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Chapter 1

Introduction

1.1 Preface

This thesis is devoted to applications of string theoretic methods of holog-
raphy to strongly coupled phases of quantum field theories. The general
definition of holography states that there is an exact equivalence between
a closed string theory on a manifold and a quantum field theory in the
asymptotic region (on the boundary) of this manifold. Usually the man-
ifold is an asymptotically Anti-de Sitter space, and the QFT lives on the
boundary of this asymptotically AdS space. In the original example of
the holographic correspondence, the QFT on the boundary is N = 4
supersymmetric conformal Yang-Mills theory. Due to this example, the
holographic duality is called the AdS/CFT correspondence.

If the gauge quantum field theory on the boundary of AdS is in a
strongly coupled phase then the dual sting theory in the bulk of AdS can
be approximated by its low-energy limit, supergravity. Moreover, when
the number of colors in the QFT is taken to infinity, the dual supergravity
in AdS is classical. Therefore the AdS/CFT correspondence facilitates a
powerful approach to difficult questions of infra-red physics of quantum
field theories, like confinement and chiral symmetry breaking in quantum
chromodynamics. In practice there are still technical limitations, as well
as principal restrictions, on the kinds of field theories which can be studied
holographically. As for now there exists no holographic description of real-
world QCD. However the systems which are qualitatively close to QCD
can be successfully dealt with by the methods of AdS/CFT. In fact, in
a large number of situations the AdS/CFT correspondence is the only
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available analytical tool.

Theoretical high-energy physics studies the structure of the world on
the fundamental, microscopic level. At high energies the gravitational
force becomes strongly coupled and quantum gravity effects cannot be
neglected. The scale at which quantum gravity effects become important is
known as the Planck scale. This is the scale at which the Standard Model
of particle physics and General Relativity break down. The theory which
incorporates SM and GR and provides a successful ultra-violet completion
of these theories is known as string theory (although as this thesis is being
written difficult phenomenological questions remain to be answered). The
UV completion of the theories of fundamental interactions is an important
and complicated research area.

A no less complicated set of problems exists in the opposite regime on
an energy scale, infra-red phases of quantum field theories. Consider, for
example, a QCD-like model. At high energies we have a system of weakly
coupled quarks and gluons interacting by an exchange of gluons and self-
interaction of gluons. It is described by a gauge-invariant matter action
and a non-abelian Yang-Mills action. The processes involving scattering
of quarks and gluons are described by Feynman diagrams, and since the
coupling constant is small we can get accurate predictions perturbatively,
by accounting for just the leading loop corrections. As we move towards
low energies, due to the renormalization group flow the gauge coupling
constant grows. In fact the IR phase can have a qualitatively different
interaction of quarks than the UV phase, as the Coulomb force of the
UV regime disappears and instead, in the IR, quarks are confined by the
flux tube, with the force growing proportionally to the separation between
quarks. The perturbative approach of Feynman diagrams is completely
useless for the description of these phenomena. In fact it is not even
correct to talk about quarks and gluons in the IR, the fundamental degrees
of freedom are glueballs, mesons and baryons, within which gluons and
quarks are confined.

This is where the tools of the AdS/CFT correspondence can become
useful. The IR phases of QCD-like systems at strong coupling and large
number of colors are dual to classical supergravity in an asymptotically
AdS space. Systems of condensed matter physics can also be qualitatively
described by the gravitational AdS physics. These are the kinds of models
which we have studied holographically in this thesis.

Asymptotically AdS space is not the only possible bulk geometry of a
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holographic dual to a quantum field theory. Another kind of holographic
correspondence which we have considered in this thesis is a duality be-
tween Little String Theory and a gauged Wess-Zumino-Witten model in
a charged black brane background. The advantage of this holographic
correspondence is that one does not have to resort to the limit of the
supergravity approximation, because string theory in this background is
exactly solvable. In this case, it means that the QFT can be taken at
finite number of degrees of freedom.

Such an example of holographic duality can be ascribed to the realm of
top-down holography. The term ‘top-down’ in general means that we know
the string origin of the bulk degrees of freedom we are dealing with, and the
their effective action appears as a low-energy limit of string theory. The
original example of the AdS/CFT correspondence, the duality between
type-IIB string theory on AdS5 × S5 and N = 4 SYM theory on the
boundary of AdS5, is another example of top-down holography. A different
way to apply holography is known as the bottom-up approach, and it
assumes a generic form of the action for some of the bulk fields. Its
advantage is that it allows one to get a quick perspective on properties of
the dual field theory. Its disadvantage is that such a model can turn out to
be outside of the realm of string theory and therefore become inconsistent.
Another disadvantage is that one does not know what the QFT degrees
of freedom dual to the bulk fields described by a bottom-up action are.
In this thesis we have used both top-down and bottom-up methods.

1.2 String theory

In this chapter we are going to review some basic string theory which will
be useful for this thesis. The entire content of this chapter is a review of
textbook material. String theoretic basics are presented for the purpose
of assisting the understanding of chapter 4. We refer the reader to the
references [1–4] for a more complete exposition of the topics discussed
here.

1.2.1 The Polyakov action and two-dimensional conformal
field theory

The basic object of string theory is an extended one-dimensional relativis-
tic string. As a string moves it sweeps a two-dimensional surface, which
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is called a world-sheet. Let us parametrize a world-sheet by a time-like
coordinate τ and a space-like coordinate σ. We are using the convention
σ ∈ [0,π]. String can be open or closed. An open string has two ends,
located at σ = 0 and σ = π. In the case of a closed string these two ends
are identified.

Consider the field Xµ(τ ,σ) which describes an embedding of a string
into a d-dimensional space-time, µ = 0, . . . , d− 1. It is called a target
space-time. The action for the field Xµ in a flat target space-time is the
Polyakov action

SP = − 1
4πα′

ˆ
d2σ
√
−hhαβ∂αXµ∂βXµ , (1.1)

where the index µ is lowered with the flat space-time metric ηµν . This
is the action of a free bosonic string theory. In (1.1) we have α′ = `2s/2,
where `s is the string length. In what follows we set `s = 1. A world-sheet
has a two-dimensional metric, hαβ, α,β = τ ,σ, with three independent
components. We can set it to the flat metric, ηαβ, by two-dimensional
diffeomorphism transformations, σα → σ′α(σβ), and a Weyl rescaling,
hαβ → e2ω(τ ,σ)hαβ. Both are symmetries of the action (1.1). The choice
hαβ = ηαβ for the world-sheet metric is called the conformal gauge.

Perform now a Wick rotation τ → −iτ and introduce a complex co-
ordinate z = eτ+iσ on an open string world-sheet, and z = e2(τ+iσ) on
a closed string world-sheet. The ends of an open string, σ = 0,π, are
then parametrized by z = eτ and z = −eτ . Now a world-sheet is a two-
dimensional Riemann surface with Euclidean signature. The Polyakov
action (1.1) in conformal gauge is then

SP =
1

2π

ˆ
d2z ∂Xµ∂̄Xµ , (1.2)

where ∂ denotes a derivative w.r.t. z and ∂̄ denotes a derivative w.r.t. z̄.
The classical wave equations of motion for the fields Xµ are

∂∂̄ Xµ(z, z̄) = 0 , (1.3)

and must be accompanied by boundary conditions. If the string is closed
then the boundary conditions are satisfied due to the periodicityXµ|σ=0 =
Xµ|σ=π. In the case of an open string we must impose the following
boundary conditions at the ends of the string,

δXµ (z̄∂̄ − z∂)Xµ|z=±eτ = 0 , (1.4)
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which can be resolved in two different ways. These are called Neumann
and Dirichlet boundary conditions:

Neumann : (z̄∂̄ − z∂)Xµ|z=±eτ = 0 ,
Dirichlet : δXµ|z=±eτ = 0 .

(1.5)

Neumann boundary conditions do not break the translational symmetry
of the flat target space-time: they are invariant under the replacement
Xµ → Xµ + aµ with any constant aµ. On the other hand, Dirichlet
boundary conditions mean that the end of the string is held at a fixed,
distinguished, point in a given space direction and it breaks translational
symmetry in that direction. The physical reason for such a boundary
condition is that the string ends on some object. This object, which is
heavy and which is localized at a certain value of the xµ coordinate, is
called aD-brane. The dynamics of open strings determine the fluctuations
of a D-branes. We will get back to D-branes later in this chapter.

Besides the equations of motion (1.3) and the boundary conditions
(1.5) one has to impose Virasoro constraints. These constraints origi-
nate as follows. Recall that the action (1.2) is written in the confor-
mal gauge, hαβ = δαβ. It is invariant under all two-dimensional coor-
dinate transformations which keep a flat world-sheet metric conformally
flat, hαβ = e2ω(z,z̄)δαβ, that is flat up to an overall factor e2ω(z,z̄). Such
transformations are called conformal transformations. They are generated
by the stress-energy tensor. In two dimensions, the stress-energy tensor
has three independent components. Due to conformal invariance, the
stress-energy tensor is classically traceless, and therefore two independent
components remain

T (z) = −∂Xµ(z)∂Xµ(z) , T̃ (z̄) = −∂̄Xµ(z̄)∂̄Xµ(z̄) . (1.6)

String theory is a two-dimensional conformal field theory. The classical
requirement of conformal invariance of states of a string boils down to
demanding the vanishing of the stress-energy tensor, T (z) = 0, T̃ (z̄) =
0. These conditions are refined in the quantum theory, and are called
Virasoro constraints.

Let us proceed to a first quantization of string theory. In chapter 4 we
are going to consider a string moving in a space which is a direct product
of flat space and coset space. In this section, for simplicity, let us refrain
to string moving in a flat space-time. Due to the translational invariance

5



of flat space-time we have left-moving and right-moving currents,

jµ(z) = i
√

2 ∂Xµ(z) , j̃µ(z̄) = i
√

2 ∂̄Xµ(z̄) , (1.7)

which due to the equations of motion (1.3) are conserved separately. For
a classical string products like j(z1)j(z2) are non-singular for any z1− z2.
If we quantize the string, these become singular as z1 approaches z2:

jµ(z1)j
ν(z2) = : jµ(z1)j

ν(z2) : + 〈jµ(z1)j
ν(z2)〉 , (1.8)

and similarly for j̃µ(z̄1)j̃ν(z̄2). In (1.8), the : jµ(z1)jν(z2) : is regular
in the limit z1 → z2, and it is called a normal-ordered product of the
operators j(z1) and j(z2). If not specified otherwise, all the products of
world-sheet operators in this chapter are normal-ordered. The correlation
function 〈jµ(z1)jν(z2)〉 is singular when z1 → z2 and is defined by the
Polyakov path integral

〈jµ(z1)j
ν(z2)〉 =

ˆ
[dX ] (i

√
2 ∂Xµ(z1))(i

√
2 ∂Xν(z2))e

−SP [X ] . (1.9)

We obtain

〈jµ(z1)j
ν(z2)〉=ηµν

1
(z1 − z2)2 , 〈j̃µ(z̄1)j̃

ν(z̄2)〉=ηµν
1

(z̄1 − z̄2)2 . (1.10)

Let us focus on holomorphic fields; the conclusions are similar for anti-
holomorphic fields. The stress-energy tensor in terms of the currents jµ
is

T (z) =
1
2 : jµ(z)jµ(z) : . (1.11)

We have the operator product expansion (OPE)

T (z1)j
µ(z2) =

jµ(z2)

(z1 − z2)2 +
∂jµ(z2)

z1 − z2
+ . . . , (1.12)

where dots represent normal-ordered terms, regular in the limit z1 → z2.
We also have the OPE

T (z1)T (z2) =
c/2

(z1 − z2)4 +
2T (z2)

(z1 − z2)2 +
∂T (z2)

z1 − z2
+ . . . . (1.13)

Here c is a central charge, which is not present in the classical theory. For
the stress-energy tensor (1.11), it is equal to the dimension of the target
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space-time, d, where each component of jµ contributes central charge equal
to one. In bosonic string theory the central charge is c = d−26, where−26
comes from conformal ghost fields. In superstring theory (discussed below)
c = 3d/2 − 15, where each one of d world-sheet fermions contributes
1/2 and superconformal ghosts contribute −15. Non-vanishing central
charge signifies a world-sheet conformal anomaly: quantum violation of
the classical tracelessness of the stress-energy tensor.

The conformal anomaly in a consistent string theory should vanish.
This is necessary because conformal invariance of string theory ensures
that the negative-norm time-like component of the current j0 (and time-
like component of the fermion ψ0, in the case of superstring theory, where
conformal symmetry is extended to superconformal symmetry) decouples
from the spectrum of physical operators. In this chapter we always assume
that a bosonic string lives in 26-dimensional space-time, and a supersym-
metric string lives in 10-dimensional space-time, so that the central charge
vanishes.

Let us perform a Laurent series expansion

T (z) =
∑
n

Ln
zn+2 , jµ(z) =

∑
n

jµn
zn+1 , (1.14)

where L−n = (Ln)†, j−n = (jn)†. Therefore the OPE (1.10), and radial
ordering of operators on a complex world-sheet plane (if one considers
the operator product O(z1)O(z2) and z1 → z2, then the operator with
larger |z| is placed on the left of the operator with smaller |z|), give the
commutator

[jµm , jνn] = mηµν δm+n,0 . (1.15)

We see that jµ−n , n > 0 are the operators creating oscillatory string states
and jµn , n > 0 are the operators annihilating string states.

The OPE (1.12) gives the commutator

[Lm, jµ−n] = njµm−n , (1.16)

and the OPE (1.13) gives the Virasoro algebra commutation relation

[Lm, Ln] = (m− n)Lm+n +
c

12m(m2 − 1) . (1.17)

We also obtain
Ln =

1
2
∑
k

ηµνj
µ
−kj

ν
n+k , (1.18)
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where the operators are normal-ordered: creation operators jµ−m, m > 0
are always on the left of annihilation operators jµm, m > 0; due to (1.15)
this subtlety only arises when n = 0.

The classical physical state conditions, which demand that the stress-
energy tensor components (1.6) vanish, are replaced in the quantum theory
by the Virasoro conditions

Ln|phys〉 = 0 , n > 0 , (L0 − a)|phys〉 = 0 , (1.19)

where a is a normal ordering constant. For a bosonic string a = 1. We
will derive the value of a for superstring later in this chapter.

A general string state is

|state〉 = jµ1
−n1 . . . j

µk
−nk |0; p〉 , (1.20)

where the vacuum |0; p〉 is annihilated by all jµn with n > 0. The eigen-
values of jµ0 are values of the momentum pµ of the center of mass of a
string. If the state (1.20) satisfies the Virasoro constraints and has a
non-vanishing norm, it is called physical.

The L0 Virasoro constraint defines the mass-shell equation:

1
2M

2 =
∑
n>0

ηµνj
µ
−nj

ν
n − a , (1.21)

where we have used the equation −j2
0 = −p2 = M2. The −a term is

therefore the zero-point energy of a string.
Due to (1.19), the negative-norm states which are created by the op-

erators j0
−k, k > 0 are decoupled from the physical spectrum. We are

going to illustrate this now with a simple example. Recall that |p; 0〉 is
a string oscillatory vacuum state, with a center-of-mass momentum pµ,
satisfying Ln|p; 0〉 = 0 for n > 0. Consider the first excited string state,
|ψ〉 = eµj

µ
−1|p; 0〉, where the polarization vector eµ has d independent com-

ponents. The only non-trivial Virasoro constraint (besides the mass-shell
condition (1.21)) is L1|ψ〉 = 0, which due to (1.16), (1.18) gets re-written
as pµeµ = 0. The mass of this state, due to (1.21) and the fact that a = 1,
is zero.

Due to (1.18) and (1.21) the state |χ〉 = L−1|p; 0〉 = pµj
µ
−1|p; 0〉 also

has zero mass, as the state |ψ〉, and has a longitudinal polarization eµ =
pµ. The state |χ〉 is called spurious: it satisfies the Virasoro constraints but
it is decoupled from any physical state |ω〉, because 〈χ|ω〉 = 〈p; 0|L1|ω〉 =
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0. In particular its own norm is equal to zero. Any state |ψ〉 is therefore
defined up to a state t|χ〉, with an arbitrary parameter t.

Let us now choose p0 =
√
M2 + p2 = p, pd−1 = p, pi = 0 for i =

2, . . . , d− 2. The index i labels polarizations of the string states transverse
to the direction of motion of its center of mass. The L1 Virasoro constraint
is then

p e0 + p ed−1 = 0 , (1.22)

and the spurious state is

t|χ〉 = t(−p j0
−1 + p jd−1

−1 )|p; 0〉 . (1.23)

Due to (1.22), (1.23) we can fix e0 = ed−1 = 0, which means that the
states with time-like and longitudinal polarizations are decoupled from
the physical spectrum of a string.

The systematic application of such an approach to the construction of
the physical spectrum of a first-quantized string is called covariant quanti-
zation of a string. We adopt this method in chapter 4. Another covariant
(w.r.t. Lorentz symmetry in the target space-time) way to quantize a
(super)string is the BRST method, which requires the introduction of
(super)conformal ghosts, contributing to the central charge. The method
which we are going to use below in this chapter is light-cone quantization,
which breaks space-time Lorentz symmetry down to the rotation group
SO(d− 2), acting only on transverse physical polarizations.

1.2.2 Ramond-Neveu-Schwarz superstring

The Ramond-Neveu-Schwarz (RNS) superstring is one way to formulate
superstring theory. In the RNS superstring the dynamical fields on the
world-sheet are the bosons Xµ(z, z̄) and the fermions Ψµ(z, z̄). Both of
these fields have a target space-time vector index µ. The RNS superstring
action is a sum of the Polyakov action (1.2) and Dirac terms for the world-
sheet fermions,

S =
1

2π

ˆ
d2z

(
∂Xµ∂̄Xµ +

1
2ψ

µ∂̄ψµ +
1
2 ψ̃

µ∂ψ̃µ

)
. (1.24)

Here ψ and ψ̃ are Majorana-Weyl one-component two-dimensional spinors,
with the two-component Majorana spinor being Ψ = (ψ , ψ̃). The action
(1.24) possesses two-dimensional supersymmetry. The fermions ψ and ψ̃
are respectively the left-moving and the right-moving superpartners of the
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currents j and j̃ defined by eq. (1.7). The equations of motion following
from the action (1.24) are

∂̄∂Xµ = 0 , ∂̄ψµ = 0 , ∂ψ̃µ = 0 . (1.25)

These equations must be accompanied by boundary conditions, which for
bosons Xµ are the same as in bosonic string theory, and for fermions are
to be chosen so thatˆ

dτ
[
ψµδψµ − ψ̃µδψ̃µ

]
σ=0
−
ˆ
dτ
[
ψµδψµ − ψ̃µδψ̃µ

]
σ=π

= 0 . (1.26)

Consider an open string. Suppose the bosons Xµ satisfy Neumann bound-
ary conditions. On the l.h.s. of (1.26) there are two square brackets, each
corresponding to one end of a string. We have to satisfy the boundary
conditions independently at each end, which means that we have to im-
pose ψ = ±ψ̃ at σ = 0,π. As a matter of convention we put ψ = ψ̃ at
σ = 0. The two options at the other end (σ = π) define two sectors of an
open string, the Neveu-Schwarz sector and the Ramond sector:

NS : ψµ|σ=π = −ψ̃µ|σ=π ,
R : ψµ|σ=π = ψ̃µ|σ=π .

(1.27)

The Laurent expansions of a general open string solution to (1.25) for
fermions with boundary conditions (1.27) are

NS : ψµ(z) =
∑

r∈Z+1/2

bµr
zr+1/2 , ψ̃µ(z̄) =

∑
r∈Z+1/2

bµr
z̄r+1/2 ,

R : ψµ(z) =
∑
n∈Z

dµn
zn+1/2 , ψ̃µ(z̄) =

∑
n∈Z

dµn
z̄n+1/2 ,

(1.28)

where n is integer-valued and r is half-integer-valued.
In the case of a closed string we have to impose (anti)periodic boundary

conditions separately for left- and right-moving states: ψ|σ=0 = ±ψ|σ=π
and ψ̃|σ=0 = ±ψ̃|σ=π. Each state belongs either to the NS sector and
is expanded in half-integer modes, or the R sector and is expanded in
integer modes. In total we can form four different combinations of left-
and right-movers.

The stress-energy tensor corresponding to the RNS action (1.24) is
given by

T (z) = −∂Xµ(z)∂Xµ(z)−
1
2ψ

µ(z)∂ψµ(z) , (1.29)

10



and similarly for the anti-holomorphic (right-moving) component T̃ (z̄).
Furthermore, the action (1.24) is invariant underN = (1, 1) two-dimensional
supersymmetry transformations, generated by a supercurrent with the
components

J (z) = ψ(z)j(z) , J̃ (z̄) = ψ̃(z̄)j̃(z̄) . (1.30)

The stress-energy tensor T (z) and the supercurrent J (z) form a holomor-
phic superconformal world-sheet current algebra. The operators T̃ (z̄) and
J̃ (z̄) form an anti-holomorphic copy of this superconformal algebra.

In the NS sector the supercurrent is expanded in half-integer modes,
and in the R sector it is expanded in integer modes

JNS(z) =
∑

r∈Z+1/2

Gr
zr+3/2 , Gr =

∑
s∈Z+1/2

ηµνb
µ
s j
ν
r−s ,

JR(z) =
∑
m∈Z

Fm
zm+3/2 , Fm =

∑
n∈Z

ηµνd
µ
nj
ν
m−n .

(1.31)

and similarly for the anti-holomorphic sector. Notice that in (1.31) the
indices r − s, m− n of the modes of the current jµ are integer-valued.
This is a consequence of the Neumann boundary conditions for bosonsXµ.
Below we generalize our consideration to the case of Dirichlet boundary
condition, with the bosons expanded in half-integer modes, jµs , s ∈ Z +
1/2. Supersymmetry requires the coefficients Gr to have a half-integer-
valued index r, and the coefficients Fm to have an integer-valued index m.
Therefore, due to (1.31), the corresponding NS fermions must be expanded
in integer-valued modes, bµn , n ∈ Z, while the R fermionic modes, dµs must
have half-integer valued indices, s ∈ Z + 1/2.

As we first-quantize the theory with the action (1.24) we get the cor-
relation functions (1.10) for the bosonic fields jµ(z), j̃µ(z̄), and the cor-
relation functions

〈ψµ(z1)ψ
µ(z2)〉 = ηµν

1
z1 − z2

, 〈ψ̃µ(z̄1)ψ̃
µ(z̄2)〉 = ηµν

1
z̄1 − z̄2

(1.32)

for the fermions. Using (1.10) and (1.32) we find the operator product
expansions of the operators of the superconformal algebra (only terms
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singular in the z1 → z2 limit are written down)

T (z1)T (z2) =
c/2

(z1 − z2)4 +
2T (z2)

(z1 − z2)2 +
T (z2)

z1 − z2
+ . . . , (1.33)

T (z1)J (z2) =
(3/2)J (z2)

(z1 − z2)2 +
∂J (z2)

z1 − z2
+ . . . , (1.34)

J (z1)J (z2) =
2c/3

(z1 − z2)3 +
2T (z2)

z1 − z2
+ . . . . (1.35)

The supersymmetry transformations are defined by the OPEs

J (z1)j(z2) =
ψ(z2)

(z1 − z2)2 +
∂ψ(z2)

z1 − z2
+ . . . , (1.36)

J (z1)ψ(z2) =
j(z2)

z1 − z2
+ . . . . (1.37)

From (1.28), (1.32) we obtain the anti-commutation relations

{bµr , bνs} = ηµνδr+s,0 , {dµn, dνm} = ηµνδn+m,0 . (1.38)

Therefore the operators bµ−r , r > 0 and dµ−n , n > 0 create string states
and the operators bµr , r > 0 and dµn , n > 0 annihilate string states. We
also have creation and annihilation operators, respectively, jµ−n , n > 0,
and jµn , n > 0, as in bosonic string theory. The string vacuum state |0〉
vanishes when we act on it with any annihilation operator. The negative-
norm states, created by the time-like polarized operators j0

−n, d0
−m and

b0
−r (m,n, r > 0) are decoupled from the physical spectrum due to the
super-Virasoro constraints:

NS : (L0−aNS)|phys〉=0 , Ln|phys〉=0 , Gr|phys〉=0 , n, r > 0 ,
R : (L0−aR)|phys〉=0 , Ln|phys〉=0 , Fm|phys〉=0 , n > 0,m ≥ 0 .

(1.39)
In the next subsection we will prove that if we impose Neumann boundary
condition for all polarizations then aNS = 1/2. One can show that L0 =
F 2

0 in the R sector. Therefore, due to the supersymmetry constraint F0 =
0, we have to put aR = 0.

In the R sector we have operators dµ0 , which, due to (1.38), form a
Dirac algebra in d dimensions:

{Γµ , Γν} = 2 ηµν , Γµ =
√

2 dµ0 . (1.40)
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If the state |0〉R is the vacuum of the R sector then the state dµ0 |0〉R is also
a vacuum of the R sector. Consequently any state in the R sector lives in
spinor representation of the Dirac algebra Cd−1,1, and therefore is a target
space-time spinor. This should be compared to the fact that any state in
the NS sector is a space-time boson.

1.2.3 Open RNS superstring and zero-point energy

As was explained above, the end of an open string can be free so that the
bosons Xµ on its world-sheet satisfy Neumann boundary conditions, or it
can terminate on a D-brane giving rise to Dirichlet boundary conditions.
In total there are four possibilities for the two ends of an open string. We
denote them as

(NN) , (ND) , (DN) , (DD) . (1.41)

The first letter specifies the boundary condition at the σ = 0 (z = eτ )
end, the second letter does so for the σ = π (z = −eτ ) end.

For the possible boundary conditions (1.41), we have the following
solutions to the equation (1.3):

NN : Xµ(z, z̄) = xµ − ipµ√
2

log (zz̄) + i√
2
∑
m6=0

1
m
jµm (z−m + z̄−m) ,

DD : Xµ(z, z̄) = xµ − ip̃µ√
2

log
(
z

z̄

)
+

i√
2
∑
m 6=0

1
m
jµm(z

−m − z̄−m) ,

DN : Xµ(z, z̄) = xµ +
i√
2
∑
r 6=0

1
r
jµr (z

−r − z̄−r) , (1.42)

ND : Xµ(z, z̄) = xµ +
i√
2
∑
r 6=0

1
r
jµr (z

−r + z̄−r) .

Here the index m is integer-valued and the index r is half-integer-valued.
Let us solve the Virasoro constraints explicitly, so that we are left with

only d− 2 transverse polarizations in the target space-time. This method
is called light-cone quantization, and it is convenient for our current pur-
poses. The physical operators are bir , din , jin, i = 1, . . . , d− 2, and we do
not have to worry about the super-Virasoro constraints.

Assume first that the bosons Xµ satisfy either NN or DD boundary
conditions, and therefore are expanded in integer modes. Using (1.29) we
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derive

R : L0 =
1
2
∑
n∈Z

d−2∑
i=1

ji−nj
i
n +

1
2
∑
n∈Z

d−2∑
i=1

ndi−nd
i
n ,

NS : L0 =
1
2
∑
n∈Z

d−2∑
i=1

ji−nj
i
n +

1
2

∑
r∈Z+1/2

d−2∑
i=1

rbi−rb
i
r .

(1.43)

Let us perform normal ordering of the creation and annihilation operators
in (1.43), placing annihilation operators to the right of creation operators.
In the R sector we obtain

L0 =
∑
n>0

d−2∑
i=1

(ji−nj
i
n + ndi−nd

i
n) +

1
2j

2
0 +

1
2
∑
n>0

d−2∑
i=1

([jin, ji−n]− n{din, di−n})

=
∑
n>0

d−2∑
i=1

(ji−nj
i
n + ndi−nd

i
n) +

1
2j

2
0 , (1.44)

where we have used the commutators (1.15) and (1.38). We see from
(1.44) that the zero-point energy in the R sector is zero, aR = 0, as we
concluded at the end of the previous subsection from the point of view of
the super-Virasoro constraints. Similarly in the NS sector we obtain

L0 =
∑
n>0

d−2∑
i=1

ji−nj
i
n +

∑
r>0

d−2∑
i=1

rbi−rb
i
r +

1
2j

2
0

+
1
2
∑
n>0

d−2∑
i=1

[jin, ji−n]−
1
2
∑
r>0

d−2∑
i=1

r{bir, bi−r} . (1.45)

Therefore due to (1.15) and (1.38), the zero-point energy in the NS sector
is given by

−aNS =
d− 2

2

 ∞∑
n=1

n−
∞∑

r=1/2
r

 = −d− 2
16 . (1.46)

Inserting the superstring value d = 10 we obtain aNS = 1
2 . In the last

equality of (1.46) we used zeta-function regularization. We know that the
zeta-function

ζ(s) =
∞∑
n=1

1
ns

(1.47)
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can be analytically continued so that
∞∑
n=1

n = ζ(−1) = − 1
12 . (1.48)

Now, introduce the sum of even numbers, Seven =
∑
n>0(2n), and the sum

of odd numbers Sodd =
∑
n>0(2n+ 1). We have Seven = 2ζ(−1) = −1

6 ,
and Sodd = ζ(−1)−Seven = 1

12 . Therefore in (1.46) we have
∑
r>0 r =

1
24 .

There exist independent ways to derive the same results for zero-point
energies.

The bottom line is that for NN and DD bosons we have aNS = 1/2,
and aR = 0, and therefore the mass formulae are,

R :
1
2M

2 =
∑
n>0

d−2∑
i=1

ndi−nd
i
n +

∑
n>0

d−2∑
i=1

ji−nj
i
n , (1.49)

NS :
1
2M

2 =
∑
r>0

d−2∑
i=1

rbi−rb
i
r +

∑
n>0

d−2∑
i=1

ji−nj
i
n −

1
2 . (1.50)

Consider an open string with NN or DD boundary conditions. The
vacuum |0〉NS in the NS sector is defined by the conditions bir|0〉NS = 0,
jin|0〉NS = 0, for r,n > 0. This state is a tachyon with M2 = −1,
as follows from (1.50). The procedure called Gliozzi-Scherk-Olive (GSO)
projection eliminates |0〉NS from the spectrum of the NS sector of the RNS
superstring. The lowest NS string state, which survives GSO projection,
is the d− 2-component massless vector bi−1/2|0〉NS .

The lowest state in the R sector, the vacuum |0〉R with zero mass,
survives GSO projection. As we have noticed above, this state is a space-
time fermion. In d = 10 dimensions it is a 16-component Majorana-
Weyl massless fermion with eight physical d.o.f. (A general spinor in ten
dimensions has 32 complex-valued components; each condition of being a
Majorana and Weyl decreases the number of independent components by
a factor of two, and the super-Virasoro constraint F0 = 0 further reduces
the number of independent components by a factor of two.) Therefore the
lowest state of an open RNS superstring consists of eight bosonic and eight
fermionic massless degrees of freedom, which is a vector supermultiplet
field content of N = 1, d = 10 supersymmetric Yang-Mills theory.

This result has a deep reason behind it: the RNS superstring, which
by construction has two-dimensional world-sheet supersymmetry, is actu-
ally space-time supersymmetric. Superstring theory which contains open
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strings has N = 1 space-time supersymmetry (16 supercharges), super-
string theory without open strings has N = 2 space-time supersymme-
try (32 supercharges). A formulation of superstring theory with explicit
space-time supersymmetry is called the Green-Schwarz (GS) superstring.

Now let us consider the DN and ND boundary conditions. In general
we find the following contributions to the normal ordering constant a from
half-integer or integer bosonic and fermionic modes:

ab i =
1
24 , ab h = − 1

48 , af i = −
1
24 , af h =

1
48 , (1.51)

where b and f stand for bosons and fermions, and i and h stand for integer
and half-integer, respectively.

One requirement that should always be satisfied is that the zero-point
energy in the R sector is zero. Suppose therefore that among the d− 2
transverse polarizations, ν of them are either DN or ND, with half-integer
bosonic current modes. Therefore the contribution of the bosons to the
zero-point energy is − ν

48 + d−2−ν
24 = 2(d−2)−3ν

48 . Therefore fermions in the
R sector should contribute 3ν−2(d−2)

48 . The fermions which are polarized
along d− 2− ν NN or DD directions have integer modes and contribute
−d−2−ν

24 . The fermions which are polarized along ν DN or ND directions
therefore must have half-integer modes and contribute ν

48 , adding up to a
required quantity 3ν−2(d−2)

48 .
Now we are ready to compute the zero-point energy in the NS sector.

The NS fermions have opposite kind of modes to those of the R fermions.
Therefore the fermions in d− 2− ν NN or DD directions have half-integer
modes and contribute d−2−ν

48 , and fermions in ν DN or ND directions have
integer modes and contribute − ν

24 . The contribution from the bosons is of
course the same as in the R sector and is equal to 2(d−2)−3ν

48 . We conclude
that

aNS =
d− 2

16 − ν

8 =
1
2 −

ν

8 . (1.52)

Due to the fact that aR = 0, the ground state of the R sector of an open
string is always a massless fermion. In the case of ν = 4 we get aNS = 0,
and the mass of the lowest NS state is therefore M2 = −2aNS = 0. It is
not projected out by GSO, so that we have an equal number of massless
bosons and fermions, furnishing a vector supermultiplet.
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1.2.4 Closed RNS superstring and Ramond-Ramond fields

In the case of the closed string, to construct the spectrum of excitations
we have to build physical states of the holomorphic and anti-holomorphic
sectors separately, and then take a direct product of these states. As was
already mentioned above, the boundary conditions which must be imposed
on fermions of the closed string are ψ|σ=0 = ±ψ|σ=π, ψ̃|σ=0 = ±ψ̃|σ=π,
giving rise to the NS and R sectors of left-movers (holomorphic states) and
right-movers (anti-holomorphic states). The fermions of the NS sector are
expanded in half-integer modes, bµr , b̃µr , and the fermions of the R sector
are expanded in integer modes, dµn, d̃µn. After GSO projection, the massless
(anti)holomorphic states in the light-cone quantization are

left : bi−1/2|0〉NS , |0〉R left ,
right : b̃i−1/2|0〉NS , |0〉R right .

(1.53)

Here |0〉R is a space-time fermion with eight independent real-valued com-
ponents and definite chirality. Let us specify its chirality by introducing
the notation |+〉 and |−〉.

By forming the direct product of left-moving and right-moving states
(1.53) we obtain 128 bosonic states, NS-NS and R-R, and 128 fermionic
states, NS-R and R-NS. The equality of number of bosonic and fermionic
degrees of freedom is not accidental: as was mentioned above, the RNS
superstring is actually space-time supersymmetric. In fact, 128+128 is
the on-shell field content of d = 10 N = 2 supergravity.

In the case when both left- and right-moving R fermions |0〉R have
opposite chirality we get type-IIA supergravity. The corresponding string
theory is type-IIA superstring theory. In this case the 64 of R-R degrees
of freedom |+〉⊗ |−〉 are expanded in irreducible representations of SO(8)
as C1 ⊕ C3, where C1 is a 1-form with 8 d.o.f. and C3 is a 3-form with
56 d.o.f. Similarly the R-R fields |+〉 ⊗ |+〉 of type-IIB supergravity are
p-forms C0, C2 and C4, with 1, 28 and 35 d.o.f. respectively (there is
a subtlety with C4, requiring that F5 = dC4 is Hodge self-dual in ten
dimensions, F5 = ?F5, which reduces the number of d.o.f. of the C4 by a
factor of two).

1.2.5 D-branes

A D-brane is an extended object on which an open string can end. For
example, if all of the coordinates but X1 satisfy Neumann boundary con-
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ditions, it means that there is D8-brane located at some point x1 = x1
0

and extended in the x2,3,...,9 directions. Similarly to a string having a two-
dimensional world-sheet, a D8-brane sweeps a nine-dimensional world-
volume as it moves in a space-time. If all coordinates of an open string
satisfy Neumann boundary conditions then we actually have a space-time
filling D9-brane, with its ten-dimensional world-volume being the entire
space-time.

In type-IIA superstring theory we can have Dp-branes with even-
valued p, and in type IIB superstring theory p must be odd-valued. The
reason for this selection originates in the stability of a Dp-brane, and is
tightly connected to the fact that a Dp-brane embedded in N = 2 su-
perstring theory is a Bogomol’nyi-Prasad-Sommerfield (BPS) object, pre-
serving 16 of the original 32 supercharges. We discuss this in more detail
in the next subsection.

Now, recall that a BPS object satisfies the conditionM = |Z|, withM
being a mass, and Z being (an appropriately defined) conserved charge.
It turns out that in the case of a Dp-brane, the role of the charge Z is
played by the charge w.r.t. the R-R field. The coupling of the Dp-brane
to the R-R field is described by the Chern-Simons action

SCS = TDp

ˆ
Cp+1 , (1.54)

where integration of the R-R p+ 1-form Cp+1 is performed over the p+ 1-
dimensional world-volume of the Dp-brane. In (1.54) the TDp ' 1

`p+1
s gs

is the tension of the Dp-brane, gs is the closed string coupling constant.
Notice that in the perturbative regime of small gs, aD-brane is very heavy.

A single Dp-brane is described by a supersymmetric theory on a p+ 1-
dimensional world-volume, with 16 conserved supercharges. The number
of on-shell fermionic d.o.f. is equal to eight. Due to supersymmetry, the
number of dynamical massless bosons on the world-volume must also add
up to eight.

An embedding of a Dp-brane into ten-dimensional target space-time is
described by ten fields Xµ(σa), µ = 0, 1, . . . , 10, where σa , a = 0, 1, . . . , p
are the world-volume coordinates. However, due to p + 1-dimensional
diffeomorphism symmetry, σa → σ′a(σb), we have only 9− p independent
bosonic d.o.f. Supersymmetry therefore requires the addition of p − 1
bosonic d.o.f. These come about as transverse polarizations of the U(1)
gauge field Aµ on the Dp-brane world-volume. In fact, the origin of this
massless vector supermultiplet on a Dp-brane world-volume is simple: its
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fields are the lowest modes of an open string attached to this Dp-brane
by both ends.

To summarize, the eight massless dynamical bosonic d.o.f. on a Dp-
brane world-volume are split into a gauge field Aµ with p− 1 physical
polarizations, and 9− p scalars ΦI , I = p+ 1, . . . 10, describing the em-
bedding of the Dp-brane into 10-dimensional target space-time.

Let us study the low-energy dynamics of a Dp-brane. Clasically we
can set the fermionic gaugino field to zero. Suppose the Dp-brane is
embedded in a space-time with a metric Gµν . It induces a metric gab,
a, b = 1, . . . , p+ 1, on the Dp-brane world-volume, such that

gab =
∂Xµ

∂σa
∂Xν

∂σb
Gµν . (1.55)

The total low-energy effective action of a Dp-brane consists of two terms.
One of them is a generalization of the Chern-Simons term (1.54),

SCS = TDp

ˆ [∑
p

Cpe
B+F

]
p+1

, (1.56)

where, on the r.h.s. of (1.56), B is the NS-NS two-form, and we introduced
the field strength F = dA, then we took the p+ 1-form part. The other
term, describing the low-energy Dp-brane dynamics, is the Dirac-Born-
Infeld (DBI) term,

SDBI = −TDp
ˆ
dp+1x

√
−det (g+B + F +GIJ∂ΦI∂ΦJ ) , (1.57)

where, on the r.h.s of (1.57), one takes the determinant of the matrix

||gab +Bab + Fab +GIJ∂aΦI∂bΦJ || . (1.58)

By varying the total action Stot = SDBI + SCS of the Dp-brane, one
obtains the equations of motion determining the embedding of the Dp-
brane into the target space-time, and the dynamics of the gauge field Aµ
on its world-volume.

1.2.6 T-duality and D-brane intersections

We have already discussed that a single Dp-brane embedded into a space-
time of type-II string theory breaks half of the original N = 2 super-
symmetry. Putting more Dp-branes which span various spatial directions
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generally breaks more supersymmetry, and in particular can result in a
non-supersymmetric theory. In this subsection we are going to discuss
how to count the number of supersymmetries which are preserved by the
given configuration of Dp-branes.

Let us start with type-IIB closed string theory. It has two 16-component
Majorana-Weyl conserved supercharges, Q1 and Q2, of the same chirality.
Now suppose we want to put an open string with Neumann boundary
conditions into the space-time. Open string boundary conditions are not
compatible with the N = 2 supersymmetry. The supersymmetry in fact
gets broken by a factor of two, the remaining conserved supercharge is
given by Q = Q1 +Q2. As we discussed above, the presence of an open
string with Neumann boundary conditions means the presence of a space-
time filling D9-brane. Therefore a D9-brane in type-IIB string theory
breaks N = 2 supersymmetry down to N = 1 supersymmetry with the
supercharge Q = Q1 +Q2.

The next question to ask is how many supersymmetries are preserved
by Dp-branes with p < 9. To answer it we are going to use T-duality of
superstring theory. Consider type-IIB superstring theory in a space-time
with the x9 coordinate compactified on a circle of radius R. It turn out
that the spectrum of superstring theory is left invariant if we perform the
T-duality transformation in the x9 direction, which amounts to replace-
ments of the compactification radius R→ 1/R and the anti-holomorphic
boson X̃9 → −X̃9. As can be seen from (1.42), T-duality transformation
interchanges the NN and DD boundary conditions in the x9 direction.
Therefore if in the type-IIB theory which we started with we had a space-
time filling D9-brane, which wrapped the x9 circle, then in the T-dual
theory we have a D8-brane which is localized at a certain point on the x9

circle, making the open string boundary condition along the x9 direction
be Dirichlet.

However we know that type-IIB string theory can only have Dp-branes
with odd-valued p. Therefore the T-dual string theory with a D8-brane
described above must be type-IIA string theory. Let us see what happens.
Due to the world-sheet supersymmetry the transformation of the boson
X̃9 → −X̃9 demands the transformation of the fermion ψ̃9 → −ψ̃9. In
particular the zero mode d̃9

0 of the anti-holomorphic fermion in the R sec-
tor reverses its sign. Consequently the Γ9 element of the anti-holomorphic
copy of the space-time Dirac algebra reverses its sign as well, and there-
fore so does the chirality operator Γ11 = Γ0Γ1 . . . Γ9. We conclude that
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the space-time supercharge Q2 changes chirality. In fact, supersymme-
try implies the T-duality transformation Q2 → Γ9Q2. The supercharge
preserved by the D8-brane localized at some point in the x9 direction is
therefore Q = Q1 + Γ9Q2.

We can generalize the procedure described above: an arbitrary Dp-
brane preserves a supercharge

Q = Q1 + Γk1 . . . Γk9−pQ2 , (1.59)

where indices k1, . . . , k9−p label 9− p directions, orthogonal to the Dp-
brane. In the case of type-IIA(-IIB) string theory p is even (odd), Q1 and
Q2 have opposite (the same) chiralities, and Q1 and Γk1 . . . Γk9−pQ2 have
the same chirality, and can be added to one another. Because Γ11Q2 =
±Q2 and due to the Dirac algebra anti-commutation relations, we can
re-write (1.59) as

Q = Q1 + Γ0 . . . ΓpQ2 , (1.60)

fixing an overall sign in front of the second term in the r.h.s. of (1.60) to
be plus as a matter of convention.

Now, as we know which supercharge is preserved by a single Dp-brane,
we can find the supercharge preserved by a configuration of several Dp-
branes. A simple observation is that several Dp-branes spanning the same
space directions but, in general, located at different points in the trans-
verse space, preserve the same supercharge as just one Dp-brane from this
set.

If we have several Dp-branes of various dimensions p and spanning
different space directions, the preserved supercharge, if any, is the one
which is preserved by each Dp-brane from the set. For concreteness and
following the needs of chapter 2, we are going to deal with the D3−Dp
system in type-IIB string theory. We are allowed to take any odd-valued
p. But we want the Dp-brane to have an intersection with the D3-brane in
three or four space-time dimensions. Therefore we can choose p = 3, 5, 7, 9.
The cases p = 3 and p = 9 are relatively trivial and not interesting
physically for the purposes of chapter 2, so we do not discuss them any
more.

We denote the directions spanned by the D3-brane as x0,1,2,3. The cor-
responding conserved supercharge is QD3 = Q1 + Γ0Γ1Γ2Γ3Q2. This can
be reformulated in the following way. Suppose ε1,2 are sixteen-component
spinor parameters of the supersymmetry transformation generated by the
operator εT1 Q1 + εT2 Q2. From the expression for QD3 we conclude that the
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D3-brane is only supersymmetric under transformations with arbitrary ε2
and ε1 completely determined by ε2 via the equation ε1 = Γ0Γ1Γ2Γ3ε2.
We have used the facts that ε1,2 are Majorana-Weyl real-valued spinors,
and the Γµ matrices are written in a Majorana real-valued representation,
with (Γa)T = Γa for a 6= 0, and (Γ0)T = −Γ0.

The Dp-brane is assumed to span the directions x0,1,2 or x0,1,2,3 along
with p − 2 or p − 3 directions in the six-dimensional space transverse
to the D3-brane. Let us be specific. We are considering the cases of
p = 5 and p = 7. Consider first a D5-brane which spans the directions
x0,1,2,3,4,5, therefore intersecting the D3-brane in the x0,1,2,3 directions.
Such a D5-brane preserves the supercharge QD5 = Q1 + Γ0Γ1 . . . Γ5Q2,
that is by itself invariant under supersymmetry transformations with ε1 =
Γ0Γ1 . . . Γ5ε2. Therefore, to make sure that the D3−D5 system is invari-
ant under supersymmetry transformations, we must satisfy the constraint
Γ4Γ5ε2 = ε2. Recall now that chirality in the (4, 5) plane is defined as
an eigenvalue of the operator S3 = iΓ4Γ5/2, which is equal to ±1/2.
Therefore Γ4Γ5ε2 = ±iε2, and the constraint Γ4Γ5ε2 = ε2 can never be
satisfied.

Consider now the D3 −D5 system with a three-dimensional inter-
section, that is consider a D5-brane, which spans directions x0,1,2,4,5,6.
We call it a D5′-brane, where prime is introduced as a short-hand no-
tation for this specific D5-brane. Supersymmetry is preserved by the
D5′-brane alone if the transformation parameters satisfy the constraint
ε1 = Γ0Γ1Γ2Γ4Γ5Γ6ε2. The D3−D5′ system therefore preserves super-
symmetry with parameter ε2, which satisfies Γ3Γ4Γ5Γ6ε2 = ε2. This con-
dition means that the chiralities of the spinor ε2 in, say, the (3, 4) and
(5, 6) planes are the same, which reduces the number of independent com-
ponents of ε2 by a factor of two. The D3−D5′ system therefore preserves
one-quarter of the original 32 supersymmetries.

In exactly the same way one can prove that the D3−D7 system with a
four-dimensional intersection is invariant under the action of eight super-
charges, while the D3−D7′ system with a three-dimensional intersection
breaks all the supersymmetries.

Notice that the fact that D3−D5 with a three-dimensional intersec-
tion, and D3−D7 with a four-dimensional intersection, are supersym-
metric is in agrement with the equation (1.52) (with ν = 4) for zero-point
energy, which gives aNS = 0 for both of these intersections. In both of
these cases we have a massless bosonic field in the spectrum of an open
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string stretched between D3-brane and Dp-brane.
For completeness it is worth underlying that one can also consider an

open string which starts and ends on the D3-brane and an open string
which starts and ends on the Dp-brane of the D3 −Dp system. The
massless modes of these strings comprise vector supermultiplets on the
world-volumes of the D3-brane and Dp-brane respectively.

1.2.7 Strings in a background; supergravity and supersym-
metric Yang-Mills theories

In the previous subsections we focused on strings and branes propagating
in a flat space-time, with no background fields turned on. We have also
found out that the massless modes of closed and open strings are fields of
supergravity and supersymmetric Yang-Mills, respectively. Therefore one
can consider a setup of strings creating a background with curved metric
and various non-vanishing fields, and other strings and branes moving in
this background as probe objects.

We are going to focus on classical string theory, with only bosonic
fields present. The bosonic field content of type-II supergravity consists
of NS-NS fields and R-R fields. The NS-NS fields are the same for type-IIA
and type-IIB supergravities, as well as for bosonic gravity. For simplicity
we will consider bosonic gravity. The field content is graviton Gµν , anti-
symmetric tensor Bµν , and dilaton Φ.

One can derive equations of motion for these fields from string theory
in the following way. Instead of the Polyakov action (1.2) we now have
the action

SP=
1

4πα′

ˆ
d2z

(
Gµν∂X

µ∂̄Xν+εαβBµν∂αX
µ∂βX

ν+α′ΦR(2)
)

, (1.61)

where R(2) denotes Ricci scalar on the world-sheet, εzz̄ = −εz̄z = 1, and
α,β = z, z̄ are world-sheet vector indices.

Let us perform a first quantization of a string described by the action
(1.61). It is defined by the Polyakov path integral, as in the case of a string
moving in the Minkowski background. However now due to non-trivial
background fields the situation is more complicated: the fields Gµν , Bµν
and Φ in the action (1.61) are themselves functions of the fields Xµ. The
way to proceed is to use string perturbation theory. In (1.61) we restored
the parameter α′ = `2s/2. In string perturbation theory one assumes that
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the string length `s is small (compared to a characteristic length scale in
a target space-time), and performs a perturbative expansion in α′.

The methodology is the same as in the case of usual perturbation
theory in quantum field theory. A path integral in interacting quantum
field theory accounts for high-energy modes in the low-energy effective La-
grangian by renormalizing the coupling constants and scaling dimensions.
Renormalization is described by beta-functions. String perturbation the-
ory also has beta-functions (with Gµν , Bµν and Φ in (1.61) playing the role
of coupling constants), and these beta-functions take into account string
loop corrections in the Polyakov path integral. In this thesis we only
consider classical string theory. To avoid possible confusion which may be
caused by the word ‘classical’ we remind the reader that in quantum string
field theory one also has to take into account vertices associated with the
string coupling constant gs, and loops of virtual particles between these
vertices.

The beta-functions for the ‘coupling constants’ Gµν , Bµν and Φ in
(1.61) are given by

βGµν = α′Rµν + 2α′∇µ∂νΦ− α′

4 HµλρH
λρ

ν +O(α′2) ,

βBµν = −
α′

2 ∇
λHλµν + α′∇λΦHλµν +O(α′2) ,

βΦ =
d− 26

6 − α′

2 ∇
2Φ + α′∇λΦ∇λΦ− α′

24HµνλH
µνλ +O(α′2) ,

(1.62)

where H = dB is the field strength of the two-form field Bµν . We have
seen above that for a bosonic string in a flat space-time the requirement
of conformal invariance on quantum level, which is a requirement of ab-
sence of Weyl anomaly, is a restriction d = 26 on the target space-time
dimension. Now, as the background fields are turned on, the require-
ment of conformal invariance is vanishing of the beta-functions (1.62). In
particular, when G = η, B = Φ = 0, it reduces to the d = 26 constraint.

We have outlined the derivation of equations of motion of bosonic grav-
ity. Up to the d− 26 central charge term in the last line of (1.62) these
are the same as the equations of motion for the NS-NS fields of type-II
supergravity (with gravitino, dilatino and R-R fields set to zero). These
equations do not provide a UV-complete description of gravity since the
derivation was made under the assumption of a smallness of the string
length `s =

√
2α′. At the string scale higher-order effects in the α′ ex-

pansion become essential, and the gravity approximation (1.62) becomes
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completely unreliable.
In a similar way one can derive the equations of supersymmetric Yang-

Mills theory from open string theory or from heterotic string theory. In
principle, systematically accounting for higher order corrections in α′, one
can derive precisely the higher-derivative terms which one needs to add
to the effective low-energy Einstein, Yang-Mills, etc., actions.

1.2.8 Wess-Zumino-Witten model

A particular case of a string moving in a non-trivial background is given
by a Wess-Zumino-Witten (WZW) model. It describes a string moving
on a group manifold or on a coset space; in the latter case it is called a
gauged Wess-Zumino-Witten (gWZW) model. Such a model is a central
element of chapter 4, so here we give an introduction to it.

Consider a string moving on the manifold of the group G with dimen-
sion dimG. Suppose g is an element of G. An embedding of the string
into the manifold G is then described by the field g(z, z̄). The action for
the bosonic string is the WZW action,

SWZW =
k

4π

[ˆ
d2zTr(g−1∂gg−1∂̄g)− 1

3

ˆ
B

Tr(g−1dg)3
]

, (1.63)

where the second term on the r.h.s. of (1.63), which is called the Wess-
Zumino (WZ) term, is an integral over a ball B , the boundary of which
is a world-sheet. Here k is called the level of the WZW model; for the WZ
term to be unambiguous the level k must be integer-valued. In the case
of a superstring one adds to this action the Dirac terms for dimG free
left-moving and right-moving Majorana-Weyl world-sheet fermions. For
simplicity we consider just a bosonic string in this subsection.

The Polyakov action (1.2) is conformally invariant. For the WZW
action (1.63) to describe a string, it must also be conformally invariant. In
the previous subsection we obtained that, for a string in background fields
to be conformally invariant, the background fields must satisfy effective
equations of motion in the target space-time. In the case of a WZW model
it turns out that an interplay between two terms in (1.63) is such that the
action SWZW is conformally invariant, and one only has to make sure that
the total central charge c of the theory vanishes.

Recall that a bosonic string in a flat space-time, described by the
Polyakov action (1.2), has conserved holomorphic (left-moving) and anti-
holomorphic (right-moving) currents (1.7). These currents originate as
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Noether charges from the translational invariance of a flat space-time (as
well as from the chirality of the Polyakov action, giving rise to two inde-
pendently conserved currents). For the action (1.63) to describe a string
it must also give rise to two independently conserved currents. The corre-
sponding symmetry transformation of the action (1.63) is the Kac-Moody
(KM) symmetry transformation, given by

g(z, z̄)→ g′(z, z̄) = Ω(z)g(z, z̄)Ω̃−1(z̄) . (1.64)

Correspondingly, for the WZW model at level k we have the conserved
currents

j(z) = jAt
A = −k2∂gg

−1 =
∑
n

jAn
zn+1 ,

j̃(z̄) = j̃At
A =

k

2g
−1∂̄g =

∑
n

j̃An
z̄n+1 .

(1.65)

The zero modes of the currents are generators of the algebra g of the
group G,

tA = jA0 , [tA, tB ] = ifABCtC . (1.66)

From the expression for currents (1.65), using (1.64) one can derive
the Kac-Moody transformations of the currents. For example, under a
holomorphic infinitesimal transformation Ω(z) = I − ω(z), we obtain

δj(z) = −[ω(z), j(z)] + k

2∂ω(z) , (1.67)

that is
δjA(z) = −ifABCωB(z)jC(z) +

k

2∂ω
A(z) . (1.68)

On the other hand, the KM of j with an infinitesimal parameter ω is
realized by the KM current itself:

δjA(z) =
1

2πi

˛
z
dw ωB(w)jB(w)j

A(z) , (1.69)

where the integral is taken over the contour around w = z. Matching
these two expressions, we obtain the current algebra OPE

jA(z)jB(w) =
k
2η

AB

(z −w)2 +
ifABC

z −w
jC(w) + . . . . (1.70)

Similar expressions are true for the anti-holomorphic current algebra.
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The holomorphic component of the stress-energy tensor is given by the
Sugawara expression

T (z) =
1
κ

: jA(z)jA(z) :=
1
κ

1
2πi

˛
z

dx

x− z
jA(x)jA(z) , (1.71)

where the index in the adjoint representation of the corresponding algebra
is defined as

cV δ
AB = fACDfBCD . (1.72)

In (1.71) we have used a simple expression for normal ordering. The
normalization constant κ will be fixed below.

The stress-energy tensor (1.71) satisfies the Virasoro OPE (1.13), with
the central charge given by

c =
k dimG

k+ cV
. (1.73)

For completeness notice that in the supersymmetric WZW model we also
have dimG free world-sheet fermions, each fermion contributes central
charge 1/2.

The infinitesimal conformal transformation δz = ε(z) acts on the cur-
rent as

δjA(z) = ∂ε(z)jA(z) + ε(z)∂jA(z) . (1.74)

On the other hand, this transformation is generated by the stress-energy
tensor (1.71) as

δjA(z) =
1

2πi

˛
z
dw ε(w)T (w)jA(z) . (1.75)

After some algebra, using (1.71), one finds the OPE

T (z)jA(w) =
k+ cV
κ

(
jA(w)

(z −w)2 +
∂jA(w)

z −w

)
, (1.76)

which therefore implies that the normalization constant is equal to

κ = k+ cV . (1.77)
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1.2.9 D-branes and black branes

One can perform a consistent truncation of type-II supergravity: set most
of the fields to zero in such a way that the equations of motion are satisfied.
Let us consider the following consistent truncation of type-IIB supergrav-
ity: the only non-vanishing fields are the metric gµν , the R-R field C4 with
field strength F5 = dC4, and the dilaton φ. The action is

S =
1

(2π)7`8s

ˆ
d10x
√
−g

[
e−2φ(R+ 4(∂φ)2)− 1

4 |F5|2
]

, (1.78)

where |F5|2 = 1
5!Fµ1...µ5F

µ1...µ5 .
Notice that the action is written for the string frame metric gµν , which

is related to the Einstein frame metric Gµν by gµν = eφ/2Gµν . The Ein-
stein frame is defined so that the Ricci scalar term in the action is not
multiplied by an exponent of the dilaton, L =

√
−GRG+ . . . . Suppose the

dilaton is constant. It defines a closed string coupling constant, gs = eφ.
In the string frame the dimensions are measured in units of the string
length, `s, and in the Einstein frame these are measured in the units of
the Planck length, `p. We conclude that 1/`2s = g1/2

s /`2p, and therefore

`p = g1/4
s `s . (1.79)

The supergravity equations of motion following from the action (1.78)
admit the 3-brane solution,

ds2 = −D+(r)D−(r)
−1/2dt2 +D−(r)

1/2(dx2 + dy2 + dz2)

+
dr2

D+(r)D−(r)
+ r2dΩ2

5 , (1.80)

D±(r) = 1−
(
r±
r

)4
, eφ = gs , F5 = Q(ω5 + ?ω5) ,

where gs is a constant, and ω5 is the volume form of the unit five-sphere
S5.

The metric (1.80) is a generalization of a black hole metric to a higher-
dimensional space. It describes a black brane, extended in R3 space with
(x, y, z) coordinates. This is generally a non-extremal black 3-brane, char-
acterized by two radii parameters r±. The condition of absence of a naked
singularity at r = 0 demands r+ ≥ r−.

We have two kinds of 3-branes now: the black 3-brane (1.80) and the
D3-brane. They both are coupled to the R-R field C4. The D3-brane is
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a supersymmetric BPS object: both its tension and R-R charge are equal
to TD3. While the black 3-brane (1.80) is generally not supersymmetric.
When the black 3-brane is supersymmetric it becomes equivalent to the
D3-brane. Let us see how the supersymmetry constraint on the black
3-brane comes about. The black 3-brane metric is supported by a flux
of F5 through the five-sphere surrounding the 3-brane in ten space-time
dimensions. We conclude that the 3-brane carries N units of charge of the
R-R field C4, with N = Q vol(S5). The mass and the R-R charge of the
black brane (1.80) per unit volume of R3 are given by

T3 =
1

4(2π)4g2
s`

8
sd3

(5r4
+ − r4

−) , N =
(r+r−)2

d3gs`4s
, (1.81)

where d3 is a numerical factor. The condition r+ ≥ r− therefore becomes

T3 ≥ NTD3 , TD3 =
1

(2π)3gs`4s
, (1.82)

where TD3 is the tension of the D3-brane. Equation (1.82) is precisely a
supersymmetry BPS constraint: a single 3-brane (with N = 1) is super-
symmetric if its tension T3 is equal to its R-R charge TD3.

We start the next section with a discussion of the extremal 3-brane
metric and its near-horizon limit. We will also return to the consideration
of the non-extremal 3-brane in the context of configurations with finite
temperature.

1.3 Holographic correspondence
In this section we are going to review the holographic AdS/CFT corre-
spondence: the equivalence between string theory on Anti-de Sitter (AdS)
space and gauge field theory on the boundary of AdS space. We are also
going to review the holographic correspondence between Little String The-
ory and closed string theory in the ‘cigar’ geometry.

1.3.1 The near-horizon limit

At the end of the previous section we derived the black three-brane solu-
tion (1.80) of type-IIB supergravity. Its metric has two horizons, and in
the case when the horizons coincide we obtain an extremal black three-
brane equivalent to the D3-brane of type-IIB superstring theory.
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Let us re-write the metric of the D3-brane in the following form,

ds2 = H−1/2ηµνdx
µdxν +H1/2(dr2 + r2dΩ2

5) , H(r) = 1 +
(
R

r

)4
,

(1.83)
with the horizon located at r = 0, and the scale parameter defined as

R4 = 4πgsNα′2 , (1.84)

where N is the R-R charge of the D3-brane, which is actually the number
of coincident D3-branes. In the near-horizon limit, r/R� 1, we obtain

ds2 =

(
r

R

)2
ηµνdx

µdxν +

(
R

r

)2
dr2 +R2dΩ2

5 . (1.85)

This is the metric of the AdS5 × S5 geometry.

1.3.2 AdS space and its symmetries

The AdS5 space can be described as a surface in a six-dimensional flat
space (with coordinates tµ), with (−,−,+,+,+,+) signature. The em-
bedding is given by the equation

−t21 − t22 + t23 + t24 + t25 + t26 = −R2 . (1.86)

The parameter R is called the AdS scale. The group of transformations
which leaves the surface (1.86) invariant is SO(2, 4).

Combining it with the symmetry group SO(6) of the five-sphere we
conclude that the subgroup of ten-dimensional diffeomorphisms which
leaves the AdS5×S5 invariant is SO(2, 4)×SO(6). Type-IIB superstring
theory in the AdS5 × S5 geometry is also invariant under 32 supersym-
metries, the same amount as in ten-dimensional Minkowski space-time.
The conserved supercharges split into (4, 4)⊕ (4̄, 4̄) under the covering
bosonic symmetry group SU(2, 2) × SU(4). The total supersymmetry
group is therefore PSU(2, 2|4).

Let us now focus more on AdS space. Consider AdSd+1 space embed-
ded into d+ 2-dimensional space,

−t21 − t22 +
d∑
i=1

y2
i = −R2 . (1.87)
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We can solve the equation (1.87) by d+ 1 independent coordinates, (x0,xa, z),

t2 = R
x0
z

, t1 =
z

2

(
R2

z2 + 1 + x2
a − x2

0
z2

)
,

ya = R
xa
z

, yd =
z

2

(
R2

z2 − 1− x2
a − x2

0
z2

)
.

(1.88)

The coordinates (x0,xa, z) parametrize half of the AdSd+1 space, known
as the Poincare patch. The boundary of AdS is located at z = 0. The
metric is given by

ds2 = R2−dx
2
0 + dx2

1 + · · ·+ dx2
d−1 + dz2

z2 . (1.89)

Notice the presence of the horizon, gtt|z=∞ = 0, at z = ∞. This is
the Poincare horizon originating from the choice of coordinates (1.88). To
compare with (1.85) we make a change of the radial coordinate, z = R2/r.

1.3.3 N = 4 supersymmetric Yang-Mills theory

The AdS5 × S5 geometry appeared as the near-horizon geometry of N
coincident D3-branes. Let us now look at the world-volume theory of the
D3-branes. In the previous section it was explained that the low-energy
theory of a Dp-brane is given by the DBI and CS actions for the U(1)
gauge field, scalars and fermions on the p+ 1-dimensional world-volume.
Keeping only the lowest order terms in the α′ expansion, we obtain the
Lagrangian of supersymmetric Yang-Mills theory with U(1) gauge group.
For the N coincident Dp-branes we obtain non-abelian supersymmetric
Yang-Mills theory with gauge group U(N).

In the case of D3-branes there are six scalars ΦI , I = 1, . . . , 6, de-
scribing the fluctuations of the D3-branes in the six-dimensional trans-
verse space. Together with the two transverse polarizations of the vector
field on the four-dimensional world-volume, the total number of physical
bosonic d.o.f. is therefore equal to eight and matches the number of phys-
ical d.o.f. of four fermions ψi, i = 1, 2, 3, 4 (recall that Weyl fermion in
4d has four independent components). All the fields live in the adjoint
representation of the gauge group U(N).

The U(1) subgroup decouples from the rest of the U(N) group. The
resulting low-energy theory on the world-volume of D3-branes is N = 4
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supersymmetric SU(N) Yang-Mills theory (SYM), with the Lagrangian
schematically given by

LSYM=− 1
4g2
YM

Tr
(
FµνF

µν+DµΦIDµΦI+ψ̄iγµDµψ
i+[ΦI , ΦJ ]2+ . . .

)
,

(1.90)
where dots denote all extra interaction terms required by supersymmetry.
This is a maximally supersymmetric four-dimensional gauge theory.

In four dimensions gauge theory is classically conformally invariant.
Quantum corrections generally spoil conformal invariance creating renor-
malization group flow. However in the case of N = 4 SYM theory this
turns out not to be the case; the Lagrangian (1.90) is exactly confor-
mally invariant at quantum level. The conformal symmetry group in four
dimensional space-time is SO(2, 4).

The R-symmetry subgroup of the N = 4 supersymmetry group is
SU(4). The fermions ψi live in the fundamental representation 4 of
SU(4), and the six scalars ΦI are rotated by SO(6) ' SU(4). Therefore
the covering bosonic symmetry group of N = 4 SYM is SU(2, 2)×SU(4).
The fermionic symmetry generators consist of four supersymmetry gener-
ators and four super-conformal generators. The latter appear in commu-
tators of supersymmetry generators with special conformal generators. In
total there are 32 conserved fermionic charges. The supersymmetry group
is PSU(2, 2|4).

1.3.4 Large N limit

It turns out that when the number of colors N is sent to infinity, the
SU(N) gauge theory simplifies. We need to consider the ’t Hooft cou-
pling λ = g2

YMN instead of the Yang-Mills coupling gYM : as N is varied
gYM is varied accordingly so that λ remains unchanged. The reason for
such rearrangement is that we want to obtain a sensible large N limit of
Feynman diagrams. Consider for example the gluon one-loop correction
to the gluon propagator. Each of the two three-gluon vertices contributes
the factor of gYM , and the loop contributes the factor of N . The diagram
is therefore proportional to g2

YMN . It describes the lowest order term in
the renormalization group flow of the YM coupling,

dgYM
d log M = b0g

3
YMN + . . . ⇒ dλ

d log M = 2b0λ
2 + . . . . (1.91)
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and it has a smooth large N limit if we keep λ = g2
YMN fixed as N is sent

to infinity.
In the large N limit, non-planar Feynman diagrams, that is the dia-

grams which cannot be drawn on a plane (in the double-line notation),
become sub-leading [5]. We refer the reader to chapter 2 of [6] for a nice
review of the large-N limit of gauge theories.

In the large N limit, the low-energy gauge-singlet degrees of freedom
are decoupled from each other. This is usually referred to as large-N
factorization. The diagrams with two single-trace vertices can be either
connected, when the vertices are linked to each other by internal lines, or
disconnected, when the vertices are closed up on themselves. The latter
diagrams are leading in the large-N limit. Nevertheless the theory is still
non-trivial. For instance in the large-N QCD at low energies, one has free
mesons. But the spectrum of mesons as well as the scaling dimensions
of the meson operators are unknown, and the conventional derivation of
these quantities by QFT means dealing with strongly coupled (and con-
fining) dynamics of quarks within mesons. The spectrum of mesons can
be read off from the poles of the two-point functions of the baryon cur-
rent operators. In the large N limit the computation of such two-point
functions requires summation of planar diagrams, which is an ill-defined
procedure at strong coupling.

1.3.5 AdS/CFT correspondence

We have demonstrated in the previous subsections that the symmetry
group PSU(2, 2|4) of type-IIB superstring theory on AdS5 × S5 is the
same as the symmetry group of N = 4 SYM theory. It turns out that
this matching is not accidental. The N = 4 SYM theory is the low-energy
theory of massless modes of open strings attached with both ends to the
D3-branes. According to the AdS/CFT correspondence this theory is ex-
actly equivalent to the type-IIB superstring theory in the near-horizon
AdS5 × S5 background created by the D3-branes [7]. One can in fact
perform a reduction on the five-sphere S5. This correspondence is holo-
graphic: the N = 4 SYM theory lives in the four-dimensional Minkowski
space-time, while closed type-IIB strings live in the five-dimensional bulk
space, AdS5. The field theory can be referred to as living on the four-
dimensional boundary of the AdS5 space.

The bulk side of the duality is gravitational, since gravity fields are
the lowest (massless) modes of the closed string theory; the boundary
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side is non-gravitational, because gravity is not a part of the open string
spectrum. The gauge coupling constant, gYM , is the open string coupling
constant, related to the closed string coupling constant, gs, by the equation

g2
YM = 4πgs . (1.92)

Combining this equation with the equation (1.84) for the AdS scale
we obtain (in this section string length is defined as `s =

√
α′)

`s
R

=
1

λ1/4 . (1.93)

The closed string excitations in the AdS5 × S5 bulk can be neglected if

`s
R
� 1 ⇒ λ� 1 . (1.94)

If the condition (1.94) is satisfied then the the bulk dynamics is well ap-
proximated by type-IIB supergravity.

Due to the equation (1.79) for the relation between the string scale and
the Planck scale, we conclude that quantum gravity effects are negligible
provided

`p
R

=
1

(4πN)1/4 � 1 ⇒ N � 1 . (1.95)

This is a consequence of the fact that at fixed λ and large N the closed
string coupling constant gs is small, and the bulk theory is classical.

We conclude that the large-N limit of strongly coupled N = 4 SYM
theory is dual to classical supergravity theory in the AdS5 × S5 space.

1.3.6 Less supersymmetry, non-conformal field theories

We have reviewed the holographic duality between N = 4 SYM theory
and type-IIB string theory on AdS5×S5. The set of holographic dualities
is not exhausted by this example. One can break a fraction or all of super-
symmetries. One can consider holographic descriptions of non-conformal
field theories. For example, one can turn on a finite temperature and/or
chemical potential in the field theory, breaking supersymmetry and con-
formal invariance. The dual bulk geometry in this particular example is
a charged black hole in AdS.

In the following subsections of this chapter we are going to review the
holographic correspondence in the most general way, with a QFT on the
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boundary of asymptotically AdS space dual to a classical gravitational
theory in the bulk. Then we proceed to the holographic description of
Little String Theory.

1.3.7 Gubser-Klebanov-Polyakov-Witten formula

Consider quantum gauge field theory with the gauge-singlet operators
OI . For example, one can deal with a charge current, fermionic bi-linear
operator, baryon operator, glueball, stress-energy tensor, etc. Holographic
duality maps these boundary QFT operators to the fields φI defined in
the bulk of AdS space. One can ask a QFT question: what is the n-
point function 〈OI1 . . .OIn〉 equal to? In a strongly interacting system
this question is generally impossible to find an answer to by conventional
QFT means. One generally looks for a generating functional, W [JI ],
which depends on the sources JI . In the Euclidean set-up it is defined as

e−W [JI ] = 〈eJIOI 〉QFT , (1.96)

where on the r.h.s. of (1.96) we have a path integral of the QFT with the
operators OI sourced by the external currents JI . The n-point function
is then

〈OI1 . . .OIn〉 = ∂n

∂JI1 . . . ∂JIn
e−W [JI ] . (1.97)

The Gubser-Klebanov-Polyakov-Witten formula [8, 9] gives the holo-
graphic prescription for computation of the generating functional W ,

e−W [JI ] = Zstring|φI (z=0)=JI , (1.98)

where Zstring on the r.h.s. of (1.98) is the string partition function in
the bulk, with the bulk fields φI fixed at the boundary z = 0 to the
values of the sources JI of the dual QFT operators OI . When the QFT
is strongly coupled, due to (1.94), the string partition function can be
approximated by the supergravity partition function. If the number of
colors N is large supergravity is classical, see (1.95), and one can use a
saddle point approximation,

Zstring=Zsugra=e
−Ssugra ⇒ W [JI ] = Ssugra[φI(z=0)=JI ] . (1.99)

In (1.99) the supergravity action is evaluated on the classical solution to
the bulk equations of motion.
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1.3.8 Probe branes and flavor

Let us add matter fields living in the fundamental representation of the
gauge group. Ultimately it would be useful to apply holographic methods
to QCD-like models, and this is why we have to know how to add quarks
to the system. Quarks have a color and a flavor. These are realized as
open strings attached with one end to N coincident color D3-branes and
with the other end to F coincident flavor Dp-branes [10]. The lowest
excitation modes of such strings are quarks, and they live in the fun-
damental representation of the U(N) color group and the U(F ) flavor
group. Taking F/N � 1 one can consider flavor branes as probes in
the AdS5 × S5 background. World-volume U (F ) degrees of freedom on
the probe Dp-branes decouple from the U(N) adjoint gauge fields and
fundamental matter fields on the D3-branes.

Now we have a global flavor U(F ) symmetry on the field theory side
of the duality. According to the AdS/CFT correspondence, a global sym-
metry in the QFT is mapped to a local symmetry in the bulk. In the case
at hand the conserved U(F ) Noether currents are mapped to the U (F )
gauge d.o.f. on the Dp-brane world-volume.

In subsection 1.2.6 we discussed the system of intersecting branes and
concluded that the interesting non-trivial cases are D3/Dp-brane systems
with p = 5, 7, with three or four dimensional intersections. We also dis-
cussed the conditions for the non-broken supersymmetry in such systems.
We are going to use these results in chapter 2, where we study probe brane
matter at finite baryon density, strongly coupled to the N = 4 gauge d.o.f.
In that case the global (baryon) symmetry is represented holographically
by the U(1) gauge field on the world-volume of the probe brane. A finite
density of bound states of strongly coupled quarks is dual to a non-trivial
background U (1) gauge field. Fluctuations of density are represented by
fluctuations of this gauge field.

1.3.9 Finite temperature and chemical potential, thermo-
dynamics

Suppose we have a four-dimensional gauge theory. In the IR it is de-
scribed by the effective action, W , obtained in the Wilsonian framework
by path integration over the high-energy modes of the fields. In subsection
1.3.7 we described the prescription of the AdS/CFT correspondence for
computation of the effective action.
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Let us turn on a temperature, T . The effective action is then replaced
by the free energy, F = E − TS, where E is the energy and S is the
entropy. We proceed further and turn on chemical potentials for some of
the conserved charges. For example, we can consider a finite density of
baryon matter in the IR. Then the free energy is replaced by the grand
potential, Ω = E − TS − µN , where N is the number of baryons and µ
is the chemical potential. In this subsection we are going to focus on this
general case.

The AdS/CFT prescription for the grand potential of the field theory
at finite temperature and chemical potential is a straightforward general-
ization of the GKPW formula (1.98). First of all, the effective actionW is
replaced by the grand potential Ω. Now, as the temperature in the CFT
is turned on, the dual AdS5 geometry gets replaced with the Schwarzshild
black hole in AdS5 space [11] (which is a dominant solution when the
temperature is large enough). A finite chemical potential of a conserved
charge is described holographically by a non-trivial background profile of
the corresponding gauge field in the bulk. As a result we obtain a charged
black hole in AdS space.

Suppose the boundary field theory is strongly coupled and the number
of colors is large. We can use a saddle point approximation equating the
grand potential with the bulk on-shell classical regularized action S:

TSon−shell = E − TS − µN . (1.100)

1.3.10 Holographic description of Little String Theory

One way to introduce Little String Theory (LST) [12, 13] is to consider the
low-energy theory on the world-volume of N coincident NS5-branes at a
fixed energy scale and vanishing string coupling. Recall that NS5-branes
arise both in type-IIA and type-IIB superstring theory as electro-magnetic
duals of the superstring. A superstring couples electrically to the massless
NS-NS two-form field Bµν , see (1.61). In nine spatial dimensions, a string
is surrounded by seven-sphere. The charge of a string w.r.t. to the B
field is equal to the flux of the Hodge dual of the field strength H = dB
through the seven-sphere. As a consistency check notice that the Hodge
dual ?H in ten dimensions is a seven-form.

Similarly, recall that a Dp-brane couples electrically to the Cp+1 R-
R field and magnetically to the C7−p field. The object which couples
magnetically to the B field is an NS5-brane. It is surrounded by a three-
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sphere, and its magnetic charge w.r.t. to the B-field is equal to the flux of
H through this three-sphere. In type-IIB superstring theory, fluctuations
of an NS5-brane are determined by a D1-brane attached to it by both
ends, in type-IIA superstring theory a D2-brane attaches to an NS5-
brane. S-duality between a string and a D1-brane is consistent with S-
duality between an NS5-brane and a D5-brane. The S-dual of a string
attached to aD5-brane is therefore aD1-brane attached to an NS5-brane.

The low-energy d.o.f. on an NS5-brane form a U(N) gauge supermul-
tiplet on a six-dimensional world-volume. The coupling constant is given
by g = `s; the theory is formulated at a fixed energy scale . Under the
RG flow, the coupling constant of the six-dimensional theory grows in the
UV. Of course in the UV more of the string d.o.f. should be added to the
theory.

One can study LST holographically. We refer the reader to [14] for an
extensive exposition of the subject and restrict here to a general outline.
The background created by N coincident NS5-branes has the geometry
R5,1×Rφ×S3. Here R5,1 is the world-volume of an NS5-brane, Rφ is the
radial (bulk) direction and S3 is the sphere surrounding the NS5-branes,
with N units of the B-field flux threading through it. The radius of the
three-sphere is R =

√
N`s, and therefore string excitations in the bulk are

suppressed when N is large. String theory on S3 is given by the SU(2)
WZW model at level N . There is a background dilaton field depending
linearly on the bulk radial coordinate φ.

The statement is that LST is holographically dual to closed string the-
ory in the background of N coincident NS5-branes. In the double scaling
limit this background is R5× SL(2,R)N

U(1) ×SU(2)N , where SL(2,R)N/U(1)
is a two-dimensional ‘cigar’ geometry with the linear dilaton [15]. The time
coordinate is periodic, the corresponding temperature is T = (2π

√
N)−1.

A string on SL(2,R)N/U(1) is described by the gauged WZW model on
this coset space.

In chapter 4 we generalize this set-up to the situation of a non-vanishing
charge density in the LST. To be precise, we do not know what is the field
theory side of the holographic duality presented in chapter 4. Instead we
study the bulk side of the duality, which is the gauged WZW model on
SL(2,R)N×U(1)

U(1) . The classical geometry is a two-dimensional charged black
hole, which is therefore dual to a field theory at finite charge density.
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1.4 This thesis
Chapters 2, 3 and 4 of this thesis are based on the original research papers
[16], [17] and [18] respectively, which I have written in collaboration with
Dr. Andrei Parnachev and Prof. Dr. Jan Zaanen.

1.4.1 Chapter 2

In this chapter we study correlators of the global U(1) currents in holo-
graphic models which involve N = 4 SYM coupled to finite density matter
in the probe brane sector. We find the spectral density associated with
the longitudinal response to be exhausted by the zero sound pole and ar-
gue that this could be consistent with the behavior of a Fermi liquid with
vanishing Fermi velocity. However the transversal response shows an un-
usual momentum independent behavior. Inclusion of magnetic field leads
to a gap in the dispersion relation for the zero sound mode propagating
in the plane of magnetic field. For small values of the magnetic field B,
the gap in the spectrum scales linearly with B, which is consistent with
Kohn’s theorem for nonrelativistic fermions with pairwise interaction. We
do not find signatures of multiple Landau levels expected in Landau Fermi
liquid theory. We also consider the influence of generic higher derivative
corrections on the form of the spectral function.

1.4.2 Chapter 3

In this chapter we investigate some phenomenological aspects of the holo-
graphic models based on the tachyon Dirac-Born-Infeld action in the
AdS space-time. These holographic theories model strongly interacting
fermions and feature dynamical mass generation and symmetry breaking.
We show that they can be viewed as models of holographic walking tech-
nicolor and compute the Peskin-Takeuchi S-parameter and the masses of
the lightest technimesons for a variety of tachyon potentials. We also
investigate the phase structure at finite temperature and charge density.
Finally, we comment on the holographic Wilsonian RG in the context of
holographic tachyon DBI models.

1.4.3 Chapter 4

In this chapter we consider an exactly solvable worldsheet string theory
in the background of a black brane with a gauge field flux. Holograph-
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ically, such a system can be interpreted as a field theory with a finite
number of degrees of freedom at finite temperature and density. This is to
be contrasted with more conventional holographic models which involve
gravity in the bulk and possess infinite number of degrees of freedom and
mean field critical exponents. We construct closed string vertex operators
which holographically represent the U(1) gauge field and the stress en-
ergy tensor and compute their two-point functions. At finite temperature
and vanishing charge density the low energy excitations are described by
hydrodynamics. As the density is raised, the system behaves like a sum
of two noninteracting fluids. We find low-energy excitations in the shear
and sound channels of each fluid.
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Chapter 2

Fluctuations in finite
density holographic
quantum liquids

2.1 Introduction and summary

Perhaps the deepest open problem in condensed matter physics is the
classification of compressible quantum liquids. This refers to stable states
of zero temperature quantum matter that do not break any symmetry
and support massless excitations. This question cannot be easily ad-
dressed within the confines of standard field theory. The issue arises when
fermions are considered at finite density and the culprit is known as the
“fermion sign” problem. Dealing with time-reversal symmetric finite den-
sity bosonic matter the methods of equilibrium statistical physics give a
full control and invariably one finds that the ground states break sym-
metry. Dealing with incompressible quantum fluids like the fractional
quantum Hall states the mass gap is quite instrumental to control the
theory, revealing the profound non-classical phenomenon of topological
order. The hardship is with the compressible quantum fluids: the only
example which is fully understood is the Fermi-liquid.

The ease of the mathematical description of the Fermi-liquid as the
adiabatic continuation of the Fermi-gas is in a way deceptive. Compared
to classical fluids its low energy spectrum of non-charged excitations is
amazingly rich. In addition to the zero sound, there is a continuum of
volume conserving “shape fluctuations” of the Fermi-surface, correspond-
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ing with the particle-hole excitations (Lindhard continuum) of the con-
ventional perturbative lore. Although serious doubts exist regarding the
mathematical consistency and their relevance towards real physics, the
“fractionalized (spin) liquids” that were constructed in condensed matter
physics appear to be still controlled by the presence of a Fermi-surface
while these are not Landau Fermi-liquids in the strict sense. This inspired
Sachdev to put forward the interesting conjecture that the Fermi-surface
might be ubiquitous for all compressible quantum liquids [1].

The gauge-gravity duality or AdS/CFT correspondence provides a
unique framework to deal with these matters in a controlled way (see
[1–6] for recent reviews). Although it addresses field theories that are at
first sight very remote from the interacting electrons of condensed matter,
there are reasons to believe that it reveals generic emergence phenom-
ena associated with strongly interacting quantum systems. Field theories
whose understanding is plagued by the “fermion sign” problem appear to
be quite tractable in the dual gravitational description. With regard to
unconventional Fermion physics, perhaps the most important achievement
has been the discovery of the “AdS2 metal” [7, 8], dual to the asymptot-
ically AdS Reissner-Nordstrom black hole. On the field theory side this
describes a local (purely temporal) quantum critical state that was not
expected on basis of conventional field theoretic means. Although quite
promising regarding the intermediate temperature physics (the “strange”
normal states) in high Tc superconductors and so forth, this AdS2 metal
is probably not a stable state, given its zero temperature entropy. Much
of recent activity has been devoted to the study of the instability of this
metal towards bosonic symmetry breaking (holographic superconductivity
[9], “stripe” instabilities [10]) and towards the stable Fermi liquid [11–13].

The top-down constructions might become quite instrumental in facil-
itating the search for truly new quantum liquids. An important category
are the Dp/Dq brane intersections; the p = 3 case provides us with a set of
especially tractable examples. The dynamics of the low energy degrees of
freedom of the D3-Dp strings can be studied in the probe approximation
where the back-reaction to the AdS5×S5 geometry can be neglected [14].
In this chapter we will consider D3 and Dp branes intersecting along 2+1
dimensions, where p=5 (p=7) corresponds to the (non)-supersymmetric
system. As emphasized in [15] the nonsupersymmetric system can be
viewed as a model of graphene: the brane intersection fermions are like the
Dirac fermions moving on the 2+1D graphene backbone, (tunable to finite
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density by gating), interacting strongly through the gauge fields living in
3+1 dimensions. We will present a number of results for the longitudinal-
and transversal dynamical charge susceptibilities (at finite frequency w
and momenta q)1, in the absence and presence of a magnetic field, for
both the supersymmetric and non-supersymmetric D3/Dp systems at fi-
nite density. We find very similar results in both the supersymmetric- and
fermionic set ups, showing that these outcomes at strong ’t Hooft coupling
are not caused by the difference in the Lagrangians. We find suggestive
indications for the presence of an entirely new form of quantum liquid,
but we cannot be entirely conclusive. Our observations cannot entirely
rule out the existence of a Fermi liquid with vanishing Fermi velocity.

In fact, the first study of these systems at finite density already pro-
duced evidence that some odd state is created. In ref. [16] it was observed
that the density-dependent part of the heat capacity in the D3/Dp systems
with 2+ 1 dimensional intersection behaves like T 4. This is in contrast to
the result for the Fermi-liquids which is set by the Sommerfeld law of the
specific heat C = γT , where the Sommerfeld coefficient γ is proportional
to the quasiparticle mass. This behavior remains to be understood: for
example, it is conceivable that the linear term in the heat capacity exists,
but is parametrically suppressed in the holographic model. On a side, it
is worth noting that in the context of pnictide superconductivity a rogue
signal has been detected that refuses to disappear: this indicates that the
electronic specific heat of the metal state ∼ T 3 [17].

As mentioned above, besides the Lindhard continuum an interacting
Fermi liquid will carry a single propagating mode called zero sound. Un-
like the usual sound at finite temperature, translational invariance alone
is not sufficient for establishing the existence of the zero sound mode. The
discovery of zero sound associated with the brane intersection matter [16]
is therefore significant. The fate of the holographic zero sound was further
studied in [18–25] (see also [26, 27] for closely related work). At very low
temperature the attenuation (damping) of this zero sound behaves like
the (“collisionless”) Fermi liquid zero sound, in the sense that it increases
like the square of its momentum. In [24] it was found also that upon
increasing temperature the zero sound velocity decreases while the atten-
uation increases, turning into a purely diffusive pole at high temperatures.
This is different from the crossover from zero sound to ordinary sound as

1In this chapter we denote the values of frequency and momentum by bold letters.
The usual letters, defined below, are reserved for dimensionless variables.

45



function of temperature in a single component Fermi-system like 3He. In
the brane intersection systems momentum is shared between the super-
conformal strongly coupled uncharged sector and the material system on
the intersection, and the latter does not support hydrodynamical sound
in isolation. Somehow, upon lowering temperature the momentum of the
brane intersection matter becomes separately conserved, facilitating the
emergence of the zero sound in the low temperature limit.

Given that zero sound is rather ubiquitous, one would like to obtain
more direct information regarding the density fluctuations of the quan-
tum liquid. These are expected to be contained in the fully dynamical,
momentum and energy dependent charge susceptibility/density-density
propagator associated with the conserved charge on the brane-intersection.
One strategy is to look for the momentum dependence of the reactive re-
sponse (real part) at zero frequency: one expects a singularity at twice
the Fermi momentum, 2qF where the Luttinger’s theorem implies that
qF is set by the bare chemical potential, qF ∼ µ . A number of papers
has been devoted to the search of such singular behavior in the frame-
work of AdS/CFT. In [19] the 〈J0J0〉 correlator has been computed in
the holographic setup where the only charged degrees of freedom are four-
dimensional fermions. The resulting function was completely smooth. In
[28–31] the two-point function for global currents was computed for vari-
ous systems and again the tree-level computation in the bulk did not show
any nonanalytic behavior. Very recently it has been argued that a singu-
larity can be observed in the systems where an exact result to all orders
in α′ is available [32].

Searching for the singularity at 2qF is in principle a tricky procedure
because these “Friedel oscillation” singularities are strongly weakened by
the self energy effects in the strongly interacting Fermi-liquid. Another
way to probe for the signatures of the Fermi liquid is to compute the imag-
inary part of the dynamical density susceptibility in a large kinematical
window because this spectral function shows directly the density excita-
tions of the system. The result is well known in the weakly interacting
Fermi liquid, see Fig. 1: besides the zero sound pole one finds the Lindhard
continuum of particle hole excitations. It is worth noting that as the value
of the Landau parameter F0 increases, the spectral weight in the density
response is increasingly concentrated in the zero sound poles, “hiding”
the Lindhard continuum. In this regard the transversal density propa-
gator is quite informative: since in this channel no collective modes are
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expected to form, this is the place to look for the incoherent Fermi-surface
fluctuations. Unfortunately technical issues prevent us from accessing the
regime of parametrically small Fermi velocity. Our holographic computa-
tions of the longitudinal and transversal dynamical charge susceptibilities
are limited to a kinematical window where w ∼ |q|.

Despite this caveat, the holographic density propagators that we com-
pute reveal very interesting information. We find that the longitudi-
nal density propagator is within our numerical resolution completely ex-
hausted by the zero sound pole (Fig. 4). Regardless the precise nature of
the underlying state this signals very strong density/density correlations
in this liquid. The transversal charge propagator shows that sound is not
the whole story. The “other stuff”, albeit very unlike a Lindhard contin-
uum, signals the presence of a sector of highly collective, deep IR density
fluctuations: the imaginary part of the transversal propagator behaves like
χ
(i)
t (q, w) ∼ w. This response is surprisingly momentum independent and

suggests local quantum criticality, which was instrumental in the “AdS2
metal” setup. All of this seems to imply that we are indeed dealing with
some entirely new quantum liquid.

To probe some of the features of this quantum liquid, we introduce
an external magnetic field which is a valuable “experimental tool”. This
induces the gap in the spectrum that is visible in the holographic calcula-
tions. Dealing with a 2+1D Fermi-liquid one would expect the signatures
of Landau levels also in the density response. In the strongly interact-
ing system, the longitudinal response should reveal the “magneto-roton”,
the left over of zero sound in the system with a magnetic field which is
well known from (fractional) quantum Hall systems [33] 2. According to
Kohn’s theorem [35], the density spectrum should show a gap equal to the
cyclotron frequency at zero momentum. Note that this theorem is very
generic and only assumes that degrees of freedom, charged under the mag-
netic field, interact pairwise. Our holographic calculation reveals that: i)
at small values of the magnetic field B the value of the gap3 scales linearly
with B, which is consistent with Kohn’s theorem for the nonrelativistic
fermions and ii) there are no signatures of Landau levels associated with
incoherent particle-hole excitations (Fig. 2).

The remainder of this chapter is organized as follows. The next sec-

2See [34] for related work in the context of holography.
3This is also consistent with the observations made in [23, 36] where the same D3/D7

system, modified by the inclusion of flux through the internal cycles, is considered.
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tion is devoted to the review of Landau Fermi liquid theory including the
random phase approximation (RPA) for the dynamical response. In par-
ticular, we review the appearance of the zero sound mode in the RPA
calculation of the density-density correlator. As the value of the interac-
tion strength increases, the Lindhard continuum gets separated from the
zero sound pole (Fig. 1) and gradually disappears. In the extreme limit
of vanishing Fermi velocity, the spectral density is completely exhausted
by the zero sound mode. We also review the RPA expectations for the
2+1 dimensional fermion system in the presence of magnetic field. There
we expect Landau levels to contribute to the spectral density (Fig. 2).

In Section III we review the holographic description of the D3/Dp
brane systems. The subject of our interest is the fermion matter, which
is formed (at finite chemical potential for the fermion number) in the
low energy theory living on intersection of the Nc D3 branes and Nf Dp
branes. We consider the case of Nc � Nf ∼ 1 and strong ’t Hooft coupling
λ, where the holographic description is applicable.

In Section IV we focus on the zero sound mode and show that it
develops a gap in the presence of magnetic field. In the case of vanishing
magnetic field, B = 0, we observe a zero sound mode whose speed is the
same as that of the first sound. As long as the value of the magnetic field
B is small compared to w2, q2 (in appropriate units), the sound mode
peak in the spectral function is not significantly affected. On the other
hand, the presence of the nonvanishing magnetic field leads to a gap in
the dispersion relation for zero sound. (The effective action proposed by
Nickel and Son [37] in the presence of the magnetic field gives vanishing
sound velocity). In the regime of small magnetic field we derive the scaling
behavior of the gap in the spectrum wc as a function of magnetic field.
The result, wc ∼ B is consistent with fermions acquiring an effective mass.

In Section V we investigate the current-current correlator at non-
vanishing frequency w and momentum q. We observe that in the lon-
gitudinal channel, the only nontrivial structure both in the real and in
imaginary parts of the correlators is provided by the zero sound. There
is no nontrivial structure in the transverse correlators when B = 0. We
discuss our results in Section VI.

In Appendix we consider higher derivative corrections and show that
when they are added to the DBI the correlators are not significantly mod-
ified.
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2.2 Fermi liquid and the random phase approxi-
mation

In this section we review the application of the random phase approxima-
tion (RPA) for the computation of the density-density response function
〈J0(w, q)J0(−w,−q)〉 in Landau Fermi liquid theory. We consider the
2+1 dimensional theory for both cases of vanishing and non-vanishing
magnetic field.

Due to the interaction of quasiparticles, the variation of quasiparticle
energy due to small perturbation of the distribution function, is given by
(see, e.g, [38])

δε(q) =
ˆ
dq′f(q, q′)δn(q′) (2.1)

Because the small changes of quasiparticle density occur in the vicinity
of a Fermi surface, one considers the function f(q, q′) to be dependent
on the momenta on the Fermi surface, and therefore it boils down to a
function of the angle between q and q′:

m∗

π
f(θ) = 2F (θ) . (2.2)

where, as usual, the effective mass at the Fermi surface is defined via

m∗ =
qF
υF

, υF =
∂ε(q)
∂q
|q=qF (2.3)

Landau parameters Fl are the coefficients of the expansion of F (θ) in
Legendre polynomials:

F (θ) =
∑
l

(2l+ 1)FlPl(cos θ) (2.4)

The Fermi liquid has a collective excitation at vanishing temperature
called zero sound. In the case of Fl = 0, l > 0, the speed of zero sound
u0 can be determined from

s

2 log s+ 1
s− 1 − 1 =

1
F0

, s =
u0
υF

(2.5)

which, in the limit F0 � 1 gives s ∼
√
F0.

To compute the dynamical collective responses of a Fermi liquid, one
evaluates the time dependent mean field (random phase approximation)
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obtained by summing up the quasiparticle “bubble” diagrams. Assuming
for simplicity only the presence of a contact interaction, with effective
coupling constant V ' F0, the nth diagram is equal to V n−1(χ0(q, w))n.
The susceptibility in the RPA is then given by the sum of a geometric
progression:

χ(q, w) =
χ0(q, w)

1− V χ0(q, w)
, (2.6)

Express χ = χ(r) + iχ(i), hence

χ(i)(q, w) =
χ
(i)
0 (q, w)

(1− V χ(r)0 (q, w))2 + (χ
(i)
0 (q, w))2

. (2.7)

Then we study density of excitations by plotting χ(i)(q, w). The result
for vanishing magnetic field is presented in Fig. 3.1, where we plot the
susceptibility (for qF = 0.2) at strong and weak coupling V . In the case

Figure 2.1. Spectral density χ(i)(q, w) at strong coupling (V = 50, left graph)
and weak coupling (V = 3, right graph) in the random phase approximation, at
vanishing magnetic field. Fermi momentum is put to qF = 0.2. Note that at
strong coupling zero sound is well separated from the particle-hole continuum,
while at weak coupling zero sound merges with the left edge of the particle-
hole continuum. At small frequencies particle-hole continuum sharply ends at
q = 2qF .

of strong coupling there is a finite gap, separating the zero sound collec-
tive mode, and the band of the particle-hole excitations. For given small
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frequency w the width of the gap is given by δq ' w
u0
(s− 1). Note the

non-analytic step behavior at q = 2qF , originating from the free response
function χ

(i)
0 (q, w). In the case of weak coupling the zero sound mode

merges with the left edge of particle-hole band.
The location of zero sound pole is determined as a solution to equations

χ
(i)
0 (q, w) = 0, χ(r)0 (q, w) = 1/V . The real part χ(r)0 (q, w) of Lindhard

function for 2D Fermi gas is given by (see, e.g., [39]):

χ
(r)
0 (q, w) = −

(
1 + qF

q

[
sign(ν−)θ(|ν−| − 1)

√
ν2
− − 1

− sign(ν+)θ(|ν+| − 1)
√
ν2
+ − 1

])
, (2.8)

where ν± = w±εq
qυF . For large w

qυF = s� 1 one may expand

χ
(r)
0 (q, w) ' q2υ2

F

2w2 . (2.9)

Therefore, for the speed of zero sound one obtains s =
√
V /2, exactly as

it follows at large F0 from the equation (2.5).
Suppose now that besides F0 there is also non-vanishing “mass” Lan-

dau parameter F1. In the relativistic case, the value of m∗ is related to
the value of the chemical potential [40],

m∗ = µ

(
1 + F1

3

)
(2.10)

The speed of zero sound u0 then satisfies equation

s

2 log s+ 1
s− 1 − 1 =

1 + F1/3
F0 + F0F1/3 + F1s2 , s =

u0
υF

. (2.11)

For free fermions in a magnetic field B, the Lindhard function is equal
to (see, e.g., [39])

χ0(q, w) =
1

2π`2
∑
n,n′

f(εn)− f(εn′)
w + (n− n′)wc + iη

|Fn′,n(q)|2 , (2.12)

where

Fn′,n(q) =

√
n!
n′!

(
(qy − iqx)`√

2

)n′−n
e−q2`2/4Ln

′−n
n

(
q2`2

2

)
, (2.13)
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for n′ ≥ n. Here we have introduced the cyclotron frequency wc = B/m?

and the magnetic length ` = 1√
B
. The functions Ln′−nn are Laguerre

polynomials, and f(εn) is an occupation number for the nth Landau level.
We would like to compute the effect of the magnetic field on the

density-density response function of the interacting fermions. Let us write
the quasiparticle interaction Hamiltonian

Hint =
∑

q
Vqnqn−q (2.14)

in the basis of Landau levels wavefunctions. The corresponding matrix
elements of the density fluctuation operator nq =

∑
k ckc

†
k+q are given by

〈n′k′y|nq|nky〉 = exp
(
−i

qx(ky + k′y)`2

2

)
Fn′n(q)δky−k′y ,qy . (2.15)

The density fluctuation operator in the basis of Landau level wavefunctions
is then given by

nq =
∑

n,ky , n′,k′y

〈n′k′y|nq|nky〉cnkyc
†
n′k′y

. (2.16)

Note that (
〈nky|nq|n′k′y〉

)?
= 〈n′k′y|n−q|nky〉 (2.17)

implies (nq)† = n−q. Substituting (2.16) into the interaction Hamiltonian
(2.14), assuming again only a contact interaction of plane waves Vq ≡
V ' F0, and considering all quasiparticles in the same Landau level n,
one obtains

Hint = V
∑

q,ky ,k′y

cnkyc
†
nky−qycnk′yc

†
nk′y+qy

exp
(
−i`2qx(ky − k′y − qy)−

q2`2

2

)
[L0
n(q2`2/2)]2 . (2.18)

Let us choose the momentum to be in y-direction, then

Hint =
∑

qy ,ky ,k′y

Vqycnkyc
†
nky−qycnk′yc

†
nk′y+qy , (2.19)

where Vqy = [L0
n(q2`2/2)]2 exp

(
−q2`2

2

)
V .

52



We can explicitly demonstrate that the zero sound mode is gapped in
the magnetic field, with the gap being equal to wc, in agreement with the
Kohn’s theorem [35]. For this aim we are to solve equation χ(r)0 (q, w) =
1/Vq again. From (2.12), (2.13) one may obtain the following expression
for χ(r)0 :

χ
(r)
0 (q, w) =

e−q2`2/2

2π h̄`2
∞∑
k=1

∑
j

′ j!
(j + k)!

(
q2`2

2

)k
[
Lkj

(
q2`2

2

)]2 2kwc

w2 − (kwc)2 , (2.20)

where the prime denotes summation in the range max(0, ν − k) ≤ j ≤ ν,
and ν is the number of occupied Landau levels. Following [39], we consider
this equation for small q and w ' wc. Then the main contribution in the
sum over k comes from the term with k = 1, and we obtain equation:

const q2

w2 −w2
c

' 1
V

, (2.21)

and therefore the zero sound dispersion relation is given by

w =
√

w2
c + cq2 , (2.22)

where c ∼ Vwc is a constant. Similarly, for any integer M , there is a
mode with dispersion relation

w =
√
(Mwc)2 + c′q2M . (2.23)

We plot RPA computations of two-point function, for ωc = 0.25, restrict-
ing to the first two first branches, in Fig. 2.2.

2.3 Dp brane in AdS5× S5 background
We study strongly interacting massless fermions at zero temperature and
finite density. A good field theoretical model of such a system is N = 4
SYM theory with gauge group SU(Nc), coupled to matter in the fun-
damental representation. A convenient way to study strongly coupled
theories is provided by holography where one considers a dual gravita-
tional theory, taking the limit of large ’t Hooft coupling λ = g2

YMNc, and
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Figure 2.2. Spectral density in the random phase approximation of the 2 +
1 dimensional Fermi liquid in the plane of the magnetic field, with cyclotron
frequency ωc = 0.25. First two of infinitely many collective excitation branches
are shown. Each branch starts at (q = 0, ω =Mωc), where M is an integer.

the limit of large Nc. The dual gravitational background is created by
Nc � 1 D3 branes, and has an AdS5 × S5 geometry. The coupling to
fundamental matter is realized by considering an embedding of a probe
Dp brane in the AdS5 × S5 background [14]. We will consider D3/Dp
configurations with d = 2 + 1 dimensional intersections.

Let us now provide a more detailed description of the bulk gravitational
theory set-up. Consider AdS5 × S5 geometry, with the metric

ds2 = L2
(
r2(−dt2 + dxαdx

α) +
dr2

r2 + dΩ2
5

)
. (2.24)

Here L is the radius of S5 and scale of curvature of AdS5. We will study
the probe Dp brane, embedded in the geometry described by (2.24). We
represent the metric on S5 as

dΩ2
5 = dΩ2

n + sin2 θ̃dΩ2
5−n = dθ2 + sin2 θdΩ2

n−1 + cos2 θdΩ2
5−n ,

where n = p+ 1− d. Then we define coordinates ρ , f via the relation

ρ = r sin θ , f = r cos θ , r2 = ρ2 + f2 , (2.25)
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and write

dθ2 =
(f − ρ ∂ρf)2

r4 dρ2 , dr2 =
(ρ+ f ∂ρf)2

r2 dρ2 , (2.26)

which gives the following induced Dp brane world-volume metric

ds2
Dp=L

2
(
r2(−dt2+dxidxi)+

1
r2

(
1+(∂ρf)

2
)
dρ2+

ρ2

r2 dΩ2
n−1

)
. (2.27)

The coordinate f(ρ) defines an embedding of the Dp brane in the AdS
background (2.24). In the case of the trivial embedding f(ρ) ≡ 0, which
is what we are going to deal with in this chapter, Dp brane crosses the
Poincaré horizon of the AdS space. In the case of d = 3 p = 7 such a
configuration becomes stable only for sufficiently large values of chemical
potential µ̄ch in the dual field theory [41]. (See also [42] for the phase
structure of the similar model in the presence of the magnetic field.) Note
that holographically computed correlators do not depend on the dimen-
sionality of the probe brane; in particular our results apply in the case of
stable supersymmetric D3/D5 defect theory.

Subsequently we add a gauge field Aµ on the world-volume of the probe
D7 brane. In general we are interested in non-vanishing magnetic field B.
So we consider the following components of the field strength:

F12 = B , F0ρ = −∂ρA0(ρ) . (2.28)

Consequently the DBI action for the Dp brane is given by 4

SDBI '
Nc

L4

ˆ
dp+1x

√
−det(G+ F ) =

ˆ
dΩn−1

ˆ
ddxS , (2.29)

where we have denoted

S ' NcL
p−5
ˆ
dρρd−3

√
(L4ρ4 +B2)(1− (∂ρA0)2L−4) . (2.30)

Now rescale gauge field on the world-volume as

Āµ =
Aµ
L2 , (2.31)

4We adopt the convention 2πα′ = 1. For our purposes we are ignoring the to-
tal numerical coefficient, which leaves us with an overall normalization of the action
proportional to 1

gs
∼ Nc

λ ∼
Nc

L4 .

55



which yields the DBI action in the form,

S ' NcL
p−3
ˆ
dρρd−3

√
(ρ4 + B̄2)(1− (∂ρĀ0)2) , (2.32)

where B̄ = B/L2.
In the case of a non-vanishing magnetic field there is also a Chern-

Simons term in the total action for the Dp brane. It can be shown that
this term vanishes in the case of f ≡ 0 embedding.

The boundary value of Ā0 is equal to the chemical potential of the
dual field theory: Ā0(ρ =∞) = µ̄ch. Due to f(ρ = 0) = 0 and the initial
condition Ā0(r = 0) = 0 (imposed to ensure that chemical potential
vanishes when the charge density is zero) we obtain Ā0(ρ = 0) = 0, and
therefore the chemical potential may be expressed as

µ̄ch =

ˆ ∞
0

dρ ∂ρĀ0 . (2.33)

Introducing a constant of integration d̂, the solution of the equation of
motion for ∂ρĀ0 field strength becomes,

∂ρĀ0 =
d̂2√

d̂4 + ρ4 + B̄2
. (2.34)

Using this expression and eq. (2.33), we obtain the value of the chemical
potential

µ̄ch =

ˆ ∞
0

dρ ∂ρĀ0 =
4Γ(5/4)2
√
π

d̂2

(d̂4 + B̄2)1/4 . (2.35)

2.4 Holographic zero sound
In this and the next sections we study D3/Dp system with d = 2 + 1
dimensional intersection, described by trivial f(ρ) ≡ 0 embedding of the
probe Dp brane in the AdS5×S5 background. We consider the gauge field
on the Dp brane world-volume, solve its classical equations of motion and
use AdS/CFT to find the two-point functions of the U (1) current in the
dual field theory. In this section we show the existence of holographic
zero sound in the D3/Dp configuration, to observe that it develops a gap
as the magnetic field is turned on. In the next section we will study the
current-current correlation function numerically.
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2.4.1 Zero sound in the D3/Dp system with d = 2 + 1 di-
mensional intersection

Equation (2.34) is the expression for the background field strength ∂ρĀ0.
Let us turn on small fluctuations ā0, ā1, ā2, dependent on coordinates
x0, x2, ρ. In addition let us fix the gauge āρ = 0. The longitudinal
response is described holographically by the ā0 and ā2 components of the
gauge field, and the transverse response is described by the ā1 component.
The DBI action, expanded up to the second order in fluctuations, then
takes the form 5

S=

ˆ
dρ

(√
ρ4+B̄2

1−(∂ρĀ0)2

(
− (∂ρā0)2

1−(∂ρĀ0)2+
ρ4(∂ρā2)2−(∂0ā2−∂2ā0)2

ρ4+B̄2

)
+

+

√
1− (∂ρĀ0)2

ρ4 + B̄2

(
ρ4(∂2ā1)2

ρ4 + B̄2 +
ρ4(∂ρā1)2 − (∂0ā1)2

1− (∂ρĀ0)2

)
+ (2.36)

+
2B̄∂ρĀ0√

(ρ4+B̄2)(1−(∂ρĀ0)2)
(∂2ā1∂ρā0−∂0ā1∂ρā2+(∂0ā2−∂2ā0)∂ρā1)


Note that the last line in (2.36) describes a coupling of the transverse and
longitudinal gauge potential components. Bellow we will consider Fourier
transform of the gauge field

āµ(ρ,x0,x2) =

ˆ
dwdq
(2π)2 e

−iwx0+iqx2 ãµ(ρ, w, q) (2.37)

Now we substitute eq. (2.34) into the action (2.36), define b2 = B̄2/d̂4,
and introduce a new variable z = d̂

ρ , so that z = 0 is a boundary and
z =∞ is a Poincaré horizon of AdS5. In addition, we make the quantities
w, q dimensionless, by measuring these in units of d̂: w = ωd̂, q = qd̂.
We also denote for shortness of notation

ζ = 1 + (1 + b2)z4 (2.38)

Then the action (2.36) becomes written as

S=

ˆ
dz

1+b2z4

(
−ζ3/2a′20 +ζ

1/2a′22 −ζ1/2(∂0a2−∂2a0)
2+ζ−1/2(∂2a1)

2

− ζ1/2(∂0a1)
2+ζ1/2a′21 −2bz4(∂2a1a

′
0−∂0a1a

′
2+(∂0a2−∂2a0)a

′
1)
)

,
(2.39)

5We thank J. Shock for comments on this action.
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where we have omitted bars for simplicity of notation, and prime denotes
differentiation w.r.t. z. In momentum representation

S =

ˆ
dz

1 + b2z4

(
−ζ3/2a′0(ω, q)a′0(−ω, −q) + ζ1/2a′2(ω, q)a′2(−ω, −q)]

+ ζ1/2E(ω, q)E(−ω, −q) + ζ−1/2q2a1(ω, q)a1(−ω, −q)
− ζ1/2ω2a1(ω, q)a1(−ω, −q) + ζ1/2a′1(ω, q)a′1(−ω, −q) (2.40)
+ 2ibz4(qa1(−ω, −q)a′0(ω, q) + ωa1(−ω, −q)a′2(ω, q)
+ E(ω, q)a′1(−ω, −q))) ,

where we have omitted tildes for simplicity of notation and introduced the
gauge-invariant electric field strength [43],

E(ω, q) = ωa2(ω, q) + qa0(ω, q) . (2.41)

In addition we have Gauss’s law 6

ωζ3/2a′0(ω, q) + qζ1/2a′2(ω, q) = 0 (2.42)

Together with
E′(ω, q) = ωa′2(ω, q) + qa′0(ω, q) , (2.43)

eq. (2.42) gives
a′0(ω, q) = q

q2 − ζω2E
′ , (2.44)

a′2(ω, q) = ωζ

ω2ζ − q2E
′ . (2.45)

Plugging these expressions into the action (2.40), we obtain

S =

ˆ
dz

1 + b2z4

(
q2 − ζω2

ζ1/2 a2
1 − ζ3/2 E′2

ζω2 − q2 + ζ1/2E2 + ζ1/2a′21

+ 2ibz4(Ea1)
′
)

. (2.46)

6This is an equation of motion for az . To derive it replace

a′
2 → a′

2 − ∂2az , a′
0 → a′

0 − ∂0az

in the Lagrangian (2.39) and leave only terms linear in derivatives of az , because only
these will survive when we consider the equation of motion for az in the az = 0 gauge.
Then use the Fourier transform (2.37).
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Corresponding fluctuation equations are

E′′+

(
ω2− q2

1+(1+b2)z4

)
E−4ibz3(ω2(1+(1+b2)z4)−q2)a1

(1+b2z4)(1+(1+b2)z4)3/2 (2.47)

+
2
z

(
1

1+((1+b2)z4)−1+2
(

1
1+b2z4−

1−(q/ω)2(1+(1+b2)z4)−2

1−(q/ω)2(1+(1+b2)z4)−1

))
E′ = 0 ,

a′′1 + 2z3
(

1 + b2

1 + (1 + b2)z4 −
2b2

1 + b2z4

)
a′1 +

(
ω2 − q2

1 + (1 + b2)z4

)
a1

+
4ibz3E

(1 + b2z4)(1 + (1 + b2)z4)1/2 = 0 . (2.48)

Vanishing magnetic field

In this subsection we set the magnetic field to zero. Fluctuations of E
and a1 fields then decouple, and we can consider separately transverse
and longitudinal responses,

E′′ +
2
z

(
1

1 + z−4 + 2
(

1− 1− (q/ω)2(1 + z4)−2

1− (q/ω)2(1 + z4)−1

))
E′

+ (ω2 − q2(1 + z4)−1)E = 0 , (2.49)

a′′1 +
2z3

1 + z4a
′
1 +

(
ω2 − q2

1 + z4

)
a1 = 0 . (2.50)

Let us first study the longitudinal response. In the near-horizon z � 1
region eq. (2.49) becomes:

E′′ +
2
z
E′ + ω2E = 0 , (2.51)

The general solution of (2.51) is a linear combination of e±iωz/z. We
choose the solution with the incoming near-horizon behavior, since it cor-
responds to retarded propagator in the dual field theory [44]:

E = C
eiωz

z
. (2.52)

The constant C is undetermined, because the fluctuation equation is lin-
ear. When ωz � 1, we obtain

E = C

(1
z
+ iω

)
. (2.53)
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Condition (2.52) together with the boundary condition E(0) = 0 (im-
posed to get normalizable solutions) defines an eigenvalue problem for the
fluctuation equation (2.49). In the limit ωz, qz � 1, (2.49) reduces to,

E′′ +
2
z

(
1

1 + z−4 + 2
(

1− 1− (q/ω)2(1 + z4)−2

1− (q/ω)2(1 + z4)−1

))
E′ = 0 , (2.54)

having as general solution,

E(z) = C1 +C2(q
2 − 2ω2)

√
iF
(
i sinh−1(

√
iz)| − 1

)
− C2q

2z√
1 + z4

, (2.55)

where F (z) is an elliptic integral of the first kind. In the limit z → ∞ it
has an expansion

√
iF
(
i sinh−1(

√
iz)| − 1

)
→ −K(1/2) + 1

z
+O

( 1
z5

)
, (2.56)

where K(z) is the complete elliptic integral of the first kind. The solution
(2.55) becomes in this limit

E(z) = C1 −C2K(1/2)(q2 − 2ω2)− 2C2
z
ω2. (2.57)

Now we compare (2.53) and (2.57), and obtain as result

C1 =

(
iω− (q2 − 2ω2)K(1/2)

2ω2

)
C , C2 = − C

2ω2 (2.58)

Recalling the boundary condition E(0) = 0, we deduce from (2.55) that
C1 = 0, and consequently(

1 + iω

K(1/2)

)−1
=

2ω2

q2 , (2.59)

which in the limit of small q, ω is solved by the considering leading orders
in momentum q,

ω = ± q√
2
− iq2

4K(1/2) . (2.60)

This excitation has been identified before, and is called [16] holographic
zero sound. In the d = 2 + 1 dimensional system this mode has been
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observed in [23]. Note that the speed of sound does not depend on dimen-
sionality p of a probe brane and for any value of p is equal to the speed of
the usual sound in the hydrodynamic regime [45]. In Section IV we will
study current-current two-point functions, and the peak in the spectral
function, corresponding to zero sound mode, will also be observed in the
numerics.

Now, let us consider the fluctuation equation (2.50) for the transverse
gauge field component, in the limit ω, q � 1. Then eq. (2.50) becomes

a′′1 +
2z3

1 + z4a
′
1 = 0 , (2.61)

with an exact solution being

a1(z) = C1 +C2
√
iF
(
i sinh−1(

√
iz)| − 1

)
. (2.62)

In the near-horizon z →∞ limit it is expanded as

a1(z) ' C1 −C2K(1/2) +C2/z . (2.63)

Comparing it with the incoming-wave solution (2.114), one obtains

C1 = (iω+K(1/2))C , C2 = C . (2.64)

Then, near-boundary z � 1 expansion of (2.62) is given by

a1(z) ' A+Bz , (2.65)

where
A = (iω+K(1/2))C , B = −C . (2.66)

Therefore one may find the current two-point function 〈J1J1〉 = B
A . In

particular, its imaginary part is given by

Im〈J1J1〉 ' ω

[K(1/2)]2 . (2.67)

We provide numerical results for the transverse fluctuations in Section IV.
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Non-vanishing magnetic field

In this subsection we are going to study the case of small magnetic field,
b� 1, which will allow us to achieve some simplifications. Let us rewrite
the action (2.46) as

S =

ˆ
dz
(
GEE′2 + UEE2 + Gaa′21 + Uaa2

1 + C(1)(Ea1)
′
)

, (2.68)

where we have denoted

GE=−
(1+(1+b2)z4)1/2

(1+b2z4)
(
ω2− q2

1+(1+b2)z4

) , UE=
(1+(1+b2)z4)1/2

1+b2z4 , (2.69)

C(1) = 2ibz4

1 + b2z4 , Ua=−
(1+(1+b2)z4)1/2

(
ω2− q2

1+(1+b2)z4

)
1+b2z4 , (2.70)

Ga=
(1+(1+b2)z4)1/2

1+b2z4 . (2.71)

In the case of b� 1, we can approximate

GE = − (1 + z4)1/2

(1 + b2z4)
(
ω2 − q2

1+z4

) , UE =
(1 + z4)1/2

1 + b2z4 , (2.72)

Ga =
(1 + z4)1/2

1 + b2z4 , Ua = −
(1 + z4)1/2

(
ω2 − q2

1+z4

)
1 + b2z4 , (2.73)

C(1) = 2ibz4

1 + b2z4 . (2.74)

In the near-horizon limit, for ω > 0, integrating the C(1) term by parts,
we arrive at

S=

ˆ
dz z2

1+b2z4

(
−E

′2

ω2 +E2+a′21 −(ω2−b2q2)a2
1−8ibEa1

z

1+b2z4

)
. (2.75)

Moreover, for z � 1/
√
b and z3 � 1/(b(ω2− b2q2)1/2), we actually obtain

decoupled system of equations

E′′ − 2
z
E′ + ω2E = 0 ⇒ E = C̃1(1− iωz)eiωz , (2.76)
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a′′1−
2
z
a′1+(ω2−b2q2)a1=0 ⇒ a1=C̃2(1−i

√
ω2−b2q2z)ei

√
ω2−b2q2z .

(2.77)
Now, assume that ω2 � b2q2, and perform the linear transformation in
(2.75)

E = iω(χ1Ẽ + χ2ã1) , a1 = χ1Ẽ − χ2ã1 , (2.78)

with arbitrary constant coefficients χ1, χ2, which brings the action to the
form

S =

ˆ 2dz z2

1 + b2z4

(
χ2

1

(
Ẽ′2 − ω2

(
1− 4bz

ω(1 + b2z4)

)
Ẽ2
)

+ χ2
2

(
ã′21 − ω2

(
1 + 4bz

ω(1 + b2z4)

)
ã2

1

))
. (2.79)

Corresponding equations of motion are

Ẽ′′ +
2
z

1− b2z4

1 + b2z4 Ẽ
′ + ω2

(
1− 4bz

ω(1 + b2z4)

)
Ẽ = 0 , (2.80)

ã′′1 +
2
z

1− b2z4

1 + b2z4 ã
′
1 + ω2

(
1 + 4bz

ω(1 + b2z4)

)
ã1 = 0 . (2.81)

The solutions are

Ẽ =
e±iωz

z
+
b

ω
(1∓ iωz)e±iωz , (2.82)

ã1 =
e±iωz

z
− b

ω
(1∓ iωz)e±iωz . (2.83)

We impose the incoming-wave behavior,

E = iω

(
χ1 + χ2

z
+ (χ1 − χ2)

b

ω
(1− iωz)

)
eiωz , (2.84)

a1 =

(
χ1 − χ2

z
+ (χ1 + χ2)

b

ω
(1− iωz)

)
eiωz , (2.85)

which leaves us with two constant of integration χ1 ± χ2.

When ω ∼ q � 1, we can consider fluctuation equations (2.49), (2.50),
as for the case of vanishing magnetic field. Then we perform computa-
tions along the lines of the previous subsection, using now near-horizon
boundary conditions (2.84) and (2.85).
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First, we match (2.84) in ωz � 1 limit,

E = i(b(χ1 − χ2) + iω2(χ1 + χ2)) + iω
χ1 + χ2

z
(2.86)

with eq. (2.57). Requiring that C1 = 0, we arrive at

q2 − 2ω2 − 2
K(1/2)

(
ωb
χ1 − χ2
χ1 + χ2

+ iω3
)
= 0 . (2.87)

Then, we match (2.85) in ωz � 1 limit,

a1 = iω(χ1 − χ2) + (χ1 + χ2)
b

ω
+
χ1 − χ2

z
(2.88)

with eq. (2.63). Again, imposing normalizability condition C1 = 0, we
obtain

ω+
1

K(1/2)

(
b
χ1 + χ2
χ1 − χ2

+ iω2
)
= 0 . (2.89)

Solving (2.87) together with (2.89), we get 7

q2 − 2ω2 +
2b2

[K(1/2)]2 +
iω

K(1/2) (q
2 − 4ω2) = 0 . (2.90)

We see that in the presence of a magnetic field b zero sound mode develops
a gap ωc in the spectrum,

ωc =
b

K(1/2) . (2.91)

2.4.2 Effective theory for the sound mode

Zero sound may also be studied in the framework of Ref. [37]. First, one
introduces a hypersurface z = zΛ in the bulk, integrating out degrees of
freedom in the UV region 0 ≤ z ≤ zΛ. The UV physics is then effectively
encoded in the action by,

S =
1
2

ˆ
d3x(f2

0 (∂0φ−W0 +w0)
2 − f2

2 (∂2φ−W2 +w2)
2) , (2.92)

7Equivalently, we can obtain this result requiring that (2.87) and (2.89) have a non-
trivial solution for χ1 ± χ2.
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where Wµ = aµ(z = 0), wµ = aµ(z = zΛ), and the “Godstone boson” φ
corresponds to breaking of the U(1) symmetry with a gauge fieldWµ−wµ.
The zero sound mode may be interpreted in such a framework as a mode
coming from an excitation of the field φ, and therefore the speed of zero
sound is given by the expression v = f2/f0. Let us now compare the
effective field theory action for the UV degrees of freedom with the bulk
DBI action. To render the relation between bulk and boundary to be
precise, we specify the zero boundary condition Wµ = 0, putting the
Goldstone boson φ to zero:

S =
1
2

ˆ
d3x(f2

0w
2
0 − f2

2w
2
2) (2.93)

Let us consider all fields to be only z-dependent, in which case transverse
fluctuations decouple, and we can put these to zero. Then we can rewrite
the bulk theory action (2.39) in a form

S ' 1
2

ˆ
d3x

dz

1 + b2z4 (h
3(z)ã′20 − h(z)ã′22 ) , (2.94)

where we have defined h(z) =
√

1 + (1 + b2)z4. The solutions of the
equations of motion on ã0, ã2, satisfying zero boundary condition at the
AdS boundary, while being defined on the hypersurface z = zΛ, are now
given by:

w0 = C0

ˆ zΛ

0

dz(1 + b2z4)

h3(z)
, w2 = C2

ˆ zΛ

0

dz(1 + b2z4)

h(z)
. (2.95)

To match the bulk action and the boundary theory (2.93), we evaluate
the action (2.94) on the solution of the EOM, which leaves us with the
boundary terms at z = zΛ only

S ' 1
2

ˆ
d3x(C0w0 −C2w2) , (2.96)

which in turn with the help of (2.95), may be rewritten as (2.93) with

f−2
0 =

ˆ zΛ

0

dz(1 + b2z4)

h3(z)
, f−2

2 =

ˆ zΛ

0

dz(1 + b2z4)

h(z)
. (2.97)

Therefore the speed of zero sound is given by

u2
0 =

ˆ zΛ

0

dz(1 + b2z4)

h3(z)

(ˆ zΛ

0

dz(1 + b2z4)

h(z)

)−1

. (2.98)
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When b� 1, one obtains

u2
0 '

1
2 + 8π1/2

3Γ[1/4]2 b
2z3

Λ

, (2.99)

and therefore for b2z3
Λ � 1 one recovers the value of the speed of zero

sound in vanishing b-field, u0 = 1/
√

2, while for b2z3
Λ � 1 the speed

of zero sound approaches zero. In this regime the description of the low
energy physics by the effective action (2.92) presumably breaks down;
it would be interesting to write the low energy description that would
account for the gap in the spectrum.

2.4.3 Thermodynamic properties of trivial embeddings

We will study the thermodynamics of the trivial Dp brane embedding,
to obtain as a result the value of the speed of the usual first (hydrody-
namic) sound. We consider here the D3/Dp system with a 2 + 1 dimen-
sional intersection, and in the Appendix we will study the supersymmetric
D3/D7 system with a 3 + 1 dimensional intersection, in the presence of
a non-vanishing magnetic field.

The total prefactor of the action is irrelevant for the computation of
the speed of first sound. The grand canonical potential is given by the
equation

Ξ = −S =

ˆ
dρ(ρ4 + B̄2)(ρ4 + B̄2 + d̂4)−1/2 = a

2B̄2 − d̂4

(B̄2 + d̂4)1/4 , (2.100)

where a = Γ(1/4)2/(12
√
π). Using (2.35) one may calculate the charge

density as,

ρ̂ = − ∂Ξ
∂µ̄ch

, (2.101)

to find the energy density, being at zero temperature equal to the free
energy,

ε = Ξ + µ̄chρ̂ = 2a(B̄2 + d̂4)3/4 . (2.102)

Consequently, the speed of sound is given by

u2 =
∂P

∂ε
= −∂Ξ

∂ε
=

1
2

1 + 2b2

1 + b2 . (2.103)
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Notice that this result is independent of p, which agrees with [45]. Observe
that when the magnetic field vanishes we retrieve the value u2 = 1/2,
which we observed before in the dispersion relation (2.60).

Notice also that all the steps performed in the above may be combined
into one expression (use ∂S/∂µ̄ch = d̂2):

u2 =
∂S/∂µ̄ch

µ̄ch∂2S/∂µ̄2
ch

=
1
2
∂ log µ̄ch
∂ log d̂

. (2.104)

2.5 Holographic current-current correlators at fi-
nite frequency and momentum

In the previous section we have shown that a propagating mode (zero
sound) develops a gap in the presence of the magnetic field. In this section
we compute numerically the two-point function of the U(1) currents. First
we set magnetic field to zero. We identify the holographic zero sound as a
peak in the spectral function. We start by computing the density-density
correlator 〈J0J0〉 using the linearized DBI action. We then proceed to
computing the transverse correlator 〈J1J1〉. After that we proceed to the
case of non-vanishing magnetic field and show that the gap in the zero
sound spectrum shows itself on the numeric graphs.

2.5.1 Fluctuations of electric field strength E

Consider the fluctuation equation (2.47), near the boundary z = 0 for any
value of magnetic field:

E′′ − (q2 − ω2)E = 0 . (2.105)

Its general solution is of the form,

E = AEFI + BEFII , (2.106)

where we have denoted the two independent solutions as

FI = 1 + q2 − ω2

2 z2 +
(q2 − ω2)2

24 z4 + · · · , (2.107)

FII = z +
q2 − ω2

6 z3 + · · · . (2.108)
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The on-shell action is therefore given by

Son−shell' lim
ε→0

ˆ
dωdqAE(ω, q)AE(−ω,−q) 1

q2 − ω2
BE(ω, q)
AE(ω, q) |z=ε .

(2.109)
Non-vanishing Green functions are

〈J0(ω, q)J0(−ω,−q)〉 = lim
ε→0

δ2Son−shell
δa0(z = ε,ω, q)δa0(z = ε,−ω,−q)

= lim
ε→0

δ2Son−shell
δE(z = ε,ω, q)δE(z = ε,−ω,−q)

× δE(ω, q, z)
δa0(ω, q, z)

δE(−ω,−q, z)
δa0(−ω,−q, z) = (2.110)

= − q2

q2 − ω2
BE(ω, q)
AE(ω, q) ,

〈J2(ω, q)J2(−ω,−q)〉 = lim
ε→0

δ2Son−shell
δa2(z = ε,ω, q)δa2(z = ε,−ω,−q) =

= lim
ε→0

δ2Son−shell
δE(z = ε,ω, q)δE(z = ε,−ω,−q)

× δE(ω, q, z)
δa2(ω, q, z)

δE(−ω,−q, z)
δa2(−ω,−q, z) = (2.111)

= − ω2

q2 − ω2
BE(ω, q)
AE(ω, q) ,

〈J0(ω, q)J2(−ω,−q)〉 = lim
ε→0

δ2Son−shell
δa2(z = ε,ω, q)δa0(z = ε,−ω,−q) =

= lim
ε→0

δ2Son−shell
δE(z = ε,ω, q)δE(z = ε,−ω,−q)

× δE(ω, q, z)
δa2(ω, q, z)

δE(−ω,−q, z)
δa0(−ω,−q, z) = (2.112)

= − ωq

q2 − ω2
BE(ω, q)
AE(ω, q) .

Note that these expression agree with the Ward identity for the U(1)
conserved current Jµ,

ω〈J0(ω, q)J0(−ω,−q)〉 − q〈J0(ω, q)J2(−ω,−q)〉 = 0 . (2.113)

We evaluate numerically the ratio BE/AE on the solution of equation
(2.47) with incoming-wave near horizon behavior (2.52). In Fig. 2.3 we
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present numerical results for the real and imaginary parts of the BE/AE
for different values of ω, q in the case of b = 0. The holographic zero
sound corresponds to the peak in the spectral density.

2.5.2 Fluctuations of the transverse component of the gauge
field

In this subsection we will compute numerically the holographic two-point
function for the transverse current 〈J1(x)J1(y)〉. Let us put b = 0.

In the near horizon regime z →∞ the bulk solution, corresponding to
the retarded current-current propagator in the dual field theory, takes the
incoming-wave form

a1 = C
eiωz

z
, (2.114)

and in the vicinity of the boundary, the equation of motion becomes

a′′1 − (q2 − ω2)a1 = 0 , (2.115)

with a general solution being a combination of FI and FII (2.107), (2.108),

a1 = AaFI + BaFII . (2.116)

The results of numerical evaluations of the holographic two-point func-
tion 〈J1(q)J1(−q)〉 = Ba

Aa are presented in Fig. 2.4. We see that it does
not reveal any structure.

2.5.3 Non-vanishing magnetic field

In the case of b 6= 0 fluctuations of the longitudinal E(x0, x2, z) and trans-
verse a1(x0, x2, z) components of the gauge field are no longer decoupled8.
They are described by the action (2.68), which can be written as

S =

ˆ
dz

((
−(GEE′)′ + UEE −

1
2 (C

(1))′a1

)
E+

+

(
−(Gaa′1)′ + Uaa1 −

1
2 (C

(1))′E

)
a1

)
+

+ [GEEE′ + Gaa1a
′
1 + C(1)Ea1]

z=∞
z=0 . (2.117)

8We thank R. Davison for pointing this out to us.
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Figure 2.3. Real and imaginary parts of the BE/AE in the D3/Dp system with
d = 2 + 1 dimensional intersection. The spectrum of excitations is exhausted by
the holographic zero sound mode with the speed of sound u0 = 1√

2 , and the
attenuation Γq ' q2.
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Figure 2.4. Real and imaginary parts of the correlation function 〈J1(−q)J1(q)〉
in the D3/D7 system with d = 2 + 1 dimensional intersection. No non-
trivial collective excitation modes are observed. For small frequencies and mo-
menta ω, q � 1, the imaginary part of the correlation function behaves as
Im[〈J1(−q)J1(q)〉] ∼ ω, independently of a particular value of q.
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The first two lines vanish on shell. In the last line the cross term does not
contribute to the variation of the on-shell action by the boundary z = 0
values of the fields E and a1, because

C(1)|z=0 = 0 . (2.118)

The on-shell action is then given by the boundary term

Son−shell ' lim
ε→0

ˆ
dωdq

( 1
q2 − ω2EE

′ + a1a
′
1

)
z=ε

. (2.119)

Near the boundary the solutions to equations of motion are given by

E = AEFI + BEFII , a1 = AaFI + BaFII , (2.120)

where FI, II are defined by (2.107), (2.108).
To compute current-current two-point function numerically, we follow

[46], where general system of coupled equations in the bulk is studied.
For arbitrary two independent solutions Φ(1), Φ(2) of the coupled sys-
tem of fluctuation equations (2.47), (2.48), we define the matrix H =(

Φ(1), Φ(2)

)
. Near the boundary it is expanded as

H = AFI + BFII . (2.121)

On-shell action (2.119) may be rewritten as

Son−shell '
ˆ
dωdqΦT M Φ′ , (2.122)

where

M =

( 1
q2−ω2

0
0
1

)
. (2.123)

The matrix of correlation functions is then given by (see eq. (2.34) in [46])

G 'MBA−1 . (2.124)

In such a form the current-current correlation matrix G is explicitly inde-
pendent of a linear change of fields

Φ(1) → r1Φ(1)+r2Φ(2) , Φ(2) → r3Φ(1)+r4Φ(2) ⇒ H → HR , (2.125)

72



where R =
(
r1
r2

r3
r4

)
is some arbitrary non-degenerate matrix. If Φ(1),(2) =(

E(1),(2)

a
(1),(2)
1

)
are some arbitrary independent solutions, then due to (2.121)

we get

A =

A(1)
E

A(1)
a

A(2)
E

A(2)
a

 , B =

B(1)E

B(1)a

B(2)E

B(2)a

 , (2.126)

and therefore using (2.124) we obtain

G ' 1
A(1)
E A

(2)
a −A(1)

a A(2)
E

 B(1)E A
(2)
a −B

(2)
E A

(1)
a

q2−ω2

B(1)a A(2)
a −B(2)a A(1)

a

B(2)E A
(1)
E −B

(1)
E A

(2)
E

q2−ω2

A(1)
E B

(2)
a −B(1)a A(2)

E

 ,

(2.127)
Near-horizon solutions are given by (2.76), (2.77), which we can write

as a linear combination of two independent solutions

Φ̃(1) =

(
(1− iωz)eiωz

(1− i
√
ω2 − b2q2z)ei

√
ω2−b2q2z

)
, (2.128)

Φ̃(2) =

(
(1− iωz)eiωz

−(1− i
√
ω2 − b2q2z)ei

√
ω2−b2q2z

)
(2.129)

Arbitrary near-horizon behavior, with the most general form (up to simul-
taneous rescaling of all fields by the same factor) may therefore be written
as a linear combination of these two solutions,

Φ =

(
(1− iωz)eiωz

c(1− i
√
ω2 − b2q2z)ei

√
ω2−b2q2z

)
=

1 + c

2 Φ̃(1) +
1− c

2 Φ̃(2) .

(2.130)
On the other hand, fluctuation equations may be rewritten as

Ω1Φ′′ + Ω2Φ′ + ΩΦ = 0 , (2.131)

with matrices Ω1,2,3, being determined from (2.47), (2.48). Therefore lin-
ear combination of near-horizon solutions (2.129) results in the same linear
combination of the solutions near the boundary. Recall that the matrix
correlation function (2.127) is the same for any such a non-degenerate
linear combination.

We therefore fix two arbitrary near-horizon conditions, say (2.129),
determine corresponding coefficients A(1),(2)

E , A(1),(2)
a and B(1),(2)E , B(1),(2)a
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by integrating numerically fluctuation equations (2.47), (2.48) up to the
boundary and matching corresponding solutions with (2.120), and com-
pute the correlation matrix (2.127). Each of the four components of the
correlation matrix shows a gapped zero sound mode.

In figure 2.5 we plot the real and imaginary parts of the G22 compo-
nent, for b = 0.001. We see the gapped zero sound mode, with the gap
which scales as ωc ∼ b, in agreement with analytic result ωc = b

K(1/2) of
the previous section.

2.6 Discussion

In this chapter we have studied current-current two-point functions at
strong coupling. We have considered the current-current correlators at
finite momenta, but did not observe any nontrivial structure in the spectral
function, other than the zero sound9.

It is instructive to compare the holographic density-density correlator
with the form expected from the random phase approximation and re-
viewed in Section II. Within RPA the zero sound mode presents itself as a
smeared delta-function like peak in Fig. 1, the Lindhard particle-hole con-
tinuum starts at q ' w/υF and sharply ends at q ' 2qF . The absence of
the Lindhard continuum in the holographic computations can be explained
by parametrically large values of the Landau parameters. The key point
is eq. (2.11) which implies that since the zero sound velocity that we ob-
serve is O(1), the value of Fermi velocity scales like υF ∼ 1/

√
F0F1. The

regime of validity of our calculations is limited to w ∼ q, and therefore the
Lindhard continuum cannot be observed for parametrically large values
of the Landau parameters. In the following we offer some speculations on
how such a scenario can play out.

We can argue that the Fermi velocity is parametrically small. Recall
that q ' q

√
λ/µ. Hence, eq. (2.60) implies that the zero sound attenua-

tion is α ∼ w2√λ/µ. According to [47] this can be expressed in terms of
the quasi-particle lifetime as

α ' 1
τ

m∗

µ
υ2
FF

2
2 ∼

w2

µ
F 2

0F
2
2 (2.132)

9Note that our models are different from those studied in [7, 8], where poles at
finite momenta were observed in the holographic two-point functions of operators with
nonvanishing charge under global U(1).
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Figure 2.5. Real and imaginary parts of the component G22 of the correlation
matrix (2.124) in the D3/D7 system with d = 2 + 1 dimensional intersection,
for the magnetic field b = 0.001. The spectrum of excitations is exhausted by a
gapped zero sound mode, with the value of the gap ωc ∼ b.
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To derive the second approximate equality we used the Fermi liquid es-
timate 1/τ ∼ w2m∗F0

2/q2
F ∼ w2F 2

0 /E∗F . Eq. (2.132) implies that the
Landau parameters are indeed parametrically large, F 2

0F
2
2 ∼
√
λ.

We have analyzed the system in the presence of magnetic field and
observed a gap in the excitation spectrum wc. We derived a scaling re-
lation wc ' B/µ. Note that the gap in the spectrum of non relativistic
fermions scales linearly with B, while the relativistic fermions obey

√
B

scaling; Kohn’s theorem implies that the gap in the spectrum of excita-
tions is not changed when the pairwise interaction is turned on. In our
setup charged fermions interact and can exchange momentum with N = 4
SYM degrees of freedom; the linear scaling of the gap with the magnetic
field is consistent with the assumption that the effective degrees of freedom
have an effective mass m∗ ' µ. [According to eq. (2.10) this implies that
F1 = O(1); a scenario consistent with the discussion above may involve
a parametrically large F0 ∼ λ1/4 but finite Fn, n > 0.] We do not quite
understand the mechanism of dynamical mass generation at finite density
– it is clearly very different from dynamical mass generation in a strongly
interacting fermion system at zero density10.

We already emphasized that a priori the very existence of zero sound is
nontrivial, given the interaction of the charged matter with the uncharged
superconformal degrees of freedom. It would be interesting to make this
picture more precise and to see whether there is any relation to the recent
studies of fermions in magnetic fields in the context of holography [48–
50, 52, 51]. It would also be interesting to compare our results with the
correlators computed in the charged magnetic brane background [53].

At this point it is worth recalling the relation between the charge den-
sity and the value of the chemical potential, given by (2.35). As usual,
the value of the charge density is proportional to d̂, ρ ' Ncλ

(p−5)/4d̂ and
the proportionality coefficient strongly depends on the dimensionality of
the probe brane. The incompressibility ∂d̂/∂µ is a smooth non-vanishing
function of µ, b. This implies that we cannot rule out the existence of gap-
less modes in our system11. Indeed, the analysis that led to the existence
of the zero sound implicitly assumed ω ∼ q ∼ b, and can be shown to break
down for |ω| < bq. We leave the search for gapless quasi normal modes
for future work. Let us also note that a smooth compressibility is not

10The holographic dual of the latter involves repulsion of the probe brane from the
bulk of of the AdS space; see e.g. [41] for a recent discussion.

11We thank D. Son for pointing this out to us.
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compatible with the existence of Landau levels for the effective fermions.
Appendix is devoted to the subject of higher derivative corrections to

the DBI action for the probe Dp brane. The possibility of breakdown of
the DBI description in the extreme infrared (very close to the horizon) was
pointed out in [54]. Two possible causes were identified in the presence
of the electric flux on the brane: strong back-reaction and vanishing of
the effective string tension. The strength of back-reaction from the flavor
branes is governed by the ratio Nf/Nc. We did not investigate 1/Nc cor-
rections in this chapter, although it is a very interesting problem. Instead,
we explored the effects of the breakdown of the DBI description due to the
vanishing of the effective string tension near the horizon. The strength
of this effect is controlled by an inverse power of ’t Hooft coupling. In
principle, such effects can be described by going to higher orders in the
α′ expansion of the effective action for open strings, which corresponds to
adding higher derivative terms to the DBI Lagrangian. Unfortunately we
are not aware of the precise structure of higher derivative corrections to
DBI in the presence of the worldvolume electric field. However we were
able to model this situation by writing generic higher derivative terms
which become important near the horizon and completely change the ef-
fective metric for fluctuations there.

The effect of such terms is confined to a very small region (which
scales as an inverse power of ’t Hooft coupling in suitable units); outside
of this region the second order differential equations derived from the DBI
are applicable. In principle, one can solve the higher order fluctuation
equation outwards from the horizon, and then feed the resulting solution
into the second order equation. From the point of view of the latter, this
amounts to modifying the boundary conditions: an outgoing wave (with
a small coefficient) is added to the incoming wave near the horizon. We
verify that this does not introduce any qualitative new features in the
two-point functions.

2.7 Appendix: Higher-derivative corrections to
LDBI(a1)

The DBI description might break down in the near-horizon region [54],
and therefore higher derivative corrections become essential in that region.
Consider higher derivative correction to the DBI Lagrangian of the form
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[55, 56]
ε

2
√
−ggµλgνρgαβ(∇αFλρ)(∇βFµν) , (2.133)

Alternatively, using the Bianchi identity, one may rewrite it as

ε̃
√
−ggµν∇λF λµ∇σF σν . (2.134)

Here ε ∼ `2s ∼ 1√
λ
.

In this section we put L = 1. The induced AdS4 × S4 metric on the
trivially embedded Dp brane world-volume then takes the form

ds2 = ρ2(−(dx0)2 + (dx1)2 + (dx2)2) +
dρ2

ρ2 + dΩ2
4 , (2.135)

This corresponds to non-vanishing Christoffel symbols in the AdS sub-
space,

Γρρρ = −
1
ρ

, Γρij = −ρ
3ηij , Γiρj =

1
ρ
δij , (2.136)

where η00 = −1, η11 = η22 = 1. We fix the background value of A′0(ρ)
(2.34) (with B̄ = 0) and study the dynamics of the fluctuation field
a1(ρ,x0,x2). Consequently, the non-vanishing components of the field
strength tensor covariant derivatives

∇αFµν = ∂αFµν − ΓταµFτν − ΓτανFµτ (2.137)

are given by

∇1F0ρ = −
1
ρ
F01 , ∇ρF0ρ = ∂ρF0ρ , ∇ρF01 = ∂ρF01 −

2
ρ
F01 , (2.138)

∇1F01 = ρ3F0ρ , ∇2F01 = ∂2F01 , ∇0F01 = ∂0F01 − ρ3Fρ1 , (2.139)

∇2F12 = ∂2F12 + ρ3F1ρ , ∇0F12 = ∂0F12 , ∇ρF12 = ∂ρF12 −
2
ρ
F12 ,
(2.140)

∇2Fρ1 = ∂2Fρ1 −
1
ρ
F21 , ∇0Fρ1 = ∂0Fρ1 −

1
ρ
F01 , ∇ρFρ1 = ∂ρFρ1 .

(2.141)
Let us now substitute the quantities (2.138)-(2.141) into the Lagrangian

(2.133), which becomes in momentum representation,

∆L = ε[−ρ2(∂ρA0)
2 − ρ4(∂2

ρA0)
2 +

1
ρ2

(
(q2 − ω2)2

ρ2 + 5q2 − 6ω2
)
a2

1

+ 2(ρ2 + q2 − ω2)(∂ρa1)
2 + ρ4(∂2

ρa1)
2+

4(ω2 − q2)

ρ
a1 ∂ρa1] . (2.142)
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To obtain the corrected equation of motion of the background field ∂ρA0,
we put the a1 fluctuations to zero and write the total, DBI + corrections,
Lagrangian as

L = ρ2
√

1− (∂ρA0)2 − ε[ρ2(∂ρA0)
2 + ρ2(∂2

ρA0)
2] . (2.143)

The corresponding equation of motion

ρ2∂ρA0√
1− (∂ρA0)2

+ 2ε[ρ2 ∂ρA0 − ∂ρ
(
ρ4 ∂2

ρA0
)
] = d̂2 (2.144)

is solved to first order in ε by

∂ρA0 =
d̂2√
ρ4 + d̂4

+ δ ∂ρA0 , (2.145)

where we have denoted the correction to the background as

δ ∂ρA0 = −2d̂2ερ6(d̂8 + 16d̂4ρ4 + 3ρ8)

(ρ4 + d̂4)4 . (2.146)

Note that (2.146) approaches zero as O(ρ6), near the horizon ρ = 0.
Therefore the correction to the behavior of the background potential ∂ρA0
does not substantially affect the near-horizon physics. Using the z = 1/ρ
radial coordinate, and considering the near horizon limit ωz � 1, we
obtain from (2.142) the correction to the near-horizon DBI Lagrangian

∆L = ε
(
(q2 − ω2)z2(2a′21 + (q2 − ω2)a2

1) + (2a′1 + za′′1)
2
)

. (2.147)

This is to be added to the quadratic DBI near-horizon Lagrangian,

LDBI = z2(a′21 − ω2a2
1) . (2.148)

As a result we obtain the following near-horizon Lagrangian:

L =
((

1 + 2ε(q2 − ω2)
)
z2 + 2ε

)
a′21 +

(
−ω2 + ε(q2 − ω2)2

)
z2a2

1

+ 2ε(za′21 )′ + εz2(a′′1)
2 . (2.149)

Up to a total derivative term12 and O(ε) modification of the DBI behavior,
this Lagrangian therefore may be rewritten as

L = z2(a′21 − ω2a2
1) + εz2(a′′1)

2 , (2.150)
12Corresponding boundary terms 2εza′2

1 , evaluated on non-perturbed solution eiωz/z,
vanish when z � 1.

79



with associated equation of motion

a′′1 +
2
z
a′1 + ω2a− ε

(
a′′′′1 +

4
z
a′′′1

)
= 0 . (2.151)

To estimate the relative significance of the correction and DBI terms,
let us compare terms a′′1 and ε

(
a′′′′1 + 4

za
′′′
1

)
, when evaluated on the non-

perturbed near-horizon solution eiωz/z:

a′′1 '
1 + (ωz)2

z3 , ε

(
a′′′′1 +

4
z
a′′′1

)
' εω

4

z
. (2.152)

We observe that this correction is negligible.
Unfortunately we are not aware of the exact form of the higher deriva-

tive corrections to the DBI action in the presence of the electric field on
the world-volume of the probe Dp brane. In the following we will simply
assume a particular expression for the higher derivative corrections to the
Lagrangian for the transverse fluctuations:

L = z2(a′21 − ω2a2
1) + εz2+ν(a′′1)

2 , (2.153)

with ν > 0. To estimate the significance of the correction term we need
to compare contributions to the equation of motion from the terms O(1)

a′′1 '
1 + (ωz)2

z3 (2.154)

and O(ε)

ε
(
zνa′′′′1 +2(ν+2)zν−1a′′′1 +(ν+1)(ν+2)zν−2a′′1

)
' εzν−5(1+(ωz)4) .

(2.155)
Therefore, if 0 < ν ≤ 2, the correction becomes significant when z �

1
(εω2)1/ν (see the hierarchy of scales in Fig. 2.6). If ν > 2, considering
modes with sufficiently low frequency ω < ε1/(ν−2) the correction becomes
significant when z � ε1/(2−ν) (see Fig. 2.7). Finally, if ν > 2 and ω >
ε1/(ν−2), the Fig. 2.6 is applicable, and the correction is significant when
z � 1

(εω2)1/ν . Hence, in the region z � 1
(εω2)1/ν the DBI description

is valid, provided that 0 < ν ≤ 2 or ν > 2, ω > ε1/(ν−2). The DBI
description is valid in the region z � ε1/(2−ν) for ν > 2, ω < ε1/(ν−2).

The behavior of a1 in the limit z � 1 where the DBI description is
valid, is different from the incoming-wave (2.114): it has a qualitative form
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Figure 2.6. Hierarchy of scales in the near-horizon region for 0 < ν ≤ 2.

Figure 2.7. Hierarchy of scales in the near-horizon region for ν > 2 and ω <
ε1/(ν−2).

of “incoming wave” + O(ε) “outgoing wave”. It is worth noting that the
effect of higher derivative corrections on the current-current correlation
function is essentially the same as an effect of non-zero b-field. We verified
that such a modification does not lead to any nontrivial structure in the
spectral density.
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Chapter 3

S-parameter, Technimesons,
and Phase Transitions in
Holographic Tachyon DBI
Models

3.1 Introduction and summary
Systems of strongly interacting fermions have applications in many realms,
including condensed matter (e.g. graphene) and particle physics (e.g.
technicolor models). A simple way to introduce interaction between fermions
involves adding a quartic term to the lagrangian of N free fermions, result-
ing in the Nambu-Jona-Lasinio model (see e.g. [1] for a review). In three
space-time dimensions the model is renormalizable to all orders in the
1/N expansion: one can take a double scaling limit where the coupling is
tuned to the critical value, while the UV cutoff is sent to infinity, keeping
the physical mass fixed. Dynamical mass generation at sufficiently large
values of the coupling is an important feature which is believed to happen
in other strongly interacting fermion systems.

Unfortunately one often has to resort to approximate methods to de-
scribe the physics in the vicinity of the phase transition from the massless
phase to the one with a gap. This is because the transition happens at the
intermediate values of the coupling where both the weak coupling and and
strong coupling expansions break down. Nevertherless such description is
often very useful for phenomenological reasons: for example, the walking
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technicolor models are precisely of this type, since they stay very close to
the putative conformal fixed point for the long RG time. In [2] a tachyon
dynamics in the AdS space-time was shown to holographically model this
type of physics; this has been further studied in [3] in the context of a
particular holographic model based on the Tachyon DBI action in AdS.
The mass of the tachyon is tuned to the critical value (the BF bound)
and at the same time the UV cutoff is sent to infinity, so that the physical
scale measured, for example, by the meson masses, stays fixed.

In this chapter we study some phenomenological applications of the
model proposed in [3] which, in turn, was motivated by the holographic de-
scription of the dynamics of the D3 and D7 branes intersecting along 2+1
dimensions [4]. We restrict our attention to four space-time dimensions.
In the next Section we investigate the phase diagram of the holographic
model at finite temperature and charge density. We show that the phase
transition at finite temperature between the symmetric and the massive
phase is generalized into the phase transition line in the temperature-
charge density plane. Furthermore, depending on the value of the quartic
coefficient in the tachyon potential, the phase transition line can either
stay first order, or possess a critical point where the order of the phase
transition changes from second to first. This is somewhat similar to the sit-
uation with the (conjectural) phase diagram of QCD with massless quarks
and constitutes an interesting prediction for the phase diagram of strongly
interacting fermions.

In Section 3 we explore a possibility of using the holographic TDBI
model in the context of holographic walking technicolor. We couple the
tachyon bilinear to the gauge fields in the adjoint representations of SU(Nf )L
and SU(Nf )R which contain electroweak gauge group (setting Nf = 2 and
embedding the electroweak group as SU(2)×U (1) ⊂ SU(2)L × SU(2)R
constitutes the simplest setup). Tachyon condensate breaks electroweak
symmetry and generates masses for the W and Z bosons giving rise to
a model of holographic walking technicolor. We compute the Peskin-
Takeuchi S-parameter for a variety of tachyon potentials and observe that
it is positive and does not go to zero. In Section 4 we compute the masses
of the lightest scalar technimesons for a certain family of the tachyon
potentials and observe that even though there is no parametrically light
“technidilaton”, the lowest lying meson can be an order of magnitude
lighter then the next one.

We conclude in Section 5. Appendix contains application of the holo-

90



graphic RG to the holographic tachyon TDBI model, where a picture for
the running of the double trace coupling, expected from field theoretic
considerations, is reproduced.

3.2 Holographic TDBI at finite temperature and
chemical potential

In this Section we consider holographic tachyon DBI model at finite tem-
perature and chemical potential. We consider AdS-Schwarzshild black
hole to account for a non-vanishing temperature, and we turn on a back-
ground flux of the U(1) gauge potential which corresponds to to the finite
density in the dual field theory. We describe the phase with broken con-
formal symmetry by the dual picture with non-vanishing tachyon field in
the bulk, while conformally symmetric field theory state corresponds to
the identically vanishing tachyon in the bulk. We compute holographically
free energies of both phases and determine the resulting phase diagram.

Perhaps the future development of the results of this Section will
mostly lie in the realm of condensed matter physics. However, let us
make a slight detour and remind the reader a closely related problem, a
phase diagram of QCD at finite temperature and chemical potential. (See
e.g. [5, 6] for recent reviews). The phase structure of QCD is roughly the
following. If the temperature is low and we increase the density, then at
some value of the density the system is expected to undergo a first order
phase transition to the states where the hadrons dissociate. At sufficiently
large density, the system gets into the color superconducting phase. In this
phase confined bound state of two quarks goes to Coulomb bound state,
in a process similar to Cooper pairing in the microscopic description of
a superconductor. Increasing the temperature destroys Cooper pairing
mechanism for the quarks, eventually giving rise to a quark-gluon plasma.
This is believed to be a preferred high temperature state for any values
of the chemical potential, however the phase transition from the hadronic
state is first order for larger densities, but second order for smaller densi-
ties (for massless quarks). As we will see below, we can observe somewhat
similar phase structure for certain TDBI models, though either the orders
of first and second order phase transitions are interchanged or we have
two critical points at which the order of phase transition changes.

Phase transitions in the holographic tachyon DBI at finite tempera-
ture have been studied in [3], which the reader is encouraged to consult
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for technical details relevant to the present Section 1. There it has been
established that the order of the phase transition is determined by the
behavior of the tachyon potential for very small values of T (the tachyon
field). In the BKT limit, where the UV cutoff is taken to infinity, with
physical observables held fixed, the solution must have a fixed ratio be-
tween the two asymptotics near the boundary of AdS. The value of the
coefficient in front of the T 4 term in the tachyon potential determines
whether increasing the value of T at the black hole horizon corresponds
to the smaller or larger temperatures. In the former case, the transition
is second order, while in the latter case it is first order. In the following
we repeat this analysis in the presence of finite density.

Consider finite temperature AdSd+1-Schwarzshild metric

ds2 = r2
(
−F (r)dt2 + (dx1)2 + ... + (dxd−1)2

)
+

dr2

r2F (r)
, (3.1)

where F (r) = 1−
( rh
r

)d, and turn on non-vanishing flux Ȧ0. Tachyon-DBI
action then takes the form

STDBI = −
ˆ ∞
rh

dr

ˆ
ddxrd−1V (T )

√
1 + r2Ṫ 2F − Ȧ2

0 . (3.2)

From equation of motion for gauge flux we obtain

Ȧ2
0 =

d̂4(1 + r2FṪ 2)

r2(d−1)V 2 + d̂4 , (3.3)

where d̂(µch, rh) is a constant of integration. As usual, up to a normaliza-
tion constant, d̂2 is proportional to the charge density of the system. Due
to (3.3) in the leading order in T we obtain

µch =

ˆ ∞
rh

dr d̂2√
d̂4 + rqn2(d− 1)

=
d̂2

(d− 2)rd−2
h

2F1

1
2 , d− 2

2(d− 1) , 3d− 4
2(d− 1) , − d̂4

r
2(d−1)
h

 . (3.4)

1In recent work [7] the phase structure of the holographic model of QCD in the
Veneziano limit has been analyzed at finite temperature.
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Plugging (3.3) in into the action (3.2) we arrive at

STDBI=−
ˆ ∞
rh

dr

ˆ
ddxr2(d−1)V 2

(
(1+r2FṪ 2)(r2(d−1)V 2+d̂4)−1

)1/2
.

(3.5)
Introduce dimensionless coordinate, r̃ = r/d̂

2
d−1 , and dimensionless tem-

perature, r̃h = rh/d̂
2
d−1 . As a result the action acquires the form

STDBI = −d̂
2d
d−1

ˆ ∞
r̃h

dr̃

ˆ
ddx

r̃2(d−1)V 2√
1 + r̃2(d−1)V 2

√
1 + r̃2FT ′2 , (3.6)

where F = 1− (r̃h/r̃)d and T ′ = ∂T/∂r̃.
Let us define tachyon T value at the horizon, Th = T (rh). Equation

of motion for the tachyon field, following from the action (3.6), is

∂

∂r

 r̃2dFV 2T ′√
(1 + r̃2FT ′2)(1 + r̃2(d−1)V 2)


− r̃2(d−1)V 2 2 + r̃2(d−1)V 2

(1 + r̃2(d−1)V 2)3/2

√
1 + r̃2FT ′2 ∂T log V = 0 . (3.7)

Using (3.7) and imposing the boundary condition T (r̃ = r̃h) = Th, we
find

T ′(r̃ = r̃h) =
2 + r̃

2(d−1)
h V 2(Th)

dr̃h(1 + r̃
2(d−1)
h V 2(Th))

∂T log V (Th) . (3.8)

When T ∼ Th � 1 and m ' m2
BF = −d2/4 we obtain linearized equation

of motion (
r̃2dFT ′√

1 + r̃2(d−1)

)′
+
d2r̃2(d−1)

4
2 + r̃2(d−1)

(1 + r̃2(d−1))3/2T = 0 (3.9)

and boundary conditions

T (r̃ = r̃h) = Th , T ′(r̃ = r̃h) = −
dTh
4r̃h

2 + r̃
2(d−1)
h

1 + r̃
2(d−1)
h

. (3.10)

Near the boundary r̃ →∞ behavior of T (r̃) is given by equation

T ′′ +
d+ 1
r̃

T ′ +
d2

4r̃2T = 0 . (3.11)
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Let us now specialize to d = 4 case. Near-boundary behavior is then
described by equation

T ′′ +
5
r̃
T ′ +

4
r̃2T = 0 . (3.12)

which is solved by

T (r̃) ' 1
r̃2 (c1 log r̃+ c2) ⇒ T (r) =

1
r2

(
c1 log r

d̂2/3 + c2

)
. (3.13)

Let us denote
g = d̂2/3 (3.14)

The constants c1 and c2 can be determined by solving equation of motion
(3.7) numerically. If we consider instead linearized equation (3.9) in BKT
limit with boundary conditions (3.10), we obtain c2/c1, which is a function
of r̃h = rh/g. In the case of vanishing temperature and vanishing chemical
potential the near-boundary behavior of tachyon field is given by

T (r) =
1
r2

(
C1 log r

µ
+C2

)
(3.15)

Clearly it must be the same as (3.13) . Matching these equations, we
obtain

g

µ
= C0 exp

(
Ξ
(
rh/µ
g/µ

))
, (3.16)

where we have denoted C0 = e−C2/C1 and Ξ = c2/c1. Equation (3.16)
can be solved numerically, which gives critical values of temperature rh
and g measured in units of µ. The result appears in figure 1. We have
checked that when d̂ = 0 the critical temperature is equal to 2C0, which
is a correct limiting value [3].

To determine which state in the canonical ensemble is preferred, we
need to compare the free energies. Similarly to [3], we focus on the near-
critical region, where tachyon field is either vanishing or small. The differ-
ence in free energies between non-vanishing tachyon and vanishing tachyon
phases is given by

F(rh, d̂) = STDBI(T ≡ 0)− STDBI(T ) , (3.17)

where the last term in the r.h.s. is evaluated on the solution, satisfying
T (r = rh) = Th boundary condition. Due to V (0) = 1 one obtains, using
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Figure 3.1. Phase diagram for conformal phase transition in (g/µ, rh/µ) plane.
Order of phase transition changes at the point r̃h ≡ rh/g = 0.75. Blue part of the
curve describes second order phase transition and red part of the curve describes
first order phase transition.

(3.6)

F(rh, d̂) = d̂8/3
ˆ ∞
r̃h

dr̃

ˆ
d4xr̃6

(
V 2

√
1 + r̃6V 2

√
1 + r̃2FT ′2 − 1√

1 + r̃6

)
.

(3.18)
We will need the form of the tachyon potential near T = 0:

V (T ) = 1 + 1
2m

2T 2 +
a

4T
4 + · · · , (3.19)

where m2 ' m2
BF = −4 and a is the coefficient of the quartic term which,

as explained in [3], determines the order of the phase transition in the case
of vanishing density. Below we will see that at finite density the situation
is more subtle, and the first order phase transition line can join the second
order phase transition line at a critical point, provided the value of a is
chosen accordingly.

In the BKT limit we have T ∼ Th � 1 and m2 = m2
BF = −4. We

compute (3.18) up to the fourth order in Th,

F(rh, d̂) = F2(rh, d̂) +F4(rh, d̂) + · · · , (3.20)

95



where

F2 = d̂8/3
ˆ ∞
r̃h

dr̃

ˆ
d4x

1
2
√

1 + r̃6

(
r̃8FT ′2 − 4r̃6 2 + r̃6

1 + r̃6T
2
)

F4 = −d̂8/3
ˆ ∞
r̃h

dr̃

ˆ
d4x

r̃6

8(1 + r̃6)5/2

(
F 2T ′4r̃4(1 + r̃6)2+ (3.21)

+ 8F r̃2T 2T ′2(1 + r̃6)(2 + r̃6) + 2T 4(8(r̃6−2)

− a(1 + r̃6)(2 + r̃6))
)

(3.22)

The quadratic terms vanish on shell, up to the boundary term, which
also vanishes, because

F (r̃ = r̃h) = 0 , T (r̃ =∞) = 0 . (3.23)

We solve numerically equation (3.9) with boundary conditions (3.10), for
each particular r̃h = rh/g. This gives us T = T1, which is a solution of
the first order in Th. The first correction to this solution is obtained when
we take into account quartic in Th terms in the action for T , and therefore
the corrected solution is T = T1 + T3, where T3 is of the third order in
Th. Therefore we need to compute in the leading order

F(T1 + T3) = F2(T1 + T3) +F4(T1 + T3) . (3.24)

For brevity let us rewrite (3.70) as

F2 =

ˆ
dr[α(r)T 2 + β(r)T ′2]

F4 =

ˆ
dr[a(r)T 4 + b(r)T 2T ′2 + c(r)T ′4] . (3.25)

Let us use integration by parts to bring F2,4 to the form

F2 =

ˆ
dr T [αT − (βT ′)′] ≡

ˆ
dr TP1

F4 =

ˆ
dr T

[
aT 3 +

b

2TT
′2 −

(
b

2T
′T 2
)′
− (cT ′3)′

]
≡
ˆ
dr TP3(3.26)

where P1,3 are polynomials of the T , T ′, T ′′ of the degree specified by the
subscript. From the variation

δF=2
ˆ
dr δT [αT−(βT ′)′]+4

ˆ
dr δT

[
aT 3+

b

2TT
′2−

(
b

2T
′T 2
)′
−(cT ′3)′

]
(3.27)
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we obtain equation of motion

2P1(T1 + T3) + 4P3(T1 + T3) = 0 , (3.28)

which we can solve perturbatively as

P1(T1) = 0 , P1(T3) + 2P3(T1) = 0 . (3.29)

Using these equations in the expansion of (3.24)

F =

ˆ
dr(T1 + T3)P1(T1 + T3) + (T1 + T3)P3(T1 + T3)

=

ˆ
drT1P1(T3) + T3P1(T1) + T1P3(T1) + · · · (3.30)

we obtain
F(T ) ' −

ˆ
drT1P3(T1) = −F4(T1) . (3.31)

We then evaluate quartic terms, F4(d̂, a), on the numerically found
solution T1. Equation F4(r̃h, a) = 0 gives values of ratio rh/g = r̃h for
each particular a at which order of phase transition changes. This equation
is valid only for those values of rh and d̂ which are close to critical ones. We
solve this equation numerically for each particular value of the parameter
a, that is we find r̃

(c)
h (a). The result is plotted in figure 2. Notice that

when d̂ is sent to zero, r̃h goes to infinity, and the special value a ' 6.47
becomes the same as in the case of vanishing chemical potential [3]. Also
notice that when 6.47 ≤ a ≤ 7.03 there are two points r̃h at which the
order of phase transition changes.

In figure 1 we have taken a = 6.41 for which phase transition is the
second order one for rh

g < 0.75 and the first order one for rh
g > 0.75. This

corresponds respectively to the blue and red parts of the phase transition
curve in figure 1. 2

The other option is to take the value of a at which we have two critical
points where the order of phase transition changes. Then for the temper-
ature bellow some critical value, r̃(c)h < r

(c,1)
h we have second order phase

2One may use the top-down approach based on the D3−D7 system to derive the
phase diagram ofN = 4 super Yang-Mills coupled toN = 2 matter at finite temperature
and chemical potential. It also exhibits the phase transition of the second order at small
temperatures. See [8] for a recent discussion.
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Figure 3.2. The ratio r̃h = rh/g at which the order of phase transition changes,
as a function of UV parameter a. It is determined by the sign of F4 in the
conformal symmetry broken phase. On the left side of the curve F4 < 0 and
phase transition is of the first order, on the right side F4 > 0 and phase transition
is of the second order.

transition, for r̃(c,1)h < r̃
(c)
h < r̃

(c,2)
h we have first order order phase tran-

sition, and finally for r̃(c)h > r̃
(c,2)
h we have second order phase transition.

The critical point r̃(c,2)h therefore resembles the one in the QCD phase
diagram.

As emphasized in [3], the behavior of the free energy for small values
of the tachyon condensate determines the order of the phase transition,
provided the phase diagram has a simple form. This was the case in
all examples studied in [3]. We believe this remains true once the finite
density is turned on, but to show this some further numerical work is
necessary.

3.3 S parameter

3.3.1 Review of technicolor and S, T , U parameters

Consider the system of 2 techniquark matter fields (ũ, d̃) with color charges,
transforming in fundamental representation of the gauge group SU(Nc).
Quark fields are coupled to gauge field in the adjoint representation of
the gauge group. In the ultraviolet regime these quarks are massless,
and therefore the system possesses the SU(2)L × SU(2)R chiral symme-
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try. Therefore we can couple the doublet of left quarks Q = (ũL , d̃L) to
bosons of weak gauge group SU(2)L, leaving 2 right quarks ũR and d̃R in
the singlet representation sector of the weak gauge transformations. We
also give each quark field the hypercharge Y , characterizing its represen-
tation under the action of the U(1)Y gauge group.

We look at introduced 2 quarks as a set of strongly-interacting fermionic
fields of the physics beyond the Standard Model. At some energy scale
due to the strong interaction these quarks may form a chiral condensate,
breaking the chiral symmetry down to SU(2)diag. 3 In the vacuum with
spontaneously broken chiral symmetry the 2 quarks acquire a mass. In
the technicolor models the phenomenon of the chiral symmetry breaking
via techniquark condensation is used to explain the spontaneous electro-
weak symmetry breaking, realized therefore as a dynamical symmetry
breaking. Furthermore, the extended technicolor models combine these 2
techniquarks with SM matter fields in some specific multiplets in such a
way that condensation of techniquarks gives masses to SM matter fields.
In the simplest technicolor models such quartic fermionic terms, gener-
ated at high scale ΛETC , lead to flavor changing neutral currents matrix
elements that are way above experimental bounds. A walking technicolor
models, where the system spends a long RG time in a vicinity of a pu-
tative RG fixed point and the anomalous dimension of the technimeson
condensate γ ' 1, has been proposed to alleviate this problem. (See [10]
for a recent review of walking technicolor and references therein). The
theory is necessarily strongly coupled, and it is natural to use holography
in this context.

To create a possibility for experimental tests of theories describing
physics beyond the Standard Model, Pesking and Takeuchi [11, 12] in-
troduced dimensionless parameters S , T , U , measuring an impact of
a hidden sector of heavy beyond-SM fundamental matter fields coupled
to electro-weak gauge bosons. They argued (following [13]) that the most
important impact arises from oblique corrections: vacuum polarization di-
agrams, which renormalize gauge boson propagators. Peskin-Takeuchi pa-
rameters are expressed via these vacuum polarization amplitudes, and we
will review their argument in a greater detail bellow. For each beyond-SM
theory we therefore may compute S , T , U parameters and see whether
the results lie within the boundaries set by the deviation of experimental

3It was shown in [9] that under general assumptions in large-Nc chromodynamics
the chiral symmetry breaks spontaneously.
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data from Standard Model predictions.
The quantum corrections of matter fields to the propagators of the SM

gauge fields come from the vacuum polarization amplitudes
ˆ
d4xeiq·x〈Jµa (x)Jνb (0)〉 = −i

(
gµν − qµqν

q2

)
Πab(q

2) , (3.32)

where a, b = 1, 2, 3,Q and we are assuming mostly plus signature of the
metric. The expression (3.32) should be computed for the matter fields of
the SM and for the hidden matter sector of the beyond-SM physics.

For weak currents Ji , i = 1, 2, weak isospin current J3 and electro-
magnetic current JQ we have the vacuum polarization amplitudes

Π11 , Π22 , Π33 , Π3Q , ΠQQ . (3.33)

If we know these amplitudes, then using expression for the electroweak
interaction Lagrangian

L =
e√
2s

(
W+
µ J

µ
+ +W−µ J

µ
−

)
+

e

sc
Zµ
(
Jµ3 − s

2JµQ

)
+ eAµJ

µ
Q (3.34)

we can obtain 1PI self-energies for the electroweak gauge bosons, and 1PI
mixing for Z-boson and photon,

ΠAA = e2ΠQQ , ΠZA =
e2

sc
(Π3Q − s2ΠQQ) , . . . . (3.35)

Then with the help of Schwinger-Dyson equations we can derive full quan-
tum propagators for the electroweak gauge fields.

Now, in the interaction Lagrangian (3.34) we have parameters e and

s2 ≡ sin2 θW = 1− m2
W

m2
Z

. (3.36)

Quantum corrections due to the vacuum polarization amplitudes boil
down to the renormalization of these parameters,

e2
?(q

2) ≡ e2

1− e2ΠQQ(q2)
, (3.37)

s2
?(q

2) ≡ s2 − sc ΠZA(q2)

q2 −ΠAA(q2)
. (3.38)

100



Then, the renormalized parameter s? enters the measured left-right
Z-decay asymmetry,

ALR(q
2) =

2(1− 4s2
?)

1 + (1− 4s2
?)

2 , (3.39)

and therefore the renormalization of the gauge fields propagators (coming
mainly as the oblique corrections due to loops of heavy fermions) can be
measured experimentally.

Let us also define θ0 as

sin(2θ0) =

√√√√4πα?,0(m2
Z)√

2GFm2
Z

. (3.40)

HeremZ andGF are experimentally measured. And α?,0(m2
Z) is a running

electromagnetic coupling, which is computed due to known physics up to
q2 = m2

Z scale. The running starts from the measured α(q2 = 0) =
e2/(4π).

The renormalization comes from SM and from physics beyond the SM.
In the SM the most important contribution comes from t-quark loops (see
e.g. [14] Chapter 21),

s2 − s2
? = −

3αc2

16πs2
m2
t

m2
Z

, (3.41)

s2
? − s2

0 = − 3α
16π(c2 − s2)

m2
t

m2
Z

. (3.42)

Let us now describe quantum corrections due to vacuum polarization
diagrams of beyond-SM physics. First of all for heavy fermion we can
expand vacuum polarization amplitudes around q2 = 0,

ΠQQ(q
2) = q2Π′QQ(0) , Π3Q(q

2) = q2Π′3Q(q
2) , (3.43)

Π33(q
2) = Π33(0) + q2Π′33(0) , (3.44)

Π11(q
2) = Π11(0) + q2Π′11(0) , (3.45)

where prime denotes differentiation w.r.t. q2 and we have made use of the
fact that Ward identity for electromagnetic field ensures ΠQQ(0) = 0 and
Π3Q(0) = 0. Also we have Π11 = Π22. We have therefore six parameters
defining vacuum polarization amplitudes of heavy fermions. We make a
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renormalization, fixing values of three well-measured parameters, which
are α, GF and mZ . Three parameters which are left are free of UV
divergencies, and we combine these into

αS = 4e2
(

Π′33(0)−Π′3Q(0)
)

, (3.46)

αT =
e2

s2c2m2
Z

(Π11(0)−Π33(0)) , (3.47)

αU = 4e2 (Π′11(0)−Π′33(0)) . (3.48)
In addition to SM corrections (3.41) and (3.42) we can write down

contribution of beyond-SM physics via these parameters:

m2
W

m2
Z

− c2
0 =

αc2

c2 − s2

(
−1

2S + c2T +
c2 − s2

4s2 U

)
, (3.49)

s2
? − s2

0 =
α

c2 − s2

(1
4S − s

2c2T

)
. (3.50)

Thus we explicitly constructed a set of experimentally measured quanti-
ties, quantum corrections to which may be separately computed from the
SM, (3.41), (3.42), and from a hidden sector, (3.49), (3.50), with the latter
being expressed via Peskin-Takeuchi parameters. Let us use vector and
axial-vector isospin currents

JµV = ψ̄γµτ3ψ , JµA = ψ̄γµγ5τ3ψ , (3.51)

to express left isospin current as

Jµ3 =
1
2 (J

µ
V − J

µ
A) . (3.52)

Consider also electromagnetic current, expressed via isospin and hyper-
charge currents in a usual way,

JµQ = JµV +
1
2J

µ
Y . (3.53)

Assuming the conservation of parity by technicolor interactions we can
express isospin current correlator via vector and axial vector isospin cor-
relators, Π33 = 1

4 (ΠV V + ΠAA). We also note that due to isospin con-
servation 〈J3JY 〉 = 0 (otherwise in technicolor models there would have
been a preferred isospin direction), we obtain Π3Q = 1

2 ΠV V . Therefore

S = −4π(Π′V V (q2)−Π′AA(q
2))|q2=0 . (3.54)
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The holographic tachyon DBI was introduced in [3] to describe a sys-
tem of strongly interacting fermions, which can be made into the walking
technicolor theory. However for the purpose of computing the S-parameter
and technimeson masses, we do not even need to specify that the holo-
graphic TDBI model describes strongly interacting fermions. Instead, it
is sufficient to treat the holographic model as a black box, which produces
two-point functions for the vector and axial currents and features sponta-
neous breaking of the axial symmetry. Then, these currents are coupled
to the SM gauge fields to produce spontaneous symmetry breaking of the
electroweak gauge group. The resulting contribution to the S-parameter
is given by (3.54) and is computed below.

3.3.2 Computation of the S parameter from the tachyon
DBI action

As pointed out above, the holographic tachyon DBI theory provides a
natural model of the walking technicolor scenario. The important feature
of the holographic approach is that we can isolate the impact of beyond-
SM sector of the theory. For this purpose we just have to consider a
corresponding set of fields in the bulk, and study its classical dynamics4.

We need to construct a dual to a strongly interacting theory with the
SU(2)L × SU(2)R global symmetry in the UV. The global currents j(L)µ

and j(R)µ give rise to the bulk fields A(L,R)
M , living in adjoint of SU(2)L,R,

with gauge transformations

A
(L)
M → ULA

(L)
M U †L+i∂MULU

†
L , A(R)

M → URA
(R)
M U †R+i∂MURU

†
R . (3.55)

Tachyon field T (r,x) lives in bi-fundamental of SU(2)L × SU(2)R, i.e.,
its gauge transformations are given by

T → ULTU
†
R . (3.56)

Tachyon action with SU(2)L×SU(2)R local symmetry in the bulk is then

S = −
ˆ
d4xdrTrV (|T |)

(√
−G(L) +

√
−G(R)

)
, (3.57)

4Previous work dedicated to holographic technicolor and S parameter includes [15–
46]; see also [47–53] for recent related work.
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where

G
(R)
MN = GMN + F

(R)
MN , GMN = gMN + (D(MT )

†DN)T ,

G(R) = det G(R)
MN , (3.58)

and similar for the left; and covariant derivative of tachyon field is given
by

DMT = ∂MT + iA
(L)
M T − iTA(R)

M . (3.59)

Similar actions for the tachyon have been introduced in [54].
We have A(L,R)

M = (A
(L,R)
r ,A(L,R)

µ ) and we partly fix the gauge sym-
metry putting

A(L)
r = 0 , A(R)

r = 0 . (3.60)

Let us introduce gauge fields in the bulk, dual to vector and axial
currents on the boundary:

A
(L)
M =

1
2 (VM −AM ) , A

(R)
M =

1
2 (VM +AM ) (3.61)

Suppose we have background tachyon field T (r) = 〈T (r)〉I, with real-
valued vacuum average 〈T (r)〉 = T0(r), satisfying equation of motion at
vanishing gauge fields,

d

dr

 r5Ṫ0√
1 + r2Ṫ 2

0

 =
r3∂T log V (T0)√

1 + r2Ṫ 2
0

(3.62)

Such a background tachyon field breaks the symmetry down to SU(2)diag,
which means UL = UR. Its non-zero covariant derivative components, due
to the gauge choice (3.60) and definition (3.61) are (the fact that T couples
only to axial field A means that axial symmetry is broken)

DrT = Ṫ0 I , DµT = −iAµT0 . (3.63)

In what follows we consider the case of just one flavor of quark fields. The
results can be generalized to arbitrary number of flavors, because for the
holographic computation of two-point functions higher order non-abelian
terms in gauge field Lagrangian do not play any role. We therefore have

GMN = gMN + ∂MT0∂NT0 +AMANT
2
0 . (3.64)
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Let us denote for brevity

GMN = gMN + ∂MT0∂NT0 = diag
(
−r2, r2, r2, r2, 1 + r2Ṫ 2

0
r2

)
, (3.65)

and let us write down an inverse matrix to (3.65)

MMN ≡ (G−1)MN = diag
(
− 1
r2 , 1

r2 , 1
r2 , 1

r2 , r2

1 + r2Ṫ 2
0

)
. (3.66)

We also denote
√
−G =

√
−det ||GMN || , (3.67)√

−G0 =
√
−det || GMN || = r3

√
1 + r2Ṫ 2

0 ,

KMN = GMN −GMN = AMANT
2
0 . (3.68)

Up to second order in A we expand
√
−G =

√
−G0 exp

(1
2tr log(1 +MK)

)
= r3

√
1 + r2Ṫ 2

0

(
1 + T 2

0
2r2 η

µνAµAν

)
. (3.69)

Expanding action (3.57) up to second power of gauge fields and re-
placing left and right gauge fields with vectors and axials we get

S=−
ˆ
d4xdrV (T0)

√
−G

(
2+1

4 (G
−1)M1M2(G−1)N1N2

(
F

(L)
M1N1

F
(L)
M2N2

+ F
(R)
M1N1

F
(R)
M2N2

))
=−
ˆ
d4xdrV (T0)r

3
√

1+r2Ṫ 2
0 [2+

T 2
0
r2 η

µνAµAν (3.70)

+
1
8M

M1M2MN1N2(F
(V )
M1N1

F
(V )
M2N2

+F
(A)
M1N1

F
(A)
M2N2

)] .

Using expression (3.66) forM and throwing away what is independent
of gauge fields we proceed to

S = −
ˆ
d4xdrV (T0)r

3
√

1 + r2Ṫ 2
0 [

1
4(1 + r2Ṫ 2

0 )
ηµν(V̇µV̇ν + ȦµȦν)

+
1

8r4 η
µνηλρ(F

(V )
µλ F (V )

νρ + F
(A)
µλ F

(A)
νρ ) +

T 2
0
r2 η

µνAµAν ] . (3.71)
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We now go to momentum representation,

Vµ(x, r) =
ˆ

d4q

(2π)2Vµ(q, r)e
−iqλxλ ,

Aµ(x, r) =
ˆ

d4q

(2π)2Aµ(q, r)e
−iqλxλ , (3.72)

which results in

S=−
ˆ
d4qdrV (T0)r

3
√

1+r2Ṫ 2
0 [

1
4(1+r2Ṫ 2

0 )
ηµν(V̇µV̇ν+ȦµȦν) (3.73)

+
q2

4r4

(
VµVν

(
ηµν−q

µqν

q2

)
+AµAν

(
ηµν

(
1+4T 2

0 r
2

q2

)
−q

µqν

q2

))
] ,

where all squared gauge fields are just a short notation for q-mode and
−q-mode product.

Let us split radial and momentum dependence as follows:

Vµ(q, r) = vµ(q)v(q, r) , Aµ(q, r) = aµ(q)a(q, r) . (3.74)

(We can use residual gauge symmetry to gauge-fix qµVµ(q, Λ) = qµAµ(q, Λ) =
0.) Let us also split the action (3.73) to axial and vector parts:

S = SV + SA , (3.75)

where

SV = −1
4

ˆ
d4qdr

r3√
1 + r2Ṫ 2

0

V (T0)vµ(q)vν(−q) (3.76)

×
(
v̇q(r)v̇−q(r)η

µν+
q2(1 + r2Ṫ 2

0 )

r4

(
ηµν−q

µqν

q2

)
vq(r)v−q(r)

)
,

SA=−
1
4

ˆ
d4qdr

r3√
1+r2Ṫ 2

0

V (T0)aµ(q)aν(−q) (ȧq(r)ȧ−q(r)ηµν

+
q2(1 + r2Ṫ 2

0 )

r4

(
ηµν

(
1 + 4T 2

0 r
2

q2

)
− qµqν

q2

)
aq(r)a−q(r)

)
. (3.77)

We are interested in transverse components of gauge fields:

vTµ (q) = Pµλη
λνvν(q) , aTµ (q) = Pµλη

λνaν(q) , Pµν = ηµν −
qµqν
q2 , (3.78)
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which are described by

STV = −1
4

ˆ
d4qdr

r3√
1 + r2Ṫ 2

0

V (T0)v
T
µ (q)v

T
ν (−q)ηµν (3.79)

×
(
v̇q(r)v̇−q(r) +

q2(1 + r2Ṫ 2
0 )

r4 vq(r)v−q(r)

)
,

STA = −1
4

ˆ
d4qdr

r3√
1 + r2Ṫ 2

0

V (T0)a
T
µ (q)a

T
ν (−q)ηµν (3.80)

×
(
ȧq(r)ȧ−q(r) +

q2(1 + r2Ṫ 2
0 )

r4

(
1 + 4T 2

0 r
2

q2

)
aq(r)a−q(r)

)
,

Corresponding equations of motion are

v̈q(r) +

√
1 + r2Ṫ 2

0

r3V (T0)

d

dr

 r3V (T0)√
1 + r2Ṫ 2

0

 v̇q(r)
− q2(1 + r2Ṫ 2

0 )

r4 vq(r) = 0 , (3.81)

äq(r) +

√
1 + r2Ṫ 2

0

r3V (T0)

d

dr

 r3V (T0)√
1 + r2Ṫ 2

0

 ȧq(r)
− q2(1 + r2Ṫ 2

0 )

r4

(
1 + 4T 2

0 r
2

q2

)
aq(r) = 0 . (3.82)

We see that if there is no tachyon background, then equations of motion
for vector and axial vector fields become the same.

We must ensure that near-horizon behavior of vector and axial vector
fields is regular. The precise boundary conditions in the bulk depend
strongly on the tachyon background. Below we consider concrete tachyon
potentials and determine the corresponding boundary conditions. We also
require

v(q, r =∞) = 1 , a(q, r =∞) = 1 . (3.83)

We solve equations of motion for v(q, r) and a(q, r) with these boundary
conditions and plug the solutions into (3.79) and (3.80). As a result we
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obtain (recall that at the boundary tachyon field vanishes)

Son−shellV = −1
4

ˆ
d4qΛ3ηµνvTµ (q)v

T
ν (−q)v̇(q, Λ) , (3.84)

Son−shellA = −1
4

ˆ
d4qΛ3ηµνaTµ (q)a

T
ν (−q)ȧ(q, Λ) . (3.85)

Due to AdS/CFT correspondence

i

ˆ
d4xeiqx〈jµV (x)j

ν
V (0)〉 =

δ2Son−shellV

δvTµ (q)δv
T
ν (−q)

|v=0 , (3.86)

and similarly for the axial current. Consequently using (3.32) we get

ΠV
µν = PµνΠV (q

2) =
δ2Son−shellV

δvTµ (q)δv
T
ν (−q)

. (3.87)

Therefore correlation functions for vector and axial currents are given
by

ΠV (q
2) = −1

2Λ3v̇(q, Λ) , (3.88)

ΠA(q
2) = −1

2Λ3ȧ(q, Λ) . (3.89)

Propagators for vector and axial-vector currents in the field theory be-
come the same if tachyon background vanishes. Non-vanishing tachyon
background breaks chiral symmetry, and therefore generally speaking we
have non-vanishing S parameter, defined as

S = −4π d

dq2

[
ΠV (q

2)−ΠA(q
2)
]
q2=0

. (3.90)

With the help of holographic expressions (3.88) and (3.89) we obtain

S = 2πΛ3 d

dq2 (v̇(q
2, Λ)− ȧ(q2, Λ)) . (3.91)

The infrared behavior is specific for each particular tachyon potential
and we discuss it bellow. Now let us consider near-boundary region. In the
near-boundary region r � 1 we can totally neglect tachyon field, which
makes equations of motion for vector and axial vector fields the same:

v̈+
3
r
v̇− q2

r4 v = 0 , (3.92)
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ä+
3
r
ȧ− q2

r4a = 0 . (3.93)

In practical computations one has to make sure that the last term in
(3.82) is small, T 2

0 r
2/q2 ∼ (q2r2)−1 � 1 in near-boundary region. This

is important, because momentum q competes in smallness with 1/r when
one is computing S parameter. Cutoff is supposed to be sent to infinity
first, for each value of momentum q. The solutions to these equations,
normalized by near-boundary condition (3.83), are

v = 1− q2

2r2 log r+Cv
1
r2 , (3.94)

a = 1− q2

2r2 log r+Ca
1
r2 , (3.95)

where Cv(q2) and Ca(q2) define asymptotic near-boundary behavior of the
vector fields, have dimension two and go to finite constants when q2 = 0.
Therefore substituting (3.94) and (3.95) into (3.91) we find

S = 4π d

dq2 (Ca −Cv)|q2=0 . (3.96)

Notice that the S parameter is expressed only via the coefficients Cv,a,
describing near-boundary behavior of vector and axial-vector gauge fields,
and does not depend on the cutoff Λ.

Tachyon field describes chiral symmetry breaking at energy scale given
holographically by r � µ. In that region we have essentially different
dynamics of axial vector and vector gauge fields. In what follows we
measure all dimensionfull quantities in units of dynamically generated
scale µ.

3.3.3 Soft Wall

Consider tachyon potential

V (T ) = (1 + (A− 2)T 2)e−AT
2 , (3.97)

with A > 2. Near the horizon in this potential tachyon field behaves as
T0(r) = 1/rA/2. Correspondingly Lagrangian for vector field fluctuation
is

Lv = r3−A2 e
− A

rA

(
v̇2 +

q2A2

4 r−A−4v2
)

. (3.98)
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It is useful to redefine
v = r

A+2
2 e

A

2rA ψv (3.99)
and consider Lagrangian for ψv

Lv = r
10+A

2 ψ̇2
v +

A4

4 r
3(2−A)

2 ψ2
v . (3.100)

Solution of the corresponding equation of motion is a linear combination
of Bessel functions I±α

(
A

2rA
)
times a power of r, of which the regular

combination behaves as

ψv = r
A
4 −2e

− A

2rA . (3.101)

Correspondingly
v = r

3A
4 −1 . (3.102)

Near horizon Lagrangian for axial field is

La = r3−A2 e
− A

rA

(
ȧ2 +

A2

r2(A+1) a
2
)

. (3.103)

It is convenient to make a redefinition

a = r
A+2

2 e
A

2rA ψa . (3.104)

The near-horizon Lagrangian for axial field is now

La = r
10+A

2 ψ̇2
a +

A2(A2 + 4)
4 r

3(2−A)
2 ψ2

a . (3.105)

Similarly to the case with vector field we choose the regular solution, which
is

ψa = r
A
4 −2 exp

(
−
√
A2 + 4
2rA

)
. (3.106)

Correspondingly near-horizon behavior of axial field is given by

a = r
3A
4 −1 exp

(
−
√
A2 + 4−A

2rA

)
. (3.107)

To summarize: we have the following near-horizon boundary conditions:

T0(r)=
1

rA/2 , v(r)=r
3A
4 −1 , a(r)=r

3A
4 −1 exp

(
−
√
A2 + 4−A

2rA

)
. (3.108)

We present results of numeric evaluations of the S parameter for dif-
ferent values of A in figure 3.
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Figure 3.3. S parameter in the soft wall potential depending on the value of
the parameter A.

3.3.4 Hard wall

Consider hard wall tachyon potential

V (T ) = (cos T )4 . (3.109)

The IR regime of the field theory corresponds to the near hard wall region
of AdS space, r ' µ, where µ is the dynamically generated scale. Let us
measure all dimensional quantities in units of µ. Then the hard wall is
located at r = 1. When r ' 1, the tachyon field behaves as

T (r) ' π

2 − c
√
r− 1 , c =

√
5
2 . (3.110)

Plugging (3.110) into equations of motion for vector and axial-vector gauge
fields, (3.81) and (3.82), and considering the region near r = 1, we obtain

v̈+
5

2(r− 1) v̇−
5q2

8(r− 1)v = 0 (3.111)

ä+
5

2(r− 1) ȧ−
5(q2 + π2)

8(r− 1) a = 0 . (3.112)
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The solutions are given by

v =
cv1

(r− 1)1/2

(
1 + d1

r− 1

)
+ cv2 +O(

√
r− 1) ,

a =
ca1

(r− 1)1/2

(
1 + d2

r− 1

)
+ ca2 +O(

√
r− 1) , (3.113)

where d1 and d2 stand for known functions of q2. We require momentum
density T 0r to vanish at r = 1. The momentum density is given by (to
compute it perturb the background metric by small g0r and keep only
terms of the action which are linear in g0r)

T 0r ' 1√
|g|

δS

δg0r
' V (T )√

1 + r2Ṫ 2
ηij
[
V̇iF

(V )
0j + ȦiF

(A)
0j

]
' (r− 1)5/2(vv̇+ aȧ) . (3.114)

We therefore choose the boundary conditions near the wall

v = 1 , a = 1 . (3.115)

Similarly as we have done in the soft wall case, we can now compute the
S parameter. Numerics give S ' 2.6.

3.4 Lightest mesons

In this Section we compute the sigma-mesons spectrum in soft wall poten-
tial. Consider fluctuation of the tachyon field τ (r, t) around the vacuum
configuration T0(r). Expanding the TDBI action

S = −
ˆ
d4xdrV (T )r3

(
1 + r2(Ṫ0 + τ̇ )2 − 1

r2 (∂tτ )
2
)1/2

. (3.116)

we arrive at the action for fluctuation field

S = −
ˆ
d3xdωdr

(
G(r)τ̇2 + U(τ )τ2

)
. (3.117)

Perform a Fourier transform

τ (r, t) =
ˆ
dω

2π τω(r)e
iωτ , (3.118)
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where ω2 = m2 is the squared mass of the tachyon excitation mode. For
the soft wall potential (we consider A > 2 to get a discrete spectrum of
sigma-mesons, see [3] for details)

V (T ) = (1 + (A− 2)T 2)e−AT
2 (3.119)

we obtain

G(r) =
e−AT

2
0 r5(1 + (A− 2)T 2

0 )

2(1 + r2Ṫ 2
0 )

3/2 (3.120)

U(r) =
∂

∂r

e−AT 2
0 r5T0Ṫ0(2 +A(A− 2)T 2

0 )√
1 + r2Ṫ 2

0


+e−AT

2
0 r3(−2+AT 2

0 (10−3A+2(A−2)AT 2
0 ))
√

1+r2Ṫ 2
0 (3.121)

−m2 e
−AT 2

0 r(1+(A−2)T 2
0 )

2
√

1 + r2Ṫ 2
0

Near the horizon r = 0 the background tachyon field behaves as T0 = 1
rA/2 .

Therefore the Lagrangian for fluctuating field is

L =
4
A2 r

10+A
2 e−A/rA τ̇2 −m2r

2−A
2 e−A/rAτ2 . (3.122)

It is convenient to make a redefinition τ = eA/(2rA)ψ and consider the
field ψ with the Lagrangian

Lψ = r
10+A

2 ψ̇2 +
A4

4 r
3(2−A)

2 ψ2 (3.123)

The solution of equation of motion for the field ψ is a linear combination
of Bessel functions I±α(A/(2rA)), times a power of r. We choose the
regular combination of Bessel functions, which is

Iα(A/(2rA))− I−α(A/(2rA)) ' rA/2e−A/(2rA) . (3.124)

Corresponding near-horizon behavior of fluctuation tachyon field is

τ (r) = r
A
4 −2 . (3.125)

We therefore impose the near-horizon conditions

τ (ε) = 1 , τ ′(ε) =

(
A

4 − 2
) 1
ε

. (3.126)
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We then integrate equation of motion for τ with these boundary conditions
up to the near-boundary region. We fit the result with the expression

τ (r) =
1
r2 (c1 log r+ c2) . (3.127)

The ratio c1/c2 must be equal to this ratio for the background field T0.
This determines the discrete mass spectrum of tachyon excitations.

We compute numerically the valuesm2
1 andm2

2 of the masses of the first
two excitations as a function of the parameter A of the tachyon potential
(3.119). We plot the result of numerics in figure 4.

Figure 3.4. The values of of the masses of the first two excitations of the
tachyon as a function of the parameter A of the tachyon potential (3.119). The
m2

1 (rescaled by a factor of ten) is plotted in red and the m2
2 is plotted in black.

3.5 Conclusions

In this chapter we have considered strongly coupled systems which are de-
scribed holographically by the tachyon DBI action in the AdS space-time.
These models are renormalizable: the UV cutoff can be taken to infinity
while the dynamically generated mass scale stays fixed. We investigated
the phase diagram of these models at finite temperature and charge den-
sity. For smaller values of temperature and chemical potential the system
resides in the phase with broken conformal symmetry. This phase is sep-
arated by a phase transition line from the phase with restored symmetry.
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We observe that depending on the form of the tachyon potential, the or-
der of the phase transition may change, and hence one or more critical
point appears in the diagram. We have also used the TDBI action to
describe holographically dynamical electroweak symmetry breaking. We
have computed the S parameter using our holographic TDBI model for
generic soft-wall tachyon potential, and for hard wall tachyon potential.
The S-parameter takes generic positive values and does not appear to
vanish in the parameter space that we investigated. We have also com-
puted the masses of the lowest lying scalar mesons and observed that even
though there is no parametrically light scalar, the lightest meson can be
made at least an order of magnitude lighter than the next one.

3.6 Appendix: Conformal phase transition and
double-trace coupling running

Consider a gauge field theory, coupled to matter fields with a single-trace
UV Lagrangian. When we go to lower energies, integrating out higher
momentum modes, we generally notice [55–57] that effective Wilsonian
Lagrangian contains double-trace operators. We have to study the RG
running of coupling constants for double-trace operators if we want to
study the fate of the theory at low energies. Depending on the parame-
ters defining the theory the beta-functions for double-trace operators can
exhibit essentially different behavior; varying these parameters can lead
to phase transitions between different IR phases of the theory. Here our
focus will be on the particular type of these phase transitions, called con-
formal phase transitions in [58]. In this Section we review the field theory
expectations for the physics associated with conformal phase transitions
(CPT). We then use the technology of holographic Wilsonian RG to see
how these expectations are reproduced in a particular holographic model
based on the Tachyon DBI action in AdS space.

3.6.1 Conformal phase transitions and Wilsonian RG

Consider a gauge theory with SU(Nc) gauge group, coupled to Nf mass-
less Dirac fermions in the Veneziano limit, where both Nc and Nf are
taken to infinity, with the ratio x = Nf/Nc held fixed. It has a quali-
tatively different RG behavior depending on the value of x. Let us look
at the IR effective field theory; three possible regimes can be identified.
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When x > 11/2 the theory loses asymptotic freedom and is free in the IR;
when xc < x < 11/2, where xc ' 4 (see e.g. [47]) is not known precisely,
the IR theory is in the interacting Coulomb phase. This interval in x ,
where the theory flows to a conformal fixed point in the IR, is called “con-
formal window”. However for x smaller than xc the IR theory acquires
a mass gap and chiral symmetry is broken, due to the presence of chiral
condensate.

The model studied in [57] is slightly different from the example above,
but exhibits similar behavior. The advantage is that the beta function
for the double-trace operator can be computed exactly [57]. Suppose
that we have some strongly interacting theory, for which all single-trace
operators have vanishing beta-functions, e.g., orbifold theories [59, 60] or
non-supersymmetric deformations of N = 4 super Yang-Mills theory [61].
To see whether the theory has conformal fixed points we therefore have to
study double-trace couplings [55–57]. Denote by O a single-trace operator,
and consider a double trace term in the Lagrangian, Ldt = fO2, where f
is a double-trace coupling constant. In [57] (and, earlier, to the one-loop
level in [55, 56]) it has been shown that depending on the parameters
of the theory the beta function for f either has a real zero (and then the
theory flows to a conformal fixed point) or it does not (and then the theory
generates a mass gap).

We will observe a similar behavior in the holographic model based on
the tachyon DBI action in AdS space-time. First we introduce a bulk
scalar field, dual to the field theory operator O. We choose it to be the
tachyon field T , described by the tachyon DBI action. Now, we want to
study renormalization of the corresponding double-trace coupling f . We
will use the holographic Wilsonian renormalization as described in [62]. 5

The full AdS action is written as a sum of the bulk action (in our case it
is the tachyon DBI action), defined up to the cutoff Λ, and the boundary
action at r = Λ,

S[T ] =

ˆ Λ

0
drddxL0[T ] +

ˆ
ddxLB [T ]r=Λ . (3.128)

To obtain holographically correlation functions that are invariant under
the RG flow, one has to require invariance of the action S under the
change of Λ: this is a holographic implementation of the Callan-Symanzik
equation. The boundary term SB encodes all degrees of freedom from

5See also [63].
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the integrated out region r > Λ of the AdS space, and is written down
as a sum of multi-trace operators with corresponding coupling constants
multiplying these operators. Solving for SB the holographic RG (HRG)
equation we determine running of the dual field theory coupling constants.

Below we apply this method to the tachyon-DBI action in the AdS
space and find the RG behavior of the double-trace coupling f , depending
on the mass m of the tachyon field. The non-vanishing tachyon field in
the bulk is a preferred state when m2 < m2

BF = −d2

4 [3]. We conclude
that f exhibits a walking behavior between the IR scale ΛIR and the UV
cutoff scale ΛUV which are related as ΛIR = ΛUV exp

(
− π√

m2
BF−m2

)
.

Such a relation confirms that our holographic model exhibits a conformal
phase transition. This was also observed in [3], where a similar relation
between the UV cutoff and the physical observables of the theory, such as
e.g. meson masses, was established.

Finally we remind the reader what happens as the tachyon mass squared
is lowered below the BF bound. According to the AdS/CFT dictionary,
the dimension of the operator O, dual to the tachyon field T , is given by

∆± =
d

2 ±

√
d2

4 +m2 . (3.129)

The two possible scaling dimensions in (3.129), ∆− and ∆+ of the oper-
ator O are realized in the two conformal fixed points: the UV and IR
respectively. When we turn on a double-trace deformation fO2 in the UV
theory, the theory flows to the IR conformal fixed point, where dimension
of O becomes equal to ∆+ [64]. When the value of m2 is lowered below
−d2/4, the two fixed points merge and then disappear, and the Miranski
scaling emerges [2].

3.6.2 Double trace running from tachyon DBI

Consider the tachyon-DBI bulk action for the tachyon field T (r) of the
mass m, defined up to UV cutoff scale r = Λ in AdSd+1:

S0 = −
ˆ Λ

0
dr

ˆ
ddxrd−1V

√
1 + r2Ṫ 2 , (3.130)

where tachyon potential is expanded around T = 0 as

V (T ) = 1 + m2T 2

2 + · · · , (3.131)
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and we denote differentiation w.r.t. r by dot. Suppose we integrate out
all degrees of freedom in the bulk which correspond to r > Λ. Then we
generate holographic Wilsonian effective action

S = S0 + SB [T , Λ] , (3.132)

where SB is boundary term, which encodes integrated out degrees of free-
dom.

Boundary condition at r = Λ is given by

Π =
∂SB
∂T

, (3.133)

where we have introduced momentum Π, canonically conjugate to the
tachyon field T :

Π = − δS0
δT (r = Λ)

=
Λd+1V Ṫ√
1 + Λ2Ṫ 2

. (3.134)

Using boundary condition (3.133) one may then express

Ṫ =
∂SB/∂T

Λ
√

Λ2dV 2 − (∂SB/∂T )2
. (3.135)

If we denote S0 =
´ Λ
rh
dr
´
ddxL0, then holographic RG equation is

∂SB
∂Λ

+ L0(r = Λ) +
∂SB
∂T

Ṫ (Λ) = 0 . (3.136)

With the help of (3.130) and (3.135) this eventually acquires the form

∂SB
∂Λ

= Λd−1V

√
1− 1

Λ2dV 2

(
∂SB
∂T

)2
. (3.137)

Action SB implicitly contains boundary metric factor
√
−det gb = Λd.

Let us make this factor explicit, defining dimensionless boundary action
S as

SB = ΛdS . (3.138)

Let us also define new cutoff coordinate,

ε = log Λ
µ

, (3.139)
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where µ is some constant, introduced for dimensional reasons. HRG equa-
tion (3.137) therefore gets rewritten as

∂εS + dS = V

√
1−

(
∂TS
V

)2
. (3.140)

Let us expand the boundary action as

S = C(ε) + J(ε)T +
1
2f(ε)T

2 . (3.141)

Plugging it into (3.140) and matching terms of the same order in T , we
obtain

∂εC =
√

1− J2 − dC , (3.142)

∂εJ = − fJ√
1− J2

− dJ , (3.143)

∂εf =
m2

√
1− J2

− f2

(1− J2)3/2 − df . (3.144)

We can solve these equations by putting J ≡ 0 and making f̄ = −(f +
d/2) satisfy equation

∂εf̄ = f̄2 − d2

4 −m
2 . (3.145)

Let us denote κ2 = −d2

4 −m
2 ≡ m2

BF −m2, then solution to (3.145) may
be written as

f̄ = κ tan(κε) . (3.146)

We conclude that double-trace coupling f̄ exhibits a walking behavior
between UV scale

ΛUV = µ exp
(
π

2κ

)
(3.147)

and IR scale
ΛIR = µ exp

(
− π

2κ

)
. (3.148)
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Chapter 4

Stringy holography at finite
density

4.1 Introduction

In the usual AdS/CFT setting gauge theory on the boundary has a dual
description in terms of closed string theory in the bulk. Most often, a
limit of small curvature is taken to yield a low energy theory of strings,
supergravity. In the N = 4 supersymmetric Yang-Mills case this limit
implies strong ’t Hooft coupling of field theory. A distinct example of
non-gravitational theory with a holographically dual description is the
Little String Theory [1, 2]. It can be viewed as the theory of N coincident
NS5-branes, taken at vanishing string coupling, gs = 0, where the bulk
degrees of freedom decouple. The coupling constant of the low-energy
U(N) gauge degrees of freedom, living on the NS5-branes world-volume,
stays unaffected by taking this limit, and is equal to g5 = `s, where `s is
string length in type-IIB string theory (see [3] for a review).

The holographic dual of the Little String Theory [2, 4, 5] is the the-
ory of closed strings in the background of NS5-branes, with the geometry
R5,1×Rφ× SU(2)N , the two-form field and the linear dilaton. The CFT
on SU(2) is described by WZW action at level N . The bulk physics
(in the double scaling limit) can be reformulated as the string theory
on R5 × SL(2,R)N

U(1) × SU(2)N space-time. This is due to the fact that the
gauged WZW model on SL(2,R)N/U(1) gives rise to the classical “cigar”
geometry of the two-dimensional black hole with the asymptotically linear
dilaton [6, 7]. In the large N limit the bulk theory reduces to supergrav-
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ity1.
Generally one expects that a lot of nontrivial physics drastically sim-

plifies in the limit of infinitely many degrees of freedom (large N limit),
both in the boundary field theory and from the dual bulk perspective. For
example, one expects the large N physics of a field theory at finite tem-
perature and density to have “classical” nature, resulting, in particular,
in the mean field critical exponents. (Another recent example of this is
given by the stringy nature of finite-momentum and zero-frequency sin-
gularity of the current-current two-point functions, observed in [8], where
the results of [9–15] were extensively used.)

The low energy excitations in Little String Theory at finite tempera-
ture have been considered in [16] 2. The closed string description involves
the gauged WZW (gWZW) action with the SL(2,R)/U(1) target space-
time and N = 2 world-sheet supersymmetry. In [16] the two-point func-
tions of the stress-energy tensor and the U(1) current have been computed
holographically; their pole structure indicates the presence of hydrody-
namic modes. This has been also verified by solving fluctuation equations
in supergravity approximation in the background of a large number of
NS5-branes.

In this chapter we study string theory in the background of a direct
product of the two-dimensional charged black hole [23] and flat space.
The string theory in the two-dimensional charged black hole background
is described by the gWZW action with the SL(2,R)×U(1)x

U(1) target space-time
[24–26]. Here U(1)x is a compact circle, which is Kaluza-Klein reduced,
and U(1) subgroup of SL(2,R)×U(1)x is gauged asymetrically. The left-
moving sector of the gauged U (1) is a linear combination of the left-moving
sector of the U(1)x and the left-moving sector of the U(1) subgroup of
the SL(2,R). The coefficient of this linear combination determines the
charge to mass ratio of the resulting black hole. The right-moving sector
of the gauged U (1)x is the right-moving sector of the U(1) subgroup of
the SL(2,R).

This bulk system is holographically dual to the boundary quantum
field theory at finite temperature and charge density. (One can think of
the resulting system as little string theory at finite density, but we do

1The radius of the SU(2) sphere is Rsph =
√
N`s. Therefore the large N limit is

equivalent to the limit of small `s/Rsph.
2See also e.g. [17–22] for some preceding holographic study of the Little String

Theory.
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not study the field theoretic interpretation here in detail.) The inverse
temperature is equal to β = 2π

√
k̂ cos2(ψ/2)

cosψ , where ψ ∈ [0,π/2] is the
parameter of asymmetric gauging. The finite charge density in the field
theory is described holographically by the background U(1) potential in
the bulk, At(u) ' − q

u , where q =M sinψ is the charge andM is the mass
of the black hole; u is the radial coordinate in the bulk.

The vertex operator of the string ground state in this model was con-
structed in [25]. In this chapter we construct the vertex operators which
describe massless closed string excitations in this model, which constitute
the NS-NS sector of type-II supergravity. We also construct the gauge field
vertex operators, which are obtained by Kaluza-Klein reduction on U(1)x
from graviton and antisymmetric tensor field vertex operators. The gravi-
ton in the bulk is dual to the stress-energy tensor on the boundary; the
gauge field in the bulk is dual to the charge current on the boundary. We
study the low energy excitations of the system by computing holographi-
cally the two-point functions for the charge current and the stress-energy
tensor and reading off the dispersion relation from their poles. We find
two distinct gapless modes in the shear channel; the dispersion relation
of one of them is independent of the charge to mass ratio of the black
hole. The two modes merge in the limit of vanishing charge, producing
the shear mode which was observed in [16]. We confirm these results by
solving fluctuation equations of the type-II supergravity. The situation in
the sound channel is similar.

Finally we study fluctuation equations in the low-energy limit in het-
erotic gravity [23]. We find one gapless mode in the shear channel. Com-
paring this result with the thermodynamics of the charged black hole [27]
we find that the ratio of shear viscosity to entropy density is equal to
η/s = 1/(4π), independently of the charge to mass ratio of the black
hole.

The rest of this chapter is organized as follows. In section 2 we review
the thermodynamics of the two-dimensional charged black hole and derive
the dispersion relation of the shear hydrodynamic mode. In section 3
we apply the BRST quantization method of the coset models, and the
covariant quantization of the string to construct the holomorphic and
anti-holomorphic physical vertex operators of the massless states on the
SL(2,R)×U(1)

U(1) coset. In section 4 we use these vertex operators and write
down the vertex operators of graviton, antisymmetric tensor field and
gauge fields. In that section we also compute the two-point functions of
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these vertex operators and discuss the low-energy excitation modes. We
also briefly discuss finite-momentum and zero-frequency singularity of the
correlation functions. In section 5 we solve fluctuation equations in type-
II supergravity to verify the dispersion relations, derived in section 4. We
discuss our results in section 6. Appendix A is devoted to a review of some
rudimentary conformal field theory and derivation of the gWZW action
on the SL(2,R)×U(1)

U(1) coset. In Appendix B we solve fluctuation equations
in heterotic gravity. We find one mode in the shear channel. Matching
its dispersion relation to the one, written in section 2, we obtain that
η/s = 1/(4π) for any charge to mass ratio.

4.2 Thermodynamics of the charged black hole

The metric of the two-dimensional charged black hole [23] with mass M
and charge q in suitable coordinates can be written as [26, 27]

ds2 = −f(u)dt2 + k̂

4
du2

u2f(u)
,

f(u) =
(u− u+)(u− u−)

u2 , u± =M ±
√
M2 − q2 (4.1)

with the background U(1) gauge field and the dilaton field being equal to

At(u) = q

( 1
u+
− 1
u

)
, (4.2)

Φ = Φ0 −
1
2 log

(
u
√
k̂

2

)
, Φ0 = −1

2 log
(
Mu+

√
k̂

u+ + u−

)
.

The gauge potential vanishes at the outer horizon, At(u+) = 0. Define
parameter ψ by the equation

u−
u+

= tan2 ψ

2 . (4.3)

For the full description of thermodynamics of two-dimensional charged
black hole the reader is referred to [27], we just review their results which
are useful for us. It is convenient for further purposes to denote the
background dilaton slope (see eq. (4.2)) as Q = 2/

√
k̂. Requiring the

130



metric (4.1) near external horizon u = u+ to be regular, we find the
temperature of the charged black hole

β =
4π
Q

u+
u+ − u−

=
4π
Q

cos2 ψ
2

cosψ . (4.4)

Asymptotical u � 1 value of the gauge potential (see eq. (4.2)) is equal
to the chemical potential:

µ =
q

u+
=
√
u−
u+

= tan ψ2 . (4.5)

The entropy of the two-dimensional charged black hole is given by [27]

Sbh(M , q) = 2π
Q

(M +
√
M2 − q2) . (4.6)

Using (4.6) and evaluating the grand canonical partition sum Z one ob-
serves [27] that the grand canonical potential Ω ∼ − logZ vanishes, and
therefore the pressure vanishes.

Consider black brane background space-time CBH2 ×Rd−1, which is
a direct product of the two-dimensional charged black hole and flat d− 1-
dimensional space. Denote by X the direction of Rd−1 of propagation of
all the excitation, and denote by Y some transverse direction of Rd−1.
In the shear channel excitation modes appear as poles of the two-point
function 〈TXY TXY 〉 of the stress-energy tensor TMN , with the dispersion
relation of the low-energy mode given by

ω = − iη

(M + P )/V
p2 , (4.7)

where p is the momentum and ω is the frequency of the mode; η is the
shear viscosity, M/V and P/V are energy and pressure densities.

Because for the two-dimensional charged black hole the pressure van-
ishes, we obtain

ω = − iη

M/V
p2 . (4.8)

Using (4.6) one can express,

M =
QSbh

2π(1 + cosψ) , (4.9)
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and therefore the hydrodynamics predicts a shear pole with the dispersion
relation

ω = −4πiη
s

√
k̂ cos2(ψ/2)

2 p2 , (4.10)

where s = S/V is the entropy density. Bellow we are going to compare
this result with the computation in heterotic gravity and derive the value
of η/s.

4.3 The physical state conditions and vertex op-
erators

4.3.1 BRST quantization

The gauging of the U(1) subgroup from the SL(2,R)×U (1) group in the
gWZW model on the SL(2,R)×U(1)

U(1) coset is realized by adding the U(1)
non-dynamical gauge field to the system, and adding corresponding action
terms to the SL(2,R)×U (1) WZW action. The U(1) subgroup is gauged
left-right asymetrically, and anomaly-free condition must be satisfied. The
details of the construction are reviewed in Appendix A. The end product
is the gWZW action

Sg = S[g] +
1

2π

ˆ
d2z∂x∂̄x

+
1

2π

ˆ
d2z

[
A k̃+ Ā k+AĀ

(
2 + Tr(g−1σ3gσ3) cosψ

)]
. (4.11)

Here we have denoted the currents of the gauged U(1) subgroup as

k =
√
k̂Tr(∂gg−1σ3) cosψ+ 2 sinψ∂x =

2√
k̂
j3 cosψ+ 2 sinψ∂x , (4.12)

k̃ =
√
k̂Tr (g−1∂̄gσ3) = − 2√

k̂
j̃3 . (4.13)

To determine physical spectrum of the quantummodel on the SL(2,R)×U(1)
U(1)

coset, we are going to use BRST quantization method [28] (see [7] where
this method was applied to build the SL(2,R)/U(1) model). The path
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integral for the theory is

Z =

ˆ
[dG][dA][dĀ] exp (−Sg[G,A, Ā])

=

ˆ
[dG][du][dv] det ∂ det ∂̄ exp (−S[G] + S[w]) . (4.14)

Represent functional determinants in terms of the gauge ghost fields

det ∂ det ∂̄ =

ˆ
[db][dc][db̃][dc̃] exp

(
− 1

2π

ˆ
d2z(b∂̄c+ b̃∂c̃)

)
. (4.15)

Ghosts satisfy OPEs

c(z)b(w) ∼ 1
z −w

+ · · · , c̃(z̄)b̃(w̄) ∼ 1
z̄ − w̄

+ · · · . (4.16)

Fix the gauge symmetry, for concreteness fix v = 1, therefore u = w.
Consequently the path integral is given by

Z=

ˆ
[dG][dw][db][dc][db̃][dc̃] exp

(
−S[G]+S[w]− 1

2π

ˆ
d2z(b∂̄c+b̃∂c̃)

)
(4.17)

and the total action is given by

Sq = S[G]− S[w] + 1
2π

ˆ
d2z(b∂̄c+ b̃∂c̃) (4.18)

Notice from this action that the correlation function for w has the wrong
sign:

〈∂w(z1)∂w(z2)〉 =
1

2(z1 − z2)2 . (4.19)

Perform variations (δG, δw, δb) in the action (4.18),

δSq = −
1

2π

ˆ
d2z

[
k̂Tr(∂GG−1∂̄(G−1δG)) + 2∂w∂̄δw− δb∂̄c

]
. (4.20)

For the transformations with a local Grassmann parameter η:

δG = ηcGTL , δw = ηc , δb = η(k+ 2∂w) (4.21)

we therefore obtain

δSq =
1

2π

ˆ
d2z(∂̄η) c(k+ 2∂w) . (4.22)
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If η is a global parameter, then Sq is invariant. Corresponding transfor-
mation is BRST symmetry transformations. Then from (4.22) for anti-
holomorphic η(z̄) we can read off holomorphic component of the corre-
sponding conserved Noether current:

jBRST = c(k+ 2∂w) . (4.23)

Notice that

〈(k(z1) + 2∂w(z1))(k(z2) + 2∂w(z2))〉 = 0 . (4.24)

Therefore corresponding BRST charge

QBRST =
1

2πi

˛
dzjBRST (4.25)

is nilpotent. Similarly one finds the anti-holomorphic component of the
BRST current

j̃BRST = c̃(k̃+ 2∂̄w̃) . (4.26)

Physical states of the SL(2,R)×U(1)
U(1) coset model are the BRST-closed

states of the SL(2,R)×U(1) model:

QBRST |phys〉 = 0 , Q̃BRST |phys〉 = 0 , (4.27)

and are defined up to BRST-exact states.
Denote null bosonic currents as

J = k+ 2∂w , J̃ = k̃+ 2∂̄w̃ . (4.28)

BRST physical state conditions (4.27) therefore become

Jn|phys〉 = 0 , n ≥ 0 , J̃n|phys〉 = 0 , n ≥ 0 . (4.29)

The BRST-exact massless state is obtained by acting with J−1 and J̃−1
on the BRST-closed ground state.

4.3.2 Ground state vertex operator

The ground state vertex operator Vt of the SL(2,R)×U(1)
U(1) model was con-

structed in [25] as a ground state vertex operator of the SL(2,R)×U(1)
model invariant under gauge U(1) transformations. This vertex operator
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describes a tachyon, which due to GSO projection is projected out of the
NS-NS sector. The lowest NS states are massless, and they are described
by the vertex operator VM = jM−1Vt (and similarly for anti-holomorphic
vertex operator). We derive these massless vertex operators bellow in this
section. In this subsection we find it useful to reproduce the result of
citeGiveon:2003ge4 using BRST quantization, developed in the previous
subsection.

Suppose Φ(z, z̄) is a vertex operator on SL(2,R)×U(1). Then

Vt(z, z̄) = Φ(z, z̄) exp (imLwL + imRwR) (4.30)

where
w(z, z̄) = wL(z) +wR(z̄) (4.31)

is a vertex operator on the coset SL(2,R)×U(1)
U(1) if the physical state condition

(4.27) are satisfied. We obtain

k0 · Vt(z, z̄) = −imLVt(z, z̄) , (4.32)

k̃0 · Vt(z, z̄) = −imRVt(z, z̄) . (4.33)

The non-compact w-circle contains only momentum modes and does not
contain any winding modes, therefore

mL =
M

R
−WR , mR =

M

R
+WR ⇒ mL = mR . (4.34)

Let us denote mL = mR = N . The ground state on SL(2,R)× U(1) is
described by the vertex operator 3

Φ(z, z̄) = Vjmm̄e
2inLxL+2inRxR , (4.35)

therefore

k0 ·Φ(z, z̄) = 2
(
m cosψ√

k̂
− inL sinψ

)
Φ(z, z̄) , (4.36)

k̃0 ·Φ(z, z̄) = −2m̄√
k̂

Φ(z, z̄) . (4.37)

3Define x ∼ x+ π, so that nL,R are integers. The Vjmm̄ is the SL(2,R) ground
state primary field, see details in Appendix A.
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The BRST physical state conditions (4.32), (4.33) due to (4.34) therefore
imply

2
(
m cosψ√

k̂
− inL sinψ

)
= −iN (4.38)

2m̄√
k̂
= iN (4.39)

and consequently

m cosψ+ m̄− i
√
k̂nL sinψ = 0 , (4.40)

as was derived in [25].

4.3.3 Vertex operators of massless states in type-II super-
string theory

The stress-energy tensor, which follows from the action (4.18), has the
following holomorphic (left-moving) component 4

T (z) =
1
k̂
ηABj

AjB − ∂x∂x+ ∂w∂w (4.41)

and similarly for anti-holomorphic component. Therefore O((z − w)−2)
terms of the OPEs of the stress-energy tensor and the ground state pri-
mary Vt are given by

T (z)Vt(w, w̄) = 1
(z −w)2

(
−j(j + 1)

k̂
+
n2
L −m2

L

2

)
Vt(w, w̄) + · · ·

(4.42)

T̃ (z̄)Vt(w, w̄) = 1
(z̄ − w̄)2

(
−j(j + 1)

k̂
+
n2
R −m2

R

2

)
Vt(w, w̄) + · · ·

(4.43)
In what follows we are going to perform Kaluza-Klein reduction of the
U(1)x circle, therefore nL = nR = 0.

In this chapter we are interested in the NS-NS vertex operators of
the massless closed string excitations in type-II superstring theory. These

4The term with w corresponds to the coset Kazama-Suzuki construction [29, 30],
where TG/H = TG−TH , in the following way. From BRST condition due to (4.23) one
obtains, schematically, ∂w = − 1

2k. Therefore contribution of w to the stress-energy
tensor T (z) is Tw(z) = ∂w∂w = 1

4kk. Then we expect TH = −Tw, which is indeed the
case: TH (z)k(0) = k(z)/z2.
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operators in the (−1,−1) picture are constructed as (anti)symmetrized
direct products of massless holomorphic Vµ(z) = e−ϕψµ−1/2 · Vt and anti-
holomorphic Ṽµ(z̄) = e−ϕ̃ψ̃µ−1/2 · Vt vertex operators. Here ψµ(z) and
ψ̃µ(z̄) are world-sheet fermions, and ϕ , ϕ̃ are bosonized superconformal
ghosts. The only non-trivial super-Virasoro physical state condition, which
one needs to impose on the massless states, is G1/2 ·Vµ(z) = 0, and sim-
ilarly for anti-holomorphic vertex operator, where G(z) =

∑
r Gr/z

r+3/2

is the supercurrent.
The other option, which is what we are going to use in this chapter, is

to consider vertex operators V µ and Ṽ µ in zero-ghost picture. They are
obtained from (−1,−1) picture vertex operators Vµ and Ṽµ by acting
with the picture changing operators eϕG and eϕ̃G̃. As a result one obtains
vertex operator in zero-ghost picture

V µ = G−1/2 ·ψ−1/2 · Vt = (jµ−1 + p ·ψ−1/2ψ
µ
−1/2) · Vt , (4.44)

where jµ is the current, supersymmetric to the fermion ψµ, and pµ is the
momentum of the state. Similar expression is true for anti-holomorphic
vertex operator. The only non-trivial super-Virasoro constraint which
one should impose in zero-ghost picture is L1 · V µ = 0. Moreover, the
L1 here is actually the amplitude of the stress-energy tensor L(b)

1 for only
bosonic modes: in the r.h.s. of (4.44) contribution of fermions is au-
tomatically annihilated by the fermionic stress-energy tensor amplitude
L
(f )
1 = ψν1/2ψν1/2. Therefore instead of studying massless NS-NS states

in type-II superstring theory we can study gravity multiplet in bosonic
string theory.

4.3.4 (Anti)holomorphic vertex operators of massless modes
in the R× SL(2,R)

U(1) coset model

In this subsection we review the construction of (anti)holomorphic vertex
operators [16], describing massless (right-)left-moving excitations in the
gWZW model on R× SL(2,R)

U(1) [6, 7]. The classical background is the two-
dimensional black hole with the linear dilaton in a direct product with a
real line. The real line is parametrized by the flat coordinate X, which we
choose as a direction of propagation of all the excitations. The momentum
is equal to p.

The authors of [16] considered graviton vertex operator in (−1,−1)
picture on the world-sheet with N = 2 supersymmetry. We perform a
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picture changing and consider vertex operators in zero-ghost picture. Due
to noted in the previous subsection, we can actually study bosonic string
and then make contact with the results of [16].

Without loss of generality let us focus on holomorphic vertex operators.
The ground state vertex operator of the R× SL(2,R)

U(1) coset theory is

Vt = eipXeiNwVjm . (4.45)

This state must be closed under the action of the null U(1) BRST current,

J = j3 −
√
k̂∂w , (4.46)

which imposes the condition

iN =
2m√
k̂

. (4.47)

The most general holomorphic vertex operator of the massless state
(which is a gauge field from the space-time point of view) on R× SL(2,R)

U(1)
is

V χ = (a+j
+
−1j
−
0 + a−j

−
−1j

+
0 + a3j

3 + aw∂w+ aX∂X)Vt . (4.48)

Mass-shell Virasoro constraint (see (4.42)) gives

L0V
χ = V χ ⇒ −j(j + 1)

k̂− 2
+
p2 −N2

4 = 0 (4.49)

Closeness of (4.48) w.r.t. J1 (see (4.46)) reduces the number of parameters
by one, giving the most general BRST-closed state

V χ = (a+j
+
−1j
−
0 + a−j

−
−1j

+
0 +

2√
k̂
(a+(m+ j)(m− 1− j)

− a−(m− j)(m+ 1 + j))∂w+AJ + aX∂X)Vt . (4.50)

Also V χ is defined up to BRST-exact state JVt, which makes one more
parameter unphysical, leaving us with a gauge field in three dimensional
R× SL(2,R)

U(1) with three polarization parameters.
Gauge field in three dimensions has one transverse physical d.o.f. Two

of the three d.o.f. are eliminated in the following way. First, we impose
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Virasoro constraint L1V
χ = 0. Second, the state V χ, which satisfies this

constraint, is defined up to the null state L−1Vt

L−1Vt =

( 1
k̂− 2

(j+−1j
−
0 + j−−1j

+
0 − 2mj3) + iN∂w+ ip∂X

)
Vt . (4.51)

As a result we are left with one transverse d.o.f.
The L1V

χ = 0 constraint gives

a+(m+ j)(m− 1− j) + a−(m− j)(m+ 1 + j)

+
iN√
k̂
(a+(m+ j)(m− 1− j)− a−(m− j)(m+ 1 + j)) = aX

ip

2 . (4.52)

Let us parametrize the solution to this equation by two independent pa-
rameters aX , a:

a+ =
aX

ip
4 + a

(
1− 2m

k̂

)
(m+ j)(m− 1− j) , a− =

aX
ip
4 − a

(
1 + 2m

k̂

)
(m− j)(m+ 1 + j)

. (4.53)

Therefore the most general massless left-moving state, satisfying all the Vi-
rasoro and U (1) gauge BRST constraints (and defined up to BRST-exact
state J−1Vt and null Virasoro state L−1Vt) is described by holomorphic
vertex operator

V χ=

aX ip
4 +a

(
1−2m

k̂

)
(m+j)(m−1−j) j

+
−1j
−
0 +

aX
ip
4 −a

(
1+ 2m

k̂

)
(m−j)(m+1+j)j

−
−1j

+
0

+
4a√
k̂
∂w+ aX∂X

)
Vt . (4.54)

Now notice that for

a = ma1 , aX = −i(k̂− 2)pa1 (4.55)

we obtain that the state (4.54) is

V χ
0 = a1(−2mJ−1 − (k̂− 2)L−1)Vt . (4.56)

Such a state is a pure gauge (BRST-exact).
Therefore the most general physical state, which satisfies all the con-

straints and which is not a pure gauge, is a state for which

a

aX
6= im

(k̂− 2)p
. (4.57)
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Any such state is orthogonal to the V χ
0 state (4.56), due to Virasoro and

BRST physical state conditions.
The two-point function of the most general physical state (4.54) is

〈V χ(p, j,m)V χ(−p, j,−m)〉 = (k̂2 − k̂p2 − 4m2)(maX + i(k̂− 2)pa)2

2k̂2(m2 − j2)(m2 − (j + 1)2))

〈Vt(p, j,m)Vt(−p, j,−m)〉 . (4.58)

When (4.57) is not satisfied, we are dealing with the null pure gauge state,
which is a linear combination of timelike and longitudinal polarizations,
that is for such a state

maX + i(k̂− 2)pa = 0 . (4.59)

Finally let us make contact with the result of [16]. The two holo-
morphic supercurrents of N = 2 supersymmetric SL(2,R)/U (1) gWZW
theory are

G+ = ψ+j− , G− = ψ−j+ . (4.60)

Applying the picture-changing operator G+
−1/2 + G−−1/2 to the physical

holomorphic vertex operator of [16] we obtain the vertex operator of the
form

V χ = (∂X + a+j
+
−1j
−
0 + a−j

−
−1j

+
0 + fermions)Vt . (4.61)

Here due to (4.54) we have

a+ =
ip/4

(m+ j)(m− 1− j) , a− =
ip/4

(m− j)(m+ 1 + j)
. (4.62)

Due to (4.58) we obtain that the two-point function of this vertex operator
has poles at m = ±j. Bellow we discuss these poles in detail and show
that actually only m = −j pole is present, which after taking into account
the mass-shell condition precisely reproduces the dispersion relation of the
gapless low-energy mode, found in [16].

4.3.5 (Anti)holomorphic vertex operators of massless modes
in the R× SL(2,R)×U(1)

U(1) coset model

In this subsection we are going to construct (anti)holomorphic vertex op-
erators, describing massless (right-)left-moving string excitations in the
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R× SL(2,R)×U(1)
U(1) model. The classical geometry of this model is a geome-

try of the 2d charged black hole in a direct product with a real line. We
choose this real line as a direction of propagation of all the excitations,
and parametrize it by the coordinate X. The momentum of propagation
is p.

The vertex operator operators must satisfy BRST and Virasoro phys-
ical state conditions. Recall the null BRST currents (4.28):

J =
2√
k̂
j3 cosψ+ 2 sinψ∂x+ 2∂w (4.63)

J̃ = − 2√
k̂
j̃3 + 2∂̄w̃ . (4.64)

Notice that the anti-holomorphic sector is the same as for the model of the
previous subsection: anti-holomorphic (right-moving) sector of the circle,
U(1)x̃, is disconnected from the rest of the geometry.

Consider holomorphic sector. Ground state vertex operator is

Vt = eipXeiNwVjm . (4.65)

This state must be closed w.r.t. BRST current (4.63), which imposes the
constraint

iN = −2m cosψ√
k̂

. (4.66)

The most general massless holomorphic vertex operator on the R×
SL(2,R)×U(1)

U(1) is given by

V χ = (a+j
+
−1j
−
0 + a−j

−
−1j

+
0 + aw∂w+ aX∂X + bx∂x+AJ)Vt . (4.67)

It must be closed w.r.t. BRST current (4.63), which requires

aw = bx sinψ− 2√
k̂

cosψ(a′+ − a′−) . (4.68)

where we have denoted for brevity

a′+ = a+(m+ j)(m− 1− j) , a′− = a−(m− j)(m+ 1 + j) . (4.69)

The most general massless state, closed w.r.t. (4.63), is therefore described
by the vertex operator

V χ =
(
a+j

+
−1j
−
0 + a−j

−
−1j

+
0 + aX∂X + bx∂x

+

(
bx sinψ− 2√

k̂
cosψ(a′+ − a′−)

)
∂w+AJ

)
Vt . (4.70)
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One d.o.f. in (4.70) is unphysical due to the fact that each state V χ is
defined up to BRST-exact state J−1Vt. Therefore there remain four d.o.f.
of the gauge field V χ in four dimensional target space. Two of them are
unphysical, and are eliminated due to Virasoro constraints, as we show
bellow.

Imposing Virasoro constraint L1V
χ = 0, with account to (4.66), we

obtain condition

a′+ + a′− +
2m cos2 ψ

k̂
(a′+ − a′−) = aX

ip

2 + bx
m sin 2ψ

2
√
k̂

. (4.71)

We parametrize the solution to this equation as

a+ =
aX

ip
4 + a

(
1− 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m+ j)(m− 1− j) (4.72)

a− =
aX

ip
4 − a

(
1 + 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m− j)(m+ 1 + j)
. (4.73)

Using the mass-shell Virasoro condition (see (4.42))

L0V
χ = V χ ⇒ −j(j + 1)

k̂− 2
+
p2 −N2

4 = 0 . (4.74)

we can re-write

(m+j)(m−1−j)=− k̂−2
4 p2−m

(
1−2m cos2 ψ

k̂

)
+m2 sin2 ψ , (4.75)

(m−j)(m+1+j)=− k̂−2
4 p2+m

(
1+2m cos2 ψ

k̂

)
+m2 sin2 ψ . (4.76)

These expressions are useful for computations, described bellow.
To summarize, the most general massless physical state V χ on the

R× SL(2,R)×U(1)
U(1) , satisfying all the physical constraints, is

V χ =

aX
ip
4 + a

(
1− 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m+ j)(m− 1− j) j+−1j
−
0

+
aX

ip
4 − a

(
1 + 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m− j)(m+ 1 + j)
j−−1j

+
0

+ aX∂X + bx∂x+

(
bx sinψ− 4a cosψ√

k̂

)
∂w

)
Vt . (4.77)

142



This state is defined up to the null Virasoro state (recall nL,R = 0 due to
Kaluza-Klein reduction of the x-circle)

L−1V
′
jm =

( 1
k̂− 2

(j+−1j
−
0 + j−−1j

+
0 − 2mj3) + iN∂w+ ip∂X

)
Vt . (4.78)

Using (4.75) and (4.76) one then demonstrates that for

aX = −i(k̂− 2)pa1 , a = ma1 , bx = −2m
√
k̂ tanψa1 (4.79)

the state (4.77) is non-physical (it is the sum of the BRST-exact and the
null Virasoro states)

V χ
0 = −a1

(
(k̂− 2)L−1 +

m
√
k̂

cosψ j
)
Vt . (4.80)

The two-point function of the vertex operator (4.77) is given by

〈V χV χ〉=(m2 − j2)−1(m− (j + 1)2)−1(c1(i(k̂− 2)pa+maX)2 (4.81)

+c2(i(k̂− 2)pbx−2m
√
k̂ tanψaX)2+c3(bx+2a

√
k̂ tanψ)2)〈VtVt〉 ,

where

c1 =
1

4k̂2(k̂− 2)
(k̂(k̂− 2)2 cos2 ψp2 − 8(k̂− 2) cos4 ψm2

− k̂2(k̂− 2)(p2 − 2) + 2k̂(sin2 2ψ+ 2k̂ sin4 ψ)m2) , (4.82)

c2=
cos2 ψ

32k̂2(k̂−2)
(2((k̂−2)2 cos 2ψ+4−4k̂−k̂2)m2+(k̂−2)2k̂p2) , (4.83)

c3 =
cotψ
32k̂2 ((8m

2(k̂2 − 2m2) + 2(k̂2 − 4)m2p2 − (k̂− 2)2k̂p4) sin 2ψ

−m2(8m2 + (k̂− 2)2p2) sin 4ψ) . (4.84)

When the (4.79) is satisfied, we are dealing with the null state V χ
0 with

zero norm.
Like in the previous section, where we derived the vertex operator

(4.61), we now proceed to writing down the vertex operators V x = (∂x+
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...)Vt and V X = (∂X + ...)Vt, where dots denote contribution from j±−1
currents:

V X=

(
∂X+

ip/4
(m+j)(m−1−j)j

+
−1j
−
0 +

ip/4
(m−j)(m+1+j)j

−
−1j

+
0

)
Vt (4.85)

V x=

(
∂x+

(
√
k̂/4) tanψ

(m+j)(m−1−j)j
+
−1j
−
0 −

(
√
k̂/4) tanψ

(m−j)(m+1+j)j
−
−1j

+
0

)
Vt . (4.86)

4.4 Vertex operators of massless NS-NS states,
and correlation functions

In the previous section we constructed holomorphic and anti-holomorphic
vertex operators, describing respectively left-moving and right-moving
massless excitations of the string on the SL(2,R)×U(1)x

U(1) coset. The state
of the closed string is described by the vertex operator which is a di-
rect product of holomorphic and anti-holomorphic vertex operators. In
this section we will construct the vertex operators for graviton and anti-
symmetric tensor field, which are massless NS-NS states of type-II gravity.
Kaluza-Klein reduction on U(1)x, applied to graviton and antisymmetric
tensor field vertex operators, gives vertex operators for gauge fields. We
will split the vertex operators into two decoupled from each other groups,
and find correlation functions for vertex operators within each group.

Denote M = a,X,x, and µ = a,X, where a labels non-compactified
directions, transverse to the direction X of propagation of all the excita-
tions, and x is a coordinate of the compactified circle. Then, VM = jMVt
are holomorphic physical vertex operators and ṼM = j̃MVt are anti-
holomorphic physical vertex operators of the massless left-moving and
right-moving states.

Here ja = ∂xa and j̃a = ∂̄xa. Due to (4.85) and (4.86) the jx and jX
are elements of two different BRST and Virasoro cohomology classes, and
are defined by

jX=∂X+
ip/4

(m+j)(m−1−j)j
+
−1j
−
0 +

ip/4
(m−j)(m+1+j)j

−
−1j

+
0 (4.87)

jx=∂x+
(
√
k̂/4) tanψ

(m+j)(m−1−j)j
+
−1j
−
0 −

(
√
k̂/4) tanψ

(m−j)(m+1+j)j
−
−1j

+
0 . (4.88)
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Due to anti-holomorphic version of (4.61),

j̃X=∂̄X+
ip/4

(m̄+j)(m̄−1−j) j̃
+
−1j̃
−
0 +

ip/4
(m̄−j)(m̄+1+j) j̃

−
−1j̃

+
0 . (4.89)

Finally, j̃x = ∂̄x.
Notice that due to (4.81) the normalized two-point functions

〈jxjx〉jmm̄/〈VtVt〉, 〈jxjX〉jmm̄/〈VtVt〉, 〈jXjX〉jmm̄/〈VtVt〉 have simple poles
at m = ±j, and due to (4.58) (the anti-holomorphic version of it) the two-
point function 〈j̃X j̃X〉jmm̄/〈VtVt〉 has simple poles at m̄ = ±j.

The two-point function for ground state of the SL(2,R) model is given
by (see e.g. [14, 15] for a recent discussion)

〈Vj,m,m̄Vj,−m,−m̄〉=ν
Γ
(
1−2j+1

k̂−2

)
Γ(−2j−1)Γ(1+j+m)Γ(1+j−m̄)

Γ
(
1+ 2j+1

k̂−2

)
Γ(2j+1)Γ(−j+m)Γ(−m̄−j)

(4.90)
where ν is some number. Notice that due to factors of Γ(−j +m) and
Γ(−m̄− j) in the denominator, the (4.90) has simple zeroth are j = m
and j = −m̄. Therefore the two-point functions 〈jxjx〉jmm̄, 〈jxjX〉jmm̄,
〈jXjX〉jmm̄ have simple pole at m = −j, while the simple pole at m = j
is canceled, and the two-point function 〈j̃X j̃X〉jmm̄ has simple pole at
m̄ = j, while the pole at m̄ = −j is canceled.

4.4.1 Vertex operators and their correlation functions

Graviton vertex operator is

GMN = (jM j̃N + jN j̃M )Vt . (4.91)

Antisymmetric tensor field vertex operator is

BMN = (jM j̃N − jN j̃M )Vt . (4.92)

Gauge field vertex operators are:

Aµ = Gxµ = (jxj̃µ + ∂̄xjµ)Vt (4.93)

Bµ = Bxµ = (jxj̃µ − ∂̄xjµ)Vt . (4.94)

We have the following groups of vertex operators defined by the spin
w.r.t. to the rotations in the transverse non-compactified space (for which
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the coordinates are labeled by small Latin indices).5 In the sound channel
the spin is zero, and one considers the fields GXX , AX BX . In the shear
channel the spin is one, and one considers the fields GXa, BXa, Aa, Ba.
In the scalar channel the spin is two, and one considers the fields Gab
and Bab. Due to the rotational symmetry in the transverse space, vertex
operators from different groups are decoupled from each other.

Shear channel

In the shear channel we have vertex operators

GXa = (jX ∂̄xa + j̃X∂xa)Vt (4.95)

BXa = (jX ∂̄xa − j̃X∂xa)Vt (4.96)

Aa = Gxa = (jx∂̄xa + ∂̄x∂xa)Vt (4.97)

Ba = Bxa = (jx∂̄xa − ∂̄x∂xa)Vt (4.98)

Notice that all these vertex operators are coupled to each other. We can
consider instead two groups of operators:

the first group is

SXa =
1
2 (G

Xa +BXa) = jX ∂̄xaVt (4.99)

W a =
1
2 (A

a +Ba) = jx∂̄xaVt (4.100)

and the second group is

RXa =
1
2 (G

Xa −BXa) = j̃X∂xaVt (4.101)

Ua =
1
2 (A

a −Ba) = ∂̄x∂xaVt . (4.102)

We call the operators from the first group S-system and the operators
from the second group R-system. The S-system is decoupled from the R-
system. For the vertex operators of the S-system the two-point functions
are

〈SXaSXb〉 = −1
2δ

ab〈jXjX〉jmm̄ (4.103)

5See e.g. [31] for a recent discussion in the holographic context.
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〈W aW b〉 = −1
2δ

ab〈jxjx〉jmm̄ (4.104)

〈SXaW b〉 = −1
2δ

ab〈jxjX〉jmm̄ (4.105)

These correlation functions have a simple pole at j = −m.
For the vertex operators of the R-system the two-point functions are

〈RXaRXb〉 = −1
2δ

ab〈j̃X j̃X〉jmm̄ (4.106)

〈UaU b〉 = 1
4δ

ab (4.107)

〈RXaU b〉 = 0 . (4.108)

These correlation functions have a simple pole at j = m̄.
Due to holographic correspondence we obtain correlation functions of

the shear components of the stress-energy tensor of the dual field theory:6

〈GXaGXb〉 = 〈TXaTXb〉 = −1
2δ

ab
(
〈jXjX〉jmm̄ + 〈j̃X j̃X〉jmm̄

)
(4.109)

The correlation functions for the transverse components of the charge
current are

〈JaJb〉 = 〈AaAb〉 = −1
2δ

ab
(
〈jxjx〉jmm̄ −

1
2

)
(4.110)

Finally,
〈JaTXb〉 = 〈AaGXb〉 = −1

2δ
ab〈jxjX〉jmm̄ . (4.111)

We conclude that in the shear/transverse diffusion channel we have modes
with the dispersion relations m = −j and m̄ = j.

Sound channel

In the sound channel we have vertex operators

GXX = jX j̃XVt (4.112)

AX = GxX = (jxj̃X + ∂̄xjX)Vt (4.113)
6One also may be interested in computing correlation functions of the operator, dual

to BMN -field. See [32, 33], where the primary operator in N = 4 SYM, holographically
dual to the B-field in AdS5 × S5, was found.
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BX = BxX = (jxj̃X − ∂̄xjX)Vt . (4.114)

Notice that AX and BX are coupled. Consider instead decoupled gauge
fields vertex operators

WX =
1
2 (A

X +BX) = jxj̃XVt (4.115)

UX =
1
2 (A

X −BX) = ∂̄xjXVt . (4.116)

Correlation functions are

〈GXXGXX〉 = 〈jXjX〉jmm̄〈j̃X j̃X〉jmm̄ (4.117)

〈GXXWX〉 = 〈jxjX〉jmm̄〈j̃X j̃X〉jmm̄ (4.118)

〈GXXUX〉 = 0 (4.119)

〈WXWX〉 = 〈jxjx〉jmm̄〈j̃X j̃X〉jmm̄ (4.120)

〈UXUX〉 = −1
2〈j

XjX〉jmm̄ . (4.121)

The correlation functions (4.117), (4.118) and (4.120) have simple poles
at j = −m and j = m̄ and the correlation function (4.121) has simple
pole at j = −m.

Due to holographic correspondence we obtain correlation functions of
the longitudinal component of the stress-energy tensor of the dual field
theory:

〈TXXTXX〉 = 〈GXXGXX〉 = 〈jXjX〉jmm̄〈j̃X j̃X〉jmm̄ . (4.122)

The correlation function of the longitudinal component of the charge cur-
rent is

〈JXJX〉 = 〈AXAX〉 = 〈jxjx〉jmm̄〈j̃X j̃X〉jmm̄ −
1
2〈j

XjX〉jmm̄ . (4.123)

Finally,

〈JXTXX〉 = 〈AXGXX〉 = 〈jxjX〉jmm̄〈j̃X j̃X〉jmm̄ . (4.124)

Therefore in the sound channel we have modes with the dispersion rela-
tions m = −j and m̄ = j.
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Scalar channel

In the scalar channel one considers Gab and Bab, correlation functions for
which do not have poles at j = −m and j = m̄.

4.4.2 Low-energy modes

In the previous subsection we concluded that there are modes with the
dispersion relationsm = −j and m̄ = j in the shear and sound channels of
the quantum field theory holographically dual to the charged black brane.
Now we are going to show, considering small ω and q, that these modes
are actually gapless modes.

The frequency is determined by the asymptotic behavior of the tachyon
vertex operator Vt ∼ eiωt (see [25]), and is given by (for ψ 6= π/2, that is
in non-extremal case)

ω =
(1− tan2(ψ/2))(m− m̄)√

k̂
(4.125)

Due to the gauge physical state condition (4.40) we have m̄ = −m cosψ,
and therefore (also after Wick rotation m→ im)

ω =
2im cosψ√

k̂
. (4.126)

Due to the mass-shell condition

−j(j + 1)
k̂

+
p2 −N2

4 = 0 (4.127)

where N ∼ m ∼ ω, for ω ∼ p2 and p� 1 we obtain

j =
k̂

4p
2 . (4.128)

Therefore the S-system possesses the low-energy excitation mode with
the dispersion relation

ω = −i
√
k̂

2 cosψ p2 (4.129)

while for the R-system we obtain the mode with the dispersion relation

ω = −i
√
k̂

2 p2 . (4.130)
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In the extremal case ψ = π/2 the two-point functions in the S-system,
due to (4.129), behave as 〈SS〉 ∼ 1/ω, indicating local criticality, while
the dispersion relation (4.130) of the R-system stays unaffected.

At zero density q = 0 we have ψ = 0, and the mode (4.129) coincides
with the mode (4.130). In this case U(1)x completely decouples from
SL(2,R)/U (1), and we recover the results of [16] for the model on the
SL(2,R)/U (1). Due to (4.4) we obtain

ω = −i 1
4πT p

2 (4.131)

Comparing it with the shear mode dispersion relation at zero density

ω = −i η
sT
p2 (4.132)

we recover the result of [16]

η

s
=

1
4π . (4.133)

4.4.3 “2kF” singularity

Expression (4.90) for the groundstate two-point function contains the fac-
tor of Γ

(
1− 2j+1

k̂−2

)
. Due to the physical state mass-shell condition (4.127)

we obtain
j = −1

2 +
1
2

√
1 + (k̂− 2)(p2 −N2) . (4.134)

At zero frequencyN = 0. Therefore equation 2j+ 1 = k̂−2, which defines
singularity of Γ

(
1− 2j+1

k̂−2

)
, has a zero frequency and finite momentum

solution. The value of the momentum is given by

p2
? =

1
`2s

(
k̂− 2− 1

k̂− 2

)
. (4.135)

Note that p∗ is independent of the chemical potential µ = tan ψ
2 . The

singular behavior of 〈Vjmm̄Vjmm̄〉 at ω = 0 and p = p∗ was compared by
Polchinski and Silverstein [8] with “2kF " singularities in current correlation
functions of condensed matter systems (see e.g. [34]).
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4.5 Type-II gravity approximation
In this section we will compute the two-point functions for graviton, an-
tisymmetric tensor field and gauge fields in the background of the 2d
charged black hole (in a direct product with a flat space). Our purpose is
to verify the dispersion relations (4.129-(4.130).

One-loop beta-functions for the NS-NS fields of type-II gravity are
given by (see e.g. [35],Polchinski:1998rr4)

βGMN = RMN + 2∇M∂NΦ− 1
4H

LS
M HNLS , (4.136)

βΦ = c+
1

16π2

(
4(∂Φ)2 − 4∇2Φ−R+

1
12H

2
)

, (4.137)

βBMN = ∇LHL
MN − 2(∂LΦ)HL

MN . (4.138)

Corresponding equations of motion are βG,Φ,B = 0.
Here the field strength of antisymmetric tensor BMN is given by

HMNL = ∂MBNL + ∂NBLM + ∂LBMN . (4.139)

The beta-functions (4.216)-(4.218) are invariant w.r.t. the gauge symme-
try

δBMN = ∂MΛN − ∂NΛM . (4.140)

Requirement of the world-sheet conformal invariance gives the equa-
tions of motion βG,B,Φ = 0. These equations have a black brane solution,
which is a direct product of two-dimensional charged black hole (CBH)
and flat space, CBH ×Rd−1:

gMN = diag{−f(r), 1/f(r), 1, ..., 1} ,
f(r) = 1− 2Me−Qr + q2e−2Qr , (4.141)

Φ = Φ0 −
Qr

2 , Ftr = F (r) = Qqe−Qr . (4.142)

where7

gtx = Bxt = −Btx = At . (4.143)

The string theory solution, described in the previous section, implies Q =
2/
√
k̂.

7We thank A. Giveon for pointing out to us the role of this equation in the 2d
charged black hole solution of type-II superstring theory.
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Consider fluctuations hMN , bMN and ϕ around this solution. Use the
diffeomorphism invariance to fix hMr = 0. Use gauge invariance (4.140)
to fix bMr = 0. Among d+ 1 space-time coordinates, denoted by capital
Latin indices, we have t, r coordinates of the charged black hole and d− 1
flat coordinates. Let us consider CBH × R3. Choose X to be the R3

direction of propagation of excitations (with momentum p) and choose Y
to be the R3 direction, transverse to propagation of excitations. Finally
x is the direction of R3 which we are going to Kaluza-Klein reduce. Fluc-
tuations depend on t, r,X. The dependence on t and X in momentum
representation boils down to the factor e−iωt+ipX .

Perform Kaluza-Klein reduction of the x coordinate. Small Greek
indices are used for non-reduced coordinates, M = µ,x. It is convenient,
as we did in the world-sheet consideration, to consider fluctuations of the
fields

SMN =
1
2 (hMN + bMN ) (4.144)

RMN =
1
2 (hMN − bMN ) . (4.145)

The fields (4.144) belong to the S-system and the fields (4.145) belong
to the R-system, we are using the same terminology as in the previous
section.

Let us consider shear fluctuations in the reduced space CBH ×R2:
RtY , RXY , StY , SXY and transverse components of gauge fields wY and
uY (see bellow). The ansatz for graviton and two-form field in the non-
reduced space CBH × R3 in terms of the fields on the reduced space
CBH ×R2 is

G =

 A2
t−f
0
0

RtY +StY +At(uY +wY )
At

0
1/f

0
0
0

0
0
1

RXY +SXY
0

RtY +StY +At(uY +wY )
0

RXY +SXY

1
uY +wY

At
0
0

uY +wY
1


(4.146)

B = (4.147) 0
0
0

−(StY −RtY )−At(wY −uY )
At

0
0
0
0
0

0
0
0

−(SXY −RXY )
0

StY −RtY +At(wY −uY )
0

SXY −RXY
0

wY −uY

−At
0
0

−(wY −uY )
0

 .

Before proceeding, rescale

r = rQ , w = ω/Q , p = p/Q , (4.148)
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which eliminates Q dependence from the equations of motion.
Due to string theory result we know that the R-system fields R and

u are decoupled from the S-system fields S and w. We will find out
that this decoupling is true in gravity computations as well. To find
equations of motion for the fields Rµν , Sµν , wµ and uµ we compute the
beta functions βRMN = βGMN −βBMN and βSMN = βGMN +βBMN for (MN ) =
(tY ), (rY ), (XY ), (xY ).

Consider first equations of motion in the R-system.
βRtY :

pf(pRtY + ωRXY ) + f2(2Φ′R′tY −R′′tY )−At(f2u′′Y (4.149)
+ f(f ′ − 2fΦ′)u′Y + (ω2 − p2f + (f2/At)(A′′t − 2A′tΦ′)uY ) = 0 .

βRrY :
ωR′tY + pfR′XY = 0 . (4.150)

βRXY :

ω(pRtY + ωRXY ) + f(fR′′XY + (f ′ − 2fΦ′)R′XY ) = 0 . (4.151)

βRxY :

f2u′′Y + f(f ′ − 2fΦ′)u′Y + (ω2 − p2f)uY = 0 . (4.152)

Notice that for the CBH background Φ′ = −1/2 and A′′t = −A′t.
Therefore one sees that uY contribution to RtY equation (4.149) vanishes
due to uY equation (4.152). Therefore we see thatRµY and uY fluctuations
decouple, as expected from the string theory computations (4.108).

Introduce diff-invariant quantity

Z = pRtY + ωRXY . (4.153)

Solving following from this definition equation

Z ′ = pR′tY + ωR′XY (4.154)

together with RrY equation (4.150) one obtains

R′tY = − pfZ ′

ω2 − p2f
, R′XY =

ωZ ′

ω2 − p2f
. (4.155)
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Plugging expressions (4.155) into RtY equation (4.149) one obtains equa-
tion (the same equation is obtained if one plugs (4.155) into RXY equation
(4.151))

Z ′′ +

(
ω2f ′

f(ω2 − p2f)
− 2Φ′

)
Z ′ +

ω2 − p2f

f2 Z = 0 . (4.156)

Together with decoupled from it transverse gauge field equation (4.152)
for uY these are fluctuation equations for shear components of R-system.

Consider now S and w fluctuation equations of the S-system.
βStY :

− ω2AtwY + f(p(pStY + ωSXY ) +At(wY (p
2 − 2A′2t )− 2A′tS′tY

− f ′w′Y ))− f2(−2Φ′(S′tY +Atw
′
Y ) + 2A′t(w′Y −Φ′wY ) +A′′twY (4.157)

+ S′′tY +Atw
′′
Y ) = 0 .

βSrY :
2ωA′twY + ωS′tY + pfS′XY = 0 . (4.158)

βSXY :

ω(pStY + ωSXY ) + f(S′XY (f
′ − 2Φ′f) + fS′′XY ) = 0 . (4.159)

βSxY :

(ω2−f(p2−2A′2t ))wY+f(2A′tS′tY+(f ′−2Φ′f)w′Y+fw
′′
Y ) = 0 . (4.160)

Introduce diff-invariant quantity

V = pStY + ωSXY . (4.161)

Then solving equation

V ′ = pS′tY + ωS′XY . (4.162)

together with βSrY equation (4.158) we obtain

S′XY =
ω(2pA′twY + V ′)

ω2 − p2f
, S′tY = −2ω2A′twY + pfV ′

ω2 − p2f
. (4.163)
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Plugging into βStY equation (4.157) the expressions (4.163) together with
w′′Y , expressed from wY equation (4.160), we arrive at (the same result is
obtained by plugging (4.163) into βSXY equation (4.159)) 8

V ′′ +

(
ω2f ′

f(ω2 − p2f)
− 2Φ′

)
V ′ +

ω2 − p2f

f2 V (4.164)

+
2pA′t
f

(
fw′Y +

ω2f ′

ω2 − p2f
wY

)
= 0 .

Finally, using S′tY , expressed in (4.163), in wY equation (4.160) we obtain

w′′Y +
f ′ − 2fΦ′

f
w′Y +

(
ω2 − p2f

f2 +
2A′2t
f

(
1− 2ω2

ω2 − p2f

))
wY (4.165)

− 2pA′t
ω2 − p2f

V ′ = 0 .

We see that in the S-system tensor field shear components are coupled to
gauge field transverse component, which agrees with string computation
(4.105).

Let us look for poles of the correlation functions in R-system and in
S-system. Notice that R-system is just S-system at vanishing background
flux A′t = 0; compare equation (4.164) with equation (4.229) and equation
(4.165) with equation (4.152) to see that. Therefore it is sufficient to study
S-system.

Introduce new radial coordinate u = er. Then inner and outer horizons
are located at

u± =M ±
√
M2 − q2 . (4.166)

The equations of motion (4.164) and (4.165) become (also take into ac-
count q = √u+u−)

d2wY
du2 +

( 1
u− u−

+
1

u− u+

)
dwY
du

+
1

(u− u−)(u− u+)
(4.167)

×
(

w2u2 − p2(u− u−)(u− u+)
(u− u−)(u− u+)

− 2u+u−w2

w2u2 − p2(u− u−)(u− u+)

+
2u+u−
u2

)
wY +

2p√u+u−
w2u2 − p2(u− u−)(u− u+)

dV
du

= 0 .

8Also take into account Φ′ = −1/2 and A′′
t = −A′

t.
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d2V
du2 +

1
u

(
2+ w2u2

w2u2−p2(u−u−)(u−u+)

(
u+

u− u+
+

u−
u− u−

))
dV
du

−
2p√u+u−

u2
dwY
du

+
w2u2−p2(u− u−)(u− u+)

(u− u−)2(u− u+)2 V (4.168)

−
2p√u+u−

u

w2

w2u2−p2(u− u−)(u− u+)

(
u+

u− u+
+

u−
u− u−

)
wY=0 .

In the near horizon limit v = u−u+ � 1 equations (4.235) and (4.236)
give rise to

d2wY
dv2 +

1
v

dwY
dv

+
w2u2

+

(u+ − u−)2v2wY = 0 (4.169)

d2V
dv2 +

1
v

dV
dv

+
w2u2

+

(u+ − u−)2v2 V = 0 . (4.170)

The incoming-wave solutions are

wY (u) = C1(u− u+)
−iwu+
u+−u− , V(u) = C2(u− u+)

−iwu+
u+−u− . (4.171)

In the asymptotic region u� 1 equations (4.235) and (4.236) give rise
to

d2wY
du2 +

2
u

dwY
du

+
w2 − p2

u2 wY = 0 (4.172)

d2V
du2 +

2
u

dV
du

+
w2 − p2

u2 V = 0 (4.173)

with the solution

wY = Awu
1
2 (−1+

√
1+4(p2−w2)) + Bwu

1
2 (−1−

√
1+4(p2−w2)) (4.174)

V = AV u
1
2 (−1+

√
1+4(p2−w2)) + BV u

1
2 (−1−

√
1+4(p2−w2)) . (4.175)

We solve numerically the equations (4.235), (4.236) with boundary
conditions (4.239) and find two linearly-independent solutions (w(1)

Y , V(1))

and (w
(2)
Y , V(2)) (for two independent choices of C1,2). The correlation

matrix is given by [37] G ' BA−1, where the matrices of leading and
subleading coefficients are determined by (4.242) and (4.243):

A =

A(1)
V

A(1)
w

AA(2)
V

A(2)
w

 , B =

B(1)V

B(1)w

B(2)V

B(2)w

 . (4.176)
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Zeroes of the determinant of the matrix of the leading behavior coefficients
9

A(1)
V A

(2)
w −A

(2)
V A

(1)
w (4.177)

define the dispersion relation of low-energy mode, which is given by

w = −ip2 cosψ . (4.178)

Due to (4.232) and Q = 2/
√
k̂ the dispersion relation (4.245) coincides

with the dispersion relation (4.129), obtained for the S-system by the
world-sheet computation.

From the S-system result (4.245) we conclude that in the R-system
〈ZZ〉 correlation function has pole at

w = −ip2 , (4.179)

which coincides with the pole (4.130), obtained by the world-sheet com-
putation. Notice that as in [16] the supergravity result does not receive
stringy corrections.

4.6 Discussion
In this chapter we have used the holographically dual string theory to
study quantum field theory at finite temperature and chemical potential.
The string theory was defined by the gWZW model on the SL(2,R)×U(1)x

U(1) ×
Rd−1, with the U(1) gauged asymmetrically [25] coset and the covariant
quantization of the string, we have constructed vertex operators, repre-
senting massless NS-NS states of the string. The gauge fields vertex op-
erators were obtained by the Kaluza-Klein reduction of the graviton and
the two-form field vertex operators on the U (1)x.

We have found that these vertex operators split into two decoupled
systems. This implies that the boundary low energy theory splits into two
decoupled models, as far as the two-point functions are concerned. At
low energies the Green’s functions of stress energy tensor and global U(1)
current exhibit two gapless poles. Corresponding dispersion relations are
(4.129) and (4.130) in the shear and sound channels. The dispersion rela-
tion (4.130) does not depend on the charge to mass ratio of the charged

9See e.g. [38] where computation of correlation matrix in the different system of two
coupled differential equations is explained in detail.
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black hole background. When the charge density is zero, the dispersion
relation (4.129) coincides with the dispersion relation (4.130). We have
verified these results by computations in type-II supergravity; the super-
gravity results exactly coincide with superstring results. We speculate
that the system is described at low energies by a decoupled sum of two
non-interacting fluids. It would be interesting to make this picture more
precise.

The current and stress-energy tensor two-point correlation functions,
which we have computed, also possess finite-momentum zero-frequency
singularity. As in [8] it originates from the two-point function of the
vertex operator of the ground state of the WZW model on SL(2,R). This
“2kF ” singularity is a purely stringy effect [8], absent in the supergravity
approximation: from (4.135) it follows, that the momentum p∗, measured
in units of inverse curvature radius, scales as (Rp∗)2 ' k̂`2sp

2
∗ ∼ k̂2 when

k̂ is large. Therefore in supergravtiy approximation p∗ is parametrically
large.

We have also studied the shear channel in heterotic gravity (see Ap-
pendix B), and found one low-energy mode. Matching its dispersion re-
lation to the one obtained from the thermodynamics of the 2d charged
black hole, we have derived η/s = 1/(4π) for any charge to mass ratio.
It would be interesting to obtain this result from heterotic string theory
as well. However naive construction of the heterotic string theory, based
on the SL(2,R)×U(1)x

U(1) coset model (where U(1)x is holomorphic, that is
a part of internal space from purely bosonic left-moving sector of het-
erotic string theory), appears to contain U(1) chiral anomaly. Indeed,
naively, to construct heterotic string, based on the coset model used in
this chapter, one takes the gWZW action (4.11) and adds to it the Dirac
term Sf '

´
d2zTr Ψ̃(∂ + A)Ψ̃, where anti-holomorphic (right-moving)

fermions Ψ̃ ∈ sl(2,R) 	 u(1) are superpartners of the anti-holomorphic
bosonic currents on SL(2,R)/U(1), and A is the U(1) gauge field. Due
to such chiral interaction, on the quantum level the anomaly appears, and
the theory becomes inconsistent.

This issue was actually resolved in a different heterotic coset stringy
realization of the 2d charged black hole [24]. As it was observed there, the
chiral anomaly due to fermions should be compensated by the classical
anomaly of gWZW action for bosons [39]. In fact, bosonization of the
fermions results in the chiral anomaly due to fermions appearing on the
classical level, just as in the anomalous gWZW action [40]. Therefore
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separately the bosonic and fermionic parts of the action are not invariant
under U(1) gauge transformation, while their sum is invariant. It is not
clear however how these ideas can be directly applied to the model, based
on the bosonic action (4.11), which was constructed [25] to be anomaly-
free on its own.

4.7 Appendix A: Conventions and review of the
gWZW model on the SL(2,R)×U(1)

U(1)

4.7.1 Conventions

Put the string length equal to one, α′ ≡ `2s
2 = 1

2 . The contribution to the
world-sheet stress-energy tensor, coming from the coordinates Xµ(z, z̄) of
the flat subspace of the target space-time, is given by

Tflat(z) = −∂Xµ(z)∂Xµ(z) , (4.180)

and similarly for the anti-holomorphic part T̃ (z̄). The Polyakov action is

SP =
1

2π

ˆ
d2z ∂X∂̄X . (4.181)

The two-point function is

〈Xµ(z, z̄)Xν(w, w̄)〉 = −1
2η

µν (log(z −w) + log(z̄ − w̄)) . (4.182)

The Kac-Moody holomorphic (left-moving) and anti-holomorphic (right-
moving) currents of the WZW model at level k̂ are given by

j(z) = jAt
A = − k̂2∂gg

−1 , j̃(z̄) = j̃At
A =

k̂

2g
−1∂̄g . (4.183)

Here hermitean generators of a gauge algebra are

tA = jA0 , [tA, tB ] = ifABCtC . (4.184)

For SL(2,R), which is the group we are interested in, the following ex-
pressions in terms of Pauli matrices take place:

jA0 =
1
2σ

A , fABC = εABC , (4.185)
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and indices are raised and lowered with the help of ηAB = diag{1, 1,−1}.
In Euclidean realization of SL(2,R) we put ηAB = δAB.

The holomorphic currents of Kac-Moody algebra satisfy the following
OPE

jA(z)jB(w) =
k̂
2η

AB

(z −w)2 +
ifABC

z −w
jC(w) , (4.186)

and similarly for the anti-holomorphic currents.
The holomorphic component of the stress-energy is given by the Sug-

awara expression
T (z) =

1
κ
ηABj

A(z)jB(z) , (4.187)

similar expression is true for the anti-holomorphic component. Here

κ = k̂+ cV . (4.188)

For SU(2) (and for Euclidean SL(2,R)) the index of the adjoint repre-
sentation is cV = 2 and for SL(2,R) it is cV = −2.

The groundstate representation space of the SL(2,R) currents is formed
by the primary fields Vj(x, x̄;w, w̄), characterized by the index j. This in-
dex determines the value of Casimir operator of SL(2,R). The (x, x̄)
coordinates can be regarded as the boundary coordinates of the SL(2,R)
target space-time, and (w, w̄) are world-sheet coordinates. One can re-
place the boundary coordinates with the numbers (m, m̄), defined via
transformation

Vj;m,m̄(w, w̄) =
ˆ
d2xxj+mx̄j+m̄Vj(x, x̄;w, w̄) . (4.189)

OPE of SL(2,R) currents and SL(2,R) primaries are 10

J3(z)Vj;m,m̄(w, w̄)= m

z −w
Vj;m,m̄(w, w̄)+ · · · , (4.192)

J±(z)Vj;m,m̄(w, w̄)=m∓ j
z −w

Vj;m±1,m̄(w, w̄)+ · · · .

10For Euclidean SL(2,R),

J3(z)Vj;m,m̄(w, w̄) = im

z −wVj;m,m̄(w, w̄) + · · · . (4.190)

Therefore
η33(J

3)2(z)Vj;m,m̄(w, w̄) = − m2

z −wVj;m,m̄(w, w̄) (4.191)

is true for both Euclidean and Minkowski signatures.
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From this one finds how the SL(2,R) currents act on the primaries:

J3
0 · Vj;m,m̄(w, w̄) = mVj;m,m̄(w, w̄) , (4.193)

J±0 · Vj;m,m̄(w, w̄) = (m∓ j)Vj;m±1,m̄(w, w̄) , (4.194)

with all other JAn · Vj;m,m̄(w, w̄) = 0, n ≥ 1.
Second order SL(2,R) Casimir operator is given by

C2 = ηABJ
A
0 J

B
0 ≡ −(J3

0 )
2 +

1
2{J

+
0 , J−0 } . (4.195)

Here
J1

0 =
1
2 (J

+
0 + J−0 ) , J2

0 =
i

2 (J
−
0 − J

+
0 ) . (4.196)

It takes place
C2 · Vj(w, w̄) = −j(j + 1)Vj(w, w̄) . (4.197)

This expression is also true for Euclidean SL(2,R), due to (4.190). Then
clearly for SL(2,R) algebra with currents of weight k̂,

L0 · Vj(w, w̄) = −j(j + 1)
k̂− 2

Vj(w, w̄) , (4.198)

which gives the conformal dimension of Vj

∆j = −
j(j + 1)
k̂− 2

. (4.199)

In the superstring theory one considers the total bosonic currents Ja,
which include contributions from world-sheet fermions, dual to SL(2,R)
currents. The level of total SL(2,R) currents is equal to k̂+ 2, if k̂ denotes
the level of purely bosonic currentt, and therefore the conformal dimension
of the Vjmm̄ is equal to ∆j = − j(j+1)

k̂
.

4.7.2 Gauged WZW model on the SL(2,R)×U(1)
U(1)

Let us review the derivation [25] of the gWZW action on the SL(2,R)×U(1)
U(1)

coset.
Perform the following asymmetric gauging of the U(1) subgroup of

SL(2,R)×U(1) group with the parameter τ :

(g, xL, xR) ∼
(
eτ cosψσ3/

√
k̂geτσ3/

√
k̂, xL + τ sinψ, xR

)
. (4.200)
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The condition that the gauge transformation leaves the action invariant
is

Tr
(
T 2
L − T 2

R

)
= 0 , (4.201)

where TL and TR are the generators of left-moving and right-moving sec-
tors of the gauged U(1) group.

Let us write the element of the SL(2,R)×U(1) group as

G =

(
g

0
0

exp
(√

2
k̂
x
)) . (4.202)

Then G is a field of the SL(2,R)×U(1) WZW model at level k̂:

S[G] =
k̂

4π [
ˆ
d2zTr(G−1∂GG−1∂̄G)− 1

3

ˆ
B

Tr(G−1dG)3]

=
k̂

4π [
ˆ
d2zTr(g−1∂gg−1∂̄g)− 1

3

ˆ
B

Tr(g−1dg)3] (4.203)

+
1

2π

ˆ
d2z∂x∂̄x .

The gauge transformation (4.200) acts on G-field as

G→ eTLτGeTRτ , (4.204)

where the generators of left and right sectors of the u(1) algebra are

TL =

( 1√
k̂

cosψσ3

0
0√

2
k̂

sinψ

)
, TR =

( 1√
k̂
σ3

0
0
0

)
. (4.205)

These generators satisfy anomaly-free condition (4.201. Because of this
condition is satisfied we can make gauge fields non-dynamical, as it is
shown bellow.

Consider compensator fields (gauge field ‘prepotentials’):

U = exp (−uTL) , V = exp (−vTR) . (4.206)

Define gauge transformation of compensator fields as

u→ u+ τ , v → v+ τ . (4.207)

The combination UGV is clearly invariant under gauge transformations
(4.200), and therefore the WZW-action S[UGV ] is gauge-invariant.
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But it contains terms which are quadratic in derivatives of compen-
sator field u and quadratic in derivatives of compensator field v. Such
terms make the compensator (gauge) d.o.f. dynamical, and therefore the
theory with the action S[UGV ] instead of gauging some degrees of free-
dom away adds more degrees of freedom.

Therefore let us consider instead the gWZW action

Sg = S[UGV ]− 1
2π

ˆ
d2z∂w∂̄w , (4.208)

where we have introduced gauge-invariant field

w = u− v . (4.209)

Due to the Polyakov-Wiegmann indentity

S[UGV ] = S[G] + S[U ] + S[V ] (4.210)

+
k̂

2π

ˆ
d2zTr

[
G−1∂̄G∂V V −1+U−1∂̄U∂GG−1+U−1∂̄UG∂V V −1G−1

]
.

Here

S[U ] =
1

2π

ˆ
d2z∂u∂̄u , S[V ] =

1
2π

ˆ
d2z∂v∂̄v , (4.211)

and therefore

S[U ] + S[V ]− 1
2π

ˆ
d2z∂w∂̄w =

1
2π

ˆ
d2z(∂v∂̄u+ ∂u∂̄v) (4.212)

=
1
π

ˆ
d2zAĀ , (4.213)

where
A = −∂v , Ā = −∂̄u . (4.214)

The action term (4.212) is non-dynamical, as it is expected in gWZW
model with asymmetric gauging, satisfying anomaly-free condition (4.201).
As a result, the gWZW action on the SL(2,R)×U(1)

U(1) is given by

Sg = S[g] +
1

2π

ˆ
d2z∂x∂̄x (4.215)

+
1

2π

ˆ
d2z

[
A
√
k̂Tr (g−1∂̄gσ3)+Ā

(√
k̂Tr(∂gg−1σ3) cosψ+2 sinψ∂x

)
+

+ AĀ
(
2 + Tr(g−1σ3gσ3) cosψ

)]
.
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4.8 Appendix B: Heterotic gravity approxima-
tion

In the type-II supergravity, considered in the section 5, two gauge fields
appear as Gxµ and Bxµ components after Kaluza-Klein reduction of the
compact x coordinate. The two-dimensional charged black hole is also a
solution [23] of heterotic supergravity equations of motion. In this sec-
tion we compute graviton and gauge field two-point functions in the two-
dimensional charged black hole background in heterotic supergravity. In
this case there is just one background gauge field. We solve fluctuation
equations of motion for the shear components of graviton and the trans-
verse component of the gauge potential and find one hydrodynamic mode.
Matching the obtained dispersion relation with the result obtained in the
study of thermodynamics of the 2d charged black hole we derive shear
viscosity to entropy ratio for any value of ψ.

The two-loop beta-functions of bosonic fields in heterotic string theory
are [41, 23]

βGµν = Rµν + 2∇µ∂νΦ− 1
2g

λρFµρFνλ , (4.216)

βΦ =
1
4F

2 −R+ c+ 4(∂Φ)2 − 4∇2Φ , (4.217)

βAν = gµλ(∇µFνλ − 2Fνλ∂µΦ) . (4.218)

Corresponding equations of motion, βG,B,Φ = 0, have the CBH ×Rd−1

solution,

gµν = diag{−f(r), 1/f(r), 1, ..., 1} , (4.219)
f(r) = 1− 2Me−Qr + q2e−2Qr ,

Φ = Φ0 −
Qr

2 , Ftr = F (r) =
√

2Qqe−Qr . (4.220)

Here Q = 2/
√
k̂.

Consider fluctuations hµν , aµ and ϕ around this solution. Use the
diffeomorphism invariance to fix hµr = 0. Among d+ 1 space-time coor-
dinates we have t, r coordinates of CBH and d− 1 flat coordinates. Let
us consider CBH ×R2. Choose X to be the R2 direction of propagation
of excitations (with momentum p) and choose Y to be the R2 direction,
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transverse to the direction of propagation of excitations. Fluctuations de-
pend on t, r,X. The dependence on t and X in momentum representation
boils down to the factor e−iωt+ipX .

Plugging gµν + hµν , Aµ + aµ and Φ + ϕ with the most general fluctu-
ations, we obtain shear channel expressions (prime denotes differentiation
w.r.t. r)

βGrY =
ie−iωt+ipX

2f (ωh′tY + pfh′XY − ωFaY ) , (4.221)

βGXY = e−iωt+ipX
(
− 1

2f (ωphtY + ω2hXY + ff ′h′XY + f2h′′XY ) (4.222)

+ fΦ′h′XY ) ,

βGtY=
e−iωt+ipX

2
(
p2htY+ωphXY−fh′′tY+2fΦ′h′tY+fFa

′
Y

)
. (4.223)

The equations of motion in shear channel are therefore

ωh′tY + pfh′XY − ωFaY = 0 , (4.224)

ωphtY + ω2hXY + ff ′h′XY + f2h′′XY − 2f2Φ′h′XY = 0 , (4.225)

p2htY + ωphXY − fh′′tY + 2fΦ′h′tY + fFa′Y = 0 . (4.226)

Consider diff-invariant field

Z = ωhXY + phtY . (4.227)

Using (4.227) and (4.224) express

h′tY =
ω2FaY − pfZ ′

ω2 − p2f
, h′XY = ω

Z ′ − pFaY
ω2 − p2f

. (4.228)

The equations (4.225) and (4.226) after one substitutes (4.228) into
them, both give rise to the same equation (due to F ′ − 2FΦ′ = 0)

Z ′′ +

(
ω2f ′

f(ω2 − p2f)
− 2Φ′

)
Z ′ +

ω2 − p2f

f2 Z (4.229)

− pF

f

(
fa′Y +

ω2f ′

ω2 − p2f
aY

)
= 0 .
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Compute the beta-function for gauge field fluctuation aY (choose the
gauge ar = 0)

βAY=− e−iωt+ipXf
(
a′′Y+

f ′−2fΦ′

f
a′Y+

ω2−p2f

f2 aY−
Fh′tY
f

)
. (4.230)

Express h′tY using (4.228). The equation on aY is then

a′′Y +
f ′ − 2fΦ′

f
a′Y +

(
ω2 − p2f

f2 − ω2F 2

f(ω2 − p2f)

)
aY (4.231)

+
pFZ ′

ω2 − p2f
= 0 .

Before proceeding, rescale

r = rQ , w = ω/Q , p = p/Q , Z = Z/Q . (4.232)

The dependence on Q disappears from both fluctuation equations, and
due to (4.220) we obtain

f = 1− 2Me−r + q2e−2r , Φ = Φ0 −
r
2 . (4.233)

Introduce new radial coordinate u = er. Then inner and outer horizons
are located at

u± =M ±
√
M2 − q2 . (4.234)

The equations of motion become (substitute q = √u+u−)

d2a

du2 +

( 1
u− u−

+
1

u− u+

)
da

du
+

1
(u− u−)(u− u+)

×
(

w2u2 − p2(u− u−)(u− u+)
(u− u−)(u− u+)

− 2u+u−w2

w2u2 − p2(u− u−)(u− u+)

)
a

+
p
√

2u+u−
w2u2 − p2(u− u−)(u− u+)

dZ
du

= 0 , (4.235)

d2Z
du2 +

1
u

(
2 + w2u2

w2u2 − p2(u− u−)(u− u+)

(
u+

u− u+
+

u−
u− u−

))
dZ
du

− p
√

2u+u−
u2

da

du
+

w2u2−p2(u− u−)(u− u+)
(u− u−)2(u− u+)2 Z (4.236)

−p
√

2u+u−
u

w2

w2u2−p2(u− u−)(u− u+)

(
u+

u− u+
+

u−
u− u−

)
a=0 .
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In the near horizon limit v = u−u+ � 1 equations (4.235) and (4.236)
give rise to

d2a

dv2 +
1
v

da

dv
+

w2u2
+

(u+ − u−)2v2a = 0 , (4.237)

d2Z
dv2 +

1
v

dZ
dv

+
w2u2

+

(u+ − u−)2v2 Z = 0 . (4.238)

The incoming-wave solutions are

aY (u) = C1(u− u+)
−iwu+
u+−u− , Z(u) = C2(u− u+)

−iwu+
u+−u− . (4.239)

In the asymptotic region u� 1 equations (4.235) and (4.236) give rise
to

d2a

du2 +
2
u

da

du
+

w2 − p2

u2 a = 0 , (4.240)

d2Z
du2 +

2
u

dZ
du

+
w2 − p2

u2 Z = 0 , (4.241)

with the solution

aY = Åau
1
2 (−1+

√
1+4(p2−w2)) + Bau

1
2 (−1−

√
1+4(p2−w2)) , (4.242)

Z = ÅZu
1
2 (−1+

√
1+4(p2−w2)) + BZu

1
2 (−1−

√
1+4(p2−w2)) . (4.243)

We solve numerically the equations (4.235), (4.236) with boundary
conditions (4.239). Zeroes of determinant of the leading behavior coeffi-
cients matrix

Å(1)
Z Å(2)

a −Å(2)
Z Å(1)

a (4.244)
are located at

w = −ip2 cos2(ψ/2) . (4.245)

Due to (4.232) and Q = 2/
√
k̂ from (4.245) it follows

ω = −i
√
k̂ cos2(ψ/2)

2 p2 . (4.246)

Finally, matching the dispersion relation (4.246) to the dispersion re-
lation (4.10), obtained in Section 2 from the consideration of thermody-
namics of the 2d charged black hole, we conclude

η

s
=

1
4π (4.247)

is valid for any value of ψ, and due to q = M sinψ it is valid for any
charge density.
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Chapter 5

Discussion

In this concluding chapter we are going to look at the problems solved
in this thesis in the general context of the AdS/CFT correspondence and
strongly coupled quantum field theories. We are going to discuss strongly
coupled IR phases of a non-abelian gauge quantum field theory with the
fundamental matter. Consider SU(Nc) gauge theory coupled toNf flavors
of quarks and Nf flavors of anti-quarks. Let us start in the UV where the
gauge interaction is weak and one can rely on perturbation theory to
compute the beta function for the gauge coupling. If Nf/Nc < 11/2 then
the gauge coupling grows as one moves towards the IR, i.e., the theory
is asymptotically free. If Nf/Nc = 11/2− ε and ε � 1, then the theory
flows to a perturbative IR fixed point. It is called a Banks-Zaks fixed
point.

The question one can ask is whether there is a finite range of values of
x = Nf/Nc for which the IR theory is in a non-abelian Coulomb phase.
In real-world QCD we have Nc = 3 and Nf = 6, so that x = 2. The IR
phase of this QCD is confining. It has been suggested in the literature
that for x∗ < x < 11/2 QCD flows to the IR fixed point, with x∗ ' 4. It
is a well-known non-perturbative problem to find the value of x∗, and the
exact solution to this problem of a conformal window has not yet been
found.

However the solution is known for the supersymmetric QCD. Let us
promote the gauge boson to theN = 1 gauge supermultiplet, and promote
the quarks to the chiral superfields. The superpartner of the gluon is
gluino, which is a Weyl fermion, and the superpartners of the quarks
are squarks, each squark is a complex-valued scalar. Therefore we have
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a vector superfield, Nf chiral superfields and Nf chiral anti-superfields.
The resulting theory is asymptotically free when x = Nf/Nc < 3. This
value differs from the value 11/2 for a non-supersymmetric QCD because
now we have more fields with the gauge group charge.

First observation to make is that in the N = 1 supersymmetric gauge
theory the conformal symmetry group SO(2, 4) is enhanced to the super-
conformal symmetry group SU(2, 2|1). This allows one to formulate the
requirement of unitarity of a conformal field theory in terms of the bound
on the R-charge, which is the charge with respect to the U(1) subgroup of
the SU(2, 2|1) group. The R-charge is expressed in terms of Nf and Nc.
Using these facts one derives that a unitary superconformal fixed point
in the IR exists when 3/2 < x < 3, i.e., the lower edge of the conformal
window is located at x∗ = 3/2. In fact in the N = 1 supersymmetric field
theory when Nf < 3Nc/2 but Nf > Nc + 1, a unitary superconformal
fixed point exists, but to describe it one needs to switch to a Seiberg-dual
magnetic theory, which is IR-free in this region.

Perhaps new methods for solving the problem of a conformal window
in a non-supersymmetric QCD are needed. The AdS/CFT correspon-
dence can be suitable for this purpose. In fact in the literature there exist
holographic solutions to the problem of a conformal window for QCD in
a Veneziano limit, Nf ,Nc � 1, Nf/Nc = finite. The idea of the solu-
tion is that if one starts at x = 11/2 and decreases the value of x, then
at some point x = x∗ conformal phase transition takes place, which can
be seen in the dual gravity theory in AdS. It has been suggested that as
the field theory passes through the point of conformal phase transition,
the scalar field in AdS (playing the role of an order parameter for the
phase transition) develops a non-trivial profile. So the problem of a con-
formal window is reformulated holographically as the question of when
a non-trivial configuration is a preferred state for this scalar field. Un-
fortunately the known holographic solutions are far from being rigorous,
and are probably good only on a qualitative level. One of the principal
obstacles to solving the problem of a conformal window holographically
is that one needs to consider string theory in AdS space instead of its
supergravity approximation.

Let us fix Nf and Nc such that the IR theory is confining, like real-
world QCD. Up till now we have been considering QCD at vanishing
temperature T and vanishing chemical potential µ. One can ask what
happens as the values of T and µ are increased. This is the problem of

174



the (T ,µ) phase diagram of QCD. Although the precise form of the phase
diagram of QCD is not known it is known that at large values of tem-
perature or chemical potential conformal symmetry is restored, and the
system of quarks goes into either color superconducting phase or quark-
gluon plasma phase. We studied a similar problem in chapter 3, describing
the quark bi-linear operator by the dual tachyon field in AdS, with the
dynamics defined by the tachyon Dirac-Born-Infeld action. When the val-
ues of the temperature or the chemical potential are large enough the
preferred tachyon state in AdS is trivial: the tachyon identically vanishes.
However we have found that as one moves towards the origin of the (T ,µ)
plane the tachyon prefers to be in the state with a non-trivial profile. For
the dual field theory it means that the bi-linear quark operator develops
expectation value. It is a second-order phase transition at small values of
temperature and a first-order phase transition at small values of chemical
potential.

In this thesis we have also studied conformal phase transition which
takes place in a strongly coupled quantum field theory conformal in its
single-trace sector. This means that the coupling constants of the single-
trace gauge-invariant operators (including the gauge coupling) do not run
and reside at their fixed points, while the coupling constants of the double-
trace, and more generally the multi-trace operators, run along the RG
flow. In chapter 3 we studied such a quantum field theory in a Wilso-
nian holographic renormalization framework. In a Wilsonian holographic
renormalization one integrates out a part of the AdS space between the
boundary of AdS and the surface located at the fixed radial coordinate
z = b of AdS. Integrated out geometry is encoded in the effective bound-
ary action defined at z = b. In the model considered in chapter 3 we
introduced the tachyon field in AdS, with the dynamics determined by
the tachyon-DBI action, dual to a single trace operator in the boundary
field theory. We applied holographic renormalization to the tachyon DBI
action and derived the effective holographic Wilsonian boundary action.
This action satisfies the equation similar to the Callan-Symanzik equation,
from which one can determine the running of the multi-trace coupling
constants. The question we asked in chapter 3 was whether there exists
a fixed point for the beta function of the double-trace coupling constant
and when does this fixed point disappear and conformal phase transition
takes place. We have found that conformal phase transition occurs when
the mass of the tachyon crosses the Breitenlohner-Freedman bound. It is
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an infinite-order BKT type of phase transition, with an order parameter
of the phase transition being a dynamically generated mass scale.

We have reviewed three kinds of phase transitions in a non-abelian
gauge theories: the lower edge of a conformal window, the finite tem-
perature/chemical potential and the running of the multi-trace coupling
constants; all occurring between symmetric and massive phases. The
AdS/CFT correspondence makes it possible to study these phase tran-
sitions, with various degrees of rigor and various assumptions and simpli-
fications being made. It would be interesting to construct more rigorous
holographic models of conformal phase transition at the lower edge of a
conformal window, in particular for the N = 1 supersymmetric gauge
theories. Models like that exist in the literature, but the precise theory
still remains to be found.

In the holographic examples described above the fermionic bi-linear op-
erator on the boundary field theory was described by the scalar (tachyon)
field in the AdS. In chapter 3 we used the tachyon-DBI action to describe
dynamics of the tachyon field. Tachyon-DBI action appears in string the-
ory as the low-energy action describing the embedding profile of a probe
D-brane. In chapter 3 we considered various potentials for the tachyon
field, some of which have been taken from theDp-brane DBI action (‘hard-
wall’ potential). We have also studied the tachyon DBI action with the
generic ‘soft-wall’ tachyon potential. For a gravitational theory to be phys-
ically consistent it must be embeddable into string theory. In chapter 2 we
considered the explicit string theory holographic realization of the matter
degrees of freedom. Matter fields of a quantum field theory are massless
modes of an open strings which stretch between the D3-branes, creat-
ing the AdS5 × S5 background, and a probe branes in this background.
Matter is described holographically by the dynamics of the probe branes.
Such models, both supersymmetric and non-supersymmetric, have been
extensively studied in the literature. The main focus of chapter 2 was the
study of the probe brane matter in the background of a constant magnetic
field.

Majority of quantum fields theories which have been studied by the
methods of AdS/CFT correspondence are taken at an infinite number of
degrees of freedom. This is a direct consequence of the fact that SU(N)
gauge theory is dual to a classical (supergravity) theory in AdS only when
N is large. Any finite N means that quantum corrections in the bulk
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should be taken into account. At the same time it is known that inter-
action between a gauge-invariant IR operators is subleading in the 1/N
expansion, this phenomenon is known as large-N factorization. In chap-
ter 4 we studied holographically a quantum field theory dual to a two-
dimensional charged black hole. It can be considered as Little String
Theory at a finite density, the latter is defined as the low-energy limit
of the SU(N) gauge theory on the world-volume of an NS5-branes at a
vanishing string coupling. Such a theory can be described holographically.
When the N is large, the supergravity approximation of the bulk dynam-
ics is valid (compare with the AdS/CFT correspondence, in which case the
supergravity approximation is valid for the large ’t Hooft coupling). String
theory in the two-dimensional charged black hole background is exactly
solvable, and therefore we do not have to resort to the supergravity ap-
proximation, which means we can describe holographically a finite-density
matter at a finite N .

Results of chapter 4 give rise to the following problem. In chapter
4 we considered type-II superstring theory in a two-dimensional charged
black hole background. We have found that the dual field theory behaves
as a sum of two non-interacting fluids. Each fluid supports a gapless ex-
citation, and we have verified that at low frequencies and momenta the
dispersion relations of these excitations coincide with the dispersion re-
lations obtained in the supergravity approximation. One might wonder
whether there exists a theory in a two-dimensional charged black hole
background which describes a hydrodynamics of a field theory at a finite
density and a finite N . It is known that one can consider classical heterotic
string theory in a coset realization of the two-dimensional charged black
hole. In chapter 4 we studied heterotic gravity in the two-dimensional
charged black hole and found out that the dual field theory is described
by hydrodynamics, by deriving a dispersion relation of the diffusion mode
in the shear channel. It would be interesting to see whether this dispersion
relation is corrected in heterotic string theory, and whether the viscosity
over entropy ratio gets stringy corrections. However as one tries to answer
these questions the problem comes up. One needs to perform a first quan-
tization and construct a spectrum of heterotic string in a two-dimensional
charged black hole. This geometry is represented as a coset over U(1)
group. As one tries to construct quantum spectrum of this theory chiral
anomaly appears because in heterotic string theory only the right-handed
fermions couple to the U(1) gauge field. Usually in string theory on coset
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space, described by a gauged WZW model, a chiral anomaly of fermions is
compensated by a classical anomaly of bosons (which appears due to the
asymmetric gauging). It would be interesting to find how this problem is
resolved for heterotic string in the two-dimensional charged black hole.

There are numerous applications of the AdS/CFT correspondence to
strongly coupled systems which we did not have a chance to discuss in this
thesis. Since the AdS/CFT correspondence sometimes turns out to be the
only available analytical tool for the study of the low-energy strongly
coupled systems we advocate that a lot of effort should be invested into
it.
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Samenvatting

De AdS/CFT (Anti-de Sitter/conforme veldentheorie) correspondentie is
een veelbelovende aanpak om de lage-energie-fasen van sterk gecorreleerde
materie te onderzoeken. Eerder is al aangetoond dat deze correspondentie
een kwalitatief goede beschrijving kan geven van onder andere confine-
ment en chirale symmetrie-breking in kwantum chromodynamica (QCD)
modellen, supergeleiding en de vorming van Fermi oppervlakken in sterk
gekoppelde gecondenseerde materie-systemen. In dit proefschrift passen
we holografische methodes toe om de eigenschappen van lage-energie fy-
sica te bestuderen.

Allereerst beschouwen we in hoofdstuk 2 een eindige dichtheid van
quarks, die holografisch beschreven worden door een als sonde fungerende
braan in Anti-de Sitter ruimte met een niet-triviaal ijkveld op de achter-
grond van zijn wereldvolume. Daarmee reproduceren we het holografi-
sche nulgeluid, dat aanwezig is in het longitudinale kanaal van de stroom-
stroom correlatie functie. Dit resultaat hebben we veralgemeniseerd naar
gevallen met een magnetisch veld op de achtergrond. Zo’n veld veroor-
zaakt een kloof in de dispersie van het nulgeluid, met een breedte evenredig
met de grootte van het magnetisch veld zolang dit veld klein is. In de af-
wezigheid van een magnetisch veld vertoont de tweepunts-correlatiefunctie
van de transversale stroom een niet-triviale afhankelijkheid van de impuls,
wat de aanwezigheid van collectieve excitaties aantoont.

In hoofdstuk 3 bestuderen we de klassieke dynamica van het tachy-
onveld in een AdS ruimte, beschreven door de tachyon-Dirac-Born-Infeld
(DBI) actie. Door de introductie van een zwart gat in de AdS ruimte en
een niet-nul achtergronds-ijkveld verkrijgen we een holografisch model dat
conforme symmetrie-breking in een sterk gekoppeld systeem met eindige
temperatuur en ladingsdichtheid beschrijft. Het fasediagram als functie
van temperatuur en chemische potentiaal vertoont gelijkenissen met het
fasediagram van QCD. De meeste modellen uit hoofdstuk 3 zijn echter fe-
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nomenologisch van aard, aangezien we niet de precieze snaartheoretische
vorm van de tachyon potentiaal kennen. Met tachyonen in de AdS-ruimte
kunnen we ook dynamische chirale en elektrozwakke symmetrie-breking
van lopende technicolor theorieën modelleren. De overeenkomstige S-
parameter van de techni-quarks die we afleiden uit het holografische model
van de tachyon DBI-actie is positief, en wordt niet nul voor alle tachyon-
potentialen die aan bod komen in hoofdstuk 3. Daarnaast bevat hoofdstuk
3 de observatie dat het tachyon-DBI model gebruikt kan worden om een
conforme faseovergang naar theorieën met lopende koppelingen, die con-
form zijn in hun enkelspoorsector, te beschrijven.

In hoofdstuk 4 geven wij de exacte snaartheoretische beschrijving van
een kwantumveldentheorie bij eindige temperatuur en ladingsdichtheid.
Het voordeel van zo’n beschrijving is dat we daarmee kwantumveldenthe-
orieën kunnen beschrijven met een eindig aantal vrijheidsgraden, zonder
de in de holografische beschrijving veelgebruikte grote-N factorisatie in
te zetten. De achtegrond binnen in de ruimte bestaat uit een zwarte
braan met een niet-triviale ijkveldflux. Deze braan is verkregen als di-
rect product van een tweedimensionaal geladen zwart gat en de vlakke
ruimte. Het voordeel van een tweedimensionaal geladen zwart gat is
dat er een bekende SL(2,R)-coset realisatie van bestaat, en het overeen-
komstige Wess-Zumino-Witten model is exact oplosbaar. We hebben de
vertex-operatoren van de massaloze Neveu-Schwarz-Neveu-Schwarz toe-
standen geconstrueerd, die bestaan uit bosonische zwaartekrachtsmulti-
pletten, waarbij we de tweepuntsfuncties van deze vertex-operatoren heb-
ben gevonden. Van de polen van deze tweepuntsfuncties leiden we de
dispersie van de lage-energiemodi af. Het blijkt dat de theorie van su-
perzwaartekracht exact hetzelfde resultaat geeft als snaartheorie. We
concluderen dat het systeem zich gedraagt als de som van twee niet-
wisselwerkende vloeistoffen. In hoofdstuk 4 bestudeerden we ook de hete-
rotische zwaartekracht in de zwarte braanachtergrond met een ijkveldflux.
Het lage-energie spectrum van dit model kan beschreven worden met hy-
drodynamica.

Tenslotte vatten we in hoofdstuk 5 onze resultaten samen, die we dan
plaatsen in de algemene context van de AdS/CFT correspondentie.
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Summary

The AdS/CFT correspondence is a powerful approach to problems of
strongly coupled low-energy phases of matter. It has been proving to
be efficient at giving a qualitative description of the phenomena such as
confinement and chiral symmetry breaking in QCD-like models, and su-
perconductivity and Fermi surfaces in strongly-coupled condensed matter
systems. In this thesis we apply the methods of holography to find out
properties of low-energy physics.

We begin in chapter 2 by considering a finite-density system of quarks,
realized holographically by a probe brane in Anti-de Sitter (AdS) space,
with a non-trivial gauge field background on its world-volume. We re-
produce the holographic zero-sound in the longitudinal channel of the
current-current correlation function. We generalize this result to the case
of a non-vanishing background magnetic field. This field leads to a gap in
the zero-sound mode, which scales proportionally to the magnitude of the
field when it is small. At vanishing magnetic field the two-point correla-
tion function of the transverse current component exhibits a non-trivial
momentum-independent structure, signaling the presence of collective ex-
citations in the system.

In chapter 3 we study the classical dynamics of the tachyon field in
an AdS background described by the tachyon-Dirac-Born-Infeld (DBI)
action. By considering a black hole in AdS space and switching on a
non-vanishing background gauge field we obtained a holographic model
of conformal symmetry breaking in a strongly coupled system at finite
temperature and charge density. The resulting phase diagram in the
temperature-chemical potential plane is reminiscent of the phase diagram
of QCD. Most of the models in chapter 3 are phenomenological since we
do not know the precise string-theoretic form of the tachyon potential.
The tachyon in AdS space also models dynamical chiral and electro-weak
symmetry breaking of walking technicolor models. The corresponding S-
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parameter of techni-quarks derived holographically from the tachyon-DBI
action is positive-valued and does not vanish for the tachyon potentials
considered in chapter 3. Another observation made in chapter 3 is that the
tachyon-DBI model can be used to describe conformal phase transitions
to a walking region in theories conformal in their single-trace sector.

In chapter 4 we provide the exact string theoretic description of a quan-
tum field theory at finite temperature and charge density. The advantage
of such a description is that it allows to consider QFT with a finite number
of degrees of freedom, therefore avoiding the large-N factorization that is
almost always used in systems that are studied holographically. The bulk
background is a black brane with a non-trivial gauge field flux. It is ob-
tained as a direct product of the two-dimensional charged black hole and
a flat space. The advantage of the two-dimensional charged black hole is
that there is a known coset SL(2,R)-based realization of it, and the cor-
responding gauged Wess-Zumino-Witten model is exactly solvable. We
construct vertex operators of the massless Neveu-Schwarz-Neveu-Schwarz
states, which comprise the bosonic gravity multiplet, and find two-point
functions of these vertex operators. From the poles of these two-point
functions we infer dispersion relations of the low-energy modes. It turns
out that supergravity gives exactly the same result for these dispersion re-
lations as string theory. We conclude that the system behaves as a sum of
two non-interacting fluids. In chapter 4 we study heterotic gravity in the
black brane background with a gauge field flux. The resulting low-energy
spectrum is described by hydrodynamics.

Finally, in chapter 5 we summarize our results and consider them in
the general context of the AdS/CFT correspondence.
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