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Preface

This thesis has two parts.

Part I deals with the parabolic Anderson model. This is the partial differential equation
ou(z,t) /0t = kAu(z,t) + E(x, t)u(z,t), 2 € Z9, t > 0, where the u-field and the ¢-field
are R-valued, k € [0, 00) is the diffusion constant, and A is the discrete Laplacian. The
¢-field plays the role of a dynamic random environment that drives the equation. We
take the initial condition u(z,0) = ug(z), z € Z%, to be non-negative and bounded. The
solution of the parabolic Anderson equation describes the evolution of a field of particles
performing independent simple random walks with binary branching: particles jump at
rate 2dk, split into two at rate £ V 0, and die at rate (—£) vV 0. The question of interest
is how the exponential growth rate of u depends on the diffusion constant x. This can
be monitored via the annealed and quenched Lyapunov exponent. We focus on the latter.

Part IT deals with two different percolation models. The occupied set of the first per-
colation model is obtained by taking the union of a collection of independent Brownian
motions running up to time ¢ > 0, whose initial positions are distributed according to a
Poisson point process. The question we investigate is whether the occupied set undergoes
a non-trivial percolation phase transition in ¢ or not. We further investigate the unique-
ness of the unbounded components in the supercritical regime. The occupied set of the
second percolation model is given by the random interlacement set. This is a family of
random subsets Z%, u > 0, on Z%, d > 3, that locally describes the trace of a simple
random walk on the torus (Z/NZ)¢ running up to time wN?. It has been shown that
the vacant set V* = Z% \ 7% undergoes a non-trivial percolation phase transition in w.
We describe the geometry of the vacant set V* in the supercritical regime for intensities
u that are close to the criticial percolation parameter.

Part I (Chapters 1 — 3) deals with the parabolic Anderson model and is based on
the articles [EdHM14a] and [EdHM14b]. Part II (Chapters 4 — 6) deals with the two
percolation models and is based on the articles [EMP14] and [DE14].
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1 Introduction to Part |

1.1 The parabolic Anderson model

This section borrows parts of Section 1 in Erhard, den Hollander, Maillard [EdHM14a].
The Model

The parabolic Anderson model is the partial differential equation

ﬁu(x,t) = rAu(z,t) + &(x, t)u(z, t), reZi t>0. (1.1.1)

ot

Here, the u-field is R-valued, k € [0,00) is the diffusion constant, A is the discrete
Laplacian acting on u as

Au(w,t) =Y [uly,t) —u(x,t)] (1.1.2)
yezd
ly—zll=1
(|| - || is the ly-norm), while
£=(&)z0  with & = {&(x,t): @ € 2% (1.1.3)

is an R-valued random field playing the role a of dynamic random environment that
drives the equation. As initial condition for (1.1.1) we take

>  u(z,0) = ug(z), x € Z¢, with ug non-negative and bounded. (1.1.4)

The Feynman-Kac formula

A formal solution of (1.1.1) and (1.1.4) is given by the Feynman-Kac formula

t
u(z,t) = E, (exp {/ E(X"(s),t—9) ds} uO(X“(t))) . (1.1.5)
0
Here, X" = (X"(t)):>0 is the continuous-time simple random walk jumping at rate 2dx,

with law P, and expectation E, when X*(0) = z. The representation in (1.1.5) may, on
a heuristic level, be explained as follows. Consider the equations

d 0
av(x,t) = kAv(z,t) and aw(x,t) = &(z, t)w(z,t) (1.1.6)
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with initial conditions vy and wg, respectively. Note that kA is the generator of X*.
Therefore, the solution to the first equation is given by v(z,t) = E;(vo(X*(t))). The
solution to the second equation is given by w(z,t) = efo §@®) dsyy(2). Thus, (1.1.5)
may be interpreted as a combination of these two solutions. The Laplacian in the first
equation has the tendency to make the solution flat (e.g. vg = 1 implies v = 1). On the
other hand, in the second equation there is no such smoothing and w is irregular. In
(1.1.1), these two effects compete with each other, and it is this competition that makes
the model more appealing but also more complicated to study.

Two interpretations of (1.1.1)

e One interpretation comes from population dynamics. Consider the special case where
&(x,t) = v&(x,t) — 6 with 4,7 € (0,00) and & an Nyp-valued random field. Consider a
system of two types of particles, A (catalyst) and B (reactant), subject to:
— A-particles evolve autonomously according to a prescribed dynamics with &(z,t)
denoting the number of A-particles at site z at time ¢;
— B-particles perform independent simple random walks at rate 2dx and split into
two at a rate that is equal to 7 times the number of A-particles present at the same
location at the same time;

— B-particles die at rate ¢;
— the average number of B-particles at site x at time 0 is ug(z).
Then

u(z,t) = the average number of B-particles at site = at time ¢ (1.1.7)
conditioned on the evolution of the A-particles. o
e Another interpretation comes from random walk moving through a random field of
sinks and sources. Here, sites (z,t) € Z% x [0,00) with &(x,t) < 0 are interpreted as
sinks and sites (z,t) € Z¢ x [0,00) with £(x,t) > 0 are interpreted as sources. The case
in which ¢ does not depend on time and is such that £ € {—o00,0} has a particularly nice
interpretation in terms of survival probabilities, and is sometimes referred to as random
walk among Bernoulli traps. More precisely, assume that ug = 1 and let

O={z€Z%: £(z) = —o0} (1.1.8)
be the set of traps. Then the Feynman-Kac formula (1.1.5) reads
u(z,t) = Py(X"(s) C O° for all s € [0,¢]), (1.1.9)

i.e., u(z,t) equals the probability that the random walk X" starting at  does not get
killed by any of the traps in O until time ¢.

Three problems related to (1.1.1)



1.1 The parabolic Anderson model
e Burger’s equation

Burger’s equation is a fundamental equation in hydrodynamics (see [CM94]), and reads

{%U(x, t) + (@, t) - Vo(a,t) = kAv(,t) + f(2,1), z e R (1.1.10)

v(x,0) = vo(z),

Here, A denotes the usual Laplacian in R?, V denotes the gradient, the v-field is R%-
valued and f is an external force. In the case where vy and f can be written as gradients,
the solution of (1.1.10) may be obtained via the substitution

v(z,t) = —2kVlog p(x, t). (1.1.11)
Substituting (1.1.11) into (1.1.10), we get

%gp(m, t) = kAp(x,t) + F(z,t)p(x, t),
—2kVo(x) = vo(x), (1.1.12)
VF(z,t) = f(z,t).

Thus, (1.1.10) is transformed into the continuum version of the parabolic Anderson equa-
tion (1.1.1) and it is therefore enough to study the behaviour of .

e Advection-Convection equation for a temperature field

Consider the following equation for the scalar temperature field 7"

(1.1.13)

%T(x, t) +o(x,t) - VT (x,t) = kAT (z,t),
T(x,0) = To(x), =€R™L

This equation is used for the analysis of turbulent diffusions. It is argued in [CM94] (see
also [AM90)]), that if the dimension is two and the velocity field v has the form

v(z1, 22) = { U(Zl) } , (1.1.14)

then, under some additional assumptions, the Laplace transform T, A € R, of T" with
respect to the second space coordinate, satisfies the equation

aTk(t,xl) 82Tx(t,x1)

2
Er =K o2 + (A — Mo(z1))Ta(t, 21) (1.1.15)
with initial condition
T)\(O,Ztl) = / T(O,$1,ZE2)B)\$2 dZEQ. (1116)
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This is a space continuum version of equation (1.1.1).
¢ Random motion in random media

The parabolic Anderson model is an example of a class of models for random motion in
random media. Indeed, from the Feynman-Kac formula (1.1.5) we see that, in order to
understand the solution of (1.1.1), we have to understand how X* sees . This imme-
diately links (1.1.1) to the model of random walk in random scenery, where the typical
behaviour of fot &(X"(s),s)ds is studied rather than the large deviation behaviour of
fg &(X"(s),t—s)ds. Equation (1.1.1) is also deeply connected to random polymer mod-

els, since fg &(X"(s),t—s)ds may be considered as a Hamiltonian and the Feynman-Kac
formula is the corresponding partition function. Random walks in random environment
are in the same spirit. Here, instead of the random branching rates as explained in the
lines preceding (1.1.7), the transition probabilities of the random walk are random. All
these models have in common that two types of randomness interact with each other and
it is the goal to understand this interaction.

1.2 The parabolic Anderson model in a static random
environment

In this section we give an overview of the state of the art of the parabolic Anderson
equation when £ does not depend on time, i.e., when (1.1.1) is of the form

L u(z,t) = kAu(z,t) + &(z)u(z, t), (12.1)

u(x,0) = uo(x). o
Here, & = {&(z),z € Z%} is a collection of i.i.d. random variables with law P. We refer to
(1.2.1) as the static PAM. What follows is based on the overview articles of Gértner and
Konig [GKO05] and Konig and Wolff [KW13], and we refer the reader to these sources for
a more detailed presentation.

The first rigorous mathematics on the static PAM can be traced back to the works
of Gértner and Molchanov [GM90, GM98] in 1990 and 1998, respectively. In these
impressive papers a complete answer to the questions of existence and uniqueness of
solutions to (1.2.1) is provided. Moreover, some geometric properties of the u-field are
derived. In particular, it is shown that, under a mild assumption on the moments of &
and under a weak condition on the negative tails of £, the unique non-negative solution
of (1.2.1) is given by the Feynman-Kac formula

(o, t) = B, <exp {/Ot £(X"(s)) ds} uO(X“(t))) . (1.2.2)
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Three main questions have guided the research on the static PAM.

e What is the asymptotic behaviour of u(-,t) as t — co?

e Where does the main mass of u(+,t) come from? Which regions contribute most to
u(-,t)? What determines these regions? How many are there and how far are they
from each other?

e What do the typical shapes of the potential £ and the solution u(-,t) look like?

These three questions may also be characterized by the behaviour of the typical paths
{X*"(s): 0 < s <t} that contribute most to the Feynman-Kac formula in (1.2.2). On
the one hand, the typical paths should aim at finding spots where & obtains high values,
to make the integral in (1.2.2) large. On the other hand, the probability for far away
excursions is small, so that X* has to find a compromise between moving very quickly
towards a region with exceptionally high values of £ and performing typical excursions.
The first order approximation to u comes from those paths that find such a good com-
promise. The second order approximation to u comes from the precise manner in which
the paths move, i.e., from the geometry of the ¢-field, see [GM9S].

The notion of intermittency has played a major role in the investigation of the above
mentioned questions. Intermittency means that the main contribution to the solution
comes from small islands that have large distances to each other and make the u-field
look irregular. This irregularity can be quantified by looking at the moments of u in the
following way.

Definition 1.2.1. Fiz p € N and let
1
Ay (K, t) = = logE[u(0,t)P]. (1.2.3)
p

The solution of (1.2.1) is called p-intermittent for p > 2, when limy_,oo[Ap(k,t) —
Apor (5, )] = oo

In [GKO05] the following argument was given to explain why Definition 1.2.1 indeed

pertains to the geometric picture given above. Suppose that Definition 1.2.1 is fullfilled
for some p € N\ {1} and let I, be such that A,_1(k,) < 1,(-) < Ap(k,-). Then

P(U(O,t) > elp(t)) < e_(p_l)lp(t)E(u((), t)p—l)

(1.2.4)
= exp {(p —D)Ap1(kt) — (p— 1)lp(t)} 0.
Hence, by the stationarity of u(-,t), the density of the point process
U(t) = {z € 2 : u(x,t) > el*®} (1.2.5)
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vanishes as t — oco. However,

E(u(0, )P 1{u(0,1) < e} ) < b)) = PO PAODE (0, 1)?) = o(E(u(0, 1))
(1.2.6)
so that

E(u(O,t)p) ~ E(u((),t)p]l{u(o, t) > elp(t)}). (1.2.7)

Birkhoff’s ergodic theorem yields for a large centered box B C Z%,

BTN u(z )P =~ BT YT u(x, by (1.2.8)

z€EB z€BNT(t)

Hence Definition 1.2.1 means that the p-th moment of «(0,¢) is generated by the high
values of u(-,t) on the thin set I'(¢). The drawback however, is that the above approach
does not yield any information about the geometric structure of I'(¢). In what follows we
refer to the connected components of T'(t) as relevant islands. Theorem 3.2 of [GM90)]
reads as follows.

Theorem 1.2.2. Let £ be an i.i.d. field of real-valued random variables. Assume that
&(0) has finite exponential moments of all positive orders. Then w is p-intermittent for
all p € N\ {1} when esssup[£(0)] = cc.

Since [GM90, GM98] many more results were found. In particular, van der Hofstad,
Konig and Morters [HKMO06] proved that exactly four qualitatively different types of
asymptotic behaviour of u can occur. These four universality classes depend on the
upper tail of the distribution of £. It turned out that the double-exponential distribution

P(E(0) > ) = exp{—e"/"}, reR, (1.2.9)

where p € (0,00) is a parameter, plays an important role. In terms of this distribution
the four universality classes of the static PAM may be described as follows.

1. The single peak case: This is the boundary case with p = oo, corresponding to
cases beyond the double exponential distribution. Here the relevant islands shrink
to single sites as t — oo.

2. The double-exponential case: This is the case with p € (0,00). Here the
relevant islands stay bounded as t — oo.

3. The almost bounded case: Let £ be bounded from above and in the vicinity of
the distribution

P(£(0) > —r) = exp{—Cr™"/0=V} 5 € (0,1), (1.2.10)

as r — 0. The almost bounded case is an interpolation between the double-
exponential distribution with p = 0 and the distribution (1.2.10) with v = 1.
Here the sizes of the relevant islands grow slower than any power of ¢ to infinity.

4. The bounded case: Here the sizes of the relevant islands grow at least as fast as
some power of t as t — oo.

10



1.3 The parabolic Anderson model in a dynamic random environment

In some cases more is known. Konig, Lacoin, Morters and Sidorova [KLMS09] showed
that if £ is Pareto-distributed, then with high probability there is only one relevant island.
A similar result was later obtained by Lacoin and Morters [LM12] for the exponential
distribution, and was extended by Sidorova and Twarovski [ST14] and Fiodorov and
Muirhead [FM14] to the case of Weibull-distributed potentials. These potentials fall
into the first universality class. For the double-exponential distribution, which falls into
the second universality class, the concentration phenomenon on a single island has been
explored by Biskup and Kénig [BK14].

1.3 The parabolic Anderson model in a dynamic random
environment

In this section we focus on equation (1.1.1) when ¢ depends on time. This will be
referred to as dynamic PAM. Unlike the static case, which was treated in the previous
section, much less is known for the dynamic case. Most studies were concerned with the
exponential growth rate, namely, the p-th annealed Lyapunov exponent

M) = Jim pit ogE[u?(0,4)], peN (1.3.1)
and the quenched Lyapunov exponent, which is the almost sure limit
A% (k) = lim llog u(0, ). (1.3.2)
t—oo t
These were investigated as a function of the diffusion constant «.

In the next two sections we summarize the literature on the dynamic PAM.

1.3.1 White noise

This section is a copy of Section 1.3.1 in Gértner, den Hollander, Maillard [GAHM12].

Carmona and Molchanov [CM94] obtained a qualitative description of both the quenched
and the annealed Lyapunov exponents when ¢ is white noise, i.e.,

€ t) = O W), (133

ot
where W = (W;)i>0 with Wy = {W(x,t): = € Z%} is a space-time field of independent
Brownian motions. This choice is special because the increments of £ are independent in
space and time. They showed that if u(-,0) has compact support (e.g. u(-,0) = §o(-) as
in (1.1.4)), then the quenched Lyapunov exponent A\y°(x) defined in (1.3.2) exists and is
constant £-a.s., and is independent of u(-,0). Moreover, they found that the asymptotics

11



1 Introduction to Part I

of A\j°(k) as & | 0 is singular, namely, there are constants C1,Cs € (0, 00) and k¢ € (0, 00)

such that ) Loz log(1
Cr— L <o) < ¢, 108 1o8(/R)
log(1/k) log(1/k)
Subsequently, Carmona, Molchanov and Viens [CMV96], Carmona, Koralov and Molcha-
nov [CKMO1], and Cranston, Mountford and Shiga [CMS02], proved the existence of \°
when u(-,0) has non-compact support (e.g. u(-,0) = 1), showed that there is a constant
C € (0,00) such that

V0 < Kk < Ko. (1.3.4)

hirol log(1/k) A§° (k) = C, (1.3.5)

and proved that

1;}/101 Ap(k) = Ag° (k) VK €]0,00). (1.3.6)
(These results were later extended to Lévy white noise by Cranston, Mountford and
Shiga [CMS05], and to colored noise by Kim, Viens and Vizcarra [KVV08].) Further
refinements on the behavior of the Lyapunov exponents were proven in Carmona and
Molchanov [CM94] and Greven and den Hollander [GAHO7]. In particular, it was shown
that Ay (k) = 3 for all & € [0,00), while for the other Lyapunov exponents the following
dichotomy holds (see Figs. 1.1-1.2):

e d=1,2: \j°(k) < 3, A\p(r) > L for p € N\{1}, for k € [0, 00);
e d > 3: there exist 0 < kg < ko < k3 < ... < 0o such that

w1 ) <0, fork €l0,ko),
AO (K:) 2 { — O7 fOI' K € [:“&0,00), (137)

and

Ap(k) — L { - 8: g "< {gp“gi) peN\{1}. (1.3.8)
It was further shown in [CM94] that A,(k) > 1/2 already implies the chain of inequalities
Ap(K) < Apg1(k) < -+, which yields p-intermittency, see (1.2.3). Moreover, variational
formulas for k, were derived, which in turn led to upper and lower bounds on &,, and
to the identification of the asymptotics of k, for p — oo (k, grows linearly with p).
In addition, it was shown that for every p € N\{1} there exists a d(p) < oo such that
Kp < Kpt1 for d > d(p). Moreover, it was shown that k9 < k2 in Birkner, Greven
and den Hollander [BGdHO08] (d > 5), Birkner and Sun [BS10] (d = 4), Berger and
Toninelli [BT09], Birkner and Sun [BS11] (d = 3). Note that, by Holder’s inequality, all
curves in Figs. 1.1-1.2 are distinct whenever they are different from %

1.3.2 Interacting particle systems

This section is largely a copy of Sections 1.1 and 1.3.2 in Géartner, den Hollander, Mail-
lard [GdHM12].

Three examples for £ which is dependent in space and time have received a special
attention in recent years.

12



1.3 The parabolic Anderson model in a dynamic random environment

(SIS

Figure 1.1: Quenched and annealed Lyapunov exponents when d = 1,2 for white noise, with
Xo(k) = Ag°(K).

Ap(K)
p==k
d>3
p=3
p=2
p=1 %
Ko K2 K3 *° *° ° Kk
p=0 R
0

Figure 1.2: Quenched and annealed Lyapunov exponents when d > 3 for white noise, with
Xo(k) = Ag°(k).
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1 Introduction to Part I

(1) Independent Simple Random Walks (ISRW) [Kipnis and Landim [KL99], Chapter
1]. Here, & € Q@ = (NU {0})Zd and £(x, t) represents the number of particles at site
x at time t. Under the ISRW-dynamics particles move around independently as
simple random walks stepping at rate 1. &y is drawn according to the equilibrium
v, with density p € (0,00), which is a Poisson product measure.

(2) Symmetric Exclusion Process (SEP) [Liggett [L85], Chapter VIII]. Here, & € Q =
{0,1}2" and &(x,t) represents the presence (£(z,t) = 1) or absence (£(z,t) = 0)
of a particle at site x at time ¢. Under the SEP-dynamics particles move around
independently according to an irreducible symmetric random walk transition kernel
at rate 1, but subject to the restriction that no two particles can occupy the same
site. &y is drawn according to the equilibrium v, with density p € (0,1), which is a
Bernoulli product measure.

(3) Symmetric Voter Model (SVM) [Liggett [L85], Chapter V]. Here, & € Q = {0, 1}%°
and &(z,t) represents the opinion of a voter at site z at time ¢. Under the SVM-
dynamics each voter imposes its opinion on another voter according to an irre-
ducible symmetric random walk transition kernel at rate 1. §p is either drawn
according to the equilibrium distribution v, with density p € (0,1), which is not a
product measure or according to a Bernoulli product measure.

Let v > 0. Kesten and Sidoravicius [KS03], and Gértner and den Hollander [GdHO06],
considered the case where £ is v times the number of particles in the ISRW dynamics.
The survival versus extinction pattern [KS03] and the annealed Lyapunov exponents
[GAHO06] were analyzed, in particular, their dependence on d, , v and p. The case where
¢ is a single random walk was studied by Gértner and Heydenreich [GH06]. Géartner,
den Hollander and Maillard [GAHMO7], [GAHMO09], [GAHM10] subsequently considered
the cases where £ is v times an exclusion process, respectively, v times a voter model. In
each of these cases, a fairly complete picture of the behavior of the annealed Lyapunov
exponents was obtained, including the presence or absence of intermittency, i.e., Ap(k) >
Ap—1(k) for some or all values of p € N\{1} and x € [0,00). Several conjectures were
formulated as well. In what follows we describe these results in some more detail. We
refer the reader to Gértner, den Hollander and Maillard [GAHMOS] for an overview.

It was shown in Gértner and den Hollander [GdHO06], and Gértner, den Hollander and
Maillard [GAHMO7], [GAHMO09], [GAHM10] that for ISRW, SEP and SVM in equilibrium
the function x — A, (k) satisfies:

e If d > 1 and p € N, then the limit in (1.3.1) exists for all x € [0, 00). Moreover, if
Ap(0) < o0, then K +— Ay(k) is finite, continuous, strictly decreasing and convex on
[0, 00).

e There are two regimes (we summarize results only for the case where the random
walk transition kernel has finite second moment and we recall that p describes the
density of particles):

— Strongly catalytic regime (see Fig. 1.3):
* ISRW: d=1,2,peNord>3,p>1/vGyq: A\, = o0 on [0, 0).
(Gq is the Green function at the origin of simple random walk.)

14



1.3 The parabolic Anderson model in a dynamic random environment

* SEP: d=1,2,pe N: )\, =+ on [0,0).
* SVM: d =1,2,3,4,p e N: A\, =7 on [0, 00).
— Weakly catalytic regime (see Fig. 1.4-1.5):
* ISRW: d >3, p < 1/vGq: py < A\p < 00 on [0, 00).
* SEP: d >3, peN: py <\, <+ onl0,0c0).
* SVM: d > 5, p € N: py < A, < on [0,0).
e For all three dynamics, in the weakly catalytic regime lim,_, k[Ap(K) — py] =

C1 + Cap®lig—q,y with C1,Cy € (0,00) and d, a critical dimension: d. = 3 for
ISRW, SEP and d. = 5 for SVM.

e Intermittent behavior:
— In the strongly catalytic regime, there is no intermittency for all three dynam-
ics.
— In the weakly catalytic regime, there is full intermittency for:
* all three dynamics when 0 < k < 1.
x ISRW and SEP in d = 3 when « > 1.
* SVM in d = 5 when x > 1.

Note: For SVM the convexity of k — A\, (k) and its scaling behavior for £ — oo have not
actually been proved, but have been argued on heuristic grounds.

Ap(K)

0 ISRW

~ SEP, SVM
0 H

Figure 1.3: Triviality of the annealed Lyapunov exponents for ISRW, SEP, SVM in the strongly
catalytic regime; i.e. below the critical dimension

Recently, there has been further progress for the case where £ consists of 1 random
walk (Schnitzler and Wolff [SW12]) or n independent random walks (Castell, Giin and
Maillard [CGM12]), ¢ is the SVM (Maillard, Mountford and Schépfer [MMS12]), and
for the trapping version of the PAM with v € (—o00,0) (Drewitz, Gartner, Ramirez and
Sun [DGRS12]).

The first attempt to analyze the quenched Lyapunov exponent (1.3.2) for a dynamic
¢ that has correlations in space and time was made in [GdHM12]. Several properties,
such as (1) the existence of the quenched Lyapunov exponent for initial conditions ug

15
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d = 3 ISRW, SEP
p=3 d=5 SVM
p:2§
Pfl\ ?

Py s .....
0 K

Figure 1.4: Non-triviality of the annealed Lyapunov exponents for ISRW, SEP and SVM
in the weakly catalytic regime at the critical dimension.

Figure 1.5: Non-triviality of the annealed Lyapunov exponents for ISRW, SEP and SVM
in the weakly catalytic regime above the critical dimension.

with compact support; (2) the Lipschitz continuity of the map x — Ag(k) outside any
neighborhood of zero; (3) the non-Lipschitz continuity of k — Ao(k) at k = 0; (4)
the strict lower bound Ag(k) > E(£(0,0)), were derived under weak assumptions on &.
Moreover assume that £ satisfies a strong assumption on its occupation times, i.e., £ is
a Markov process such that uniformly in its initial configuration 7 there is a ¢ > 0 such
that for all p,t >0

Ey (exp {u/o (£(0, s) —E(£(0,0))) d5}> < exp{ep’t}, (1.3.9)

where [, is the expectation of £ when started at 1, then even more can be said. Namely,
the following asymptotic behaviour holds:

lim sup log(1/r)

0SUD 3 oa(1/m) Po() ~ E(E(0,0)) < co. (1.3.10)

e The goal of the work in this thesis is to broaden the understanding of the quenched
Lyapunov exponent under assumptions on & that are as weak as possible.
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1.4 Overview of the results

1.4 Overview of the results

In this section we give an overview over the main results, that will be presented in Chapter
2 and Chapter 3. Most of the results require space-time mixing conditions, which we
call Gértner-mixing conditions, whose precise definition can be found in the respective
chapters.

1.4.1 Results of Chapter 2: basic properties of the quenched
Lyapunov exponent

In Chapter 2 we derive basic properties of the solution of equation (1.1.1), such as exis-
tence and uniqueness, and of the quenched Lyapunov exponent (1.3.2) such as finiteness,
independence on the initial condition and the non Lipschitz continuity in x = 0.

Definition 1.4.1. A field ¢ = {q(x): x € Z%} is said to be percolating from below if for
every a € R the level set {x € Z¢: q(z) < o} contains an infinite connected component.
Otherwise q is said to be non-percolating from below.

It was shown in [GM90] that if ¢ is non-percolating from below, then (1.2.1) has at most
one non-negative solution. We will show that a similar condition suffices for dynamic &,
namely, (1.1.1) has at most one non-negative solution when there is a T > 0 such that

¢ ={¢"(x): x €2} with ¢"(x)= sup q(z,1). (1.4.1)
0<t<T

Theorem 1.4.2. [Uniqueness] Consider a deterministic q: 7 x [0,00) — R such that:
(1) There is a T > 0 such that qT is non-percolating from below.

(2) ¢ (x) < oo for all T >0 and x € Z4.

Then the Cauchy problem

Q =
{atu(x,t) kAu(z,t) + q(z, t)u(z,t), ce7d t>0, (1.4.2)

u(z,0) = up(x),
has at most one non-negative solution.

Theorem 1.4.3. [Existence] Suppose that:

(1) s — &(x,8) is locally integrable for every x, &-a.s., i.e., for every compact subset
K C[0,00) and every x the map s — W{s € K}{(x,s) is integrable £-a.s.

(2) E(e%(0:9)) < o0 for all ¢ > 0.

Then the function defined by the Feynman-Kac formula

u(z,t) = B, (exp {/Ot £(X"(s),t — 5) ds} uO(X“(t))> (1.4.3)

solves (1.1.1) with initial condition ug.
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1 Introduction to Part I

From now on we assume that ¢ satisfies the conditions of Theorems 1.4.2-1.4.3 (where
q is replaced by £ in Theorem 1.4.2).

The following two results concern the finiteness and existence of A\j°(x). See Corol-
lary 1.4.8 for examples of £, that satisfy the assumptions of Theorems 1.4.4 and 1.4.5.

Theorem 1.4.4. [Finiteness] If £ is Gartner-positive-hyper-mizing, then /\g" (k) < o0.

From now on we also assume that £ satisfies the conditions of Theorem 1.4.4. The
following result extends Gértner, den Hollander and Maillard [GAHM12], Theorem 1.1,
in which it was shown that for the initial condition ug = ¢ the quenched Lyapunov
exponent exists and is constant £-a.s.

Theorem 1.4.5. [Initial Condition] If € is reversible in time or symmetric in space,
type-1I Gdrtner-mizing and Gdrtner-negative-hyper-mizing, then

AG° (k) = limy—o0 1 logu(0,t) exists E-a.s. and in L'(P), is constant &-a.s., and is inde-
pendent of ug.

The next results concern the dependence on x of Ao(k) and are valid under certain
conditions on the occupation times of £, which are similar to (1.3.9) but still weaker than
(1.3.9).

Theorem 1.4.6. [Continuity at « = 0] If £ is Gartner-regular, then k — )\go(ﬁz) is
continuous at zero.

Theorem 1.4.7. [Not Lipschitz at k = 0] If £ is Gdrtner-volatile, then k — )\go(ﬁz)
is mot Lipschitz continuous in zero.

1.4.1.1 Examples

Corollary 1.4.8. [Examples for Theorems 1.4.4—1.4.5]
(1) Let X = (Xy)i>0 be a stationary and ergodic R-valued Markov process. Let (X.(2)),eza
be independent copies of X. Define & by &(x,t) = Xy(x). If

E [eqsupse[o,l] XS] < 00 Vq>0, (1.4.4)

then & fulfills the conditions of Theorem 1.4.4. If, moreover, the left-hand side of (1.4.4)
is finite for all ¢ < 0, then & satisfies the conditions of Theorem 1.4.5.

(2) Let € be the zero-range process with rate function g: Ng — (0,00), g(k) = k°, B €
(0,1], and transition probabilities given by a simple random walk on Z. If € starts from
the product measure m,, p € (0,00), with marginals

k
___pr if k 0
mp{n € NG y(z) =k} = {7 R, (1.4.5)

s lfk:()a

where v € (0,00) is a normalization constant, then & satisfies the conditions of Theo-
rems 1.4.4—1.4.5.
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Corollary 1.4.9. [Examples for Theorem 1.4.6]

(1) If € is a bounded interacting particle system in the so-called M < e regime (see
Liggett [L85]), then the conditions of Theorem 1.4.6 are satisfied.

(2) If € is the exclusion process with an irreducible, symmetric and transient random

walk transition kernel, then the conditions of Theorem 1.4.6 are satisfied.
(3) If € is the dynamics defined by

Ny
Elzt) =) Z(syjy(t)(x), (1.4.6)

y€ezZd j=1

where {Y}: y € 741 <4< N,, Y/ (0) = y} is a collection of independent continuous-
time simple random walks jumping at rate one, and (Ny),eza is a Poisson random field
with intensity v for some v € (0,00). If d > 3, then the conditions of Theorem 1.4.6 are
satisfied.

Remark 1.4.10. Corollaries 1.4.8-1.4.9 list only a few examples that match the condi-
tions. It is a separate problem to verify these conditions for as broad a class of interacting
particle systems as possible.

1.4.2 Result of Chapter 3: space-time ergodicity for the quenched
Lyapunov exponent

In Chapter 3 we prove the following.

Theorem 1.4.11. If ug = §y and & is Gartner-hyper-mizing, then

lim A\ (k) = E(£(0,0)). (1.4.7)

[amde el

e Examples: The two examples listed in Corollary 1.4.8 are examples of fields that are
Gértner-hyper-mixing.

Theorem 1.4.11 yields a partial answer to the question: Which random walk paths give
the main contribution to the Feynman-Kac formula in (1.4.3)? Indeed, Theorem 1.4.11
shows that, for large x and any dynamic £ that is Gartner-hyper-mixing, the main con-
tribution comes from those paths that spend most of their time in regions where £ looks
typical. This is in sharp contrast with what is known for the parabolic Anderson model
with a static i.i.d. random environment ¢ = {£(z): x € Z9}. In this case the main contri-
bution to the Feynman-Kac formula in (1.4.3) comes from those paths that are localized,
in the sense that they spend almost all of their time in regions where ¢ is large. The
latter implies that for bounded £ the quenched Lyapunov exponent equals esssup£(0)
instead of E(£(0)).

Theorem 1.4.11, jointly with the results in Section 1.4.1, suggest the picture of k +—
A (k) in Figure 1.6.
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A3 (5)

K

0

Figure 1.6: Qualitative behavior of & — A (k).

1.5 Open problems

We close this introduction by listing some open problems. We hope to address some of
these in future works.
e Show that the graph of the quenched Lyapunov exponent indeed looks as indicated
in Figure 1.6, i.e., show that k — A\p(x) has a unique maximum.

e Investigate (1.1.1) when the discrete Laplacian is replaced by a random discrete
Laplacian. This amounts to replacing the simple random walk in the Feynman-Kac
formula (1.1.5) by a random walk in a random environment.

e Determine the rate at which Ag(k) converges to E(£(0,0)) as k — oo, i.e., deter-
mine a function f : [0,00) — [0,00) such that lim,_, f(k) = oo and such that
F(B)[Ao(k) —E(£(0,0)] is bounded from above and below as k — oc.

e Investigate the fluctuations of Ag(k) as k — oo.

e Investigate whether or not the parabolic Anderson model falls in the same univer-
sality class as the KPZ-equation.
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Lyapunov exponent

This chapter is based on:

D. Erhard, F. den Hollander, G. Maillard. The parabolic Anderson model in a dynamic
random environment: basic properties of the quenched Lyapunov exponent. Posted on
arXw:1208.083002, to appear in Annales de ['Institut Henri Poincaré Probabilités et
Statistiques 2014.

Abstract

In this chapter we study the parabolic Anderson equation Ou(z,t)/0t = kAu(z,t) +
E(x, tyu(x,t), x € Z%, t > 0, where the u-field and the ¢-field are R-valued, k € [0, 00)
is the diffusion constant, and A is the discrete Laplacian. The &-field plays the role of a
dynamic random environment that drives the equation. The initial condition u(z,0) =
up(x), z € Z4, is taken to be non-negative and bounded. The solution of the parabolic
Anderson equation describes the evolution of a field of particles performing independent
simple random walks with binary branching: particles jump at rate 2dk, split into two
at rate £ V 0, and die at rate (—¢) V 0. Our goal is to prove a number of basic properties
of the solution u under assumptions on ¢ that are as weak as possible. These properties
will serve as a jump board for later refinements.

Throughout the chapter we assume that £ is stationary and ergodic under trans-
lations in space and time, is not constant and satisfies E(|£(0,0)]) < oo, where E
denotes expectation w.r.t. £&. Under a mild assumption on the tails of the distribu-
tion of &, we show that the solution to the parabolic Anderson equation exists and is
unique for all k € [0,00). Our main object of interest is the quenched Lyapunov expo-
nent Ao(k) = limy_o0 § logu(0,¢). It was shown in Gértner, den Hollander and Mail-
lard [GAHM12] that this exponent exists and is constant £-a.s., satisfies A\g(0) = E(£(0, 0))
and A\ (r) > E(£(0,0)) for k € (0,00), and is such that x — Ag(k) is globally Lipschitz on
(0, 00) outside any neighborhood of 0 where it is finite. Under certain weak space-time
mixing assumptions on £, we show the following properties: (1) A\g(k) does not depend
on the initial condition ug; (2) Ag(k) < oo for all k € [0, 00); (3) kK — Ao(k) is continuous
on [0, 00) but not Lipschitz at 0. We further conjecture: (4) lim,_o0[Ap(k) — Ag(K)] =0
for all p € N, where A\, (k) = limy_00 % log E([u(0,)]?) is the p-th annealed Lyapunov
exponent. (In [GAHM12] properties (1), (2) and (4) were not addressed, while property
(3) was shown under much more restrictive assumptions on £.) Finally, we prove that
our weak space-time mixing conditions on £ are satisfied for several classes of interacting
particle systems.
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2.1 Introduction and main results

2.1 Introduction and main results

Section 2.1.1 defines the parabolic Anderson model and provides motivation, Section 2.1.2
describes our main targets and their relation to the literature, Section 2.1.3 contains our
main results, while Section 2.1.4 discusses these results and state a conjecture.

2.1.1 The parabolic Anderson model (PAM)

The parabolic Anderson model is the partial differential equation

%u(x,t) = rAu(z,t) + &(x, Hu(z, t), rezi t>0. (2.1.1)

Here, the u-field is R-valued, x € [0,00) is the diffusion constant, A is the discrete
Laplacian acting on u as

Au(a,t) = Y [ulyt) —ulz,b)] (2.1.2)

y€ezt
ly—=l=1
(|| - || is the {1-norm), while
&= (&)i>0 with & = {&(z,t): z € 7 (2.1.3)

is an R-valued random field playing the role of a dynamic random environment that
drives the equation. As initial condition for (2.1.1), we take

> u(z,0) = ug(z), r € Z¢, with ug non-negative and bounded. (2.1.4)

One interpretation of (2.1.1) and (2.1.4) comes from population dynamics. Consider
the special case where &(z,t) = v&(x,t) —§ with 4, € (0, 00) and £ an Ny-valued random
field. Consider a system of two types of particles, A (catalyst) and B (reactant), subject
to:

— A-particles evolve autonomously according to a prescribed dynamics with &(z,t)
denoting the number of A-particles at site x at time ¢;

— B-particles perform independent simple random walks at rate 2dx and split into
two at a rate that is equal to 7y times the number of A-particles present at the same
location at the same time;

— B-particles die at rate ¢;
— the average number of B-particles at site z at time 0 is ug(z).
Then

u(z,t) = the average number of B-particles at site z at time ¢

conditioned on the evolution of the A-particles. (2.1.5)
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The ¢-field is defined on a probability space (€2, F,P). Throughout the chapter we
assume that

» ¢ is stationary and ergodic under translations in space and time.

2.1.6
» ¢ is not constant and E(]£(0,0)]) < occ. ( )

Without loss of generality we may assume that E(£(0,0)) = 0.

2.1.2 Main targets and related literature

The goal of the present chapter is to prove a number of basic properties about the
Cauchy problem in (2.1.1) with initial condition (2.1.4). In this section we describe these
properties informally. Precise results will be stated in Section 2.1.3.

e Existence and uniqueness of the solution. For static &, i.e.,

£ ={&x): z ez, (2.1.7)

existence and uniqueness of the solution to (2.1.1) with initial condition (2.1.4) were
addressed by Géartner and Molchanov [GM90]. Namely, for arbitrary, deterministic
q: Z% - R and uy: Z¢ — [0,00), they considered the equation

{%u(x, t) = kAu(z, t) + g(z)u(x, t),

ezt t>0, 2.1.8
u(z,0) = up(x), v - ( )

with ug non-negative, and showed that there exists a non-negative solution if and only
if the Feynman-Kac formula

o(z,1) = E, <exp {/Ot (X" (s)) ds} uo(X“(t))) (2.1.9)

is finite for all z and ¢. Here, X* = (X"(¢))¢>0 is the continuous-time simple random
walk jumping at rate 2dk (i.e., the Markov process with generator kA) starting in x
under the law P,. Moreover, they showed that v in (2.1.9) is the minimal non-negative
solution to (2.1.8). From these considerations they deduced a criterion for the almost
sure existence of a solution to equation (2.1.8) when ¢ = £. This result was later extended
to dynamic £ by Carmona and Molchanov [CM94], who proved the following.

Proposition 2.1.1. (Carmona and Molchanov [CM94]) Suppose that q: Zx[0,00) — R
is such that q(x,-) is locally integrable for every x. Then, for every non-negative initial
condition ug, the deterministic equation

{%u(x,t) = rAu(z,t) + q(z, )u(z,t),

ezt t>0, 2.1.10
u(z,0) = uo(x), v - ( )

has a non-negative solution if and only if the Feynman-Kac formula

o(z,1) = Es (exp {/Ot (X" (s),t — 5) ds} uO(X“(t))) (2.1.11)
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is finite for all x and t. Moreover, v in (2.1.11) is the minimal non-negative solution to
(2.1.10).

To complement Proposition 2.1.1, we need to find a condition on & that leads to
uniqueness of (2.1.11). This will be the first of our targets. To answer the question of
uniqueness for static £, Gartner and Molchanov [GM90] introduced the following notion.

Definition 2.1.2. A field ¢ = {q(x): x € Z%} is said to be percolating from below if for
every a € R the level set {x € Z¢: q(z) < a} contains an infinite connected component.
Otherwise q is said to be non-percolating from below.

It was shown in [GM90] that if ¢ is non-percolating from below, then (2.1.8) has at most
one non-negative solution. We will show that a similar condition suffices for dynamic &,
namely, (2.1.10) has at most one non-negative solution when there is a T' > 0 such that
' ={¢"(x): x €z with ¢T(z)= sup q(z,t) (2.1.12)

0<t<T
is non-percolating from below (Theorem 2.1.12 below). This (surprisingly weak) condi-

tion is fulfilled &-a.s. for ¢ = £ for most choices of £&. Moreover, we show that this solution
is given by the Feynman-Kac formula (Theorem 2.1.13 below).

e Quenched Lyapunov exponent and initial condition. The quenched Lyapunov
exponent associated with (2.1.1) with initial condition ug is defined as

1
Aol (k) = tlggo 7 log u(0, t). (2.1.13)

Gértner, den Hollander and Maillard [GAHM12] showed that if uo has finite support,
then the limit exists é-a.s. and in L!(P), is &-a.s. constant, and does not depend on wuy.
A natural question is whether the same is true for ug bounded with infinite support.
This question was already addressed by Drewitz, Gartner, Ramirez and Sun [DGRS12].
Define

X (k) = Jlim % log Eg (exp {/Ot E(X"(s), s) ds} uo(X“(t))> (2.1.14)

and note that the expectation in (2.1.14) differs from the one in (2.1.11), since the time
in the integral in (2.1.11) is reversed.
Proposition 2.1.3. (Drewitz, Gartner, Ramirez and Sun [DGRS12])

(1) If € satisfies the first line of (2.1.6) and is bounded, then Xél(/i) exists £-a.s. and in
LY(P), and is &-a.s. constant.
(II) If, in addition, & is reversible in time or symmetric in space, then, for all ug subject

to (2.1.4), X' (k) exists &-a.s. and in L'(P), and coincides with X(])l(/i),

—1
The time-reversal that distinguishes A\}(x) from X, (k) is non-trivial. Under appropriate
space-time mixing conditions on &, we show how Proposition 2.1.3 can be used to settle
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2 Basic properties of the quenched Lyapunov exponent

the existence of \j°(x) with the same limit for all ug subject to (2.1.4) (Theorem 2.1.15
below).

e Finiteness of the quenched Lyapunov exponent. On the one hand it follows
by an application of Jensen’s inequality that \j°(x) > E(£(0,0)) for all x (see Theorem
1.2(iii) in Géartner, den Hollander and Maillard [GAHM12] for the details), while on the
other hand if £ is bounded from above, then also A\j°(k) < oo for all k. For unbounded
¢ the same is expected to be true under a mild assumption on the positive tail of &.
However, settling this issue seems far from easy (and it is even not true when ¢ does not
depend on time). The only two choices of £ for which finiteness has been established in
the literature are an i.i.d. field of Brownian motions (Carmona and Molchanov [CM94])
and a Poisson random field of independent simple random walks (Kesten and Sidoravi-
cius [KS03]). We will show that finiteness holds under an appropriate mixing condition
on ¢ (Theorem 2.1.14 below).

e Dependence on k. In [GAHM12] it was shown that A (0) = E(£(0,0)), A (k) >
E(£(0,0)) for & € (0,00), and & — A (k) is globally Lipschitz outside any neighborhood
of zero where it is finite. Under certain strong “noisiness” assumptions on &, it was
further shown that continuity extends to zero while the Lipschitz property does not. It
remained unclear, however, which characteristics of £ are really necessary for the latter
two properties to hold. We will show that if £ is a Markov process, then in essence
a weak condition on its Dirichlet form is enough to ensure continuity (Theorem 2.1.16
and Corollary 2.1.20 below), whereas the non Lipschitz property holds under a weak
assumption on the fluctuations of £ (Theorem 2.1.17). Finally, by the ergodicity of £ in
space, it is natural to expect (see Conjecture 2.1.21 below) that lim, oo [)\20 (n)—/\g" (k)] =
0 for all p € N, where

X (r) = lim élogﬁ([u(o,t)]p) (2.1.15)
is the p-th annealed Lyapunov exponent (provided this exists). It was proved for three
special choices of £: (1) independent simple random walks; (2) the symmetric exclusion
process; (3) the symmetric voter model, (for references, see [GAHM12]), that, when d
is large enough, lim, o A% (k) = E(£(0,0)), p € No. It is known from Carmona and
Molchanov [CM94] that lim, o A2 (k) = & # E(£(0,0)) for all p € N when £ is an i.i.d.
field of Brownian motions.

Remark 2.1.4. We expect that one can define the p-th annealed Lyapunov exponent
even for non-integer values of p and that in this case lim, o )\ff’(ﬁz) = \(k). This was
indeed established by Cranston, Mountford and Shiga [CMS02] when & is an i.i.d. field
of Brownian motions.

2.1.3 Main results

This section contains five definitions of space-time mixing assumptions on &, six theorems
subject to these assumptions, as well as examples of £ for which these assumptions are
satisfied. The material is organized as Sections 2.1.3.1-2.1.3.4. The first theorem refers
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to the deterministic PAM, the other four theorems to the random PAM. Recall that the
initial condition ug is assumed to be non-negative and bounded. Further recall that &
satisfies (2.1.6).

2.1.3.1 Definitions: Space-time blocks, Gartner-mixing, Gartner-regularity and
Gartner-volatility

e Good and bad space-time blocks. For A > 1, R € N, z € Z¢ and k,b,c € Ny,
define the space-time blocks

d
Ba(x, k; b, ¢) H —1-0)AR (2(j) + 1+ b)AR) N Z | x[(k—c) AR, (k+1)AT),
(2.1.16)
abbreviate Bﬁ (z, k) = Bﬁ(x, k;0,0), and define the space-blocks
Qa(x) =z 4 [0, AR Nz, (2.1.17)
space
time

Figure 2.1: The box represents By (z, k). The line is a possible realization of Qf(x).

It is convenient to extend the £-process to negative times, to obtain a two-sided process
€ = (§,)ter. Abbreviate M = esssup [£(0,0)].

Definition 2.1.5. For A> 1, Re N, 2z € Z¢, k € N, C € [0, M] and b,c € Ny, the
R-block B#(x, k) is called (C,b,c)-good when

Z £(z,5) < CATd VyeZ s>0: Qaly) x {s} C Ba(x, k;b,c). (2.1.18)
z2€Qa(y)

Otherwise it is called (C,b,c)-bad.
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space
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time
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Figure 2.2: The dashed blocks are R-blocks, i.e., B (z, k) (inner) and B (, k; b, c) (outer) for
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some choice of A, x, k, b, c. The solid blocks are (R+1)-blocks, i.e., BQH (y,1) (inner)
and §§+1(y7l;b7 c¢) (outer) for a choice of A,y,l,b,c such that they contain the
corresponding R-blocks. Furthermore, {®;}i=1,2,3,4,5,6 represents the space-time
coordinates ®; = ((y—1—b)ART! (1—c)ATT) @2 = ((y+1+b) AT (1—c)ARTY),
® = ((y + 1+ b)AT (1 + AT, @4 = ((y — 1= AT, (1 +1) AT, @; =
((x —1—b)A%, (k- c)A") and ®s = ((y — 1) AT IARTY),
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e Girtner-mixing. For A>1, Re N,z € Z% ke N, C € [0, M] and b, c € Ny, let

Ag’c(x, k;b,c)
= {Bf, (k) is (C,b,c)-good, but contains an R-block that is (C,b, ¢)-bad}.
(2.1.19)

In terms of these events we define the following space-time mizing conditions (see Fig. 2.2).
For D C Z% x R, let o(D) be the o-field generated by {£(z,t): (z,t) € D}.

Definition 2.1.6. [Gdrtner-mizing]
For ay,as € N, denote by A, (a1,a2) the set of Z¢ x N-valued sequences {(z;,k;)}" that
are increasing with respect to the lexicographic ordering of Z% x N and are such that for
all0<i<j<n

zj=x; moda; and k;j=k; mod as. (2.1.20)

(a) € is called (A, C, b, c)-type-I Géartner-mizing when there are a1, a2 € N and a constant
K > 0 such that there is an Ry € N such that, for all R € N with R > Ry and alln € N,

n —R(1+d)n
sup ]P’( ﬂ Ag’c(xi, ki b, c)) < K(A(1+2d)> . (2.1.21)
(a1,a2)

(m6,ki)T_g €A i—o
(b) & is called (A, C, b, c)-type-II Gartner-mizing when for each family of events

Al ¢ U(Bﬁﬂ(xi, ki), (i ki) € Ap(ar, az2), (2.1.22)
that are invariant under space-time shifts and satisfy

lim P(AF) =0, (2.1.23)
R—o0
there are ay,as € N and a constant K > 0 such that for each § > 0 there is an Ry € N
such that, for alln € N,

IE”( m {Bp 1 (2, k) is (C,b, c)-good} N AZR) < Ko R> Ry, ReN. (2.1.24)
i=0

(c) & is called type-I, respectively type-II, Gartner-mixing, when there are A > 1, C €
[0, M], R €N, b,c € N such that £ is (A, C,b, c)-type-1, respectively, (A,C,b,c)-type-II,
Gartner-mixing.

Definition 2.1.7. [Gdrtner-hyper-mizing]

(a) € is called Gartner-positive-hyper-mixing when

(al) E[ed=P:c0.11809)] < o0 for all ¢ > 0.

(a2) There are b,c € N and a constant C such that for each Ay > 1 one can find A > Ay
such that E1{& > 0} is (A, C,b, c)-type-1 Girtner-mixing.

(a8) There are Ry, Co > 1 such that

P sup iﬂ S €(ys)>C | <[Bal™ VR> Ry C>Co, (2.1.25)

B
s€[0,1] | yEBR
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for some a > (1 +2d)(2 + d)/d, where Bg = [-R, R]* N Z%.
(b) & is called Gartner-negative-hyper-mizing, when —& is Gartner-positive-hyper-mixing.

Remark 2.1.8. If £ is bounded from above, then & is Gdrtner-positive-hyper-mizing.
For those examples where £(x,t) represents “the number of particles at site x at time
t”, we may view Gdrtner-mizing as a consequence of the fact that there are not enough
particles in the blocks B (x;, ki; b, c) that manage to travel to the blocks Ba(z;,k;;b,c).
Indeed, if there is a bad block on scale R that is contained in a good block on scale R+ 1,
then in some neighborhood of this bad block the particle density cannot be too large. This
also explains why we must work with the extended blocks Bg(x, k; b, c) instead of with the
original blocks Bﬁ(x, k;0,0). Indeed, the surroundings of a bad block on scale R can be
bad when it is located near the boundary of a good block on scale R+ 1 (see Fig. 2.2).

e Gartner-regularity and Géartner-volatility. Recall that || - || denotes the lattice-
norm, see the line following (2.1.2). We say that ®: [0,¢] — Z? is a path when

|B(s) — B(s—)| <1 Vselo,1. (2.1.26)

We write ® € Br when ||®(s)|| < R for all s € [0,¢] and denote by N(®,¢) the number
of jumps of ® up to time ¢.

Definition 2.1.9. [Gdrtner-regularity]

& is called Gartner-reqular when

(a) € is Gartner-negative-hyper-mizing and Gdrtner-positive-hyper-mizing.

(b) There are tog > 0 and ng € N such that for every 61 > 0 there is a d3 = 62(61) > 0
such that

n jt
P / E(O((j — 1)t +1),8)ds > dynt | < e %2nt
; (—Dt+1 ( ) (2.1.27)

Vit >tg,n>ng, ®E Byy.
Definition 2.1.10. [Gdrtner-volatility]
& s called Gartner-volatile when

(a) € is Gartner-negative-hyper-mizing.

(b)

<‘/ (0,s) €, )] dsD =00 for some e € Z% with ||e|| = 1,
t—>oo ]ogt
(2.1.28)

Remark 2.1.11. Corollary 2.1.20 below will show that condition (b) in Definition 2.1.9
is satisfied as soon as the Dirichlet form of £ is non-degenerate, i.e., has a unique zero
(see Section 2.7).
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2.1.3.2 Theorems: Uniqueness, existence, finiteness and initial condition

Recall the definition of g7 (see (2.1.12)), the condition on ug in (2.1.4) and the condition
on ¢ in (2.1.6).

Theorem 2.1.12. [Uniqueness] Consider a deterministic q: Z¢ x [0,00) — R such
that:

(1) There is a T > 0 such that q* is non-percolating from below.

(2) ¢T(z) < oo for all T >0 and x € Z°.

Then the Cauchy problem

{%u(m, t) = kAu(z,t) + q(z, t)u(x, t),

ezt t>0, 2.1.29
u(,0) = uo(z), s (2.1.29)

has at most one non-negative solution.

Theorem 2.1.13. [Existence] Suppose that:

(1) s = &(z, s) is locally integrable for every x, &-a.s.
(2) E(e%(0:0)) < o0 for all ¢ > 0.

Then the function defined by the Feynman-Kac formula

¢
u(z,t) = E, (exp {/ E(X"(s),t—9) ds} uO(X“(t))> (2.1.30)

0

solves (2.1.1) with initial condition ug.

From now on we assume that & satisfies the conditions of Theorems 2.1.12-2.1.13
(where g is replaced by ¢ in Theorem 2.1.12).

Theorem 2.1.14. [Finiteness] If £ is Gartner-positive-hyper-mizing, then /\g" (k) < o0.

From now on we also assume that £ satisfies the conditions of Theorem 2.1.14. The
following result extends Gértner, den Hollander and Maillard [GAHM12], Theorem 1.1,
in which it was shown that for the initial condition ug = dg the quenched Lyapunov
exponent exists and is constant &-a.s.

Theorem 2.1.15. [Initial Condition] If £ is reversible in time or symmetric in space,
type-1I Gdrtner-mizing and Gdrtner-negative-hyper-mizing, then

A0 (k) = limy—o0 1 logu(0,t) exists &-a.s. and in L'(P), is constant &-a.s., and is inde-
pendent of ug.

2.1.3.3 Theorems: Dependence on x
Theorem 2.1.16. [Continuity at x = 0] If £ is Gartner-regular, then k — /\g" (k) is
continuous at zero.

Theorem 2.1.17. [Not Lipschitz at k= 0] If £ is Gértner-volatile, then r — A\)° ()
is not Lipschitz continuous in zero.

Remark 2.1.18. Theorem 2.1.17 was already shown in [GAHM12], under the additional
assumption that & is bounded from below.
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2.1.3.4 Examples

We state two corollaries in which we give examples of classes of £ for which the conditions
in Theorems 2.1.14-2.1.16 are satisfied.

Corollary 2.1.19. [Examples for Theorems 2.1.14—-2.1.15]
(1) Let X = (Xy)i>0 be a stationary and ergodic R-valued Markov process. Let (X.())zeza
be independent copies of X. Define € by &(x,t) = X¢(z). If

E [eqsupse[o,l] XS] < 00 Vq >0, (2.1.31)

then & fulfills the conditions of Theorem 2.1.14. If, moreover, the left-hand side of
(2.1.31) is finite for all ¢ < 0, then £ satisfies the conditions of Theorem 2.1.15.

(2) Let & be the zero-range process with rate function g: Ny — (0,00), g(k) = kP,
B € (0,1], and transition probabilities given by a simple random walk on Z2. If & starts
from the product measure m,, p € (0,00), with marginals

(2.1.32)
s ﬁjk:: 07

where v € (0,00) is a normalization constant, then & satisfies the conditions of Theo-
rems 2.1.14-2.1.15.

%
—F— ifk>0,
7Tp{77 S N%d: n(z) = k} — {’7 g()x-xg(k) if

Corollary 2.1.20. [Examples for Theorem 2.1.16] (1) If £ is a bounded interacting
particle system in the so-called M < € regime (i.e., fast mizing, see Liggett [L85] for a
more precise definition), then the conditions of Theorem 2.1.16 are satisfied.

(2) If € is the exclusion process with an irreducible, symmetric and transient random
walk transition kernel, then the conditions of Theorem 2.1.16 are satisfied.

(3) If £ is the dynamics defined by

Ny
Ex,t) =) Z5ij(t)($), (2.1.33)

yezZd j=1

where {Y/: y € 74,1 <j < N, Y/(0) = y} is a collection of independent continuous-
time simple random walks jumping at rate one, and (Ny),eza is a Poisson random field
with intensity v for some v € (0,00). If d > 3, then the conditions of Theorem 2.1.16
are satisfied.

Corollaries 2.1.19-2.1.20 list only a few examples that match the conditions. It is a
separate problem to verify these conditions for as broad a class of interacting particle
systems as possible.

2.1.4 Discussion and a conjecture

The proofs of Theorems 2.1.12-2.1.17 and Corollaries 2.1.19-2.1.20 are given in Sections
2.2-2.7. The content of Theorems 2.1.12-2.1.17 is summarized in Fig. 2.3.
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S0 (k) Ao’ (k)

0° K 0 K
Figure 2.3: Qualitative picture of x — A\;°(x) in the weakly,
respectively, strongly catalytic regime.

The importance of A\j°(x) within the population dynamics interpretation of the parabolic
Anderson model, as explained in Section 2.1.1, is the following. For ¢ > 0, randomly draw
a B-particle from the population of B-particles at the origin. Let L; be the random time
this B-particle and its ancestors have spent on top of A-particles. By appealing to the
ergodic theorem, it may be shown that lim; oo Li/t = A\j°(k) a.s. Thus, A\y°(x) is the
fraction of time the best B-particles spend on top of A-particles, where best means that
they come from the fastest growing family (“survival of the fittest”). Fig. 2.3 shows that
for all k € (0,00) clumping occurs: the limiting fraction is strictly larger than the density
of A-particles. In the limit as x | 0 the clumping vanishes because the motion of the
A-particles is ergodic in time. The clumping is hard to suppress for | 0: even a tiny bit
of mobility allows the best B-particles and their ancestors to successfully “hunt down”
the A-particles.

In the limit as kK — oo we expect the quenched Lyapunov exponent to merge with the
annealed Lyapunov exponents defined in (2.1.15), with Jp replaced by uo.
Conjecture 2.1.21. lim,o0[\,° (k) — A\g° (k)] = 0 for all p € N.
The reason is that for large x the B-particles can easily find the largest clumps of A-

particles and spend most of their time there, so that it does not matter much whether
the largest clumps are close to the origin or not.

It remains to identify the scaling behaviour of \j°(x) for £ | 0 and ¥ — oco. Under
strong noisiness conditions on &, it was shown in Gartner, den Hollander and Mail-
lard [GAHM12] that A“0(k) tends to zero like 1/log(1/k) (in a rough sense), while it
tends to E(§(0,0)) as k£ — oo. For the annealed Lyapunov exponents A\j°(k), p € N,
there is no singular behavior as x | 0, in particular, they are Lipschitz continuous at
k= 0 with A3 (0) > E(£(0,0)). For three specific choices of & it was shown that A\}° (k)
with ug = 1 decays like 1/k as k — oo (see [GAHM12| and references therein). A dis-
tinction is needed between the strongly catalytic regime for which \;°(x) = oo for all
k € [0,00), and the weakly catalytic regime for which A\j°(k) < oo for all £ € [0, 00).
(These regimes were introduced by Gértner and den Hollander [GAHO06] for independent
simple random walks.) We expect Conjecture 2.1.21 to be valid in both regimes.
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2.2 Existence and uniqueness of the solution

In this section we prove Theorem 2.1.12 (uniqueness; Section 2.2.1) and Theorem 2.1.13
(existence; Section 2.2.2).

2.2.1 Uniqueness

The proof of Theorem 2.1.12 is based on the following lemma.

Lemma 2.2.1. Let g;: Z¢ x [0,00) — R, i € {1,2}, satisfy conditions (1)-(2) in The-
orem 2.1.12 and be such that, for a given initial condition ug, the two corresponding
Cauchy problems

{%ui(x,t) = kAu;(z,t) + qi(z, t)u; (x, t),

zeZ t>0,ie{l,2}, 2.2.1
i, 0) = o (a), z0ieila)  (221)

have a solution. If there exists a T > 0 such that qi(x,t) > qa2(x,t) for all z € Z¢ and
t € 10,7, then ui(z,t) > ua(z,t) for all z € Z and t € [0,T], where u; and uz are any
two solutions of (2.2.1).

We first prove Theorem 2.1.12 subject to Lemma 2.2.1.

Proof. Note from Definition 2.1.2 that whenever ¢? is non-percolating from below for
T = Ty for some Ty > 0, then the same is true for all T > Ty. Fix T > Tp, and let w
be a non-negative solution of (2.1.29) with zero initial condition, i.e., ug(z) = 0 for all
x € Z%. Tt is sufficient to prove that u(z,t) = 0 for all z € Z¢ and t € [0, 7).

Let v be the solution of the Cauchy problem

{%v(m,t} = kAv(z,t) + ¢7 (z)v(x, 1),

v(,0) = vo(x) = 0 zeZ'teo,T), (2.2.2)

which exists because the corresponding Feynman-Kac representation is zero by Gértner
and Molchanov [GM90], Lemma 2.2. By Lemma 2.2.1 it follows that 0 < u < v on
7% x [0, T]. Using that ¢q7 is non-percolating from below, we may apply [GM90], Lemma
2.3, to conclude that (2.2.2) has at most one solution. Hence u = v = 0 on Z% x [0, T,
which gives the claim. n

We next prove Lemma 2.2.1.

Proof. Fix R € N. Let Bg = [-R,R]*NZ¢, int(Bg) = (-R,R)¥ N Z%, and 0Br =
Bg\int(Bg). If u; and us are solutions of (2.2.1) on Z% x [0,00), then they are also
solutions on Br x [0,T]. More precisely, for i € {1,2}, u; is a solution of the Cauchy
problem

%v(x,t = kAv(z,t) + qi(z, t)v(z,t), (x,t) € int(Bg) x [0,T7,
v(z,0) = up(x), x € Bgp, (2.2.3)
v(x, t) = ui(z, t), (z,t) € 9Br x [0,T].
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Recall that q; > go on Z? x [0,7]. Choose ¢k such that

T
t) > t 224
CRr > mEBIIS%g[O,T] q1 (ZIJ, ) - meBg%g[&T] q2($7 )a ( )
and abbreviate
li(d?,t) = e_CEt [’Uq(ﬁl?,t) - UQ(ZIJ,t)], (Jj,t) € BR X [OvT]a (2 2 5)
Qi:qi—cﬁ, i€{1,2}. o

Then, by (2.2.3), v satisfies

Zu(z,t) = kAv(z,t) + e=ht Qy (z, t)uy (2, 1)
—e=rt Qg (x, )ua(z, t), (x,t) € int(Bg) x [0,7T],

2.2.6
v(z,0) =0, z € Bg, (2.26)
’U(Jj,t) = e_CEt [ul(xvt) - u2($atﬂ7 (ZIJ,t) € aBR X [OvT]
Now, suppose that there exists a (x4, t«) € int(Bgr) x [0, T] such that
sy b)) = i ,t) < 0. 2.2.7
U(x ) meint(lglal){lte[o,T]v(x ) ( )
Then 5
Ev(x*,t*) <0 (2.2.8)
and
Av(Ty, ty) = Z [v(y, t.) — v(zs, )] > 0. (2.2.9)
y€ez
ly—z.ll=1

Moreover, by (2.2.4-2.2.5) and (2.2.7),

T — T —
e Crt Q1 (s, ta)ur (T, ti) — e Crte Q2(ws, t)uz (T4, )

= [q1(we, t.) = k] 0@, 1) + (@1 (20, ) = g (@, 12)] 7R up(, 1) > 0.
(2.2.10)
But (2.2.8-2.2.10) contradict the first line of (2.2.6) at (x,t) = (x«,t.). Hence (2.2.7)
fails, and so it follows from (2.2.5) that wi(x,t) > ua(x,t) for all z € int(Bg) and
t € [0,T]. Since R can be chosen arbitrarily, the claim follows. |

2.2.2 Existence

In the sequel we use the abbreviations

I%(a,b,c) = fff(X“(s),c — s)ds, 0<a<b<eg, (2.2.11)
T (a,b,c) = f;g(X”(s),c—i— s)ds, 0<a<b<e (2.2.12)
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2 Basic properties of the quenched Lyapunov exponent

Proof. To prove Theorem 2.1.13, by Proposition 2.1.1 it is enough to show that

E, (ef“<0=t>t>u0(X“(t))) <oo  VzeZd t>o. (2.2.13)
Since wug is assumed to be non-negative and bounded (recall (2.1.4)), without loss of
generality we may take ug = 1. We give the proof for z = 0, the extension to z € Z¢

being straightforward. Fix ¢ € QN[0,00). Using Jensen’s inequality and the stationarity
of &, we have (recall (2.1.6))

. (Eo (ez“(O,q,q))) = Ep (]E (ef““)w’))
< E, (E (% /Oqexp{qf(Xﬂ(S)’q_S)}ds)) (2.2.14)

- E, G /Oq E(exp {qg(o, 0)}) ds>

= E(e€00) < o0,

where the finiteness follows by condition (2). Hence, for every ¢ € QN [0, c0) there exists
a set Ay with P(A,) = 1 such that

jo (eI"<0M>) <00 VEeA, (2.2.15)

To extend (2.2.15) to t € [0,00), note that, by the Markov property of X" applied at
time g — t, ¢ > t, we have

o (eIN(O-,q-,q)) > Ey (eIN(O’q’q)ﬂ{XK(T) =0Vref0,q- t]})

N ) (2.2.16)
= el €0a=s)ds p (X”(r) =0Vrel0,q— t])EO (eI (0’“)) )

Because s — £(0, s) is locally integrable ¢-a.s. by condition (1), we have foq_tf(O,q —
s)ds > —oo &-a.s. The claim now follows from (2.2.15-2.2.16) by picking ¢ € Q N [0, o)
and t € [0, 00). |

2.3 Finiteness of the quenched Lyapunov exponent

In this section we prove Theorem 2.1.14. In Section 2.3.1 we sketch the strategy of the
proof. In Sections 2.3.2-2.3.6 the details are worked out.

2.3.1 Strategy of the proof

The proof uses ideas from Kesten and Sidoravicius [KS03]. To simplify the notation, we
assume that £ > 0. Fix C,b, ¢ according to our assumptions on £. For j € N and t > 0,
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2.3 Finiteness of the quenched Lyapunov exponent

define the set of random walk paths

I(j,t) = {<I>: [0,1] = Z%: ® makes j jumps, ®([0,t]) C [— Cltlogt,Cltlogt]dﬂZd},

(2.3.1)
where C; will be determined later on. Abbreviate [C1]; = [~Citlogt, Citlogt]? N Z4.
For A>1, Re Nand ® € II(j, t), define

A _number of good (R + 1)-blocks crossed
V(@) = by ® containing a bad R-block, (23.2)
A = s DA, (2.3.3)
PeIl(4,t)
=ZA(®) = number of bad R-blocks crossed by ®, (2.3.4)
E’;"j =  sup EZH(®).
DETI(j,t)

The proof comes in 5 steps, organized as Sections 2.3.2-2.3.6: (1) the Feynman-Kac
formula may be restricted to paths contained in [C1]¢; (2) there are no bad R-blocks
for sufficiently large R; (3) the Feynman-Kac formula can be estimated in terms of bad
R-blocks; (4) bounds can be derived on the number of bad R-blocks; (5) completion of
the proof.

2.3.2 Step 1: Restriction to [C];

Lemma 2.3.1. Fiz C; > 0. Suppose that E (eqsupse[ﬂvll E(O’S)> < oo for all ¢ > 0. Then:
(a) &-a.s.

1

limsup | — sup {{(x,s): x € [C1];,0 < s < t}] <1 (2.3.6)
t—oo | logt

(b) &-a.s. there exists a tg > 0 such that, for all t > to and x ¢ [C4]t,

sup &(z,s) < log||z|. (2.3.7)
s€0,t]

Proof. (a) For any 6 > 0 and ¢ > 1, we may estimate

P (Ei:z: € [Ci]e: sup &(x,s) > 1ogt>

s€[0,t]

Lt
< Z Z]P’( sup  &(z,s) > logt> (2.3.8)

2€[C1], k=0 s€lk,k+1]

< (2C1tlogt + 1)4([t] + 1) exp{—flogt}E (exp {9 sup £(0, s)}) .

s€10,1]
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2 Basic properties of the quenched Lyapunov exponent
Choosing 0 > 2(d + 1) + 1, we get that the right-hand side is summable over ¢t € N.
Hence, by the Borel-Cantelli Lemma, we get the claim.

(b) The proof is similar and is omitted. |

The main result of this section reads:

Lemma 2.3.2. There exists a Cy > 0 such that £-a.s. there exists a tg > 0 such that
Eo (e?(O»“)n{X“([o,t]) z [cl]t}) <et Vit ty,01 > Co. (2.3.9)

Proof. See Kesten and Sidoravicius [KS03], Eq. (2.38). We only sketch the main idea.
Take a realization ®: [0,t] — Z% of a random walk path that leaves the box [C}];. Then
|12 = max{||z||: = € ®([0,¢t])} > Citlogt. By Lemma 2.3.1,

sup sup &(z,s) <log| P, (2.3.10)
s€[0,7] [lz[ < || @]

and so we can estimate

By (7 OHOUX"([0.1) Z [C1):})

(2.3.11)
< Ey (exp {t sup log IX“(S)II} 1{x"([0,¢]) £ [Cl]t}> :

[0,t]

The rest of the proof consists of balancing the exponential growth of the term with the
supremum against the superexponential decay of Py(X*([0,t]) € [C1]:). See [KS03] for
details. B

2.3.3 Step 2: No bad R-blocks for large R

Lemma 2.3.3. Fix Cy > 0 according to Lemma 2.3.2, and suppose that £ satisfies
condition (a3) in the Gartner-positive-hyper-mizing definition. Then for every C1 > Cy
and € > 0 there exists an A = A(e) > 2 such that

]P’(E’;’j > 0 for some R > clogt and some j € NO) (2.3.12)
is summable over t € N. (It suffices to choose A = |e'/*0T2D] for some a > 1.)
Proof. Fix C; > Cpy, A > 2 and assume that Eg’j > 0 for some j € Ny. Then there is a
bad R-block B (, k) that intersects [C1]; x [0, ¢]. Hence there is a pair (y, s) € Z%x [0, 00)
such that Q4(y) x {s} C Ba(w, k;b,c) and

Y &lzs) > A (2.3.13)

2€Q4(y)
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2.3 Finiteness of the quenched Lyapunov exponent

In particular, y and s satisfy dist(y, [C1]:) < (b+ 2)A® and s € [0, + AR]. Hence, for
e >0,

]P)(Eg’j > 0 for some R > elogt,j € NO)

< Z ]P’( Z £(z,5) > C A" for some (y, s):

R>elogt zEQﬁ(y)

dist(y, [C1]:) < (b+2)A% s € [0, + AR]>

Lt+AT]
< ¥ 3 S P(Eselhk+1): Y £lss) > CAR).
R>elogt y:dist(y,[C1])<(b+2)AR k=0 2€QH(Y)

(2.3.14)
By assumption (2.1.25), we may bound the two inner sums by

(2C1tlogt + 1+ (b+2) AR x ([t + AR| +1) x (247 + 1)~ €' G(R,t). (2.3.15)

Recall the definition of a (see below 2.1.25)), to see that one can choose A as described
in the formulation of Lemma 2.3.3 to get that

> G(R1) (2.3.16)

R>elogt

is summable over t € N. [ |

2.3.4 Step 3: Estimate of the Feynman-Kac formula in terms of bad
blocks

Lemma 2.3.4. Fiz e > 0 and A > 2. For all C1 > Cy (where Cy is determined by
Lemma 2.5.2),

By (2 001X7(0.1]) € [C1]))
(2.3.17)

2dtr)? = ,
<> (2dtr) exp {t(CAd —2dr) + ) 0A<R+1>dARE;;>J} .

]
j€Ng ’ R=1

Proof. See [KS03], Lemma 9. We sketch the proof. Note that

o (OO (0.0 € () = 3 e B
J€No ’

J S; ‘
X Z (2(11)on <exp{;Ailf($i—l,t—U) du—l—/sj §(xj,t—u)du}> ,

T1,X2,...,T;ELL
(2.3.18)
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2 Basic properties of the quenched Lyapunov exponent

where j is the number of jumps, 0 = zg,21,...,2;, z; € [Cilt,i € {0,1,---,j}, are the
nearest-neighbor sites visited, and 0 = Sp < 51 < --- < §; < t are the jump times. To
analyze (2.3.18), fix A >2, Re Naswellas 0 =59 < 51 < --- < s; and a path ® with
these jump times, and define

J
Ar(®) = U {U € [sim1,8): CA™M < &(wimr,t—u) < CA(R+1)d}
i=1 (2.3.19)

U {u € [s),t): CARY < ¢(xj,t —u) < C’A(R+1)d}.

The contribution of ® to the exponential in (2.3.18) may be bounded from above by

tCAY+ Y " CAFTDIA (D)), (2.3.20)
R=1

where the first term comes from the space-time points (2;_1,t — u) with {(x;—1,t —u) <
CA® If CARY < €(zi_1,t —u) < CATEHDE then (x;_1,t —u) belongs to a bad R-block.
There are at most Eg’j such blocks, and any path spends at most a time A® in each
R-block. Hence

IAR(®)] < AR=R. (2.3.21)

The claim now follows from (2.3.18), (2.3.20-2.3.21) and the fact that there are at most
(2d)? nearest-neighbor paths (0 = zg, 1,22, ..., x;) that are contained in [C1]. |

2.3.5 Step 4: Bound on the number of bad blocks

The goal of this section is to provide a bound on the number of bad blocks on all scales
simultaneously (Lemma 2.3.5 below). In Section 2.3.6 we will combine Lemmas 2.3.2 and
Lemmas 2.3.4-2.3.5 to prove Theorem 2.1.14.

Lemma 2.3.5. Fiz e > 0, pick A according to Lemma 2.5.3 and assume that Eg’j =0
for all R > [elogt]. Then, for some Cq > 0,

P(\I!g’j > (t+ §)(ACF2)=F for some R € N and some j € No), (2.3.22)
P(Eg’j > Cy(t + §)(ATH2D) =B for some R € N and some j € NO), (2.3.23)

are summable on t € N.
The proof of Lemma 2.3.5 is based on Lemmas 2.3.6-2.3.7 below. The first estimates for
fixed R the probability that there is a large number of good (R 4 1)-blocks containing a

bad ﬁjblock, the second gives a recursion bound on the number of bad blocks in terms
of Uy,
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2.3 Finiteness of the quenched Lyapunov exponent

Lemma 2.3.6. Suppose that £ satisfies condition (a2) in Definition 2.1.7. Then, for R
large enough, j € Ng and A chosen according to Lemma 2.3.3, for some constant C3 > 0

P (\ygﬂ' > (t +j)(A(1+2d))_R) < exp {—Cg(t +j)(A<1+2d>)—R} . (2.3.24)

Lemma 2.3.7. Fiz e > 0, and pick A according to Lemma 2.3.3. Assume that Eg’j =0
for all R > [elogt]|. Then, with N = [elogt],
N—R-1
=A,j id fi Aj
27 <2040 N gid gty B (2.3.25)
i=0

The proofs of Lemmas 2.3.6, 2.3.7 and 2.3.5 are given in Sections 2.3.5.1, 2.3.5.2 and
2.3.5.3, respectively.

2.3.5.1 Proof of Lemma 2.3.6

Proof. Throughout the proof, z, 2’ € Z% and k, k' € N. The idea of the proof is to divide
space-time blocks into equivalence classes, such that in each equivalence class blocks are
far enough away from each other so that they can be treated as being independent (see
Fig. 2.2). The proof comes in four steps.

1. Fix A > 2 according to Lemma 2.3.3, fix R € N and take a1, as,b,c € Ny according
to condition (a2) in Definition 2.1.7. We say that (z, k) and (2', k') are equivalent if and
only if

z=12" moda; and k=k mod as. (2.3.26)
This equivalence relation divides Z¢ x N into a{as equivalence classes. We write 3. ;.
to denote the sum over all equivalence classes. Furthermore, we define

x*(z, k) =1{ B, (x,k) is good, but contains a bad R-block}. (2.3.27)

We tacitly assume that all blocks under consideration intersect [Cy]; x [0,¢]. Then
P (\I/gj > (t +j)(A(l+2d))_R)

3 a path with j jumps that intersects at least (2.3.28)
< Z P( (t+ 5)(A0+2D) =R /qday blocks B, 4 (z, k) )

(z* ,k*) with x4 (z, k) = 1, (z,k) = (z*, k*)

2. For the rest of the proof we fix an equivalence class and define pj/ ' T4 = (4(0+2d)) =R
(recall 2.1.21). To control the number of different ways to cross a prescribed number of
R-blocks we consider enlarged blocks. To that end, as in [KS03], take v = [p;il/(H'd)}
and define space-time blocks

d
Bi(z, k) = | [ (i) — DA%, v(x(5) + VAT N Z | x kAR, v(k + 1)AR).
j=1

(2.3.29)
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2 Basic properties of the quenched Lyapunov exponent

By the same reasoning as in [KS03], we see that at most

.\ def t+j
u(j) & 3d <UAR+1 +2) (2.3.30)

blocks §£+1 (z, k) can be crossed by a path ® with j jumps. We write

U Bayi(@i ki) and > (2.3.31)
(wqy,ki) El‘%+1(1i,ki)

to denote the union over at most u(j) blocks Eﬁﬂ(xi,ki), 0 <i < pu(j)—1, and to

denote the sum over all possible sequences of blocks Eﬁ +1(wi, ki), that may be crossed
by a path ® with j jumps, respectively. As each block Bﬁﬂ(x, k) that may be crossed
by such a path is contained in the union in (2.3.31), we may estimate the probability in
(2.3.28) from above by

Z P the union in (2.3.31) contains at least (¢ +j)p}%/(1+d)/a{la2
blocks Bp,(z, k) with x*(z, k) = 1, (z,k) = (z*, k") '

§£+1(11,]€¢)
(2.3.32)
To estimate the probability in (2.3.32) write

A" (o, ko), -+ (@) -1 Ku(i)-1))
[ the union in (2.3.31) contains n blocks By, (z, k) (2.3.33)
T with xA (@, k) = 1, (2, k) = (2%, k) ’

Since the union (2.3.31) contains at most L = v+9 () blocks Bt ; (z, k), the proba-
bility in (2.3.32) is bounded from above by

L

3 ]P’(A"((xo, ko), .., (xu(j)_l,ku(j)_l))). (2.3.34)
. (t+i)ppf ATD

a%ag

Note that there are (i) ways of choosing n blocks BQ_H(;U, k) with x*(z,k) = 1 out of
L (R + 1)-blocks. Hence, by condition (a2) in Definition 2.1.7, (2.3.34) is at most

L _ A\ 1/(1+d)
L L ¢
S o < (1 - pR) KP( T, > % , (2.3.35)
w00 " e
e P

where Ty, = BIN(L, pR).

3. To estimate the binomial random variable, note that by Bernstein’s inequality (com-
pare with [KS03], Lemma 11), there is a constant C’ such that, for all A > 2E(T),

P(Tr, > \) < exp{—C'\}. (2.3.36)
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2.3 Finiteness of the quenched Lyapunov exponent

—1/(14+d)

We may assume that p, € N, so that
E(Ty) = vt p(f)on = 3¢ (L5 ,1/0+0 4 o 2.3.37)
L)=V /J’])pR_ AR+1pR ’ (
and hence, by Lemma 2.3.3 and the fact that R < elogt,
N 1/(1+d)
t+
Udon " 5 op(ry). (2.3.38)
aj;az

Since aq,as are independent of R, we may estimate, using (2.3.36),

\ 1/(1+d)
t
P <TL > U Deg ) <exp{-C'(t+j)py{ """}
afas (2.3.39)

= exp { ~C"(t +j)(A0T20) "R

It remains to show that the first term on the right hand side in (2.3.35) does not con-
tribute. Note that 1/(1 — pr) =1+ pr/(1 — pr), so that

1 PR
lo < . 2.3.40
g<1_pR)_1_PR (2:3.40)
Thus, if we assume pil/(Hd) eN,
1 .
Llog ( ) < M) (2.3.41)
1—pr 1—pr

Inserting (2.3.41) into the second term on the right hand side of (2.3.35), comparing it
with the right hand side of (2.3.39), and recalling the definition of wu(j) in (2.3.30), we
see that the asymptotic of (2.3.35) is determined by the probability term in (2.3.39).

4. Finally, we estimate (2.3.28).

Claim 2.3.8. There is C' > 0 such that the number of summands in (2.3.32) is bounded
from above by eCH0)

Before we proof the claim, we show how one deduces Lemma 2.3.6 from it. Insert
(2.3.39) into (2.3.32) and use Claim 2.3.8 to obtain that

P (\1/;;4' > (t +j)(A<1+2d>)—R) < Kalas exp {—C’(t +j)(A<1+2d>)—R} L (2342)
We now prove Claim 2.3.8.

Proof. Assume that d = 1. Divide time into intervals of length v A%*1 and fix an integer-
valued sequence (I1,l2,...,l;/, arn+1) such that

t/VAR+1

> h<ul). (2:3.43)
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2 Basic properties of the quenched Lyapunov exponent

We first estimate the number of ways in which ® can visit I; R-blocks Eﬁ 41(2, k) in the

i-th time interval for i = 1,...,t/vAR+L. Let B, (o, ko), By, (21, k1), - .-,
Bg_i.l(xli—laquy—l) be a possible sequence. Then zy = 0, 1 = £1, 2 € (—1,21 + 1)
ifxy =1orazg € (#1 —1,1) if &1 = —1, etc. For each j such that I; + 1 < j < l;41,

x; can take two values depending on z;_;. Note that if j = [; + 1 for some j and i,
then x; is the space label of a block at the beginning of a new time interval. Conse-
quently, z; € {zj_1— 1,251,251 +1}. Hence, for a fixed choice of (I1,l2,...,l;/,ar+1),
there are at most 3! x 32 x ... x 3lyvarti < 3u() possibilities to choose a sequence
of blocks with a prescribed sequence (ly,la,...,l;/, an+1). Moreover, by Hardy and Ra-
manujan [HR18] and Erdds [E42] there are a,b € (0,00) such that there are no more

than (a/p(5))e®V#0) unordered integer-values sequences (I1,ls, .. s lyjyari1) satisfying
(2.3.43). From this it follows that there is a ¢ € (0, 00) such that the number of ordered
integer-valued sequences (1,12, ...,l;/, ar+1) satisfying (2.3.43) is bounded from above
by p(5)VH9) (a/u(5))e?V#9), This in combination with the above arguments yields the
claim. The extension to d > 2 is straightforward. n

This finishes the proof of Lemma 2.3.6. [ |

2.3.5.2 Proof of Lemma 2.3.7
Proof. We first show that
=Aj < od d)=Aj d d) A
Ep? <29A0TDELT 4 od AUTD gL, (2.3.44)

In order to see why (2.3.44) is true, take a bad R-block B (x, k) that is crossed by a path
with j jumps. Then there are two possibilities. Either Bﬁ (z, k) is contained in a bad
(R+1)-block, or all (R+1)-blocks that contain B4 (z, k) are good. Since an (R+1)-block
contains A9 R-blocks, and there are at most 2¢ (R + 1)-blocks, which may contain
a given R-block, the first term in the above sum bounds the number of bad R-blocks
contained in a bad (R + 1)-block. In contrast, the second term bounds the number of
bad R-blocks contained in a good (R + 1)-block. Hence we obtain (2.3.44).

We can now prove the claim. Apply (2.3.44) iteratively to the terms in the sum, i.e.,

—Aj
replace 237, by

20 A0+ D=ad | 4 2l AU g (2.3.45)
This yields
] N—-R—-1 )
Ep7 <2040 N7 gid gilttd g R (2.3.46)
=0
from which the claim follows. [ |
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2.3 Finiteness of the quenched Lyapunov exponent

2.3.5.3 Proof of Lemma 2.3.5

Proof. Fix e >0 and 0 < R < elogt. Then, by Lemma 2.3.6,

P (W > (t+3)(AM9)7F for some j € No)
< SR (Uh > 0+ )(A0H0)R)
Jj€Ng

<y exp{ —tCs( t+j)(A(1+2d))_R}

J€No

< exp {—C3t(A(l+2d))_€logt} Z exp{_CBj(A(1+2d))—slogt} '

Jj€No

(2.3.47)

Recall Lemma 2.3.3, which implies that § 1og(A)&:(1 + 2d) < 1. Consequently, the
right-hand side of (2.3.47) is at most

o) ot
1 —exp{—C5t—9} (2.3.48)
1 &)\ 46 ) o
<& ex { Cst(1~ } t° exp {C5t™°} .
It therefore follows that
P (quxj > (t+ ) (A2 =E for some j € Ny, R € N)
(2.3.49)

1
< Fté elogt exp {—Cgt(l_‘s) + C3t_5} ,
3

which is summable over ¢ € N. In order to prove the second statement, suppose that
none of the events in (2.3.22) occurs. With Lemma 2.3.7 we may estimate

N—R—1
=A,j id gi A,
:‘RJ < 2dA(l+d) Z ) dA 1+d)qu4j-1
i=0
N-R-1 o _
< 9d A(1+d) Z (t + j)2id A10+d) (4 (1+2d))—i-FR (2.3.50)
i=0
S 2dA(l+d)(t +j)A_R(1+2d) Z 2idA—id
1€Np
(4 j)ATRO20,,
where we use that A > 2 (see Lemma 2.3.3). |
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2 Basic properties of the quenched Lyapunov exponent

2.3.6 Step 5: Proof of the finiteness of the quenched Lyapunov
exponent

Fix € > 0 and A such that Lemma 2.3.5 applies. It follows from Lemma 2.3.3 that
P(Egd > 0 for some R > elogt,j € NO) (2.3.51)
is summable over ¢ € N. Hence, by the Borel-Cantelli Lemma, there is an tg € N such

that none of the events in the above probability occurs for integer ¢ > t3. Thus, by
Lemma 2.3.4, for all integer ¢t > tg we have, with N = |elogt],

o (EIR(O,t,t)]l{XK([()’t]) C [Ol]t})

: N 2.3.52)
2dtr)? A (
< E ( i ) exp {t(CAd —2dK) + E CA(R“)dAR:g’J}.
Jj€ENy R=1

Using the bound of Lemma 2.3.5, we have

N N
Z CA(R+1)dAREg’j < Z t +] R+1 dARA 1+2d)02
R=1 R

=} (2.3.53)
< (t+ AT Y T ATRE< Oyt + ).

ReN

We can therefore estimate the last line of (2.3.52) by

(LK) o THCAY — 2dk) + Calt + j
J;NO J! p {1l )+ Cilt+ D)} (2.3.54)

= exp {t(CAg —2dk 4+ Cy + 2d/<:ec4)} .

From (2.3.54) and Lemma 2.3.2, we obtain

1 "
lim sup i log Ey (eI (O’t"t)) < 0. (2.3.55)
t— o0
teN

To extend this to sequences along R instead of N, note that
w(0,8) < u(0,n+ 1) e fI €O ds2drintl=t) =y p p 4] (2.3.56)

Since £ is ergodic in time, we have
1
lim — £(0,8)ds = 0. (2.3.57)

t—oo t t

Theorem 2.1.14 follows from (2.3.56-2.3.57).
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2.4 Initial condition

2.4 |Initial condition

In this section we prove Theorem 2.1.15. Section 2.4.1 contains some preparations.
Section 2.4.2 states three lemmas (Lemmas 2.4.5-2.4.7 below) that are needed for the
proof of Theorem 2.1.15, which is given in Section 2.4.3. Section 2.4.4 provides the proof
of these three lemmas.

2.4.1 Preparations

In this section we first state and prove a lemma (Lemma 2.4.1 below) that will be needed
for the proof of Theorem 2.1.15. After that we introduce some further notation (Defini-
tions 2.4.2-2.4.4 below).

Fix Ry € N and take A, C according to our assumption (type-II Géartner-mixing). Set
N = CARod and abbreviate i = (EAN)V (—N). Let ux be the solution of (2.1.1) with
¢ replaced by {x. Abbreviate (recall (2.2.11-2.2.12))

% (a,b,c) zfjﬁN(X“(s),c—s)ds, 0<a<b<eg, (2.4.1)
Zn(a,b,c) :fféN(X”(s),c—i—s)ds, 0<a<b<e (2.4.2)

Lemma 2.4.1. If, for all N of the form N = C A% and for all e > 0 and some sequence
(tr)ren of the form t,. = rL with L > 0,

P (Eo (eff"v@%o)) > e@];(“)“)“) (2.4.3)
is summable on r, then Theorem 2.1.15 holds.

Proof. Fix ¢ > 0. Note that un(0,¢) has the same distribution as Eo(eZ~n©0)) so
that we can replace the latter by un(0,t) in (2.4.3) without violating the summability
condition. Thus, by the Borel-Cantelli Lemma, we have

1 ” —
lim sup - log Eo (eIN(O’t“tr)) < /\g(nz) +e  &as. (2.4.4)
r—00 Ea
The extension to sequences along R may be done as in the proof of Theorem 2.1.14 (recall
(2.3.56)). Standard arguments yield
1 _
lim sup i logun(0,t) < /\g(/i) &-a.s. (2.4.5)
t—o0

To extend this to the solution of (2.1.1) with initial condition ug = 1, we estimate

/ E(X"(s),t — s)ds
0 (2.4.6)

S/o f(X“(s),t—s)]l{f(X“(s),t—s)ZN}dS—I—/O EN(X"(s),t — s)ds.
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2 Basic properties of the quenched Lyapunov exponent

Note that, by (2.3.53) and the arguments given in the proof of Lemma 2.3.4, we have,
for ¢ € N sufficiently large,

sup / E(D(s),t — s)I{E(P(s),t —s) > N}ds < (t + j)AC’ Z AR (2.4.7)
PETI(4,t) R=Ro

Next, choose M > 1 such that

1 " —

lim sup + log £y (eI OLDIIN (X", 1) > Mt}) < 2o (k), (2.4.8)
t—o0

where N (X", t) denotes the number of jumps of the random walk X* up to time ¢ (see

(2.1.26)). Then, by (2.4.6-2.4.7), for t € N sufficiently large,

Eo (eIN(O’t*t)]l{N(X“,t) < Mt})

o ) (2.4.9)
< exp {(M + 1)tAdC’ Z A‘Rd} Ep (eIN(O*t’t)]l{N(X”‘,t) < Mt}) .
R=Ryg
We infer from (2.4.5) and (2.4.8-2.4.9) that
1 > —
lim sup gu((),t) < (M +1)AdC’ Z ARy /\(I)l(/i). (2.4.10)
tt_e)l%o R=Ro
Taking the limit Ry — 0o, Ry € N, we obtain
lim sup — logu(O t) < /\0( ). (2.4.11)
e !

The extension to sequences along R may again be done as in the proof of Theorem 2.1.14
(recall (2.3.56)). Furthermore, Proposition 2.1.3 gives A" (k) = X§° (k) = Xél(m), so that

1

lim sup ~ log u(0,1) < A)° (). (2.4.12)
t—o0 t

By monotonicity, the reverse inequality holds with the limsup replaced by the liminf. It

follows that A} (k) exists and equals /\g" (). A further monotonicity argument shows that

the same is true for A\;°(x) for any initial condition ug subject to (2.1.4). |

In view of Lemma 2.4.1, our target is to prove (2.4.3). We fix M subject to (2.4.8),
N of the form N = CA%0? ¢ > ( small, and write ¢t as t = 7A%, r,R € N, A > 2. Note
that the choice of M implies that it is enough to concentrate on path with at most Mt
jumps.

We proceed by introducing space-time blocks and dividing them into good blocks and
bad blocks, respectively, into N-sufficient blocks and N-insufficient blocks (compare with
(2.1.18) and Fig. 2.2).
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2.4 Initial condition

Definition 2.4.2. For x € Z¢, k € N and b, c € Ny, define (see Fig. 2.4)

d
Bip(x,k;b,e) = | [[l((G) — 1 — b)AM AR, (2(j) + 1 + b)aM A"y n z¢
j=1

x [(k —c)AT, (k+1)AR)

(2.4.13)

and abbreviate B (x,k) = Ba(z, k;0,0).

For S C Z%, let 3S denote the inner boundary of S. For S x §' C Z% x R, let II;(S x S’)
denote the projection of S x S” onto the first d coordinates (the spatial coordinates).

Definition 2.4.3. The subpedestal of B (x, k) is defined as

B (k) = {y € (BA.K): 1y() - 2()| > 2M AR,

) (2.4.14)
je{1,2,...,d}Vz e ol (BA(x, k:))} x {kARY.
Definition 2.4.4. A block Bﬁ(x, k) is called N -sufficient when, for every
y € Hl(BA sub (2 k)) (see Fig. 2.4),
E, (efT'v<0=AR>kAR>]1{N(X“, AR < MAR}) < eFolw A", (2.4.15)

Otherwise Bf(z,k) is called N-insufficient. A subpedestal is called N -sufficient/N -
insufficient when its corresponding block is N -sufficient/N -insufficient.

The notion of good/bad is similar as in Definition 2.1.5 with the only difference that
B (x,k) is replaced by Bf(z,k) and B (z,k;b,c) by Bf(x,k;b,c). Similarly as in
(2.3.5), define =5, 4J to be the maximal number of bad R-blocks a path with j jumps can
Ccross.

2.4.2 Three lemmas

For the proof of Theorem 2.1.15 we need Lemmas 2.4.5-2.4.7 below. The first says that
each block is N-sufficient with a large probability (and is comparable with [CMS02],
Lemma 4.3), the second controls the number of bad blocks (and is comparable with
Lemma 2.3.5), the third estimates the number of N-insufficient blocks that are good and
are visited by a typical random walk path (see [CMS02], Lemma 4.4 and [KS03], Lemma
11).

Lemma 2.4.5. Fiz A € N. For every d > 0 there is an Ry = RO(A,S) € N such that

P(B#(z, k) is N-sufficient ) > 1 — § VYR>Ry,zcZ' keN. (2.4.16)
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2 Basic properties of the quenched Lyapunov exponent

space

(z(j) + 1)4AM AR

Bﬁ(x, k)

(z(j) — 1)4AM AR

time

kAR (k+1)AR

Figure 2.4: The thick line is the subpedestal.

Lemma 2.4.6. For every Ay > 2 there is an A € N with A > Ag such that, for some
C > 0 independent of A,

]P’(é’;’j > Ot + §)(ACT2DN) =R for some j € Ny and R € N) (2.4.17)

is summable on t € N.

Lemma 2.4.7. Let C(Mt,nt/A™) be the event that there is a path ® with ®(0) = 0 and
N(®,t) < Mt that up to time t crosses more than nt/A® N-insufficient subpedestals of a
good R-block. Then, under the Gdartner-mizing type-II condition, for every n > 0 there is
an A (which can be chosen as in Lemma 2.4.6) and Ry € N such that, for some ¢q > 0,

P (C(Mt,nt/AR)) < em/A" YR > R, (2.4.18)

2.4.3 Proof of the independence from the initial condition

Proof. The proof comes in two steps. Fix 0 < n < ¢, and choose A, R > Ry according to
Lemmas 2.4.5-2.4.7.

1. Fix a Z%valued sequence of vertices g, z1, ... ,&47ar_1 such that zop = 0 and such
that there is a path starting in 0, makes 0 < j < Mt jumps, and is in the subpedestals
B (24, k) at times kAR for all k € {0,1,...,t/A% — 1}. By the Markov property of
X* applied at times kAT, k€ {1,2,...,t/AR},

B t/A% -1
Eo V000 T ]I{X“(kAR)eBﬁ’S“b(xk,k)}
= 2.4.19)
t/AT—1 (
< H sup E, (ef'{N(O,AR)kAR))'

k=0 Y€ (B (xk.k))
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2.4 Initial condition

Let I and S be the sets of indices k such that (zj, kA%) is the index for an N-insufficient,
respectively, N-sufficient subpedestal. Then the right-hand side of (2.4.19) can be rewrit-
ten as

sup E, (efx(O’AR7’“AR)) 11 sup E, (efKN(QAR”“AR)) .
kel yEm (B (zx,k)) kes yETL (B ™" (zk,k))
(2.4.20)
Because of Lemmas 2.4.6 and 2.4.7, there is a measurable set, independent of j and of

¢-probability at least 1 — e=¢17/A" guch that
1] < nt/AR + Ot + 5)(AUT2D)—E, (2.4.21)

Since &y < N, on a set of that probability the first term in (2.4.20) can be estimated
from above by eN7 exp{ NC(t + j)/A?Rd}.

2. Pick a realization of ¢ that satisfies (2.4.21). To bound the second term in (2.4.20),
we split this term up as

I1 { sup B, (PNOATRDI{N (7, A7) < MATY)
i Lyett (BA™ (a4 k) (2.4.22)
+ sup E, (ef?v(o’AR*AR)]l{N(XNa AR > MAR}) } ’
VeI (BAS (2 k)
which can be written as
SI e (e an < )
I, (B4 (2 k
JCS b ke yE(BR ™™ (wk k) ) (2.4.23)
X H sup E, (ezN(O’AR’kAR)]l{N(X“,AR) > MAR}) ]

kg yEML (B ™" (zk,k))

Take ¢ > 1. Then, for M large enough, Py (N(X”, ARY > MAR) < e=¢A" Hence the

second term in (2.4.23) can be bounded from above by A" (=¢+M(#/A"=11) " Recall the
definition of an N-sufficient block, to bound the sum in (2.4.23) by

R~ t/AR
GH—c+N) (1 1A ()\O(n)+€+c—N)) . (2.4.24)

Summing over all possible values (zg, z1,. .. ,.Tt/AR_l) compatible with a path & such
that ®(0) = 0 and N(®,t) < Mt, fixing n < ¢, and using the estimation of the last
inequality of [CMS02], Lemma 4.2, to bound the number of such sequences in the last
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2 Basic properties of the quenched Lyapunov exponent

inequality, we obtain

Eo (efz”'v<0>t=°>]1{N(X“,t) < Mt})

B t/A% -1
< Y B A0 T a{xt(kAR) € B k) }
Il,Iz,....’ZEt/AR71 k=1
t NC(M +1 51 t/ A%
S exp {O/F} exp {t <N77 —+ % —c+ N)} (1 + eAR()\o(K)+E+C—N))

(2.4.25)
for some constant C’ > 0. Thus, we have shown that there is an A > 2 such that for
each R > Ry

P [EO (eiKN(O*TAR’O)]l{N(X“,rAR) < MrAR}) > ON(rAR, AR &)] <o) (2.4.26)
which is summable on r € N. By the boundedness of £y, the same is true without the

indicator in the expectation (after a possible enlargement of C¥ by ¢). Further, note
that

1
W IOgCiN(TAR,AR,E)
2.4.27)
c’ NC(M+1) - 1 - (
= AR + Nn+ % + )\3(&) +e+ AR log (e_AR()‘O(F")-FH—c_N) + 1) ,

so that OV (rAf, AR &) is indeed of the form Xél(/@H—a. Thus, we have proved Lemma 2.4.1
and hence Theorem 2.1.15. |

2.4.4 Proof of the three lemmas
2.4.4.1 Proof of Lemma 2.4.5

Proof. The proof comes in three steps and uses ideas from Cranston, Mountford and
Shiga [CMS02], Lemma 4.3, and Drewitz, Gartner, Ramirez and Sun [DGRS12], Lemma
4.3.

1. Suppose that we already showed that, £-a.s. and independently of the realization of
&, for all € > 0 there is an 1’ > 0 such that, for all 0 < n < 7/,

1 -
lim sup sup —R‘ log F,. (eIN(O’AR’O)]l{N(X“,AR) < MAR})
R—oo gz yc[-2M AR 2M AR Nz A
lz—yl|<nAT

—log B, (ef%<0>AR>0>n{N(XK,AR) < MAR}) ’ <e.
(2.4.28)
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2.4 Initial condition

We show how (2.4.28) can be used to obtain the claim.

2. By Proposition 2.1.3 for fixed § > 0 there is an Ry = Ro(A, g) € N such that, for all
R 2 R07

]P’(EO (A" on{N(x" AR) < MAR ) < e<k3<“>+€>AR> >1-3.  (2.4.29)
To extend this to Zy, note that for each t € N

t t t
[ entxm)s0ds < [ e0xr(o)s)ds + [ —6(X"(6), UEX™(),5) < ~N} .
0 0 0
(2.4.30)
Thus, given a realization of X* with no more than Mt jumps, by the fact that £ is
Gaértner-negative-hyper-mixing, (2.3.53) and the arguments given in the proof of Lemma
2.3.4, the second term in the right-hand side is at most

(M +1)tAlc” AR, (2.4.31)
R=Ry

Hence (2.4.29) remains true when we replace Z by Zy. According to (2.4.28), this
estimate also holds when we replace 0 by any z with |z| < nA® for i small enough,

independently of the realization of £&. Consequently, for any § > 0 there is an Ry € N
such that for all R > Ry,

z: |lzf|<nAR

i < sup B, (eiKN(O’AR*O)ﬂ{N(X“,AR) < MAR}) < e(A;(K)-FE)AR) 1.7
(2.4.32)

Next, note that [—2M A% 2M AR]9 can be divided into K boxes, with K ~ 49M%/n?, of
the form x;(A®) 4+ B, sr, where the z;(Af)’s are separated by nA”. By the stationarity
of £ in space, we have

P (Eo (ef”N@ARxO)n{N(XH,AR) < MAR}) < 6<X3<~>+E>AR)

. B (2.4.33)
=F (EMAR) (GIN(O’AR’O)H{N(X", Af) < MAR}) < e“f];(”)*E)AR) :
Thus, for the same choice of Ry as in (2.4.32),
P sup B, (ef;(O’AR’O)ll{N(X”,AR) < MAR}) < eRa(w)+e)AT
v: yex (AR)+B, ,r
>1-6 R>R,.
(2.4.34)
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2 Basic properties of the quenched Lyapunov exponent

Since K is independent of Ry, we may conclude that
P (B#(0,0) is N-sufficient) > 1 — 4. (2.4.35)

By the stationarity of £ in space and time, the same statement holds for any block
B#(x, k), which proves the claim. It therefore remains to prove (2.4.28).

3. Since for M large the event {N(X"‘, ARY > MAR} does not contribute on an expo-

nential scale, in order to prove (2.4.28) it suffices to show that

E, (effv(mARm)
lim sup sup log —
R0 3 ye[—2MAR 2M AR Nz AR E, (eI}”\,(O,AR,O)) (2.4.36)
lz—yll<nAT

To that end, we show that we can restrict ourself to contributions coming from random
walk paths that stay within a certain distance of [~2M,2M]% N Z¢. More precisely,

&-a.s. there is a box Bp = [—L,L]d 77, independent of 0 < 5 < 1 and containing
[—2M,2M]* N Z4, such that
sup Z E, (ef;[(o’nARp)dw(X“(nAR))) E, (ej}i](o)(l_n)AR’nAR))
vel2MAR M AR S,
wgARBL

< A" sup P, (X"(nA") ¢ A®By)
z€[—2M AR 2M AR|dNZ

= eARPQ (XK(’I]AR) ¢ ARBL_QM)

< A" exp{ — AR(L —2M) (log (%) - 1) }

(2.4.37)
where the last inequality follows from Gértner and Molchanov [GM90], Lemma 4.3. Con-
sequently, we may concentrate in (2.4.36) on the contribution coming from paths that stay
inside A®B;NZ4. Next, note that, £-a.s. and uniformly in 2,y € [-2M AT 2M AR|?N7Z4,

O 2 G )
)

Sweans, B (ezN (0.A7.0)§, (X~ (nAR )

sup ( o Ydu T]AR))) (2.4.38)
o wEARBL E (eIN(O MAR, 0 )("”h nAR)))
< 2NnA” Py (X" (nA") _w_z) 0<n<l.

= sup
wearp, Po(XF(nAR) =w —y)

To obtain (2.4.28), it remains to estimate the probabilities in the last line. This can
be done by applying bounds on probabilities for simple random walks (see [DGRS12],
Lemma 4.3 for details). n
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2.4 Initial condition

2.4.4.2 Proof of Lemma 2.4.6

The only difference with the situation in the proof of Lemma 2.3.5 is that we replaced
the R-blocks B (z, k) by the R-blocks B#(x, k). However, this does not affect the proof.
Thus, the proof of Lemma 2.3.5 yields the claim.

2.4.4.3 Proof of Lemma 2.4.7

Proof. The proof comes in two steps and is essentially a copy of the proof of Lemma 2.3.6.
Throughout the proof, z,2’ € Z¢, k, k' € N and § > 0 is fixed.

1. Pick a1, a2 € N according to our main assumption. We say that (z, k) and (z/, k') are
equivalent if and only if

z=2" moda; and k=k mod as. (2.4.39)

This equivalence relation divides Z? x N into a{as equivalence classes. We write (k)
to denote the sum over all equivalence classes. Furthermore, we define

Az, k) :H{Bﬁ(x, k) is good, but has an N-insufficient subpedestal}. (2.4.40)

Henceforth we assume that all blocks under consideration intersect [—Mt, Mt] x [0, t].
Then we have

P(C(Mt,nt/A™))

nt/ARafay blocks B (z, k) with x4 (z, k) = 1, (z,k) = (z*, k*)
(2.4.41)

dJa path with no more than Mt jumps that intersects at least
< )P
( )

z* k*

2. To proceed we fix j < Mt and an equivalence class. Let v = [6~/(1+97 and define
the space block

d
E}‘;(x, k) = < [T (@) — DAMAR v (2(j) + 1)4M AT) N Zd> x kAR v(k +1)AR).
j=1
(2.4.42)
As in the proof of Lemma 3.6 we see that a path ® with j jumps crosses at most

. t+7
u(j) = 3¢ (Hg + 2) (2.4.43)
blocks E;(x, k). We write

U Ba@ik) and > (2.4.44)

(wi)ki) Eg(wq,]ﬁ)
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2 Basic properties of the quenched Lyapunov exponent

to denote the union over at most u(j) blocks Eg(xi,ki), 0 <i < u(j)—1, and to

denote the sum over all possible sequences of blocks By(x;,k;), that may be crossed
by a path ® with j jumps, respectively. To further estimate, define for any sequence

Eg(xo, ko), . . .Eé(mu(j)_l, Ky (j)—1) of blocks (2.4.44) and any n € N the event

A" (20, ko), -5 (i) -1 K )-1))

f the union in (2.4.44) contains n blocks Ba(x, k) (2.4.45)
T with YAz, k) = 1, (2, k) = (2%, k*) '

By our assumption, there is Ry € N such that the probability of the event in (2.4.45)
may be bounded from above by K¢". We conclude in the same way as in Lemma 3.6,
see also Claim 2.3.8, that for some C' > 0

L
S B(A (o ko) o @y ka1

Bp(wi.ks) nz#ﬁf% (2.4.46)
< eCni) (1 — 5)_LKIE”(TL > 77775)
1

where Tp, = BIN(L, ), L = v1+¥y(5). The same arguments as in Lemma 2.3.6 yield
that the binomially distributed random variable may be bounded from above by

exp {—C'nt/A"alas} (2.4.47)

for some C’ > 0. Similarly as in Lemma 2.3.6, if §='/1*¢ € N, the second term on the
right hand side of (2.4.46) may be bounded from above by

34(M + 1)tet/ 1+ N 392
(1—9)AR 1-46

(2.4.48)

Since ¢ tends to zero, if R tends to infinity, for ¢ large enough the second term on the
right hand side of (2.4.46) does not contribute. The same can be seen to be true for the
first term on the right hand side of (2.4.46). Finally, to estimate (2.4.41), insert (2.4.47)
into (2.4.41), to obtain

P (C(Mt,nt/A")) < KafasMtexp {—C'nt/A"}, (2.4.49)

which yields the claim. n

2.5 Continuity at x =0

The proof of Theorem 2.1.16 is given in Section 2.5.3. It is based on Lemmas 2.5.1-2.5.3
below, which are stated in Section 2.5.1 and are proved in Section 2.5.2.
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2.5 Continuity at k =0

2.5.1 Three lemmas

Fix b € (0,1), and define the set of paths

1
=P t] = Z%: N(®,nt) < —— 1<j<
nt { [O,Tl]—> ( ’n)_log(l/n)bnt’v SJ=n
1 ) .
Ju; € 2% H%‘HSWW, ®(s) =z; Vs [(j— Dt +1,5t) ¢,

(2.5.1)
i.e., paths of length nt that do not jump in time intervals of length ¢ — 1 and whose
number of jumps is bounded by m nt. Note that x — Al, is non-decreasing in the
sense that if k1 < k2 then A;} C AN2.
Lemma 2.5.1. Suppose that € satisfies condition (b) in Definition 2.1.9. Then, &-a.s.,
for any sequence of positive numbers (am)men tending to zero there exists a strictly
positive and non-increasing sequence (Km )men such that, for allm € N and 0 < k < Ky,
there exists a tn, = tm(km) such that, for all t € QN [t;,,o0), there exists an ng, =
N (Km, t) such that

sup Zn:/ﬁ EP((— 1)t +1),8)ds < amnt V0> ny,. (2.5.2)

eeAy, (=7 St

We say that two paths ®; and P4 on [0, nt] are equivalent, written ®; ~ P9, if and only
if
Pul(j-1ye+1,50) = Paelig-1ye+150  VI<j<n (2.5.3)

This defines an equivalence relation ~, and we denote by A.;~ the set of corresponding
equivalent classes. The following lemma provides an estimation of the cardinality of
Ar

Lemma 2.5.2. |A%| < (nt/log(1/k)?)2" (2d)"t/ lee(/m)" 4 1.

Lemma 2.5.3. Suppose that £ is Gdrtner-positive-hyper-mizing. Then there are A,C >
0 such that £-a.s. for t € Q large enough and any choice of disjoint subintervals

T, Zo, - Tk, k €N, of [0,t] such that |Z;| = ||, 4,1 € {1,2,--- ,k}, and each Ry € N
and each path ® € By

k 0o
Z/ £(®(s),5) ds < KITL|CAR 1 (£ + N(@,1)C' Al S AR, (2.5.4)
i=177Ti R=Ro

for some constant C' > 0.
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2 Basic properties of the quenched Lyapunov exponent

2.5.2 Proof of the three lemmas
2.5.2.1 Proof of Lemma 2.5.2

Proof. Fix an integer k < nt. We start by estimating the number of possible arrange-
ments of the jumps in paths with & jumps. Since we do not distinguish between two
paths that coincide on the intervals [(j — 1)t + 1,5t), 1 < j < n, only the last jumps
before the times (j — 1)t + 1, 1 < j < n, need to be considered.

First, the number of arrangements with jumps in 0 < [ < k different intervals is
(7) Since the number of different intervals cannot exceed n, the number of different
arrangements is bounded from above by > | () < 2". Next, there are (2d)" different
points in Z¢ that can be visited by a path with & jumps. Therefore

nt/log(1/r)®
A< YD 2M2d)R 1< (nt/ log(1/k)1)2"(2d)"/ 109" 1 (2.5.5)
k=1

which proves the claim. [ |

2.5.2.2 Proof of Lemma 2.5.1

Proof. Choose k1 such that

log(2d)
— < 2.5.6
Bl < da(a), (256)
and t1 = t1(k1) such that
log(2d)
t1 | =6 —_— —log 2. 2.5.7
(0 ) <o (250

Then, by condition (b) in Definition 2.1.9 and Lemma 2.5.2, for all ¢ > ¢y V t; we have

n

P| sup Z/(] E@((j —1t+1),s)ds > aint

PeAL} j—1/ (G-Di+1
nooit 2.5.8
< Z P Z/ E@((F — 1)t +1),s)ds > aint (2.58)
peart~  \j=170-DHI

< {(nt/ 10g(1/ﬁ)b)2n(2d)nt/ log(1/r)® + 1} e—cbnt&7

which is summable on n. Hence, by the Borel-Cantelli lemma, there exists a set B,
with P(By, +) = 1 for which there exists an ng = no(§, £1,t) such that

n

jt
sup Z/ E@((F—1t+1),8)ds <ant  Vn>ng. (2.5.9)
PcATl =17/ G-+t
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2.5 Continuity at k =0

Since k +— AL, is non-decreasing, (2.5.9) is true for all 0 < k < k;. Define
Bi= (] B (2.5.10)
t>t1,t€Q

for which still P(B;) = 1. Similarly, we can construct sets B, m € N\ {1}, with
P(B,,) = 1 such that on B,, there exist £, and t,,, = t,,,(km) such that for all 0 < k < Ky,
and t > t,, with ¢ € Q there exists an ng = ng(&, km, t) such that

t
ap 3 [T OG-V ot Vazm (2511

PeAy, TT7 (- 1)t+1

Hence B = NpuenByn is the desired set. Note that we can control the value of ¢,
by choosing k,, small enough. Indeed, with the right choice of k,,, it follows that
tm—1(Km—1) = tm(Km) for all m € N. |

2.5.2.3 Proof of Lemma 2.5.3

Proof. Fix A,C as in Section 2.3, Ry € N, a path ® € B, and disjoint subintervals
Th,Zo, - , Ik, k € N, of [0,t] with equal length. Note that

k
Z/I £(®(s),s)ds < Z/ E(D(s), s)1{&(D(s), s) < CAT} ds
j=17%

/5 {E®(s), 5) > CAR) ds,

(2.5.12)

By (2.3.53) and Lemma 2.3.4, for ¢t € Q sufficiently large, the second term on the right
hand side in (2.5.12) may be bounded from above by

(t+N(@,1)C'A* Y~ Ah (2.5.13)
R=Ry

Inserting (2.5.13) into (2.5.12) yields the claim. |

2.5.3 Proof of the continuity

In this section we prove Theorem 2.1.16 with the help of Lemmas 2.5.1-2.5.3. The proof
comes in three steps, organized as Sections 2.5.3.1-2.5.3.3.

2.5.3.1 Estimation of the Feynman-Kac representation on A,

Consider the case ug(z) = do(z), x € Z%. Recall (2.1.13) and (2.1.30), and estimate

A (k) < lim —TlogEo (0T <o, T >0, (2.5.14)

n—oo N
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2 Basic properties of the quenched Lyapunov exponent

where we reverse time, use that X" is a reversible dynamics, and remove the constraint
X"®(nT) = 0. Recalling (2.5.1) and (2.5.3), we have

Eo (efH(O)nTﬁ)ﬂAZT) - Z Eo < ot O)HA"T {X|[o,nT]N4’})

DA

= Z Ep | ex Zn: ((Fj— )T +1,4T,0)

DA
n—l_
xexpd 3 I (§T,§T +1,0) p Iz 1 (Xt}
3=0
(2.5.15)
By the Holder inequality with p,g > 1 and 1/p+1/q = 1, we have
E, (GTN(OJZT’O)]I{AZT})
" 1/p
< 3 Bolexn{p> T — VT +1,47,0)ds p lla n{Xl R
DEATT j=1 !
el 1/q
x Eo | exp{q Y T (iT,jT +1,0) p Tax,
j=0
(2.5.16)
Next, fix (am)menN, (Km)meN, tm as in Lemma 2.5.1, choose T' > 0 such that
tm <T =T(kp) = K|log(1/km)], m> 1, (2.5.17)

where K is a constant to be chosen later. For all 0 < £ < K, and n > ny,(km, T(k)), by
Lemma 2.5.1 we have

N 1/p
> Bolexpip) TG - DT+ 141.0) plag, Dp s
PeA j=1 (2.5.18)

amn K 1 amn Ry~

Z e’m TPQ (AnT7X|[O,nT] ~ (I)) /p S e’m T|AnT |,

DA
while by Lemma 2.5.3 we have
n—1 1/a
By [expSq) I (.57 +1,0) p lar,
3=0 (2.5.19)
1 o0
< exp {nCARod +nT (1 + 717) C' Al Z A‘Rd} .
log(1/r) eyt
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2.5 Continuity at k =0

From Lemma 2.5.2 we know that —= log |A}:’| tends to zero if we let first n — oo and then
k 1 0. Therefore, combining (2.5. 16 2.5. 19) and using that lim, o T = lim, o T'(k) = 0,
we get

1 _ o0
llmfoup hm_)sup T log Ey (eIn(OmT,O) ﬂAﬁT) < max {a"“ ' Al Z A—Rd} . (2:5.20)
K n o0 R:RO

2.5.3.2 Estimation of the Feynman-Kac representation on [A%]°
The proof comes in three steps.

1. We start by estimating the corresponding Feynman-Kac term on [A%,]°. Split

[A%7]® = By U Chp, (2.5.21)

with )
nr = V(X" nT) > ——nT 2.5.22
nT { ( ;N ) > lOg(l/Fé)b n } ( )

and
1
Kn=131<j<n: forall z e Z¢ with ||z|| < ——— nT

' { log(1/x)" (2.5.23)

there exists an s; € [(j —1)T + 1, 57") such that X"(s;) # x},

i.e., Clr is the set of paths such that there is a time-interval [(j —1)T+1,;7),1 < j <mn,
that are not constant equal to any z € Z¢ with ||z| < W nT' during this time
interval. Then

Py(Briy) < exp{[— Ju(1/1og(1/K)") + 0n(1)| nT}, (2.5.24)

where
Je(x) = xlog(x/2dk) — x + 2dk (2.5.25)

is the large deviation rate function of the rate-2dx Poisson process. Thus, by the Holder
inequality with p,¢ > 1 and 1/p+ 1/q = 1, we have

E, (efK(O,nT,O) g~ )
nT

< By (exp {pZr(0,nT,0)})"/" exp {1/q[ — J(1/1log(1/8)") + 0,(1)] nT'} .

(2.5.26)
Recalling Theorem 2.1.14 and using that lim, o J,.(1/log(1/k)?) = oo, we get
1 —
lim lim —log Ey (eI”(O7"T’O)]lB~ ) = —oo0. (2.5.27)
k10 n—oo N1 nT
2. Note that
Cfp C Bi,UDE, with Dfy = (c;;T N [B;;T]C). (2.5.28)
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2 Basic properties of the quenched Lyapunov exponent
Since we have just proved that the Feynman-Kac representation on B}, is not contribut-
ing, we only have to look at the contribution coming from D} ., namely,

E, (efn(OmT,O) HDZT) . (2.5.29)

On the event D, the random walk X* stays inside the box of radius nT/log(1/k)®,
and jumps during the time intervals [(j — 1)T + 1,57), 1 < j < n, defined in (2.5.23).
By the Holder inequality with p,g > 1 and 1/p+1/q = 1, we have

By (OO0 Ny ) < Tx 11, (2.5.30)
where
- . 1/p
I=|Eo|expip ) Tr((j — DT +1,§T,0) p Ipr ;
j=1
- i (2.5.31)
n—1
IT=|Ey (exp{q) I (jT,jT +1,0) p Ipr
L J=0
Define
J={1<j<n NOX (G- )T +1,57) > 1}, (2.5.32)

where N (X" T) is the number of jumps of the random walk X* during the time interval
Z. Using that X* is not jumping in the time intervals [(j — )T + 1,4T)), j € J¢, we
may write

S TN - )T +1,4T.0)
j=1

(2.5.33)

JT
=N"T(G - 1)T +1,4T,0 X"((j — 1T +1),s)ds.
ST T >+JE2JC/(j_1)T+1£< (G = )T +1),8)ds

3. To estimate the second term in the right-hand side of (2.5.33), pick any X" ¢ Al
such that X" = X* on Ujese[(j —1)T +1,4T) and apply Lemma 2.5.1, to get

5T

S [ X -vr s
jeged G=DT+1

i (2.5.34)

< amnT — £ (s),5)ds  E-as.

AN jGZJ/(j_l)TH ( (s),8)ds &-ass

Note that £ is Gartner-negative-hyper-mixing, so that by Lemma 2.5.3 we may estimate
the second term on the right hand side of (2.5.34) by

1 9]
. Rod 1 /Ad A_Rd. 2.5.
|J|(T —1)CA +nT( + 710g(1/ﬁ)b> C R§Rj (2.5.35)
=110
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2.5 Continuity at k =0
To estimate the first term in the right-hand side of (2.5.33), apply Lemma 2.5.3, to get

Do (B0 [ exp dpY T (( — VT + 1,5T.0) p oy, gy | PHTDOA
k=1 jeJ

1 d =, _Rd
- A A
logu/m)b) At 3

X Zexp {2pk(T — l)C'AROd} Py (Dyp, || = k).
k=1

< exp {pnT <1 +

(2.5.36)
The distribution of |.J| is BIN(n, 1 — e~2%(T=1)) Hence the sum on the right hand side
of (2.5.36) is bounded from above by
Z (n) (1 — e—Qdﬁ(T—l))k e—2drc(T—1)(n—k)62pk(T_1)CARod
k

n

i1 (2.5.37)
< ((1 _ e—2dn(T—1))e2p(T—1)CAR0d i e—2dn(T—1))n'
Combining (2.5.34-(2.5.37)), we arrive at
1
< amnT wnT | 1 C/Ad A—Rd
h=e eXp{ o (1 gty ) O 3
R=Ry (2.5.38)
% ((1 _ e—an(T—l))GQp(T—l)CARod i e—an(T—l))n/p.
On the other hand, by Lemma 2.5.3, we have
, 1
I <en@A™ T(14———)cad AR 2.5.39
II<e expin + Tog(1/m)" RZR ( )
=110

Therefore, combining (2.5.38-2.5.39), we finally obtain
E, (efN(O,nT,O)]lDN )
nT

, 1
< e‘lm"Te"CAROd exp < 3nT <1 + 7) C' A A~hd 2.5.40
= log(1/k)® R;% (25:40)

% ((1 _ e—an(T—l))GQp(T—l)CARod I e—zdn(T—l))”/p_
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2 Basic properties of the quenched Lyapunov exponent

2.5.3.3 Final estimation

By (2.5.40), we have

1 Z"(0,nT,0
TL_T 10gE0 (6 ©, )HDZT)

Qdﬁ(T — 1) e2p(T_1)CAR0d + C ARod

<am
< am+ 7 7

1
— ) C’At Y AT
log(l/ﬁ)b> R;%
(2.5.41)

+3<1+

Here, the term results from the estimates

2dr(T—1) 2p(T—1)CA%0?
pT
1—e 2T < 9di(T —1), e 2TV <1 and log(l+z) <z forallz.
(2.5.42)
Abbreviate My = 2pCAFod and recall (2.5.17). Then the right-hand side of (2.5.41) is
asymptotically equivalent to

2dk 1 _
am + 7(1/H)M2K +3 <1 + W) C'A Z A Rd7 k0. (2.5.43)
R=Ry

Choosing K < 1/(2Ms), K € Q, and recalling (2.5.20) we finally arrive at

2d\/E 1 I Ad —Rd
3 (1 + log(l//q)b) C'A RZI; AR (2.5.44)
=110

A (K) < am +

which tends to zero as k | 0, Rg — oo and m — oo.

2.6 No Lipschitz continuity at xk =0

In this section we prove Theorem 2.1.17. The proof is very close to that of Géartner,
den Hollander and Maillard [GdHM12], Theorem 1.2(iii), where it is assumed that ¢ is
bounded from below. For completeness we will repeat the main steps in that proof.

Proof. Fix C7 > 0, let e be a nearest neighbors of 0, which we fix from now on, write
(see (2.3.1)),

A (k)
_ 1 Z"(0,nT+1,0) K K
= lim ——— log £ (e Jo(X"(nT + 1))]1{)( ([0,nT +1]) C [Cl]nﬂl})
(2.6.1)
and abbreviate
¢ - ¢ ¢
I;(z) = / &(x, 8)ds, Z; = argmax I (z), 1<j<n. (2.6.2)
(7—-1)T+1 z€{0,e}
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2.6 No Lipschitz continuity at kK =0

We intend to find a lower bound of A% (k) in terms of I;(x), lz]] < 1. Consider the event
{X"(t)=2Z;Vte (i — DT+ 1,iT)} | n{X"(nT +1)=0}.  (2.6.3)

We have
Eo (exp {T"(o, nT +1, 0)} Jo(X=(nT + 1)))

n+1 n
> Eo (exp Y T°((j - 1T, (j — )T +1,0) + Z (G — )T +1,5T,0) $ Tye
=1 =1
(2.6.4)
Using the reverse Holder inequality with ¢ <0 <p <1 and 1/g+1/p =1, we have

n+1 n
Eo | exp ZI (G—1T,(j— 1T +1,0) + Z (j — )T +1,5T,0) p T ye

1/q

n+1
> | By [ exp qZT“((j—l)T,(j—1)T+1,o) n{X“([O,nTﬂ])g[Cl]nﬂl}

" 1/p
x | Eo [ exp{p> T"((j — VT + 1,4T,0) HAEH{X”([O,nT+1])g[Cl]nT+1}

" (2.6.5)

To estimate the first term on the right hand side of (2.6.5), fix Ry € N and choose
A, C > 0 such that all results of Section 2.3 are satisfied for ¢€. Moreover, note that by
a refinement of the arguments given in the proof of Lemma 2.3.4 and (2.3.53), one has
&-a.s. for nT + 1 € N sufficiently large

ntl L (-1)T+1
/ q€(X"(s), s)1{q&(X"(s),s) > —qC’AR"d} ds

(-1
(2.6.6)

nT+1+NX*nT+1) ., 4 <= . rd
< — T gC'A* Y AT
R=Rg

Consequently,

Jj=1

< e_q(n+l)CAR0dEO <eXp {_TLT ti+ N;X TLT + 1) C/Ad Z A~ Rd

n+1
Eo [expSq) TI°((j— DT, (j — )T +1,0) ﬂ{X”([O,nT—i—l] (1] nﬂl)
R=Rg )
(2.

6.7)
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2 Basic properties of the quenched Lyapunov exponent

which equals

—q(n+1)CAR0d nl'4+1 g . Rd
e 1 exp{ T qC'A Z A

R=Ry (2.6.8)
X exp {2d/€(nT +1) (e_%C/Ad ERom AT _ 1) } )
As in the proof of [GAHM12], Theorem 1.2(iii), we have
n 1/p
Eo | exp{p> T ((j — )T +1,4T,0) p T4
j=1
1/p
> [exp {[1 + 0a(1)] np E (max{I§(0), If ()} ) } I (e)] "+ e 20 T=0] 77
(2.6.9)
Combining (2.6.4-2.6.9), we arrive at
! log Ey (eiﬁ(o’”T“’O) 0o (X" (nT + 1)))
nT +1
1 1 > 2dk q 7 gd §oo —Rd
>—7OAR0¢1 +1 __C/Ad A—Rd+_ —ZC'A YR g A _1
=TT+ 1) (m+1)-7 R;O q (e ’ )
+ P 1) [[1 +0,(1)]pnE (max {Il (0), I (e)})] DT 1)
n+1
———— logp§(e).
T loei©)
(2.6.10)

Using that pf(e) = &[1 + 0x(1)] as « | 0, the fact that I3 (0) and I%(e) have zero expec-
tation and letting n — co, we get that

A3 (1)

1 1 s 2d/€ q 1 Ad oo —Rd
P p—c VLIRS | o /T AR 4 —(e—fc AT Rer AT 1)
(nT +1) ( ) T R:ZRD q

_ % + % [+ ox(1)] <%E(|If(0) —If(e))) - % log(l/ﬁ)) :

(2.6.11)
At this point we can copy the rest of the proof of [GAHM12], Theorem 1.2(iii), with a
few minor adaptations of constants. |

2.7 Examples

In Section 2.7.1 we prove Corollary 2.1.19, in Section 2.7.2 we prove Corollary 2.1.20.
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2.7 Examples

2.7.1 Examples of potentials for the finiteness and initial condition
result

In Section 2.7.1.1 we settle Part (1), in Section 2.7.1.2 we settle Part (2).

2.7.1.1 Proof of Corollary 2.1.19 (1)
1.1 The first condition in Definition 2.1.7 is satisfied by our assumption on &.

1.2 We show that ¢ is type-I Gértner-mixing. Fix A > 1, pickb=c=0and a; = ay =2
(see (2.3.26)), and define

d
Bp™(z,k) = <H[(x(j) — AR, (2(j) + 1)AT) N Zd> x {kARY. (2.7.1)
j=1

We start by estimating the probability of the event

def

B(z,k) = { B, (z,k) is good, but contains a bad R-block}. (2.7.2)

Note that each R + 1-block contains at most 2¢A13+4) R-blocks. For each such R-block
B#(y,1) there are no more than A% blocks

d
H )+ AR (2.7.3)
contained in it. For any such block we may estimate, for C; > 0,

P<ase[1AR,(z+1)AR): Z g(zQ,s)>01ARd>

22€Q A (21)
AR
< Z IE”( Z sup  Xs(z2) > ClARd> (2.7.4)
k=0 ZzEQA(Z1)SE[k7k+1)

s€[0,1)

ARd
<A+ 1) exp {-C1A"M}E (exp{ sup XS(O)}> ,

where we use the time stationarity in the first inequality, and the time stationarity and
the space independence in the second inequality. Thus, for C sufficiently large, there is
a C1 > 0 such that

P(B(z,k)) < e CiA™, (2.7.5)

Moreover, for space-time blocks that are disjoint in space, the corresponding events in
(2.7.2) are independent. Hence we may assume that Bf_,(z1,k1),..., B, 1(%n, kn) are
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2 Basic properties of the quenched Lyapunov exponent

equal in space but disjoint in time. Since
n n—1 n—1
]P’( M B, ki)> - P(B(xn,kn) ‘ N B(xi,ki)>IE”< N B(xi,ki)>, (2.7.6)
i=1 i=1 i=1

it is enough to show that there is a constant K < oo, independent of R, such that the
conditional probability in (2.7.6) may be estimated from above by KP(B(zp,k»)). To
do this, we apply the Markov property to obtain

n—1 n—1
P(B(xn,kn> \ N B(xi,ki)> < P(B(xn,kn) \ () Blwi, ki), BRy (. kn) is good)

i=1 =1

= ]P’(B(xn, k) ‘ Bgffb(xn, ky) is good).

(2.7.7)
Thus, the left-hand side of (2.7.7) is at most

P(B(zn, kn))
P(BRy" (wn, kn) is good)

: (2.7.8)

Since limp_y 00 ]P’(Bgffb(:z:n, k) is good) = 1, we obtain that £ is type-I Gartner-mixing.

1.3 Condition (a3) in Definition 2.1.7 follows from the calculations in (2.7.4).

2. The same strategy as above works to show that £ is type-II Géartner-mixing. If X
has exponential moments of all negative orders, then the same calculations as in the first
part show that & is Gartner-negative-hyper-mixing. All requirements of Theorems 2.1.14—
2.1.15 are thus met.

2.7.1.2 Proof of Corollary 2.1.19(2)

Let £ be the zero-range process as described in Corollary 2.1.19(2). We will use that
each particle, independently of all the other particles, carries an exponential clock of
parameter one. If there are k particles at a site x and one of these clocks rings, then the
corresponding particle jumps to y with probability % and it stays at y with probability

g(k)
1— 4=,
1.1 By Andjel [A82], Theorem 1.9, the product measures in (2.1.32) are extremal for &.
Thus, E [e%©9] < co for all ¢ > 0. Consequently, to show that E |e?5'Psc.1 $0:5) | < o0

it suffices to prove that there is a constant K > 0 such that, for all k£ € N sufficiently
large,

JP>< sup £(0,s) > k) < KP<§(0,1) > 6_1k>. (2.7.9)

s€10,1] T
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2.7 Examples

Write NR(% k,7) for the event that there are at least % k exponential clocks of particles

located at zero that do not ring in the time interval [r,7 + 1). Then we may estimate

6_1

P(g(o,n >% g ‘ 37 € [0,1]: £0,7) > k)
(2.7.10)

> P(NR<§I€,T> ’ A7 €[0,1]: £0,7) > k).

Since the probability that a clock does not ring within a time interval of length one is
equal to e~ !, and all clocks are independent, we may estimate the right-hand side of
(2.7.10) from below by

6_1
]P’(T > Tk) T = BIN(k, e~ 1). (2.7.11)

Finally, note that the probability in (2.7.11) is bounded away from zero. Thus, inserting
(2.7.10) and (2.7.11) into (2.7.9), we get the claim.

1.2. We show that £ is type-I Gértner-mixing. Fix A > 3, choose b =3, ¢ =1, a; = 13,

as = 2 (see (2.3.26), and introduce additional space-time blocks

d
B (w, k) = < [Li@0) - 2)A%, @(j) +2)4%) N Zd) X [RAT — AL (k4 1)AT)

j=1

d
Eﬁ,sub(x7k,) — <H[(x(j) — QL)AAR7 (1’(]) + 4)AR) n Zd> X {(k — 1)AR}
j=1

(2.7.12)
Given S C Z% and S’ C Ny, write 35S to denote the inner boundary of S and II; (S x S’)
to denote the projection onto the spatial coordinates. Furthermore, e;, j € {1,2,---,d}

denotes the j-th unit vector (and we agree that = 0).

We call a space-time block Bﬁ (z, k) contaminated if there is a particle at some space-

time point (y, s) € §£’+(x, k) that has been outside ITy (H?Zl [(x(5)—4)AR, (2(j)+4)AR))
at a time s’ such that (k — 1)A® < s’ < s. The reason for introducing this notion is
that events depending on non-contaminated blocks that are equal in time but disjoint in

space are all independent.

Contaminated blocks. For L > 0, define

x(x, k) = H{Bﬁﬂ(x, k) is good, but contaminated and intersects [—L, L]d+1}
(2.7.13)
and fix (z*,k*) € Z% x N,

Claim 2.7.1. There is a C' > 0 independent of L such that (x(v,k)) (@ k)=(z k*) 5
stochastically dominated by independent Bernoulli random variables (Z(x,k)) (2 k)= (2" k*)

with success probability e=CrAm
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2 Basic properties of the quenched Lyapunov exponent

Proof. We use a discretization scheme. More precisely, we construct a discrete-time
version of the zero-range process where particles are allowed to jump at times k/n,
k € Ng only. Here, n is an integer that will later tend to infinity, and we will denote by
&"(x, s) the number of particles at site z at time s. To construct this process, we take a
family X"(x, s, q1, ¢2) of independent random variables with index set 7% x %NO x Np x Ng
whose distribution is defined via

(QQ)
P Xn('?'a'an):O :l_g )
( ) 1z (2.7.14)

n 9(q2) ,
P{X"(,-,- =de; | = 1,2,... .
( (a ) aq2) e]) 2dnq2’ J E{ ) ad}

With this family in hand, we proceed as follows. At time zero start with an initial
configuration that comes from the invariant measure m,. Attach to each particle o a
uniform-[0, 1] random variable U (o). Take all these random variables independent of each
other and of X" (x, s, q1, q2) for all choices of (z, s, q1,¢2) € Z% x LNg x Ng x Ny. For each
site x, order all particles present at = at time zero so that their uniform random variables
are increasing. To the g;-th variable attach X" (x,0, ¢1,£"(x,0)), i.e., the position of the
q1-th particle in this ordering at time % isx+X"(x,0,q1,£"(x,0)). In this way we obtain
the configuration of the system at time % To construct the process + time units further,
repeat the first step, but let the particles jump according to X" (-, --,-, £" (-, %)) Thus,
our construction is such that each particle chooses at each step uniformly at random,
but dependent on the number of particles at the same location, a new jump distribution.
In what follows we will use the phrase “at level n” to emphasize that we refer to the
discrete-time version of the process. For instance, we say that Br(z, k) is good at level
n if

> Mzs) < CAM Yy eZd s >0 st Qr(y) x {s} C Bip(a, k). (2.7.15)
z2€Q#(y)

Next, we introduce

X" (@, k)

= ]l{BﬁH(x, k) is good, but is contaminated at level n and intersects [—L, L]**1 ¢.

(2.7.16)
It is not hard to show that the joint distribution of x™ converges weakly to the joint
distribution of x (use that only finitely many particles can enter a fixed region in space-
time, so that the above family of random variables may be approximated by a function
depending on finitely many particles only). Thus, to estimate the joint distribution of y,
it is enough to analyze the joint distribution of x™, as long as the estimates are uniform
in n. In what follows, s,s’,s"” € LNy.
Let B 4+1(2, k) be a good block that is contaminated at level n. Then there is a particle
at asite y € Ol (B, (2, k)) at a time s € [(k—1) A%, (k+1)ART1) (see below 2.4.13))
that is at a site y' € 8H1(Bg;_+1 (z,k)) at a time s’ € [(k—1)ARTL (K +1)ARTL) s < 4.
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Furthermore, for all s” such that s < s” < &', the particle is inside II; (Eﬁﬂ(x, k)). This
implies, when X™(y, s, q1,£"(y, s)) denotes the random variable attached to o at time s,
that X™(y, s,q1,£"(y,s)) # 0. Pick any such particle. Since this particle travels over
a distance larger than 2471 there is at least one coordinate direction along which it
makes at least 2471 steps. We call this direction e;j(0), and say that each step in this
direction is a success. Note the uniform estimate

P(o has a success at time s”) s" € [(k— AR (k+1)ARTY. (2.7.17)

< —_
~ 2dn
Thus, if o contaminates B, (z, k) at level n, then from time s’ up to time (k+ 1) AT*!
it has at least 2A%+! successes in II1 (Bji, | (2, k)). We write S(y, s,q1, g2) for the event
just described, provided the particle was attached to X™(y, s, q1,¢2) when it entered
B# 1 (z,k). Since B, (z,k) is good, at each space-time point (y”,s”) € B, (z,k)
there are at most CAF+D4 particles that can contaminate B (z,k). We therefore
obtain

{Bgﬂ(x, k) is good, but contaminated at level n}

g U {Xn(yasaqlvq2) #07S(y,3,q1,QQ)}

y€OIL (B4 (2,k)) (2.7.18)
s€[(k—1) AR (k+1) AR, se LNy
q1§CA(R+1)d
q2§CA(R+1)d

©on(z, k).

Next, note that the event C™(z, k) depends on the X™(y, s, ¢1, g2) with
(y,s) € §§+1(x,k) only. Hence, for x € Z%, k € Ny, the family (C™(z,k)) (z.1)=(z* k")
consists of independent events. We estimate P(C™(z, k)). By (2.7.17), the probability
inside the union may be bounded from above by

%]P’(T > 24, (2.7.19)

where T = BIN(2A%1n, ). Note that the event in (2.7.19) is a large deviation event,

so that Bernstein’s inequality guarantees the existence of a constant C’ > 0 such that
(2.7.19) is at most

1
—exp {—C'ART}. (2.7.20)
n
Recall the definition of C™(x, k) to see that, for a possibly different constant C” > 0,
P(C"(z,k)) < exp {—C" ARt} (2.7.21)

Hence there is a family of independent Bernoulli random variables (Z"(, k)) (k)= (2, k*)

that stochastically dominates (X" (%, k)) (2, k)=(* ,k+) and has success probability e=C AT
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2 Basic properties of the quenched Lyapunov exponent

Thus, if f is a positive and bounded function that is increasing in all of its arguments,
then

E(f(x"(xl,kl),...,x"(xn,kn)) < IE(f(Z"(xl,kl),...,Z"(xn,kn)). (2.7.22)

As the right-hand side does not depend on n, we obtain, by letting n — oo,

E(f(x(xl,kl), o ,X(xn,kn)) < IE(f(Z(xl,kl), N .,Z(xn,kn)), (2.7.23)

which proves Claim 2.7.1. In particular, since all estimates are independent of L, we may
even set L = 00, to get that the whole field of good but contaminated (R4 1)-blocks may
be dominated by an independent family of Bernoulli random variables with the same
success probability as above. This field will be denoted by Z(x, k) as well. n

Non-contaminated blocks. We begin by estimating the probability of the event
{Bﬁﬂ(x, k) is good, but contains a bad R—block}. (2.7.24)

Let Bfi(y,l) be an R-block that is contained in Bf_,(z,k). We bound the probability
that this block is bad. For that we take z; € Z% such that

d
H )+ ARY C BA(y,1). (2.7.25)

Use the time stationarity of & and the fact that [(I — 1)A%, (I + 1)A®) may be divided
into at most 2A% + 1 time intervals of length one, to obtain

P(Hse[(l—l)AR,(l—i—l)AR): > 5(22,5)>CARd>

V4 A z
2€Qn(=0) (2.7.26)

< (247 + 1)]P’< sup Z &(z2,8) > CARd>.

s€(0,1] 22€Qp(z1)

In the same way as in Step 1.1 of this proof, we may now show that for some constant
K >0,

1P>< sup Z g(zQ,s)>OARd> gKP( Z £(29,1) > 1CARd>. (2.7.27)

s€(0,1] 22€Q%H (21) 22€Q%H (22)

Next, note that under the invariant measure 7, the sum in the right-hand side of (2.7.27)
is a sum of i.i.d. random variables with finite exponential moments. Hence (2.7.27) is
bounded from above by

Kexp{ - %CARd}]E [e00)] -

(2.7.28)
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Now choose C large enough so that (2.7.26) decays superexponentially fast in R.

In order to estimate the joint distribution of non-contaminated blocks, we let
Bﬁjrl(xl, k1), .. Bﬁil(xn, kn) be space-time blocks whose indices increase in the lexi-
cographic order of 74 x N and belong to the same equivalence class. We abbreviate

NP (2, k) = {Bgf{b(xi, k;) is good, Bit, (s, k;) contains a bad R-block,
(2.7.29)
but is not contaminated}.

Note that NP (x;, k;) and NSU(z;,k;),i # j, are independent when they depend on

blocks that coincide in time but are disjoint in space. This observation, together with
the Markov property, leads to

P<Nsub xn’ ’ ﬂ Nsub x“ z)

< P<Nsub o ki ‘ ﬂ N (24 k) f%f?b(:rn, k) i good) (2.7.30)
= P(Nsub(xn, k) ‘ Bgffb(xn, ky) is good).
Thus, the left-hand side of (2.7.30) is at most
P(Bi (k) is good, but contains a bad R—block). (2.7.31)

P(Eﬁﬁ“b(xn, ky) is good)

Note that the denominator tends to one as R — oo. This comes from the fact that, for
all t > 0, ({(x,1))peza is an 1.i.d. field of random variables distributed according to .
Thus, from (2.7.26) and the lines below, we infer that (2.7.31) decays superexponentially
fast in R.

Finally, write

{Bﬁﬂ(xi, k;) is good, but contains a bad R-block } C Clxq, ki) U NP (24, ky),
(2.7.32)
where we denote by C(x;, k;) the event that Bﬁﬂ (x4, ki) is good, contains a bad R-block,
and is contaminated. Then

]P’( m {Bgil(xi, k;) is good, but contains a bad R—block})
i=1

(2.7.33)

S P( ﬁ (C(Jil,kz) U NSUb(ZEi, kl))>

i=1

If we denote by C the subset of all ¢ € {1,2,...,n} for which C(x;,%;) occurs, then
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2 Basic properties of the quenched Lyapunov exponent

(2.7.33) may be rewritten as

> IE”( () Cliki)n () Nsub(xi,ki)) (2.7.34)
n}

oc{L,z2,..., ieC i¢C

Note that either |C| > n/2or |{1,2,...,n}\C| > n/2, so that by Claim 2.7.1 and (2.7.28)
there is a C"" > 0 such that the expression in (2.7.34) is at most 2" exp{—C"” A%+1n/2}.
A comparison with the right-hand side of (2.1.21) shows that ¢ is type-I Gartner-mixing.

1.3 From the previous calculations we infer that £ satisfies condition (a3) of Defini-
tion 2.1.7.

2. Since ¢ is bounded from below it is Géartner-negative-hyper-mixing. Hence it re-
mains to show that & is type-II Géartner-mixing. To that end, fix the same constants
as in the proof of the first part of the corollary. Furthermore, fix § > 0 and let
Bf,(z1,k1),..., Bfty1(2y, ky) be space-time blocks whose indices increase in the lex-
icographic order of Z* x N, and belong to the same equivalence class. Take events
AR € o(Bp i (zn, ky)), @ € {1,2,...,n}, that are invariant under shifts in space and
time, and satisfy

lim P(Af) = 0. (2.7.35)

R— o0

As in part 1, we divide space-time blocks into contaminated and non-contaminated
blocks. With the help of Claim 2.7.1, we may control contaminated blocks. To treat
non-contaminated blocks, we introduce

NP (2, Ky, AR = {Eﬁf‘fb(xi, k;) is good, but contaminated, A® occurs} (2.7.36)

and proceed as in the lines following (2.7.29), to finish the proof.

2.7.2 Examples of potentials for the continuity result
In this section we prove Corollary 2.1.20. Suppose that

» ¢ is Markov with initial distribution v and

generator L defined on a domain D(L) C L*(dv). (2.7.37)

Denote by
&(f.9) = 3[(~Lf,9) +(~Lg,f)],  f.g€D(L), (2.7.38)

its symmetrized Dirichlet form, assume that (&, D(L)) is closable, and denote its closure

by (£, D(¢)). Furthermore, for V: Q — R, define

Jv(r) = inf {a(f, f): feDENLA(|V|dv), /f2 dv =1, /Vf2 dv = r} , TER,
(2.7.39)
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note that r — Jy (r) is convex, and let Iy, be its lower semi-continuous regularization.
For W: Q x [0,00) — R, define

It = sup {LFf. )+ W(,t), A}, t>0. (2.7.40)
feD(L)fl?lflT(\V‘lf(nt)\dV)
p 2=

In the particular case of a static Wy: Q — R, we denote the corresponding variational

expression by I'}.

Lemma 2.7.2. Suppose that W is bounded from below, piecewise continuous in the time-
coordinate, and v-integrable in the space-coordinate. Suppose further that:

(i) TE < oo for all t > 0.

(i) & is reversible in time and cadlag.

Then
E, <exp{/0tW(§(s),s) ds}) < exp{/ot rt ds} Vit > 0. (2.7.41)

Proof. The proof is based on ideas in Kipnis and Landim [KL99], Appendix 1.7, and
comes in three steps.

1. Suppose that W is piecewise continuous, not necessarily bounded from above, and
define W™ = W A n. Then, by an argument similar to that in [KL99], Appendix 1,
Lemma 7.2, we have

E, <exp{/0t Wn(&(s), s) ds}) < exp{/ot I ds}, (2.7.42)

where I'l>" is defined as in (2.7.40) but with W replaced by W™. It is here that we
use that & is reversible and cadlag, since under this condition we have a Feynman-
Kac representation for the parabolic Anderson equation with potential W™ and with A
replaced by L. Because W™ is bounded, we have that L2(|W™"(-,t)|dv) = L?(dv). Hence

Ihm= sup {(Lf.f)+ (W"(.s),f)}. (2.7.43)
it

Since, by monotone convergence,

lim E, (exp{/ot W"(g(s),s)ds}> _E, (exp{/otW(ﬁ(s),s)ds}) L (2744

it suffices to show that
lim rtm =1k s>0. (2.7.45)

n—oo

2. To show that the left-hand side in (2.7.45) is an upper bound, fix ¢ > 0 and pick
f e D(L)NLA(|W(-,t)|dv) such that

(LI F)+(W(t), ) +e>T7. (2.7.46)
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2 Basic properties of the quenched Lyapunov exponent

Then, by monotone convergence,

T {{LF )+ (W0, 120} = (Lf £+ (W), ), (2.7.47)

3. To prove that the left-hand side in (2.7.45) is also a lower bound, we need to assume
that L is self-adjoint. Then, by Wu [Wu94], Remark on p. 209, we have

lim llogﬂay (exp{/t W™ (£(s),0) ds}> =T,", (2.7.48)
t—oo t 0

and the same is true when W™ is replaced by W. But, obviously,

tli)r&%logIE,, (exp{/ot W™ (£(s),0) ds}) < tlglolo%ngy (exp{/OtW(é(s),O) ds}) :

(2.7.49)
which shows that I‘é ™ < TF. Note that the time point 0 does not play any special role.
Hence we obtain (2.7.45). |

Proposition 2.7.3. Suppose that & satisfies (2.7.37) and condition (i) in Lemma 2.7.2.
Then, for all paths ® (recall (2.1.26)),

n

1 iT
P, | — ®(s),s)ds—p| >0 | <exp{ —n(T —1)Iy(p+9)},
n(T—1>§/<j_1)T+l [€(2(5), ) ds — g} p{ — (T~ Iy, (p+9)}
(2.7.50)
where Vo(n) = n(0) and p = E(£(0,0)).
Proof. First note that by Lemma 2.7.2,
E, | exp Z/ £(®(s),s)ds p | <exp{n(T —1)I{}, (2.7.51)
(j—1)T+1

j=1

where '} is defined with W (-,0) = V5. To see that, take a path ® which starts in zero
and define W: RZ" x [0,00) — R by

®(t)), iftel|(j—1)T+1,5T) for some 1 < j <n,
Wint) = {n( (1)) (G = VT +1,57) j

. (2.7.52)
0, otherwise.

Let 2 € Z¢ be such that ®(t) = x, and denote by 7, the space-shift over 2. Then, using
the fact that v is shift-ergodic, we get

W52 = [ o) P mdvt)

= [ 70 ) vl (2.753)
= /de U(O)(T_zf)Q(n) dv(n) = (W(-,0), (T—zf)2>,
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which yields 'l = I'}. Since the space point 0 does not play any special role, Lemma
2.7.2 leads to (2.7.51) for any path ®. Next apply the Chebyshev inequality to the
left-hand side of (2.7.50). After that it remains to solve an optimization problem. See
Wu [Wu00] for details. |

Note that, for a reversible dynamics, Iy, is the large deviation rate function for the
occupation time

t
T, = / £(0, s) ds, t>0. (2.7.54)
0
We are now ready to give the proof of Corollary 2.1.20.

Proof. All three dynamics in (1)—(3) satisfy condition (a) in Definition 2.1.9. The proof
of (b) below consists of an application of Proposition 2.7.3, combined with a suitable
analysis of Iy .

(1) Redig and Vollering [RV11], Theorem 4.1, shows that for all §; > 0 there is a
d2 = d2(d1) such that

nt
P, (/ £(0,s)ds > 51nt> <e %t (2.7.55)
0

A straightforward extension of this result implies that condition (b) in Definition 2.1.9
is satisfied. All requirements in Theorem 2.1.16 are thus met.

(2) By Landim [L92], Theorem 4.2, the rate function of the simple exclusion process is
non-degenerate (i.e., it has a unique zero at p). Hence condition (b) in Definition 2.1.9
is satisfied. Thus, all requirements of Theorem 2.1.16 are met.

(3) By Cox and Griffeath [CG84], Theorem 1, the rate function for independent simple
random walks is non-degenerate. Hence condition (b) in Definition 2.1.9 is satisfied. All
requirements in Theorem 2.1.16 are thus met. [ |

7






3 Space-time ergodicity for the
quenched Lyapunov exponent

This chapter is based on:

D. Erhard, F. den Hollander, G. Maillard. The parabolic Anderson model in a dynamic
random environment: space-time ergodicity for the quenched Lyapunov exponent. Posted
on arXiv:1304.2274v2, to appear in Probability Theory and Related Fields.

Abstract

We continue our study of the parabolic Anderson equation du(z,t)/0t = kAu(z,t) +
E(x, t)u(z,t), x € Z%, t > 0, where k € [0,00) is the diffusion constant, A is the dis-
crete Laplacian, and £ plays the role of a dynamic random environment that drives the
equation. The initial condition u(z,0) = ug(x), € Z%, is taken to be non-negative and
bounded. The solution of the parabolic Anderson equation describes the evolution of a
field of particles performing independent simple random walks with binary branching:
particles jump at rate 2dk, split into two at rate £ V 0, and die at rate (—§) V 0.

We assume that £ is stationary and ergodic under translations in space and time, is
not constant and satisfies E(|£(0,0)|) < oo, where E denotes expectation w.r.t. . Our
main object of interest is the quenched Lyapunov exponent \o(k) = limy_, %log u(0,t).
In earlier work [GAHM12], [EdHM14a] we established a number of basic properties of
Kk +— Ao(k) under certain mild space-time mixing and noisiness assumptions on . In
particular, we showed that the limit exists £-a.s., is finite and continuous on [0, 00), is
globally Lipschitz on (0, 00), is not Lipschitz at 0, and satisfies A\g(0) = E(£(0,0)) and
Ao(k) > E(£(0,0)) for k € (0, 00).

In the present chapter we show that lim,_,c Ao(k) = E(£(0,0)) under an additional
space-time mixing condition on £ we call Gartner-hyper-mixing. This result, which
completes our study of the quenched Lyapunov exponent for general &, shows that the
parabolic Anderson model exhibits space-time ergodicity in the limit of large diffusiv-
ity. This fact is interesting because there are choices of ¢ that are Gértner-hyper-mixing
for which the annealed Lyapunov ezponent A (k) = limy—,oc 1 log E(u(0,t)) is infinite on
[0,00), a situation that is referred to as strongly catalytic behavior. Our proof is based
on a multiscale analysis of £, in combination with discrete rearrangement inequalities for
local times of simple random walk and spectral bounds for discrete Schrodinger operators.

MSC 2010. Primary 60K35, 60H25, 82C44; Secondary 35B40, 60F10.
Key words and phrases. Parabolic Anderson equation, quenched Lyapunov exponent,
large deviations, Gartner-hyper-mixing, multiscale analysis, rearrangement inequalities,
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spectral bounds.
Acknowledgment. DE and FdH were supported by ERC Advanced Grant 267356 VARIS.
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3.1 Introduction and main theorem

A fair amount is known about the behavior as a function of underlying parameters of the
annealed Lyapunov exponents for the parabolic Anderson model in a dynamic random
environment. For an overview we refer the reader to [GAHMO08]. The main motivation
behind the present paper is to understand the behavior of the quenched Lyapunov expo-
nent, which is much harder to deal with. Our ultimate goal is to arrive at a full qualitative
picture of the quenched Lyapunov exponent for general dynamic random environments
subject to certain mild space-time mixing and noisiness assumptions.

Section 3.1.1 defines the parabolic Anderson model and recalls the main results from
[GAHM12], [EdHM14a]. Section 3.1.2 contains our main theorem, which states that the
quenched Lyapunov exponent converges to the average value of the environment in the
limit of large diffusivity. Section 3.1.3 contains definitions, while Section 3.1.4 discusses
the main theorem, provides the necessary background, and gives a brief outline of the
rest of the paper.

3.1.1 Parabolic Anderson model

The parabolic Anderson model is the partial differential equation

%u(m,t} = rAu(z,t) + &(x, t)u(z, t), reZ t>0. (3.1.1)

Here, the u-field is R-valued, x € [0,00) is the diffusion constant, A is the discrete
Laplacian acting on u as

Au(z,t) =Y [u(y.t) —u(z,1)] (3.1.2)

yezd
ly—z||=1
(|| - || is the {1-norm), while
€ = (&)rzo with & = {¢(x,1): = € 2} (3.1.3)

is an R-valued random field playing the role of a dynamic random environment that
drives the equation. As initial condition for (3.1.1) we take

u(z,0) =ug(z), z € 7%, with ug non-negative, not identically zero, and bounded.
(3.1.4)
One interpretation of (3.1.1) and (3.1.4) comes from population dynamics. Consider
the special case where £(z,t) = v&.(x,t) — § with 6,7 € (0,00) and &, an Ny-valued
random field. Consider a system of two types of particles, A (catalyst) and B (reactant),
subject to:

— A-particles evolve autonomously according to a prescribed dynamics with &, (z,t)
denoting the number of A-particles at site z at time ¢;
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— B-particles perform independent simple random walks at rate 2dx and split into
two at a rate that is equal to 7 times the number of A-particles present at the same
location at the same time;

— B-particles die at rate ¢;
— the average number of B-particles at site = at time 0 is ug(z).
Then

u(z,t) = the average number of B-particles at site  at time ¢

conditioned on the evolution of the A-particles. (3.1.5)

The ¢-field is defined on a probability space (2, F,P). Throughout the paper we
assume that

» ¢ is stationary and ergodic under translations in space and time.

3.1.6
» ¢ is not constant and E(]£(0,0)]) < occ. ( )
The formal solution of (3.1.1) is given by the Feynman-Kac formula
t
(o, 1) = B, <exp {/ (X" (s), 1 — s)ds} uo(X"‘(t))> , (3.1.7)
0

where X" = (X*(t))¢>0 is the continuous-time simple random walk jumping at rate 2dx
(i.e., the Markov process with generator kA), and P, is the law of X* when X*(0) = x.
In [EdHM14a] we proved the following;:

(0) Subject to the assumption that &-a.s. s — £(z, s) is locally integrable for every x
and that E(e%(%:0)) < oo for all ¢ > 0, (3.1.7) is finite for all z, ¢ and is the solution
of (3.1.1).

The quenched Lyapunov exponent associated with (3.1.1) is defined as
A =1 ! 1 0,t 3.1.8
o(#) = lim ~logu(0,?). (3.1.8)

In [GAHM12] we showed that A\o(0) = E(£(0,0)) and Ag(k) > E(£(0,0)) for & € (0,00)
as soon as the limit in (3.1.8) exists. In [EdHM14a] we proved the following:

(1) Subject to certain space-time mizing assumptions on &, the limit in (3.1.8) exists
&-a.s. and in L1(PP), is &-a.s. constant, is finite, and does not depend on u satisfying
(3.1.4).

(2) Subject to certain additional noisiness assumptions on &, Kk +— Ao(k) is continuous
on [0, 00), is globally Lipschitz on (0,00), and is not Lipschitz at 0.

3.1.2 Main theorem and examples

Our main result is the following.
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Theorem 3.1.1. If ug = g and & is Gartner-hyper-mizing, then
hm Xo(k) = E(£(0,0)). (3.1.9)

The definition of Gértner-hyper-mixing is given in Definitions 3.1.3-3.1.5 below. A
weaker form of these definitions was introduced and exploited in [EdHM14a]. Here are
two examples of &-fields that are Géartner-hyper-mixing.

Example 3.1.2. (See [EdHM14a))
(el) Let Y = (Yi)>0 be a stationary and ergodic R-valued Markov process satisfying

E | e?5UPtel0,1] [Yz| < 00 \v’q > 0. (3110)

Let (Y (2))peze be a field of independent copies of Y. Then & given by &(z,t) = Yi(x) is
Gartner-hyper-mizing.

(e2) Let & be the zero-range process with rate function g: Ng — (0,00) given by g(k) = kP,
B € (0,1], and transition probabilities given by simple random walk on Z2. If & starts
from the product measure w,, p € (0,00), with marginals

, if k>0,
veezl: m{neNy: @)=k} = { T 9@ 1gl> ’;k . (3.1.11)
77 L =Y,

where v € (0,00) is a normalization constant, then £ is Gartner-hyper-mizing.

Example (el) includes independent spin-flips, example (e2) includes independent random
walks.

3.1.3 Definitions

Throughout the rest of this paper we assume without loss of generality that E(£(0,0)) =
0.

For a1, az, N € N, denote by Ay (a1, az) the set of (Z? xN)-valued sequences { (z;, k;) } ¥,
that are increasing with respect to the lexicographic ordering of Z% x N and are such
that, forall 1 <i < j < N,

zj; = z; (mod aq), k; = k; (mod as). (3.1.12)

For A>1,a>0, ReN, z € Z% and k,b,c € Ny, define the space-time blocks (see
Fig. 3.1)

Eﬁ"o‘(m,k;b, ¢)
d
= | [ [(=() = 1= b)aA®, (z(j) + 1+ b)aA®) NZ4 | x [(k — ) A", (k +1)A").

j=1
(3.1.13)
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space

I I I I
I r-— (a2_c_1)AR+1 I P
I I I I I I
I I I I I I
I I I I I I
I L——4 I L -4
(al —2b—2)AR+1
2 3
I I I I
I F— = I R
I I I I I I
I I I I I I
I I I I I I
I L —4 I [
®5_L;6__4 L — — - 3
&7 4
time
(c+1)AR+L

Figure 3.1: The dashed blocks are R-blocks, i.e., Bf(x,k) (inner) and B (z,k;b,c) (outer)

84

for some choice of A, x,k,b,c. The solid blocks are (R + 1)-blocks, i.e., B£+1(y7l)
(inner) and Eﬁ_‘_l(y,l;b, c¢) (outer) for some choice of A,y,l,b,c such that these
(R + 1)-blocks contain the corresponding R-blocks. All these blocks belong to
the same equivalence class. The symbols {®; }:=1,2,3,4,5,6 represents the space-time
coordinates ®; = ((y—1—b) AR (1—c) A", @2 = ((y+1+b) AT (1—c)ARTY),
®3 = ((y + 14+ b)AT (1 + DA™Y, @4 = ((y — L - )AL (1 + DA, @5 =
((x —1=b)A%, (k — c)AT), @6 = ((y — 1) AT 1ATRTY),



3.1 Introduction and main theorem

Abbreviate Biy®(z, k) = Biy®(x, k;0,0) and Ba (x, k) = Ba' (x, k), and define the space-
blocks
Q' (z) =z + [0, N 77, (3.1.14)

Definition 3.1.3. [Good and bad blocks]

For A>1,a>0, RcN x¢cZ m>0,kc Ny, § € [0,esssup[£(0,0)]] and
b,c € Ny, the R-block Bg’a(x,k) is called (8,b,c,m)-good for the potential & when, for
all s € [(k — c)AR (kK + 1)AR — 1/m),

1 ~
o Yo sup E(zr) <8 VyeZl: Qp(y) x {s} C Bp(x,kibc),
ROW iy relssti/m)
(3.1.15)
and is called (0,b, c)-bad otherwise.

ForA>1,a>0,ReN,zcZ% m>0,kcNy, 6 c[0,esssup[£(0,0)]] and b, ¢ € Ny,
let

A" (2, k: by c)

= {Bgfl (z, k) is (9, b, c)-good, but contains an R-block that is (4, b, ¢, m)-bad}.
(3.1.16)

Definition 3.1.4. [Girtner-mixing]
The &-field is called (A, v, 6, m, b, ¢)-Gartner-mixing when there are ai,as € N such that
forall REN, N € N,

N
sup P <ﬂ Ag’a’é’m(aji, ki;b,c)> < (A_4d(2d+1)(d+1)R)N. (3.1.17)

(zi,ki) N €AN(a1,a2) i=1

In the rest of this document we use the abbreviation {x for £1{¢ > K}.

Definition 3.1.5. [Gartner-hyper-mixing]

The &-field is called Gartner-hyper-mizing when the following conditions are satisfied:
(al) There are by,c € Ng and K > 0 such that for every § > 0 there are Ag > 1 and
mo > 0 such that £k and € are (A, «,d,m,b, c)-Gartner-mizing for all A > Ay, m > mg
and all a > 1, with ay,as in Definition 3.1.4 not depending on A, m and «.

(a2) E[e?5P=c0.11809)] < o0 for all ¢ > 0.

(a3) There are Ry € N and Cy € [0, esssup [£(0,0)]] NR such that

1
P| sup —— Z &(y,s) > C | <|Brl™" VR > Ry, C >y, (3.1.18)
s€[0,1] |BR| yEBR

for some o > [2d(2d + 1) + 1](d + 2)/d, where Br = [-R, R]* N Z4.

Remark 3.1.6. The proof in [EdHM14a] that Examples 3.1.2(el—e2) are Gartner-hyper-
mixing uses (3.1.15) without the supremum, but easily carries over by inspection.
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3 Space-time ergodicity for the quenched Lyapunov exponent

Remark 3.1.7. (1) Gértner-hyper-mixing requires that space averages of ¢ taken in
space-time blocks of a suitable size are close to their mean with a large probability. It
also requires that the configurations of £ restricted to the space-time blocks for which
this closeness is realized are almost independent.

(2) For those examples where &(z,t) represents “the number of particles at site x at
time t”, we may view Gértner-hyper-mixing as a consequence of the fact that there are
not enough particles in the blocks Bg’o‘(xi, ki; b, c) that manage to travel to the blocks
Eﬁ"o‘(xj, k;;b,c) with j # i. Indeed, if there is a bad block on scale R that is contained
in a good block on scale R+ 1, then in some neighborhood of this bad block the particle
density cannot be too large. This also explains why we must work with the extended
blocks Bg’a(x,k;b, c) instead of with the original blocks Bg’a(x, k;0,0). Indeed, the
surroundings of a bad block on scale R can be bad when it is located near the boundary
of a good block on scale R + 1.

(3) We expect that most interacting particle systems are Gértner-hyper-mixing, including
such classical systems as the stochastic Ising model, the contact process, the voter model
and the exclusion process. Since these are bounded random fields, conditions (a2) and
(a3) in Definition 3.1.5 below are redundant and only condition (al) needs to be verified.
We will not tackle this problem in the present paper.

3.1.4 Discussion

1. Theorem 3.1.1 yields a partial answer to the question: Which random walk paths give
the main contribution to the Feynman-Kac formula in (3.1.7)7 Indeed, Theorem 3.1.1
shows that, for large x and any dynamic £ that is Gartner-hyper-mixing, the main con-
tribution comes from those paths that spend most of their time in regions where £ looks
typical. This is in sharp contrast with what is known for the parabolic Anderson model
with a static i.i.d. random environment & = {£(x): x € Z%}. In this case the main contri-
bution to the Feynman-Kac formula in (3.1.7) comes from those paths that are localized,
in the sense that they spend almost all of their time in regions where ¢ is large. The
latter implies that for bounded £ the quenched Lyapunov exponent equals esssup£(0)
instead of E(£(0)).

2. What is interesting about Theorem 3.1.1 is that it reveals a sharp contrast with what
is known for the annealed Lyapunov exponent

(k) = lim %1ogE(u(O, 0). (3.1.19)

t—o0

Indeed, there are choices of £ for which x — A1(k) is everywhere infinite on [0,0), a
property referred to as strongly catalytic behavior. For instance, as shown in [GdHO06], if
& is v times a field of independent simple random walks starting in a Poisson equilibrium
with arbitrary density, then this uniform divergence occurs in d = 1,2 for v € (0, 00) and
ind >3 forvy e [1/Gg,00), with G4 the Green function of simple random walk at the
origin. By Example 3.1.2(e2) (with 8 = 1), this choice of £ is Gértner-hyper-mixing.
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3.1 Introduction and main theorem

3. The annealed Lyapunov exponents
1
Ap(k) = lim n log E([u(0,t)]?), p €N, (3.1.20)

were studied in detail in a series of papers where £ was chosen to evolve according to
four specific interacting particle systems in equilibrium: independent Brownian motions,
independent simple random walks, the simple symmetric exclusion process, and the voter
model (for an overview, see [GAHMO08]). Their behavior turns out to be very different
from that of A\g(x). In [EdHM14a] it was conjectured that

Kli_)ngo[)\p(/i) — (k)] =0 VpeN (3.1.21)
because ¢ is ergodic in space and time. For the case where A,(k) = oo this statement
is to be read as saying that lim,_, - Ag(k) = 0o. The heuristic behind this conjecture is
that in the annealed setting the regions where £ is large are close to the origin, so that the
random walk can easily find them. In the quenched setting, however, these regions are
far away from the origin, but since k is large the random walk is still able to easily find
them. This conjecture was furthermore supported by the fact that there are examples of
¢ for which

Kli_}ngo Ap(k) = E(£(0,0)) (3.1.22)
(see [GAHO6], [GAHMO7] and [GAHM10]). Nonetheless, Theorem 3.1.1 shows that this
conjecture is false. The reason is that, because of the large diffusivity, the random walk
is unlikely to spend a large time in the regions where ¢ is large. Thus, for a ¢ that is
Gértner-hyper-mixing and satisfies conditions (0) and (2) in Section 3.1.1, the qualitative
behavior of k — A\g(k) is as in Fig. 3.2.

Ao (k)

0 R

Figure 3.2: Qualitative behavior of k — Ao(k).

4. Our proof of Theorem 3.1.1 is based on a multiscale analysis of &, in the spirit of
[KS03] and consists of two major steps:

(I) We look at the bad R-blocks for all R € N and show that bad R-blocks are rare for
large R. Since these blocks are located randomly in space-time, it is a non-trivial
task to control the time the random walk spends inside them. Therefore we search
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for the optimal set in space-time, with the same space-time volume as the union
of the bad R-blocks, that maximizes the expected time the random walk spends
inside. For that we make use of discrete rearrangement inequalities for local times
of simple random walk. These show that the contribution to the expectation in
(3.1.7) coming from bad R-blocks increases when we move these blocks towards the
origin. Therefore this contribution can be bounded from above by an expectation
that pretends the bad R-blocks to be rearranged in a deterministic space-time
cylinder around the origin. Since bad R-blocks are rare, this cylinder is narrow.
Afterwards, because simple random walk is unlikely to spend a lot of time in a
narrow space-time cylinder, we are able to control the contribution coming from
bad R-blocks to the expectation (3.1.7) uniformly in ¢ and .

(IT) We look at the good R-blocks for all R € N. We control their contribution by using
an eigenvalue expansion of (3.1.7). An analysis of the largest eigenvalue in this
expansion concludes the argument.

5. A related model is that of directed polymers in random environment. Here, time is
discrete and the random environment ¢ = {£(z,n): = € Z% n € Ny} is i.i.d. in space
and time. Thus, at every unit of time £ is updated in space in an i.i.d. manner, so that
this choice of ¢ satisfies a discrete-time version of the Gértner-hyper-mixing assumption.
A choice of ¢ in continuous time that is similar in spirit is £ = W, where W is space-
time white noise. This model was studied in [CM94], [GAHO7] and it was conjectured
that all Lyapunov exponents merge as x — oco. Note that W is not a function, so that
this model does not fall into the class of models considered in the present paper, and
Theorem 3.1.1 does not apply directly. However, due to the space-time independence of
W, we may expect that a suitable notion of Gértner-hyper-mixing exists for W and that
similar techniques work.

The remainder of this paper is organized as follows. In Section 3.2 we formulate three
key propositions and use these to prove Theorem 3.1.1. The three propositions are proved
in Sections 3.3-3.7, respectively. In Appendix 3.8 we prove two technical lemmas that

are needed in Section 3.4, while in Appendix 3.9 we prove a spectral bound that is needed
in Section 3.7.

3.2 Three key propositions and proof of Theorem 3.1.1

To state our three key propositions we need some definitions. Fix k, € N, and £ > 0. We
say that ®: [0,¢] — Z< is a path when it is right-continuous and

|@(s) —@(s—)|| <1 Vs e|0,t]. (3.2.1)
Define the set of paths

(k. t,A) = {®: [0,1] — Z: ® crosses k. 1- blocks}. (3.2.2)
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3.2 Three key propositions and proof of Theorem 3.1.1

For A C Z% x [0, 00), let II;(A) denote the projection of A onto its first spatial coordi-
nate, i.e.,

I (A) = {(21,8) € Z x [0,00): there is y € Z* such that y; = 21 and (y, s) € A}.
(3.2.3)
When A can be written as A = A x T, where ACZdand T C [0,00), then for y € Z we
sometimes write y € IT; (A), when there is a s € Z such that (y, s) € II1(A). Moreover,
we denote by IT; (X*)(s) the first coordinate of the random walk X" at time s. For
A C 749 x [0,t] we denote A(s) = AN (Z? x {s}) and let I;(A) be the local time of X* in
A up to time ¢, i.e.,

le(A) = /0 I{X"(s) € A(s)} ds. (3.2.4)

In a similar fashion we let I;(IT;(A)) be the local time of II;(X*) in II;(A) up to time
t. Furthermore, we let I;,(BAD%(¢x)) and I,(BAD®(¢)) denote the local time of X* in
(0,b,c)-bad R-blocks up to time ¢ for the potential {x and in (4,b,c)-bad 1-blocks up
to time t for the potential £, respectively. Here and in the rest of the paper a bad R-
block is (6,b, ¢)-bad for a choice of K,§,b,c and some A > Ay, m > myg, according to
Definition 3.1.5.

In what follows, when we write sums like >, ;/4r OF S2598" we will pretend that

t/AR and elogt are integer in order not to burden the notation with round off brackets.
From the context it will always be clear where to place the brackets.

Proposition 3.2.1. There is a Co > 0 such that for every € > 0 and § > 0 there is

an A = A(e,d) > 3, satisfying lime o A(e,0) = oo, such that &-a.s. for all Kk > 0 and all
t > 0 large enough,

F (exp {/Otg(X"(s),t— 5) ds}) <e ' By (exp {/;E(X“(s),t — ) ds}>1/2

elogt
x Ey <exp {25Adlt(BAD5(§)) +2 ) sAUTDA, (BADst(gK))}
R=1

1/2
x Wk, < Cort: X" € H(k*,t,A)}> )

(3.2.5)
where

&z, s) = 2¢(w, 5)1{&(x, s) < §AY (x,8) is in a good 1-block of ¢} (3.2.6)
Proposition 3.2.2. There is a Cy > 0 such that for every e,e > 0 and § > 0 there is

an A = Ale,€,0) > 3, satisfying limz o A(e, €,0) = 0o, such that &-a.s. for all & > 0 and
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all t > 0 large enough,

elogt
Eo (exp {25Adlt(BAD5(§)) +2 ) sAUDY, (BAD‘SR(gK))}

R=1 (3.2.7)

X ]1{3 k. < Cort: X" € H(l@,t,A)}) < et
Proposition 3.2.3. There is a constant Cs > 0 such that, for every A > 1 and § > 0,

1 An_ C
lim sup lim sup — log Ey | exp E(X"(s),An — s)ds <=2 456 & —a.s.
koo  n—oo An 0 A
(3.2.8)

Proposition 3.2.1 estimates the Feynman-Kac formula in (3.1.7) in terms of bad blocks
and good blocks, Proposition 3.2.2 controls the contribution of bad block, while Propo-
sition 3.2.3 controls the contribution of good blocks.

We are now ready to prove Theorem 3.1.1.

Proof. Note that by Theorem 1.2(i) in [GdAHM12], for all x > 0 we have the lower bound
Ao(k) > 0. Thus, it suffices to show the inequality in the reverse direction. To that end,
note that for any A > 0

1

Ao(k) < limsup — log u(0, An). (3.2.9)
n—o00 An

Indeed, when t € [An,A(n + 1)), n € N, then inserting the indicator on the event

{X"(s) =0foralls € [0,A(n +1) — ¢t} in (3.1.7) and an application of the Markov

property at time A(n + 1) — ¢ yield that

u(0, 1)
< Py(X"(s) = Ofor all s € [0, A(n+ 1) — #]) "% x e~ J""V €09 ds 0,0, A(n + 1))
< 2AR(AMFD=1) o o= [PV £0,5)ds o u(0, A(n +1)).
(3.2.10)
Moreover, by the time ergodicity of £ in time it can be shown that
tliglo 7 £(0,8)ds =0, (3.2.11)

so that (3.2.9) can be deduced from (3.2.10) (using also that ¢t € [An, A(n+1))), (3.2.11)
and the fact that (A(n + 1) —t)/t — 0 as t — oo. Hence, it is sufficient to estimate
u(0, An), n € N. To continue, fix Cy,C3 > 0 according to Propositions 3.2.1-3.2.3, and
fix £,€,0 > 0. According to Proposition 3.2.2, there is an A = A(g, €, ) such that, {-a.s.
for all Kk > 0 and all ¢ of the form t = An with n € N large enough, the term in the
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left-hand side of (3.2.7) is bounded from above by e¥4™. According to Proposition 3.2.3,
we have

An
Ey (exp { E(XK(S), An — S) ds} ) < 655A"+Csn+x(f<,n) (3.2.12)
0

with limsup,,_, . limsup,,_, . x(k,n)/n = 0. Proposition 3.2.1 therefore yields that, for
all ,€,0 > 0,

C 5 g
lim sup Ao ) < 21t 50t g (3.2.13)
Since limg)o A(e, €, ) = oo by Proposition 3.2.2, we get that for all § > 0,
. 5
lim sup Ag(k) < =4. (3.2.14)
K—00 2
Let § | 0 to get the claim. |

3.3 Proof of Proposition 3.2.1

The proof is given in Section 3.3.1 subject to Lemmas 3.3.1-3.3.2 below. The proof of
these lemmas is given in Section 3.3.2.

3.3.1 Proof of Proposition 3.2.1 subject to two lemmas

Recall (3.2.2). For A > 1, R € N and ® € II(k.,t, A), define

=Z4(®) = number of bad R-blocks crossed by @,

—Ak. -
=M= sup ER(D).
eI (ks t,A)

(3.3.1)

Lemma 3.3.1. For every € > 0 there is an A = A(e) > 3 satisfying lim. o A(e) = oo
such that
P(Eg’k* > 0 for some R > clogt and some k, € N) (3.3.2)

is summable over t € N. A possible choice is A = e'/*24Cd+DH for some a > 1.

Lemma 3.3.2. There is a Ca > 0 such that &-a.s. for all A> 1, allt >0 and all Kk >0
large enough,

E0<exp{/0t§(X”(s),t —s) ds} {3k, > Cort: X" € H(/@,t,A)}) <e ' (3.3.3)

We are now ready to prove Proposition 3.2.1.
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Proof. Fix Cs in accordance with Lemma 3.3.2 and € > 0. Let 6 > 0 and fix A > 1
according to Lemma 3.3.1 such that §A? > K, see Definition 3.1.5. Note that

t
Ep <exp {/ E(X"(s),t — ) ds} {3k, < Cort: X" € H(l@,t,A)})
0
N(X"t) g, t
:E0<exp Z / E(ximr,t —u) du—l—/ §(rn(xng),t—u)du (3.3.4)
i=1 Si—1 SN(XK,t)

x 13k, < Cort: X" e H(k*,t,A)}>,

where N (X", t) is the number of jumps by X* up to time ¢, 0 = zo,21,...,Tn(xx¢) are
the nearest-neighbor sites visited, and 0 = sp < s1 < -+ < sy(x=;) <t are the jump
times. To analyze (3.3.4), define

N(X*.t)
A(BADg) = {u € [sic1,8:): 0AR < €21t —u) < 5A(R+1>d}
=1
U {“ € [sn(xnpt): AR < E(mn(xnp,t —u) < 5A(R+1)d}.

(3.3.5)
Then the contribution to the exponential in (3.3.4) may be bounded from above by

/tg(X”(s),t — $)I{E(X"(s),t — s) < 5A%}ds + Y sATHTVY A, (BADS)|.  (3.3.6)
0

ReN

By Definition 3.1.3 and the fact that JA? > K (see the line preceding (3.3.4)), if JAT¢ <
E(ximg,t—u) < AR+ then (xi—1,t — u) belongs to a bad R-block for the potential
&x. Hence

|A:(BAD%)| < 1;(BADY, (¢k)). (3.3.7)
To continue we write the indicator in (3.3.5)

1{&(X"(s),t — s) < 6A% (X" (s),t — s) is in a good 1-block of £}

4 o (3.3.8)
+ W{E(X"(s),t —s) < JAY, (X"(s),t — s) is in a bad 1-block of £}.

By Lemma 3.3.1 and our choice of A at the beginning of the proof, {-a.s. for ¢ large enough
there are no bad R-blocks with R > clogt. Thus, the expectation in the right-hand side
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of (3.3.4) may be estimated from above by

Eo<eXp{/Ot€(X“(S)7t— 5)

x I{E(X"(s),t —5) < 0A (X"(s),t — s) is in a good 1-block of £}ds

elogt (3 3 9)
X exp {6Adlt(BAD5(§)) + ) 5A<R+1>dzt(BAD§Q(5K))}

R=1

X ]l{EI k. < Cart: X" € H(k*,t,A)}>.

Recall (3.2.6). An application of the Cauchy-Schwarz inequality yields the following
upper bound for (3.3.9):

(oo [c-aa)

elogt
x Eg <exp {25Adlt(BAD5(§)) +2 ) 5A(R+1)dlt(BAD‘5R(§K))} (3.3.10)
R=1

1/2
X 1{3 k. < Cort: X" € H(k*,t,A)}> .

The claim in (3.2.5) therefore follows by combining (3.3.4), (3.3.6-3.3.7) and (3.3.9)—
(3.3.10) with Lemma 3.3.2. |

3.3.2 Proof of Lemmas 3.3.1-3.3.2

Proof. For the proof of Lemma 3.3.1, see Lemma 2.3.3 or [EdHM14a, Lemma 3.3]. To
prove Lemma 3.3.2, use Cauchy-Schwarz to estimate the expectation in (3.3.3) from
above by

Ey (eXp {2/;5()(“(8),1?— s) dS})
(3.3.11)

To bound the first term in (3.3.11), note that by [EdHM14a, Eq.(3.54)] there is a C > 0
such that &-a.s. for all ¢,k > 0,

Eo(e”ot E(X7(s),t—s) ds) < ptC(r+1) (3.3.12)

1/2 1/2

P (3 ko > Cont: X* € H(k*,t,A))

To bound the second term in (3.3.11) we use a similar strategy as for the proof of
Lemma 3.4.4. Given ly,...,l;;4 € N, we say that X* has label (1,... ,lt/A) when X*

93



3 Space-time ergodicity for the quenched Lyapunov exponent

crosses [; 1-blocks in the time interval [(: — 1)A,4A), i € {1,...,t/A}. Fix Cy > 0 and
write

P (XN € II(k,,t, A) for some k, > OQIit>
o (3.3.13)
Z <X“ € I(k,,t, A) for some k, € (jCaxt, (7 + 1)02/%])

For j € N, write Z(z i) to denote the sum over all sequences (l{, .. ,l{/A) € Nt/A

19 )
with jCokt < Zf/fi I/ < (j + 1)Cykt. Then each summand in (3.3.13) may, by an
application of the Markov property, be rewritten as

> Eo(1{X" has label (,...,8,, )} Pxe(a) (X" has label 1] ,) ).
GO

_ ~(3.3.14)

Note that the number of jumps of a path ® that visits I 1-blocks is at least (17 /24 —1)A.

This is because for each 1-block there are (2¢ —1) 1-blocks with the same time coordinate
at [>°-distance one. Hence, we may estimate (3.3.14) from above by

3 Eo(ll{X" has label (1.1, 1)})130 (N(X”,A) > (1 /24 - 1)A), (3.3.15)

GRS

where N (X", A) denotes the number of jumps of X* in the time interval [0, A). An itera-
tion of the arguments in (3.3.14-3.3.15), together with the tail estimate P(POISSON()\) >
k) < e AAe)*/k*, k > 2A+1, for Poisson random variables with mean ), yields that for
C’ > 0 large enough each summand in (3.3.13) is bounded from above by

> I » (N(X",A) > (1 /24 - 1),4)

..., /A) :lI >kC"

< Y I e exp{ — (/27 — 2) Alog([kC" /2% — 2] /2df<:e)}.
(Ul ) il 2RC

(3.3.16)

(It suffices to pick C’ such that (C’/2% — 2)A > 4eAdk + 1, which for A > 1 and & > 1

is fulfilled when C’ > 24(4de + 3).) Now note that if Cy > 2C”, then for all j € N,

D= JiCat. (3.3.17)
i:ld >k C" 2

Hence, inserting (3.3.17) into (3.3.16), choosing C large enough, and using the fact that

for some a,b € (0,00) there are no more than ae®VC2" such sequences (I ,...,li/A)

(see [HR18] or [E42]), we get that for some C” > 0 the left-hand side of (3.3.13) is

bounded from above by e~¢"#. Inserting this bound into (3.3.11), using that C” — oo

as Co — 00, and using (3.3.12), we get the claim. |
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3.4 Proof of Proposition 3.2.2

3.4 Proof of Proposition 3.2.2

Proposition 3.2.2 is proved in Section 3.4.2 subject to Propositions 3.4.1-3.4.2 below,
which are stated in Section 3.4.1 and proved in Sections 3.5-3.6.

3.4.1 Two more propositions

Endow Z with the ordering 0 <1 < -1 <2< -2 <3 <---. We say that two functions
f,9: Z — R are equimeasurable when

HzxeZ: f(x) > A} =|{x €Z: g(z) > N} VYA>0. (34.1)

The symmetric decreasing rearrangement of a function f: Z — R is defined to be the
unique non-increasing function ff: Z — R that is equimeasurable with f. Given A C Z,
A* C 7 is defined to be the unique set such that (14)* = 1.

Recall the definition of IT; in (3.2.3). The one-dimensional symmetric decreasing rear-
rangement of B C Z¢ x [0, 00) is the set

mBy= J ({x € Z: (x,5) € (B)} x {s}). (3.4.2)

s€[0,00)

For A > 1 and R € N, an R-interval is a time-interval of the form [kAR, (k + 1)A%),
0 < k < t/AF. To make the proof more accessible, we no longer distinguish between
badness referring to i (where £ was defined below (3.2.4)) and badness referring to &.
Since both potentials satisfy the same mixing assumption (al) it will be clear from the
proof that this does not affect the result.

Proposition 3.4.1. Let ® € I1(k,,t, A). Then for all A large enough there is a sequence

(0r)Ren in (0,00) satisfying
> AR /bR < 0o (3.4.3)
ReN

such that &-a.s. the number of R-intervals in which ® crosses more than drk./(t/A) bad
R-blocks is bounded from above by \/drt/A%. A possible choice is
op = KlA_gdz/?’A_4d(2d+1)R/3 for some K1 > 0 not depending on A and R.

Proposition 3.4.2. For every e,t > 0, every sequence (Br)ren in Z% x [0,t] and every
sequence (Cr)ren in [0,00) (see Fig. 3.3),

elogt elogt
E0<exp{ > Cth(BR)}> < E()(exp{ > cht(nl(BR)ﬂ)}) (3.4.4)
R=1

R=1
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3 Space-time ergodicity for the quenched Lyapunov exponent

space - (] D space
[]

time time
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Figure 3.3: The picture on the left shows a configuration of space-time blocks before its re-
arrangement, the picture on the right after its rearrangement. Note that in each
time-interval the total space volume of the blocks is the same in both configurations.

3.4.2 Proof of Proposition 3.2.2 subject to two propositions

Proof. Fix e > 0 and A > 1 according to Propositions 3.2.1 and 3.4.1, and fix £ > 0.
The proof comes in 6 steps.

1. We begin by introducing some more notation. Define the space-time blocks

d

Bi(x,k; k) = <H[\/E(x(j)—1)AR,\/E(x(j)+1)AR)ﬂZd> x kAR (k+1)AR), (3.4.5)

j=1

which we call (x, R)-blocks. These blocks are the same as Eg’a(az, k;0,0) = Bp'“(x, k)
in (3.1.13) with a = /. For k, € N and (2, ki)o<i<k, € (Z? x N)* define

BAD% ((xi, ki)o<i<k. )

= {Bﬁ(x, k): Ba(x,k) is bad and there is a 0 < i < k, such that (3.4.6)

Bi(x, k) intersects B{*(z;, ki; k) }
2. We write I;(BADY) for the local time of X* in (,b,c¢)-bad R-blocks up to time t,

where badness refers either to £ or {. By (3.2.7), it is enough to show that for all k and
t large enough,

elogt
Eo <exp {4 D gAY, (BAD‘;)} 1{3k, < Cort: X" € U(ks,t, A)}) < e
R=1

(3.4.7)
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3.4 Proof of Proposition 3.2.2

Recall (3.2.2) to note that the left-hand side of (3.4.7) equals

Cakt elogt
> E0<exp {4 > gAETD, (BADJR)} 1{ X" crosses k, 1—blocks}>. (3.4.8)

k.=t/A R=1

To prove (3.4.7), we attempt to apply Proposition 3.4.2. To that end, for each k, we must
sum over all configurations of k, 1-blocks that may be crossed by X*. However, this sum
is difficult to control, and therefore we do an additional coarse-graining of space-time by
considering (k, R)-blocks instead of R-blocks. To that end we first note that there is a
Cy > 0 such that if X* crosses k. 1-blocks then it crosses at most Cyk,/\/k+2t/A (k,1)-
blocks (see Lemma 3.5.6 in Section 3.5.4 for a similar statement). To see why, note that if
X" crosses I; < y/k 1-blocks in the time-interval [(i—1)A,iA), 1 < i < ¢/A, then it crosses
¥ <2 (k,1)-blocks in the same time-interval. Moreover, if j\/k+1 <1; < (j + 1)/k for
some j € N, then I < j+ 2 < (j + 2)l;/j+/k. Hence, the total number of (k,1)-blocks
that may be crossed by X* is bounded from above by

t/A

S
=1

3l; 3k,
o2 > S <2/A+ =, (3.4.9)
1<i<t/A 1<i<t/A vk VE
Li<VE li>\/r+1

Thus, (3.4.8) is bounded from above by

CoCuv/Kt+2t/A elogt
Z Ey (exp {4 Z SATFDAL, (BAD‘;)} 1{ X" crosses k. (, 1)—blocks}>.
k.=t/A R=1
(3.4.10)
To analyze (3.4.10), we fix k. € [t/A, CoCy\/kt + 2t/A] and we write

1{ X" crosses k. (k,1)-blocks}
= Z 1{ X" crosses B{ (z;, ki;k),0 < i < ki }. (3.4.11)

(BlA(w'i7k7i§N))0§i<k*

Here, the symbol Z(Bf(1i>ki;ﬁ))0§i<k* denotes the sum over all sequences of blocks
(Bf*(x:, ki; k))o<i<k., which may be crossed by a realization of X*. In particular, in
(3.4.11), the sum is taken over a subset of sequences of blocks, which have spatial distance
one (since X" is a nearest-neighbor random walk it follows that two consecutive blocks,
which are visited by X" necessarily have spatial distance one) and are such that the
events in the indicators on the right hand side of (3.4.11) are disjoint. Recalling (3.4.6),
we may estimate each summand in (3.4.10) by

elogt
Z Ey <exp {4 Z SAETD, (BAD‘sR ((xi, ki)0§i<k*)) }
)0§i<k*

(B! (@i ki) R=1 (3.4.12)

x L{X* crosses Bi*(z;, ki;k),0 <i < ki } .
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3 Space-time ergodicity for the quenched Lyapunov exponent

By Cauchy-Schwarz, (3.4.12) is at most

elogt 1/2
Z Ey (exp {8 Z SAFRADA, (BAD(]S%((xia ki)0§i<k*)) } )1

(B (zi,ki31))o<i<hs R=1

X [PO (X"”” crosses Bf‘(:z:i, ki k),0<i< k*)} 1/2.
(3.4.13)

3. By Proposition 3.4.2, the first factor in the summand of (3.4.13) is not more than

elogt 1/2
EO <exp {8 Z 5A(R+1)dlt (Hl (BAD[sR((SEZ, ki)0§i<k* ))ﬁ) } >‘| . (3414)

R=1

Next, if X* crosses k. (#,1)-blocks Bf'(z,k; ), then a trivial counting estimate yields
that X* crosses at most k.+/r 1-blocks. Therefore, by Proposition 3.4.1, the number of
R-intervals in which X* crosses more than drk.\/kA/t bad R-blocks is bounded from
above by \/dgt/Af. We call these R-intervals R-atypical. Similarly, an R-interval is
called R-typical, if the number of bad R-blocks crossed by X* is bounded by dgk.\/xA/t.
Define

R*(ky) = max {R € N: dpk./kA/t > 1}. (3.4.15)

If R > R*(k.), then there are no bad R-blocks in R-typical intervals. (By the choice of
R, their number is strictly less than one and therefore is zero.) Hence the local time in
bad R-blocks is determined by the local time in bad R-blocks, which lie in R-atypical
intervals. Consequently,

lt (Hl (BAD%((CE“ ki)0§i<k*))u) S (\/at/AR)AR = 5Rt. (3416)

On the other hand, if 1 < R < R*(k.) (see Fig. 3.4), then there is a contribution coming
from R-typical intervals as well, and so

I, (Hl(BAD‘;((xi,ki)ogi@*))ﬁ) < font +L(Br(k.)), (3.4.17)
where
Br(k,) = ([ — LARS gk RAL, %ARéRk*\/EA/t) mz) % [0, 1. (3.4.18)

Hence, (3.4.14) is bounded from above by

R* (k) 1/2
E0<exp{8 > 5A(R+1)dlt(§R(k*))}>] exp{4Z5A(R+l)d m}. (3.4.19)

R=1 ReN

For A large enough, by Proposition 3.4.1 and the specific choice of (§r)gen in Propos-
tion 3.4.1, the sum in the second term is < &t/2.

4. To estimate the first factor in (3.4.19) and control the second factor in the summand
of (3.4.13), we need the following two lemmas whose proof is deferred to Appendix 3.8.
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3.4 Proof of Proposition 3.2.2
space

LT HE

Figure 3.4: The picture shows a possible configuration of bad R-blocks after its rearrangement.
There are two time-intervals in which the number of bad R-blocks is atypically large,
i.e., larger than dgrk«\/kA/t. The local time in these bad R-blocks can be bounded
from above by the total length of these time-intervals, which is at most v/drt. The
local time of the bad R-blocks in the other time-intervals can be bounded from
above by the local time of the enveloping dashed block, i.e., ER(k*).

Lemma 3.4.3. Let X" be simple random walk on Z with step rate 2k. There is a Ko > 0
such that for all kK > 0, all n € N, all B1,B2,...,8, > 0 and all nested finite intervals
0=IhchLCLC---CI,CZ,

o) 325 o ()

=1 zel;

+ o(t),

(3.4.20)
where l;(X ", x) is the local time of X" at site x up to time t.

Lemma 3.4.4. There are C5,Cs > 0 such that for all k,t > 0 large enough, all A > 0
and all k. > Cst/A,

Py (X“ crosses ki (K, 1)—blocks) < e~ CoAks, (3.4.21)

Note that A5, < ARSg, and so Bryi(ks) € Br(k,) for all R € N. Moreover, for
ki < CyCy/kt+2t/Aand 1 < R < R*(k,) we have that the cardinality of the spatial part
of the blocks defined in (3.4.18) satisfies |Bg (k)| < |Bi(ks)| < A261CoCyk + 2A8,1/7,
which is bounded uniformly in t. To apply Lemma 3.4.3, we choose to (which may depend
on k) such that for each family of intervals I, ..., Ig«,), k« € [t/A, CoCyy/kt + 2t/A],
with the property that |I;| € [A, A26:C2Cyk + 2A81+/k]| for all i € {1,..., R*(k.)} the
assertion of Lemma 3.4.3 holds uniformly in ¢ > tg. Then, for all ¢t > tg, the expectation
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3 Space-time ergodicity for the quenched Lyapunov exponent

in the left-hand side of (3.4.19) is at most

e Rz (Z&mm )"

‘BR )\ Br(k

+ o(t)}, (3.4.22)

where Bg- ()11 (k«) = 0. Next, note that

APSpk./RA

|Br(ks) \ Brea (k)| < "

(3.4.23)

Therefore the first term in the exponent of (3.4.22), may be estimated from above by

k)T R 3/2
KT Z Atk A (285A<J+1>d> ]
o) . ” (3.4.24)
< (86)3/2K2k*A3d/2+1 Z AR5R<ZAjd> ]
R=1 j=1
Furthermore,
ZAJd Ad — (ARd 1) < cAfd, (3.4.25)

where C' > 0 does not depend on A. Hence, the right-hand side of (3.4.24) is at most

R* (k+)
(80)%2C Kok, A4 N " ARG A2, (3.4.26)
R=1

Recalling our choice of g in Proposition 3.4.1, we can estimate the sum in (3.4.26) from
above by

KlA‘8d2/2A‘D(d) {1 _ A—R*(k*)D(d)]

e C (3.4.27)

with D(d) = (16d*> —d — 6)/6 > 0. Since A > 3 by Proposition 3.2.1, the last term
in (3.4.27) is bounded uniformly in A and R*(k.). Inserting (3.4.27) into (3.4.26), we
see that there is a C7 > 0, not depending on A, such that the exponent in (3.4.22) is
bounded from above by (86)3/2C; AP Dk, + o(t) with D’'(d) = (16d2 — 5d — 6)/3 > 0,
where o(t) is uniform in ¢ > tg for all k, € [t/A, CoCyv/kt + 2t/ A].

5. It remains to estimate (recall (3.4.13))

>

1/2
P, (XN crosses Bfl(xi,ki, k),0<i< k*)] . (3.4.28)
(Bf‘(w'hkv?%”))ogmk*
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Let | E(Bf(1i,ki;/‘€))0<i<k | denote the cardinality of the sum in (3.4.28), i.e., the number
of sequences of (k, 1)-blocks of length k., which may be crossed by a realization of X*.
By the Cauchy Schwarz inequality, (3.4.28) is not more than

>

(B{q(wviykim))ogmk*

2.

(BlA(w'i7k7i§N))0§i<k*

1/2 12

[ Z PQ(XK crosses Bf(xi,ki;m),0<i<k*)]
(Biq(mhk'i%“))ogmk*

1/2

1/2
Py (XN crosses k. (k, 1)-blocks)] .

(3.4.29)
To estimate the first term in the right-hand side of (3.4.29), note that
| 22(BA (e ki) )ozi o, | €Quals the number of different ways to visit k. (r, 1)-blocks. Hence,
there is a Cg > 0 such that |Z(Bf‘(zi,ki;n))ogi<k* | is bounded from above by e“sF« (see

also Lemma 3.5.5 in Section 3.5.4). Therefore, by Lemma 3.4.4, for k, > C5t/A and k
large enough, the right-hand side of (3.4.29) may be estimated from above by

eCshn = CoAk (3.4.30)

If k. < Cst/A, then, bounding each term in the sum in (3.4.28) by one and using the
same arguments as above, we may conclude that in this case (3.4.28) is bounded by

eCsCst/A, (3.4.31)

6. We are now in a position to complete the proof of (3.4.7). Combining the estimates in
(3.4.14), (3.4.19) and (3.4.24-3.4.30), we get for t > to (see the lines following (3.4.27)),

elogt
Eo <exp {4 > sAlEEDdy, (BAD%)} 1{3k, < Cort: X" € H(k*,t,A)}>
R=1
Cst/A-1
<t 3 o(88)3/2C7 AP D to(t) ,CsCst/A

k.=t/A

0204\/Et+2t/A , (3432)
4 /2 Z 6(86)3/2C7A’D D, +o(t) eCskx o= CoAk.

k.=Cst/A

< ea/z% 6(85)3/20705A*D/<d>t+o(t)ecgc5t/A +e8/20,
A
< (2t
where we use that the sum in the third line of (3.4.32) is finite for A large enough

(which requires that € is small enough; recall Proposition 3.2.1). This settles (3.4.7) and
completes the proof of Proposition 3.2.2. |
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3 Space-time ergodicity for the quenched Lyapunov exponent

3.5 Proof of Proposition 3.4.1

The proof is given in Section 3.5.1 subject to Lemma 3.5.1 below. This lemma is stated in
Section 3.5.1 and proved in Sections 3.5.2-3.5.5. Recall the definition of Eg’k* in (3.3.1).
Throughout this section we abbreviate

op = A 2QRADE (3.5.1)

3.5.1 Proof of Proposition 3.4.1 subject to a further lemma

Lemma 3.5.1. There is a C > 0 such that &-a.s. for all A and m large enough, all
R eN and all k, € N, N
Ak < CA~UE D A~ B g (3.5.2)

We are now ready to prove Proposition 3.4.1.

Proof. Let ® € II(k,,t,A) and R € N. Suppose that there is a 0z > 0 such that there are
at least \/0pt/A® R-intervals in which ® crosses more than dgk./(t/A) bad R-blocks.
In all of these R-intervals ® crosses at least

\/Et 5Rk*

_ §3/2 y—(R-1)
AR (1/A) 0n A ks (3.5.3)

bad R-blocks. Lemma 3.5.1 implies that &-a.s. 5%/214_(1?‘_1) < CA_(4d2_1)A_RgR, which
is the same as 6?}}/2 < CA=44" 4=2d(24+ DR This yields the claim below (3.4.3) with
K, = C?%/3, [

3.5.2 Proof of Lemma 3.5.1 subject to two further lemmas

The proof of Lemma 3.5.1 is a modification of the proof of Lemma 2.3.5 (and also of
[EdHM14a, Lemma 3.5]) and is based on Lemmas 3.5.2-3.5.3 below, which count bad
R-blocks. The proof of the second lemma, is deferred to Section 3.5.3.

For A>1, Re Nand ® € II(k,, t, A), define

U4 (®) = number of good (R + 1)-blocks crossed by @ containing a bad R-block,

\I/’;’k* =  sup UH(D).
DEM (ka t,A)
(3.5.4)
Lemma 3.5.2. There is a C' > 0 such that for all A and m large enough
]P’(\Il’é’k* > ' A6 pk, for some R € N and some k, € NO) (3.5.5)

is summable over t € N. A possible choice is C' = 3.
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3.5 Proof of Proposition 3.4.1

Lemma 3.5.3. For all e > 0 there is an A = A(e) > 3 such that &-a.s. there is a to > 0
such that for all R € N, all k, € N and all t > tg,

elogt—R—1
Eptt < AT N pdig@tig il (3.5.6)
i=1
Proof. Lemma 3.5.3 is the same as Lemma 2.3.7. The idea is to look at a bad R-block
and check whether it is contained in a good (R + 1)-block or in a bad (R + 1)-block. An

iteration over R, combined with a simple counting argument and Lemma 3.3.1, yields
the claim. n

We are now ready to prove Lemma 3.5.1.

Proof. By Lemma 3.5.2, £-a.s. for ¢ large enough \I/‘;JC* < C'A=Régk, for all R € N and
all k, € N. By Lemma 3.5.3, recalling that 0z = A=2¢24+DE we may estimate

Eé’k* < Ad+1 Z2diA(d+1)iC/A—(R+i)gR+ik*
i>1
_ d+1 p—R¥ di A(d+1)i g—i g—2d(2d+1)i
= C'AT ARGk, Y 2 AU AT g2 QA D (3.5.7)
i>1
QdAdA—Zd(2d+1)

. d+1 g—R5
= C'A“T AT 0Rk, 1 — 24 Ad A—2d(dt1) "

Note that for A > Ag > 1 there is a C' > 0, depending on Ay but not on A, such that
the term in the right-hand side of (3.5.7) is bounded from above by

CA~UE =D A=R§ ot (3.5.8)

which yields the claim. n

3.5.3 Proof of Lemma 3.5.2 subject to a further lemma

The proof of Lemma 3.5.2 is based on Lemma 3.5.4 below. Let 2 € Z¢ and k, R € N.
Abbreviate

x*(z,k) = 1{ By, (z, k) is good but contains a bad R-block}. (3.5.9)

Lemma 3.5.4. There is a C > 0 such that for all A and m large enough, all R € N and
all k, €N,

]P’( there is a path that crosses ky 1-blocks and intersects

~ < _ —R¥ .
at least BA~T6 gk, blocks By, (x, k) with x* (2, k) =1 ) < oxp{ — CA™ onk. }

(3.5.10)
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3 Space-time ergodicity for the quenched Lyapunov exponent

We are now ready to prove Lemma 3.5.2.

Proof. First note that k. > t/A and that, &-a.s. for ¢ large enough, 1 < R < elogt, by
Lemma 3.3.1. For each such R, we have by Lemma 3.5.4,

P ( there is a path that crosses k. 1-blocks and intersects at least )
3A~ RS Rk, blocks By, (z, k) with x*(z, k) =1 for some k, > t/A

exp{—CAR5pt/A}

1 — exp{—CA-Rig}

(3.5.11)

< Y exp{—CA "opk} <
k.>t/A

Because 1 < R < ¢logt and R — A‘RSR is non-increasing, the numerator in the right-
hand side of (3.5.11) is bounded from above by exp{—CA=¢!°8t5 . ,t/A} while the

denominator is bounded from below by 1 — exp{—CA‘slogtgs logt}. Using the choice of
A in Lemma 3.3.1, we see that (3.5.11) is bounded from above by

exp{—Ctl=2"" JA}

1. 3.5.12
1 —exp{-Ct—a'}’ @ ( )

Note that this is of order exp{—C"t?} for some C’, € > 0, and so the probability in (3.5.5)
is bounded from above by (e logt) exp{—C"t*}, which is summable in ¢ € N. n

3.5.4 Proof of Lemma 3.5.4 subject to two further lemmas

The proof of Lemma 3.5.4 is based on Lemmas 3.5.5-3.5.6 below, which are proved in
Section 3.5.5.

Proof. Our first further lemma reads:

Lemma 3.5.5. There is a C > 0 such that for alll € N and R € N there are no more
than eC possible ways for ® to visit at most | R-blocks.

Fix R € N. We divide blocks into equivalence classes such that blocks belonging to the
same equivalence class can essentially be treated as independent. To that end, we take
ay, a2 € N according to condition (al) in Definition 3.1.5 and say that (z, k) and («’, k")
are equivalent when

x =2’ (moday), k =k (mod ay). (3.5.13)

We denote the set of corresponding representants by ([z], [k]), and write }=(,) ) to
denote the sum over all equivalence classes. Note that the left-hand side of (3.5.10) is
bounded from above by

>oop

< there is a path that crosses k. 1-blocks and intersects
([=],[k)

at least 3A~ R gk, /atay blocks Bf (2, k) ) (3.5.14)
with x4(z, k) = 1 and (v, k) = ([z], [k])
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3.5 Proof of Proposition 3.4.1

Fix an equivalence class. Put pg = A~44@dHDEHDE (vecall (3.1.17)). To control the
cardinality of the number of different ways to visit a given number of (R + 1)-blocks, we
consider enlarged blocks, namely, we let

L=L(R) = (1/pg)"/ 4D (3.5.15)
and define

d
Bi(z, k) = [ [ [La(G)A®, L(z(j) + DAR) N Z* | x [LkA", L(k +1)A").  (3.5.16)

Our second further lemma reads:

Lemma 3.5.6. If ® crosses k. 1-blocks, then for all R € N it crosses no more than
Ir = 3k« JAR=LL blocks B (x, k).

We write B
U  Bialek) (3.5.17)

(wiski)o<i<ip, 4

to denote the union over at most {41 blocks Eﬁ (z,k) and

> (3.5.18)

(B£+1(wi)k'i))OSi<IR+1

to denote the sum over all possible sequences of at most {z4+1 blocks Eﬁ 11(x4, k) that
can be crossed by a path ®. Since each block Bﬁﬂ(x, k) that may be crossed by ® lies
in the union of (3.5.17), we may estimate the probability under the sum in (3.5.14) from
above by

Z ]P’( the union in (3.5.17) contains at least 343 zk, /aday )
blocks By, (z, k) with x*(z, k) = 1 and (z,k) = ([z], [k]) /°

(§§+1(1i=ki))0§i<zR+1

(3.5.19)

Next, note that the union in (3.5.17) contains at most Iz, L% (R + 1)-blocks and

that there are (lR“nLdH) ways of choosing n blocks Biy, (z, k) with x*(z, k) = 1 from

Ipy1 LY (R + 1)-blocks. Hence, by the mixing condition in (3.1.17) for A and m large
enough, each summand in (3.5.19) is bounded from above by

Lyt LT

l Latt 9
S (Y owr £ @ R 2 34 Gk ). (3520
n=0rkry1/afaz

where T'= BINOMIAL (I 1 L4, pr). Since
E(T)

= prlp L = lpyy = 3k, JARL = 3A~RA—44CHDRE - 3A-R§2 ) < 3AB5 Rk,
(3.5.21)
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3 Space-time ergodicity for the quenched Lyapunov exponent

we can apply standard large deviation estimates to bound the right-hand side of (3.5.20).
Indeed, by Bernstein’s inequality, there is a C’ > 0 (depending on a; and as only) such
that for all A and m large enough,

P(T > 3A "5 gk, Jatay) < e~ C'3A™ "onk.fafaz (3.5.22)
Moreover, there is a C” > 0 (not depending on A, provided A is large enough) such that
(1— pR)—lR+1Ld+1 < ePRIR41 LYY /(1=prR) < eC”BA’Rgfgk*' (3.5.23)

Furthermore, by Lemma 3.5.5, and after a possible increase of C”’, the sum in (3.5.18)
contains at most € lr+1 = €347 5%kk. elements. Hence, combining (3.5.14), (3.5.19-
3.5.20) and (3.5.22-3.5.23), we see that the left-hand side of (3.5.10) is bounded from
above by e~CA™"0rk- with C' such that CA=Fopk, > (C'Jalay — 672C")3A RSk,
which yields the claim in (3.5.10). |

3.5.5 Proof of Lemmas 3.5.5-3.5.6

Proof. For the proof of Lemma 3.5.5, see the proof of Claim 2.3.8. The proof of Lemma 3.5.6
goes as follows. Let R € N. Divide time into intervals of length LAT. Let IF and I;
be the number of blocks Eﬁ(x, k), respectively, 1-blocks, crossed by X* in the i-th time
interval [(i — 1)LAR iLAR), 1 <i < t/LAR. Note that [; > LAR~! because the length
of the time-interval of each block Eﬁ (z,k) is LAR, which may be divided into LA®~!
time-intervals of length A. Moreover X" has to cross at least one 1-block in each such
interval of length A. Also note that if [; = LA®~! then I[F <2 =2l;/I; < 2l}/JLAR-L If
LAR=1 4+ 1 <[; <2LAR~! then IF < 3, because X* may start at an interface between
two blocks Eﬁ (z, k) and immediately jump from one such block to another. However, to
afterwards reach the next block Eg(x, k) it has to cross at least LA®~! 1-blocks, and so
IF < 31;/1; < 31} /LAR=Y. Furthermore, for j € N, if jLAR1 +1 <[; < (j+1)LARL
then

< (G +2)l/L < (+2)Li/jLAR (3.5.24)
Therefore we have
t/LAR? LAR-1 t/LAR? B
ky = I > 1= 3.5.25
; 3 ; (3.5.25)
or Zf/:LlARil IF < (3/LAR=1)k, = I, which completes the proof. |

3.6 Proof of Proposition 3.4.2

In Section 3.6.1 we reduce the problem to one dimension and recall two discrete rearrange-
ment inequalities from the literature (Propositions 3.6.3-3.6.4 below). In Section 3.6.2
we use the latter to give the proof of Proposition 3.4.2.
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3.6 Proof of Proposition 3.4.2

3.6.1 Reduction to one dimension and discrete rearrangement
inequalities

Recall the definition of II; in (3.2.3) and the lines following (3.2.3).

Lemma 3.6.1. Let B C Z¢ x [0,t]. Then, for all C >0,

E, (eClt(B)) < E, (eClt(Hl(B)))' (3.6.1)

Proof. A d-dimensional simple random walk with jump rate 2dk is a vector of d inde-
pendent one-dimensional simple random walks, each having jump rate 2. Hence, given
any set B C Z9 x [0, 1],

Vs>0: X"®(s)e B = 1II;(X")(s) € I1(B)(s). (3.6.2)

This in turn implies that I;(B) < l;(II;(B)), which proves the claim. n

To prove Proposition 3.4.2 we need two discrete rearrangement inequalities [P96], [P98].
For an overview on continuous rearrangement inequalities we refer the reader to [LLO1,
Chapter 3].

Definition 3.6.2. A function L: Z x Z — [0,00) is called of Riesz-type when, for all
pairs of functions f,g: Z — [0, 00),

> f@ L@, y)gy) < > @)L y)gt(y). (3.6.3)

T,yeZ T,yEZ

Proposition 3.6.3. [P96, Theorem 2.2], [P98]) Let K : [0,00) — [0, 00) be non-increasing.
Then L: Z x Z — [0,00) given by L(z,y) = K(|z —y|) is of Riesz-type.

Note that (z,y) — pf(z,y) with p%(x,y) the transition kernel of one-dimensional
simple random walk with jump rate 2k is of Riesz-type. Indeed, p(z,y) = pf(z—y,0) =
p(|z — y|,0) is a non-increasing function of |z — y|.

The following multiple-sum version of Proposition 3.6.3 will be needed also.
Proposition 3.6.4. ([P96, Lemma 9.1 in Chapter 2], [P98]) Fizn € N. Let

Lo,L1,...,L,_1 be a collection of Riesz-type functions on Z X Z, and let Sy, S1,...,Sn
be a collection of non-negative functions on Z. Then

Z <1:[ Si(JTi)Li(iEi,iEiH)) Sy ()
-0

ZT0,T1,--,Tn €L 1=

o (3.6.4)
< > ( S Li(xi, ffi+1)> Sk (@n)-
0

L0, L1, Tn €L 1=
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3 Space-time ergodicity for the quenched Lyapunov exponent

3.6.2 Proof of Proposition 3.4.2

Proof. Let (Br)ren be a sequence in Z X [0,t] (recall Lemma 3.6.1) and (Cr)gren a
sequence of nonnegative numbers. Write

E0<exp{ > Oth(BR)}> =y %EO ({ > Oth(BR)} ) (3.6.5)
ReN neNy ReN

The n-th moments in (3.6.5) may be rewritten as

) . <HCR7>E0(H% (Br,) ) (3.6.6)

Ri,....;Rn
Write out
Hlt Bg,) / dsy .. / ds, 1{(X ),81) € Bp,,...(X"(sy), 8n) € Br, }, (3.6.7)
so that the second factor under the sum in (3.6.6) equals
/Ot dsi ... /Ot dsn, PO((X“(sl), 51) € Bryy ... (X%(sn),8) € BRn). (3.6.8)
Fix a choice of (s1,...,s,) € [0,¢]". Without loss of generality we may assume that

81 < 82 < ... < Sy, so that the probability in (3.6.8) becomes (zo = 0, so = 0)

n—1
3 <H 11{ 2, 1) € Br, }) <H P (xi,xiﬂ)). (3.6.9)
1=0

L1y, Tn €L
An application of Proposition 3.6.4 gives that (3.6.9) is bounded from above by
n—1
Z <H]1{ Ti, S 6 Bj:i }) <Hp§¢+1—51(xi’xi+l)>’ (3610)
X1,... 0 EL 1=0
recall also the first lines of Section 3.4.1. Then, by (3.6.8),
E0<Hlt(BRi)> < E0<Hlt(B§%i)>. (3.6.11)
i=1 i=1

Inserting this back into (3.6.5) and (3.6.6), we get the claim. |

3.7 Proof of Proposition 3.2.3

In Section 3.7.1 we introduce some notation and state two more propositions, Proposi-
tions 3.7.3-3.7.4 below, whose proof is given in Sections 3.7.3-3.7.4. In Section 3.7.2 we
give the proof of Proposition 3.2.3 subject to these propositions.
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3.7 Proof of Proposition 3.2.3

3.7.1 Two more propositions

Henceforth we assume that « in (3.1.13) takes the form o = 4Mx with M a constant
that will be determined later on. Recall the definition of II; below (3.2.2) and of ¢ in
(3.2.6).

Definition 3.7.1. The subpedestal of Bi"*"*(x,k) is (see Fig. 3.5)

BN (k) = {y € L (B (@, 1) ly(j) — 2(7)] > 2M KA, .
jE{12,... d}vz e oy (B @ k) | x {kA}. h

Definition 3.7.2. Let € > 0, and k,n € Ny such that n > k. A block Bf’4MH(x,k) 18

called e-sufficient at level n when, for every y € I (Bf’sif“(x, k)),

A
E, (exp {/0 E(X"(s),A(n — k) —s) ds}]l{N(X“,A) < M/@A}) <et (372

Otherwise it is called e-insufficient at level n. A subpedestal is called e-(in)sufficient at
level n when its corresponding block is e-(in)sufficient at level n.

space

(z(j) + 1)4AMKA

BAAME (g )

(x(j) = 1)4dMKA

time

kA (k+1)A

Figure 3.5: The thick line is the subpedestal.

Proposition 3.7.3. Let A > 1. There is a constant C3 > 0 such that for all n € N the
number of different sequences of subpedestals Bﬁ;ﬂf'{ (0,0), Bﬁ;ﬁf“(xl, 1,...,

Bﬁ;ﬁf“(xn_l, n — 1) with the property that there is a path ®: [0, An] — Z% with at most

MrAn jumps satisfying ®(kA) € Bﬁiﬁ“(mk, k), k € {0,1,...,n — 1}, is bounded from
above by e3™.

Proposition 3.7.4. Fize > 0. Let § = %6 in the definition of & and A > 1. Then there

is a kg > 0 such that, for all Kk > kg and &-a.s. for all n € N, all blocks Bf‘AM”(x, k),

rxeZl keN, k <n, are e-sufficient at level n.
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3 Space-time ergodicity for the quenched Lyapunov exponent

3.7.2 Proof of Proposition 3.2.3 subject to two propositions

Proof. The proof comes in 2 Steps.

1. Fix € > 0 and put 6 = %5. Choose k > kg according to Proposition 3.7.4. Then the
tail estimate P(POISSON()A) > k) < e=*(Ae)*/k¥, k > 2X 4 1, for Poisson-distributed
random variables with mean X shows that, for M > 0 large enough,

An_
Eo(exp{ o (8),An—8)d8}ﬂ{N(X vA")>M“A"}> (3.7.3)

< 204" ng—2drAn exp { — MrAn[log(M/2d) — 1]},

where we use (3.2.6). Since we later let x — o0, (3.7.3) shows that it is enough to
concentrate on contributions coming from paths with at most MxkAn jumps. To that
end, fix a Z%valued sequence of vertices g, z1, . .., Zn—1 such that zy = 0 and such that
there is a path that starts in 0, makes 0 < j < MxAn jumps, and is in the subpedestal
Bf’sif”(xk,k) at time kA for k € {0,1,...,n — 1}. By the Markov property of X"
apf)lied at times kA, k € {1,2,...,n — 1},

An
E0<exp{ ; §(X“(s),An—s)ds}]l{N(X“,An) < MkAn}

n—1

<[] ﬂ{X”(kA) € Bfﬁf”(xk,k)}> (3.7.4)

k=1

T | Ey<exp{/oAz<X“<s>,A<n k) =) d})

k=0 yeIly (B (o1 k

This is at most
"1:[1 sup )Ey<exp{/0AZ(X“(s),A(n—k)—s) ds}]l{N(X“,A) <M/<5A})

k=0 |J/EH1 (Bf’si%“(wmk)

+ sup ) E, <exp { /OA E(X"(s), Aln — k) — s) ds}]l{N(X“, A) > MKA})

y€elly (BlAAMN(ﬂCk;k

,sub

Sy

Jc{o,1,...,n—1}

A_
sup E, (exp { / E(X"(s),A(n — k) —s) ds}]l{N(X”,A) < MK:A})
k) 0

ke yEM (B it ™ (zx

X H sup Ey(exp{/AZ(X“(s),A(n—k)—s)ds}]l{N(X”,A) >M/$A}>
k) 0

k¢J yeHl(Bf‘,;iﬁ”(zk,

(3.7.5)
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3.7 Proof of Proposition 3.2.3

Now, by the Poisson tail estimate mentioned above and the fact that £ < 2047, the
second factor under the sum in (3.7.5) may be bounded from above by

(ez‘sAdHe_Qd“A exp { — MrA[log(M/2d) — 1]})”—|J|' (3.7.6)

Since, by Proposition 3.7.4 and our choice of  (see the observation made prior to (3.7.3)),
all blocks BA 4M“(x k), z € Z, k € Ny, k < n, are e-sufficient at level n, we may

conclude that all y € I, (B} 5411111‘)/["/”(31316, k)) with k € J are in an e-sufficient subpedestal at

level n. Hence, using the binomial formula, we may estimate (3.7.5) from above by

d+1 n—|[J
Z eAell (626A e 2drA exp { — MrA[log(M/2d) — 1]}) !

Jc{0,1,....n—1} (3.7.7)
= (eAE 4 24T g —2drA exp { — MrAllog(M/2d) — 1]})n

2. Summing over all possible sequences (%‘)ie{u _____ n—1} compatible with a path ® such
that ®(0) = 0 and N(®,An) < MkAn, and using (3.7.4-3.7.7) and Proposition 3.7.3,
we obtain

An
E0<exp{ ; §(X”(s),An—s)ds}]l{N(X“,An)<M/<5An}>

< Z Eyp <exp { /OAnE(X“(s),An —5) ds}]l{N(X“,An) < MrAn}

L1,L2y--,Tn—1

n—1
k=1
n—1 An_
< Z H sup Ey<exp{ f(X“(s),An—s)ds})
T1,@2,Tn 1 k=0 YEB{ A (@h,k) 0

< (Can (eAg 4 20AM —2drA exp { — MrA[log(M/2d) — 1]})"

Combining (3.7.3-3.7.8), we get

1
lnnsuphmsupA—logEo(exp{/ E(X"(s),t —s)ds })
K— 00 n— o0

C C
<324 L lim sup log ( S 204N g 2dnA exp { — MrAllog(M/2d) — 1]}) =2 +e
A A o A
(3.7.9)
Since € = 56, this yields the claim. |
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3 Space-time ergodicity for the quenched Lyapunov exponent

3.7.3 Proof of Proposition 3.7.3

Proof. Write || - || for the !-norm on Z%. Let B{f;ﬁf“(o, 0), Bﬁ;ﬂf'{(xl, 1),...,
Bff ;if“(xn_l, n — 1) be a sequence of subpedestals that may be crossed by a path ®
with at most M kAn jumps. Since ® needs at least (||zx —xk—1]| —d)+4M KA jumps to go

from Bﬁ;ﬂ/[”(xk_l, k—1) to Bf;if”(xk, k), k€ {1,2,...,n— 1}, we obtain the bound

n—1

MrAn n
— | —d)y £ —— = — 3.7.10
> (sl s < T = (3.7.10)
which implies that
n—1
1+4d)n
Zka_wk—ngi( 1 n (3.7.11)
k=1

As shown in Hardy and Ramanujan [HR18] and Erdés [E42], there are a,b > 0 such
that the number of unordered integer-valued sequences (aj)ren such that EkeN ar <
(1 + 4d)n/4 is bounded from above by ane’¥™. From this it follows that there is a ¢ > 0
such that there are at most n°vV"ane’V™ ordered integer-valued sequences (ak)1<k<n-—1
satisfying (3.7.11). To conclude, define ay, = ||zx — zk—1||, ¥ € {1,2,...,n— 1}, and note
_____ n—1} determines the sequence (zy)ieo,1,...,n—1} uniquely
when it is known for all k € {1,2,...,n — 1} and all j € {1,2,...,d} whether zx(j) —
2x—1(j) is positive, zero or negative. Consequently, the number of different subpedestals

Bf’sif”(o, 0), Bféﬂ/[”(xl, 1), Bﬁ;ﬂ/m(xn_l, n — 1) that may be crossed by a path ®
with at most MrAn jumps is bounded from above by 34"nVmane®V™® < ¢C" for some
C3 > 0. [ |

3.7.4 Proof of Proposition 3.7.4

The proof of Proposition 3.7.4 is given in Section 3.7.5 subject to Lemmas 3.7.5-3.7.6
below, which are stated in Sections 3.7.4.1-3.7.4.2. The proof of the first lemma is given
in Section 3.7.4.1, the proof of the second lemma is deferred to Appendix 3.9.

3.7.4.1 A time-dependent Feynman-Kac estimate
Recall (3.2.6). Abbreviate
Qrler = (—klogk, klog k) N Z4. (3.7.12)

Lemma 3.7.5. Fix A > 1 and m > 0 such that Am € N and let k > 0 be written in the
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3.7 Proof of Proposition 3.2.3
form k = K1k2 with k1 > 1. There is a ko = ko(M, A) such that, £-a.s. for all x € VAS

log E, <exp { /A E(X"(s), A —5) ds}]l{N(X“; A) < MnA})

Am
< ﬁ—log ((2/@10gﬁ:—1 d/Q —|—Z—/\1 (€1/R2), K > Ko,

k=1

(3.7.13)

where Al(ﬁk/ﬁzg) is the top of the spectrum of the operator A+-= = SUD ¢ [(k—1) /m,k/m) § (5 T)s
ke{l,2,...,Am}.

Proof. We give the proof for z = 0. The proof for = € Z\{0} goes along the same lines.
First note that we may rewrite the expectation in the left-hand side of (3.7.13) as

KA
E0<exp{%/0 E(X(s), A— s/k) ds}]l{N(X, kA) SMK:A}>, (3.7.14)

where X is simple random walk with step rate 2d. Furthermore, there is a kg = ko(M, A)
such that MrA < klogk for all kK > kq. Hence, by the Markov property of X applied at
times kx/m, k € {1,2,..., Am}, we may estimate (3.7.14) from above by

KA
Eo(eXp{%/O &(X(s),A—s/k) ds}]l{X([OjﬁA]) C Qﬁlogn}>

Am K/m
< H sup  Ey (exp{%/o (X (s),k/m— s/k) ds}]l{X([O,/a/m]) C Q’“"g”}>.

k=1 A
||| o <k log K

(3.7.15)
Next, for k € {1,2,..., Am} define

Ep(z) = sup E(x, ), RWAS (3.7.16)
re((k—1)/m,k/m)

Then (3.7.15) is at most

=l 1 N/m_ rklog Kk
[ sw Ez<exp{E/0 §k(X(s))ds}]l{X([0,n:/m])QQ }). (3.7.17)

k=1 x
||| oo <k log k

From now on we write k as k = k1ke, k1 > 1. Then, by Jensen’s inequality, (3.7.17) may
be estimated from above by

Am K/m 1/k1
H sup Ew<exp{/%2/o §k(X(s)) dS}]l{X([O“k;/m]) CQH]O%N})
k=1

. (3.7.18)
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3 Space-time ergodicity for the quenched Lyapunov exponent

For each k € {1,2,..., Am}, each expectation under the product in (3.7.18) is a solution
of the equation

Ouy t A 1¥ t
{ (2, 1) = [ (A + &k (@)ur | (2,1), [#]loe < klogk,t >0, (3.7.19)

ug(z,0) =1,

with Dirichlet boundary conditions evaluated at time «/m. However, on any finite sub-
set of Z7 the operator A + L&, is a self-adjoint matrix. Therefore, by the spectral
representation theorem, we may rewrite each expectation under the product in (3.7.17)
as
Qo5 x| B
ST /NG (kD) v (@), (3.7.20)
j=1

where )\JD (€,./K2) is the j-th largest eigenvalue of A + Ek /K2 with Dirichlet boundary
conditions on Q~'°8%, j € {1,2,...,]Q"'°8"|}, and the v}, j € {1,2,...,]Q"'°¢"|}, form

an orthonormal system of eigenvectors such that, for all k e{1,2,.. Am},
RIQ™™*" = ker(eAJ“Ek/’”) ® span{vf,j €{1,2,...,]Q" ="} }. (3.7.21)
(Since eATEx/%2 is a strictly positive operator, ker(e2+€#/#2) = {0}.) In particular, for
each k € {1,2,...,Am}, we may estimate using Parseval’s identity in the penultimate
inequality
|leogw‘ o
Z e(F/mIAT Cr/52) (08 1o n) 0F ()
j=1
|leogm‘ / |Q~10g~‘ 1/2
< ( Z e(l‘i/m))\jD(Ek/K2)<,U§€’ ]lleogm>2> ( Z e(n/m)AjD(fk/m)@;c’éwy)
j=1 j=1
< e(n/m)Af)(gk/N2)|‘ﬂQNlogw||2H5 HZ < e(”/m))\D £5,/K2) |inogn|
(3.7.22)
Combining (3.7.14)—(3.7.22), we get
A_
log E, exp{/ E(X"(s), A— ) ds}]l{N(X"‘;A) < MrA}
0
. . (3.7.23)
< —10g((2/<alog/<a— 1)4/2 +Z AP (&L ka).
1 k=1

Finally, by the Rayleigh-Ritz principle we have that AP (§;/k2) < Ai(€)/k2), where
A1(€x/K2) is the top of the spectrum of A + &, /ko. |
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3.7 Proof of Proposition 3.2.3

3.7.4.2 A spectral estimate

Let (B(7)),ecze be an arbitrary partition of Z? into finite boxes. Let (-,-) be the scalar
product on RZ and on ¢3(Z%). Let V: Z? — R be bounded such that there is a § > 0

for which

1
@) Y V() <2, wxezt (3.7.24)
yEB(x)

The proof of the following lemma is deferred to Appendix 3.9.
Lemma 3.7.6. Subject to (3.7.24), there is a ko > 0 such that, for all Kk > Ko,
1 1
sup <(A + —V) 1) f> <426 (3.7.25)
K K

fee?r(z?)
[ fll2=1

Lemma 3.7.6 and the Rayleigh-Ritz principle yield that the top of the spectrum of A+%V
is bounded from above by 4%5 for k > Kg.

3.7.5 Completion of the proof of Proposition 3.7.4

Proof. Fix § >0, A > 1 and m > 1. By Lemma 3.7.5, for kK = k1K2, k1 > 1, there is a
ko > 0 such that, for all &k > kg and &-a.s. for all z € Z,

- <exp { /OA (X" (s), A—s) ds}]l{N(Xﬁ; A) < MHA}) o

Am
Am K -
< Tllog ((2/@10g/€—1)d/2)—|— E sz\l(ﬁk/@), Kk > ko = Kko(M, A).

k=1
Next, by Lemma 3.7.6 with V = &, k € {1,2,..., Am} (recall (3.7.16)) and B(z) =

I, (B{*(z,0)) (recall (3.1.13); II; denotes the projection onto the spatial coordinates),
there is a K2 > 0 such that, for all ko > Ko and all k € {1,2,..., Am},

A (€ /K2) < 1L (3.7.27)
K2

We fix Ka. Then, there is a K1 = K1(m, K2) such that

n log ((2xlog ks — 1)d/2) <4, VK1 > K. (3.7.28)
K1

This shows that, &-a.s. for k > K1Ka, any block Bf’4M”(x,O), x € Z%, is e-sufficient at
level 1. The stationarity of £ in time completes the proof. |
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Appendix

3.8 Proof of Lemmas 3.4.3-3.4.4

In this section we prove two lemmas that were used in Section 3.4.

3.8.1 Proof of Lemma 3.4.3

Proof. Our first observation is that

lim sup % log Ey <exp {Z Bi Z lt(X”,x)}> < pu, (3.8.1)

t—o0

i=1  zel;
where
p= sup  p(f) (3.82)
fee?(z):
I fll2=1, f>0
with
w(f) = <f, KA + Zﬁi]lli‘| f> => B> ) -k [fle+1) - f)]? (3.8.3)
=1 =1 zel; TEZL

Indeed, this follows from the large deviation principle for the occupation time measure of
one-dimensional simple random walk on Z with jump rate 2« (which is the continuous-
time Markov process with generator kA) in combination with Varadhan’s lemma (see
[dHOO, Chapters 3—4]). A formal proof proceeds by truncating Z to a large finite torus,
wrapping the random walk around the torus, deriving the claim for a fixed torus size,
letting the torus size tend to infinity, and showing that the variational formula on the
finite torus converges to the variational formula on Z. The details are standard and are
left to the reader (see [dH00, Chapter 8]).

We claim that y is the largest eigenvalue of kA + Y7 | ;1;,. Indeed, by [HMOL11,
Theorem 2.2] the operator kA + > | 3;1;, has at least one eigenvalue. Consequently,
the min-max principle [RS4, Theorem XIII.1] yields the claim. The inequality in (3.4.20)
now follows from [S10, Corollary 1.4]. |

3.8.2 Proof of Lemma 3.4.4

Proof. Let t,x > 0 and let X* be one-dimensional random walk with step rate 2x > 0.
We first show that for all C' > 0,

__c?Vet
P0< sup |X"(s)| > C\/E) < 2e 2CH3VED (3.8.4)
0<s<t
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3.8 Proof of Lemmas 3.4.3-3.4.4

The proof is based on a discretization argument in combination with Bernstein’s inequal-
ity. Fix n € N with n > &, and define

1- 271_’{7 Y= 0
q"(y) =4 =, y==+1 (3.8.5)
0, elsewhere.

Let X = (XM (#));50 be the discrete-time random walk with jump distribution ¢"
and jump times k/n, k € N. Then, for each ¢t > 0, (X(n)(s))ossgt converges weakly as
n — oo to (X*(s))o<s<¢ in the Skorokhod space D([0,t],Z). Since X ™) is unlikely to
move in a short time interval, uniformly in n, it is enough to prove (3.8.4) for X (") with
n fixed. To that end, let k& € N be such that k/n <t < (k+ 1)/n. Note that, because
X () is a martingale, Doob’s maximal inequality and Bernstein’s inequality yield

C?kt
P XM (s) > Cv t> < {——} v C >0. 3.8.6
0 < osglirg)t (5) 2 ") =P 2(Cv/ Kkt + 3kt) ( )

The same inequality is valid for the probability of supg<,<;[—X ™ (s)] > Cy/kt, which
yields the claim in (3.8.4). o

Next, note that if X* leaves the spatial part of a space-time block By (x, k; k), then there
is at least one coordinate j € {1, ..., d} such that 7;(X"(s)) ¢ [V/kxz(j)A, VE(x(j)+1)A)
for some s € [kA, (k + 1)A), where 7;(X") denotes the projection of X* onto the j-th
coordinate. In particular, if X* visits I (x,1)-blocks with I > d in the time interval
[(i—1)A,iA), then there is at least one coordinate that visits at least " /d one-dimensional
(k,1)-blocks, i.e., blocks of the form [/kxzA,/r(x + 1)A) x [kA, (k + 1)A), = € Z.
Consequently, without loss of generality we may assume that X" is one-dimensional
simple random walk with step rate 2x. Given If,.. .,lf/A € N, we say that X" has
label (If,...,1f,) when X" crosses If (k,1)-blocks in the time interval [(i — 1)A,iA),
1<i<t/A

Next, fix C7 > 0 and let k, > C7t, and note that

Py (XN crosses ki (k, 1)—blocks) = Z Py (X” has label (17, .. .,lf/A)). (3.8.7)

et/ A
(1 )141:

S 1=k,

Using the Markov property and the fact that a path crossing {f (k,1)-blocks has to
travel a distance at least (If —2)y/kA/2, we may further estimate each summand in the
right-hand side of (3.8.7) by

Bo (1{X" has label (..., ;) }Pxeqa) (X" has label I7,,) )

< Ep (n{Xn has label (If..... 1), ))} Px(i—a) (OEUEA X% (s)| > (IF — 2)\/EA/2)>.
o (3.8.8)
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3 Space-time ergodicity for the quenched Lyapunov exponent

To proceed, note that, by (3.8.4),

9 1 (IF-2)2AVEA 5 >3
me_m( sup |X*(s)| > (15 — 2)\/EA/2) < eXp{ I o)A L6VRd [0 i 2
0<s<A e
<8< 1, I < 2.
(3.8.9)
An iteration of the estimates in (3.8.8) yields that the left-hand side of (3.8.7) is bounded

from above by
t/A

1 —2)2AVEA
11 Zexp{ _1 -2 } (3.8.10)
t/A = 4 ( - )\/_+ 6 \
) >/ =
=1 >3
Y=k,
We have
O () N S (I 3.511)
A (F—2)VA+6VRA T A VA+6VRA -
15>3 15>3
Moreover,
t/A
4t
(IF —2) 2 ke = . (3.8.12)

Inserting (3.8.11-3.8.12) into (3.8.10), noting that [HR18, E42]

Ja,b > 0: number of summands in right-hand side of (3.8.7) < aebm/k*, (3.8.13)

and choosing C5 and « large enough (C5 > 4 is sufficient), we get that the right-hand
side of (3.8.7) is at most e~“64%« Here, Cg is such that for all k, > Cst/A the inequality
(ks —4t/A)/(1/+/k + 6) > Cgsks holds, which for k > 1 is fulfilled when C5(1 — 7Cg) > 4.
This yields the claim in (3.4.21). |

3.9 Proof of Lemma 3.7.6

In Sections 3.9.1-3.9.3 we prove a lemma that was used in Section 3.7. The proof is
inspired by [A10, Theorem 12].

3.9.1 Neumann boundary conditions

In this section we recall the definition and some properties of the discrete Laplacian with
Neumann boundary conditions. For further details we refer the reader to [K07].

Fix € Z% A > 1 and define the matrix Mp(z) as

] (3.9.1)
0, otherwise,

MB(w) (yv Z) = {
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3.9 Proof of Lemma 3.7.6

and the number of neighbors of y in B(z) as

np@) (y) = {z € B(x): |ly -z =1}|. (3.9.2)
Definition 3.9.1. The Neumann Laplacian Apy) on B(x) is defined via the formula
Ap() = Mp(z) — "B(), (3.9.3)

where np () is the multiplication operator with the function np ().
Remark 3.9.2. The quadratic form associated with Apy) is given by

1
(Bpwba)=-3 X U@ -IGlsw)-9@]  fgeR™D. (39.4)
y,2€ B(x)
lly—zll=1
(Ap(z) does not see that B(x) is imbedded in Z*, which is why it is sometimes referred
to as the graph Laplacian on B(z).)

Lemma 3.9.3. The following properties hold for all x € Z¢ and A > 1.

(a) (Ap)f, f) <0 for all f e RE®).

(b) Ap(s) is self-adjoint.

(c) ker(Ap(s)) = R, where 1 is the vector in RE@) with all entries equal to one.
(d) For all f € (?(Z%),

(Af, 1<) <AB(r)fB(I)a fB(r>>, (3.9.5)
zeZd

where fB@) s the restriction of f to B(x).

Proof. Fix x € Z% and A > 1.

(a) and (b) are consequences of Remark 3.9.2.

(c) From Remark 3.9.2 it is clear that constant functions are in the kernel of Ag(,y. For
the reverse direction, let f € ker(Ap(y)). Again by Remark 3.9.2,

0= (D7) =—5 3 1)~ FE)P (39.6)
y,2€B(x)
ly—=ll=1

Hence, for all y € B(z) we have that f(y) = f(z) for all z such that |y—=z| = 1, z € B(x).
(d) Let f € ¢*(Z%). Then

“20AL )= > W) —FEP=Y" > > [fw) - fR)P

y,2€2¢ z€ZiyEeB(z) zez?
lly—zl=1 lly—=lI=1 (3.9.7)
>3 Y Y Fo) - P =2 Y (Ape O, ),
z€Z yeB(x) ||z€B|(|z) zeZ
y—=z||=1

where the second equality uses that (B(z)),cz¢ is a partition of Z¢, while the third
equality follows from Remark 3.9.2. |
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3 Space-time ergodicity for the quenched Lyapunov exponent

3.9.2 Proof of Lemma 3.7.6 subject to a further lemma
Let || - ||2 stand for both the Euclidean norm on R” and the ¢2-norm on ¢?(Z%).

Lemma 3.9.4. Subject to (3.7.24), there is a ko > 0 such that, for all & > ko, all
f e RBE®) and all z € 79,

(s + 5. £) < 420171B (3:95)

The proof of Lemma 3.9.4 is deferred to Section 3.9.3. First we complete the proof of
Lemma 3.7.6 subject to Lemma 3.9.4.

Proof. Let f € ¢2(Z%) and k > kg, where kg is chosen according to Lemma 3.9.4. Then,
by Lemma 3.9.3(d) and the fact that (B(z)),cze is a partition of Z¢, we may estimate

<(A + %V)f, f> <> <(AB<I> - %V)fB@”), fB<f”>>. (3.9.9)

TEL

Since f =Y, cza FP@, we have || f||> = 3, cz0 | /5@ 3. Combining (3.9.8-3.9.9), we
get the claim. n

3.9.3 Proof of Lemma 3.9.4

Proof. Fix € Z¢ and A > 1. First recall that, by Lemma 3.9.3(c), ker(Ap()) = R, so

that we can write each f € RE®) as f =all+g, 0 €R, g € (R]l)J'. Therefore, using
that Ap(,) is self-adjoint, see Lemma 3.9.3(b) and hence symmetric, we obtain that

<(AB(1) n %v) f, f> - <AB(w)g,g> n %[a“‘wn, 1) +2a(V1,g) + (Vg,g)]. (3.9.10)

Using that the unit sphere intersected with (R]I)J- is compact, that Apg(,) is negative on
(RH)L, see Lemma 3.9.3(a), and that the scalar product is continuous, we deduce that

there is an 7 > 0 such that (Apg)h, h) < —n for all h € (RH)L with ||h|l2 = 1. Hence
we may estimate the right-hand side of (3.9.10) from above by

“olll+ 202 (V) + 20V1g) + (Vi) (3.9.11)

Next, by (3.7.24), we have (VI 1) = >° _p () V(y) < 26|B(z)|. An additional applica-
tion of the Cauchy-Schwarz inequality shows that (3.9.11) is at most

1
—nllgll3 + ~[a*20]B()| + 2oV T2 lg]l> + [Vgllg]l2] (3.9.12)
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3.9 Proof of Lemma 3.7.6

Using the bound ||[Vg|l2 < ||[V|leollgll2 (which also holds for g replaced by 1) and the

assumption that V' is bounded, we may further estimate (3.9.12) from above by
1
—nllgls + —[a*20]B(@)] + 20|V [loo [ U llgll2 + V]| lg113] (3.9.13)

For any a,b € R and v > 0 we have the inequality 2ab < va?+b%/v. Pick a = o[V ||oo || 1] 2
and b = ||g||2- Then we may further estimate (3.9.13) from above by

1
[0220|B(x)| +vo®[[VIZITIZ + g3/~ + llgli3]

K

1 1 1
2 2 2 2
— —n+4+ - 1_’__)}_’__25_’_ V a1 ,
HQHQ[ n KJ( v Kj[ ’Y” ”oo] || ”2

—nllgll3 +
(3.9.14)

where we use that ||1)|3 = |B(z)|. Now pick v = 2§/||V||2, and note that, for  large
enough so that (14 1/y —46) < n, we have —n+ 1(1 4+ 1/v) < 414. Therefore, for
large enough we may estimate the right-most term in (3.9.14) from above by

1 1
4=3|llgll3 + a* |13 | = 4=0] fI5. (3.9.15)
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4 Introduction to Part |l

This chapter serves as an introduction to Chapters 5 and 6, where two long-range per-
colation models are studied. In Section 4.1 we give a short introduction to Bernoulli
bond percolation, which is the most standard of all percolation models. In Section 4.2
the first model is presented and results of Chapter 5 are listed. Section 4.3 contains a
short introduction to the second model, random interlacements, and moreover the result
of Chapter 6 is listed.

4.1 Bernoulli bond percolation

This section is based on Chapter 1 of Grimmett [GO0O].

The standard introductory example of percolation theory is the following: Suppose that
a large porous stone is immersed into a bucket of water. What is the probability that the
center of the stone gets wet? This can be modelled in terms of a simple stochastic model,
nowadays known as percolation model, due to Broadbent and Hammersley [BH57]. Let
p € [0,1] and declare each edge of Z? to be open, independently of all other edges,
with probability p and closed otherwise. The edges of Z? represent the passageways of
the stone, and the parameter p is the proportion of passages that are broad enough to
allow water to pass along them. The stone is modelled as a large finite subset of Z¢
and a vertex x inside the stone is wet when there is a path of open edges from z to the
boundary of the stone. Percolation theory is mainly concerned with the study of such
open paths. Questions of interest are for instance: (1) Is there an infinite cluster of open
paths? (2) How many of such infinite clusters are there? (3) Consider the graph whose
edges are precisely the open edges and whose vertices are the endpoints of those edges.
What geometric properties does this graph have?

The above described model is referred to as Bernoulli bond percolation and it is the most
studied of all percolation models. The motivations are manyfold. (1) The model is easy
to formulate but not unrealistic in qualitative predictions for random media. (2) It is
a simple model in which the phenomenon of a phase transition may be observed, i.e.,
when d > 2 it can be shown that there is a p. € (0, 1) such that for all p < p, all clusters
of open edges are finite, whereas for all p > p. there is with probability one a (unique)
infinite cluster of open edges. (3) It serves as a jumpboard to develop techniques for
more complicated models and even leads to new branches of mathematics. A beautiful
example is the theory of the Schramm-Loewner evolution, which arises as the scaling
limit of general two-dimensional percolation models in statistical physics at criticality
including Bernoulli percolation itself. (4) It leads to many beautiful conjectures that are
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4 Introduction to Part I1

easy to state but hard to prove. (5) Partial results for models with a complex dependency
structure can be obtained by comparing them with Bernoulli bond percolation. Grimmett
[GOO] states the following example. Consider a physical model having a parameter T,
that is interpreted as the temperature of the system. It may be expected that there exists
a critical value T, marking a phase transition. While this fact may itself be unproven,
it may be possible to prove by comparison with Bernoulli bond percolation that the
behaviour of the process for small T is qualitatively different from that for large T'.

4.2 Brownian paths homogeneously distributed in space

The model

For A > 0, let (2,.A4,P)) be a probability space on which a Poisson point process &
with intensity A x Leby is defined, where Leb, is the d-dimensional Lebesgue measure.
Conditionally on &£, we fix a collection of independent Brownian motions {(Bf):>0, €
&} such that B = x for each x € £ and such that (B — x);>¢ is independent of €. For
t,r > 0 we study the occupied set

o= | BB, (4.2.1)

ze€€& 0<s<t

where B(y,r) denotes the ball with respect to the euclidean norm around y € R? with
radius r. If d < 3, then we put r = 0. The reason for that will become clearer when
discussing the results. In the remainder of this section we write O, instead of Oy .

We are interested in the percolative properties of O ,: Is there an unbounded cluster
for large t7 Is it unique? What happens for small ¢? Since an elementary monotonicity
argument shows that ¢ — O, is non-decreasing, the first and the third question may be
rephrased as follows: Is there a percolation transition in ¢?

Motivation and related models

The model described above fits into the class of continuum percolation models, which have
been studied intensively by both mathematicians and physicists. Their first appearance
can be traced back (at least) to Gilbert [G61] under the name of random plane networks.
Gilbert was interested in modeling infinite communication networks of stations with
range R > 0. He did this by connecting each two points of a Poisson point process on
R? whenever their distance is less than R. Another application, mentioned in his work
is the modeling of a contagious infection. Here, each individual gets infected when it has
distance less than R to an infected individual.

A subclass of continuum percolation models follows the following recipe: Consider a
point process (e.g. a Poisson point process) and attach to each of its points a geometric
object, like a disk of random radius (Boolean model) or a segment of random length and
random orientation (Poisson sticks model or needle percolation). Our model also falls into
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4.2 Brownian paths homogeneously distributed in space

this class: to each point of a Poisson point process we attach a Brownian path (a path of
a Wiener sausage when d > 4). This can be seen as a model of defects that are randomly
distributed in a material and are propagating at random. We can think for example of
an (infinite) piece of wood containing (homogeneously distributed) worms, where each
worm eats its way through the piece of wood at random (see Menshikov, Molchanov
and Sidorenko [MMSS88] for other physical motivations of continuum percolation). The
informal description above is reminiscent of (and actually borrowed from) the problem of
the disconnection of a cylinder by a random walk, which itself is linked to interlacement
percolation [S10]. The latter is defined as the random subset obtained when looking
at the trace of a simple random walk on the torus (Z/NZ)¢, starting from the uniform
distribution and running up to time u/N¢ in the limit as N 1 oo. Here, u plays the role
of an intensity parameter for the interlacement set. However, even though the model
of random interlacements and our model seem to share some similarities, there is an
important difference: in the interlacement model the number of trajectories that enter a
ball of radius R scales like cR4~2 for some ¢ > 0, whereas in our model it is at least of
order R?.

Another motivation for studying our model is that it should arise as the scaling limit
of a class of discrete dependent percolation models, namely a system of independent
finite-time random walks homogeneously distributed on Z?. The latter can also be seen
as a system of non-interacting ideal polymer chains.

Results

Fix A > 0.

Theorem 4.2.1. [No percolation for d = 1] Let d = 1. Then, for all t > 0, the set
O; has almost surely no unbounded cluster.

Theorem 4.2.2. [Percolation phase transition and uniqueness for d = 2,3] Let
d = 2,3. Then there exists a t. = t.(A\,d) > 0 such that, for t < t., O has almost surely
no unbounded cluster whereas, for t > t., Oy has almost surely a unique unbounded
cluster.

Let d > 4 and r > 0. We denote by A.(r) the critical value such that for all A < A.(r)
the set Op,» almost surely does not contain an unbounded cluster, whereas for A > A;(r)
it does. Gouéré [GO8] showed that A (r) > 0 for » > 0 and lim,_,¢ A.(1) = 0.

Theorem 4.2.3. [Percolation phase transition and uniqueness for d > 4] Let
d >4, and let v > 0 be such that A < A.(6,). Then there exists a t. = t.(\,d,r) > 0
such that, for t < t., O, has almost surely no unbounded cluster whereas, for t > t.,
O:,r has almost surely a unique unbounded cluster.

Comments on the results

Theorems 4.2.1-4.2.3 describe a phase transition in ¢. It would be possible to play
with the intensity A instead. Indeed, when we multiply the intensity A by a factor 7
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4 Introduction to Part I1

we change the typical distance between two Poisson points by a factor n~/¢. By scale
invariance of Brownian motion, the percolative behaviour of the model is the same when
we consider the Brownian paths up to time 1~2/% instead. Hence, tuning A boils down
to tuning ¢.

It is worthwhile to mention that Theorem 4.2.2 is stated only in the case r = 0, which
is the case of interest to us. The result is the same when r > 0, up to minor modifications.
However, if d > 4, then the paths of two independent d-dimensional Brownian motions
starting at different points do not intersect and r has to be chosen positive, otherwise no
percolation phase transition occurs.

To sum up, the above settle the first questions typically asked when studying a new
percolation model. Many challenges are open. One may wonder, for instance, how fast
is the decay of the probability (in the supercritical regime) that a ball of a certain size,
centered at the origin, is contained in the vacant set. Moreover, it would be interesting to
investigate the scaling behaviour of ¢, in dimension d > 4 as r tends to zero. One could
ask for sharp upper and lower bounds on ¢.. Finally, it is not clear whether percolation
occurs at t. or not.

4.3 Random interlacements

Introduction to the model

The model of random interlacements has been introduced by Sznitman [S10] as a family
of random subsets of Z¢ denoted by Z%, u > 0, where u plays the role of an intensity
parameter. Z% locally “looks like” the trace of a simple random walk on the discrete torus
(Z/NZ)? run up to time uN? (see Windisch [WO08], Teixeira and Windisch [TW11]).
With the help of the inclusion-exclusion formula the distribution of the set Z* can also
be characterized as

P[K NZ" = (] = e v K ccz?.

Here, cap(K) denotes the capacity of the compact set K, defined as

cap(K) := Z ex(x), with eg(x):= P, [ﬁK = oo] Nirexy, (4.3.1)
rzeK

where P, denotes the law of simple random walk w = (w(n))nen, started at z € Z% and
Hy denotes the first hitting time of the set K by the random walk:

Hg(w) = inf{n € N: w(n) € K}. (4.3.2)

In a more constructive fashion, random interlacements at level u can also be obtained
by considering the trace of the elements in the support of a Poisson point process with
intensity parameter u, taking values in the space of locally finite measures on doubly
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4.3 Random interlacements

infinite simple random walk trajectories modulo time shifts. This constructive definition
suggests that the model exhibits long-range dependence. Indeed the asymptotics

Cov(laezw, Lyeze) ~ c(u)lz — yl; @2, (4.3.3)
where | - |2 denotes the euclidean norm on Z? (and similarly for Z% replaced by V* =
7%\ ") holds for |z — y|s — 0o, as can be deduced from (0.11) in Sznitman [S10]. As a
consequence, standard techniques from Bernoulli percolation do not apply. For example,
due to (4.3.3) the Peierls argument and the van den Berg-Kesten inequality break down.
The long-range dependence also entails that random interlacements neither stochasti-
cally dominate nor can be dominated by Bernoulli percolation (see Remark 1.6 (1) of
[S10]). Moreover random interlacements do not fulfill the finite energy property (see
Remark 2.2 (3) of [S10]). These features make the model more appealing, and at the
same time more complicated to investigate.

State of the art and motivation

During the past couple of years there has been intensive research on random interlace-
ments. Basic properties such as the shift-invariance, ergodicity and connectedness of
7" have been established in Sznitman [S10]. Since then, a deeper understanding has
been obtained of the geometry of random interlacements. Réth and Sapozhnikov [RS11]
have shown transience for random interlacements Z* throughout the whole range of pa-
rameters u € (0,00). Rath and Sapozhnikov [RS10] and Procaccia and Tykesson [PT11]
have shown that any two points of the set Z% can be connected by using at most [d/2]
trajectories from the constructive definition described above. Recently, with the help of
extensions of the techniques in [RS10], this result has been generalized to an arbitrary
number of points by Lacoin and Tykesson [LT12]. Another step in showing that the
geometry of random interlacements resembles that of Z? has been undertaken by Cerny
and Popov [CP12], who prove that the chemical distance (also called graph distance
or internal distance) in the set Z" is comparable to that of Z?. Using this result, they
prove a shape theorem for balls in Z" with respect to the metric induced by the chemical
distance.

It is particularly interesting to obtain a deeper understanding of the vacant set V* and
its geometry. On the one hand, this is more challenging than the investigation of 7", in
the sense that one cannot directly take advantage of the many tools available for simple
random walk, that have proven to be very helpful in understanding the set Z*. On the
other hand, it has been shown by Sznitman [S10] and Sidoravicius and Sznitman [SS09)
that there exists a non-trivial percolation phase transition for V* at some u.(d) € (0, 00)
in the following sense: For u > u,(d) the vacant set V* as a subgraph of Z? contains only
finite connected components (subcritical phase), whereas for u € [0, u.(d)) it contains an
infinite connected component almost surely (supercritical phase). Using the techniques
of Burton and Keane [BK89], and taking care of the difficulties that arise from the lack of
the finite energy property for random interlacements, Teixeira [T09] has shown unique-
ness of the infinite connected component of V* (denoted by V%) in the supercritical
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phase.
To the best of our knowledge, our result is the first that is valid throughout most of the
supercritical phase.

The result

Recall that a connected graph G = (V, E) with finite degree, with vertex set V' and edge
set F, is called transient if simple random walk on G is transient.

Theorem 4.3.1. Let € € (0,1). There is a dg = do(g) € N such that, for all d > dy and
all u < (1 —e)ux(d), the unique infinite connected component V% of the vacant set V* of
random interlacements in Z2 is transient P-a.s.

Comments on the result

Theorem 4.3.1 provides a rough geometric description of the infinite connected component
of the vacant set that is valid throughout most of the supercritical phase when d is large
enough.

Besides the challenge to extend our result to the entire supercritical phase, it would be
interesting to obtain a more precise understanding of V¥ . Results in this direction have
been obtained in Drewitz, Réth, Sapozhnikov and Procaccia, Rosenthal, Sapozhnikov
[DRS12b, PRS13]. A key assumption in these papers is a local uniqueness property (in
our context of V¥ ), which roughly states that with high probability the second largest
component in a macroscopic box is small compared to the largest connected component
in the same box. This local uniqueness property has so far only been established for a
non-degenerate part of the supercricital phase, and obtaining its validity throughout the
whole supercritical phase would be an interesting topic for further investigation.
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5 Brownian percolation

This chapter is based on:

D. Erhard, J. Martinez, J. Poisat. Brownian paths homogeneously distributed in space:
percolation phase transition and uniqueness of the unbounded cluster.

Posted on arXiv:1311.2907v1, submitted to Electronic Journal of Probability.

Abstract

We consider a continuum percolation model on R? d > 1. For t,\ € (0,00) and d €
{1,2,3}, the occupied set is given by the union of independent Brownian paths running
up to time ¢ whose initial points form a Poisson point process with intensity A > 0. When
d > 4, the Brownian paths are replaced by Wiener sausages with radius r > 0.

We establish that, for d = 1 and all choices of ¢, no percolation occurs, whereas for d > 2,
there is a non-trivial percolation transition in ¢, provided A and r are chosen properly.
The last statement means that A has to be chosen to be strictly smaller than the critical
percolation parameter for the occupied set at time zero (which is infinite when d € {2, 3},
but finite and dependent on r when d > 4). We further show that for all d > 2, the
unbounded cluster in the supercritical phase is unique.

Along the line a finite box criterion for non-percolation in the Boolean model is extended
to radius distributions with an exponential tail. This may be of independent interest.
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5 Brownian percolation

5.1 Introduction

Notation. For every d > 1, we denote by Leb, the Lebesgue measure on R?. || - || and
|| - ||oo stand for the Euclidean norm and supremum norm on R¢, respectively. For any
set A, the symbol AC refers to the complement set of A. The open ball with center z
and radius r with respect to the Euclidean norm is denoted by B(z, ), whereas By (2, 1)
stands for the same ball with respect to the supremum norm. Furthermore, for every
0 <7 < r', we denote by A(r,7") = B(0,7')\ B(0,7) and A (7,7") = Boo(0,7") \ Boo (0, 7)
the annulus delimited by the balls of radii » and r’ with respect to the Euclidean norm
and supremum norm, respectively. Given a d-dimensional Brownian motion (B;):>0, we
denote its i-th component by (B ;)i>0, for i € {1,2,...,d}. For all I C R*, we denote
by By the set {By, t € I}. The symbol P* denotes the law of a Brownian motion starting
in a. Finally, P2 denotes the law of two independent Brownian motions starting in
a1 and ag, respectively.

5.1.1 Overview and motivation

For A > 0, let (2, 4,,P)) be a probability space on which a Poisson point process &£
with intensity A x Leby is defined. Conditionally on &£, we fix a collection of independent
Brownian motions {(Bf);>0, * € £} such that for each z € £, Bf = z and such that
(Bf — x)t>0 is independent of £. A more rigorous definition is provided in Section 5.1.3
below, where ergodic properties are obtained along. We study for ¢,7 > 0 the occupied
set (see Figure 5.1 below):

o= U BB, (5.1.1)

ze€& 0<s<t

In the rest of the chapter, we write O; instead of O, .
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Figure 5.1: Simulations of O; in the case d = 2, at a small time, intermediate and large time.

Two points  and y of R? are said to be connected in O, if and only if there exists
a continuous function + : [0,1] — O, such that ¥(0) = = and (1) = y. A subset of
O:,r is connected if and only if all of its points are pairwise connected. In the following
a connected subset of O, is called a component. A component C is bounded if there
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5.1 Introduction

exists R > 0 such that C C B(0, R). Otherwise, the component is said to be unbounded.
A cluster is a connected component which is maximal in the sense that it is not strictly
contained in another connected component.

We are interested in the percolative properties of the occupied set: is there an un-
bounded cluster for large t7 Is it unique? What happens for small ¢t7 Since an elementary
monotonicity argument shows that ¢ — O, is non-decreasing, the first and the third
question may be rephrased as follows: is there a percolation transition in ¢?

5.1.2 Results

We fix A > 0.

Theorem 5.1.1. [No percolation for d = 1] Let d = 1. Then, for all t > 0, the set
O; has almost surely no unbounded cluster.

Theorem 5.1.2. [Percolation phase transition and uniqueness for d = 2,3] Let
d = 2,3. Then, there exists t. = t.(\,d) > 0 such that fort < t., O has almost surely no
unbounded cluster, whereas for t > t., Oy has almost surely a unique unbounded cluster.

Let d > 4, r > 0 and let ¢, be the Dirac measure concentrated on r. We denote by A.(d,)
the critical value for Qg , such that for all A < A.(d,) the set Op,, almost surely does not
contain an unbounded cluster, and such that for A > A.(d,) it does, see also (5.2.5). It
follows from Theorem 5.2.1, that A.(d,) > 0 and lim,_,0 Ac(d;) = oo.

Theorem 5.1.3. [Percolation phase transition and uniqueness for d > 4] Let
d >4 and let r > 0 be such that A < A\¢(0,). Then, there exists t. = t.(A\,d,r) > 0 such
that for t < t., O, has almost surely no unbounded cluster, whereas for t > t., it has
almost surely a unique unbounded cluster.

5.1.3 Construction and an ergodic property

In this section we briefly outline how to construct the model described in Section 5.1.1
and we state an ergodic theorem. The construction is very close to the construction of
the Boolean percolation model, in which balls of random radii are placed around each
point of a Poisson point process. We refer the reader to Section 1.4 of [MR96], where a
more detailed description of the Boolean percolation model is given (see also Section 5.2
in the present work).

Construction. Let £ be a Poisson point process with intensity A x Leb, defined on
(Qp, Ay, Py). Consider the family of binary cubes

d
K(n, Z) = H(ZiQ_n, (Zz + 1)2—71]’ VneN, z= (Zi)lgigd S Zd, (5.1.2)

=1
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5 Brownian percolation

so that for each n € N, {K(n,z),z € Z4} is a partition of R?. In particular, for each
x € £ and n € N, there exists a unique z(n, z) such that © € K(n, z(n, z)). Consequently,
Py-a.s., for each x € &,

no(z) :=inf{n >1 : K(n,z(n,2))NE = {a}} (5.1.3)

is well defined. Let B(C([0,00), R%)) be the Borel g-algebra on C([0, 00), R?) with respect

to the supremum norm. To continue define Q5 = C([0, 00), RH)N*Z’ | equip Qp with the

product o-algebra Ag = B(C([0,00), RY))N*Z" and let Pp = WgNXZd, where W is the
Wiener measure on C([0,00),R?). The Brownian path associated to x € £ is defined to
be

wp(no(x), z(no(x),z)), wp € Np. (5.1.4)

Finally, we set @ = Q, x Qp, A=A, x Ap and P = Py x Pp, so that the probability
space (€, A, P) corresponds to the model described in Section 5.1.1.

Ergodicity. For x € Z¢ let T, : R — R? be the translation defined by T,(y) = y + ,
y € R%. This induces a translation S, on €, via the equation (Syw,)(A4) = w,(T; 1 A),
A € A,. A translation on Qp is given by the formula (Uywg)(n, 2) = wp(n, z—x), so that
we finally can define the translation T, on the product space () as Tow = (Sewp, Uzwpg).
A simple adaption of the proof of Proposition 2.8 in [MR96] yields the following result.

Proposition 5.1.4. For all t,r > 0 the set Oy, defined in (5.1.1) is ergodic with respect
to the family of translations {T,, = € Z9}.

5.1.4 Discussion

Motivation and related models. Our model fits into the class of continuum percolation
models, which have been studied by both mathematicians and physicists. Their first
appearance can be traced back (at least) to Gilbert [G61] under the name of random
plane networks. Gilbert was interested in modeling infinite communication networks of
stations with range R > 0. He did this by connecting each two points of a Poisson point
process on R?, whenever their distance is less than R. Another application, which is
mentioned in his work is the modeling of a contagious infection. Here, each individual
gets infected when it has distance less than R to an infected individual.

A subclass of continuum percolation models follows the following recipe: first throw a
point process (e.g. Poisson point process) and attach to each of its points a geometric
object, like a disk of random radius (Boolean model) or a segment of random length and
random orientation (Poisson sticks model or needle percolation). Our model also falls into
this class: we attach to each point of a Poisson point process a Brownian path (a path of
a Wiener sausage when d > 4). This can be seen as a model of defects that are randomly
distributed in a material and are propagating at random. We can think for example of
an (infinite) piece of wood containing (homogeneously distributed) worms, where each
worm eats its way through the piece of wood at random (see Menshikov, Molchanov
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5.1 Introduction

and Sidorenko [MMSS88] for other physical motivations of continuum percolation). The
informal description above is reminiscent of (and actually, borrowed from) the problem of
the disconnection of a cylinder by a random walk, which itself is linked to interlacement
percolation [S10]. The latter is given by the random subset obtained when looking
at the trace of a simple random walk on the torus (Z/NZ)?, when started from the
uniform distribution and running up to time uN?, as N 1 co. Here u plays the role
of an intensity parameter for the interlacements set. However, even though the model
of random interlacements and our model seem to share some similarities, there is an
important difference: in the interlacement model, the number of trajectories which enter
a ball of radius R scales like cR4~2 for some ¢ > 0, whereas in our case it is at least of
order R?.

Another motivation for studying such a model is that it should arise as the scaling limit
of a certain class of discrete dependent percolation models. More precisely, percolation
models for a system of independent finite-time random walks homogeneously distributed
on Z4. This could also be seen as a system of non-interacting ideal polymer chains.

Comments on the results. First of all notice that we investigated a phase transition in
t. It would also be possible to play with the intensity A instead. Indeed, multiplying the
intensity A by a factor n changes the typical distance between two Poisson points by a
factor n~1/?. Thus, by scale invariance of Brownian motion, the percolative behaviour of
the model is the same when we consider the Brownian paths up to time 7~2/% instead.
Hence, tuning A boils down to tuning t.

Moreover, it is worthwhile mentioning that Theorem 5.1.2 is stated only in the case
r = 0, which is the case of interest to us. The result is the same when r > 0, up to minor
modifications. However, if d > 4 the paths of two independent d-dimensional Brownian
motions starting at different points do not intersect. Hence, in this case r has to be
chosen positive, otherwise no percolation phase transition occurs.

Besides, we draw the reader’s attention to Lemma 5.2.3, which is useful in proving
the continuity result in Proposition 5.2.2. This lemma provides a finite-box criterion for
non-percolation for the Boolean model. It is stated in the case of radius distributions
with exponential tail. To our knowledge such a criterion was only proved for bounded
radii.

To sum up, the results proven in this article answer the first questions typically asked
when studying a new percolation model. However, there are still many challenges left
open. One may wonder for instance how fast the decay of the probability is (in the
supercritical regime), that there is a ball of a certain size centered in the origin, which is
contained in the vacant set. Moreover, it would be interesting to investigate the scaling
behaviour of t. in dimension d > 4 as r tends to zero. In the same line one could ask for
sharp upper and lower bounds for ¢.. Finally, it is not clear whether percolation occurs
at ..
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5 Brownian percolation

5.1.5 Outline of the chapter

We shortly describe the organization of the article. In Section 5.2 we introduce the
Boolean percolation model and list and prove some of its properties. In Section 5.3
we prove Theorem 5.1.1. The proofs of Theorems 5.1.2 and 5.1.3 are given in Sections
5.4-5.6. Section 5.4 (resp. 5.5) deals with the existence of a non-percolation (resp.
percolation) phase. In Section 5.6 the uniqueness of the unbounded cluster is established.
The appendix provides proofs of technical lemmas, which are needed in Sections 5.2 and
5.6.

5.2 Preliminaries on Boolean percolation

The model of Boolean percolation has been discussed in great detail in Meester and Roy
[MR96] and we refer to this source for a discussion which goes beyond the description
we are giving here.

5.2.1 Introduction of the model

Let p be a probability measure on [0,00) and let x be the Poisson point process on
R? x [0,00) with intensity (A x Lebg) ® p. We denote the corresponding probability
measure by Py ,. A point (z,7(z)) € x is interpreted to be the open ball in R? with
center z and radius 7(x). Furthermore, we let £ be the projection of y onto R?. Boolean
percolation deals with properties of the random set

$ = B, r(@)). (5.2.1)

zel

Moreover, C(y), y € R?, denotes the cluster of ¥ which contains y. If y ¢ ¥, then
C(y) = 0.

Theorem 5.2.1 (Gouéré, [GO8|, Theorem 2.1). For all probability measures p on (0, 00)
the following assertions are equivalent:

(a) )
/ z? p(dz) < oo. (5.2.2)
0
(b) There exists Ao € (0,00) such that for all X < A,
Py, (C(0) is unbounded) = 0. (5.2.3)

Moreover, if (a) holds, then, for some C' = C(d) > 0, (5.2.8) is satisfied for all

-1

A< C(/OOO a:dp(da:)> : (5.2.4)

136



5.2 Preliminaries on Boolean percolation

It is immediate from Theorem 5.2.1, that
Ac(p) :=1inf {A > 0: P, ,(C(0) is unbounded) > 0} > 0. (5.2.5)

Moreover, from the remark on page 52 of [MR96] it also follows that A.(p) < oo
if p((0,00)) > 0. A more geometric fashion to characterize (5.2.5) is via crossing
probabilities. For that fix N1, Na,...,Ng > 0 and let CROSS(N1, Na, ..., Ng) be the
event that the set [0, Ni] x [0, N3] X --- x [0, Ng] contains a component C such that
CN{0} x [0, Ng] x ---x[0,Ng] # 0 and CN{N1} x [0, Na] X - - - x [0, Ng] # 0. The critical
value A\cross with respect to this event is defined by

Across(p) = inf {)\ > 0: limsupPy , (CROSS(N,3N,...,3N)) > O} . (5.2.6)

N—o00

Assuming that p has compact support, Menshikov, Molchanov and Sidorenko [MMS88]
proved that

Ac(p) = Across(p)- (5.2.7)

5.2.2 Continuity of )\.(p)

Given two probability measures v and p on a predefined probability space we write v < p,
if p stochastically dominates v.

Proposition 5.2.2. Let p be a probability measure on [0,00) with bounded support and
let (pn)nen be a sequence of probability measures on [0,00) such that p, — p weakly as
n — oo and such that p < py, for each n € N. Moreover, assume that
e there are C > 0 and Ry > 0 such that for all n € N, p,([R,00)) < e~ 9% for all
R 2 RO;
e there is a probability measure p’ on [0, 00) with finite moments of order d such that
pn = p for alln € N.
Then,
lm Ac(pn) = Ae(p). (5.2.8)

n—oo

The proof of Proposition 5.2.2 relies on the following two lemmas whose proofs are
given in the appendix and at the end of this section, respectively.

Lemma 5.2.3. Let N € N, A > 0 and let p be a probability measure on [0,00) such
that there are constants C = C(p) > 0 and Ry > 0 such that p([R,)) < e~ “F for all
R > Ry. There is an e = (C,d) > 0 such that if

Py ,(CROSS(N,3N,...,3N)) <e, (5.2.9)

then Py ,(3y € R? : Leby(C(y)) = 00) = 0.

137



5 Brownian percolation

Lemma 5.2.4. Choose 1 > 0 and p' according to Proposition 5.2.2, then for all N € N

Iv}im Py, (3 y € BOO(O,M)E NE s.t. B(y,r(y)) N[0, N] x [0,3N]4" 1 #0) = 0.
(5.2.10)

Remark 5.2.5. We expect that our proof of Lemma 5.2.8 still works when p has a
polynomial tail (of sufficiently large order) instead of an exponential tail. However, since
we do not need Lemma 5.2.3 in this stronger version, we did not verify all the details
needed for that.

We start with the proof of Proposition 5.2.2 subject to Lemmas 5.2.3-5.2.4.

Proof of Proposition 5.2.2. The idea of the proof is due to Penrose [Pen95]. First, note
that
limsup Ac(pn) < Ac(p), (5.2.11)

n—oo

since p < p,, for all n € N. Thus, we may focus on the reversed direction in (5.2.11).
Second, fix A < A.(p) and let € > 0 be chosen according to Lemma 5.2.3. By (5.2.7)
there is an N € N such that

Py, (CROSS(N,3N,...,3N)) < ¢/3. (5.2.12)

We consider ({2, P) the following coupling of {P» ,, }nen and Py ,:
e the points of £ are sampled according to Py;

e for each point x € &, by Skorokhod’s embedding theorem, the radii {r,(x)}nen
and r(x) can be chosen such that they have respective distributions {p, }nen and
p and are coupled such that r,(x) —— r(z) a.s.
n—oo

The configurations obtained via this coupling are denoted by
Y, = U B(x,rn(z)), n€N, and X, := U B(x,r(x)). (5.2.13)
rel rel

Let M > 0 and consider the events

E, = {2 := (Zi)renufoo} @ Zn € CROSSM}, n e NU {0},

where
CROSSM — CROSS(NV,3N,...,3N) happens by open balls
- whose centers are in Boo (0, M) ’
Since the number of points in B (0, M) N & is finite a.s., we may conclude that
lim g, =1g,_ a.s. (5.2.14)
n—oo

(Note that the convergence in (5.2.14) is not true for every possible realization, but
indeed on a set of probability one.) Hence, by the dominated convergence theorem,

lim P(E,) = P(Ex).

n—oo
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5.3 Proof of Theorem 5.1.1: no percolation in d = 1

Therefore,
lim Py, (CROSSM) = P, ,(CROSS™M),

so that for all n € N large enough,
Py, (CROSSM) < 2¢/3. (5.2.15)

Whence, Lemma 5.2.4 and the fact that p, < p’ for all n € N, yields that there is ng € N
such that for all n > ng,

Px.p, (CROSS(N,3N,...,3N)) <e. (5.2.16)

Thus, an application of Lemma 5.2.3 yields that there is no unbounded component under
Py, for all n > ny. Consequently, A < A.(py) for all n > ng, from which Proposition
5.2.2 follows. ']

The proof of Lemma 5.2.3 is given in Appendix 5.7.

Proof of Lemma 5.2.4. Recall that A (K, K + 1) denotes the annulus B (0, K + 1) \

Boo (0, K). Then, by summing over the positions of all Poisson points,

P (3 y € Boo(0,M)° N.E: Bly, () N[0, N] x [0,3N]91 £ (z)>

= i Py (3 Y€ A (K, K +1)NE: Bly,r(y)) N[0, N] x [0,3N]¢~1 # @)
K=M

IN

S Py (3 yEAu(K,K+1)NE: r(y) > K — SN)
K=M

S P, (|AOO(K,K+1)05| =0, 3yc A(K,K+1)NE: r(y) >K—3N).
K=M ¢=1

(5.2.17)
Using that for some constant ¢ = ¢(d) > 0 and all K € N, Lebg(Ax (K +1,K)) = cK971,
the last term in (5.2.17) may be estimated from above by

oo %o d—1y¢ o
Soemen PR i N sy <ot Y KK ),
K=M (=1 S K=M-3N
(5.2.18)
which goes to 0 as M goes to infinity since p’ has moments of order d. [ |

5.3 Proof of Theorem 5.1.1: no percolation in d =1
Let t > 0. Note that

Y= U B(a:, sup ||BY — a:|> (5.3.1)

zel O<s<t
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5 Brownian percolation

has the same law as the occupied set in the Boolean percolation model with radius
distribution

pt([L,00)) = 1P>0< sup ||Bs|| > L). (5.3.2)

0<s<t
Note that p; has finite moments of order d. Indeed, for all L > 0,
4 |t
pie([L, 0)) < 21}»0( sup B, > L) < 4p° (Bt > L) < E1/2—e-L2/2t, (5.3.3)
0<s<t s

where we used the reflexion principle in the second inequality. Thus, by Theorem 3.1 in
[MR96], almost-surely, the set ¥; does not contain an unbounded cluster. Finally, the
relation O; C ¥ yields the result.

5.4 Theorems 5.1.2-5.1.3: no percolation for small times

In this section we show that there is a t. = t.(\,d) > 0 (t. = t.(A,d,r) > 0 when d > 4)
such that O (O, when d > 4) does not percolate when ¢ < t.. The proof for d € {2, 3}
comes in Section 5.4.1, whereas the proof for d > 4 comes in Section 5.4.2. Both proofs
heavily rely on the results of Section 5.2.

5.4.1 No percolation for d = 2,3

Let ¢t > 0 and define 3; and p; as in Section 5.3, but with the one-dimensional Brownian
motions of Section 5.3 replaced by its d-dimensional counterparts. As in Section 5.3 it
is sufficient to show the existence of a t. > 0 such that for all ¢ < ¢, the set ¥; almost
surely does not have an unbounded component. For that we intend to apply Theorem
5.2.1. For all € > 0,

Oodfdtdi dstZE Oodfdtdi d OO,51/dOO . LA
| atotim) <t [pany + [ atpan <t [y oenan )

A calculation similar to the one in (5.3.3) shows that the second term on the right-hand
side of (5.4.1) is bounded by

ltd [ 1 _ 2/d /914
4d %‘/Ed W@ v dy, (542)

which tends towards zero, as t — 0. Thus, by (5.4.1)—(5.4.2) we see that

o0

lim [ 2% p,(dx) = 0. (5.4.3)
t—0 0

An application of equation (5.2.4) in Theorem 5.2.1 yields the claim.
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5.5 Theorems 5.1.2-5.1.3: percolation for large times

5.4.2 No percolation for d > 4

Let ¢t > 0 and let p,; be the probability measure on [r, c0) defined via

0<s<t

pt.r([a,b]) = IE”O< sup ||Bs| € la—71b— T‘]), r<a<b (5.4.4)

Note that p;, — 6, weakly as t — 0. Thus, by similar calculations as in (5.3.3) and
Proposition 5.2.2 (with p’ = p1.,), Ae(pt.r) = Ae(0r) as t — 0. Hence, there is a tg > 0
such that A < A¢(pe,) holds for all ¢ < tg. Finally, observe that the set

Sir=JB|@ swp |BI —z|+r),  VE=0, (5.4.5)
el 0ss<t

is generated by the Poisson point process with intensity measure (A x Lebg) ® p;,» and
contains Oy, see (5.1.1). This is enough to conclude the claim.

5.5 Theorems 5.1.2-5.1.3: percolation for large times

In this section we establish that O; (O, when d > 4) percolates, when ¢ is sufficiently
large. The proof for d € {2,3} comes in Section 5.5.1, whereas the proof for d > 4 comes
in Section 5.5.2.

5.5.1 Proof of the percolation phase in d = 2,3

We use a coarse-graining argument to prove existence of a percolation phase. More
precisely, we divide R? into boxes which are indexed by Z% and we consider an edge per-
colation model on the coarse-grained graph whose vertices are identified with the centers
of the boxes and the edges connect nearest-neighbours. An edge connecting nearest-
neighbours, say = and 2/, in Z, is said to be open if (i) both boxes associated to x and
x’ contain at least one point of the Poisson point process, and (ii) the Brownian motions
which correspond to the point of the Poisson point process which are the closest to the
centers of their respective boxes, intersect each other. Some technical computations and
a domination result by Liggett, Schonmann and Stacey [1.SS97] finally show that perco-
lation in that coarse-grained model occurs if one suitably chooses the size of the boxes
and let time run long enough. This implies percolation of our original model.

We now define this coarse-grained model more rigorously. Let R > 0 and ¢ > 0 to be
chosen later. For z € Z¢, we define

B .= B, (2Rz, R) (5.5.1)

and the random variable
N (@)= enB | . (5.5.2)
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5 Brownian percolation

When N %) (x) > 1, we define the point 2(%7) which is almost surely uniquely deter-
mined, via

|zF®) —2Rz| = inf |z—2Rz|. (5.5.3)
zeenBY

Note that z(#*) is the point which is the closest to the center of the box BQ(CR) among all
Poisson points of BYY. We denote by B#®) the Brownian motion starting from z(%:).
For all couples of nearest-neighbours (x, %) € Z¢ x Z%, we say that the edge (z,y), which
connects x and y, is open if

i) N (z)>1, (5.5.4)
(i) N (y) >1, (5.5.5)
(i) BYS N BGE #0. (5.5.6)

We let X (}ji;) be the random variable which takes value 1 if the edge (x,y) is open, and

0 otherwise. In what follows, to not burden the notation, we write X, ) instead of X (}j‘g 7’;).

Lemma 5.5.1. Let € > 0. There exists R > 0 and t > 0 such that for any couple of
nearest-neigbours (x,y) € Z% x 2%, P(X(z,y =1) > 1 —e.

The proof of Lemma 5.5.1 is deferred to the end of this section. We first show how
one may deduce the existence of a percolation phase from it.

Proof of the existence of a percolation phase. Note that if (x,2') and (y,y’) is a couple
of nearest-neighbour points in Z¢ such that {z, 2’} N {y,y'} = 0, then X (2,2 and Xy 4
are independent. Therefore, the coarse-grained percolation model is a 2-dependent per-
colation model. Thus, Theorem 0.0 of Liggett, Schonmann and Stacey [LSS97] yields
that we may bound the coarse-grained percolation model from below by Bernoulli bond
percolation, whose parameter, say p*, can be chosen to be arbitrarily close to 1, when
P(X(s,y) = 1) is sufficiently close to 1. Let p.(Z%) be the critical percolation parameter
for Bernoulli bond percolation. Then, by Lemma 5.5.1, there are Ry > 0 and ¢y > 0
such that p* > p.(Z?) for all R > Ry and t > to. In that case, the coarse-grained model
percolates, and so does O;. [ |

Consequently, it remains to prove Lemma 5.5.1. For that we need an additional lemma.
It states that the probability that two independent Brownian motions, starting at points
x,7 € R? have a non-empty intersection up to time ¢ increases, when we move the starting
points towards each other.

Lemma 5.5.2. Lett > 0. Then,
(e.0) = B (BRY N By #0),  (zy) eR xR, (557

is a non-increasing function of |z — y||.
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We first prove Lemma 5.5.1 subject to Lemma 5.5.2. The proof of Lemma 5.5.2 comes
afterwards.

Proof of Lemma 5.5.1. By independence of the events in (i)—(iii), we have

R,x (R,
P(X (4 = 1) = (NP (2) > 1) x ]P’(B[(O B £ @) (5.5.8)
To proceed, we fix R > 0 large enough such that
P(NB(2) >1) =1 - R > 1 ¢ (5.5.9)
Furthermore, by Lemma 5.5.2, P(B [(OR;) N B[((iy) # () decreases, when || z(ft®) — Z(Ry)||
increases. However, note that [|2() — 2(B¥)|| < R\/4(d — 1) + 16, when ||z —y[| = 1.
Thus,

R,x (R, R,x R, T
P(Boy N B #0) = P(BRGY 0BG # 0[]0 — 29| = R\/A{d = 1)+ 16)

= (B0, BY, £0),

(5.5.10)
for any choice of z; and zy such that ||z; — 22|| = Ry/4(d — 1) + 16. Using Theorem
9.1 (b) in Morters and Peres [MP10], there exists ¢t large enough such that for all such
choices of z; and z9,

P= (Bl N BY, #0) 21— (5.5.11)
which is enough to deduce the claim. |

We now prove Lemma 5.5.2.

Proof of Lemma 5.5.2. Note that it is enough to prove the claim for the function
y— POV (B[(Ol)t] N B[(;”t # (Zl) (5.5.12)

We fix R” > R > 0 and y,5’ € R? such that [|y|| = R and ||/|| = R’, respectively.
Using rotational invariance of Brownian motion in the first equality and scale invariance
of Brownian motion in the last equality, we may write

0.y (B¢ (2 = p%(E/R)y (g (2
P (B[Ot N B, t];«é(l))_]P’ (B[ N B, t];«é(b)
(R'/Ry (g1 (2)
< pO-(F/R)y (B[O e /r2g O Blo (v ryre) (z)) (5.5.13)

=20 (Bl N B, £0).

This yields the claim. [ |
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5.5.2 Proof of the percolation phase for d > 4

Throughout the proof, z always denotes the d-th coordinate of z = (£,2) € R%. We
further define

Ho = {(&,2) e RY: 2 =0}. (5.5.14)

The main idea is to reduce the problem to a Boolean percolation problem on Hy. More
precisely, we use that for each x € £, B* will eventually hit Hy. From this we deduce
that for ¢ large enough, the traces of the Wiener sausages which hit #y dominate a su-
percritical (d — 1)-dimensional Boolean percolation model, and therefore percolate.

We now formalize this strategy. For each k£ € N, let
Spi={(2)eR? : k—1<z<Ek}, (5.5.15)
so that (Sy)rez is a partition of R9~! x (0,00). We fix k € N and consider
Ex={¢:3zeRst. (§,2)eS,NE} (5.5.16)

Note that (Ex)r>0 are i.i.d. Poisson point processes with parameter A x Lebg_q. Given
Ek, we construct a random set CF in the following way:

e Thinning: each & € & is kept if 79(2%) < ¢, where 2¢ is such that (£,25) € S, NE
(there is almost-surely only one choice), and 79(z) is the first hitting time of the
origin of an one-dimensional Brownian motion starting at z. We choose all Brow-

nian motions, which are associated to some £ € &, to be independent. Otherwise
¢ is discarded.

e Translation: each { € & that was not removed after the previous step is translated
by B(m(2%)), where B is (d — 1)-dimensional Brownian motion starting at the
origin, which is independent of all the previous variables.

Note that 2¢ is uniformly distributed in (k — 1,k). Moreover, z¢, 79(2%) and B are
independent of £&. Thus, CF is the result of a thinning and a translation of &, and
both operations depend on random variables, which are independent of &.. Therefore,
(CF)g>o is a collection of i.i.d. Poisson point processes with parameter Apf x Lebg_1,

where
k

Pt = /;HPZ( inf By < 0) dz > JP’O( sup Bs > k) (5.5.17)

0<s<t 0<s<t

By independence of the C}’s, the set C; := (J;—, CF is thus a Poisson point process with
parameter A >, <, pf x Lebg_1.

Let us now consider the Boolean model generated by C; with deterministic radius r.
Observe that,

pr > Z]P’O( sup Bg > k) —PO( sup Bg > O) > EO{ sup BS} —1. (5.5.18)
k=1 k=0

0<s<t 0<s<t 0<s<t
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Note that the right-hand side of (5.5.18) tends to infinity as t — oo. Thus, by the
remark on page 52 in [MR96], there exists to > 0 large enough such that the Boolean
model generated by C; percolates for all ¢ > to. Finally, note that C; is stochastically
dominated by O; N Hp, in the sense that C; has the same distribution as a subset of
O¢ NHg. This completes the proof.

5.6 Theorems 5.1.2-5.1.3: uniqueness of the unbounded
cluster

We fix ¢, 7, A > 0 such that ¢ > t.(),d,r). In the following we denote by N, the number
of unbounded clusters in O ,, which is almost-surely a constant as a consequence of
Proposition 5.1.4. For all d > 2, the proof of uniqueness consists of (i) excluding the
case Noo = k with k € N\ {1} and of (ii) excluding the case Noo = co. This section is
organized as follows. In Section 5.6.1, we give a short heuristic of (i) in the case d = 2,
which we use as a guideline for the proofs in all other cases. Section 5.6.2 contains the
proof of uniqueness for Wiener sausages (r > 0) in d > 4, which is also on a technical
level close to the heuristics in Section 5.6.1. This is not true anymore in dimension
d = 3, which is due to the fact that there is no simple way under which the paths of
two independent three-dimensional Brownian motions intersect each other. Therefore,
when d = 3, the strategy described in Section 5.6.1 needs to be adapted, which requires
a certain number of technical steps. Since the proof for d = 3 works for d = 2 as well,
we decided to give a unified proof for both cases in Section 5.6.3.

5.6.1 Heuristics

Let d = 2 and r = 0. We proceed by contradiction and assume that almost-surely,
Noo =k with k € N\{1}. For Ry > R; > 0, we introduce the event (see Fig. 5.2 below):

B(0, Ry) intersects all k¥ unbounded clusters }

without using paths starting in B(0, R;) (5.6.1)

ER,.R, = {

We fix R; > 0. First, note that by monotonicity in Ra,

RQ—)OO

P(ERl,Rg) > P(ERth n {5 N B(O, Rl) = @}) — P(g n B(O, Rl) = (Z)) > 0. (5.6.2)

Therefore, we can find an Ry > 0 such that P(Egr, r,) > 0. Let us fix such an Ry and
observe that FRr, g, is independent from the points in € N B(0, Ry) and the Brownian
motions starting from them. Next, one can show that the event

{ |B(0,R1)NE| =1 and for x € £ENB(0, Ry), }
Lg,,r, =

a B 4 contains a “loop” in A(Rz, Rz + 1) (5.6.3)

has positive probability. Finally, the contradiction is a consequence of
]P(NOO = 1) > P(ERl,Rg N LRl,Rg) = P(ERMRQ)P(LRth) > 0, (564)
since we assumed that P(Noo = k) =1, k € N\ {1}.
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5 Brownian percolation

Figure 5.2: The plot on the left hand side represents a configuration of the event Er, g, with
k = 3. The symbol e represents the points of £, whereas » represents connectivity
with infinity. Finally, the dashed line emphasizes the fact that points starting inside
B(0, R1) are not considered for the intersection condition in (5.6.1). Because of that,
the configuration represented on the right hand side does not belong to Er, r,-

Remark 5.6.1. The above heuristics also shows how to create trifurcation points. In
combination with Lemma 5.6.3, the strategy alluded to above will be used to exclude the
possibility of having infinitely many unbounded clusters.

5.6.2 Uniqueness in d > 4
5.6.2.1 Excluding 2 < N, < >

Again we proceed by contradiction. Let us assume that N, is almost-surely equal to a
constant k£ € N\ {1}. For simplicity, we further assume that k = 2, the extension of the
argument to other values of k being straightforward.

For Ry > Ry > 0, let us define ER, g, as follows

B _ B(0, R) intersects at least one path of each of the two (5.6.5)
Ri:B2 = 1 ynbounded clusters, without using paths starting in 5(0, R;) e

First, we note that there exist Ry and Ry such that
P(ER,,r,) > 0, (5.6.6)

which can be seen as in the lines following (5.6.2). Next, we consider the event analogous
to (5.6.3),

I B |B(0,R1)NE| =1 and for z € B(0,R1)NE, (5.6.7)
Rl = A(Ry — 3r/2, Ry — 1/2) C Up<s<tB(BY, 1) € B(0,Ry) [ o
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which is independent of Er, g, and has positive probability, see Remark 5.6.2 below.
The independence is due to the fact that Er, r, and Lg, r, depend on different points
of £ and on different Brownian paths. Note that on Er, r, N Lg, r, the two unbounded
clusters, are only connected inside B(0, Rs).

The contradiction now follows as in (5.6.4).

Remark 5.6.2. A sketch of the proof that Lr, r, has positive probability goes as follows.
Let e € (0,7/8). By compactness, A(R — 3r/2, Ry — 31/2 + €) can be covered by a finite
number of balls of radius €. Moreover, a Brownian motion starting in B(0,R1) has a
positive probability of visiting all these balls before time t and before leaving B(0, Ry — ).
Consequently, on the aforementioned event, Lr, r, s satisfied.

5.6.2.2 Excluding N, =

We assume that N,, = oo. We show that this assumption leads to a contradiction.
The proof is based on ideas of Meester and Roy [MR94, Theorem 2.1], who extended a
technique developed by Burton and Keane [BK89] to a continuous percolation model.
In the proof we use the following counting lemma, which is due to Gandolfi, Keane and
Newman [GKN92]. It will yield a contradiction to the existence of trifurcation points,
which will be constructed in the first step of the proof.

Lemma 5.6.3 (Lemma 4.2 in [GKN92]). Let S be a set, R be a non-empty finite subset
of S and K > 0. Suppose that

(a) for all z € R, there is a family (CL,C2,...,C"=), n, > 3, of disjoint non-empty
subsets of S, which do not contain z and are such that |Ct| > K, for all z and for all
ie{1,2,...,n.},

(b) for all z,2' € R one of the following cases occurs (where we abbreviate C, = U}z, C!
for all z € R):

(i) ({(z}UC) N ({2} U Co) = 0 | |
(ii) there are i, j € {1,2,...,n.} such that {z'}UC, \C?, C C% and {z}UC,\CL C C?,;
(iii) there is i € {1,2,...,n.} such that {2’} UC, C C;

(iv) there is j € {1,2,...,n.} such that {z} UC, C C7,.

Then |S| > K(|R| +2).

STEP 1. Balls containing a trifurcation point. Again, we define Eg, r, and Lg, g,
as in (5.6.5) ,(5.6.7), respectively. By means of these events, in the same manner as in
Subsection 5.6.2.1, one can show that there are § > 0 and R € N such that the event

3 an unbounded cluster C' such that C'N BOO(O,R)U contains at least
ER(0) := { three unbounded clusters, |C'N By (0, R)NE| > 1 and each cluster which ¢
intersects Boo (0, R) belongs to C.
(5.6.8)
has probability at least §. Note that Er(0) implies that each z € B (0, R) which belongs

to an infinite cluster also belongs to C'. We call each unbounded cluster in C' N Bo (0, R)E
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a branch. To proceed, we fix K > 0 and choose M > 0 such that the event

Enni(0) = Er(0)n there are at least three different branches of B (0, R) which con-
R.M R tain at least K points in € N (B (0, RM) \ Boo (0, R)) ’
(5.6.9)
has probability at least /2 (see Fig. 5.3 below). For z € Z4, the events Eg y(2Rz) and
Er(2Rz) are defined in a similar manner as Er p(0) and Eg(0), except that the balls
in the definitions are centered around 2Rz.

B (0, R)

Boo (0, RM)

Figure 5.3: The plot represents a configuration in Eg 3/(0) with K = 3 (see (5.6.8)-(5.6.9)).
The thick lines belong to the branches. As in the previous figure, » represents
connection to infinity.

Let L > M + 2 and define the set
R ={2€Z%: Bo(2Rz,RM) C Bo(0, LR), Eg.n(2Rz) occurs}. (5.6.10)
Note that
{z € 2% : Boo(2Rz, RM) C Boo(0,LR)}| > (L — M —2)%, (5.6.11)
so that we obtain by stationarity

(L— M —2)%

E(R]) > C

(5.6.12)

STEP 2. Application of Lemma 5.6.3 and contradiction. We identify each z € R
with a Poisson point in B (2Rz, R) N C, which is contained in the corresponding infinite
cluster. In what follows we write A, instead of B (2Rz, R), for simplicity of notation.
Let n, be the total number of branches of A,, which contain at least K Poisson points
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in B (2Rz, R). For i € {1,...,n,}, let B! be the branch which is the ith-closest to 2Rz
among all branches of B (2Rz, R), see Equation (5.6.9).

A point x is said to be connected to a set A through the set A if there exists a continuous
function v : [0,1] = AN O, such that v(0) = = and v(1) € A. We denote it briefly by

z <2 A. Finally, we define

CizgﬂB(O,LR)mBi:{xegﬂBm(O,LR): :z:(A—§>Bi} vie{l,...,n.}.
(5.6.13)

Now we proceed to check that the conditions of Lemma 5.6.3 are fulfilled. Here S =
Boo(0, LR) N E. First note that, by definition of a branch, we have that for all z € R:

o [Ci|> K,
e CiNCI=0foralli,je{l,...,n,} with i # j,
e 2¢C..

Hence, assumption (a) of Lemma 5.6.3 is met.

We now claim that the collection {Ci}z€31i€{1 ,,,,, n.} satisfies also assumption (b) of
Lemma 5.6.3. At this point we would like to stress some facts to be used later:

Fa. Due to (5.6.8), z & C! forallie {1,...,n,}.

Fb. If C is an unbounded cluster such that C' N A, # (), then z EENYe3
Suppose that ({2} UC,) N ({#'} UC,) # 0. We consider three different cases:

1. If 2’ € C, then there exists a unique i € {1,...,n.} such that 2’ € C?. We consider
two sub-cases:

e If z € C,/, then there exists a unique i € {1,...,n, } such that z € C;",, and
we claim that {2/} UC, \ C% C C? and {z} U C, \ €% C C%. Indeed, pick

./ AC/ 4 .
z' € C, \ CL. Then there exists a unique j’ # i’ such that 2’ += C7,. It is

AC/ﬂA; i’ . Azl S/
crucial to note that 2/ &—~ C?, since otherwise, due to Fb., z +— C?, (by
first connecting z to 2’/ in AS, and then 2’ to C?7, in AS, ), which contradicts
the uniqueness of 7’.

, AL CAS
S o)

A
Finally, we have that 2’ & C’j J,, 2/ <= C%L. A concatenation

z/ ’
of all these paths gives ' <—> C?, that is 2’ € C%. This proves the first
inclusion that we claimed. The second inclusion follows by symmetry.

o If 2 ¢ C,/, then we claim: {2’} UC, C C..

AS, 1
Indeed, take 2/ € C./, then there exists a unique j' such that «/ <= C7,. As

AS,NAS
before we have that 2/ &—~ C’J (this time the contradiction follows from

z ¢ C,). The conclusion follows in the same way as in the previous case.

2. If z € C,/, then one may conclude as in 1.
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3. Suppose that there exist 4,i’ such that C% N C;/, # (. Take 2/ € Ci N Cil,, then we
AS . AS, -
have that 2’ «+= C? and 2’ <= C?,. There are two cases:

A AC ,
e The path 2/ <= C? intersects A, : Due to Fb. we have that 2/ += C..
Hence 2’ € C,, which reduces this case to a previous one.

ASPAS, ACAS,
e In the second case, 2’ & C?: Due to Fa., we have z — C.. Finally, a

AS, -/ .
concatenation of the previous two paths with &’ <= C%, yields that z € C./,
which reduces this case again to a previous one.

Hence, by Lemma 5.6.3
E(|Bx(0,LR)NE|) > K(E(|R]) +2), (5.6.14)
so that, by (5.6.12),

E(|B(0, LR) N E|) > K((L — M —2)%5/2 + 2). (5.6.15)
On the other hand, since £ is a Poisson point process with intensity measure A x Lebg,
E(|Bx(0, LR) N E]) = M2LR)". (5.6.16)

Thus, combining (5.6.15) and (5.6.16), yields
VL>M+2, K((L-M—-2)%/2+2)<\2LR)". (5.6.17)

Note that M depends on K, so in order to get a contradiction one can choose L = 2M
and let K go to oo in the inequality above.

5.6.3 Uniqueness in d = 2,3
5.6.3.1 Excluding {2 < N, < oo}

As in the heuristic of Section 5.6.1, we proceed by contradiction: we assume that P(Ny, =
k) =1 for some k € N\ {1} and prove that P(No = 1) > 0, which is absurd. To make
the proof more accessible, we assume that k = 2 (see Remark 5.6.7 below).

Remark: The previous heuristic does not work verbatim for d = 3 because of clear
geometrical reasons: a three-dimensional Brownian motion travelling around an annu-
lus, which is crossed by the two unbounded clusters, does not necessarily connect them.
Let us first briefly describe how we adapt this strategy. For R large enough and € small
enough, we show that with positive probability, both unbounded clusters intersect B(0, R)
in such a way, such that each of them contains a Brownian path crossing A(R—¢, R+¢).
Afterwards, we show that, still with positive probability, we can reroute the (let us say
first) excursions inside A(R — €, R + ¢€) of each of these two Brownian paths such that
they intersect each other and, as a consequence, merge the two unbounded clusters into
a single one. This leads to the desired contradiction, since our construction provides a
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set of configurations of positive probability on which Ny, = 1.

We now give the proof in full detail. Let R > 0 and denote by NZ the number of
unbounded clusters in O; \ B(0, R). In the case that N2 is not zero, we denote those by
{Ci(R),1 <i < N2} (though it has little relevance, let us agree that clusters are indexed
according to the order in which one finds them by radially exploring the occupied set
from 0). We also consider the ‘extended’ clusters, defined by

C(R) = U . (5.6.18)

€€ B 4 NC; (R)#D

i.e. C&Y(R) is the union of all Brownian paths up to time ¢, which have a non-empty
intersection with C;(R) (see Fig. 5.4 below).

We further define in five steps a notion of good extended clusters and prove that those
occur with positive probability.

Good extended clusters in five steps.

STEP 1. Intersection with a large ball. We use the abbreviations C$** := C$**(R)
and C$** := C$**(R) for the two extended unbounded clusters and define

Er:={NE =2y n{cy* nB(0,R) # 0} N {C** N B(0, R) # B}. (5.6.19)

One way of having exactly two unbounded clusters in O; \ B(0, R) is to have exactly two
unbounded clusters in total (i.e. on the whole configuration), hence

P(ER) > P(No =2, C** N B(0, R) # 0, C** N B(0, R) # 0). (5.6.20)

Since the event on the right-hand side of (5.6.20) is increasing in R, its probability con-
verges, as R tends to oo, to P(No = 2), which equals 1 by our initial assumption.
Therefore, we may choose R large enough such that P(Er) > 1/2.

STEP 2. Choice of a path in each cluster. For i € {1,2}, define
Cross(i) = {x € ENCS* : Is € [0,1], (||| — R)(||BX|| — R) < 0}, (5.6.21)

that is the set of points in £ NCS**, whose associated Brownian motion crosses 0B(0, R).
Note that Cross(i) # () on Eg. For i € {1,2} we denote by x; the almost-surely uniquely
defined z; € Cross(i), such that

o]l = inf o 191l (5.6.22)

y€Cross

Note that this way of picking x; is arbitrary. Any other way would serve our purpose as
well.
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Figure 5.4: The regular lines are a realization of C;, i = 1,2. In addition with the dotted lines
they form the extended clusters C§**, i = 1,2. The points marked with O are the
ones in Cross(i), i = 1,2.

STEP 3. First excursion through an annulus centered around B(0, R). For
some € > 0 to be determined, let us consider the annulus Ag. := A(R — ¢, R + ¢).
Further, define for each x € &,

I(z):=l{inf{s >0:||BY||=R+e} <inf{s>0:||BY|| =R —¢€}}, (5.6.23)

in the case when at least one of the infima is finite. Otherwise, we set I(z) = 0. We
will see later that the latter case is of no importance. For i € {1,2}, we introduce the
following entrance and exit times:
o't =inf{s > 0: [|BY| = R+ (-1)"*e},
= sup{s < 0% : |B¥|| = R — (=1)!@)¢}, (5.6.24)

ie. B[ in pout] is the first excursion through Ag . of B*¢ (see Fig. 5.5 below). The reason

for this at a first glance strange definition is, that we do not want to exclude the possibility
that x1 or xo is located inside B(0, R). By choosing € small enough we guarantee that
the Brownian motions started at x; and z2 cross Ag., that is, ain < af“t < t for
i € {1,2}. Later in the proof we will merge C$** and C§** into a single unbounded cluster

by “replacing” B[”“m oout] and B[gfjm ogut) with suitable excursions. However, this operation
2 Y2

should not disconnect B[ from C$*'. For that reason, we consider the event on which

0,t]
B[Olgm) or B(;c_,ut 1l is already connected to C§**, i.e. we introduce for i € {1,2}
conn ,__ T T ext
Egi . {(B[O m) U B(of“t,t]) N Cz 7é @} . (5625)
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Summing everything up, we restrict ourselves to configurations in the set

Ege=Eg [ {o}" <oP™ <t} nES™ (5.6.26)

1=1,2

By monotonicity in €, P(Eg ) converges to P(Egr) > 1/2 as € tends to 0. Therefore, we
may fix for the rest of the proof € > 0 such that P(Eg ) > 1/4.

STEP 4. Restriction on the time spent to cross the annulus. As has been
explained above, our goal is to restrict ourselves to some specific excursions of B[”f;m pout]
171

and B[w"‘m ot The probability of those turn out to be easier to control when we have a
2

deterministic lower bound on the random time lengths o9 — . Therefore, we introduce
for T € (0,t) the following event:

Erer=Egre [ {o" -0l > T}. (5.6.27)

i=1,2

Again, by monotonicity in T', we can choose the latter small enough such that P(Eg ¢ ) >
P(Er.)/2 > 1/8.

STEP 5. Staying away from the boundary of the annulus during the excur-
sion. To obtain a configuration with a unique unbounded cluster, we restrict ourselves
to configurations in the set Er .7 and we reroute B[”f;in pout] and B[”ffin ogu] such that

191 2 72

they intersect each other. Since ¢! is not a stopping time, the law of B is not

o} 09]
the one of a Brownian motion. Conditioned on both endpoints, (B[”;ﬂ‘n’g(‘,ut]), i€ {1,2},
are instead Brownian excursions, the law of which is not absolutely continuous with re-
spect to the one of a Brownian motion. As a consequence, we cannot directly use our
knowledge on the intersection probabilities of two Brownian motions. This is why we

will work with (B[QZ;UH_’U?M_(;]), i € {1,2}, for some § € (0,7/8) instead (the restriction

to consider the Brownian motions only up to time ¢t — § is just for esthetic reasons) .
These subpaths, when conditioned on both endpoints, are Brownian bridges conditioned
to stay in Ag,, and indeed the density of a Brownian bridge with respect to a Brown-
ian motion is explicit and tractable. To be more precise, the latter property holds only
on time intervals excluding neighbourhoods of the endpoints, so we need to work with

B[”f;m 26,000 —26)] instead. To get a uniform lower bound on the intersection probability

(see (5.6. 37)) we consider for some € € (0, €) in addition the events

Eperei=Erecr ﬂ {B% BT B o5 Briw_s € ARE} , and (5.6.28)

ll)+67 ll)+267
1=1,2
T4
ER,E,T,E - ER e, T ﬂ {B 1n+67 out_[g S ARE} . (5629)
i=1,2

Again, by monotonicity of Er 1z w.I.t. € as € converges to ¢, P(Eg, rz) converges to
P(ER,r) > 1/8. Hence, we may choose € such that P(Eg . rz) > 1/16 > 0. Finally, we
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call a configuration which lies in Er (¢ a configuration of good extended clusters.

Figure 5.5: In this picture the points marked with % are z;, ¢ = 1,2. The symbols B, A refer
to the times o™ and o°", respectively. The symbol o represents the times o' 4 §
and o°"* — 6, respectively. Finally, the symbol x stresses the fact that condition
(5.6.25) is fulfilled.

Additional notation. At this point we would like to introduce some notation in order
to avoid repetitions of complicated expressions.
First, let us introduce the events of interest. Let s > > 0. For a set D C R?, we denote
by

Sirg(D) == {1 € C([0,00),RY) : I}, 4 C D}, (5.6.30)

the set of all continuous paths, which stay in the set D during the whole time interval
[r, s], and by
L, (D) := {1l € C([0,00),R?) : 11, TI, € D}, (5.6.31)

the set of all continuous paths , which belong to the set D at times r, s.
In the same fashion we also define for s; > ry > 0 and s9 > 19 > 0

1 2
Tiay i) fsaira] = {1V, TP € C([0,00), RY) - 1) (1) o 0}, (5.6.32)

the set of all pairs of continuous paths II(}) and TI® whose traces, when restricted to
the time intervals [r1, s1] and [ra, s2], respectively, have a non-empty intersection.
Secondly, we modify our previous notation a bit: P now denotes the law of Brownian mo-
tion starting at a and running from time 0 up to time ¢. If we consider Brownian bridges
instead of Brownian motions we substitute the letter a by a = (a; @) containing the start-
ing and ending position of the Brownian bridge. In case of considering two independent
copies of a Brownian motion (Brownian bridge) we will add a superscript/subscript, ie.
Pyie2 (PE5?). Finally, we will refer to a Brownian bridge as W.
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Connecting C$** and C$*' inside the annulus. Step 1-Step 5 translates into the follow-
ing lower bound:

]P)(NOO = 1) 2 P(ER&,T,E ﬂ{B[wa.liln_;’_[g)a.?ut_é] m B[wo.m_,’_(; o.out 6 7& (Z)}) (5633)
which equals
P(ER.e 1))
X ]P)({Bflm_,’_é O.out 5] N BEEUEH'F(S,USNZ—(;] 7& Q)} m {Bm}n+257 Bié“‘—?é S AR,E} | ER7E7T7E)'

i=1,2
(5.6.34)
Observation: For i € {1,2}, conditionally on 7; := o?"* — oI and the endpoints

(BITUJF(;’Biéut—&) = (a;, bs), B[”fj,”_é oont_g] is a Brownian bridge running from a; to b;

in a time interval of length 7, := T; — 20 > Q, conditioned to stay in Ag . (recall the
definitions of ol and 00", i € {1,2}).

The observation above yields,

P(Noo =1) > P(ER.e1) n,rirzlgTM Pn(a1,az, 11, 72), (5.6.35)
al,a2€A2Ryg
where
Pn(ai, az, T17T2 = Pill)f}:( m {‘Cé e s(Ar 5) , S[i(),n] (AR7€)}, I[O,n],[(),m]) (5.6.36)

i=1,2

and the superscript 4, ¢ € {1,2}, on the events in (5.6.36) refers to the i-th copy of the
corresponding processes. Since P(Er ¢ r1z) > 0, by Step 1-Step 5, it is enough to prove
that

Tl)T;IZlgT/4 Pm(al,az,Tl,TQ) > 0. (5637)

2
ai,az€Ag ¢

Proof of Inequality (5.6.37). We fix a;,a2 € Arz and 71,72 > 37/4. The right-hand
side of (5.6.36) may be bounded from below by

P22 () {L5rs(Are) » Sho(Arlls Lo o0 (5.6.38)

i=1,2

which equals, by the Markov property applied at time 7; — ¢, ¢ € {1,2},

E?’f,‘lz’i;( H ]l{ﬁtsﬂ ARE S[iO,T,L ARE } H{IO 71—06],[0,72—4] }(I)5 )57041))>

1=1,2

(5.6.39)
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where
Ps(a) = P5(Sj,5(Ar.e)), a=(a,a) € (RY)2. (5.6.40)

is the probability that a Brownian bridge, going from a to @ within the time interval
[0,0], stays in Ag.. To bound (5.6.39) from below we use the following three lemmas,
whose proofs are postponed to the appendix.

Lemma 5.6.4. [Positive probability for a B'r‘ownian bridge to stay inside the
annulus] There exists ¢ > 0 such that for all a € Ay ., ®5(a) > c.

Lemma 5.6.5. [Substitution of the Brownian bridge by a Brownian motion]
Let 7> 0 and & € (0,7). There exists ¢ > 0 such that for all a € A% -, a = (a,q),

76,

dP2(Wigr—s1 € -, Lsr_s(ARre
r(Wio.r—a sr=s(Are) o (5.6.41)
dPF(Bjo,r—s) € -, Lsr—6(Arg))

Lemma 5.6.6. [Two Brownian motions restricted to be inside the annulus do
intersect] Let 71,72 > 0 and 0 < § < % There exists ¢ > 0 such that for all
ai,a2 € Are

ii,?f( () {L5r—s(Are) » Sioris(Are)}, 1[077'1—5],[0,7'2—5]) >c  (5.6.42)

1=1,2

We now explain how to get (5.6.37) by applying Lemmas 5.6.4-5.6.6 to (5.6.39). Since
the Wr,_s, i € {1,2}, appearing in (5.6.39) are in Agpz, Lemma 5.6.4 yields that, for
some ¢ > 0, (5.6.39) is not smaller than

Pi’if—?( () {L5n—s(Are) s Sior g (Are)}, I[o,n—zs],[o,rz—é])- (5.6.43)

1=1,2

Next, a change of measure argument together with the bound on the Radon-Nikodym
derivative as provided in Lemma 5.6.5 yields, for a possibly different constant ¢ > 0, that
(5.6.43) is at least

]P’%l%( () L5 —5(Are) » Sjors)(Are)}, I[o.,rl—a],[o,m—a])a (5.6.44)
i=1,2

which is positive by Lemma 5.6.6. To deduce Equation (5.6.37) from it, it is enough to
note that all the previous estimates were uniform in a;,az € Agrz. This finally yields
the claim.

Remark 5.6.7. If k > 2, then one follows the same scheme. The notion of good extended
clusters is easily generalized and one ends up connecting k excursions in an annulus.

Using the same proof as for two excursions, one can connect B[ in gout] to B[”Z ey
1
during the time interval [oi® + (i — 1)8/k, oi® +i8/k], where 6 € (0, T) foralll <i<k.
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5.6.3.2 Excluding N, =

Let us assume that the number N, of unbounded clusters in O; is almost-surely equal
to infinity. In the same fashion as in Subsection 5.6.2.2 we show that this leads to a
contradiction. We define the event

3 an unbounded cluster C' such that CNBs (0, R)U contains at least three
Er(0) := { unbounded clusters and each unbounded cluster which has a non-empty ¢ »
intersection with B (0, R) equals C.
(5.6.45)
The fact that there is R large enough such that Er(0) has positive probability can be
seen as follows. First, note that for R large enough, with positive probability the event

E40) = {3 k unbounded clusters in Boo (0, R)® which intersect B(0, R)} (5.6.46)
k>3

happens. As a consequence, there is k* > 3 such that the event inside the union in
(5.6.46) occurs for k = k* with positive probability. Moreover, we may write

Er(0) = U 3k unbounded clusters in By (0, R)C, which intersect
n et Boo (0, R) and all of them are connected inside B (0, R)

)

{ 3 k* unbounded clusters in B (0, R)C, which intersect }
Boo (0, R) and all of them are connected inside By (0, R)

(5.6.47)
Remark 5.6.7 and the lines preceding (5.6.47) yield that the last event in (5.6.47) has
positive probability and consequently, so does Fr(0). From now on, the proof works
similarly as the proof in Section 5.6.2.2. Thus, to avoid repetitions we just point out the
differences with the proof in Section 5.6.2.2.
The identification done in STEP 2. of Section 5.6.2.2 has to be changed. For each
z € 74, we replace the Poisson point inside Boo(2Rz, R) that was used to connect the
“external” clusters by what we call an intersection point, which is just an arbitrarily
chosen point zZ € B (2Rz, R) contained in all the clusters. Finally, at the moment of
applying Lemma 5.6.3, we consider

Cl = {x € {€N B (0, LR)} U {intersection points}: z N BZZ} i=1,...,n,,

and
S = B (0, LR) N (£ U {intersection points}).

This choice generates a minor difference at the moment of getting the contradiction in
(5.6.17). Indeed, we have that

E(|S|) > K((L — M —2)%/2+2) (5.6.48)
but, taking into account the intersection points we have that,

E(|S]) < E(|Bso(0, LR) N E|) + E(|R|) < M2LR)? + (L — M + 2)“. (5.6.49)
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In the last inequality we used that
IR| < |{z € Z%: Boo(2R2, R) C Boo(0, LR)}| < (L — M + 2)%. (5.6.50)
Thus, combining (5.6.48) and (5.6.49) yields
VL >M+2, K((L—-M-2)%/2+2)<X2LR)?+ (L — M +2)%, (5.6.51)

from which we obtain the desired contradiction in the same way as in the case d > 4.

Appendix

5.7 Proof of Lemma 5.2.3: a finite box criterion for
subcriticality

The proof consists of two steps. In the first step a coarse-graining procedure is introduced,
which reduces the problem of showing subcriticality of a continuous percolation model
to showing subcriticality of an infinite range site percolation model on Z¢. This coarse-
graining was essentially already introduced in [MR96, Lemma 3.3], where p was supposed
to have a compact support. To overcome the additional difficulties arising from the long
range dependencies in the coarse-grained model we use a renormalization scheme, which
is very similar to the one in Sznitman [S10, Theorem 3.5].

STEP 1. Coarse-graining,.

We fix N € N. For n € N, a sequence of vertices zg, 21, . .., zn—1 in Z% is called a *-path,
when ||z; — zi—1|lec = 1 for all ¢ € {1,2,...,n — 1}. Furthermore, a site z = (2(j),1 <
j < d) € Z% is called open when there is an occupied cluster A of ¥ such that

d C

d
H §) +1)N) # 0 and (i4) Am(H ) —1)N, (2 (j)+2)N)> # 0.

(5.7.1)
Otherwise z is called closed. It was shown in [MR96, Lemma 3.3] that to obtain Lemma
5.2.3 it suffices to show that

Py, (O is contained in an infinite *-path of open sites) =0. (5.7.2)

To prove (5.7.2) we introduce a renormalization scheme.

STEP 2. Renormalization.

e New notation and a first bound. We start by introducing a fair amount of new
notation. We fix integers R > 1 and Lg > 1, both to be determined and we introduce an
increasing sequence of scales via

Vn € Ng, Lpi1=R""L,. (5.7.3)

158



5.7 Proof of Lemma 5.2.3: a finite box criterion for subcriticality

Moreover, for i € Z%, we introduce a sequence of increasing boxes via

[i(j) Ln, (i(j) +1)Ln) N2 and

£
m
—

<.
Il
—

(5.7.4)
)Ln, (i(j) + 2)Ln) N Z°.

!
)
—~
~
~—
I
—l=
—
.
—
<
~—
|
—_

<.
Il
—

We further abbreviate C,, = C,,(0) and C,, = C,,(0). Thus, Cy (i) is the union of boxes
Ch(j) such that ||j — i]| < 1. Moreover, for n € N, we introduce the events

A, (1) = {there is a x-path of open sites from C, (%) to 8intC~’n(i)}, (5.7.5)

and we write A,, instead of A,,(0). Here, 0int B refers to the inner boundary of a set
B C Z% with respect to the || - ||so-norm. The idea of the renormalization scheme is to
bound the probability of A, 11 in terms of the probability of the intersection of events
A, (i) and A, (k), where i € Z? and k € Z? are far apart. By our assumption on the
radius distribution p, the events A, (i) and A, (k) can then be treated as being basically
independent. This will result in a recursion inequality, which relates the events A,,
n € N, at different scales to each other. For that, we fix n € N and let

My = {z €70 : Co(i) C Crsr, Cnli) N Bt Cropr # (ZJ} and
(5.7.6)

L
Moy = {k ez : Co(k)N {z € 7% : dist(z, Cpin) = "2“} £ (ZJ}.
Here, dist(z,Cy+1) denotes the distance of z from the set C,4+1 with respect to the
supremum norm. Note that here and in the rest of the proof, for notational convenience,

we pretend that expressions like L, 11/2 are integers. Observe that if A, 1 occurs, then
there are ¢ € Hy and k € Hy such that both A, (7) and A, (k) occur. Hence,

]P))\,p(An+l) S Z P)\p(An(Z) N An(k))
i€H1,kEH2 (5'7.7)

< RMVOHD qup Py, (A (6) N An(K)),
1€EH1,kEH2

where ¢; = ¢1(d) > 0 is a constant which only depends on the dimension.

ePartition of A, (i) N A, (k). We fix i € H; and k € Ha. Let z € Cy,(i) and note that
to decide if z is open, it suffices to look at the trace of the Boolean percolation model on

[(2(7) = DN, (2(3) + 2)N). (5.7.8)
1

d
j=
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In a similar fashion one sees that the area which determines if A4, (i) occurs is given by

d

[TIGG) = DIn = DN, ((() + 2)Ln + 2)N]

T (5.7.9)
€ T16(G) — 2LaN, () +3) L) = DET(Cu(i)

and likewise for A, (k) with ¢ replaced by k. Here, we used that by our choice of R and
Lo the relation L,, > 2 holds for all n € N. We introduce

D(z,r(x)) = {B(x,r(x)) ﬂDET( (1)) # 0, B(z,r(x)) N DET( w(k)) £ 0} (5.7.10)

and

B (i,k) = | D(x,r(x)) (5.7.11)

zel

so that,
P (An (i) N An () = P p(An (i) 1 A (k)| Ba (i, k)°) X Py (Ba(is b)) (5.7.12)
+ Py (A (1) N Ay (k)| Ba(iy k) X Py o(Bn (i, k).

e Analysis of the first term on the right hand side of (5.7.12). We claim that under

Py, |B ) k) ) the events A, (i) and A, (k) are independent. To see that, note that the
Poisson point process x on R% x [0, 00) with intensity measure v = (A x Lebg) ® p (see

Section 5.2.1) is a Poisson point process under Py ,(-| By (i, k)c), with intensity measure
1{there is no (z,r(z)) € x such that D(z,r(z)) occurs} X v. (5.7.13)
However, on B, (i, k)c, the events A, (i) and A, (k) depend on disjoint subsets of R? x
[0, 00). Consequently, they are independent under Py , (| By (i, k)c) Hence,
Py (An (i) N A (k)| Bn (i, k)B) X Py (B (i, k)°)
— Py (An (i) B (6, k)°)Pr p(An (k)| Bu (i, k)B) x Py o (Bn(i, k)°) (5.7.14)
B (A BBl B

For the last inequality in (5.7.14) we also used the fact that Py ,(Ay (7)) does not depend
on i€ Z4.

eAnalysis of the second term on the right hand side of (5.7.12). To bound the
second term on the right hand side of (5.7.12) it will be enough to bound Py , (B, (4, k)),
since the other term may be bounded by one. Note that

_ 3z € ENCra(ON = Bla,r(x)) NDET(Cp(i)) # 0
Pro(Bali k) < 3 P( and | B(a,r(x)) N DET(Co (k) # 0 )
(5.7.15)

Le3zd
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Here, the set Cy,11(£)N is the set {z € R : 2 = 2N, z € Cpp i1 (£)}. To warm up, we first
treat the term ¢ = 0 in the sum (5.7.15). Note that,

dist(DET(C,, (i), DET(C, (k)) > (% - 8Ln)N > L’;“ N, (5.7.16)

where the last inequality holds for all n € N, provided R and Ly are chosen accordingly.

Thus, if there is a Poisson point whose corresponding ball intersects DET(C,,(¢)) and

DET(C,,(k)), then its radius is at least L,,+1N/6. This yields

P 3z € ENCria N+ B(z,r(x)) NDET(C, (i) £ 0 )
P and B(z,r(z)) N DET(C,(k)) # 0

(5.7.17)
<Py, (Elx €ENChitN :1(x) > Ln+1N/6>.
We may rewrite (5.7.17) as
1-— Z ]P)A)p(VZE cén 6n+1,T($) < Ln+1N/6’|8 n én+1N| = m)
m=0

x Pr,(|ENCpi1N| =m

N N xoll nNl=m) (5.7.18)
Lebg(Cos i N)™  _pen &
1= 3 L= pl[ L i N/6, o)) x LALLMt G
— m!

=1—exp{ — ALebg(Cps1N)p([Ln41N/6,00))},

which is at most ALebg(Chi1N)p([Lns1N/6,00)). By our assumption on the radius
distribution, for R and L large enough, there is a constant ca = c2(p) > 0 such that the
last term may be bounded by )\(3Ln+1N)de_CZL"+1N/6. Similar arguments show that
the left hand side of (5.7.15) is at most

A(BLp 1 N) e c2bneaN/6 L N N NBLp g1 N)* x e 2B =DH/2 N - (5.7 19)

m=1 ye37?
[1€]lco=m

This may be bounded by
c3A(3L,, 1 N)de=c2lntaN/6, (5.7.20)

for some constant c3 > 0 which is independent of R, Ly and N. Hence, we have bounded
the second term on the right hand side of (5.7.12). In particular, we may deduce that

for all n € N, again for a suitable choice of R and Lg, Px (B (%, k)c) >1/2.

eAnalysis of the recursion scheme. Equation (5.7.7) in combination with (5.7.12)
and the arguments following it show that

Py p(Any1) < 2¢; RAE-DOHD (PA,p(An)2 + 03)\(3Ln+1N)d8_c2L"“N/6)- (5.7.21)

161



5 Brownian percolation

To deduce the desired result, we first show with the help of (5.7.21) that Py ,(A,,) being
small implies that Py ,(A,+1) is small as well. As a final step it then remains to show
that Py ,(Ao) is already small. We now make this idea more precise. We put

VneN, a,=2cR*UP, (A,). (5.7.22)

Claim 5.7.1. For R large enough, for all n € N and for all Ly > 2R*4=D+1  the

inequality a, < L;l implies that ap4+1 < L;}_l.

Proof. To prove the claim, let n € N and assume that a,, < L *. Then,
a1 = 261RQ(d_l)(”“)P)\,p(AnH)
< A4ERMTVOFD IRy (A4,)2 + 3\ (3L, N)dec2ln+a1N/6 (5.7.23)
= a2 R4 4 423 RV \ (3L, N)demc2lntaN/G,
Thus, it is enough to show that

2RMD < (20,,1)7 and  4Zea RNV (3L N)dem2lntaN/6 < (o, )7L
(5.7.24)
For that, note that by our assumption on a,,

n+1
a2RMYor, ) <2L72RYAVL L = 2R4(d‘1>R§T < 2RMA=DHLIL L (5.7.25)
n—1

Thus, choosing Lo > 2R*@=1+1 yields the first desired inequality. The second term on
the right hand side of (5.7.23) may be bounded using similar considerations. This yields
Claim 5.7.1. |

Hence, to use the claim, we need that Py ,(Ag) < Ly L For that observe that
Pap(Ao) =Pap (There is a *-path of open sites from [0, Lo)? to e[~ Lo, 2L0)d.>
<Py, (There is 2 € e[~ Lo, 2Lo)?, which is open.)

< 4 LE'Py (0 is open),

(5.7.26)
where ¢4 = c4(d) > 0 does only depend on the dimension. Equation (3.64) of [MR96]
shows that

Py_,(0 is open) < 2dPy ,(CROSS(N, 3N, ..., 3N)). (5.7.27)
Therefore, if the right hand side of (5.7.27) is smaller than (4dcicyLd)™!, we get from
(5.7.26) that Py ,(Ag) < (2¢1Lo) ™", which is the same as saying that ag < Ly *. This, in
combination with Claim 5.7.1 and the observation that an infinite x-path of open sites
containing zero implies the events A,, for all n € N| finally yields

Py, (O is contained in an infinite *-path of open sites) < lim Py ,(A,) =0. (5.7.28)
n—oo

Consequently, we have shown that Lemma 5.2.3 is satisfied for & < (4dcyc, LETH) 1.
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5.8 Proofs of Lemmas 5.6.4-5.6.6: properties of
Brownian motions

5.8.1 Proof of Lemma 5.6.4: positive probability for a Brownian
bridge to stay inside an annulus

Proof. Let a € Z;)g. First, note that
®5(a) > 0. (5.8.1)

Indeed, since for all § < § the path of a Brownian motion Byg,5) starting in a is absolutely
continuous with respect to that of the Brownian bridge Wi 5,

P?(W[ng/z] - -AR,E, W5/2 S B(a, 6’)) > 0, (5.8.2)

where € > 0 is chosen so small that B(a,e’) C Ag.. From the representation

Vs €[0,0], W, =B, — 2(35 —a) (5.8.3)

and the fact that a Brownian motion stays with a positive probability in an arbitrary
small ball around its starting point within finite time intervals, we have the following:

Va' € B(E, 6/), Pg(W[5/275] - AR,e | W§/2 = a’) > 0. (5.8.4)

Equation (5.8.1) then follows from (5.8.2), the Markov property applied at time 6/2 and
(5.8.4). Second, the representation in (5.8.3) shows that the map

ar— P} (W[o.,a] € -), acAp., (5.8.5)

is weakly continuous. Moreover, the probability for a Brownian bridge to hit the bound-
ary of Ag. but to stay inside Ag . is zero. Thus, an application of the Portemanteau
Theorem yields that the function

ar P§ (W[o,a] € AR,E), ac qu,g, (5.8.6)

is continuous. This fact together with (5.8.1) is enough to conclude the claim. n

5.8.2 Proof of Lemma 5.6.5: substitution of the Brownian bridge by
a Brownian motion

Proof. First, for a = (a,a) € Ar< we have that (see Exercise 1.5 in [MP10])

dP2(Wio.r—g) € -) _ (8, Wr—5,@) (5.8.7)
dPH(Bjo,r—4) € ) p(r.a,@) -
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where

1 lz —yl?
p(s,x,y) = W exp (—T . (588)

Moreover, there exist constants ¢; and co such that

0<ec < inf p(s,z,y) < sup p(s,z,y) < c2 < oco. (5.8.9)
0<s<t 0<s<t
z,y€AR = z,yEAR =
Therefore,
dP2(Wig,r—s) € -, Ls,7—5(ARe
7['1( [0,7—4] d, 5( R, )) > (C_1> > 0. (5810)
dPF(Bjo,r—s) € -, Ls,7—5(ARe)) co

5.8.3 Proof of Lemma 5.6.6: two Brownian motions restricted to be
inside an annulus do intersect

Proof. To achieve the intersection event, we use the following strategy:

e before time §, both paths enter a ball inside Agz, and from this moment, stay in
a slightly bigger ball;

e the two paths intersect each other between time § and 7 A 72 — d, while staying in
a larger ball contained in Age.

More precisely, let us choose arbitrarily z € Arz. Let €4 > €3 > €2 > €1 > 0 to be
determined later. For the moment we only assume that B(z,€e4) C Age. For i € {1,2},
let us define

ol) = inf{s > 0: B € B(z,e1)} (5:8.11)
ol = inf{s > o{” : B ¢ B(z,e)}. (5.8.12)

First note that with 7 : =7 A and 7 := 7 V1

{ ﬂ {L5..—5(Arz2) , Slor_s5)(Are)}, I[o,n—[s],[o,rz_a]} 2 (5.8.13)

i=1,2
05” <5a /\cr2 >5 i 5(AR),

| 12{ng,+_5] (BL2,6)) g B €4>>}, 6,731,674

1=

An application of the Markov property at time § shows that it is enough to establish
that

inf ]Pgl(;aZ( Wvol® < 08 not? >0, () Shal ARE)) 0, (5.8.14)

a1,62€AR = i=1.2
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and

i yeig(fz E2)P§f/25j_25 (I[o,+—25],[0,+—25] m S[ioﬁ_%] (B(z,eg)),Sf%_%j_%] (8(2764))) <> 0.
: : i=1,2

(5.8.15)
Let us first prove (5.8.14). The probability in the infimum is clearly positive for all a1, as
in the compact set Ag z. Furthermore, one can use the same arguments as in the proof of
Lemma 5.6.4 to show that it is continuous in (ai,az) on Agrz x Agz, hence the infimum
is also positive.

Now we proceed to prove (5.8.15). Again, an application of the Markov property at time
7 — 26 shows that it is enough to prove that

pye Basp0s (I[o,+—261,[o,+—2s} M Sioi-2q (5’(2763))) >0, (5.8.16)
’ ’ i=1,2
and
. Zz,Y 7
zﬁyelg(fzﬁes)m_ﬁ_f(i QQ Shrn (B(z,e4))) > 0. (5.8.17)

Now we focus on (5.8.16). For all 79 > 0 and Ry > 1, let us consider

plro, Ro) = inf  PE (Zi.o10,70 i DQSEOJO] (B0, Ry))) (5.8.18)

> if  PTY (z : T)—2 sup Pi( sup || Bs >R).
z,yeB(0,1) 70 [0,70[0.70] 2€B(0,1) SE[O,TO]H | 0

By using the monotonicity argument in Lemma 5.5.2 and Theorem 9.1 in [MP10], the last
infimum can be made arbitrarily close to 1 by choosing 7y large enough, whereas standard
estimates yield that the supremum goes to 0 as Ry goes to infinity. Therefore, there is a
choice of 79 and Ry leading to p(79, Rg) > 0. By the scale invariance of Brownian motion,

Vu > 0, . yéIBl{O )PfLéyTO#ZTO (I[O7u27'0],[0,u27'0] ﬂ S[i(),uzfg] (B(Ov URO))> = p(T07 RO) > 0.
g “ i=1,2
(5.8.19)
We may now choose ug > 0 such that
= udtg <7 — 26, 2uoRy < dist(z, Ag.), (5.8.20)
and we set
€2 1= Ug, €3 = 2UQRO. (5821)

Note that we may choose Ry such that e3/2 > e5. Hence, an application of the Markov
property at time 7’ to the left hand side of (5.8.16) yields,

Lh.s. of (5.8.16)

> p(70, R inf  PYY ( Si oo (B0, )>o. (5.8.22)
—p(TO O)I)yeé?07€3/2) F—2—71/,F—26—T7 iQ2 [0,7—26—7']( ( 63))
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5 Brownian percolation

The positivity of the second factor of (5.8.22) and of (5.8.17) may be shown by using
similar arguments as in the proof of Lemma 5.6.4. This finally yields the claim. n
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6 Random interlacements: transience of
the vacant set

This chapter is based on:

A. Drewitz, D. Erhard. Transience of the vacant set for near-critical random inter-
lacements in high dimensions. Posted on arXiv:1812.2980v1, to appear in Annales de
I'Institut Henri Poincaré Probabilités et Statistiques.

Abstract

The model of random interlacements is a one-parameter family Z%, u > 0, of random
subsets of Z%, which locally describes the trace of simple random walk on a d-dimensional
torus run up to time u times its volume. Its complement, the so-called vacant set V¥, has
been shown to undergo a non-trivial percolation phase-transition in w; i.e., there exists
ux(d) € (0,00) such that for u € [0,u.(d)) the vacant set V* contains a unique infinite
connected component V%, while for « > u.(d) it consists of finite connected components.
It is known [S11la, SS11b] that u.(d) ~ logd, and in this article we show the existence of

u(d) > 0 with ;i((dd)) — 1 as d — oo such that V¥ is transient for all u € [0, u(d)).

MSC 2010. Primary 60K35, 60G55, 82B43.

Key words and phrases. Random interlacements, percolation, transience, electrical net-
works.

Acknowledgment: We are indebted to B. Rath and A. Sapozhnikov for inspiring discus-
sions as well as for useful comments on a first draft of this paper.

6.1 Introduction and the main result

6.1.1 Introduction

The model of random interlacements has been introduced by Sznitman [S10] as a family
of random subsets of Z¢ denoted by Z%, u > 0, where u plays the role of an intensity
parameter. It locally describes the trace of simple random walk on the discrete torus
(Z/NZ)? run up to time uN? (see Windisch [WO08] as well as Teixeira and Windisch
[TW11]). Using the inclusion-exclusion formula the distribution of the set Z* can be
neatly characterized via the equalities

P[K NT" = (] = e~ vK cc 79,
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6 Random interlacements: transience of the vacant set

Here, cap(K) is used to denote the capacity of the set K (see (6.2.3) for the definition
of capacity). In a more constructive fashion, random interlacements at level u can also
be obtained by considering the trace of the elements in the support of a Poisson point
process with intensity parameter u > 0, which itself takes values in the space of locally
finite measures on doubly infinite simple random walk trajectories modulo time shift (see
Section 6.2.2 for further details).

This constructive definition already suggests that the model exhibits long range de-
pendence, and indeed the asymptotics

Cov(lyezu, Lyeru) ~ c(u)lz —yl; 7, (6.1.1)

(and similarly for 7" replaced by V*) holds for |z — y|o — 00, as can be deduced from
(0.11) in [S10]. As a consequence, standard techniques from Bernoulli percolation do
not apply anymore. For example, due to (6.1.1) Peierl’s argument and the van den
Berg-Kesten inequality break down. The long range dependence also entails that ran-
dom interlacements neither stochastically dominates nor can be dominated by Bernoulli
percolation (cf. Remark 1.6 1) of [S10]). Moreover from the constructive definition of
random interlacements alluded to above, one can infer that the model does not fulfill the
finite energy property (see Remark 2.2 3) of [S10]). These features make the model both,
more appealing and more complicated to investigate.

During the past couple of years there has been intensive research on random inter-
lacements. Basic properties such as e.g. the shift-invariance, ergodicity and connect-
edness of Z" have been established in the seminal paper [S10]. Since then, one has
obtained a deeper understanding of the geometry of random interlacements. In fact,
Réath and Sapozhnikov [RS11] have shown the transience for random interlacements Z"
itself throughout the whole range of parameters u € (0, 00). The same authors in [RS10],
as well as Procaccia and Tykesson [PT11] have shown by essentially different methods
(using ideas from the field of potential theory on the one hand, and stochastic dimen-
sion on the other hand) that any two points of the set Z% can be connected by using
at most [d/2] trajectories from the constructive definition described above. Recently,
using in parts extensions of the techniques in [RS10], this result has been generalized to
an arbitrary number of points by Lacoin and Tykesson [LT12]. Another step in showing
that the geometry of random interlacements resembles that of Z¢ has been undertaken
by Cerny and Popov [CP12], where the authors prove that the chemical distance (also
called graph distance or internal distance) in the set T is comparable to that of Z.
Using this result they proceed to prove a shape theorem for balls in 7% with respect to
the metric induced by the chemical distance.

It is particularly interesting to obtain a deeper understanding of the vacant set V* and
its geometry also. Indeed, on the one hand, this is more challenging than the investigation
of 7% in the sense that one cannot directly take advantage of the many tools available
for simple random walk, which have proven to be very helpful in understanding the set
Z%. On the other hand, it has been shown by Sznitman [S10] as well as Sidoravicius
and Sznitman [SS09] that there exists a non-trivial percolation phase-transition for V*
at some u(d) € (0,00) in the following sense: For u > u.(d) the vacant set V* as a
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6.1 Introduction and the main result

subgraph of Z? contains only finite connected components (subcritical phase), whereas for
u € [0,ux(d)) it has an infinite connected component almost surely (supercritical phase).
Using a strategy inspired by that of the seminal paper of Burton and Keane [BK89],
and taking care of the difficulties arising from the lack of the finite energy property for
random interlacements, Teixeira [T09] has shown the uniqueness of the infinite connected
component of V* (denoted by V%) in the supercritical phase.

While for random interlacements itself many results have been shown to be valid for
any u > 0, the situation is more complicated when investigating the vacant set V.
In fact, while there are few results concerning the vacant set in the first place so far,
the ones which describe geometric properties such as Teixeira [T11], Drewitz, Rath and
Sapozhnikov [DRS12a], Popov and Teixeira [PT12] (dealing with the size distribution of
finite clusters of the vacant set and local uniqueness properties of V% ) and Drewitz, Réth
and Sapozhnikov [DRS12b] as well as Procaccia, Rosenthal and Sapozhnikov [PRS13]
(providing chemical distance results as well as heat kernel estimates in a more general
context) are valid for some non-degenerate fraction of the supercritical phase only. To the
best of our knowledge, our main result Theorem 6.1.1 is the first one concerning geometric
properties of the vacant set which is valid throughout most, and asymptotically all, of
the supercritical phase for V*.

6.1.2 Main result

Here we formulate our main result. For this purpose recall that a connected graph with
finite degree G = (V, E) with vertex set V' and edge set E is called transient if simple
random walk on G is transient. For the rest of this article V' will usually denote a
subset of Z¢ and E will be the set of nearest neighbor edges in Z¢ which have both ends
contained in V.

Theorem 6.1.1. Let € € (0,1). There is dg = do(e) € N, such that for all d > dy and
all u < (1 —e)ux(d), the unique infinite connected component VX of the vacant set V* of
random interlacements in Z% is transient P-a.s.

Recall here that u.(d) ~ logd, see [S11a, SS11b], where log denotes the natural loga-
rithm. We refer to Section 6.2 for a rigorous definition of the terms appearing in Theorem
6.1.1.

6.1.3 Discussion

Theorem 6.1.1 provides a rough geometrical description of the infinite connected compo-
nent of the vacant set, which is valid throughout most of the supercritical phase when
d is large enough. To establish this result we introduce a classification of vertices in
73 x {0}973 into “good” ones and “bad” ones, where “good” refers to having good local
connectivity properties. This way the problem will be reduced to showing the tran-
sience of an infinite connected component of good vertices in Z3. Our construction of
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6 Random interlacements: transience of the vacant set

this infinite cluster will employ results of Sznitman [S11a, S12], whereas the proof of the
actual transience of this component uses ideas of Angel, Benjamini, Berger and Peres
[ABP06]. Besides making the attempt to extend our result to the entire supercritical
phase it would be interesting to obtain a more precise understanding of V% . Results
in this direction have been obtained in [DRS12b, PRS13]. A key assumption in these
papers was a local uniqueness property (in our context of V%), which roughly states
that with high probability the second largest component in a predetermined macroscopic
box is small compared to the largest connected component in the same box. However,
this local uniqueness property has so far only been established for a non-degenerate part
of the supercricital phase, and obtaining its validity throughout the whole supercritical
phase would be an interesting topic for further investigations.

The rest of this chapter is organized as follows. In Section 6.2 we introduce further no-
tation, give a more detailed description of the model and provide a decoupling inequality
tailored to our needs (Proposition 6.2.3). The proof of Theorem 6.1.1 is carried out in
Section 6.3. Sections 6.4 and 6.5 contain the proofs of auxiliary results employed when
proving Theorem 6.1.1.

6.2 Notation and introduction to the model

Section 6.2.1 introduces notation used in this article, Section 6.2.2 defines random inter-
lacements, while Section 6.2.3 states a decoupling inequality. Throughout the article we
assume that d > 3.

6.2.1 Basic notation

In the rest of this article we will tacitly identify Z3 with Z3 x {0}?~2 via the bijection
(21,22, 23) — (21, 22,23,0,...,0), if no confusion arises.

For a subset K C Z¢ we write K CC Z4, if its cardinality | K| is finite or equivalently
if K is compact. We denote by |- |1 the /-norm, by | - | the Euclidean norm, whereas
| - |oo stands for the £>°-norm on Z<. Sites x,z’ in Z? are said to be nearest neighbors
(+-neighbors), if | — 2/|; =1 (Jz — 2’| = 1). A sequence xg, 1, ..., 2, in Z¢ is called
a nearest neighbor path (x-path), if z; and x; 1 are nearest neighbors (*-neighbors), for
all 0 < i < mn—1;in this case we say that the path has length n+1. A set K C 7% is said
to be connected (x-connected), if for any pair z1,z2 € K there exists a nearest neighbor
(#-neighbor) path x1,y1,y2,. .., Yn, 2 such that these vertices are contained in K. For
K C Z% we introduce the following notions of boundaries

Omt K = {x € K : x has a nearest neighbor in K¢},
0r K = {x € K : z has a *-neighbor in K¢},

0K = {x € K°: x has a nearest neighbor in K},
0"K = {x € K°: z has a *-neighbor in K},

(6.2.1)
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6.2 Notation and introduction to the model

to which we refer as interior boundary (interior *-boundary) and boundary (*-boundary),
respectively. Moreover, the exterior boundary (exterior #-boundary), denoted by OQext K
(0x K), is the set of vertices in the boundary (x-boundary), which are the starting point

ext
of an infinite non-intersecting nearest neighbor path with no vertex inside K.

The closure of a set K C Z% is defined by K = K UOK. IfzeZlorzeZ® and L >0,

we write
Bie,D)={y€Z': lo—yli<I} ad  BieL)={yeZ: |-yl <L}
respectively, for i € {1,2,00}. Given a set K C Z% and w : Ny — Z9, we denote by
Hg(w)=inf{n>0: w(n) € K} and Hg(w)=inf{n>1: wn)e K} (6.2.2)

the entrance time in and the hitting time of K, respectively. For x € Z<, let P, denote
the law of simple random walk on Z¢ with starting point z. If K CC Z%, we write eg
for the equilibrium measure of K, i.e.,

ex(x) =P, [ﬁK =o00|l{exy and cap(K) = Z ex(x) (6.2.3)
reK

for the total mass of ek, which is usually referred to as the capacity of K. From this one
immediately obtains the subadditivity of the capacity; i.e., for all K, K’ CC Z% one has

cap(K U K') < cap(K) 4 cap(K"). (6.2.4)

We denote by g : Z? x Z¢ — [0,00) the Green function of simple random walk on Z¢,
which is defined via

g(z, ') = Z P, [X, =2'], foraz,a' € ze,
neNy

and we write g(0) = ¢(0,0). Finally, let us explain the convention we use concerning
constants. Throughout the article, small letters such as ¢, ¢, ¢1, o, - - -, denote constants
which are independent of d. Capital letters, such as C' and C; might depend on the
dimension. Constants that come with an index are fixed from their first appearance on
(modulo changes of the dimension if they are capital letter constants), whereas constants
without index may change from place to place.

6.2.2 Definition of random interlacements

The model of random interlacements has been introduced in [S10], and we refer to this
source for a discussion that goes beyond the description we are giving here. We write

W, = {w :No = Z%: Jw(n) —w(n+1)|; =1VYn €Ny, and 1i_{n |w(n) = oo}
for the set of infinite nearest neighbor paths tending to infinity and
W = {w 17— 2% Jw(n) —whn +1)1 =1Vn€Z, and lim |w(n) = oo}

n— 400
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6 Random interlacements: transience of the vacant set

for the set of doubly infinite nearest neighbor paths tending to infinity at positive and
negative infinite times. W, is endowed with the o-algebra YW, generated by the canonical
coordinate maps X, n € Ng. Similarly, we will write W and X,,, n € Z, for the canonical
o-algebra and the canonical coordinate process on W. We denote by W* the space of
equivalence classes of trajectories in W modulo time-shifts, i.e.,

W* =W/ ~, where w ~ w' iff w(-) = w'(- + k) for some k € Z.

We let 7* : W — W™ be the canonical projection and endow W* with the o-algebra
induced by 7* via
A {A CcW*: (7*)71(A) € W}

We furthermore introduce for K CC Z¢ the subsets

Wik = {w € W: there is k € Z such that w(k) € K},

Wi =7 (Wk)
of W and W¥*, respectively. Note that Wx € W and Wy € W*. For A,B € Wy,
K cc Z% and = € Z? we define a finite measure Qx on W via

QK [(X_n)nzo € A,XO =z, (Xn)nZO S B} = Pw[A | E[K = OO] eK(x)Pm[B]

According to Theorem 1.1 in [S10] there exists a unique o-finite measure v on (W*, W*)
such that for all K CC Z? and E € W* with E C W}, the equation

V[E] = Qk [(7*) 1 (E)]
is fulfilled. We will also need the space

0= {w = Z(s(w;*,ui) with (w},u;) € W* x [0,00), for i >0,
i>0

and w[W;: x [0,u]] < oo for any K cC Z¢ and u > 0}

of locally finite point measures on W* x [0, 00). Let B([0,0)) be the Borel o-algebra on
[0,00) and let A be the o-algebra on Q which is generated by the family of evaluation
maps w — w[D], D € W* ® B([0,00)). We denote by P the law of the Poisson point
process on (2, A) with intensity measure v ®du. This process is usually referred to as the
interlacement Poisson point process. Random interlacements at level u is then defined
as the subset of Z¢ given by

T (w) = U range(w;), where w = Z O(wr,us) €

u; <u i>0

and range(w*) = {w(n) : n € Z} for arbitrary w € 7~ *({w*}). The vacant set at level
u > 0 is defined by

Vi(w) =24\ T W), weQ.
As has been shown in [S10] and [SS09], in any dimension d > 3 there exists a u.(d) €
(0,00) such that for u € [0,u.(d)) the vacant set V* contains an infinite connected
component, whereas for u € (u.(d),c0) it consists of finite connected components.
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6.2.3 Cascading events and a decoupling inequality

In this section we give a slightly refined version of a decoupling inequality of [S12, The-
orem 3.4]. This is a fundamental tool to deal with the dependence structure inherent to
the model. Since the constants appearing in the decoupling inequality depend implic-
itly on the dimension d, we have to pay special attention to their behavior for large d.
Proposition 6.2.3 below states all these dependencies explicitly. We write ¥, = € Z,
for the canonical coordinates on {0, 1}2°. Let us recall Definition 3.1 of [S12] of so-called
cascading events.

Definition 6.2.1 (Cascading events). Let A > 0. A family G = (Go,L),ea 151 integer

of events in {0, I}Zd cascades with complexity at most X, if
Gg iso (\I!m/,x' € By(x, 10\/EL)) — measurable for each x € 7Z¢, L > 1,

and for each multiple 1 of 100, x € Z%, L > 1, there exists A C Z% and a constant
Cy = C1(G, \) such that

A C By(z,9VdlL),
|A| S Cll)\a
G C U Gy .1, NGy 1.

z/ ' EN: |w’—w”|22ﬁ\/aL

Remark 6.2.2. Note that the cascading events are defined with respect to the £2-norm
instead of the more common £>°-norm. Since we are working in a high dimensional
setting, this makes the constants appearing in Proposition 6.2.3 easier to control. This
again is due to the fact that, see (1.22) and (1.23) of [SS11b], there are constants ca, c3 >
0, which do not depend on d, such that for all L > d,

The notions introduced below pertain to the so-called sprinkling technique. The idea
is that with high probability the mutual dependencies of the events under consideration
can be dominated by considering random interlacements at two different levels u < u.
For this purpose we introduce for [y positive the quantity

1 —(d—3)/2
lo) = 1+32e2c8—— 1 . 6.2.6
10 =T (14t (6:26

The constant ¢; will be chosen according to the formulation of Proposition 6.2.3 below.

Furthermore, we define for u > 0, u, = u_(u) = %, as well as for Lo > 1,

2 —uLd72l0
) P (6.2.7)

1— e—uLg”lg
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6 Random interlacements: transience of the vacant set

We let Ly > 1 and define the scales L,, = [{/Lo, n € Ng. L,, and lp will play from now on

the role of L and [ in Definition 6.2.1. Finally, for a subset 4 C {0,1}%" and u > 0 we
write

At i={weQ: Tpu € 4},
Also, A C {0, 1}Zd is called increasing if the following holds: For all £ € A and &' €
{0,1}%" such that &, < &, holds for all z € Z%, one has that & € A also.

A refinement of the arguments in [S12], proof of Theorem 2.6 (with a special emphasis
on the dependence of the constants on the dimension), leads to the following result.

Proposition 6.2.3 (Decoupling inequality). Let A > 0. Consider
G = (Gz,L)Iezd7L>l integer @ collection of increasing events on {0, I}Zd that cascades

with complexity at most X. Then there are co,c1 > 1 (the latter one comes into play in
(6.2.6)) such that for all lo > 10%v/dco, all Lo > v/d and all n € Ny, one has

n omn
jg;dP[sz;EJ < (CllSA)2 (ES%P{GZ?LO} +g(u;o)> ) (6.2.8)

See Appendix 6.6 for the proof.

6.3 Proof of the main result: transience of the vacant set

In this section we introduce a classification of vertices in Z? into “good” (exhibiting good
connectivity properties, see Definition 6.3.1 below) and “bad” vertices. Subsequently, we
give two auxiliary results on the existence of an infinite connected component of good
vertices (Proposition 6.3.3) which is transient as a subset of Z? (Proposition 6.3.5). From
the latter result we deduce Theorem 6.1.1.

6.3.1 Auxiliary results: Classification into good and bad vertices

Let C, = 2y + {0,1}%, y € Z¢, and C = Co.

Definition 6.3.1. Let u > 0. A vertery € Z3 is defined to be u-good (with respect to
we)if

W€ Gy = {w €Q: VzeZ with |y — 2|1 <1, the set V*(w) NC, contains a

connected component €, . with |&, ,NC,| > (1 —d?)|C.|, and

these components are connected in V*(w) N ( U CZ> }
2€Z3 1 |y—z1<1
(6.3.1)
Otherwise, y is called u-bad (with respect to w € Q).
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Remark 6.3.2. Lemma 2.1 in [S11a] states that there is a dy € N such that if d > dy,
then any subset V. C C contains at most one connected component € of V' such that
|€NC| > (1 —d=?)|C|. Thus, for d > do, if a connected component €, . as in (6.3.1)
exists, then it is necessarily unique.

Denote by
G'w):={yeZ weG,,} and B“w):=7Z\G"w) (6.3.2)

the set of u-good and wu-bad vertices given w. We can now state the auxiliary results
alluded to above.

Proposition 6.3.3 (Existence of an infinite connected component of good vertices). Fiz
e € (0,1). There is dg = do(e) € N such that for all d > dy and u < (1 — €)u(d), P-a.s.
there exists an infinite connected component in G*".

Remark 6.3.4. Using Proposition 6.4.1 below, it is not hard to establish the uniqueness
of this infinite connected component. However, since we do not need this uniqueness, we
will not give a proof of this fact.

In the forthcoming proposition all parameters are chosen according to Proposition 6.3.3
above. From now on, G will denote an arbitrary infinite connected component of G“.

Proposition 6.3.5 (Transience of G%). Fiz e € (0,1). There is dg = do(e) € N such
that for all d > dy and u < (1 — &)u.(d), one has that G is transient P-a.s.

The above two results will be proven in Sections 6.4 and 6.5.

6.3.2 Proof of the main result given the two auxiliary propositions

In this section we show how Theorem 6.1.1 can be deduced from Propositions 6.3.3
and 6.3.5. For a connected subset G of Z%, let II,(G), y € G, be the set of infinite
non-intersection (which we will also call simple for the sake of brevity) nearest neighbor
paths on G starting in y. We recall the following characterization of the transience of G.

Lemma 6.3.6. The following are equivalent:

(a) The graph G (with connectivity structure induced by 7¢) is transient.
(b) There isy € G such that there is a probability measure v on I1,(G) fulfilling

Z pPr €I,(G) iz € 7] < . (6.3.3)
zeV

Remark 6.3.7. A version similar to Lemma 6.3.6 may be found in [P97, Theorem 10.1].
Note that (b) is equivalent to the fact that there is y € G and a probability measure [
on I1,(G) such that if two path are chosen independently according to w from IL,(G),
then the expected number of intersections of these two paths is finite. Thus, Lemma 6.3.6
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6 Random interlacements: transience of the vacant set

states that transient graphs must be large enough to find such two paths IL,(G). We refer
the reader also to [LP01, Chapter 2] where further transience and recurrence criteria
may be found. Note that in [P97, Theorem 10.1] the sum in (6.3.3) is taken over nearest
neighbor edges whose ends both lie in G, rather than over the vertices. However, using
the fact that Z¢ has uniformly bounded degree, one can deduce Lemma 6.3.6 from the
corresponding edge-based version without problems. We will omit the proof of this fact.

The strategy to prove Theorem 6.1.1 is as follows: Since by Propositions 6.3.3 and 6.3.5
the subset G of Z3 is transient for d and u as in the assumptions, Lemma 6.3.6 provides
us with a measure p on the simple nearest neighbor paths in G% fulfilling (6.3.3) for
G = G% . We then map simple nearest neighbor paths in G to simple nearest neighbor
paths in V¥ in a way that does not blow up the lengths of the paths too much, cf. (6.3.5)
below. The pushforward of g under this mapping then supplies us with a probability
measure supported on infinite simple nearest neighbor paths in V% that still satisfies
condition (6.3.3) (cf. Claim 6.3.8). We now make this strategy precise.

Proof of Theorem 6.1.1. We fix € € (0,1) and choose dg = dp(g) such that the implica-
tions of both Propositions 6.3.3 and 6.3.5, hold true. Write

r: gL — |J ¢,

yeGy,

for the mapping that sends y € G% to the element z € &€, , that has minimal lexico-
graphical order among all elements of &, ,. Moreover, by the definition of G, for each

x,y € GL with |z —y|; =1 (6.3.4)
there is a simple nearest neighbor path (%Z(k))z;é on
Ve N{C,: 2€Zand |y — 2|, <1}
such that
o7, (0) =I'(y) and 7 (n — 1) = ['(2);
oen < ‘ U ¢, <7x2% (6.3.5)

2€Z3 : ly—=z[1<1

For any pair of points = and y as in (6.3.4) we choose and fix a path 7 with the above
properties. Given an infinite simple nearest neighbor path 7 on G% , we obtain an infinite
nearest neighbor path 7 on V% starting in I'(7(0)) by concatenating the paths %:8:;' 1),

k =0,1,2,.... Finally, we denote by ¢ the map that sends 7 to the loop-erasure of 7
(note that the latter is an infinite simple nearest neighbor path in V%).

Now due to Proposition 6.3.5 and Lemma 6.3.6 there exists a probability measure p
on II,(G%), for some y € G¥, fulfilling (6.3.3). Hence, Theorem 6.1.1 is a consequence
of the claim below and Lemma 6.3.6. [ |

176



6.4 Proof of Proposition 6.3.3: existence of an infinite connected component of good vertices

Claim 6.3.8. If a measure p on I1,(GL) fulfills (6.3.3), then so does the measure [i :=
o=t on I, (V).

Proof. In a slight abuse of notation, for x € V% C Z? define I'"!(x) to be the z € Z3
(unique, if it exists) such that x € C,. If no such z exists, then let I'"1(z) = oo and define
=1 (z) — w|; = oo for all w € Z3 in this case. We will see that the latter case is of no

importance, since the construction of ¢ is such that it restricts all paths on V¥ to such
x for which I'~!(z) € Z3. Then for x € V%, one has

poo tm el (V) : zen < > plm € T,(GY) : 2 € 7).
z€Z3 [T~ 1(z)—z|1<1

Thus, an application of the Cauchy-Schwary inequality yields that

Z pop e Oy (V) @ € ]2

zE€ZA

1/2
<3 [( > plr € 11,(G%) = 2 € 7T]2> (6.3.6)

zeZd 2€Z3 : |T—1(z)—z|1<1

2
x|z €Z: T Hzx) — 2 < 1|1/2] .

Note that for any = € Z¢, by the definition of '™, one has |{z € Z* : [I"1(z) — 2|; <
1}| = 7. Hence, the right hand-side of (6.3.6) is bounded by

Y > plr € T, (GY) : z € 7]2 (6.3.7)

z€Z4 z€Z3 : [T~ (z)—2[1<1

By (6.3.5) (or the facts that |C,| = 2¢ and again using that for x € Z¢ one has |{z € Z3 :
IT=Y(x) — 2|y < 1}| =7), we finally may bound (6.3.7) from above by

24 . 72 Z pir e M, (GL) @ 2 € 7] < oo, (6.3.8)
Z€7Z3
where the finiteness follows from the assumptions. This concludes the proof. |

6.4 Proof of Proposition 6.3.3: existence of an infinite
connected component of good vertices

In the proof of this proposition we exploit the fact that as d — oo, certain averaging

effects occur which (in combination with so-called “sprinkling”) imply that with high

probability and for slightly supercritical intensities u, such hypercubes are u-good in the
sense of Definition 6.3.1 (a big chunk of this work is done by Theorem 4.2 in [S11a]
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6 Random interlacements: transience of the vacant set

and in Lemma 6.4.2 we neatly adapt this result to our purposes). By identifying hy-
percubes with vertices this will lead to a dependent percolation problem on Z3. This is
where we will take advantage of the decoupling inequality (6.2.8) in order to deduce that
x-connected components of u-bad vertices are sufficiently small, and hence an infinite
connected component of u-good vertices exists.

6.4.1 Proof of Proposition 6.3.3 given an auxiliary result

The result below provides an estimate on the size of *-connected components of u-bad
vertices. Its proof is postponed to Section 6.4.2.

Proposition 6.4.1 (x-connected components of u-bad vertices are small). Fize € (0,1).
There is dy = do(€) € N such that for all d > dy, there are Ca,Cs > 0 such that for all
u < (1—¢e)us(d) and N € N
sup ]P’[x s contained in a simple *-path of u-bad vertices of length at least N]
T€Z3
S OQG_NCS .

Before we proceed, recall the notion of exterior boundary below (6.2.1). We now prove
Proposition 6.3.3.

Proof of Proposition 6.3.3. For x € Z? define

G, — the connected component of u-good vertices containing z, if x is u-good,
£ 0, otherwise.

Now assume that there is N € N such that G, has finite cardinality for all z € Z2 with
|z]oo < N. We claim that

in this case there is a y € Z3 with |y|sc > N, such that y is

connected to B2 (v, |y|eo)¢ by a *-path of u-bad vertices.
(6.4.1)

Let us for a moment assume that the claim is correct. Then by Proposition 6.4.1 and
using a union bound in combination with the fact that 9| B2, (y, k)| < 6(2k+1)2, one has

]P’[gm is finite for all |z] < N] < Z k2e_kcs, (6.4.2)
k=N

which is smaller than one if N is large enough. Consequently there is, with positive
P-probability, an infinite connected component in G*. Since the existence of an infinite
connected component in G* is an event that is invariant under shifts in 73, and since
PP is ergodic with respect to these shifts (see [S10, Theorem 2.1]), we obtain that, P-a.s.
there is an infinite connected component in G*.
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6.4 Proof of Proposition 6.3.3: existence of an infinite connected component of good vertices

We now prove (6.4.1). If OuxtG, = 0 for all z € B3 (0, N), then due to the finiteness
assumption on the G, we get G, = 0 for all such z, and hence all such z are u-bad,
which would yield the claim. Therefore, assume otherwise, and let 4y’ € 9oxtGs, with
|z|so < N, be such that it has maximal first coordinate among all such vertices 3’ fulfilling
yh, Y4 € [N, N| (where y., i € {1,2,3}, denotes the i-th coordinate of y’). Choose one
(of the possibly several) 2 such that ' € 9extG, and denote it by z(?). We aim to find
a u-bad z € Z3, such that |z — y|sc > |¥/|co and such that there is a *-path of u-bad
vertices which connects y’ to z. For this purpose, we distinguish two cases:

(i) If |y'|c < N, then observe that as a consequence of the definition of g’, all
vertices in 9 B3, (0, N) N ({N} x Z?) are u-bad. Hence, one can immediately choose
Y,z € Ome B2, (0, N) N ({N} x Z?) fulfilling the required properties.

(i) Assume now that |y'|o > N. Then we have |y = y; > N, and we set y(®) :=
y =y’ and 2(°) := z. Define a nearest neighbor path via ®(n) = (y§0) —n, yéo), ygo)) for
n > 0. In addition let 2(® € 0G0 be such that there is no vertex in range(®) N G,
which has a smaller first coordinate than z(®), and define mg via ®(mg) = 29, In
particular, by definition we have 20 ¢ OextTy(0) - In addition, let

ng = max{n > mg : ®(m) is u-bad for all mg < m < n} A 2y§0),

and set y() = ®(ng). By Timar [T13, Lemma 2], the set eyt Gy0) is *-connected. Now
if yil) < 0, then this *-connectivity of OextG,0) is enough to deduce the claim. In fact,
in this case we may connect () to y(!) via a %-path of u-bad vertices of length more
than |y(©)|, by first connecting y(@ to 2z(9) via a *-path contained in dextG, and by
then connecting z(©) to y(!) along ®; this would finish the proof. If, on the other hand,
y§l) > 0, then observe that y(!) e OextTd(no+1) (to see this, use that y() e 0G®(no+1)
and that it is connected to y(® along a s-path of u-bad vertices, and that 3 has
maximal first coordinate among all elements z € OextGs, for some |z| < N, and such
that 2y, 23 € [N, N]). We can now repeat the procedure started in (ii) with y(!) taking
the role of ¥(© in order to obtain a y(? taking the role of the previous y*), and so
on. Le., we construct a sequence y(@,y(1) . (") (up to the smallest n € N such that

y§") < 0) such that y*® may be connected to y*t1) by a s-path of u-bad vertices for

all k € {0,1,...,n — 1}. In particular, since ygk) < y%k_l) — 2 for all k& < n, after at

most |¢//|s0/2 + 1 iterations (and taking the loop-erasure of the path connecting y(® to
2 := y(™) we will have found the desired z € Z?, which finally yields the claim.

6.4.2 Proof of the auxiliary result: bad components are small

The proof will be divided into several lemmas. For this purpose fix € € (0,1) and define
g = (1 — €)ux(d). (6.4.3)

The following estimate will serve as a seed estimate for the decoupling inquality of Propo-
sition 6.2.3 and as such be employed in Lemma 6.4.4.
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6 Random interlacements: transience of the vacant set

Lemma 6.4.2. There is dy € N such that for all y € 73,
PlGis,| <d7/5  Joralld>dy deN,
where Gy 5, was defined in (6.3.1).

Proof. We will derive the result using Theorem 4.2 of [S11a]. For this purpose identify
72 with Z2 x {0}9~2 and set
72 = {z e Zh: x;=0foralli¢ {2,3}}.

Furthermore, define G2 , and G, respectively, by G, ., as in (6.3.1), but with Z? replaced

by Z? and ZQ, respectively. By Remark 6.3.2, there is dy € N such that for d > do, the
hypercube C contains at most one connected component € with |€NC| > (1 —d~?)|C|.
As a consequence we deduce

G20 N G831y € Go.iio- (6.4.4)

Finally, it remains to apply Theorem 4.2 in [S1la]. Note that the intensity parameter
in that result equals (1 — €)g(0) logd, where g(0) was the Green function at the origin;
however since the main result of [SS11b] supplies us with u.(d) < (1 +¢)logd for e > 0
arbitrary d large enough, and since g(0) — 1 as d — oo (see e.g. Lemma 1.2 in [S11a]),
we can apply it with intensity ug also, if d large enough. Hence, we infer that for d > dy

P{ggﬂo} >1-d-7/10.
As the same is true for QNS)%, in combination with (6.4.4) we obtain the claim for y = 0.
Since P is invariant under shifts in space, we obtain the result for every y € Z3. |
We define for z € Z? and L > 1, L integer,
Apr = {\I! e {0, 1}Zd: B3 (x,L) is connected to O B> (x,2L)

by a *-path on Z? along which ¥ equals one}.

If x ¢ Z3, then A, 1, = 0. We will denote “bad” crossing events by
By
= {w € 0: ]].Bu(w) € Aw7L}

= {w € Q: B> (x,L) is connected to B3 (x,2L) by a *-path on Z* of u-bad Vertices},

where we recall that B* had been defined in (6.3.2). Also, recall Definition 6.2.1 of
cascading events.
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Lemma 6.4.3. A= (Az1),cpa 151 integer is a family of increasing events which cas-
cades with complexity at most 3. Moreover C; = C1(A,3) as introduced in Definition
6.2.1 does not depend on d.

Proof. The proof is similar to the proof of (3.10) in [S12], except that one additionally
has to make use of the fact that |- |2 < v/d| - |so. We omit the details.
|

The family of events (B 1), cza 151 integer 1 shift invariant in the following sense:
Let
w = Z(g(w%ui) S Q,
i>0
and define
T : Q= Q, w— 25(@_‘_1)%),

>0
where w* + x = m(w(-) + z), any w € 7~ (w*). Then for all z,y € Z* one has
w € By ifand only if 7,(w) € Bty L. (6.4.5)

We are now in the position to apply the decoupling inequality (6.2.8). For this purpose
lp and Lo are such that they satisfy the relations

lo >10°dey  and Lo = [Vd]. (6.4.6)

We further recall the definition of u_

—, see the lines following (6.2.6), as well as the
definition of g, in (6.4.3).

Lemma 6.4.4. There is dy € N such that for all d > dy, d € N, there is ly satisfying
(6.4.6) such that for all u < uy, = u (o), one has
P[By, ] <e?. (6.4.7)

Proof. By Proposition 6.2.3, Lemmas 6.4.2-6.4.3, (6.4.5) and the fact that P is invariant
under shifts in Z3, we get
u7 2n _ 2’7l
P[B3,] < (Cutf) (PLBEY,) +=(uz) - (6.4.8)
To estimate the probability on the right-hand side of (6.4.8), note that
P[BI, ] < Plthere is @ € 9y, B2 (0, L) which is @ig-bad] < cdP [g;ﬂo} < ed S,

where we used a union bound in combination with the fact that there is a constant ¢ > 0
such that the cardinality of 8, B3 (0, Lo) is bounded by cd to get the second inequality.
The last inequality is a consequence of Lemma 6.4.2.
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6 Random interlacements: transience of the vacant set

Hence, in order to prove the desired decay of the right-hand side, it is enough to
determine [y such that

1 1
cChl5d™° < % and Cilbe(uy) < % (6.4.9)
e e

The first inequality in (6.4.9) is indeed satisfied for all d large enough, subject to the
choice of Iy in (6.4.6). To show the second inequality in (6.4.9), observe that

d
lim zgdfﬁ =0,  for I > 10°Vdeo.
Employing this equality in the definition of uZ, in (6.2.6), we obtain that us, > (1 —
2e)u(d), if d large enough. Using this inequality and the fact that by the main result of
[S11a] one has that for d large enough u.(d) > (1 —¢) logd, the definition of e(uz) leads
to the desired estimate. This shows that (6.4.7) is true for u = u__. The claim for every
other u < ug, follows by the fact that B ; is increasing in u. ]

As a direct consequence of this result we obtain the following corollary.
Corollary 6.4.5. If (6.4.7) holds true, then for some C = C(d) < oo, all u < uy, and
N>1,
1
P[There is a *-path of u-bad vertices from the origin to O B3, (0, N)} < Ce NT.

Using this corollary, we can now prove Proposition 6.4.1.

Proof of Proposition 6.4.1. For all I subject to (6.4.6) using similar arguments as in
the proof of Lemma 6.4.3 we see that there is dy such that for all d > dy one has
uy, > (1 = 28)u.(d). Fix u < ug,. Due to the shift-invariance of P it is enough to

o0
prove the result for z = 0. Assume that 0 is in a x-connected component of u-bad

vertices of length at least N. Consequently, there is a *-path of u-bad vertices from 0 to
OB (0, (N/3)Y/4) in Z3. Thus, by Corollary 6.4.5,

IE”[O is contained in a x-path of u-bad vertices of length at least IV }
<P [There is a *-path of u-bad vertices from the origin to die B3, (0, cN 4 )}

o0
_gl/@cad) _NGC:
Sczek S02€N33027C3>07
k=N/3

which proves the claim. [ |

6.5 Proof of Proposition 6.3.5: transience of G
In this section we take advantage of the relations between simple random walk and

electrical network theory in order to deduce that G is transient for u as in (6.4.1) and
d large enough (see Proposition 6.3.5).
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6.5.1 Rerouting paths around bad vertices

The following is inspired by methods of [ABP06]. Assume that the almost sure event
of Proposition 6.3.3 occurs. Since Z3 is transient, Lemma 6.3.6 supplies us with the
existence of a probability measure p on infinite simple nearest neighbor paths in Z?
starting in some y € Z3, and fulfilling (6.3.3). The idea now is to map infinite simple
nearest neighbor paths m on Z3 via a function @ to infinite simple nearest neighbor paths
@(m) on G% C Z3 in such a way that puo @1 still satisfies condition (6.3.3) and hence,
again by Lemma 6.3.6, this supplies us with the transience of G% . This mapping will be
constructed by cutting out pieces of a path 7 on Z* which are not in G and afterwards
replacing them by finite simple nearest neighbor paths of vertices on 0i,:GY . These
sequences are chosen in such a way that they connect all parts of the path which are
inside G%. In order to ensure that P-a.s., the measure pu o ! still satisfies condition
(6.3.3), we will have to ensure that *-connected components of u-bad vertices are not too
large. This is the content of the following lemma.

Lemma 6.5.1. Let u and d be as in Proposition (6.4.1). Then there is Cy > 0 such that
P-a.s. one finds No € N such that for all N > Ny the event

{there is * € B2 (0, N) such that x is contained in a simple *-path
of u-bad vertices of length at least (log N)C4}
does not occur.

Proof. This follows from Proposition 6.4.1 and an application of the Borel-Cantelli Lemma.
|

In the rest of this section we describe the mapping @ that will send infinite simple
nearest neighbor paths on Z? to infinite simple nearest neighbor paths @(7) on G% as
alluded to above. Let 7 be an infinite simple nearest neighbor path on Z3. We use the
following notation for the sequence of successive returns to and departures from G%:

Do =min {k >0: 7(k) € Z*\ G%}, Ry =min{k > Do: m(k) € G% },
D, =min{k > R,_1: w(k) € Z°\G%}, Ry =min{k > D,,: n(k) € G&}, forn € N.

We modify the path 7 on Z?2 in the following way:
1. if Dy = 0, we erase the segment (7(0),...,7(Ry — 1));
2. for each n with 0 < D,, < oo we replace the segment (7(D,,),...,m(R, — 1)) by
a finite shortest simple nearest neighbor path on G% which connects 7(D,, — 1) to
w(Ry).
Finally, let (7) be the loop-erasure of the path obtained this way, which is an infinite
simple nearest neighbor path on G% . Below we will use the notation

B . — the *-connected component of z € Z3\G% of u-bad vertices, if z is u-bad,
LU0, if x is u-good.
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6 Random interlacements: transience of the vacant set

Remark 6.5.2. Step (b) in the above construction is P-a.s. well-defined. In fact, if D,, <
00, then by Lemma 6.5.1, Br(p,)u s of finite cardinality, and m has to hit aextBTI'(Dn)7u
in finite time. By definition, 8cxtl3 (Dn),u CONSists of u-good vertices only; in addition,
due to [T13, Theorem 4], it is connected, and since it contains w(D, — 1) € G¥ | we get
chtB D yu C Gi. As a consequence, Ry, n > 1, coincides with the first hitting time
of Ok ,T(Dn),u after time D,, and is finite. If Dy > 0, then the same arquments show
that Ry is finite. To see that this is also true in the case that Dy = 0 note that one may
connect (Do) by a finite nearest neighbor path to G% . This allows to apply the previous
arguments to deduce the finiteness of Ry also in this case. In particular, a finite shortest
simple nearest neighbor path as postulated in (b) exists.

6.5.2 Rerouting paths preserves finite energy

In this section we show that @(7) induces a probability measure as in condition (b) of
Lemma 6.3.6. In fact, since Z3 is transient, Lemma 6.3.6 implies that there is z € Z3
and a probability measure p on I, (Z3) which satisfies the finite energy condition (6.3.3),
i.e., we have

Z pPlr e I (Z3) : x € 7] < oo. (6.5.1)

z€Z3
By Lemma 6.3.6, in order to prove that G is transient a.s., we only need to show that
po @1 satisfies (6.3.3), i.e., we have
Z P2z € 3(m)] < oo, P—aus.t (6.5.2)
T€Z3
We set for x,y € Z3
S(z) = 0; I3\By i, if x € Z3\GY
{z}, if v € G
and
T(y) ={z: yeS)}
Using the definition of @, we obtain the first inequality in

2

wleepm)< | Y uyen| <T@ Y Wlyed,

y€eT () yeT ()

and the second inequality in this chain is due to the Cauchy-Schwarz inequality. Hence,

YN Pmedm <> IT@)| > wPlyenl=> pyen Y |T@)]

z€Z3 z€Z3 yeT (x) yEZ3 z€S(y)

'In fact, note that since by Lemma 6.5.1 we have |B...| < oo a.s., there exists 2/ € G¥% such that
o @' puts positive mass on I1,/(G% ). Restricting u to this latter set and normalizing it puts us
into the exact context of Lemma 6.3.6.
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6.6 Proof of Proposition 6.2.3: a decoupling inequality

Therefore, in order to establish (6.5.2), by (6.5.1) it suffices to show that

sipE | Y [T (y)]| < oo (6.5.3)
reZ3 yeS(x)

Lemma 6.5.3. The term in (6.5.8) is finite.
Proof. By shift invariance of PP it suffices to prove the claim for z = 0. Note that

z € U T(y) < S(0)NS(z) # 0,
which yields

E| > |T()l| =PS0)# 0]+ > _P[S(0) N S(z) # 0. (6.5.4)

yeS(0) 2#0

To estimate the second term on the right-hand side of (6.5.4) note that if S(0)NS(z) # 0,
then for y € S(0) N S(z),

(1) there is zp € By, such that |y — zg|eo = 1;

6.5.5
(2) and there is x; € B, ,, such that |y — 21| = 1. ( )

Since By, and B, are s-connected, there is a *-path of u-bad vertices starting in 0
and ending in xg, and a *-path of u-bad vertices starting in x; and ending in z. Since
|zo — #1]0o < 2, we infer that at least one of these two paths must have length at least
[|z|oo — 1]/2, and hence either 0 is contained in a *-path of u-bad vertices of length at
least ||z|oo —1]/2, or this property holds for z. Proposition 6.4.1 and the shift invariance
of P yield

0 is contained in a simple *-path of u-bad vertices

PIS(0)NS(z) # 0] <2P| length at least ||z[o —1]/2

< C5€_|z|§°6, C5706 > 0.
(6.5.6)

Appendix

6.6 Proof of Proposition 6.2.3: a decoupling inequality

In this appendix we prove Proposition 6.2.3. The proof is essentially the same as the
proof of Theorems 2.1 and 3.4 in [S12]. While the proof of the latter one goes through in
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6 Random interlacements: transience of the vacant set

exactly the same way, we restrict ourselves to giving the main modifications of the proof
of Theorem 2.1 in [S12]. Note that the setting in [S12] differs sligthly from the setting
of the current work. Indeed, in [S12] more general graphs are considered and the norm
in [S12] is different from the Euclidean norm we are considering here. Nevertheless, as
stated in the first paragraph in [S12] up to a change of constants the results of [S12] stay
true when working in the setting of this article.

e Notation in [S12]. Let [y > 1 be a constant to be chosen later on, Ly > 1, and define
the geometric scales L,, = [{'Lg, n € Ny . For n € Ny, we denote the dyadic tree of depth
n by T, = Up<r<n{l,2}" and the set of vertices of the tree at depth k by T3y = {1,2}".

Given a mapping 7 : T, — Z%, we define
T, 7 = T (M), ém,T = By (zm,T, 10\/&Ln_k), for m € Ty, 0 <k <n. (6.6.1)

For any 0 < k <mn, m € Ty, we say that my, mg are the two descendants of m in T{1),
if they are obtained by concatenating 1 and 2 to m, respectively. We say that T is a
permitted embedding if for any 0 < k <n and m € Ty,

- . - Vd

le,T ) Cmg,T - Cm,Ta |xm177' - xmz,T|2 > 1_00Ln—k' (662)
The set of all permitted embeddings is denoted by A,. Given n € Ny and T € A,,, we
say that a family A,,, m € T(,), of events of measurable subsets of {0, 1}Zd is T-adapted
if

Ay, is 0(\111, T € CN'm,T) — measurable for each m € T(,,).

For n € Ny and T € Ap41, we denote by T;, i € {1,2}, the embeddings of T, such that
Ti(m) = T((i,i1, ..., i), for m = (i1,da,...,ix) in T(x). Given a T-adapted collection
A, m € T(541), we define T;-adapted collections, A, ;, @ € {1,2}, via

AT,M' = A(i,il in) for m = (il,ig, . ,in) S T(n).

.....

e The Proof. Recall (6.2.6-6.2.7) and the convention we made about constants in the
introduction. We now adapt Theorem 2.1 in [S12] to our setting.

Theorem 6.6.1. There are co,c1 > 1, such that for lyg > 108v/dey and Lo > V/d, for all
n € No, T € Apy1, for all T-adapted collections Ap, m € T(,41), of increasing events

on {0,1Y2", and for all u > v’ > 0 such that

1 (d—
2 d (d—3)/2 /
u > <1+326 617(n+1)3/2lo )u,

one has

’ _ /1 ypd—2
Pl () Au|<P| () A% |P| [ AL,o| +2e 2 cwmrln b,

mET(n+1) ™1 ET(n) ﬁgeT(n)
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Proof. The proof is analogous to that of Theorem 2.1 in [S12]. Thus, we only point out
the modifications which are necessary to adapt the proof of [S12] to our setting.

First replace Lemma 1.2 in [S12], which is used in equation (2.31) in [S12], by Proposition
1.3 in [SS11b], which reads as follows.

Proposition 6.6.2. There exist co,cqy > 1, such that if L > d and if h is a non-negative
function defined on B3(0,coL) and harmonic in B2(0,coL), one has

h(z) < ¢ in  h(x).
zegﬁéL) (x) = zeglzl(%,L) (x)

Second, define similarly as in [S12], (2.13)—(2.14), for ¢ € {1,2} and 7 € A1

. VL,
U=U,UU, with U, = B> (T(l),ﬁ)
as well as /i
~ N VdLpy
B; = By (T(z), 50000 > (6.6.3)

for a constant 1 < M < [y/(2-10%) to be determined. Note in particular that, by (6.6.2),
one has U; N Uy = (. Moreover, from the definition of the scales L,, we infer @77— e U;,
i€ {1,2}.

The forthcoming lemma replaces Lemma 2.3 in [S12] and provides bounds on the
probability that a random walk starting in QU U 0;,4U enters a strict subset W of U in
finite time. It is applied in equations (2.33) and (2.36) in [S12]. Before stating the lemma
we recall the definition of the entrance time Hy in (6.2.2) and we moreover define

P, = Z ev(z)P,.

zeU
Lemma 6.6.3. Let [y > 10/ dco and Ly > V/d. For anyw C By (T(l), \/ELHH/ZOOO)U
By (’T(Z), \/ELnH/ZOOO), x € OUUGU, o' € W, one has for some constants cs,cg > 0,

ch;g_2)ew(x’) < Py [Hy <00, Xp, =42'] < ch;g_2)ew(x’).

Proof. The proof follows the lines of the proof of Lemma 2.3 in [S12] with a special
attention to the dependence of constants on the dimension. First, since W C U, one has
the sweeping identity

e (@) = Po, [Hyp < 00, Xy, = '],

from which one infers that

cap(U) me%ilftUPw [Hyp < 00, Xny, = 2] < e () 6.6.4
<cap(U) sup Pp[Hy < oo, Xy =a']. (6:64)

2E€0ins U
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6 Random interlacements: transience of the vacant set

Next, we claim that using (6.6.1-6.6.2) one can find ¢; > 0 such that any two points
1, %2 € OineU may be connected by not more than ¢; overlapping balls
B (a:’, \/ELH+1/4OOOCO), x' € O UUUC. In fact, along the lines of Lemma 2.2 of [SS11b],

any two points on i, U; can be connected “along” the great circle centered in 7 (i) with

radius \/%0"0“, by ¢7/3 such overlapping balls; on the other hand, from (6.6.1) one can

deduce that the same is true for two points y1,y2 such that y; € 0y U;, and such that
they have minimal distance among any such pair of points, whence the claim follows.
Since the function h(z) = P, [HvT/ < 00, Xy, = '] is non-negative and harmonic on
By (;v', \/ELn+1/4OOO) C WC, for all 2’ € 9, U U U®, and since v/dL,1/4000cq > d, we
obtain by Proposition 6.6.2 that

sup Py [Hy <00, Xp, =a'] < inf P,[Hy <oo,Xp, = 1]
r€0int U 20int U

d /
=c® inf P.|Hs <o00,Xyg. =2a|.
T€0int U z[ w Sy ]

(6.6.5)

Finally, note that by (6.2.5) and the subadditivity of capacity (see (6.2.4)) we have

d—2
CQLnJ,_l d—2
< < . .0.
( 1000 ) < cap(U) < 2(csLn1) (6.6.6)
Inserting (6.6.5) and (6.6.6) into (6.6.4), yields the claim for x € 0inU. The extension to
x € QU follows from the fact that P,[X; = y] = 1/(2d) for all 2,y € Z¢ with |z —y|; = 1.

|

Since for all n € Ny the inequality v/dL, > d holds one can apply (6.2.5) to all balls
in the Euclidean norm whose radius is larger than v/dL,. Using this fact repeatedly,
from that moment on, the proof works similarly as the proof of [S12, Theorem 2.1]. In
particular M as introduced in (6.6.3), which is determined in equation (2.36) in [S12],
satisfies

a7 —(d—2) = dy—(d—2) (C3Ln 41\ 472 “1

CﬁLn—',-l Cap(Bl U BQ) S 266Ln+1 (m) S (26) .
Thus, M does not depend on d. To conclude Proposition 6.2.3 from Theorem 6.6.1 one
proceeds as in the proof of [S12, Theorem 3.4]. |
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Samenvatting

Dit proefschrift bestaat uit twee onderdelen.

Deel I behandelt het parabolische Anderson model (PAM). Dit is de partiéle differ-
entiaalvergelijking Ou(z,t)/0t = kAu(z,t) + &(z, t)u(z,t), * € Z¢, t > 0, waar u en
¢ waarden in R aannemen, k € [0,00) is de diffusieconstante, A is de discrete Laplace-
operator, en & speelt de rol van een dynamische toevallige omgeving. De beginvoorwaarde
u(r,0) = ug(z), x € Z%, is niet-negatief en begrensd. De oplossing van de parabolische
Anderson vergelijking beschrijft de evolutie van deeltjes op Z? die onafhankelijke random
wandelingen met binaire vertakking uitvoeren: deeltjes springen met snelheid 2dk, split-
sen in twee met snelheid £ VO en sterven met snelheid (—&) V0. Dit proefschrift behandelt
de vraag hoe de exponentiéle groei van de deeltjespopulatie athangt van de diffusiecon-
stante k. Om deze vraag te beantwoorden bestuderen we de “quenched Lyapunov expo-
nent” Ag. In hoofdstuk 1 geven we een samenvatting van de bestaande literatuur voor
zowel het PAM waarbij £ niet afthangt van de tijd als het PAM waarbij £ wel athangt
van de tijd. In hoofdstuk 2 bewijzen we enkele fundamentele eigenschappen van de
parabolische Anderson vergelijking, zoals existentie en uniciteit van de oplossing. Boven-
dien bewijzen we, onder bepaalde ruimte-tijd-mengingsvoorwaarden, dat A9 < oo en niet
afhangt van de beginvoorwaarde ug. Onder een extra ruimte-tijd-mengingsvoorwaarde
en een “noisiness” voorwaarde tonen we aan dat Ay een continue maar niet Lipschitz-
continue functie van  is. Aan het einde van hoofdstuk 2 geven we enkele voorbeelden
van dynamische toevallige omgevingen £ die voldoen aan onze voorwaarden. Hoofdstuk 3
behandelt de vraag hoe A zich gedraagt voor grote k. We bewijzen, onder vergelijkbare
voorwaarden als in hoofdstuk 2, dat Ay convergeert naar E(£(0,0)) als k — oo.

Deel II behandelt twee verschillende percolatie-modellen. In het eerste model worden
deeltjes in R? geplaatst volgens een Poisson-punt-proces met intensiteit A > 0. Ver-
volgens voert ieder deeltje (onathankelijk van de andere deeltjes) een d-dimensionale
Brownse beweging uit. Een van de belangrijke vragen is of dit netwerk van paden een
onbegrensde cluster heeft of niet, en zo ja, of deze cluster uniek is. Het tweede model
is random interlacement. Random interlacement met intensiteit u > 0 is een random
deelverzameling Z% van Z%, d > 3, die er uit ziet als een pad van een symmetrische
random wandeling op de torus (Z/NZ)? gedurende tijd «N¢ in de limiet N — oo. Het is
bekend dat er een kritieke waarde u.(d) € (0,00) is zodanig dat de vacante verzameling
V¢ = 74\ I% voor alle 0 < u < u(d) een unieke onbegrensde samenhangende cluster
V¥ heeft, maar dat er geen onbegrensde cluster is voor u > u.(d). In hoofdstuk 4 geven
we een korte samenvatting van de bestaande literatuur over percolatie en definiéren we
de percolatie-modellen van hoofdstuk 5 en hoofdstuk 6. In hoofdstuk 5 geven we voor

197



Bibliography

het model van Brownse percolatie een compleet antwoord op de vragen van existentie
en uniciteit van de onbegrensde cluster voor alle dimensies. In hoofdstuk 6 bewijzen we
voor het model van random interlacement dat er een kritieke waarde u(d) is zodanig dat
VY% transient is voor alle 0 < u < u(d), en dat u(d)/u.(d) — 1 als d — co. Dit is het
eerste resultaat over de meetkunde van V¥ voor u dichtbij u.(d).
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