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Chapter 1 
 

General Introduction 

 

1. The importance of filamentous fungi in product formation 

 

The fungal kingdom is estimated to exist of over 1.5 million species among which only a 

small number of species have been described in detail (Hawksworth 2001). There is a huge 

diversity among fungi, both in their morphology as well as in the products they can produce. 

Morphologically, the fungal kingdom includes unicellular yeast cells as well as multi-

cellular hyphal cells that form a mycelium. Hyphal cells grow exclusively at the tip of the 

hyphae in a highly polarized way (Momany 2002). Many filamentous fungi are saprophytes 

meaning that they feed on dead organic material. It is, therefore, necessary for them to 

secrete large amounts of extra-cellular hydrolytic enzymes to decompose these often 

complex organic materials in nature. 

For centuries, filamentous fungi have been used in many traditional food processes 

such as cheese-making, sake (rice wine) and soy sauce production. Nowadays, filamentous 

fungi are also used as cell factories in biotechnology to produce a wide variety of products 

such as enzymes, primary and secondary metabolites including organic acids and 

antibiotics. Filamentous fungi have been explored as expression hosts for protein 

production of both fungal and non-fungal origin (Punt et al. 2002; Su et al. 2012). So the 

industrial application areas utilizing filamentous fungi are very diverse including food and 

beverage, pulp and paper, feed and pharmaceuticals (Fleissner and Dersch 2010; Meyer 

2008; Saloheimo and Pakula 2012).  

Relatively few species have been developed into a commercially exploited filamentous 

fungal expression system. The most frequently used industrial fungi include Trichoderma 

reesei, Aspergillus oryzae, A. niger and Myceliophthora thermophila (previously known as 

Chrysoporium lucknowense C1 (Berka et al. 2011; Verdoes et al. 2007; Visser et al. 2011)). 

T. reesei has mainly been used for the production of cellulases and other plant cell wall-

degrading enzymes (Saloheimo and Pakula 2012; Schuster and Schmoll 2010). Fermented 

foods including soy sauce and sake are produced by A. oryzae (Machida et al. 2008) and 

citric acid and amylases that are used in the beverage and food industry respectively are 

mostly produced by A. niger (Pel et al. 2007). M. thermophila is a recently described fungal 

expression system for neutral cellulases and heterologous protein production (Berka et al. 

2011; Visser et al. 2011). Recently, increased attention has been paid to second generation 

feedstocks using wheat straw or sugar cane bagasse. Compared to first generation 

feedstocks, these are cheaper more environmentally friendly and less competitive in 
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relation to food supply (Kumar et al. 2008; Zheng et al. 2012). Filamentous fungi have been 

shown as predominant hosts for the enzymes that are used for the saccharification process 

(Gusakov 2011; Sims et al. 2010) as well as for the direct microbial conversion from crude 

feedstock into bioproducts (Beeson et al. 2011; Lin et al. 2010; Rumbold et al. 2009; van 

den Brink et al. 2013). A. niger has also been shown as a potential and promising host for 

those processes (Delmas et al. 2012; Rumbold et al. 2010; Rumbold et al. 2009).  

 

2. Factors affecting the productivity  

 

A successful commercialization of fungal enzymes in relation to lignocellulose degradation 

or the production of metabolites is only possible when these proteins or metabolites are 

efficiently produced. Productivity is affected by many factors such as culture conditions, 

morphology and the fungal host strain. In the next sections, these different factors are 

discussed in more detail. 

 

2.1. Culture conditions  

 

Different culture conditions including the composition of culture medium, pH, temperature 

and the type of cultivation affect product formation. The carbon source is not only 

important as energy source, but also an important factor that decides which product is to be 

formed. For example, when starch or maltose is used as a carbon source, amylolytic 

enzymes including glucoamylase (GlaA) are highly induced and secreted, whereas xylose 

induces the synthesis of (hemi)cellulolytic enzymes (de Oliveira et al. 2011). Galacturonic 

acid, the main component of pectin induces the expression of pectinolytic enzymes 

(Martens-Uzunova and Schaap 2009). In addition, the carbon source affects the 

productivity. It has been shown that the production rate of extracellular proteins is three 

times higher on maltose than xylose (Jørgensen et al. 2009). Besides the carbon source of 

the medium, the pH, temperature and agitation speed of culture medium can affect the 

productivity. Withers et al. found that the GlaA productivity was not affected in the pH 

range 3.5-5.5 and culture temperature 30 and 37oC, but significantly reduced at pH 6.5 and 

at 25oC (Withers et al. 1998). In addition, the effect of pH on extracellular protease activity 

in relation to the heterologous protein (GFP) production was investigated using PgpdA-

GlaA-GFP in which about ten times higher GFP was yielded at pH 6 compared to pH 3 

because of lower protease activity (O'Doonnell et al. 2001). 

The cultivation method such as solid-state or submerged cultivation can influence the 

protein production (Gamarra et al. 2010; Oda et al. 2006; te Biesebeke et al. 2006). Using 

the same substrate (wheat bran), te Biesebeke et al. found important differences in the 
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secretome between submerged and solid state conditions. Whereas the enzyme α-amylase 

was identified under both conditions, arabinosidase and xylanase were abundantly produced 

in submerged cultures, while a chitinase and two new proteins that were thought to be 

involved in filamentous fungal-specific functions were produced in solid state cultures in A. 

oryzae (te Biesebeke et al. 2006). The culture condition in which the fungus grows can also 

affect the product formation. For example, Jørgensen et al. reported that transcript levels of 

genes encoding secondary metabolites such as potential polyketide synthase (PKS), 

nonribosomal peptide synthetase (NRPS) and small cysteine-rich proteins (e.g. 

hydrophobines) were enhanced at near-zero growth conditions. The expression of 

extracellular hydrolases (e.g. GlaA) was strongly downregulated under these conditions 

(Jørgensen et al. 2010).   

 

2.2. Fungal morphology  

 

The morphology of filamentous fungi has a strong influence on their production properties 

(Grimm et al. 2005; McIntyre et al. 2001; Papagianni 2004). In submerged cultures, 

filamentous fungi grow either as freely dispersed mycelium including loosely intertwined 

hyphae (dispersed mycelium), as clumps or as pellets (Grimm et al. 2005; Riley et al. 2000). 

The preferred morphology cannot be generalized because it varies depending on the 

product. In A. niger pelleted forms are preferred for citric acid production while dispersed 

filaments of A. niger are favored for enzyme production (Braun and Vecht-Lifshitz 1991; 

Gibbs et al. 2000; Papagianni 2004). In addition, the growth-form can strongly affect 

mixing and mass transfer properties. Dispersed long hyphae cause high viscosity of culture 

broth and these long hyphae are sensitive to shear forces in a bioreactor. Grown as pellets, 

the mycelia is less viscous but is confronted with difficulties of nutrient and oxygen access 

inside the pellet (Gibbs et al. 2000; Grimm et al. 2005). Thus, the preferred fungal 

macromorphology would consist of loosely grown mycelia with short filaments derived 

from an optimum branching frequency to ensure the high productivity as well as better 

nutrient and oxygen supply for the cells (Grimm et al. 2005; Kaup et al. 2008; Papagianni 

2007). Several studies identified multiple factors affecting fungal morphology which 

include agitation, medium composition, temperature and the way of inoculating cultures 

(Amanullah et al. 2002; Papagianni 2004; Wucherpfennig et al. 2010). In addition, a recent 

study showed that the age of conidia also influenced the adhesion properties thereby 

leading to different diameters of pellets (Colin et al. 2013). Addition of talc, alumina, or 

titanate microparticles was used to manipulate different morphology states to increase 

product formation in A. niger and other filamentous microorganisms (Driouch et al. 2012; 

Driouch et al. 2010; Kaup et al. 2008). 
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It is generally accepted that protein secretion occurs mainly at the hyphal apex as 

demonstrated by several studies e.g. localization of glucoamylase or α-amylase at hyphal 

tips (Gordon et al. 2000; Muller et al. 2002; Wösten et al. 1991). Some studies suggested a 

positive correlation between the amount of hyphal branches and protein secretion yields 

(Amanullah et al. 2002; Muller et al. 2002; te Biesebeke et al. 2005; Wongwicharn et al. 

1999), while other reports demonstrated no correlation (Bocking et al. 1999; McIntyre et al. 

2001). Our recent study showed that simply making more hyphal tips did not result in an 

increase of a protein production level using a hyperbranching mutant (Kwon et al. 2013b). 

Therefore, it is still a matter of debate whether a hyperbranching strain could improve 

protein production yields. Recently, it has been shown that the secretion also takes place at 

the septa using GFP fused α-amylase (AmyB-GFP) in A. oryzae (Hayakawa et al. 2011). 

 

2.3. The fungal host strain  

 

Filamentous fungi are main sources for the production of many commercial enzymes and 

organic compounds. Products of each fungal host strain can overlap but also be distinct 

(Table 1). M. thermophila, T. reesei, A. oryzae and A. niger are very efficient for the 

production of proteins. On one hand, several enzymes such as glucose oxidase, protease 

and phytase are produced from both A. oryzae and A. niger, or xylanase is produced from T. 

reesei and A. niger. Plant-polysaccharide-degrading enzymes such as cellobiohydrolases 

are produced from T. reesei and M. thermophila (Visser et al. 2011). On the other hand, 

certain products are only specifically produced from certain fungi: itaconic acid from A. 

terreus, kojic acid from A. oryzae, citric acid mainly from A. niger (Table 1). Here we focus 

on A. niger and why and/or how this fungus possesses high protein secretion capacity.     

 

3. The protein secretion capacity of A. niger  

 

A. niger is well known for its tremendous capacity to secrete proteins into the culture 

medium and is used as a cell factory not only for native products e.g. glucoamylase (GlaA), 

but also for heterologous protein production (Meyer 2008; Meyer et al. 2011b; Pel et al. 

2007). The complete genome sequence comparison of several fungi including A. nidulans 

and S. cerevisiae revealed that the number of genes related to protein secretion do not 

correlate with the secretion capacity of the species (Pel et al., 2007). It still remains 

unknown what makes A. niger a good protein secretor. In the following section, a few 

potential mechanisms are described which could contribute to the high secretion capacity of 

A. niger.   
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3.1. Uncoupling of growth and secretion 

 

Growth and secretion in fungi are considered to be tightly linked processes. The high 

capacity of protein secretion of A. niger, however, cannot be explained by a more rapid 

growth of A. niger in comparison to e.g. S. cerevisiae or A. nidulans which secret much 

lower levels of proteins. Therefore, it is possible that A. niger has developed mechanisms in 

which growth and high levels of protein secretion can be uncoupled. One possible 

mechanism could be the existence of parallel secretory pathways that independently deliver 

proteins for secretion (e.g. GlaA) and proteins related to growth (e.g. plasma membrane 

proteins and cell wall synthesizing enzymes) to the cell surface. Several studies including 

studies in fungi, plants and mammalian cells show that different populations of Golgi 

derived vesicles exist. In S. cerevisiae two populations of vesicles have been described: one 

is characterized by the presence of an enzyme involved in cell wall biosynthesis (Bgl1p) 

and the major plasma membrane ATPase (Pma1p) and the other population contains 

secreted enzymes, invertase and acid phosphatase (Harsay and Bretscher 1995). In 

Yarrowia lipolytica, mutants have been identified that are specifically affected in the export 

of plasma membrane and cell wall associated proteins but not in the secretion of 

extracellular proteins (Titorenko et al. 1997). Also in plants, it has been demonstrated that 

secretory proteins and cell wall synthase complexes move to different secretory pathways 

(Leucci et al. 2007).  

 

Table 1. Selected examples of industrially important acids and enzymes produced by filamentous  

               fungi.  

Compound  Organism Main application areas 

Acids    

 Citric acid  A. niger Food and beverage  

 Itaconic acid  A. terreus Polymer 

 Kojic acid 

Enzymes  

 A. oryzae Food 

 α-Amylase  A. niger, A. oryzae Starch processing and 

food 

 Cellulase  Trichoderma viride, T. reesei, 

M. thermophila 

Textile, pulp and paper  

Cellobiohydrolase  T. viride, T. reesei, M. thermophila Textile, pulp and paper 

 Glucoamylase  A. phoenicis, Rhizopus delemar Starch processing 

 Glucose oxidase  A. niger, A. oryzae Textile and Biosensor 

 Lipases  A. niger, A. oryzae Food and detergent 

 Pectin lyase  T. reesei Food 

 Proteases  A. niger, A. oryzae, R. delemar Food and detergent 

 Phytase  A. niger, A. oryzae Food 

 Xylanases  T. reesei, T. konignii, A. niger, 

M. thermophila 

Textile, pulp, paper 

and bakery 

Table is adapted from (Meyer 2008) with a small modification in which M. thermophila was 

included (Ustinov et al. 2008; Visser et al. 2011). 
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A study in the filamentous fungus T. reesei revealed the possible presence of more than 

one pathway for exocytosis based on spatial segregation of different SNARE complexes in 

the fungal tip cell (Valkonen et al. 2007). More recently, a distinct secretory route that 

occurs behind the apex independently of the Spitzenkörper was demonstrated in 

Neurospora crassa (Fajardo-Somera et al. 2013). There a GFP-tagged plasma membrane 

(PM) H+-translocating ATPase (PMA-1) localized at the subapical PM (>120 µm), but not 

at the tip or in the Spitzenkörper was described. In addition, fluorescence recovery after 

photobleaching (FRAP) analysis suggested that PMA-1 was incorporated directly into the 

PM indicating an alternative secretion pathway in filamentous fungi (Fajardo-Somera et al. 

2013). Also in A. niger, the existence of parallel secretion pathways has been suggested 

based on the phenotype of the srgA mutant. SrgA is the ortholog of the Sec4 protein, a Rab 

GTPase essential for exocytosis and cell viability in S. cerevisiae. In A. niger, deletion of 

srgA is not lethal, but the extracellular protein production on glucose was severely reduced 

while the production on maltodextrin was only marginally reduced (Punt et al. 2001). These 

results might be explained by postulating the existence of the two different secretion 

pathways: a constitutive pathway, highly dependent on SrgA and an additional, inducible 

pathway that is less dependent on the function of SrgA. We postulate that these parallel 

secretion pathways are present in all fungi and are used by A. niger. Possibly also other 

high secretors are using parallel secretion pathways to be able to increase secretion capacity 

of extracellular enzymes. 

 

3.2. More efficient COPII machinery  

 

Secretory proteins and enzymes destined for secretion follow a conventional endoplasmic 

reticulum (ER)-Golgi secretory route. Once properly folded and glycosylated in the ER, 

secretory proteins are packed into coat protein complex II (COPII)-coated vesicles and 

transported to the Golgi complex. The COPII core machinery comprises five proteins; Sar1, 

a secretion-related RAS1 GTPase and two subcomplexes, Sec23/24 and Sec13/31 

(Brandizzi and Barlowe 2013). The assembly of COPII coat is initiated by Sar1 activation 

in which inactive and soluble Sar1-GDP is converted into the active and membrane bound 

form of Sar1-GTP by a guanine nucleotide exchange factor (GEF), Sec12, which is an ER 

resident membrane protein (Barlowe and Schekman 1993). Activated Sar1 then recruits the 

‘inner layer’, Sec23/24, through binding to Sec23 (Bi et al. 2002). Sec24 serves as a main 

COPII adaptor that specifically recognizes ER export signals in cargo (Brandizzi and 

Barlowe 2013). Finally the ‘outer layer’, Sec13/31, is recruited and formed into a cage 

structure and COPII-coated vesicle budding is completed by membrane curvature and 

fission (Brandizzi and Barlowe 2013). Although the five proteins (Sar1, Sec23/24 and 
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Sec13/31) are the minimal core that can form COPII vesicles from membranes in vitro 

(Barlowe et al. 1994; Matsuoka et al. 1998), other elements are also required such as Sec16 

that facilitates COPII vesicle formation at the ER (D'Arcangelo et al. 2013).  

One of the reasons why A. niger possesses such an outstanding secretion capacity 

could be an efficient packaging of cargo via the COPII machinery. Although the 

information about COPII-coated vesicle transport available for A. niger is sparse, our 

transcriptomic study using the glucoamylase (GlaA) overproducing strains hints to a role of 

COPII machinery under high secretion conditions. By comparing the transcriptomes of a 

GlaA over-producing strain to a wild-type strain (Chapter 4), it was found that the 

expression levels of several COPII-related genes were induced. These induced genes 

include the five COPII core genes (Sar1, Sec23/24 and Sec13/31), Sec16 as well as four ER 

vesicle proteins (Ervs, -29, -14, -41, -46). These four Ervs are ER resident proteins that are 

packed into COPII vesicles; Erv29 is involved in trafficking of multiple soluble cargo 

proteins, Erv14 is required for the ER exit of many integral membrane proteins, Erv41 and 

Erv46 forms a complex to be involved in the membrane fusion stage of the ER to the Golgi 

transport (D'Arcangelo et al. 2013; Otte et al. 2001). In total 16 of the 26 genes related to 

the COPII vesicle transport were differentially expressed in the GlaA overexpression strain, 

making it one of the most significantly enriched Gene Ontology (GO) (Chapter 4, Table 

A4). Although this data does not directly indicate that the COPII machinery is more 

efficient compared to others, it can show at least that A. niger can modulate its secretory 

machinery (or at least COPII machinery) depending on the loads of secretion which may 

enable this fungus to secrete high. Further studies such as the investigation of the role of 

cargo recruiting proteins (Sec24 and Erv proteins) or COPII-coated vesicle formation in A. 

niger could give more insights into the role of cargo recruitment in relation to efficient 

protein secretion.  

 

3.3. Heterogeneity and super-secreting hyphae in A. niger   

 

The two methods most often used to grow filamentous fungi are on agar plates or in liquid 

cultures (shake flasks or bioreactors). In A. niger liquid cultures, inoculation with fungal 

spores results in the formation of micro-pellets with a diameter size up to a few millimeter. 

On plates, the fungal colony can be divided into several zones covering the centre of the 

colony towards the edge of the colony (Levin et al. 2007). Heterogeneity in A. niger is 

observed at the colony level (zonal difference), pellet level as well as at the hyphal level 

with respect to growth, gene expression and protein secretion (de Bekker et al. 2011a; de 

Bekker et al. 2011b; Krijgsheld et al. 2012; Levin et al. 2007; Vinck et al. 2011; Vinck et al. 

2005; Wösten et al. 1991). Only a limited region of a plate colony can grow and secrete 
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proteins namely the central and periphery zone of the colony, however, glucoamylase is 

secreted only at the periphery zone (Wösten et al. 1991). Secretome analysis revealed that 

the secreted proteins are different between zones of macro-colonies (Krijgsheld et al. 2012). 

Even within one zone, the peripheral zone, the secretion and expression of genes are 

different (Vinck et al. 2011; Vinck et al. 2005). By using a reporter strain that expresses 

GFP under the control of the glucoamylase promoter (PglaA) it was demonstrated that there 

are two different populations of hyphae present at the periphery of the colony: one 

population that has high and another one with low GFP fluorescence (Vinck et al. 2005). 

Similar results were obtained using different promoters, aguA, faeA or aamA (Vinck et al. 

2011). Surprisingly, even among neighboring hyphae, gene expression profiles are different 

(de Bekker et al. 2011a).  

Heterogeneity has also been observed at the level of micro-pellets. Statistical analysis 

of the population of cell pellets indicated two different populations with respect to size and 

gene expression using GFP reporter strains under control of PglaA. Larger pellets with an 

average diameter of 595 µm represented 61% of the cultures, while smaller pellets with an 

average diameter of 505 µm accounted for 39% (de Bekker et al. 2011b). A high 

fluorescent population was observed in 32% whereas 68% showed a low fluorescence (de 

Bekker et al. 2011b). The ratio of highly or lowly expressed populations was not the same 

but different among different strains e.g. PfaeA, PaamA (de Bekker et al. 2011b). In 

addition, heterogeneous mRNA accumulation was shown within the pellets showing zonal 

differences (de Bekker et al. 2011b). Heterogeneity of macro-colonies can also be found in 

other filamentous fungi such as Neurospora crassa and A. oryzae (Kasuga and Glass 2008; 

Masai et al. 2006; Moukha et al. 1993), however, studies are not as detailed as in A. niger 

(see above); only the difference in zonal gene expression or secretion was studied.   

So what can possibly make A. niger a better secretor than the others? In A. niger, 

different populations of hyphae seem to be present that may act as high or low producers. It 

will be of interest to examine whether the heterogeneity on the hyphal level is also found in 

other fungi. If a higher percentage of so called ‘super secreting hyphae’ is only found in A. 

niger this might explain the difference. Yet another aspect to study the process in more 

detail is to try to convert all hyphae in a culture into super secreting hyphae and thereby 

further improve protein production. To address this, it is important to establish the 

molecular mechanism by which a normal hypha is converted into a ‘super secreting hypha’.  

 

4. The future is on the dynamics 

 

Once a secretory protein is translated, it has to travel through the secretory pathway (see 

above). It may be possible that A. niger has a higher rate of secretion compared to other 
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fungi. To address that, a kinetic study of protein synthesis and secretion needs to be 

followed in the future as has been performed in T. reesei. Using in vivo labeling 

experiments, the average synthesis time and secretion time of CBHI cellobiohydrolase were 

measured as 4 min and 11 min respectively in T. reesei (Pakula et al. 2000). Secretion time 

of T. reesei was somewhat slower compared to the yeast, S. cerevisiae in which invertase 

transport time was 5 min (Novick et al. 1981; Pakula et al. 2000). Since the kinetic data for 

the protein synthesis and secretion in filamentous fungi are scarce, it will be of interest to 

determine the kinetics and compare the results among fungi in the future.  

Several recent studies have indicated the important interplay between endocytosis and 

exocytosis in relation to protein secretion. It is proposed that exocytosis occurs at the 

hyphal tips in filamentous fungi, whereas endocytosis occurs behind the tip (Taheri-Talesh 

et al. 2008). Exocytosis is visualized using GFP-tagged reporters (GFP-SynA in A. nidulans 

(Taheri-Talesh et al. 2008), AmyB-GFP in A. oryzae (Hayakawa et al. 2011) or GFP-SncA 

in A. niger (Kwon et al. 2013b)) showing the signals along the hyphae but more pronounced 

at the hyphal tips (Chapter 3 & 5). The endocytic machinery was shown to be a ring-like 

structure that is excluded from the hyphal apex and localized a few µm behind the growing 

apex (Araujo-Bazan et al. 2008; Kwon et al. 2013b). Polarized secretion and growth require 

the delivery of cell wall biosynthetic enzymes as well as the delivery of extracellular 

enzymes via secretory vesicles. The retrieval and recycling of the excess membrane used 

for the delivery via secretory vesicles is necessary and is taken care of via endocytic 

processes. Further analysis of a turn-over rate for endo/exocytosis will provide important 

information with respect to the secretion capacity.  

Secretory related organelles e.g. ER, Golgi and secretory vesicles are most important 

serving as the folding, modification and delivering station, respectively. The localization of 

these organelles is abundantly present through the hyphae especially in the apical area 

(Carvalho et al. 2011b; Markina-Inarrairaegui et al. 2013; Pantazopoulou and Penalva 

2009; Pinar et al. 2013). In the past few years, these organelles have been successfully 

labeled with fluorescent markers and following their localization and dynamics under 

conditions of high protein production could give further insights into the mechanism by 

which filamentous fungi including A. niger secrete high amounts of proteins.  
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5. Aim and Thesis Outline 

The research described in this thesis aims to get more fundamental insights in the molecular 

mechanisms used by Aspergillus niger in relation to control morphology and protein 

secretion. Knowledge on these two aspects is highly relevant to further optimization of A. 

niger as a cell factory.  

Chapter 1 introduces what is important in relation to product formation in fungal 

biotechnology and mechanisms are discussed to explain the high secretion capacity of A. 

niger. In Chapter 2, the functional analysis of all six Rho GTPases encoded in A. niger 

(RacA, CftA, RhoA, RhoB, RhoC, RhoD) is described and revealed that they exert distinct 

and overlapping functions during the life cycle. Interestingly, a comparison of the function 

of Rho-GTPases among Aspergilli (in particular the comparison between A. niger and A. 

nidulans) revealed interesting differences (Harris 2011). Chapter 3 describes a follow-up 

study of racA (Chapter 2) to elucidate the impact of morphology on protein production. 

This study clearly showed that simply making more hyphal tips did not result in an increase 

of protein production levels. In Chapter 4, the transcriptomic effect of overexpression of a 

secreted enzyme (glucoamaylase) is described. It is shown that overexpression of 

glucoamylase induced many genes that are part of the unfolded protein response. A 

comparison of this dataset with other datasets in which A. niger was triggered to induce an 

unfolded protein response allowed to define a core set of genes that appear to be involved 

in dealing with misfolded proteins or high secretion loads. In Chapter 5, seven genes 

encoding putative A. niger orthologs that are known to function in key aspects of the 

protein secretion machinery in S. cerevisiae were analyzed. A reporter strain was 

constructed in which secretory vesicles are visualized by labeling a specific vesicle-SNARE 

(v-SNARE) with GFP giving GFP-v-SNARE. Using that strain, the protein secretion 

process in wild-type and mutants was visualized and analyzed. This study revealed that the 

exocyst-mediated vesicle transport is only partially conserved between S. cerevisiae and A. 

niger. 
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Abstract 

 

Rho GTPases are signalling molecules regulating morphology and multiple cellular 

functions including metabolism and vesicular trafficking. To understand the connection 

between polarized growth and secretion in the industrial model organism Aspergillus niger, 

we investigated the function of all Rho family members in this organism. We identified six 

Rho GTPases in its genome and used loss-of-function studies to dissect their functions. 

While RhoA is crucial for polarity establishment and viability, RhoB and RhoD ensure cell 

wall integrity and septum formation, respectively. RhoC seems to be dispensable for A. 

niger. RacA governs polarity maintenance via controlling actin but not microtubule 

dynamics, which is consistent with its localization at the hyphal apex. Both deletion and 

dominant activation of RacA (RacG18V) provoke an actin localization defect and thereby 

loss of polarized tip extension. Simultaneous deletion of RacA and CftA (Cdc42) is lethal; 

however, conditional overexpression of RacA in this strain can substitute for CftA, 

indicating that both proteins concertedly control actin dynamics. We finally identified 

NoxR as a RacA-specific effector, which however, is not important for apical dominance as 

reported for A. nidulans but for asexual development. Overall, the data show that individual 

Rho GTPases contribute differently to growth and morphogenesis within filamentous fungi.  

 

 

Introduction 

 

Small monomeric GTPases are found in all eukaryotic organisms and function as molecular 

switches to regulate a vast array of cellular processes including metabolism, survival, 

morphogenesis, differentiation and vesicle transport. Based on structural similarities, small 

GTPases are grouped into five subfamilies: Ras, Rho (Ras homolog), Arf/Sar, Ran and 

Rab/Ypt. The Rho subfamily is the most extensively characterized subfamily and comprises 

six members in lower eukaryotes (e.g. Rho1p, Rho2p, Rho3p, Rho4p, Rho5p, Cdc42p in 

the yeast Saccharomyces cerevisiae) and more than 20 members in higher eukaryotes, with 

RhoA, Rac1 and Cdc42 being most studied (Heasman and Ridley 2008; Park and Bi 2007; 

Ridley 2006). Most Rho GTPases cycle between a GTP-bound (active) and a GDP-bound 

(inactive) form which is controlled by guanine nucleotide exchange factors (GEFs) and 

GTPase-activating proteins (GAPs). The localization of Rho GTPases to membranes and 

membrane compartments is post-transcriptionally regulated by prenylation (farnesylation or 

geranylgeranylation) of their C-terminus. This lipid modification defines the specificity to 

and enhances the interaction of Rho GTPases with different membranes. Guanine 

nucleotide dissociation inhibitors (GDIs) bind to prenyl groups of GTPases thereby 



Functional Characterization of Rho GTPases 

 

 23 

inhibiting their membrane localization as well as preventing their interaction with effector 

proteins. Thus, the activity of Rho GTPases is not only dependent on a functional 

GTP/GDP cycle but also on a membrane/cytosol cycle (Casey 1994; Dransart et al. 2005; 

Ridley 2006).  

Various effector pathways have been discovered in eukaryotes which lie downstream 

of Rho GTPases: i) Actin filament nucleation and (de)polymerization on or close to 

membranes is regulated by interaction of Rho proteins (e.g. Rho1p/RhoA, Rac1, Cdc42) 

with WASP proteins, formins and PAK kinases. Because actin dynamics is closely linked 

to membrane dynamics and vesicular trafficking, the function of Rho GTPases is intimately 

linked to exocytosis, endocytosis as well as to polarized cell shape changes and cell 

movement (Bosco et al. 2009; Heasman and Ridley 2008; Park and Bi 2007; Ridley 2001; 

Ridley 2006). ii) Localized generation of reactive oxygen species (ROS) results from Rac1-

mediated activation of NADPH oxidases (note that the hemiascomycetes S. cerevisiae and 

Schizosaccharomyces pombe do not comprise a Rac1 homolog). The regulated synthesis of 

ROS plays a key role in host defense responses and differentiation of multicellular 

organisms (Hordijk 2006; Scott and Eaton 2008). iii) Activation of cell wall synthesizing 

enzymes such as β-1,3 glucan synthases in S. cerevisiae and S. pombe is mediated by Rho1 

(Arellano et al. 1996; Qadota et al. 1996) and positive regulation of α-1,3 glucan synthase 

activities has been shown for the S. pombe Rho2 (Calonge et al. 2000). iv) Finally, some 

Rho proteins have been shown to modulate gene transcription in mammalian cells as for 

example documented for the transcription factors NFκB, AP1 and c-Jun (Benitah et al. 

2004; Schlessinger et al. 2009).  

Based on genome mining approaches, six Rho encoding genes have been predicted in 

filamentous fungi – rac1, cdc42 and four genes encoding putative S. cerevisiae homologs 

of Rho1p, Rho2p, Rho3p, Rho4p (http://www.broadinstitute.org/ and (Banuett et al. 2008; 

Boureux et al. 2007; Harris et al. 2009; Rasmussen and Glass 2005)). Over the past years, a 

crucial involvement of some of these Rho GTPases in the orchestration of the highly 

polarized growth mode of filamentous fungi has become apparent. For example, Rac1 and 

Cdc42 orthologs have been demonstrated to be pivotal for morphogenetic decisions e.g. in 

Aspergillus nidulans, Claviceps purpurea, Magnaporthe grisea, Penicillium marneffi and 

Ustilago maydis (Boyce et al. 2003; Chen et al. 2008; Mahlert et al. 2006; Rolke and 

Tudzynski 2008; Virag et al. 2007). Rac1-mediated activation of fungal NADPH oxidases 

has been shown to generate tip-localized ROS in A. nidulans and Epichloë festucae which 

are suspected to be essential for sustaining apical dominance (Scott and Eaton 2008; 

Semighini and Harris 2008; Takemoto et al. 2006). Rho1 orthologs have been shown to be 

essential for hyphal tip extension and cell wall biosynthesis in A. nidulans, Ashbya gossypii, 

Fusarium oxysporum and U. maydis (Guest et al. 2004; Martinez-Rocha et al. 2008; Pham 
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et al. 2009; Wendland and Philippsen 2001). Considerably less information is available on 

the function of Rho2, Rho3 and Rho4 orthologs in filamentous fungi. An involvement of 

Rho3 in polar growth control has so far been documented for A. gossypii and Trichoderma 

reesei (Vasara et al. 2001; Wendland and Philippsen 2001), and a role of Rho4 for actin 

ring formation during hyphal septation has been established for Neurospora crassa  and A. 

nidulans (Rasmussen and Glass 2005; Si et al. 2010).  

As part of our effort to understand the connection between the processes of polarized 

growth, cell wall biosynthesis and secretion in the industrially important fungus A. niger, 

we use genome-wide expression profiling studies to predict and identify signalling 

molecules and networks involved in these processes (Jacobs et al. 2009; Jørgensen et al. 

2009; Meyer et al. 2009; Meyer et al. 2007b). We furthermore implement functional 

genomics approaches to study the cellular role of predicted protagonist coordinating these 

processes (Damveld et al. 2005; Meyer et al. 2009; Meyer et al. 2008; Meyer et al. 2010a; 

Punt et al. 2001). Here, we systematically investigated the function of all members of the 

Rho family for growth and morphogenesis of A. niger. We identified six Rho GTPases in 

the genome of A. niger and used loss-of-function studies which showed that they exert 

distinct and overlapping functions during the life cycle of A. niger. While RhoA appears to 

be of central importance for polarity establishment and viability of A. niger, RhoB and 

RhoD ensure cell wall integrity. Whereas RhoC seems to be of minor importance for A. 

niger, RhoD has a pivotal role during septum formation. RacA and CftA (Cdc42) 

collectively ensure polarity maintenance, whereby the main protagonist is RacA. We 

furthermore show that RacA localizes to the hyphal apex and controls actin dynamics but 

not microtubule integrity and finally identified two downstream targets of RacA which are 

not shared with CftA. Most importantly, this work uncovers lack of uniformity in how 

members of the Rho GTPase family are deployed in filamentous fungi. 

 

 

Results 

 

A. niger has six Rho GTPases-encoding genes 

 

Screening of the genome sequence of A. niger (Pel et al. 2007) revealed the presence of six 

open reading frames (ORFs) (An18g05980, An16g04200, An11g09620, An14g05530, 

An11g10030, An02g14200), each predicted to encode a single member of the Rho 

subfamily. Phylogenetic comparison with (predicted) Rho GTPases from A. nidulans, N. 

crassa, M. grisea, P. marneffei, S. cerevisiae, S. pombe and U. maydis showed that each 

subgroup (Rasmussen and Glass 2005) was represented by a single A. niger orthologous  
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Table 1. Expression of predicted Rho GTPase genes in A. niger wild-type strain N402.   

Gene ORF code Germinationa 
Steady stateb 

(µ= 0.16 h-1) 

Exponential growth 

phasec (µ= 0.24 h-1) 

rhoA An18g05980 9.40 ± 1.06 11.10 ± 0.72 10.00 ± 0.62 

rhoB An16g04200 1.61 ± 0.37 3.51 ± 0.30 3.54 ± 0.03 

rhoC An11g09620 0.43 ± 0.05 0.41 ± 0.02 0.51 ± 0.02 

rhoD An14g05530 0.63 ± 0.01 1.28 ± 0.08 1.69 ± 0.10 

racA An11g10030 2.15 ± 0.00 1.58 ± 0.08 1.41 ± 0.16 

cftA An02g14200 2.45 ± 0.33 1.76 ± 0.02 2.08 ± 0.12 

Mean expression values are given in % compared to the expression level of the actin gene 

actA. Data is taken from three independent cultivations: a: (Meyer et al. 2007b), 

b:(Jørgensen et al. 2009), c. (Jørgensen et al. 2010). 

 

 

protein (Fig. S1). We thus designated the respective ORFs rhoA, rhoB, rhoC, rhoD, racA 

and cftA (cdc forty two), respectively. 

To evaluate expression of these six predicted GTPase-encoding genes, we examined 

Affymetrix gene arrays obtained from young germlings (Meyer et al. 2007b), from 

exponentially growing cultures (Jørgensen et al. 2010) and from carbon-limited chemostat 

cultivations (Jørgensen et al. 2009). When compared to the expression of the actin gene  

actA, all Rho GTPase-encoding genes are rather moderately expressed (Table 1). When 

compared among each other, rhoA displays highest and rhoC lowest transcript levels.   

 

 

Individual Rho GTPase executes distinct functions 

 

To study the roles of the Rho GTPases in A. niger, respective deletion mutants were 

generated by employing recently described protocols (Carvalho et al. 2010; Meyer et al. 

2010b). All genes but cftA were deleted in strain MA70.15 (∆ku70, pyrG
-) using the A. 

oryzae pyrG gene as selection marker, cftA was deleted in strain MA78.6 (∆ku70) via 

hygromycin selection. We were able to obtain viable deletion mutants for five GTPases 

(hereafter referred to as ∆rhoB, ∆rhoC, ∆rhoD, ∆racA, ∆cftA, Table 2); however, deletion 

of rhoA caused a lethal phenotype. Primary ∆rhoA transformants were only cultivable as 

heterokaryons containing nuclei with the genotype rhoA/pyrG
- and nuclei with the genotype 

∆rhoA/pyrG
+ (data not shown). Deletion of the different Rho-related GTPases as well as the  

heterokaryotic status of rhoA transformants was verified by Southern analysis (data not 

shown) and by RT-PCR (Fig. 1). 
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Table 2. Strains used in this work. 

Strain Relevant genotype Source 

A. niger   

N402 wild-type Lab collection 

AB4.1 pyrG- (van Hartingsveldt et 

al. 1987) 

AO4.13 pyrG+(derivative of AB4.1 containing A. oryzae pyrG) This work 

MA70.15 ∆kusA, pyrG- (derivative of AB4.1) (Meyer et al. 2007a) 

MA78.6 ∆kusA, pyrG+(derivative of MA70.15 containing A. niger

pyrG) 

(Carvalho et al. 2010) 

MK11.4 Heterokaryon ∆kusA,  rhoA/pyrG -, ∆rhoA/pyrG+ This work 

ER2.5 ∆kusA, ∆rhoB::AopyrG This work 

ER3.4 ∆kusA, ∆rhoC::AopyrG This work 

ER7.6 ∆kusA, ∆rhoD::AopyrG This work 

MA80.1 ∆kusA, ∆racA::AopyrG This work 

MA84.1 ∆kusA, ∆cftA::hygR This work 

MA80.1.1 ∆kusA, ∆racA, pyrG- (derivative of MA80.1) This work 

MK3.5 ∆kusA, ∆racA, PinuE::racA (derivative of MA80.1.1) This work 

MK4.1 ∆kusA, ∆racA, PinuE::racA, ∆cftA::hygR (derivative of 

MK3.5) 

This work 

MK9.4 ∆kusA, ecfp::tubA (derivative of MA70.15) This work 

MK10.2 ∆kusA, ∆racA, ecfp::tubA (derivative of MA80.1.1) This work 

EB6.3.1 ∆kusA, ∆racA, egfp::racA (derivative of MA70.15) This work 

MA61.24  PinuE::racAG18V (derivative of AB4.1) This work 

MA1.8  PglaA::racA (derivative of AB4.1) This work 

MA60.15  PglaA::racAG18V (derivative of AB4.1) This work 

MA75.2 ∆kusA, ∆riaA::AopyrG This work 

MA76.1 ∆kusA, ∆riaB::AopyrG This work 

MA82.2 ∆kusA, ∆noxA::AopyrG This work 

S. cerevisiae   

MAV203 MATα; leu2-3,112; trp1-901; his3∆200; ade2-101; cyh2R; 

can1R; gal4∆; gal80∆; GAL1::lacZ; 

HIS3UASGAL1::HIS3@LYS2; SPAL10 UASGAL1::URA3 

Invitrogen 

MAsc1 MAV203; pDEST32-racA; pDEST22-riaA This work 

MAsc2 MAV203; pDEST32-racA; pDEST22-riaB This work 

MAsc3 MAV203; pDEST32-racA; pDEST22 This work 

MAsc4 MAV203; pDEST32-racAG18V; pDEST22-riaA This work 

MAsc5 MAV203; pDEST32-racAG18V; pDEST22-riaB This work 

MAsc6 MAV203; pDEST32-racAG18V; pDEST22 This work 

MAsc7 MAV203; pDEST32-racAD124A; pDEST22-riaA This work 

MAsc8 MAV203; pDEST32-racAD124A; pDEST22-riaB This work 

MAsc9 MAV203; pDEST32-racAD124A; pDEST22 This work 

MAsc10 MAV203; pDEST32-cftA; pDEST22-riaA This work 

MAsc11 MAV203; pDEST32-cftA; pDEST22-riaB This work 

MAsc12 MAV203; pDEST32-cftA; pDEST22 This work 

MAsc13 MAV203; pDEST32-cftAG14V; pDEST22-riaA This work 

MAsc14 MAV203; pDEST32-cftAG14V; pDEST22-riaB This work 

MAsc15 MAV203; pDEST32-cftAG14V; pDEST22 This work 

MAsc16 MAV203; pDEST32-cftAD120A; pDEST22-riaA This work 

MAsc17 MAV203; pDEST32-cftAD120A; pDEST22-riaB This work 

MAsc18 MAV203; pDEST32-cftAD120A; pDEST22 This work 
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We analyzed the phenotypes of the deletion strains on complete and minimal medium 

(MM) using the following descriptors: germination rate, hyphal morphology, septum 

formation, radial growth rate, sporulation efficiency and cell wall integrity (see 

Experimental procedures and Fig. 2). The terminal phenotype of the ∆rhoA heterokarotic 

mutant was characterized by swollen spores, only a very few of which (less than 0.5%) 

developed into malformed germlings before stopped growing (data not shown). This 

suggests that RhoA is not per se important for the process of spore swelling but already 

indispensable for early events during germ tube formation.  

As summarized in Fig. 2, the ∆rhoB strain was indistinguishable from the wild-type 

(wt) strain in terms of hyphal morphology, septum formation and radial growth rate but 

displayed a slightly reduced germination rate (89% of the wt rate). However, main 

differences were observed in terms of sporulation efficiency (about 50% fewer spores were 

produced by ∆rhoB), implicating that RhoB is important for sustaining efficient 

sporulation. Moreover, ∆rhoB was hypersensitive to the cell wall disrupting agent 

calcofluor white (CFW). Hypersensitivity to this compound is a reflection of defects in the 

biosynthesis and assembly of cell wall polymers, mainly chitin and glucans (Ram et al. 

2004; Ram and Klis 2006). The reduced resistance of ∆rhoB would thus suggest a potential 

role of RhoB in cell wall deposition and integrity, a hypothetic role that would be in 

agreement with the function of the S. pombe orthologous Rho2 protein in α-1,3 glucan 

synthesis and cell wall integrity signaling (Calonge et al. 2000; Perez and Rincon 2010). 

Fig. 1. RT-PCR of total RNA purified from different A. niger strains.  

Wild-type and deletion strains were cultivated in liquid CM. Specific primer pairs were 

used to amplify Rho GTPase genes. The absence of a signal confirms successful deletion of 

a locus. 
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Fig. 2. Macroscopic and microscopic phenotypes of individual Rho GTPase deletion strains.  

Column A: 105 spores were point inoculated on CM agar plates and incubated for 4 days at 30°C. The 

macroscopic phenotypes for the different mutants were essentially the same on MM plates (data not 

shown). Number in the upper left of each panel reflects relative colony growth rate, number in the 

lower left depicts relative sporulation rate (spores/cm2) compared with the wt strain MA78.6. Mean 

values of a triplicate experiment are given. Column B: Microscopic pictures with a 65x magnification 

from the colony edges on CM agar. Bar, 50 µm. Column C: Spores were allowed to germinate for 10 

h at 30°C on cover slips in MM. Microscopic pictures were taken with a 200x magnification. Number 

in the lower left depicts the % of germinated spores (n > 150). Bar, 20 µm. Column D: Germlings 

were fixed and stained with CFW. The presence or absence of the first septum localized next to the 

spore was scored (n > 40). Bar, 20 µm. Higher magnification imagess of wt and ∆rhoD are shown in 

Fig. S2. Column E: Serial spore dilutions were spotted on MES-buffered CM (pH 6.0) containing 0 (-

) or 100 µg/ml CFW (+). Colony pictures were taken after cultivation for 2 days at 30°C. 

 

 

Deletion of rhoC did not have any obvious consequences for A. niger, suggesting that 

the cellular role of RhoC is rather negligible. This phenotype is completely different from 

the almost lethal RHO3 deletion phenotype described for S. cerevisiae (Matsui and Toh-e 

1992). 

In the case of ∆rhoD, radial growth rate was reduced compared with its parental strain 

(75%; Fig. 2). Moreover, septum formation, as detected by CFW staining, was almost 

absent in the ∆rhoD strain, a phenotype that exactly resembles the ∆rho4 phenotype 

observed for N. crassa and A. nidulans (Rasmussen and Glass 2005; Si et al. 2010). Close 

microscopic examination of ∆rhoD hyphae revealed that many of them were empty. Such a 

lysing phenotype could suggest that RhoD is important for cell wall biosynthesis in A. 

niger. In such a case, one would expect a hypersensitive phenotype of ∆rhoD towards 

CFW, which was indeed the case (Fig. 2). Finally, the ∆rhoD strain was strongly inhibited 

in sporulation as the amount of conidia produced was decreased to almost 10%. Such a 

reduction in conidiation efficiency has previously been associated with defects in septum 

formation in A. nidulans (Harris et al. 1994). 

Pleiotropic effects were caused when A. niger was deleted for racA. Spores lacking 

racA frequently developed two or three equally long germ tubes, although formation of the 

second germ tube is in general delayed in wt spores (Fig. 2 and Table 3). As ∆racA spores 

simultaneously established multiple polarity axes might suggest that RacA has functions in 

timing axis formation and/or in stabilizing established polarity axes. In consequence, the 

∆racA strain displayed a hyperbranching phenotype (caused by dichotomous branching) 

and formed a compact colony which was reduced in its diameter. In general, germ tubes 

and hyphae had a wider hyphal diameter in the ∆racA strain. Furthermore, deletion of racA 

considerably compromised conidiospore formation – only 25% conidiospores were 

produced compared with the wild-type.  
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Table 3. Growth-related characteristics of different A. niger wild type and deletion strains. 

Strain 
Relevant 

Genotype 

Germinationa  [%] Radial growth 

rateb [%] 

Sporulationb  

[%] N = 0 N = 1 N = 2 N = 3 

MA78.6 wt 3.0 67.7 29.3 0.0 100.0 ± 2.0 100.0 ± 28.8 

MA80.1 ∆racA 4.9 46.7 45.7 2.7 63.1  ± 1.4 24.0 ± 11.8 

MA84.1 ∆cftA 18.8 81.2 0.0 0.0 69.7 ± 1.4 36.3 ± 3.2 

MA75.2 ∆riaA 0.0 73.4 26.6 0.0 103.3 ± 2.5 53.3 ± 4.0 

MA76.1 ∆noxA 1.0 62.6 36.4 0.0 104.9 ± 1.4 48.6 ± 2.7 

MA82.2 ∆riaB 28.6 56.8 14.6 0.0 91.8 ± 1.4 84.5 ± 11.7 

a: 1×105 spores were inoculated per ml liquid CM and incubated for 7 h at 37°C. The amount of 

germinated and non-germinated spores were counted (n > 150) and expressed in %. N = number of 

germ tubes formed. N = 0: % of non-germinated spores, N ≥ 1: % of spores with one or more germ 

tubes. b: 1×105 spores were point-inoculated on CM agar plates and incubated for 3 days at 30°C. 

The colony diameter and the amount of spores formed per cm2 colony were determined and 

expressed in %. 

 

 

To our surprise, deletion of cftA only mildly perturbed growth of A. niger and did not 

resemble the A. nidulans ∆cdc42 phenotype (Virag et al. 2007). Basically, germ tube 

formation was delayed and reduced in ∆cftA (77% compared with wild-type) as was the 

growth rate (70%) and sporulation efficiency (72%; Fig. 2 and Table 3). Also, hyphal 

morphology remained unaffected, which could suggest that CftA has apparently no role in 

hyphal morphogenesis. In order to confirm that the deletion phenotypes observed were  

indeed caused by non-functional Rho genes, the ∆rhoB, ∆rhoD, ∆racA, ∆cftA strains were 

retransformed with functional gene copies. In all cases, the wt phenotype became restored 

back after reintroducing the respective Rho gene (Fig. S3). 

 

 

RacA and CftA share overlapping functions  

 

The closest homolog of RacA in the yeasts S. cerevisiae and S. pombe is Cdc42p, which is 

an essential protein for both organisms (Johnson and Pringle 1990; Miller and Johnson 

1994). One explanation why RacA or CftA is not essential for A. niger might be that both 

proteins have related functions which are executed in yeast only by Cdc42p. Hence, 

deletion of one protein in A. niger might be compensated by the presence of the other. Such 

an allocation of cellular tasks has recently been described for RacA and ModA (Cdc42) in 

A. nidulans (Virag et al. 2007). To examine whether this scenario is also valid for A. niger, 

we followed two genetic approaches. First, we transformed the ∆racA strain with the cftA 
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deletion construct. None of the primary transformants obtained yielded in any viable 

homokaryotic double deletion mutant on uridine-deplete medium (∆racA) supplemented 

with hygromycin (∆cftA), implying that loss-of-function mutations in both genes are 

synthetically lethal (data not shown).  

In the second approach, we aimed to express racA under control of an inducible 

promoter in a ∆cftA∆racA background strain. In doing so, we constructed an expression 

cassette, where racA gene expression is under control of the inuE promoter, and 

transformed it into the ∆racA strain, which was made pyrG
- using 5’-fluoroorotic acid 

(FOA) counter selection (see Experimental procedures, Fig. 3). The inuE promoter itself is 

a strongly inducible promoter in the presence of sucrose but repressed by glucose (Yuan et 

al. 2008a). We confirmed that PinuE-driven racA expression rescued the multi-germination 

phenotype of ∆racA mutant on sucrose medium (Fig. 3C) but not on glucose medium (Fig. 

3D). In general, PinuE-driven (over)expression of racA did not have any negative impact 

on hyphal morphology. This strain (PinuE::racA, ∆racA) was eventually used as a recipient 

strain to delete cftA. Transformants were selected and purified on uridine-deplete sucrose 

medium (PinuE::racA expression) supplemented with hygromycin (∆cftA). Southern 

analysis on selected transformants confirmed that these strains were homokaryons 

successfully deleted for both racA and cftA (data not shown). Spore germination and 

morphology of these strains (PinuE::racA; ∆racA; ∆cftA) were completely rescued on 

sucrose medium but not on glucose medium (Fig. 3E-F), which demonstrated that RacA is 

capable of substituting for CftA, thereby implying that both proteins share at least one 

function required for polarity establishment/maintenance. Notably, the malformed 

germlings phenotype observed in glucose medium (Fig. 3F) is reminiscent of the phenotype 

observed for the A. nidulans fimbrin deletion mutant (Upadhyay and Shaw 2008) and in 

general resembles the phenotype of A. nidulans and A. niger wt germlings when treated 

with cytochalasin A ((Taheri-Talesh et al. 2008) and ourown unpublished observations). As 

cytochalasin A blocks polymerization of actin at its barbed end (Cooper 1987), we 

suspected that one overlapping function of CftA and RacA might be related to the 

elongation of actin filaments. 

 

 

RacA is important for actin but not tubulin organization  

 

RacA appeared to be the most critical Rho GTPase important for maintaining hyphal 

polarity in A. niger. We thus focused our research interest on RacA to specifically learn 

more about its contribution to hyphal morphogenesis of A. niger. As discussed above, one 

function of RacA might probably be linked to the actin cytoskeleton – as also documented 
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Fig. 3. Conditional expression of the racA gene (PinuE::racA) in a ∆racA and ∆racA∆cftA 

genetic background. Spores of the different strains were allowed to germinate for 16 h at 25°C 

in MM. A, wt (strain MA78.6). B, ∆racA (strain MA80.1). C, ∆racA transformed with 

PinuE::racA (strain MK3.5) in MM containing sucrose as carbon source. D, ∆racA 

transformed with PinuE::racA (strain MK3.5) in MM containing glucose as carbon source. E, 

∆racA∆cftA strain transformed with PinuE::racA (strain MK4.1) in MM containing sucrose as 

carbon source. F, ∆racA∆cftA strain transformed with PinuE::racA (strain MK4.1) in MM 

containing glucose as carbon source. Bar, 20 µm. Note: the inuE promoter is not completely 

tight under non-inducing condition (glucose). Its residual activity thus allows spores to 

germinate.  

 

 

for RacA orthologs in higher eukaryotes (Bosco et al. 2009). To substantiate that 

presumption, we immunolabelled actin in the wt strain and in ∆racA. As shown in Fig. 4, 

actin signals are evenly distributed at cortical spots throughout wt hyphae and are 

concentrated near hyphal apices (Fig. 4), an actin distribution pattern that has also been 

described for A. nidulans (Harris et al. 1994). However, in the ∆racA strain, actin was 

hyperpolarized at the hyphal tip and moreover, the amount of actin in the subapical/lateral 

regions was reduced (Fig. 4), indicating that RacA controls actin polarization.  

We also examined the consequences of a racA null mutation on the organization of the 

microtubule cytoskeleton and expressed for this purpose an CFP::TubA fusion protein in 

both the wt and the ∆racA strain. We could, however, not observe any remarkable 

differences in microtubule formation and localization between both strains (Fig. 4 and 
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Fig. 4. Actin and tubulin localization in wt and ∆racA strain.  

Actin was immunostained in strain MA78.6 (wt) and MA80.1 (∆racA). Spores were cultivated 

on cover slips for 20 h at 25°C in MM. After cell fixation and cell wall digestion, samples 

were immunolabelled and analyzed by fluorescence microscopy. Tubulin (CFP::TubA) was 

visualized by fluorescence microscopy in strains MK9.4 (wt) and MK10.2 (∆racA). Life-

images were taken from cultures grown for 2 days at 20°C on MM agar. Bar, 10 µm. 

 

 

data not shown). In addition, the ∆racA strain did not exhibited any increased sensitivity to 

microtubule inhibitors benomyl and nocodazole (data not shown), altogether suggesting 

that RacA controls actin dynamics at the hyphal tip but plays a minor if any role in 

microtubule organization. 

 

               

RacA localizes to the hyphal apex and ensures polarized tip growth  

 

The data described above strongly indicated that the A. niger RacA secures hyphal tip 

growth via controlling the actin cytoskeleton. This however, is suggestive of a mainly tip-

localized distribution of RacA. To test this prediction, we generated an expression construct 

gfp::racA, which we targeted to the racA genomic locus in such a way that the endogenous 

racA gene became replaced by the fusion construct and gfp::racA expressed under control 

of the endogenous racA promoter. Comparison of the phenotypes of wt, ∆racA and 

GFP::RacA strains uncovered that expression of GFP::RacA was not fully able to 
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complement the deletion phenotype of the ∆racA strain (Fig. 5A), suggesting that the 

GFP::RacA fusion protein was only partially functional. However, GFP::RacA was 

strongly polarized at the apex of germinating cells and mature hyphae and displayed a 

crescent-like form (Fig. 5B). Remarkably, GFP::RacA localized at hyphal apices only in 

actively growing cells. The signal immediately disappeared when cells stopped growing but 

reappeared when growth was resumed (Movie S1 and data not shown). Very rarely, we also 

noticed some GFP::RacA fluorescence at septa or sites destined for septum formation. 

To further elucidate the role of RacA in the control of cell polarity, we wished to study the 

effects of racA overexpression on hyphal tip growth. Induced overexpression of RacA by 

the inuE promoter did not interfere with polarized tip growth (see above), pointing to the 

possibility that the activity of a RacA-GAP might be sufficient to inactivate RacA. We thus 

generated a dominant active allele of RacA, which carries the GTPase-negative G12V 

mutation (G18V in RacA) in the predicted GTP binding and hydrolysis domain. This 

mutation has been shown to trap Rho GTPases in their “on-state” (Warne et al. 1993; 

Ziman et al. 1991). Expression of racA
G18V

 was put under control of the inuE promoter 

(sucrose-inducible, high activity during germination) or the glaA promoter (induced by 

maltose, repressed by xylose; high activity during exponential growth phase) and the three 

constructs generated (PglaA::racA, PglaA::racA
G18V

, PinuE::racA
G18V

) were targeted to the 

pyrG locus of A. niger. As shown in Fig. 6, PinuE – driven expression of RacA
G18V

 resulted 

in the formation of clavate-shaped germlings which were abnormally large, unpolarized and 

 

 

Fig. 5. RacA localization in 

growing hyphae of A. niger.  

A, Colony pictures of wt (MA78.6), 

∆racA (MA80.1) and GFP::RacA 

(EB6.3.1) on CM agar. B, Life-

images of the GFP::RacA strain 

were taken from cultures grown for 

2 days at 25°C on MM agar. The 

cap-like distribution of GFP::RacA 

is indicated with a star. Bar, 10 µm. 
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contained extremely large vacuoles (Fig. 6A and B). When expression of racA
G18V was 

under control of the glaA promoter, hyphae showed a pronounced swollen-tip phenotype 

and formed bulbous lateral branches (Fig. 6D and F). Thus, both strains expressing 

constitutive active RacAG18V are defective in tip elongation, indicating that controlling 

RacA activity is inevitable for polarity maintenance. To test whether this loss of polarity 

might be a consequence of disturbed actin localization, we immunolabelled actin in the 

PglaA::racA
G18V and PinuE::racA

G18V strains. As depicted in Fig. 7, actin polarization was 

indeed lost in both strains and actin signals were randomly scattered intracellularly or at the 

cell periphery. 

 

 

RacA interacts with a protein of unknown function and with NoxR  

 

In order to identify potential downstream effectors of RacA, a yeast two-hybrid screen was 

    Fig. 6. Microscopic analysis of RacAG18V strains.  

A and B, Microscopic phenotypes of wt (AO4.13) and the PinuE::racAG18V strain MA61.24, 

respectively, when cultivated in MM with 1% sucrose as carbon source. C and D, Microscopic 

phenotypes of wt (AO4.13) and the PglaA::racAG18V strain (MA60.15), respectively, when 

cultivated in shake flasks till the mid-exponential growth phase using 2% maltose as carbon 

source. E and F, Microscopic phenotypes of wt (AO4.13) and the PglaA::racAG18V strain 

(MA60.15), respectively, when grown on cover slips in MM with maltose as carbon source. 

Bar, 20 µm. 
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performed using RacAG18V as bait and different prey libraries. The libraries used harbored 

mRNA populations isolated from different morphological stages of A. niger (germination,  

vegetative growth, conidiation) and from stressed mycelium (see Experimental 

procedures).  Interestingly, RacAG18V interacting proteins (Ria) were only identified from 

the conidiation and the stressed cDNA library and altogether only two Ria proteins were 

isolated. RiaA (An16g05550) was isolated from the conidiation library and displayed 

strong interaction with RacAG18V, RiaB (An12g06420) was identified from the stress library 

and interacted only weakly with RacAG18V (Fig. 8). riaB encodes a zinc knuckle domain 

protein, having no apparent homolog outside the fungal kingdom and whose function is 

unknown. The interaction of RiaB is, although weak in its nature, specific for RacAG18V as 

we have not detected any interaction of RiaB with RacA and RacAD124A nor with CftA, 

CftAG14V and CftAD120A, suggesting that RiaB binds to RacA only when in its activated, 

GTP-bound form (Fig. 8, note that the D124A mutation in RacA and D120A mutation in 

CftA, respectively, are dominant negative (Ziman et al. 1991)).  

To study the function of both RiaA and RiaB, we deleted the respective genes in A. 

niger, which was verified by Southern analysis (data not shown). Surprisingly, deletion of 

riaB did not manifest in a strong phenotype (Fig. S4A). Only germination of ∆riaB was 

delayed and the growth rate slightly reduced when compared with the wt situation (Table 

3). These observations might hint at the possibility that RiaB’s function and its interaction 

with activated RacA are necessary for securing maximal polar growth rate of A. niger.  

The riaA gene codes for a protein with strong sequence similarity to the NADPH  

Fig. 7. Actin distribution in RacAG18V strains.  

Actin staining of young hyphae from wt strain (AO4.13), strains MA61.24 

(PinuE::racAG18V) and MA60.15 (PglaA::racAG18V) was performed as described in Fig. 4. 

DIC micrographs are shown for comparison. 



Functional Characterization of Rho GTPases 

 

 37 

oxidase regulator NoxR/p67phox (68% identity to the A. nidulans NoxR, 36% identity to the 

human p67phox). In mammals, NADPH oxidases (Noxs) are members of a multi-protein 

complex to which, among others, p67phox and Rac1 are bound and which generate  ROS 

(Lambeth 2004). In filamentous fungi, it was recently shown that a tip-proximal gradient of 

ROS is essential to sustain apical dominance and that interaction of RacA and NoxR is 

required to activate Nox activities (Cano-Dominguez et al. 2008; Rolke and Tudzynski 

2008; Scott and Eaton 2008; Semighini and Harris 2008; Tanaka et al. 2008). Interestingly,  

the interaction of RiaA (NoxR) with RacA was specific for RacA but independent from its 

GTP/GDP status: RiaA (NoxR) interacted with RacA, RacAG18V and dominant negative 

RacAD124A but not with CftA, dominant active CftAG14V and dominant negative CftAD120A 

(Fig. 8). Unexpectedly, deletion of riaA as well as deletion of the predicted NoxA protein 

(An08g10000; A. niger possesses only a single nox gene) did not cause any morphological 

defects in A. niger (Fig. S4A, for complementation analyses of ∆noxA and ∆riaA (noxR), 

see Fig. S3). Only sporulation efficiency was reduced in ∆riaA and ∆noxA strains to about 

50% (Table 3). Moreover, we could not detect any differences in the discrete tip 

localization of ROS using nitro blue tetrazolium (NBT) staining of wt, ∆riaA and ∆noxA 

hyphae (Fig. S4B), implying that an interaction of RacA with RiaA is rather important for 

asexual developmental processes but not for hyphal tip growth as shown for A. nidulans 

(Semighini and Harris 2008). 

Fig. 8. Yeast-two hybrid interactions of RacA or CftA with RiaA and RiaB, respectively.  

A total of 103 yeast cells from logarithmically growing cultures were spotted on minimal 

medium lacking leucine, tryptophan and histidine (SD) and cultivated for 24 h at 30°C. Growth 

on SD + 25 mM 3-AT is indicative for a protein-protein interaction. All interactions were 

confirmed using lacZ as reporter (data not shown). 



Chapter 2 

 38 

Discussion 

 

Rho GTPases are intracellular signalling molecules present from lower eukaryotes up to 

mammals but absent in eubacteria and archaea. They are key regulators of cell shape and 

polarity and were first described as modulators of the actin cytoskeleton (Hall 1998). Later 

it became evident that Rho GTPases interact not only with actin but with multiple target 

proteins, thus participating in many distinct processes such as metabolism, vesicular 

transport, proliferation, survival and even gene expression (Ridley 2001; Ridley 2006).  

Recently, the ontogeny of Rho GTPases was reconstructed from major eukaryotic 

clades and the chronology of their emergence revisited. Basically, Rac is the founder of the 

Rho family, and Cdc42 and Rho1 diverged from Rac about 1.5 billion years ago. 

Duplications, gene loss, gene rearrangements and horizontal gene transfer of Rac, Rho1 and 

Cdc42 descendants finally resulted in varying repertoires of Rho family members in 

different eukaryotes  (Boureux et al. 2007). For example, S. cerevisiae does not harbor a 

Rac homolog, Cdc42 is not present in Arabidopsis thaliana and Dictyostelium discoidium 

and some eukaryotes such as filamentous fungi and mammals comprise both Rac and 

Cdc42 proteins (Boureux et al. 2007). The evolution of Rho family members has profound 

consequences on their involvement in polar growth control in different model systems. 

Although the three hierarchical steps are the same (polar site selection by internal or 

external cues, establishment of the polar axis, maintenance of the polar axis coupled with 

polar growth), the specific GTPase(s) involved can differ and the specific mechanism that 

governs these steps as well. For example, the three hierarchical processes are orchestrated 

by three different GTPases in S. cerevisiae (Ras, Cdc42, Rho1) but only by a single Rac-

like GTPase (Rop) in plants (Fu and Yang 2001). Within the group of filamentous 

Ascomycetes, the relative requirement for RacA for polar growth control differs as well 

((Chen et al. 2008; Rolke and Tudzynski 2008; Virag et al. 2007) and this work). 

 

 

Rho GTPases of A. niger exert distinct and mutual functions 

 

Recent advances in genomics and gene targeting tools for A. niger has allowed us to 

identify and selectively inactivate all predicted Rho GTPases in this industrial model 

organism thereby getting insights into their physiological roles (Figs. 2 and 3). Given the  

phenotypic traits of the ∆rhoA/rhoA, ∆rhoB, ∆rhoC, ∆rhoD, ∆racA, ∆cftA and ∆racA∆cftA 

strains during the life cycle of A. niger, we propose the following model (Fig. 9): RhoA 

occupies a central role in controlling polarity establishment and additionally exerts 

functions which are essential for the viability of A. niger. RhoB and RhoD are important for  
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Fig. 9. Predicted functions of different Rho GTPases during the life cycle of A. niger as deduced 

from phenotypic traits of respective loss-of-function mutations. For details see Discussion. 

 

 

cell wall biosynthesis, RhoD governs cytokinesis (septation and sporulation) and RacA 

controls polarity maintenance, which can partially also be accomplished by CftA.  

Altogether, the activities of RhoD, RacA and CftA contribute to and ensure fast hyphal tip 

growth rate in A. niger.  

Thus, all six Rho GTPases exert distinct and overlapping functions, which, when 

compared with data from other filamentous fungi, are only partially conserved. Even within 

a genus, there is no consistent pattern for the physiological function of Rho GTPases. For 

example, RhoD is required for septum formation in both A. nidulans and A. niger, but RacA 

and CftA differently contribute to polarity maintenance in both species ((Si et al. 2010; 

Virag et al. 2007) and this work). Similar and differing requirements of Rho GTPases for 

growth and morphogenesis of filamentous fungi are most probably a consequence of 

species differentiation during evolution (see above). Although fungal Rho GTPases are 

highly related (Fig. S1), their interaction with other molecules can differ and can cause 

varying species-specific outputs. Hence, studying different model systems will give 

comprehensive insights into the roles of Rho GTPases for fungal growth and development. 

 

 

RacA and CftA control actin dynamics in A. niger 
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The phenotypic analyses of the six different Rho GTPase deletion strains uncovered that 

apical dominance in young germlings and mature hyphae of A. niger is predominantly 

controlled by RacA. To understand more about the underlying mechanisms of RacA 

activity, we visualized RacA by GFP tagging, studied the cellular consequences of 

dominant activation of RacA (RacAG18V), followed actin and tubulin distribution in wt, 

∆racA and RacAG18V strains and generated a conditional ∆racA∆cftA double deletion strain. 

The data shows that RacA localizes to the apex of actively growing cells, where it seems to 

be crucial for the organization of actin distribution (Figs. 4, 5 and 7; Movie S1). Both 

deletion and dominant activation of RacA provoke an actin localization defect and thereby 

loss of polarized tip extension (Figs. 5 and 7). In the case of RacA deletion, actin becomes 

hyperpolarized, whereas constitutive active RacA causes actin depolarization. Interestingly, 

the dichotomous branching phenotype of ∆racA suggests that loss of apical dominance can 

easily be overcome by the establishment of two new sites of polarized growth. This 

phenotype is reminiscent of the ramosa-1 mutant of A. niger, which results from a transient 

contraction of the actin cytoskeleton and thereby transient displacement of the 

Spitzenkörper (Meyer et al. 2009; Reynaga-Pena and Bartnicki-Garcia 1997; Reynaga-Pena 

and Bartnicki-Garcia 2005). Frequent dichotomous branching is also a characteristic of the 

actin (act
1) and actinin mutants in N. crassa and A. nidulans (Virag and Griffiths 2004; 

Wang et al. 2009) as well as of the A. nidulans ∆sepA mutant (Harris et al. 1994), which 

would be in agreement with the concept that RacA is important to stabilize polarity axes via 

controlling actin. When RacA is trapped in its active, GTP-bound form (RacAG18V), 

however, loss of apical dominance can not be overcome by A. niger. Imaginable is a 

mechanism similar to the control circuit shown for plant pollen tubes (Klahre and Kost 

2006): A hypothetical, subapically localized, RacA-dependent GAP ensures that the 

activity of RacA is spatially restricted to the hyphal apex thereby maintaining a stable 

polarity axes. In the RacAG18V mutant strain, however, this hypothetical control mechanism 

is leveraged off. 

Our data also showed that RacA can substitute for CftA (Fig. 3) and that deletion of 

both genes is lethal to A. niger, whereas deletion of each single gene is not (Fig. 2). These 

observations suggest that RacA and CftA share functions with respect to the control of the 

actin cytoskeleton. Basically, Rac1 and Cdc42 of higher eukaryotes can affect actin 

dynamics by three ways:  They induce polymerization and branching of actin filaments by 

stimulating the Arp2/3 complex and formins. They support actin polymerization by 

activating WASP/WAVE proteins which prevent capping of the barbed (plus) end of actin 

filaments. And thirdly, they inhibit the actin depolymerizing factor cofilin, thereby 

controlling the disassembly of actin filaments at the minus end. Hence, Rac1 and Cdc42 

govern actin dynamics by adjusting the assembly and disassembly rates of actin filaments 
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(for details see recent reviews (Heasman and Ridley 2008; Ridley 2006)). The actin 

hyperpolarization phenotype of the ∆racA strain could imply that actin turnover rates are 

disturbed in this strain, i.e. actin filaments disassemble too quickly. If so, it would follow 

that RacA and CftA can substitute each other with respect to actin polymerization but that 

actin depolymerization is mainly under control of RacA (Fig. 10). As a result, a racA 

deletion mutant will not be affected in actin polymerization (because secured by CftA) but 

will be disturbed in actin depolymerization and thus apical dominance. In contrast, a cftA 

deletion mutant is not affected in both actin polymerization and actin depolymerization as 

both processes can be guaranteed by RacA. Hence a cftA deletion strain will not be affected 

in the maintenance of polar tip growth, which indeed is the case (Fig. 2).  

 

 

RiaA and RiaB are downstream targets of RacA  

 

We finally showed that RacA physically interacts with two proteins, namely RiaA, which is 

a predicted NoxR homolog, and RiaB, a protein of unknown function. As both proteins do 

not interact with CftA (Fig. 7), we suspect that they are specific downstream targets of 

RacA (Fig. 10). Loss-of-function analyses of RiaB showed that this protein rather fulfils a 

moderate physiological role and apparently ensures optimal tip extension rate (Table 3).  

 

Fig. 10. Tentative mechanistic model explaining the function of RacA and CftA for growth, 

morphogenesis and development of A. niger. RacA interaction with effector proteins are 

indicated with double arrows. For details see Discussion. 
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As RacA interacted with RiaA, we also analyzed the consequences of riaA and noxA 

deletion for A. niger. A requirement of NoxA/NoxR proteins in hyphal tip extension and  

(a)sexual reproduction has been reported for different fungal species (Cano-Dominguez et 

al. 2008; Lara-Ortiz et al. 2003; Malagnac et al. 2004; Scott and Eaton 2008; Semighini and 

Harris 2008). Our phenotypic analyses of ∆riaA and ∆noxA strains strongly imply that an 

involvement of RiaA (NoxR) and NoxA in tip-localized ROS generation is rather unlikely 

in A. niger (Fig. S4). Although the well-developed ROS gradient towards hyphal apices still 

suggests that regulated synthesis of ROS is important for hyphal tip growth of A. niger 

hyphae, we propose that this is not mediated by NoxA and RiaA (NoxR). Several 

observations support this reasoning. First, the ∆noxA and ∆riaA strains do not display any 

polarity defects. Second, radial growth rate is not affected in A. niger when deleted for 

∆noxA or ∆riaA. And third, ROS staining is not reduced in ∆noxA or ∆riaA strains when 

compared with the wt situation. As deletion of both proteins resulted in a strong reduction 

in conidia formation, we rather consider that NoxA and RiaA play an important role in 

asexual development of A. niger. Notably, the relative contribution of Nox proteins to these 

processes seems to be strongly species-dependent. For example, deletion of NoxA results in 

reduced conidiation in N. crassa (Cano-Dominguez et al. 2008) but not in A. nidulans 

(Semighini and Harris 2008). We currently undertake efforts to understand to which extent 

NoxA and RiaA contribute to developmental decisions in A. niger.  

 

 

Experimental Procedures 

 

Strains, culture conditions and molecular techniques 

 

A. niger and S. cerevisiae strains used in this study are given in Table 3. Escherichia coli 

strain XL1-blue served as host for all plasmid work. General cloning procedures in E. coli 

were done according to (Sambrook and Russell 2001). A. niger strains were cultivated in 

minimal medium (MM) (Bennett and Lasure 1991) containing 1% glucose, as a carbon 

source (if not otherwise stated) or in complete medium (CM), consisting of MM 

supplemented with 1% yeast extract and 0.5% casamino acids. Then 10 mM uridine or 100 

µg/ml hygromycin was added when required. Transformation of A. niger, selection 

procedures, heterokaryon rescue, genomic DNA extraction, diagnostic PCR and Southern 

analyses were performed using recently described protocols (Carvalho et al. 2010; Meyer et 

al. 2010b). The ∆racA strain was rendered uridine-requiring (pyrG
-) using FOA counter 

selection (Meyer et al. 2010b). Sensitivity of A. niger strains towards CFW was tested using 

the protocol according to (Ram and Klis 2006). The effect of the microtubule inhibitors 
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benomyl and nocodazole on the growth of A. niger strains was tested using different 

concentrations up to 0.25 µg/ml. 

 

Phenotypic analyses and staining procedures 

 

Defined spore titres of A. niger strains were used to inoculated MM or CM and incubated 

for 1-4 days at 25-30°C. All quantitative measurements (growth rate, germination rate, 

sporulation efficiency) were performed in triplicates. To determine the amount of spores 

produced by a colony, all spores formed were carefully taken off with physiological salt 

solution and a cotton stick and counted using a Neubauer chamber. 

Actin immunostaining, CFW and NBT staining were performed according to (Meyer et 

al. 2009; Meyer et al. 2008).  For actin immunostaining, cells were fixed with a PBS buffer 

containing 3.7% p-formaldehyde, 5% DMSO, 25 mM EGTA pH 7.0 and 5 mM MgSO4. 

Cell walls were digested for 60 min using lysing enzyme from Trichoderma harzianum 

(Sigma-Aldrich). The monoclonal antibody against actin was obtained from MP 

Biomedicals. For CFW staining, germlings were fixed in PBS buffer containing 3.7% p-

formaldehyde and 0.2% Triton X-100, rinsed with PBS buffer and incubated in 10 µg/ml of 

Fluorescent Brightener 28 (CFW, Sigma-Aldrich) for 5 min after which they were rinsed 

again and subjected to microscopy. For NBT staining, germlings were incubated for 1 hour 

in 50 mM sodium phosphate buffer containing 0.5 mg/ml NBT (Sigma-Aldrich), washed 

once with 100% methanol and once with water and immediately subjected to microscopy.  

 

Microscopy 

 

Light and fluorescence microscopic pictures were captured with 20x or 40x objectives and 

using an Axioplan 2 (Zeiss) equipped with a DKC-5000 digital camera (Sony). DIC and 

GFP settings were used and images were processed using Adobe Photoshop 6.0 (Adobe 

Systems). 

For time-lapse microscopy, conidia were pre-grown on MM agar plate at 30°C for 2 

days. An agar piece containing mycelium was transferred upside down onto an objective 

glass. To prevent drying-out of the agar, a small volume of CM was applied between the 

colony and the objective glass. After cells resumed growth, time-lapse images were 

captured with 40x C-apochromatic objective on an inverted LSM 5 microscope equipped 

with a laser scanning-disk confocal system (Zeiss). In total, eleven z stacks (0.6 µm 

interval) were taken in 30 s time intervals. The time-lapse movie showing 4 frames per 

second was assembled using ZEN 2009 software (Zeiss). 
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Construction of deletion cassettes, mutant alleles and expression cassettes 

 

Standard PCR and cloning procedures were used for the generation of all constructs 

(Sambrook and Russell 2001) and all cloned fragments were confirmed by DNA 

sequencing. Details on cloning protocols and primers used can be requested from the 

authors.  

The rhoA, rhoB, rhoC, rhoD, racA, cftA, riaA, riaB and noxA deletion constructs were 

made by PCR amplification of the 5’- and 3’- flanks of the respective ORFs (at least 0.9 kb 

long). Genomic DNA of A. niger served as template DNA. The sequences were cloned 

upstream and downstream of the A. oryzae pyrG selection marker obtained from pAO4-13 

(de Ruiter-Jacobs et al. 1989). In the case of cftA, the hygromycin resistance cassette 

isolated from pAN7-1 (Punt et al. 1987) was used to replace the cftA ORF.  

The PglaA::racA::TtrpC-pyrG* construct was made based on pAN52-7 (Verdoes et al. 

1994a) which already contained PglaA::TtrpC. Next to this cassette, the pyrG* allele of 

plasmid pAB94 (van Gorcom and van den Hondel 1988) was cloned to facilitate integration 

of the constructs at the endogenous pyrG locus of A. niger. Finally, the racA ORF was 

cloned downstream of PglaA. The PinuE::racA::TtrpC-pyrG* construct was generated by 

exchanging PglaA with PinuE, which was gained by PCR amplification of the 1.5 kb inuE 

upstream region from genomic DNA.  

PtubA::ecfp::tubA::TtubA-pyrG* was generated using a fusion PCR approach recently 

described (Meyer et al. 2008). PracA::egfp-AopyrG-egfp::racA::TracA was made 

according to (Hazan and Liu 2002). Note, N-terminal tagging of small GTPases is favoured 

over C-terminal tagging, as the C-terminal isoprenyl group is essential for GTPase function. 

Mutant alleles of racA and cftA (encoding RacAG18V, RacAD124A, CftAG14V and 

CftAD120A), were generated by PCR using primers carrying respective point mutations. The 

DNA fragment encoding for RacAG18V was used to replace the racA gene in 

PinuE::racA::TtrpC-pyrG* and PglaA::racA::TtrpC-pyrG*, respectively. For the yeast 

two-hybrid assay, wt and mutant alleles of racA and cftA were cloned into pDEST32 

(Invitrogen) according to the supplier’s instructions.  

 

Complementation analyses 

 

Complementation cassettes were generated for the deletion strains ∆rhoB, ∆rhoD, ∆racA, 

∆cftA, ∆riaA, ∆riaB and ∆noxA, respectively. The ORFs including 1000 bp of their up- and 

downstream regions were amplified by PCR using genomic DNA of A. niger as template. 

The DNA fragments gained were either integrated into an autonomously replicating 

pAMA-based vector (Carvalho et al. 2010) or into pAN7-1 (Punt et al. 1987) and thereafter 
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transformed into the individual deletion strains. For complementation analyses, the 

strongest deletion phenotype was selected in order to analyze whether the wt phenotype 

became restored. 

 

Construction of cDNA libraries and yeast two-hybrid analysis 

 

Four A. niger cDNA libraries were constructed using the CloneMiner cDNA library 

construction kit from Invitrogen. Library A (‘vegetative growth library’) was made using 

pooled RNA populations isolated from liquid CM cultures harvested after 4, 6, 8, 16 and 32 

h of incubation. Library B (‘morphological mutant library’) was constructed by pooling 

RNAs from the hyperbranching mutant strain ramosa-1 ((Meyer et al. 2009); cultivated in 

liquid CM for 16 h at permissive and 2 h at restrictive temperature) with mRNAs isolated 

from the PglaA::racA
G18V strain (propagated for 16 h in liquid CM). Library C (‘stress 

library’) was established using RNAs extracted from 5 hour old germlings stressed for 1 h 

with 2 mM DTT and stressed for 1, 2 or 4 h with 200 µg/ml CFW). Library 4 (‘conidiation 

library’) was established from a culture that was pregrown for 16 h in liquid CM and 

transferred to a CM agar plate covered with a polycarbonate filter. RNA from sporulating 

mycelia was harvested after 8 h and 27 h of incubation.  

For each library, equal amount of RNA from the different condition was pooled and 

used for reverse transcription. Each of the cDNAs obtained was cloned into the donor 

vector pDONR222 (Invitrogen) to create four entry libraries (each ~ 7×106 clones, average 

insert size 1.4-1.7 kb). The two-hybrid libraries were constructed by transferring the 

libraries from pDONR222 to pDEST22 via LR reactions (Invitrogen). At least 3×106 clones 

were isolated for each library. The yeast two-hybrid screen (screening procedure, 

confirmation of positive interactors using the reporter genes HIS3, URA3 and lacZ and 

respective controls) was performed according to the manufacturer’s instructions 

(ProQuestTM Two–Hybrid System with Gateway® Technology, Invitrogen). Putative 

interactions of RacA and CftA versions (RacA, RacAG18V, RacAD124A, CftA, CftAG14V and 

CftAD120A) with RiaA and RiaB were repeatedly analyzed using HIS3 (3-Amino-1,2,4-

triazole; 3-AT) and lacZ as reporters following the manufacturer’s instructions. 
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Abstract 

 

RacA is the main Rho GTPase in Aspergillus niger regulating polarity maintenance via 

controlling actin dynamics. Both deletion and dominant activation of RacA (RacG18V) 

provoke an actin localization defect and thereby loss of polarized tip extension, resulting in 

frequent dichotomous branching in the ∆racA strain and an apolar growing phenotype for 

RacG18V. In the current study the transcriptomics and physiological consequences of these 

morphological changes were investigated and compared with the data of the morphogenetic 

network model for the dichotomous branching mutant ramosa-1. This integrated approach 

revealed that polar tip growth is most likely orchestrated by the concerted activities of 

phospholipid signaling, sphingolipid signaling, TORC2 signaling, calcium signaling and 

CWI signaling pathways. The transcriptomic signatures and the reconstructed network 

model for all three morphology mutants (∆racA, RacG18V, ramosa-1) imply that these 

pathways become integrated to bring about different physiological adaptations including 

changes in sterol, zinc and amino acid metabolism and changes in ion transport and protein 

trafficking. Finally, the fate of exocytotic (SncA) and endocytotic (AbpA, SlaB) markers in 

the dichotomous branching mutant ∆racA was followed, demonstrating that hyperbranching 

does not per se result in increased protein secretion. 

 

 

Introduction 

 

Filamentous fungi such as Aspergillus niger are widely used in biotechnology for the 

production of various proteins, enzymes, food ingredients and pharmaceuticals (Fleissner 

and Dersch 2010; Meyer 2008; Meyer et al. 2011b; Saloheimo and Pakula 2012). During 

recent years, A. niger became an industrial model fungus, due to its well annotated genome 

sequence, sophisticated transcriptomics and proteomics technologies and newly established 

gene transfer systems allowing efficient and targeted genetic and metabolic engineering 

approaches (Carvalho et al. 2010; Jacobs et al. 2009; Meyer et al. 2011b; Pel et al. 2007).  

The morphology of filamentous fungi strongly affects the productivity of industrial 

fermentations (Grimm et al. 2005; McIntyre et al. 2001; Papagianni 2004). Basically, 

Aspergilli and all other filamentous fungi grow either as pellets or as freely dispersed 

mycelium during submerged growth. Both macromorphologies depend among other things 

on hyphal branching frequencies – pellets are formed when hyphae branch with a high 

frequency, dispersed mycelia are a result of low branching frequencies. Whereas the 

formation of pellets is less desirable because of the high proportion of biomass in a pellet 

that does not contribute to product formation, long, unbranched hyphae are sensitive to 



Transcriptomic Signature of RacA Activation and Inactivation 

 51 

shear forces in a bioreactor. Lysis of hyphae and the subsequent release of intracellular 

proteases have thus a negative effect on protein production. Hence, from an applied point of 

view, the preferred fungal macromorphology would consist of dispersed mycelia with short 

filaments derived from an optimum branching frequency. It is generally accepted that 

protein secretion occurs mainly at the hyphal apex (Gordon et al. 2000; Hayakawa et al. 

2011; Muller et al. 2002; Wösten et al. 1991). Some studies suggested a positive correlation 

between the amount of hyphal branches and protein secretion yields (Amanullah et al. 

2002; Muller et al. 2002; te Biesebeke et al. 2005; Wongwicharn et al. 1999), whereas other 

reports demonstrated no correlation (Bocking et al. 1999; McIntyre et al. 2001). Therefore, 

it is still a matter of debate whether a hyperbranching production strain would considerably 

improve protein secretion rates. 

Different mutations can lead to a hyperbranching phenotype in filamentous fungi. For 

example, dichotomous branching (tip splitting) is a characteristic of the actin (act
1) and 

actinin mutants in Neurospora crassa and A. nidulans (Virag and Griffiths 2004; Wang et 

al. 2009), a consequence of deleting the formin SepA in A. nidulans (Harris et al. 1994) or 

the polarisome component SpaA in A. nidulans and A. niger (Meyer et al. 2008; Virag and 

Harris 2006a) and a consequence of inactivating the Rho GTPase RacA or the TORC2 

complex component RmsA protein in A. niger (Kwon et al. 2011; Meyer et al. 2009). 

Common to these different gene mutations is not only the phenotype they provoke but that 

they also disturb the dynamics of the actin cytoskeleton. Actin is crucial for polarized 

hyphal growth in filamentous fungi and controls many cellular processes, including 

intracellular movement of organelles, protein secretion, endocytosis and cytokinesis 

(Berepiki et al. 2011; Lanzetti 2007).  

We have recently analyzed the function of all six Rho GTPase encoded in the genome 

of A. niger (RacA, CftA, RhoA, RhoB, RhoC, RhoD) and uncovered that apical dominance 

in young germlings and mature hyphae of A. niger is predominantly controlled by RacA 

(Kwon et al. 2011). Both RacA and CftA are not essential for A. niger (in contrast to RhoA) 

but share related functions which are executed in unicellular fungi only by Cdc42p (Kwon 

et al. 2011). The data showed that RacA localizes to the apex of actively growing filaments, 

where it is crucial for actin distribution. Both deletion and dominant activation of RacA 

(RacAG18V expressed under control of the maltose-inducible glucoamlylase promoter glaA) 

provoke an actin localization defect and thereby loss of polarized tip extension. In the case 

of RacA inactivation, actin becomes hyperpolarized, leading to frequent dichotomous 

branching. Dominant activation of RacA, however, causes actin depolarization, leading to a 

swollen-tip phenotype and the formation of bulbous lateral branches. Interestingly, the 

dichotomous branching phenotype suggested that loss of apical dominance in ∆racA can 

frequently be overcome by the establishment of two new sites of polarized growth. This 
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phenotype resembles the phenotype of the ramosa-1 mutant of A. niger, which harbors an 

temperature-sensitive mutation in the TORC2 component RmsA causing a transient 

contraction of the actin cytoskeleton (Meyer et al. 2009; Reynaga-Pena and Bartnicki-

Garcia 1997; Reynaga-Pena and Bartnicki-Garcia 2005).  

Altogether, the data supported the model that RacA is important to stabilize polarity 

axes of A. niger hyphae via controlling actin (de)polymerization at the hyphal apex. The 

aim of the present study was to unravel the genetic network into which RacA is embedded 

and which, when disturbed due to deletion or dominant activation of RacA, leads to loss of 

polarity maintenance and in the case of ∆racA, to reestablishment of two new polarity axes. 

To determine whether the hyperbranching phenotype of ∆racA leads to an increase in the 

amount of secreted proteins, the transcriptomes of our previously established RacA mutant 

strains (∆racA, PglaA::racA
G18V) were compared with the transcriptomes of the respective 

reference strains (wt, PglaA::racA). By applying defined culture conditions in bioreactor 

cultivations, branching morphologies as well as physiological parameters including specific 

growth rate and protein production rate were characterized. Finally, the implication of 

∆racA on endocytosis and exocytosis in A. niger were examined by analyzing reporter 

strains harboring fluorescently tagged SlaB and AbpA (markers for endocytotic actin) and 

SncA (marker for secretory vesicles) was examined. The data obtained were compared with 

transcriptomic and physiological data of the dichotomous branching mutant ramosa-1 

(Meyer et al. 2009), thereby providing new insights into the morphogenetic network of A. 

niger.  

 

 

Results  

 

Physiological consequences of RacA inactivation 

 

As previously reported, deletion of racA in A. niger provokes hyperbranching germ tubes 

and hyphae, which are shorter in length but wider in hyphal diameter. This frequent 

branching results on solid medium in a more compact colony with a reduced diameter due 

to slower tip extension rates (Kwon et al. 2011). In order to further characterize the 

implications of loss of RacA function, the reference strain (wild-type N402) and the ∆racA 

strain were cultivated in triplicate batch cultures using maltose as growth-limiting carbon 

source. Propagation of both strains gave rise to homogeneous cultures of dispersed mycelia, 

whereby loss of RacA resulted in an about 30% higher branching frequency (Fig. 1 and 

Table 1). Physiological profiles including growth curves, maximum specific growth rates 

and specific protein secretion rates were obtained with high reproducibility and were nearly  
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Fig. 1. Hyphal morphology during dispersed growth. Mycelial samples of the wild-type strain 

N402 (A) and the ∆racA mutant strain (B) were taken during the mid-exponential phase when 

approximately 75% of the carbon source was consumed. Bar, 20 µm.  

 

 

Table 1. Comparative image analysis of branching morphologies.  

 N402 (n=38) ∆racA (n=13) 

Mycelium length (µm) 510 ± 177 507 ± 184 

No. of hyphal apices 17 ± 6 22 ± 8 

Branch length (µm) 32 ± 6 23 ± 2 

Central hyphal length (µm) 257 ± 63 162 ± 41 

Morphological samples were taken from the exponential growth phase and the individual mycelium was 

randomly selected to measure the length of the mycelium and the number of branching tips using imageJ. Mean 

values ± standard deviations are given. Bold letters indicate significant differences (two tailed t-test, p < 0.01). 

 

 

Table 2. Physiological characterization of N402 and ∆racA strains. 

 N402  ∆racA 

Maximum specific growth rate (h-1) 0.22 ± 0.01 0.24 ± 0.01 

Yield (gdw gmaltose
-1) 0.60 ± 0.02 0.63 ± 0.03 

Respiratory quotient (RQ) 0.97 ± 0.05 1.03 ± 0.03 

Acidification (mmolbase gdw
-1 h-1) 1.19 ± 0.06 1.17 ± 0.02 

Specific protein secretion rate (mgprotein gdw
-1 h-1) 0.49 ± 0.07 0.53 ± 0.02 

Biomass samples were taken from triplicate independent batch cultivations using maltose as carbon source (Fig. 

2). Mean values ± standard deviations are given. No significant difference was observed with any of the 

variables (two tailed t-test, p < 0.01). RQ, respiratory quotient calculated as the ratio of CO2 production and O2 

consumption rates. 

     



Chapter 3 

 54 

Fig. 2. Biomass (A) and extracellular protein (B) accumulation for the wild-type strain N402 and 

the ∆racA strain. The arrow indicates the time point when biomass samples were harvested for 

transcriptomics analyses. The graphs represent data for three independent biological replicate 

cultures per strain.  

 

 

identical for both strains despite the significant difference in their morphology (Fig. 2 and 

Table 2). This result might come with surprise because of the negative effect of the racA 

deletion on radial colony growth on solid medium (Kwon et al. 2011). However, growth on 

solid media can only be assessed based on colony diameter (reflecting tip extension) and 

not on biomass accumulation (i.e. increase in cell volume per time). During exponential  

growth, growth yield on substrate (Yx/s) was comparable in both strains; 0.63 ± 0.03 and 

0.60 ± 0.02 gbiomass gmaltose
-1 for ∆racA and N402, respectively. Notably, the amount of 

extracellular protein was not altered in ∆racA strain compared to N402 (Table 2). Hence, an 

increased branching frequency is the only highly significant consequence of racA 

disruption, which, however, does not per se result in higher protein secretion rates. 

 

 

Consequences of RacA inactivation on exo- and endocytosis 

 

We previously showed that RacA is important for actin localization at the hyphal tip 

(Kwon et al. 2011). As actin is important for both exo- and endocytosis, the consequences 

of racA deletion on both was assessed in A. niger by following the localization of 

fluorescently-labelled reporter proteins SncA, AbpA and SlaB, respectively, was assessed 

in this study. SncA is the vesicular-SNARE that is specific for the fusion of Golgi derived 

secretory vesicles with the plasma membrane (Chen and Scheller 2001) and used as a 

marker for exocytosis in A. nidulans (Taheri-Talesh et al. 2008; Taheri-Talesh et al. 2012). 
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Abp1/AbpA and Sla2/SlaB are actin binding proteins and well characterized endocytic 

markers in yeast and filamentous fungi (Araujo-Bazan et al. 2008; Quintero-Monzon et al. 

2005; Taheri-Talesh et al. 2008). Screening of the genome sequence of A. niger (Pel et al. 

2007) predicted for each of the established marker proteins a single ortholog for A. niger: 

An12g07570 for SncA, An03g06960 for Abp1/AbpA and An11g10320 for Sla2/SlaB.  

We constructed a reporter strain expressing a fusion of GFP with the v-SNARE SncA 

as described elsewhere (Kwon et al. 2013a). In brief, physiological expression levels of 

GFP-SncA was ensured by fusing GFP between the N-terminus and the promoter of sncA 

and used this cassette to replace it with the endogenous sncA gene (giving strain FG7). As 

depicted in Fig. 3A, GFP-SncA is visible as punctuate intracellular structures representing 

secretory vesicles. These vesicles accumulate towards the hyphal tip, overlap with the 

Spitzenkörper and are highest at the extreme apex, which is proposed to be the site of 

exocytosis in filamentous fungi (Taheri-Talesh et al. 2008). This localization of GFP-SncA 

in A. niger was very similar to the localization previously reported for other filamentous 

fungi (Furuta et al. 2007; Hayakawa et al. 2011; Kuratsu et al. 2007; Taheri-Talesh et al. 

2008; Valkonen et al. 2007). Importantly, the amount of secretory vesicles per hyphal tip 

was affected in the ∆racA strain. Although the localization of GFP-SncA was similar to the 

w i ld - ty pe  s t r a in ,  t he  i n t ens i t y  o f  t he  s i gna l  w a s  co ns ide rab ly  l ow er .  

Fig. 3. Localization of secretory vesicles and fluorescent intensity distributions in the wild-type 

strain N402 and the ∆racA mutant strain using GFP-SncA as fluorescent marker. (A) CLSM 

images showing the localization of GFP-SncA in hyphal tips. The Spitzenkörper is indicated with a 

star. (B) Fluorescent intensity distributions along hyphal tip compartments (n > 20) within a region 

of 20 µm. Bar, 10 µm.  
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Quantification of the GFP signal intensities in both strains revealed that the tips of wild-

type hyphae display a GFP-SncA gradient of ~20-25 µm but only about ~10 µm in the 

racA deletion strain (Fig. 3B). Both strains, however, do not differ in their specific protein 

secretion rates (Table 2), implying that the total amount of secretory vesicles is the same in 

both strains. This discrepancy can most easily be explained by the assumption that 

secretory vesicles in the hyperbranching ∆racA strain are merely distributed to more hyphal 

tips, which in consequence lowers the amount of vesicles per individual hyphal tip. 

To follow the effect of racA deletion on endocytosis, AbpA and SlaB were labeled 

using a C-terminal labeling strategy as previously reported for A. nidulans (Taheri-Talesh 

et al. 2008). Importantly, both AbpA-CFP and SlaB-YFP were expressed at physiological 

levels by using the respective endogenous promoter and by replacing the constructs with 

the endogenous abpA and slaB gene, respectively (Fig. 4B). AbpA-CFP (strain MK6.1) and 

SlaB-YFP (strain MK5.1) transformants were phenotypically indistinguishable from the 

recipient strain, indicating that both AbpA-CFP and SlaB-YFP are functionally expressed 

(Fig. 4 and data not shown). Although AbpA-CFP and SlaB-YFP fluorescence signals were 

only weakly detectable (which is a direct consequence of their low endogenous expression 

level), both proteins were visible in the wild-type background as peripheral punctate 

structures and formed a subapical ring likely reflecting the endocytic machinery (Fig. 4A-

C). Fluorescent signals were excluded from the hyphal apex which is in agreement with 

previous reports for A. nidulans showing that endocytosis occurs behind the tip (Araujo-

Bazan et al. 2008; Taheri-Talesh et al. 2008). The signal of SlaB-YFP but not AbpA-CFP 

seemed to be intimately associated with the plasma membrane (data not shown), which 

would be in agreement with the function of both proteins - Sla2/SlaB is involved in early 

endocytic site initiation while Abp1/AbpA is important for invagination, scission and 

release of endocytotic vesicles (Kaksonen et al. 2006). SlaB-YFP and AbpA-CFP 

fluorescence was also occasionally observed at septa or sites destined for septum formation 

(Fig. 4D), probably suggesting an involvement of endocytotic events at septa as recently 

reported for A. oryzae (Hayakawa et al. 2011). Importantly, the intensity and distribution of 

SlaB-YFP and AbpA-CFP differed slightly in the wild-type and the ∆racA strain (Fig. 4E-

G). The endocytotic actin ring as visualized by AbpA-CFP was sharper formed in the wild-

type background but more diffuse in the ∆racA strain, an observation which, however, was 

not so evident for SlaB-YFP (Fig. 4 F-G). Still, the endocytotic ring formed by both SlaB-

YFP and AbpA-CFP seemed to be positioned closer to the hyphal apex in the ∆racA strain 

(Fig. 4G), suggesting that deletion of RacA affected endocytotic processes and provoked a 

slight mislocalization of the endocytotic ring.  
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Fig. 4. Localization of endocytic ring structures in the wild-type strain N402 and the ∆racA mutant 

strain using AbpA-CFP and SlaB-YFP as fluorescent markers. The cultures were grown for two days 

at 22oC on MM agar. (A) Transmission light images, (B) two dimensional fluorescent confocal 

images and (C) three dimensional reconstructions from z-sectional confocal images are shown for 

both strains. (D, E) depict selected light and fluorescent images at sites of septation (D) and at sites of 

endocytosis (E). (F, G) Fluorescent intensity distribution of endocytotic ring structures. Fluorescence 

was measured in at least 25 hyphal tips of each strain. Mean values with (F) or without (G) standard 

deviation is shown. (H) Schematic representation of the AbpA-CFP and SlaB-YFP constructs 

designed for integration at the endogenous abpA and slaB loci, respectively. The A. oryzae pyrG gene 

served as selection marker, a sequence encoding 5x Gly-Ala as peptide linker (grey box) and the 3’ 

region from the A. nidulans trpC gene as terminator. Bar, 10 µm. 

 

 

The transcriptomic fingerprint of hyperbranching in ∆∆∆∆racA  

 

To study the transcriptomic consequences due to deletion of racA, RNA samples from 

triplicate bioreactor cultivations were taken after both wt and ∆racA cultures reached the 

mid-exponential growth phase (biomass concentration 3.7 gr kg-1). A total of 139 genes out 

of 14,165 A. niger genes were identified as differentially expressed, 44 of which displayed 

increased and 95 genes decreased expression levels in ∆racA (FDR < 0.05). The complete 

list of differentially expressed genes, including fold change and statistical significance is 

given in Table S1 and S2. Interestingly, the modulated gene set in ∆racA is very small (139 

genes, i.e. 1% of all A. niger genes) but in the same range as the differentially expressed 

gene set in the dichotomous branching mutant ramosa-1 of A. niger (136 genes; (Meyer et 

al. 2009)). Although the affected gene sets had opposite signs (44 up / 95 down in ∆racA, 

109 up / 27 down in ramosa-1), similar processes were affected in both hyperbranching 

strains (Table 3): (i) (phospho)lipid signaling, (ii) calcium signaling, (iii) cell wall integrity 

(CWI) signaling and cell wall remodeling, (iv) γ-aminobutyric acid (GABA) metabolism 

and (v) transport phenomena. Specific responses for ∆racA but not ramosa-1 included 

genes related to actin localization and protein trafficking.  

In the case of (phosho)lipid signaling, genes encoding enzymes for the synthesis of the 

key regulatory lipid molecules diacylglycerol (DAG) and inositolpyrophosphates (IP6 and 

IP7) were differentially expressed in both ∆racA and ramosa-1. These molecules play 

important roles in the regulation of actin polarisation, CWI and calcium signaling in lower 

and higher eukaryotes (see discussion). Notably, expression of An04g03870 predicted as 

ortholog of the S. cerevisiae Dpp1p (DAG pyrophosphate phosphatase) is affected in both 

strains; however, down-regulated in ∆racA but up-regulated in ramosa-1. The same 

opposite response was observed for two A. niger ORFs predicted to encode inositol hexaki-

/heptaki-phosphate kinases synthesizing the signaling molecules inositol pyrophosphates 
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IP6 or IP7: An14g04590 (Ksc1p ortholog) is down-regulated in ∆racA, whereas 

An16g05020 (Vip1p ortholog) is up-regulated in ramosa-1. Inositol polyphosphates IP4-

IP6 are known to bind to the C2B domain of the calcium sensor protein synaptotagmin 

(Joung et al. 2012). This binding inhibits exocytosis of secretory vesicles, whereas binding 

of calcium to the C2A domain of synaptotagmin activates exocytosis (Mikoshiba et al. 

1999). In the ∆racA strain, four calcium transporters are down-regulated compared to the 

wild-type situation, two of which (An01g03100, An05g00170) code for the ortholog of the 

S. cerevisiae Vcx1p protein, which is also differentially expressed under hyperbranching 

conditions in ramosa-1 (Table 3). This observation hints at the possibility that reduced 

GFP-SncA fluorescence at ∆racA hyphal tips is somehow linked with changes in IP6/IP7 

and calcium levels in ∆racA, which would be in agreement with a recent report which 

demonstrated that calcium spikes accompany hyphal branching in Fusarium and 

Magnaporthe hyphae (Kim et al. 2012). Changes in the intracellular calcium distribution 

also affect the homeostasis of other ions. Congruently, 12 genes putatively encoding 

transport proteins for ions (Na+, K+, Fe2+) and small molecules (phospholipids, amino acids, 

peptides, hexoses) displayed differential transcription in ∆racA as also observed for 

ramosa-1 (Table 3), suggesting that ion homeostatic and/or metabolic control systems are 

also important to maintain polar growth. Reduced exocytotic GFP-SncA signals at hyphal 

tips of the ∆racA strain would imply that less cell wall biosynthetic/remodeling enzymes 

are transported to the tip. Indeed, expression of ten ORFs encoding cell membrane and cell 

wall genes and three ORFs involved in protein trafficking were down-regulated in ∆racA 

(Table 3). Whatever the consequences of reduced expression of cell wall or ion homeostasis 

genes are, none of these changes led to increased sensitivity of the ∆racA strain towards 

cell wall stress agents (calcofluor white), different salts (MgCl2, KCl, NaCl) or oxidative 

conditions (H2O2, menadion; data not shown), suggesting that the integrity of the cell wall 

or cell membrane is not disturbed in the racA strain. 

Inactivation of RacA, however, has considerable consequences on actin localization as 

previously reported (Meyer et al. 2008). Congruently, five ORFs involved in actin 

polarization were down-regulated in the ∆racA strain (Table 3). Of special importance are 

the polarisomal component SpaA, whose deletion has been shown to cause a 

hyperbranching phenotype and reduced growth speed in A. niger (Meyer et al. 2008) and 

two ORFs which are homologous to the S. cerevisiae amphyphysin-like proteins Rvs161p 

and Rvs167p. The latter function as heterodimer in S. cerevisiae, bind to phospholipid 

membranes and have established roles in organization of the actin cytoskeleton, 

endocytosis and cell wall integrity (Friesen et al. 2006). 
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Table 3. Selected genes whose expression profile respond to hyperbranching in ∆racA (this work) 

and ramosa-1 (Meyer et al. 2009). Genes are ordered into different processes and functions. 
Predicted protein function* ∆∆∆∆racA versus wt ramosa-1 versus wt 

 Open reading 

frame code 

Up / 

Down 

Closest 

S. 

cerevisiae  

ortholog 

Open reading 

frame code 

Up / 

Down 

Closest 

S. cerevisiae 

ortholog 

(Phospho)lipid metabolism and 

signaling 

      

phosphatidyl synthase, synthesis 

of phosphatidyl alcohols 

   An02g08050 ↑  

sterol 24-C-methyltransferase, 

ergosterol synthesis 

An04g04210 ↑ Erg6    

C-14 sterol reductase, ergosterol 

synthesis 

An01g07000 ↓ Erg24 An01g07000 ↑ Erg24 

inositol hexaki-/heptaki-

phosphate kinase, synthesis of 

IP6, IP7 

An14g04590 ↓ Kcs1 An16g05020 ↑ Vip1 

plasma membrane protein 

promoting PI4P synthesis 

   An18g06410 ↑ Sfk1 

phospholipase B, synthesis of 

glycerophosphocholine 

An18g01090 

An02g13220 

↓ 

↓ 

Plb3 

Plb1 

   

phospholipase D, synthesis of 

phosphatidic acid 

   An15g07040 ↑ Spo14 

diacylglycerol pyrophosphate 

phosphatase, synthesis of DAG 

An04g03870 

An02g01180 

↓ 

↓ 

Dpp1 

Dpp1 

An04g03870 

An11g05330 

↑ 

↑ 
Dpp1 

choline / ethanolamine permease An16g01200 

An01g13290 

↑ 

↓ 

Hnm1 

Hnm1 

   

transcription factor important for 

sterol uptake 

An02g09780 

An12g00680 

↓ 

↓ 

Upc2 

Upc2 

   

mannosyl-inositol 

phosphorylceramide (MIPC) 

synthase 

An05g02310 ↓ Sur1    

Calcium homeostasis and 

signaling 

      

Ca2+/calmodulin dependent 

protein kinase 

   An02g05490, 

An16g03050 

↑ 

↑ 
Cmk2 

Cmk2 
vacuolar Ca2+/H+ exchanger An01g03100 

An05g00170 

An14g02010 

↓ 

↓ 

↓ 

Vcx1 

Vcx1 

Vcx1 

An01g03100 

An05g00170 

↑ 

↑ 
Vcx1 

Vcx1 

Ca2+ transporting ATPase An19g00350 ↓ Pmc1 An02g06350 ↑ Pmc1 
Ca2+ / phospholipid-transporting 

ATPase 

   An04g06840 ↑ Drs2 

Cell wall remodeling and 

integrity 

      

membrane receptor, CWI 

signaling 

An01g14820 ↑ Wsc2    

MAP kinase kinase, CWI 

signaling, MkkA 

   An18g03740 ↑ Mkk1/2 

plasma protein responding to 

CWI signaling 

An07g08960 

An08g01170 

↓ 

↓ 

Pun1 

Pun1 

   

α-1,3-glucanase An04g03680 ↑  An08g09610 ↑  
β-1,3-glucanosyltransferase 

(GPI-anchored) 

   An16g06120 ↑ Gas1 

β-1,4-glucanase An03g05530 ↓  An03g05530 ↑  
chitin synthase class II, similar 

to ChsA of A. nidulans 

   An07g05570 ↑  

chitin transglycosidase (GPI-

anchored) 

An07g01160 ↓ Crh2 An13g02510 ↑ Crh1 
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Table 3. Cont. 
Predicted protein function* ∆∆∆∆racA versus wt ramosa-1 versus wt 

 Open reading 

frame code 

Up / 

Down 

Closest 

S. 

cerevisiae  

ortholog 

Open reading 

frame code 

Up / 

Down 

Closest 

S. cerevisiae 

ortholog 

chitinase (GPI-anchored), 

similar to ChiA of A. nidulans 

   An09g06400 ↓ Cts1 

β-mannosidase    An11g06540 ↑  
endo-mannanase (GPI-

anchored), DfgE 

An16g08090 ↓ Dfg1 An16g08090 ↑ Dfg1 

α-1,2-mannosyltransferase    An14g03910 

An18g05910 

↑ 

↑ 
Kre2 

Kre2 
α-1,3-mannosyltransferase An15g04810 ↓ Mnt2    
α-1,6-mannosyltransferase An05g02320 ↓     
cell wall protein An14g01840 

An11g01190 

↓ 

↓ 

Tir3 

Sps22 

An04g05550 

An11g01190 

An03g05560 

An04g03830 

An02g11620 

↑ 

↑ 

↑ 

↑ 

↓ 

Flo11 

Sps22 

plasma membrane protein An02g08030 ↓ Pmp3    
GABA metabolism       
glutaminase    An11g07960 ↑  
γ-aminobutyrate transaminase    An17g00910 ↑ Uga1 
NAD(+)-dependent glutamate 

dehydrogenase 

   An02g14590 ↑ Gdh2 

GABA permease An16g01920 ↑     
transcription factor for GABA 

genes 

An02g07950 ↓     

Transporter       
mitochondrial phosphate 

translocator 

   An02g04160 ↑ Mir1 

mitochondrial ABC transporter 

during oxidative stress 

An12g03150 ↓ Mdl1    

vacuolar glutathione S-conjugate 

ABC-transporter 

   An13g02320 ↑ Ycf1 

plasma membrane Na+/K+-

exchanging ATPase alpha-1 

chain 

An09g00930 ↓  An09g00930 ↑  

plasma membrane K+ transporter An03g02700 ↓ Trk1    
multidrug transporter An01g05830 ↓ Qdr1 An02g01480 ↑  
low-affinity Fe(II) transporter of 

the plasma membrane 

An16g06300 ↓ Fet4 An16g06300 ↑ Fet4 

vacuolar H+-ATPase subunit, 

required for copper and iron 

homeostasis 

An10g00680 ↓ Vma3    

siderophore-iron transporter    An12g05510 ↓ Taf1 
mitochondrial carrier protein    An14g01860 ↓ Rim2 
vacuolar zinc transporter    An15g03900 ↓ Zrc1 
allantoin permease    An18g01220 ↓ Dal5 
oligopeptide transporter An13g01760 

An11g01040 

↑ 

↓ 

Opt1 

Opt1 

An15g07460 ↓ Opt1 

hexose / glucose transporter An06g00560 ↑ Hxt13 An09g04810 ↓  
amino acid transporter An03g00430 ↑     
galactose transporter An01g10970 ↓ Gal2    
FAD transporter into 

endoplasmatic reticulum, CWI-

related 

An01g09050 ↓ Flc2    
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Table 3. Cont. 
Predicted protein function* ∆∆∆∆racA versus wt ramosa-1 versus wt 

 Open reading 

frame code 

Up / 

Down 

Closest 

S. 

cerevisiae  

ortholog 

Open reading 

frame code 

Up / 

Down 

Closest 

S. cerevisiae 

ortholog 

Protein trafficking       
GTPase activating protein 

involved in protein trafficking 

An01g02860 ↓ Gyp8 An15g01560 ↑ Gyp7 

t-SNARE protein important for 

fusion of secretory vesicles with 

the plasma membrane 

An02g05390 ↓ Sec9    

vacuolar protein important for 

endosomal-vacuolar trafficking 

pathway 

An11g01810 ↓ Rcr2    

Actin localisation       
polarisome component SpaA An07g08290 ↓ Spa2    
actin-binding protein involved in 

endocytosis 

An03g01160 ↓ Lsb4    

protein required for normal 

localization of actin patches 

An16g02680 ↓ Apd1    

Amphysin-like protein required 

for actin polarization  

An17g01945 ↓ Rvs161    

Amphysin-like protein required 

for actin polarization 

An09g04300 ↓ Rvs167    

Other signaling processes       
Ser/Thr protein kinase important 

for K+ uptake 

An17g01925 ↓ Sat4    

transcription factor for RNA 

polymerase II 

An16g07220 ↓ Tfg2    

negative regulator of Cdc42    An12g04710 ↓ Vtc1 
putative C2H2 zinc-finger 

transcription factor 

   An04g01500 ↑  

SUN family protein involved in 

replication 

   An08g07090 ↓ Sim1 

similar to A. nidulans 

transcription factor RosA 

   An16g07890 ↓ Ume6 

Others       
hypothetical aspergillosis allergen 

rAsp 

An03g00770 ↓  An03g00770 ↑  

Genes up-regulated are indicated with ↑, genes down-regulated with ↓. Differential gene expression was evaluated 

by moderated t-statistics using the Limma package (Smyth 2004) with a FDR threshold at 0.05 (Benjamini and 

Hochberg 1995). Identical ORFs which are differentially expressed in both ∆racA and ramosa-1 are indicated in 

bold. Fold changes and statistical significance is given in Table S1 and S2. *: Protein functions were predicted 

based on information inferred from the Saccharomyces genome data base SGD (http://www.yeastgenome.org/) 

and the Aspergillus genome database AspGD (http://www.aspergillusgenome.org/). 

 

 

The transcriptomic fingerprint of apolar growth in RacA
G18V

  

 

Next, we wished to dissect the transcriptomic adaptation of A. niger to dominant activation 

of RacA. Batch cultures of our previously established RacA mutant strains PglaA::racA
G18V 

and PglaA::racA (reference strain) were started with xylose (0.75%) as repressing carbon 

source. After the cultures reached the exponential growth phase and xylose was consumed, 

maltose (0.75%) was added to induce expression of genes under control of PglaA. 
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Hypothetically, a so far unknown RacA-dependent GAP ensures that the activity of RacA is 

spatially restricted to the hyphal apex in the PglaA-racA
 strain thereby maintaining a stable 

polarity axes even under inducing conditions (Fig. 5). However, this control mechanism is 

leveraged off in the PglaA-racA
G18V mutant strain, as the GTPase-negative G18V mutation 

traps RacA in its active, GTP-bound form (Kwon et al. 2011). Hence, the switch from 

xylose to maltose leads to a loss of polarity maintenance in the PglaA-racA
G18V strain and 

the formation of clavate-shaped hyphal tips and bulbous lateral branches (Fig. 5). RNA 

samples were extracted from duplicate cultures 2 and 4 h after the maltose shift and used 

for transcriptomic comparison. Expression of 3,757 (506) genes was modulated after 2 h (4 

h) of induction, 1,906 (282) of which showed increased and 1,851 (224) decreased 

expression levels in the PglaA-racA
G18V strain when compared to the PglaA-racA

 reference 

strain (FDR < 0.05). The complete list of differentially expressed genes, including fold 

change and statistical significance is given in Table S1 and S2. GO enrichment analysis 

using the FetGOat tool (Nitsche et al. 2011) discovered that most of these genes belong to 

primary metabolism, suggesting that both strains differed in their ability to quickly adapt to 

the new carbon source (Table S3).  

To identify those genes which only relate to the difference between polar to apolar 

morphology in PglaA-racA
G18V but are independent from time and carbon source, a Venn 

 

Fig. 5. Biomass accumulation and morphology during submerged cultivation of PglaA-RacAG18V and PglaA-

RacA mutant strains. (A) Growth curve for both mutant strains. The dashed line indicates the time point when 

the inducing carbon source maltose was added. The two arrows indicate the time points at which samples for 

transcriptome analysis were taken. (B) Dispersed hyphal morphology at the time point of maltose addition as 

well as 2 and 4 h after maltose addition. Bar, 20 µm. 
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Fig. 6. Venn diagrams of induced (black numbers), repressed (grey numbers) and up- or down-regulated 

(italics numbers) genes for the PglaA-RacAG18V/PglaA-RacA and ∆racA/N402 comparisons. 

 

 

diagram was constructed (Fig. 6) and the intersection determined representing genes 

which are differently expressed after both 2 and 4 h in PglaA-racA
G18V when compared to 

the 2 h and 4 h data sets of the PglaA-racA
 reference strain. Overall, 148 genes showed 

different expression, 106 of which were up-regulated and 42 of which were down-regulated 

in PglaA-racA
G18V (Table S4). Again, only a small set of genes (about 1% of the A. niger 

genome) show different expression levels during polar and apolar growth. Table 4 

highlights the most interesting genes of this compilation, which could be grouped into 

several regulatory processes including (i) (phospho)lipid signaling, (ii) calcium signaling, 

(iii) CWI signaling and (iv) nitrogen signaling. In addition, metabolic processes including 

primary metabolism (amino acid biosynthesis) and secondary metabolism (polyketide 

synthesis, non-ribosomal peptide synthesis) were affected as well. 

The transcriptomic fingerprint indicated that the turgor pressure is increased during 

apolar growth and thereby an osmotic and cell wall stress is sensed in the PglaA-racA
G18V 

strain. An14g02970, an ORF with strong similarity to the Sln1p histidine kinase 

osmosensor of S. cerevisiae which forms a phosphorelay system to activate the Hog1 MAP 

kinase cascade (Posas et al. 1996), showed increased expression. In agreement, some cell 

wall genes which have been shown to respond to caspofungin-induced cell wall stress in A. 

niger (Meyer et al. 2007b) were up-regulated as well: agtA, a GPI-anchored alpha- 

glucanosyltransferase and two putative cell wall protein encoding genes phiA and 

An12g10200. In addition, other proteins, known to be up-regulated under cell wall and 

osmotic stress in S. cerevisiae showed enhanced expression in PglaA-racA
G18V:  

An16g02850 (ortholog of the chitin transglycosylase Crh1p, (Bermejo et al. 2008),  
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Table 4. Selected genes whose expression profiles differ between polar and apolar growth in PglaA-

racAG18V versus PglaA-racA in a time- and carbon source-independent manner. Genes are ordered into 

different processes and functions. 
Predicted protein function* Open reading 

frame code 

Up / 

Down 

Closest 

S. cerevisiae  

ortholog 

(Phospho)lipid metabolism and signaling    

dehydrogenase involved in sphingosin 1-phosphate breakdown An01g09260 ↑ Hfd1 

Lysophospholipase, synthesis of glycerophosphocholine An16g01880 ↑  

plasma membrane flippase transporting sphingoid long chain bases An02g06440 ↑ Rsb1 

glycerophosphocholine phosphodiesterase, synthesis of 

phosphocholine 

An18g03170 ↑ Gde1 

lanosterol 14A-demethylase An11g02230 ↓ Erg11 

C-14 sterol reductase, ergosterol synthesis An01g07000 ↓ Erg24 

choline / ethanolamine permease An01g13290 ↓ Hnm1 

Calcium homeostasis and signaling    

Ca2+/calmodulin dependent protein kinase An02g05490 ↓ Cmk2 

Cell wall remodeling and integrity    

endo-glucanase EglA An14g02760 ↑  

endo-glucanase EglB An16g06800 ↑  

endo-glucanase similar to Trichoderma reesei egl4 An14g02670 ↑  

alpha-glucanosyltransferase AgtA (GPI-anchored) An09g03100 ↑  

chitin synthase ChsL An02g02340 ↑ Chs3 

chitin transglycosidase An16g02850 ↑ Crh1 

chitinase An01g05360 ↑ Cts2 

cell wall protein similar to A. nidulans PhiA An14g01820 ↑  

cell wall protein with internal repeats An12g10200 ↑  

cell wall protein (flocculin) An12g00140 ↑ Flo11 

protein involved in β-1,3 glucan synthesis An05g00130 ↓ Knh1 

α-1,2-mannosyltransferase An04g06730 ↓ Mnn2 

Primary metabolism    

isocitrate lyase AcuD An01g09270 ↑ Icl1 

citrate lyase An11g00510 

An11g00530 

↑ 

↑ 

 

succinate dehydrogenase An16g07150 ↑ Osm1 

aspartate transaminase, synthesis of glutamate An16g05570 ↑  

acetyl-CoA carboxylase, synthesis of fatty acids An12g04020 ↑  

homo-isocitrate dehydrogenase, synthesis of lysine An15g02490 ↓ Lys12 

arginosuccinate synthetase, synthesis of arginine An15g02340 ↓ Arg1 

acetylornithine aminotransferase, synthesis of arginine An15g02360 ↓ Arg8 

arginyl-tRNA synthetase An02g04880 ↓  

aspartic beta semi-aldehyde dehydrogenase, synthesis of threonine 

and methionine 

An11g09510 ↓ Hom2 

homoserine kinase, synthesis of threonine An17g02090 ↓ Thr1 

threonine synthase An16g02520 ↓ Thr4 

phosphoribosylglycinamide formyltransferase, synthesis of purines An02g02700 ↓ Ade8 

Secondary metabolism    

polyketide synthase An11g07310 ↑  

similar to plant zeaxanthin epoxidase ABA2 An03g06500 ↑  

similar to enniatin synthase esyn1 of Fusarium scirpi An13g03040 ↑  

similar to enoyl reductase LovC of the lovastatin biosynthesis A. 

terreus 

An13g02940 

An09g01880 

↑ 

↑ 

 

similar to HC-toxin peptide synthase HTS of Cochliobolus 

carbonum 

An16g06720 ↑  

Transporter    

polyamine transporter An11g07300 

An12g07400 

An13g03220 

↑ 

↑ 

↓ 

Tpo3 

Tpo3 

Tpo1 

vacuolar basic amino acid transporter An06g00770 ↑ Vba5 

oligopeptide transporter An11g01040 ↓ Opt1 
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Table 4. Cont. 
Predicted protein function* Open reading 

frame code 

Up / 

Down 

Closest 

S. cerevisiae  

ortholog 

hexose transporter An02g07610 ↑ Hxt5 

galactose transporter An01g10970 ↓ Gal2 

low-affinity Fe(II) transporter of the plasma membrane An16g06300 ↓ Fet4 

siderophore transporter An03g03560 ↓ Arn1 

plasma membrane multidrug transporter An07g01250 ↑ Pdr5 

multidrug transporter An13g03060 ↑ Snq2 

Protein trafficking    

protein kinase involved in exocytosis An08g03360 ↑ Kin1 

Other signaling processes    

zinc finger transcriptional repressor An04g08620 ↑ Oaf3 

protein recruiting the SAGA complex to promoters An07g04540 ↑ Cti6 

histidine kinase osmosensor An14g02970 ↑ Sln1 

transcriptional regulator involved in nitrogen repression An02g11830 ↑ Ure2 

transcription factor similar to A. nidulans MedA An02g02150 ↑  

transcription factor An02g06180 ↑  

transcription factor important for salt stress resistance  An12g09020 ↑ Hal9 

DNA damage checkpoint protein during replication An03g06930 ↓ Rad24 

SUN family protein involved in replication An08g07090 ↓ Sim1 

transcription factor important for Zn2+ homeostasis An08g01860 ↓ Zap1 

alpha subunit of the translation initiation factor  An18g04650 ↓ Gcn3 

Others    

pathogenesis-related protein An08g05010 ↑ Pry1 

hypothetical aspergillosis allergen rAsp An03g00770 ↓  

Genes up-regulated are indicated with ↑, genes down-regulated with ↓. Differential gene expression was evaluated 

by moderated t-statistics using the Limma package (Smyth 2004) with a FDR threshold at 0.05 (Benjamini and 

Hochberg 1995). Identical ORFs which are differentially expressed in PglaA-racAG18V and ∆racA are indicated in 

bold. Fold changes and statistical significance is given in Table S1 and S2. *: Protein functions were predicted 

based on information inferred from the Saccharomyces genome data base SGD (http://www.yeastgenome.org/) 

and the Aspergillus genome database AspGD (http://www.aspergillusgenome.org/). 

 

 

An02g05490 (Ca2+/calmodulin dependent protein kinase Cmk2p, (Dudgeon et al. 2008) and 

An07g01250 (ortholog of the multidrug transporter Pdr5p, (Ernst et al. 2005). Furthermore, 

increased expression was also observed for An03g06500 encoding an ortholog of the plant 

zeaxanthin epoxidase, which catalyses one step in the biosynthetic pathway of the plant 

hormone abscisic acid, known to protect plant cells against dehydration under high-salinity 

stress (Xiong et al. 2002). 

The expression of many transporters and permeases (iron, hexoses, amino acids and 

peptides) was also modulated in PglaA-racA
G18V as well as the expression of several amino 

acid biosynthetic genes, most of which were down-regulated (lysine, arginine, threonine, 

methionine; Table 4). As also some ORFs predicted to function as important activators in 

replication (An03g06930, An08g07090) and translation (An18g04650) displayed decreased 

expression suggests that reduced tip extension during apolar growth slows down basic 

cellular processes. In this context, it is interesting to note that An01g09260 predicted to 

break down sphingosin 1-phosphate (S1P) showed increased expression during apolar 

growth. S1P is a sphingolipid acting as second messenger in lower and higher eukaryotes 
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regulating respiration, cell cycle and translation (Cowart et al. 2010) and is also important 

for the sole sphingolipid-to-glycerolipid metabolic pathway (Nakahara et al. 2012). As also 

expression of An02g06440, a predicted ortholog of the S. cerevisiae sphingosin flippase 

Rsb1p which extrudes sphingosin into the extracytoplasmic side of the plasma membrane, 

was increased during apolar growth might suggest that reduced levels of S1P are present in 

apolar growing hyphal tips (see discussion).  

Interestingly, none of the extracted 148 genes (Table S4) showed any link to actin 

filament organization, although actin polarization is lost in the PglaA-racA
G18V strain and 

actin patches are randomly scattered intracellularly or at the cell periphery (Kwon et al. 

2011). One explanation might be that transcription of actin-related genes was immediately 

altered after maltose addition which induced the switch from polar to apolar growth in 

PglaA-racA
G18V. To still get a glimpse on genes involved in actin patch formation, the 2 h 

dataset of PglaA-racA
G18V versus PglaA-racA

 was screened for the presence of enriched GO 

terms related to actin (Table S3). Using this approach, 10 actin-related genes were extracted 

which are summarized in Table 5. Most interestingly, An18g04590, an ortholog of the S. 

cerevisiae Rho GDP dissociation inhibitor Rdi1p displayed increased expression. Rdi1p 

regulates the Rho GTPases Cdc42p, Rho1p and Rho4p, localizes to polarized growth sites 

at specific times of the cell cycle and extracts all three proteins from the plasma membrane 

to keep them in an inactive cytosolic state (Johnson et al. 2009; Richman et al. 2004; Tiedje 

et al. 2008). Overexpression of Rdi1p causes slightly rounder cell morphology in S. 

cerevisiae (Tcheperegine et al. 2005). Another interesting actin-related gene showing 

increased expression in strain PglaA-racA
G18V is An11g02840, the predicted homolog of the 

S. cerevisiae Slm2 protein. Slm2p binds to the second messenger phosphatidylinositol-4,5-  

 

 

Table 5. GO term enriched actin-related genes whose expression responds to the switch from polar to 

apolar growth in PglaA-racAG18V. 
Predicted protein function* Open reading 

frame code 

Up / 

Down 

Closest 

S. cerevisiae  

ortholog 

Rho GDP dissociation inhibitor  An18g04590 ↑ Rdi1 

TORC2 and phosphoinositide PI4,5P(2) binding protein An11g02840 ↑ Slm2 

Arp2/3 complex subunit An02g06360 ↑ Arc15 

Arp2/3 complex subunit An01g05510 ↑ Arc35 

Arp2/3 complex subunit An18g06590 ↑ Arc40 

tropomyosin 1 An13g00760 ↑ Tpm1 

actin cortical patch component An02g14620 ↑ Aip1 

twinfilin An04g09020 ↑ Twf1 

actin-capping protein An01g05290 ↑ Cap2 

protein recruiting actin polymerization machinery An10g00370 ↑ Bzz1 

Genes up-regulated are indicated with ↑. Differential gene expression was evaluated by moderated t-statistics using 

the Limma package (Smyth 2004) with a FDR threshold at 0.05 (Benjamini and Hochberg 1995). Fold changes and 

statistical significance is given in Table S1 and S2. *: Protein functions were predicted based on information 

inferred from the Saccharomyces genome data base SGD (http://www.yeastgenome.org/) and the Aspergillus 

genome database AspGD (http://www.aspergillusgenome.org/). 
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bisphosphate (PIP2) and to the TORC2 signaling complex and integrates inputs from both 

signaling pathways to control polarized actin assembly and cell growth (Fadri et al. 2005). 

In addition, it is also a target of sphingolipid and calcium signaling during heat stress 

response in S. cerevisiae and promotes cell survival by coordinating cell growth and actin 

polarization (Daquinag et al. 2007). Both An18g04590 (Rdi1p ortholog) and An11g02840 

(Slm2p ortholog) might thus be two key proteins important to sustain tip growth and proper 

actin polarization in A. niger. The other eight GO enriched proteins of strain PglaA-

racA
G18V are orthologs of S. cerevisiae proteins with a function in cortical actin patch 

formation (Table 5). For example, subunits of the Arp2/3 complex which is required for the 

motility and integrity of cortical actin patches are up-regulated in apolar growing hyphal 

tips of strain PglaA-racA
G18V, one of which (An18g06590, Arc40p ortholog) also responds 

to caspofungin-induced loss of cell polarity in A. niger (Meyer et al. 2007b). Another 

interesting gene showing increased expression was An04g09020, the ortholog of twinfilin. 

Twf1p has been shown to localize to cortical actin patches in S. cerevisiae, forms a 

complex with the capping protein Cap2 (An01g05290, up-regulated in PglaA-racA
G18V), 

sequesters actin monomers to sites of actin filament assembly and is regulated by PIP2 

(Palmgren et al. 2001), providing an additional hint that re-structuring of the actin 

cytoskeleton in PglaA-racA
G18V might be orchestrated by PIP2 signaling. Taken together, 

the transcriptomic fingerprint of A. niger hyphae expressing dominant active RacA suggests 

that several signaling pathways and secondary messengers might orchestrate the 

morphological switch from polar to apolar growth. 

 

 

The RacA effector gene set 

 

We finally compared the transcriptomic dataset of ∆racA versus wt with the dataset of 

PglaA-racA
G18V versus PglaA-racA (4 h after maltose addition) to identify those genes 

whose transcription is generally affected by morphological changes independently whether 

provoked by RacA inactivation or by RacA hyperactivation. Overall, 38 genes fulfill this 

criterion (Fig. 6, Table S4) and are summarized in Table 6. The affected gene list covered 

processes such as (i) (phospho)lipid signaling, (ii) CWI and remodeling, (iii) actin 

localization, (iv) transport phenomena and (v) protein trafficking. Most interestingly, 12 out 

of the 38 genes were also differentially expressed during apical branching in ramosa-1 

(Meyer et al. 2009), including two orthologs of diacylglycerol pyrophosphate phosphatase 

(Dpp1p), which synthesizes the secondary messenger diacylglycerol (DAG), the activator 

of mammalian and fungal protein kinase C, which in fungi is a component of the CWI 

pathway localized upstream of the MAP kinase kinase Mkk1/2 (MkkA in A. niger; for 
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review see (Singh and Del Poeta 2010)). Targets of the CWI signaling pathway are cell 

wall remodeling genes, five of which were differentially expressed in RacA hyper- or 

inactivation strains (Table 6). From these five genes, three are of special importance as 

these were also effector genes in the hyperbranching mutant ramosa-1 (Meyer et al. 2009). 

Although calcium signaling genes seemed not be among the extracted 38 genes, its indirect 

involvement might be conceivable. For example, An18g01090 encoding the predicted 

ortholog of the S. cerevisiae phospholipase B (Plb3p) is among this gene set. Plb3p is 

activated at high concentrations of Ca2+ and specifically accepts phosphatidylinositol as a 

substrate to keep its concentration on the outer membrane leaflet low (Merkel et al. 2005). 

Finally, 17 RacA effector genes encode proteins of unknown function, most of which have 

no predicted orthologs in S. cerevisiae. As their function, however, seems to be important 

for morphological changes in A. niger, they are highly interesting candidate genes for future 

analyses. 

 

 

Discussion 

 

The fungal actin cytoskeleton is highly dynamic and fulfils multiple functions important for 

cell polarity regulation, endocytosis, exocytosis and septation. Central regulators of actin 

polymerization and depolymerization are Rho GTPases whose activity is regulated by their 

membrane-cytoplasmatic shuttling which itself is modulated by external or internal 

morphogenetic signals. Actin dynamics is thus controlled by a network of signaling 

pathways that sense and integrate different stimuli (Lichius et al. 2011). We have recently 

proposed that the A. niger GTPases RacA and CftA (Cdc42p) can substitute each other with 

respect to actin assembly but that actin disassembly is mainly under control of RacA. A 

racA deletion mutant is thus not affected in actin polymerization (because is secured by 

CftA) but impaired in actin disassembly. In consequence, maintenance of apical dominance 

can become frequently lost in the racA deletion strain resulting in a hyperbranching 

phenotype. In contrast, RacA trapped in its active, GTP-bound form (RacAG18V) provokes 

the formation of higher-order actin structures, i.e. actin patches, which cause loss of 

polarity maintenance and the formation of round, apolar growing cells (Kwon et al. 2011). 

The purpose of the current study was to identify the transcriptional signature associated 

with morphological changes in hyphal tip growth of A. niger. The transcriptional response 

of A. niger provoked by inactivation and hyperactivation of RacA, respectively, was 

determined and compared with the transcriptomic fingerprint of the apical branching 

transcriptome of the ramosa-1 mutant (Meyer et al. 2009). The data obtained allowed us to  
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Table 6. Complete list of genes whose expression respond to hyperbranching in ∆racA versus wild-

type and to the switch from polar and apolar growth in PglaA-racAG18V versus PglaA-racA (4 h after 

induction). 
Predicted protein function* Open 

reading 

frame code 

Up /  

Down in 

PglaA-racAG18V 

versus  

PglaA-racA  

Up /  

Down in 

∆∆∆∆racA  

versus  

wt 

Closest 

S. 

cerevisiae 

ortholog 

(Phospho)lipid metabolism and signaling      

phospholipase B, synthesis of 

glycerophosphocholine 

An18g01090 ↓ ↓ Plb3 

diacylglycerol pyrophosphate phosphatase, 

synthesis of DAG 

An02g01180 ↓ ↓ Dpp1 

 An04g03870 ↓ ↓ Dpp1 

sterol 24-C-methyltransferase, ergosterol 

synthesis 

An04g04210 ↑ ↑ Erg6 

C-14 sterol reductase, ergosterol synthesis An01g07000 ↓ ↓ Erg24 

transcription factor important for sterol uptake An02g07950 

An12g00680 

↓ 

↓ 

↓ 

↓ 

Upc2 

Upc2 

Cell wall remodeling and integrity     

α-1,3-mannosyltransferase An15g04810 ↓ ↓ Mnt2 

endo-mannanase (GPI-anchored), DfgE An16g08090 ↓ ↓ Dfg1 

β-1,4-glucanase An03g05530 ↓ ↓  

cell wall protein An11g01190 ↓ ↓ Sps22 

plasma membrane protein An02g08030 ↓ ↓ Pmp3 

Actin localization     

amphysin-like protein required for actin 

polarization  

An17g01945 ↓ ↓ Rvs161 

actin-binding protein involved in endocytosis An03g01160 ↓ ↓ Lsb4 

Transporter     

choline / ethanolamine permease An01g13290 ↓ ↓ Hnm1 

low-affinity Fe(II) transporter  An16g06300 ↓ ↓ Fet4 

oligopeptide transporter An11g01040 ↓ ↓ Opt1 

galactose/glucose permease An01g10970 ↓ ↓ Gal2 

Protein trafficking     

GTPase activating protein involved in protein 

trafficking 

An01g02860 ↓ ↓ Gyp8 

protein important for endosomal-vacuolar 

trafficking  

An11g01810 ↓ ↓ Rcr2 

peptidase An03g02530 ↓ ↓  

Others     

hypothetical aspergillosis allergen rAsp An03g00770 ↓ ↓  

cytochrome P450 protein An11g02990 ↓ ↓ Dit2 

isoamyl alcohol oxidase An03g06270 ↓ ↓  

protein with strong similarity to penicillin V 

amidohydrolase 

An12g04630 ↓ ↓  

oxidoreductase An03g00280 ↑ ↑  

protein with nucleotide binding domain An01g08150 ↑ ↑ Irc24 

protein with methyltransferase domain An09g00160 ↑ ↑  

protein with unknown function An15g03880 ↓ ↓  

protein with unknown function An01g10900 ↓ ↓  

protein with unknown function An07g05820 ↓ ↓  

protein with unknown function An18g00810 ↓ ↓  

protein with unknown function An04g04630 ↓ ↓  

protein with unknown function An06g00320 ↓ ↓  

protein with unknown function An07g04900 ↓ ↓  

protein with unknown function An01g13320 ↓ ↓  

protein with unknown function An16g07920 ↑ ↑  

protein with unknown function An01g03780 ↓ ↓  
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Genes up-regulated are indicated with ↑, genes down-regulated with ↓. Differential gene expression 

was evaluated by moderated t-statistics using the Limma package (Smyth 2004) with a FDR threshold 

at 0.05 (Benjamini and Hochberg 1995). Identical ORFs or proteins with predicted similar function 

being also differentially expressed in ramosa-1 are indicated in bold. Fold changes and statistical 

significance is given in Table S1 and S2. *: Protein functions were predicted based on information 

inferred from the Saccharomyces genome data base SGD (http://www.yeastgenome.org/) and the 

Aspergillus genome database AspGD (http://www.aspergillusgenome.org/). 

 

 

reconstruct the transcriptomic network that helps A. niger to adapt to abnormal 

morphologies and to secure the integrity of its cell wall. 

 

 

A transcriptomic perspective on the morphogenetic network of A. niger 

 

A central result of our comparative transcriptomics approach is the finding that several lipid 

molecules are likely involved in the maintenance of polar growth in A. niger (Fig. 7). The 

synthesis of important phospho- and sphingolipid molecules (phosphatidic acid, DAG, 

PIP2, inositolphosphates (IP), glycerophosphocholine, mannose-inositol-phosphoceramide 

(MIPC) and S1P seem to be modulated during apical branching (∆racA, ramosa-1) and 

apolar growth (PglaA-racA
G18V), as genes encoding respective synthetic or degrading 

enzymes showed differential expression in comparison to the wild-type (Tables 3, 4 and 6). 

Many of these molecules function as secondary messengers in eukaryotes (DAG, PA, IP, 

PIP2, S1P), others are essential components of fungal membranes (plasma membrane, 

organelles, lipid droplets), whereby sphingolipids (e.g. MIPC) and ergosterol are worth 

highlighting as they concentrate to form lipid rafts in plasma membranes which organize 

and regulate signaling cascades involved in polar growth control of S. cerevisiae (Wachtler 

and Balasubramanian 2006). Lipid rafts have been shown to form ordered subdomains of 

eukaryotic plasma membranes into which monomeric and trimeric G proteins associate in a 

dynamic and selective manner to organize signal transduction complexes (Moffett et al. 

2000). It is therefore intriguing that expression of An01g07000, the ortholog of the 

ergosterol synthesizing enzyme Erg24p, is modulated in all three strains ∆racA, ramosa-1 

and PglaA-racA
G18V, and being also among the cell wall stress responsive genes when A. 

niger is exposed to caspofungin or fenpropimorph (Meyer et al. 2007b). This suggests that 

ergosterol metabolism is of main importance for polarized growth and cell wall integrity in 

A. niger.  

Unfortunately, data on fungal lipid signaling networks are sparse. So far, it is known 

that sphingolipids play a key role in pathogenicity in Cryptococcus neoformans, that the 

quorum sensing molecule farnesol is involved in mycelial growth, biofilm formation and 
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stress response of Candida albicans, that both sphingolipids and farnesol are important for 

maintaining cell wall integrity and virulence of A. fumigatus (for review see (Singh and Del 

Poeta 2010)) and that the activity of two ceramide synthases is important for the formation 

of a stable polarity axis in A. nidulans (Li et al. 2006). In Schizosaccharomyces pombe, 

MIPC was shown to be required for endocytosis of a plasma-membrane-localized 

transporter and for protein sorting into the vacuole (Nakase et al. 2010). As ∆racA is 

affected in endocytosis (see below) and the MIPC synthesizing enzyme Sur1p 

(An05g02310) is down-regulated as well might suggest that MIPC has a similar function in 

A. niger. Notably, the sphingolipid synthesizing protein inositol-phosphoryl ceramide 

synthase (Ipc1) plays a major role in both establishment and maintenance of cell polarity in 

A. nidulans by regulating actin dynamics (Cheng et al. 2003; Cheng et al. 2001). However, 

it is not known whether this is mediated by the sphingolipid inositol-phosphoryl ceramide 

(IPC) or by other products of the ceramide synthetic pathway such as DAG, MIPC or 

sphingosines. Anyhow, inhibition of sphingolipid synthesis in A. nidulans caused wider 

hyphal cells, abnormal branching and tip splitting and is not suppressible by the addition of 

sorbitol (Cheng et al. 2003; Cheng et al. 2001) - observations which also hold true for 

∆racA and ramosa-1 (Kwon et al. 2011; Meyer et al. 2009), suggesting that sphingolipid 

mediated control of hyphal cell polarity is not mediated by the CWI pathway in Aspergillus. 

Still, S. cerevisiae strains defective in CWI signaling (e.g. pkc1∆, mpk1∆) also exhibit 

severe defects in lipid metabolism, including accumulation of phosphatidylcholine, DAG, 

triacylglycerol, and free sterols as well as aberrant turnover of phosphatidylcholine, 

suggesting that CWI signaling and lipid homeostasis are nevertheless closely linked in 

fungi (Nunez et al. 2008). 

A second important outcome of this study is that not only calcium signaling seems to 

be of utmost importance for morphological decisions in all three mutant strains ∆racA, 

ramosa-1 and PglaA-racA
G18V, but ion homeostasis in general (Fig. 7). Many ion transport 

proteins are differentially expressed in all three strains when compared to the wild-type 

situation including transport proteins for Na+, K+, Ca2+, Fe2+, Zn2+ and Co2+. Of special 

importance is An16g06300, a predicted Fe(II) transporter, homologous to the S. cerevisiae 

plasma membrane transporter Fet4p, whose transcriptional regulation is affected in all three 

strains. Fet4p is a low-affinity Fe(II) transporter also transporting Zn2+ and Co2+ and is 

under combinatorial control of iron (Atf1p transcriptional activator), zinc (Zap1p 

transcriptional factor) and oxygen (Rox1p repressor) (Waters and Eide 2002), being for 

example important for S. cerevisiae to tolerate alkaline pH (Serrano et al. 2004). It has been 

postulated that changes in the phospholipid composition govern the function of membrane-

associated zinc transporters such as Fet4p (Carman and Han 2007). Vice versa, the  
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Fig. 7. A reconstructed model for the morphogenetic network of A. niger based on the 

transcriptomic fingerprints determined for the apical branching mutant ramosa-1 (Meyer et al. 

2009), the apical branching mutant ∆racA (this work) and the apolar growing mutant PglaA-

RacAG18V (this work). The model also rests on cell biological and phenotypic data obtained for all 

three strains (this work and (Meyer et al. 2009) as well as on literature data for conserved 

mechanisms from yeast to humans (see discussion for references). Indicated are signalling and 

metabolic processes, which showed transcriptional responses in all three strains, some deduced key 

players and the hypothetical connection of these processes. 

 

 

transcriptional factor Zap1p controls not only expression of zinc-related transporters but 

also expression of the DAG pyrophosphate phosphatase Dpp1p (Carman and Han 2007). 

This is a very interesting observation in view of the fact that one predicted Dpp1p ortholog 

(An04g03870) shows differential expression in all three morphological mutant strains of A. 

niger, an analogy which might suggest that polarized growth of A. niger might be 

orchestrated by (phospho)lipid signaling which is somehow interconnected with zinc 

metabolism.  

Finally, our transcriptomics comparison uncovered that endocytotic processes are 

likely to be involved in the morphogenetic network of A. niger. In all three strains, ∆racA, 

ramosa-1 and PglaA-racA
G18V, expression of An03g01160, a predicted ortholog of the S. 

cerevisiae Lsb4p was modulated (Table 6, Fig. 7). Lsb4p is an actin-binding protein, 
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conserved from yeast to humans, binds to actin patches and promotes actin polymerization 

together with the WASP protein Lsb17 in an Arp2/3-independent pathway thereby 

mediating inward movement of vesicles during endocytosis (Robertson et al. 2009). Lsb4p 

is also a PIP binding protein due to a phosphoinositide-binding domain (SYLF), which is 

highly conserved from bacteria to humans. The human homolog of Lsb4p (SH3YL1) binds 

to PIP3 and couples the synthesis of PIP2 with endocytotic membrane remodeling, whereas 

Lsb4p binds directly to PIP2 (note that PIP3 is believed to be absent in yeast). Thus, Lsb4p 

homologs are predicted to couple PIP2 with actin polymerization to regulate actin and 

membrane dynamics involved in membrane ruffling during endocytosis (Hasegawa et al. 

2011). Beside An03g01160 (Lsb4p ortholog), An17g01945 is worth highlighting in this 

context as well. An17g01945 encodes an ortholog of the amphysin-like lipid raft protein 

Rvs161p and is differentially expressed in both ∆racA and PglaA-racA
G18V. Rvs161p affects 

the membrane curvature in S. cerevisiae and mediates in conjunction with Rvs167 and PIP2 

membrane scission at sites of endocytosis (Youn et al. 2010).  

Taken together, the transcriptomic signature of the three morphological mutants 

predicts that the morphological changes are brought about the interconnection of several 

signaling and metabolic pathways. Remarkably, the responding gene set in ∆racA and 

ramosa-1 seems to be, although substantially overlapping, oppositely regulated. One 

explanation might be that inactivation of RacA and TORC2 induces dichotomous branching 

in different manners. As the subcellular distribution of actin is different in both strains (the 

ramosa-1 mutant shows scattered actin patches at hyphal tips, whereas actin is concentrated 

at hyphal apices in the ∆racA mutant) might suggest that different causes (loss of actin 

polarization / actin hyperpolarization) provoke different responding transcriptional changes, 

which, however, eventually result in the same phenotypic response, namely tip splitting. 

Similarly puzzling is the observation that the core set of 38 genes which are responsive in 

both ∆racA and PglaA-racA
G18V respond in the same direction (Table 6), although they are 

associated with excessive polar growth (hyperbranching) in the ∆racA strain but with the 

absence of polar growth (tip swelling) in strain PglaA-racA
G18V. A plausible explanation 

might be that loss of polarity maintenance in both strains is connected with similar 

transcriptional changes controlling actin dynamics and vesicle flow, but that 

reestablishment of polar growth in the racA deletion strain requires genes which are not 

important for tip swelling in the PglaA-racA
G18V strain. 

 

 

Does a hyperbranching strain secrete more proteins? 
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In filamentous fungi, it is believed that protein secretion occurs at the hyphal tip. This holds 

true for glucoamylase (GLA), the most abundant secreted enzyme in A. niger (Gordon et al. 

2000; Wösten et al. 1991). Another example is α-amylase, the major secretory protein of A. 

oryzae (Hayakawa et al. 2011). Hence, one might expect that a higher branching frequency 

would result in higher secretion yields. However, our study demonstrated that more tips in 

the ∆racA strain do not necessarily increase protein secretion; instead, protein yields were 

the same in both mutant and wild-type (Table 2). The most logical explanation is that the 

same amount of secretory vesicles is merely distributed to more tips in the ∆racA strain, 

resulting in less secretory vesicles per individual tip. The quantitative data obtained for the 

exocytotic marker GFP-SncA and the endocytotic marker AbpA-CFP and SlaB-YFP 

clearly demonstrate that fewer vesicles are transported to the apex of an individual tip (Fig. 

3) and that endocytosis is slowed down as well – the endocytotic ring seems to be less well 

defined and the fluorescence intensity of both endocytotic markers is decreased (Fig. 4). 

This data is corroborated by the transcriptomic fingerprint of the ∆racA strain. The 

transcription of genes predicted to function in protein trafficking and actin localization is 

down-regulated as well as expression of genes governing phospholipid signaling and cell 

wall remodeling. Remarkably, biomass formation is the same in both ∆racA and wt. This 

suggests that the amount of secreted vesicles is adjusted in both strains just to ensure hyphal 

tip growth but that the capacity of a hyphal tip growing apparatus to accommodate vesicles 

is much higher (at least in ∆racA). Hence, challenging the ∆racA strain to overexpress a 

certain protein of interest might increase the number of secretory vesicles thus resulting in 

higher secretion yields. We currently run respective experiments to test this hypothesis. In 

any case, the hyperbranching ∆racA mutant could already be of value for high-density 

cultivation during industrial processes: it forms a less shear stress-sensitive, compact 

macromorphology but does not form pellets. It thus exhibits improved rheological 

properties without any apparent disadvantages with respect to growth rate and physiology.  

 

 

Conclusions 

 

The transcriptomic signature of the three individual mutants ∆racA, ramosa-1 and PglaA-

racA
G18V uncovered specific and overlapping responses to the morphological changes 

induced and suggests the participation as well as interconnectedness of several regulatory 

and metabolic pathways in these processes. The data obtained predict a role for different 

signaling pathways including phospholipid signaling, sphingolipid signaling, TORC2 

signaling, calcium signaling and CWI signaling in the morphogenetic network of A. niger. 

These pathways likely induce different physiological adaptations including changes in 
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sterol, zinc and amino acid metabolism and changes in ion transport and protein trafficking. 

Central to the morphological flexibility of A. niger is the actin cytoskeleton whose 

dynamics can be precisely controlled in these mutants. Future attempts are necessary to 

address important issues which cannot be resolved by transcriptomics. For example, how is 

the lipid composition in apical and subapical regions of A. niger hyphae? Which 

morphogenetic proteins are also parts of the network whose expression is regulated post-

transcriptionally and can thus not be detected by transcriptomics approaches?  Where are 

they localized during (a)polar growth? What are the metabolic prerequisites to sustain fast 

polar growth coupled with high secretion rates? Clearly, a comprehensive understanding of 

the morphogenetic network of A. niger will require and integrated systems biology 

approach where transcriptomics analyses will be combined with proteomics, metabolomics 

and lipidomics approaches and linked with cell biological studies. 

 

 

Material and Methods 

 

Strains, culture conditions and molecular techniques 

Aspergillus strains used in this study are given in Table 7. Strains were grown on minimal 

medium (MM) (Bennett and Lasure 1991) containing 1% (w v-1) glucose and 0.1 % (w v-1) 

casamino acids or on complete medium (CM), containing 0.5% (w v-1) yeast extract in 

addition to MM. When required, plates were supplemented with uridine (10 mM). 

Transformation of A. niger and fungal chromosomal DNA isolation was performed as 

described (Meyer et al. 2010b). All molecular techniques were carried out as described 

earlier (Sambrook and Russell 2001). 

 

Bioreactor cultivation conditions 

 

Maltose-limited batch cultivation was initiated by inoculation of 5 L (kg) ammonium based 

minimal medium with conidial suspension to give 109 conidia L-1. Maltose was sterilized 

separately from the MM and final concentration was 0.8% (w/v). Temperature of 30°C and 

pH 3 were kept constant, the latter by computer controlled addition of 2 M NaOH or 1 M 

HCl, respectively. Acidification of the culture broth was used as an indirect growth 

measurement (Iversen et al. 1994). Submerged cultivation was performed with 6.6 L 

BioFlo3000 bioreactors (New Brunswick Scientific, NJ, USA). A more detailed description 

of the fermentation medium and cultivation is given in (Jørgensen et al. 2010). Batch 

cultivation for PglaA-RacAG18V or PglaA-RacA were run similarly as the maltose-limited 

batch cultivations of ∆racA cultures except that 0.75% xylose was used as an initial carbon  
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Table 7. Strains used in this work. 

Strain Relevant genotype Source 

N402 cspA1 (derivative of ATCC9029) (Bos et al. 1988) 

AB4.1 pyrG-                                                                                                              (van Hartingsveldt et al. 1987) 

MA70.15 ∆kusA  pyrG- (derivative of AB4.1) (Meyer et al. 2007a) 

MA80.1 ∆kusA, ∆racA::AopyrG (Kwon et al. 2011) 

FG7 ∆kusA pyrG+ egfp::sncA (derivative of MA70.15) Kwon et al, submitted 

MA1.8   PglaA::racA (derivative of AB4.1) (Kwon et al. 2011) 

MA60.15   PglaA::racAG18V (derivative of AB4.1) (Kwon et al. 2011) 

MK5.1 ∆kusA, slaB::eyfp (derivative of MA70.15) This work 

MK6.1 ∆kusA, abpA::ecfp (derivative of MA70.15) This work 

MK7.1 ∆kusA, ∆racA, slaB::eyfp (derivative of MA80.1) This work 

MK8.1 ∆kusA, ∆racA, abpA::ecfp (derivative of MA80.1) This work 

   

 

 

source instead of maltose. When the exponential growth phase was over (indicated by a 

sharp rise of the dissolved oxygen tension and the pH value), 0.75% maltose was added to 

induce expression of PglaA-RacAG18V or PglaA-RacA, respectively. Samples for the 

analysis of morphological characteristics, biomass formation, protein yield and RNA were 

taken every hour. 

 

Analysis of culture broth 

 

Dry weight biomass concentration was determined by weighing lyophilized mycelium 

separated from a known mass of culture broth. Culture broth was filtered through GF/C 

glass microfiber filters (Whatman). The filtrate was collected and frozen for use in solute 

analyses. The mycelium was washed with demineralised water, rapidly frozen in liquid 

nitrogen and lyophilized. Glucose concentration was measured as previously described 

(Bergmeyer et al. 1974) with slight modifications: 250 mM triethanolamine (TEA) was 

used as buffer (pH 7.5). Extracellular protein concentration was determined using the Quick 

Start Bradford Protein Assay (Bio-Rad) using BSA as standard. The total organic carbon in 

the culture filtrate was measured with a Total Organic Carbon Analyzer (TOC-Vcsn; 

Shimadzu, Japan), using glucose as standard.    

 

Microarray analysis 

 

Total RNA extraction, RNA quality control, labeling, Affymetrix microarray chip 

hybridization and scanning were performed as previously described (Meyer et al. 2009). 

Background correction, normalization and probe summarization steps were performed 

according to the default setting of the robust multi-array analysis (RMA) package as 
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recently described (Nitsche et al. 2012b). Differential gene expression was evaluated by 

moderated t-statistics using the Limma package (Smyth 2004) with a threshold of the 

Benjamini and Hochberg False Discovery Rate (FDR) of 0.05 (Benjamini and Hochberg 

1995). Fold change of gene expression from different samples was calculated from 

normalized expression values. Geometric means of the expression values as well as fold 

change for all strains and comparisons are summarized in Table S1 and S2 and have been 

deposited at the GEO repository (http://www.ncbi.nlm.nih.gov/geo/info/linking.html) under 

the accession number GSE42258. Transcriptomic data for the exponential growth phase of 

the reference strain N402 was published recently (Nitsche et al. 2012a). 

 

Gene Ontology (GO) and enrichment analysis 

 

Over-represented GO terms in sets of differentially expressed genes were determined by 

Fisher’s exact test (Fisher 1922) as implemented in FetGOat (Nitsche et al. 2011) using a 

FDR of q<0.05. An improved GO annotation for A. niger CBS513.88 was applied based on 

ontology mappings from A.nidulans FGSCA4 (Nitsche et al. 2011). 

 

Construction of AbpA-CFP and SlaB-YFP expression cassettes 

 

Standard PCR and cloning procedures were used for the generation of the constructs 

(Sambrook and Russell 2001). All PCR amplified DNA sequences and cloned fragments 

were confirmed by DNA sequencing (Macrogene). Primers used in this study are listed in 

Table S5. Correct integrations of constructs in A. niger were verified by Southern analysis 

(Sambrook and Russell 2001).The expression vectors, AbpA-CFP and SlaB-YFP were 

constructed using the fusion PCR approach as described previously (Meyer et al. 2008) 

with slight modifications. Plasmid pVM3-1 (Meyer et al. 2008) harboring the GA5 peptide 

linker followed by the CFP, TtrpC and the selection marker pyrG from A. oryzae was used as 

starting point. A second TtrpC terminator sequence was generated by PCR and ligated via a 

SalI restriction site into pVM3-1 which would later allow looping out of the pyrG marker 

by FOA counter-selection (Meyer et al. 2010b). The resulting plasmid was named pMK3. 

For the fusion PCR, three separate fragments were amplified by PCR: the C-terminal part 

of abpA ORF (~1 kb), the module containing CFP-Ttrpc-AopyrG (~3.5 kb) and the 

terminator region of abpA (~1 kb). Subsequently, the three individual fragments were fused 

together by a fusion PCR and the resulting amplicon (~5.6 kb) was cloned into pJET 

(Fermentas) to give plasmid pMK5. SlaB-YFP was also constructed in a similar way and 

the final plasmid was named pMK6.  
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Microscopy 

 

Light microscopic pictures were captured using an Axioplan 2 (Zeiss) equipped with a 

DKC-5000 digital camera (Sony). For light and fluorescence images for SlaB-YFP and 

AbpA-CFP transformants, pictures were captured with 40x C-apochromatic objective on an 

inverted LSM5 microscope equipped with a laser scanning confocal system (Zeiss 

Observer). The observation conditions for the life-imaging of hyphae were described 

previously (Kwon et al. 2011). To determine branching frequencies, the lengths of hyphae 

and branches were measured and evaluated using the program Image J. For the 

quantification of GFP-SncA, AbpA-CFP and SlaB-YFP signals, a single section of 

individual hyphal tip was captured (n> 20). 
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Abstract  

 

Background: Filamentous fungi such as Aspergillus niger are well known for their 

exceptionally high capacity for secretion of proteins, organic acids and secondary 

metabolites and they are therefore used in biotechnology as versatile microbial production 

platforms. However, system-wide insights into their metabolic and secretory capacities are 

sparse and rational strain improvement approaches are therefore limited. In order to gain a 

genome-wide view on the transcriptional regulation of the protein secretory pathway of A. 

niger, we investigated the transcriptome of A. niger when it was forced to over-express the 

glaA gene (encoding glucoamylase, GlaA) and secrete GlaA to high level. 

Results: An A. niger wild-type strain and a GlaA over-expressing strain, containing 

multiple copies of the glaA gene, were cultivated under maltose-limited chemostat 

conditions (specific growth rate 0.1 h-1). Elevated glaA mRNA and extracellular GlaA 

levels in the over-expressing strain were accompanied by elevated transcript levels from 

772 genes and lowered transcript levels from 815 genes when compared to the wild-type 

strain. Using GO term enrichment analysis, four higher-order categories were identified in 

the up-regulated gene set: i) endoplasmic reticulum (ER) membrane translocation, ii) 

protein glycosylation, iii) vesicle transport and iv) ion homeostasis. Among these, about 

130 genes had predicted functions for the passage of proteins through the ER and those 

genes included target genes of the HacA transcription factor that mediates the unfolded 

protein response (UPR), e.g. bipA, clxA, prpA, tigA and pdiA.  

In order to identify those genes that are important for high-level secretion of proteins by A. 

niger, we compared the transcriptome of the GlaA overexpression strain of A. niger with 

six other relevant transcriptomes of A. niger. Overall, 40 genes were found to have either 

elevated (from 36 genes) or lowered (from 4 genes) transcript levels under all conditions 

that were examined, thus defining the core set of genes important for ensuring high protein 

traffic through the secretory pathway.  

Conclusion: We have defined the A. niger genes that respond to elevated secretion of GlaA 

and, furthermore, we have defined a core set of genes that appear to be involved more 

generally in the intensified traffic of proteins through the secretory pathway of A. niger. 

The consistent up-regulation of a gene encoding the acetyl-coenzyme A transporter 

suggests a possible role for transient acetylation to ensure correct folding of secreted 

proteins.  
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Introduction 

 

Due to its well annotated genome sequence, newly established gene transfer systems, and 

the availability of high-quality tools for obtaining and evaluating transcriptomic and 

proteomic data, Aspergillus niger has become a model fungus for industrially exploited 

filamentous fungi (Meyer 2008; Meyer et al. 2007a; Meyer et al. 2011b; Pel et al. 2007). Its 

impressive natural capacity to secrete high amounts of hydrolytic proteins into the 

environment combined with its ability to synthesize and secrete various organic acids 

makes it highly suitable for the production of various food ingredients, pharmaceuticals and 

industrial enzymes (Fleissner and Dersch 2010; Meyer 2008; Meyer et al. 2011b). As it is 

also capable of efficiently degrading plant-derived polysaccharides such as starch, cellulose, 

hemicellulose, pectin and inulin, the biotechnological importance of A. niger will probably 

rise even more in the near future. For example, A. niger-derived (hemi)cellulases might be 

used to improve the efficiency of the saccharification process of second-generation 

feedstock used for bioethanol production (de Souza et al. 2011; Pel et al. 2007).  

To analyze and eventually control the secretory capabilities of A. niger, several 

attempts have been undertaken to identify the key players and regulatory mechanisms 

involved in protein secretion. For example, galacturonic acid, xylose and maltose were 

shown to induce expression of secretory proteins, including pectinolytic, (hemi)cellulolytic 

and glucan-hydrolyzing enzymes, respectively, whereas sorbitol acts as a repressing carbon 

source (Adav et al. 2010; Braaksma et al. 2010; de Oliveira et al. 2011; Lu et al. 2010). 

Xylose is the main inducer of XlnR, the master transcription factor that regulates 

expression of all major enzymes involved in the degradation of (hemi)cellulose (de Oliveira 

et al. 2011; Lu et al. 2010; Mach-Aigner et al. 2012). Among those, endoxylanase (XynB) 

and ferulic acid esterase (FaeA) are the most abundant, secreted proteins of A. niger (Lu et 

al. 2010). When starch or maltose are used as carbon source, the synthesis of amylolytic 

enzymes is induced, a step that is mediated by the transcription factor AmyR. The most 

abundant enzyme secreted under these conditions is a glucan 1,4-α-glucosidase 

(glucoamylase, GlaA), which is an exo-enzyme that releases glucose from the non-reducing 

end of starch or maltose and accounts for more than 50% of the extracellular proteome (Lu 

et al. 2010). Induction of extracellular hydrolytic enzymes is thus mainly regulated at the 

transcriptional level in A. niger, and either repressed by carbon catabolite repression via 

CreA (Yuan et al. 2006) or activated by AmyR or XlnR depending on the presence of 

maltose or xylose, respectively (Tsukagoshi et al. 2001).   

A. niger proteins and enzymes destined for secretion into the culture medium follow 

the secretory pathway. The journey of secretory proteins starts with protein translocation 

into the lumen of the endoplasmic reticulum (ER) via a translocon that forms a channel 
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through the ER membrane (Romisch 1999). In the ER lumen, several ER-resident 

chaperones and foldases, including the binding protein (BipA), protein disulfide isomerase 

(PdiA) and calnexin (ClxA), assist secretory proteins in proper folding (Maattanen et al. 

2010). Most secretory proteins become glycosylated in the ER, both through the attachment 

of a conserved, pre-assembled oligosaccharide to specific asparagine residues (N-

glycosylation) and by the initiation of O-glycosylation of serine and threonine residues. 

After proper folding and glycosylation, secretory proteins are packed into COPII-coated 

vesicles and transported to the Golgi complex, where protein glycosylation is completed, 

and subsequently through another vesicle-mediated process delivered to the cell surface 

where the vesicles release their cargo into the periplasmic region. High protein flux through 

the ER or expression of heterologous proteins can result in the accumulation of misfolded 

proteins. This misfolding, however, is recognized by a quality control system known as ER-

associated degradation (ERAD). The aim of ERAD is to direct misfolded proteins to the 

cytosol where they become degraded by the proteasome. In addition, another cellular 

protein quality system, the unfolded protein response (UPR), is induced, which aims at 

proper refolding of misfolded proteins via induced expression of chaperones and foldases 

(Fleissner and Dersch 2010; Geysens et al. 2009). For this purpose, the UPR transcription 

factor HacA becomes activated via splicing of an unconventional 20-nt intron out of the 

hacA mRNA. This subsequently facilitates translation of hacA mRNA and formation of 

HacA, which in turn induces transcription of a number of UPR target genes including bipA, 

which encodes the major ER chaperone protein and pdiA, which encodes for protein 

disulfide isomerase (Guillemette et al. 2007; Mulder et al. 2004). Hence, both ERAD and 

UPR are crucial for effective functioning of the secretory pathway - not only in filamentous 

fungi but also in yeasts and mammals (Kaufman 1999; Saloheimo and Pakula 2012; 

Saloheimo et al. 2003; Yoshida et al. 2001).  

Interestingly, the UPR can be viewed as a general response of A. niger, which becomes 

activated when the secretion machinery becomes challenged by metabolic changes or ER 

stress conditions. For example, transcript levels of UPR genes become strongly enhanced, 

when A. niger is exposed to the reducing compound dithiothreitol (DTT), which blocks the 

formation of disulfide bridges, or to tunicamycin, which inhibits N-glycosylation, especially 

when forced to express heterologous proteins or when cultivated in carbon sources, which 

differentially induce expression and secretion of homologous proteins (Carvalho et al. 

2011a; Guillemette et al. 2007; Jørgensen et al. 2009). These observations suggest that the 

UPR functions act as a homeostatic control mechanism that allows A. niger to flexibly 

adapt its protein secretion capacity to change in environmental conditions.   

In this study, we investigated the transcriptomic fingerprint of A. niger when forced to 

overexpress and secrete a specific hydrolytic enzyme. We chose glucoamylase (GlaA) as a 
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model enzyme, because it is a naturally highly abundant and secreted enzyme used in the 

food industry (Kumar and Satyanarayana 2009). For comparison, we used two strains, a 

wild-type strain expressing a single copy of the glaA gene, and a mutant strain expressing 

multiple copies of glaA. In order to reduce the number of conflicting variables, such as 

changes in growth rates and fluctuations in environmental conditions, maltose-limited 

chemostat cultures were used. Maltose was selected as carbon source to transcriptionally 

induce expression of the glaA gene. Physiological and transcriptomic data were collected 

from both wild-type and overexpressing strains and analyzed to identify the glaA-specific 

overexpression transcriptome. Finally, we compared these global transcriptional changes 

with previously published transcriptomic data related to secretion stress in A. niger. This 

analysis allowed us to distinguish condition-specific responses from general transcriptomic 

responses of A. niger that are important to overcome different triggers of secretion stress. 

We could identify a core set of 40 genes whose expression is key to ensure high protein 

fluxes through the secretory route of A. niger, independently of the cause of the secretion 

stress. 

 

 

Results and Discussion 

 

Growth physiology of maltose-limited chemostat cultures of A. niger 

 

In order to identify the transcriptomic adaptations of A. niger to forced overproduction of 

GlaA, we compared the transcriptomes of chemostat-grown cultures of strain B36 

(overproducing strain) and wild-type strain N402 (reference strain). Strain B36 was 

selected as GlaA overproducer, because it is reported to contain multiple copies of the glaA 

gene at chromosome V (Verdoes et al. 1993; Verdoes et al. 1994b). 

Maltose-limited chemostat cultures were used to induce expression of the glaA gene, to 

control the specific growth rate and to obtain highly reproducible data due to well-defined 

steady state conditions. Initial chemostat experiments were conducted using three different 

dilution rates (D = 0.05, 0.1 and 0.15 h-1); however, steady state conditions for both strains 

were only reached at D = 0.1 h-1. At a higher dilution rate (D = 0.15 h-1), N402 reached a 

steady state, but the B36 strain was washed out before reaching a steady state. Although the 

morphology of the N402 strain at the lowest dilution rate (D = 0.05 h-1) was similar to the 

higher dilution rates, and no sign of mycelial aggregation was apparent (data not shown), 

N402 was not able to reach a steady state at this dilution rate. Maltose-limited chemostat 

cultures were therefore run in triplicate at D = 0.1 h-1 for both strains. The cultures were 

highly reproducible and gave rise to homogenous cultures of dispersed mycelial 
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morphologies (Fig. 1, Table 1 and data not shown). The initial batch cultivation (duration 

about 30 h) was followed by approximately 50 h of continuous cultivation. After four 

volume changes (4 x D-1), the cultures reached a steady state as reflected by a constant 

alkali addition rate and constant CO2, O2 and biomass concentrations (Fig. 1 and data not 

shown). Biomass concentrations for both strains stabilized at about 4 g kg-1 with a small 

relative standard deviation (RSD) (approx. 0.002 for N402 and 0.02 for B36). In both 

strains, the respiratory quotient (RQ) was lower than 1, probably due to high production of 

organic acids in parallel to GlaA secretion. Notably, the RQ value calculated for B36 

cultures was slightly but significantly lower than the RQ value obtained for N402 cultures 

(Table 1), suggesting that protein and acid production is somewhat higher in B36 compared 

to N402. In agreement, the carbon concentration in culture filtrates obtained from steady 

state samples was also higher in B36 compared to N402 (data not shown) and the specific 

productivity of extracellular protein (qprotein-EC) was five- to six-fold higher in B36 than 

N402, demonstrating that B36 indeed secretes more protein than the wild-type strain. 

 

 

Protein secretion and glucoamylase production during steady state  

 

The GlaA overproducer strain B36 was previously estimated to contain about 80 copies of 

the glaA gene as inferred from Southern analysis (Verdoes et al. 1993). As multiple gene 

copies can cause frequent recombination in A. niger resulting in genetic instability and loss 

of glaA copies (Verdoes et al. 1994b), we decided to re-determine the number of glaA 

copies present in B36 using quantitative real time PCR (qPCR). As summarized in Table 2, 

 

Fig. 1. Growth profiles (A) and extracellular protein production (B) of N402 and B36. The 

growth curves presented are based on (A) dry-weight biomass concentration and on (B) total 

protein concentration in culture filtrates. An arrow indicates RNA sampling for transcriptomics. 

All six independent cultures are shown.  
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  Table 1. Physiology of N402 and B36 in chemostat cultures.  

  N402 B36 

Cbiomass   (gDW kg-1) 4.09 ± 0.01 4.01 ± 0.09 

Y x/s (gDW gmaltose
-1) 0.49 ± 0.02 0.47 ± 0.01 

Y x/c (gDW gcarbon
-1) 1.22 ± 0.05 1.17 ± 0.03 

qCO2 (mmol g-1h-1) 2.11 ± 0.05 2.05 ± 0.07 

qO2 (mmol g-1h-1) 2.38 ± 0.06 2.51 ± 0.14 

RQ  0.88 ± 0.03 0.82 ± 0.03 

qprotein-EC (mg g-1h-1) 0.60 ± 0.03 3.49 ± 0.37 

C-ecovery (%) 92 ± 0.8 89 ± 0.3 

Steady state results of maltose-limited chemostat cultures. Mean values ± standard deviations are given for N402 

and B36 from triplicate independent steady-state cultures. Bold letters indicate significant differences based on a 

two tailed t-test (p < 0.001). Cbiomass, dry weight of biomass concentration; Yx/s and Yx/c, growth yield on substrate 

and carbon; qCO2 and qO2, specific carbon dioxide evolution rate and oxygen consumption rate; RQ, respiratory 

quotient; qprotein-EC, specific extracellular protein production rate; C-recovery, carbon recovery.  

 

 

B36 contains about 32 glaA gene copies based on the fact that N402 contains only a single 

copy of glaA (Pel et al. 2007). We also determined glaA mRNA levels by qPCR and 

observed that glaA transcript levels in B36 were about seven times higher compared to 

N402. Consistent with this observation, under steady state conditions extracellular GlaA 

production in B36 was about seven- to eight-fold higher than in N402 as estimated by 

Western analysis and measuring glucoamylase activity (Table 2). These data confirm 

previous observations that the amount of GlaA produced correlates well with the amount of 

glaA mRNA but is not proportional to the number of glaA gene copies, a well-known 

phenomenon in filamentous fungi, where protein overproduction is often limited at the 

transcriptional level (Tsukagoshi et al. 2001; Verdoes et al. 1994b). It should be noted, 

however, that the increased glucoamylase production in the B36 strain is still significantly 

lower compared to industrial strains which produce glucoamylase up to 30 gram/liter 

(Finkelstein et al. 1989). 

 

 

The GlaA-overexpression transcriptome 

 

RNA samples for microarray analysis were taken from triplicate steady-state cultures of 

both strains. The average RSD of all genes expressed was about 0.06, indicating high 

reproducibility of all six chemostat cultures and transcript profiles. The expression of 1,587  

genes out of 14,165 A. niger genes was changed: 772 displayed increased expression levels 

in the strain B36, and 815 genes were down-regulated in B36 (significance: FDR, q value < 

0.005). Although the majority of differentially expressed genes (1,280 genes) showed fold- 
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Table 2. Glucoamylase assessments in N402 (wild-type strain) and B36 (overexpressing strain). 

 
N402 B36 

glucoamylase gene copy numbera 1 32 ± 5 

glucoamylase transcripts levela 1 6.9 ± 0.9 

glucoamylase protein detection (g-1)b 1 8.3 ± 1.8 

glucoamylase activity (U g-1)c 154 ± 68 1057 ± 398 

Glucoamylase was assessed using steady-state samples. Mean values ± standard deviations for N402 

and B36 were calculated from triplicate measurements of respective triplicate steady-state samples. a: 

Glucoamylase gene copy number and relative glucoamylase transcripts level were assessed by qPCR 

using genomic DNA and cDNA as templates. b: Western blot analysis of glucoamylase protein. 

Culture filtrate samples corrected for equal amounts of biomass were loaded onto SDS-PAGE. The 

amount of glucoamylase protein was represented as relative values based on N402. c: Glucoamylase 

activity was determined by measuring liberated glucose from starch. 

 

 

changes in gene expression  <2, these values are  considered to be significant in view of the 

identical culture conditions used, the identical specific growth rates of both strains during 

steady state conditions, and the stringent statistical analysis of the data. A comprehensive 

list of all differentially expressed genes is depicted in Additional file 1.  

An enrichment analysis was performed to identify gene ontology (GO) terms which 

were over-represented in the differentially expressed gene set. We used the recently 

published improved GO annotation tool for A. niger (Fisher's exact test Gene Ontology 

annotation tool, FetGOat (Nitsche et al. 2011)), an open source tool accessible at 

http://www.broadinstitute.org/fetgoat/index.html. GO terms (up- or down-regulated) with 

FDR values < 0.05 were defined as over-represented. Overall, 129 enriched GO terms were 

identified among the differentially expressed gene set, 54 of which belonged to ‘biological 

processes’ (BP), 63 to ‘cellular components’ (CC) and 12 to ‘molecular functions’ (MF). 

The corresponding network maps and gene lists are depicted in the Additional file 2 and 3.  

 

 

Predicted up- and down-regulated biological processes inferred from the 

GlaA-overexpression transcriptome 

 

In order to deduce biological information out of the GO term enrichment analysis, we 

focused on the BP gene list and removed redundant and less detailed annotations. Among 

the remaining GO terms in the up-regulated gene set, the following four higher-order 

categories were identified: i) translocation, ii) protein glycosylation, iii) vesicle transport 
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and iv) ion homeostasis (see Additional file 4). The translocation category included GO 

terms such as ‘posttranslational protein targeting to membrane’, ‘SRP-dependent co-

translational protein targeting to membrane’, ‘translocation’ and ‘protein targeting to ER’. 

The protein glycosylation category included the GO terms ‘related to glycosylation’, 

‘protein N-linked glycosylation’, ‘oligosaccharide biosynthetic process’, ‘dolichol-linked 

oligosaccharide biosynthetic process’ and ‘oligosaccharide-lipid intermediate biosynthetic 

process’. The vesicle transport category included the GO terms ‘vesicle-mediated transport’, 

‘COPII-coated vesicle budding’, ‘membrane budding’, ‘vesicle organization’, ‘vesicle 

coating’, ‘vesicle targeting (rough ER to cis-Golgi)’, ‘COPII vesicle coating’ and 

‘retrograde vesicle-mediated transport (Golgi to ER)’. The last category, ion homeostasis, 

contained GO terms involved in iron, calcium and zinc homeostasis (e.g. ‘iron homeostasis’, 

‘inorganic cation homeostasis’, ‘cellular response to iron starvation’ and ‘ion transport’, see 

Additional file 4).   

As three out of the four major categories were related to the secretory pathway, the 

corresponding genes lists were examined in more detail. The expression of at least 130 

predicted secretory pathway genes were changed in the GlaA-overexpressing strain B36 

(Table 3). Importantly, this set of genes is causatively linked to GlaA overexpression and 

does not depend on the growth rate or the carbon source, because both strains were in 

steady state at the same specific growth rate in maltose-limited chemostat cultures. Only 16 

of the 130 genes were down-regulated, indicating that the capacity of the protein secretion 

machinery is increased compared to the wild-type situation. Among the secretory pathway-

related genes, the majority of the induced genes belonged to ER-related processes, 

including translocation into the ER, protein folding, glycosylation, ERAD, UPR, COPI- and 

COPII-mediated transport processes (Table 3). Notably, the gene with the most 

significantly increased transcript level in B36 was the bipA gene (FDR, 1.1 x 10-7), which is 

under transcriptional control of HacA (Mulder et al. 2004), and encodes the main chaperone 

in the ER and is thus important for protein overproduction in A. niger (van Gemeren et al. 

1997). The increased expression of bipA gene in the B36 strain was previously reported by 

Northern blot analysis in a shake flask culture (Punt et al. 1998). In agreement, other 

important HacA-dependent ER chaperones and foldases such as clxA, prpA, tigA and pdiA 

(Table 3) were also significantly higher expressed in B36 (Mulder et al. 2004).  

As up-regulation of these genes pointed towards slow or aberrant folding of GlaA and 

thus induction of UPR in strain B36, we tested whether the central activation mechanism of 

appropriate and sufficient for A. niger, because strain B36 is better adapted to grow on 

starch compared to the wild-type strain. Interestingly, starch- and maltose-responsive genes 

such as the transcription factor AmyR and AmyR-dependent hydrolase genes (Yuan et al. 

2008b) are down regulated in B36 except glaA (Table 4). As previously suggested, a  

possible explanation for the reduced expression could be the titration of the AmyR 
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Table 3. Differential expression of genes encoding secretory pathway related proteins.  

DSM code DSM annotation                                                         FC B36/N402    P FDR 

Protein folding    

An02g14800* protein disulfide isomerase A pdiA - Aspergillus niger 1.72 5.98E-08 3.43E-06 

An18g02020* disulfide isomerase tigA - Aspergillus niger 1.89 1.61E-08 1.17E-06 

An01g04600* PDI related protein A prpA - Aspergillus niger 2.08 2.21E-09 2.40E-07 

An16g07620* strong similarity to endoplasmatic reticulum oxidising 

protein Ero1 - Saccharomyces cerevisiae 

1.97 1.02E-08 8.15E-07 

An18g04260* similarity to secreted protein HNTME13 from patent 

WO9839446-A2 - Homo sapiens 

2.46 1.06E-09 1.28E-07 

An18g06470* strong similarity to DnaJ-like protein MTJ1 - Mus 

musculus 

1.48 1.34E-06 3.70E-05 

An05g00880* strong similarity to dnaJ protein homolog Scj1 - 

Saccharomyces cerevisiae 

1.79 1.02E-07 5.04E-06 

An01g08420* strong similarity to calcium-binding protein precursor 

clx1p - Schizosaccharomyces pombe 

2.42 8.96E-10 1.13E-07 

An04g02020* strong similarity to cyclophilin cypB - Aspergillus 

nidulans 

1.69 1.19E-07 5.60E-06 

An01g06670* strong similarity to peptidyl-prolyl isomerase FKBP-21 - 

Neurospora crassa 

1.66 4.71E-07 1.57E-05 

An11g04180* dnaK-type molecular chaperone bipA - Aspergillus niger 2.32 8.63E-10 1.11E-07 

An01g13220* strong similarity to 150 kDa oxygen regulated protein 

ORP150 - Rattus norvegicus 

2.26 1.34E-09 1.58E-07 

Signal recognition/cleavage    

An04g06890 similarity to 72-kD protein of the signal recognition 

particle SRP72 - Canis lupus 

1.33  1.14E-04 1.37E-03 

An15g06470* similarity to signal sequence receptor alpha chain - Canis 

lupus 

1.86  4.49E-08 2.72E-06 

An01g00560* strong similarity to signal peptidase subunit Sec11 - 

Saccharomyces cerevisiae 

1.84  5.70E-07 1.84E-05 

An16g07390* strong similarity to endoplasmatic reticulum signal 

peptidase subunit Spc2 - Saccharomyces cerevisiae 

1.90  7.99E-09 6.74E-07 

An09g05420* similarity to signal peptidase subunit Spc3 - 

Saccharomyces cerevisiae 

1.99  6.90E-09 6.03E-07 

Translocation into ER    

An03g04340* strong similarity to ER membrane translocation facilitator 

Sec61 - Yarrowia lipolytica 

1.68  9.76E-08 4.90E-06 

An01g03820 strong similarity to ER protein-translocation complex 

subunit Sbh2 - Saccharomyces cerevisiae 

1.62  2.60E-06 6.33E-05 

An01g11630* strong similarity to translocation complex component 

Sss1 - Saccharomyces cerevisiae 

1.71  1.88E-07 8.11E-06 

An02g01510* strong similarity to component of the endoplasmic 

reticulum protein translocation machinery Sec62 - 

Saccharomyces cerevisiae 

1.57  7.50E-06 1.49E-04 

An01g13070* strong similarity to signal recognition particle receptor 

Sec63 - Saccharomyces cerevisiae 

2.02  2.17E-08 1.47E-06 

An16g08830* strong similarity to component of ER protein-

translocation subcomplex Sec71 from patent 

WO9949028-A1 - Saccharomyces cerevisiae 

1.80  3.47E-08 2.17E-06 

An15g01670 strong similarity to signal sequence receptor alpha 

subunit SRP101 - Yarrowia lipolytica 

1.29  1.14E-04 1.37E-03 

An05g00140* similarity to signal recognition particle receptor beta 

chain Srp102 - Saccharomyces cerevisiae 

1.39  2.57E-05 4.16E-04 

Glycosylation    

An02g07650 strong similarity to phosphoglucomutase pgmB - 

Aspergillus nidulans 

0.80  5.29E-04 4.81E-03 

An03g05940* strong similarity to glutamine-fructose-6-phosphate 

transaminase Gfa1 - Saccharomyces cerevisiae 

0.66  2.20E-06 5.58E-05 
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Table 3. Cont.  

DSM code DSM annotation                                                         FC B36/N402    P FDR 

An04g04990* strong similarity to mannose-1-phosphate 

guanyltransferase MPG1 - Trichoderma reesei 

1.46  1.44E-05 2.57E-04 

An11g02380* strong similarity to GTP:alpha-D-mannose-1-phosphate 

guanylyltransferase MPG1 - Hypocrea jecorina 

1.35  5.47E-05 7.67E-04 

An02g08660 strong similarity to hypothetical protein H04M03.4 - 

Caenorhabditis elegans 

1.25  2.90E-04 2.91E-03 

An03g06940* strong similarity to UPD-GlcNAc transporter MNN2-2 - 

Kluyveromyces lactis 

1.35  2.72E-05 4.38E-04 

An02g14560* oligosaccharyltransferase alpha subunit ostA - 

Aspergillus niger 

2.05  2.27E-09 2.40E-07 

An07g04190* strong similarity to dolichyl-diphosphooligosaccharide--

protein glycosyltransferase 48kD chain DDOST - Gallus 

gallus 

1.69  1.03E-07 5.04E-06 

An18g03920* strong similarity to defender against apoptotic cell death 

DAD1 - Homo sapiens 

2.04  2.49E-09 2.56E-07 

An02g14930* strong similarity to dolichyl-diphosphooligosaccharide-

protein glycotransferase gamma chain Ost3 - 

Saccharomyces cerevisiae 

1.47  1.51E-06 4.08E-05 

An16g08570* strong similarity to translation initiation factor 3 47 kDa 

subunit stt3p - Schizosaccharomyces pombe 

1.78  2.74E-07 1.07E-05 

An16g04330* strong similarity to mannose phospho-dolichol synthase 

dpm1 - Hypocrea jecorina 

1.63  2.72E-07 1.07E-05 

An01g05200* strong similarity to DPM2 - Mus musculus 1.43  4.84E-05 6.98E-04 

An03g04410* strong similarity to UDP-glucose:dolichyl-phosphate 

glucosyltransferase Alg5 - Saccharomyces cerevisiae 

1.78  3.47E-07 1.26E-05 

An02g03240* strong similarity to UDP-N-acetylglucosamine--dolichyl-

phosphate N-acetylglucosaminephosphotransferase Alg7 

- Saccharomyces cerevisiae 

1.92  1.76E-08 1.24E-06 

An06g01100* strong similarity to mannosyltransferase Alg1 - 

Saccharomyces cerevisiae 

1.27  1.50E-04 1.70E-03 

An14g05910* strong similarity to mannosyltransferase Alg2 - 

Saccharomyces cerevisiae 

1.93  2.28E-08 1.53E-06 

An18g05910* strong similarity to hypothetical glycosyl transferase 

SPCC330.08 - Schizosaccharomyces pombe 

1.49  7.14E-05 9.49E-04 

An02g14940* strong similarity to human transmembrane protein 

HTMPN-23 from patent WO9961471-A2 - Homo 

sapiens 

1.49  2.62E-06 6.38E-05 

An04g03130 strong similarity to mannosylation protein Lec35 - 

Cricetulus griseus [putative sequencing error] 

1.56  4.25E-07 1.46E-05 

An18g02360* strong similarity to Dol-P-Man dependent alpha(1-3) 

mannosyltransferase Alg3 - Saccharomyces cerevisiae 

1.92  1.74E-08 1.24E-06 

An08g07020* similarity to mannosyl transferase Alg9 - Saccharomyces 

cerevisiae 

1.48  7.80E-06 1.53E-04 

An01g08460* strong similarity to the mannosyltransferase Alg12 - 

Saccharomyces cerevisiae 

1.37  4.69E-04 4.36E-03 

An02g12630* strong similarity to glucosyltransferase Alg6 - 

Saccharomyces cerevisiae 

1.37  1.35E-05 2.44E-04 

An04g08820* strong similarity to glucosyltransferase Alg8 - 

Saccharomyces cerevisiae 

1.24  3.24E-04 3.22E-03 

An02g02980* strong similarity to protein influencing Itr1 expression 

Die2 - Saccharomyces cerevisiae 

1.42  4.53E-05 6.58E-04 

An15g01420* strong similarity to glucosidase I Cwh41 - 

Saccharomyces cerevisiae 

1.81  2.90E-08 1.84E-06 

An18g05620 strong similarity to glucosidase II alpha subunit 

AAF66685.1 - Homo sapiens 

0.80  4.70E-04 4.37E-03 

An01g10930* strong similarity to enzyme with sugar transferase 

activity from patent JP11009276-A - Acremonium sp. 

0.45  2.27E-09 2.40E-07 

An04g06920* extracellular alpha-glucosidase aglU - Aspergillus niger 0.60  7.55E-08 4.07E-06 
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Table 3. Cont.  

DSM code DSM annotation                                                         FC B36/N402    P FDR 

An09g03300 strong similarity to alpha-xylosidase XylS - Sulfolobus 

solfataricus 

0.80  4.19E-04 3.98E-03 

An09g05880* strong similarity to alpha-glucosidase ModA - 

Dictyostelium discoideum 

1.75  4.77E-08 2.86E-06 

An13g00620* strong similarity to 80K protein H precursor G19P1 - 

Homo sapiens 

1.53  1.24E-06 3.47E-05 

An07g06430* strong similarity to glycoprotein glucosyltransferase 

gpt1p - Schizosaccharomyces pombe 

1.64  3.96E-07 1.39E-05 

An01g12550 strong similarity to mannosyl-oligosaccharide 1,2-alpha-

mannosidase msdS - Aspergillus saitoi 

0.32  2.29E-11 8.76E-09 

An06g01510 strong similarity to class I alpha-mannosidase 

AAB62720.1 - Spodoptera frugiperda 

0.74  4.29E-05 6.31E-04 

An12g00340* similarity to alpha 1,2-mannosidase IB - Homo sapiens 1.54  7.61E-06 1.50E-04 

An05g01750 strong similarity to alpha-1,6-mannosyltransferase Hoc1 - 

Saccharomyces cerevisiae 

0.52  1.04E-08 8.30E-07 

An11g07490 similarity to alpha-1,6-mannosyltransferase Hoc1 - 

Saccharomyces cerevisiae 

0.66  8.04E-07 2.46E-05 

An15g03330 strong similarity to galactosyltransferase Bed1 - 

Saccharomyces cerevisiae 

1.42  9.62E-05 1.20E-03 

An11g09890* strong similarity to mannosyltransferase 1 PMT1 - 

Candida albicans 

1.36  1.27E-04 1.49E-03 

An07g10350* protein O-mannosyl transferase pmtA - Aspergillus niger 1.50  4.45E-06 9.69E-05 

An16g08490* strong similarity to dolichyl-phosphate-D-mannose--

protein O-mannosyltransferase Pmt4 - Saccharomyces 

cerevisiae 

1.49  1.89E-06 4.90E-05 

An15g04810 similarity to alpha-1,3-mannosyltransferase Mnt2 - 

Saccharomyces cerevisiae 

0.75  2.96E-05 4.66E-04 

An02g11720 strong similarity to alpha-mannosidase msd2 - 

Aspergillus nidulans 

0.71  1.64E-05 2.85E-04 

An01g06500 strong similarity to filamentous growth protein Dfg5 - 

Saccharomyces cerevisiae 

0.58  1.44E-05 2.56E-04 

An02g02660 strong similarity to hypothetical protein Dcw1 - 

Saccharomyces cerevisiae 

0.78  2.74E-04 2.79E-03 

An11g01240* similarity to filamentous growth protein Dfg5 - 

Saccharomyces cerevisiae 

2.17  1.48E-08 1.10E-06 

Protein misfolding (UPR and ERAD associated degradation) 

An08g00830 strong similarity to protein phosphatase type 2C Ptc2 - 

Saccharomyces cerevisiae 

1.31  5.07E-04 4.65E-03 

An11g11250* strong similarity to interferon-induced double-stranded 

RNA-activated protein kinase inhibitor P58 - Homo 

sapiens 

1.80  2.58E-07 1.03E-05 

An01g14100* weak similarity to stress protein Herp - Mus musculus 1.61 1.12E-06 3.21E-05 

An03g04340* strong similarity to ER membrane translocation facilitator 

Sec61 – Yarrowia lipolytica 

1.68 9.76E-08 4.9E-06 

An04g00360* strong similarity to transport vesicle formation protein 

Sec13 – Saccharomyces cerevisiae 

1.84 1.28E-08 9.9E-07 

An15g00640* strong similarity to hypothetical protein GABA-A 

receptor epsilon subunit – Caenorhabditis elegans 

2.03  6.20E-08 3.53E-06 

An16g07970* similarity to autocrine motility factor receptor Amfr – 

Mus musculus 

1.60  1.09E-05 2.02E-04 

An12g00340* similarity to alpha 1,2-mannosidase IB - Homo sapiens 1.54  7.61E-06 1.50E-04 

An15g01420* strong similarity to glucosidase I Cwh41 - 

Saccharomyces cerevisiae 

1.81 2.90E-08 1.84E-06 

An18g06220* strong similarity to alpha-mannosidase Mns1 - 

Saccharomyces cerevisiae 

2.10  3.47E-06 8.05E-05 

An01g12720* similarity to tumour suppressor protein TSA305 from 

patent WO9928457-A1 - Homo sapiens 

1.69  3.91E-07 1.38E-05 
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Table 3. Cont.  

DSM code DSM annotation                                                         FC B36/N402    P FDR 

Protein complex involved in protein transport     

An01g03190 similarity to protein Sec3 - Saccharomyces cerevisiae 1.30  7.93E-05 1.03E-03 

An08g05570* similarity to secretory protein Sec5 - Saccharomyces 

cerevisiae 

1.54  1.97E-06 5.07E-05 

An04g06180 strong similarity to exocyst subunit Sec6 - 

Saccharomyces cerevisiae 

1.38  7.87E-05 1.03E-03 

An08g07370 similarity to exocyst protein Exo84 - Saccharomyces 

cerevisiae 

1.42  9.83E-05 1.22E-03 

An02g14400* strong similarity to hypothetical protein SPCC338.13 - 

Schizosaccharomyces pombe 

1.43  8.59E-06 1.66E-04 

An16g01630 strong similarity to enoyl reductase of the lovastatin 

biosynthesis lovC - Aspergillus terreus 

0.35  1.66E-10 3.53E-08 

An04g08690* similarity to polynucleotide sequence SEQ ID NO:3913 

from patent WO200058473-A2 - Homo sapiens 

1.37  7.88E-05 1.03E-03 

An02g07090* strong similarity to ASNA1 product arsenite translocating 

ATPase - Homo sapiens 

1.30  1.46E-04 1.66E-03 

An01g14250* strong similarity to delta subunit of the coatomer delta-

coat protein CopD - Bos taurus 

1.46  3.66E-06 8.35E-05 

An08g01250* weak similarity to COP1-interacting protein 7 CIP7 - 

Arabidopsis thaliana 

1.75  4.69E-07 1.57E-05 

An16g05370* similarity to zinc-finger protein Glo3 - Saccharomyces 

cerevisiae 

1.59  1.28E-05 2.34E-04 

An16g02460* strong similarity to alpha subunit of the coatomer 

complex Ret1 - Saccharomyces cerevisiae 

1.67  2.40E-07 9.68E-06 

An01g14260* strong similarity to delta subunit of the coatomer delta-

coat protein CopD - Bos taurus [deleted ORF] 

1.51  1.15E-06 3.27E-05 

An12g04830* strong similarity to coatomer protein zeta chain Ret3 - 

Saccharomyces cerevisiae 

1.47  7.15E-06 1.44E-04 

An07g06030* strong similarity to coatomer gamma subunit 2 copg2 - 

Homo sapiens 

1.65  4.32E-06 9.45E-05 

An02g05870* strong similarity to coatomer beta subunit copB2 - Homo 

sapiens [putative frameshift] 

1.50  1.17E-04 1.40E-03 

An01g04040* secretion-associated GTP-binding protein sarA - 

Aspergillus niger 

1.27  1.99E-04 2.13E-03 

An08g03270* strong similarity to beta-COP Sec26 - Saccharomyces 

cerevisiae 

1.48  2.84E-06 6.82E-05 

An04g00360* strong similarity to transport vesicle formation protein 

Sec13 - Saccharomyces cerevisiae 

1.84  1.28E-08 9.90E-07 

An02g01690* strong similarity to p150 component of the COPII coat of 

secretory pathway vesicles Sec31 - Saccharomyces 

cerevisiae 

1.60  2.05E-07 8.64E-06 

An01g04730* strong similarity to secretory protein Sec23 - 

Saccharomyces cerevisiae 

1.62  2.83E-07 1.08E-05 

An08g10650* strong similarity to transport protein Sec24 - 

Saccharomyces cerevisiae 

1.55  6.97E-07 2.18E-05 

An16g03320* strong similarity to transport protein Sec24A - Homo 

sapiens 

1.56  2.27E-06 5.69E-05 

An15g01520* strong similarity to multidomain vesicle coat protein 

Sec16 - Saccharomyces cerevisiae 

1.53  1.74E-06 4.55E-05 

ER to Golgi and intra-Golgi transport    

An08g03590* strong similarity to precursor of protein Emp24 - 

Saccharomyces cerevisiae 

1.39  7.73E-06 1.52E-04 

An09g05490* strong similarity to COP-coated vesicle membrane 

protein P24 homolog lbrA - Polysphondylium pallidum 

1.42  4.30E-06 9.43E-05 

An07g09160 strong similarity to pattern formation protein cni - 

Drosophila melanogaster 

1.28  1.30E-04 1.52E-03 

An01g08870* strong similarity to component of COPII-coated vesicles 

Erv25 - Saccharomyces cerevisiae 

1.39  7.23E-06 1.45E-04 
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Table 3. Cont.  

DSM code DSM annotation                                                         FC B36/N402    P FDR 

An08g03960* strong similarity to hypothetical edoplasmic reticulum 

associated protein - Schizosaccharomyces pombe 

1.55  7.36E-06 1.47E-04 

An03g04940* strong similarity to Erv41 - Saccharomyces cerevisiae 2.12  1.20E-08 9.44E-07 

An01g04320* strong similarity to COPII vesicle coat component protein 

Erv46 - Saccharomyces cerevisiae 

2.12  7.61E-09 6.57E-07 

An02g02830 strong similarity to protein RER1 - Homo sapiens 1.30  5.22E-05 7.42E-04 

An07g02190 strong similarity to protein Sec7 - Saccharomyces 

cerevisiae 

1.44  9.50E-06 1.81E-04 

An08g06780* strong similarity to transport protein Uso1 - 

Saccharomyces cerevisiae 

1.52  2.93E-06 7.00E-05 

An18g06440 strong similarity to COPII vesicle component Yip3 - 

Saccharomyces cerevisiae 

1.67  2.58E-06 6.30E-05 

An04g01780* strong similarity to hypothetical protein YAR002c-a - 

Saccharomyces cerevisiae 

1.54  1.03E-06 3.00E-05 

An04g08830* similarity to Golgi membrane protein Emp47 - 

Saccharomyces cerevisiae 

1.69  9.30E-07 2.78E-05 

An02g04250* similarity to protein p58 - Rattus norvegicus 1.77  2.01E-08 1.39E-06 

An04g01990* similarity to protein ZW10 homolog HZW10 - Homo 

sapiens 

1.32  1.06E-04 1.29E-03 

An04g06090 similarity to geranylgeranyltransferase type-II alpha 

chain Bet4 - Saccharomyces cerevisiae 

0.77  2.69E-04 2.75E-03 

An08g00290* strong similarity to golgin-160 related protein Rud3 - 

Saccharomyces cerevisiae 

1.52  1.11E-05 2.05E-04 

An08g06330* strong similarity to epsilon-COP - Cricetulus griseus 1.39  1.84E-05 3.14E-04 

An07g07340* strong similarity to luminal ER-protein retention receptor 

ERD2 - Kluyveromyces marxianus 

1.65  2.00E-07 8.46E-06 

Other processes in the secretory pathway    

An07g02170* similarity to transport protein Bos1 - Saccharomyces 

cerevisiae 

1.91  1.65E-08 1.18E-06 

An15g01380* strong similarity to Synaptobrevin homolog v-SNARE 

Sec22 - Saccharomyces cerevisiae 

1.30  2.74E-04 2.78E-03 

An18g02490* strong similarity to ARF guanine-nucleotide exchange 

factor 2 Gea2 - Saccharomyces cerevisiae 

1.31  1.52E-04 1.71E-03 

An07g08220* strong similarity to clathrin associated epsin 2A - Homo 

sapiens 

1.39  1.58E-05 2.76E-04 

An02g08450* secretory gene nsfA - Aspergillus niger 1.27  2.86E-04 2.89E-03 

An02g14450* secretory pathway Ca2+-ATPase pmrA - Aspergillus 

niger 

1.51  3.12E-06 7.38E-05 

An16g08470* similarity to hypothetical cell growth regulator OS-9 - 

Homo sapiens 

1.76  8.57E-07 2.58E-05 

An02g03460* similarity to hypothetical protein YIL041w - 

Saccharomyces cerevisiae 

1.31  1.49E-04 1.68E-03 

An04g02070 strong similarity to clathrin heavy chain - Bos taurus 1.30  1.09E-04 1.33E-03 

An06g01200* strong similarity to endosomal protein Emp70 - 

Saccharomyces cerevisiae 

1.55  1.37E-06 3.77E-05 

An01g11960 similarity to brefeldin A resistance protein Bfr1 - 

Saccharomyces cerevisiae 

1.44  1.27E-05 2.33E-04 

An04g01950* strong similarity to zinc-metalloprotease Ste24 - 

Saccharomyces cerevisiae 

1.63  1.61E-07 7.12E-06 

DSM code: ORF identifier in A. niger CBS 513.88 genome sequence (Pel et al. 2007). Genes in bold are also 

found in maltose/xylose transcriptomic comparison (Jørgensen et al. 2009). * Indicates genes that were also 

identified in strains with constitutively active hacACA (Carvalho et al. 2012). 
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transcription factor due to the high number of glaA promoter copies in this strain (Verdoes 

et al. 1994b). Alternatively, the biosynthesis of an inducer through one of the enzymes 

under control of AmyR might be reduced. Lower inducer levels could then lead to lower 

levels of active AmyR transcription factor, leading to a negative feedback loop. Down-

regulation of AmyR targets (except for glaA, Table 4) could also be explained by the RESS 

(repression under secretion stress) phenomenon, described for Trichoderma reesei (Pakula 

et al. 2003; Saloheimo and Pakula 2012) and Arabidopsis thaliana (Martinez and 

Chrispeels 2003), and predicted for A. niger (Carvalho et al. 2012). RESS is a 

transcriptional feedback mechanism that is activated in response to impairment of protein 

folding or transport and aims at lowering the protein load in the secretory route when ER 

stress conditions are sensed (Pakula et al. 2003). As we have observed that GlaA 

overexpression induces a mild UPR (Fig. 2A), we propose that down-regulation of AmyR 

and its target genes reflects a negative feedback mechanism similar to RESS in T. reesei. 

Notably, enriched GO terms of the ‘ion homeostasis’ category indicated an increased 

demand for iron, calcium and zinc. In the context of increased fluxes of GlaA through the 

secretory pathway in strain B36, several explanations are conceivable. First, the mature 

GlaA protein contains nine cysteine residues, eight of which are involved in disulfide 

bridge formation (Lee and Paetzel 2011; Sorimachi et al. 1996). Hence, in B36 there is an 

increased demand for disulfide bond formation, which requires increased activity of protein 

disulfide isomerases. Increased amounts of PdiA, however, might result in sequestration of  

 

Fig. 2. RT-PCR analysis (A) and plate growth assay (B) of N402 and B36. A, RT-PCR analysis 

of expression and transcript processing of the UPR transcription factor gene, hacA. The ratio 

between unspliced, a (220 bp), and spliced, b (200 bp), of hacA transcript is similar in all three 

N402 steady states of maltose-limited chemostat cultures while in B36 there is more spliced 

hacA present. The H2B control shows that there is no contamination with genomic DNA ; 

genomic DNA,181-bp amplicons; mRNA, 131-bp amplicons. B, plate growth assay of N402 and 

B36 using different carbon sources. 104 spores were point-inoculated on MM plates and 

incubated for 4 days at 30oC. 
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Table 4. Expression values of genes involved in starch metabolism. 

Gene ID Name DSM annotation                                    FC B36/N402 P FDR 

An04g06910 amyR transcription factor of starch utilization 

amyR – A. niger 

0.64 1.06E-06 3.06E-05 

An11g03340 aamA acid alpha-amylase – A. niger 0.23 1.24E-09 1.48E-07 

An04g06920 agdA extracellular alpha-glucosidase aglU – A. 

niger 

0.60 7.55E-08 4.07E-06 

An01g10930 agdB strong similarity to enzyme with sugar 

transferase activity from patent 

JP11009276-A - Acremonium sp. 

0.45 2.27E-09 2.40E-07 

An03g06550 glaA glucan 1,4-alpha-glucosidase glaA – A. 

niger 

1.23* 3.94E-04 3.80E-03 

An04g06930 amyC strong similarity to extracellular alpha-

amylase amyA/amyB – A. niger 

0.54 7.68E-08 4.13E-06 

An04g06920 aglU extracellular alpha-glucosidase aglU – A. 

niger 

0.60 7.55E-08 4.07E-06 

An09g03100 amyA strong similarity to alpha-amylase 

precursor amy – A. niger 

0.32 7.34E-08 3.99E-06 

FC: fold change. *Fold difference in glaA is under-estimated due to the saturation of array signals. 

Transcript level of glaA in B36 was about 7-fold higher than N402 based on qPCR results. 

 

 

zinc ions in the ER (Lee and Paetzel 2011; Solovyov and Gilbert 2004), thus preventing it 

from binding to other proteins and causing a cellular shortage of zinc.Second, chaperones 

such as ClxA needs calcium as co-factor (Wang et al. 2003), hence enhanced expression of 

clxA in B36 calls for higher calcium concentrations in the ER. Third, calcium is of general 

importance for vesicle fusions and the function of the ER and Golgi (Dolman and Tepikin 

2006; Stojilkovic 2005). Hence, the cells have to mobilize calcium from internal or external 

stores to ensure higher fluxes through the secretory pathway in B36. Finally, the activity of 

GlaA is known to be positively affected by the presence of Mn2+, Ca2+ and Fe2+ ions 

(Kumar and Satyanarayana 2009), which are also required for many other protein activities 

including heme or iron-sulfur-cluster (Fe-S) proteins (Lill 2009; Stojilkovic 2005; Waldron 

et al. 2009). In this context, it is interesting to note that protein secretion in A. fumigatus has 

most recently been shown to require controlled uptake of iron. Basically, the transcription 

factor PrtT not only positively regulates expression of protease genes but also strengthens 

expression of iron uptake genes (Hagag et al. 2012). We thus compared the published 

expression data of iron uptake genes in A. fumigatus (wt versus ∆prtT) with the expression 

data of their predicted orthologs in A. niger (B36 versus N402). Twelve out of 15 iron-

uptake genes showed similar expression profiles (Additional file 5), i.e. their up-regulation 

in wt versus ∆prtT was mirrored in B36 versus N402. In agreement, expression profiles of 

the main iron transcription factors also matched, i.e. up-regulation/down-regulation of the 

activator HapX/repressor SreA in wt versus ∆prtT were comparably up-/down-regulated in 

B36 versus N402. Hence, both independent observations from two Aspergilli strongly 
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indicate that proper function of the protein secretion machinery and high fluxes through the 

secretory pathway mandate optimal iron supply and assuring proper ion homeostasis.  

GO enrichment analysis of the down-regulated gene set in B36 uncovered three major 

categories: i) ‘carbon catabolism’, ii) ‘amino acid catabolism’ and iii) ‘response to 

oxidative stress’ (Additional file 3). The first two categories might be causatively linked to 

the RESS phenomenon discussed above, i.e. increased GlaA secretion is only possible at 

the cost of other secreted proteins. As AmyR targets related to starch degradation are down-

regulated in B36 (see Table 4), processes related to polysaccharide degradation have 

consequently to be down-regulated as well. In a recent study, 19 proteases of A. niger were 

identified in the extracellular medium, when the strain was cultivated under sorbitol-, 

galacturonic acid- or carbon-starvation conditions (Braaksma et al. 2010). Expression of 12 

of them was reduced in B36 compared to N402, two of the genes were up-regulated and 

expression of five genes was unaltered (Additional file 6). Hence, overall reduction in 

protease activity in B36 will in turn decelerate amino acid catabolic processes. An 

additional explanation for reduced expression of carbon and amino acid catabolic processes 

is that many enzymes involved in these processes are iron-dependent. Iron deficiency has 

been shown to trigger a metabolic response in Saccharomyces cerevisiae or 

Schizosaccharomyces pombe, which includes down-regulation of enzymes involved in 

carbon and amino acid metabolism and respiration (Lill 2009; Mercier and Labbe 2010; 

Philpott et al. 2012; Philpott and Protchenko 2008). Assuming that this also holds true for A. 

niger, reduction in catabolic processes would lower the fluxes into the citric acid cycle and 

into the respiratory chain, which in turn would also lower the amount of radical oxygen 

species produced. Hence, oxidative stress would be diminished, which in turn would result 

in down-regulation of oxidative stress genes as observed in B36. A slight but significantly 

reduced RQ in B36 compared to N402 (Table 1) supports this hypothesis. Taken together, 

the enriched GO term set of down-regulated genes in B36 can hypothetically be viewed as a 

consequence of the RESS phenomenon and reduced iron availability due to increased GlaA 

secretion. 

Two A. niger proteins lacking an N-terminal signal peptide for entering the secretory 

route were recently determined to be abundantly present in the secretome of A. niger 

(Braaksma et al. 2010). It was thus proposed that proteins can also be exported out of the 

cell by the so-called non-classical secretion pathway (Braaksma et al. 2010). Interestingly, 

transcript levels of both protein-encoding genes were lowered in B36 versus N402 

(An01g09980, fold-change B36/N402 = 0.15, FDR = 8.65 x10-9; An01g00370, fold-change 

= 0.54, FDR = 0.0001). This could mean that an accelerated activity of the classical 

secretory machinery is only possible at the expense of the non-classical secretion pathway – 
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which could be another potential example for the existence of the RESS regulatory 

feedback loop in A. niger.  

 

 

Comparison of the GlaA overexpression transcriptome with the maltose 

transcriptome 

 

In order to identify genes whose transcript levels are generally important for high-level 

secretion in A. niger, i.e. independent of the conditional trigger, we first compared the GlaA 

transcriptomic fingerprint with two other recently determined fingerprints from our 

laboratory. First, we compared the GlaA overexpression transcriptome with the maltose 

transcriptome of A. niger. The maltose transcriptome was recently obtained by comparing 

carbon-limited chemostat cultures supplied with different carbon sources (maltose and 

xylose) but with the same specific growth rate (D = 0.16 h-1) (Jørgensen et al. 2009). This 

comparison showed that the production rate of extracellular proteins was about three-fold 

higher in maltose-grown cultures compared to xylose (Jørgensen et al. 2009). As shown in 

the Venn diagram depicted in Fig. 3, 150 genes were commonly induced in both B36 versus 

N402 and maltose versus xylose and thus represent the most interesting genes with respect 

to high-level secretion in A. niger. GO enrichment analysis of this set of genes confirmed 

that genes related to ER import, translocation, N-glycosylation and COPII transport are of 

utmost importance for ensuring high protein traffic through the secretory pathway 

(Additional file 7).  

Genes that are induced in B36 versus N402, but not in maltose versus xylose, are likely 

to be genes that are mainly related to GlaA overexpression per se. There are 640 such genes 

and GO enrichment analysis uncovered two main categories (Additional file 7), one of 

which is the ‘ion homeostasis’ category, as expected due to the high iron, calcium and zinc 

demand for GlaA overexpression (see former section). The second category involves 

 

Fig. 3. Venn diagrams of the number of overlapping and non-overlapping induced and repressed 

genes on B36/N402 and maltose/xylose (Jørgensen et al. 2009) chemostat cultures. 
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genes involved in ‘DNA repair and DNA replication’ and could hypothetically also be 

linked to the iron deficiency in B36 versus N402, as many proteins involved in nucleotide 

excision repair and DNA replication are iron-dependent (Lill 2009). Genes that induced in 

maltose versus xylose but not in B36 versus N402 are likely to be genes, which are 

important for starch/maltose degradation but not for xylose catabolism. Indeed, the enriched 

GO categories of this gene set (484 genes) contained ‘starch metabolic processes’ and other 

catabolic process related to ‘carbon source oxidation’, ‘amino acid metabolism’ and 

‘respiration and oxidative stress’ (Additional file 7). These are processes important for (or 

related to) high ATP generation during oxidative phosphorylation in the respiratory chain 

and do likely form the energetic basis for the observed higher secretory flux in maltose 

cultures compared to xylose cultures despite similar growth rates. There were 146 

commonly repressed genes in B36 versus N402 and in maltose versus xylose, but only a 

small fraction of these genes could be assigned to enriched GO terms related to ‘saccharide 

catabolic processes’ (Additional file 7).  

 

 

Comparison of the GlaA overexpression transcriptome with other high-

secretion transcriptomes 

 

In order to determine so far unknown HacA targets and their involvement in UPR, we have 

recently determined the HacA transcriptome by expressing a constitutively active form of 

HacA (hacA
CA) in A. niger (Carvalho et al. 2012). Using bioreactor-controlled batch 

cultures, we compared the genome-wide expression profiles of a strain expressing hacA
CA 

with a wild-type strain (hacA
WT) at three different time points during the exponential 

growth phase. At each of the three time points the up-regulated gene set of the hacA
CA 

cultures contained genes related to protein traffic through the secretory pathway, and to the 

UPR and ERAD response (Carvalho et al. 2012). When comparing these data with the 

GlaA-overexpression transcriptome, one might expect a considerably overlap due to the 

fact that overexpression of GlaA induced splicing of the hacA mRNA (Fig. 2) and thus 

activation of HacA. Indeed, the transcriptional response in B36 had more in common with 

hacA
CA versus hacA

WT (578 genes) than with maltose versus xylose (296 genes, data not 

shown). Commonly induced genes in B36 versus N402 and hacA
CA versus hacA

WT were 

predicted to function in ‘vesicle coating’. ‘targeting from the ER to the Golgi’, ‘N-

glycosylation’ and ‘COPII transport’.  

For a more condition-independent view on how the A. niger transcriptome ensures 

high-level secretion, we finally compared the transcriptomic dataset of seven independent 

studies performed with A. niger: i) the GlaA-overexpression transcriptome obtained from 
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chemostat cultures of B36 versus N402 (this study), ii) the maltose-high secretion 

transcriptome obtained from  chemostat cultures of maltose versus xylose (Jørgensen et al. 

2009), iii) the HacA transcriptome reflecting permanent activation of UPR and obtained 

from batch cultures comparing hacA
CA versus hacA

WT (Carvalho et al. 2012) and iv) three 

UPR stress transcriptomes obtained from A. niger batch cultures stressed with DTT,  

tunicamycin, or forced to express the heterologous protein t-PA (Guillemette et al. 2007).  

This analysis uncovered 40 genes whose transcript levels were commonly modified 

under all seven secretion stress conditions: 36 genes were up-regulated, and 4 genes were 

down-regulated (Table 5). The genes from this set thus probably represent genes that are 

crucial for coping with stress conditions that target the secretion machinery. This gene set 

includes ER chaperones and foldases (prpA, clxA, lhs1, pdiA, bipA, tigA), genes important 

for translocation of secretory proteins into the ER (sec63, sec11, sss1, spc3, sec71) and 

genes important for protein glycosylation and COPII-based vesicle trafficking (Table 5). 

Fascinatingly, a gene encoding the predicted acetyl-coenzyme A transporter (An02g13410) 

was consistently up-regulated under all seven conditions. In higher eukaryotes, this protein 

was shown to be involved in translocation of membrane-impermeable coenzyme A from 

the cytosol into the ER lumen, where it is used for transient acetylation of ER-based 

proteins, thus improving the folding efficiency of nascent secretory proteins (Jonas et al. 

2010). It becomes therefore important to examine whether the predicted A. niger CoA 

transporter fulfills the same function. Similarly, the set of core genes included six 

hypothetical proteins, whose precise relevance for the secretory machinery remains to be 

elucidated in future studies.  

 

 

Conclusions 

 

The evidence is accumulating that the secretory machinery of A. niger is equiped with a 

high inherent flexibility, which enables the fungus to dynamically respond to changes in the 

secretory protein load. Irrespective of whether different amounts of a homologous protein 

or a heterologous protein have to be accommodated and escorted, or a specific step in the 

secretory pathway becomes blocked, A. niger follows general and specific strategies to 

adapt to these challenges. On the one hand, the burden of high protein loads is in general 

dealt with increased transcript levels of genes involved in stabilizing the secretory pathway, 

including chaperone-encoding and foldase-encoding genes, transport genes and UPR- and 

ERAD-related genes. In addition, it seems likely that for the efficient secretion of 

individual proteins (either overexpressed or a heterologous proteins) an additional, 

particular set of genes becomes up-regulated, whose expression is important to deal with 
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Table 5. The list of common transcriptional response from all compared conditions. 

DSM code DSM annotation                                                    FC  B36/N402 P FDR 

Protein folding    

An01g13220 similar to the chaperone Lhs1 2.26 1.34E-09 1.58E-07 

An02g14800 Protein disulfide isomerase PdiA 1.72 5.98E-08 3.43E-06 

An01g04600 Protein disulfide isomerase PrpA 2.08 2.21E-09 2.40E-07 

An01g08420 calnexin ClxA 2.42 8.96E-10 1.13E-07 

An11g04180 chaperone BipA 2.32 8.63E-10 1.11E-07 

An16g07620 similar to ER oxidising protein Ero1 1.97 1.02E-08 8.15E-07 

An18g02020 Protein disulfide isomerase TigA 1.89 1.61E-08 1.17E-06 

An11g11250 similar to the chaperone P58IPK Homo sapiens 1.80 2.58E-07 1.03E-05 

Translocation/Signal peptidase complex    

An01g13070 
similar to ER protein-translocation complex subunit 

SEC63 
2.02 2.17E-08 1.47E-06 

An16g08830 similar to component of subcomplex SEC71 1.80 3.47E-08 2.17E-06 

An01g11630 similar to translocation complex component SSS1 1.71 1.88E-07 8.11E-06 

An09g05420 similar to signal peptidase subunit SPC3 1.99 6.90E-09 6.03E-07 

An01g00560 similar to signal peptidase subunit SEC11 1.84 5.70E-07 1.84E-05 

An15g06470 similar to signal sequence receptor α-subunit 1.86 4.49E-08 2.72E-06 

Glycosylation    

An14g05910 similar to mannosyltransferase ALG2 1.93 2.28E-08 1.53E-06 

An03g04410 similar to glucosyltransferase ALG5 1.78 3.47E-07 1.26E-05 

An02g03240 similar to N-acetylglucosaminephosphotransferase 

ALG7 

1.92 1.76E-08 1.24E-06 

An07g04190 similar to glycosyltransferase WBP1 1.69 1.03E-07 5.04E-06 

An02g14560 oligosaccharyltransferase alpha subunit OSTA 2.05 2.27E-09 2.40E-07 

An18g03920 similar to oligosaccharyltransferase subunit OST2 2.04 2.49E-09 2.56E-07 

An18g04260 similar to UDP-galactose transporter HUT1 2.46 1.06E-09 1.28E-07 

An13g00620 similar to beta subunit of an ER alpha-glucosidase 1.53 1.24E-06 3.47E-05 

An15g01420 similar to glucosidase I CWH41 1.81 2.90E-08 1.84E-06 

An02g14940 similar to flippase RFT1 1.49 2.62E-06 6.38E-05 

Vesicle trafficking/transport    

An03g04940 similar to COPII vesicle coat component protein 

ERV41 

2.12 1.20E-08 9.44E-07 

An01g04320 similar to COPII vesicle coat component protein 

ERV46 

2.12 7.61E-09 6.57E-07 

An02g04250 similar to ER protein P58 (lectin family) Rattus 

norvegicus 

1.77 2.01E-08 1.39E-06 

An08g06780 similar to ER to Golgi transport protein USO1 1.52 2.93E-06 7.00E-05 

Lipid metabolism  

An02g13410 similar to acetyl-coenzyme A transporter AT-1 2.10 4.55E-09 4.23E-07 

Stress related    

An12g03580 similar to glutathione S-transferase 3 MGST3 H. 

sapiens 

1.51 1.21E-05 2.23E-04 

An01g14100 weakly similar to stress protein HERP Mus musculus 1.61 1.12E-06 3.21E-05 

Cell cycle and DNA processing    

An01g08170 similar to DNA repair endonuclease RAD1 S. pombe 2.05 1.62E-08 1.17E-06 

Phosphate metabolism    

An12g01910 similar to phytase PHYA3 Aspergillus fumigatus 0.56 2.09E-07 8.76E-06 

Cell rescue. Defense and virulence    

An18g00980 similar to membrane protein PTH11 M. grisea 0.41 1.32E-08 1.01E-06 
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Table 5. Cont. 

DSM code DSM annotation                                                    FC  B36/N402 P FDR 

Unclassified   

An08g03960 hypothetical endoplasmic reticulum associated protein 1.55 7.36E-06 1.47E-04 

An08g03970 hypothetical protein 1.87 2.87E-08 1.83E-06 

An07g10280 hypothetical protein 1.43 6.40E-06 1.31E-04 

An09g06130 hypothetical protein 1.64 4.24E-07 1.46E-05 

An18g01000 hypothetical protein 0.56 1.05E-06 3.03E-05 

An13g01520 hypothetical protein 0.49 3.57E-06 8.23E-05 

DSM code: ORF identifier in A. niger CBS 513.88 genome sequence (Pel et al. 2007). The list of common 

transcriptional response from B36/N402 (this study), maltose/xylose (Jørgensen et al. 2009), hacACA/hacAWT 

(Carvalho et al. 2012) and ER stress with at least 2 types of protein folding stress (Guillemette et al. 2007). 

 

 

the specific requirements of the respective protein. On the other hand, A. niger attempts to 

avoid exceeding the maximum capacity of the secretory machinery. In doing so, the RESS 

regulatory system offers a flexible way to lower transcript levels of those genes whose 

function is less important for growth and survival under the given circumstances. 

 

 

Materials and Methods 

 

Strains and inoculums 

 

The laboratory strain Aspergillus niger N402 (Bos et al. 1988) was used as a reference 

strain and B36 (Verdoes et al. 1993), which contains multiple copies of the glucoamylase 

gene, was used as an overproducer strain. Strains were grown on solidified Complete 

Medium (CM) containing 1% (w v-1) glucose, 0.1% (w v-1) casamino acids and 0.5% (w v-

1) yeast extract in addition to Minimal Medium (MM) (Alic et al. 1991). Spore plates were 

incubated for four or five days at 30oC and stored for no more than three months at 4oC. 

Conidia were harvested from CM agar plates with a sterile detergent solution containing 

0.05% (w/v) Tween 80 and 0.9% (w/v) NaCl. 

 

Bioreactor cultivation conditions 

 

Maltose-limited batch and chemostat cultivations were performed as described previously 

for A. niger (Jørgensen et al. 2009) with slight modifications. The N402 and B36 strains 

were both grown in triplicate in maltose-limited chemostat cultures. 

 

(i) Batch cultures 



Transcriptomic Fingerprint of Glucoamylase Overexpression 

 103 

Batch cultivation was initiated by inoculation of 5 kg ammonium-based minimal medium 

with a conidial suspension to give 109 conidia L-1. Maltose was heat sterilized separately 

from the MM and the final concentration was 0.8% (w/v). Germination was induced by 

addition of 0.003% (w/w) yeast extract. During the first six hours of cultivation the culture 

was aerated (air flow = 1 L min-1) through the headspace of the reactor and the stirrer speed 

was kept low at 250 rpm to avoid loss of the hydrophobic conidia. After six hours when 

most conidia had germinated, air was sparged into the culture broth, mixing was intensified 

(750 rpm) for more efficient oxygen transfer, and 0.01% (v/v) of polypropylene glycol 

(PPG) was added as an antifoaming agent. The temperature was 30°C and the pH was kept 

constant at pH = 3 by computer-controlled addition of 2 M NaOH or 1 M HCl. 

Acidification of the culture broth was used as an indirect growth measurement (Iversen et al. 

1994). Submerged cultivation was performed with 6.6 L BioFlo3000 bioreactors (New 

Brunswick Scientific, NJ, USA).   

 

(ii) Chemostat cultures 

Continuous cultivation was started in the late-exponential growth phase, when 90 mmol of 

NaOH had been added to the batch culture (75% of maltose had been consumed, at a 

biomass concentration of about 3.5 g dry weight per kg of culture). The dilution rate (D) 

was set at 0.1 h-1. Steady-states, where the specific growth rate (µ) is equal to the dilution 

rate, were defined by constant alkali addition rate and constant CO2, O2 and biomass 

concentrations after four residence times (~ 40 h). Samples were taken regularly to monitor 

growth and to determine if a steady-state had been reached. All samples were quickly 

frozen in liquid nitrogen. Mycelium harvested during steady-state conditions was used for 

micro-array analysis.  

 

Analysis of culture broth 

 

Dry weight biomass concentration was determined by weighing lyophilized mycelium 

separated from a known mass of culture broth. Culture broth was filtered through GF/C 

glass microfiber filters (Whatman). The filtrate was collected and frozen for use in solute 

analyses. The mycelium was washed with demineralised water, rapidly frozen in liquid 

nitrogen, and stored at -80°C until lyophilization. Extracellular protein concentration was 

determined using the Quick Start Bradford Protein Assay (Bio-Rad) with BSA as a standard. 

The total organic carbon in the culture filtrate was measured with a Total Organic Carbon 

Analyzer (TOC-Vcsn; Shimadzu, Japan), using glucose as a standard.    

 

RNA isolation and quality control 
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Total RNA was extracted by modified Trizol extraction. Frozen ground mycelium (~200 

mg) was directly suspended in 800 µl Trizol reagent (Invitrogen) and vortexed vigorously 

for 1 min. After centrifugation for 5 min at 13000 rpm, 450 µl of the supernatant was 

transferred to a new tube. Chloroform (150 µl) was added and after 3 min incubation at 

room temperature, samples were spun down for 15 min at maximum speed. The upper 

aqueous phase was transferred to a new tube to which 400 µl of isopropanol was added, 

followed by 10 min incubation at room temperature and centrifugation for 10 min at 13000 

rpm. Pellet was washed with 75% ethanol and finally precipitated in 100 µl H2O. RNA 

samples for micro-array analysis were additionally purified on NucleoSpin RNA II columns 

(Machery-Nagel) according to manufacturer’s instructions. RNA quantity and quality was 

determined on Nanodrop spectrophotometer. 

 

Microarray analysis 

 

Probe synthesis and fragmentation were performed at ServiceXS (Leiden, The Netherlands) 

according to the GeneChip Expression Analysis Technical Manual (Affymetrix inc., 2002). 

DSM (Delft, The Netherlands) proprietary A. niger gene chips were hybridized, washed, 

stained and scanned as described in the GeneChip Expression Analysis Technical Manual 

(Affymetrix inc., 2002).  

 

Normalization, filtering, statistical significance and comparisons 

Transcriptomic analysis was basically performed using Bioconductor and statistical 

programming language R (Nitsche et al. 2012b). Two experimental conditions (N402 vs 

B36) were compared to each other; each condition was represented by independent 

triplicate cultures. Using the robust multi-array analysis (RMA) package (Irizarry et al. 

2003), background correction, normalization and probe summarization steps were 

performed according to the default setting of the RMA package. Differential gene 

expression was evaluated by moderated t-statistics using the Limma package (Smyth 2004) 

with a threshold of the Benjamini and Hochberg (BH) False Discovery Rate (FDR) 

(Benjamini and Hochberg 1995) at 0.005. A minimal fold-change criterion was not applied 

for the identification of differentially expressed genes, as fold-changes are not necessarily 

related to biological relevance (van den Berg et al. 2010; van den Berg et al. 2006). Fold-

changes of gene expression from N402 to B36 (B36/N402) were calculated from 

normalized expression values. Means of the expression values for B36 and N402 as well as 

classifiers for the moderated t-statistics are summarized in Additional file 1. 
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Gene Ontology (GO) and enrichment analysis 

 

Controlling the FDR at q<0.05, over-represented GO terms in sets of differentially 

expressed genes were determined by Fisher’s exact test (Fisher 1922). An improved GO 

annotation for the A. niger CBS513.88 was applied that is based on ontology mappings 

from A.nidulans FGSCA4 (http://www.broadinstitute.org/fetgoat/index.html) (Nitsche et al. 

2011). 

 

Quantitative real-time PCR (qPCR) 

 

Quantitative real-time PCR was performed as described (Nowrousian et al. 2005) with 

slight modifications. After a DNAse treatment (DNA-freeTM Kit Applied Biosystems) of 

10 µg of total RNA, 600 ng were used for cDNA synthesis using the iScriptTM cDNA 

Synthesis Kit from BioRad according to the manufactures instructions. Real time PCR was 

performed in PTC-200 Peltier Thermal Cycler with a Chromo4 Continuous Fluorescence 

detection system from Bio-Rad with a SYBRgreen mix (iQ™ SYBR® Green supermix) in 

a volume of 25 µl. Each reaction was carried out in triplicate with ~200 ng of cDNA and 

each oligonucleotide primer at 0.3 µM. Oligonucleotide primers used for real time PCR are 

listed in Additional file 8. Two reference genes, H2B and Cox5 were used for normalization. 

The PCR program was as follows: 95oC for 3 min, followed by 39 cycles of 95oC for 15 

sec and 60oC for 1 min, followed by a melting curve analysis. The efficiency of each 

primer pair and mean Ct (threshold cycles) values were calculated and used for 

determination of glucoamylase RNA transcript levels (Pfaffl 2001). Estimation of 

glucoamylase gene copy number was also performed by qPCR as well but with genomic 

DNA as a template.  

 

Analysis of glucoamylase activity 

 

One unit of glucoamylase activity was expressed as the amount of enzyme that liberates 

one micromole of glucose per minute from starch. Filtrates from steady-state cultures were 

mixed with 1% soluble starch (Sigma, S9765) in 50 mM NaAc buffer at pH 4.5 and 

incubated at 37oC for 3.75 min. Liberated glucose was determined with the glucose kit from 

ABX (Pentra Glucose HK CP).  

 

Western blot analysis of glucoamylase 
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Protein concentrations of the samples were determined with the Bradford assay using BSA 

as a standard. For each sample, culture filtrate samples corrected for equal amounts of 

biomass were mixed with 2x loading buffer (0.5 M HCl, 25% glycerol, 10% SDS, 0.5% 

bromophenol blue, 5% β-mercaptoethanol) and boiled for 5 min at 95oC. Protein samples 

were loaded on 9% SDS-PAGE gels and blotted to a nitrocellulose membrane through 

semi-dry electrotransfer. The membrane was blocked for 1 h with 5% low-fat dried milk in 

TPBS (PBS, 0.05% Tween20) and glucoamylase protein was detected using a 

glucoamylase-specific primary antibody (1:3,000) for 1 h at room temperature, followed by 

a goat anti-mouse-HRP secondary antibody (1:20,000) for 1 h at room temperature. 

Detection was performed using a chemiluminescence kit (Bio-Rad) according to the 

manufacturer’s instructions. Analysis and quantification of band intensities were performed 

using Image J software based on N402 signal as one. 
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Abstract 

 

The filamentous fungus Aspergillus niger is an industrially exploited protein expression 

platform, well known for its capacity to secrete high levels of proteins. To study the process 

of protein secretion in A. niger, we established a GFP-v-SNARE reporter strain in which 

the trafficking and dynamics of secretory vesicles can be followed in vivo. The biological 

role of putative A. niger orthologs of seven secretion-specific genes, known to function in 

key aspects of the protein secretion machinery in S. cerevisiae, was analyzed by 

constructing respective gene deletion mutants in the GFP-v-SNARE reporter strain. 

Comparison of the deletion phenotype of conserved proteins functioning in the secretory 

pathway revealed common features but also interesting differences between S. cerevisiae 

and A. niger. Deletion of the S. cerevisiae Sec2p ortholog in A. niger (SecB), encoding a 

guanine exchange factor for the GTPase Sec4p (SrgA in A. niger), did not have an obvious 

phenotype, while SEC2 deletion in baker’s yeast is lethal. Similarly, deletion of the A. niger 

ortholog of the S. cerevisiae exocyst subunit Sec3p (SecC) did not result in a lethal 

phenotype as in S. cerevisiae, although severe growth reduction of A. niger was observed. 

Deletion of secA, secH and ssoA (the A. niger orthologs of S. cerevisiae Sec1p, Sec8p and 

Sso1/2p, respectively) showed that these genes are essential for A. niger, similarly to the 

situation in S. cerevisiae. These data demonstrate that the orchestration of exocyst-mediated 

vesicle transport is only partially conserved in S. cerevisiae and A. niger.  

 

 

Introduction 

 

As a member of the black aspergilli, Aspergillus niger is an important industrial 

microorganism. It is used for the production of various food ingredients, pharmaceuticals 

and industrial enzymes (Fleissner and Dersch 2010; Meyer et al. 2008; Meyer et al. 2011b). 

Its high protein secretion capacity together with high production of organic acids, like citric 

acid has stimulated the development of both genetic and genomic tools for A. niger to get 

insights into the molecular basis of these special properties. (Carvalho et al. 2010; Fleissner 

and Dersch 2010; Jacobs et al. 2009; Meyer et al. 2007a; Meyer et al. 2008; Meyer et al. 

2010b; Meyer et al. 2011b; Pel et al. 2007). Using these tools, also more complex processes 

such as the protein secretion process can now systematically be studied (Carvalho et al., 

2011, 2012, Kwon et al., 2012).  

A. niger is well known for its outstanding capacity to secrete proteins into the growth 

medium. However, the number of genes predicted to function in protein secretion in 

Aspergilli (including A. niger and A. nidulans) or S. cerevisiae does not explain differences 
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among the secretion capacities of these species (Pel et al. 2007). Up to now, the 

mechanisms to explain the difference in secretion efficiency, which might include higher 

levels of secretory vesicles, more efficient packing of cargo load in vesicles or faster 

trafficking through the secretory pathway, are not known. Growth and secretion are 

considered to be tightly connected processes. Experiments in A. niger in chemostat cultures 

grown at identical growth rates on different carbon sources (xylose or maltose) revealed 

different protein production rates. The specific production rate of extracellular proteins on 

maltose was about three times higher compared to xylose at identical growth rates 

(Jørgensen et al., 2009). One possible mechanism to explain this uncoupling of growth and 

secretion in A. niger can be the existence of two parallel secretory pathways that 

independently deliver proteins destined for secretion (e.g. glucoamylase) and proteins 

destined for growth (e.g. plasma membrane proteins and cell wall synthesizing enzymes) to 

the cell surface. Several studies including studies in yeasts, plants and mammalian cells 

show that different populations of Golgi derived vesicles exist (Harsay and Bretscher 1995; 

Leucci et al. 2007; Titorenko et al. 1997; Yoshimori et al. 1996). Also in filamentous fungi, 

a study using Trichoderma reesei revealed the possible presence of more than one pathway 

for exocytosis based on spatial segregation of different SNARE complexes in the fungal tip 

cell (Valkonen et al. 2007).  

The secretion process involves an ordered transport of proteins via various organelles 

which is mediated via secretory vesicles trafficking from one compartment to the next. The 

different transport steps along the secretory pathway involved in vesicle trafficking are 

mediated by the action of secretion-related small GTPases of the Ypt/Rab family (Segev 

2001a). A. niger contains 11 different secretion-related GTPases that are expected to be 

involved in specific transport steps in the secretory pathway (Pel et al. 2007; Segev 2001a)). 

One of those, SrgA, the ortholog of Sec4p was described earlier to be involved in protein 

secretion but not being essential for the viability of A. niger (Punt et al. 2001). Another 

secretion related GTPase, SrgC, an ortholog of Rab6/Ypt6 was recently described to be 

required for maintaining the integrity of Golgi equivalents in A. niger (Carvalho et al. 

2011b).  

Other important factors involved in the secretion pathway as mediators of vesicle 

docking and fusion with the membrane are soluble NSF (N-ethylmaleimide sensitive factor) 

attachment protein receptors (SNAREs) (Bonifacino and Glick 2004; Chen and Scheller 

2001). Like the Ypt/Rab proteins, these proteins are highly conserved in eukaryotic cells 

and most SNAREs are C-terminally anchored transmembrane (TM) proteins present on 

vesicles (v-SNAREs) and target (t-SNAREs) membranes (Bonifacino and Glick 2004; 

Chen and Scheller 2001; Gupta and Brent Heath 2002). SNAREs are categorized into two 

classes based on whether they contain an arginine (R) or glutamine (Q) residue in their 
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SNARE central domain. Q-SNARE are further subclassified into Qa, Qb or Qc- types 

(Bock et al. 2001). Monomeric R-SNARE (v-SNARE) on the vesicle membrane and 

oligomeric Q-SNAREs on the target membrane form a stable four helices complex called as 

the SNARE complex at each fusion site (Bonifacino and Glick 2004). The localization of 

SNARE proteins have been systematically analysed in A. oryzae and supports the localized 

distribution of specific SNARE proteins at specific membranes (Kuratsu et al., 2007). In 

filamentous fungi, the localization of v-SNARE Snc1 and t-SNAREs Sso1 and Sso2 have 

been studied in detail in T. reesei (Valkonen et al., 2007). This SNARE-complex plays an 

important role in the fusion of Golgi-derived vesicles with the plasma membrane. The 

vesicle fusion event to the plasma membrane is promoted by the exocyst complex which 

provides the spatio-temporal information for the initial recruitment and tethering of Golgi-

derived secretory vesicles to the plasma membrane. The exocyst is a conserved eukaryotic 

multi-subunit complex composed of eight protein members: Sec3, Sec5, Sec6, Sec8, Sec10, 

Sec15, Exo70 and Exo84. It is localized to limited regions of the plasma membrane by the 

interaction of Exo70p and Sec3p to Rho-GTPases and phosphatidylinositol 4,5,-

bisphosphate (PIP2) (see for a recent review (Heider and Munson 2012)). 

The availability of temperature sensitive (ts) secretion mutants in S. cerevisiae has 

formed a strong basis for understanding and identification of secretion pathway genes 

including the Sec components of the exocyst complex (Novick et al. 1980; Schekman 2010). 

However, tools and strategies for selecting secretion mutants in filamentous fungi are 

lacking so far which is one reason why little is known about the regulation of the secretory 

pathway in filamentous fungi. In this study, we constructed an A. niger reporter strain 

expressing GFP-tagged v-SNARE to visualize secretory vesicle and used this strain to 

explore the function of seven predicted A. niger genes, which are homologous to S. 

cerevisiae genes playing a key role in the secretory pathway. The data obtained show that 

some genes are essential in both organisms, but also indicate interesting differences. The 

finding that some genes were not essential in A. niger but in S. cerevisiae indicates 

differences in the molecular mechanisms underlying the protein secretion process. For the 

essential ssoA gene, several approaches were undertaken to create a conditional secretion 

mutant of A. niger. Whereas attempts to introduce conserved temperature-sensitive 

mutations of the S. cerevisiae Sso1/Sso2p in the A. niger SsoA ortholog failed, a 

conditional ssoA mutant was obtained by controlled expression of ssoA in a ssoA deletion 

strain. Such a strain will facilitate synthetic lethal screens and the identification of high-

copy number suppressors in future secretion-related studies. 
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Results 

 

Localization of secretory vesicles in A. niger  

 

The polarized delivery of secretory vesicles to the hyphal tips involves SNARE proteins as 

mediators of vesicles docking and fusion with the plasma membrane. SNARE proteins are 

organelle-specific thereby ensuring the fusion of a vesicle to the correct target membrane 

(Chen and Scheller 2001). In S. cerevisiae a redundant pair of highly homologous 

vesicular-SNARE (v-SNARE) proteins, Snc1p and Snc2p are required for the fusion of 

Golgi derived secretory vesicles with the plasma membrane (Protopopov et al. 1993). In 

order to examine the localization of secretory vesicles in A. niger, we constructed a reporter 

strain expressing a fusion protein of GFP and the v-SNARE protein, the homolog of the S. 

cerevisiae Snc1p/Snc2p proteins, named SncA in A. niger (Sagt et al. 2009). To minimize 

risks of non-functional protein expression and to prevent possible interference arising from 

non-physiological expression levels of the GFP-SncA fusion protein, GFP was fused to the 

open reading frame (ORF) of sncA at the N-terminus under control of its endogenous sncA 

promoter and used to replace the endogenous sncA gene. Notably, N-terminal tagging of 

SNAREs is favored over C-terminal tagging, as the C-terminal transmembrane (TM) 

domain is required for proper localization and function of SNAREs (Taheri-Talesh et al. 

2008; Ungar and Hughson 2003). The expression cassette that targeted the fusion gene to 

the genomic locus of sncA in A. niger was constructed as depicted in Fig. 1a. After 

transformation, selected transformants were analyzed by Southern analysis and strain FG7 

was selected as it contained the correct gene replacement (data not shown). FG7 was 

phenotypically indistinguishable from the wild-type strain with respect to growth at 

different temperatures as well as germination (data not shown).  

The reporter strain FG7 was further analyzed by fluorescence microscopy. Bright GFP-

SncA signals were observed along the hyphae but were more pronounced at the hyphal tips 

(Fig. 1b). The highest intensity of fluorescence was visible at the very apex of growing 

hyphae and at newly formed branches reminiscent of the Spitzenkörper, a vesicle-rich 

region present at actively growing hyphal tips of filamentous fungi also known as the 

vesicle supply center (Fig. 1b) (Harris et al. 2005; Steinberg 2007). The dynamic movement 

of vesicles in growing A. niger cells and the movement of the Spitzenkörper along the 

hyphal tip during growth were observed from four-dimensional image sets (Z-series 

captured over time, Supplemental video1) similar as described for A. nidulans and A. 

oryzae (Taheri-Talesh et al. 2008). To examine the role of the tubulin and actin 

cytoskeleton on the localization of secretory vesicles, the GFP-SncA reporter strain was 

treated with benomyl and latrunculin B, respectively, known to disrupt the  
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Fig. 1. Localization of v-SNARE protein SncA in living cells of A. niger. a) Schematic 

representation of the approach to label v-SNARE protein SncA with GFP. The GFP part was 

fused to the N-terminus of SncA and separated from SncA by a NPAFLYKVG-linker derived 

from the Gateway cloning technology. The construct is designed for integration at the sncA locus 

using the A. oryzae pyrG (pyrG) as a selection marker. The promoter region in front of the GFP-

SncA fusion protein is about 800 bp to allow proper transcription and no interference of the pyrG 

gene. b) Confocal images of SncA localization in tip cells expressing GFP-SncA. The image 

represents a Z-stack of the entire hyphae showing the intracellular staining (representing secretory 

vesicles) as well as labeling of the plasma membrane. A clear gradient of GFP-SncA labeling 

towards the tip is visible. The Spitzenkörper is indicated with a star. Bar, 5 µm.  

 

 

integrity and function of the cytoskeleton (Roca et al. 2010). As a control, GFP-tubulin 

(Kwon et al., 2011) and SlaB-YFP (Kwon et al., 2013) reporter strains were treated with the 

same concentration of benomyl and latrunculin B to confirm disruption of both the tubulin 

and actin networks by the concentrations used (Supplemental Fig. 2). As shown in Fig. 2, 

benomyl treatment of the GFP-SncA strain resulted in wider and curled hyphae and reduced 

the polar distribution of secretory vesicles at hyphal tips. Similarly, polar distribution of 

secretory vesicles was also lost when the function of the actin cytoskeleton was impaired by 

latrunculin B. Here, lower fluorescence and reduced polar accumulation of secretory 

vesicles at the hyphal tip was observed. These data demonstrate that the tubulin and actin 

cytoskeletal networks are crucial for targeted transport of secretory vesicles towards hyphal 

tips of A. niger. 

 

 

Deletion of secretion-related genes in the GFP-SncA reporter strain  

 

To identify proteins important for the delivery of vesicles to the plasma membrane, seven 

candidate genes covering different aspects of polarized protein secretion in S. cerevisiae 

including SNARE proteins, secretion related GTPase and members of the exocyst complex  
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Fig. 2. Localization of v-SNARE protein SncA in living cells of A. niger after treatment with 

cytoskeleton disturbing compounds. Top panels: CLSM images showing the localization of GFP-

SncA in hyphal tips. Left: untreated hyphae, middle: benomyl treated cells, right: latrunculin B 

treated cells. Lower panels: fluorescent intensity distributions along hyphal tip compartments (n 

> 20) within a region of 20 µm from the tip. Conidia of GFP-SncA strain were pre-grown on a 

MM agar plate for 2 days at 22°C and placed on a cover glass bottom culture dish containing 

MM media with 5 µg/ml of benomyl or 2 µg/ml of latrunculin B. After an additional hour 

incubation, the cells were examined using an inverted confocal microscope. Bar, 10 µm. 

 

 

were selected (Table 1). These proteins were all selected based on high amino-acid 

sequence similarities with S. cerevisiae homologs (Pel et al., 2007, Table S2). Expression 

analysis of the different genes confirmed that all chosen genes are actively expressed during 

germination and exponential growth (Table 1). To study the roles of the seven genes and 

their effects on the localization of secretory vesicles in A. niger, respective deletion mutants 

were generated in both wild-type and GFP-SncA background strains. We were able to 

obtain viable deletion mutants for secB, secC, srgA and sncA; however, deletion of secA, 

secH or ssoA caused a lethal phenotype both in the wild-type as well as in the GFP-SncA 

background. Primary transformants for secA, secH or ssoA survived only as heterokaryons 

containing transformed (∆secA/pyrG
+) and untransformed nuclei (secA/pyrG

-) in the 

absence of uridine in the medium (data not shown). Correct deletion of the target genes in 

purified transformants (non-essential genes) or heterokaryons (essential genes) was verified 

by Southern analysis (Supplemental Fig. 1 and data not shown).  

The growth phenotype as well as GFP-SncA localization for the viable deletion 

mutants was analyzed using plate growth assays and in vivo fluorescence microscopy. As 

shown in Fig. 3, deletion of the GTPase SrgA strongly reduced the growth rate of A. niger 

and resulted in the formation of a compact colony as previously reported (Punt et al. 2001). 

However, the localization of GFP-SncA in young germlings was not dramatically perturbed  
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Table 1. Expression and predicted function of selected secretion related genes in A. niger.   

A. niger  S. 

cerevisiae  

 ORF code       Exponential  

growth phasea  

Germinationb Predicted function 

secA SEC1 An14g03790 0.48 ± 0.02 0.48 ± 0.03 SNARE binding protein 

secB SEC2 An11g09910 0.74 ± 0.04 1.22 ± 0.30 Guanine exchange factor of SrgA 

secC SEC3 An01g03190 0.37 ± 0.01 0.43 ± 0.02 Subunit of the exocyst complex 

srgA SEC4 An14g00010 5.40 ± 0.23 1.97 ± 0.26 Rab GTPase 

secH SEC8 An03g04210 0.69 ± 0.03 0.57 ± 0.02 Subunit of the exocyst complex 

ssoA SSO1/2* An12g01190 1.14 ± 0.14 1.71 ± 0.04 t-SNARE 

sncA SNC1/2* An12g07570 5.18 ± 0.19 4.00 ± 0.03 v-SNARE 

Mean expression values are given in % compared to the expression level of the actin gene actA. Data are 

taken from three independent cultivations: a: (Jørgensen et al. 2010), b: (Meyer et al. 2007b). * Sso1p 

and Sso2p as well as Snc1p and Scn2p are paralogs and have a redundant function. Deletion of both 

genes is lethal in S. cerevisiae (Protopopov  et al., 1993; Jannti et al., 2002). 

 

 

in the ∆srgA strain despite the strong reduction in radial growth (Fig. 3). GFP-SncA 

localization was generally more intense along the hyphae but the majority of the signal 

resembled wild-type localization of secretory vesicles. SecB is the predicted guanine 

exchange factor (GEF) functioning as an activator of the GTPase SrgA. Interestingly, 

deletion of secB only mildly perturbed growth and did not resemble the expected ∆srgA 

phenotype. We thus examined whether another sec2 homolog is present in the genome of A. 

niger. We noticed the presence of an uncharacterized protein of 257 amino acids in the A. 

niger genome (An15g06770) which contains a GDP/GTP exchange factor Sec2p domain 

(pfam06428) (Table S2). It will be of interest to determine whether this hypothetical protein 

which has orthologs in other filamentous fungi has an overlapping role with SecB. In 

agreement with the mild phenotype of the ∆secB strain, the localization of GFP-SncA in the 

∆secB strain did not differ from the wild-type localization (Fig. 3).  

The deletion of v-SNARE encoding gene sncA displayed a mild but significant 

phenotype with reduced radial growth (72%) when compared to the wild-type strain (Fig. 

3). Morphologically, ∆sncA strain was identical to the wild-type strain. This was somewhat 

surprising since only a single copy of the sncA gene was found in the genome of A. niger 

((Pel et al. 2007) and Table S2)).  

In the case of ∆secC, predicted to encode a subunit of the exocyst complex, the 

observed growth defect phenotype was very severe and characterized by strongly reduced 

growth and aberrant morphologies of young germlings (Fig. 4a). The ∆secC strain in the 

wild-type background was able to grow on secondary selection plates only as a very  
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Fig. 3. Phenotypic analysis of srgA secB and sncA gene deletion mutants. a) Colony morphology of 

wild-type, GFP-SncA, ∆srgA, ∆secB and ∆sncA mutants after 3 days at 30°C on CM agar plates, b) 

hyphal morphology of the colony edge on CM agar plates (100x magnification, Bar, 100 µm) and c) 

localization of GFP-SncA in hyphal tip cells on MM agar plates. Bar, 10 µm.  

 

 

compact colony after prolonged incubations at 30oC on minimal medium or on minimal 

medium supplemented with 1.2 M sorbitol. The primary transformants of the ∆secC in the 

GFP-SncA background were not able to form colonies on minimal medium and the 

supplementation with sorbitol was required to obtain ∆secC colonies. Although the 

replacement of SncA with GFP-SncA did not cause any growth-related phenotype (see 

above), the combination with the secC deletion was synthetic lethal, indicating that the 

function of SncA might partially be disturbed when fused to GFP. Interestingly, growth and 

germination of the ∆secC mutant was improved by lowering the temperature to 22ºC (Fig. 

4) but still partially unable to maintain polar growth as indicated by the presence of 

abnormally swollen hyphal tip cells. In agreement, the localization of GFP-SncA was 

highly affected in the ∆secC mutant. Large fluorescent spots were present not only apically 

but also subapically, indicating that SecC is important for correct GFP-SncA localization at 

the hyphal apex. However, since GPF-SncA fluorescence was still preferentially localized 

at swollen hyphal tips, polarity was not completely lost in the ∆secC mutant (Fig. 4b). The 

growth defect of the ∆secC mutant was partially remediated by supplementing the growth 

medium with the osmotic stabilizer sorbitol, which was paralleled by partial repolarisation 

of GFP-SncA signals at hyphal tips (data not shown). The partial loss of polarization of 

GFP-SncA in the secC null mutant, indicates the importance of SecC for the maintenance 

of the polarity axis in growing A. niger hyphae (Fig. 4b).  
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Fig. 4. Phenotypic analysis of secC gene deletion mutant. a) Deletions of secC in the wild-type 

and GFP-SncA background show severe growth defect that could be partially rescued by 

supplementation with 1.2 M Sorbitol (MMS). Deletion of secC in GFP-SncA shows a stronger 

growth defect than in a wild-type background. b) Microscopic picture of colony morphology and 

localization of GFP-SncA; ∆secC grown on MMS after 4 days at 30°C and 22°C. Arrows indicate 

GFP-SncA signals at the sub-apical region of the cell. Bar, 20 µm.  

 

 

Point mutations in conserved residues of A. niger ssoA do not lead to ts-

phenotype as in S. cerevisae  

 

Conditional mutants are powerful tools to study gene functions (Li et al. 2011). To obtain a 

conditional mutant that accumulates secretory vesicles under restrictive temperature, the 

essential ssoA gene was chosen, which encodes the putative target-SNARE (t-SNARE) for 

fusion of Golgi-derived vesicles to the plasma membrane. In S. cerevisiae, temperature 

sensitive (ts) alleles of sso1 or sso2 have been described to result in conditional secretion 

mutants (Jantti et al., 2002). The protein amino acid sequence alignment of SsoA showed 

that this t-SNARE is highly conserved from budding yeast to mammals (Fig. 5). A site-

directed mutagenesis approach was used to create A. niger strains that harbor point 

mutations in the ssoA gene causing a ts-phenotype in S. cerevisiae. The arginine to lysine 

mutation in sso1 (R196K) or sso2 (R200K) gives rise to a ts-phenotype (Jantti et al. 2002). 

As shown in Fig. 5, the arginine residue located at position 212 in the SsoA protein of A. 

niger is conserved from yeast to mammals. In addition, we also applied an algorithm to  
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Fig. 5. Protein alignment of eukaryotic SsoA homologs. The amino acids which were chosen for 

site-directed mutagenesis are indicated by a box. The transmembrane domain is indicated by the 

hatched box above the sequence. The tryptophan at 278 aa was replaced to a stop codon to 

remove the transmembrane domain of SsoA; AN (A. niger, An12g01190), AO (A. oryzae, 

Q2TX29), AND (A. nidulans, Q5B7R4), SC (S. cerevisiae, Sso1p, P32867), SC* (S. cerevisiae, 

Sso2p, P39926), HS (Homo sapiens, Q16623), RN (Rattus norvegicus, P32851) and DM 

(Drosophila melanogaster, Q24547).  
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predict ts mutants based solely on the amino acid sequence (Varadarajan et al. 1996). The 

program identified a conserved leucine residue at position 81 as a preferred candidate. For 

both residues (L81 and R212), a conserved and a non-conserved mutation were created. 

The replacement cassettes consisting of four mutant alleles, L81F, L81G, R212K or R212P 

and one wild-type allele as a control were constructed and targeted to the ssoA locus to 

replace the resident ssoA gene as shown in Fig. 6a. Each of the mutants was verified by 

Southern blot analysis and the respective ssoA allele was re-sequenced from genomic 

DNAs of the transformants to verify correct replacement of the native ssoA gene with its 

point-mutated alleles (data not shown).  

The leucine mutants, L81F and L81G, did not show any obvious phenotype at both 

30°C or 37oC (Fig. 6b). Growth of the arginine mutant R212K was unaffected at 30oC, but 

slightly reduced at 37°C, whereby GFP-SncA fluorescence was still present apically (Fig. 

6b). Replacing the arginine at codon 212 with a proline was lethal at both 30°C and 37oC 

(Fig. 6b), however, the strain survived when cultivated at lower temperature such as 22°C 

and 25oC (Fig. 6c). The growth defect of R212P mutant was partially complemented by 

supplementing the medium with sorbitol. Many large and round spots of GFP-SncA signals 

were observed inside swollen hyphae indicating an accumulation of secretory vesicles in 

the R212P mutant strain at 30oC (Fig. 6c). By supplementing sorbitol as well as by 

lowering the temperature, the R212P mutant was able to grow much better, but not as well 

as the wild-type strain. To examine whether one could use the R212P mutant to accumulate 

secretory vesicles, the ssoA R212P mutant was pre-grown at 22oC to allow the formation of 

young germlings and then shifted to 30oC for 6 hours. The temperature shift resulted in a 

variety of pleiotropic phenotypes such as accumulation of vesicles, increased septation, 

branching and formation of empty cell compartments (Fig. 6d). So although this approach 

resulted in temperature sensitive mutants, the phenotype of the mutants, either too mild 

(R212K) or to severe (R212P), did not allow their use to study the secretory pathway in 

more detail.  

 

 

Controlled overexpression of SsoA lacking its transmembrane domain does 

not result in a conditional secretion mutant  

 

Next, another approach to create a conditional mutant was tried by using the Tet-On system 

which we recently established for A. niger (Meyer et al., 2011). The SsoA protein contains 

a N-terminal syntaxin domain and C-terminal transmembrane domain (TM, 280 - 302 aa, 

Fig. 5). We aimed to establish a conditional SsoA mutant strain in which overexpression of 

a truncated SsoA version lacking the TM domain (ssoA∆TM) disturbs fusion of secretory  
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Fig. 6. Colony morphology and GFP-SncA localization in t-SNARE (ssoA) mutants. 

a) Schematic representation of the approach to replace the wild-type t-SNARE protein (SsoA) with 

mutants forms of SsoA (labeled ssoA*). b) 400 spores were point inoculated on CM agar plates and 

incubated for 3 days at 30°C and 37°C. The R212K mutation in the ssoA gene leads to reduced 

growth at 37°C, but no apparent mislocalization of GFP-SncA; R212P mutation is lethal, whereas the 

L81F and L81G mutations have no apparent phenotype. Bar, 10 µm. c) Detailed growth analysis of 

the R121P mutant at various temperatures and in the presence of osmotic stabilizers (MMS). Low 

temperatures and high osmolarity conditions improve growth. At 30°C, hyphal growth and polarity as 

well as polarized localization of GFP-SncA is lost. Bar, 20 µm. d) Hyphal morphology and GFP-

SncA localization of the R121P mutant after shifting from 22°C to 30°C for 6 hours. The temperature 

shift results in a variety of phenotypes as depicted; accumulated vesicles (*), increased septation 

(double arrows), increased branching (**), lysis and formation of empty compartments (a single 

arrow). Bar, 20 µm.     
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vesicles with the plasma membrane and thereby provoking accumulation of secretory 

vesicles. First, we confirmed that expression of ssoA under control of the Ptet promoter 

(Ptet-ssoA-pyrG*) did not affect growth and that Ptet controlled expression of ssoA rescues 

the ∆ssoA strain in a dose-dependent manner (Fig. 7 line a-c and see below). The 

importance of the TM domain for function of SsoA was verified by deleting the ssoA gene 

in a transformant that contained a Ptet-ssoA∆TM construct at the pyrG locus. In this strain, 

the TM of endogenous ssoA gene was removed by replacing it with a ssoA gene copy that 

contained an early stop codon at position 278 of the SsoA protein (Fig. 5). The inability to 

purify viable transformants in the absence or presence of DOX showed that the TM domain 

is indeed essential for the function of SsoA (Fig. 7 line e and data not shown). After 

transformation of the Ptet-ssoA∆TM cassette to the GFP-SncA reporter strain and 

verification of the correct integration by Southern blot analysis, the growth of A. niger and 

localization of GFP-SncA were examined by the addition of varying amounts of DOX to 

the growth medium. Unfortunately, overexpression of ssoA∆TM did not result in a 

conditional mutant by interfering with growth of A. niger (Fig. 7 line f).  

 

 

Controlled down-regulation of SsoA results in a conditional secretion mutant 

 

A transformant containing the ssoA gene under the control of Ptet promoter present in a 

∆ssoA background strain (MK34.1, Fig. 7 line c) was also analyzed by fluorescence 

microscopy (Fig. 7 line d). In the absence of DOX, most spores were able to germinate but 

soon after they lysed, empty germ tubes lacking GFP-SncA signals became visible. At very 

low DOX concentrations (0.2 µg/ml), cells were able to sustain growth, however, hyphal 

growth speed was considerably reduced and localization of GFP-SncA was severely 

affected before cells eventually lysed, demonstrating the importance of the t-SNARE SsoA 

not only for polarized growth and vesicular transport but also for maintaining cell wall 

integrity of the hyphal tip. Hyphal growth and apical GFP-SncA localization were 

completely reconstituted and comparable to the wild-type when DOX concentrations of 1.6 

µg/ml or higher were added to the growth medium (Fig. 7 line c and d).  

To examine whether it was possible to induce accumulation of secretory vesicles by 

the removal of DOX, spores of strain MK34.1 were germinated in the presence of 2.5 

µg/ml DOX for 10 hours before the medium was replaced with DOX-free medium. Three 

hours after the removal of DOX, some of the germlings showed accumulated GFP-SncA 

signals or/and swollen hyphal tips (40%, n=10), but also germlings without morphological 

aberrations were found (Fig. 8a and data not shown). Microscopic analysis after 10 h of 

growth in the absence of DOX showed a heterogenic mixture of cells. About 25% of young  
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Fig. 7. Growth phenotype of strains overexpressing ssoA or ssoA∆TM in wild-type or ∆ssoA 

background. a) Growth of the wild-type is not affected by the presence of DOX; b) 

overexpression of ssoA in wild-type background does not affect growth; c) the lethal phenotype of 

ssoA deletion can be rescued by controlled and tunable expression of ssoA; d) microscopic 

analysis of GFP-SncA localization in hyphae from the ∆ssoA-Ptet-ssoA strain at various DOX 

concentrations; e) the transmembrane (TM) domain of SsoA is essential for growth; f) 

overexpression of the ssoA∆TM in wild-type strain does not interfere with growth; a-f) 103 spores 

were inoculated on MM supplemented with DOX concentrations indicated. Plates were cultivated 

for 3 days at 30°C. Bar, 20 µm.  

 

 

germlings showed wild-type morphology, whereas the remaining germlings were 

characterized by swollen hyphal tips (Fig. 8b and data not shown). Apparently, residual 

intracellular amounts of SsoA were still present in some cells, which prevented a 

synchronous response of all germlings.  

 

 

Discussion 

 

In order to set the basis for systematic analysis of the protein secretion pathway in A. niger, 

we established a GFP-tagged vesicular SNARE reporter strain, GFP-SncA, to visualize the  
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Fig. 8. Morphological phenotype and GFP-SncA localization resulting from controlled down-

regulation of ssoA. a) Three and six hours after removal of DOX, accumulated GFP-SncA signals 

in swollen hyphal tips were observed, but also germlings without  morphological aberrations were 

found. Spores were pre-grown on MM supplemented with 2.5 µg/ml of DOX at 30°C for 10 

hours after which the medium was replaced with DOX free medium. b) Growth in the absence of 

DOX showed varying phenotypes after 10 hours of cultivation in DOX-free medium. Bar, 20 µm. 

 

 

localization and dynamics of secretory vesicles. The localization of SncA homologs was 

reported in yeast as well as filamentous fungi including S. cerevisiae, T. reesei, A. oryzae 

and A. nidulans (Furuta et al. 2007; Hayakawa et al. 2011; Kuratsu et al. 2007; Taheri-

Talesh et al. 2008; Valkonen et al. 2007). Similar to previous studies in filamentous fungi, 

GFP-SncA is present in intracellular structures representing secretory vesicles and/or 

endocytic vesicles. High levels of GFP-SncA are also present in the Spitzenkörper of A. 

niger and a tip gradient GFP-SncA localization was observed (Fig. 1). Occasionally, GFP-

SncA signals were also observed at septa (data not shown), indicating the involvement of 

SncA in both hyphal tip secretion as well as septum-directed secretion that has recently 

been reported for SncA in A. oryzae (Hayakawa et al. 2011). In filamentous fungi, it is 

believed that the long distance transport of secretory vesicles from the sub-apical part to the 
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apex of hyphal tips takes place along microtubules (MT) powered by kinesin motor proteins. 

Afterwards, secretory vesicles are transferred either directly to the vesicle supplying center 

or to actin cables by myosin motor proteins and eventually fuse with the plasma membrane 

via SNARE complexes to release their cargos into the environment (Saloheimo and Pakula 

2012; Steinberg 2007; Taheri-Talesh et al. 2008; Taheri-Talesh et al. 2012). The results 

shown in Fig. 2 support the importance of both the actin and the tubulin cytoskeletal 

elements for polarized transport and accumulation of secretory vesicles at hyphal tips of A. 

niger.   

The GFP-SncA reporter strain was used to study the function of seven A. niger genes, 

whose orthologs are involved in vesicle transport in S. cerevisiae. Unlike S. cerevisiae, in 

which most of the selected candidate genes are essential for growth, secB (SEC2) and sncA 

(SNC1) genes are dispensable for A. niger, indicating molecular differences in the 

organization of secretion processes between yeast and filamentous fungi. Genetic 

redundancy in A. niger might explain this discrepancy, and further analysis of potential 

candidate genes exerting overlapping functions will require follow-up studies (see below).  

It has previously been demonstrated that the A. niger SncA protein mediates the fusion 

of vesicles to the plasma membrane (Sagt et al. 2009). By fusing SncA to the peroxisome 

membrane using a peroxisomal anchor protein, peroxisomes were targeted to the plasma 

membrane where they fused with it, resulting in the secretion of peroxisomal cargoes (Sagt 

et al. 2009). Despite such an important cellular function, deletion of sncA had surprisingly 

only a very small effect on the growth of A. niger. A possible explanation for this might be 

the presence of alternative v-SNAREs, which are functionally redundant with SncA. 

However, all genome annotations of several filamentous fungi such as T. reesei, 

Neurospora crassa, A. oryzae, A. nidulans and A. fumigatus indicate that these fungi 

contain only a single copy of sncA in their genome (Gupta and Brent Heath 2002; Kienle et 

al. 2009; Kuratsu et al. 2007; Valkonen et al. 2007) as also reported for A. niger (Pel et al, 

2007). Still, we considered the possibility of a redundant v-SNARE in the A. niger genome 

and searched the genome database for a SncA homolog (Table S2). A potential v-SNARE 

encoding gene with the highest level of similarity to SncA, and which contains a C-terminal 

synaptobrevin domain like SncA, is An08g07470 (47% identity, 66% similarity). 

An08g07470 contains a N-terminal longin domain (Wen et al. 2006) which is not present in 

SncA, thus making An08g07470 a larger protein (269 amino acids) than SncA (135 aa). 

Compared to S. cerevisiae, An08g07470 is most similar to the vacuolar v-SNARE 

component Nyv1p which is involved in homotypic vacuolar docking and fusion (Nichols et 

al. 1997). In A. oryzae, this v-SNARE is interestingly also localized to the plasma 

membrane, although to a lesser extent than the Snc1p homolog (Kuratsu et al. 2007). Hence, 

An08g07470 of A. niger could encode a functionally redundant protein for SncA. 
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The S. cerevisiae Sec2p protein is the guanine exchange factor (GEF) for the secretion 

related Rab GTPase Sec4p and its function is well characterized (Itzen et al. 2007; Walch-

Solimena et al. 1997). GEFs stimulate the exchange of GDP for GTP, thereby activating its 

corresponding GTPase. Based on the results obtained in S. cerevisiae, deletion of the Sec2p 

ortholog in A. niger (SecB) was expected to result in a similar phenotype as the Sec4p 

ortholog (SrgA). However, deletion of secB in A. niger resulted in an almost wild-type 

phenotype in terms of fast hyphal growth and hyphal morphology, which is different from 

the ∆srgA phenotype (Fig. 3). The situation in A. niger is already different from that in S. 

cerevisiae as in A. niger the Sec4p ortholog itself is not essential for growth as is Sec4p in S. 

cerevisiae. Unlike other protein families, GEFs for different Rab GTPases do not share 

much sequence identity, making it difficult to predict protein function from sequence data 

(Segev 2001b). GEFs are considered to be GTPase specific, however, there are examples 

showing that one GEF complex acts on two GTPases; e.g. the TRAPP complex acts as a 

GEF for both Ypt1p and Ypt31/32p in S. cerevisiae (Jones et al. 2000). We thus assume 

that the genome of A. niger might encode alternative Rab GEF(s) which could activate 

SrgA in the absence of SecB. A possible candidate protein is An15g06770 which contains a 

GDP/GTP exchange factor Sec2p domain (pfam06428). 

Using the essential A. niger ssoA gene, orthologous to the S. cerevisiae plasma 

membrane t-SNAREs Sso1/2p, three approaches were followed to create a conditional 

vesicles transport mutant of A. niger. First, we tried to establish a temperature sensitive 

mutant based on introducing ts-alleles of Sso1/2p in the A. niger SsoA ortholog. Despite the 

high sequence similarity and conservation of amino acid residues, introduction of the 

respective point mutations in SsoA did not result in a useful phenotype as it was either too 

mild or too severe (Fig. 6). The second approach focused on the establishment of a mutant 

which accumulates secretory vesicles via induced overexpression of a truncated SsoA 

version lacking the essential TM-domain (SsoA∆TM). Several studies on SNARE-

mediated membrane fusion including Sso or Snc proteins demonstrated the importance of 

the TM domain for facilitating membrane fusion through the interaction of these TM 

domains (Fdez et al. 2010; Grote et al. 2000; Langosch et al. 2007; Lu et al. 2008). In 

agreement, this study provides evidence that the TM domain of the A. niger SsoA is also 

essential for its function (Fig. 7 line e). However, our data also clearly shows that a Tet-On 

based overexpression of SsoA∆TM, does not affect growth of A. niger (Fig. 7 line f). Note 

that it is unlikely that Tet-On mediated expression is insufficient to induce overexpression 

of the endogenous ssoA expression, as  it was previously shown that the Tet-On system 

enables expression levels similar to gpdA expression (Meyer et al., 2011), which in fact 

would be 80-fold higher than ssoA expression (data not shown). 
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The third approach followed a strategy in which SsoA was down-regulated in a 

controlled manner using the Tet-On system. For this purpose, a strain was generated, which 

expressed ssoA from the Ptet promoter in a ∆ssoA background strain. The resulting strain 

(MK34.1) is only viable in the presence of DOX but not in its absence. A wash-out 

experiment showed that pre-cultivation in medium containing 2.5 µg/ml DOX followed by 

a shift into DOX-free medium resulted in a conditional mutant phenotype characterized by 

the accumulation of secretory vesicles in the cytosol (Fig. 8a). However, we also observed 

that the accumulation of secretory vesicles was highly heterogeneous among germlings - 

some displayed the mutant phenotype and some localized the secretory vesicles still 

apically. This heterogeneous phenotype might possibly be explained by remnant 

intracellular concentrations of DOX and/or SsoA, e.g. due to low turnover rates. In both 

cases, slight amounts of functional SsoA might be still present in some cells thus sustaining 

normal growth.  

Supportive for this explanation is the observation that the concentration of DOX that 

was used to make the spore plates had an effect on the germination characteristics. Spores 

that were taken from a plate that contained 100 µg/ml DOX formed normal germlings after 

transfer into medium lacking DOX. Apparently, a high concentration of DOX in the spore 

plates results in high ssoA mRNA and/or SsoA protein levels, thereby allowing germination 

without further induction of ssoA. Likewise, we noted that the concentration of DOX in the 

medium used for the pre-growth affected the outcome of the wash out experiment. A DOX 

concentration of 20 µg/ml during pre-growth (instead of the 2.5 µg/ml as shown in Fig. 8) 

and subsequent transfer into DOX-free medium increased the time to observe a 

morphological effect of SsoA depletion dramatically.  

Taken together, we showed that controlled downregulation of SsoA via the Tet-On 

expression system can be used to create a conditional vesicular transport mutant of A. niger. 

However, this strain can display a heterogenous phenotype, which can partially be adjusted 

by controlling DOX concentrations. Such a conditional mutant will be an important tool for 

further work to unravel the mechanisms that enable A. niger to be an efficient protein 

secretor.  

 

 

Methods 

 

Strains, culture conditions and molecular techniques 

 

The Aspergillus niger strains used in this study are listed in Table 2. Strains were grown on 

minimal medium (MM) containing 1% (w v-1) glucose as carbon source (Bennett and 
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Lasure 1991). Complete medium (CM) consists of MM with the addition of 0.1% (w v-1) 

casamino acids and 0.5% (w v-1) yeast extract. When required, plates were supplemented 

with uridine (10 mM), hygromycin (100 µg ml-1), doxycycline (Dox, 1-100 µg ml-1) or 

sorbitol (1.2 M). Transformation of A. niger and fungal chromosomal DNA isolation was 

performed as described (Meyer et al. 2010b).  

 

Construction of deletion cassettes, mutant alleles and expression cassettes 

 

Standard PCR and cloning procedures were used for the generation of all constructs 

(Sambrook & Russell, 2001). All PCR amplified DNA sequences and cloned fragments 

were confirmed by DNA sequencing (Macrogene). All primers used in this study are listed 

in Table S1 in the supplemental material. Successful deletions or correct integration of 

GFP-constructs or mutant alleles were verified by Southern analysis. 

The GFP-SncA construct was made using a combination of fusion PCR approaches 

combined with the MultiSite Gateway Three-Fragment Vector Construction Kit 

(Invitrogen) according to the manufacturer’s instructions. Firstly, five individual DNA 

fragments were amplified by PCR using the primers listed in Table S1. These fragments 

include two sncA promoter regions (~950 bp and ~800 bp in length), the sncA ORF and 

terminator region of sncA (~1.2 kb), the A. oryzae pyrG (AopyrG) fragment (~1.8 kb) and 

the GFP fragment (~700 bp). The construct is schematically depicted in Fig. 1. The AopyrG 

marker is flanked by two identical promoter regions of sncA which allows efficient looping 

out of the AopyrG marker (Meyer et al. 2010b), for subsequent transformations using the 

AopyrG marker. The first promoter fragment was fused to the AopyrG fragment and the 

second promoter fragment was fused to GFP by a fusion PCR. The GFP-SncA final 

expression cassette was constructed using the three fragments, promoter-AopyrG, 

promoter-GFP and sncA ORF and terminator by the MultiSite Gateway Three-Fragment 

Vector Construction Kit (Invitrogen).  

Constructs to delete the secA, secB, secC, secH, ssoA or sncA gene were made as 

follows: respective 5’ flanking sequences (~700 bp) were obtained as KpnI-XhoI fragments 

and 3’ flanking sequences (~700 bp) were obtained as HindIII-NotI fragments by PCR 

using genomic DNA from strain N402 as a template. The respective 5’ region KpnI-XhoI 

fragments, 3’ HindIII-NotI fragments and a 1.7 kb HindIII-XhoI fragment from pAO4-13 

(de Ruiter-Jacobs et al. 1989) containing AopyrG gene were cloned into the pBluscript-SK+ 

backbone prepared by digestion with KpnI and NotI. In the case of sncA, a 3.1 kb of the 

hygromycin resistance cassette isolated from pAN7-1 (Punt et al. 1987) was used to replace 

the sncA ORF. For srgA gene deletion cassette was kindly provided by Bernhard Seiboth, 

Vienna, Austria. 
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Table 2. Strains used in this work. 

Strain Relevant genotype               Source 

N402 cspA1 (derivative of ATCC9029)        (Bos et al. 1988) 

AB4.1 pyrG-                                                                                                                                                  (van Hartingsveldt et al. 1987) 

AO4.13 pyrG+(derivative of AB4.1 containing A. oryzae pyrG) (Kwon et al. 2011) 

MA70.15 ∆kusA  pyrG- (derivative of AB4.1) (Meyer et al. 2007a) 

MA169.4 kusA::DR-amdS-DR  pyrG− (Carvalho et al. 2010) 

MA234.1    kusA::DR-amdS-DR  pyrG+ This work 

FG7 ∆kusA pyrG+ egfp::sncA (derivative of MA70.15) This work 

MK27.1 kusA::DR-amdS-DR  pyrG+, ∆sncA hygr (derivative of MA234.1) This work 

MK12.1 ∆kusA pyrG-  egfp::sncA (derivative of FG7) This work 

MA164.1 Heterokaryon ∆kusA,  secA/pyrG -, ∆secA/pyrG+ This work 

MK19.1 ∆kusA pyrG+ ∆secB  egfp::sncA (derivative of MK12.1) This work 

MA165.1 ∆kusA pyrG+ ∆secB (derivative of MA70.15) This work 

MK20.2 ∆kusA pyrG+ ∆secC  egfp::sncA (derivative of MK12.1) This work 

MK16.2 kusA::DR-amdS-DR pyrG+ ∆secC (derivative of MA169.4) This work 

MK17.5 Heterokaryon ∆kusA,  secH/pyrG -, ∆secH/pyrG+ This work 

MK18.A ∆kusA  pyrG+ ∆srgA  egfp::sncA (derivative of MK12.1) This work 

MK15.A kusA::DR-amdS-DR pyrG+ ∆srgA (derivative of MA169.4) This work 

MA168.5 Heterokaryon ∆kusA,  ssoA/pyrG -, ∆ssoA/pyrG+ This work 

MK28.1 ∆kusA pyrG+  ssoA egfp::sncA (derivative of MK12.1)   This work 

MK29.3 ∆kusA pyrG+ ssoAL81F egfp::sncA (derivative of MK12.1) This work 

MK30.1 ∆kusA pyrG+ ssoAL81G egfp::sncA (derivative of MK12.1) This work 

MK31.2 ∆kusA pyrG+ ssoAR212K egfp::sncA (derivative of MK12.1) This work 

MK32.2 ∆kusA pyrG+ ssoAR212P egfp::sncA (derivative of MK12.1) This work 

MK22.3 ∆kusA TetO7::Pmin::ssoA pyrG+ (derivative of MK12.1) This work 

MK24.20 ∆kusA TetO7::Pmin::ssoA∆TM pyrG+ (derivative of MK12.1) This work 

MK34.1 ∆kusA ∆ssoA hygr TetO7::Pmin::ssoA pyrG+ (derivative of MK12.1) This work 

MK33.1 Heterokaryon ∆kusA, ssoA/hygr-, ∆ssoA/hygr+  TetO7::Pmin:: ssoA∆TM 

pyrG+ (derivative of MK12.1) 

This work 

   

 

The PssoA::ssoA::TtrpC::AopyrG::TtrpC::TssoA construct for generating mutant 

alleles of ssoA (encoding SsoAL81F, SsoAL81G, SsoAR212K and SsoAR212P) was made by PCR 

amplification and subsequent cloning of four fragments. The four fragments include the 

~0.7 kb promoter of ssoA as a KpnI-XhoI fragment, the ~1.2 kb ORF of ssoA as a XhoI-

EcoRI fragment, a ~2.8 kb NotI-AscI fragment containing TtrpC-AopyrG-TtrpC (TPT) 



Chapter 5 

130 

selection marker and a ~0.7 kb AscI-NotI fragment containing the terminator region of ssoA. 

The TtrpC repeats allow efficient loop out of the pyrG marker to allow subsequent 

transformations with the pyrG marker. Firstly, the 0.7 kb KpnI-XhoI promoter fragment was 

cloned into the pBluscript-SK+ backbone prepared by digestion with KpnI and XhoI 

resulting pMK1. Then the fragments NotI-AscI TPT and the AscI-NotI terminator of ssoA 

were cloned into NotI restricted pMK1 to give pMK2. Finally, the XhoI-EcoRI ORF of 

ssoA was cloned into XhoI-EcoRI restricted pMK2. Mutant alleles of ssoA (encoding 

SsoAL81F, SsoAL81G, SsoAR212K and SsoAR212P) were generated by PCR using primers 

carrying respective mutations and XhoI-EcoRI ends. The DNA fragments encoding the 

respective mutations were cloned into XhoI-EcoRI restricted pMK2. 

For the construction of conditional ssoA overexpression using the Tet-on system, the 

ssoA ORF or ssoA ORF truncated transmembrane domain domain (ssoA∆TM) were cloned 

into pVG2.2 (Meyer et al. 2011a) and the resulting plasmid was transformed for targeted 

integration at the pyrG locus using the pyrG* marker. After Southern analysis, strains were 

selected (MK22.3 and MK24.20) that contained with wild-type ssoA gene or ssoA∆TM 

gene at the pyrG locus under control of the tetracycline inducible promoter. These strains 

were also used to delete the ssoA gene. To do so, the ssoA::pyrG disruption cassette (see 

above) was altered by replacing AopyrG selection marker with the HindIII-XhoI 

hygromycin resistance cassette that was obtained from pAN7-1 (Punt et al. 1987).  

 

Microscopy 

 

Light microscopic pictures for the edge of the colony were captured using an Axioplan 2 

(Zeiss) equipped with a DKC-5000 digital camera (Sony). For the light and fluorescence 

images for GFP-SncA, pictures were captured with 40x C-apochromatic objective on an 

inverted LSM5 microscope equipped with a laser scanning confocal system (Zeiss 

Observer). LSM5 was also equipped with an incubator to control the cultivation 

temperature. The observation conditions for the life-imaging of hyphae were the same as 

described previously (Kwon et al. 2011). For time-lapse microscopy, in total seven z stacks 

(0.8 µm interval) were taken in 60 s time intervals. The time-lapse movie showing 4 frames 

per second was assembled using ZEN2009 software (Zeiss). 

For the DOX washout experiments, cells were grown and observed on chamber glass 

slides (Lab-Tek II Chamber #1.5 German Coverglass System) with 2.5 µg/ml of DOX for 

10 h at 30oC. Subsequently, the culture medium containing DOX was gently removed from 

the observation chamber with a transfer pipette and replaced with medium without DOX. 

This was repeated at least five times. For benomyl and latrunculin B treatments, cells were 

grown on MM agar plate for 2 days at 22°C to avoid sporulation. The mycelium was cut 
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with a scalpel, placed upside down on a cover glass bottom culture dish containing one 

drop of MM containing 5 µg/ml benomyl or 2 µg/ml latrunculin B respectively, and 

incubated at 22°C for an additional hour before microscopically examined.  
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Chapter 6 
 

General Discussion 

 

The ability of Aspergillus niger to secrete a high quantity and wide range of enzymes and 

organic acids to the extracellular environment makes this fungus a versatile cell factory (Pel 

et al. 2007). Due to its well annotated genome sequence, the rapid development of omics 

technologies (mainly transcriptomics and proteomics), and genetic tools such as newly 

established gene transfer systems, A. niger has become a model fungus for industrially 

exploited filamentous fungi (Adav et al. 2010; Carvalho et al. 2010; Fleissner and Dersch 

2010; Jacobs et al. 2009; Meyer et al. 2011b; Pel et al. 2007). Like other filamentous fungi, 

a key feature of A. niger is the highly polarized growth of its hyphae by apical extension at 

the hyphal tip. After spore germination, the axis of growth remains fixed in the primary 

germ tube while the formation of secondary germ tubes and subapical lateral branches 

establish new growth axes (Momany 2002). This polar or asymmetric cell growth is found 

not only in filamentous fungi but also ubiquitously throughout other phyla e.g. filamentous 

bacteria (actinomycetes), pollen tubes, plant root hairs and developing neuronal cells (Horio 

2007). Because of the relatively simple cytoskeletal organization and similarity to higher 

eukaryotic systems, the morphology of filamentous fungi including A. niger are important 

model systems to study polar cell growth (Horio 2007). In addition, fungal morphology is 

an important factor determining the efficiency of product formation in terms of yield, 

mixing or mass/oxygen transfer in industrial fermentations (Grimm et al. 2005; McIntyre et 

al. 2001; Papagianni 2004). Better understanding of the process determining morphology 

could lead to the improvement of fungal cells for the production of enzymes or acids.  

Polarized growth and secretion involve many factors including transport of secretory 

vesicles containing different cargos to the tip of the cell. Direction of growth is determined 

by a vesicle-rich region located in the hyphal tip called the Spitzenkörper (Steinberg 2007; 

Virag and Harris 2006b). Moving the Spitzenkörper from its apical position by optical 

tweezers has substantial effects on the cell shape, which indicates that the position of the 

Spitzenkörper is crucial and directs polar growth (Bartnicki-Garcia et al. 1995). Secretory 

vesicles are transported along the hyphae to the Spitzenkörper via microtubules (MT) 

powered by kinesin motor proteins while short distance transport from the Spitzenkörper to 

the plasma membrane is mediated via the actin cables by myosin motor proteins (Fig. 1) 

(Saloheimo and Pakula 2012; Steinberg 2007; Taheri-Talesh et al. 2008; Taheri-Talesh et 

al. 2012). Thus the polarity of the cytoskeleton (tubulin and actin filaments) is a crucial 

factor in establishing and maintaining polar growth and secretion. Rho GTPases present in 

many systems including mammalian cells are well known to regulate morphology by 
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organizing the dynamics of the actin cytoskeleton (Bosco et al. 2009; Heasman and Ridley 

2008; Park and Bi 2007; Ridley 2006). We systematically investigated the function of all 

members of the Rho family GTPases present in A. niger (Chapter 2). Based on loss-of-

function studies, we showed that six Rho GTPases (RacA, CftA, RhoA, RhoB, RhoC, 

RhoD) exert distinct and overlapping functions during the life cycle of A. niger. 

Additionally the localization of RacA protein was observed as a crescent shape at the 

actively growing hyphal tips, which is incorporated into Fig. 1.  

 

 

 

Fig. 1. A schematic model for polarized growth and secretion in A. niger. Secretory vesicles 

move to the Spitzenkörper (vesicle clusters) via the microtubules powered by kinesin motor 

proteins while short distance transport from the Spitzenkörper to the plasma membrane (PM) 

acts via the actin cables by myosin motor proteins (Steinberg 2007; Taheri-Talesh et al. 2008; 

Taheri-Talesh et al. 2012). The transport of the secretory vesicle cargo from the ER to the Golgi 

is mediated by the COPII carrier while retrieval of escaped luminal proteins as well as other 

machinery required for optimal anterograde (ER to Golgi) transport is mediated by the COPI 

carrier. Golgi derived secretory vesicles fuse with the PM, releasing their contents and the 

components of the membranes of the secretory vesicles. As the tip grows, the ring of actin/AbpA 

endocytic patches moves forward, removing SncA and other vesicle membrane components from 

the PM and incorporating them into endocytic vesicles for recycling. Adapted from (Taheri-

Talesh et al. 2008). 
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Interestingly, a gene encoding the predicted acetyl-coenzyme A (CoA) transporter 

(An02g13410) was consistently up-regulated in all the compared protein overexpression 

and ER stress conditions transcripomes (Chapter 4). The putative acetyl-CoA transporter 

(An0213410) is predicted to contain a transmembrane spanning domain like the acetyl-CoA 

transporter AT-1 in humans  (based on TMHMM) and shares 38% amino acids identity 

(Pehar and Puglielli 2013). In higher eukaryotes, this protein is shown to be involved in 

translocation of acetyl-CoA from the cytosol into the ER. The ER localized acetyl-CoA is 

subsequently used for acetylation of ER-transiting proteins including membrane proteins 

and possibly secretory proteins, thereby improving the folding efficiency (Fig. 2) (Jonas et 

al. 2010; Pehar and Puglielli 2013). Only acetylated nascent proteins can leave the ER and 

enter the Golgi where they are deacetylated (Fig. 2). Interestingly, also in mammalian 

 

Fig. 2. A schematic view of acetylation in the ER. Acetyl- CoA is translocated from the cytosol 

into the lumen of the ER by an acetyl-CoA transporter (AT-1) and subsequently used for 

acetylation of nascent ER-transiting proteins including membrane proteins and possibly secretory 

proteins by an acetyltransferase (ATase). If acetylated, the nascent proteins can reach the Golgi 

where they are deacetylated and complete maturation while non-acetylated proteins are retained 

and degraded in the ER Golgi intermediate compartment (ERGIC). The acetyl group is shown as 

a red circle. Adapted from (Pehar and Puglielli 2013). 
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cells the gene encoding the acetyl-CoA transporter (AT-1) is up-regulated in response to 

ER stress (Shaffer et al. 2004). This suggests conservation of the possible role of 

acetylation in the ER as a part of the unfolded protein response (UPR) in eukaryotic cells 

including filamentous fungi.  

 

Growth and secretion in fungi are considered to be tightly linked processes. However, 

with previous results from our group (Jørgensen et al. 2009) and our current results 

(Chapter 4), we observed a growth rate independent increase in protein secretion (Kwon et 

al. 2013b). The mechanism(s) which enables A. niger to secrete more proteins although 

cultivated at the same growth rate is not well known. Some possible mechanisms have been 

addressed in the general introduction part of this thesis (see Chapter 1). One of the 

important features in the further research will be based on the dynamics of processes related 

to the secretion. In the last decade, many proteins involved in hyphal tip growth and the 

polarized secretory pathway have been identified, analyzed and visualized using fluorescent 

proteins (FPs) (Sudbery 2011). In addition, some important proteins have been labeled in 

this thesis and our group: GFP-SncA (secretory vesicles), SlaB-YFP, AbpA-CFP 

(endocytic actin), CFP-TubA (tubulin), GFP-RacA (RacA) from this thesis and GmtA-GFP 

(Golgi, (Carvalho et al. 2011b)), SpaA-CFP (polarisome, (Meyer et al. 2008)), GlaA-GFP-

HDEL, H2B-GFP, MTS-GFP (ER, nuclei, mitochondria respectively, unpublished data). 

Actin was visualized indirectly using immunostaining (Chapter 2), as approaches to fuse 

GFP to actin to perform life imaging of actin dynamics were not successful despite several 

attempts to fuse GFP either to the N- or C-terminus of actin (data not shown). We showed 

that the organization of the hyphal tip apparatus (or at least endocytic/exocytic events) is 

similar to what is observed in A. nidulans. To understand the high secretion capacity of A. 

niger or to understand mechanisms to explain different production rates at the same growth 

rates, the dynamics of the secretion machinery e.g. endo/exocytosis or COPII/COPI turn-

over rates need to be studied in more detail in the future.  

 

Two major findings have been achieved from this thesis, which will bring further 

follow-up studies. The first important finding is the acetylation of ER proteins (Chapter 4). 

The acetylation takes place in the ER involving the protein secretory pathway. This is quite 

a new finding in filamentous fungi. Since we only have transcriptomic data for this so far, it 

has to be proven whether the predicted A. niger acetyl-CoA transporter fulfills the same 

function. If acetylation takes place in A. niger, it has to be studied whether the acetylation 

of proteins in A. niger is part of the quality control mechanism, and other proteins involved 

in this process like acetyltransferases or deacetylases need to be identified in  future studies. 
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Possibly this will open a new opportunity to understand and thus improve (heterologous) 

protein production in A. niger.  

The second major finding from this thesis is the possible importance of lipid signaling 

networks and lipid remodeling that are involved in polar tip growth (Chapter 3). The 

synthesis of important phospho- and sphingolipid molecules functioning as secondary 

messengers in eukaryotes (DAG, IP, PA, PIP2, S1P) and as components of the plasma 

membrane (e.g. ergosterol, sphingolipids, glycerophosphocholine) were modulated during 

apical branching (∆racA, ramosa-1) and apolar growth (PglaA-racA
G18V). In S. cerevisiae 

and filamentous fungi, sphingolipids and ergosterol concentrate to form lipid rafts in the 

plasma membrane which organize and regulate signaling cascades involved in polar growth 

control (Takeshita et al. 2012; Wachtler and Balasubramanian 2006). It is also known that 

the membrane lipid modification is important for Rho GTPase activity in addition to the 

GTP/GDP cycle (Casey 1994; Dransart et al. 2005; Ridley 2006), and as a consequence of 

this, localization of Rho GTPases is also influenced by the lipid composition of the 

membrane. In this context, it is worth to highlight that RacA localized mainly at the hyphal 

apex displaying a crescent-like form (Chapter 2, Fig. 5). Since RacA is post-translationally 

prenylated, RacA seems to be localized at the site with specific lipid compositions. An 

interesting question for future research is to determine factors to ensure the presence of 

RacA both at the right place and at the right time and to determine to which extend the lipid 

composition of the membrane affects RacA localization.  
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Summary 

 

In Chapter 1, a general introduction is given related to enzyme and metabolite production 

using filamentous fungi, with special attention to some possible mechanisms to explain 

why A. niger is such a good protein secretor.  

 

Chapter 2 describes the systematic investigation of the function of all members of the Rho 

family GTPases present in A. niger. Based on loss-of-function studies, we have showed that 

six Rho GTPases (RacA, CftA, RhoA, RhoB, RhoC, RhoD) exert distinct and overlapping 

functions during the life cycle of A. niger. Overall, our data show that individual Rho 

GTPases contribute differently to growth and morphogenesis within fungi. RacA and CftA 

collectively ensure polarity maintenance, whereby the main protagonist in A. niger is RacA. 

Interestingly, in A. nidulans deletion of the cftA resulted in a more pronounced effect on 

morphology compared to the racA deletion. The comparison between A. niger and A. 

nidulans indicates that the partitioning of the roles between CftA and RacA varies even 

among closely related filamentous fungi. 

 

In Chapter 3, the racA mutant was subjected to more detailed studies to elucidate the 

impact of the altered morphology on the protein production yields as well as on the 

transcriptome. Surprisingly, physiological profiles including maximum specific growth 

rates and specific protein production rates were nearly identical despite the significant 

difference in their morphology. By following exocytotic (SncA-GFP) and endocytotic 

(SlaB-YFP, AbpA-CFP) markers together with protein yield determination, it was shown 

that the increase in hyphal tips did not result in an increase of protein production yields. 

The transcriptomic analysis of three morphological mutants (∆racA, ramosa-1 apical 

branching mutants; PglaA-RacAG18V, an apolar growing mutant, in which RacA is 

trapped in its ‘on-state’ by mutating the predicted GTP binding and hydrolysis domain) 

revealed that several signaling and metabolic pathways were altered in these morphological 

mutants involved in the polar tip growth. With regard to an increase of protein secretion, it 

would be interesting to challenge the ∆racA strain to overexpress a certain protein of 

interest to see the effect of hyperbranching on the protein secretion.  

 

In Chapter 4, we performed transcriptome analyses by comparing an A. niger wild-type 

strain to a glucoamylase overexpressing strain under the same growth rate. Using GO term 

enrichment analysis, four higher-order categories were identified in the up-regulated gene 

set: i) ER membrane translocation, ii) protein glycosylation, iii) vesicle transport and iv) ion 

homeostasis. Among these, about 130 genes had predicted functions for the passage of 
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proteins through the ER and those genes included target genes of the HacA transcription 

factor that mediates the unfolded protein response (UPR), e.g. bipA, clxA, prpA, tigA and 

pdiA. Comparison of this dataset to other datasets in which A. niger was triggered to induce 

an unfolded protein response, a core set of 40 genes was identified which are key for the 

intensified traffic of proteins through the secretory pathway. The consistent up-regulation 

of a gene encoding the predicted acetyl-coenzyme A (CoA) transporter suggests a possible 

role for transient acetylation to ensure correct folding of secreted proteins  

 

In Chapter 5, we established a GFP-v-SNARE reporter strain in which the trafficking and 

dynamics of secretory vesicles can be followed in vivo to study the process of protein 

secretion in A. niger. The biological role of seven secretion-specific genes, known to 

function in key aspects of the protein secretion machinery in S. cerevisiae, was analyzed 

using the GFP-v-SNARE reporter strain. This study revealed that the orchestration of 

exocyst-mediated vesicle transport is only partially conserved in S. cerevisiae and A. niger 

which serves as a basis to understand differences in secretion mechanisms between the 

species.  

 

In Chapter 6, the major findings from the research described in the thesis are summarized, 

highlighted and interesting topics for future research are discussed. 
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Samenvatting 

 

In Hoofdstuk 1 wordt een algemene introductie gegeven over de productie van enzymen 

en metabolieten door filamenteuze schimmels. In de introductie wordt speciale aandacht 

geschonken aan een aantal mogelijk mechanismen die kunnen verklaren waarom A. niger 

zo efficiënt is in het uitscheiden van eiwitten . 

 

Hoofdstuk 2 beschrijft de systematische bestudering van de functies van alle GTPases van 

de Rho familie die in A. niger aanwezig zijn. Gebaseerd op het verlies van functie, hebben 

we hier laten zien dat de zes Rho GTPases (RacA, CftA, RhoA, RhoB, RhoC, RhoD) 

verschillende en overlappende functies bezitten gedurende de levenscyclus van A. niger. 

Alles bij elkaar genomen laat de data zien dat de individuele Rho GTPases op verschillende 

manieren bijdragen aan de groei en morfogenese in schimmels. RacA en CftA zorgen 

samen voor polariteit, waarbij in A. niger RacA de belangrijkste rol speelt. In A. nidulans 

zorgt juist de deletie van cftA voor een meer uitgesproken effect op de morfologie, 

vergeleken met de deletie van racA. De vergelijking tussen A. niger en A. nidulans toont 

aan dat de rolverdeling tussen CftA en RacA zelfs tussen nauw verwante schimmels kan 

verschillen. 

 

In Hoofdstuk 3 is de racA mutant onderworpen aan een meer gedetailleerde studie, om de 

impact van veranderde morfologie op de eiwitproductie en op het transcriptoom op te 

helderen. Tot onze verrassing was het fysiologische profiel, waaronder de maximale 

specifieke groeisnelheid en de specifieke eiwitproductie, nagenoeg hetzelfde ondanks de 

significante verschillen in morfologie. Door het volgen van exocytose (SncA-GFP) en 

endocytose (SlaB-YFP, AbpA-CFP) markers, in combinatie met een bepaling van de 

eiwitopbrengst, is aangetoond dat de toename in groeitips niet resulteerde in een toename 

van eiwitproductie. De analyse van het transcriptoom van drie morfologie mutanten (∆racA, 

ramosa-1 apicale vertakkingsmutanten; PglaA-RacAG18V, een apolair groeiende mutant, 

waar RacA gevangen is in de ‘aan-status’ door het muteren van het voorspelde GTP 

bindende en hydrolyse domein) toont aan dat verscheidene signaal- en metabolische routes 

anders tot expressie komen in deze morfologische mutanten. Met betrekking tot 

eiwitsecretie zou het interessant zijn om in de ∆racA stam een bepaald eiwit to 

overexpressie te brengen om het effect van hypervertakking op eiwitsecretie te kunnen 

bestuderen. 
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In Hoofdstuk 4 hebben we transcriptoom analyses uitgevoerd door de A. niger wildtype 

stam te vergelijken met de glucoamylase overexpressie stam bij dezelfde groeisnelheid. 

Met behulp van GO-term verrijkingsanalyse zijn vier hogere-orde categorieën 

geïdentificeerd in de omhoog gereguleerde set van genen i) ER membraan translocatie, ii) 

eiwit glycosylering, iii) transport van blaasjes, iv) ion homeostase. Binnen deze genenset 

waren ongeveer 130 genen met een voorspelde functie betrokken bij het passeren van 

eiwitten door het ER, en in deze genenset waren target genen van de HacA 

transcriptiefactor, die de Unfolded Protein Response (UPR) medieert, bv. bipA, clxA, prpA, 

tigA and pdiA. Deze dataset werd vergeleken met andere datasets waarbij in A. niger UPR 

werd geïnduceerd, resulterend in een kernset van 40 genen die zeer belangrijk zijn voor het 

geïntensiveerde eiwit transport door de secretieroute. De consistente up-regulatie van een 

gen coderend voor de voorspelde acetyl-coenzyme A (CoA) transporter suggereert een rol 

voor transiënte acetylering om te zorgen voor correcte vouwing van uitgescheiden eiwitten.  

 

In Hoofdstuk 5 hebben we een GFP-v-SNARE reporter stam gemaakt waarin het transport 

en de dynamiek van secretieblaasjes in vivo gevolgd kan worden, om zo het proces van 

eiwitsecretie in A. niger te kunnen bestuderen. De biologische rol van zeven secretie 

specifieke genen, waarvan bekend is dat ze functioneren in belangrijke aspecten van het 

eiwit secretie apparaat in S. cerevisiae, is geanalyseerd mbv de GFP-v-SNARE reporter 

stam. Dit onderzoek heeft aangetoond dat de organisatie van exocyst-gemedieerde 

blaasjestransport maar deels geconserveerd is in S. cerevisiae en A. niger, wat de basis is 

voor het begrijpen van de verschillen in de secretiemechanismen tussen de verschillende 

soorten. 

 

In Hoofdstuk 6 zijn de belangrijkste ontdekkingen, voortkomend uit het onderzoek 

beschreven in dit proefschrift, samengevat en uitgelicht, en interessante onderwerpen voor 

toekomstig onderzoek worden hier besproken. 
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Supplemental material 

 

The supplemental material of this thesis is comprises the following and available via each 

website: 

 

 

Chapter 2: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07524.x/suppinfo 

 

Fig. S1. Phylogenetic tree of fungal Rho GTPases. 

 

Fig. S2. Deletion of rhoD causes loss of septation in A. niger.  

 

Fig. S3. Phenotypes of wt, individual rho deletion and complemented strains.  

 

Fig. S4. Phenotypes of wild-type, ∆noxR and ∆noxA.  

 

Movie S1. Time-lapse movie of A. niger expressing eGFP::RacA. 

 

Chapter 3: 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0068946#s6 

 

Table S1. Complete transcriptome data containing RMA expression values (log2 scale), 

mean expression values, p-values, q-values and fold changes 

 

Table S2. Subset of the transcriptome data containing up-down-regulated gene sets. 

 

Table S3. ZIP archive file containing FetGOat enrichment results for the up- and down-

regulated gene sets of all six comparisons.  

 

Table S4. Subset of the transcriptome data for selected intersection of the Venn diagram. 

 

Table S5. Primers used in this study. 

 

Chapter 4: http://www.biomedcentral.com/1471-2164/13/701/additional 

 

Additional file 1. Differentially expressed genes between B36 and N402 maltose-limited 

chemostat cultures.  
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Additional file 2. Network map based on GO-enrichment analysis using the differentially 

expressed, induced and repressed gene sets in B36/N402 chemostat cultures.   

 

Additional file 3. Enriched-GO terms using the differentially expressed, induced and 

repressed gene sets in B36/N402 chemostat cultures.  

 

Additional file 4. Four higher-order categories of enriched-GO terms using the induced 

gene set in B36/N402 chemostat cultures. 

 

Additional file 5. Expression values of iron uptake genes.  

 

Additional file 6. Expression values of protease genes. 

 

Additional file 7. Enriched-GO terms from the comparison between B36/N402 versus 

maltose/xylose. 

 

Additional file 8. Primers used in qPCR and RT PCR.  

 

Chapter 5: http://mic.sgmjournals.org/content/160/Pt_2/316/suppl/DC1 

 

Supplemental Fig. 1. Schematic representations of the wild-type locus and disruptant locus 

and Southern blot analysis of the sncA (A and B) and secB (C and D). 

 

Supplemental Fig. 2. Localization of GFP-tubulin (Kwon et al., 2011) and SlaB-YFP 

(Kwon et al. 2013b) reporter strains after treatment with respectively benomyl (5 µg/ml) or 

latrunculin B (2 µg/ml).  

 

Supplemental video 1. Time lapse of A. niger expressing GFP-SncA. 
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