

Cover Page

The handle http://hdl.handle.net/1887/28464 holds various files of this Leiden University
dissertation

Author: Jeroen Bédorf
Title: The gravitational billion body problem / Het miljard deeltjes probleem
Issue Date: 2014-09-02

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/28464

The Gravitational
Billion Body Problem
Het miljard deeltjes probleem

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 2 september 2014

klokke 16:15 uur

door

Jeroen Bédorf
geboren te Alkmaar

in 1984

ii

Promotiecommissie

Promotor: Prof. dr. Simon Portegies Zwart

Overige leden: Prof. dr. Steve L.W. McMillan (Drexel University)
Prof. dr. Henk Sips (Technische Universiteit Delft)
Prof. dr. Joost Batenburg (Centrum Wiskunde & Informatica /

Universiteit Leiden)
Prof. dr. Huub Röttgering

ISBN: 978-94-6259-260-5
©2014 Jeroen Bédorf
Dit proefschrift werd ondersteund door NWO IsFast grant #643.000.802.

Contents

1 Introduction 1
1.1 Introduction . 3
1.2 e very beginning . 5
1.3 1960 - 1986: e Era Of Digital Computers 5
1.4 1986 - 2000 : Advances in software . 7
1.5 2000 - 2006: e Era Of e GRAPE 8

1.5.1 GRAPE . 8
1.5.2 Multi-Core Processors and Vector Instructions 10
1.5.3 Collisionless methods . 11

1.6 2006 - Today: e Era Of Commercial High Performance Processing Units 11
1.6.1 Collisional methods . 11
1.6.2 Collisionless methods . 13

1.7 Graphics Processing Units . 14
1.8 esis Overview . 16

1.8.1 Chapter 2 - Sapporo2 . 17
1.8.2 Chapter 3 - OctGrav . 17
1.8.3 Chapter 4 - Bonsai . 18
1.8.4 Chapter 5 - Many Minor Mergers 18
1.8.5 Chapter 6 - Parallel Bonsai . 18

2 Sapporo2 21
2.1 Background . 22
2.2 Methods . 23

2.2.1 Parallelisation method . 23
2.2.2 Implementation . 24

2.3 Results . 26
2.3.1 read-block configuration . 27
2.3.2 Block-size / active-particles . 28
2.3.3 Range of N . 29
2.3.4 Double precision vs Double-single precision 30
2.3.5 Sixth order performance . 32
2.3.6 Multi-GPU . 32

iv CONTENTS

2.4 Discussion and CPU support . 34
2.4.1 CPU . 34
2.4.2 XeonPhi . 35

2.5 Conclusion . 36

3 Octgrav 37
3.1 Introduction . 38
3.2 Implementation . 39

3.2.1 Building the octree . 39
3.2.2 Construction of an interaction list 40
3.2.3 Calculating accelerations from the interaction list 41

3.3 Results . 42
3.3.1 Accuracy of approximation . 43
3.3.2 Timing . 44
3.3.3 Device utilisation . 45

3.4 Discussion and Conclusions . 46

4 Bonsai 49
4.1 Introduction . 50
4.2 Sparse octrees on GPUs . 52

4.2.1 Tree construction . 52
4.2.2 Tree traverse . 54

4.3 Gravitational Tree-code . 56
4.3.1 Time Integration . 56
4.3.2 Tree-cell properties . 56
4.3.3 Cell opening criterion . 57

4.4 Performance and Accuracy . 58
4.4.1 Performance . 59
4.4.2 Accuracy . 61

4.5 Discussion and Conclusions . 64
4.A Scan algorithms . 67

4.A.1 Stream Compaction . 67
4.A.2 Split and Sort . 67
4.A.3 Implementation . 68

4.B Morton Key generation . 68

5 e Effect of Many Minor Mergers 71
5.1 Introduction . 72
5.2 Constraining the model parameters . 73
5.3 Initializing the galaxy mergers . 77

5.3.1 Configuring the major mergers 77
5.3.2 Configuring the minor mergers 78

5.4 Results . 79
5.4.1 e growth of the primary due to subsequent mergers 80
5.4.2 e effect on the shape of the galaxies due to subsequent mergers . 82

CONTENTS v

5.4.3 e effect of the virial temperature 84
5.5 Discussion . 87

5.5.1 Properties of the merger remnant 87
5.6 Conclusion . 91
5.A Resolution effects . 91
5.B e effect of child density . 92

5.B.1 Circular velocity . 94

6 Parallel Bonsai 97
6.1 Introduction . 98
6.2 Quantitative discussion of current state of the art 100
6.3 Implementation . 101

6.3.1 Tree-walk kernel optimizations 102
6.3.2 Parallelization . 103

6.4 Simulating the Milky Way Galaxy . 106
6.5 System and environment where performance was measured 106
6.6 Performance results . 108

6.6.1 Operation counts . 108
6.6.2 Parallel performance . 109
6.6.3 Time-to-solution . 111
6.6.4 Peak performance . 112

6.7 Discussion . 112

7 Conclusions 115
7.1 BRIDGE; Combining direct and hierarchical N-body methods 115
7.2 e future . 116

8 Samenvatting 119
8.1 De hoofdstukken in dit proefschrift . 120

8.1.1 Hoofdstuk 2 . 120
8.1.2 Hoofdstuk 3 . 120
8.1.3 Hoofdstuk 4 . 121
8.1.4 Hoofdstuk 5 . 121
8.1.5 Hoofdstuk 6 . 122

List of publications 123

Bibliography 125

Curriculum Vitae 137

Acknowledgements 139

1|Introduction

If I have seen further it is by standing on the shoulders of giants.
Sir Isaac Newton, February 5, 1676

is quote can be seen as a metaphor for past and current day research. We all benefit from and
build on the the work of our predecessors, just as Newton copied the “Standing on the shoulders of
giants” part from the 12th century scholar Bernard of Chartres. Today this quote is still commonly
used by authors (like Stephen Hawking), groups (e Free Software Movement), movies (Jurassic
Park) and websites (Google Scholar). All to remind us that we continue the work of the ones who
came before us, and nowhere is this more clear then in the fields of Astronomy and Computer
Science. Archeologists keep uncovering artifacts that show that ancient civilizations were already
interested in the planets and stars. ey were able to track the movement of the heavenly bodies on
the sky and used the position of the Sun when designing their temples and religious sites (see for
example Stonehenge). And although digital computers were only introduced about 70 years ago they
now form an integral part of our daily life. Without the Sun humanity would not have existed and
without computers we would not have been able to start exploring the Moon and the planets around
us. All these discoveries build upon previous work, from the formulation of gravity by Newton in
1686 to the invention of the transistor by John Bardeen, Walter Brattain, and William Shockley in
1947. Step by step these discoveries and inventions help us to understand more about our Galaxy
and the Universe surrounding it.

Computers become faster each year by improving on previous designs or using inventions from
physics and material sciences to create smaller and faster chips. Just like the works in this thesis
are inspired by previous developments and take these works a step further by applying them to new
hardware architectures. is shows how we gradually improve on our ability to use new designs in
the computer industry and apply them to help us answer the age long questions we have about the
Universe. However, sometimes it helps to step away from small updates and make radical changes,
and thereby take big leaps forward in our ability to use new hardware architectures. e computer
industry is evolving from performance improvements caused by increasing clock-speed to increasing
the number of computational cores. In the Central Processing Unit we went from single to dual core
designs 9 years ago. Currently the first 16 core chips have become available. However, a completely
different hardware architecture, the Graphics Processing Unit, already contains thousands of com-
putational cores. It is a challenge to develop methods that are able to make efficient use of all these
cores. Methods developed for the single and dual core chips are often not applicable when going to
many-core chips. is requires a radically different way of thinking and designing methods that will
be able to scale to thousands of cores. It does not matter if these cores are on a Graphics Processing
Unit or will be on a Central Processing Unit. In both cases you have to design methods that are
inherently parallel or you will not be able to benefit from future hardware improvements.

2 Introduction

at’s what the work in this thesis is about, it’s about using current and future computational re-
sources as efficient as possible and thereby allowing us, and other researchers, to help explain the
questions about our daily life and our childhood dreams.

Based on:
Jeroen Bédorf and Simon Portegies Zwart

e European Physical Journal Special Topics, Volume 210, 2012, pp.201-216, August 2012.

1.1 Introduction 3

1.1 Introduction

is thesis is focussed on N-body methods that use direct N-body and hierarchical tree-
code algorithms on Graphics Processing Units (GPUs) for astronomical simulations. In
this introduction we give an overview of the hardware and software developments, since
the 1960s, which formed the preamble of the works in this thesis. We will not cover de-
velopments in cosmological simulations. Despite this being one of the computationally
most demanding branches ofN-body simulations, the GPU usage is negligible. Although
GPUs are used for cross-correlation of radio telescope data, we do not discuss this either,
for that we refer the reader to the following works, e.g. Clark et al. (2013); Hassan et al.
(2013); Fluke (2012) and references therein. Other reviews that cover N-body subjects
that we do not discuss here are those by Dehnen and Read (2011) with a focus on meth-
ods and algorithms forN-body simulations as well as the work of Yokota and Barba (2012)
which especially focus on Fast Multipole Methods and their implementation on GPUs.
e introduction is ordered chronologically and makes a distinction between the colli-
sional direct N-body methods (highly accurate and computationally the most expensive)
and the collisionless tree-code methods (approximation based and therefore less compu-
tational expensive). is is similar to how the thesis chapters are divided with Chapter 2
discussing direct N-body tools, while Chapters 3, 4 and 6 cover collionless hierarchical
algorithms.

As this is not the first work that tries to give an overview of the developments in the
N-body field we built upon previous work of other authors. For the direct simulations
we partially follow the papers discussed by Hut (2010) and Heggie and Hut (2003) as
being noteworthy simulations since the 1960s. e papers and the number of bodies used
in those simulations are presented in Fig. 1.1 (adapted from Hut (2010); Heggie and Hut
(2003)); in the figure we show the number of bodies used and Moore’s law which is a
rough indication of the speed increase of computer chips (Moore 1965)1. Since direct N-
body methods scale as O(N2) it is understandable that the number of bodies used does
not follow Moore’s law in Fig. 1.1. However, in Fig. 1.2 we show that the increase in
the number of bodies is faster than would be explainable by increase in computer speed
alone. In this figure we show the theoretical number of operations, which isN2 in the naive
situation, and the number of transistors which is an indication of the speed of the computer.
Both lines are normalized to the 1963 values. If the increase in N was solely based on the
increase in computer speed, which doubles every 18 months according to Moore’s law,
the line would be horizontal and equal to 1. If the line is above 1 than Moore’s law alone
cannot be the cause of the increase in number of bodies. erefore the increase must come
from changes in hardware and software that are not directly related to the number of
transistors. In the figure we tried to indicate (with arrows) what the major reasons for
improvements were. e software improvements are covered in more detail in Section 1.3
and in Section 1.5 the improvements in hardware are discussed. With the context set we
continue the introduction and start our historical overview in the early 1940s, before the
era of digital computers.

1Technically Moore does not describe the speed of the computer, but the number of transistors. In practice
the speed of a computer chip is roughly related to the number of transistors.

4 Introduction

Figure 1.1: Number
of particles used in
collisional simula-
tions over the last 4
decades. The solid
line shows Moore’s
law Moore (1965), the
circles publications
and the dashed-line
a fit through the
data points.(Adapted
from Hut (2010);
Heggie and Hut
(2003)).

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1940 1950 1960 1970 1980 1990 2000 2010 2020

N

Year

Particle number increase

Holmberg

Aarseth

Aarseth

Aarseth
Aarseth

Terlevich

Inagaki
Aarseth & Heggie

Aarseth & Spurzem

Makino

Baumgardt & Makino

Portegies Zwart et al.

Hurley & Mackey

Heggie

N
Moores law

Fit to the data

Figure 1.2: The num-
ber of theoretical oper-
ations, N2, divided by
the number of transis-
tors determined using
Moore’s law normalized
to 1963.

 1

 10

 100

 1000

 1960 1970 1980 1990 2000 2010 2020

N
2 /

T
ra

ns
is

to
rs

Year

Relative increase of code performance

Aarseth

Aarseth

Aarseth

Aarseth

Terlevich

Inagaki

Aarseth & Heggie Aarseth & Spurzem

Makino

Baumgardt & Makino

Portegies Zwart et al.

Hurley & Mackey

Heggie

Individual Time-step

Ahmam-Cohen Neighbour Scheme

GRAPE-4

GRAPE-6

N2 / Transistors

1.2 e very beginning 5

Figure 1.3: Spiral arms formed in the experiments by Holmberg in 1941. Image taken from Holmberg
(1941)

1.2 The very beginning
Before the first computer simulations the Swedish astronomer Erik Holmberg, Holm-
berg (1941), published simulations of two interacting galaxies which were conducted using
light bulbs. In his experiment each galaxy was represented by 37 light bulbs. Holmberg
then measured the brightness of the light bulbs, which falls off with 1

r2 , to compute the
gravitational forces and let the galaxies evolve. In Fig. 1.3 we show one of his results where
spiral arms develop, because of the interactions between two galaxies. is experiment was
specifically tailored for one problem, namely gravitational interaction, which made it dif-
ficult to repeat using other more general hardware available at the time. So, even though
it took a lot of manual labour, it would take almost 20 years before digital computers were
powerful enough to perform simulations of comparable size and speed. is is the advan-
tage of tailoring the hardware to the specific problem requirements. 50 years later we see
the same advantage with the introduction of the special purpose GRAPE hardware (see
Section 1.5).

1.3 1960 - 1986: The Era Of Digital Computers
e introduction of general purpose digital computers in the 1960s made it easier to buy
and use a computer to perform simulations of N-body systems. Digital computers were
based on transistors instead of vacuum tubes which made them cheaper to produce and
maintain. e first computer simulations of astrophysical N-body systems where per-
formed by von Hoerner in 1960, Aarseth in 1963 and van Albada in 1968 (von Hoerner
1960; Aarseth 1963; van Albada 1968). e number of bodies involved in these simula-
tions was still relatively small and comparable to the experiment of Holmberg (N = 10 to

6 Introduction

100).
During the first decades of the digital computer there were two ways to increase the

number of bodies. One method was to buy a faster computer which allowed you to keep
using the same software but increase the number of particles. is was an efficient method
in the sense that the speed of the computer doubled roughly every 18 months, following
Moore’s Law (Moore 1965). Anothermethod to increaseN was by improving the software
either by code optimizations or by algorithmic changes. In direct N-body integrations the
number of required interactions scales as N2 so any improvement to reduce the number
of operations is very welcome.

In 1963 Aarseth introduced the individual time-step scheme (Aarseth 1963). To sim-
ulate an N-body system, the orbits of particles have to be followed exactly. However,
particles isolated in space do not have sudden changes in their orbit and therefore can take
longer time-steps than particles in the core of the cluster or which are part of a binary.
Particles forming a binary change their positions quickly and therefore require many more
time-steps to be tracked accurately. is is the basic idea behind the individual time-step
scheme — each particle is assigned a simulation time when it is required to update and
recompute the gravitational force. When only a few particles take small time-steps, then
for most of the particles the gravitational forces do not have to be computed. e number
of operations in a shared time-step scheme is then reduced from N2 to N ·Nactive where
Nactive is the number of particles that have to be updated. IfNactive is sufficiently small then
the overhead of keeping track of the required time-steps is negligible compared to the gain
in speed by not having to compute the gravitational forces for all bodies in the system.

e Ahmam-Cohen Neighbour Scheme (ACS) introduced in 1973 by Ahmad and
Cohen (1973) takes another approach to reduce the number of required computations.
In ACS the gravitational force computation is split into two parts. In the first part the
force between a particle and its nearest neighbours, Nnn, (hence the name) is computed
in a way similar to the direct N-body scheme with many small time-steps, because of
the fast changing dynamical nearby neighbourhood. In the second part the force from
the particles that are further away is updated less frequently, since the changes to that
part of the gravitational force are less significant. When Nnn ≪ N the number of total
interactions is reduced dramatically and thereby the total wall-clock time required for the
simulation is reduced.

With the introduction of the digital computer also came the introduction of parallel
computing. We can distinguish fine grained and coarse grained parallelisation. e for-
mer focuses on tasks that require many communication steps whereas the latter splits the
computational domain and distributes it among different processors. ese processors can
be in the same machine or connected by a network. When connected by a network the
communication is slower and therefore only beneficial if the amount of communication is
minimal. In the early years of computing the focus was on fine grained parallelism using
vector instructions. ese instructions helped to increase the number of bodies in the sim-
ulations, but still N increased much slower than the theoretical speed of the processors.
is is because of the N2 scaling of direct N-body algorithms. Some of the noteworthy
publications were the simulation of open clusters containing 1000 stars by Terlevich (1980)
and the simulation of globular clusters using up to 3000 particles by Inagaki (1986) using
the (at the time) commonly used NBODY5 code.

1.4 1986 - 2000 : Advances in software 7

Figure 1.4: Particles grouped together in
boxes in the tree-code algorithm. Image
taken from Barnes and Hut (1986)

1.4 1986 - 2000 : Advances in software

In 1986 Barnes & Hut introduced their collisionless approximation scheme based on a
hierarchical data structure, which became known as the Barnes-Hut tree-code (Barnes
and Hut 1986). In this hierarchical data structure (tree) the particles are grouped together
in boxes (see for an example Fig. 1.4). ese boxes get the combined properties of the
underlying particle distribution, like center of mass and total mass. To compute the grav-
itational force on a particle one does not compute the force between that particle and all
other particles in the system, but rather between the particle and a selection of particles
and boxes. is selection is determined by traversing the tree-structure and per box de-
ciding if the particle is distant enough or whether the box lies so close that we should
use the particles that belong to the box. is decision is made by a ‘Multipole Acceptance
Criterion’ which, in combination with a free parameter (usually refered to as θ), is used to
get the required precision. In this way one can either get high precision at high computa-
tional costs, by using more particles than boxes, or the other way around, lower precision
by using more boxes instead of particles. e resulting code that implements this algo-
rithm generally achieves a scaling of O(N logN) instead of the O(N2) of direct N-body
codes. is allowed for simulations containing more particles by orders of magnitude than
in direct N-body simulations, but came at the cost of reduced accuracy. erefore, if high
accuracy was required, researchers kept using collisional methods, for which algorithmic
and computational developments continued.

e individual time-step method reduced the total number of executed gravitational
force computations, since particles are only updated when required. However, if you would
use the individual time-step method in a predictor-corrector integration scheme2 you

2In a predictor-corrector scheme the positions are updated in multiple steps. First you predict the new posi-
tions using the original computed gravitational forces, then you compute the new gravitational forces using these
positions and then you apply a correction to the predicted positions.

8 Introduction

would have to predict all N particles to the new time while only computing the gravita-
tional force for one particle. is prediction step results in a large overhead and the possi-
bilities to parallelise the algorithm are limited, since the gravitational force is computed for
only one particle. In a shared time-step method, there are N particles for which the force
is computed, which can then be divided over multiple processors. A solution came in the
form of the block time-step method in which particles with similar time-steps are grouped
together. ese groups are then updated using a time-step that was suitable for each par-
ticle in the group. Since multiple particles are updated at the same time, the number of
prediction steps is reduced and the amount of parallel work is increased, see McMillan
(1986). is is an example of i-particle parallelisation in which all j-particles are copied
to all nodes and each node works on a subset of the i-particles. e i-particles are the
sinks and the j-particles are the sources for the gravitational forces. In hindsight, it might
have been more efficient to use j-particle parallelisation in which each processing node
would get a part of the total particle set. e i-particles that have to be updated during
a time-step are then broadcast to each node. e nodes then compute the gravitational
force on those i-particles using their subset of j-particles and finally in a reduction step
these partial forces are combined. With the introduction of the GRAPE hardware a few
years later (see below), it turned out that this i-particle parallelisation was ideal for special
purpose hardware. We will see more about this i-particle parallelisation in combination
with GPUs in Chapter 2.

Other noteworthy publications in this time period are the following works. Aarseth
and Heggie (1993) published the results of a 6000 body simulation containing primordial
binaries and unequal mass particles. With this simulation it was possible to improve on
previous results where only equal mass particles were used. e differences in the unequal
mass and equal mass simulations were small, but too large to be ignored, which shows the
critical importance of binaries and initial mass functions even though they are computa-
tionally expensive. Spurzem and Aarseth (1996) performed a simulation of a star cluster
with 104 particles. e simulation was executed on a CRAY machine. is is one of the last
simulations in our review that was executed without any special purpose hardware, since
in the same year, Jun Makino presented his work which used three times more particles
and was executed on GRAPE hardware (Makino 1996).

1.5 2000 - 2006: The Era Of The GRAPE

1.5.1 GRAPE
e introduction of the special purpose GRAvity PipE (GRAPE) hardware caused a
breakthrough in direct-summation N-body simulations (see the book by Makino and
Taiji (1998)). e GRAPE chips have the gravitational force calculations implemented
in hardware which results in a speed-up of two orders of magnitude compared to the stan-
dard software implementations. e GRAPE chips were introduced in the early 1990s
(Fukushige et al. 1991), but it would take a few years and development cycles before they
were widely accepted and being used in production simulations. e GRAPE chips are
placed on a PCI-expansion card that can be installed in any general purpose (desktop)

1.5 2000 - 2006: e Era Of e GRAPE 9

computer. e GRAPE came with a set of software libraries that made it relatively easy to
add GRAPE support to existing simulation software like NBODY4 (Aarseth 1999) and
Starlab (Portegies Zwart et al. 2001). e block time-stepping scheme introduced a few
years earlier turned out to be ideal for this hardware and when multiple GRAPE chips
were used one could combine this in i− j-particle parallelisation.

In the early 90s the large computational cost of direct N-body simulations had caused
researchers to start using collisionless codes like the Barnes-Hut tree-code (Section 1.5.3)
in order to do large N simulations. e introduction of the GRAPE combined with the
availability of ready-to-use software caused the opposite effect, since suddenly it was pos-
sible to do collisional simulations at the same speed as collisionless simulations. e last
generation of the fixed function GRAPE hardware was the GRAPE-6 chip. ese were
the most commonly used GRAPE chips, and when placed on a GRAPE-6Af extension
board they reached a peak performance of ∼131 GFLOPs and enough memory to store
128k particles.

e GRAPE hardware is designed to offer large amounts of fine grained parallelism,
since the on-chip communication is fast and specifically designed for the gravity computa-
tions. Supercomputers, on the other hand, are designed for coarse grained parallelisation
thereby offering a large amount of computational cores connected using fast networks.
But the communication times are still orders of magnitude slower than on-chip com-
munication networks. is means that supercomputers are rarely used for direct N-body
simulations and are much more suitable for collisionless simulations which require more
memory and usually take larger time-steps (see Section 1.5.3). It would require hundreds
of normal processor cores to reach the same performance as the GRAPE offers on one ex-
tension board, and that is even without taking into account the required communication
time. If this is taken into account then the execution time on supercomputers is unrealis-
tically high for high precision (e.g. many small time-steps with few active particles) direct
N-body simulations

One of the limitations of the GRAPE is its fixed function pipeline and because of
this it can not be used for anything other than gravity computations. For example in the
ACS (Ahmad and Cohen 1973) the force computation is split into a near and a far force.
e GRAPE cards are suitable to speed-up the computation of the far force, but the near
force has to be computed on the host since theGRAPE has no facility to compute the force
using only a certain number of neighbours. An alternative like Field Programmable Gate
Arrays (FPGAs) allows for more flexibility while still offering high performance at low
energy cost, since the hardware can be programmed to match the required computations.
e programming is complex, but the benefits can be high since the required power is
usually much less than a general purpose CPU cluster offering similar performance. An
example of FPGA cards are theMPRACE cards (Spurzem et al. 2007), which are designed
to speed-up the computation of the neighbour forces and thereby eliminating the need to
compute the near force on the host computer which would become a bottleneck if only
GRAPE cards would be used.

With the increasing availability of the GRAPE hardware at different institutes came
the possibility to combine multiple GRAPE clusters for large simulations. A prime ex-
ample of this is the work by Harfst et al. (2007) who used two parallel supercomputers
which were equipped with GRAPE-6A cards. ey showed that for direct N-body sim-

10 Introduction

ulations it was possible to reach a parallel efficiency of more than 60%, and reached over
3 Teraflop (TFLOP) of computational speed when integrating 2× 106 particles. ough
the number of GRAPE devices was increasing it was still only a very small fraction of
the number of “normal” PCs that was available. In order to use those machines efficiently
one had to combine them and run the code in parallel. An example of this is the paral-
lelisation of the N-body integrator in the Starlab package (Portegies Zwart et al. 2008).
is work showed that it was possible to run parallel N-body simulations over multiple
computers, although it was difficult to get good enough scaling in order to compete with
the GRAPE hardware. is was also observed in earlier work by Gualandris et al. (2007),
who developed different parallel schemes for N-body simulations thereby observing that
the communication time would become a bottleneck for simulations of galaxy sized sys-
tems. Another approach is the work by Dorband et al. (2003) in which they implemented
a parallel scheme that uses non-blocking communication. ey called this a systolic al-
gorithm, since the data rhythmically passes through a network of processors. Using this
method they were able to simulate 106 particles using direct N-body methods.

1.5.2 Multi-Core Processors and Vector Instructions
In the 2000s it became clear that parallelisation had become one of the requirements to
be able to continue increasing the number of particles. e clock speed of the CPU came
near the physical limits of the used components and the chips used so much energy that
the produced heat became a serious problem. is forced hardware manufacturers to shift
their focus from increasing the clockspeed to increasing the number of CPU cores and
to increase the amount of parallelisation inside the CPU cores with the introduction of
special vector instructions. e Streaming SIMD Extensions (SSE) vector instructions in
modern day processors promised to give a performance boost for optimized code. How-
ever, this optimization step required deep technical knowledge of the processor architec-
ture. With the introduction of the Phantom GRAPE library by Nitadori et al. (2006) it
became possible to benefit from these instructions without having to write the code your-
self. As the name suggests, the library is compatible with software written for GRAPE
hardware, but instead executes the code on the host processor using the special vector in-
structions for increased performance. Recently this is extended with the new Advanced
Vector eXtensions (AVX) which allow for even higher performance on the latest genera-
tion of CPUs (Tanikawa et al. (2012, 2013)). Since at the same time the number of cores
in the processors is increasing it helps that these libraries are able to use all the available
CPU cores using multithreading. is has the potential to double the performance of the
library when going, for example, from a single core to a double core processor. e ac-
tual performance gain depends on the type of simulation that is being executed. Often a
combination of fine grained (vector instructions) and coarse grained (multi-core or even
multiple-machine) parallelisation is used for direct N-body simulations with individual or
block time-steps . e best solution depends on properties of the simulation, for example
the total number of particles or the time-steps. When the number of particles that have to
take a gravity step is small it is more efficient to not use the external network, but rather
let all the work be handled by a single machine or single core. On the other hand if the
number of particles taking a gravity step is large it could be more efficient to distribute the

1.6 2006 - Today: e Era Of Commercial High Performance Processing Units 11

work over multiple machines. erefore the most optimal choice highly depends on the
number of particles and the required accuracy / time-step.

1.5.3 Collisionless methods
Collisionless simulations scale as O(N logN) when using tree methods or with O(N)
when using the Fast Multipole Moment (FMM) method (Dehnen 2002; Yokota and
Barba 2012; Yokota et al. 2011). Because of this scaling it is possible to perform large
collisionless simulations (N > 107) while collisional methods are generally limited to
N = 105 ∼ 106. ese large simulations require a combination of memory and computa-
tional resources and are therefore often executed on supercomputers. On the other hand
collisional simulations are usually only limited by computational power. In the collionless
simulations the gravity computation still forms a major part of the total computation time
and it is therefore beneficial to execute these computations using GRAPE hardware. By
modifying the tree-walk and using a special version of the GRAPE chip Fukushige et al.
(1991) were able to execute the computation of the gravitational force of the Barnes &
Hut tree-code algorithm using the GRAPE hardware, thereby benefiting from both the
fast tree-code algorithm and the efficiency of the GRAPE. Since only the computation of
the gravitational forces was accelerated, the limited amount of memory on the GRAPE
hardware did not pose a serious limitation. Over the years this technique has been applied
on various generations of the GRAPE hardware, for example by Athanassoula et al. (1998)
and Kawai et al. (2000).

1.6 2006 - Today: The Era Of Commercial High Per-
formance Processing Units

1.6.1 Collisional methods
In 2001 programmable Graphics Processing Units (GPUs) were introduced. However, it
would take another 7 years before GPUs were powerful enough to be a viable alterna-
tive to the single function GRAPE that dominated the N-body simulation field over the
previous decade.e GPUwas originally designed to improve the rendering speed of com-
puter games. However, over the years these cards became progressively faster and, more
importantly, they became programmable (see for more details also Section 1.7). At first
one had to use programming languages which were specially designed for the creation of
visual effects (e.g. Cg and OpenGL). e first use of the GPU for N-body simulations was
by Nyland et al. (2004) who used Cg. eir implementation was mostly a proof-of-concept
and lacked advanced time-stepping and higher order integrations which made it unsuit-
able for production quality N-body simulations. Programming GPUs became somewhat
easier with the introduction of the BrookGPU (Buck et al. 2004a) programming language.
is language is designed to be a high level programming language and compiles to the Cg
language. Elsen et al. (2006) presented an N-body implementation using the BrookGPU
language. Around the same time Portegies Zwart et al. published an implementation of
a higher order N-body integration code with block time-steps written in Cg (Portegies

12 Introduction

Figure 1.5: Performance compari-
son of N -body implementations. The
CUDA GPU implementation kirin is
represented by the solid line (open
circles). The GRAPE is represented
as the dotted line (bullets). The Cg
GPU implementation is represented
as the dashed line (open triangles).
The dashed-dotted line (closed trian-
gles) represent the results on the host
computer. Figure taken from Belle-
man et al. (2008).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07

t[s
]

N

GRAPE-6Af
kirin
Cg

Xeon

Zwart et al. 2007). Although these publications showed the applicability and power of the
GPU, the actual programming was still a complicated endeavor. is changed with the
introduction of the Compute Unified Device Architecture (CUDA) programming lan-
guage by NVIDIA in early 2007. e language and compatible GPUs were specifically
designed to let the power of the GPU be harvested in areas other than computer graphics.
Shortly after the public release of CUDA efficient implementations of the N-body prob-
lem were presented by Hamada and Iitaka (2007); Belleman et al. (2008); Nyland et al.
(2007). Belleman et al. (2008) showed that it was possible to use the GPU with CUDA
for high order N-body methods and block-time steps with an efficiency comparable to
the, until then, unbeaten GRAPE hardware (see Fig 1.5).

As an alternative to the proprietary CUDA language, the Khronos group3 introduced
in 2009 the OpenCL programming language. is language is designed to create parallel
applications similar to the way CUDA is used for GPUs, with the difference that programs
written in OpenCL also work on systems with only CPUs. e idea behind this is that the
developer has only to write and maintain one program. In reality, however, the developer
will have to write code that is optimized for one platform (GPU or CPU) in order to get
the highest performance out of that platform. Because CUDA was released a couple of
years earlier, has more advanced features and has more supported libraries than OpenCL
are the reasons CUDA is currently more commonly used than OpenCL. However, there
is no reason this cannot change in the future with updated libraries that offer OpenCL
support (e.g. Sapporo2 see below and Chapter 2).

With GRAPE having been around for over 15 years, most of the production qual-
ity astrophysical N-body simulation codes were using GRAPEs when NVIDIA released
CUDA. Sapporo,theGRAPE compatible library,made the shift from theGRAPE frame-
work to the GPU easy Gaburov et al. (2009). is library uses double-single precision4 and
on-device execution of the prediction step, just like the GRAPE-6Af hardware. Because
GPUs are cheaper to buy, have more onboard memory, higher computational speed and

3e Khronos Group is a group of companies that develops open standards for accelerating graphics, media
and parallel computations on a variety of platforms.

4is technique gives precision up to the 14th significant bit while using single precision arithmetic.

1.6 2006 - Today: e Era Of Commercial High Performance Processing Units 13

the option to reprogram them to your specific needs, nowadays more GPUs than GRAPEs
are used for N-body simulations. Even though the GRAPE, because of its dedicated de-
sign, requires less power than the GPU. e GRAPE-DR (Greatly Reduced Array of
Processor Elements with Data Reduction; Makino et al. (2007)) is different from the
earlier generation GRAPE chips since it does not have the gravitational computations
programmed in hardware, but rather consists of a set of programmable processors. is
design is similar to how the GPU is built up, but uses less power since it does not have the
overhead of graphics tasks and visual output that GPUs have. At the time of its release in
2007 the GRAPE-DR was about two times faster for direct N-body simulations than the
GPU.

Nitadori andAarseth (2012) describe their optimisations to simulation codesNBODY6
and NBODY7 (Aarseth 2012) to make use of the GPU. ey have tested which parts of
the code are most suitable to be executed on the GPU and came to the conclusion that it
was most efficient to execute the so-called ‘regular force’ on the GPU. is step involves
around 99 percent of the number of particles. On the other hand the local force is exe-
cuted on the host using vector instructions, since using the GPU for this step resulted in
a communication overhead which is too large5. In this division the bulk of the work is
executed on the GPU and the part of the algorithm that requires high precision, complex
operations or irregular memory operations is executed on the host machine possibly with
the use of special vector instructions. is is a trend we see in many fields where the GPU
is used. However, some authors overcome the communication overhead by implement-
ing more methods on the GPU besides the force computation, see for example Spurzem
et al. (2011). e two most recent large N simulations have been performed by Hurley
and Mackey (2010) (N = 105) and Heggie (N = 5 × 105; private communication, not
yet published) who both used NBODY6 in combination with one or more GPUs.

A subfield of direct N-body methods are simulations that are used to determine plan-
etary stability, which usually involve only a few particles. is severely limits the amount
of parallelism and therefore a different approach has to be taken than that used in large
N simulations. Swarm-NG (Dindar et al. 2013) is an example of an implementation that
takes a different approach. is is a software package for integrating ensembles of few-
body planetary systems in parallel with a GPU. Swarm-NG is specifically designed for
low-N systems. Instead of breaking up one problem into parallel tasks, Swarm-NG inte-
grates thousands of few-body systems in parallel. is makes it especially suited for Monte
Carlo-type simulations where the same problem is run multiple times with varying initial
conditions.

1.6.2 Collisionless methods
efirst result of a tree-code accelerated by aGPUwas presented in Belleman et al. (2008).
e results did show a speed-up compared to the CPU results, however the speed-up was
smaller than observed when using direct N-body methods. is is of course understand-
able since there are fewer force computations that can benefit from the GPU compared

5 is is similar to how the MPRACE project did the division between the GRAPE and MPRACE cards.

14 Introduction

to direct N-body methods. Another limiting factor is the amount of communication re-
quired between the GPU and CPU in the standard GRAPE tree-code implementations.
e high computational speed of the GPU means that communication can become a bot-
tleneck. In the award-winning papers by Hamada et al. (2009c) and Hamada and Nitadori
(2010) this overhead is reduced by combining the results of multiple tree-walks (executed
on the CPU), which are then transferred to the GPU in a single data transfer. Instead of
receiving one set of interaction lists the GPU now receives multiple sets, which increases
the amount of parallel work to be executed and improves the overall efficiency of the GPU.
However, even with this method the tree-walk itself is executed on the CPU and only the
force computation is executed on the GPU.

1.7 Graphics Processing Units
Since the GPU plays such a pivotal role in this thesis we give a short overview of what it is
and what sets it apart from the CPU. e GPU is a computer chip that is placed, together
with a certain amount of memory, on a circuit board. is board can then be plugged
into the PCI-Express bus. e chip, memory and board are as a set generally referred to
as the graphics card. e GPU is specifically designed to deliver high performance for
parallel tasks. It was originally designed this way so that it could render the frames of
computer games as fast as possible. For these frames the GPU has to compute, for each
pixel independently, which colour should be sent to the display. On an average computer
display there are over a million pixels which have to be updated thirty times per second to
create the feeling of smooth gameplay. To compute the correct colour for each pixel the
GPU has to perform a series of (relatively) simple operations. e input for these opera-
tions are data-objects stored in the GPU memory and which represent objects in the 3D
game world. e game programmer writes a set of programs, usually called shaders, that
combine the effects of various light sources and material choices into a final pixel colour.
ese shaders can be compared to the kernels that we write for scientific applications. e
kernels use some data as input, perform a set of computational operations and write the
result back to GPU memory. Each of these shaders performs the same operations for a
different pixel, which allows for the massive amounts of parallelism. In order to manage all
these threads the GPU contains a large amount of compute cores. ese cores are placed
on a set of multi-processors and the performance of the GPU depends on the number of
multi-processors and inherently the number of compute cores. See Fig. 1.6 for an exam-
ple of such a multi-processor as used in the NVIDIA Kepler chips. In order to feed all
these compute cores with data there is a high bandwidth memory bus (>100GB/s) that
connects the multiprocessors with the onboard memory. is way the data streams from
memory, through the compute chips and then back to the memory buffers. To manage
all this parallelism the GPU uses a programming model which is commonly referred to
as Single Instruction, Multiple-read (SIMT). In this model you write a single program
that performs the same set of operations for each thread that is launched on the GPU.
However, since the input data can depend on the unique identifier of each thread you can
use different input data per thread. Usually the threads are grouped together in groups of
a certain size. On the NVIDIA hardware these groups are called warps and contain 32

1.7 Graphics Processing Units 15

Figure 1.6: Kepler SMX: 192 single pre-
cision CUDA cores, 64 double precision
units, 32 special function units (SFU), and
32 load/store units (LD/ST). Figure taken
from (NVIDIA (2013b))

threads. On the AMD hardware the groups are called wavefronts and contain 64 threads.
In Chapter 2 we will see how these groups and their sizes can be important for the effi-
ciency of the code.

In general the compute units on the GPU are much less complex than those on the
CPU. e compute units on the CPU are, for example, able to execute vector instructions,
use out-of-order execution and perform branch prediction. ese abilities make the CPU
very fast when executing serial operations, but these abilities also take up extra space on
the chip. Because all this advanced logic is implemented in hardware there is less space
available for the actual compute units. For the GPU this is the other way around. e
compute units are relatively simple, do not contain advanced branch prediction or perform
out-of-order execution nor do they support vector instructions. Another difference is that
GPUs contain much smaller cache sizes (both L1 and L2) than modern day CPUs. As a
result, the cores take up less space and is it possible to add more of them on the same chip.
See Fig. 1.7 for an example of the differences between a GPU and CPU chip. So, even
though the clock speed of these cores is lower than the clock speed of the CPU, the fact
that there are more of them allows the GPU to reach higher peak-performance. erefore,
if you have a problem that can be efficiently parallelised it might be possible to execute it
efficiently on the GPU. However, if the problem can not be parallelised you will not gain
any performance and will only slow down the execution when using a GPU. It is therefore
a challenge to subdivide your problems, data and algorithms in as many (independent)
parts as possible to create an effective GPU implementation.

Over the years the GPU is slowly evolving from a single function compute unit into a
more advanced device. First it was only possible to execute single precision computations,
but with the addition of IEEE-754 double precision compute units it became possible to
use the GPU for codes that require double precision computations. An other example of
new features is the way in which the compute work is launched. Traditionally the CPU

16 Introduction

3x
SMX

3x
SMX

9x SMX

(a) Kepler

5x core

5x core
(b) Xeon

Figure 1.7: Photos of two different chip architectures. The left picture shows the NVIDIA Kepler
GK110 chip, which contains 7.1 billion transistors and has a size of 561mm2. The right picture shows
the Intel Xeon E5-2600 V2 chip, which contains 4.3 billion transistors and has a size of 542mm2. The
NVIDIA chip contains 15 SMX units each with 192 cores (see Fig. 1.6) and the Intel chip contains
10 cores. The marked areas roughly indicate which parts of the chip are used for compute and which
parts are used for caches and control. Note the figures are not to scale and do not use the same scale.

tells the GPU to execute compute kernels, but in the latest generation of NVIDIA GPUs
(Kepler) the GPU can launch its own kernels. is allows for new GPU implementations
that are based on recursion. In the individual chapters of this thesis we will highlight some
further features of the GPU that are specific to the methods and algorithms used in those
chapters.

1.8 Thesis Overview

e previous paragraphs detailed the developments that eventually led to the works in
this thesis. In this thesis we continue these developments and improve on previous work
by either expanding existing abilities or radically redesigning algorithms in the quest for
more performance and higher efficiency when runningN-body simulations. e main aim
of increasing the performance is to enableN-body simulations which are not feasible with
current day simulation codes. A faster code therefore allows us to pursue new scientific
topics and arrive at answers to open questions. Simulations that took months or even years
to complete will instead finish in a couple of days or a few weeks at most. is short time-
to-solution allows us to execute more simulations and thereby cover a wider parameter
space. is in turn gives a better sense of the effect these parameters have and thereby
improves the research quality. An example of this can be found in Chapter 5.

Currently, many models in astrophysics are necessarily simulated with a number of
bodies that is much smaller than the actual number of bodies in star clusters and galaxies.
is can provide a good approximation of what a simulation with a larger model would be
like, however, it can be unclear if the result is due to a physical cause or if it is an artificial

1.8 esis Overview 17

consequence of the low resolution and simplified simulation. Or, for example, when the
small-scale structure as seen in observations cannot be resolved in simulations, because
of limited resolution, it is impossible to make a direct comparison between theory and
observation. With a more efficient simulation code one can opt to simulate more detailed
models instead of executing simulations faster.e simulation would take the same amount
of time as before, but can contain orders of magnitude more particles. With such a large
number of particles it is, for example, possible to do a galaxy simulation where the digital
masses of the particles are comparable to those of the stars in a physical galaxy. A prime
example of this can be found in Chapter 6 where we describe a method that is able to
simulate the Milky Way Galaxy on a star-by-star basis.

1.8.1 Chapter 2 - Sapporo2

In this chapter we present the new direct N-body library Sapporo2. is is a new version
of the commonly used Sapporo library. In this version we have expanded the abilities of
the library to include support for more hardware devices, different orders of integration
and adjustable numerical precision. We present the performance of the library on hardware
accelerators (GPUs) of different vendors and how the numerical accuracy influences the
execution time. Finally we present performance difference between using multiple CPU
cores and a single GPU. Because the library exploits the high performance of GPUs it
enables us to increase the number of bodies used in simulations and thereby allowing for
more realistic models. Direct N-body methods are generally used when accuracy is an
important requirement. erefore, having the option to use double precision or using a
sixth-order integrator instead of a fourth-order means that Sapporo2 can be used for a
wider range of problems. For example, the large mass ratios in models with supermassive
black-holes have to be solved with a sixth order integrator, otherwise the lack of precision
would result in (near) zero time-steps.

1.8.2 Chapter 3 - OctGrav

In this chapter we introduce the Octgrav simulation code. is code uses the Barnes-Hut
tree-code algorithm and the GPU to accelerate the execution. Previous tree-code methods
have used the GPU to accelerate the gravity computation (see Section 1.6.2). However,
in this new code we take it a step further and also execute the tree-walk on the GPU. In
previous codes this was a serious bottleneck, since this data-intensive operation had to be
executed on the CPU, which has an order of magnitude lower bandwidth than the GPU.
Apart from the lower performance of the CPU, the resultant lists had to be transferred over
the relatively slow PCI-Express bus. By executing this operation on the GPU we remove
the need for data-transfer and benefit from the high on-device bandwidth of the GPU. In
this chapter we show the performance gain by moving the tree-walk to the GPU and we
identify which new bottlenecks surface after removing the traditional ones.

18 Introduction

1.8.3 Chapter 4 - Bonsai
By removing the traditional bottlenecks of the tree-code algorithm in the previous chapter
it became clear that the new Octgrav code was limited by other bottlenecks. e con-
struction of the hierarchical data-structure, particle sorting or even just the prediction of
the new particle positions took only a few percent of the execution time in the original
CPU algorithm, but after speeding up the other parts in the GPU version the fast meth-
ods in the old CPU version suddenly started taking up a major fraction of the execution
time. However, there is only so much one can do to optimize and resolve bottlenecks in
an algorithm that scales as O(N). By implementing these on the GPU the algorithms re-
tained theirO(N) andO(N logN) scaling, but profit from the high computational speed
and bandwidth of the GPU. To prevent any further CPU limitations we took it to the final
step and implemented all parts of the tree-code algorithm on the GPU. is eliminates
the need to transfer large amounts of data between the CPU and GPU during each time-
step. All these optimizations come together in the new GPU-enabled tree-code Bonsai.
e chapter shows the performance of the individual parts of the algorithm and describes
why the code works efficiently when using either a shared time-step or a block time-step
method.

1.8.4 Chapter 5 - Many Minor Mergers

Observations of the early universe (z >∼ 2) show that there are galaxies which are both
massive and very compact. However, these galaxies seem to have disappeared in the local
universe. In this chapter we use Bonsai to test if this disappearance can be explained by
growth caused by infalling smaller galaxies. e theory is that these infalling galaxies cause
the compact galaxy to grow more in size than in mass. e efficiency of the code allows us
to test this hypothesis by simulating a wide variety of gasless galaxy merger configuratons.
We simulate mergers that have mass ratios between q =1:1 (equal mass) to q =1:160.
Next we analyze the merger remnants and test which remnants have properties that can
best reproduce the current day observations. From the results we can conclude that the
observation can be explained by mergers that involved mass ratios of q = 1:5 — 1:10.
Furthermore, the simulations indicate that mass ratios less than 1:10 can not be the cause,
because in that case the growth in size would be larger than what is determined from the
observational results.

1.8.5 Chapter 6 - Parallel Bonsai
In chapter 4 we introduced the Bonsai code which gets its high efficiency and performance
by limiting the amount of communication with the CPU and by keeping all data on the
GPU. However, this means that the amount of memory on the GPU is a limitation when
increasing the number of particles. is limitation can be overcome by using multiple
GPUs, so that we not only gain extra memory but also extra performance. In this chapter
we present the parallel version of Bonsai which uses the CPU to communicate with other
GPUs. ese GPUs can either be installed in the same system or in seperate systems that
are connected with each other in a non-shared memory architecture. By overlapping the

1.8 esis Overview 19

(network) communication time with computations on theGPUwe are able to hidemost of
the required communication overhead of the relatively slow PCI-bus and network cables.
is allows us to scale the simulation code to thousands of GPUs, and execute simulations
that contain not millions, but billions of particles. All of this while maintaining over 70%
parallel efficiency. ere are two main reasons to simulate these large models on parallel
GPU systems. e first is of practical nature, with the advent of accelerator technology we
see more and more supercomputers that get their performance from this new technology.
Without a simulation code that can use accelerators (GPUs) you will not be able to get
performance from, let alone access to, these systems. e second reason is that if we want
to simulate models with billions of particles in reasonable time (a few weeks at most) we
need high performance. With these models we can obtain more detailed results which are
required if we want to keep up with observational results that pour in from new observatory
platforms such as the Gaia satellite.

2|Sapporo2: A versatile direct
N-body library

Astrophysical direct N-body methods have been one of the first production algorithms to be imple-
mented using NVIDIAs CUDA architecture. Now, almost six years later, the GPU is the most used
accelerator device in astronomy for simulating stellar systems. In this paper we present the imple-
mentation of the Sapporo2 N-body library, which allows researchers to use the GPU for N-body
simulations with little to no effort. e first version, released five years ago, is actively used, but lacks
advanced features and versatility in used numerical precision and support for higher order integra-
tors. In this updated version we have rebuilt the code from scratch and added support for OpenCL,
multi-precision and higher order integrators. We show how to tune these codes for different GPU
architectures and present how to continue utilizing the GPU as optimally as possible even when
only a small number of particles is integrated. is careful tuning allows Sapporo2 to be faster than
Sapporo1 even with the added options and double precision data loads. e code shows excellent
scaling on a range of NVIDIA and AMD GPUs in single and double precision accuracy.

22 Sapporo2

2.1 Background

e class of algorithms, commonly referred to as direct N-body algorithms is still one
of the most commonly used methods for simulations in astrophysics. ese algorithms
are relative simple in concept, but can be applied to a wide range of problems. From the
simulation of few body problems, such as planetary stability to star-clusters and even small
scale galaxy simulations. However, these algorithms are also computationally expensive as
they scale as O(N2). is makes the method unsuitable for large N (> 106), for these
large N simulations one usually resorts to a lower precision method like the Barnes-Hut
tree-code method Barnes and Hut (1986) that scales as O(NlogN) or the Particle Mesh
method that scales as O(N) (e.g. Hohl and Hockney (1969); Hockney and Eastwood
(1981)). ese methods, although faster, are also notably less accurate and not suitable for
simulations that rely on the high accuracy that direct integration offers. On the other end
of the spectrum you can find even higher accuracy methods which use arbitrary precision
(Boekholt et al. in prep). e results of Boekholt et al. indicate that the accuracy offered
by the default (double precision) direct N-body methods is sufficient for most scientific
problems.

e direct N-body algorithm is deceivingly simple, in the basic form it performs N2

gravitational computations, which is an embarrassingly parallel problem that can be effi-
ciently implemented on almost any computer architecture with a limited amount of code
lines. A number of good examples can be found on the Nbabel.org website. is site
contains examples of a simple N-body simulation code implemented in a wide range of
programming languages. However, in practice there are many variations of the algorithms
in use, with up to 8th order integrations Nitadori and Makino (2008), algorithmic ex-
tensions such as block-time stepping McMillan (1986), neighbour-schemes Ahmad and
Cohen (1973), see Bédorf and Portegies Zwart (2012) and references therein for more ex-
amples. ese variations transform the simple O(N2) shared time-step implementation in
one with many dependencies and where the amount of parallelism can differ per time-step.
Especially the dynamic block time-stepping method adds complexity to the algorithm,
since the number of particles that participate in the computations change with each inte-
gration step. is variable number of particles involved in the computations forces the use
of different parallelisation strategies. In the worst case there is only one particle integrated
which eliminates most of the standard parallelisation methods forN2 algorithms. ere is
extensive literature on high performance direct N-body methods with the first being de-
scribed in 1963 Aarseth (1963). e method has been efficiently implemented on parallel
machines McMillan (1986), vector machines Hertz and McMillan (1988) and dedicated
hardware such as the GRAPEs Makino and Taiji (1998). For an overview we refer the
interested reader to the following reviews Bédorf and Portegies Zwart (2012); Heggie and
Hut (2003); Dehnen and Read (2011)

In this paper we present our direct N-body library, Sapporo2. e library contains
built-in support for second order leap-frog (GRAPE5), fourth order Hermite (GRAPE6)
and the sixth order Hermite integrators. e numerical precision can be specified at run
time and depends on requirements for performance and accuracy. Furthermore, the library
can keep track of the nearest neighbours by returning a list containing all particles within a

2.2 Methods 23

certain radius. Depending on the available hardware the library operates with CUDA and
OpenCL, and has the option to run on multiple-GPUs if installed in the same system. e
library computes the gravitational force on particles that are integrated with block time-
step algorithms. However, the library can trivially be applied to any other N2 particle
method by replacing the force equations.

2.2 Methods
With Graphic Processing Units (GPUs) being readily available in the computational as-
trophysics community for over 5 years we will defer a full description of their specifics
and peculiarities Bédorf and Portegies Zwart (2012); Belleman et al. (2008); Nyland et al.
(2007); NVIDIA (2013a). Here we only give a short overview to stage the context for the
following sections. In GPU enabled programs we distinguish two parts of code. e ‘host’
code, used to control the GPU, is executed on the CPU; whereas the ‘device’ code, per-
forming the majority of the computations, is executed on the GPU. Each GPU consists of
a set of multiprocessors and each of these multiprocessors contains a set of computational
units. We send work to the GPU in blocks for further processing by the multiprocessors.
In general a GPU requires a large amount of these blocks to saturate the device in order to
hide most of the latencies that originate from communication with the off-chip memory.
ese blocks contain a number of threads that perform computations. ese threads are
grouped together in ‘warps’ for NVIDIA machines or ‘wavefronts’ on AMD machines.
reads that are grouped together share the same execution path and program counter.
e smaller the number of threads that are grouped the smaller the impact of thread di-
vergence. On current devices a warp consists of 32 threads and a wavefront contains 64
threads. is difference in size has an effect on the performance (see Section 2.3).

2.2.1 Parallelisation method
To solve the mutual forces for an N-body system the forces exerted by the j-particles
(sources) onto the i-particles (sinks) have to be computed. Depending on the used algo-
rithm the sources and sinks can either belong to the same or a completely different particle
set. Neither is it required that these sets have the same dimensions. In worst case situations
this algorithm scales as O(N2), but since each sink particle can be computed indepen-
dently it is also embarrassingly parallel. e amount of parallelism however depends on
the number of sink particles. For example, in high precision gravitational direct N-body
algorithms that employ block-time stepping the number of sink particles ranges between
1 and N . In general the number of sinks is ≪ than the number of sources, because only
the particles of which the position and velocity require an update are integrated McMil-
lan (1986). As aconsequence the amount of available parallelism in this algorithm is very
diverse, and depends directly on the number of active sink particles.

Currently there are two commonly used methods for solving N2 like algorithms using
GPUs. e first performs parallelisation over the sink particles Hamada and Iitaka (2007);
Belleman et al. (2008); Nyland et al. (2007) which launches a separate compute thread for
each sink particle. is is efficient when the number of sinks is large (> 104), because

24 Sapporo2

then the number of compute threads is sufficiently high to saturate the GPU. However,
when the number of sink particles is small (⩽ 104) there are not enough active compute
threads to hide the memory and instruction latencies. As a result the GPU will be under
utilized and only reaches a fraction of the available peak performance. We expect that
future devices require an even larger number of running threads to reach peak performance,
in which case the number of sink particles has to be even larger to continuously saturate the
device. However, adjusting the number of sink particles to keep parallel efficiency is not
ideal, because then one artificially increases the amount of work (and runtime) in favor
of efficiency. erefore, a second method was introduced in Sapporo1 Gaburov et al.
(2009) which takes a slightly different approach. In Sapporo1 we parallelize over the
source particles and keep the number of sink particles that is concurrently integrated fixed
to a certain number. e source particles are split into subsets, each of which forms the
input against which a set of sink particles is integrated. e smaller the number of sink
particles the more subsets of source particles we can make. It is possible to saturate the
GPU with enough subsets, so if the combined number of sink and source particles is large
enough1 you can reach high performance even if the number of sinks or sources is small.

Of the two parallelisation methods the first one is most efficient when using a shared-
time step algorithm, because fewer steps are involved in computing the gravity. However,
Sapporo1 is more suitable for block-time stepping methods commonly used in high pre-
cision gravitational N-body methods. Even though this method requires an extra step to
combine the partial results from the different subsets. e Sapporo1 method is also ap-
plied in this work. With Sapporo1 being around for 5 years we completely rewrote it and
renamed it to Sapporo2 which is compatible with current hardware and is easy to tune and
adapt to future generation accelerator devices and algorithms. e next set of paragraphs
describe the implementation and the choices we made.

2.2.2 Implementation

CUDA and OpenCL

When NVIDIA introduced the CUDA framework in 2007 it came with compilers, run-
time libraries and examples. CUDA is an extension to the ‘C’ programming language and
as such came with language changes. ese extensions are part of the device and, more
importantly, part of the host code2. e use of these extensions requires that the host code
is compiled using the compiler supplied by NVIDIA. With the introduction of the ‘driver
API’ this was no longer required. e ‘driver API’ does not require modifications to the
‘C’ language for the host code. However, writing CUDA programs with the ‘driver API’
is more involved than with the ‘runtime API’, since actions that were previously done by
the NVIDIA compiler now have to be performed by the programmer.

When the OpenCL programming language was introduced in 2009 it came with a set
of extensions to the ‘C’ language to be used in the device code. ere are no changes to the
language used for writing the host code, instead OpenCL comes with a specification of

1e exact number required to reach peak performance depends on the used architecture, but if the total
number of gravitational interactions is ⩾ 106 it is possible to saturate the GPU

2e most notable addition is the `<<<>>>' construction to start compute kernels.

2.2 Methods 25

functions to interact with the device. is specification is very similar to the specification
used in the CUDA driver API and follows the same program flow.

In order to support both OpenCL and CUDA in Sapporo2 we exploited the simi-
larity between the CUDA driver API and the OpenCL API. We developed a set of C++
classes on top of these APIs which offer an unified interface for the host code. e classes
encapsulate a subset of the OpenCL and CUDA functions for creating device contexts,
memory buffers (including functions to copy data) and kernel operations (loading, com-
piling, launching). en depending on which class is included at compile time the code is
executed using OpenCL or CUDA. e classes have no support for the more advanced
CUDA features such as OpenGL and Direct3D interoperability.

Kernel-code With the wrapper classes the host-code is language independent. For the
device code this is not the case, even though the languages are based on similar principles
the support for advanced features like C++ templates, printing and debugging functionality
in CUDA makes it much more convenient to develop in pure CUDA. After that we port
the working code to OpenCL. e use of templates in particular reduces the amount of
code. In the CUDA version all possible kernel combinations are implemented using a sin-
gle file with templates. For OpenCL a separate file has to be written for each combination
of integrator and numerical precision.
e method used to compute the gravitational forces is comparable to the method used
in Sapporo1 with only minor changes to allow for double precision data loads/stores and
more efficient loop execution.

Numerical Accuracy

During the development of Sapporo1 GPUs lacked support for IEEE-754 double preci-
sion computations and therefore all the compute work was done in either single or double-
single precision3. e resulting force computation had similar precision as the, at that time,
commonly used GRAPE hardware Makino and Taiji (1998); Gaburov et al. (2009). is
level of accuracy is sufficient for the fourth order Hermite integration scheme Makino and
Aarseth (1992); Portegies Zwart and Boekholt (2014). Currently, however there are inte-
grators that accurately solve the equations of motions of stars around black-holes, planets
around stars and similar systems that encounter high mass ratios. For these kind of simu-
lations one often prefers IEEE-754 double precision to solve the equations of motion. e
current generation of GPUs supports IEEE-754, which enables computations that require
this high level of accuracy. erefore the data in Sapporo2 is always stored in double pre-
cision. e advantage of this is that we can easily add additional higher order integrators
that require double precision accuracy computations without having to rewrite major parts
of the host code. Examples of such integrators are the 6th and 8th order Hermite integra-
tors Nitadori and Makino (2008). e performance impact of double precision storage on
algorithms that do not require double precision computations is limited. Before the actual
computations are executed the particle properties are converted to either float or double-
single and the precision therefore does not influence the computational performance. e

3In this precision, the number of significant digits is 14 compared to 16 in IEEE double precision

26 Sapporo2

penalty for loading and storing double the amount of data is relative small as can be seen
in the result section where Sapporo1 is compared to Sapporo2.

multiple GPUs

Our new N-body library can distribute the computational work over multiple GPUs, as
long as they are installed in the same system. While in Sapporo1 this was implemented
using the boost threading library, this is now handled using OpenMP. e multi-GPU
parallelisation is achieved by parallelisation over the source particles. In Sapporo1 each
GPU contained a copy of all source particles (as in Harfst et al. (2007)), but in Sapporo2
the source particles are distributed over the used devices using the round-robin method.
Each GPU now only holds a subset of the source particles which reduces memory require-
ments, transfer time and the time to execute the prediction step on the source particles.
However, the order of the particle distribution and therefore the addition order is changed
when comparing Sapporo1 and Sapporo2. is in turn can lead to differences in the least
significant digit when comparing the computed force of Sapporo1 to Sapporo2.

Other differences

e final difference between Sapporo1 and Sapporo2 is the way the partial results of
the parallelisation blocks are combined. Sapporo1 contains two computational kernels
to solve the gravitational forces. e first computes the partial forces for the individual
blocks of source particles, and the second sums the partial results. With the use of atomic
operators these two kernels can be combined, which reduces the complexity of maintaining
two compute kernels when adding new functionality at a minimal performance impact.
e expectation is that future devices require more active threads to saturate the GPU,
but at the same time offer improved atomic performance. e single kernel method that
we introduced here will automatically scale to future devices and offers less overhead than
launching a separate reduction kernel.

2.3 Results
In astrophysics the current most commonly used integration method is the fourth order
Hermite Makino and Aarseth (1992) which requires per particle the nearest neighbour
and a list of neighbours within a certain radius. is is what Sapporo1 computes and how
the GRAPE hardware operates Makino and Taiji (1998). e used numerical precision
in this method is the double-single variant. In order to compare the new implementation
with the results of Sapporo1, all results in this section, unless indicated otherwise, refer
to the double-single fourth order Hermite integrator.

For the performance tests we used different machines, depending on which GPU was
used. All the machines with NVIDIA GPUs have CUDA 5.5 toolkit and drivers installed.
For the machine with the AMD card we used toolkit version 2.8.1.0 and driver version
13.4.

e full list of used GPUs can be found in Tab. 2.1, the table shows properties such
as clock speed and number of cores. In order to compare the various GPUs we also show

2.3 Results 27

the theoretical performance, relative with respect to the GTX480. Since, theoretical perfor-
mance is not always reachable we also show the relative practical performance as computed
with a simpleN-body kernel that is designed for shared-time steps, similar to theN-body
example in the CUDA SDK Nyland et al. (2007).

Cores Core MHZ Mem MHZ Mem bw TPP PPP
GTX480 480 1401 3696 384 1 1
GTX680 1536 1006 6008 256 2.3 1.7
K20m 2496 706 5200 320 2.6 1.8
GTX Titan 2688 837 6144 384 3.35 2.2
HD7970 2048 925 5500 384 2.8 2.3

Table 2.1: GPUs used in this work. The first column indicates the GPU, the second column the number
of computational cores and the third their clock speed. The fourth and fifth column show the memory
clock speed and memory bus width. The sixth and seventh column indicate the relative performance,
when using single precision, where we set the performance of the GTX480 to 1. For the sixth column
these numbers are determined using the theoretical peak performance (TPP) of the chips. The seventh
column indicates the relative practical peak performance (PPP) which is determined using a simple
embarrisingly parallel N -body code.

2.3.1 Thread-block configuration
Since Sapporo2 is designed around the concept of a fixed number of blocks and threads
(see Section 2.2) the first thing to determine is the optimal configuration of threads and
blocks. We test a range of configurations where we vary the number of blocks per multi-
processor and the number of threads per block. e results for four different GPU ar-
chitectures are presented in Fig. 2.1. In this figure each line represents a certain number
of blocks per multi-processor, Nblocks. e x-axis indicates the number of threads in a
thread-block, Nthreads. e range of this axis depends on the hardware. For the HD7970
architecture we can not launch more than Nthreads = 256, and for the GTX480 the limit
is Nthreads = 576. For the two Kepler devices 680GTX and K20m we can launch up to
Nthreads = 1024 giving these last two devices the largest set of configuration options.
e y-axis shows the required wall-clock time to compute the forces using the indicated
configuration, the bottom line indicates the most optimal configuration.

For the 680GTX and the K20m the Nblocks configurations reach similar performance
whenNthreads > 512. is indicates that at that point there are so many active threads per
multi-processor that there are not enough resources (registers and/or shared-memory) to
accommodate multiple thread-blocks per multi-processor at the same time. To make the
code suitable for block time-steps the configuration with the least number of threads that
gives the highest performance would be the most ideal. For the HD7970 this isNthreads =
256 while for the Kepler architectures Nthreads = 512 gives a slightly lower execution
time than Nthreads = 256 and Nthreads = 1024. However, we chose to use Nthreads =
256 for all configurations and use 2D thread-blocks on the Kepler devices to launch 512 or
1024 threads. For each architecture the optimal configuration is indicated with the circles

28 Sapporo2

in Fig. 2.1.

0 64 128 192 256 320 384 448 512 576
Number of threads

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

T
w
a
ll
 [s

ec
]

N=131072
Nblocks per SM

1
2
4
6
8
10

2002503003504004505005501.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20

(a) 480GTX

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 9601024
Number of threads

1

2

3

4

5

6

T
w
a
ll
 [s
ec
]

N=131072
Nblocks per SMX

1
2
4
6
8
10

2002503003504004505005501.0

1.1

1.2

1.3

1.4

1.5

(b) 680GTX

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 9601024
Number of threads

1

2

3

4

5

6

T
w
a
ll
 [s
ec
]

N=131072
Nblocks per SMX

1
2
4
6
8
10

2002503003504004505005500.9
1.0
1.1
1.2
1.3
1.4
1.5

(c) K20m

0 64 128 192 256
Number of threads

1

2

3

4

5

6

T
w
a
ll
 [s

ec
]

N=131072
Nblocks per SM

1
2
4
6
8
10

160 192 224 2560.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

(d) HD7970

1

Figure 2.1: The figure shows the required integration time (y-axis) for N = 131072 source particles
using different number of sink particles (number of threads, x-axis). Each line indicates a different
configuration. In each configuration we changed the number of blocks launched per GPU multi-
processor for different GPU architectures. Shown in panel A NVIDIAs Fermi architecture, in panel
B the NVIDIA Kepler, GK104 architecture in panel C the NVIDIA Kepler, GK110 and the AMD
Tahiti architecture in panel D. The AMD architectures are limited to 256 threads. The configurations
that we have chosen as our default settings for the number of blocks are the lines with the filled circle
markers.

2.3.2 Block-size / active-particles
Now we inspect the performance of Sapporo2 in combination with a block-time step
algorithm. We measured the time to compute the gravitational forces using either the
NVIDIA GPU Profiler or the built-in event timings of OpenCL. e number of active
sink particles, Nactive, is varied between 1 and the optimal Nthreads as specified in the

2.3 Results 29

previous paragraph. e results are averaged over 100 runs and presented in Fig. 2.2. We
used 131072 source particles which is enough to saturate the GPU and is currently the
average number of particles used in direct N-body simulations.

e straight striped lines in Fig. 2.2 indicate the theoretical linear scaling from (0, 0)
to (256, X) where X is the execution time of the indicated GPU when Nactive = 256.
Visible in the figure are the jumps in the execution time that coincide with the warp (wave-
front) size of 32 (64). For NVIDIA devices we can start 2D thread-blocks for all values of
Nactive, since the maximum number of threads that can be active on the device is ⩾ 512.
e effect of this is visible in the more responsive execution times of the NVIDIA devices
when decreasing Nactive compared to the AMD device. Each time Nactive drops below a
multiple of the maximum number of active threads, the execution time will also decrease.
Up toNactive

<∼ 64 after which the execution time goes down linearly, because of the mul-
tiple blocks that can be started for any value of Nactive. e lines indicated with ‘1D’ in
the legend show the execution time if we would not subdivide the work further using 2D
thread-blocks. is will under-utilize the GPU and results in increased execution times
for Nactive < 128.

e performance difference between CUDA and OpenCL is minimal which indicates that
the compute part of both implementations inhabits similar behavior. For most values of
Nactive the timings of Sapporo1 and Sapporo2 are comparable. Only for Nactive < 64
we see a slight advantage for Sapporo1 where the larger data loads of Sapporo2 result in
a slightly longer execution time. However, the improvements made in Sapporo2 result in
higher performance and a more responsive execution time compared to Sapporo1 when
Nactive ⩾ 128. For the HD7970, there is barely any improvement when Nactive decreases
from 256 to 128. ere is a slight drop in the execution time at Nactive = 192 which
coincides with one less active wavefront compared to Nactive = 256. When Nactive ⩽
128 we can launch 2D blocks and the performance improves again and approaches that
of the NVIDIA hardware, but the larger wavefront size compared to the warp size causes
the the execution times to be less responsive to changes of Nactive.

2.3.3 Range of N
Now that we selected the thread-block configuration we continue with testing the perfor-
mance when computing the gravitational forces using Nsink particles and Nsource parti-
cles, resulting in Nsink×Nsource force computations. e results are presented in the left
panel of Fig. 2.3. is figure shows the results for the five GPUs using CUDA, OpenCL,
Sapporo1 and Sapporo2. e execution time includes the time required to send the input
data and retrieve the results from the device.

e difference between Sapporo1 and Sapporo2 (both the CUDA and OpenCL ver-
sions) on the K20m GPU are neglibible. Sapporo1 is slightly faster for N < 104, because
of the increased data-transfer sizes in Sapporo2, which influence the performance more
when the number of computations is relatively small. Sapporo2 is slightly faster than
Sapporo1 when N ⩾ 104, because of the various optimizations added to the new ver-
sion. e difference between the GTX680, K20m and the HD7970 configurations is relatively
small. While the GTX Titan is almost 1.5× faster and the GTX480 almost 2× slower than
these three cards. ese numbers are not unexpected when inspecting their theoretical per-

30 Sapporo2

0 32 64 96 128 160 192 224 256
Nactive

0

500

1000

1500

2000

2500

3000

T
gp
u
 [µ

se
c]

N=131072
K20m (CUDA, 1D)
K20m (CUDA, 2D)
K20m (OCL, 2D)
HD7970 (1D)
HD7970 (2D)
Titan
Ideal scaling (HD7970)

0 32 64 96 128 160 192 224 256
Nactive

0

500

1000

1500

2000

2500

3000

T
gp
u
 [µ

se
c]

N=131072
K20m (Sapporo 1)
K20m (CUDA, 2D)
GTX480 (CUDA)
GTX680 (CUDA)
Titan
Ideal scaling (HD7970)

Figure 2.2: Performance for different numbers of active sink particles. The x-axis indicates the number
of active particles and the y-axis the required time to compute the gravitational force using 131072
source particles (Nactive × N gravity computations). The presented time only includes the time
required to compute the gravity, the data transfer times are not included. In both panels the linear
striped line shows the ideal scaling from the most optimal configuration with 256 active particles to
the worst case situation with 1 active particle for one of the shown devices. The left panel shows the
effect on the performance when using 1D thread-blocks instead of 2D on AMD and NVIDIA hardware.
Furthermore we show the effect of using OpenCL instead of CUDA on NVIDIA hardware. When using
1D thread-blocks the GPU becomes underutilized when Nactive becomes smaller than ∼ 128. This
is visible as the execution time increases while Nactive becomes smaller. The right panel compares
the performance of the five different GPUs as indicated. Furthermore it shows that the performance
of Sapporo2 is comparable to that of Sapporo1.

formance (see Tab. 2.1). For N < 105 we further see that the performance of the HD7970
is lower than for the NVIDIA cards. is difference is caused by slower data transfer rates
between the host and device for the HD7970. Something similar can be seen when we
compare the OpenCL version of the K20m with the CUDA version. Close inspection of the
timings indicate that this difference is caused by longer CPU-GPU transfer times in the
OpenCL version when transfering small amounts of data (< 100 KB), which for small N
forms a larger part of the total execution time.

2.3.4 Double precision vs Double-single precision
As mentioned in Section 2.2.2 the higher order integrators require the use of double preci-
sion computations.erefore we test the performance impact when using full native double
precision instead of double-single precision. For this test we use the GTX680, K20m and
the HD7970. e theoretical peak performance when using double precision computations
is lower than the peak performance when using single precision computations. e double

2.3 Results 31

103 104 105 106 107
N

10-4

10-3

10-2

10-1

100

101

102

103

104
Double Single vs. Double precision

680GTX DS
680GTX DP
K20m DS
K20m DP
HD7970 DS
HD7970 DP

103 104 105 106 107
N

10-4

10-3

10-2

10-1

100

101

102

103

104

Ti
m
e

[in
 s
ec
]

Sapporo1 vs. Sapporo2
Sap1, K20m

Sap2, K20m OCL

Sap2, K20m

Sap2, 480GTX

Sap2, 680GTX

Sap2, HD7970

Sap2, Titan

Figure 2.3: Time required to solve N2 force computations using different configurations. In both
panels the number of source particles is equal to the number of sink particles which is indicated on
the x-axis. The y-axis indicates the required wall-clock time to execute the gravity computation and to
perform the data transfers. Unless otherwise indicated we use CUDA for the NVIDIA devices. The left
panel shows the performance of Sapporo1 on a K20m GPU and Sapporo2 on 5 different GPUs using
a mixture of CUDA and OpenCL. The straight solid line indicates N2 scaling. The right panel shows
the difference in performance between double-single and double precision. We show the performance
for three different devices. The double-single timings are indicated by the filled symbols. The double-
precision performance numbers are indicated by the lines with the open symbols. The straight solid
line indicates N2 scaling.

precision performance of the K20m is one third that of the single precision performance.
For the GTX680 this is 1

24 th and for the HD7970 this is one fourth. As in the previous
section we use the wall-clock time required to performN2 force computations to compare
the devices. e results are presented in the right panel of Fig. 2.3, here the double preci-
sion timings are indicated with the open symbols and the double-single timings with the
closed symbols.

As in the previous paragraph, when using double-single precision the performance is
comparable for all three devices. However, when using double-precision the differences
become more clear. As expected, based on the theoretical numbers, the GTX680 is slower
than the other two devices. e performance of the K20m and the HD7970 are comparable
for N > 104. For smaller N the performance is more influenced by the transfer rates
between the host and the device than by its actual compute speed.

Taking a closer look at the differences we see that the performance of the GTX680 in
full double precision is about ∼ 10× lower than when using double-single precision. For
the other two cards the double precision performance is roughly ∼ 1.5× lower. For all
the devices this is roughly a factor of 2 difference from what can be expected based on the
specifications. is difference can be explained by the knowledge that the number of oper-

32 Sapporo2

ations is not exactly the same for the two versions4 and even in the double single method we
use the special operation units to compute the sqrt. Another reason for the discrepancy
between the practical and theoretical numbers is that we keep track of the nearest neigh-
bours which requires the same operations for the double single and the double precision
implementation. Combining this with the knowledge that we already execute a number
of double precision operations to perform atomic additions and data reads, results in the
observed difference between the theoretical and empirically found performance numbers.

2.3.5 Sixth order performance

e reason to use sixth order integrators compared to lower order integrators is that, on
average, they are able to take larger time-steps. ey are also better in handling systems
that contain large mass ratios (for example when the system contains a supermassive black-
hole). e larger time-step results in more active particles per block-step which improves
the GPU efficiency. However, to accurately compute the higher order derivatives double
precision accuracy has to be used. is negatively impacts the performance and in Fig. 2.4
we show just how big this impact is. As in the previous figures we present the time to
compute N2 forces. Presented are the performance of the sixth order kernel using double
precision, the fourth order kernel using double-single precision and the fourth order kernel
using double precision. As expected, the sixth order requires the most time to complete as
it executes the most operations. e difference between the fourth order in double-single
and the sixth order in double precision is about a factor 4. However, if we compare the
performance of the double precision fourth order kernel with the sixth order kernel the
difference is only about a factor of 1.4. is small difference in performance shows that it
is beneficial to consider using a sixth order integrator when using high mass ratios or if,
for example, high accuracy is required to trace tight orbits.

2.3.6 Multi-GPU

As described in Section 2.2, Sapporo2 supports multiple GPUs in parallel. e paral-
lelised parts are the force computation, data transfer and prediction of the source particles.
e transfer of particle properties to the device and the transfer of the force computation
results from the device are serial operations. ese operations have a small but constant
overhead, independent of the number of GPUs. For the measurements in this section we
use the total wallclock time required to compute the forces on N particles (as in Sec-
tion 2.3.3). e speed-up compared to 1 GPU is presented in Fig. 2.5. e timings are
from the K20m GPUs which have enough memory to store up to 8 × 106 particles. For
N > 104 it is efficient to use all available GPUs in the system and for N ⩽ 104 all
multi-GPU configurations show similar performance. e only exception here is when
N = 103 at which point the overhead of using 4 GPUs is larger than the gain in compute
power. For large enough N the scaling is near perfect (Tsingle−GPU/Tmulti−GPU), since
the execution time is dominated by the computation of the gravitational interactions.

4Double single requires more computations than single precision on which the theoretical numbers are based

2.3 Results 33

103 104 105 106 107
N

10-4

10-3

10-2

10-1

100

101

102

103

104

105

Ti
m
e
[in

 s
ec
]

4th vs 6th order Hermite
K20m 6th DP
K20m 4th DP
K20m 4th DS

Figure 2.4: Performance difference
between fourth and sixth order ker-
nels. Shown is the time required to
solve N2 force computations using
different configurations. The num-
ber of source particles is equal to
the number of sink particles indi-
cated on the x-axis. The y-axis in-
dicates the required wall-clock time
to execute the gravity computation
and to perform the data transfers.
The fourth-order configuration using
double-single precision is indicated by
the dotted line with square symbols.
the fourth-order configuration using
double precision is indicated by the
solid line with open circles and the
solid line with closed circles indicates
a sixth-order configuration using dou-
ble precision. The straight solid line
without symbols indicates the N2

scaling. Timings performed on a K20m
GPU using CUDA 5.5.

103 104 105 106 107
N

0.5 0.5

1.0 1.0

1.5 1.5

2.0 2.0

2.5 2.5

3.0 3.0

3.5 3.5

4.0 4.0

Sp
ee

d-
up

Multi-GPU performance
1x K20m
2x K20m
3x K20m
4x K20m

Figure 2.5: Multi-GPU speed-up over
using one GPU. For each configu-
ration the total wall-clock time is
used to compute the speed-up (y-
axis) for a given N (x-axis). The
wall-clock time includes the time re-
quired for the reduction steps and
data transfers. Timings performed on
K20m GPUs using Sapporo2 and CUDA
5.5.

34 Sapporo2

2.4 Discussion and CPU support

2.4.1 CPU

With the availability of CPUs with 8 and more cores that support advanced vector in-
structions there is the recurring question if it is not faster to compute the gravity on the
CPU than on the GPU. Especially since there is no need to transfer data between the host
and the device which can be relatively costly when the number of particles is ⩽ 1024. To
test exactly for which number of particles the CPU is faster than the GPU we added a
CPU implementation to Sapporo2. is CPU version has support for SSE2 vector in-
structions and OpenMP parallelisation. e only kernel implemented is the fourth order
integrator, including support for neighbour lists and nearest neighbours (particle-ID and
distance). Because the performance of the GPU depends on the combination of sink and
source particles we test a grid of combinations for the number of sink and source particles
when measuring the time to compute the gravitational forces. e results for the CPU
(a Xeon E5620 @ 2.4Ghz), using a single core, are presented in Fig. 2.6a. In this figure
(and all the following figures) the x-axis indicates the number of sinks and the y-axis the
number of sources. e execution time is indicated by the colour from blue (fastest) to red
(slowest). e smooth transition from blue to red from the bottom left corner to the top
right indicates that the performance does not preferentially depend on either the source or
sink particles but rather on the combined number of interactions. is matches our expec-
tations, because the parallelisation granularity on the CPU is as small as the vector width,
which is 4. On the GPU this granularity is much higher, as presented in Fig. 2.6b, here
we see bands of different colour every 256 particles. Which corresponds to the number
of threads used in a thread-block (Nthreads). With 256 sink particles we have the most
optimal performance of a block, if however we would have 257 sink particles we process
the first 256 sinks using optimal settings while the 257th sink particle is processed rel-
ative inefficient. is granularity becomes less obvious when we increase the number of
interactions as presented in Fig. 2.6c. Here we see the same effect appearing as with the
CPU (Fig. 2.6a), where the granularity becomes less visible once we saturate the device
and use completely filled thread-blocks for most of the particles. e final panel, Fig. 2.6d,
indicates per combination of source and sink particles which CPU or GPU configuration
is the fastest. For the CPU we measured the execution time when using 1,2,4 or 8 cores.
In this panel the colours indicate the method which gives the shortest execution times.

When either the number of sinks or the number of sources is relative small (⩽ 100)
the CPU implementation performs best. However, when the number of sinks or sources is
> 100 the GPU outperforms the CPU. When using a CPU implementation that uses the
AVX or AVX2 instruction sets the borders of these regions would shift slightly upwards.
e CPU would then be faster for a larger number of source/sink particles, but that would
only be at most a factor of 2 to 4 more particles. e data of Fig. 2.6 confirms that our
choice to implement the Sapporo2 library for the GPU is an efficient method for realistic
data-set sizes.

2.4 Discussion and CPU support 35

(a) 480GTX (b) 680GTX

(c) K20m

0 500 1000 1500 2000
Number of sink particles

0

500

1000

1500

2000

Nu
m
be

r o
f s

ou
rc
e
pa

rt
ic
le
s

1 core

2 cores

4 cores

8 cores

GPU

0 100 200 300 400 500
0

100

200

300

400

500

(d) HD7970

1

Figure 2.6: GPU and CPU execution times. In all the subplots the x-axis indicates the number of sink
particles and the y-axis the number of source particles used. For subplots a,b and c the raw execution
times are presented and indicated with the colours. Plot d does not present the execution time but
rather which of the configuration gives the best performance. The inset of plot d is a zoom-in of the
main plot. Note that the colours are scaled per plot and are not comparable between the different
subplots. All the GPU times include the time required to copy data between the host and device.

2.4.2 XeonPhi

Because the Sapporo2 library can be built with OpenCL it should, theoretically, be possible
to run on any device that supports OpenCL. To put this to the test, we compiled the library
with the Intel OpenCL implementation. However, although the code compiled without
problems it did not produce correct answers. We tested the library both on an Intel CPU
and the Intel XeonPhi accelerator. Neither the CPU, nor the XeonPhi produced correct
results. Furthermore, the performance of the XeonPhi was about 100× lower than what

36 Sapporo2

can be expected from its theoretical peak performance. We made some changes to the
configuration parameters such as Nthreads and Nblocks, however this did not result in any
presentable performance. We suspect that the Intel OpenCL implementation, especially
for XeonPhi, contains a number of limitations that causes it to generate bad performing
and/or incorrect code. erefore the Sapporo2 library is not portable to Intel architectures
with their current OpenCL implementation. is does not imply that the XeonPhi has bad
performance in general, since it is possible to achieve good performance on N-body codes
that is comparable to GPUs. However, this requires code that is specifically tuned to the
XeonPhi architecture (K. Nitadori, private communication 5).

2.5 Conclusion
e here presented Sapporo2 library makes it easy to enable GPU acceleration for direct
N-body codes. We have seen that the difference between the CUDA and OpenCL imple-
mentations is minimal when there are enough particles to make the simulation compute
limited. However, if many small data transfers are required, for example when the inte-
grator takes very small time-steps with few active particles, the CUDA implementation will
be faster. Apart from the here presented fourth and sixth order integrators the library also
contains a second order implementation. And because of the storage of data in double
precision it can be trivially expanded with an eight order integrator. e performance gain
when using multiple GPUs implies that it is efficient to configure GPU machines that
contain more than 1 GPU. is will improve the time to solution for simulations with
more than 104 particles.

e OpenCL support and built-in tuning methods would allow easy extension to other
OpenCL suported devices. However, this would require a mature OpenCL library that sup-
ports atomic operations and double precision data types. For the CUDA devices this is not
that a problem since the current CUDA libraries already have mature support for the used
operations and the library automatically scales to future architectures. e only property
that has to be set is the number of thread-blocks per multiprocessor and this can be easily
identified using the figures as presented in Section 2.3.1.

Acknowledgements
is work was supported by the Netherlands Research Council NWO (grants #643.200.503, #639.073.803,
#614.061.608, # 612.071.503, #643.000.802).

5Also see https://github.com/nitadori/Hermite and
http://research.colfaxinternational.com/post/2013/01/07/Nbody-Xeon-Phi.aspx.

3|Gravitational tree-code on
graphics processing units:
implementation in CUDA

We present a new very fast tree-code which runs on massively parallel Graphical Processing Units
(GPU) with NVIDIA CUDA architecture. e tree-construction and calculation of multipole mo-
ments is carried out on the host CPU, while the force calculation which consists of tree walks and
evaluation of interaction list is carried out on the GPU. In this way we achieve a sustained perfor-
mance of about 100GFLOP/s and data transfer rates of about 50GB/s. It takes about a second to
compute forces on a million particles with an opening angle of θ ≈ 0.5. e code has a convenient
user interface and is freely available for use1.

Evghenii Gaburov, Jeroen Bédorf and Simon Portegies Zwart
Procedia Computer Science, Volume 1, Issue 1, p.1119-1127, May 2010.

1http://castle.strw.leidenuniv.nl/software/octgrav.html

38 Octgrav

3.1 Introduction

Direct force evaluation methods have always been popular because of their simplicity and
unprecedented accuracy. Since the mid 1980’s, however, approximation methods like the
hierarchical tree-code (Barnes and Hut 1986) have gained enormous popularity among re-
searchers, in particular for studying astronomical self-gravitatingN-body systems (Aarseth
2003) and for studying softmatter molecular-dynamics problems (Frenkel and Smit 2001).
For these applications, direct force evaluation algorithms strongly limit the applicability,
mainly due to the O(N2) time complexity of the problem.

Tree-codes, however, have always had a dramatic set back compared to direct methods,
in the sense that the latter benefits from the developments in special purpose hardware, like
the GRAPE and MD-GRAPE family of computers Makino and Taiji (1998); Makino
(2001), which increase workstation performance by two to three orders of magnitude. On
the other hand, tree-codes show a better scaling of the compute time with the number
of processors on large parallel supercomputers Warren and Salmon (1993); Warren et al
(1997) compared to direct N-body methods Harfst et al. (2007); Gualandris et al. (2007).
As a results, large scale tree-code simulations are generally performed on Beowulf-type
clusters or supercomputers, whereas direct N-body simulations are performed on work-
stations with attached GRAPE hardware.

Tree-codes, due to their hierarchical and recursive nature are hard to run efficiently on
dedicated Single Instruction Multiple Data (SIMD) hardware like GRAPE, though some
benefit has been demonstrated by using pseudo-particle methods to solve for the higher-
order moments in the calculation of multipole moments of the particle distributions in
grid cells Kawai et al. (2004).

Recently, the popularity of computer games has led to the development of massively
parallel vector processors for rendering three-dimensional graphical images. Graphical
Processing Units (or GPUs) have evolved from fixed function hardware to general pur-
pose parallel processors. e theoretical peak speed of these processors increases at a rate
faster than Moores’ law (Moore 1965), and at the moment top roughly 200GFLOP for
a single card. e cost of these cards is dramatically reduced by the enormous volumes in
which they are produced, mainly for gamers, whereas GRAPE hardware remains relatively
expensive.

e gravitational N-body problem proved to be rather ideal to port to modern GPUs,
and the first success in porting theN-body problem to programmable GPUs was achieved
by Nyland et al. (2004), but it was only after the introduction of the NVIDIA G80 archi-
tecture that accurate force evaluation algorithms could be implemented Portegies Zwart
et al. (2007) and that the performance became comparable to special purpose computers
Belleman et al. (2008); Gaburov et al. (2009).

Even in these implementations, the tree-code, though pioneered in Belleman et al.
(2008), still hardly resulted in a speed-up compared to general purpose processors. In this
paper we present a novel implementation of a tree-code on the NVIDIA GPU hardware
using the CUDA programming environment.

3.2 Implementation 39

Figure 3.1: Illustration of our tree-structure, shown
in 2D for clarity. Initially, the space is recursively sub-
divided into cubic cells until all cells contain less than
Nleaf particles (blue squares). All cells (including par-
ent cells) are stored in a tree-structure. Afterwards,
we compute a tight bounding box for the particles
in each cell (dotted rectangles) and cell’s boundary.
The latter is a cube with a side length equal to the
largest side length of the bounding box and the same
centre (green squares).

3.2 Implementation

In the classical implementation of the tree-code algorithm all the work is done on the
CPU, since special purpose hardware was not available at that time Barnes andHut (1986).
With the introduction of GRAPE special purpose hardware Ito et al. (1990); Fukushige
et al. (1991), it became computationally favourable to let the special purpose hardware,
instead of the CPU, calculate accelerations. Construction of the interaction list in these
implementations takes nearly as much time as calculating the accelerations. Since the lat-
est generation of GPUs allows more complex operations, it becomes possible to build the
interaction list directly on the GPU. In this case, it is only necessary to transport the tree-
structure to the GPU. Since the bandwidth on the host computer is about an order of
magnitude lower than on the GPU, it is also desirable to offload bandwidth intensive op-
erations to the GPU. e construction of the interaction list is such an operation. e
novel element in our tree-code is construction of the interaction list on the GPU. e
remaining parts of the tree-code algorithm (tree-construction, calculation of node prop-
erties and time integration) are executed on the host. e host is also responsible for the
allocation of memory and the data transfer to and from the GPU. In the next sections we
will cover the details of the host and device steps.

3.2.1 Building the octree
We construct the octree in the same way as done in the original BH tree-code. We define
the computational domain as a cube containing all particles in the system. is cube is
recursively divided into eight equal-size cubes called cells. e length of the resulting cells
is half the length of the parent cell. Each of these cells is further subdivided, until less than
Nleaf particles are left. We call these cells leaves, whereas cells containing more than Nleaf
particles are referred to as nodes. e cell containing all particles is the root node.

e resulting tree-structure is schematically shown in fig3.1. From this tree-structure
we construct groups for the tree walk (c.f. section 3.2.2), which are the cells with the num-

40 Octgrav

Figure 3.2: Illustration of the tree structure as stored in device memory.

ber of particles less than Ngroups, and compute properties for each cell, such as boundary,
mass, centre of mass, and quadrupole moments, which are required to calculate accelera-
tions McMillan and Aarseth (1993).

In order to efficiently walk the octree on the device, its structure requires some reor-
ganisation. In particular, we would like to minimise the number of memory accesses since
they are relative expensive (up to 600 clock cycles). In fig3.2, we show the tree-structure
as stored on the GPU. e upper array in the figure is the link-list of the tree, which we
call the main tree-array. Each element in this array (separated by blue vertical lines) stores
four integers in a single 128-bit words (dashed vertical lines). is structure is particularly
favourable because the device is able to read a 128-bit word into four 32-bit registers using
one memory access instruction. Two array-elements represent one cell in the tree (green
line) with indices to each of the eight children in the main tree-array (indicated by the
arrows). A grey filled element in this list means that a child is a leaf (it has no children
of its own), and hence it needs not to be referenced. We also use auxiliary tree-arrays in
the device memory which store properties of each cell, such as its boundary, mass, centre
of mass and multiple moments. e index of each cell in the main tree-array is directly
related to its index in the auxiliary tree-arrays by bitshift and addition operations.

e device execution model is designed in such a way that threads which execute the
same operation are grouped in warps, where each warp consists of 32 threads. erefore,
all threads in a warp follow the same code path. If this condition is not fulfilled, the di-
vergent code path is serialised, therefore negatively impacting the performance (NVIDIA
Corp. 2007). To minimise this, we rearrange groups in memory to make sure that neigh-
bouring groups in space are also neighbouring in memory. Combined with similar tree
paths that neighbouring groups have, this will minimise data and code path divergence for
neighbouring threads, and therefore further improves the performance.

3.2.2 Construction of an interaction list
In the standard BH-tree algorithm, the interaction lists are constructed for each particle,
but particles in the same groups have similar interaction lists. We make use of this fact by
building the lists for groups instead of particles (Barnes 1990). e particles in each group,
therefore, share the same interaction list, which is typically longer than it would have been
by determining it on a particle basis. e advantage here is the reduction of the number of
tree walks by Ngroup. e tree walk is performed on the GPU in such a way that a single
GPU thread is used per group. To take advantage of the cached texture memory, we make
sure that neighbouring threads correspond to neighbouring groups.

Owing to the massively parallel architecture of the GPU, two tree walks are required
to construct interaction lists. In the first walk, each thread computes the size of the in-

3.2 Implementation 41

teraction list for a group. is data is copied to the host, where we compute the total size
of the interaction list, and memory addresses to which threads should write lists without
intruding on other threads’ data. In the second tree walk, the threads write the interaction
lists to the device memory.

List 3.1: A pseudo code for our non-recursive stack-based tree walk.
1 while (stack.non_empty)
2 node = stack.pop ;; get next node from the stack
3 one = fetch(children, node + 0) ;; cached fetch 1st four children
4 two = fetch(children, node + 1) ;; cached fetch 2nd four children
5 test_cell<0...4>(node, one, stack) ;; test sub-cell in octant one to four
6 test_cell<5...8>(node, two, stack) ;; test sub-cell in octant four to eight

List 3.2: Pseudo code for test_cell subroutine.
1 template<oct>test_cell(node, child, stack)
2 child = fetch(cell_pos, 8*node +oct) ;; fetch data of the child
3 if (open_node(leaf_data, child)) ;; if the child has to be opened,
4 if (child != leaf) stack.push(child) ;; store it in stack if it is a node
5 else leaf += 1 ;; otherwise increment the leaf counter
6 else cell += 1 ;; else, increment the cell counter

We implemented the tree walk via a non-recursive stack-based algorithm (the pseudo
code is shown in List 3.1), because the current GPU architecture does not support re-
cursive function calls. In short, every node of the tree, starting with the root node, reads
indices of its children by fetching two consecutive 128-bit words (eight 32 bit integers)
from texture memory. Each of these eight children is tested against the node-opening cri-
teria θ (the pseudo code for this step is shown in List 3.2), and in the case of a positive
result a child is stored in the stack (line 4 in the listing), otherwise it is considered to be
a part of the interaction list. In the latter case, we check whether the child is a leaf, and
if so, we increment a counter for the leaf-interaction list (line 5), otherwise a counter for
the node-interaction list (line 6). is division of the interaction lists is motivated by the
different methods used to compute the accelerations from nodes and leaves (c.f. section
3.2.3). In the second tree walk, we store the index of the cell in the appropriate interaction
list instead of counting the nodes and leafs.

3.2.3 Calculating accelerations from the interaction list
In the previous step, we have obtained two interaction lists: one for nodes and one for
leaves. e former is used to compute accelerations due to nodes, and the latter due to
leaves. e pseudo-code for a particle-node interaction is shown in List 3.3 and the mem-
ory access pattern is demonstrated in the left panel of fig3.3. is algorithm is similar to
the one used in the kirin and sapporo libraries for direct N-body simulations Belleman
et al. (2008); Gaburov et al. (2009). In short, we use a block of threads per group, such
that a thread in a block is assigned to a particle in a group; these particles share the same
interaction list. Each thread loads a fraction of the nodes from the node-interaction list
into shared memory (blue threads in the figure, lines 2 and 3 in the listing). To ensure
that all the data is loaded into shared memory, we put a barrier for all threads (line 4),
and afterwards each thread computes gravitational acceleration from the nodes in shared
memory (line 5). Prior loading a new set of nodes into the shared memory (green threads

42 Octgrav

List 3.4: Body-leaf interaction
1 for (i = 0; i < list_len; i += block_size) {
2 leaf = leaf_interaction_list[i + threads_id]
3 shared_leaves[threadIdx] = cells_list[leaf] ;; read leaves to the shared memory
4 __syncthreads()
5 for (j = 0; j < block_size; j++) ;; process each leaf
6 shared_bodies[thread_id] = bodies[shared_leaves[j].first + thread_id]
7 __syncthreads();
8 interact(body_in_a_thread, shared_bodies, shared_leaves[j].len);
9 __syncthreads();

Node interaction list

Shared nodes

Figure 3.3: Memory access pattern in a body-node (left) and body-leaf (right) interaction.

in the figure), we ensure that all the threads have completed their calculations (line 6). We
repeat this cycle until the interaction list is exhausted.

List 3.3: Body-node interaction
1 for (i = 0; i < list_len; i += block_size)
2 cellIdx = cell_interact_lst[i + thread_id]
3 shared_cells[threadIdx] = cells_lst[cellIdx] ;; read nodes to the shared memory
4 __syncthreads() ;; thread barrier
5 interact(body_in_a_thread, shared_cell) ;; evaluate accelerations
6 __syncthreads() ;; thread barrier

Calculations of gravitational acceleration due to the leaves differs in several ways. e
pseudo-code of this algorithm is presented in List 3.4, and the memory access pattern is
displayed in the right panel of Fig. 3.3. First, each thread fetches leaf properties, such as
index of the first body and the number of bodies in the leaf, from texture memory into
shared memory (red lines in the figure, lines 2 and 3 in the listing). is data is used to
identify bodies from which the accelerations have to be computed (black lines). Finally,
threads read these bodies into shared memory (blue and green lines, line 6) in order to
calculate accelerations (line 8). is process is repeated until the leaf-interaction list is
exhausted.

3.3 Results
In this section we study the accuracy and performance of the tree code. First we quantify
the errors in acceleration produced by the code and then we test its performance. For
this purpose we use a model of the Milky Way galaxy (Widrow and Dubinski 2005). We
model the galaxy with N = 104, 3 · 104, 105, 3 · 105, 106, 3 · 106 and 107 particles, such
that the mass ratio of bulge, disk and halo particles is 1:1:4. We then proceed with the

3.3 Results 43

Figure 3.4: Each panel displays a fraction of particles having relative acceleration error (vertical axis)
greater than a given value (horizontal axis). In each panel, we show errors for various opening angles
from θ = 0.2 (the leftmost curve in each panel), 0.3, 0.4, 0.5, 0.6 and 0.7 (the rightmost curve).
The number of particles are 3 · 104, 105, 106 for panels from left to right respectively. The dotted
horizontal lines show 50%, 10% and 1% of the error distribution.

measurements of the code performance. In all test we use Nleaf = 64 and Ngroup = 64
which we find produce the best performance on both G80/G92 and GT200 architecture.
e GPU used in all the tests is a GeForce 8800Ultra.

3.3.1 Accuracy of approximation
We quantify the error in acceleration in the following way:
∆a/a = |atree − adirect|/|adirect|, where atree and adirect are accelerations calculated by the
tree and direct summation respectively. e latter was carried out on the same GPU as
the tree-code. is allowed us to asses errors on systems as large as 10 million particles2.
In fig3.4 we show error distributions for different numbers of particles and for different
opening angles. In each panel, we show which fraction of particles (vertical-axis) has a
relative error in acceleration larger than a given value (horizontal axis). e horizontal
lines show 50th, 10th and 1st percentile of cumulative distribution. is data shows that
acceleration errors in this tree-code are consistent with the errors produced by existing
tree-codes with quadrupole corrections (Dehnen 2002; Springel et al. 2001; Stadel 2001).

We show dependence of errors on both opening angle and number of particles in fig3.5.
In the leftmost panel of the figure, we plot the median and the first percentile of the relative
force error distribution as a function of the opening angle θ for various number of particles
N = 3 · 104 (the lowest blue dotted and red dashed lines), 3 · 105 and 3 · 106 (the upper
blue dotted and red dashed lines). As expected, the error increases as a function of θ with
the following scaling from the least-squared fit, ∆a/a ∝ θ4. However, the errors increase
with the number of particles: the error doubles when the number of particles is increased
by two orders of magnitude. is increase of the error is caused by the large number of
particles in a leaf, which in our case is 64, to obtain the best performance. We conducted
a test with Nleaf = 8, and indeed observed the expected decrease of the error when the

2We used the NVIDIA 8800Ultra GPU for this paper, and it takes ∼10 GPU hours to compute the exact
force on a system with 10 million particles with double precision emulation (Gaburov et al. 2009)

44 Octgrav

Figure 3.5: The median and the first percentile of the relative acceleration error distribution as a
function of the opening angle and the number of particles. In the leftmost panel we show lines for
3 · 104 (the bottom dotted and dashed lines) and 3 · 106 (the top dotted and dashed lines) particles.
The middle and the right panels display the error for θ = 0.2 (the bottom lines), 0.3, 0.4, 0.5, 0.6 and
0.7 (the upper lines).

Figure 3.6: Wall-clock timing results as function of the opening angle and number of particles. In
each panel, the solid line shows the time spent on the GPU. The dotted line on the top panel shows
the time spent on the host, and the total wall-clock time is shown with the dashed line.

number of particles increases; this error, however, is twice as large compared to Nleaf = 64
for N ∼ 106.

3.3.2 Timing
In fig3.6 we present the timing data as a function of θ and for variousN . e THost (dotted
line in the figure) is independent of θ, which demonstrates that construction of the octree
only depends on the number of particles in the system, with THost ∝ N logN . is time
becomes comparable to the time spend on the GPU calculating accelerations forN ≳ 106

and θ ≳ 0.5. is is caused by the empirically measured near-linear scaling of time spend
on GPU withN . As the number of particles increases, the GPU part of the code performs
more efficiently, and therefore the scaling drops from N logN to near-linear (fig3.7). We
therefore conclude, that the optimal opening angle for our code is θ ≈ 0.5.

3.3 Results 45

Figure 3.7: Timing results as a function of particle number. The leftmost panel displays time spent on
the GPU (black dash-dotted lines) and host CPU (blue solid line) parts as a function of the number
of particles. The expected scaling N log(N) is shown in the red solid line. The ratio of the time spent
on GPU to the total wall-clock time is given in the middle panel. The speed-up compared to direct
summation is shown in the rightmost panel. The expected scaling N/ log(N) is shown with a solid
red line.

In the leftmost panel of fig3.7 we showN dependence of the time spent on the host and
the device for various opening angles. In particular, TGPU scaling falls between N log(N)
and N , which we explained by the increased efficiency of the GPU part of our code with
larger number of particles. is plot also shows that the host calculation time is a small
fraction of the GPU calculation time, except for N ≳ 106 and θ ≳ 0.5. e middle panel
of the figure shows the ratio of the time spent on the device to the total time. Finally,
the rightmost panel shows the ratio between the time required to compute forces by direct
summation and the time required by the tree-code. As we expected, the scaling is consistent
with N2/(N log(N)) = N/log(N).

3.3.3 Device utilisation
We quantify the efficiency of our code to utilise the GPU resources by measuring both in-
struction and data throughput, and then compare the results to the theoretical peak values
provided by the device manufacturer. In fig3.8 we show both bandwidth and computa-
tional performance as function of θ for three different N . We see that the calculation of
accelerations operates at about 100GFLOPs3. is is comparable to the peak performance
of the GRAPE-6a special-purpose hardware, but this utilises only ∼ 30% of the compu-
tational power of the GPU4. is occurs because the average number of bodies in a group
is a factor of 3 or 4 smaller than the Ngroup, which we set to 64 in our tests. On average,
therefore, only about 30% of the threads in a block are active.

e novelty of this code is the GPU-based tree walk. Since there is little arithmetic
intensity in these operations, the code is, therefore, limited by the bandwidth of the device.
We show in fig3.8 that our code achieves respectable bandwidth: in excess of 50GB/s

3We count 38 and 70 FLOPs for each body-leaf and body-node interaction respectively.
4Our tests were carried out on a NVIDIA 8800Ultra GPU, which has 128 streaming processors each oper-

ating at clock speed of 1.5Ghz. Given that the GPU is able to perform up to two floating point operation per
clock cycle, the theoretical peak performance is 2× 128 = 384GFLOP/s.

46 Octgrav

,

Figure 3.8: Device utilisation as a function of the opening angle and number of particles. Each bottom
panel shows the bandwidth for the first tree walk (solid line) and the second tree walk (dotted line).
The top halves show the performance of the calculation of the accelerations for the node interaction
list (solid line) and the leaf interaction list (dotted line) in GFLOP/s.

during the first tree walk, in which only (cached) scatter memory reads are executed. e
second tree walk, which constructs the interaction list, is notably slower because there data
is written to memory–an operation which is significantly slower compared to reads from
texture memory. We observe that the bandwidth decreases with θ in both tree walks, which
is due to increasingly divergent tree-paths between neighbouring groups, and an increase
of the write to read ratio in memory operations.

3.4 Discussion and Conclusions

We present a fast gravitational tree-code which is executed on Graphics Processing Units
(GPU) supporting theNVIDIACUDA architecture.e novelty of this code is theGPU-
based tree-walk which, combined with the GPU-based calculation of accelerations, shows
good scaling for various particle numbers and different opening angles θ. e hereby pro-
duced energy error is comparable to existing CPU based tree-codes with quadrupole cor-
rections. e code makes optimal use of the available device resources and shows excellent
scaling to new architectures. Tests indicate that the NVIDIA GT200 architecture, which
has roughly twice the resources as the used G80 architecture, performs the integration
twice as fast. Specifically, the sustained science rate on a realistic galaxy merger simulation
with 8 · 105 particles is 1.6 · 106 particles/second. Our tests revealed our GPU imple-
mentation to be two order of magnitudes faster than the widely-used CPU version of the
Barnes-Hut tree-code from the NEMO stellar dynamics package (Teuben 1995). How-
ever, our code is only an order of magnitude faster compared to a SSE-vectorised tree-code
specially tuned for x86-64 processors and the Phantom-GRAPE library 5 Hamada et al
(Hamada et al. 2009a) presented a similarly tuned tree code, in which Phantom-grape is
replaced with a GPU library (Hamada and Iitaka 2007). In this way, it was possible to

5Private communication with Keigo Nitadori, the author of the Phantom-GRAPE library.

3.4 Discussion and Conclusions 47

achieve the 200 GFLOP/s, and science rate of about 106 particles/s. However, this code
does not include quadrupole corrections, and thereforeGFLOP/s comparison between the
two codes is meaningless. Nevertheless, the science rate of the two codes is comparable for
similar opening angles, which implies that our tree-code provides more accurate results for
the same performance.

As it generally occurs with other algorithms, the introduction of a massively parallel
accelerator usually makes the host calculations and non-parallelisable parts of the code, as
small as they may be, the bottleneck. In our case, we used optimised device code and for
the host code we used general tree-construction and tree-walk recursive algorithms. It is
possible to improve these algorithms to increase the performance of the host part, but it is
likely to remain a bottleneck. Even with the use of modern quad-core processors this part
is hard to optimize since its largely a sequential operation.

Acknowledgements
We thankDerekGroen, StefanHarfst andKeigoNitadori for valuable suggestions and reading of themanuscript.
is work is supported by NWO (via grants #635.000.303, #643.200.503, VIDI grant #639.042.607, VICI grant
#6939.073.803 and grant #643.000.802). We thank the University of Amsterdam, where part of this work was
done, for their hospitality.

4|A sparse octree gravitational
N-body code that runs
entirely on theGPU processor

We present the implementation and performance of a new gravitational N-body tree-code that is
specifically designed for the graphics processing unit (GPU)1 . All parts of the tree-code algorithm
are executed on the GPU. We present algorithms for parallel construction and traversing of sparse
octrees. ese algorithms are implemented in CUDA and tested on NVIDIA GPUs, but they are
portable to OpenCL and can easily be used on many-core devices from other manufacturers. is
portability is achieved by using general parallel-scan and sort methods. e gravitational tree-code
outperforms tuned CPU code during the tree-construction and shows a performance improvement
of more than a factor 20 overall, resulting in a processing rate of more than 2.8 million particles per
second.

Jeroen Bédorf, Evghenii Gaburov and Simon Portegies Zwart
Journal of Computational Physics, Volume 231, Issue 7, p. 2825-2839, March 2012.

1e code is publicly available at:
http://castle.strw.leidenuniv.nl/software.html

50 Bonsai

4.1 Introduction

A common way to partition a three-dimensional domain is the use of octrees, which recur-
sively subdivide space into eight octants. is structure is the three-dimensional extension
of a binary tree, which recursively divides the one dimensional domain in halves. One can
distinguish two types of octrees, namely dense and sparse. In the former, all branches con-
tain an equal number of children and the structure contains no empty branches. A sparse
octree is an octree of which most of the nodes are empty (like a sparse matrix), and the
structure is based on the underlying particle distribution. In this paper we will only focus
on sparse octrees which are quite typical for non-homogenous particle distributions.

Octrees are commonly used in applications that require distance or intersection based
criteria. For example, the octree data-structure can be used for the range search method
de Berg et al. (2000). On a set of N particles a range search using an octree reduces
the complexity of the search from O(N) to O(logN) per particle. e former, though
computationally expensive, can easily be implemented in parallel for many particles. e
later requires more communication and book keeping when developing a parallel method.
Still for large number of particles (∼ N ⩾ 105) hierarchical2 methods are more efficient
than brute force methods. Currently parallel octree implementations are found in a wide
range of problems, among which self gravity simulations, smoothed particle hydrodynam-
ics, molecular dynamics, clump finding, ray tracing and voxel rendering; in addition to
the octree data-structure these problems often require long computation times. For high
resolution simulations (∼ N ⩾ 105) 1 (Central Processing Unit) CPU is not sufficient.
erefore one has to use computer clusters or even supercomputers, both of which are
expensive and scarce. An attractive alternative is a Graphics Processing Unit (GPU).

Over the years GPUs have grown from game devices into more general purpose com-
pute hardware. With the GPUs becoming less specialised, new programming languages
like Brook Buck et al. (2004b), CUDA NVIDIA (2010) and OpenCL Khronos Group
Std. (2010) were introduced and allow the GPU to be used efficiently for non-graphics re-
lated problems. One has to use these special programming languages in order to be able to
get the most performance out of a GPU. is can be realized by considering the enormous
difference between today’s CPU and GPU. e former has up to 8 cores which can exe-
cute two threads each, whereas a modern GPU exhibits hundreds of cores and can execute
thousands of threads in parallel. e GPU can contain a large number of cores, because
it has fewer resources allocated to control logic compared to a general purpose CPU. is
limited control logic renders the GPU unsuitable for non-parallel problems, but makes
it more than an order of magnitude faster than the CPU on massively parallel problems
NVIDIA (2010). With the recent introduction of fast double precision floating point op-
erations, L1 and L2 caches and ECC memory the GPU has become a major component
in the High Performance Computing market. e number of dedicated GPU clusters is
steadily increasing and the latest generation of supercomputers have nodes equipped with
GPUs, and have established themselves in the upper regions of the top5003.

is wide spread of GPUs can also be seen in the acceptance of GPUs in computa-

2 Tree data-structures are commonly referred to as hierarchical data-structures
3Top500 Supercomputing November 2010 list, http://www.top500.org

4.1 Introduction 51

tional astrophysics research. For algorithms with few data dependencies, such as direct
N-body simulations, programming the GPU is relatively straightforward. Here various
implementations are able to reach almost peak-performance Portegies Zwart et al. (2007);
Hamada and Iitaka (2007); Belleman et al. (2008) and with the introduction of N-body
libraries the GPU has taken over the GRAPE (GRAvity PipE Makino and Taiji (1998))
4 as preferred computation device for stellar dynamics Gaburov et al. (2009). Although it
is not a trivial task to efficiently utilise the computational power of GPUs, the success with
direct N-body methods shows the potential of the GPU in practice. For algorithms with
many data dependencies or limited parallelism it is much harder to make efficient use of
parallel architectures. A good example of this are the gravitational tree-code algorithms
which were introduced in 1986 Barnes and Hut (1986) as a sequential algorithm and later
extended to make efficient use of vector machines Barnes (1990). Around this time the
GRAPE hardware was introduced which made is possible to execute direct N-body sim-
ulations at the same speed as a simulation with a tree-code implementation, while the
former scales as O(N2) and the latter as O(N logN). e hierarchical nature of the tree-
code method makes it difficult to parallelise the algorithms, but it is possible to speed-up
the computational most intensive part, namely the computation of gravitational interac-
tions.eGRAPEhardware, although unsuitable for constructing and traversing the tree-
structure, is able to efficiently compute the gravitational interactions. erefore a method
was developed to create lists of interacting particles on the host and then let the GRAPE
solve the gravitational interactions Fukushige et al. (1991); Makino (2004). Recently this
method has successfully been applied to GPUs Hamada et al. (2009c,a); Hamada and
Nitadori (2010). With the GPU being able to efficiently calculate the force interactions,
other parts like the tree-construction and tree-traverse become the bottleneck of the ap-
plication. Moving the data intensive tree-traverse to the GPU partially lifts this bottleneck
Gaburov et al. (2010); Yokota and Barba (2011); (Chapter 3). is method turns out to be
effective for shared time-step integration algorithms, but is less effective for block time-
step implementations. In a block time-step algorithm not all particles are updated at the
same simulation time-step, but only when required. is results in a more accurate (less
round-off errors, because the reduced number of interactions) and more efficient (less un-
necessary time-steps) simulation. e number of particles being integrated per step can be
a fraction of the total number of particles which significantly reduces the amount of paral-
lelism. Also the percentage of time spent on solving gravitational interactions goes down
and other parts of the algorithm (e.g. construction, traversal and time integration) become
more important. is makes the hierarchical treeN-body codes less attractive, since CPU-
GPU communication and tree-construction will become the major bottlenecks Belleman
et al. (2008); Gaburov et al. (2010). One solution is to implement the tree-construction on
the GPU as has been done for surface reconstruction Zhou et al. (2008) and the creation
of bounding volume hierarchies Lauterbach et al. (2009); Pantaleoni and Luebke (2010).
An other possibility is is to implement all parts of the algorithm on the GPU using atomic
operations and particle insertions Burtscher and Pingali (2011) here the authors, like us,
execute all parts of the algorithm on the GPU. When we were in the final stages of finish-

4 e GRAPE is a plug-in board equipped with a processor that has the gravitational equations programmed
in hardware.

52 Bonsai

ing the paper we were able to test the implementation by Burtscher et al. Burtscher and
Pingali (2011). It is difficult to compare the codes since they have different monopole ex-
pansions and multipole acceptance criteria (see Sections 4.3.2 and 4.3.3). However, even
though our implementation has higher multipole moments (quadrupole versus monopole)
and a more strict multipole acceptance criteria it is at least 4 times faster.

In this work we devised algorithms to execute the tree-construction on the GPU in-
stead of on the CPU as is customarily done. In addition we redesign the tree-traverse
algorithms for effective execution on the GPU. e time integration of the particles is also
executed on theGPU in order to remove the necessity of transferring data between the host
and the GPU completely. is combination of algorithms is excellently suitable for shared
and block time-step simulations. Although here implemented as part of a gravitational
N-body code (called Bonsai, Section 4.3), the algorithms are applicable and extendable
to related methods that use hierarchical data structures.

4.2 Sparse octrees on GPUs
e tree construction and the tree-traverse rely on scan algorithms, which can be efficiently
implemented onGPUs. (4.A).Here we discuss themain algorithms that can be found in all
hierarchical methods. Starting with the construction of the tree-structure in Section 4.2.1,
followed by the method to traverse the previously built tree-structure in Section 4.2.2. e
methods that are more specific for a gravitational N-body tree-algorithm are presented in
Section 4.3.

4.2.1 Tree construction
e common algorithm to construct an octree is based on sequential particle insertion
Barnes and Hut (1986) and is in this form not suitable for massively parallel processors.
However, a substantial degree of parallelism can be obtained if the tree is constructed layer-
by-layer5 from top to bottom. e construction of a single tree-level can be efficiently
vectorised which is required if one uses massively parallel architectures.

To vectorise the tree construction particles have to be mapped from a spatial repre-
sentation to a linear array while preserving locality. is implies that particles that are
nearby in 3D space also have to be nearby in the 1D representation. Space filling curves,
which trace through the three dimensional space of the data enable such reordering of
particles. e first use of space filling curves in a tree-code was presented by Warren and
Salmon (1993) Warren and Salmon (1993) to sort particles in a parallel tree-code for
the efficient distribution of particles over multiple systems. is sorting also improves the
cache-efficiency of the tree-traverse since most particles that are required during the in-
teractions are stored locally, which improves caching and reduces communication. We
adopt the Morton space filling curve (also known as Z-order) Morton (1966), because
of the existence of a one-to-one map between N-dimensional coordinates and the corre-
sponding 1D Morton-key. e Morton-keys give a 1D representation of the original ND

5A tree-structure is built-up from several layers (also called levels), with the top most level called the root,
the bottom levels leaves and in between the nodes.

4.2 Sparse octrees on GPUs 53

Root level: mask=000 000 000 000 000

Level 3: mask=111 111 111 000 000

Level 1: mask=111 000 000 000 000

Level 2: mask=111 111 000 000 000

tree-cell array

Figure 4.1: Schematic representation of particle grouping into a tree cell. (Left panel) The particles
Morton keys are masked6 with the level mask. Next the particles with the same masked keys are
grouped together into cells (indicated by a thick separator, such as in level 1). Cells with less than
Nleaf particles are marked as leaves (green), and the corresponding particles are flagged (black boxes
as in level 2 and 3) and not further used for the tree construction. The other cells are called nodes
(blue) and their particles are used constructing the next levels. The tree construction is complete as
soon as all particles are assigned to leafs, or when the maximal depth of the tree is reached. (Right
panel) The resulting array containing the created tree cells.

coordinate space and are computed using bit-based operations (4.B). After the keys are
calculated the particles are sorted in increasing key order to achieve a Z-ordered parti-
cle distribution in memory. e sorting is performed using the radix-sort algorithm (see
for our implementation details 4.A), which we selected because of its better performance
compared to alternative sorting algorithms on the GPU Satish et al. (2009); Merill and
Grimshaw (2010). After sorting the particles have to be grouped into tree cells. In Fig. 4.1
(left panel), we schematically demonstrate the procedure. For a given level, we mask the
keys6 of non-flagged particles (non-black elements of the array in the figure), by assign-
ing one particle per GPU thread. e thread fetches the precomputed key, applies a mask
(based on the current tree level) and the result is the octree cell to which the particle should
be assigned. Particles with identical masked keys are grouped together since they belong to
the same cell. e grouping is implemented via the parallel compact algorithm (4.A). We
allow multiple particles to be assigned to the same cell in order to reduce the size of the
tree-structure. e maximum number of particles that is assigned to a cell is Nleaf, which
we set to Nleaf = 16. Cells containing up-to Nleaf particles are marked as leaves, other-
wise they are marked as nodes. If a particle is assigned to a leaf the particle is flagged as
complete (black elements of the array in the figure). e masking and grouping procedure
is repeated for every single level in serial until all particles are assigned to leaves or that
the maximal depth of the tree is reached, whichever occurs first. When all particles are
assigned to leaves all required tree cells have been created and are stored in a continuous
array (right panel of Fig. 4.1).

However, to complete the tree-construction, the parent cells need to be linked to their

6e masking is a bitwise operation that preserves the bits which are specified by the mask, for example
masking “1011b” with “1100b” results in “1000b”.

54 Bonsai

Leaf cell

Node cell

Empty cell

Figure 4.2: Schematic illustration of the tree link process. Each cell of the tree, except the empty cells
which are not stored, is assigned to a GPU thread. The thread locates the first child, if it exists, and the
parent of the cell. The threads increment the child counter of the parent (indicated by the up arrows)
and store the first child in the memory of the cell. This operation requires atomic read-modify-write
operations because threads concurrently modify data at the same memory location.

children. We use a separate function to connect the parent and child cells with each other
(linking the tree). is function assigns a cell to a single thread which locates its parent
and the first child if the cell is not a leaf (Fig. 4.2). is is achieved by a binary search of the
appropriate Morton key in the array of tree-cells, which is already sorted in increasing key
order during the construction phase. e thread increases the child counter of its parent
cell and stores the index of the first child. To reduce memory, we use a single integer to
store both the index to the first child and the number of children (most significant 3 bits).
If the cell is a leaf, we store the index of the first particle instead of the index of the first
child cell, together with the number of particles in the leaf. During these operations many
threads concurrently write data to the same memory location. To prevent race conditions,
we apply atomic read-modify-write instructions for modifying the data. At the end of this
step, the octree is complete and can be used to compute gravitational attractions.

4.2.2 Tree traverse
To take advantage of the massively parallel nature of GPUs we use breadth first, instead
of the more common depth first, traversal. Both breadth first and depth first can be paral-
lelised, but only the former can be efficiently vectorised. To further vectorise the calculation
we do not traverse a single particle, but rather a group of particles. is approach is known
as Barnes’ vectorisation of the tree-traverse Barnes (1990). e groups are based on the
tree-cells to take advantage of the particle locality as created during the tree-construction.
e number of particles in a group is ⩽ Ncrit which is typically set to 64 and the total
number of groups is Ngroups. e groups are associated with a GPU thread-block where
the number of threads in a block is Nblock with Nblock >= Ncrit. Hereby we assume that
thousands of such blocks are able to run in parallel. is assumption is valid for CUDA-
enabled GPUs, as well as on AMD Radeon GPUs via OpenCL. If the code is executed
with shared time-steps, all particles are updated at the same time and subsequently all
groups are marked as active, for block time-steps this number varies between 1 andNgroups.

4.2 Sparse octrees on GPUs 55

a b c e f

current stack

next-level stack

cell-group list: a,e,f

particle-group list: ci,ci+1,ci+2,ci+3,ci+4

bi bi+1 bi+2 bi+3 bi+4

Figure 4.3: Illustration of a single level tree-traverse. There are five cells in the current stack. Those
cells which are marked with crosses terminate traverse, and therefore are added to the cell-group list
for subsequent evaluation. Otherwise, if the cell is a node, its children are added to the next-level
stack. Because children are contiguous in the tree-cell array, they are named as bi, bi +1, . . ., bi +4,
where bi is the index of the first child of the node b. If the cell is a leaf, its particles are added to the
particle-cell interaction list. Because particles in a leaf are also contiguous in memory, we only need
to know the index of the first particle, ci, and the number of particles in a leaf, which is 5 here.

Each thread block executes the same algorithm but on a different set of particles.
Each thread in a block reads particle data that belongs to the corresponding group as

well as group information which is required for the tree traverse. If the number of particles
assigned to a group is smaller than Nblock by a factor of two or more, we use multiple
threads (up to 4) per particle to further parallelise the calculations. As soon as the particle
and group data is read by the threads we proceed with the tree-traverse.

On the CPU the tree-traverse algorithm is generally implemented using recursion, but
on the GPU this is not commonly supported and hard to parallelise. erefore we use a
stack based breadth first tree-traverse which allows parallelisation. Initially, cells from one
of the topmost levels of the tree are stored in the current-level stack and the next-level
stack is empty; in principle, this can be the root level, but since it consists of one cell,
the root node, only one thread from Nblock will be active. Taking a deeper level prevents
this and results in more parallelism. We loop over the cells in the current-level stack with
increments of Nblock. Within the loop, the cells are distributed among the threads with no
more than one cell per thread. A thread reads the cell’s properties and tests whether or not
to traverse the tree further down from this cell; if so, and if the cell is a node the indexes
of its children are added to the next-level stack. If however, the cell is a leaf, the indexes of
constituent particles are stored in the particle-group interaction list. Should the traverse
be terminated then the cell itself is added to cell-group interaction list (Fig.4.3).

e cell-group interaction list is evaluated when the size of the list exceeds Nblock. To
achieve data parallelism each thread reads properties of an interacting cell into fast low-
latency on-chip memory that can be shared between the threads, namely shared memory
(CUDA) or local memory (OpenCL). Each thread then progresses over the data in the
on-chip memory and accumulates partial interactions on its particle. At the end of this
pass, the size of the interaction list is decreased byNblock and a new pass is started until the
size of the list falls below Nblock. e particle-group interaction list is evaluated in exactly
the same way, except that particle data is read into shared memory instead of cell data.

56 Bonsai

is is a standard data-sharing approach that has been used in a variety of N-body codes,
e.g. Nyland et al. Nyland et al. (2007).

e tree-traverse loop is repeated until all the cells from the current-level stack are
processed. If the next-level stack is empty, the tree-traverse is complete, however if the
next-level stack is non-empty its data is copied to the current-level stack. e next-level
stack is cleaned and the current-level stack is processed.When the tree-traverse is complete
either the cell-group, particle-group or both interaction lists may be non-empty. In such
case the elements in these lists are distributed among the threads and evaluated in parallel.
Finally if multiple threads per particle are used an extra reduction step combines the results
of these threads to get the final interaction result.

4.3 Gravitational Tree-code
To demonstrate the feasibility and performance, we implement a version of the gravita-
tional Barnes-Hut tree-code Barnes and Hut (1986) which is solely based on the sparse
octree methods presented in the previous sections. In contrast to other existing GPU codes
Hamada et al. (2009a); Gaburov et al. (2010) and Chapter 3, our implementation runs en-
tirely on GPUs. Apart from the previous described methods to construct and traverse the
tree-structure we implement time integration (Section 4.3.1), time-step calculation and
tree-cell properties computation on the GPU (Section 4.3.2). e cell opening method,
which sets the accuracy and performance of the tree-traverse, is described in Section 4.3.3.

4.3.1 Time Integration
To move particles forward in time we apply the leapfrog predictor-corrector algorithm de-
scribed by Hut et al. (1995) Hut et al. (1995). Here the position and velocity are predicted
to the next simulation time using previously calculated accelerations. en the new accel-
erations are computed (tree-traverse) and the velocities are corrected. is is done for all
particles in parallel or on a subset of particles in case of the block-time step regime. For a
cluster of >∼ 105 particles, the time required for one prediction-correction step is less than
1% of the total execution time and therefore negligible.

4.3.2 Tree-cell properties
Tree-cell properties are a summarized representation of the underlying particle distribu-
tion. e multipole moments are used to compute the forces between tree-cells and the
particles that traverse the tree. In this implementation of the Barnes-Hut tree-code we
use only monopole and quadrupole moments McMillan and Aarseth (1993). Multipole
moments are computed from particle positions and need to be recomputed at each time-
step; any slowdown in their computation may substantially influence the execution time.
To parallelise this process we initially compute the multipole moments of each leaf in par-
allel. We subsequently traverse the tree from bottom to top. At each level the multipole
moments of the nodes are computed in parallel using the moments of the cells one level
below (Fig. 4.4). e number of GPU threads used per level is equal to the number of

4.3 Gravitational Tree-code 57

3

1

22

Figure 4.4: Illustration of the computation of the multi-
pole moments. First the properties of the leaves are cal-
culated (green circles). Then the properties of the nodes
are calculated level-by-level from bottom to top. This is
indicated by the numbers in the nodes, first we compute
the properties of the node with number 1, followed by the
nodes with number 2 and finally the root node.

nodes at that level. ese computations are performed in double precision since our tests
indicated that the NVIDIA compiler aggressively optimises single precision arithmetic
operations, which results in an error of at most 1% in the multipole moments. Double
precision arithmetic solved this problem and since the functions are memory-bound7 the
overhead is less than a factor 2. As final step the double precision values are converted back
to single precision to be used during the tree-traverse.

4.3.3 Cell opening criterion
In a gravitational tree-code the multipole acceptance criterion (MAC) decides whether
to use the multipole moments of a cell or to further traverse the tree. is influences the
precision and execution time of the tree-code. e further the tree is traversed the more
accurate the computed acceleration will be. However, traversing the tree further results in
a higher execution time since the number of gravitational interactions increases. erefore
the choice of MAC is important, since it tries to determine, giving a set of parameters,
when the distance between a particle and a tree cell is large enough that the resulting force
approximation error is small enough to be negligible. e MAC used in this work is a com-
bination of the method introduced by Barnes (1994) Barnes (1994) and the method used
for tree-traversal on vector machines Barnes (1990). is gives the following acceptance
criterion,

d >
l

θ
+ δ (4.1)

where d is the smallest distance between a group and the center of mass of the cell, l is
the size of the cell, θ is a dimensionless parameter that controls the accuracy and δ is the
distance between the cell’s geometrical center and the center of mass. If d is larger than
the right side of the equation the distance is large enough to use the multipole moment
instead of traversing to the child cells.

Fig. 4.5 gives an overview of this method. We also implemented the minimal distance
MAC Salmon and Warren (1994), which results in an acceleration error that is between

7On GPUs we distinguish two kind of performance limitations, memory-bound and compute-bound. In the
former the performance is limited by the memory speed and memory bandwidth, in the later the performance is
limited by the computation speed.

58 Bonsai

Hardware model Xeon E5620 8800 GTS512 C1060 GTX285 C2050 GTX480
Architecture Gulftown G92 GT200 GT200 GF100 GF100
Cores 4 128 240 240 448 480
Core (Mhz) 2400 1625 1296 1476 1150 1401
Memory (Mhz) 1066 1000 800 1243 1550 1848
Interface (bit) 192 256 512 512 384 384
Bandwidth (GBs) 25.6 64 102 159 148 177.4
Peak (GFLOPs)2 76.8 624 933 1063 1030 1345
Memory size (GB) 16 0.5 4 1 2.5 1.5

1All calculations in this work are done in single precision arithmetic.
2e peak performance is calculated as follows:

-Gulftown: #Cores × Core speed × 8 (SSE flops/cycle)
-G92 & GT200: #Cores × Core speed × 3 (flops/cycle)
-GF100: #Cores × Core speed × 2 (flops/cycle)

Table 4.1: Used hardware. The Xeon is the CPU in the host system, the other five devices are GPUs.

Figure 4.5: Illustration of the computation
of the multipole moments. First the prop-
erties of the leaves are calculated (green
circles). Then the properties of the nodes
are calculated level-by-level from bottom to
top. This is indicated by the numbers in the
nodes, first we compute the properties of
the node with number 1, followed by the
nodes with number 2 and finally the root
node.

cell

group

d

i

d

center

c.o.m.

10% and 50% smaller for the same θ than the MAC used here. e computation time,
however, is almost a factor 3 higher since more cells are accepted (opened).

e accuracy of the tree-traverse is controlled by the parameter θ. Larger values of θ
causes fewer cells to be opened and consequently results in a shallower tree-traverse and a
faster evaluation of the underlying simulation. Smaller values of θ have the exact opposite
effect, but result in a more accurate integration. In the hypothetical case that all the tree
cells are opened (θ → 0) the tree-code turns in an inefficient direct N-body code. In
Section 4.4.1 we adopt θ = 0.5 and θ = 0.75 to show the dependence of the execution
time on the opening angle. In Section 4.4.2 we vary θ between 0.2 and 0.8 to show the
dependence of the acceleration error on θ.

4.4 Performance and Accuracy
In this section we compare the performance of our implementation of the gravitationalN-
body code (Bonsai) with CPU implementations of comparable algorithms. Furthermore,
we use a statistical test to compare the accuracy of Bonsai with a direct summation code.
As final test Bonsai is compared with a direct N-body code and a set of N-body tree-
codes using a production type galaxy merger simulation.

Even though there are quite a number of tree-code implementations each has its own
specific details and it is therefore difficult to give a one-to-one comparison with other

4.4 Performance and Accuracy 59

tree-codes. e implementations closest to this work are the parallel CPU tree-code of
John Dubinski (1996) Dubinski (1996) (Partree) and the GPU accelerated tree-code
Octgrav Gaburov et al. (2010), also see Chapter 3. Other often used tree-codes either
have a different MAC or lack quadrupole corrections. e default version of Octgrav has
a different MAC than Bonsai, but for the galaxy merger simulation a version of Octgrav
is used that employs the samemethod as Bonsai (Section 4.3.3).We use phiGRAPE Harfst
et al. (2007) in combination with the Sapporo Gaburov et al. (2009) direct N-body GPU
library for the comparison with direct N-body simulations. Although here used as stan-
dalone codes, most of them are part of the AMUSE frameworkPortegies Zwart et al.
(2009), as will be a future version of Bonsai which would make the comparison trivial to
execute.

e hardware used to run the tests is presented in Table 4.1. For the CPU calcula-
tions we used an Intel Xeon E5620 CPU which has 4 physical cores. For GPUs, we used 1
GPU with the G92 architecture (GeForce 8800GTS512), 2 GPUs with the GT200 archi-
tecture (GeForce 285GTX and Tesla C1060), and 2 GPUs with the GF100 architecture
(GTX480 and Tesla C2050). All these GPUs are produced by NVIDIA. e Tesla C2050
GPU is marketed as a professional High Performance Computing card and has the option
to enable error-correcting code memory (ECC). With ECC enabled extra checks on the
data are conducted to prevent the use of corrupted data in computations, but this has a
measurable impact on the performance. erefore, the tests on the C2050 are executed
twice, once with and once without ECC enabled to measure the impact of ECC.

All calculations are conducted in single precision arithmetic except for the computation
of the monopole and quadrupole moments in Bonsai and the force calculation during the
acceleration test in phiGRAPE for which we use double precision arithmetic.

4.4.1 Performance
To measure the performance of the implemented algorithms we execute simulations using
Plummer Plummer (1915) spheres with N = 215 (32k) up to N = 224 (16M) parti-
cles (up to N = 222 (4M) for the GTX480, because of memory limitations). For the
most time critical parts of the algorithm we measure the wall-clock time. For the tree-
construction we distinguish three parts, namely sorting of the keys (sorting), reordering
of particle properties based on the sorted keys (moving) and construction and linking of
tree-cells (tree-construction). Furthermore, are timings presented for the multipole com-
putation and tree-traverse. e results are presented in Fig. 4.6. e wall-clock time spend
in the sorting, moving, tree-construction and multipole computation algorithms scales lin-
early with N for N ≳ 106. For smaller N , however, the scaling is sub-linear, because the
parallel scan algorithms require more than 105 particles to saturate the GPU. e inset
of Fig. 4.6 shows that the average number of particle-cell interactions doubles between
N ≳ 32k and N ≲ 1M and keeps gradually increasing for N ≳ 1M. Finally, more than
90% with θ = 0.75 and 95% with θ = 0.5 of the wall-clock time is spent on tree-traversal.
is allows for block time-step execution where the tree-traverse time is reduced by a fac-
tor Ngroups/Nactive, where Nactive is the number of groups with particles that have to be
updated.

In Fig. 4.7 we compare the performance of the tree-algorithms between the three gen-

60 Bonsai

 0.1

 1

 10

 100

 1000

 10000

 10000 100000 1e+06 1e+07 1e+08

T
im

e
 [
m

s
]

N

Sorting
Moving

Tree construction
Node properties

Tree-traverse, GTX480 θ=0.75

Tree-traverse, C1060 θ=0.75

Total, GTX480 θ=0.75

Tree-traverse, GTX480 θ=0.5

N log(N)

 0

 500

 1000

 1500

 10000 1e+06 1e+08

p-p interactions
p-c interactions

Figure 4.6: The wall-clock time spent by various parts of the program versus the number of par-
ticles N . We used Plummer models as initial conditions Plummer (1915) and varied the number
of particles over two orders of magnitude. The solid black line, which is offset arbitrarily, shows
the theoretical O(N logN) scaling Barnes and Hut (1986). The asymptotic complexity of the tree-
construction approaches O(N), because all the constituent primitives share the same complexity. The
tree-construction timing comes from the GTX480. To show that the linear scaling continues we added
timing data for the C1060, which allows usage of larger data sets. For the GTX480 we included the
results of the tree-traverse with θ = 0.5 and the results of the tree-traverse with θ = 0.75. The inset
shows the average number of particle-particle and particle-cell interactions for each simulation where
θ = 0.75.

erations of GPUs as well as against tuned CPU implementations8. For all algorithms the
CPU is between a factor of 2 (data reordering) to almost a factor 30 (tree-traverse) slower
than the fastest GPU (GTX480). Comparing the results of the different GPUs we see that
the GTS512 is slowest in all algorithms except for the data moving phase, in which the
C1060 is the slowest. is is surprising since the C1060 has more on-device bandwidth,
but the lower memory clock-speed appears to have more influence than the total band-
width. Overall the GF100 generation of GPUs have the best performance. In particular,
during the tree-traverse part, they are almost a factor 2 faster than the GT200 series. is
is more than their theoretical peak performance ratios, which are 1.1 and 1.25 for C1060
vs. C2050 and GTX285 vs. GTX480 respectively. In contrast, the GTX285 executes the
tree-traverse faster than the C1060 by a factor of 1.1 which is exactly the peak perfor-
mance ratio between these GPUs. We believe that the difference between the GT200 and
GF100 GPUs is mainly caused by the lack of L1 and L2 caches on GT200 GPUs that are
present on GF100 GPUs. In the latter, non-coalesced memory accesses are cached, which
occur frequently during the tree-traverse, this reduces the need to request data from the

8 e tree-construction method is similar to Warren and Salmon (1993), and was implemented by Keigo
Nitadori with OpenMP and SSE support. e tree-traverse is, however, from the CPU version of the MPI-
parallel tree-code by John Dubinski Dubinski (1996). It has monopole and quadrupole moments and uses the
same multipole acceptance criterion as our code. We ran this code on the Xeon E5620 CPU using 4 parallel
processes where each process uses one of the 4 available physical cores.

4.4 Performance and Accuracy 61

 1

 10

 100

 1000

 10000

 100000

Sorting Moving Construction Properties Tree traverse

T
im

e
 [
m

s
]

CPU
8800GTS512

C1060
GTX285

C2050
C2050-ECC

GTX480

Figure 4.7: Wall-clock time spent by the CPU and different generations of GPUs on various primitive
algorithms. The bars show the time spent on the five selected sections of code on the CPU and 5
different GPUs (spread over 3 generations). The results indicate that the code outperforms the CPU
on all fronts, and scales in a predictable manner between different GPUs. The C2050-ECC bars indicate
the runs on the C2050 with ECC enabled, the C2050 bars indicate the runs with ECC disabled. Note
that the y-axis is in log scale. (Timings using a 220 million body Plummer sphere with θ = 0.75)

relatively slow global memory. is is supported by auxiliary tests where the texture cache
on the GT200 GPUs is used to cache non-coalesced memory reads, which resulted in a
reduction of the tree-traverse execution time between 20 and 30%. Comparing the C2050
results with ECC-memory to those without ECC-memory we notice a performance im-
pact on memory-bound functions that can be as high as 50% (sorting), while the impact
on the compute-bound tree-traverse is negligible, because the time to perform the ECC
is hidden behind computations. Overall we find that the implementation scales very well
over the different GPU generations and makes optimal use of the newly introduced fea-
tures of the GF100 architecture. e performance of the tree-traverse with θ = 0.75 is
2.1M particles/s and 2.8M particles/s on the C2050 and GTX480 respectively for N =
1M.

4.4.2 Accuracy
Tomeasure the accuracy of the tree-code we use two tests. In the first, the accelerations due
to the tree-code are compared with accelerations computed by direct summation. In the
second test, we compared the performance and accuracy of three tree-codes and a direct
summation code using a galaxy merger simulation.

Acceleration

To quantify the error in the accelerations between phiGRAPE and Bonsai we calculate

∆a/a = |atree − adirect|/|adirect|, (4.2)

62 Bonsai

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1e-06 1e-04 0.01 1

F
(>

∆
a
/a

)

∆a/a

1e-06 1e-04 0.01 1

∆a/a

1e-06 1e-04 0.01 1

∆a/a

Figure 4.8: Each panel displays a fraction of particles, F (> ∆a/a), having a relative acceleration
error, ∆a/a, (vertical axis) greater than a specified value (horizontal axis). In each panel the solid
lines show the errors for various opening angles, from left to right θ = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and
0.8. The panels show, from left to right, simulations with N = 32768, N = 131072 and N = 1048576
particles. The dotted horizontal lines indicate 50%, 10% and 1% of the error distribution.

where atree and adirect are accelerations obtained by tree and direct summation respectively.
e direct summation results are computed with a double precision version of Sapporo,
while for tree summation single precision is used. For both methods the softening is set to
zero and a GTX480 GPU is used as computation device.

In Fig. 4.8 the error distribution for different particle numbers and opening angles is
shown. Each panel shows the fraction of particles (vertical-axis) having a relative accel-
eration error larger than a given value (horizontal-axis). e three horizontal dotted lines
show the 50th, 10th and 1st percentile of the cumulative distribution (top to bottom). e
results indicate that the acceleration error is slightly smaller (less than an order of mag-
nitude) than Octgrav and comparable to CPU tree-codes with quadrupole corrections
Dehnen (2002); Springel et al. (2001); Stadel (2001). In Octgrav a different MAC is
used than in Bonsai which explains the better accuracy results of Bonsai.

e dependence of the acceleration error on θ and the number of particles is shown in
Fig. 4.9. Here the median and first percentile of the relative acceleration error distributions
of Fig. 4.8 are plotted as a function of θ.e figure shows that the relative acceleration error
is nearly independent of N , which is a major improvement compared to Octgrav where
the relative acceleration error clearly depends on N (Figure 5 in Gaburov et al. (2010)).
e results are consistent with those of Partree Dubinski (1996) which uses the same
MAC.

Galaxy merger

A realistic comparison between the differentN-body codes, instead of statistical tests only,
is performed by executing a galaxy merger simulation. e merger consists of two galaxies,
each with 105 dark matter particles, 2 × 104 star particles and one super massive black
hole (for a total of 240.002 bodies). e galaxies have a 1:3 mass ratio and the pericenter
is 10kpc. e merger is simulated with Bonsai, Octgrav, Partree and phiGRAPE.
e used hardware for Bonsai and Octgrav was 1 GTX480, Partree used 4 cores of

4.4 Performance and Accuracy 63

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0.2 0.5 0.8 1

∆
a
/a

opening angle (θ)

50%
1%

Figure 4.9: The median and the first
percentile of the relative acceleration
error distribution as a function of the
opening angle and the number of par-
ticles. We show the lines for N =
32768 (bottom striped and solid line)
N = 131072 (middle striped and dot-
ted line) and N = 1048576 (top
striped and dotted line).

the Intel Xeon E5620 and phiGRAPE used 4 GTX480 GPUs. With each tree-code we ran
two simulations, one with θ = 0.5 and one with θ = 0.75. e end-time of the simulations
is T = 1000 with a shared time-step of 1

64 (resulting in 64000 steps) and a gravitational
softening of ϵ = 0.1. For phiGRAPE the default time-step settings were used, with the
maximum time-step set to 1

16 and softening set to ϵ = 0.1. e settings are summarised
in the first four columns of Table 4.2.

We compared the density, cumulative mass and circular velocity profiles of the merger
product as produced by the different simulation codes, but apart from slight differences
caused by small number statistics the profiles are identical. As final comparisonwe recorded
the distance between the two black holes over the course of the simulation. e results of
which are shown in the bottom panel of Fig. 4.10, the results are indistinguishable up
to the third pericenter passage at t = 300 after which the results, because of numerical
differences, become incomparable. Apart from the simulation results we also compare the
energy conservation. is is done by computing the relative energy error (dE, Eq. 4.3) and
the maximal relative energy error (dEmax).

dE =
E0 − Et

E0
(4.3)

Here E0 is the total energy (potential energy + kinetic energy) at the start of the sim-
ulation and Et is the total energy at time t. e time is in N-body units.

e maximal relative energy error is presented in the top panel of Fig. 4.10, the tree-
code simulations with θ = 0.75 give the highest dEmax which occurs for both θ = 0.75
and θ = 0.5 during the second pericenter passage at t ≈ 280. For θ = 0.5, the dEmax is
roughly a factor 2 smaller than for θ = 0.75. For phiGRAPE dEmax shows a drift and does
not stay constant after the second pericenter passage. e drift in the energy error is caused
by the formation of binaries, for which phiGRAPE has no special treatment, resulting in
the observed drift instead of a random walk.

64 Bonsai

Simulation Hardware dt θ dEend dEmax time
[×10−4] [×10−4] [s]

phiGRAPE 4x GTX480 block - −1.9 1.8 62068
Bonsai run1 1x GTX480 1

64
0.75 0.21 2.8 7102

Bonsai run2 1x GTX480 1
64

0.50 0.44 1.3 12687
Octgrav run1 1x GTX480 1

64
0.75 −1.1 3.5 11651

Octgrav run2 1x GTX480 1
64

0.50 −1.1 2.2 15958
Partree run1 Xeon E5620 1

64
0.75 −3.5 3.8 118424

Partree run2 Xeon E5620 1
64

0.50 0.87 0.96 303504

Table 4.2: Settings and results of the galaxy merger. The first two columns indicate the software
and hardware used, the third the time-step (dt) and the fourth the opening angle (θ). The last three
columns present the results, energy error at the time = 1000 (fifth column), maximum energy error
during the simulation (sixth column) and the total execution time (seventh column).

A detailed overview of the energy error is presented in Fig. 4.11 which shows the
relative energy error (dE) over the course of the simulation. Comparing the dE of the
tree-codes shows that Bonsai has a more stable evolution than Octgrav and Partree.
Furthermore if we compare the results of θ = 0.75 and θ = 0.5 there hardly is any
improvement visible for Octgrav while Bonsai and Partree show an energy error with
smaller per time-step variance of the energy error.

e last thing to look at is the execution time of the various codes, which can be found
in the last column of Tab. 4.2. Comparing Bonsai with Octgrav shows that the former
is faster by a factor of 1.6 and 1.26 for θ = 0.75 and θ = 0.5 respectively. e smaller
speed-up for θ = 0.5 results from the fact that the tree-traverse, which takes up most of
the execution time, is faster in Octgrav than in Bonsai. Comparing the execution time
of Bonsai with that of Partree shows that the former is faster by a factor of 17 (24) with
θ = 0.75 (θ = 0.5). Note that this speed-up is smaller than reported in Section 4.4.1 due
to different initial conditions. Finally, when comparing phiGRAPE with Bonsai, we find
that Bonsai completes the simulation on 1 GTX480 faster than phiGRAPE, which uses 4
GTX480 GPUs, by a factor of 8.7 (θ = 0.75) and 4.9 (θ = 0.5).

4.5 Discussion and Conclusions
We have presented algorithms to construct and traverse hierarchical data-structures effi-
ciently. ese algorithms are implemented as part of a gravitational N-body tree-code. In
contrast to other existing GPU tree-codes, this implementation is executed on the GPU.
While the code is written in CUDA, the methods themselves are portable to other mas-
sively parallel architectures, provided that parallel scan-algorithms exist for such architec-
tures. For this implementation a custom CUDA API wrapper is used that can be replaced
with an OpenCL version. As such the code can be ported to OpenCL, by only rewriting
the GPU functions, which is currently work in progress.

e number of particles processed per unit time, is 2.8 million particles per second
with θ = 0.75 on a GTX480. Combined with the stable energy evolution and efficient

4.5 Discussion and Conclusions 65

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

d
is

ta
n
c
e

time

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

d
E

m
a
x

Bonsai θ=0.75

Bonsai θ=0.5

Octgrav θ=0.75

Octgrav θ=0.5

Partree θ=0.75

Partree θ=0.5

phiGRAPE

Figure 4.10: The top panel shows the maximal relative energy error over the course of the simulation.
The solid lines show the results of Bonsai, the striped lines the results of Octgrav and the striped-
dotted lines show the results of Partree. In all cases the top lines show the result of θ = 0.75 and the
bottom lines the result of θ = 0.5. Finally the dotted line shows the result of phiGRAPE. The bottom
panel shows the distance between the two supermassive black-holes. The lines themselves have no
labels since up to t = 300 the lines follow the same path and after t = 300 the motion becomes
chaotic and incomparable. The distance and time are in N -body units.

scaling permits us to routinely carry out simulations on the GPU. Since the current version
can only use 1 GPU, the limitation is the amount of memory. For 5 million particles ±1
gigabyte of GPU memory is required.

Although the the tree-traverse in Octgrav is ±10% faster than in Bonsai, the latter
is much more appropriate for large (N > 106) simulations and simulations which employ
block-time steps. In Octgrav the complete tree-structure, particle array and multipole
moments are send to the GPU during each time-step. When using shared-time steps this
is a non-critical amount of overhead since the overall performance is dominated by the
tree-traverse which takes up more than 90% of the total compute time. However, this
balance changes if one uses block time-steps. e tree-traverse time is reduced by a factor
Ngroups/Nactive, whereNactive is the number of groups with particles that have to be updated.
is number can be as small as a few percent of Ngroups, and therefore tree-construction,
particle prediction and communication becomes the bottleneck. By shifting these compu-
tations to the GPU, this ceases to be a problem, and the required host communication is
removed entirely.

Even though the sorting, moving and tree-construction parts of the code take up
roughly 10% of the execution time, these methods do not have to be executed during
each time-step when using the block time-step method. It is sufficient to only recom-
pute the multipole moments of tree-cells that have updated child particles. Only when
the tree-traverse shows a considerable decline in performance the complete tree-structure
has to be rebuild. is decline is the result of inefficient memory reads and an increase
of the average number of particle-cell and particle-particle interactions. is quantity in-

66 Bonsai

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0 200 400 600 800 1000

d
E

time

Bonsai Octgrav Partree phiGRAPE

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

d
E

θ=0.75

θ=0.5

Figure 4.11: Relative energy error over the course of the simulation. The top panel shows the results
of θ = 0.75 and the bottom panel the results of θ = 0.5, all other settings as defined in Tab. 4.2.
The Bonsai results are shown by the blue lines, the Octgrav results are shown by the red lines, the
Partree results are shown by the green lines and the black lines show the results of phiGRAPE. Note
that the result of phiGRAPE is the same in the top and bottom panel and that the range of the y-axis
is the same in both panels.

creases because the tree-cell size (l) increases, which causes more cells to be opened by the
multipole acceptance criterion (Eq. 4.1).

Although the algorithms described herein are designed for a shared-memory architec-
ture, they can be used to construct and traverse tree-structures on parallel GPU clusters
using the methods described in Warren and Salmon (1993); Dubinski (1996). Further-
more, in case of a parallel GPU tree-code, the CPU can exchange particles with the other
nodes, while the GPU is traversing the tree-structure of the local data. In this way, it is
possible to hide most of the communication time.

e presented tree-construction and tree-traverse algorithms are not limited to the
evaluation of gravitational forces, but can be applied to a variety of problems, such as
neighbour search, clump finding algorithms, fast multipole method and ray tracing. In
particular, it is straightforward to implement Smoothed Particle Hydrodynamics in such a
code, therefore having a self-gravitating particle based hydrodynamics code implemented
on the GPU.

Acknowledgements

is work is supported by NOVA and NWO grants (#639.073.803, #643.000.802, #614.061.608, #643.200.503,
VIDI #639.042.607). e authors would like to thank Massimiliano Fatica and Mark Harris of NVIDIA for the
help with getting the code to run on the Fermi architecture, Bernadetta Devecchi for her help with the galaxy
merger simulation and Dan Caputo for his comments which improved the manuscript.

4.A Scan algorithms 67

4.A Scan algorithms

Both tree-construction and tree-traverse make extensive use of parallel-scan algorithms,
also known as parallel prefix-sum algorithms. ese algorithms are examples of computa-
tions that seem inherently sequential, but for which an efficient parallel algorithm can be
defined. Blelloch Guy E. Blelloch (1990) defines the scan operations as follows:

De nition: e all-prefix-sums operation takes a binary associative operator ⊕, and an ar-
ray of n elements

[a0, a1, ..., an−1],

and returns the ordered set

[a0,(a0 ⊕ a1), ...,(a0 ⊕ a1 ⊕ ... ⊕ an−1)].

Example: If ⊕ is the addition operator, then the all-prefix-sums operation on the array

[3 1 7 0 4 1 6 3],

would return

[3 4 11 11 15 16 22 25].

e prefix-sum algorithms form the building blocks for a variety of methods, including
stream compaction, stream splitting, sorting, regular expressions, tree-depth determina-
tion and histogram construction. In the following paragraphs, we give a concise account
on the algorithms we used in this work, however we refer the interested readers to the
survey by Blelloch Guy E. Blelloch (1990) for further examples and detailed descriptions.

4.A.1 Stream Compaction
Stream compaction removes “invalid” items from a stream of elements; this algorithm is
also known as stream reduction. In the left panel of the Fig.4.12 an example of a com-
paction is shown where invalid elements are removed and valid elements are placed at the
start of the output stream.

4.A.2 Split and Sort
Stream split is related to stream compaction, but differs in that the invalid elements are
placed behind the valid ones in the output stream instead of being discarded (right panel
of Fig.4.12). is algorithm is used as building block for the radix sort primitive. Namely,
for each bit of an integer we call the split algorithm, starting from the least significant bit,
and terminating with the most significant bit Knuth (1997).

68 Bonsai

Figure 4.12: Example of compact and split algorithms. The “compact” discards invalid items whereas
the “split” places these behind the valid items. We use this “split” primitive for our radix sort imple-
mentation because it preserves the item ordering–a property which is fundamental for the radix sort
algorithm.

4.A.3 Implementation
All parts of our parallel octree algorithms use scan algorithms in one way or another.ere-
fore, it is important that these scan algorithms are implemented in the most efficient way
and do not become the bottleneck of the application. ere are many different implemen-
tations of scan algorithms on many-core architectures Mark Harris (NVIDIA) (2009);
Sengupta et al. (2008); Billeter et al. (2009). We use the method of Billeter et al. Billeter
et al. (2009) for stream compaction, split and radix-sort because it appears to be, at the
moment of writing, the fastest and is easily adaptable for our purposes.

Briefly, the method consists of three steps:

1. Count the number of valid elements in the array.

2. Compute output offsets using parallel prefix-sum.

3. Place valid elements at the output offsets calculated in the previous step.

We used the prefix-sum method described by Sengupta et al. Sengupta et al. (2008), for
all such operations in both the tree-construction and tree-traverse parts of the implemen-
tation.

4.B Morton Key generation
One of the properties of the Morton key is its direct mapping between coordinates and
keys. To generate the keys given a set of coordinates one can make use of look-up tables or
generate the keys directly. Since the use of look-up tables is relative inefficient on GPUs
(because of the many parallel threads that want to access the same memory) we decided
to compute the keys directly. First we convert the floating point positions into integer
positions.is is done by shifting the reference frame to the lower left corner of the domain
and then multiply the new positions by the size of the domain. en we can apply bit-
based dilate primitives to compute the Morton key (List.4.1, Raman and Wise (2008)).
is dilate primitive converts the first 10 bits of an integer to a 30 bit representation, i.e.
0100111011 → 000 001 000 000 001 001 001 000 001 001:

4.B Morton Key generation 69

List 4.1: e GPU code which we use to dilate the first 10-bits of an integer.
1 int dilate(const int value) {
2 unsigned int x;
3 x = value & 0x03FF;
4 x = ((x << 16) + x) & 0xFF0000FF;
5 x = ((x << 8) + x) & 0x0F00F00F;
6 x = ((x << 4) + x) & 0xC30C30C3;
7 x = ((x << 2) + x) & 0x49249249;
8 return x;
9 }

is dilate primitive is combined with bit-shift and OR operators to get the particles’
key. In our implementation, we used 60-bit keys, which is sufficient for an octree with the
maximal depth of 20 levels. We store a 60-bit key in two 32-bit integers, each containing
30-bits of the key. e maximal depth imposes a limit on the method, but so far we have
never run into problems with our simulations. is limitation can easily be lifted by either
going to 90-bit keys for 30 levels or by modifying the tree-construction algorithm when
we reach deepest levels. is is something we are currently investigating.

5|The Effect of Many Minor
Mergers on the Size Growth
of Compact Quiescent
Galaxies

Massive galaxies with a half-mass radius <∼ 1 kpc are observed in the early universe (z >∼ 2), but not
in the local universe. In the local universe similar-mass (within a factor of two) galaxies tend to be
a factor of 4 to 5 larger. Dry minor mergers are known to drive the evolution of the size of a galaxy
without much increasing the mass, but it is unclear if the growth in size is sufficient to explain the
observations. We test the hypothesis that galaxies grow through dry minor mergers by simulating
merging galaxies with mass ratios of q =1:1 (equal mass) to q =1:160. In our N-body simulations
the total mass of the parent galaxy doubles. We confirm that major mergers do not cause a sufficient
growth in size. e observation can be explained with mergers with a mass ratio of q =1:5–1:10.
Smaller mass ratios cause a more dramatic growth in size, up to a factor of ∼ 17 for mergers with
a mass ratio of 1:80. For relatively massive minor mergers q >∼ 1:20 the mass of the incoming child
galaxies tend to settle in the halo of the parent galaxy. is is caused by the tidal stripping of the
child galaxies by the time they enter the central portion of the parent. When the accretion of minor
galaxies becomes more continuous, when q <∼ 1:40, the foreign mass tends to concentrate more in the
central region of the parent galaxy. We speculate that this is caused by dynamic interactions between
the child galaxies inside the merger remnant and the longer merging times when the difference in
mass is larger. ese interactions cause dynamical heating which results in accretion of mass inside
the galaxy core and a reduction of the parent’s circular velocity and density.

Jeroen Bédorf and Simon Portegies Zwart
Monthly Notices of the Royal Astronomical Society, Volume 431, Issue 1, p.767-780, May 2013.

72 e Effect of Many Minor Mergers

5.1 Introduction

Hierarchical structure formation drives the growth of mass and size of galaxies with red-
shift (Peebles 1980; Lacey and Cole 1993). In this picture the mass and size of galaxies
grow at a similar rate. Recently a population of small but relatively massive elliptical galax-
ies has been observed at z >∼ 2 (Daddi et al. 2005; Trujillo et al. 2006; Toft et al. 2007;
van Dokkum et al. 2008; Franx et al. 2008; van de Sande et al. 2011; Szomoru et al.
2012). However at low redshift these galaxies are much more rare (Trujillo et al. 2009;
van Dokkum et al. 2009; van der Wel et al. 2008; Taylor et al. 2010; Valentinuzzi et al.
2010; Trujillo et al. 2012), whereas there is a rich population of elliptical galaxies with
similar mass but which are considerably larger in size (Martinez-Manso et al. 2011). is
suggests that small and massive galaxies grow in size without acquiring much mass, which
cannot be explained from major mergers as observed in hierarchical structure formation
simulations (e.g. Naab et al. (2006); Oser et al. (2012) and references therein).

It has been suggested that dry minor mergers can cause a considerable growth in size
without much increasing the mass of the galaxy, whereas major mergers tend to increase
the mass without much increasing the size (Miller and Smith 1980; Naab et al. 2006; Oser
et al. 2010, 2012; Trujillo et al. 2011).

Several studies on the topic seem to contradict each other, some argue that minor
mergers can drive the observed growth e.g. (Bezanson et al. 2009; Naab et al. 2009; Hop-
kins et al. 2009, 2010). Others claim that the observed size growth in simulations is not
sufficient if one takes into account cosmological scaling relations (Nipoti et al. 2009a, 2012;
Cimatti et al. 2012). Encouraged by this discrepancy in the literature we decided to per-
form a series of simulations in which we model the encounters between compact massive
galaxies and smaller, lower-mass counterparts. In our parameter search we included mass
ratios from 1:1 all the way to 1:160. Even though such low-mass encounters are unlikely
to be common (Oser et al. 2012), they approach a continuous in-fall of material on the
parent galaxy.

With the merger simulations we study the growth in mass, size and the effect on the
shape of the merger product. Our simulations are performed using the Bonsai tree code
(Bédorf et al. 2012), (and Chapter 4), with up to 17.2 million equal-mass particles. is
includes the dark-matter as well as the baryonic matter. In our simulations we recognize
two regimes of galaxy growth. For q >∼ 1:20 we confirm the inside-out growth, as discussed
by (Hilz et al. 2013), whereas for q >∼ 1:40 galaxies tend to form outside-in, meaning that
the mass is accreted in the core of the primary galaxy rather than accreted on the outside.
is change in behavior is caused by the self-interactions of minor galaxies for mass ratios
<∼ 1 : 40.

Recently (Hilz et al. 2012) studied the size increase from major mergers down to 1:10
minor mergers. eir results are consistent with our findings for comparable simulation
parameters. e major difference between (Hilz et al. 2012) and the results presented here
are the details regarding the orbital parameters of the merging galaxies; they drop their
minor galaxies in one-by-one, whereas we initialize all galaxies in a spherical distribution
at the start of the simulation. As a consequence in some of our simulations the merging
process with many minor mergers is not completed by T = 10Gyr. While the results

5.2 Constraining the model parameters 73

of our 1:1 to 1:10 mergers are consistent with the growth observed in the simulations of
Hilz et al. (2012, 2013) and Oogi and Habe (2013), they are inconsistent with Nipoti
et al. (2009b). e reason for this discrepancy cannot be the steeper density slope of the
stellar bulge, as was suggested by Hilz et al. (2012), because we tried even higher den-
sity slopes for the minor child galaxies and found that this does not affect the growth of
the merger product (see Appendix 5.B). e discrepancy between our results and those of
Nipoti et al. (2009b,a) could be explained by the averaging of the simulation results, as was
also suggested by Hilz et al. (2012).

5.2 Constraining the model parameters
To perform the simulations we use an updated version of the gravitational N-body tree-
code Bonsai (Bédorf et al. 2012), Chapter 4. All simulations are performed on worksta-
tions with NVIDIA GTX480 graphical processing units. Simulations are run with 1 to
18 GPUs, depending on N .

e code has three important parameters; the choice of the time step dt, the softening
length ϵ and the tree-code opening angle θ. e opening angle is set to θ = 0.5 whereby
we use the minimum distance opening criterion (Salmon and Warren 1994), which is
computationally more expensive than the improved Barnes-Hut method (Dubinski 1996)
by about a factor of two, but offers better accuracy (Bédorf et al. 2012).

After having fixed θ, the choice of dt and ϵ are quite critical for the quality of our re-
sults. We measure the quality of the simulation based on the error in the energy and the
change in size of a galaxy model in isolation. We determine the optimal values for dt and ϵ
by performing an analysis in which we run a series of models using a range of values for dt
and ϵ. Although the time step and softening are discussed extensively in previous literature
(e.g. (Merritt 1996; Athanassoula et al. 2000; Dehnen 2001)) we chose to do extra tests
our-self. is for a couple of reasons, first most of the previous discussed methods propose
a softening that scales with the number of particles. However, we use different number of
particles for the primary galaxy and child galaxies so we had to find a configuration that
works for both. Second, our tree-code uses an accurate multipole expansion, in combina-
tion with a opening angle criteria that is different from used in the previously mentioned
papers. And finally we use two component models with power law density distributions
while most examples in the previous mentioned papers are based on one component spher-
ical Plummer models. erefore we decided to rather empirically test how the softening
and time-step affected the properties of our initial conditions instead of taking over a previ-
ously result obtained in a different setting. e initial conditions for these isolated galaxies
are generated using GalactICS (Kuijken and Dubinski 1995; Widrow and Dubinski 2005;
Widrow et al. 2008) and consist of a dark matter halo and a baryonic bulge. All models
represent elliptical E0 galaxies. e bulges are modeled with a Sersic index of 3 and the
dark-matter halo is represented by an NFW profile (Navarro et al. 1996).

In our simulations we collide the primary galaxy with a number of child galaxies, which
are smaller and less massive. e mass ratio and the number of child galaxies which interact
with the primary is one of the free parameters in our simulations. We generate the child
galaxies using GalactICS by adopting the appropriate mass and size of the dark-matter

74 e Effect of Many Minor Mergers

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0.01 0.1 1 10 100 1000

ρ
[1

010
M

su
n/

kp
c3]

r [kpc]

Primary Bulge
Primary Halo

Child Bulge
Child Halo
Softening

Figure 5.1: Density profiles of the HR baryonic bulge and dark-matter halos for the primary and child
galaxies, which have evolved in isolation. For each component we present the density profile at zero
age, at an age of 1 Gyr and at 10 Gyr. However, because the lines are almost indistinguishable and to
prevent clutter we show each epoch with the same line style. The expansion in time of the child halo is
caused by the escape of a few dark-matter particles. This is also the main reason for the expansion of
the selected model, noticeable in the right hand-panel of Fig. 5.3. The vertical line near R = 0.05 kpc
indicates the softening length in the HR simulation.

halo both of which we assume to be a constant factor smaller than in the primary galaxy.
is factor is equal to the mass ratio of the child, e.g. for a 1:10 child the mass and cut-off
radius is 10 times lower than that of the primary galaxy. As a consequence the density of
the child galaxy is smaller by a factor ∼10 than that of the primary. In Appendix 5.B we
demonstrate that the effect of our selected size and mass (and consequently density) of the
child galaxy is not critical for our conclusions. In Fig. 5.1 we present the density profiles
of the baryonic bulge and dark matter halo of our selected initial conditions at zero-age,
at T = 1Gyr which is the moment we intend to use them for the merger simulations
in § 5.3, and at T = 10Gyr. It takes a few crossing times for the galaxies to relax after
generation, therefore we first let them evolve for T = 1Gyr before we use them in a
merger configuration. e differences in the density profile for the same component are
hardly noticeable as a function of time. To prevent spurious mass segregation all particles
in one simulation have the same mass. Mass differences between galaxies and baryonic
and dark matter particle distributions are created by using different amounts of particles
for each galaxy and galaxy components (see Tab. 5.1 for details).

e isolated galaxy simulations were performed for a galaxy with a total massMparent =
2.2 × 1012 M⊙, and a half-mass radius of 1.36 kpc. which we call the parent or pri-
mary galaxy and for each of the child galaxies. e child galaxies have a mass that is
q times lower than that of the primary. For example the q =1:10 child has a mass of
Mchild = 2.2× 1011 M⊙. To make sure that the child galaxies consist of enough particles
to be accurately resolved and stay stable in isolation we use different resolution models for
the initial conditions. Depending on the number of child galaxies (mass ratio) used. We

5.2 Constraining the model parameters 75

found that using a minimum number of 103 (104) particles for the bulge (dark matter)
component proofed to be enough to keep the galaxies stable (Tab. 5.1).

We refer to low-resolution simulations (LR) for those in which the primary galaxy was
modeled with N = 2.2 × 105 and the 1:10 child with N = 2.2 × 104. For the high-
resolution (HR) simulations we adopted N = 2.2 × 106 and N = 2.2 × 105 for the
primary and 1:10 child galaxies, respectively. e child galaxies with a different mass ratio
are scaled in a similar way as the 1:10 child, namely the number of particles of the primary
divided by the mass ratio. Each model was run for 10Gyr. In Figs. 5.2 and 5.3 we present
the results of theHR simulations; the error in the energy∆E = (E10Gyr−E0)/E0 for the
left-hand panels and the expansion factor of the bulge, γ(t), in isolation in the right-hand
panels.

γ(t) ≡ Rh−t/Rh−0Gyr (5.1)

Here Rh−t is the half-mass radius of the baryonic component of the galaxy at time t. In
Fig. 5.2 we present the result for the primaries, and Fig. 5.3 for the 1:10 children.

As expected, ∆E decreases for decreasing dt and increasing ϵ, for the primary as well
as for the child galaxy. e growth in size of the galaxies becomes smaller with decreasing
dt. However, for ϵ this is not a trivial matter. For too large a softening the galaxy tends
to expand substantially, but the effect is not as dramatic as for a too small value of ϵ.
e growth for large ϵ is caused by spurious suppression of relaxation in the large ϵ runs.
e growth for small ϵ is numerical, caused by strong encounters which are not resolved
accurately in our simulation. is limitation in our numerical solver is also noticeable in
the energy error for small ϵ (see Figs. 5.2 and Fig. 5.3).

Because we intend to study the expansion of the primary galaxies caused by mergers
they should not expand in isolation. For our production simulations (see § 5.3) we select
the ϵ which show the least expansion when the galaxy is run in isolation. e time step is
chosen as large as possible (for performance) but giving the smallest possible energy error.
We make the choice of dt and ϵ based on the simulations for the primary galaxy, which
for the child also turns out to be the bests choice. For the HR simulations dt = 1/192
and ϵ = 0.05, and for the LR simulations dt = 1/128 and ϵ = 0.1. Using these settings
the energy error of all the merger simulations stays below ≪ 10−4. ese parameters are
presented in dimension-less N-body units (Heggie and Mathieu 1986), but in physical
units they translate to a time step of dt ≃ 0.078Myr for the LR and dt ≃ 0.052Myr for
the HR simulations, and a softening length of ϵ ≃ 100 pc, and ϵ ≃ 50 pc for the LR and
HR runs, respectively.

Comparing the most optimal settings with the results of previous work on softening
values (Merritt 1996; Athanassoula et al. 2000;Dehnen 2001).e chosen softening values
are comparable to the values advised in (Athanassoula et al. 2000) and (Dehnen 2001) with
our chosen values being slightly larger to keep the energy error less than 10−3 while the
size growth stays smaller than 10%. e difference between our results and Merritt (1996)
is somewhat larger, but still within a factor of three. e difference can be attributed to the
fact that we use more particles and use a tree-code instead of direct summation (see also
Table 1. of Athanassoula et al. (1998)).

Most of the expansion of our galaxies occurs in the first few 100Myr of the simulation,
and therefore all galaxies are evolved to an age of 1Gyr in isolation before they are used as

76 e Effect of Many Minor Mergers

1

16

1

32

1

64

1

128

1

192

1

256

dt

0.001

0.005

0.01

0.025

0.05

0.1

0.15

0.2

0.25

�

Final energy error

<= 1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-1

>= 1

1

16

1

32

1

64

1

128

1

192

1

256

dt

0.001

0.005

0.01

0.025

0.05

0.1

0.15

0.2

0.25

�

Final Size increase

1.000

1.050

1.100

1.150

1.200

1.250

1.300

1.350

1.400

Figure 5.2: Results of the test simulations for the HR primary galaxies. The left panel gives the energy
error ∆E, the right panel gives the size increase γ after 10 Gyr (see Eq. 5.2). Both panels present
the information as a function of the time step (dt) and the softening length (ϵ). The simulations are
performed at the grid-points in dt and ϵ, as indicated along the axes. The color scheme shows a linear
interpolation between the grid points. The scaling to the colors are provided along the right-hand side
of each panel, and exhibits a log-scale for the left hand panel and a linear scaling for the right-hand
panel.

1

16

1

32

1

64

1

128

1

192

1

256

dt

0.001

0.005

0.01

0.025

0.05

0.1

0.15

0.2

0.25

�

Final energy error

<= 1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-1

>= 1

1

16

1

32

1

64

1

128

1

192

1

256

dt

0.001

0.005

0.01

0.025

0.05

0.1

0.15

0.2

0.25

�

Final Size increase

1.170

1.200

1.230

1.260

1.290

1.320

1.350

1.380

1.410

Figure 5.3: Results of the test simulations for the HR child galaxies, which are ten times less massive
than the primary. See Fig. 5.2 for a further description of the figure.

5.3 Initializing the galaxy mergers 77

LR HR

Model Type Total mass N P mass ϵ N P mass ϵ
[M⊙] - [M⊙] [pc] - [M⊙] [pc]

Primary Halo 2 × 1012 1 × 105 1 × 107 100 2 × 106 1 × 106 50
Bulge 2 × 1011 1 × 104 1 × 107 100 2 × 105 1 × 106 50

Child 1
5

Halo 4 × 1011 4 × 104 1 × 107 100 4 × 105 1 × 106 50
Bulge 4 × 1010 4 × 103 1 × 107 100 4 × 104 1 × 106 50

Child 1
10

Halo 2 × 1011 2 × 104 1 × 107 100 2 × 105 1 × 106 50
Bulge 2 × 1010 2 × 103 1 × 107 100 2 × 104 1 × 106 50

Child 1
20

Halo 1 × 1011 - - - 1 × 105 1 × 106 50
Bulge 1 × 1010 - - - 1 × 104 1 × 106 50

Child 1
40

Halo 5 × 1010 - - - 5 × 104 1 × 106 50
Bulge 5 × 109 - - - 5 × 103 1 × 106 50

Child 1
80

Halo 2.5 × 1010 - - - 2.5 × 104 1 × 106 50
Bulge 2.5 × 109 - - - 2.5 × 103 1 × 106 50

Table 5.1: Galaxy properties. Characteristics of the base models used in the simulations. The first
column indicates if the galaxy is the primary galaxy or one of the minor merger child galaxies. The
second column indicates if the properties are for the dark matter halo or for the baryonic bulge and
directly after in the third column the mass of the galaxy component. The next three columns show
the properties when using low resolution models, the number of particles, mass per particle and the
softening used. The final three columns show the number of particles, mass per particle and softening
used when using high resolution models.

initial galaxies in the merger simulations.
As as extra test we ran several of the isolated galaxies using the direct N-body code

phiGRAPE (Harfst et al. 2007) to confirm that the observed∆E and expansion are not the
result of using an approximation based simulation code. e results of these simulations
are consistent with the results of Bonsai, but show a∆E of∼ 10−6, because of the higher
accuracy of phiGRAPE .

With this choice of initial conditions, the child galaxies in the low resolution simu-
lations still expand by at most a factor of 2 before the merger starts. To check how this
affects our results we redo the simulation but at the start the child galaxies are represented
as point masses. e point mass is replaced by a child galaxy as soon as it enters the dark
matter halo of the primary galaxy. is simulation gives a nearly identical expansion of the
primary galaxy to that in which the child was resolved from the start of the simulation.

5.3 Initializing the galaxy mergers
We use the isolated galaxies discussed in the previous § to study the effect of mergers. For
this purpose we adopt the primary galaxy and have it interact with an identical copy or
with a number of child galaxies. We refer to minor mergers when the primary:child mass
⩽ 1:5. Major mergers in our study have equal mass.

5.3.1 Configuring the major mergers
In the major merger simulations two identical copies of the primary galaxy are placed on
an elliptical orbit. e initial distance between the galaxies is 400 kpc, which exceeds the
size of the dark-matter halos, which is about 200 kpc. e relative velocity is chosen such

78 e Effect of Many Minor Mergers

that the minimal distance of approach during the first perigalactic passage P varies. We
vary P from head-on (0 kpc) to 10, 50, 75 and 100 kpc for the widest encounters. All our
merger simulations are run until 10Gyr, after which both galaxies have merged to a single
galaxy, except for the P = 100 kpc configurations (see § 5.4).

Because we use two identical copies of the primary galaxy the galaxies will be co-
rotating during the collision. To study the influence of the rotation angle on the size of the
merger product we run the simulations for P = 0 and P = 50 kpc with co-rotating and
counter-rotating galaxies. is is done by changing the inclination andΩ of one of the two
galaxies between 0 ◦ and 270 ◦ in steps of 90 ◦ using a rotation matrix. After the rotation
the galaxies are put on their elliptical orbit as described in the previous §. e stability of
the isolated galaxies is not affected, because the positions and velocities are rotated in a
consistent way. We did not perform this study on the other major mergers, because the
effect of the inclination and Ω on the expansion factor turns out to be negligible (variation
of the final size between the 16 configurations is ∼ 0.02 kpc).

5.3.2 Configuring the minor mergers
e easiest way to generate an initial configuration with 1 primary galaxy and N child
galaxies is by randomly positioning them in a spherical distribution. For each simulation
we generate a Plummer distribution (Plummer 1915) of N +1 particles. We then select a
random particle and reposition it in the center of mass. We assign the mass of the parent
galaxy to this central particle.e other particles are assigned themass of the child galaxies.
e total mass of all child galaxies in each simulation is the same as that of the primary
galaxy. e model is then rescaled to a virial radius, R, and virial ratio (temperature), Q.
We run 10 sets of initial conditions for each selected mass ratio. In the next section we
discuss the results of a number of simulations with varying mass-ratio, R and Q. Using
this procedure we created a range of minor merger models with varying R, Q = 0 and N ,
see Tab. 5.2. In Section 5.3.2 we relax this assumption and allow Q > 0 to study the effect
of the temperature on the size of the merger product.

For the 1:10 minor mergers we adopted R = 200 kpc as well as R = 500 kpc. In
the R = 200 configurations the child galaxies have a ∼ 50% probability of being placed
initially within the darkmatter halo of the primary. For theR = 500 configurations, which
are based on the same random Plummer realization but scaled to a larger virial radius, this
is only ∼ 15%.

Plummer models - Varying virial temperatures

In order to study the effect of Q on our results we selected one of the 1:10 models. e
merger remnant of the selected model has roughly the same mass in both the R = 200
and R = 500 configurations indicating that they were involved in an equal number of
mergers by the end of the simulation. We used this initial configuration to varyQ between
0 (cold) and 1 (warm), see Tab. 5.2. Each run was repeated with R = 200 kpc and for
R = 500 kpc. is results in a total of 12 different configurations, all of which are based
on the same spatial distribution but with different virial radii and virial temperatures.

1based on same Plummer distribution as the R = 200 models.

5.4 Results 79

mass ratio R Q resolution name
1:5 500 0 LR 1:5
1:10 200 0 LR 1:10, R200
1:101 500 0 LR 1:10, R500
1:20 500 0 HR 1:20
1:40 500 0 HR 1:40
1:80 500 0 HR 1:80
1:10 200 0.0 LR
1:10 200 0.05 LR
1:10 200 0.1 LR
1:10 200 0.3 LR
1:10 200 0.5 LR
1:10 200 1.0 LR
1:10 500 0.0 LR
1:10 500 0.05 LR
1:10 500 0.1 LR
1:10 500 0.3 LR
1:10 500 0.5 LR
1:10 500 1.0 LR

Table 5.2: Initial conditions for the minor merger simulations. The first column indicates the used
mass ratio. The second and third column indicate the virial radius, R, and virial temperature, Q,
to which the configuration is scaled. The fourth column indicates the used resolution, either low-
resolution (N = 4.4× 105) or high-resolution (N = 4.4× 106). The final column indicates the name
used in the text when we refer to the configuration.

5.4 Results
During the simulation snapshots are taken every 100M year and post-processed using
tipsy 2. We compute the density and cumulative mass profiles which are subsequently
used to determine the half-mass radius (Rh), measured using the baryonic particles only.
To compute the profiles tipsy computes the densest point in the simulation and then uses
spherical shells centered on the densest point to bin the particles. To compute Rh we can
not simply take the radius that contains half of the total mass in the merger system, because
depending on the time of the snapshot, not all child galaxies have merged with the primary
galaxy. erefore we analyze the cumulative mass profile (based on all baryonic particles
in the system) of the galaxy and take as total mass the point where the profile flattens.
is flattening indicates that all child galaxies within that radius have merged3 with the
primary galaxy and that the unmerged child galaxies are too far away to be counted as part
of the merger remnant. is total mass is then used to determine Rh. We illustrate this
procedure in Fig. 5.4.

In Fig. 5.4 we present the cumulative mass-profiles of one of the 1:10 mergers with
R = 500 and Q = 0, for the major merger with P = 50 kpc and the profile of the
isolated primary galaxy. During the first four Gyr of evolution the cumulative mass of
the minor merger simulation gradually increases each time one of the child galaxies is
accreted. We determine the total mass of the merger remnant by determining the first
moment that the cumulative mass profile becomes flat. is happens, for example, for the
1Gyr situation at a mass of M ∼ 2.2× 1011 M⊙, and for 2Gyr at M ∼ 3.2× 1011 M⊙.

2http://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html
3We chose this method over a method where we check if particles are bound, since in this method we include

child galaxies that would add to the luminosity of the remnant galaxy if they would be observed.

80 e Effect of Many Minor Mergers

Figure 5.4: Cumulative mass profiles
of the bulge. Shown are the profiles
of one of the 1:10 merger simulations
with R = 500 and Q = 0 and the
major merger simulation with P =
50 kpc. The thick solid line shows the
cumulative mass profile of the main
galaxy at the start of the simulation.
The horizontal lines show the half-
mass of the major merger (top line at
2.0 M⊙

11) and of the minor merger
(bottom line at 1.86 M⊙

11). The re-
maining lines show cumulative mass
profiles of the minor merger as indi-
cated.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100 1000 10000

M
 [1

011
M

su
n]

r [kpc]

Minor 0Gyr
Minor 1Gyr
Minor 2Gyr
Minor 4Gyr

Minor 10Gyr
Major 4Gyr

Isolation

We further notice that the minor merger remnant has grown in size with respect to the
major merger remnant, even though it has accreted less mass. e major merger remnant
ends up with twice the mass of the primary galaxy, e.g. a complete merger of all mass in the
system. Whereas in the minor merger only 8 child galaxies have been accreted in the 4Gyr
after the start of the simulation. At the end of the simulation (T=10Gyr) 9 child galaxies
have merged with the primary galaxy. e last unmerged child appears in the cumulative
mass distribution (striped line with solid circles), represented by the bump in the line at
r ∼ 1800 kpc (Fig. 5.4). As a consequence the total mass of the merger product at the end
of the simulation is larger for the major merger than for the minor merger.

5.4.1 The growth of the primary due to subsequent mergers
We run each major merger model 16 times (with different inclination and Ω) and average
theRh. For each set ofminormerger initial conditions (R andN , see Tab. 5.2.) we perform
10 simulations and as in the major mergers we average Rh. ese results are presented in
Fig. 5.5 for the growth in size, and Fig. 5.6 for the growth in mass. e shaded areas are
the 1σ deviation from the mean, but for the major mergers the areas are barely visible in
comparison with the width of the line. is indicates that the inclination and the angle Ω
hardly affects the growth of the merger product. Only during the merger event itself some
deviation is noticeable (at about 3Gyr for the simulation with P = 50 kpc). e head-on
configuration (P = 0) grows from an initial size of Rh = 1.3 kpc to 3.4 kpc, whereas
the P = 10 to 75 kpc simulations grow to only about 2.4 kpc (only the P = 50 kpc is
presented in Fig. 5.5). e P = 100 kpc did not experience a merger in our simulation
within the time frame of 10Gyr. For the minor merger configurations the result is quite
different as can be seen in Fig. 5.5. e shaded areas indicate that there is variation in size
between the different configurations. e size growth however is larger than that of the
major mergers. e results indicate that the growth in size is directly related to the mass
ratio of the child galaxies, the larger the difference in mass the larger the growth in size.
For the 1:10 simulations the Rh is at least 7 kpc and for the 1:80 simulations the average
Rh is at least 20 kpc while at the start of the simulation the primary galaxy has a Rh of
1.3 kpc.

5.4 Results 81

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10
 0

 5

 10

 15

 20

 25

R
h

[k
pc

]

Time [Gyr]

R200 1:10
R500 1:10
R500 1:5

R500 1:20
R500 1:40
R500 1:80

P0
P50

Figure 5.5: Evolution of Rh. The
plot shows the mean (solid and dot-
ted lines) and the standard deviation
(shaded areas) of the Rh based on
different merger configurations. The
solid lines show the results of the mi-
nor merger configurations. The dot-
ted lines show the major merger con-
figurations with P = 0 and P = 50.
The minor mergers are each aver-
aged over 10 different Plummer real-
izations, the major mergers are aver-
aged over 16 different combinations
of Euler angles. For 1:80 we filtered
out size jumps caused by invalid size
detection.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

M
 [1

011
M

su
n]

Time [Gyr]

R200 1:10
R500 1:10
R500 1:5

R500 1:20
R500 1:40
R500 1:80

P0
P50

Figure 5.6: Evolution of the
merger products mass. The
same simulations are shown
as in Fig. 5.5, but instead of
the radius the average mass
of each set of simulations is
shown.

To study the effect of increasing the number of minor mergers (and decreasing the
mass per child galaxy) in more detail we start by comparing the major merger with the
1:5 minor merger. is case results in a Rh of 5.1 kpc, averaged over 10 simulations. e
1σ deviation indicates that the result is rather consistent when rerunning with a different
initial Plummer realization. e extreme values of Rh after 10Gyr range between 4 and
6 kpc. Even the increase due to the 1:5 minor merger exceeds the P = 0 major merger
case by a factor of ∼ 1.2 to 1.8. By the end of the simulation at 10Gyr on average 4 out of
the 5 minor galaxies have merged with the primary galaxy, and we expect that if the last
child galaxy would be accreted the increase in size would be even larger.e 1:10, R200 kpc
minor mergers show an average size of 7.6 kpc, and 8.5 kpc for the 1:10, R500 kpc models;
an increase of 5.8 to 6.5. e R = 200 kpc simulations merge on a shorter time scale
compared to the R = 500 kpc, which results in a smaller expansion, but higher mass of
the simulations performed in a smaller volume. is is also visible in Fig. 5.6 where the
R = 200 kpc increases faster in mass and ends up being more massive than the R =

82 e Effect of Many Minor Mergers

500 kpc case. Even though R = 500 kpc results in a less massive merger remnant than
the R = 200 kpc simulations, it grows to a larger size. is is caused by the disturbing
effect that the dark-matter halo of the primary galaxy has on the child galaxies. With
more galaxies placed outside the halo for the R = 500 kpc case this effect will be more
pronounced. While we continue to increase the number of child galaxies the size of the
merger remnant continues to grow. We stopped with N = 80 children, at which moment
the increase in size compared to the major merger exceeded a factor 17. e main reason
for the growth of the merger remnant when increasing the number of child galaxies is by
the heating of the merger remnant. For each doubling of the number of child galaxies from
1:5 to 1:10, etc., the growth in size of the merger product is about constant by∼ 5 kpc. e
growth in mass for each of these initial configurations is comparable, except for the 1:80,
which grows less quickly. e smaller mass growth in the 1:80 is attributed to increased
dynamical interactions among the child galaxies. ese interactions cause the merging
times per galaxy to take longer than when they would merge sequentially.

e combined growth in size and mass indicates an other effect, namely the larger the
mass ratio the higher the growth in size.is is indicated in Fig. 5.7 where we presentRh as
a function of the merger remnant mass (which is a function of time). is figure quantifies
the growth in size of the merger remnant while increasing the number of mergers. Note
that the mass ratio between the merger remnant and the child galaxies changes over time.
For example the 1:10 minor mergers start with a mass difference of a factor 10 between
one child galaxy and the primary galaxy, but after the primary galaxy has merged with 5
child galaxies the mass ratio between the merger remnant and one child galaxy is 1:15.
Interestingly it is not necessarily the mass that drives the merger remnant size, but it is the
number of children that merges with the primary galaxy. e solid curves are fits through
the data, and represent exponential curves. e dashed line is the observed scaling relation
of Rh ∝ M2.04 (van Dokkum et al. 2010). As we can see our minor mergers are above
this relation while the major mergers are clearly smaller than the observational results.
Indicating that the minor mergers can cause a size increase comparable or even larger than
that observed.

5.4.2 The effect on the shape of the galaxies due to subse-
quent mergers

Now that we have established that the minor mergers can have a pronounced effect on
the size of the galaxy remnant it will be interesting to see if we can recognize this galaxy
growth by the shape of the merger remnant. To test the effect that the mergers have on the
shape we measure the semi-principal axes a, b and c of the ellipsoidal with a >= b >= c.
e axes lengths are obtained by computing the eigenvalues of the inertial tensor of the
galaxy. Using this we plot the three axis ratios b/a, c/a and b/c, if these three ratios are 1
then the elliptical is perfectly spherical. If one of the axis is much smaller than the other
two the galaxy is a flattened spherical.

In Figs. 5.8 and 5.9 we present how the shape of the merger remnant (measured at
Rh) evolves over time (baryonic component only). For the major mergers we used the
default configurations with P = 0 and 50 kpc and for the minor merger configurations we
randomly took one of the 10 realisations for each of the used mass ratios. e x-axis shows

5.4 Results 83

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 1.5 2 2.5 3 3.5 4 4.5

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

R
h

[k
pc

]

M [1011Msun]

P0
P50

R500 1:5
R200 1:10
R500 1:10
R500 1:20
R500 1:40
R500 1:80

M2.04

Figure 5.7: The mass of the merger remnant, M , versus Rh for the different configurations. The solid
lines are exponential fits through the results of the minor merger configurations. The major mergers
are not fitted. The thick dashed line (bottom line) is the observed scaling relation of Rh ∝ M2.04 (van
Dokkum et al. 2010). Configurations are plotted after each merger event (but filtered to not show
fly-by events) and therefore occur multiple times. The exponents of the fits are (from top to bottom),
0.9, 0.84, 0.74, 0.62, 0.57 and 0.48. If we make an exponential fit to the observed scaling relation
than this would have an exponent of 0.5.

the simulation time while each of the three panels presents one of the aforementioned axis
ratios. Visible is that all galaxies start of as a perfect sphere, which is the initial condition,
but over time the merger remnants deform. e major mergers show the highest degree
of deformation with large differences between the different axis. e effect is most severe
for the heads-on collision which is expected as it is the most violent collision of all our
configurations. Although the major merger remnants become slightly more spherical after
the mergers are complete the galaxies will not become perfectly spherical within a Hubble
time.

For 1:5 we notice, as with the the major mergers, a clear deformation from spherical,
but the effect is less strong than for the major mergers. e individual merger events of
1:5 are visible by the spikes in the axis ratios. e impact that a merger event has on the
shape of the merger remnant becomes smaller when the mass difference between merger
remnant and the infalling galaxy increases. For the 1:10 configurations, we do see slight
deformations during themerger events (the shark tooth’s in the lines), but when themerger
is complete the remnant settles back to spherical. e same effect is visible for 1:20, 1:40
and 1:80 (Fig. 5.9). e final merger remnant of the minor merger configurations is no
longer perfectly spherical, but it clearly is not as flat as the major merger configurations.

84 e Effect of Many Minor Mergers

Figure 5.8: Axis ratios of the
merger remnant. The three panels
present the axis ratios b/a, c/a and
b/c of the merger remnant (top to
bottom, with a ⩾ b ⩾ c). As loca-
tion to measure the shape is taken
the mean Rh of the configuration.
If all axis ratios are equal to 1 the
shape is perfectly spherical. Shown
are the results for the head-on major
merger (P = 0 kpc), for the major
merger with P = 50 kpc, for a ran-
dom 1:5 merger and for a random
1:10 merger once with R = 200 kpc
and once with R = 500 kpc.

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

b/
a

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

c/
a

P0
P50

1:5
1:10 R200

1:10 R500

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 2 4 6 8 10

c/
b

T [Gyr]

Indicating that the accreted mass is distributed differently through out the merger rem-
nant in the minor merger simulations than in the major merger simulations. We cover the
location of the accreted mass in more detail in Section 5.5.

In Fig. 5.10 we present the galaxy shape at T = 10Gyr from the core of the merger
remnant up to 2×Rh, while in the previous paragraph we looked at the shape of themerger
over time and only at the Rh location. Because Rh is different for each configuration the
lines representing the configurations in Fig. 5.10 have different lengths. e minor merger
results are averaged over the different realisations of the model. We notice that the larger
the differences in mass between the the primary galaxy and the child galaxies the more
spherical the merger remnant stays (axis ratios near 1). e differences between the major
and minor mergers are especially visible on the outsides of the merger remnant (r > Rh).
e major mergers are much more deformed from perfectly spherical into flattened ellip-
ticals while the minor mergers stay near spherical all the way to the outskirts of the galaxy.
e difference in the core of 1:5 and 1:10 with respect to the other configurations is the
result of running these simulations with only N = 4.4× 105 particles and accompanying
larger softening. We checked this by comparing the individual results of one of the major
mergers and a 1:10 high resolution simulation with the comparable configurations in low
resolution. In the high resolution simulations we do not observe the deformation in the
core, instead the axis-ratios have a similar profile as the other high resolution configura-
tions.

5.4.3 The effect of the virial temperature
In the previous section the virial temperature (Q) of the minor merger configurations was
always set to zero. is resulted in cold collapse and consequently the fastest possible
merger. In this section we investigate the configurations described in Section 5.3.2 where
Q is varied. e results are presented in Fig. 5.11 where we present Rh as a function of the
merger remnant mass4 (which is a function of time). In the top panel the results for the
R = 200 kpc are presented and the bottom panel presents the results for the R = 500 kpc

4We filtered the results to not include fly-by events which temporarily increases Rh.

5.4 Results 85

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

b/
a

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

c/
a

P0 1:20 1:40 1:80

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 2 4 6 8 10

c/
b

T [Gyr]

Figure 5.9: As Fig. 5.8, but now for
one of the 1:20, 1:40 and 1:80 config-
urations. The head-on major merger
from Fig. 5.8 is also presented (solid
line).

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

b/
a

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

c/
a

P0
P50
1:5

1:10 R200
1:10 R500

1:20
1:40
1:80

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.01 0.1 1 10 100

c/
b

r [kpc]

Figure 5.10: Final shape of merger
remnant. On the x-axis we show the
distance from the core of the merger
remnant. The three panels present
the axis ratios b/a, c/a and b/c (top
to bottom, with a ⩾ b ⩾ c). As fi-
nal measurement location we took
2 × Rh. The results for the minor
mergers are averaged over all 10 dif-
ferent Plummer realisations. The dif-
ferences in the cores of the 1:5 and
1:10 mergers is caused by the lower
resolution with which these models
have been run (see text for details).

configurations. e results for the major mergers with P = 0, 10 and 50 kpc are presented
in both panels.

e major mergers are the same as the ones presented in the previous section and end
up with a final mass that is double that of the isolated galaxy (M = ±4×1011 M⊙). Indi-
cating that in all major merger configurations the two galaxies fully merge. e horizontal
distribution in mass is caused by accretion of stars that were flung out and later fell back
onto the merger product, thereby increasing the mass of the merger remnant.

e merger events that occur in the minor merger simulations can be seen in the hor-
izontal distribution of the points. e horizontal distance between the points compares to
a separation equal to the mass of a 1:10 child galaxy. Even though the minor merger con-
figurations are based on the same spatial distribution, they are not per se involved in the
same amount of mergers, this depends on R and Q. Comparing the cold (Q ⩽ 0.1) and
warm (Q > 0.1) configurations we notice that at the end of the simulation the cold con-
figurations have a higher mass than the warm case. In the warm configurations the child
galaxies have a higher velocity which increases their merging times. However, both warm
and cold show a size increase larger than that of the major merger simulations. is is
confirmed by the lines that show exponential fits5 through the configurations with Q = 0,

5Note that the fits through the Q = 1.0 results are based on only 4 (1) merger events in the R = 200 kpc

86 e Effect of Many Minor Mergers

 0

 2

 4

 6

 8

 10

 12

 0

 2

 4

 6

 8

 10

 12
R

h
[k

pc
]

R=200Q0
Q0.05
Q0.1
Q0.3
Q0.5
Q1.0

P0
P10
P50

Fit to Q0
Fit to Q0.1
Fit to Q1.0

 0
 2
 4
 6
 8

 10

2 2.5 3 3.5 4
 0
 2
 4
 6
 8
 10

R
h

[k
pc

]

M [1011Msun]

R=500

Figure 5.11: The mass, M , of the merger remnant versus the half-mass radius, Rh, for major merger
configurations and a 1:10 merger configuration with different virial temperatures (Q). The minor
mergers are all based on the same Plummer distribution, but rescaled to a virial radius of R = 200
(R = 500) in the top (bottom) panel and a virial temperature which is varied between 0 (cold) and
1 (warm). Both panels show the major mergers with P = 0, 10 and 50 kpc. The lines are exponential
fits through the configurations with Q = 0 (solid), Q = 0.1 (striped) and Q = 1.0 (dotted). With
exponents 0.57, 0.49 and 0.485 for R = 200 and 0.62, 0.49 and 0.484 for R = 500. Configurations
are plotted after each merger event and therefore occur multiple times.

Q = 0.1 and Q = 1.0.

e fits indicate that if all child galaxies merge with the primary, the merger remnant
would have a size that is at least a factor of two larger than the remnants formed by major
merging independent of Q. For the Q = 0 mergers this is even three times as large as the
majormergers. Also visible in Fig. 5.11 is the difference between theR = 200 kpc andR =
500 kpc configurations. Here we notice, as in Fig. 5.5, that theR = 500 kpc configurations
show a larger size increase than the R = 200 kpc configurations, even though the amount
of completed mergers in the R = 500 kpc is less than in the matching R = 200 kpc
configuration. is is attributed by the higher energy input that the child galaxies give in
the R = 500 kpc configuration compared to the R = 200 kpc situation where half the
child galaxies are already within the dark matter halo of the primary galaxy at T = 0.

(R = 500 kpc) configurations. e observed trend however is the same as for the Q = 0.1 configuration which
is based on 10 (9) mergers.

5.5 Discussion 87

 0
 100
 200
 300
 400
 500
 600
 700

 0.1 1 10 100

V
c

[k
m

/s
]

r [kpc]

Isolation
P0

P50

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0.1 1 10 100

M
 (

<
r)

 [1
011

M
su

n]

r [kpc]

1:5 R500
1:10 R200
1:10 R500
1:20 R500
1:40 R500
1:80 R500

1:160 R500

Figure 5.12: Circular veloc-
ity (top) and cumulative mass
(bottom) profiles after 10 Gyr
for different merger configura-
tions. Each line shows the av-
eraged result of all random real-
isations for each of the config-
urations. The velocity and mass
profile of the isolated model are
indicated with the thick solid
line.

5.5 Discussion

e simulations indicate that the effects of the minor mergers becomes more pronounced
when more mergers are involved in the mass growth. To test if this trend continues we
performed three extra simulations with 160 child galaxies (mass ratio 1:160). With this
many children the simulation approaches the regime of a continuous stream of infalling
material. e three simulations gave very similar results with little variation between the
runs. With this many child galaxies their distribution around the primary galaxy becomes
almost uniform. e effect of the random placement of the child galaxies is therefore much
smaller than in the simulations for 5 to 20 child galaxies. Furthermore some of the children
will merge with other children before they reach the primary galaxy. For the 1:160 simu-
lations we use N = 8.8× 106 particles evenly divided over the primary (N = 4.4× 106)
and the child galaxies (N = 27500 per galaxy).

5.5.1 Properties of the merger remnant

e circular velocity (Vc =
√
M(< r)/r) and the cumulative mass profile at the end of

the simulations (at T = 10Gyr), both are presented in Fig. 5.12. e top panel shows Vc

and the bottom panel presents the cumulative mass profile over the same distance from
the core. For the mergers we averaged the results of the random realizations.

emajormergers cause an increase in theVc compared to the isolatedmodel.Whereby
the remnants formed by major mergers with an elliptic orbit (P = 50 kpc) have a Vc which
is ∼100 km/s higher than that of the isolated galaxy. For the remnants that formed by mi-
nor mergers we see a decrease in Vc compared to the isolated galaxy. Especially for the
1:40 and 1:80 the effect is quite pronounced, with the large size increase comes a decrease
in velocity. is indicates that the lighter the child galaxies are the lower the Vc becomes,
this trend continuous for the 1:160 models. ese models have the lowest circular velocity
of all the configurations while at the same time showing the largest size increase.

e size increase can be deduced from the cumulative mass profiles presented in the

88 e Effect of Many Minor Mergers

Figure 5.13: Density pro-
files of the different ma-
jor and minor configura-
tions at the end of the sim-
ulation (T = 10Gyr). Also
displayed is the initial den-
sity profile of the isolated
galaxy. The vertical line is
the softening used in the
simulations.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0.01 0.1 1 10 100 1000

ρ
[1

010
M

su
n/

kp
c3]

r [kpc]

Primary Bulge T=1 Gyr (Isolation)
Primary Bulge T=10 Gyr (Isolation)

P0
P50

R500 1:5
R200 1:10
R500 1:10
R500 1:20
R500 1:40
R500 1:80

R500 1:160
Softening

bottom panel of Fig. 5.12.We notice that themass in the core of themerger decreases when
more child galaxies are involved in themerging process.is effect is especially pronounced
for the smaller mass-ratios (<1:20). e smaller child galaxies have longer merging times,
this combined with their interactions inside the core of the merger remnant does not allow
the merger remnant to stabilize. erefore the mass does not sink back to the core within
the simulation period. is is also apparent in the density profiles presented in Fig. 5.13.
Here the major mergers have a density comparable to that of the isolated galaxy which in
turn is higher than the density of the minor mergers. For the 1:5 and 1:10 mergers the
density profiles have a similar shape to that of the isolated galaxy and the major merger
remnants, but the configurations with mass ratios of ⩽ 1 : 20 have a different shape. e
relatively sudden depression in the density profiles of 1:80 and 1:160 near r ∼ 1 kpc is
a trend that is visible in the 1:40 configuration and in slightly less pronounced form for
the 1:20 configurations. e longer merging times and dynamic interactions that takes
place when the number of child galaxies is ⩾ 20 causes a slowdown in circular velocity, a
reduction in mass and therefore a drop in density in the inner parts of the merger remnant.

e effects described above influence where the mass of the child galaxies is accreted
in the merger remnant. In Fig. 5.14 we present the fraction of baryonic mass that orig-
inates from the child galaxies as a function of the distance to the center of the merger
remnant. e curves are constructed by binning the particles in 1 kpc bins and compute
the fraction of mass that was brought in by the child galaxies. e curves representing the
major mergers (solid-red for model P0 and dashed-green for P50) are horizontal and at 0.5
in Fig. 5.14, which indicates that they mix homogeneously. Minor mergers experience a
different mixing; the precise effect depends sensitively on the number of infalling galaxies.

We take a closer look at the 1:5 to 1:20 mass ratios mergers. ese configurations
behave as expected Hilz et al. (2013); the fraction of child material is small in the core of
themerger remnants and high in the outskirts (r >∼ 10 kpc).While themass ratio continues
to decrease the fraction of foreignmaterial in the outskirts also decreases; until themajority
of outskirt material is original for the most extreme mass ratio (1:160). We have to note
here that for the most extreme mass ratio’s the merger process has not completed at T =

5.5 Discussion 89

10Gyr, which is noticeable in Fig. 5.14 by the mean line appearing smaller than 0.5. In the
central portion (r <∼ 7 kpc) of the most extreme mass ratio mergers the opposite happens,
in the sense that the contribution of foreign material is actually increasing (in particular
noticeable for the 1:160 mass ratios).

In Fig. 5.15 we present the number density of the foreign and native particles as a
function of the radius. We do this for a mass ratio of 1:1, 1:10 and 1:160. As we already
discussed in relation to Fig. 5.14 themass in themajormerger remnant is evenly distributed
between the primary and the infalling galaxy. In the 1:10 merger (top panel) the two curves
for the foreign material and for the native material are clearly separated, in contrast to the
lines for the major merger. is indicates that the native material is distributed differently
than the foreign material. e same effect is noticeable in the 1:160 merger (lower panel
in Fig. 5.15), but less pronounced. is indicates that in the 1:160 merger the material of
the primary and child galaxies is mixed more evenly and approaches a mass distribution
similar to that of the major mergers, whereas in the 1:10 merger the native and foreign
material are distributed quite differently.

e results presented in the previous § indicate that for mass ratios 1:1 to 1:20 the ac-
cretion behaves according as if they grew from inside-out; the material of the child galaxies
is stripped and deposited in the outside of the primary galaxy (Hilz et al. 2013). When
the number of child galaxies increases beyond 20 this behavior changes in that the mixing
becomes more homogeneous. is is caused by the self-interactions of the child galaxies
with the nucleus of the primary. ese self-interactions prevent the merger galaxy from
settling to equilibrium and cause the core to heat up.

We theorize that the continuous bombardment of minor galaxies causes the merger
remnant to remain quite dynamic which reduces the dynamical friction.is in itself allows
new incomers to penetrate deeper into the parent galaxy. is effect mimics the process
of violent relaxation (Lynden-Bell 1967). is effect becomes more efficient when the
number of child galaxies increases. During the in-fall they interact with other infalling
children before they break-up, after which their mass is distributed evenly in the merger
remnant. e interactions are not strong enough to permanently eject a child. When the
child galaxies are more massive 1:5 to 1:20 mergers self interactions between the children
is negligible and they tend to be disrupted upon the first pericenter passage of the merger
product. As a result their material tends to be deposited in the outskirts.

e net growth in size observed in our simulations exceeds those reported in (Nipoti
et al. 2009a, 2012). e initial conditions of (Nipoti et al. 2009a, 2012), however, deviates
from ours in the sense that they adopt a more realistic mass and shape distribution than in
our more theoretical approach. As a consequence the results cannot be compared trivially.
e more efficient growth in our simulations is a result in the distribution of the minor
galaxies, and not by the choice of their densities; the effect of the child densities is negligible
(see Appendix 5.B). Our results are consistent with those of Hilz et al. (2012); Oogi and
Habe (2013) for mass ratios < 1 : 20, in the sense that the growth in size is sufficiently
efficient to explain the observational results when the number of infalling galaxies > 5
(and consequently a mass ratio < 1 : 5). For more extreme mass ratios ⩾ 1 : 20 we find
a gradual change in the behavior. is regime was not simulated by Hilz et al. (2012) and
Oogi and Habe (2013).

90 e Effect of Many Minor Mergers

Figure 5.14: Origin of
the mass in the merger
remnant at T = 10Gyr.
Along the y-axis we
present the fraction of
mass that originates
from the child galaxies
at distance r from the
center of the merger
remnant. We binned
the mass in 1 kpc bins.
When the fraction drops
to 0 then there is no
contribution in mass
from the child galaxies.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

F
ra

ct
io

n
of

 fo
re

ig
n

(c
hi

ld
)

m
as

s

r [kpc]

P0
P50
1:5

1:10 R200
1:10 R500

1:20
1:40
1:80

1:160

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100

nP
ar

tic
le

s
/ k

pc
3

r [kpc]

P0 Primary
P0 Child

1:10 R500 Primary
1:10 R500 Child

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100

nP
ar

tic
le

s
/ k

pc
3

r [kpc]

P0 Primary
P0 Child

1:160 Primary
1:160 Child

Figure 5.15: Particle distribution as function of distance from center, normalized to the volume size.
The x-axis shows the distance to the remnants core, the y-axis the normalized particle count. This plot
is similar as a density distribution, but now split into two lines indicating the origin of the particles
(mass). The top and bottom panels both show the same averaged major merger result (P0). In
addition the top panel shows the average result for the 1:10 R = 500 merger and the bottom panel
the averaged result for the 1:160 mergers. Visible is that the 1:10 and major merger show different
behaviour, where the major merger shows perfect mixing, the 1:10 shows a clear distinction between
the primary and child galaxy mass distribution. The 1:160 however, shows a distribution that is closer
to the major merger distribution than to the 1:10 distribution, indicating that 1:160 shows more signs
of particle mixing.

5.6 Conclusion 91

5.6 Conclusion
We have studied dry minor mergers of galaxies in order to understand the observed growth
in size without much increasing the mass of compact massive galaxies. e simulations
ware performed the Bonsai GPU enabled tree code forN op to 17.6 million particles. Our
simulations start with amajor galaxy and a number ofminor galaxies in a kinematically cold
(and warm) environment. e total mass of the child galaxies equals that of the primary.
e simulation were performed for 10Gyr, and we study the size growth of the merger
remnant. We demonstrate that mergers with a mass ratio 1:5 to 1:20 satisfactory explain
the observed growth in size of compact galaxies. e growth of the merger remnant is
always at least a factor of two higher than in the case of a major merger. is result is
robust against variations in the initial density of the child galaxies. e mass of the minor
galaxies tend to be accreted to the outside of the merger remnant. As a consequence the
core of the merger remnant, formed by the original primary galaxy, will hardly be affected
by the merging process. is ’inside-out-growth’ is consistent with previous studies (Hilz
et al. 2013).

If the number of child galaxies exceeds 20 the behavior of accretion changes, in the
sense that the minor galaxies tend to accumulate in the central portion of the merger
remnant. Evidence for this ’outside-in’ growth is present in the density and velocity profiles
of the merger remnant. e outside-in growth is mediated by self interactions among the
child galaxies before they dissolve in the merger remnant.

We conclude that the observed large massive elliptical galaxies can be evolved from
compact galaxies at z >∼ 2 if they have grown in mass by accreting 5-10 minor galaxies
with a mass ratio of 1:5 to 1:10. e majority of accreted mass will be deposited in the
outskirts of the merger remnant.

Acknowledgments
We thank Marijn Franx and Steven Rieder for discussions. is work is supported by NWO grants (grants
#643.000.802 (JB), #639.073.803 (VICI), and #612.071.305 (LGM)) and by the Netherlands Research School
for Astronomy (NOVA).

5.A Resolution effects
As discussed in Sect. 5.2 we perform a range of simulations with various resolutions for
different major and minor merger setups. Depending on the number of child galaxies we
use low (LR) and high (HR) resolution configurations (see Tab. 5.1). In the LR config-
urations we adapted N = 4.4 × 105 particles of which half belongs to the primary and
the other half to the child galaxies. For the HR simulations we have N = 4.4 × 106.
To verify that the chosen resolutions are sufficient we ran a subset of our configurations
with even higher resolutions. e results can be seen in Fig. 5.16. Here we present the
size evolution of two major merger configurations, a 1:10 merger with R = 200 kpc and
R = 500 kpc and one of the 1:80 mergers. Each configuration is run using the default

92 e Effect of Many Minor Mergers

Figure 5.16: Rh versus
time for a subset of con-
figurations. Each config-
uration is run with three
different resolutions to
test dependence on the
number of particles used.
We present the results
for two major merger
configurations (P = 0
and 50 kpc), for two 1:10
minor merger configura-
tions (R = 200 and
(R = 500) and one 1:80
merger configuration.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

R
h

[k
pc

]

Time [Gyr]

P0 440k
P50 440k
P0 4.4M

P50 4.4M
P0 8.8M

1:10 R200 440k
1:10 R200 4.4M

1:10 R200 8.8M
1:10 R500 440k
1:10 R500 4.4M
1:10 R500 8.8M
1:80 R500 4.4M
1:80 R500 8.8M

1:80 R500 17.2M

resolution, as specified in Tab. 5.2, and using two higher resolutions For the 1:80 simu-
lation this translates to N = 4.4 × 106, N = 8.8 × 106 and N = 17.2 × 106. For the
other configurations we use N = 0.44 × 106, N = 4.4 × 106 and N = 8.8 × 106. For
each of the resolutions we checked if the chosen time-step and softening was sufficient
to keep the model stable in isolation using the method described in Sect. 5.2. In all but
the 1:80 configurations there is little to no difference in the size of the merger remnant
over the course of the simulation. Indicating that our choice of N is sufficiently large. e
large amount of child galaxies in the 1:80 configurations cause child galaxies to interact
with each other and not directly merge with the primary galaxy. e galaxies keep flying
in and out of the remnant and makes it harder to determine Rh of the merger remnant
which causes the large fluctuation in size of the 1:80 merger models. However, the trend
of the Rh increase is independent of the used resolution. As final test we performed the
1:80 configuration with N = 4.4× 105 particles (not plotted) which quantitatively gives
the same result, indicating that N = 4.4× 106 is adequate for the 1:80 configurations.

5.B The effect of child density

As described in Sect. 5.2 we do not change the density of the child galaxies when gener-
ating the initial conditions. Instead we change the cut-off radius to be a factor, f , smaller
than that of the primary galaxy. is f scales with the mass ratio of the child galaxy. For
example the cut-off radius of a child galaxy with mass ratio 1:10 is 10 times smaller than
that of the primary. Together with the cut-off radius the mass is also reduced by a factor
10 giving the child galaxies a density lower than that of the primary galaxy (§ 5.2).

To test the effect of the density on the size growth of the merger product we gener-
ated two new 1:10 child galaxies. In addition to the standard child galaxy we created a
compact and a supercompact child galaxy. ese galaxies are generated such that their
densities are higher than that of the standard child galaxy. e galaxy properties are

5.B e effect of child density 93

Model Bulge mass Cut-off Rh ρ
[M⊙] [kpc] [kpc] [1010 M⊙/kpc

3]
Primary 2× 1011 100 1.36 1232
standard 2× 1010 10 1.26 142
compact 2× 1010 5.1 0.68 307
supercompact 2× 1010 0.9 0.25 4609

Table 5.3: Properties of the extra 1:10 child configurations. The first column indicates the model,
either the primary or one of the three child configurations. The second column indicates the bulge
mass. The third the cut-off radius for the dark matter halo, which is used to configure the galaxies. The
fourth (fifth) column indicates the half-mass radius (density) of the galaxy in isolation at T=1 Gyr.

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10
 0

 2

 4

 6

 8

 10

 12

R
h

[k
pc

]

Time [Gyr]

R500 1:10 standard
R500 1:10 compact

R500 1:10 supercompact

Figure 5.17: Size evolution.
The configurations are based
on the same primary galaxy
and Plummer distribution,
but the child galaxies have
different size and density
properties.

presented in Tab. 5.3.
With the new child galaxies in place we selected one of the 1:10 R = 500 kpc merger

configurations and ran this realization with the new child galaxies. Each model is evolved
for 10Gyr using high resolution (N = 4.4× 106).

e effect of the child density on the size growth of the merger remnant is presented in
Fig. 5.17, where we show Rh as a function of time. e standard and compact config-
urations show similar evolution. e supercompact configuration shows a different be-
haviour during the first 5Gyr of the simulation. is is an artifact of the way we determine
the size of the merger remnant which does not work perfect in this particular configura-
tion (see § 5.4). e compactness of the galaxies causes the cumulative mass-profile to be
irregular compared to the simulations with less dense child galaxies. As a consequence we
are not always able to correctly measure the position in the profile that indicates the end
of the merger remnant. After 5Gyr the procedure works correct, because at this point the
child galaxies have been involved in so many interactions that the mass-profile is smooth
again. When the method starts working again we notice that all three simulations show
similar size growth, independent of their density.

94 e Effect of Many Minor Mergers

 0
 100
 200
 300
 400
 500
 600
 700

 0.1 1 10 100

V
c

[k
m

/s
]

r [kpc]

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0.1 1 10 100

M
 (

<
r)

 [1
011

M
su

n]

r [kpc]

Isolation
R500 1:10 standard
R500 1:10 compact

R500 1:10 supercompact

Figure 5.18: Circular velocity (top) and cumulative mass (bottom) after 10 Gyr for different merger
configurations. The mergers are based on the same Plummer distribution but the child galaxies have
different densities. The velocity and mass profile of the isolated model are indicated with the thick
solid line.

5.B.1 Circular velocity
e circular velocity of the standard and high density child simulations is presented in
Fig. 5.18 (top) we notice that the density of the child galaxy does affect the results. e
simulation with the most dense child galaxies (striped line with stars) has a circular velocity
similar to that of the isolated galaxy (thick solid line). e compact configuration has a
circular velocity that is ∼ 100 km/s lower than the supercompact configuration. e
standard configuration has a circular velocity in between the results of the compact and
supercompact models. ere is no clear trend in the effect the child density has on the
circular velocity. A similar effect can be seen in the cumulativemass distribution of Fig. 5.18
(bottom). e difference between the runs is caused by the changed merger history. Even
though the configurations are based on identical Plummer realisations the difference in
density causes the merger history to be altered. Tidal stripping has less effect on the more
compact galaxies when they move through the dark-matter halo of the primary than it has
on the standard galaxy. Instead the higher density causes these galaxies to stay tightly
bound resulting in interactions between other children and the core of the primary galaxy.
Because of these interactions some of the child galaxies will be flung from the galaxy during
the first passage instead of merging with the primary.

In Fig. 5.19 we present the distribution of accreted material throughout the merger
remnant. In this figure we notice large differences between the different configurations
caused by the differences in child density. e solid line represents the standard simula-
tion where the mass is accreted on the outside of the primary (outside-in formation). For

5.B e effect of child density 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

F
ra

ct
io

n
fo

re
ig

n
(c

hi
ld

)
m

as
s

r [kpc]

R500 1:10 standard
R500 1:10 compact

R500 1:10 super compact

Figure 5.19: Origin of the
mass in the merger rem-
nant. Shown on the y-
axis the fraction of mass
that originates from the
primary galaxy at a cer-
tain radius from the cen-
ter. The mass is binned
in 1 kpc sized bins. If the
fraction is 0 then there is
no contribution in mass
from the child galaxies.

the denser children the mass is accreted closer to the core of the primary galaxy. is is
the result of the less effective tidal-stripping described in the previous §. e dense child
galaxies are able to progress further to the core of the merger remnant before they break
up and are accreted. While the standard galaxies loose much of their material outside
the core. is effect is best indicated by the supercompact configuration. In the merger
remnant of this simulation most of the mass in the inner 8 kpc originates from the child
galaxies.While in the other configurationsmost of themass in this inner part of themerger
remnant originates from the primary.

Concluding we can say that the density has no effect on the size of the merger remnant,
but it does have an effect on how the remnant is build-up. With either mass being accreted
on the outskirts (low density children) or in the inner parts of the merger remnant (high
density children).

6|How to simulate the Milky
WayGalaxy on a star-by-star
basis

We report on the performance and optimizations carried out in our gravitational N-body tree-code
Bonsai with which we plan to perform a simulation of the Milky Way Galaxy on a star-by-star
basis. Here we report on the code optimizations and our preliminary simulations using 66 billion
particles on the Titan supercomputer with up to 4096 GPUs and 65536 CPU-cores. Our code en-
ables us to simulate the Galaxy on a star-by-star basis. To perform such simulations we completely
redesigned the gravitational N-body tree algorithms to fully benefit from the parallel GPU and all
the CPU-cores available per GPU. We have solved the load-balancing issues related to distribut-
ing the calculation effectively over many GPUs. As a consequence our calculations achieve a high
sustained performance even with a relatively small number of particles. e GPU kernels compute
at an aggregate rate of 7090Tflops, while the sustained application performance is 4227Tflops. At
this speed we can simulate the 10Gyr evolution of the entire Galaxy in 10 days.

Jeroen Bédorf, Evghenii Gaburov, Keigo Nitadori, Michiko S. Fujii, Tomoaki Ishiyama and
Simon Portegies Zwart

An extended and improved version of this chapter is published in the SC14 proceedings, 2014

98 Parallel Bonsai

Figure 6.1: Edge-on view of the simulated Milky Way Galaxy. To the left is an optical representation,
the computer code structure is illustrated to the right (in green).

6.1 Introduction

e Milky Way Galaxy is composed of about 100 billion stars that form a disk and nucleus
surrounded by a dark matter halo. Each star in the Galaxy attracts each other star. Numer-
ically such gravitational interactions are most accurately simulated via directN-body force
evaluations, in which each of the N objects requires the resolution of N − 1 interactions
per time-step (Heggie and Hut 2003). e N2 time complexity of this algorithm, how-
ever, would render the time-to-solution for a galaxy simulation unrealistically long. Most
Galaxy simulations therefore adopt the hierarchical Barnes-Hut tree algorithm (Barnes
and Hut 1986), which has an N log(N) time complexity. Figure 6.1 depicts an image of
the simulated Galaxy in which an ‘observational’ rendition is presented to the left that
morphs into a numerical representation of the tree-structure in the N-body code towards
the right.

Earlier simulations of galaxies have been performed using tree-codes with five hun-
dred thousand (Besla et al. 2010) to tens of millions (Bédorf and Portegies Zwart 2013;
Dubinski and Chakrabarty 2009) particles. Each particle in these simulations represents
a total mass of >∼ 5000 M⊙. ese studies are used to understand the structure of the
bar (Athanassoula 2012), spiral arm formation (Dubinski et al. 2009; D’Onghia et al.
2013) and dynamics (Fujii et al. 2011; Grand et al. 2012b; Baba et al. 2013), pitch an-
gle and galactic shear (Grand et al. 2013) and the warping of the stellar disk (Dubinski
and Chakrabarty 2009). e largest simulation of a disk galaxy so far has been performed
for educational purposes, with 100million particles (Dubinski 2008). Recently Fujii et al.
(Fujii et al. 2011) and Sellwood (Sellwood 2013) demonstrated that the relatively small
number of particles adopted in those simulations is not sufficient to accurately resolve
relaxation processes and tend to overproduce the dynamical heating of the disk. ey con-
clude that the number of particles in disk galaxy simulations should be increased by at
least a factor 100 in order to accurately reproduce the intricate non-linear dynamics of the
internal structure of a Milky Way sized galaxy (Sellwood 2013) (although this number is
quite uncertain (Fujii et al. 2011)). is realization has lead to the requirement to further
optimize tree-codes for accuracy and performance.

Previous tree-codes used for simulating galaxies are not as well optimized as the code
we describe here. Some of these earlier codes are parallel but scale relatively poor to large

6.1 Introduction 99

number of processors, typically with an <∼ 50% efficiency for up-to 128 cores (Fortin
et al. 2011). ere is a clear need for improving the performance and concurrency before
it becomes possible to simulate the Milky Way galaxy with sufficient resolution to resolve
these issues. With the code described in this paper we are able to simulate a galaxy on a
star-by-star basis, which should be sufficient resolution to address these questions and may
therefore change our understanding of the dynamical evolution of disk galaxies.

We adopted the classic Barnes-Hut tree algorithm (Barnes and Hut 1986; Barnes
1990) for our simulations. In this algorithm the distribution of particles is recursively par-
titioned into octants until the number of particles in an octant is smaller than a critical
value (we use 16). Once a tree-structre is built and its multipole moments are computed,
the code proceeds with the force calculation step. For this, we adopt a geometric angle
criterion, called the opening angle (or multipole acceptance criterion), θ, whose purpose is
to decide whether or not the substructure in distant octants can be used as a whole. If the
opening angle is infinitesimal the tree-code reduces to a rather inefficient direct N-body
code with leap-frog time integrator. For a finite θ, however, sufficiently distant octants
from a target particle can be used as a whole, and the partial forces from the constituent
particles are calculated via a multipole expansion approximation. e time complexity for
calculating the force between all particles in the entire system reduces with the tree-code
to ∝ N log(N).

e tree algorithm is quite efficient in calculating forces and parallelizes reasonably
well to many cores. Tree-codes have therefore been used in various incarnations such as
TreePM (Xu 1995; Bode et al. 2000; Bagla 2002; Dubinski et al. 2004; Springel 2005;
Yoshikawa and Fukushige 2005; Ishiyama et al. 2009; Portegies Zwart et al. 2010).Most of
the previous tree and TreePM codes have been tuned for massively parallel supercomput-
ers without accelerators (Warren and Salmon 1991; Dubinski et al. 2004; Springel 2005;
Ishiyama et al. 2009; Portegies Zwart et al. 2010; Ishiyama et al. 2012) except for codes
optimized for relatively small clusters including accelerators such as GPUs and GRAPEs
(Makino 2004; Yoshikawa and Fukushige 2005; Hamada et al. 2009b; Hamada and Nita-
dori 2010; Nakasato et al. 2012). e next logical step is to develop a tree-code which runs
efficiently on massively parallel supercomputers with accelerators, because such systems
are becoming mainstream for the current and next generation supercomputers as repre-
sented by Titan (at the Oak Ridge National Laboratory). e move from CPU-based to
GPU-based supercomputers is motivated by smaller cost per flop and considerably smaller
CO2 footprint of the latter.

e new accelerator technology requires a complete redesign of the algorithm and opti-
mization strategy in order to achieve high performance, but the reward is a tenfold increase
of performance on a single GPU compared to the CPU. On Titan, which is the world’s
largest GPU supercomputer, at the time of writing, the theoretical peak performance is
3.95 Tflops per node (in single precision and excluding CPU performance), but it is 0.128
Tflops per node on K computer. e memory and network performance per flop is there-
fore much smaller on Titan than it is for K computer. While achieving high performance
on the GPU, we increase the need for a high-speed network, which requires an even more
aggressive strategy for minimizing the communication cost. In addition, the added GPU
also causes an extra bottleneck to overcome in the communication with its host.

While accelerators greatly improve the efficiency per node, massive parallel comput-

100 Parallel Bonsai

ing with GPUs has become one of the most challenging problems. One crucial bottleneck
is the relatively slow communication between the GPU and its host, which directly lim-
its the overall performance. Designing a strategy to minimize this communication will
therefore result in a general improvement of a wide variety of algorithms because our op-
timization strategy is not specific to N-body simulations. Nor is our optimization strategy
specific to Titan, but, in fact, can be applied on any large GPU-equipped supercomputer,
such as the Tsubame (at the Tokyo institute of Technology’s Global Scientific information
Center) series of supercomputers, HA-PACS (at the University of Tsukuba), Tianhe (Na-
tional Supercomputing Center of Tianjin), Nebulae (NSCS), PLX-GPU (CINECA) and
LGM (Leiden). We have realized two important improvements compared to earlier work
with parallel tree-codes, which are: 1) porting the tree-code, including the tree-building
and tree-walk, entirely to the GPU and 2) utilizing the host CPU for orchestrating the
communication, administrative purposes, force-feeding the GPU and data reduction. Im-
provement 1) allowed us to achieve high performance by efficiently utilizing each GPU
and improvement 2) enables us to scale the code to 4096 nodes even with a rather modest
number of particles.

6.2 Quantitative discussion of current state of the
art

We adopted the classic Barnes-Hut tree algorithm (Barnes and Hut 1986; Barnes 1990)
for our simulations. In this algorithm the distribution of particles is recursively partitioned
into octants until the number of particles in an octant is smaller than a critical value (we
use 16). Once a tree is built and its multipole moments are computed, the code proceeds
with the force calculation step. For this, we adopt a geometric angle criterion, called the
opening angle (or multipole acceptance criterion), θ, whose purpose is to decide whether
or not the substructure in distant octants can be used as a whole. If the opening angle is in-
finitesimal the tree-code reduces to a rather inefficient direct N-body code with leap-frog
time integrator. For a finite θ, however, sufficiently distant octants from a target particle
can be used as a whole, and the partial forces from the constituent particles are calculated
via a multipole expansion approximation. e time complexity for calculating the force
between all particles in the entire system reduces with the tree-code to ∝ N log(N).

e tree algorithm is quite efficient in calculating forces and parallelizes reasonably
well to many cores. Tree-codes have therefore been used in various incarnations such as
TreePM (Xu 1995; Bode et al. 2000; Bagla 2002; Dubinski et al. 2004; Springel 2005;
Yoshikawa and Fukushige 2005; Ishiyama et al. 2009; Portegies Zwart et al. 2010).

Most of the previous tree and TreePM codes have been tuned for massively parallel
supercomputers without accelerators (Warren and Salmon 1991; Dubinski et al. 2004;
Springel 2005; Ishiyama et al. 2009; Portegies Zwart et al. 2010; Ishiyama et al. 2012) ex-
cept for codes optimized for relatively small clusters including accelerators such as GPUs
and GRAPEs (Makino 2004; Yoshikawa and Fukushige 2005; Hamada et al. 2009b;
Hamada and Nitadori 2010; Nakasato et al. 2012). e next logical step is to develop
a tree-code which runs efficiently on massively parallel supercomputers with accelerators,

6.3 Implementation 101

because such systems are becoming mainstream for the current and next generation su-
percomputers as represented by Titan (at the Oak Ridge National Laboratory). e move
from CPU-based to GPU-based supercomputers is motivated by smaller cost per flop
and considerably smaller CO2 footprint of the latter. For example, K computer energy
efficiency is 892.86 Mflops/Watt compared to only 3333 Mflops/Watt for Titan1. We
therefore expect that new exascale supercomputers will be equipped with some type of
accelerator (see § 6.7).

e new accelerator technology requires a complete redesign of the algorithm and
optimization strategy in order to achieve high performance, but the reward is a tenfold
increase of performance on a single GPU compared to the CPU. On Titan, which is the
world’s largest GPU supercomputer, the theoretical peak performance is 3.95 Tflops per
node (in single precision and excluding CPU performance), but it is 0.128 Tflops per
node on K computer. e memory and network performance per flop is therefore much
smaller onTitan than it is for K computer.While achieving high performance on theGPU,
we increase the need for a high-speed network, which requires an even more aggressive
strategy for minimizing the communication cost. In addition, the added GPU also causes
an extra bottleneck to overcome in the communication with its host.

While accelerators greatly improve the efficiency per node, massive parallel comput-
ing with GPUs has become one of the most challenging problems. One crucial bottleneck
is the relatively slow communication between the GPU and its host, which directly lim-
its the overall performance. Designing a strategy to minimize this communication will
therefore result in a general improvement of a wide variety of algorithms because our op-
timization strategy is not specific to N-body simulations. Nor is our optimization strategy
specific to Titan, but, in fact, can be applied on any large GPU-equipped supercomputer,
such as the Tsubame (at the Tokyo institute of Technology’s Global Scientific information
Center) series of supercomputers, HA-PACS (at the University of Tsukuba), Tianhe (Na-
tional Supercomputing Center of Tianjin), Nebulae (NSCS), PLX-GPU (CINECA) and
LGM (Leiden). We have realized two important improvements compared to earlier work
with parallel tree-codes, which are: 1) porting the tree-code, including the tree-building
and tree-walk, entirely to the GPU and 2) utilizing the node CPU for orchestrating the
communication, administrative purposes, force-feeding the GPU and data reduction. Im-
provement 1) allowed us to achieve high performance by efficiently utilizing each GPU
and improvement 2) enables us to scale the code to 4096 nodes even with a rather modest
number of particles.

6.3 Implementation
Given the enormous computational capabilities of the Kepler GPU, communication be-
tween the MPI processes can easily become the major scalability barrier, especially when
there are 1000+ nodes2.

In our largest simulation of 65.5 billion particles on 4096 GPUs (16 million particles
per GPU), the GPU tree-walk kernel on the local data completes in two seconds, within

1see http://www.top500.org/
2We use one GPU per MPI process.

102 Parallel Bonsai

which most of the communication among all 4096 GPUs must be hidden. Equivalent
CPU code require more time, by an order of magnitude, for this operation and hiding
communication behind the calculation is then considerably easier.

Here we describe our optimizations for K20X hardware of the GPU tree-walk kernel
and our approach to minimizing and hiding communication. Our parallel GPU tree code
is called Bonsai and is publicly available for download3.

6.3.1 Tree-walk kernel optimizations
e single GPU code consists of three fundamental parts: tree-construction, computation
of multipole moments, and tree-walk in which inter-particle gravitational forces are com-
puted. In contrast to previous works (Hamada et al. 2009b; Hamada and Nitadori 2010),
in Bonsai all of these steps are carried out on the GPU, leaving the CPU with lightweight
tasks such as data management and kernel launches.

e assimilation of the tree-walk and force computations within a single GPU kernel
allows us to achieve excellent computational efficiency by not wasting GPU bandwidth
to store particle interaction lists into memory. Instead, the interaction lists are stored in
registers and evaluated on-the-fly during the tree-walk, therefore delivering superb perfor-
mance in excess of 1.7 Tflops on a single K20X. e details of the tree-walk on NVIDIA
Fermi architecture are described in (Bédorf et al. 2012) or see Chapter 4.

It is considerably more efficient to walk the tree on a GPU by a group of spatially
nearby particles rather than by one particle at a time (Barnes 1990). ese nearby particles
have similar paths through the tree, and therefore similar interaction lists; by building an
interaction list that is valid everywhere within the group, we reduce both the number of
tree-walks and we make each of them efficient via thread cooperation inside a thread-
block. In our previous work the grouping is based on the underlying tree-structure, such
that tree-cells with the number of particles below a certain number (we use 64) are used as
a group. However, due to the geometric nature of space partitioning by octrees, the average
number of particles in such a group was much smaller than 64, which resulted in a waste
of compute resources. We solved this by sorting the particles into a Peano-Hilbert space
filling curve (PH-SFC) (Hilbert 1891) and splitting it into groups of 64 particles. e final
criterion is to enforce a maximal geometric size of a group: if a group exceeds this size it
is recursively split further into smaller groups.

e original gravity kernel was tailored to the Fermi architecture and contained a large
number of prefix sum operations. ese operations are used to communicate between
threads in a thread-block, which is required for the on-the-fly construction and evalu-
ation of the interaction lists during the tree-walk phase. is required on average about
1.2KB of shared memory per warp4. While efficiency of such a kernel on Fermi was good,
we noticed that its performance on Kepler was below the expectations, in particular when
one considers the ratio of the peak performance between the Kepler and Fermi chips. We
suspected that the excessive use of shared memory is at fault for the lower than expected

3https://github.com/treecode/Bonsai/tree/Titan
4A warp is a group of threads which are executed in lock-step. On current NVIDIA hardware, a warp has 32

threads. Multiple warps make up one thread-block, and warps in a thread-block can be synchronized with the
__syncthreads() intrinsic which allows inter-warp communication via share-memory.

6.3 Implementation 103

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1768 1746

829

638

460

C2075/original K20X/original K20X/tuned

Tree code

GFlops

Direct N-body

Force kernel performance Figure 6.2: Performance of the grav-
itational force kernel. The blue bars
indicate the performance of the Fermi
kernel on the C2075. The green bars
indicate the performance of the Fermi
kernel on a K20X. The gold bar shows
the performance of the K20X tuned
kernel. With tuning, the K20X is twice
as fast as the original kernel, and is
4x faster than the C2075. Also pre-
sented here is the performance of a
direct N -body kernel running on the
same hardware using NVIDIAs CUDA
SDK 5.5.

kernel performance, since it is much slower than registers, in particular on the Kepler chips
in combination with 4-byte bank mode (all the data stored in shared memory are either
floats or integers). Furthermore, because we already updated the Fermi kernel to be warp-
synchronous, we can now eliminate most of the shared memory in favour of registers with
help of the newKepler __shfl instructions, which allow intra-warp communication with-
out the need of shared memory. During this optimization step we also took advantage of
the __ballot and __popc instructions to convert our binary prefix sums away from shared
memory and __shfl (for a better performance we write some of the basic prefix-sum re-
lated code using inline PTX). ese optimizations resulted in a more efficient code and
a reduction of the shared memory requirement by 90% (128 bytes per warp). e kernel
runtime was reduced by 2× and is now consistent with our expectations based on the peak
performance ratios. In Fig. 6.2 we show the performance of the different implementations.

6.3.2 Parallelization
Maintaining Bonsai's excellent single-GPU efficiency when scaled to many GPUs re-
quires both the minimization of the amount of data traffic between different GPUs, and
hiding the communication steps behind computations. We achieve this by carefully se-
lecting, combining and modifying different well-known parallelization strategies. After
experimenting we eventually settled on a combination of a Local Essential Tree (LET)
and Space Filling Curve (SFC) methods.

In the original LET method, the physical domain is divided into rectangular sub-
domains via a recursive multi-section algorithm. Each process uses these sub-domains to
determine which part of its local data will be required by a remote process. is part is
called the Local Essential Tree structure. After a process has received all the required LET
structures, they are merged into the local tree to compute the gravitational forces.

In the SFC method, particles are ordered along an SFC curve which is split into equal
pieces that define the sub-domain boundaries. e latter will no longer be rectangular; but
they have fractal boundaries instead. In Fig. 6.3 we illustrate a SFC and its decomposition

104 Parallel Bonsai

Figure 6.3: Example of domain decomposition with Peano-
Hilbert space filling curve (black solid line). The colors
indicate the five separate domains. The gray squares cor-
respond to the tree-cells, which consist solely of particles
belonging to a single process.

to 5 GPUs. is makes it harder to build a compact LET, and instead common SFC-based
tree-codes either export particles to remote processes and import results back (Springel
2005), or request sub-trees from the remote processes (Warren and Salmon 1993; Winkel
et al. 2012). Such methods generate multiple communication steps during the tree-walk.

eLETmethod requires the least amount of communication.erefore we combined
LET with the SFC domain decomposition which guarantees that sub-domain boundaries
are tree-branches of a hypothetical global octree. is step allows us to skip merging the
imported structures into our local-tree, but rather process them separately as soon as they
arrive, therewith permitting to hide communication behind computations.

Domain Decomposition

Each GPU computes its corresponding local domain boundaries, and the CPUs deter-
mine global domain boundaries which are used for mapping particle coordinates into cor-
responding Peano-Hilbert (PH) keys (Hilbert 1891). Process 0 subsequently gathers a
sample of PH-keys from the remote processes and combines these into a global PH-SFC.
is SFC is cut into p equal pieces and the beginning and ending PH key determines the
sub-domains of the global domain, which are broadcast to all of the processes. We use
two load balancing strategies: one is using an approximately equal number of particles per
process, and the other is weighting this number by the total number of flops by the GPU
tree-walk kernel.

With the domain boundaries at hand, each GPU generates a list of particles that are
not part of its local domain, and these particles are exchanged between processes. After
the particle data exchange is completed, each GPU rebuilds its tree-structure and com-
putes the corresponding multipole moments. At the end of this step, each process has all
necessary information to proceed with the force calculation. We would like to stress that
each local tree is a non-overlapping branch of a global octree, because we use the PH-
SFC as a basis for the domain decomposition. is guarantees binary consistency of the
domain decomposition independently of the number of processes, and allows us to hide
LET communication behind computation.

6.3 Implementation 105

Computing the gravity

Due to the long-range nature of Newton’s universal law of gravitation (Newton 1687), the
computation of mutual forces is by definition an all-to-all operation.erefore, to compute
forces on local particles, a target process requires communication with all other processes.
We do this by forcing remote processes to send the required particle and cell data (LETs)
to the target process. While the GPU on this target process is busy computing forces from
the local particles, the CPU is busy preparing particle data for export, as well as sending
and receiving data.

e preparation of particle data for export to remote processes is both floating point
and memory bandwidth intensive, which must overlap with the communication between
the processes. We achieve this via multi-threading, with which we split each MPI process
into three thread-groups: one thread is responsible for MPI communication, to which
we refer as the communication thread, another thread drives the GPU, which we call the
driver thread, and the rest of the threads are busy computing, which we collectively call
the compute threads.

In the first step the compute threads check whether it is sufficient to send only top
level parts of the local tree to each remote process. If so, the necessary data is scheduled for
export. When checks are completed, the communication thread exchanges the prepared
data with the rest of the processes via a customized all-to-all communication, which
uses a two-dimensional communicator splitting algorithm (Ishiyama et al. 2012) to reduce
latency, but at the price of doubling the data traffic. is step communicates ∼90% of the
LET trees.

In the second step, the compute threads prepare the LET structures to be exported
to remote processes that require additional data to what was communicated in the first
step. At the same time, the communication thread is busy sending prepared LET data as
it arrives from the compute threads, as well as receiving LET data from remote processes
which it passes to the driver thread. e driver thread merges these LET trees into a new
tree, in which LET structures form branches. In other words, this builds the hypothetical
global tree on the fly, but only using LET data currently received from remote processes.
Whenever the GPU is ready with the gravitational force kernel, either on the local data or
the already received remote data, the newly built LET tree is force-fed to the GPU.

Once the gravitational forces of all local particles are computed, the particles are ad-
vanced forward in time using a 2nd-order leap-frog integration scheme (Hut et al. 1995)
adopting a shared time-steps. Currently Bonsai supports block time-step integration
mode (McMillan 1986) in the serial implementation, in which a subset of the groups will
be advanced in time. A group is added to the subset if at least one of the particles belonging
to the group has to be updated. is is determined using the time-step criteria, which is
based on the particles crossing time and free-fall time. In the block time-step method the
computation of the gravitational forces scales linearly with the number of active groups.

is block-time stepping can be extended to the parallel implementation. Currently
the boundaries of the full-tree (all particles) are used to exchange the LET structures. If
we use the boundaries of the active groups instead, in general the physical domain size,
which is composed of active groups in the process, should be reduced. is in turn reduces
the amount of data that needs to be pushed to the remote MPI process during the LET

106 Parallel Bonsai

exchange phase. e data still has to be sent to the processes containing active groups, but
the amount of data is reduced. e long-range nature of the gravity makes it non-trivial
to eliminate the communication phase entirely, but for most processes only the root-node
of the local-tree (which is small) has to be communicated. is is mostly a latency bound
operation.

6.4 Simulating the Milky Way Galaxy
We performed N-body simulations of the Milky Way Galaxy, which is composed of a
disk of stars with a central bulge and a surrounding dark matter halo. We adopted a typical
model for the Milky Way (Widrow et al. 2008), which has an NFW (Navarro et al. 1996)
density distribution with a mass of 6.7×1011 M⊙ for the dark matter halo, an exponential
disk of 4.0 × 1010 M⊙ for the galactic disk, and Sérsic density profile with a mass of
6.4× 109 M⊙ for the bulge.

For our largest simulation using these initial conditions, we adopted 1 billion particles,
which is an order of magnitude larger than any simulations of the Milky Way Galaxy
conducted before. We adopted an opening angle of θ = 0.4 which is sufficiently small
to resolve the fine structures of spiral arms. Generating these initial conditions is quite
expensive, in terms of computational time. With a snapshot size of about 37GByte, by
extrapolation, an initial conditions snapshot with 66 billion particles will be 2.4TByte
in size and is impractically long to generate with the current galaxy generation codes.
We therefore adopted a Plummer model (Plummer 1911) generated at runtime as initial
conditions for our performance measurements.

A Plummer model is spherical and in virial equilibrium, but with a density gradient
similar to the NFW model (Navarro et al. 1996), which we adopted for our Milky Way
model. As we show in the following section, the performance of running a Plummermodel
is therefore quite similar to that of the NFW model.

Our weak-scaling measurements are performed using 16 million particles per node
totaling about 66 billion particles for our maximum of 4096 nodes. e mass resolution of
these runs is about 10M⊙ per particle, which is more than a factor of 500 smaller than in
earlier simulations of the Milky Way Galaxy, which achieved > 5000 M⊙ per particle.

Our simulations are unique in that we now can resolve all scales simultaneously and
self-consistently, from the dynamics of individual stars to the global dynamics of the Milky
Way Galaxy. We focus on the self-consistent gravitational evolution, which is well under-
stood from first principles and does not require any underlying assumptions. e main
numerical problems hide in the wide range of scales to cover and the massive computa-
tional requirements.

6.5 System and environment where performance
was measured

e tree-code we use to perform our calculations was optimized to run on the NVIDIA
Fermi andKepler architectures.e highest performance is obtained on theK20X (GK110

6.5 System and environment where performance was measured 107

Setup LGM HA-PACS Titan
GPU model GTX480 M2090 K20X
GPU/node 2 4 1
Total GPU 24 1024 18688
GPUs used 24 1024 4096
GPU RAM 1.5 GB 5.4 GB 5.4 GB
CPU model Xeon E5620 Xeon E5-2670 Opteron 6274
CPU/node 2 2 1
Total CPU 24 512 18688
CPUs used 24 512 4096
Node RAM 24GB 128GB 32 GB
Network IB-SDR IB-QDRx2 Cray Gemini

Figure 6.4: Hardware used
for our parallel simulations.
The first two machines
have Intel based architec-
tures with multiple GPUs
per node. The last machine
is Titan with 1 GPU per
node. Our code was ini-
tially developed on LGM,
but the results reported
here were produced using
Titan.

architecture), because of the hardware improvements introduced with the Kepler gener-
ation GPUs. e code operates on distributed memory systems with one or more GPUs
per node. So long as there are enough CPU cores per GPU, we can run our code efficiently
on several architectures, including the Little Green Machine at Leiden University, HA-
PACS at the University of Tsukuba and on Titan at Oak Ridge National Laboratory. In
Tab. 6.4 we summarize the specific hardware configuration for these machines.

Titan is by far the largest machine on which we have run our code and the results
presented in this work are all obtained by runs on this machine. e Titan architecture
allows us to use all available 16 CPU cores per GPU. Although other configurations will
work similarly, we regularly refer back to this specific runtime architecture. In full operation
Titan is composed of 18,688 nodes each containing anAMDOpteron 6274 16-core CPUs
and one NVIDIA Tesla K20X GPU. e nodes are connected via a 3D torus network and
are using the Cray Linux Environment distribution.

eHA-PACS architecture allows for better efficiency since the available CPU perfor-
mance normalized per GPU performance is higher during the LET construction. With
more than one GPU per node, the total amount of network communication is reduced
since more communication can take place through shared memory. Furthermore, since
the Fermi GPU is 4 times slower during the gravity phase it offers more time to hide the
communication time. is improves the efficiency, but also delivers a lower application
performance.

e Little Green Machine (LGM) in Leiden (the Netherlands), is a stereotypical low-
budget GPU cluster as are built by many large academic research groups. e system con-
tains two quad-core CPUs and 2 GPUs per node. For a total of about 20 nodes. Most of
the initial development took place on this machine.

e Bonsai code is optimized for the latest NVIDIA CUDA architectures and for
the measurements in this work we only take into account the version that is optimized
for the K20X (see § 6.3). e code runs on any GPU-CPU-hybrid architecture and uses
all available CPU cores per GPU. e CPUs are then used for network communication,
for preparing data to be sent over the network and for force feeding the GPU. e GPUs
handle the data processing and create the other data structures.

108 Parallel Bonsai

6.6 Performance results

We present the performance results by calculating floating point operations comprising
only force calculations. We ignore contributions from tree construction, computation of
multipole moments, multipole acceptance criteria during the tree-walk, all LET-related
operations (on the CPU), initial condition generation, diagnostics, file I/O, etc. e tim-
ing of these operations however, are taken into account when we calculate the time-to-
completion.

6.6.1 Operation counts

e accelerations and potential of a particle i, ai and ϕi, which we collectively call the
force, are computed by

ϕi =
∑
j

[
− mj

|rij |
+

1

2

tr(Qj)

|rij |3
− 3

2

rTijQjrij

|rij |5

]
, (6.1)

ai =
∑
j

[
mjrij
|rij |3

− 3

2

tr(Qj)rij
|rij |5

−3Qjrij
|rij |5

+
15

2

(rTijQjrij)rij

|rij |7

]
, (6.2)

with rij = rj − ri. Here, mj , rj , Qj are mass, position, quadrupole moments (in a
3 × 3 symmetric matrix) of particle j respectively. Computation of one particle-particle
interaction (p-p) without the quadrupole moment term consists of 4 subtraction (sub), 3
multiplication (mul), 6 fused-multiply-add (fma), and 1 reciprocal-square-root (rsqrt) in-
structions. In this article, we count 4 floating-point operations for the reciprocal-square-
root, which results into a total of 23 operations for p-p. A particle-cell interaction (p-c)
with quadrupole corrections consists of 4 sub, 6 add, 17 mul, 17 fma and 1 rsqrt, which
results in 65 operations for p-c interaction5. e total number of flops is obtained by mul-
tiplying these numbers by the total number of p-p and p-c (as recorded during execution),
and divided by the execution time.

Note that (Warren and Salmon 1992; Warren et al. 1998; Kawai et al. 1999; Hamada
et al. 2009b; Hamada and Nitadori 2010) used 38 for the operation count of a p-p interac-
tion. Although it is convenient to use the same operation count for comparing one record
with the other, this can overcount the operations for hardware with fast rsqrt support. e
last GBP winner (Ishiyama et al. 2012) counted 51, within which about the half was paid
for the calculation of a cut-off polynomial.

5 e operation counts were verified with a disassembling command cuobjdump -sass in the CUDA
toolkit.

6.6 Performance results 109

Operation computation unit wall-clock time [s]
CPU GPU 1 GPU 1024 GPUs 4096 GPUs

Sorting SFC — X 0.17 0.16 0.18
Domain Update X — — 0.36 1.01
Tree-construction — X 0.13 0.14 0.14
Tree-properties — X 0.04 0.09 0.10
Compute gravity Local-tree — X 4.30 1.84 1.84
Compute gravity LETs — X — 3.53 3.91
Compute gravity GPU — X 4.30 5.37 5.75
Gravity + LET X X — 5.44 7.06
Other X X 0.20 1.34 1.01
Total 4.80 7.53 9.50
Interaction type interaction count per particle

1 GPU 1024 GPUs 4096 GPUs
Particle-Particle 1724 1720 1649
Particle-Cell 6595 8338 8983

Table 6.1: Time breakdown for three different setups; single GPU, 1024 GPUs and 4096 GPUs. We
use the weak-scaling results with 16M particles per GPU using a Plummer distribution and θ = 0.4.
The data presented shows the major parts of the algorithm and by which computation unit they are
primarily executed. The first column indicates the function. The second and third the computation
units used. The following three columns present the timings for 1 node, 1024 nodes and 4096 nodes
respectively. The ‘Gravity+LET’ row indicates the time it takes to compute the gravity including
communication. If this is equal to the ‘Compute gravity GPU’ then all the communication time of
the gravity step is hidden. The ‘Other’ data includes the time to allocate memory, integrate particles
and any waiting times induced by load-imbalance. The bottom two rows give the average number of
particle-particle and particle-cell interactions.

6.6.2 Parallel performance

To evaluate the scalability and parallel performance of Bonsai we conduct both weak and
strong scaling tests. In both cases we use the virialized Plummer model(Plummer 1911)
as initial conditions (see § 6.4). In the weak scaling test we used 16 million particles per
GPU, and strong scaling is tested with a 1 billion particle Plummer model. We explore
weak scaling of Bonsai from 1 to 4096 GPUs, and strong scaling from 64 to 1024 GPUs.
It is currently not possible to use fewer than 64 GPUs in the latter case due to limited
amount of GPU memory: the parallel version of Bonsai is currently unable to hold more
than 20million particles using a K20XGPU.We also conducted a strong scaling test with a
1-billion-particle Milky Way Galaxy model. In both tests we use θ = 0.4 as opening angle,
which is satisfactory to properly model disk galaxies, such as the Milky Way (Bédorf and
Portegies Zwart 2013).

In Fig. 6.5 we show both weak scaling results and parallel efficiency. In particular, we
would like to stress that the efficiency of Bonsai on 4096 GPUs is almost 70%, and the
average time spent per iteration in this 65.5 billion particle simulation is 9.6 sec. In Tab. 6.1
we present the breakdown of the timing results.

In Fig. 6.6 and Fig. 6.7 we present the strong scaling results up to 1024 GPUs using

110 Parallel Bonsai

Figure 6.5: Weak scaling for 1 to 4096 nodes with 16 million particles per node. The red solid line
shows the performance of the tree-walk kernel running on the GPU. The green solid line shows the
performance of the gravity step, including the time to communicate LET structures. The blue solid
line shows the performance of the full application. The dashed black line indicates linear scaling and
finally the solid black line shows the parallel application efficiency with respect to a single GPU. The
lower right inset gives the efficiency of the code from 1 (100%) to 4096 (67%) nodes.

Figure 6.6: Strong scaling from 64 to 1024 nodes with 1 billion particles in total. The x- and y-axis
show the number of GPUs used and the performance respectively. The top panel shows the results for
a Milky Way model. The bottom panel shows the Plummer model, similar as used in the weak scaling
simulations. The red solid lines show the performance of the tree-walk kernel running on the GPU.
The green solid lines show the performance of the gravity step, including the time to communicate
LET structures. The blue solid lines show the performance of the full application. The dashed black
lines indicate linear scaling.

6.6 Performance results 111

Figure 6.7: As Fig. 6.6, but showing the wall-clock time per iteration on the y-axis.

1 billion particles. e Milky Way initial conditions (top panel) continues to scale up to
1024 nodes, whereas the Plummer model (bottom panel) shows a decline. is difference
originates from the size of the interaction list which for the Plummer model (7828 ele-
ments/particle) is nearly 50% larger than that of the Milky Way (5347 elements/particle).
is, compounded by the need to import more data on 1024 than on 64 GPUs due to the
increase of surface-to-volume ratio, explains the superior strong scaling properties of the
Milky Way model. In particular, with as little as 1 million particles per GPU, the parallel
efficiency of Bonsai is almost 50%, with an average time spent per iteration of just over
half a second!

In both strong and weak scaling Bonsai is able to hide most of the communication
time behind GPU computations. With about 4096 nodes, the communication time ex-
ceeds only slightly the GPU compute time. e domain decomposition, which has O(g)
complexity with g the number of GPUs, is currently handled by a single process. us
for some g > gcrit

6 the contributions from communication and serial parts of the code
become noticeable.

6.6.3 Time-to-solution
We estimate the time-to-solution for a 66 billion particle simulation of the Milky Way
Galaxy running on the Titan supercomputer. e strong scaling results indicate that the
average time per iteration of the Milky Way model is shorter by a factor of ∼ 0.67 com-
pared to that of the Plummer model. Each step of the 66 billion particle simulation using
a Plummer model running on 4096 nodes of Titan takes ∼ 9.5 seconds. Such a step for
the Milky Way Galaxy model would therefore last for about 6.4 seconds. With a soften-

6gcrit ≈ 4096 in the current version of the code

112 Parallel Bonsai

ing of 10 parsec, the minimal time step required for an accurate simulation is 0.075Myr
(this corresponds to the time that two particles pass each other within a softening length).
is softening length was also used in our earlier calculations (Bédorf and Portegies Zwart
2013), and is considerably smaller than typically used in other Galaxy simulations (Du-
binski and Chakrabarty 2009; Fujii et al. 2011; Athanassoula 2012; Grand et al. 2012a).
If we desire to simulate the evolution of the Milky Way Galaxy for 10Gyr, the simulation
needs to make a total of 133 thousand time steps, each of which is 0.075Myr. With an
average of 6.4 seconds per time step when running on 4096 Titan nodes, the simulation
will finish within 10 days.

6.6.4 Peak performance
We achieved a sustained application performance of 4.23 Pflops on a 66-billion-particle
Plummermodel with 4096GPUs.When busy, theGPUswere processing at an aggregated
rate of 7.09 Pflops. is translates to 1.73 Tflops per GPU and in excess of 1 Tflop for
the overall application performance per node. e theoretical peak single precision perfor-
mance of 4096 Titan nodes, excluding CPUs is 16.07 Pflops. e GPU kernels operate at
44% of this number, while the overall application achieves 26% of this peak performance.

6.7 Discussion
One of the most important trends in parallel computing is the common availability of
multi-threaded cores, which brought parallel computing to our desktop. One of the most
important trends inmany-core programming has been the availability of low-budget graph-
ical accelerators, which brought high performance to our desktop. In the next step both
trends are combined in a single machine, much in the same way as it is realized in Titan,
together with a high-performance network. We expect that future large-scale scientific
simulations will more frequently be carried out using such hybrid architectures.

With our attempt to perform a detailed simulation of the Milky Way Galaxy we
demonstrate that hybrid architectures are ideally suited for scientific calculations. Our ef-
fort, however required us to completely redesign the N-body tree-code to make it operate
efficiently on GPUs in parallel with CPUs. e accessibility of GPUs as part of a parallel
multi-purpose platform would be enormously broadened if integrated compilers could de-
tect the GPU-optimizable parts of the code and offload them to the attached multi-core
hardware. Although this is unlikely to give the fine-tuned performance of Bonsai, it may
provide acceptable speed-up compared to CPU only code, which probably is sufficient
for most researchers. As it currently stands the performance of Bonsai is limited by the
network and serial parts of the algorithm. With further improvements to these parts it is
possible to let the algorithm scale even further on current generations of hardware. With
future GPUs likely having more on-board memory7 it will be easier to increase the amount
of work done by the GPU relative to amount of CPU work and network communication
for even further scaling.

7e NVIDIA Quadro K6000 has 12GB of on-board memory, twice that K20X as used in this work

6.7 Discussion 113

Our demonstration of the efficiency of running on a massively parallel heterogeneous
architecture indicates that hybrid hardware can give excellent performance. Our achieved
performance, the excellent scaling and the short time-to-solution has been realized by a
fundamental redesign of the gravitational tree algorithm.

An application performance of 1 Tflop per node allows us to model a system with
16 million particles/node at a rate of about 6.4 seconds/step. is substantial speed is
important for simulating a galaxy like the Milky Way, because the required simulation time
is an order of magnitude longer than the dynamical time-scale of the system. For example,
complete dynamical modeling of aMilkyWay galaxy requires 10Gyr of evolution, whereas
its dynamical time scale is ∼ 250 Myr. With so little wall-clock time per step, it is now
possible to model the history and future of the Milky Way within 10 day on a large GPU-
equipped supercomputer, like Titan.

Acknowledgments
It is a pleasure to thank Arthur Trew, Richard Kenway and Jack Wells for arranging direct access via Director’s
time, Mark Harris, Stephen Jones and Simon Green from NVIDIA, for their assistance in optimizing Bonsai
for the NVIDIA K20X, and Jun Makino for discussions. Part of our calculations were performed on Hector
(Edinburgh), HA-PACS (University of Tsukuba), XC30 (National Astronomical Observatory of Japan) and
LittleGreenMachine (LeidenUniversity).is work was supported by theNetherlands ResearchCouncil NWO
(grants #639.073.803 [VICI], #643.000.802 [JB], #614.061.608 [AMUSE] and #612.071.305 [LGM]), by the
Netherlands Research School for Astronomy (NOVA), the Japan Society for the Promotion of Science (JSPS),
MEXT HPCI strategic program and KAKENHI (under grand Number 24740115). is research used resources
of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

7|Conclusions

e last few years have seen a huge increase in computational power in the form of spe-
cial purpose hardware and new supercomputers. is is the direct result of the increas-
ing amount of parallelism available in current day computer chips. However, in order to
use this computational power, the user — or better, the developer — is forced to rethink
the design and implementation of algorithms. Without taking advantage of the available
multi-core technology there will hardly be any advantage of buying a new computer. We
see this trend in the Central Processing Unit (CPU) and the Graphics Processing Unit
(GPU), but also for example in the mobile phone industry where quad-cores are the cur-
rent day standard and octo-cores are slowly being introduced.

is thesis presents how we can benefit from the available processing power of these
many-core chips, in our case GPUs, when performing astrophysical simulations. is can
either be by implementing expensive, but accurate, algorithms such as direct N-body
methods (see Chapter 2) or by taking it a step further and transforming the hierarchical
Barnes-Hut tree-code method into a version that is suitable for many-core architectures
(see Chapters 3, 4 and 6). e resulting simulation codes have a performance that is one
to two orders of magnitude higher than previous versions. is allows for new kinds of
science and wider parameter searches. For example, the work in Chapter 5 is the result of
hundreds of simulations, while other works about the same topic usually do not perform
more than a dozen simulations.

In this work we kept the direct N-body method and the tree-code method strictly
separate, but in the future it might be beneficial to make use of both methods or make one
of the methods part of a larger (existing) code. We will discuss this and more in the next
paragraphs.

7.1 BRIDGE; Combining direct and hierarchical N -
body methods

e difference between particle numbers used in collisional and collisionless methods has,
because of their difference in scaling complexity, over the years only increased. Depending
on the problem, scientists either choose for high precision direct N-body methods or for
large particle numbers using approximation methods like the tree-code. Recently, how-
ever, methods have been introduced that try to combine the best of both worlds: the high

116 Conclusions

Figure 7.1: Performance comparison of a
suite of N -body codes. These codes are
included in the AMUSE software pack-
age. Visible are direct N -body codes that
scale as O(N2) and hierarchical codes
that scale as O(Nlog(N)). (Figure taken
from (Portegies Zwart et al. 2013))

100 101 102 103 104 105 106 107

N

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

t w
a
ll
 [
s]

N2

Nlog(N)

Hermite
MI6
ph4
Huayno
ph4_GPU

Gadget2
BHTree
Fi_3

Bonsai

accuracy of direct methods and the speed of tree-codes. In the BRIDGE algorithm by Fu-
jii et al. (2007) a direct N-body method is combined with a tree-code to integrate the
evolution of star clusters (which requires direct N-body methods) embedded in their host
galaxy (which requires an approximation method because of the large number of particles).
is allows for detailed simulations in the area of interest while still being able to use large
particle numbers. Since the method is based on two well known algorithms it is possible
to use the methods presented in this thesis to accelerate BRIDGE with GPUs.

With simulation codes becoming more complex and containing more advanced fea-
tures it becomes difficult to add new physics to existing codes without breaking other parts
of the codes. is is a common problem in computational sciences and software develop-
ment in general. Ideas often start off simple, but when something works you want to extend
it, which complicates matters. In AMUSE (Portegies Zwart et al. (2009)) a different ap-
proach is taken. Codes that are written for different specific purposes are combined into
one framework. is simplifies the development of the separate software products. e
other advantage is that you can combine simulation codes that have support for GPUs
with codes that do not and therefore still have the speed advantage of using GPUs. With
AMUSE it is possible to use the same script using different simulation codes and thereby
have the choice between speed, accuracy or available hardware. An example of this is shown
in Fig. 7.1 where the execution speed of a set ofN-body integration codes is demonstrated.
e figure shows the results of 4 direct N-body codes (Hermite, PhiGRAPE, Huayno
and ph4) and 3 tree-codes (Gadget2, Octgrav, Bonsai). Clearly visible is the dif-
ference in speed and scaling between the direct codes(O(N2) scaling) and the tree-codes
(O(N logN) scaling).

7.2 The future
With focus shifting to more complex methods and algorithms we see the advantage of the
versatility of GPUs and the shift from fixed function methods in the early 90s (like the
GRAPE) to programmable chips like GPUs. Even though Field Programmable Gate Ar-
rays (FPGAs) have been around for decades, their programming is difficult and expensive,

7.2 e future 117

certainly compared to chips that are programmable by software. It is much easier to de-
velop and acquire chips like GPUs, since they can be bought in many consumer computer
stores. e availability and price makes the GPU one of the most attractive high perfor-
mance computing devices currently available. It is of course still possible to develop faster
chips that require less energy if you make them dedicated, but the development cost and
specialized knowledge to build a chip that is competitive against the multi-billion dollar
gaming industry is higher than a university research team can afford (Makino and Daisaka
(2012)).

Also, simulation algorithms become more advanced and incorporate different tech-
niques to overcome, for example, the painful O(N2) scaling. An example of this is the
Pikachu code by Iwasawa et al. (in preparation). In the BRIDGE method one has to indi-
cate which particles will be integrated using the direct algorithm and which particles with
the tree-code algorithm when the initial conditions are created. e Pikachu code im-
proves on this by dynamically deciding which particles can be integrated using a tree-code
and which need direct N-body integration.

Even though approximation methods (tree-codes, FMM and Particle Mesh) are much
faster than directN-body methods, they do not reach the same level of accuracy. With the
increase in computational power, directN-body methods will always be used for new sim-
ulations with increasing N either to compare to previous results (e.g. performed with ap-
proximate methods) or for new science. e same is valid for the methods used to improve
the performance of directN-body simulations (block time-steps, neighbour schemes, etc.;
see Section 1.3). ese all have an influence on the precision. Although the difference is
smaller than the difference between direct methods and approximation based methods it
still might be of influence, especially considering the chaotic nature of the N-body prob-
lem (Miller (1964); Goodman et al. (1993)). erefore, with the increased compute per-
formance we will not only perform simulations with largerN , but also much more detailed
simulations with relatively small N to validate previously obtained results. Simulations of
globular clusters using high precision shared time-step algorithms are still far out of reach,
but one day we will have the computational power to perform exactly this kind of simula-
tion.

e increasing availability of GPUs in supercomputers and in small dedicated GPU
clusters shows the potential, increased usage and the faith of researchers in GPUs over the
last few years. And especially with the installation of GPUs in ordinary desktop computers,
as is done, for example, at the Leiden Observatory, this computational power is available
at everyone’s fingertips without having to request time on expensive supercomputers.

However, as we demonstrated inChapter 6, supercomputers are not obsolete. Formany
scientific questions we can increase the problem size indefinitely and by doing so we will
run out of the available resources of our desktop computer and small scale clusters. At
that point we have to transition to supercomputers. To make this transition as easy as
possible for the user it is fundamental that supercomputers represent architectures that
are popular in desktop and cluster-sized machines. is allows researchers to develop and
optimize their single and multi-node implementations on their local hardware and then
try to scale this up to thousands of nodes. is scaling is not trivial, but if you already have
an optimized single-node implementation you only have to focus on the multi-node aspect
of your code.

8|Samenvatting

De afgelopen jaren hebben we een vlucht gezien in de ontwikkeling van parallelle pro-
cessoren. Tot een aantal jaar geleden werden processoren sneller door de kloksnelheid te
verhogen. Hierdoor hoefde je als gebruiker alleen maar een nieuwe processor te kopen om
sneller te kunnen rekenen. Als we het zouden vergelijken met een woon-werk-treinreis
zou dit betekenen dat het treinstel elke paar maanden zou worden vervangen door een
nieuwer model met een hogere maximumsnelheid. Je stapt nog steeds op dezelfde plekken
in en uit, volgt dezelfde route, alleen deze route leg je elke keer een beetje sneller af.

Tegenwoordig gaat dit verhaal nietmeer op: de kloksnelheid wordt nietmeer verhoogd.
In plaats daarvan komen er meer rekeneenheden, vaak met een maximale kloksnelheid die
lager is dan wat we in het verleden konden behalen. Doordat er echter meerdere problemen
tegelijk kunnen worden uitgerekend kan er toch snelheidswinst behaald worden. Als we
een vergelijk trekken met onze treinreis, dan zou de rit zelf dus niet sneller worden. In
plaats daarvan wordt er nog een set treinrails neergelegd.Hierdoor gaan er in plaats van één
trein, twee treinen tegelijkertijd over hetzelfde traject. Daardoor kunnen er meer reizigers
worden vervoerd en worden de wachttijden op het station korter. We hoeven namelijk
minder lang op de volgende trein te wachten als de eerste (en enige) trein vol is. Daarom is
met parallellisatie tijdwinst te behalen, mits het aantal rekenproblemen (aantal reizigers)
groot genoeg is. Maar wanneer we maar één reiziger of rekenprobleem hebben zal er juist
geen tijdwinst behaald worden, omdat de maximumsnelheid lager ligt dan voorheen.

Nu hebben we de mazzel dat de sterrenkundige problemen vaak bestaan uit duizen-
den objecten waarvan we bijvoorbeeld de zwaartekracht willen uitrekenen. Het uitrekenen
van de zwaartekracht is geen sinecure. Als we twee objecten hebben is de oplossing exact
wiskundig te bepalen, bij drie of meer objecten is dit echter niet langer mogelijk. Bij drie
of meer objecten moet de zwaartekracht numeriek bepaald worden. Dit doen we door van
elk object uit te rekenen hoeveel zwaartekracht wordt uitgeoefend tussen dat object en elk
ander object in het te onderzoeken systeem. Dit is het N-body probleem, en om het op te
lossen moet je de uitkomst van N ×N interacties uitrekenen.

De enorme hoeveelheid interacties zorgt ervoor dat dit een zeer rekenintensief pro-
bleem is. Echter, doordat we de interactie voor elk deeltje afzonderlijk kunnen uitrekenen
kunnen we dit verspreiden over verschillende rekenkernen. Hierdoor geldt dat hoe meer
rekenkernen we hebben, hoe sneller we de simulatie kunnen uitvoeren, mits we efficiënt
gebruik maken van deze kernen. In de computers die ik voor het onderzoek in dit proef-
schrift gebruik zitten twee soorten processoren die geschikt zijn voor het uitvoeren van

120 Samenvatting

rekenwerk: de centrale processor (CPU) en de grafische processor (GPU). Traditioneel
werd de GPU alleen gebruikt voor rekenwerk in spelletjes, maar tegenwoordig kunnen we
hem inzetten voor het helpen oplossen van wetenschappelijke problemen.

In dit proefschrift toon ik aan hoe we de GPU kunnen inzetten voor het uitvoeren
van zwaartekracht simulaties. Hierbij maken we onderscheid tussen simulaties die gebruik
maken van directe N-body methoden en simulaties die gebruik maken van hiërarchische
methoden. De directe N-body methode is de nauwkeurigste, maar omdat deze methode
schaalt alsO(N2) vereist deze ook hetmeeste rekenwerk.Door dit vele rekenwerk kan deze
methode wel efficiënt worden geïmplementeerd op de GPU, zoals ik aantoon in hoofd-
stuk 2. In de hiërarchische methode maken we gebruik van een boomstuctuur om onze
data op te slaan. Deze methode is minder rekenintensief dan de directe N-body methode,
maar daardoor ook minder nauwkeurig. Door de ingewikkelde datastructuren in deze me-
thode is het een stuk ingewikkelder om gebruik te maken van de GPU. In hoofstukken 3
en 4 laat ik zien dat het mogelijk is om de GPU te gebruiken, mits we de implementatie
van deze methode geheel herschrijven. Tijdens het implementeren houden we rekening
met het feit dat de GPU duizenden rekenkernen heeft, daarom zullen we zoveel mogelijk
onderdelen van het algoritme parallel uitvoeren. Vervolgens toon ik in hoofdstuk 5 wat er
mogelijk is met de in de voorgaande hoofdstukken ontwikkelde simulatie code.

Tenslotte laat ik in het laatste hoofdstuk zien wat er nodig is om, op een efficiënte
wijze, simulaties uit te voeren die miljarden deeltjes bevatten.

8.1 De hoofdstukken in dit proefschrift

8.1.1 Hoofdstuk 2
Dit hoofdstuk gaat over het versnellen van simulaties die gebruik maken van de directe
N-body integratiemethode met behulp van de GPU. We introduceren de speciale softwa-
rebibliotheek Sapporo2, welke het eenvoudig maakt om de GPU te gebruiken voor het
uitvoeren van sterrenkundige simulaties. In het hoofdstuk besprekenwe hoe deGPUwerkt
en hoe code het best te paralleliseren is. Vervolgens tonen we hoe je kunt bepalen welke
configuraties de beste prestaties leveren. De uitkomsten van deze configuraties gebruiken
we vervolgens om de prestaties van de bibliotheek te testen op verschillende GPUs. Hier-
door hebben we direct een beeld van welke GPU het meest geschikt is voor het simuleren
van onze sterrenkundige problemen. Dit hangt namelijk sterk af van het aantal deeltjes en
de benodigde precisie, dit alles wordt weergeven in de resultatensectie van het hoofdstuk.

8.1.2 Hoofdstuk 3
Door gebruik te maken van de GPU is het mogelijk om simulaties die de directe N-
body integratiemethode methode gebruiken velen malen sneller uit te voeren dan met
de CPU. Tevens is het mogelijk om, door gebruik te maken van bestaande methoden, de
GPU te gebruiken voor hiërarchische algoritmen. Dit soort algoritmen vereist veel minder
rekenkracht voor het uitrekenen van de zwaartekrachtinteracties die plaats vinden tussen
verschillende deeltjes. Dit gaat wel ten koste van de nauwkeurigheid, maar dat is over het

8.1 De hoofdstukken in dit proefschrift 121

algemeen geen probleem. De bestaande methoden zijn echter niet geoptimaliseerd voor
de snelheid en mogelijkheden van de GPU. Daarom introduceren we in hoofdstuk 3 een
nieuwe methode die ervoor zorgt dat de hoeveelheid communicatie tussen de grafische
kaart en de CPU velen malen minder is dan in voorgaande implementaties. Hierdoor
kunnen hiërarchische methoden veel efficiënter gebruik maken van de GPU dan voorheen
mogelijk was. In dit hoofdstuk tonen we de eigenschappen van deze nieuwe methoden.
Ook geven we aan waar er nog beperkingen zitten, en of dit ligt aan de methoden of aan
de GPU.

8.1.3 Hoofdstuk 4
De beperkingen die we in het vorige hoofdstuk geïdentificeerd hebben worden in dit
hoofdstuk onder handen genomen. We ontwikkelen een volledig nieuwe methode om in
parallel hiërarchische datastructuren op te bouwen uit een set van datapunten. Doordat de-
ze methode parallel is, werkt dit zeer efficiënt op de parallelle grafische kaart. Om verdere
beperkingen te voorkomen hebben we tevens alle overige onderdelen van het hiërarchisch
algoritme opnieuw geïmplementeerd en geschikt gemaakt voor de GPU. Hierdoor is de
communicatie tussen de GPU en CPU bijna volledig geëlimineerd. Als gevolg van al deze
verbeteringen is deze implementatie, die we Bonsai noemen, velen malen sneller dan de
bestaande CPU én GPU implementaties. In dit hoofdstuk tonen we hoe de algoritmen
schalen en hoe snel ze zijn op verschillende GPU architecturen. Dit doen we met syn-
thetische datasets, maar ook met een simulatie van twee sterrenstelsels waarin zich zwarte
gaten bevinden.

8.1.4 Hoofdstuk 5
De in het vorige hoofdstuk ontwikkelde Bonsai code gebruiken we in dit hoofdstuk voor
een concreet probleem. We proberen antwoord te vinden op de vraag waarom we op fo-
to’s uit het verre verleden van het universum wel zeer compacte en zware sterrenstelsels
zien, maar op foto’s van het meer recente verleden er geen spoor te vinden is van dit soort
sterrenstelsels. We onderzoeken in dit hoofdstuk hoe de eigenschappen van deze zware
sterrenstelsels veranderen als ze samensmelten met kleinere en lichtere sterrenstelsels. We
stellen daarbij de vraag of ze sneller groeien in volume dan in massa. Uit de simulaties
blijkt dit inderdaad het geval te zijn. Als we een zwaar en compact sterrenstelsel laten sa-
mensmelten met tien sterrenstelsels die tien keer lichter zijn dan het zware stelsel wordt
het nieuw gevormde sterrenstelsel twee keer zo zwaar, maar tevens zeven keer zo groot. De
snelheid van de Bonsai code stelde ons in staat om vele simulaties uit te voeren met ver-
schillende instellingen en configuraties. Door alle resultaten te onderzoeken komen we tot
de volgende conclusie: als een zwaar en compact sterrenstelsel samensmelt met vijf tot tien
kleinere sterrenstelsels ontstaat er een nieuw sterrenstelsel dat vergelijkbaar is met wat we
observeren op foto’s die het recente verleden van het universum tonen. Deze kleine stelsels
moeten dan wel vijf tot tien keer lichter zijn dan het grote sterrenstelsel. Als dat het geval
is verdubbelt het originele compacte sterrenstelsel in massa, maar wordt het tevens tussen
de vijf en zeven keer groter.

122 Samenvatting

8.1.5 Hoofdstuk 6
De simulatiesoftware Bonsai die we in hoofdstuk 4 hebben geïntroduceerd wordt in dit
hoofdstuk uitgebreid. In de eerste versie was het niet mogelijk om meer dan één GPU te
gebruiken. Hierdoor was het aantal deeltjes dat je kon simuleren beperkt. Door de uitbrei-
dingen die we in dit hoofdstuk introduceren is hetmogelijk om Bonsai opmeerdereGPUs
tegelijk te gebruiken. De methodes zijn gebaseerd op bestaande publicaties, maar worden
in een unieke manier samengevoegd waardoor het mogelijk is de nieuwe implementatie
te laten schalen naar duizenden grafische kaarten en miljarden deeltjes. Dit tonen we aan
door de code uit te voeren op de duizenden GPUs die in de Titan supercomputer zitten.
Dit is de snelste GPU supercomputer die op dit moment beschikbaar is. De mogelijkheid
om miljarden deeltjes te simuleren, wat orders van grote meer is dan hiervoor, stelt ons
in staat om gedetailleerdere modellen door te rekenen dan in het verleden mogelijk was.
Hierdoor zijn we instaat simulaties te draaien die we kunnen vergelijken met de data die
de nieuwste satellieten zullen produceren.

List of publications

Journal Papers
• R. G. Belleman, J. Bédorf, and S. F. Portegies Zwart. High performance direct

gravitational N-body simulations on graphics processing units II: An implementa-
tion in CUDA. New Astronomy, 13:103–112, February 2008.
doi10.1016/j.newast.2007.07.004.

• J. Bédorf, E. Gaburov, and S. Portegies Zwart. A sparse octree gravitational N-
body code that runs entirely on the GPU processor. Journal of Computational Physics,
231:2825–2839, April 2012.
doi10.1016/j.jcp.2011.12.024.

• J. Bédorf and S. Portegies Zwart. e effect of many minor mergers on the size
growth of compact quiescent galaxies. MNRAS, 431:767–780, May 2013.
doi10.1093/mnras/stt208.

• J. Bédorf, E. Gaburov, K. Nitadori, M.S. Fujii, T. Ishiyama and S. Portegies Zwart.
How to simulate the Milky Way Galaxy on a star-by-star basis. New Astronomy,
submitted.

• S. Portegies Zwart and J.Bédorf. ComputationalGravitationalDynamics withMod-
ern Numerical Accelerators. Computer, submitted.

• J. Bédorf, E. Gaburov and S. Portegies Zwart. Sapporo2: A versatile direct N-body
library. Computational Astrophysics and Cosmology, submitted.

Peer-reviewed Conference Proceedings
• E. Gaburov, J. Bédorf, and S. Portegies Zwart. Gravitational Tree-Code on Graph-

ics ProcessingUnits: Implementation inCUDA. In International Conference on Com-
putational Science 2010. Elsevier, 2010.

• J. Bédorf and S. Portegies Zwart. A pilgrimage to gravity on GPUs. European Phys-
ical Journal Special Topics, 210:201–216, August 2012.
doi10.1140/epjst/e2012-1647-6.

124 List of publications

• J. Bédorf, E. Gaburov, M.S. Fujii, K. Nitadori, T. Ishiyama and S. Portegies Zwart.
24.77 Pflops on a Gravitational Tree-Code to Simulate the Milky Way Galaxy with
18600 GPUs. SC’14 Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ACM, 2014.

Conference Proceedings
• J. Bédorf, E. Gaburov, and S. Portegies Zwart. Bonsai: A GPU Tree-Code. In

R. Capuzzo-Dolcetta, M. Limongi, and A. Tornambè, editors, Advances in Compu-
tational Astrophysics: Methods, Tools, and Outcome, volume 453 of Astronomical Society
of the Paci c Conference Series, page 325, July 2012.

• J. Bédorf and S. Portegies Zwart. Parallel gravity: From embarrassingly parallel to
hierarchical. In Proceedings of the 2012 Workshop on High-Performance Computing for
Astronomy Date, Astro-HPC ’12, pages 7–8, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1338-4.
doi10.1145/2286976.2286980.

• J.A.C. van Toorenburg, N. Kijk in de Vegte, and J. Bédorf. On-line and off-line
simulation of large motorway networks. In Proceedings of 2nd International Confer-
ence on Models and Technologies for Intelligent Transportation Systems, 2011.

Bibliography

S. J. Aarseth. Dynamical evolution of clusters of galaxies, I. MNRAS, 126:223–+, 1963.
S. J. Aarseth. From NBODY1 to NBODY6: e Growth of an Industry. PASP, 111:1333–1346,

November 1999. doi: 10.1086/316455.
S. J. Aarseth. Gravitational N-Body Simulations. Gravitational N-Body Simulations, by Sverre

J. Aarseth, pp. 430. ISBN 0521432723. Cambridge, UK: Cambridge University Press, November
2003., November 2003.

S. J. Aarseth. Mergers and ejections of black holes in globular clusters. MNRAS, 422:841–848, May
2012. doi: 10.1111/j.1365-2966.2012.20666.x.

S. J. Aarseth and D. C. Heggie. A 6000-Body Simulation with Primordial Binaries. In G. H. Smith
& J. P. Brodie, editor, e Globular Cluster-Galaxy Connection, volume 48 of Astronomical Society
of the Paci c Conference Series, page 701, January 1993.

A. Ahmad and L. Cohen. A numerical integration scheme for the N-body gravitational problem.
Journal of Computational Physics, 12:389–402, 1973. doi: 10.1016/0021-9991(73)90160-5.

E. Athanassoula. Manifold-driven spirals in N-body barred galaxy simulations. MNRAS, 426:
L46–L50, October 2012. doi: 10.1111/j.1745-3933.2012.01320.x.

E. Athanassoula, A. Bosma, J.-C. Lambert, and J.Makino. Performance and accuracy of a GRAPE-
3 system for collisionless N-body simulations. MNRAS, 293:369–380, February 1998. doi: 10.
1046/j.1365-8711.1998.01102.x.

E. Athanassoula, E. Fady, J. C. Lambert, and A. Bosma. Optimal softening for force calculations in
collisionless N-body simulations. MNRAS, 314:475–488, May 2000. doi: 10.1046/j.1365-8711.
2000.03316.x.

J. Baba, T. R. Saitoh, and K. Wada. Dynamics of Non-steady Spiral Arms in Disk Galaxies. ApJ,
763:46, January 2013. doi: 10.1088/0004-637X/763/1/46.

J. S. Bagla. TreePM: A Code for Cosmological N-Body Simulations. Journal of Astrophysics and
Astronomy, 23:185–196, December 2002. doi: 10.1007/BF02702282.

J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Algorithm. Nature, 324:446–
449, December 1986.

J. E. Barnes. A Modified Tree Code Don’t Laugh: It Runs. Journal of Computational Physics, 87:
161–+, March 1990.

J.E. Barnes. Computational Astrophysics. Springer-Verlag, Berlin, 1994.
J. Bédorf and S. Portegies Zwart. A pilgrimage to gravity on GPUs. European Physical Journal Special

Topics, 210:201–216, August 2012. doi: 10.1140/epjst/e2012-1647-6.
J. Bédorf and S. Portegies Zwart. e effect of many minor mergers on the size growth of compact

quiescent galaxies. MNRAS, 431:767–780, May 2013. doi: 10.1093/mnras/stt208.

126 Bibliography

J. Bédorf, E. Gaburov, and S. Portegies Zwart. A sparse octree gravitational N-body code that runs
entirely on the GPU processor. Journal of Computational Physics, 231:2825–2839, April 2012. doi:
10.1016/j.jcp.2011.12.024.

R. G. Belleman, J. Bédorf, and S. F. Portegies Zwart. High performance direct gravitational N-body
simulations on graphics processing units II: An implementation in CUDA. New Astronomy, 13:
103–112, February 2008. doi: 10.1016/j.newast.2007.07.004.

G. Besla, N. Kallivayalil, L. Hernquist, R. P. van der Marel, T. J. Cox, and D. Kereš. Simulations
of the Magellanic Stream in a First Infall Scenario. ApJ, 721:L97–L101, October 2010. doi:
10.1088/2041-8205/721/2/L97.

R. Bezanson, P. G. van Dokkum, T. Tal, D. Marchesini, M. Kriek, M. Franx, and P. Coppi. e
Relation Between Compact, Quiescent High-redshift Galaxies and Massive Nearby Elliptical
Galaxies: Evidence for Hierarchical, Inside-Out Growth. ApJ, 697:1290–1298, June 2009. doi:
10.1088/0004-637X/697/2/1290.

Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient stream compaction on wide simd many-
core architectures. In HPG ’09: Proceedings of the Conference on High Performance Graphics 2009,
pages 159–166, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-603-8. doi: http://doi.
acm.org/10.1145/1572769.1572795.

P. Bode, J. P. Ostriker, and G. Xu. e Tree Particle-Mesh N-Body Gravity Solver. ApJS, 128:
561–569, June 2000. doi: 10.1086/313398.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for gpus: stream computing on graphics hardware. In ACM SIGGRAPH 2004 Papers, SIG-
GRAPH ’04, pages 777–786, New York, NY, USA, 2004a. ACM. doi: http://doi.acm.org/10.
1145/1186562.1015800.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and
Pat Hanrahan. Brook for gpus: stream computing on graphics hardware. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers, pages 777–786, New York, NY, USA, 2004b. ACM. doi: http:
//doi.acm.org/10.1145/1186562.1015800.

Martin Burtscher and Keshav Pingali. GPU Computing Gems Emerald Edition, chapter 6: An Ef-
ficient CUDA Implementation of the Tree-based Barnes Hut n-Body Algorithm, pages 75–
92. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2011. ISBN
0123849888, 9780123849885.

A. Cimatti, C. Nipoti, and P. Cassata. Fast evolving size of early-type galaxies at z > 2 and the role
of dissipationless (dry) merging. MNRAS, 422:L62, May 2012. doi: 10.1111/j.1745-3933.2012.
01237.x.

M.A. Clark, Pc La Plante, and L.J. Greenhill. Accelerating radio astronomy cross-correlation
with graphics processing units. Int. J. High Perform. Comput. Appl., 27(2):178–192, May 2013.
ISSN 1094-3420. doi: 10.1177/1094342012444794. URL http://dx.doi.org/10.1177/
1094342012444794.

E. Daddi, A. Renzini, N. Pirzkal, A. Cimatti, S. Malhotra, M. Stiavelli, C. Xu, A. Pasquali, J. E.
Rhoads, M. Brusa, S. di Serego Alighieri, H. C. Ferguson, A. M. Koekemoer, L. A. Moustakas,
N. Panagia, and R. A. Windhorst. Passively Evolving Early-Type Galaxies at 1.4 <˜ z <˜ 2.5 in
the Hubble Ultra Deep Field. ApJ, 626:680–697, June 2005. doi: 10.1086/430104.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications, chapter 5 and 16. Springer-Verlag, second edition, 2000.

W. Dehnen. Towards optimal softening in three-dimensional N-body codes - I. Minimizing the
force error. MNRAS, 324:273–291, June 2001. doi: 10.1046/j.1365-8711.2001.04237.x.

W. Dehnen. A Hierarchical O(N) Force Calculation Algorithm. Journal of Computational Physics,

http://dx.doi.org/10.1177/1094342012444794
http://dx.doi.org/10.1177/1094342012444794

Bibliography 127

179:27–42, June 2002.
W. Dehnen and J. I. Read. N-body simulations of gravitational dynamics. European Physical Journal

Plus, 126:55, May 2011. doi: 10.1140/epjp/i2011-11055-3.
S. Dindar, E. B. Ford, M. Juric, Y. I. Yeo, J. Gao, A. C. Boley, B. Nelson, and J. Peters. Swarm-NG:

A CUDA library for Parallel n-body Integrations with focus on simulations of planetary systems.
New A, 23:6–18, October 2013. doi: 10.1016/j.newast.2013.01.002.

E. D’Onghia, M. Vogelsberger, and L. Hernquist. Self-perpetuating Spiral Arms in Disk Galaxies.
ApJ, 766:34, March 2013. doi: 10.1088/0004-637X/766/1/34.

E. N. Dorband, M. Hemsendorf, and D. Merritt. Systolic and hyper-systolic algorithms for the
gravitational N-body problem, with an application to Brownian motion. Journal of Computational
Physics, 185:484–511, March 2003. doi: 10.1016/S0021-9991(02)00067-0.

J. Dubinski. A parallel tree code. New Astronomy, 1:133–147, October 1996. doi: 10.1016/
S1384-1076(96)00009-7.

J. Dubinski. Visualizing astrophysical N-body systems. New Journal of Physics, 10(12):125002,
December 2008. doi: 10.1088/1367-2630/10/12/125002.

J. Dubinski and D. Chakrabarty. Warps and Bars from the External Tidal Torques of Tumbling
Dark Halos. ApJ, 703:2068–2081, October 2009. doi: 10.1088/0004-637X/703/2/2068.

J. Dubinski, J. Kim, C. Park, and R. Humble. GOTPM: a parallel hybrid particle-mesh treecode.
New A, 9:111–126, February 2004. doi: 10.1016/j.newast.2003.08.002.

J. Dubinski, I. Berentzen, and I. Shlosman. Anatomy of the Bar Instability in Cuspy Dark Matter
Halos. ApJ, 697:293–310, May 2009. doi: 10.1088/0004-637X/697/1/293.

E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, and V. Pande. N-body simulation on
gpus. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC ’06, New York, NY,
USA, 2006. ACM. ISBN 0-7695-2700-0. doi: http://doi.acm.org/10.1145/1188455.1188649.

C. J. Fluke. Accelerating the Rate of Astronomical Discovery with GPU-Powered Clusters. In
P. Ballester, D. Egret, and N. P. F. Lorente, editors, Astronomical Data Analysis Software and
Systems XXI, volume 461 of Astronomical Society of the Paci c Conference Series, page 3, September
2012.

P. Fortin, E. Athanassoula, and J.-C. Lambert. Comparisons of different codes for galactic N-body
simulations. A&A, 531:A120, July 2011. doi: 10.1051/0004-6361/201015933.

M. Franx, P. G. van Dokkum, N. M. F. Schreiber, S. Wuyts, I. Labbé, and S. Toft. Structure and
Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and
Upsizing. ApJ, 688:770–788, December 2008. doi: 10.1086/592431.

Daan Frenkel and B. Smit. Understanding Molecular Simulation, Second Edition: From Algorithms
to Applications (Computational Science Series, Vol 1). Academic Press, 2 edition, November 2001.
ISBN 0122673514.

M. Fujii, M. Iwasawa, Y. Funato, and J. Makino. BRIDGE: A Direct-Tree Hybrid N-Body Al-
gorithm for Fully Self-Consistent Simulations of Star Clusters and eir Parent Galaxies. PASJ,
59:1095–, December 2007.

M. S. Fujii, J. Baba, T. R. Saitoh, J. Makino, E. Kokubo, and K. Wada. e Dynamics of Spiral
Arms in Pure Stellar Disks. ApJ, 730:109, April 2011. doi: 10.1088/0004-637X/730/2/109.

T. Fukushige, T. Ito, J. Makino, T. Ebisuzaki, D. Sugimoto, and M. Umemura. GRAPE-1A:
Special-Purpose Computer for N-body Simulation with a Tree Code. Publ. Astr. Soc. Japan, 43:
841–858, December 1991.

Evghenii Gaburov, Stefan Harfst, and Simon Portegies Zwart. SAPPORO: A way to turn your
graphics cards into a GRAPE-6. New Astronomy, 14(7):630 – 637, 2009. ISSN 1384-1076. doi:
DOI:10.1016/j.newast.2009.03.002.

128 Bibliography

Evghenii Gaburov, Jeroen Bédorf, and Simon Portegies Zwart. Gravitational Tree-Code on Graph-
ics Processing Units: Implementation in CUDA. In International Conference on Computational
Science 2010. Elsevier, 2010.

J. Goodman, D. C. Heggie, and P. Hut. On the Exponential Instability of N-Body Systems. ApJ,
415:715, October 1993. doi: 10.1086/173196.

R. J. J. Grand, D. Kawata, and M. Cropper. e dynamics of stars around spiral arms. MNRAS,
421:1529–1538, April 2012a. doi: 10.1111/j.1365-2966.2012.20411.x.

R. J. J. Grand, D. Kawata, and M. Cropper. Dynamics of stars around spiral arms in an
N-body/SPH simulated barred spiral galaxy. MNRAS, 426:167–180, October 2012b. doi:
10.1111/j.1365-2966.2012.21733.x.

R. J. J. Grand, D. Kawata, and M. Cropper. Spiral arm pitch angle and galactic shear rate in N-body
simulations of disc galaxies. A&A, 553:A77, May 2013. doi: 10.1051/0004-6361/201321308.

A. Gualandris, S. Portegies Zwart, and A. Tirado-Ramos. Performance analysis of direct N-body
algorithms for astrophysical simulations on distributed systems. Parallel Computing, 33(3):159 –
173, 2007. ISSN 0167-8191. doi: 10.1016/j.parco.2007.01.001.

Alessia Gualandris, Simon Portegies Zwart, and Alfredo Tirado-Ramos. Performance analysis of
direct n-body algorithms for astrophysical simulations on distributed systems. Parallel Comput.,
33(3):159–173, 2007. ISSN 0167-8191. doi: http://dx.doi.org/10.1016/j.parco.2007.01.001.

Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School
of Computer Science, Carnegie Mellon University, November 1990.

T. Hamada and T. Iitaka. e Chamomile Scheme: An Optimized Algorithm for N-body simula-
tions on Programmable Graphics Processing Units. ArXiv Astrophysics e-prints, March 2007.

Tsuyoshi Hamada and Keigo Nitadori. 190 tflops astrophysical n-body simulation on a cluster
of gpus. In Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 1–9, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-1-4244-7559-9. doi: http://dx.doi.org/10.1109/SC.2010.1.
URL http://dx.doi.org/10.1109/SC.2010.1.

Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Yasuoka, Keigo Nitadori, and Makoto Taiji. 42
tflops hierarchical n-body simulations on gpus with applications in both astrophysics and turbu-
lence. In SC ’09: Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, pages 1–12, New York, NY, USA, 2009a. ACM. ISBN 978-1-60558-744-8. doi:
http://doi.acm.org/10.1145/1654059.1654123.

Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Yasuoka, Keigo Nitadori, and Makoto Taiji.
42 tflops hierarchical n-body simulations on gpus with applications in both astrophysics and tur-
bulence. In Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 62:1–62:12, New York, NY, USA, 2009b. ACM. ISBN 978-1-60558-
744-8. doi: 10.1145/1654059.1654123. URL http://doi.acm.org/10.1145/1654059.
1654123.

Tsuyoshi Hamada, Keigo Nitadori, Khaled Benkrid, Yousuke Ohno, Gentaro Morimoto, Tomonari
Masada, Yuichiro Shibata, Kiyoshi Oguri, and Makoto Taiji. A novel multiple-walk par-
allel algorithm for the barnes–hut treecode on gpus – towards cost effective, high perfor-
mance n-body simulation. Computer Science - Research and Development, 24(1-2):21–31, 2009c.
ISSN 1865-2034. doi: 10.1007/s00450-009-0089-1. URL http://dx.doi.org/10.1007/
s00450-009-0089-1.

S. Harfst, A. Gualandris, D. Merritt, R. Spurzem, S. Portegies Zwart, and P. Berczik. Performance
analysis of direct N-body algorithms on special-purpose supercomputers. New Astronomy, 12:
357–377, July 2007. doi: 10.1016/j.newast.2006.11.003.

http://dx.doi.org/10.1109/SC.2010.1
http://doi.acm.org/10.1145/1654059.1654123
http://doi.acm.org/10.1145/1654059.1654123
http://dx.doi.org/10.1007/s00450-009-0089-1
http://dx.doi.org/10.1007/s00450-009-0089-1

Bibliography 129

A. H. Hassan, C. J. Fluke, D. G. Barnes, and V. A. Kilborn. Tera-scale astronomical data analysis
and visualization. MNRAS, 429:2442–2455, March 2013. doi: 10.1093/mnras/sts513.

D. Heggie and P. Hut. e Gravitational Million-Body Problem: A Multidisciplinary Approach to
Star Cluster Dynamics. Cambridge University Press, 2003. ISBN 9780521774864. URL http:
//books.google.nl/books?id=dQH7NJRhCvMC.

D. C. Heggie and R. D. Mathieu. Standardised Units and Time Scales. In P. Hut and S. L. W.
McMillan, editors, e Use of Supercomputers in Stellar Dynamics, volume 267 of Lecture Notes in
Physics, Berlin Springer Verlag, page 233, 1986. doi: 10.1007/BFb0116419.

P. Hertz and S. L. W. McMillan. Application of a massively parallel computer to the N-body
problem. Celestial Mechanics, 45:77–80, March 1988. doi: 10.1007/BF01228981.

David Hilbert. Ueber die stetige abbildung einer line auf ein flächenstück. Mathematische An-
nalen, 38(3):459–460, 1891. doi: 10.1007/bf01199431. URL http://dx.doi.org/10.1007/
bf01199431.

M. Hilz, T. Naab, J. P. Ostriker, J.omas, A. Burkert, and R. Jesseit. Relaxation and stripping - e
evolution of sizes, dispersions and dark matter fractions in major and minor mergers of elliptical
galaxies. MNRAS, 425:3119–3136, October 2012. doi: 10.1111/j.1365-2966.2012.21541.x.

M.Hilz, T. Naab, and J. P.Ostriker. How dominormergers promote inside-out growth of ellipticals,
transforming the size, density profile and dark matter fraction? MNRAS, 429:2924–2933, March
2013. doi: 10.1093/mnras/sts501.

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. 1981.
F. Hohl and R. W. Hockney. A Computer Model of Disks of Stars. Journal of Computational Physics,

4:306, October 1969. doi: 10.1016/0021-9991(69)90002-3.
E.Holmberg. On theClustering Tendencies among theNebulae. II. a Study of Encounters Between

Laboratory Models of Stellar Systems by aNew Integration Procedure. ApJ, 94:385–+, November
1941. doi: 10.1086/144344.

P. F. Hopkins, L. Hernquist, T. J. Cox, D. Keres, and S. Wuyts. Dissipation and Extra Light
in Galactic Nuclei. IV. Evolution in the Scaling Relations of Spheroids. ApJ, 691:1424–1458,
February 2009. doi: 10.1088/0004-637X/691/2/1424.

P. F. Hopkins, D. Croton, K. Bundy, S. Khochfar, F. van den Bosch, R. S. Somerville, A. Wetzel,
D. Keres, L. Hernquist, K. Stewart, J. D. Younger, S. Genel, and C.-P. Ma. Mergers in ΛCDM:
Uncertainties in eoretical Predictions and Interpretations of the Merger Rate. ApJ, 724:915–
945, December 2010. doi: 10.1088/0004-637X/724/2/915.

J. R. Hurley and A. D. Mackey. N-body models of extended star clusters. MNRAS, 408:2353–2363,
November 2010. doi: 10.1111/j.1365-2966.2010.17285.x.

P. Hut. Dense stellar systems as laboratories for fundamental physics. New A Rev., 54:163–172,
March 2010. doi: 10.1016/j.newar.2010.09.009.

P. Hut, J. Makino, and S. McMillan. Building a better leapfrog. ApJ, 443:L93–L96, April 1995.
doi: 10.1086/187844.

S. Inagaki. Post-collapse evolution of globular clusters with finite number of stars in the core. PASJ,
38:853–863, 1986.

T. Ishiyama, T. Fukushige, and J. Makino. GreeM: Massively Parallel TreePM Code for Large
Cosmological N -body Simulations. PASJ, 61:1319–, December 2009.

Tomoaki Ishiyama, Keigo Nitadori, and Junichiro Makino. 4.45 pflops astrophysical n-body simu-
lation on k computer: e gravitational trillion-body problem. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages 5:1–
5:10, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press. ISBN 978-1-4673-0804-5.
URL http://dl.acm.org/citation.cfm?id=2388996.2389003.

http://books.google.nl/books?id=dQH7NJRhCvMC
http://books.google.nl/books?id=dQH7NJRhCvMC
http://dx.doi.org/10.1007/bf01199431
http://dx.doi.org/10.1007/bf01199431
http://dl.acm.org/citation.cfm?id=2388996.2389003

130 Bibliography

T. Ito, J. Makino, T. Ebisuzaki, and D. Sugimoto. A special-purpose N-body machine GRAPE-1.
Computer Physics Communications, 60:187–194, September 1990. doi: 10.1016/0010-4655(90)
90003-J.

A. Kawai, T. Fukushige, J. Makino, and M. Taiji. GRAPE-5: A Special-Purpose Computer for
N-Body Simulations. PASJ, 52:659–676, August 2000.

A. Kawai, J. Makino, and T. Ebisuzaki. Performance Analysis of High-Accuracy Tree Code Based
on the Pseudoparticle Multipole Method. ApJS, 151:13–33, March 2004. doi: 10.1086/381391.

Atsushi Kawai, Toshiyuki Fukushige, and Junichiro Makino. $7.0/mflops astrophysical n-body
simulation with treecode on grape-5. In Proceedings of the 1999 ACM/IEEE Conference on Super-
computing, Supercomputing ’99, New York, NY, USA, 1999. ACM. ISBN 1-58113-091-0. doi:
10.1145/331532.331598. URL http://doi.acm.org/10.1145/331532.331598.

Khronos Group Std. e OpenCL Specification Version 1.0 Rev.48 , 2010. URL http:
//khronos.org/registry/cl/specs/opencl-1.0.48.pdf.

DonaldE. Knuth. e Art of Computer Programming, Volume 3: (3rd ed.) Sorting and Searching, chapter
Sorting by Distribution, pages 168–179. Addison-Wesley, 1997. ISBN 0-201-89685-0.

K. Kuijken and J. Dubinski. Nearly Self-Consistent Disc / Bulge / Halo Models for Galaxies.
MNRAS, 277:1341–+, December 1995.

C. Lacey and S. Cole. Merger rates in hierarchical models of galaxy formation. MNRAS, 262:
627–649, June 1993.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and Dinesh
Manocha. Fast bvh construction on gpus. Comput. Graph. Forum, 28(2):375–384, 2009.

D. Lynden-Bell. Statistical mechanics of violent relaxation in stellar systems. MNRAS, 136:101,
1967.

J. Makino. Postcollapse Evolution of Globular Clusters. ApJ, 471:796, November 1996. doi: 10.
1086/178007.

J. Makino. Direct Simulation of Dense Stellar Systems with GRAPE-6. In S. Deiters, B. Fuchs,
A. Just, R. Spurzem, and R. Wielen, editors, Dynamics of Star Clusters and the Milky Way, volume
228 of Astronomical Society of the Paci c Conference Series, pages 87–+, 2001.

J. Makino. A Fast Parallel Treecode with GRAPE. Publications of the Astronomical Society of Japan,
56:521–531, June 2004.

J. Makino and S. J. Aarseth. On a Hermite integrator with Ahmad-Cohen scheme for gravitational
many-body problems. PASJ, 44:141–151, April 1992.

J. Makino and M. Taiji. Scienti c simulations with special-purpose computers : e GRAPE systems. Sci-
entific simulations with special-purpose computers : e GRAPE systems /by Junichiro Makino
& Makoto Taiji. Chichester ; Toronto : John Wiley & Sons, c1998., 1998.

J. Makino, K. Hiraki, and M. Inaba. GRAPE-DR: 2-Pflops massively-parallel computer with 512-
core, 512-Gflops processor chips for scientific computing. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, SC ’07, pages 18:1–18:11, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-764-3. doi: http://doi.acm.org/10.1145/1362622.1362647.

Junichiro Makino and Hiroshi Daisaka. Grape-8: An accelerator for gravitational n-body simulation
with 20.5gflops/w performance. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, pages 104:1–104:10, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press. ISBN 978-1-4673-0804-5. URL http://dl.
acm.org/citation.cfm?id=2388996.2389137.

Mark Harris (NVIDIA). Parallel Prefix Sum (Scan) with CUDA. CUDA Scan Whitepaper, 2009.
J. Martinez-Manso, R. Guzman, G. Barro, J. Cenarro, P. Perez-Gonzalez, P. Sanchez-Blazquez,

I. Trujillo, M. Balcells, N. Cardiel, J. Gallego, A. Hempel, and M. Prieto. Velocity Dispersions

http://doi.acm.org/10.1145/331532.331598
http://khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://dl.acm.org/citation.cfm?id=2388996.2389137
http://dl.acm.org/citation.cfm?id=2388996.2389137

Bibliography 131

and Stellar Populations of the Most Compact and Massive Early-type Galaxies at Redshift ˜1.
ApJ, 738:L22, September 2011. doi: 10.1088/2041-8205/738/2/L22.

S. L. W. McMillan. e Vectorization of Small-N Integrators. In P. Hut & S. L. W. McMillan,
editor, e Use of Supercomputers in Stellar Dynamics, volume 267 of Lecture Notes in Physics, Berlin
Springer Verlag, page 156, 1986. doi: 10.1007/BFb0116406.

S. L. W. McMillan and S. J. Aarseth. An O(N log N) integration scheme for collisional stellar
systems. ApJ, 414:200–212, September 1993. doi: 10.1086/173068.

D. Merill and A. Grimshaw. Revisiting sorting for gpgpu stream architectures. Technical Report
CS2010-03, Department of Computer Science, University of Virginia, February 2010.

D. Merritt. Optimal Smoothing for N-Body Codes. AJ, 111:2462, June 1996. doi: 10.1086/117980.
R. H. Miller. Irreversibility in Small Stellar Dynamical Systems. ApJ, 140:250, July 1964. doi:

10.1086/147911.
R. H. Miller and B. F. Smith. Galaxy collisions - A preliminary study. ApJ, 235:421–436, January

1980. doi: 10.1086/157646.
G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), April 19

1965.
G. M. Morton. A computer oriented geodetic data base; and a new technique in file sequencing.

Technical report, Ottawa, Canada: IBM Ltd., 1966.
T. Naab, S. Khochfar, and A. Burkert. Properties of Early-Type, Dry Galaxy Mergers and the Origin

of Massive Elliptical Galaxies. ApJ, 636:L81–L84, January 2006. doi: 10.1086/500205.
T. Naab, P. H. Johansson, and J. P. Ostriker. Minor Mergers and the Size Evolution of Elliptical

Galaxies. ApJ, 699:L178–L182, July 2009. doi: 10.1088/0004-637X/699/2/L178.
N. Nakasato, G. Ogiya, Y. Miki, M. Mori, and K. Nomoto. Astrophysical Particle Simulations on

Heterogeneous CPU-GPU Systems. ArXiv e-prints, June 2012.
J. F. Navarro, C. S. Frenk, and S. D. M. White. e Structure of Cold Dark Matter Halos. ApJ,

462:563, May 1996. doi: 10.1086/177173.
I. Newton. Philosophiae naturalis principia mathematica. J. Societatis Regiae ac Typis J. Streater,

1687. URL http://books.google.nl/books?id=-dVKAQAAIAAJ.
C. Nipoti, T. Treu, M. W. Auger, and A. S. Bolton. Can Dry Merging Explain the Size Evolution

of Early-Type Galaxies? ApJ, 706:L86–L90, November 2009a. doi: 10.1088/0004-637X/706/1/
L86.

C. Nipoti, T. Treu, and A. S. Bolton. Dry Mergers and the Formation of Early-Type Galaxies:
Constraints from Lensing and Dynamics. ApJ, 703:1531–1544, October 2009b. doi: 10.1088/
0004-637X/703/2/1531.

C. Nipoti, T. Treu, A. Leauthaud, K. Bundy, A. B. Newman, and M. W. Auger. Size and velocity-
dispersion evolution of early-type galaxies in a Λ cold dark matter universe. MNRAS, 422:1714–
1731, May 2012. doi: 10.1111/j.1365-2966.2012.20749.x.

K. Nitadori and S. J. Aarseth. Accelerating NBODY6 with graphics processing units. MNRAS,
424:545–552, July 2012. doi: 10.1111/j.1365-2966.2012.21227.x.

K. Nitadori and J. Makino. Sixth- and eighth-order Hermite integrator for N-body simulations.
New A, 13:498–507, October 2008. doi: 10.1016/j.newast.2008.01.010.

K. Nitadori, J. Makino, and P. Hut. Performance tuning of N-body codes on modern microproces-
sors: I. Direct integration with a hermite scheme on x86_64 architecture. New A, 12:169–181,
December 2006. doi: 10.1016/j.newast.2006.07.007.

NVIDIA. NVIDIA CUDA Programming Guide 3.2. 2010.
NVIDIA. NVIDIA CUDA Programming Guide 5.5. 2013a.
NVIDIA. NVIDIA‘s Next Generation CUDA Compute Architecture: Kepler GK110. 2013b.

http://books.google.nl/books?id=-dVKAQAAIAAJ

132 Bibliography

NVIDIA Corp. CUDA Programming manual. CUDA Programming manual, 1:200–212, Septem-
ber 2007. doi: 10.1086/173068.

L. Nyland, M. Harris, and J. Prins. e rapid evaluation of potential fields using programmable
graphics hardware, 2004.

L. Nyland, M. Harris, and J. Prins. Fast N-body simulation with CUDA. GPU Gems, 3:677–695,
2007.

T. Oogi and A. Habe. Dry minor mergers and size evolution of high-z compact massive early-type
galaxies. MNRAS, 428:641–657, January 2013. doi: 10.1093/mnras/sts047.

L. Oser, J. P. Ostriker, T. Naab, P. H. Johansson, and A. Burkert. e Two Phases of Galaxy
Formation. ApJ, 725:2312–2323, December 2010. doi: 10.1088/0004-637X/725/2/2312.

L. Oser, T. Naab, J. P. Ostriker, and P.H. Johansson. eCosmological Size and Velocity Dispersion
Evolution of Massive Early-type Galaxies. ApJ, 744:63, January 2012. doi: 10.1088/0004-637X/
744/1/63.

J. Pantaleoni and D. Luebke. Hlbvh: hierarchical lbvh construction for real-time ray tracing of
dynamic geometry. In Proceedings of the Conference on High Performance Graphics, HPG ’10, pages
87–95, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

P. J. E. Peebles. e large-scale structure of the universe. 1980.
H. C. Plummer. On the problem of distribution in globular star clusters. MNRAS, 71:460–470,

March 1911.
H. C. Plummer. e distribution of stars in globular clusters. MNRAS, 76:107–121, December

1915.
S. Portegies Zwart andT. Boekholt. On theminimal accuracy required for simulating self-gravitating

systems by means of direct N-body methods. ArXiv e-prints, February 2014.
S. Portegies Zwart, S. McMillan, D. Groen, A. Gualandris, M. Sipior, and W. Vermin. A parallel

gravitational N-body kernel. New A, 13:285–295, July 2008. doi: 10.1016/j.newast.2007.11.002.
S. Portegies Zwart, S. McMillan, S. Harfst, D. Groen, M. Fujii, B. Ó. Nualláin, E. Glebbeek,

D. Heggie, J. Lombardi, P. Hut, V. Angelou, S. Banerjee, H. Belkus, T. Fragos, J. Fregeau,
E. Gaburov, R. Izzard, M. Jurić, S. Justham, A. Sottoriva, P. Teuben, J. van Bever, O. Yaron,
and M. Zemp. A multiphysics and multiscale software environment for modeling astrophysical
systems. New Astronomy, 14:369–378, May 2009. doi: 10.1016/j.newast.2008.10.006.

S. Portegies Zwart, T. Ishiyama, D. Groen, K. Nitadori, J. Makino, C. de Laat, S. McMil-
lan, K. Hiraki, S. Harfst, and P. Grosso. Simulating the universe on an intercontinental
grid of supercomputers. IEEE Computer, v.43, No.8, p.63-70, 43:63–70, October 2010. doi:
10.1109/MC.2009.419.

S. F. Portegies Zwart, S. L. W. McMillan, P. Hut, and J. Makino. Star cluster ecology - IV. Dis-
section of an open star cluster: photometry. MNRAS, 321:199–226, February 2001.

S. F. Portegies Zwart, R. G. Belleman, and P. M. Geldof. High-performance direct gravitational
N-body simulations on graphics processing units. New Astronomy, 12:641–650, November 2007.
doi: 10.1016/j.newast.2007.05.004.

S. F. Portegies Zwart, S. L. W. McMillan, A. van Elteren, F. I. Pelupessy, and N. de Vries. Multi-
physics simulations using a hierarchical interchangeable software interface. Computer Physics Com-
munications, 184:456–468, March 2013. doi: 10.1016/j.cpc.2012.09.024.

Rajeev Raman and David Stephen Wise. Converting to and from dilated integers. IEEE Trans.
Comput., 57:567–573, April 2008. ISSN 0018-9340. doi: 10.1109/TC.2007.70814. URL http:
//dl.acm.org/citation.cfm?id=1345867.1345918.

J. K. Salmon and M. S. Warren. Skeletons from the treecode closet. Journal of Computational Physics,
111:136–155, March 1994. doi: 10.1006/jcph.1994.1050.

http://dl.acm.org/citation.cfm?id=1345867.1345918
http://dl.acm.org/citation.cfm?id=1345867.1345918

Bibliography 133

Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algorithms for
manycore gpus. In IPDPS ’09: Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, pages 1–10, Washington, DC, USA, 2009. IEEE Computer Society.
ISBN 978-1-4244-3751-1. doi: http://dx.doi.org/10.1109/IPDPS.2009.5161005.

J. A. Sellwood. Relaxation in N-body Simulations of Disk Galaxies. ApJ, 769:L24, June 2013. doi:
10.1088/2041-8205/769/2/L24.

S. Sengupta, M. Harris, and M. Garland. Efficient parallel scan algorithms for gpus. Technical
Report NVR-2008-003, NVIDIA, December 2008.

V. Springel. e cosmological simulation code GADGET-2. MNRAS, 364:1105–1134, December
2005. doi: 10.1111/j.1365-2966.2005.09655.x.

V. Springel, N. Yoshida, and S. D. M. White. GADGET: a code for collisionless and gasdynamical
cosmological simulations. New Astronomy, 6:79–117, April 2001. doi: 10.1016/S1384-1076(01)
00042-2.

R. Spurzem and S. J. Aarseth. Direct collisional simulation of 10000 particles past core collapse.
MNRAS, 282:19, September 1996.

R. Spurzem, P. Berczik, I. Berentzen, D. Merritt, N. Nakasato, H. M. Adorf, T. Brüsemeister,
P. Schwekendiek, J. Steinacker, J. Wambsganß, G. M. Martinez, G. Lienhart, A. Kugel, R. Män-
ner, A. Burkert, T. Naab, H. Vasquez, and M. Wetzstein. From Newton to Einstein N-body dy-
namics in galactic nuclei and SPH using new special hardware and astrogrid-D. Journal of Physics
Conference Series, 78(1):012071, July 2007. doi: 10.1088/1742-6596/78/1/012071.

R. Spurzem, P. Berczik, I. Berentzen, K. Nitadori, T. Hamada, G. Marcus, A. Kugel, R. Männer,
J. Fiestas, R. Banerjee, and R. Klessen. Astrophysical particle simulations with large custom gpu
clusters on three continents. Computer Science Research and Development, 26(3-4):145–151, 2011.
URL http://www.springerlink.com/index/10.1007/s00450-011-0173-1.

J. G. Stadel. Cosmological N-body simulations and their analysis. PhD thesis, AA(UNIVERSITY OF
WASHINGTON), 2001.

D. Szomoru, M. Franx, and P. G. van Dokkum. Sizes and Surface Brightness Profiles of Quiescent
Galaxies at z ˜ 2. ApJ, 749:121, April 2012. doi: 10.1088/0004-637X/749/2/121.

A. Tanikawa, K. Yoshikawa, T. Okamoto, and K. Nitadori. N-body simulation for self-gravitating
collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced
Vector eXtensions. New A, 17:82–92, February 2012. doi: 10.1016/j.newast.2011.07.001.

A. Tanikawa, K. Yoshikawa, K. Nitadori, and T. Okamoto. Phantom-GRAPE: Numerical software
library to accelerate collisionless N-body simulation with SIMD instruction set on x86 architec-
ture. New A, 19:74–88, February 2013. doi: 10.1016/j.newast.2012.08.009.

E. N. Taylor, M. Franx, K. Glazebrook, J. Brinchmann, A. van der Wel, and P. G. van Dokkum.
On the Dearth of Compact, Massive, Red Sequence Galaxies in the Local Universe. ApJ, 720:
723–741, September 2010. doi: 10.1088/0004-637X/720/1/723.

E. Terlevich. N-Body Simulations of Open Clusters. In J. E. Hesser, editor, Star Clusters, volume 85
of IAU Symposium, page 165, 1980.

P. Teuben. e Stellar Dynamics Toolbox NEMO. In Astronomical Data Analysis Software and
Systems IV, volume 77 of Astronomical Society of the Paci c Conference Series, pages 398–+, 1995.

S. Toft, P. van Dokkum, M. Franx, I. Labbe, N. M. Förster Schreiber, S. Wuyts, T. Webb, G. Rud-
nick, A. Zirm, M. Kriek, P. van der Werf, J. P. Blakeslee, G. Illingworth, H.-W. Rix, C. Papovich,
and A. Moorwood. Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ˜
2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies
to Extended Star-forming Galaxies. ApJ, 671:285–302, December 2007. doi: 10.1086/521810.

I. Trujillo, N.M. Förster Schreiber, G. Rudnick,M. Barden,M. Franx,H.-W.Rix, J. A. R. Caldwell,

http://www.springerlink.com/index/10.1007/s00450-011-0173-1

134 Bibliography

D. H. McIntosh, S. Toft, B. Häussler, A. Zirm, P. G. van Dokkum, I. Labbé, A. Moorwood,
H. Röttgering, and et al. e Size Evolution of Galaxies since z˜3: Combining SDSS, GEMS,
and FIRES. ApJ, 650:18–41, October 2006. doi: 10.1086/506464.

I. Trujillo, A. J. Cenarro, A. de Lorenzo-Cáceres, A. Vazdekis, I. G. de la Rosa, and A. Cava.
Superdense Massive Galaxies in the Nearby Universe. ApJ, 692:L118–L122, February 2009. doi:
10.1088/0004-637X/692/2/L118.

I. Trujillo, I. Ferreras, and I. G. de La Rosa. Dissecting the size evolution of elliptical galaxies since
z 1: puffing-up versus minor-merging scenarios. MNRAS, 415:3903–3913, August 2011. doi:
10.1111/j.1365-2966.2011.19017.x.

I. Trujillo, E. R. Carrasco, and A. Ferré-Mateu. Ultra-deep Sub-kiloparsec View of nearby Massive
Compact Galaxies. ApJ, 751:45, May 2012. doi: 10.1088/0004-637X/751/1/45.

T. Valentinuzzi, B. M. Poggianti, R. P. Saglia, A. Aragón-Salamanca, L. Simard, P. Sánchez-
Blázquez, M. D’onofrio, A. Cava, W. J. Couch, J. Fritz, A. Moretti, and B. Vulcani. Superdense
Massive Galaxies in the ESO Distant Cluster Survey (EDisCS). ApJ, 721:L19–L23, September
2010. doi: 10.1088/2041-8205/721/1/L19.

T. S. van Albada. Numerical integrations of the N-body problem. Bull. Astron. Inst. Netherlands, 19:
479–+, January 1968.

J. van de Sande,M. Kriek,M. Franx, P.G. vanDokkum, R. Bezanson, K. E.Whitaker, G. Brammer,
I. Labbé, P. J. Groot, and L. Kaper. e Stellar Velocity Dispersion of a Compact Massive
Galaxy at z = 1.80 Using X-Shooter: Confirmation of the Evolution in the Mass-Size and Mass-
Dispersion Relations. ApJ, 736:L9, July 2011. doi: 10.1088/2041-8205/736/1/L9.

A. van der Wel, B. P. Holden, A. W. Zirm, M. Franx, A. Rettura, G. D. Illingworth, and H. C.
Ford. Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0. ApJ,
688:48–58, November 2008. doi: 10.1086/592267.

P. G. van Dokkum, M. Franx, M. Kriek, B. Holden, G. D. Illingworth, D. Magee, R. Bouwens,
D. Marchesini, R. Quadri, G. Rudnick, E. N. Taylor, and S. Toft. Confirmation of the Remark-
able Compactness of Massive Quiescent Galaxies at z ˜ 2.3: Early-Type Galaxies Did not Form
in a Simple Monolithic Collapse. ApJ, 677:L5–L8, April 2008. doi: 10.1086/587874.

P. G. van Dokkum, M. Kriek, and M. Franx. A high stellar velocity dispersion for a compact massive
galaxy at redshift z = 2.186. Nature, 460:717–719, August 2009. doi: 10.1038/nature08220.

P. G. van Dokkum, K. E. Whitaker, G. Brammer, M. Franx, M. Kriek, I. Labbé, D. Marchesini,
R. Quadri, R. Bezanson, G. D. Illingworth, A. Muzzin, G. Rudnick, T. Tal, and D. Wake. e
Growth of Massive Galaxies Since z = 2. ApJ, 709:1018–1041, February 2010. doi: 10.1088/
0004-637X/709/2/1018.

S. von Hoerner. Die numerische Integration des N-Körper-Problemes für Sternhaufen. I. ZAp, 50:
184–214, 1960.

M. S. Warren and J. K. Salmon. FOREST: A Parallel Treecode for Gravitational N-Body Simula-
tions with up to 20 Million Particles. In Bulletin of the American Astronomical Society, volume 23
of Bulletin of the American Astronomical Society, page 1345, September 1991.

M. S. Warren and J. K. Salmon. Astrophysical n-body simulations using hierarchical tree data
structures. In Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, Supercomputing
’92, pages 570–576, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press. ISBN 0-
8186-2630-5. URL http://dl.acm.org/citation.cfm?id=147877.148090.

M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. In Supercomputing
’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing, pages 12–21, New York, NY,
USA, 1993. ACM. ISBN 0-8186-4340-4. doi: http://doi.acm.org/10.1145/169627.169640.

Michael S. Warren, Timothy C. Germann, Peter S. Lomdahl, David M. Beazley, and John K.

http://dl.acm.org/citation.cfm?id=147877.148090

Bibliography 135

Salmon. Avalon: An alpha/linux cluster achieves 10 gflops for $15k. In Proceedings of the 1998
ACM/IEEE Conference on Supercomputing, Supercomputing ’98, pages 1–11, Washington, DC,
USA, 1998. IEEE Computer Society. ISBN 0-89791-984-X. URL http://dl.acm.org/
citation.cfm?id=509058.509130.

M. S. Warren et al. Parallel supercomputing with commodity components. In H. R. Arabnia,
editor, Proceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’97), pages 1372–1381, 1997.

L. M. Widrow and J. Dubinski. Equilibrium Disk-Bulge-Halo Models for the Milky Way and
Andromeda Galaxies. ApJ, 631:838–855, October 2005. doi: 10.1086/432710.

L. M. Widrow, B. Pym, and J. Dubinski. Dynamical Blueprints for Galaxies. ApJ, 679:1239–1259,
June 2008. doi: 10.1086/587636.

Mathias Winkel, Robert Speck, Helge Hübner, Lukas Arnold, Rolf Krause, and Paul Gibbon.
A massively parallel, multi-disciplinary barnes–hut tree code for extreme-scale n-body simula-
tions. Computer Physics Communications, 183(4):880 – 889, 2012. ISSN 0010-4655. doi: http:
//dx.doi.org/10.1016/j.cpc.2011.12.013. URL http://www.sciencedirect.com/science/
article/pii/S0010465511004012.

G. Xu. A New Parallel N-Body Gravity Solver: TPM. ApJS, 98:355, May 1995. doi: 10.1086/
192166.

R. Yokota, J. P. Bardhan, M. G. Knepley, L. A. Barba, and T. Hamada. Biomolecular electrostat-
ics using a fast multipole BEM on up to 512 GPUs and a billion unknowns. Computer Physics
Communications, 182:1272–1283, June 2011. doi: 10.1016/j.cpc.2011.02.013.

Rio Yokota and Lorena A Barba. GPU Computing Gems Emerald Edition, chapter 9: Treecode and
fast multipole method for N-body simulation with CUDA, pages 113–132. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2011. ISBN 0123849888, 9780123849885.

Rio Yokota and Lorena A. Barba. Hierarchical n-body simulations with autotuning for heteroge-
neous systems. Computing in Science and Engineering, 14(3):30–39, 2012. ISSN 1521-9615. doi:
http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1.

K. Yoshikawa and T. Fukushige. PPPM and TreePM Methods on GRAPE Systems for Cosmo-
logical N-Body Simulations. PASJ, 57:849–860, December 2005.

K. Zhou, M. Gong, X. Huang, and B. Guo. Highly parallel surface reconstruction. Technical
Report MSR-TR-2008-53, Microsoft Research, April 2008.

http://dl.acm.org/citation.cfm?id=509058.509130
http://dl.acm.org/citation.cfm?id=509058.509130
http://www.sciencedirect.com/science/article/pii/S0010465511004012
http://www.sciencedirect.com/science/article/pii/S0010465511004012

Curriculum Vitae

Ik ben geboren op 1 mei 1984 te Alkmaar en begon mijn opleiding in 1988 op de Kleine
en Grote Beer te Heerhugowaard. Om vervolgens in 1996 te beginnen aan het VWO op
O.S.G Huygenwaard, ook in Heerhugowaard. In mijn vierde jaar van het VWO begon ik
aan het “Economie & Maatschappij” profiel dat behoorde bij het pas ingevoerde “tweede
fase” studie systeem. Aan het eind van het vierde jaar kwam ik er achter dat ik informa-
tica interessant vond en heb toen Wiskunde A vervangen door Wiskunde B zodat ik een
universitaire informatica opleiding kon volgen.

In 2002 heb ikmijnVWOopleiding afgerond en begon ik aan de opleiding “Informati-
ca” aan de Universiteit van Amsterdam. Na het afronden van mijn bacheloronderzoek ben
ik verder gegaanmet demaster opleiding in “Grid Computing” met als specialisatie “Com-
putational Science”. Voor mijn masterscriptie heb ik gewerkt aan directe N-body simula-
ties op de grafische kaart onder leiding van Robert Belleman en Simon Portegies Zwart.
Ik heb deze opleiding in november 2007 (cum laude) afgerond.

Vervolgens ben ik fulltime gaan werken voor Transpute B.V. te Amersfoort. Door het
verkrijgen van een IsFast NWOgrant eind 2008 ben ik in 2009 begonnen aanmijn promo-
tieonderzoek binnen de computationale sterrenkunde groep van Simon Portegies Zwart
aan de Universiteit van Amsterdam. Na twee maanden is de hele groep verhuisd naar de
Sterrewacht Leiden waar ik het onderzoek heb voortgezet. In al die tijd heb 4 dagen per
week aan mijn promotie onderzoek gewerkt en ben ik 1 dag per week blijven werken voor
Transpute.

Ik heb de resultaten van mijn onderzoek gepresenteerd op conferenties in Nederland,
Duitsland, Zweden, Italië en de Verenigde Staten. Tevens heb ik eind 2013 drie maanden
stage gelopen bij NVIDIA in Californië, VS.

Acknowledgements

Met de meeste projecten sta je er zelden alleen voor en voor het maken van mijn proef-
schrift was dat niet anders, daarom gebruik ik graag de laatste pagina’s om de mensen om
mij heen te bedanken voor de hulp en steun die ze mij de afgelopen jaren gegeven hebben.

Allereerst wil ik mijn promotor Simon bedanken voor de mogelijkheid om dit onderzoek
te kunnen uitvoeren en al het advies, steun en geboden mogelijkheden door de jaren heen.
And directly connected to that I would like to thank all the current and former members
of the “Computational Astrophysics” group for forming such a diverse group of interests,
expertise and entertainment. Some of them I would like to thank in particular. Derek,
bedankt voor alle (informatica) discussies die we gevoerd hebben in dit bastion van de
sterrenkunde. Evghenii thanks for your ingenious insights in parallel computing and ama-
zing conference trips. Arjen, Nathan and Inti bedankt voor jullie gezamenlijke kennis van
algorithmen en software ontwikkeling waar ik in de afgelopen jaren dat we het kantoor
deelden veelvuldig gebruik van maakte.

Furthermore I would like to thank the administrative staff that keeps the Sterrewacht
up and running, thanks for all the help Alexandra, Anita, David, Debbie, Els, Erik, Eve-
lijn, Jan, Liesbeth and Niels. And of course all my (former) collegues and friends here at
the Sterrewacht that make it such a dynamic work environment and who made it worth-
while to make the long daily commute to Leiden. Some of them I would like to thank in
particular. Bernadetta (for all the boardgame parties), Daniel R. & Carmen (for teaching
me (some) Spanish, yo te estoy viendo!), Giorgia (for the wonderful tiramisu), Markus
& Eva & Lars (for all the amazing barbecues), Michiko (for the great sushi), Stefania &
Rasmus, Steven, ibaut & Emilie & Samuel, Daniel H. and Yuri (for always offering a
good time at parties and the many coffee and tea breaks).

Dan & Alex, thanks for all the great moments that we enjoyed in the office, during
conferences and outside the working zone and most of all thanks for agreeing to be my
paranymphs. Sam & Ellie & Jonas, Dan couldn’t have wished for a better family, thanks
for all the dinners, TV-show and Super Bowl parties that I’ve had the pleasure of being a
part of at your place.

Naast mijn tijd op de universiteit was ik altijd 1 dag in de week aan het werk bij
Transpute; Albert, Annemiek, Bart, Cees, Jaap en Natascha, bedankt voor de geweldi-
ge jaren en dat jullie altijd konden omgaan met mijn rare werkrooster.

During my three months at NVIDIA in California I met many people, a few I would

140 Acknowledgements

like to thank in particular for making my internship such a great experience. ank you
Sarah, Cyril, Justin, Simon, Paulius, Steve, Nicolai and Peng it was great working with
you. anks to Mark Harris, Simon Green (both NVIDIA) and Stephen Jones (SpaceX)
for their assistance in improving Bonsai’s performance and visualization engine.

Over the years I met many amazing people in and outside the university. Constanze,
thanks for your insights into astronomy, sushi, classical music and your deep knowledge
of the Berlin public transport system. It was a great pleasure working with you! Sanne,
bedankt voor je hulp met de omslag en het Nederlands. Met jou praten was altijd een
welkome afleiding van de academische wereld en gaf mij altijd weer een andere en vooral
betere kijk op de wereld.

Als laatste wil ik mijn familie bedanken welke mij de afgelopen jaren altijd onvoor-
waardelijk gesteund heeft. Oma, Patrick, Natasja, Chantal, Marvin, Naomi, Lana, Smo-
key jullie stonden altijd klaar om mij te helpen en advies te geven. Papa en mama, bedankt
dat jullie er altijd voor mij zijn.

Fewer than two dozen GPUs have died during the creation of this thesis.

	Introduction
	Introduction
	The very beginning
	1960 - 1986: The Era Of Digital Computers
	1986 - 2000 : Advances in software
	2000 - 2006: The Era Of The GRAPE
	GRAPE
	Multi-Core Processors and Vector Instructions
	Collisionless methods

	2006 - Today: The Era Of Commercial High Performance Processing Units
	Collisional methods
	Collisionless methods

	Graphics Processing Units
	Thesis Overview
	Chapter 2 - Sapporo2
	Chapter 3 - OctGrav
	Chapter 4 - Bonsai
	Chapter 5 - Many Minor Mergers
	Chapter 6 - Parallel Bonsai

	Sapporo2
	Background
	Methods
	Parallelisation method
	Implementation

	Results
	Thread-block configuration
	Block-size / active-particles
	Range of N
	Double precision vs Double-single precision
	Sixth order performance
	Multi-GPU

	Discussion and CPU support
	CPU
	XeonPhi

	Conclusion

	Octgrav
	Introduction
	Implementation
	Building the octree
	Construction of an interaction list
	Calculating accelerations from the interaction list

	Results
	Accuracy of approximation
	Timing
	Device utilisation

	Discussion and Conclusions

	Bonsai
	Introduction
	Sparse octrees on GPUs
	Tree construction
	Tree traverse

	Gravitational Tree-code
	Time Integration
	Tree-cell properties
	Cell opening criterion

	Performance and Accuracy
	Performance
	Accuracy

	Discussion and Conclusions
	Scan algorithms
	Stream Compaction
	Split and Sort
	Implementation

	Morton Key generation

	The Effect of Many Minor Mergers
	Introduction
	Constraining the model parameters
	Initializing the galaxy mergers
	Configuring the major mergers
	Configuring the minor mergers

	Results
	The growth of the primary due to subsequent mergers
	The effect on the shape of the galaxies due to subsequent mergers
	The effect of the virial temperature

	Discussion
	Properties of the merger remnant

	Conclusion
	Resolution effects
	The effect of child density
	Circular velocity

	Parallel Bonsai
	Introduction
	Quantitative discussion of current state of the art
	Implementation
	Tree-walk kernel optimizations
	Parallelization

	Simulating the Milky Way Galaxy
	System and environment where performance was measured
	Performance results
	Operation counts
	Parallel performance
	Time-to-solution
	Peak performance

	Discussion

	Conclusions
	BRIDGE; Combining direct and hierarchical N-body methods
	The future

	Samenvatting
	De hoofdstukken in dit proefschrift
	Hoofdstuk 2
	Hoofdstuk 3
	Hoofdstuk 4
	Hoofdstuk 5
	Hoofdstuk 6

	List of publications
	Bibliography
	Curriculum Vitae
	Acknowledgements

