid Arthritis (RA) is a chronic degenerative disease, characterized by 

inflammation and erosion of the joint structures. When not treated, it leads to 

substantial disability and pain in the joints. The onset of RA is characterized by the 

inflammation of the synovial membrane (‘Synovitis”) which correlates with increased 

expression of a specific matrix-metalloproteinase (MMP) MMP1, by synovial 

fibroblasts (SFs). Numerous treatments for aspects of the disease are available e.g. 

NSAIDS (Non-Steroidal Anti-inflammatory Drugs) to limit inflammation and DMARDS 

(Disease Modifying Anti-Rheumatic Drugs), but most of them are found to have 

limited efficacy for the treatment RA in the longer term.1 In an effort to find new 

targets with therapeutic value for RA, an siRNA screening strategy was undertaken. 

The screen uncovered a group of potential protein targets, of which a specific protein, 

Rit1, was involved in an early stage of the onset of RA (US patent 7,919,259 B2). 

Rit1 is an interesting therapeutic target as it regulates the expression and secretion 

of MMP1 leading to the onset of collagen degradation. Rit1 activity is upregulated in 

synovial fibroblasts.2 This observation suggests that inhibition of Rit1 activity could 

have therapeutic benefits for RA patients. 

Rit1 (Ras-like protein in all tissues) is a member of the Ras superfamily of 

GTPases.3 Proteins of the Ras family, which comprises more than 150 members in 

humans, are small (~25 kDa) and monomeric. Ras members function as molecular 

switches that govern a wide variety of signal transduction pathways that regulate e.g. 

cellular growth, proliferation, differentiation and apoptosis.4,5,6 GTPases carry out 

their cellular function by cycling between an inactive GDP bound form and an active, 

GTP bound form.7 Shuttling between active and inactive forms is facilitated by two 

classes of regulatory proteins, namely Guanine nucleotide exchange factors (GEFs) 
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and GTPase activating proteins (GAPs). GEFs function by catalyzing the exchange 

of GDP for GTP thereby activating the G protein. In the active form, G proteins 

interact with downstream effectors and thus propagate further signaling events such 

as transcription regulation that lead to the desired biological response. The low 

intrinsic GTPase activity of G proteins is enhanced by interaction with GTPase 

activating proteins (GAPs), that down regulate signaling activity by speeding 

conversion to the inactive form.8 Numerous studies have shown that proteins from 

the Ras family are overexpressed in about one third of human cancers and thus are 

implicated as oncology drug targets.5  

Ras GTPases undergo extensive post-translational modifications that regulate 

their interaction with other proteins, protect them from proteolytic degradation, 

facilitate association with the cell membrane or determine their subcellular 

localization and function. Previous attempts to target this family pharmacologically 

have focused mainly on inhibition of post-translational modifications such as 

farnesylation or geranylgeranylation.9,10,11 These inhibitors prevent membrane 

association of the GTPase and hence cause the loss of cellular function. However, 

the performance of such compounds in clinical trials has not been as good as hoped, 

mainly due to adverse effects and toxicity related issues.12 Many other therapeutic 

approaches such as targeting prenylation and post-prenylation modifications, 

targeting GEFs and GAPs and the functional regulation of GDP/GTP exchange are 

exciting alternatives and are reviewed elsewhere .12 

In contrast to other Ras GTPases, Rit1 lacks a known recognition signal for C 

terminal lipidation, which is necessary for membrane association.13 It has been 

reported by a number of groups that Rit1 signals to a variety of Ras responsive 

transcription factors, weakly transforms NIH 3T3 cells and binds to and activates 
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RGL3, a novel RalGEF.14 However, these studies also show that Rit1 fails to activate 

the mitogen-activated protein (MAP) kinase or  phosphatidylinositol 3-kinase 

(PI3K)/Akt kinase signaling cascades in NIH3T3 cells, suggesting that Rit1 uses 

novel effector pathways to regulate proliferation, transformation and 

differentiation.15,16 These alternative approaches to inhibition of Rit1 are therefore not 

directly available. 

With a view towards finding small molecule inhibitors of Rit1, we have employed a 

fragment based drug discovery approach.17 Given the large number of GTPases 

present in the cell and the apparent lack of post-translational modification, we sought 

compounds that would specifically bind to and stabilize the Rit1-GDP complex, 

thereby inhibiting Rit1 dependent transcription. Validated screening hits were 

elaborated by analogue searching and synthetic chemistry which generated 

phthalimide based inhibitors exhibiting a modest micromolar affinity as judged by a 

biochemical nucleotide exchange assay.14 Although we were able to elucidate a 2.3 

Å resolution X-ray crystal structure of Rit1 bound to GDP, attempts to soak the 

inhibitors into the Rit1-GDP crystals were fruitless. Therefore, we have used NMR 

based methods to obtain structural information to guide further compound elaboration 

efforts. The resulting docking model suggests that the compound binds adjacent to 

the GDP. The structural information is consistent with the mode of inhibition observed 

in the biochemical assay. 

Results & Discussion  

Crystal Structure of Rit1 bound to GDP 

The crystal structure of Rit1 bound to GDP (Figure 1) to 2.3 Å resolution by 

molecular replacement using the ras-like protein TC21 as a search model (PDB: 

2ERY). The crystals contained an exceptionally low solvent content (~20%) and the 
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protein exhibited multiple crystal contacts apparently contributing to a rather rigid 

overall structure as judged by the low B-factors.  Not unexpectedly, the structure of 

Rit1 is similar to other small GTPases and consists of the canonical fold comprising a 

β sheet with one anti-parallel and four parallel strands surrounded by four α-

helices.18,19 Electron density was not found for the switch II loop formed by residues 

79-87, likely due to flexibility. Based on structural similarity to other GTPases, the P-

lobe (orange), which forms the characteristic phosphate binding loop, consists of 

residues Leu 27 – Lys 34 in Rit1, while the switch I loop extends from Phe 46 to Ala 

57. The orientation of the GDP nucleotide is conserved and the magnesium ion is 

coordinated by the oxygens of the β phosphate of the nucleotide. The electron 

density for the GDP and magnesium ion was clearly interpretable. Further 

commentary on the structure is provided in the Supplementary Information (Table 

S1). 

Screening for Rit1-GDP Specific Ligands  

A strategy was employed to search for ligands specific for GDP bound Rit1, in 

which. Ligand screening was accomplished using TINS (Target Immobilized NMR 

Screening) on both the apo and GDP bound forms of the protein, screening against a 

fragment collection and hits that were unique for the complex were further 

investigated.20,21 The PH domain of human Akt1 was used as a reference protein. 

Both Rit1 and the Akt1 PH domain were immobilized using Schiff’s base chemistry, 

which at the pH used primarily targets the amino terminus. The functionality of 

immobilized Rit1 was determined using a nucleotide exchange assay 

(Supplementary Figure S1).14 Immobilized GDP-free Rit1 was generated by 

incubation with alkaline phosphatase (AP) in the presence of a non-hydrolysable 

analogue of GTP, followed by incubation with phosphodiesterase (PDE).22 Since 
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nucleotide free Rit1 rapidly precipitates, ligand screening could only be accomplished 

using an approach such as TINS where the protein is immobilized on a solid 

support.22 

 

Figure 1. The crystal structure of Rit1. The switch I loop is shown in red and the 
phosphate recognition region, also called the P-lobe, in orange. These loops are defined 
based on the structural similarity of Rit1 to other GTPases.18,19 The yellow sphere 
indicates the magnesium ion coordinated by the oxygens of the β phosphate of the 
nucleotide. The electron density for residues that form the switch II loop is missing and 
hence not represented in the crystal structure. The GDP is shown in sticks (green, 
orange, red and blue). 
 

A library of nearly 1,000 commercially available fragments was screened against 

both the GDP-bound and apo-form of Rit1. The design philosophy and characteristics 

of the library have been previously described.23 The hit rate observed was 3.4% and 

8.8% for GDP bound- and Apo-forms of Rit1 respectively, consistent with the idea 

that the primary ligand binding site is the nucleotide binding pocket. The screens 
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resulted in the identification of 33 and 99 fragments with affinity for the GDP-bound 

and apo-forms of Rit1, respectively. 18 of the fragments bound both forms of Rit1, 

while the remaining hits bind specifically to either apo or GDP-bound Rit1. 

Characterization of primary fragment hits 

All hits from the TINS screen were assayed for inhibition of nucleotide exchange 

using purified protein.14 Rit1 has an intrinsically slow off-rate for GDP and, since no 

GEF specific for Rit1 is known, it is not practical to perform the assay under 

equilibrium conditions.24 Each hit from the screen was assayed at 4 mM and 

subsequently the IC50 of hits that exhibited a percentage of inhibition (PIN) above 

60% was determined where possible. Since it did not prove possible to determine the 

IC50 of all weakly binding fragment hits, the fragments were ranked according to the 

PIN (See supplementary Figure S2). The five fragments, which exhibited a PIN 

greater than 60% (Figure 2) were selected for further characterization. 

 

 

 

 

 

 

 

 

 
 
 
Figure 2. The five most potent fragment hits in the nucleotide exchange assay. The 
percentage of inhibition of the nucleotide exchange (PIN) and IC50 values are indicated. 
For fragment hits where the hill slope was too steep (>2.0), IC50 value could not be 
determined (nd). 
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Our repeated attempts to either soak 1 into existing crystals of Rit1·GDP or co-

crystallize the ternary complex were unsuccessful. In previous reports a series of 

hydroxylamine bearing inhibitors were shown to inhibit the intrinsic nucleotide 

exchange of Ras.25,26 The NMR based structure of a Ras-inhibitor (SCH-54292) 

complex revealed that the conformation of the rather flexible switch II region may be 

locked by the binding of the inhibitor to this region. The switch II region is known to 

play a role in the rate of nucleotide exchange.25 The naphthyl moiety of SCH-54292 

is buried in a hydrophobic pocket in the vicinity of switch II, while the hydroxylamine 

at the other end of SCH-54292 likely chelates the Mg2+ ion. As seen in the crystal 

structure of Rit1, the presence of the Mg2+ ion is critical for nucleotide binding and is 

co-ordinated by the oxygens of the β phosphate of the GDP. Based on the Ras-

inhibitor (SCH-54292) NMR structure, it was hypothesized that 1 might bind to Rit1 in 

a pocket adjacent to GDP and in the vicinity of the Mg2+ atom. The carboxylic acid 

moiety together with one of the carbonyl groups of the phthalimide ring, was 

hypothesized to chelate the metal. However, with the inability to obtain a crystal 

structure, no conclusive experimental data was available to identify the binding site of 

1. In order to test the binding hypothesis, we sought commercially available 

analogues of 1. Substructure searches were used to first find analogues containing 

additional molecular features on the phenyl ring of 1. A second set of analogues was 

selected to replace the acetate motif on the N of the phthalimide with groups that 

would either ligate the Mg2+ tighter or provide a conformation more optimal for 

ligation. If metal ligation was indeed important for binding, some of these analogues 

would be expected to show improvement in potency in the nucleotide exchange 

assay. Each of the analogues was assayed for inhibition of nucleotide exchange and 

ranked based on the IC50 (Table 1).14  Compound 6 was moderately more potent 
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than 1, (~1.5 fold) while compound 7 resulted in a 4 fold increase in the potency. 

However, introduction of a phenyl group at R1 as in compounds 8 and 9, results in a 

roughly six fold improvement in potency compared to 1. The SAR data suggested 

that the carboxylic acid functionality was required at only one end of the molecule 

and that addition of a hydrophobic, preferably aromatic, moiety at the other end could 

lead to enhanced potency, although the ligand efficiency remained rather low (~0.14 

pIC50/Heavy atom count).27 Interestingly, it did not appear to matter which end of the 

molecule contained the carboxylic acid or the aromatic ring. However, the data did 

not give a clear picture of whether or not metal ligation was important for binding. 

 
 
Table 1. Representation of the expansion process from primary fragment hit. The table 
shows the features that were explored by modification of R1 and R2 groups resulting in the 
four most potent commercial analogues of 1.   
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Since crystallography failed to yield structures of Rit1 with any ligand other 

than GDP, we turned to protein observed NMR to obtain structural information. It is 

well known that the 2D [1H,15N]-HSQC NMR experiment can provide low resolution 

structural information on ligand binding if the backbone resonance assignment of the 

protein is available. Using standard through-bond, triple resonance NMR 

experiments, the sequential assignment for about 72% of the backbone of Rit1 was 

determined (see Experimental Section). Subsequently, compound 8 was titrated into 

uniformly 15N labeled Rit1 and residues with significant chemical shift perturbations 

(CSP) of the amide cross peak were identified (δH > 0.01 ppm). Potential binding 

sites were mapped onto the Rit1 crystal structure using the program j-surf.28 Note 

that the NMR titration experiments were carried out at pH 9.1 as the stability of the 

protein was significantly greater than at pH 7.5, the pH at which the TINS screen was 

performed. Significant CSPs were clearly observed close to the the GDP binding site 

and on the opposite side of the protein close to the diphosphate moiety (Figure 3). 

Although this data gave us confidence that the ligand bound close to the nucleotide, 

it was not sufficient to precisely define the site.  
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Figure 3. Mapping of the chemical shift perturbations induced by binding of 8 onto Rit1. The  
program j-surf was used to calculate potential binding sites.28 The small dots forming spheres 
indicate the likely binding site of the compound as determined by j-surf. The red and orange 
colors represent the location and magnitude (larger and smaller respectively) of significant 
chemical shift perturbations observed on the protein. A and B show the two possible binding 
sites as obtained from the CSP data. This and subsequent structure figures were created in 
PyMOL.29 
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Scheme 1. Synthetic approach to elaborate compounds based 8. Three different series of 
compounds 16a-e, 17a-e and 18a-c (see Table 1) were accessible via this scheme. See 
experimental section for more information. Reagents and conditions; i) AcOH, MW 165°C, 
5h. ii) EtOH, Pd/C, 2h. iii) BnCl, KOH, H2O, reflux, 16h. 
 

Elaboration of Compound 8 

The chemical shift binding data, while not precisely defining the mode of 

interaction of 8 with Rit1, did suggest the presence of a shallow, hydrophobic patch 

adjacent to one of the binding sites. Based on this model, we explored the SAR 

around 8 using the approach outlined in scheme 1. For optimization of compound 8, 

we focused on modifications of the phenyl (R1-) and acidic (R2-) ends of the 

molecule, keeping the carbon functionalized phthalimide ring structure intact. 

Replacement of the phenylethyl group with either a benzyl-oxy or a phenyl-ethynyl 

moiety resulted in compounds (16a-d and 17a-d) with no significant gain in potency 

(Table 2). The linker to the carboxylic group was modified to include a second 

methylene carbon to give compounds 16b and 17b with 2-methyl – acetic acid 

functionalized carbon phthalimides, however extension of the linker did not result in 

improved potency. The linker was then modified to include a branched methyl group 

with either (S) or (R) stereochemistry (16c-d,17c-d and 18a-b). All analogs 

containing the S stereoisomer led to reduced or unchanged potency. However, the R 

enantiomer led to significant improvement in potency with respect to the S 
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enantiomer, except in the case where the phenyl ring is connected via an ethyne 

spacer to the phthalimide core. In this latter case the reduced flexibility may affect the 

interaction of the acidic end of the molecule with the protein. A further significant 

improvement in potency (about 4 fold) was achieved by addition of a phenyl ring to 

the branched (R) methyl group resulting in compounds 16e, 17e and 18c. As 18c 

was found to be the most soluble of this series, it was pursued for biophysical 

characterization.30,31,32 

Determining the binding site of compound 18c 
 
 Compound 18c was titrated into 15N labeled Rit1 and the chemical shift 

perturbations in the [1H,15N] HSQC experiment were again mapped onto the crystal 

structure (PDB 4KLZ).33,34 The key protein residues involved in binding are Tyr 167, 

Tyr 169, Tyr 170 and Asp 137, which are adjacent to the GDP binding pocket. In 

addition to these residues, CSPs were also observed for residues 107, 110, 116, 

113, 90 and 94, similar to what was observed for compound 8, indicative of a 

secondary binding site. However, it is to be noted that this secondary site is close to 

the switch II loop of Rit1 that is missing from the crystal structure. This might suggest 

that these CSPs could be either due to a conformational rearrangement caused upon 

binding of 18c or influenced by the flexibility of this part of the protein. As the data 

suggests the possibility of two binding sites, further structure restraints were 

necessary in order to more precisely define the nature of the binding of 18c to the 

protein and to shed light on the mechanism of inhibition of nucleotide exchange. 

Since sidechain resonance assignments were not readily available due to the 

marginal quality of the NMR spectra, we chose to investigate the use of 

paramagnetic NMR effects for structure elucidation by introducing an organic radical 

(MTSL) at the 2’ position of the GDP(referred to as GDP-SL).  
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 Table 2.  Analogue compounds synthesized in house by SAR on compound 8. 
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The presence of the unpaired electron of MTSL results in Paramagnetic 

Relaxation Enhancement (PRE) of affected NMR resonances. The PRE effect is 

dependent (r-6) on the distance between the nucleus and the unpaired electron and 

can be readily calibrated by observing the effect on resonances of the protein. 

Determination of the PRE effects thus provides unique, long range distance 

information, typically from 12 to 22 Å.35 In order to calibrate the PRE effects, a 2D 

[1H,15N] HSQC spectrum was recorded of 15N labeled Rit1 with either the 

paramagnetic GDP-SL or diamagnetic GDP bound. For each observed amide 

proton, the intensity ratio (Ipara/Idia) of the resonances in the paramagnetic and 

diamagnetic spectra was determined, from which the PRE was converted into a 

distance as described.35 The observed distances were then used to back calculate 

the position of the radical using the Rit1-GDP crystal structure. The average 

position of the nitroxide radical of the GDP-SL relative to the protein backbone 

could be determined with high reliability and was found to be close to the bound 

GDP in the crystal structure. The back-calculated nitroxide to amide proton 

distances match the experimentally determined distances very well, as judged by 

the low Q-value of 0.059  (Supplementary Figure S3). Q value is a statistical 

parameter in which the distances from the docking model are compared to the 

experimentally obtained. The smaller the value, the better the fit of back calculated 

versus experimental data. A model of the nitroxide spin labeled GDP bound to Rit1 

was generated based on the experimental distances using XPLOR-NIH (For more 

details refer to the experimental section).36 The model was subsequently used to 

characterize the binding of 18c. 

The PRE effect on the 1H resonances of 18c was determined by comparing the 

intensity of peaks in the presence of either GDP or GDP-SL bound Rit1. As seen in 
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Figure 4, resonances of 18c are broadened in the presence of diamagnetic 

Rit1·GDP, confirming that it binds to the binary complex. Most, but not all, of the 1H 

resonances of 18c are further broadened beyond detection in the presence of 

paramagnetic Rit1·GDP-SL, indicating that they are strongly affected by the presence 

of the spin label. The observed PRE’s were converted into distances as was done for 

the protein, taking into account the fractional occupancy. These intermolecular 

distance restraints were then used to calculate a model of the ternary complex of 

Rit1·GDP-SL·18c by docking. 

 

Molecular Docking using PRE distance restraints 

All observable protons of 18c experience a paramagnetic effect of varying 

degrees due to the nitroxide radical of the GDP-SL, indicating that all protons from 

the compound must approach the GDP-SL for at least some part of the time (Figure 

4). The docking calculations were performed using the PRE restraints, CSPs and 

saturation transfer effects. Saturation transfer measurements (STD) were performed 

to obtain structural information on the spatial proximity of ligand protons to the protein 

surface. This approach, also known as group epitope mapping, was originally 

proposed by Mayer and Meyer, 2001.37,38,39 In the case of 18c, the saturation transfer 

curves show similar kinetics for all protons suggesting that either the ligand binds in 

different orientations or is approximately equally surrounded by the protein on all 

sides. As a result, the STD data was included as ambiguous restraints in the docking 

procedure (Figure S6). The resulting structures exhibited a poor correlation between 

experimental restraints and back calculated distances with a Q-value of 0.07 (Figure 

S7). Specifically, the average distances in the ensemble of docked structures is 

consistently less than the corresponding experimental restraint with large violations.35 
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Figure 4. Paramagnetic relaxation enhancement (PRE) effect on the 1H resonances of 
18c bound to Rit1·GDP-SL. The structure of compound 18c is indicated with proton 
assignments. The corresponding resonances in the aromatic portion of the 1H NMR 
spectrum are indicated. A reference spectrum of 18c is provided (red). Peak broadening in 
the presence of Rit1·GDP (green) is indicative of binding. Further broadening due to PREs is 
clearly observed for many resonances in the presence of Rit1·GDP-SL (blue). A reference 
spectrum of Rit1 ·GDP-SL in the absence of 18c is provided (brown). Due to considerable 
overlap in the resonances caused by the overall symmetry of 18c, one proton (3) could not 
be definitively assigned and resonances arising from protons 8 and 1 could not be 
distinguished. The resonances from the aliphatic region of the 1D spectrum are shown in the 
SI (Figure S5). 
 

 The pattern of violations observed in the docking based on a single set of 

restraints suggests the possibility of averaging over multiple orientations or possibly 

binding sites. Given the symmetry of the compound, with the two phenyl groups 

attached to the phthalimide moiety, it is conceivable that the compound binds in two 

orientations. Therefore, it was decided that the PRE-based distance restraints should 
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be divided into two groups, i) one PRE set representing the protons of the acidic side 

of the compound and ii) a second PRE set representing the protons of the non-acidic 

side of the compound. Subsequent docking calculations were performed with either 

of the two sets of PRE restraints, CSPs and the ambiguous restraints from STD. The 

five lowest energy solutions from each of the two calculations show two minima 

(Figure 5). In one binding mode, defined by the restraints from the non-acidic end, 

18c lies in a shallow groove parallel to the sugar and phosphates of GDP and 

crosses over to occlude the base. In the second binding mode, the compound binds 

in the groove above the β3-strand formed by residues 160:163. Within the five lowest 

energy structures for each of the binding modes, 18c is found in two orientations, 

rotated by approximately 180 degrees. In contrast to the calculations in which all of 

the PRE restraints were simultaneously used, the intermolecular distance restraints 

for the two ensembles of five structures fit very well to the experimentally determined 

distances, with a Q-value of 0.04 (supplementary Figure S7). 

Discussion and Conclusion 

In this work we aimed to develop small molecule inhibitors of the small 

GTPase Rit1, a novel target for rheumatoid arthritis.2 We report here for the first time 

the crystal structure of Rit1 bound to GDP solved to 2.3 Å. This was a useful starting 

point, but since it proved impossible to obtain structures with the inhibitors bound did 

not directly aid in driving design. Thus, the elaboration of the initial 3 mM fragment hit 

was based on structural information obtained by NMR methods. The NMR methods 

were selected for the ability to rapidly generate reliable constraints for molecular 

docking studies and included chemical shift perturbations derived from 2D [1H,15N] 

HSQC spectra, epitope mapping by saturation transfer difference spectroscopy and 

paramagnetic relaxation enhancement derived intermolecular distances. The latter 



 

���
�

�����

��

��

.OAL;@� $�

W�KLJ9F<� �
>GJE=<�:Q��
J=KA<M=K��
��������

'GGHK�;=FL=J=<��
GF�J=KA<M=K��
����9F<�����
�

"�+�.'�

(?�	�

two types of restraints can also be employed in cases where isotope labeling of the 

target is not possible. This demonstrates that NMR can provide structural information 

with sufficient detail and timeliness to support medicinal chemistry efforts when X-ray 

crystallography is not available. Although the directly modulation of GTPase activity 

with small molecules has proven challenging, we have been moderately successful in 

elaborating the phthalimide based inhibitors to an IC50 of approximately 180 µM. 

Importantly, the inhibitors have a novel mode of action. 

 
Figure 5. Experimentally restrained docking of 18c onto the Rit1·GDP-SL complex. A] The 
lowest energy binding solutions as determined by docking using restraints from PRE, CSP 
and saturation transfer. The surface of Rit1 is presented and the bound GDP-SL (green) is 
shown in bond representation. The presence of magnesium ion is indicated by a red sphere. 
Compound 18c is also shown in bond representation (narrow lines) where the two different 
orientations, rotated by 180°, are shown in red and blue. Amino acids with significant 
chemical shift perturbations observed in the presence of compound are shown in orange. 
The protein residues for which there are no assignments available are shown in pale green. 
B] Closeup view of one of the binding modes of compound 18c binding adjacent to the GDP-
SL (green). This binding site likely stabilizes the Rit1·GDP complex by steric hindrance of 
nucleotide exchange. 
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The Rit1·GDP·18c complex  
The PRE based data and the subsequent docking results reveal that 

compound 18c does not bind Rit1 in one preferred orientation or even within a single 

binding site. Rather, 18c explores a large surface near the GDP binding pocket of 

Rit1. The two specific binding modes found in the restrained docking indicate that 

18c binds in a shallow groove. These two binding grooves are physically separated 

in the Rit1 crystal structure by the bulk of the loops consisting of residues 135 - 145 

and 165 – 170, although at the closest points the two sites are within 6.5 Å and 

translocation from one site to the other could be accomplished by a simple flip 

(Figure 5). Interestingly, the Hill slope of 1.6, which suggests somewhat greater than 

1:1 stoichiometry, is consistent with the two binding modes from the docking. In 

Figure 4, it is clear that protons from both phenyl rings of 18c, which are some 12 Å 

distant, experience a considerable paramagnetic effect. This data means that both 

phenyl rings of 18c must closely approach the MTSL during the complex formation, 

at least for some part of the time. For the base occluded binding mode, both ends of 

18c are sufficiently close to MTSL that in principle a single orientation could explain 

the data, however, two orientations are found in the docking ensemble. For the 

binding mode close to the β3-strand, 18c must bind in both orientations (i.e. flipped 

180 degrees) in order to satisfy the data. As the complex is in rapid exchange on the 

NMR timescale, it seems likely that the two orientations are exchanging rapidly as 

well and indeed, there may be additional rapid exchange between the two binding 

modes.  To our knowledge, this is the first documented case of a small molecule 

exchanging between multiple binding poses, although this behavior is frequently 

invoked in fragment based drug discovery as a possible explanation for the failure to 

observe ligands in crystal structures of the target.  

Neither of the binding sites of the phthalimide compounds comprises a deep 
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groove and in particular, the base occluded binding mode is unusual. In principal the 

addition of the organic radical at the 2’ carbon of the sugar of GDP could perturb the 

structure of Rit1 and create an artificial binding site. For the β3-strand binding site, 

this seems particularly unlikely since the site is remote from the sugar and there is no 

evidence from the PRE data that the crystal structure is perturbed in this region. On 

the other hand, the base occluded site is adjacent to the GDP and could possibly be 

influenced by the presence of the MTSL. However, three observations argue against 

this possibility. First, the MTSL is on the other side of the GDP and does indeed 

perturb the structure of Rit1, but in a flexible loop distal to the proposed binding site 

of 18c (Figure S4). Second, there are extensive CSPs induced by the binding of 18c 

to the native Rit1:GDP complex in the base occluded binding site. This suggests that 

18c binds at this site even when the MTSL is absent. Thirdly, a truncated-driven NOE 

experiment suggested that the aromatic protons of a closely related compound were 

within 5Å of the imino proton of the base (data not shown).40 The base occluded 

binding mode is most consistent with this data, even though no restraints based on 

the data were included in the calculation. In the base occluded model, the Mg2+ ion is 

on the opposite side of the phosphates of GDP from 18c, therefore, it seems unlikely 

that the compound binds via metal chelation. 

Novel mode of nucleotide inhibition 

 Recently the crystal structure of an “inactive” form of GTP bound HRas 

has been elucidated.41 In this structure the Switch I loop is significantly displaced 

from the nucleotide, theoretically creating a potential small molecule binding site. 

One could speculate that if a similar Switch I displacement occurred in the GDP 

bound state a similar binding site might exist. However, if it does, it is on the opposite 

side of the nucleotide from the occluded binding mode of 18c and we do not have 
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any data to suggest that 18c nor any of the other compounds in this study might bind 

at such a hypothetical site.  A small molecule binding site with allosteric properties 

has been found on KRas.42 Interestingly, small molecules bind this site in the 

presence of either GDP or GTP analogues. Apparently, binding at this site inhibits 

the interaction with the GEF SOS. This allosteric site however is remote from the 

base occluded binding site (Figure 6), suggesting that 18c acts with a novel 

mechanism, that is steric inhibition of GDP release. This new binding site may point 

towards a new approach to inhibit this pharmaceutically important yet challenging 

class of targets.   

 

Figure 6. The comparison of the docked model of Rit1·GDP·18c complex with 
KRasm·GCP:small molecule complex. The docked model of the ternary complex, Rit1·GDP-
SL·18c (orange) is shown overlaid with and the structure of KRasm·GCP:small molecule 
complex (blue, PDB:4DST). The two binding sites for 18c are shown in orange and dark pink 
color. It is seen that 18c binding sites are distal from the pocket 1 and switch II region but lie 
close to pocket 2. The allosteric binding site found for small molecule bound to KRasm lies 
remote from the binding sites of 18c.41,42 
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Experimental Section 
Protein Production 

For X-ray crystallography, an N-terminal cleavable hexahistidine tagged-Rit1 

construct (aa 19-189) was cloned into pQTEV vector and expressed in E. coli BL21 

(DE3) codon plus (RP) (Stratagene). The protein was purified on Ni-Hitrap FF (GE 

lifescience) followed by purification on a superdex G75 gel filtration column (GE 

lifescience). The hexahistidine tag was removed by the proteolytic digestion with TEV 

protease (Invitrogen) according to the manufacturer recommended buffer condition. 

The cleaved tag and the TEV protease were removed by affinity purification on Ni-

Hitrap FF, and subsequently the buffer of Rit1 (19-189) was exchanged to 20 mM 

Tris pH9, 5 mM NaCl, 2 mM MgCl2 and 1 mM DTT.   

For NMR studies, a C-terminal hexahistidine tagged-Rit1 (aa 19-189) was 

cloned into pET20b and expressed in E. coli strain BL21 (DE3) Codon Plus (RP) 

(Stratagene). The protein was first purified on Ni-Hitrap FF (GE lifescience) followed 

by purification on Superdex G75 with  buffer of 20 mM Tris pH 9, 5 mM NaCl, 2 mM 

MgCl2 and 1 mM DTT. To obtain sequential backbone resonance assignments, 

uniform 13C, 15N labeling of Rit1 was achieved by expression of C-terminally 

hexahistidine tagged Rit1 (aa 19-189) in BL21 (DE3) Codon Plus (RP) cells grown in 

M9 minimal medium supplemented with 15NH4Cl and 13C-D-Glucose (CIL) as sole 

nitrogen and carbon sources. The protein was purified as described above. For 

protein observed HSQC studies, 15N labeled C-terminal hexahistidine tagged Rit1 (aa 

19-189) was produced in M9 minimal medium supplemented with 15NH4Cl as a sole 

nitrogen source and purified as described above. 

For nucleotide exchange assay, a N-terminal GST (Glutathione S-transferase) 

tagged-Rit1 (aa 1-201) was expressed and purified as described previously.14,43 
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Crystallization and structure determination of the Rit1·GDP complex 

The protein was concentrated to 10 mg/mL concentration prior to 

crystallization.  The Rit1 crystals were grown in the presence of 11-14% w/v PEG 

4000, 5-8% v/v Jeffamine M600 and immidazole buffer pH 7.0-7.2 using sitting drop 

vapour diffusion method.  The crystals were harvested with a nylon loop and 

transferred to cryo-conditions by briefly passing the crystals through mother liquor 

augmented with approximately 30% glycerol. The crystals were then flash-frozen by 

exposing them to the cold-stream of the X-ray source. All the diffraction data was 

collected using a Cu-Kα rotating anode X-ray generator and a CCD area detector. 

The best diffracting crystals grew on the plastic surface of the crystallization well and 

diffracted up to 2.3 Å on a rotating anode X-ray beam. The diffraction data were 

integrated and scaled with the PROTEUMplus Crystallographic Software Suite by 

Bruker AXS and processed by CCP4 (Collaborative Computational Project, Number 

4. 1994).44 The structure of the protein was solved by Molecular Replacement, using 

the ras-like protein TC21 (PDB: 2ERY); 55% sequence identity) as a search model. 

Molecular replacement was carried out with the MOLREP routine in CCP4 by 

searching for one molecule in the asymmetric unit. The refinement of the MR solution 

was carried out using REFMAC5 from CCP4. Model building for the structure of Rit1 

was carried out with the program COOT. 44,45. The co-crystallization and soaking trial 

experiments for protein compound complex were unsuccessful and caused protein 

crystals to crack.  

 

TINS NMR screening 

Rit1 (aa 19-189) and Akt PH domain (aa 1-123) were immobilized via amine-

coupling to 500 µL Actigel-ALD resin (Sterogene) in 25 mM Hepes pH 7.5, 100 mM 
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NaCl and 2 mM MgCl2 at 4°C using the coupling reagent provided by the 

manufacturer.  Due to low solubility of Rit1 at pH 7.5, the protein was immobilized in 

consecutive addition at 50 µM. The immobilization efficiency was above 90% and the 

final concentrations of the immobilized targets were typically in the range of 500 µM. 

The immobilized Rit1 was shown functional by the nucleotide exchange activity 

(Shao, H, et al 2000).14,43 TINS NMR experiments were performed on 500 MHz 

Bruker NMR spectrometer using spatially selective Hadamard pulse sequences and 

analyzed as described previously.20,46,47 GDP-bound Rit1 was immobilized as 

described above. The composition of the fragment library screened has been 

reported previously.23 The typical fragment mix applied to the immobilized proteins 

consisted of 3 ~ 5 fragments which were each at 500 µM. The buffer used in the 

screen was comprised of 25 mM Tris-d11 pH 7.5, 100 mM NaCl, 1 mM MgCl2 for 

GDP-bound from of Rit1. 

 

In vitro nucleotide exchange assay / High concentration bioassay 

The nucleotide exchange was determined by the rapid filtration technique. The 

exchange buffer comprised of 1 µM of GST-Rit1 (aa 1-201), 2 µM [32S] GTPγS (2 

Ci/mmol, PerkinElmer) in 25 mM Tris pH 7.5, 100 mM NaCl, 1 mM DTT and 0.5 mM 

MgCl2 (on ice), and then the spontaneous nucleotide exchange was initiated by 

incubation at 30°C. After 1 hour incubation at 30°C, the [32S] GTPγS bound GST 

fusion protein was isolated onto 96-well Unifilter GF/B using Filteramate harvester 

(PerkinElmer) with cold wash buffer of 25 mM Tris pH 7.5, 100 mM NaCl, 1 mM DTT 

and 10 mM MgCl2. The filter was soaked in Microsint scintillation fluid and the bound 

[32S] GTPγS was detected using TopCount (PerkinElmer). All the fragments 

determined as hits specific to Rit1 from TINS NMR screening were subjected to high 
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concentration bioassay. Initially, the total nucleotide exchange was monitored in the 

presence of fragment or in DMSO. The amount of DMSO in the controls was 

matched to 1.5% (v/v), which is equivalent to the amount in the presence of a 

fragment. In 96 wells, 8 wells containing either DMSO or 400 µM of GDP were 

employed as internal controls. The percentage of inhibition (PIN) was determined as 

follows: PIN (%) = [1 - (A fragment – A positive control) / (Anegative control – Apositive control)] x 

100%, where A fragment and Anegative control are the radioactive counts measured in the 

presence of fragments and DMSO, respectively, whereas Apositive control is the 

radioactivity measured in the presence of 400 µM of GDP that competed out [35S] 

GTPγS for the nucleotide site in Rit1. The diagrammatic representation of the 

nucleotide exchange assay is shown in Figure S10. 

 

NMR backbone sequential assignment 

The following NMR experiments were acquired at 293K on an 800 MHz Varian 

Inova spectrometer; [1H,15N] -HSQC, HNCO, HNCA, HNCACB, CBCACONH and 3D 

[1H,15N] NOESY-HSQC.33,34 The protein sample consisted of 0.5 mM Rit1 (aa 19-

189) in 25 mM d11-Tris pH9, 5 mM NaCl and 5 mM MgCl2. The data was processed 

using NMRPipe and visualized using Sparky.48,49 The assignment process was 

guided by the automatic assignment program MARS using PDB 4KLZ  as an input.50 

 

Chemical shift perturbation and generation of binding site 

The [1H, 15N]-HSQC were acquired at 298K on 600 MHz Bruker DMX NMR 

spectrometer equipped with a TXI cryo-probe.33,34 The NMR sample was prepared in 

25 mM Tris pH 9, 5 mM NaCl and 5 mM MgCl2. The typical NMR sample contained 

0.125 mM of the protein, compounds at various concentrations (see text) and 5% d6-
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DMSO. The pH of the samples was adjusted carefully within +/- 0.05 units after 

addition of the compound. During the experiment, total of 128 indirect increments 

with 16 scans per increments were acquired. The data was processed using Topspin 

1.2/2.1 (Bruker) and visualized on Sparky.49 Chemical shift perturbation in [1H, 15N]-

HSQC was calculated for change in 1H ppm value between in the presence and 

absence of a compound. The potential binding sites of a compound were mapped 

onto the surface of the Rit1 structure by jsurf using chemical shift perturbation data 

(delta 1H ppm) as input.28 

 

Saturation Transfer Experiments 

Saturation transfer NMR experiments were conducted using pulse sequences 

as described.37,38,39 The protein concentration was 40 µM and compound was 

present at a 20 fold in molar ratio. The pH of the sample was adjusted carefully within 

+/- 0.05 units. The on-resonance irradiation of the protein was performed at -0.5 ppm 

and off-resonance irradiation was performed at 100 ppm where no protein signals are 

present. The saturation time was varied between 50 ms to 2 sec in order to 

determine the buildup rate. No significant differences in the buildup rate between the 

protons were observed (see supplementary figure S6). 

 

Paramagnetic NMR Studies  

Synthesis of GDP-Spin label   

The procedure followed was modified from literature.51,52,53 One equivalent 

each of 3-Carboxy-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy, Free Radical (Toronto 

Research Chemicals) and N,N-carbonyldiimizdazole (dissolved in dimethyl 

formamide) were mixed together and incubated for 1 hour. To this one equivalent of 
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guanosine diphosphate sodium salt (Sigma) was added and incubated further for 1 

hour at 38°C water bath while stirring and pH adjusted to 9.1 using 1 M NaOH. The 

reaction mixture was extracted twice with chloroform and pH of the aqueous phase 

was adjusted to pH 7.5 with 1N acetic acid. The solution was filtered and was further 

subjected to LCMS analysis using reversed-phase HPLC purification using an 

automated HPLC system supplied with a semi-preparative C18 column (10.0 mmD × 

250 mmL, 5 µ particle size) was used. Mass spectra were recorded for elutes and 

yielded the product of expected size. Purified elutes were further lyophilized and 

gave a typical pale yellow color, characteristic of the presence of nitroxide radical. 

The presence of radical was further confirmed by acquiring an EPR spectrum. The X-

band cw EPR measurements were performed using an ELEXSYS E680 

spectrometer (Bruker, Rheinstetten, Germany) equipped with a rectangular cavity. A 

modulation frequency of 100 kHz was used. Measurements were done at 

temperature of 20°C, using 6.31 mW of microwave power and modulation amplitude 

of 0.5 G (See Figure S8 in supplementary). 

 

PRE studies on Protein  

The removal of GDP was performed by buffer exchange into 20 mM HEPES 

pH 7.5, 1 mM EDTA, 1 M (NH4)2SO4, 20 % glycerol.54 The GDP removal was 

checked by disappearance of a peak at 260 nm in the UV absorption spectrum. The 

ability of apo-Rit1 to bind to chemically modified GDP was checked by a fluorescent 

based- assay. In this assay, MANT-GDP [(2'-(or-3')-O-(N-methylanthraniloyl) 

guanosine 5'-diphosphate] (Biolog, Germany) was titrated into apo-Rit1 and change 

in the intensity of the MANT fluorescence caused by binding to Rit1 was measured in 

a concentration dependant manner. The results showed that MANT-GDP bound with 
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a 1:1 stoichiometry to apo-Rit1. As MANT-GDP carries a similar chemical 

modification at the ribose moiety of GDP as in the GDP-SL, we assumed that this 

would lead only to a minimal perturbation of Rit1-GDP-SL interaction (data not 

shown). The protein was exchanged back into the buffer composed of 25 mM Tris pH 

9, 5 mM NaCl and 5 mM MgCl2.  The paramagnetic GDP-SL was added at a 1.5 

molar excess over protein,  incubated on ice for 30 min and then washed three times 

with  25 mM Tris pH 9, 5 mM NaCl and 5 mM MgCl2 using a Centricon centrifugal 

concentrator with MWCO 10 kDa (Millipore). The same procedure was followed 

during preparation of diamagnetic control sample except that diamagnetic GDP 

(SIGMA) was added. The protein concentrations used were identical during NMR 

measurements. NMR samples contained, a paramagnetic sample consisting of 0.1 

mM Rit1 bound to GDP-SL and a diamagnetic control consisting of 0.1 mM Rit1 

bound to GDP in 25 mM Tris pH 9, 5 mM NaCl and 5 mM MgCl2, 5%D2O. The 

measurements were performed at 298 K on 600 MHz Bruker DMX NMR 

spectrometer equipped with a TXI cryo-probe. During the experiment, total of 128 

indirect increments with 16 scans per increments were acquired. The data was 

processed using Topspin 2.1 (Bruker) and visualized using Sparky.49 

 

PRE studies on compound 18c   

C-terminally hexahistidine tagged Rit1 (aa 19-189) was expressed and purified 

as described above. The paramagnetic and diamagnetic protein samples were made 

as described above. The compound was added to the protein sample at a ratio of 

1:1. 1D proton NMR spectra were acquired at 298 K on 600 MHz Bruker DMX NMR 

spectrometer equipped with a TXI cryo-probe.  A CPMG delay of 40 ms was used to 

suppress residual protein signals. The data was processed using Topspin 2.1 
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(Bruker). For each observed amide proton, the intensity ratio (Ipara/Idia) of the 

resonances in the paramagnetic and diamagnetic spectra was determined, from 

which the PRE was converted into a distance as described.35 The minor variations in 

the intensities for the compound signals in the 1D spectrum diamagnetic and 

paramagnetic sample of 18c in the presence of the protein were referenced to the 

signal from DMSO.  

 

Docking of Rit1·GDP·18c ternary complex  

PREs of amide protons of the protein were obtained from peak intensities in 

HSQC spectra of paramagnetic and diamagnetic protein and subsequently used to 

determine the position of the nitroxide radical relative to the protein crystal structure. 

For this, the interatomic proton to radical distances were determined from the PREs 

as described,35,55 using an experimentally determined correlation time of 11.5 ns. The 

correlation time was determined using [1H,15N] HSQC analysis with varying T1 and 

T2 delays The distances were divided into three different classes. The protons for 

which the resonances were broadened beyond detection, were given an upper limit 

of 14 + 3/-8 Å, protons of which the resonances were unaffected, were given a lower 

limit of 21 + 100/-3 Å. The distances for 27 protons, lower limits for 25 and upper 

limits for 5 protons were used to obtain the energy minimum of the nitroxide radical 

using XPLOR-NIH.36 

The compound was docked onto the GDP-SL·Rit1 complex using XPLOR-NIH 

using experimental restraints from the CSPs data by HSQC NMR titration (some 

CSPs are shown in Figure S9), saturation transfer and paramagnetic experiments.36 

Based on the measured PREs, 10 distances between 1Hs of 18c including two 

aliphatic protons and the nitroxide were obtained. Large CSPs of 13 amides as 
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determined by titrating the compound into the protein as determined by HSQC, were 

translated into ambiguous distance restraints of 6 +/- 3 Å to any compound proton 

while averaging over <r-6>. Similarly, based on the saturation transfer experiments, 

ambiguous distance restraints of 5 + 4/-3 Å were applied between any compound 

proton and any protein carbon atom. Protons were subsequently added manually. In 

a typical simulation, the compound approached the protein 10,000 times, where the 

compound was placed at a random position every four approaches the energy did 

not drop. The compound was treated flexible and was initially docked on the 

backbone of the protein including Cα and Cβ followed by inclusion and optimization 

of the sidechains. (The docking script is provided in the Supplementary Information; 

S12). The docking results are evaluated by a Q-value.35 In this statistical parameter 

distances from the docking model are compared to the experimentally obtained. The 

smaller the value, the better the fit of back calculated versus experimental data. 

 

Model Structure of GDP-Spin Label 

A structure of 3-carboxy-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy was prepared in 

Spartan (www.wavefun.com) and parameterized using the Prodrugserver.56 The 

chemical structure of the GDP spinlabel probe is shown is Figure S11. Additional 

dihedral and angle parameters were added to keep the nitroxide in plain with the 

pyrroline ring. The molecule was added to the protein and attached to the GDP using 

XPLOR-NIH. To this end, an ester linkage was created between the carboxylate and 

the 2'- hydroxyl of the GDP and the nitroxide oxygen atom was moved in the 

direction of the predetermined minimum energy position. The spin-labeled GDP was 

energy minimized, before optimizing the loop consisting of residues 42:57, 

surrounding the GDP based on 15 PREs determined for these residues 
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(Supplementary Figure S4). 

 

Synthesis of elaborative compounds based on compound 8: 

Carbon functionalized phthalimides are synthesized analogues to the literature 

procedure (Scheme 1).i Commercially available 4-phenylenthynylphthalic anhydride 

10 is condensed with the appropriate amino acid in acetic acid under microwave 

irradiation at 165°C for four to five hours yielding the desired products in yields 

ranging from 80% to 97% after recrystallization or HPLC purification. Hydrogenation 

of the triple bond using palladium on charcoal afforded saturated phthalimides similar 

to 12 in yields ranging from 74% to 99% after HPLC purification. Oxygen 

functionalized phthalimides such as 15 were synthesized from 4-benzyloxyphthalic 

acidii (14) in yields ranging from 43% to 78%.30,31  

General: PE with a boiling range of 40 - 60°C was used. THF and Et2O were 

distilled over LiAlH4 prior to use. DCM (dichloromethane) was distilled over CaH2 

prior to use. All other solvents used under anhydrous conditions were stored over 

molecular sieves (4Å) except for methanol which was stored over 3Å molecular 

sieves. Solvents used for work-up and column chromatography were of technical 

grade and distilled before use. Microwave assisted reaction were carried out in an 

Emrys Optimizer (Biotage AB, formerly Personal Chemistry). Wattage was adjusted 

automatically so as to maintain the desired temperature. Unless stated otherwise, 

solvents were removed by rotary evaporation under reduced pressure at 40°C. 

Reactions were monitored by TLC-analysis using DC-fertigfolien (Schleicher & 

Schuell, F1500, LS254) with detection by spraying with 20% H2SO4 in EtOH, 

(NH4)6Mo7O24·4H2O (25 g/L) and (NH4)4Ce(SO4)4·2H2O (10 g/L) in 10% sulfuric acid 

or by spraying with a solution of ninhydrin (3 g/L) in EtOH / AcOH (20/1 v/v), followed 
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by charring at ~150°C. Column chromatography was performed on Fluka silicagel 

(0.04 – 0.063 mm). For LC/MS analysis, an JASCO HPLC-system (detection 

simultaneously at 214 and 254 nm) equipped with an analytical C18 column (4.6 mmD 

× 250 mmL, 5µ particle size) in combination with buffers A: H2O, B: MeCN and C: 

0.5% aq. TFA and coupled to a mass instrument with a custom-made Electronspray 

Interface (ESI) was used. For reversed-phase HPLC purification of the final 

compounds, an automated HPLC system supplied with a semi-preparative C18 

column (10.0 mmD × 250 mmL, 5 µ particle size) was used. The applied buffers were 

A: H2O, B: MeCN and C: 1.0% aq. TFA. High resolution mass spectra were recorded by 

direct injection (2 µL of a 2 µM solution in water/acetonitrile; 50/50; v/v and 0.1% formic acid) 

on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion 

source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 

250°C) with resolution R = 60000 at m/z 400 (mass range m/z = 150-2000) and 

dioctylpthalate (m/z = 391.28428) as a “lock mass”.[iii] The high resolution mass spectrometer 

was calibrated prior to measurements with a calibration mixture (Thermo Finnigan). 1H- en 

13C-NMR spectra were measured on a Joel JNM-FX-200 (200/50 MHz). Chemical 

shifts are given in ppm (δ) relative to TMS (0 ppm) or MeOD (3.30 ppm) and coupling 

constants are given in Hz.32,57,58  

General condensation procedure: Phthalic acid or anhydride and the 

appropriate amino acid (1.05 equiv) are suspended in acetic acid (5 mL) and the 

reaction mixture is heated in a sealed tube for five hours at 165°C in the microwave. 

The reaction mixture is concentrated and purified by HPLC or by means of 

recrystalization.57,58,59 

General hydrogenation procedure: The appropriate alkyne is dissolved in 

ethanol (2 ml) and treated with Pd/C (10 mg) and hydrogen gas for 2 hours at r.t. 

after which the catalyst is removed by filtration over a pad of celite. The filtrate is 
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concentrated and the residue is, if required, purified by HPLC. 

 

17a: Prepared from 10 (1.24 g, 5 mmol) and glycine (394 mg, 5.25 

mmol) according to the general condensation procedure and 

purified by recrystallization from hot water. Yield: 1.48 g, 4.85 mmol, 97% off white 

solid. 1H NMR (400 MHz, DMSO) δ 13.18 (bs, 1H, CO2H), 8.05 (s, 1H), 8.01 (dd, J = 

1.3, 7.7, 1H), 7.96 (d, J = 7.7, 1H), 7.67 – 7.60 (m, 2H), 7.50 – 7.43 (m, 3H), 4.33 (s, 

2H). 13C NMR (101 MHz, DMSO) δ 168.74, 166.52, 166.43, 137.34, 131.99, 131.71, 

130.53, 129.60, 128.84, 128.60, 125.77, 123.78, 121.36, 93.51, 87.88, 39.02. LC-

MS: tR: 7.91 min (linear gradient 10-90% in 13.5 min), m/z = 611.1 [2M+H]+, 306.1 

[M+H]+, 259.9 [M-CO2+H]+ 

14: Prepared according to literature procedure. Yield: 5.66 g, 20.8 

mmol, 76%. 1H NMR (400 MHz, MeOD) δ 7.94 (d, J = 8.5, 1H), 7.49 – 

7.26 (m, 6H), 7.13 (d, J = 8.6, 1H), 5.15 (s, 2H). 13C NMR (101 MHz, MeOD) δ 

172.33, 170.53, 162.56, 138.18, 137.83, 133.95, 129.86, 129.58, 129.12, 128.68, 

124.84, 117.32, 116.89, 71.30. 

17b: Prepared from 10 (496 mg, 2 mmol) and β-alanine (187 mg, 

2.1 mmol) according to the general condensation procedure and 

recrystallized from EtOAc/PE. Yield: 549 mg, 1.7 mmol, 85% as white solid.  1H NMR 

(400 MHz, DMSO) δ 12.38 (bs, 1H), 7.99 – 7.94 (m, 2H), 7.89 (d, J = 7.6, 1H), 7.65 – 

7.60 (m, 2H), 7.49 – 7.44 (m, 3H), 3.80 (t, J = 7.4, 2H), 2.62 (t, J = 7.4, 2H). 13C NMR 

(101 MHz, DMSO) δ 172.04, 166.92, 166.83, 136.96, 132.24, 131.68, 130.86, 

129.55, 128.83, 128.14, 125.37, 123.39, 121.39, 93.20, 87.95, 33.72, 32.25. LC-MS: 

tR: 7.91 min (linear gradient 10-90% in 13.5 min), m/z = 319.9 [M+H]+, 302.1 [M-

H2O+H]+, 259.9 [M-CH2CO2+H]+ 
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17c: Prepared from 10 (496 mg, 2 mmol) and alanine  (187 mg, 

2.1 mmol) according to the general condensation procedure and 

purified by recrystallization from hot water yielding the title compound as white solid 

(522 mg, 1.6 mmol, 81%).1H NMR (400 MHz, DMSO) δ 13.14 (s, 1H), 8.05 – 7.99 

(m, 2H), 7.94 (dd, J = 0.6, 7.7, 1H), 7.67 – 7.61 (m, 2H), 7.50 – 7.45 (m, 3H), 4.89 (q, 

J = 7.3, 2H), 1.56 (d, J = 7.3, 3H). 13C NMR (101 MHz, DMSO) δ 170.89, 166.45, 

166.35, 137.31, 131.89, 131.71, 130.46, 129.60, 128.85, 128.51, 125.66, 123.69, 

121.35, 93.43, 87.91, 47.11, 14.74. LC-MS: tR: 8.33 min (linear gradient 10-90% in 

13.5 min), m/z = 320.0 [M+H]+, 274.0 [M-CO2+H]+ 

 

16a: Prepared from 14 (516 mg, 2 mmol) and glycine  (157 mg, 

2.1 mmol) according to the general condensation procedure to 

yield to title compound as white solid (440 mg, 1.41 mmol, 70%). 1H NMR (400 MHz, 

DMSO) δ 13.13 (s, 1H), 7.85 (d, J = 8.3, 1H), 7.52 (d, J = 2.2, 1H), 7.48 (d, J = 7.1, 

2H), 7.44 – 7.39 (m, 3H), 7.38 – 7.32 (m, 1H), 5.32 (s, 2H), 4.28 (s, 2H). 13C NMR 

(101 MHz, DMSO) δ 168.92, 166.89, 166.80, 163.59, 136.02, 134.06, 128.54, 

128.14, 127.82, 125.25, 123.37, 120.95, 109.26, 70.22. LC-MS: tR: 7.10 min (linear 

gradient 10-90% in 13.5 min), m/z = 312.2 [M+H]+, 265.9 [M-CO2+H]+ 

 

15: Prepared from 14 (516 mg, 2 mmol) and alanine  (187 mg, 2.1 

mmol) according to the general condensation procedure to yield to 

title compound as white solid (509 mg, 1.56 mmol, 78%). 1H NMR (400 MHz, DMSO) 

δ 13.04 (s, 1H), 7.82 (d, J = 8.3, 1H), 7.51 – 7.45 (m, 3H), 7.44 – 7.38 (m, 3H), 7.38 – 

7.32 (m, 1H), 5.32 (s, 2H), 4.83 (q, J = 7.3, 1H), 1.54 (d, J = 7.3, 3H). 13C NMR (101 
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MHz, DMSO) δ 171.09, 166.80, 166.75, 163.56, 136.04, 133.94, 128.81, 128.54, 

128.46, 128.42, 128.12, 127.78, 127.57, 125.17, 123.28, 120.96, 109.14, 70.19, 

46.93, 14.87. LC-MS: tR: 7.56 min (linear gradient 10-90% in 13.5 min), m/z = 326.1 

[M+H]+, 280.0 [M-CO2+H]+ 

 

16b: Prepared from 14 (516 mg, 2 mmol) and β-alanine  (187 mg, 

2.1 mmol) according to the general condensation procedure to 

yield to title compound as white solid (500 mg, 1.54 mmol, 77%). 1H NMR (400 MHz, 

DMSO) δ 12.35 (s, 1H), 7.77 (d, J = 8.3, 1H), 7.49 – 7.31 (m, 7H), 5.29 (s, 2H), 3.76 

(t, J = 7.3, 2H), 2.59 (t, J = 7.3, 2H). 13C NMR (101 MHz, DMSO) δ 172.09, 167.19, 

163.32, 136.08, 134.20, 128.82, 128.53, 128.40, 128.11, 127.77, 127.55, 124.87, 

123.59, 120.52, 108.94, 70.14, 33.58, 32.43. LC-MS: tR: 7.26 min (linear gradient 10-

90% in 13.5 min), m/z = 326.0 [M+H]+, 308.2 [M-H2O+H]+, 266.0 [M-CH2CO2+H]+ 

  

16e: Prepared from 10 (496 mg, 2 mmol) and phenylalanine  

(347 mg, 2.1 mmol) according to the general condensation 

procedure and purified by HPLC yielding the title compound as off white foam (639 

mg, 1.6 mmol, 80%). 1H NMR (400 MHz, DMSO) δ 13.30 (bs, 1H), 7.91 (d, J = 6.6, 

2H), 7.83 (d, J = 8.0, 1H), 7.62 – 7.56 (m, 2H), 7.43 (d, J = 4.8, 3H), 7.19 – 7.14 (m, 

4H), 7.14 – 7.07 (m, 1H), 5.16 (dd, J = 4.7, 11.5, 1H), 3.52 (dd, J = 4.7, 14.1, 1H), 

3.43 – 3.31 (m, 1H). 13C NMR (101 MHz, DMSO) δ 169.99, 166.43, 166.34, 137.43, 

137.27, 131.70, 131.29, 129.80, 129.58, 128.81, 128.73, 128.33, 126.59, 125.77, 

123.77, 121.38, 93.66, 87.77, 53.17, 33.98. LC-MS: tR: 9.42 min (linear gradient 10-

90% in 13.5 min), m/z = 396.1 [M+H]+, 350.0 [M-CO2+H]+ 
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17c: Prepared from 10 (496 mg, 2 mmol) and D-alanine  (187 mg, 

2.1 mmol) according to the general condensation procedure and 

purified by recrystalization from hot water yielding the title compound as white solid 

(506 mg, 1.6 mmol, 80%).  1H NMR (400 MHz, DMSO) δ 13.15 (s, 1H), 8.04 – 7.98 

(m, 2H), 7.93 (d, J = 7.7, 1H), 7.66 – 7.60 (m, 2H), 7.50 – 7.45 (m, 3H), 4.89 (q, J = 

7.2, 1H), 1.56 (d, J = 7.3, 3H). 13C NMR (101 MHz, DMSO) δ 170.90, 166.46, 166.36, 

137.30, 131.89, 131.71, 130.46, 129.59, 128.84, 128.53, 125.66, 123.69, 121.36, 

93.44, 87.91, 47.13, 14.75. LC-MS: tR: 8.31 min (linear gradient 10-90% in 13.5 min), 

m/z = 320.0 [M+H]+, 273.9 [M-CO2+H]+ 

 

16c: Prepared 14 (496 mg, 2 mmol) and D-alanine  (187 mg, 2.1 

mmol)  according to the general condensation procedure and 

purified by HPLC to yield the title compound as white solid (280,7 mg, 0.86 mmol, 

43%). 1H NMR (400 MHz, DMSO) δ 13.05 (bs, 1H), 7.82 (d, J = 8.3, 1H), 7.51 – 7.45 

(m, 3H), 7.44 – 7.38 (m, 3H), 7.38 – 7.32 (m, 1H), 5.32 (s, 2H), 4.83 (q, J = 7.3, 1H), 

1.53 (d, J = 7.3, 3H). 13C NMR (101 MHz, DMSO) δ 171.06, 166.78, 166.73, 163.55, 

136.03, 133.93, 128.53, 128.11, 127.77, 125.16, 123.26, 120.97, 109.13, 70.17, 

46.90, 14.85. LC-MS: 16c did not ionize, preventing acquisition of the LC-MS 

specrum  

 

18b: Prepared from 17c (133 mg, 0.35 mmol) according to the 

general hydrogenation procedure and purified by HPLC to yield 

the title compound (84 mg, 0.26 mmol, 74%)  1H NMR (400 MHz, DMSO) δ 7.74 (d, J 

= 7.7, 2H), 7.63 (d, J = 8.5, 1H), 7.28 – 7.18 (m, 4H), 7.15 (t, J = 6.9, 1H), 4.85 (q, J = 

7.2, 1H), 3.05 (t, J = 7.8, 2H), 2.91 (t, J = 7.8, 2H), 1.56 (d, J = 7.3, 3H). 13C NMR 
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(101 MHz, DMSO) δ 171.24, 167.37, 167.23, 149.55, 140.87, 134.75, 131.84, 

129.29, 128.52, 128.36, 126.09, 123.38, 123.26, 47.12, 37.19, 36.75, 14.93. LC-MS: 

tR: 7.97 min (linear gradient 10-90% in 13.5 min), m/z = 324.1 [M+H]+, 278.1 [M-

CO2+H]+ 

 

 18c Prepared from 17e (138 mg, 0.35 mmol) according to 

the general hydrogenation procedure to yield the title compound (141 mg, 0.35 mmol, 

quant). 1H NMR (400 MHz, DMSO) δ 7.69 (d, J = 7.5, 2H), 7.60 (d, J = 8.2, 1H), 7.28 

– 7.06 (m, 10H), 5.12 (dd, J = 4.8, 11.7, 1H), 3.50 (dd, J = 5.1, 14.9, 2H), 3.42 – 3.34 

(m, 1H), 3.05 – 2.96 (m, 2H), 2.93 – 2.84 (m, 2H).13C NMR (101 MHz, DMSO) δ 

170.24, 167.28, 167.14, 149.66, 140.84, 137.41, 134.81, 131.21, 129.10, 128.74, 

128.65, 128.44, 128.33, 128.29, 126.57, 126.02, 123.41, 123.27, 52.99, 37.08, 

36.57, 34.06. LC-MS: tR: 9.00 min (linear gradient 10-90% in 13.5 min), m/z = 400.0 

[M+H]+,354.0 [M-CO2+H]+ 

 

18a Prepared from 17c (99.5 mg, 0.31 mmol) according to the 

general hydrogenation procedure to yield the title compound (93 

mg, 0.29 mmol, 94%).1H NMR (400 MHz, DMSO) δ 13.14 (s, 1H), 7.95 – 7.52 (m, 

3H), 7.39 – 7.10 (m, 5H), 4.86 (d, J = 4.8, 1H), 3.06 (s, 2H), 2.92 (s, 2H), 1.55 (d, J = 

4.5, 3H). 13C NMR (101 MHz, DMSO) δ 171.13, 167.25, 167.11, 149.46, 140.79, 

134.67, 131.68, 129.13, 128.43, 128.27, 125.99, 123.31, 123.19, 46.99, 36.99, 

36.58, 14.88. LC-MS: tR: 7.97 min (linear gradient 10-90% in 13.5 min), m/z = 324.1 

[M+H]+,278.1 [M-CO2+H]+ 
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.MHHD=E=FL9JQ�$F>GJE9LAGF�
�
�

Rit1 Crystallization 
�
/@=� <9L9� O=J=� AFL=?J9L=<� 9F<� K;9D=<� OAL@� L@=� +-*/ 0(
���� �JQKL9DDG?J9H@A;�
.G>LO9J=���
�

/9:D=�.���Data collection and integration statistics for Rit1. The statistics in parentheses 
are for the highest resolution shell.�

3�J9Q�KGMJ;=� �M�&α�JGL9LAF?�9FG<=�
29N=D=F?L@��U�� ��������
�=L=;LGJ� �JMC=J�)GFAMK�����9J=9�<=L=;LGJ�
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�EE��
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!A?MJ=�.����)M;D=GLA<=�:AF<AF?�9;LANALQ�G>�L@=�FM;D=GLA<=�>J==�>GJE�G>�AEEG:ADAR=<�-AL��O9K�
<=L=JEAF=<�MKAF?�:AG;@=EA;9D�9KK9Q�9K�<=K;JA:=<���
�
�

�
�
!A?MJ=�.���The ranking of primary fragment hits obtained from TINS NMR screening 
according to PIN % (percentage of inhibition) determined at high concentration in vitro 
biochemical assay.�
�
�
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�
!A?MJ=�.���The experimentally observed nitroxide to amide proton distances (Å) are plotted 
against the back-calculated distances after optimizing the nitroxide position in XPLOR-NIH 
(see Methods). The solid line indicates the ideal correlation, dashed lines represent ± 3 Å 
error limits (Q =0.059). Amide protons of which the resonances were not affected by the 
nitroxide, were given a lower limit of 21 Å.�

�
!A?MJ=� .��� The loop consisting of residues 42-57 was optimized using PRE’s observed 
from the nitroxide radical. In blue is the original crystal structure, yellow stick representing the 
position of the GDP-spin label, yellow sphere shows the magnesium ion and in the grey is 
the protein structure with the optimized loop position used for docking process.�

�

10

12

14

16

18

20

22

24

5 10 15 20 25 30 35

backcalculated distance (angstrom)

o
b

se
rv

ed
 d

is
ta

n
ce

 (
an

g
st

ro
m

)



 

����
�

�
!A?MJ=�.���The two aliphatic resonances, M1 and M2 of 18c are shown. Other resonances 
M3 and M4 could not be assigned due to overlap with the other buffer components.�
�

�
!A?MJ=� .�� The saturation transfer experiments were performed as described in the 
experimental section. The plot of the intensity vs saturation time is depicted showing the 
saturation transfer rate for various protons of 18c��The reduction in the intensity was caused 
by saturation transfer by irradiating at -0.5 ppm. The saturation time was varied from 50 ms 
to 2 sec. �
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�

!A?MJ=� .���Comparison of back calculated and observed distances averaged over top 10 
structures with error limits of ± 3A shown by dashed lines. Solid line represents the perfect 
correlation. The blue squares indicate the lowest docking solutions obtained by treating the 
intermolecular restraints as two separate sets. The red diamonds shows the distances 
obtained by simulation consisting of all inter-molecular PRE distance restraints in one set.  
As only two PRE restraints were available for the acidic moiety of 18c, the force constant for 
PREs was increased from 3.0 to 90.0 to get a significant energy penalty whenever the PRE 
restraints were not fulfilled.��
��

332 334 336 338 340 342

B, mT

�
!A?MJ=� .���The X-band cw EPR measurements on GDP-spin label have been performed 
using an ELEXSYS E680 spectrometer (Bruker, Rheinstetten, Germany) equipped with a 
rectangular cavity. A modulation frequency of 100 kHz was used. Measurements were done 
at temperature of 20°C, using 6.31 mW of microwave power and modulation amplitude of 0.5 
G.�
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Figure S9���7�/@=�GN=JD9Q�G>�L@=�6�#
��)7�#.,��KH=;LJ9�G>�-AL��"�+��:D9;C��9F<�AF�L@=�
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Figure S11. The depiction of the chemical structure of the GDP-spin label probe used in the 
paramagnetic NMR studies. 
�
�
.�����G;CAF?�K;JAHL�MK=<�>GJ�L@=�;9D;MD9LAGFK�AF�3+'*-�)$#��
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Contributions 

Target identification, validation and production of protein for crystallography, 

nucleotide exchange assays and NMR screening were performed by Masakazu 

Kobayashi (Galapagos NV). NMR screening was performed at ZoBio BV. Johan 

Hollander (ZoBio BV) helped to set-up the NMR screen. Eiso AB and Caroline Loch 

(ZoBio BV) performed the computational analysis to generate fragments hits. Francis 

Figaroa (ZoBio BV) assisted with the compound preparations for TINS NMR screen.  

Anna A. Rzepiela (Pyxis discovery) performed the computational studies for analogs. 

Crystallography studies on the target and target-ligand complexes were performed by 

F. Hoedemaker and Linda Manning (KeyDP BV). Synthesis of compounds at various 

stages was done by Adriaan W.Tuin (Leiden University). Peter H.J. Keizers (Leiden 

University) performed the computational docking for paramagnetic restraints.                               
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ABSTRACT   
 

An efficient way to rapidly generate protein-ligand co-structures based on solution-

NMR using sparse NOE data combined with selective isotope labeling is presented. 

A docked model of the 27 kDa N-terminal ATPase domain of Hsp90 bound to a small 

molecule ligand was generated using only 21 intermolecular NOEs which uniquely 

defined both the binding site and the orientation of the ligand. The approach can 

prove valuable for the early stages of fragment based drug discovery. 
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INTRODUCTION 

 The availability of 3D structural information on protein-ligand complexes has become 

an important driver to guide the pre-clinical stages of drug discovery. Structure based 

drug design (SBDD) has enabled the development of a wide array of drugs that are 

currently on the market such as inhibitors of the HIV protease and kinases.1,2 In the 

past 15 years fragment-based drug discovery (FBDD), which uses very small, soluble 

drug fragments as starting points to develop new medicines, has become 

widespread. Due to their small size, fragments typically bind the target with low 

affinity (KD > 10 µM). The development of weak fragment hits to more potent lead-like 

structures is 2-3 times more successful when 3D structural information is available.3 

Thus the success of both SBDD and FBDD is heavily dependent upon the availability 

of structural information. Presently both approaches are primarily driven by X-ray 

crystallography. Crystallography has the advantage that when successful, it is both 

rapid and high resolution. However, there are a number of cases in which 

crystallography is not successful such as when crystals are not available, the crystal 

packing precludes access to the active site or most commonly, weakly binding 

fragments simply do not give rise to electron density. In the latter case there can be 

many causes including insufficient occupancy of the binding site or multiple possible 

binding orientations. In principle, NMR-based solution methods can also generate 

atomic resolution structural information and NMR has indeed successfully supported 

FBDD campaigns.4 Since NMR is extremely sensitive to weak protein-ligand 

interactions, it should be applicable exactly where crystallography is least effective, 

i.e. for complexes of weakly binding ligands. However, traditional NMR approaches 

involving uniform isotopic labeling are labor intensive and limited to proteins of 

moderate size (e.g. < 30 kDa) and have therefore not been widely adopted in drug 
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discovery.  

  In drug discovery it is often the case that the 3D structure of a target or a 

homologous protein is available. If the resonance assignment of such a protein is 

available, mapping of chemical shift perturbations (CSPs) onto the 3D structure is a 

simple, fast procedure that can provide low resolution information about a small 

molecule binding site.5 CSP mapping is most commonly accomplished through 

analysis of  15N- or 13C-edited heteronuclear correlation spectra of the protein. 

However, the interpretation of  1H-15N or 1H-13C HSQC CSPs becomes ambiguous 

when the chemical shift perturbations are caused by changes in protein dynamics or 

a shift in equilibrium between two (or more) conformations. Various computational 

methods primarily based on chemical shift perturbation analysis are most successful 

at determining the location of the binding site to low resolution. The precise nature of 

the intermolecular contacts are well beyond the capabilities of structural analysis 

based on CSPs.6,7  In principle a limited set of intermolecular NOEs could provide 

sufficient information to determine the orientation and binding mode of a small 

molecule bound to a protein. Indeed, a number of approaches that use a combination 

of amino acid selective labeling and intermolecular NOEs have been proposed.8-10 

While these are quite powerful, they suffer from one or more of the following 

limitations: (i) requirement for a priori knowledge of the ligand binding site in order to 

be able to efficiently select the right combination of residues to label, (ii) requirement 

for a large number of intermolecular NOE contacts, (iii) the resonance assignment 

uses the pattern of chemical shift perturbations induced by ligand binding and 

therefore may not be robust and (iv) requirement for extensive calculations to 

generate structures that match the experimental data. We sought an NMR based 

method capable of providing structures of sufficient resolution and reliability to 
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support elaboration of “weakly” binding fragments to target proteins that met the 

following criteria: widely applicable to small and large proteins, rapid (2-3 weeks per 

complex), standard solution conditions and NMR experiments, requires samples that 

can be easily made and the data interpretation is unambiguous. Here, we 

demonstrate such a method based on selective ILV methyl-labeling and a sparse set 

of intermolecular NOEs.  

 

RESULTS AND DISCUSSION 

 The approach as outlined in Figure 1, requires an NMR sample of the protein in 

which the target protein is highly deuterated and where NMR visible, isotopic labels 

have been introduced along the backbone and selectively at ILV sidechains as 

described by Tugarinov and Kay.11 Standard, through-bond double and triple-

resonance NMR spectra are used to obtain the backbone and ILV sidechain 

resonance assignments of the protein. The ligand is then titrated into the protein in 

small increments such that the shift in both backbone and sidechain resonance 

positions can be readily followed using 2D heteronuclear correlation spectra. Once 

binding of the compound to the protein is saturated, 13C- and 15N-edited NOESY-

HSQC spectra are recorded to generate a set of intermolecular NOEs between the 

ligand resonances and ILV methyl groups as well as the backbone amide protons of 

the protein. A known 3D structure or structures of the protein target (or a homology 

model) is then used for molecular docking using HADDOCK to obtain the protein-

ligand structure based solely on the intermolecular NOE restraints.12 Given that the 

isotopic labeling method has been used to obtain assignments for large proteins, it is 

likely that the proposed scheme can also be used to determine experimentally 

derived molecular models based on sparse NOE data for large protein-small 
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molecule complexes in an efficient yet reliable manner.11,13-15 Here the approach is 

illustrated using the moderately sized 27 kDa N-terminal domain of the molecular 

chaperone heat shock protein 90 (Hsp90), a known cancer target. 

 

Figure 1.  A flowchart scheme to illustrate the number of steps involved in the determination 
of the model protein-ligand complex by solution NMR based on the sparse NOE data using 
ILV methyl labeling approach.  
 

The N-terminal domain of Hsp90 (9-233) was isotopically labeled in E. coli 

according to the published procedure.11 Heteronuclear correlation experiments 

yielded highly resolved spectra with excellent sensitivity in which all expected methyl 

peaks can be observed (Figure 2). The triazine 1 had been discovered as a ligand of 

Hsp90 in a target immobilized NMR screen (TINS) of a fragment library constructed 

from commercially available compounds.16,17 The binding of 1 to Hsp90 was 

confirmed using surface plasmon resonance technology and the equilibrium KD was 

determined to be 58 µM via fitting to a 1:1 binding model (data not shown). We 

investigated the effect of 1 binding to the protein by recording a high-resolution CT-

[1H,13C] HSQC spectrum in the presence and absence of the compound (Figure 
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2).18,19 The methyl chemical shift perturbations are clear evidence of the binding of 1 

to Hsp90. The peak pattern in the bound state is suggestive of a folded protein 

indicating that the binding is specific and does not result in protein denaturation or 

other undesirable affects. Surprisingly, the majority of the methyl resonances are 

affected by the binding of 1 and a similar pattern was observed in the [1H, 15N]-HSQC 

(not shown). Using the sequential assignment determined below, the methyl and 

backbone amide chemical shift perturbations (CSPs) have been mapped onto the 

crystal structure of Hsp90 (Figure 3). Although the CSPs surround the known ATP 

binding site, residues far from the site are also significantly affected. The widespread 

changes in the spectrum of Hsp90 could be indicative of conformational changes in 

the protein induced or stabilized by the binding of compound 1. Indeed, 

conformational changes have been observed for a number of ligands binding to 

Hsp90.20 Thus it can be difficult to determine the ligand binding site simply on the 

basis of CSPs (see below). Furthermore, the orientation of the ligand within the 

binding site, and therefore the nature of the protein-ligand interactions, is not defined 

by the CSP information. 
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Figure 2. CT- [1H,13C] HSQC spectra of an ILV methyl protonated sample of deuterated N-
terminal domain of  Hsp90 recorded in the absence (in red) and in the presence of 1 (in 
green) at a protein to ligand ratio of 1:6. Significant chemical shift perturbations for various 
methyl groups are seen clearly in the presence of 1, indicative of binding. 

 

�

Figure 3.�The methyl (yellow) and amide (red) chemical shift perturbations caused by the 
presence of 1 are mapped on the crystal structure of Hsp90 (PDB 1YER). The figure was 
created in PyMOL.21 

 
The sequential backbone assignment of Hsp90 is available (e.g. BMRB 5355) 

but was confirmed by analysis of TROSY-based HNCACB and HNcoCACB NMR 

spectra. In total, 76% of the HN, N, Cα and Cβ chemical shifts were sequentially 
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assigned, including 87% of the ILV residues. The methyl resonances were 

subsequently correlated with the intraresidue Cα and Cβ assignments by a CCH-

TOCSY experiment. Of the ILV residues that had been sequentially assigned, 92% of 

the ILV methyl assignments were obtained in a straightforward manner. It is not 

essential to obtain all ILV methyl assignments since only those within the binding site 

will give rise to intermolecular NOEs. Based on the crystal structure of a complex of 1 

with Hsp90 (see below), all methyl groups that are within NOE distance (8 Å using a 

highly deuterated protein) to the ligand have been assigned using only data from 

these three experiments. Stereospecific methyl assignments for Leu and Val 

residues were obtained by producing a 10% 13C labeled sample and CT-HSQC 

analysis as described previously.22 

 
Figure 4.  A] Representative strips from the 3D 13C- and 15N-edited NOESY-HSQC spectra 
of methyl protonated {I(13CH3, δ1 only), L(13CH3,12CD3), V(13CH3,12CD3)} U-[15N,13C,2H] 
Hsp90 in the presence of 1. The intermolecular NOEs between the methyl groups of the 
protein (L107MD1, L107MD2) and the ligand H1, H2, H3 groups are circled. The strips for 
residues I96 and G97 from a 15N-edited NOESY-HSQC spectrum are shown from which 
intermolecular NOEs to the H3 group of 1 are circled. The frequencies (ppm) of 1H and 13C or 
15N nuclei are shown at the bottom and the top of the strips respectively. B] The structure 
(top) and 1D 1H spectrum (bottom) of 1 in D2O with the resonance assignment.  
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3D 13C-edited and 15N-edited NOESY-HSQC spectra were recorded on the 

protein-ligand complex in order to detect intermolecular NOEs.23,24 Due to the 

selective labeling scheme employed, there was minimal overlap amongst the protein 

resonances and therefore intermolecular NOEs were unambiguously assigned. 

Selected strips from the 13C-edited NOESY-HSQC and 15N-edited NOESY-HSQC 

spectra exhibiting intermolecular NOEs from the ligand are shown in Figure 4A. A 

total of 21 intermolecular NOEs were identified between resonances of 1 and protein 

residues including three to amide protons (I96, G97 and M98) and 18 NOEs to 

methyl groups (L107, L103, V150, V186 and I96). The peak intensities from the 

intermolecular NOEs were converted to distances and used as restraints to carry out 

the docking of the ligand using HADDOCK (See experimental section for more 

information).12  

   Typical of many pharmaceutical targets, a crystal structure of apo-Hsp90 (PDB 

1YER) is available in the PDB. This structure was the starting point for the 

experimentally restrained docking procedure. We performed HADDOCK calculations 

using only the apo-Hsp90 structure and 21 intermolecular-NOE distances as 

unambiguous restraints (Table 1).12  The lowest energy cluster exhibited a 

HADDOCK score and minimal restraint violation energy of -7.0 and 3.8 kcal/mol 

respectively, whereas the next ligand cluster exhibited a HADDOCK score of 3.4 and 

minimal restraint violation energy of 20.0 kcal/mol. The difference between the 

clusters indicates that the input data defines a single set of structures.    
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Table 1. Intermolecular NOE distance restraints included into HADDOCK calculations are 
shown. Note that a lower and upper distance margin of 1-2 Å were employed to above target 
distances. 
�

Ligand 
atom 

Protein 
residue 

Protein 
residue 

atom 

Target 
distance 

(Å) 
H1 I96 HD1 3.8 
H1 L103 HD+ 4 
H1 L107 HD1 4.3 
H1 L107 HD2 4 
H1 V150 HG1 3.8 
H1 V150 HG2 3.8 
H1 V186 HG2 4.3 
H2 I96 HD1 4 
H2 L103 HD+ 5 
H2 L107 HD1 4.6 
H2 L107 HD2 4 
H2 V150 HG1 5.3 
H2 V186 HG2 5.3 
H3 L103 HD+ 4.9 
H3 L107 HD1 3.9 
H3 L107 HD2 3.6 
H3 V150 HG1 4.8 
H3 L186 HG2 5 
H3 I96 HN 4 
H3 G97 HN 4 
H3 M98 HN 4 

 

A crystal structure of the complex of 1 with Hsp90 was available in the PDB (3B24).25 

In 3B24 there are two protein molecules in the asymmetric unit and although 1 is 

bound in the same site in each, it is rotated by approximately 180o in the different 

structures (Figure 5A). Superposition of the protein in the three structures (NMR 

model and two crystal structures) indicates that the sparse NOE method defines the 

binding site of the ligand uniquely and accurately. Most Hsp90 ligands form critical 

hydrogen bonds to residues D93 and T184 and these are present in both the X-ray 

structures and the NMR model. The orientation of 1 in the NMR based model is quite 

similar to one of the orientations in the asymmetric unit of the crystal structure (1.7 Å 

rmsd). In the NMR model, the orientation of 1 is defined by a network of 3 

intermolecular NOEs from the ligand H3 group to the amide protons of residues I96, 
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G97 and M98 (Figure 5B) and is thus unambiguous.  Interestingly, PDB entries 2WI2 

and 2WI3, are structures of a similar triazine bound to Hsp90 in which two 

orientations differing by a 180o axial rotation are found. In this case the different 

orientation was dependent on whether soaking or co-crystallization was used to form 

the complex.26 Taken together the crystal structures suggest that there are two or 

more low energy conformations for the complex of these simple triazines with Hsp90. 

In contrast, the NMR data indicate that in solution, there is one predominant 

conformation and this is likely to be the most physiologically relevant. Importantly, 

despite the moderate number of intermolecular restraints, the NMR model defines 

precisely the same binding site as the crystal structure and the critical intermolecular 

hydrogen bonds suggesting that in addition to being fast, the method is robust. 

 
Figure 5. A] Overlay of the lowest energy HADDOCK model of 1 bound to Hsp90 with  a 
crystal structure of the complex (PDB 3B24) in which 1 binds in two orientations (docked 
model- magenta, 3B24: green and sky blue). The orientation of 1 in the NOE-based model is 
similar to one of the binding modes (seen in sky blue color) of the ligand in PDB entry 3B24. 
B] The orientation of 1 in the docked model is largely determined by the three intermolecular 
NOEs observed between the H3 group of the ligand and HN of I96, G97 and M98 shown in 
pink within the protein. The figure was created in PyMOL.21 

 

    Numerous groups have attempted to use CSPs to determine the structure of 

protein-ligand complexes.7,27 We used the ability of HADDOCK to include CSPs as 

ambiguous restraints for docking and modeled the structure of the Hsp90-1 complex 
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using the most significant methyl and backbone amide CSPs (Figure 6). The 

HADDOCK calculations generated 2 clusters whose HADDOCK scores were similar 

and significantly lower than others. Interestingly, the clusters are both located at the 

binding site of 1 defined in both the NOE model and the crystal structures. However, 

despite the fact that electrostatics were used during the HADDOCK calculation, the 

hydrogen bonds to D93 and T184 are not present. In fact, the amine group of 1 is 

pointing away from these residues. 

�

Figure 6.Overlay of the lowest energy HADDOCK model structures of 1 bound to Hsp90 
obtained using the most significant methyl and backbone amide chemical shift perturbations 
(Δδi > Δδavg + 2 x standard deviation). Two clusters of 1 are observed which have similar 
HADDOCK score. A] Overlay of the two structures from one of the clusters (magenta and sky 
blue) with NOE-derived docked model shown in orange. B] Overlay of the two structures 
from the other cluster (pink and dark green) with NOE-derived docked model shown in 
orange. The figure was created in PyMOL.21 
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Figure 7. Overlays of the lowest energy HADDOCK model structures are shown when 1 is 
docked with various N-term Hsp90 structures with different sidechain conformations (shown 
as lines) in the PDB (1YER- yellow, 1OSF-orange, 2QF6-magenta and 3B26-grey). The 
ligand is found to bind in the same binding spot in comparison with the X-ray structure, 
irrespective of the conformational flexibility of the helix formed by residues 100-124 seen in 
the various PDB structures. The figure was created in PyMOL.21  
 
  Frequently ligand binding is accompanied by a conformational change in the 

protein. Conformational rearrangement of residues 100-124, which are in close 

proximity to the ligand binding site of Hsp90, has been observed for a number of 

ligands including in the two structures in the unit cell of 3B24 (Figure 5A). To 

investigate any possible influence of conformational rearrangement on the structures 

calculated from NMR data, we selected 3 different Hsp90 structures which differ in 

the conformation of residues 100-124 for docking using HADDOCK.12 The binding 

site and orientation of the ligand cluster in each of the 3 different Hsp90 structures 

was very similar to that determined using the apo-protein (Figure 7). Importantly, the 

intermolecular hydrogen bonds to D93 and T184 are conserved in all 4 

experimentally constrained docking structures. This data suggests that, at least for 

the case of Hsp90, binding induced conformational changes do not preclude 
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determining the essential features of a small molecule-protein complex even if those 

changes are unknown.    

CONCLUSION  
 
 The method presented here appears to be capable of generating reliable protein-

ligand structures in a quick and efficient manner. We have shown that a universal 

selective labeling scheme can be used to rapidly identify sufficient numbers of 

restraints for a small molecule ligand weakly bound to protein. Moreover, universal 

labeling precludes the necessity for a priori knowledge of the ligand binding site. 

However, the present method depends on the availability of selectively labeled, 

deuterated protein which can only be produced in E. coli. Note that the 3 NOEs 

involving backbone amide protons of the protein were critical for orienting 1 in the 

protein-ligand complex. This observation suggests that, at least in some cases, the 

use of exclusively methyl labeled protein could result in the loss of important 

constraints for the calculation procedure. Another obvious limitation is the 

requirement for methyl groups at the ligand binding site. Although ILV residues tend 

to be well located in proteins and clearly Hsp90 is a good example of this, it is not 

always the case.13 However, it is also possible to selectively label all methyl 

containing residues providing even more complete coverage of protein structures and 

ligand binding sites.28 While we have used standard, through-bond NMR techniques 

for resonance assignment here, recently steps towards automating the assignment of 

methyl resonances based either on intramolecular NOEs and/or through-space 

paramagnetic effects have been taken.29 Implementation of selective methyl labeling 

in conjunction with automated resonance assignment should enable structure 

determination of complexes involving reasonably large proteins up to 75 kDa. We 

feel the present method could prove valuable for the early stages of FBDD by 
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providing 3D structure information on weakly binding fragment-protein complexes.  

 

Experimental Section: 

Sample Preparation 

    A methyl protonated {I(13CH3, δ1 only), L(13CH3,12CD3), V(13CH3,12CD3)} U-

[15N,13C,2H] sample of N terminal domain (9-233) of Hsp90 was obtained by protein 

overexpression from a culture of E. coli BL21 (DE3) cells transformed with the 

plasmid pQTEV as described.11 The protein was  expressed in 1 L D2O M9 medium 

supplemented with 2 g/L of U-[13C, 2H]-glucose (Sigma) as the main source of carbon 

and 0.3 g/L of 15NH4Cl (Sigma) as the nitrogen source. One hour prior to induction at 

~0.5 OD, 50 mg of 2-keto-3,3-d2-1,2,3,4-13C-butyrate and 100 mg of 2-keto-3-methyl-

d3-3-d1-1,2,3,4-13C butyrate (13C labeled α-ketoisovalerate deuterated at the β-

position and with one of the methyl groups - 12CD3) were added to growth medium. 

The expression of the protein was induced by the addition of 1 mM IPTG for 16 hours 

at 18°C. The protein was purified on Ni-Hitrap FF (GE Lifescience) followed by 

purification on a superdex G75 gel filtration column (GE Lifescience). The seven-

histidine tag was removed by proteolytic digestion with TEV protease (Invitrogen) 

according to the manufacturer recommended buffer condition. The cleaved tag and 

the TEV protease were removed by affinity purification on Ni-Hitrap FF, and 

subsequently the buffer of Hsp90 (9-233) was exchanged to 20 mM sodium 

phosphate pH 7.5, 50 mM NaCl. The NMR sample was 0.7 mM in protein, 95% H20, 

5% D20, 20 mM sodium phosphate, pH 7.5, 50 mM NaCl. The NMR sample on the 

Hsp90-1 complex was obtained by addition of 6 equivalents of 1 to the protein. The 

pH of the sample was adjusted carefully within +/- 0.05 units  of 7.5 after addition of 

the ligand. Stereospecific methyl assignments were obtained by producing a 10% 13C 
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labeled sample and CT-HSQC analysis as described. 22    

Compound 1 was purchased from Maybridge, catalog number -!������� 

NMR backbone sequential assignments and ILV methyl assignments 

  In order to detect binding of 1 to Hsp90, a CT- [1H,13C] HSQC spectrum of 0.7 mM 

protein and protein plus ligand (1:6 ratio) was recorded on a Varian 800 MHz 

spectrometer equipped with a cryogenic probe. The chemical shifts of 1 in the bound 

state were also followed by acquiring 1D 1H proton spectrum in the presence of 

protein at different protein plus ligand ratios (1:0, 1:2, 1:4 and 1:6). 

  In order to perform sequential assignment of the backbone resonances and 

correlate them to the intraresidue ILV methyl resonances of the Hsp90-1 complex, 

the following experiments were acquired at 298K on 600MHz four-channel Bruker 

DMX NMR spectrometer equipped with a TXI cryo-probe; [1H,15N]-HSQC, trHNCACB 

recorded with (2048x80x110) in (1HN,15N,13C) dimensions, trHNcoCACB  recorded 

with (2048x80x180) in (1HN,15N,13C) dimensions with a recycle delay of 1s and with 

16 scans/FID.30,31 To correlate the backbone Cα and Cβ frequencies to the 

intraresidue methyl resonances of ILV residues, a CCH-TOCSY experiment was 

recorded with (2048x80x152) in (1Hm,13Cm,13C) dimensions with a recycle delay of 1s 

and with 8 scans/FID. The CCH-TOCSY pulse sequence was obtained by 

modification of a standard (H)CCH-TOCSY pulse sequence by removal of the initial 

INEPT pulses, addition of deuterium decoupling during the t1 and t2 period, starting 

with a direct carbon excitation pulse,  followed by a DIPSI-3 TOCSY transfer 

sequence and final detection on the methyl protons. The optimal mixing time for the 

TOCSY sequence was found to be 23.3 ms.32   

  A series of 2D 1H-1H NOESY planes with mixing time between 100-600 ms were 

acquired in order to determine the optimal mixing time based on the decay of cross 
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peak intensity. The optimal mixing time was defined to be a balance of being able to 

detect long range NOEs and spin diffusion and was found to be 400 ms. In order to 

observe intermolecular NOE cross peaks between the ligand and the protein, a 13C-

edited NOESY-HSQC (1024x40x160 points in 1H,13C,1H respectively) and a 15N-

edited NOESY-HSQC (1024x44x160 points in 1H,15N,1H respectively) were recorded 

with , mixing time of 400 ms and a recycle delay of 1s and with 16 scans/FID 

respectively.33-36 The NOESY experiments were acquired at 298K on a 900 MHz 

four-channel Bruker DMX spectrometer equipped with pulsed field gradient, 

conventional room-temperature triple resonance probe. The cross-peak 

volumes/peak intensities from the intermolecular NOEs were converted to distances 

based on the equation V=C/bn  (V= cross-peak volume/peak intensity, C is a 

constant, b is the upper distance bound and n is an exponent 4).37 The acquired 

NMR data was processed using the NMRpipe/NMRDraw software package and 

visualized in Sparky.38,39 The backbone assignment process was guided by the 

predicted chemical shifts calculated by SHIFTX in the automatic assignment program 

MARS using PDB 1YER as input.40,41 The use of ILV methyl labeling is attractive for a 

number of reasons including: (i) the favorable relaxation properties of methyl groups 

so that NMR spectra, even for larger systems, are of higher sensitivity and 

resolution,14,42 (ii) the well-dispersed distribution of the methyl groups throughout the 

protein structure and particularly at ligand binding sites,43  (iii)  restriction of the NMR 

analysis to the backbone and sidechain resonances of ILV methyl groups of the 

protein simplifies the process and allows unambiguous identification of intermolecular 

NOEs and (iv) methods to produce ILV labeled samples in E. coli are robust and 

economical.11,44,45  
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Protein-Ligand Docking 

Throughout the docking procedure using HADDOCK, 1000 protein structures were 

used for initial rigid body docking. Explicit solvent refinement was performed on 200 

structures after initial docking iterations. The final docking solutions were selected by 

clustering of the structures and analysis of the HADDOCK scores.  The Hsp90 

structures used in HADDOCK calculations to investigate the conformational 

rearrangement of the helix formed by residues 100-124 are derived from a number of 

different complexes for which the ligand was removed prior to docking to compound 

1.13  
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NMR Spectroscopy to Investigate Protein-Ligand Interactions 
�
�

�����������NMR is a powerful and versatile tool with methods that are used for a 

variety of applications in fragment based drug discovery (FBDD). Common 

applications involve 1. ligand screening to generate hit matter (Chapters 2 and 3) 2. 

hit confirmation or hit validation (Chapters 2 and 3) and 3. obtaining atomic resolution 

3D structures of the protein-ligand complexes to guide hit to lead development 

(Chapters 3 and 4). FBDD involves the discovery of weak affinity fragments, which 

are later optimized into more potent lead compounds. The availability of 3D structural 

information about the interactions that a small molecule fragment makes within the 

binding site of a protein target is critical during the fragment hit-lead optimization 

stage. SBDD (structure based drug design) is considered to be the main driver for 

the development of many marketed drugs.1  

The goal of the work described in this thesis was to develop and implement 

efficient NMR methods that are capable of providing 3D structural information on 

protein-ligand complexes and applicable in the early stages of the drug discovery 

projects. Both X-ray crystallography and NMR based methods generate atomic 

resolution structural information and successfully support SBDD and FBDD. 

Especially as NMR based methods are sensitive towards weak protein-ligand 

interactions, they should be applicable where X-ray crystallography is least effective 

i.e. for weakly bound ligands. However, traditional NMR approaches involving uniform 

isotopic labeling are labor intensive and limited to proteins of moderate size (e.g., < 

30-40 kDa) and have therefore not been widely adopted in drug discovery. In this 

thesis, NMR methods were sought primarily to address these limitations.2  
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Chemical Shift Perturbation Analysis on Protein-Ligand Complexes 

NMR based chemical shift perturbation (CSP) analysis offers a fast and robust 

means to obtain low resolution structural information on the protein-ligand complex. 

CSPs are routinely employed to determine the binding location of the ligand. The pre-

requisite for determination of the ligand binding site from CSP analysis is the 

availability of the resonance assignment and the 3D structure (NMR or X-ray) of the 

target protein. When a ligand is titrated, the amide group of amino acids within the 

protein that are close to the ligand will experience a change in their local chemical 

environment. A chemical shift map is generated which allows identifying those amide 

groups whose environment is most affected due to the binding of a ligand. The map 

will also include those residues that are indirectly affected by ligand induced changes 

in the protein. These CSPs result mainly from the sensitivity of amide groups to pH 

and/or small changes that occur in the hydrogen bonding patterns of protein 

backbones upon ligand binding.3,4,5  

CSP based determination of the binding site was employed in Chapters 2 and 

3.  CSP analysis resulted in locating the binding sites of a DNA oligonucleotide and 

three fragments (Chapter 2). The CSP mapping clearly showed that the binding site 

for the fragment hits was the same as that of the oligonucleotide. In the absence of 

high resolution co-structures of TELETS-fragments and based solely on CSP data, we 

were able to deduce that fragments were able to bind to the DNA binding interface. 

This subsequently explained the disruption of the protein-DNA complex by fragments 

in gel-shift assays.   

The absence of co-structures of Rit1 with inhibitory compounds (Chapter 3), 

necessitated the use of the CSP based approach to understand the mechanism of 

inhibition of nucleotide exchange. NMR based CSP analysis was applied to 
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determine the binding site of the ligand with the highest affinity for Rit1. Interestingly, 

the CSP mapping for the ligand indicated multiple binding sites on Rit1. In this case, 

the primary binding site was close to the GDP nucleotide binding pocket and a 

secondary site was close to a loop that was missing from the Rit1-GDP crystal 

structure (PDB 4KLZ). The secondary site might have been a result of a 

conformational rearrangement caused upon binding of the ligand or influenced by the 

flexibility of the loop of the protein.6 As the CSP data suggested the possibility of two 

binding sites, further structure restraints (described in the paramagnetic NMR section 

below) were necessary in order to precisely define the ligand binding to the protein 

and to shed light on the mechanism of inhibition of nucleotide exchange. 

In conclusion, the use of CSP data analysis in TELETS small molecule 

discovery work assisted in the determination of the binding site for ligands and the 

DNA oligonucleotide. CSP data also explained the disruption of the protein-DNA 

complex by fragments. These fragments represent valuable starting points for 

developing potent lead compounds. Although the CSP data on the Rit1-inhibitor 

complexes described in Chapter 3 was informative, they gave ambiguous results. 

This was attributed to the presence of two distinct binding sites for the inhibitor on the 

protein surface. In Chapter 4, CSP analysis was used to determine the binding of a 

fragment hit to a selective methyl group labeled protein using both 15N amide and 13C 

methyl CSPs. CSP results seem to be unambiguous in cases where a ligand binds at 

a defined binding site.   

In general, CSP analysis can be routinely applied to molecular weight systems 

up to 40-50 kDa.  However, in some cases the resonance assignments for large 

molecular weight systems (> 60 kDa) cannot be obtained due to their poor NMR 

spectral characteristics. For such proteins, other alternatives such as selective 
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isotope labeling and/or paramagnetic NMR methods can be quite useful.3,4 Sidechain 

methyl CSPs are comparatively more sensitive than the amide groups as long 

sidechain containing methyl groups extend out into the binding pocket.1 Hajduk and 

coworkers have demonstrated that 13C methyl CSPs can also be used on large 

molecular weight protein targets to screen a collection of compounds.7 Spectra of 

such proteins also have minimal overlap and therefore the interpretation of CSP data 

becomes easier.8 Using both the amide and/or sidechain methyl CSPs, it may be 

possible to classify the compounds in groups that bind to the same binding site on 

the protein target if they show CSPs for the same resonance, even if the assignment 

for those resonances is not available. This type of information may prove useful at 

early stages of the drug discovery. Based on the CSP results obtained for different 

molecular systems investigated in this thesis, it would be recommended, wherever 

possible, to observe both the amide and sidechain methyl CSPs to give a better 

coverage of the ligand binding site (Chapter 4). It should be kept in the mind that the 

structural information obtained by the CSP approach is of low resolution and does 

not contain sufficient detail to calculate precisely the orientation of a ligand in the 

binding site. To obtain the level of detail that includes the precise orientation of a 

ligand in the binding site, other structural restraints such as intermolecular NOEs 

should be used.  

 

Paramagnetic NMR to Investigate Protein-Ligand Interactions 

 Paramagnetic NMR is a widely used technique to study protein-protein 

interactions.3,4  As described earlier for the Rit1 work, the CSP analysis resulted in 

two binding sites for the compound and additional restraints were necessary to define 

the Rit1-inhibitor interaction. Paramagnetic studies using the GDP-spin label followed 
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by docking calculations proposed a novel mechanism by which the compound 

inhibits GDP-GTP exchange of Rit1. The docking generated model structures of Rit1 

bound to an inhibitor show that the Rit1-ligand complex is relatively dynamic. The 

ligand occupies two binding sites on the protein surface. In one of the binding sites, 

the ligand sterically blocks the GDP by binding over the top of the nucleotide binding 

site of the protein. This explains that by physically trapping the GDP, the ligand 

stabilizes the GDP bound form of the protein and nucleotide exchange is inhibited. 

Using the PRE based NMR method, we were able to understand the mechanism of 

inhibition of nucleotide exchange caused by the compound. This new binding site 

may point towards a new approach to inhibit this pharmaceutically important, yet 

challenging, class of targets. 

The Rit1 PRE-work demonstrates how NMR-based techniques can provide 

structural information even on dynamic protein-ligand complexes when other 

biophysical approaches to obtain binding site information are unsuccessful or 

ambiguous. The main advantage of the PRE based approach over using NOEs is 

that isotope labeled protein is not required. Here, a PRE approach was chosen over 

conventional NOEs as sidechain assignments for Rit1 were not readily available due 

to the marginal quality of the NMR spectra. NOE based studies require isotope 

labeled protein in large quantities and complete protein backbone and sidechain 

resonance assignments are necessary. Obtaining the required assignments can be 

challenging. For PRE-based work, only the ligand assignments are required and 

these are straightforward to obtain.   

The Rit1-PRE work shows a small molecule exchanging between multiple 

binding poses. It is conceivable that a ligand with a weak affinity towards a protein 

target can adopt multiple binding poses. Various computational studies have shown 
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distinct multiple binding poses of small molecule ligands in binding sites of T4 

lysozyme, neutrophil elastase, estrogen receptor inhibitors, FKBP inhibitors, biotin -

streptavidin and cytochrome P450cam.9-15 Constantine et al have observed multiple 

binding modes of fragment-like kinase inhibitors using computational modeling and 

NMR studies.16 As a follow-up study to the Rit1 PRE work, it would be interesting to 

use paramagnetic pseudo-contact shifts to determine the same protein-ligand co-

structure. PCS provide long-range distance restraints (in the range of 10-40 Å) as 

well as relative orientations on the basis of the anisotropy of the magnetic 

susceptibility of paramagnetic metals. It would be interesting to see if the inclusion of 

pseudocontact shift datasets into docking calculations could also confirm the 

dynamic behavior of the Rit1-inhibitor complex. This should be readily possible as the 

application of pseudocontact shifts (PCS) in solving 3D atomic resolution structures 

of protein-small molecule complexes has been recently demonstrated by John et al 

and Guan et al.17,18 It would be interesting to combine the PCS data with molecular 

dynamic simulations to study dynamic protein-ligand complexes. This may help to 

differentiate the relative populations of the compound within the multiple binding 

poses. An extension of the Rit1 PRE-work can be applied to kinases, which are an 

important class of drug targets against oncology. There is an urgent need for 

selective kinase inhibitors that bind proximal to the ATP-binding site. The ATP site is 

highly conserved among protein kinases. The compounds that bind proximal to the 

ATP site might offer better selectivity. Here, spin labeled ATP can be used for the 

detection of compounds that bind outside the ATP site. A similar approach was 

shown by Janke et al.19 Methods like these can be broadly applied to screen for non-

ATP site binders. Overall, paramagnetic NMR methods present an alternative to 

obtain binding site information when other high resolution techniques fail.  
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Sparse NOE Data Leads to High Resolution Protein-Ligand Co-

structures 

The availability of protein-ligand co-structures allows the identification of 

essential interactions made by small molecule with the amino acid residues within the 

binding site of the target protein.1 These key interactions can then be improved upon 

by medicinal chemistry approaches leading towards compounds with better 

specificity, potency and ligand efficiency. The Hsp90 work in Chapter 4 demonstrates 

an NMR method that is based on the production of a protein target that is selectively 

isotopically labeled with the methyl groups of isoleucine, leucine and valine residues 

and acquisition of a limited number of intermolecular NOE restraints.13 In this method 

standard NOESY experiments were used to obtain a set of intermolecular NOEs 

between the protein-ligand complex. The NOE-based 3D co-structures of the Hsp90-

fragment complex obtained using our method revealed interesting difference when 

compared with the available crystal structures for the identical ligand with Hsp90 in 

the PDB. The crystal structures show that two or more low energy conformations of 

the ligand are present in the complex.�  In contrast, the NMR data indicate that in 

solution, there is one predominant ligand conformation. Importantly, despite the 

moderate number of intermolecular restraints, the NMR defines precisely the same 

binding site as the crystal structure and the critical intermolecular hydrogen bonds.2  

The method developed in Chapter 4 shows that a universal selective labeling 

scheme can be used to rapidly identify sufficient numbers of restraints for a small-

molecule ligand weakly bound to protein. This chapter demonstrates how a 

combination of selective methyl group labeling, standard NMR experiments and 

computational docking can be used to rapidly determine the 3D structure of a small 

molecule bound weakly to a protein target. Usually, NMR studies of large molecular 
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weight systems are restrained due to fast signal decay and severe peak overlap. The 

method utilizes selective labeling and advanced NMR experiments that have allowed 

structural studies on proteins up to ~100 kDa.20 Various groups have also undertaken 

steps towards achieving the resonance assignments using paramagnetic NMR. 

These were demonstrated to work on various molecular systems previously 

considered difficult for the resonance assignment. Implementation of selective methyl 

group labeling in conjunction with automated resonance assignment assisted by 

paramagnetic NMR should enable structure determination of complexes on 

reasonably large proteins.17,21-25 As the method requires only a sparse set of 

intermolecular NOEs, it presents an alternative to time consuming traditional NMR 

approaches that involve uniform isotope labeling and a large number of structural 

restraints. However, the present method depends on the availability of the structure 

of the target or a good homology model. The method also relies on the production of 

selectively labeled, deuterated protein, which can be performed only in E. coli. 

Another obvious limitation is the requirement for methyl groups at the ligand binding 

site. However, it is also possible to selectively label all methyl containing residues 

(Ala, Met, Thr, Ile, Leu and Val) providing even more complete coverage of protein 

structures and ligand binding sites.26 I think that the method combined with above 

adaptations could be even more powerful and prove valuable for the early stages of 

FBDD by reliably providing 3D structure information on weakly binding fragment-

protein complexes. 

 In my current position at ZoBio BV, a company that provides tools for 

FBDD in the pharmaceutical industry, the NMR methods described in Chapter 2, 3 

and 4 are being implemented routinely in FBDD projects. The results have led to a 

significant impact in  commercial drug discovery projects. The methods appear to 
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have sufficient speed and precision to support fragment hit to lead medicinal 

chemistry efforts. 

�
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�NMR methods are used for a variety of applications in a drug discovery 

process to guide hit to lead development and ultimately to generate potential drug 

candidates. The availability of 3D structural information on protein-ligand complexes 

is crucial during various stages of drug development. NMR based methods are 

sensitive toward weak protein-ligand interactions and are applicable where X-ray 

crystallography is least effective i.e. for weakly bound ligands. However, traditional 

NMR approaches that involve uniform isotopic labeling are labor intensive and limited 

by the size of protein targets (e.g., < 30-40 kDa). Therefore, these have not been 

widely adopted in drug discovery. The main focus of the work described in this thesis 

was to develop and implement efficient NMR methods that are capable of providing 

3D structural information on protein-ligand complexes in the early stages of the drug 

discovery projects. The work presented in this thesis covers a wide range of classical 

and newly developed NMR techniques applied to diverse molecular systems.  

Chapter 1 provides general introduction to the drug discovery process, in 

particular, to the fragment-based drug discovery. The chapter also describes NMR 

methods that are often used for screening purposes and to obtain 3D structural 

information on protein target-small molecule complexes.    

��In Chapter 2, a fragment based- small molecule discovery approach was 

sought to discover inhibitors that disrupt the DNA binding capability of TEL, a target 

for oncology. TEL is a DNA binding protein involved in transcriptional regulation of 

many cellular proteins that are involved in the regulation of angiogenesis. TEL is 

considered to be a therapeutic target for pathological angiogenesis in tumor cells. 

Chapter 2 describes the techniques and approaches that were undertaken to 

discover small molecule ligands that specifically bind the DNA binding ETS-domain 

of TEL. In order to discover the primary hit matter, a TINS NMR fragment screen was 
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applied. To demonstrate the DNA binding capability of TELETS, different array of 

techniques were used. Biochemical and structural analysis were performed using 

protein observed NMR, Surface Plasmon Resonance (SPR) and gel-shift assay to 

characterize DNA binding activity of TEL. The availability of the resonance 

assignments allowed determining the binding site of DNA and fragments hits. Based 

on the chemical shift perturbation analysis and CSP mapping, it was clearly observed 

that the binding site for the DNA and three fragments was common on the protein 

surface. To investigate whether these fragments were capable of disrupting the 

TELETS-DNA complex, a gel retardation assay was performed. The assay results 

indicated that the TELETS-DNA complex could be disrupted in the presence of high 

(millimolar) concentrations of 2 fragments. Clearly, the affinity for these fragments 

appears to be very low and the specificity, in relation to the other ETS-containing 

proteins remains to be tested. However, these fragments represent valuable starting 

points for further stages of drug discovery on TELETS. This work demonstrates how 

the application of NMR screening can be efficiently used to discover fragment hits 

and protein-observed NMR studies can be used to obtain low resolution structural 

information on protein-ligand complexes.  

In Chapter 3, a fragment based- small molecule discovery approach was 

initiated to discover small molecule inhibitors for Rit1 GTPase, a target for 

rheumatoid arthritis. Cellular studies carried out by Galapagos BV showed that 

inactivation of Rit1 reduced the levels of matrix metalloproteinases (MMPs) in bone 

cartilage tissue and that increased expression of Rit1 caused MMP levels to 

increase. MMPs are responsible for degradation of cartilage tissue and hence cause 

RA. Therefore, development of small molecule inhibitors that could inactivate Rit1 is 

important for a potential RA treatment. Chapter 3 describes the results obtained from 



 

����
�

fragment based screening, crystallization, analoging (compounds with similar 

chemical structures), hit development and a structural study on the most potent 

compound. A diverse range of techniques and methods was employed. Fragment 

hits were discovered using TINS NMR. The fragment hits were further tested in an in 

vitro biochemical assay. These hits and analog compounds were able to inhibit the 

GDP-GTP nucleotide exchange. In other words, compounds were able to stabilize 

the GDP bound inactive state of Rit1. Despite their functional inhibition, the 

mechanism of action of compounds remained elusive. High resolution 3D structures 

of the protein-compound would give a direct insight into the mechanism. The 

crystallography efforts yielded a high resolution 3D structure of the Rit1 bound to 

GDP nucleotide but efforts to obtain 3D structures on protein-ligand complexes 

failed. Substantial efforts to crystallize the complex were not successful due to the 

low solvent content of the protein crystals and cracking of protein crystals in the 

presence of the most potent compound. To address this issue, a solution based NMR 

approach was necessary and a paramagnetic NMR based approach was sought, 

whereby a spin label was introduced on GDP to obtain GDP-spin label. The 

paramagnetic NMR approach was combined with CSP analysis to obtain low 

resolution information on the binding site of ligands. Paramagnetic studies using the 

GDP-spin label followed by docking calculations proposed a novel mechanism by 

which the compound inhibits GDP-GTP exchange of Rit1. In one of the binding sites, 

the ligand sterically blocks the GDP nucleotide by binding over the top of the 

nucleotide binding site of the protein. This explains that by physically trapping the 

GDP nucleotide, the ligand stabilizes the GDP bound form of the protein and the 

nucleotide exchange with GTP is inhibited. This work shows how NMR-based 

techniques can provide structural information when other biophysical approaches to 
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obtain binding site information are unsuccessful. Here, using the PRE based NMR 

method, we were able to understand the mechanism exhibited by the compounds to 

achieve the inhibition of nucleotide exchange. PRE based methods present an 

alternative to obtain binding site information when other high resolution techniques 

fail. In principle, GDP-SL can be used to investigate any other GTPase.   

In Chapter 4, a solution NMR method was developed to obtain 3D structures 

of protein-small molecule complexes in rapid and efficient manner. The method was 

developed using the Hsp90-fragment complex as a model system. Hsp90 interacts 

with a large number of client proteins and it is thought that ATP hydrolysis is the main 

driver for these interactions and for this reason many drug discovery approaches 

have focused on targeting the ATP binding pocket in the N-terminal domain of 

Hsp90. The method described in Chapter 4 makes use of a small molecule fragment 

that binds in the ATP binding pocket of the N-terminal Hsp90 discovered by TINS 

NMR screening. The main goal was to use this protein-ligand system to develop an 

efficient way to obtain 3D structural information on protein bound to a ligand. In 

Chapter 4, an NMR method that is based on the production of a protein target that is 

selectively isotopically labeled with the methyl groups of isoleucine, leucine and 

valine residues is described. In this method standard NOESY experiments were used 

to obtain a set of intermolecular NOEs between the protein-ligand complex. The 

intermolecular NOEs were used as distance restraints to obtain 3D co-structures by 

molecular docking. The crystal structures were available for the identical ligand with 

Hsp90 in the PDB. The crystal structures show that two or more low energy 

conformations of the ligand are present in the complex.�  In contrast, the NMR data 

indicate that in solution, there is one predominant ligand conformation. Importantly, 

despite the moderate number of intermolecular restraints, the NMR defines precisely 
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the same binding site as the crystal structure and the critical intermolecular hydrogen 

bonds, suggesting that in addition to being fast, the method is robust. The method 

shows that a universal selective labeling scheme can be used to rapidly identify 

sufficient numbers of restraints for a small-molecule ligand weakly bound to protein. 

This chapter demonstrates how a combination of selective methyl group labeling, 

standard NMR experiments and computational docking can be used to rapidly 

determine the 3D structure of a small molecule bound “weakly” to a protein target. 

The approach requires only a sparse set of intermolecular NOEs and is an alternative 

to time consuming traditional NMR approaches that involve uniform isotope labeling. 

This method is also amenable to large molecular weight targets.�

Chapter 5 presents the general discussion of the work and provides future 

perspectives for NMR methods developed and implemented in this thesis.�
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In de ontwikkeling van geneesmiddelen worden NMR-methoden gebruikt voor tal van 

toepassingen in het proces van hit-to-lead en de uiteindelijke ontwikkeling van 

potentiële medicijnkandidaten. De beschikbaarheid van 3D structuurinformatie in 

eiwit-ligand complexen is cruciaal tijdens de verschillende fasen van 

medicijnontwikkeling. Methoden die op NMR zijn gebaseerd, zijn gevoelig voor 

zwakke eiwit-ligand interacties, in het gebied waar Röntgenkristallografie het minst 

effectief is. Helaas zijn traditionele NMR-benaderingen, die uniforme isotoopverrijking 

vereisen, arbeidsintensief en beperkt tot kleinere eiwitten (< 30-40 kDa) en daarom 

worden deze methoden niet op grote schaal gebruikt in medicijnontwikkeling. Het 

belangrijkste doel van het in dit proefschrift beschreven werk was daarom het 

ontwikkelen en implementeren van efficiënte NMR-technieken die 3D 

structuurinformatie van eiwit-ligand complexen kunnen opleveren voor het gebruik in 

de vroege stadia van medicijnontwikkeling. Het werk bestrijkt een groot gebied van 

klassieke en nieuw-ontwikkelde NMR-technieken, toegepast op diverse moleculaire 

systemen. 

 

Hoofdstuk 1 geeft een algemene introductie in het proces van medicijnontwikkeling, 

in het bijzonder de fragment based drug discovery. Dit hoofdstuk beschrijft ook de 

NMR-methoden die vaak worden gebruikt voor screening doeleinden en om 3D 

structuurinformatie van complexen tussen target eiwitten en kleine moleculen te 

verkrijgen. 

 

In hoofdstuk 2 wordt een fragment based small molecule discovery benadering 

getoetst om remmers te vinden die het bindend vermogen van TEL, een target-eiwit 

in de oncologie, beïnvloeden. TEL is een eiwit dat aan DNA bindt en betrokken is bij 
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de transcriptieregulatie van veel cellulaire eiwitten die een rol spelen bij angiogenese. 

TEL wordt beschouwd als een therapeutisch target voor pathologische angiogenese 

in tumoren. In hoofdstuk 2 worden de technieken en benaderingen beschreven die 

zijn toegepast om kleine moleculen te vinden die specifiek associëren met het DNA-

bindende ETS-domein van TEL. Een TINS NMR fragment screen werd uitgevoerd 

om de primaire hit-materie (alle bindende moleculen) te vinden. Om het resterende 

DNA-bindende vermogen van TELETS te bepalen zijn verschillende technieken 

gebruikt. Biochemische analyse en structuuranalyse werden uitgevoerd met behulp 

van NMR-spectroscopie aan het eiwit en Surface Plasmon Resonance (SPR) en een 

gel-shift assay werden gebruikt om de DNA-binding van TEL te beschrijven. De 

reeds beschikbare resonantietoekenningen maakten het mogelijk om de 

bindingsplaats van zowel het DNA als de hit-fragmenten op het eiwitoppervlak vast te 

stellen. Met behulp van chemical shift perturbation analyse kon duidelijk worden 

vastgesteld dat de bindingsplaats voor het DNA overeenkwam met die van drie 

fragmenten. Om te onderzoeken of deze fragmenten het TELETS-DNA complex 

kunnen verstoren werd een gelretardatie-test uitgevoerd. De resultaten toonden aan 

dat het TELETS-DNA complex kon worden verstoord in de aanwezigheid van hoge 

(millimolair) concentraties van twee fragmenten. De affiniteit voor deze fragmenten is 

duidelijk erg laag en de specificiteit ten opzichte van andere ETS-bevattende eiwitten 

moet nog worden onderzocht. Toch vertegenwoordigen deze fragmenten 

waardevolle uitgangspunten voor medicijnontwikkeling met betrekking tot TELETS. Dit 

werk laat zien dat de toepassing van NMR screening op een efficiënte manier kan 

worden gebruikt om hit-fragmenten te vinden en dat NMR aan het eiwit kan worden 

toegepast om structuurinformatie van eiwit-ligand complexen met een lage resolutie 

te verkrijgen. 
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In hoofdstuk 3 staat beschreven hoe een fragment based small molecule discovery 

benadering werd geïnitieerd om kleine-molecule remmers te vinden voor Rit1 

GTPase, een target voor reumatoïde artritis. Cellulaire studies, uitgevoerd door 

Galapagos BV, lieten zien dat het inactiveren van Rit1 leidde tot lagere 

hoeveelheden van matrix metalloproteinen (MMPs) in kraakbeen en dat toegenomen 

expressie van het gen voor Rit1 die hoeveelheden deed stijgen. MMPs zijn 

verantwoordelijk voor vermindering van kraakbeenweefsel en veroorzaken dus RA. 

Daarom is de ontwikkeling van kleine-molecule remmers die Rit1 kunnen inactiveren 

belangrijk voor een mogelijke behandeling van RA. Hoofdstuk 3 beschrijft de 

verkregen resultaten van fragment based screening, kristallisatie, analoging 

(evaluatie van moleculen met vergelijkbare structuur), hit development en een 

structuuronderzoek van de meest potente verbinding. Een reeks van diverse 

technieken en methoden werd toegepast. Hit-fragmenten werden gevonden met 

behulp van TINS NMR. Deze fragmenten werden nader getest in een in vitro 

biochemische test. De hits en analoge verbindingen konden de GDP/GTP 

nucleotide-uitwisseling verhinderen. Met andere woorden, de verbindingen waren in 

staat om de inactieve, GDP-gebonden toestand van Rit1 te stabiliseren. Het 

mechanisme van deze remmende werking was onduidelijk. Hoge-resolutie 3D 

structuren van het eiwit-molecule complex zouden inzicht in dit mechanisme kunnen 

geven. Kristallisatie leverde weliswaar een hoge-resolutie 3D structuur van Rit1 

gebonden aan GDP nucleotiden op, maar 3D structuren van eiwit-ligand complexen 

konden niet worden verkregen. Veel pogingen om het complex te kristalliseren 

bleven zonder succes, vanwege het lage gehalte aan oplosmiddel in de 

eiwitkristallen en omdat de eiwitkristallen braken in de aanwezigheid van de meest 

potente verbinding. Vanwege deze problemen was een NMR-benadering 
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noodzakelijk. Er werd een paramagnetische NMR methode toegepast, waarbij een 

spin label op GDP werd aangebracht om een GDP-spin label te verkrijgen. De 

paramagnetische NMR-benadering werd gecombineerd met CSP analyse om lage-

resolutie informatie over de bindingsplaats van de liganden te verkrijgen. Op grond 

van de paramagnetische studies met de GDP-spin label, gevolgd door docking 

berekeningen, is een nieuw mechanisme voorgesteld voor het afremmen van de 

GDP/GTP-uitwisseling van Rit1 door de verbinding. Het ligand blokkeert de GDP-

nucleotide aan de ‘bovenkant’ van de nucleotide-bindingsplaats op het eiwit. Door 

fysiek afschermen van de nucleotide door het ligand wordt de GDP-gebonden 

toestand van het eiwit gestabiliseerd en de nucleotide-uitwisseling met GTP 

verhinderd. Dit werk laat zien hoe op NMR-gebaseerde methoden, in dit geval 

gebruik makend van paramagnetische relaxatie, structuurinformatie kunnen geven in 

gevallen waar andere biofysische technieken zonder resultaat blijven.  In principe 

kan het GDP-spin label worden gebruikt om elke andere GTPase te bestuderen. 

 

In hoofdstuk 4 staat beschreven hoe een andere methode voor vloeistof-NMR is 

ontwikkeld om op een snelle en efficiënte manier 3D structuurinformatie van 

complexen tussen eiwitten en kleine moleculen te verkrijgen. Bij de ontwikkeling van 

deze methode werd gebruik gemaakt van een Hsp90-fragment complex als 

modelsysteem. Hsp90 gaat interacties aan met een groot aantal andere eiwitten. 

Verondersteld wordt dat de hydrolyse van ATP de drijvende kracht is achter deze 

wisselwerkingen. Dit is de reden waarom veel medicijnontwikkeling gericht is op het 

ontwikkelen van moleculen die binden in de ATP-bindingsplek in het N-terminale 

domein van Hsp90. De methode maakt gebruik van een fragment dat bindt in de 

ATP-bindingsplek, gevonden door gebruikmaking van TINS NMR screening. Het 
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belangrijkste doel was om met behulp van dit eiwit/ligand-systeem een efficiënte 

manier te ontwikkelen om 3D structuurinformatie van een aan een ligand gebonden 

eiwit te verkrijgen. De methode is gebaseerd op het gebruik van eiwit dat selectief is 

verrijkt met isotopen in de methylgroepen van isoleucine, leucine en valine residuen. 

Bij deze methode worden standaard NOESY experimenten gebruikt om een reeks 

intermoleculaire NOEs in het eiwit-ligand complex te verkrijgen. Deze NOEs werden 

gebruikt om 3D co-structuren te verkrijgen door moleculaire docking. De 

kristalstructuren waren voor hetzelfde ligand gebonden aan Hsp90 waren reeds 

beschikbaar in de PDB. Deze structuren laten zien dat er twee of meer lage-energie 

conformaties van het ligand aanwezig zijn in het complex. In tegenspraak hiermee 

tonen de NMR data aan dat er in oplossing slechts één overheersende 

ligandconformatie aanwezig is. Het is een belangrijke vinding dat, ondanks het 

bescheiden aantal intermoleculaire contacten, de NMR-methode precies dezelfde 

bindingsplaats en kritische intermoleculaire waterstofbruggen definieert als de 

kristalstructuur laat zien. Dit suggereert dat de methode niet alleen snel maar ook 

robuust is. De methode laat zien dat een universele selectieve verrijkingsstrategie 

kan worden gebruikt om snel een voldoende aantal contacten te identificeren voor 

een klein molecule dat zwak gebonden is aan een eiwit. Het vormt ook een 

alternatief voor tijdrovende traditionele NMR benaderingen die uniforme 

isotoopverrijking met zich mee brengen. De methode is ook toe te passen op eiwitten 

met hoge moleculegewichten. 

 

In hoofdstuk 5 wordt een algemene discussie van het werk gegeven en er worden 

toekomstperspectieven besproken voor de ontwikkelde en toegepaste NMR-

methoden die in dit proefschrift zijn behandeld. 
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