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1 Introduction




Introduction

Metabolomics

The completion of the Human Genome Project [1] was considered at that moment
as an important milestone for curing many diseases. With a new understanding of
one’s genes we should be able to understand better the underlying mechanisms of
complex diseases. Ultimately, this should lead to better diagnosis and treatment of
diseases[2]. The great expectations bestowed on genomics and the sequencing of
the human genome were however not met, since (i) many genetic factors can
contribute to a disease and (ii) most diseases have not a pure genetic cause. For
example, individuals with the same genetic background, like monozygotic twins, can
develop during the course of their lives different diseases. This shows the need for a
holistic view where other biochemical levels, apart from genomics, are necessary to

understand biological systems.[3]

Looking at an organism as a system, i.e. a collection of components like genes,
enzymes or metabolites, which are all interconnected at different levels such as
cellular, organ and overall system level, allows researchers to better understand the
causes of disease and to develop better diagnostics and, ultimately personalized,
treatments.[4] Such an approach does not only focus on genes, proteins and
metabolites but also at the interactions between all of them. The study of these

different building blocks of organism gave birth to systems biology and several omics



Introduction

era, with a plethora of fields such as genomics, proteomics, metabolomics,
peptidomics, transcriptomics, and many others.

Metabolomics is the science that studies metabolites, the small molecules (<1000Da)
involved in metabolism, either as substrates or as products of metabolic reactions.
Being closer to the phenotype than genes, metabolites are ideal read outs of
alterations like disease, including metabolic disorders, diet, lifestyle, and medical

interventions have on a biological system.[5, 6]

The aim of metabolomics is to measure qualitatively (which) and quantitatively (how
much) metabolites are present in a biofluid, tissue, or cell in order to answer
biological questions.[6] These measurements can be static, measured only once on a
single moment in time, or dynamic, over multiple time points, so that the progress of

a disease or the effect of a treatment can be monitored.

design
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Figure 1 Workflow of a metabolomics pipeline. Start of any experiments should be a clear biological question.
The different analytical and processing steps lead to biological data, which after interpretation should answer the
original question or suggest follow up experiments. The contents of this thesis contribute to the data processing
and data analysis steps.

Metabolites form a heterogeneous family of molecules for which there is not a single

analytical strategy yet available that can measure them all in a single run. As a
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Chapter 1

consequence, different analytical platforms are being developed and used suitable
for profiling specific classes of metabolites. One of the most often used analytical
techniques in metabolomics is mass spectrometry, mostly after separation of
metabolites by liquid chromatography, capillary electrophoresis or gas

chromatography (MS).[7, 8]

Metabolite identification, the identification of the precise chemical structure of a
metabolite, is one of the major challenges in metabolomics. The two most
frequently analytical techniques used for this are nuclear magnetic resonance (NMR)
and mass spectrometry. While NMR can provide for each atom of a molecule rich
information about their neighbouring atoms and hence, about their structure, NMR
requires a high concentration and a high sample purity of the metabolite that needs
to be identified. This is not usually the case for, among others, human samples.

Therefore, MS is widely used to measure human metabolites in complex samples.

Analytical Chemistry

LC-MS

Mass spectrometry is commonly used in metabolomics to detect metabolites in a
gualitative manner, by measuring the mass of molecules, calculating their elemental
composition and to elucidate their chemical structures by interpretation of their
fragmentation spectra. And MS is used in a quantitative manner by determining the
abundance of metabolites as absolute concentrations or relative to a reference
compound. Usually MS instruments are composed of four modules: (i) an ionizer,

which charges the molecules in the sample, prior or after transfer into the gas phase;
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(ii) an extraction system, which transfers the ionized molecules (or their fragments)
from the sample introduction unit to the analyzer; (iii) a mass analyzer, which
separates the molecules according to mass; and (iv) a detector, which quantifies the
abundance of the ions. The information that can be obtained from MS is the ratio of
the mass of ions and their charge, the so-called mass-over-charge ratio (m/z). From
these m/z values, the mass of the molecule can be derived after revealing whether
the ions were formed by protonation, deprotonation, adduct formation, etc; from
the mass of the molecule the elemental composition (EC) or a short-list of possible
elemental compositions can be derived; from a EC one or multiple structures can be
proposed. The more accurate the mass is determined the fewer candidate elemental
compositions are obtained. The mass accuracy depends on the instrument
employed, and even for high accuracies, such as in the low part per million (ppm) or
sub-ppm range, unique elemental compositions cannot always be obtained.
However, when including several constraints into accounts by including fragment
ions and their relations among each other,[9] the number of possible elemental
compositions for a certain mass can be reduced. Still, for a given mass many
elemental compositions can be found. And, even worse, for a given EC millions or

billions of candidate structures can be proposed.

Analyzing metabolites with mass spectrometry poses many challenges. Samples in
metabolomics studies are complex and can contain thousands of metabolites. Some
of these metabolites can have identical atomic mass, elemental formula and/or be
structural isomers, which complicates their identification using mass spectrometry.

Additionally, other compounds that are also present in the sample we measure, can

13



Chapter 1

affect how well our analyte of interest ionizes. This process is known as ion
suppression and is the reason why metabolites in complex samples are usually first
separated using chromatography prior to detection with MS. Gas chromatography
(GC) is used to separate compounds that are volatile or that via derivatization can
become volatile. Non-volatile (but also volatile) compounds are separated according
to their polarity using liquid chromatography (LC). In both cases the metabolites
present in the mobile phase, either gas or liquid, pass through a column and interact
with the stationary phase in the column. This interaction with the stationary phase
delays the elution of some metabolites, and thus, achieving their separation. The
diameter, length and characteristics of the stationary phase of a column determine
how the metabolites will be separated. The time after which a metabolite elutes is

called the retention time (RT).

Once metabolites have been separated they need to be detected and quantified,
which is often achieved by a mass spectrometer. The combination of the information
obtained from the LC and MS experiments, RT and m/z respectively, is also referred
to as a metabolite feature. In metabolomics experiments, metabolites are often

characterized by their RT and m/z values, when their identity is still unknown.

ms"

lon traps are mass analyzers that can trap an ion, the so-called parent ion, with a
certain pre-specified mass/charge ratio, fragment it, trap the fragments and
fragment them further (if needed). This type of MS fragmentation is known as multi-

stage mass fragmentation (MS"), where n indicates the number of consecutive
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fragmentations performed. The resulting mass spectral tree contains information
about the parent and fragment ions and the relationships between them. This type
of data contains valuable structural information for metabolite identification, since
two isomeric molecules, with the same elemental composition but different
chemical structures will most likely produce different mass spectral trees. The depth
(number of consecutive fragmentations) and width (number of fragment ions
obtained at a given level) is determined by the available amount of the compound,
by the size of the compound (a small compound cannot yield many fragments) and
by its chemical composition (some bonds are more resistant to cleavage than

others).

De Novo Metabolite Identification

During a metabolomics study, one or multiple metabolite features can be of interest
for the biological question at hand. These features can be for example biomarkers
that indicate significant difference between the metabolic profiles of healthy and
diseased patients or they can be the metabolic end product of a gene knockout
experiment, or the degradation products of a newly tested drug, for instance. In all
these cases, knowing the chemical structure of those metabolite features is essential
to interpret the results of the metabolomics study. De novo and non-de novo
metabolite identification are regarded as one of the major bottlenecks facing

metabolomics.[10-12]

A critical step in metabolite identification is the selection of candidate structures for

an unknown metabolite. Standard metabolite identification methods retrieve the
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chemical structures of a compound, that is present in a library, by matching its
experimental mass, elemental composition and/or spectrum against those of
compounds in a library. This approach only allows the identification of metabolites
that have already been discovered, for which mass spectra are required in a
comparable manner, and that are properly stored in a database. However, such a
strategy will not allow to identify unknown compounds, which are not in a database
yet, or also for some known metabolites because the proper database has not been
selected, or the data acquisition conditions were different. As mentioned earlier,
with the proper method one or multiple elemental compositions can be derived
from the mass of a molecule, however, up to millions of structures can be obtained
for a single EC. Therefore, querying masses and ECs in databases will return an

incomplete list of candidate structures.

De novo identification deals with ‘truly’ unknown metabolites that are not present in
compound libraries. In many cases this means that the unknown has not been
identified before, which poses many challenges. Firstly, all possible candidate
structures have to be generated, ensuring that the correct structure is not missing
among the candidates. Secondly, this (usually very large) list of structures has to be
reduced by filtering unwanted structures. Ideally, one or a handful of candidate
structures will be left at the end, including the correct structure. Lastly, the proposed

structures have to be validated in order to have a confident identity assignment.
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Cheminformatics

Cheminformatics, also known as chemoinformatics, is the field of handling chemical
information electronically. The use of computers to solve chemical problems can be
traced back to 1946 when IBM accounting machines were used to construct the
rotational spectra of asymmetric rotors. Cheminformatics has been applied
extensively in drug discovery, analytical chemistry and structural biology, among

others.

In drug discovery, chemists use cheminformatics to select suitable drug candidates,
test in silico their activity against biological targets, build predictive models (for
instance of drug-likeness) and calculate physicochemical properties. Other uses of
cheminformatics include querying databases of small compounds (<1000Da) in
search for compounds that are similar to known active molecules, or for those that
have a high predictive activity against a protein of interest. Apart from searching
compounds that are similar to known compounds, cheminformatics helps scientists
to navigate the chemical space. The aim is designing molecules that are structurally
different to existing ones but with properties that better match properties ideal in a
certain situation, for instance having a good ADMET profile (administration,

distribution, metabolism, excretion and toxicity) and easy to be synthesized.

Cheminformaticians have produced a plethora of predictive models. These models
try to predict for new molecules a property or characteristic, which have been learnt
from a set of molecules for which this property or characteristic is known. Examples

of these models are drug-likeness or nature product-likeness. In simple words, these
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models use machine-learning algorithms to establish the relationship between
molecular properties (structural or physicochemical) and a desired property or
behavior. All these models rely on the concept that “similar molecules will have
similar activities”. An example of predicting behavior of molecules are quantitative
structure activity-relationship (QSAR) models, which aim to predict the binding
affinity of molecules to a certain target based on certain predictor properties (via a
regression model), or which aim to predict whether a molecule is biologically active
or not (via a classification model). Quantitative structure property-relationship
(QSPR) models on the other hand predict properties of a molecule like solubility,
mutagenicity or internal energy based on thestructural characteristics of the
molecule. Cheminformatics models can be used in principle in metabolite
identification strategies to, e.g., reject candidate structures that do not have a
predicted property value close to the experimental, like retention time, or that they

do not exhibit a desired property, like metabolite-likeness.

In analytical chemistry, cheminformatics helps to store, process and compare all
sorts of spectrometry data. One of the oldest applications of chemoinformatics is to
assist in the elucidation of new compounds. In other words, to use computers and
algorithms to determine the chemical structure of a compound measured using

analytical chemistry techniques.

Structure elucidation
In the 1960s databases were built to store and retrieve mass spectra. The same

decade witnessed in analytical chemistry one of the most ambitious uses ever of
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cheminformatics in any field, the DENDRAL project.[13] The aim of DENDRAL was to
create the first expert system for Computer Assisted Structure Elucidation (CASE),
which would automatically predict the chemical structure from the mass spectrum
of an unknown compound. In the years after DENDRAL was introduced, databases of
NMR spectra and tools to predict the structure of unknown molecules were also

developed.

Structure elucidation is one of the oldest areas in cheminformatics, and aims to
determine the chemical structure of a molecule based on its experimental data,
usually MS or NMR.[14] At the core of a structure elucidation system lays a structure
generator. This software tool takes as an input the elemental composition of the
molecule and optionally some constraints, and generates possible chemical
structures. Common constraints are prescribed substructures, forbidden

substructures and desired properties of the generated molecules.

Most generators are deterministic and exhaustive: they generate all possible
molecules for a given input. Since structure generation is a combinatorial problem, it
can lead to an explosion in the number of generated molecules. To avoid this, one
can provide constraints that limit the number of molecules, or use a stochastic
generator, which will produce a subset of the possible results. While computationally
affordable, stochastic generators do not guarantee that the correct structure will be
included in the list of results. Therefore, scientists focused so far on the

identification of small molecules using regularly deterministic generators.
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Structure generators represent molecules as graphs given the resemblance of
molecules and graphs. Molecular atoms can be seen as graph vertices and molecular
bonds as graph edges. This allows structure generators to use graph theory, a sub-
field of mathematics. Graph theory allows cheminformaticians to elaborate
theorems and theoretical proofs of completeness and correctness. From these
theorems algorithms can be developed to generate graphs (and molecules). Finally,
these algorithms are programmed as software tools, namely structure generators.
Several graph theory-based algorithms to generate molecules have been
developed.[15] The choice of structure generator will depend on how complete one
wants the results to be, how fast the calculation the structures should be, and how

easily new constraints should be implemented.

After decades of research in CASE, several structure generators have been
developed, MOLGEN[16] being the most advanced. Unfortunately, MOLGEN and
others are commercial and the source code of these tools is not available and they
are closed tools. In other words, they are not freely available neither can they be
customized and extended to fulfill the needs of metabolomics researchers. However,
all available structure generators so far do not fulfill all needs for identification of
metabolites, such as using only atom types present in biological systems, applying

constraints available from experimental data or using several substructures.

Scope and outline of the thesis
The goal of this thesis is to design, develop and integrate new methodologies and

software tools such as a structure generators and chemoinformatic models in a
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pipeline that enables de novo metabolite identification. The ultimate pipeline should
propose candidate structures based on LC- MS" for those unknown metabolites that
are not present in any database. LC- MS" was chosen because this analytical platform
allows to detect a large number of metabolites in human samples also at lower
concentrations and vyields structural information of unknown metabolites via
extensive fragmentation. The list of candidate structures for a unknown metabolites,
or unknown compound in general, should be exhaustive, i.e. the actual structure
may not be missed, but at the same time as short as possible due to elimination of
candidates using multiple filtering criteria. A short list of candidate structures can
then be checked by an expert to identify the final candidate structure. At the start of
this thesis, software tools to process and analyze LC-MS" were scarce, vendor
dependent and not open source. Therefore, the first aim in this thesis was to
develop a structure generator and to develop algorithms to filter the results
obtained by the structure generator. Therefore a metabolite-likeness predictive
method had to be developed. In addition, these algorithms should be open source to
allow others to use them and improve them further and on the other hand to
implement open source tools in our own pipeline. In a parallel project, another
researcher developed algorithms for the preprocessing of spectral trees and
algorithms to compare spectral trees. The second aim was therefore to integrate all
tools developed in this thesis and in the parallel project into one pipeline to allow
the nearly fully automated processing and interpretation of spectral trees of

unknown metabolites and to obtain a short list of candidate structures.
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In Chapter 2, a structure generator, the Open Molecule Generator (OMG), is
developed. OMG is open source and at the heart of a de-novo identification pipeline,
since it can generate all possible chemical structures for an unknown metabolite
with a given elemental composition. The canonical augmentation approach,
originally designed to generate graphs, was adapted to generate all possible
molecules for a given elemental composition and optional fragments and

implemented as open source.

The aim of the research reported in Chapter 3 was to develop a method to constrain
the number of molecules generated by OMG. The Metabolite-likeness filter has been
developed to remove unwanted molecules that do not resemble human
metabolites. Different classification models were developed, optimized and trained
to discern between human metabolites and non-metabolite molecules based on
their physicochemical and structural properties. These models were tested and the
best performing one selected to reject molecules that would obtain a low

metabolite-likeness score.

In Chapter 4, the tools developed in Chapter 2 and 3 of this thesis and in other
related metabolite identification research projects are integrated into an metabolite
identification pipeline (Figure 2), optimized and applied to identify metabolites
detected in human urine, which could be known and unknown metabolites. MS"
spectra of human urine metabolites were acquired, processed, the elemental
compositions assigned to fragment ions and neutral losses, and the spectral trees

were compared using fragmentation tree similarity to a database of known
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metabolites in order to obtain prescribed substructures. These substructures and the
elemental composition were taken as input for generation of candidate structures
with the OMG. These structures were filtered using Metabolite-likeness, internal
energy and fragmentation prediction filters. The performance of the overall

identification pipeline was discussed and possible future developments proposed.

In Chapter 5, the structure generation method was further improved based on the
experiences obtained in Chapter 4, and the Parallel Molecule Generator (PMG)
developed. These improvements included the use of a faster algorithm, the
execution in parallel using multiple processors and the use of a bad list of
substructures and bad rings, to reject while generating unwanted molecules that
contained one or multiple unwanted moieties. The improvement resulted in
significant reduction of time required to create a candidate list, which was 100-fold
compared to OMG for unknown metabolites for which a list of prescribed

substructures was provided.
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OMG: Open Molecule Generator

Computer Assisted Structure Elucidation has been used for decades to discover the
chemical structure of unknown compounds. In this work we introduce the first
open source structure generator, Open Molecule Generator (OMG), which for a
given elemental composition produces all non-isomorphic chemical structures that
match that elemental composition. Furthermore, this structure generator can
accept as additional input one or multiple non-overlapping prescribed
substructures to drastically reduce the number of possible chemical structures.
Being open source allows for customization and future extension of its
functionality. OMG relies on a modified version of the Canonical Augmentation
Path, which grows intermediate chemical structures by adding bonds and checks
that at each step only unique molecules are produced. In order to benchmark the
tool, we generated chemical structures for the elemental formulas and
substructures of different metabolites and compared the results with a
commercially available structure generator. The results obtained, i.e. the number
of molecules generated, were identical for elemental compositions having only C,
O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces
all the chemically valid molecules while the other generator produces more, yet
chemically impossible, molecules. The chemical completeness of the OMG results
comes at the expense of being slower than the commercial generator. In addition
to being open source, OMG clearly showed the added value of constraining the

solution space by using multiple prescribed substructures as input. We expect this
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structure generator to be useful in many fields, but to be especially of great
importance for metabolomics, where identifying unknown metabolites is still a

major bottleneck.

Computer Assisted Structure Elucidation (CASE) of chemical compounds is one of the
classical problems positioned at the intersection of informatics, chemistry, and
mathematics. CASE tools have been employed during decades to elucidate the
chemical structure of small organic molecules. In its most general definition, a
structure elucidation system receives experimental chemistry data of an unknown
molecule as input, and outputs a list of possible chemical structures. The input can
be the elemental composition of the elusive molecule, nuclear magnetic resonance
(NMR) and/or mass spectrometry (MS) spectra (provided the generator can simulate
spectra and match it to the experimental ones) or information of prescribed
substructures. The output is a list of candidate structures matching these conditions,
ideally containing all possible structures without duplications. A small list of
candidates is dependent on the number of constraints derived from experimental
data; the higher the number of constraints we use the smaller the candidate list will
be. The ultimate goal for such a system being fully automated and returning only

one and correct molecule is not yet at our reach, despite decades of research[1].

The DENDRAL[2] project is widely regarded as the initiator of the use of these
methods to provide a system for Computer Assisted Structure Elucidation (CASE). It
involved the development of artificial intelligence algorithms that would extract

heuristics from MS and NMR data and use them to constrain the output of a
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structure generator. CONGEN was the structure generator developed within
DENDRAL, which preceded a more advanced generator known as GENOA[3]. Many
commercial structure generators were developed later, most renowned ones being
CHEMICS[4], ASSEMBLE[5], SMOG[6], and the most widely used of all of them, the
general purpose structure generator MOLGEN(7]. These closed source software tools
work like a black box, where the user cannot, on the one hand, understand the
functioning of the software and on the other hand, customize the tool to his needs.
These drawbacks of closed source software (where the source code is not provided)
can be circumvented by open source tools. Two open source structure generators
have been developed that work with NMR data, the deterministic LSD[8] and the
stochastic SENECA[9]. Implementation of open source stochastic and deterministic
structure generators have been explored within the Chemistry Development Kit
(CDK)[10, 11]. Unfortunately, these generators failed to generate all chemical
structures possible and were discontinued in recent releases of CDK. Despite these
efforts, no general purpose deterministic structure generator has been developed in

an open source format so far.

The advance of “omics” sciences in the last decade, in particular of
metabolomics[12], has renewed the interest of researchers in developing better
structure generators. Metabolomics aims at detecting and identifying metabolites in
an organism and has resulted in a large list of potential biomarkers for which the
chemical structure is unknown[1, 13]. When trying to identify the structure of
unknown molecules, scientists first perform an identity search by querying reference

databases using their experimental information[1, 14-16]. In such case, they use the
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elemental composition of the metabolite derived from mass spectrometry (MS) or
the spectra of nuclear magnetic resonance (NMR). When the metabolite is a real
unknown it is not present in any database, therefore the query returns no results.
This forces scientists to propose candidate structures using a different approach, one
of them is using a structure generator[17, 18] , which produces all possible
molecules given an elemental composition and optional, other constraints. Examples
of constraints are prescribed substructures that each output molecules should
contain and that are derived from experimental NMR, MS?, or MS" data. Hence, the
need for deterministic and flexible structure generators in the field of metabolomics

presents should be met with new algorithms[1].

The majority of structure generators rely on graph theory to produce their desired
output. Interestingly, compounds can be represented as molecular graphs where
atoms and bonds are translated into vertices and edges, respectively, to which
theorems and algorithms proposed by graph theory can be applied. This ensures that
the output is correct, exhaustive, and free of isomorphs. Such methods can be the
orderly enumeration proposed by Read[19] and Faradzev[20], a stochastic
generator[21], the homomorphism principle[22] used by MOLGEN, or the “canonical
augmentation path” proposed by McKay[23]. This last method, originally intended to
generate simple graphs by adding vertices, has been applied to the generation of
some families of graphs and also to generate the chemical universe of molecules up
to 11 atoms[24] and recently to 13 atoms[25]. Despite the goal was to generate
molecules, these two approaches initially employed canonical path augmentation to

generate all possible simple graphs up to 11 and 13 vertices, respectively. Posterior
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topological and ring system filter were used to remove unwanted graphs. Lastly, the
vertices were colored with chemical elements and the edges with a bond order,
which turned the graphs into molecules. Simple chemical constraints like
connectivity and atom valence were applied to reduce the list of final molecules. This
process, which relies on generating simple graph, is necessarily limited on the size of
the molecules that can be generated because a linear increase in the number of
atoms produces an exponential increase of both the number of graphs and
molecules. Here we present the Open Molecule Generator (OMG), a structure
generator based too on McKay augmentation algorithms, but rather than first
generating graphs and secondly transforming these graphs into molecules, our
implementation of McKay technique directly constructs molecules. In this way we
can generate chemical structures much greater than 13 atoms. Essential concepts of

graph theory will be introduced in the methods section.

Chen mentioned two future challenges facing CASE systems[26]. The first challenge
for elucidating structures is to have a knowledge system of previously identified
compounds, as well as mining tools for such data. In this direction, Rojas-Cherto et
al.[27] developed a system to store spectral data and mine the database to extract
substructure information that can be used as prescribed substructures in our
structure generator. The second challenge is the need for filtering and selecting
candidate structures. This is often performed by predicting a property of the
candidate structures that is related to the field of research, for instance, predicting
the spectra in analytical chemistry, the bioactivity in ligand design, or the

Metabolite-Likeness[28] in metabolomics studies, to name a few. Furthermore, the
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need of a structure generator tool that can be adapted to the requirements of the
field in which it is going to be applied, demonstrates the usefulness of open source

tools compared to commercial "black box" generators.

In this paper we present the first general purpose open source structure generator,
Open Molecule Generator. OMG adapts methodologies from the field of graph
theory and deterministic graph enumeration to the classical problem of chemical
structure generation. In this sense, we have used the approach of “canonical path
augmentation” to ensure that we exhaustively generate non-isomorphic chemical
structures for a given elemental composition. This generation tool has been
implemented using CDK[10, 11], a widely used open source library for the
development of chemoinformatics software. It allowed the representation of entities
such as molecules, atoms, and bonds in our program and the use of functions like
removing hydrogen atoms, checking the saturation of a molecule, removing a bond,
and many more. The resulting tool generates all possible non-duplicate chemical
structures for a given elemental composition, with the option to generate only those
that contain one or multiple non-overlapping substructures, which is the most
important constrain to reduce the number of resulting candidate structures when a
knowledge system is not available[18]. We have used OMG to generate molecules
for the elemental composition of well known metabolites, also including one or
more prescribed substructures as input. These results are compared to those

obtained by MOLGEN.
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Materials and methods

Chemical Elements and Atom Types

We would like to describe some concepts related to atoms that are necessary to
understand the theory and algorithm behind OMG and the use of CDK to handle

chemistry.

In nature, atoms of different chemical elements (carbon, nitrogen, oxygen, and
others) are connected to each other by bonds in order to form molecules. The
valence, to which we will also refer as degree, of these chemical elements determine
how many bonds each element can have. Carbon has a valence of 4, oxygen of 2,
nitrogen of 3 or 5, sulfur of 2,4 or 6, phosphor of 3 or 5. Thus a carbon atom
becomes saturated when it has 4 bonds, where a single bond counts as one bond, a
double as two bonds, and a triple as three bonds. Regarding molecules, we consider
a molecule to be saturated when all its atoms are saturated. In some special
occasions, atoms are charged, which makes them having a different valence. In the
case of OMG, we only use neutral atoms and as a consequence only neutral
molecules are produced, therefore all finished molecules will contain atoms with the

valences mentioned before.

A chemical element can have multiple atom types, also for the same valence of an
element, as defined by the dictionary of atom types in CDK. This dictionary defines
for each atom the number of neighbors, pi bonds, charges, lone electron pairs, and
hybridizations, in order to accommodate the different states a chemical element can

have due to different bonds, number of neighboring atoms, charges and
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hybridizations. These atom types are based on the chemical elements that have
been observed in nature for saturated molecules. This is why we use the CDK atom

dictionary to validate the atoms of our finished molecules.

OMG will output only molecules that are saturated and that contain the atoms
specified in the elemental composition. Apart from finished molecules, OMG has to
represent during the generation process intermediate chemical structures that are
not finished yet. These might contain disconnected fragments and atoms that are
not saturated. CDK atom types are not designed to represent atom types of
unsaturated chemical elements; therefore we opted for implementing a simple atom
dictionary. For each chemical element, this dictionary defines its valence, in other
words, the maximum degree. Hence for intermediate chemical structures we only

check that the current degree of each atom does not exceed the maximum degree.

MOLGEN can also produce molecules with multiple valences, but it handles them in
a different way. While with OMG only the elemental composition needs to be
provided to generate molecules with multiple valences, MOLGEN requires knowing a
priori which one of the multiple valences has to be used. It uses by default the
lowest valence, this is, N valence 3, P valence 3, and S valence 2, unless a different
valence is specified. In Table 1 the atom types produced by OMG and MOLGEN for
non-default valences are presented. Using sulfur as an example, OMG will output
molecules with containing sulfur valence 2, 4 and 6. For the same chemical element,
MOLGEN will produce by default molecules with sulfur valence 2. If one sets the

valence of sulfur to 6, it will only produce sulfur valence 6 and not valence 2 and
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valence 4. MOLGEN cannot generate molecules with atoms of different valences for
the same chemical element, this is, if molecule has two sulfur atoms, one will not be

of valence 4 and the other of valence 6, both will be either valence 2, 4 or 6.

Valence MOLGEN oMG

R R R R 0 0 ¢
valence 5 RZNéR R”"{I\R R///N_R R.“ C§ R:NR_R C/’"{I\R O’“\R C"N:OO

—R l?\ R\P—R ! R‘FfR_R 8?3_
valence 5 RZP/ R"P\R R/// R'Ptﬁ R L R’ \5
R—I'Q "R Rel R

valence 4 R=“—R RZ ~-R _Il? R~ \R _Il? R~ \R

/R R\ /R l;_\: R\II/Q R\R\,R l;_\: R\II/Q R\R\,R
valence 6 R\\\ N R= “ R=" R= ./R R \~R R’ "R R= ./R R \~R R’ R

<R R R R R R R R R

Table 1 Atom types produced by OMG and MOLGEN for non-default valences of N(5), P(5) and S(4 and 6).

The principle followed by CDK to build its atom dictionary is to allow atom types with
valences for which there is a consensus agreement on their existence, this is, for
which known molecules exist with such valences. Conversely, MOLGEN produces all
theoretically possible combinations of bond orders for a given valence, as it can be
observed in Table 1. For example, as it can be seen for P valence 5 OMG only
produces one atom type with one double bond and three single bonds. In
comparison, MOLGEN produces all the combinations of single, double, and triple
bonds that add to 5. As a consequence, when the desired valence is unknown, which
is usually the case in metabolite identification, molecules need to be generated with
all possible valences. As a result, the number of output molecules by both

generators is different for elemental compositions that contain chemical elements
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with multiple valences. This deterministic generation of valences in MOLGEN comes

at the expense of generating molecules having unrealistic structures.

Graph Theory and Chemistry

The chemical structure of molecules can be represented as a graph, where atoms
and bonds in molecules correspond to vertices and edges, respectively, in graphs. In
molecules, bonds connecting two atoms can have a degree depending on the
number of electrons they share. Such a degree can also be assigned to the edges of a
graph, which is called a multigraph. The different chemical elements present in the
periodic table are represented in graphs as colors assigned to the vertices. We define
a non-directed colored multigraph as G =(V,E) where V is a set of vertices and E is
a multiset of edges, where each edge is an unordered pair of vertices, and a function
Col:V —colors. In this multigraph, we say that a,b &€V are n-connected if there
are exactly n edges (a,b)EV. Apart from the color function, a multigraph is
characterized by the function d:V xV —N, which returns the degree of the edge
connecting each couple of vertices. From now on we will indistinctively refer to

graphs and multigraphs.

In chemistry, the valence rule determines the maximum number of bonds each
chemical element has. In order to take this into account, we define which returns
the number of edges of a given vertex and a max-degree function md:V — M,
which returns the maximum number of edges of a given vertex. We say that a
multigraph is under-saturated if there is at least one vertex V' such that . A

multigraph is saturated if the equality holds for every vertex. In chemistry,
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molecules correspond to saturated colored multigraphs and max-degree depends on
the color, which is the chemical element. For instance, for a carbon element,

md(C) =4 and for an oxygen element, md(O) =2.

We consider a multigraph to be connected if Yv,w&V 3§, . ={v,...,v,} such that

v,y, and v, ,w are connected and for each i <m, v, is connected to v, . In other
words, a multigraph is connected if for all pair of vertices, there exists at least one
path S w; connecting both vertices. This condition is necessary for chemistry, since
intermediate chemical structures in the generation process can be composed of
disconnected fragments, it ensures that the generated molecules are one fully
connected structure and not made of disconnected substructures. Notice that
hydrogen atoms (the most frequently found chemical elements with degree 1) are
not considered in the generation process, since they are terminal elements of the
molecule and they cannot connect two disconnected elements of the molecule.
Hydrogen atoms are only used to validate the completeness of finished molecules.
Halogen atoms like fluorine, chlorine, and iodine, also of degree 1, are considered

during the generation process.

Graph Labeling

An isomorphism s is a function that for each vertex v €V, Col((v)) = Col(v) and
for each pair of vertices vEVV'EV' d(x(v),x(v')) =d(v,v'"). A labeling function
o:V —{l,...,n} is a bijective map from the vertices of a colored multigraph to an
ordered list labels with a cardinality equal to the number of vertices. Put simple, O
assigns to each vertex a label. Let o' be the inverse function of O, which returns
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the vertex corresponding to a label. We say a labeling function is canonical if given
any two isomorphic colored multigraphs G =(V,E) and G'=(V',E'), the bijective
function m:V —V' defined as x(a) =0""'(o(a)) is an isomorphism of V in V'
Therefore, a canonically labeled multigraph is a multigraph whose vertices are
associated to an ordered list through a canonical labeling function. Furthermore, a
canonical hash of the labeling is a bijective function between the space of the
canonically labeled multigraphs and the value space and it is represented as a string
of integers. It is interesting to note here that two isomorphic graphs have the same
canonical hash, a fact that will be used to remove duplicated molecules during the

generation process.

Using Fragments
A fragment or substructure of a molecule is equivalent to a fragment or subgraph of
a graph. We define a fragment as a subset of a graph and it is characterized by the

function df :VxV —N where N is the number of edges connecting each pair of
vertices in the subgraph. Such df has to fulfill the condition
df(a,b)sd(a,b),Va,bEV and at least for one edge df <d, this is, the fragment

should have fewer edges than the graph.

Canonical Augmentation

An augmentation of a multigraph G =(V,E) is a multigraph G'=(V,E'), defined on

the same set of vertices, such that Va,b €V, d;(a,b) =d.(a,b), except for one and
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only one pair where d,.(a,b) =d;(a,b) +1. Let e'EE' be the edge which degree has

been increased, d(e') =d(e)+1.

Let be the last edge of and the vertices of . Consider to vertices of , a copy of , to
which a bond order decrease is performed . The resulting multigraph after this
decrease in bond order, can be seen as the result of a canonical deletion on , the
reverse operation of a canonical augmentation. In our definition of canonical
augmentation we consider a multigraph G'=(V',E') to be canonically augmented
from G =(V,E) if it is an augmentation and . In other words, we consider to be a

canonical augmentation of if a canonical deletion in results in .

Description of the algorithm

The generation of structures can be seen as a tree of intermediate chemical
structures that our tool explores. At the root of the tree we find a collection of fully
isolated/disconnected atoms. One bond is added at each level of the tree, resulting
in fully connected/finished molecules at the leaves. The canonical augmentation
path is a depth-first backtracking algorithm, where the recursive function generate
described in Algorithm 1, implements the addition of one bond in all possible ways
for a given intermediate chemical structure, and evaluates for each extended
molecule that this extension has been performed in a canonical way, as described
before. Here adding one bond means increasing the degree of the bond between
two atoms, hence a single bond becomes a double bond and a double bond
becomes a triple bond. If there is no bond between two atoms, a single bond is

created.
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1: generate(M)

2: If saturated(M) AND are_all_H_used(M)

3: If connected _fragments(M) ==

4. store_to_file(M)

5: Nmols = Nmols + 1

6: If degree(M) < max_degree(M)
7: generate(M)

8: Endif

9: Endif

10: Else

11: New Map

12: List_of _bonds = extend(M)

13: Foreach bond in list_of bonds

14: M’ = add_bond(bond,M)

15: canonM’ = canonize(M’)

16: If not is_present(map,canonM’)
17: add(map,canonM’)

18: If is_canonical_augmentation(canonM’,M’,M)
19: generate(M’)
20: EndIf

21: EndIf

22: End

23: EndIf

24: End

Algorithm 1

Between lines 2 and 9 of Algorithm 1, the molecule is stored if it is finished, which
occurs when the molecule is saturated and all the atoms of the elemental
composition, including the hydrogen atoms, have been used, all the atoms are
validated by the CDK atom dictionary and are connected forming one single

structure and not multiple disconnected fragments.

In the case the molecule is not finished, it would be extended in all possible ways by
adding one bond. If there exists a bond between a pair of atoms function extend, in
line 12 of Algorithm 1, will increase the multiplicity. The generation of new bonds is

controlled by OMG atom type definitions for intermediate chemical structures,
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which guarantee that the degree of the atoms does not exceed the maximum degree

allowed for its chemical element.

Function canonize, in line 15 of Algorithm 1, returns the canonical version of the
molecule. We modified the graph canonizer Nauty[23, 29] in order to allow
multigraphs and not only simple graphs. Other canonizers for graphs exist like
MOLGEN-CID[30] or the Signature Canonizer[31], but Nauty has been the most
widely used for graphs as well as for chemistry problems, like InChl[32] codes. Nauty
is the canonizer of choice because it is the fastest of all available canonizers for
bounded valence graphs below 100 vertices[33] (molecules are examples of this
class of graphs). Firstly, the function canonize translates the molecule into a colored
multigraph. Secondly, it utilizes Nauty to calculate the canonical labeling of the
multigraph. Thirdly, this canonical labeling is used to construct the canonical version
of the input molecule. Lastly, the canonical hash string of each augmented molecule
is stored in a hash map, lines 16 and 17, in order to remove duplicated extensions at
each level of the tree. Each unique extension is checked for canonical augmentation,
line 18, using Algorithm 2, or Algorithm 3 in case prescribed substructures were
provided. If this extension is successful, the function generate is called, line 19 of
Algorithm 1, and the molecule we want to continue extending is passed as a
parameter. When a molecule cannot be extended any further, the recursion is

terminated and the program backtracks in the search tree.
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: Is_canonical_augmentation(canonM’, M’, M)
last_bond = get_last_bond(canonM’)

M” = remove_bond(M’, last_bond)

4. return are_the_same(M”, M)

5: End

Algorithm 2

w N =

1: Is_canonical_augmentation_fragments(canonM’, M’, M)
2 last_bond = get_last_bond(canonM’)
3: While bond_belongs_to_fragment(last_bond, canonM’)
4. last_bond = get_previous_bond(canonM’)
5: Endwhile

6 M” = remove_bond(M’, last_bond)

7: return are_the_same(M”, M)

8: End

Algorithm 3

Input and Output

The minimum input required is the elemental composition of the structures that
have to be generated. Optionally, a structure-data file (SDF) can be provided
containing one or more prescribed substructures that we want our output molecules
to contain. Since OMG does not take hydrogen atoms into account during the
generation of intermediate chemical structures, the hydrogen atoms present in the
substructures will be removed before the generation process begins. These
substructures should be non-overlapping, i.e. they should not share any atoms. This
limitation is due to the fact that our algorithm grows molecules by adding bonds
and, if two atoms in different fragments were in fact the same atom, our algorithm
would create bonds between those atoms, which would clearly lead to incorrect
results. In practice, multiple substructures can be available, but the user does not

know if they overlap. This limitation can be circumvented by using the largest
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substructure as constraint for the generation and the remaining substructures as a

posterior filtering, only keeping the molecules with those substructures.

By default, the structure generator returns the count of molecules it generated.
Optionally, it can store all the molecules in an SDF file. If prescribed fragments are
provided, OMG outputs only the molecules containing such fragments. We have
opted to use SDF as our input and output format, but via CDK, other formats can

easily be implemented in OMG.

Data

As mentioned in the introduction, the identification of the chemical structure of
metabolites is one of the current bottlenecks of metabolomics. In this sense, a
structure generator can contribute to overcome this bottleneck, since it can provide
candidate structures for an unknown metabolite. Therefore, metabolites appear to
be a relevant family of compounds to test our structure generator. A list of
metabolites was selected and their elemental composition was compiled to evaluate
the performance of our structure generator on different inputs. The source of the
compounds employed was the Human Metabolome Database (HMDB)[34], which
contains almost 8,000 metabolites and is the most comprehensive database of
human metabolites. A study of the human metabolite space and the properties of
the metabolites that occupy it, has been previously reported[28]. The selection
criteria were to include cyclic and acyclic compounds, of different molecular weights,
and containing different chemical elements like C, O, N, P, and S. A first test set

included metabolites with C, O, and H, chemical elements with one valence. A
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second test set included metabolites with C,0,H and also chemical elements with
multiple valences, like N, P, and S. Furthermore, for some of these metabolites,
several substructures were drawn and provided to the structure generator as
additional input. These substructures are easily identified by an expert from direct
inspection of MS? or MS" experimental data. The aim was to assess the importance

of having fragment information to reduce the list of generated structures.

Results and discussion

Structure Generation from Elemental Formula

The algorithm presented in this work, the Open Molecule Generator, was tested and
compared with the commercial structure generator, MOLGEN. Both generators take
resonance into account producing all the contributing structures. As a result, the two
resonant forms of benzene will be considered as different molecules. Both OMG and
MOLGEN are not limited to acyclic structures[35, 36],thus the two structure
generators tested can generate molecules with rings. Furthermore, both tools
generate molecules containing common chemical elements present in metabolites,
like C, O, N, H, P, and S, and are not limited to only 4 chemical elements[36]. Both
structure generators generate molecules for a given elemental composition by

exhaustively producing all non-redundant chemical structures.

The number of molecules produced after using the elemental compositions of a
diverse selection of metabolites containing only C, O and H, is presented in Table 2.
For all these metabolites, the same number of molecules is generated by both

generators. While both generators produce complete results, MOLGEN does it in less
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time. The time between initialization and finalization was measured using time
functions in JAVA for OMG and equivalent functions in python for MOLGEN. We can
observe in Table 2 the time in seconds to generate all the candidate structures and
the time to generate each molecule in milliseconds. If we look at time per molecule,
MOLGEN is 4 times faster than OMG for small molecules like pyruvic acid. For larger
molecules MOLGEN obtains a constant time per molecule between 0.008 and 0.009
milliseconds, while OMG ranges from 18 to 45 milliseconds depending on the
elemental composition. Lightweight profiling of OMG was performed using VisualVM
(version 1.3.4), in order to have an understanding of the limiting points in the
performance of OMG. The most relevant finding was that the canonization process,

which uses Nauty, took half of the total running time.

We observed that MOLGEN stops the generation of molecules after two billion
molecules, as it can be observed for a large molecule like cholic acid (Table 2). Since
both generators produce the same molecules for elemental composition with C, O
and H, we can only assume that more than two billion molecules could be
generated. In the case of phenyllactic acid, MOLGEN produces more than 48 million
molecules in 404 seconds. Due to excessive computational time, no results for this
elemental composition are reported for OMG, though the same number of
molecules is expected (if executed for enough time) as is the case for all the other

elemental compositions in this subset.
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Name MOLGEN oMG
Struct HMDB ID i i
ructure # Candidate ., Time per # Candidate ' Time per
Elemental Time (s) [molecule Time (s) | molecule
. Structures Structures
Composition (ms) (ms)
@]
Pyruvic acid
0 HMDB00243 152 0.129 0.849 152 0.509 3.349
C3H403
@]
@] @]
0 Malic acid
0 HMDBO00156 8,070 0.222 0.028 8,070 27.074 3.355
C4H605
@]
@]
0 0 D-Xylose
HMDBO00098 18,092 0.332 0.018 18,092 125.783 6.952
C5H1005
@] @]
@]
0 0 D-Fructose
(@] HMDBO00660 267,258 2.381 0.009 267,258 5,035.371 18.841
C6H1206
0 @]
@] @] @]
Sedoheptulose
0 0 HMDBO03219 4,106,823 38.945 0.009 4,106,823 |186,248.085| 45.351
C7H1407
@] @]
@] @]
0 Pectin
0 HMDBO03402 3,183,337 26.512 0.008 3,183,337 46,320.522 | 14.551
@] @] C6H1007
@]
@] @]
Galactonic acid
0 0 HMDBO00565 767,569 6.957 0.009 767,569 22,475.987 | 29.282
C6H1207
@] @] @]
@] @] @]
Galactaric acid
0 0 HMDBO00639 8,568,129 78.354 0.009 8,568,129 |186,730.365| 21.794
C6H1008
@] @] @]
o N
A Cholic acid
HMDB00619 * More than * not * not * More than * not * not
o) C24H4005 2,147,483,646 | available | available|2,147,483,646| available | available
)
@]
O Phenyllactic
acid ** More than ** not ** not
O HMDB00779 48,496,265 | 404.052 | 0.008 48,496,265 available | available
C9H1003

Table 2 Number of chemical structures generated by OMG and MOLGEN using as input only the elemental
compositions of metabolites containing C,0 and H elements.

47




Chapter 2

* Results were not generated due to excessive computational time needed to generate all the candidate
structures. However, we expect OMG to generate more molecules than MOLGEN, due to the larger amount of
atom types produced by OMG.

** Results were not generated due to excessive computational time needed to generate all the candidate
structures.

As stated in Methods, both generators treat atoms having multiple valences in
different ways, this is the reason to use a second set of molecules containing also N,
P and S. The default valences used by MOLGEN for N is 3, for P is 3, and for S is 2,
unless stated otherwise. The results for these molecules are presented in Table 3. As
expected, the number of candidate structures differs between both generators. For
the elemental composition of glycine, MOLGEN produces 84 molecules only with N
valence 3 and 162 molecules only with N valence 5. For the same elemental
composition, OMG produces 97 molecules with valence 3 and 5 for N, which include
the 84 of MOLGEN N valence 3 and 13 additional molecules with valence 5,
containing N with the atom types depicted in Table 1 for OMG-CDK. The difference
in the number of candidate structures is larger for elemental compositions
containing many atoms with multiple valences, as is the case of creatinine. For this
metabolite, MOLGEN generates 93,323 candidate structures with the default valence
3 for N. On the contrary, OMG produces 303,601 candidate structures, containing N

valence 3 and 5.

Name MOLGEN OoMG
Struct HMDB ID i i
ructure # Candidate | _. Time per # Candidate . Time per
Elemental Time (s) | molecule Time (s) | molecule
. Structures Structures
Composition (ms) (ms)
@] Glycine
N ivpBoozzs | N384 | OB | 140 g g | e
@] C2H5NO2 - ’ '
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@]
0 Acetyl-glycine
N HMDBO00532 18,469 0.282 0.015 26,530 126.117 4.754
C4H7NO3
O
0 Phenylalanine " " "
HMDBO0159  |277,810,1632227.796| 0.008 |..vore than not not
s COH11NO2 277,810,163 | available | available
@] N
j\/\/ﬁ\ Glutamic acid
0 . 0 HMDB00148 440,821 2.945 0.007 685,392 12,348.456| 18.017
[ij C5HI9NO4
O .
0 5 Phosphoaec?glpyruwc P 351,323 0562 o1l
O’P‘/ W)LO HMDB00263 122—521 1.398 | 0.011 83,977 761378 | 9.067
O C3H506P !
@]
Creatinine
N HMDBO00562 93,323 0.933 0.010 303,601 3,921.157 12.915
N{ C4H7N30
7 N
N Guanidinoacetic
0 )J\ acid
45,626 0.585 0.013 124,808 1,962.532 15.724
N °N HMDB00128
(@] C3H7N302
N
Cytosine
N7 HMDB00630 108,769 1.149 0.011 491,299 3,952.098 8.044
)\ _ C4H5N30
@] N
O
Uric acid " " "
o:(N | N HMDB00289  |464,899,034|3488.097| 0.008 46'\22;;232 avaiT:;le ava::zle
C5H4N403 ! !
N
N§| Histamine
AN HMDBO00870 46,125 0.631 0.014 134,278 3,566.544 26.561
N C5HIN3
@]
K/'\% D-Cysteine
. 0 HMDBO03417 3,838 0.156 0.041 15,978 131.004 8.199
= C3H7NO2S
N
0 p-Cresol sulfate S 6 * More th * not * not
o. - . ore than no no
e HI&/I7IT_|I381012535 592,625,133 >078.132| 0.009 82,000,000 | available | available
@]

Table 3 Number of chemical structures generated by OMG and MOLGEN using as input only the elemental
compositions of metabolites containing C, O, H, N, P and S elements.

* Results were not generated due to excessive computational time needed to generate all the candidate

structures. We expect OMG to generate more molecules than MOLGEN, due to the larger amount of atom types
produced by OMG.
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In the case of phosphoenolpyruvic acid, we require P valence 5 to be considered. On
the one hand, running MOLGEN with the default valence for P yields 51,323
candidate structures but the correct molecule is missing. On the other hand, forcing
the valence of P to be 5, returns 129,421 candidate structures, with the correct
molecule also produced but also an excessive quantity of unrealistic molecules due
to unrealistic atom types for P. Alternatively, OMG generates 83,977 candidate
structures with P valence 3 and 5, including the desired molecule, where all of them

are valid molecules as defined by the CDK atom dictionary.

We observe in Table 3 that the running time per generated molecule now ranges
between 0.008 and 0.041 milliseconds, while OMG requires between 4.8 and 26.6
milliseconds. Such difference in execution speed between MOLGEN and OMG makes
that for some large elemental compositions, only results are reported for MOLGEN.
This is the case of phenylalanine, uric acid and p-cresol sulfate. However, for these
metabolites, we assume that the number of candidate structures would have been

higher with OMG than the one reported by MOLGEN using the default valences.

Structure Generation from Elemental Formula and Prescribed Substructures

Structure generation is a combinatorial problem where the number of output
molecules grows exponentially with to the number of input atoms. When using one
or more prescribed substructures as input to the generators in addition to elemental
composition, less candidate structures are obtained (Table 4). Whereas MOLGEN can
only accept one substructure, OMG can accept multiple substructures as input with

the constraint that these do not overlap, i.e., they should not share any atom.
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Phenylalanine is a good example how the number of generated structures can be

reduced by using more prescribed substructures, as will be discussed below in more

detail.
Name MOLGEN OoOMG
Structure HMDB ID Prescribed # Time per # Time per
Elemental substructure(s) Candidate | Time (s) | molecule | Candidate | Time (s) |molecule
Composition Structures (ms) |Structures (ms)
@] N Glycine 0
Y\ HMDBO00123 %/O 6 0.167 27.833 6 0.539 89.833
0 C2H5NO2
@]
K/& D-Cysteine 0
. 0 HMDBO03417 Q/O 100 0.193 1.930 210 3.177 15.129
= C3H7NO2S
@] @]
NY Phenylalanine
HMDBO00159 76,247 52.774 0.692 107,155 | 19386.019 | 180.916
C9H11NO2
* * *
i not not not 595 271.809 | 456.822
possible | possible | possible
O%/O
* * *
i not not not 289 172.655 | 597.422
possible | possible | possible
@]
Y nN-c
* not * not * not
0 possible | possible | possible 26 25.147 1 967.192
NAO
Cholic acid ’ rx o .
HMDB00619 | M o os:iglte os:izfe os’;i‘:le 334 120.519 | 360.835
C24H4005 | g P P P
0
* * *
not not MOt | 2505 | 119.418 | 47.672
possible | possible | possible
0o o
O/U\/\/

51




Chapter 2

@] @] .
Malic acid 0
OWLO HMDBO00156 Q/O 1,436 0.229 0.159 1,436 4.688 3.265
0 C4H605
0 @]
N Uric acid )L
O=< | N HMDB00289 N N 150,114 | 962.016 6.409 6,069,863 [155828.437| 25.672
N NAO C5H4N403 \__/
@]
O Phenyllactic
acid
0 HMDBOO779 @ 21,040 15.674 0.745 26,164 163.904 6.264
C9H1003
* * *
i not not not 525 3973 | 7.568
possible | possible | possible
O%/O
0
I
0= 0o O p-Cresol
\
0 sulfate “_0 S_6
HMDB11635 0 > 13177 65.667 4.983 13,177 63.047 4.785
C7H804S
5.6 94.898 1.349 17,232 1204.357 69.891
70,330 ’ ’ ! ’ ’

Table 4 Number of chemical structures generated by OMG and MOLGEN using as input an elemental
composition and one or more prescribed and non-overlapping fragments.

* MOLGEN can only accept one prescribed substructure, while OMG accepts multiple substructures, provided
that these do not overlap, this is, they do not share any atom.

** MOLGEN is not able to generate molecules using this large substructure as input. The reason could not be
found.

Substructure information is of great relevance for metabolomics experiments
involving MS" data, where often the only information available of an unknown
metabolite that needs to be identified is the elemental composition and in some
cases substructures. Provided that no database entries exist for this experimental
information, one is forced to generate the structures via CASE. The inclusion of
substructure information brings the list of candidate structures to a manageable
size. For p-cresol sulfate, using the sulfate group with both generators as prescribed
is the prescribed

substructure, produces 13,177 molecules. When benzene
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substructure, OMG generates 17,232 candidate structures and MOLGEN 70,330, all

containing sulfur with valence 6, hence the difference between both generators.

Whereas only the elemental composition of phenylalanine as input generates 277
million structures with MOLGEN and for OMG an even higher number of candidate
structures is expected as both nitrogen valences of 3 and 5 are taken into account
(Table 3), using benzene as a substructure provides only 107,155 (OMG) and 76,247
(MOLGEN) candidate structures (Table 4). The number of generated molecules for
the elemental composition of phenylalanine is even further reduced by prescribing
multiple fragments as input: OMG outputs 595 molecules when provided with two
fragments and 289 molecules for three fragments (Table 4). The use of large
fragments yields the larger reduction in output molecules, as it can be seen for the
last example of phenylalanine, where two big fragments describe most of its

structure and return only 26 chemical structures.

For larger molecules containing ten or more carbon atoms, which is a common
situation in chemistry, it is not practical for the identification of metabolites to
exhaustively generate candidate structures without using substructure constraints,
with MOLGEN and OMG, due to the large number of results. Using the elemental
composition of a large metabolite like cholic acid, both structure generators cannot
produce all possible candidate structures, which are expected in the order of billions.
This was only possible using substructure information to reduce the size of the
search tree: when providing a substructure that describes a large part of the

molecule, OMG generates only 334 structures (Table 4). When using two
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substructures, OMG returned 2,505 candidate structures. However, MOLGEN was
unable to return results using the same large substructure or two substructures as

an input and the reason could not be found by us.

The use of prescribed substructures affected the running time of both generators.
For MOLGEN, the time per molecule ranged between 0.16 and 27.8 milliseconds,
which represents in some cases a 10,000-fold increase in computation time
compared to using only elemental compositions. Concerning OMG, the time per
molecule ranged between 3.3 and 967. 2 milliseconds, a 100-fold increase in running
time. Despite this deterioration of execution time, the advantage of using one or
ideally multiple prescribed substructures is clear: the number of candidate
substructures is significantly reduced and the total time to calculate candidate

structures is also reduced compared to not using any substructure.

The results here presented show that if we want MOLGEN to generate the correct
molecule when the valence of some atoms is not the default one, like
phosphoenolpyruvic acid or p-cresol sulfate, we need to know the valence in
advance. Otherwise, MOLGEN should be executed using all possible valences for all
atoms. This limitation is not present in OMG, which can produce different valences
in the same execution. Unfortunately, the atom dictionary provided by CDK is not
comprehensive concerning non-standard valences. On the positive side, the dynamic
open source community of CDK keeps adding new atom types with each release of
the library and we expect that this will improve the capabilities of OMG. This open

source nature of CDK allows users to suggest or implement new atom types.
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The generation of the molecules in the Open Molecule Generator has the shape of a
tree. As stated by McKay[23], the check for canonical augmentation is branch-
independent, which would allow to process branches of the generation trees in
parallel. Theoretically the algorithm allows for parallelization, in practice this has not

been implemented but it is one future extension of this work.

However, we have observed that OMG is in most of the cases slower than MOLGEN
and this fact was more noticeable when generating millions of candidate molecules.
The speed of OMG could be improved and we see several possibilities to achieve
this, i.e. the use of a different canonizer or a less computationally demanding
canonicity test for intermediate chemical structures, could significantly speed up the
execution. Actually, obtaining millions of molecules as a result, quickly or slowly, is
not desirable, but ideally, the goal of metabolite identification is to obtain a list of
candidate structures that is short in order to examine it and find the structure
belonging to the unknown metabolite. Exhaustive profiling, covering both on
execution time and memory use, would be beneficial to discover improvement
points for OMG. Fortunately, OMG allows multiple prescribed substructures and can
handle large fragments, which reduced the number of generated molecules
significantly. Handling multiple substructures allows OMG to provide a short list of
candidate structures and additionally, its open source nature permits users to
implement specific constraints to further reduce the candidate list, both during and
after the generation process. Examples of such constraints would reject

intermediate chemical structures with high steric energy values or other
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physicochemical properties. Therefore we expect OMG to be useful in different

application areas and its functionality to be extended in the near future.

Conclusion

In this work we have presented the Open Molecule Generator, to the best of our
knowledge, the first implementation to chemical structure generation of the
Canonical Path Augmentation approach, originally designed for simple graph
enumeration adding vertices. We have adapted it to generate organic chemical
structures and extended so that (i) it grows molecules by adding bonds, (ii) it can
handle multigraphs, and (iii) accepts one or multiple non overlapping prescribed
substructures. In addition, this is the first open source implementation of a
deterministic structure generator. This will enable future developments like
parallelization or the inclusion of constraints that are specific to the class of

compounds being generated.

Our results show that the implementation of our algorithm generates all possible
and valid chemical structures for a given elemental composition and optionally
prescribed substructures. It is as complete as the best commercially available
generator. Moreover, the current implementation of the OMG program presents an
extra advantage over existing generators when large or multiple fragments are
available to be used as constraints: we have demonstrated the benefit of
incorporating constraints to reduce the number of output molecules significantly.
The ability of OMG to generate multiple valences for an atom has proven to be

useful as often no prior information is known on the desired chemical elements and
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multiple valences of an element can be present in a molecule. When compared to
MOLGEN, the only disadvantage of OMG is its speed, which is more severe when
using only elemental compositions and less when including prescribed substructures.
This issue will be addressed in future improvements of the program. We expect this
tool to be used in various fields, one of them being metabolomics, where there is a
clear need for flexible structure generators. We have successfully used OMG to
propose candidate structures using prescribed substructures, in several on-going

metabolite identification projects in our lab.
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likeness

While the entirety of ‘Chemical Space’ is huge (and assumed to contain between
10%® and 10%” ‘small molecules’), distinct subsets of this space can nonetheless be
defined according to certain structural parameters. An example of such a subspace
is the chemical space spanned by endogenous metabolites, defined as ‘naturally
occurring’ products of an organisms’ metabolism. In order to understand this part
of chemical space in more detail, we analyzed the chemical space populated by
human metabolites in two ways. Firstly, in order to understand metabolite space
better, we performed Principal Component Analysis (PCA), hierarchical clustering
and scaffold analysis of metabolites and non-metabolites in order to analyze which
chemical features are characteristic for both classes of compounds. Here we found
that heteroatom (both oxygen and nitrogen) content, as well as the presence of
particular ring systems was able to distinguish both groups of compounds.
Secondly, we established which molecular descriptors and classifiers are capable of
distinguishing metabolites from non-metabolites, by assigning a ‘metabolite-
likeness’ score. It was found that the combination of MDL Public Keys and Random
Forest exhibited best overall classification performance with an AUC value of
99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is
slightly better than previous classifiers; and interestingly we found that drugs

occupy two distinct areas of metabolite-likeness, the one being more ‘synthetic’
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and the other being more ‘metabolite-like’. Also, on a truly prospective dataset of
457 compounds, 95.84% correct classification was achieved. Overall, we are
confident that we contributed to the tasks of classifying metabolites, as well as to
understanding metabolite chemical space better. This knowledge can now be used
in the development of new drugs that need to resemble metabolites, and in our
work particularly for assessing the metabolite-likeness of candidate molecules

during metabolite identification in the metabolomics field.

The area of ‘Metabolomics’ is relatively young [1, 2] and describes the large-scale
analysis of (often human and endogenous) metabolites. It comprises both the
analytical approaches employed, such as mass spectroscopy (MS) as well as the
analysis of the resulting data on a network- and phenotype level. Metabolomics is a
particularly interesting research field as it allows the determination of biological
phenotypes on a chemical basis, since endogenous metabolites are closer phenotype
of an organism than for example gene expression [3]. As a consequence, new

knowledge on biological processes can be obtained by investigating metabolites.

Various experimental techniques, most commonly MS and nuclear magnetic
resonance (NMR), have been devised to detect and identify metabolites, with
different approaches being necessary to cover different parts of the metabolite
spectrum. In practice it is found that some metabolites with different lipophilicity
can only be detected by one of the experimental techniques but not by others [4-9].
Different techniques might also be used depending on the type and quantity of

sample to be analyzed, as well as the concentration and the molecular properties of
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the metabolites. In general terms, NMR allows for a detailed characterization of the
chemical structure of the (un)known compound, and it is the preferred technique for
unambiguous identification of a chemical structure. On the downside, NMR requires
abundant and pure sample, yielding low sensitivity. Conversely, MS offers high
sensitivity and specificity, requiring less amounts of sample, but providing less
information about the chemical structure, namely its elemental composition and

some structural fragments.

However, despite its ability to describe a phenotype in many cases in a more
relevant manner than other approaches, in metabolomics studies a major challenge
exists, namely metabolite identification [10-12]. While many endogenous
metabolites can be detected (and their spectrum determined), also elucidating their
chemical structures is essential to properly interpret results, and to utilize the
analytical data to finally answer biological questions [13]. However, the step from

the analytical readout to the structural formula is often fraught with problems.

In the commonly employed MS-based profiling approaches (which are also used in
our group), once metabolites are detected their elemental composition (or multiple
elemental compositions) [14, 15] can be derived directly from MS data. Based on this
elemental composition, matching chemical structures can be proposed following two
approaches. In the first approach, molecular databases are queried for the presence
of molecules with the same elemental composition (or similar spectral data), and
hits are returned as candidate structures [13, 16]. However, the major shortcoming

of this approach is that one can only find in databases what has been found before,
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making the elucidation of novel metabolites impossible. In the second approach,
which is meant to cover this shortcoming, the elemental composition and optionally
other experimental data are provided to a ‘structure elucidator’, which will generate
in silico all possible chemical structures which match the analytical constraints
provided to the algorithm [17—-19]. While one of the structures generated will be the
metabolite of interest, depending on the elemental formula provided, the latter
method in particular yields a large number of possible solutions. (For example, the
elemental composition of phenylalanine, C9H11NO2, yields 277,810,163 possible

candidate structures.)

Due to the above reasons, molecular databases compiling structural information on
endogenous metabolites are currently limited in size and they certainly do not cover
metabolite space exhaustively. The number of possible metabolites is yet unknown
[20]. While lipids alone are estimated to exist in the order of 20,000 different
structures [21] plants are thought to contain around 200,000 metabolites [3]. Given
these figures, the experimental data obtained until today is relatively scarce. A large
database of metabolites such as the Human Metabolome Database (HMDB) [21]
contains in its current version about 8,000 structures, which is only a fraction of the
above numbers. Still, HMDB is the most comprehensive dataset to represent the
Metabolite Space from a human point of view. Plant metabolomics makes use of
different databases [12]. In addition metabolomics databases exist [22] that contain
metabolites and the enzymatic reactions that connect them to pathways, such as in
KEGG [23]; some databases contain metabolites grouped by organism such as in

BioCyc [24] and other database relate metabolites with experimental information,
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such as Metlin [25]. Still, given its number of data entries, the approach to match the

MS or NMR spectrum to database spectra can only succeed in a fraction of cases.

Hence, solutions need to be ranked, based on the likelihood of a molecular structure
to be a metabolite [26] — and, as we will outline in more detail below, this is one of
the main aims of the current work of implementing a ‘metabolite-likeness’ model. In
addition, our goal was to understand metabolites better from a chemical point of
view, and this is what we will discuss in the remainder of this work, after setting our

approach in context with the ‘prior art’ in the field of metabolite classification.

Focusing on metabolites of E. coli, Nobeli et al. [27] studied 745 metabolites of this
organism by analyzing physiochemical descriptors, the diversity of scaffolds, and
similarity-based compound clustering. It was observed that most of the E. coli
metabolites are found between the 100 and 300 Da molecular weight region, that
they contain up to 20 heavy atoms, and that they are mostly hydrophilic. In addition
the low diversity of molecular scaffolds was observed. The clustering analysis
performed revealed that it is difficult to use molecular similarity to group
metabolites in ‘sub-classes’, since there is not a natural separation according to their
two-dimensional structure similarity, concluding that the metabolite space of E. coli

is homogeneous.

While Nobeli et al. focused on the metabolome of E. Coli, Gupta et al. [28]
represented the chemical space of metabolites using the KEGG/LIGAND database,

which includes metabolites from different species as well as xenobiotics. The
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chemical space of non-metabolites was approximated by ZINC database [29], which
contains small molecules that are commercially available. These molecules are often
used as the search space, in virtual-screening research, or as background set in

classification projects.

In this work it was concluded that hydroxyl groups, aromatic systems, and molecular
weight are discriminating features between metabolite and non-metabolite chemical
space. Furthermore, Self Organizing Maps (SOM), Random Forests (RF), and
Classification Trees (CT) were employed to distinguish between the two classes of
compounds, which were represented by 3D descriptors, topological descriptors, and
global molecular descriptors, respectively. The best classification accuracy was 97%,
achieved by the combination of RF and global molecular descriptors. (No external
validation of such models is reported in their work, as opposed to our novel study,

which includes a prospective validation set.)

While trying to discriminate metabolites from non-metabolites was the obvious
starting point, it was then noted that also bioactive compounds, notably drugs, could
be related to the metabolite/non-metabolite chemical spaces. All three of those sets
were hence analyzed by Dobson et al. in a subsequent study [30]. Endogenous
metabolites were selected from the HMDB, BioCyc, BiGG, and Edinburgh databases
while drugs were compiled from DrugBank and KEGG DRUG. In addition, screening
molecules from ZINC were the source for the background compound set. Molecules
were represented using connectivity and path fingerprints, MDL Public Keys and E-

state, and the similarity between them was determined by the Tanimoto coefficient.
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In this work the authors concluded that drugs are more similar to metabolites than
to screening compounds. Furthermore the distribution of molecular properties
among the different families of compounds was studied and it was noticed that
metabolites tend to have fewer heavy atoms than the other two groups of
compounds. Another relevant physicochemical property identified was lipophilicity,
which showed a bias in metabolites towards hydrophilicity, whereas drugs and

screening compounds were more hydrophobic.

In the current study we are extending previous work by, compared to Gupta et al.,
focusing on a large set of human metabolites obtained from HMDB, instead of
metabolites from multiple species, and an updated collection of background
compounds from ZINC. We make use of different molecular descriptors such as
ECFP_4 [31], FCFP_4, MDL Public Keys [32], and physicochemical properties, as well
as classifiers like Support Vector Machines (SVM) [33], Random Forest (RF) [34] and
Naive Bayes (NB) [35] and evaluate their applicability to distinguishing metabolites
from non-metabolites. In addition we include a prospective validation set to further
assess model performance. Furthermore, Dobson et al. used molecular similarity to
metabolites as an indicator of metabolite-likeness. In comparison, we assign our
score based on the predictions given by different classification methods. The
classifier presented here employs, at the time of publication, the most
comprehensive collection of human metabolites and purchasable compounds.
Furthermore we also make use of PCA and hierarchical clustering to understand
which physicochemical properties as well as chemical functionalities are

characteristic of metabolites, and discriminate them from non-metabolites. The
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principal aim of this work is to establish a reliable metabolite classifier for candidate
structures that need to be identified in metabolomics studies; however, apart from
the classifier itself, also understanding metabolite space better was a second major

aim of this work.

Methods
Datasets and Data Preprocessing

The Human Metabolome Database (HMDB) version 2.5 [21] served as source of the
metabolite set. This database contains, in its original form, 7,886 human metabolites
as determined by experimental analytical methods. The ZINC Database (ZINC)
release 8 [29] was chosen to represent non-metabolite chemical space. From the
different datasets provided by ZINC, we selected the subset “everything #10” (date
2010-06-17), since it includes 21.6 million compounds and it was the largest set at

the time, and, hence, most representative of ‘all’ chemical space.

Molecules from the two datasets were standardized with PipelinePilot Student
Edition 6.1 [36] using the 'washing' workflow suggested by Dobson et al. [30], which
involved the selection of the largest fragment in the structure, the removal of salts
and hydrogen atoms and the standardization of charges and stereochemistry.
Because the ZINC database mainly contains molecules with a low molecular weight,
a value of 1000 Daltons was set as the maximum molecular weight of any
compound, metabolite or not, in this study. While this removes part of chemical
space from the metabolite dataset, this step was necessary to avoid molecular

weight to appear as a major discriminant between metabolites and non-metabolites
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(which would not be relevant in the context of our future application of
distinguishing metabolites from non-metabolites in cases of structures with an
identical sum formula). Furthermore, when employing fingerprints for classification,
the chemical distribution of features (as opposed to the molecular weight) will be
used for classification, hence making the classification (in this feature space) size-
independent. This filter removed 775 metabolites from the HMDB dataset.
Furthermore, the constraint imposed on molecules to contain three or more atoms
(in order to retain only small organic molecules in the dataset) removed 65 small
molecules and ions from HMDB. Metabolites from HMDB that are considered drugs
were also removed from the dataset, based on annotations as drugs in the fields
“Taxonomy Family” and “Taxonomy Sub Class” provided by HMDB, removing 92
drugs from the dataset and reducing the metabolite dataset to 6,954 molecules. The
number of molecules contained in ZINC was excessively large to perform clustering
and classification, concerning the computational resources needed for such tasks,
therefore selecting a subset was necessary. Such a subset was randomly selected
from ZINC, which contained 194,350 molecules. All of these molecules passed the
filtering based on molecular weight and the minimum number of atoms. The last
dataset preprocessing step was the removal of metabolites (molecules contained in
the HMDB database) from the ZINC dataset, where 8 molecules were removed from

the non-metabolite set.

Training and Test Sets

Diversity selection [37, 38] was used in this work to prepare representative

compound datasets for metabolites and non-metabolites with the intention of
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reducing the bias that overrepresented families of molecules could have on the
classification step. This initially appeared particularly crucial since lipids were hugely
overrepresented in the HMDB database. After giving it more thought it was noted
that this step certainly involves subjective elements since it, on the one hand,
removes information about the distribution of data points in the original set. On the
other hand, we assumed that there was a significant bias present in particular in the
metabolite dataset not only due to ‘natural’ causes, but also due to the bias
introduced by experimental techniques (such as MS and NMR), which are able to
detect and identify compounds rather selectively. Hence, we came to the conclusion
that close analogues should be removed carefully from the dataset. In this spirit,
each dataset was independently clustered using the maximal dissimilarity
partitioning algorithm implementation from the 'Cluster Molecules' component from
PipelinePilot Student Edition 6.1 [36]. Molecules were represented by ECFP_4
fingerprints and the distance between each pair of molecules was calculated using
the Tanimoto coefficient. The maximum dissimilarity of a cluster member to the
cluster centre was 0.6, (that is, molecules from the same cluster possess a
ECFP_4/Tanimoto similarity of at least 0.4). Finally cluster centers were selected as
representatives of each cluster, which yielded 532 representatives for HMDB and
more than 12,000 for ZINC. In order to have balanced training datasets for model
building (where some algorithms are prone to majority class predictions), 532
random molecules were selected from ZINC. These two subsets of 532 molecules
each were used for building the classification models. While these datasets are
small, they were intended to remove much of the bias present in the original

datasets. We also still made use of the additional compound information available
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since from the remaining molecules not included in the training datasets the test set
was built, where the remaining 6,422 metabolites as well as 6,422 randomly selected
non-metabolites were joined to form an initial test set of 12,844 molecules. Hence,
this very large test set was used to evaluate whether model generation with our
training dataset assembled in the way just described would produce viable

metabolite-likeness models.

Prospective Validation Sets

Predictive models are meant to be applied to novel, unseen molecules, and to
estimate the performance on those new molecules the utilization of external
validation sets is crucial. In order to determine prospective performance of our
model, an external validation set was compiled, which includes 563 metabolites not
yet part of HMDB (which were provided by the database curators). After filtering
using the standardization protocol described above, the resulting prospective
validation set contained 457 metabolites that were not included in any of the
previous preprocessing steps (diversity selection, model building, and model
evaluation). Furthermore, two other datasets of molecules were assembled for
evaluation with the metabolite-likeness model, namely one of drugs, and one of
bioactive compounds (as determined by experimental assays). To represent drugs
DrugBank release 2.5 (date 23-11-2010) [39] was used, comprising 6,532 molecules.
To represent bioactive molecules, ChEMBL [40] release 8 (date 09-12-2010) was
employed. Both datasets were normalized using the protocol described above and
from the 635,933 compounds in ChEMBL, 6,312 were randomly selected (the

DrugBank dataset was used in full due to its smaller size). With these datasets we
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evaluated if our metabolite-likeness model is able to detect the biogenic bias of
drugs and bioactive compounds in general. With these three prospective validation
sets (external validation set, drug set, bioactive compound set) we evaluated our
best model, as derived in the parameter exploration, in two different ways. Firstly,
the quality of the predictions for metabolites that were not involved at any stage of
the model creation by employing an external validation set, was determined.
Secondly, we tested the hypothesis that drugs (and, possibly to a lesser extent,
bioactive molecules) are more similar to metabolites than to non-metabolites. This
hypothesis could either be rejected or not from the distribution of metabolite-

likeness scores as assigned by our model.

Molecular Descriptors

Molecular descriptors should be chosen with care depending for which problem they
are going to be used [41, 42]. In this case different descriptor sets were used for

classification as follows.

a) Atom Counts and Physicochemical Molecular Descriptors

Atom counts and physicochemical descriptors are rather simple, intuitive and easy to
interpret by chemists. On the downside, they usually result in poorer classification
results than more complex descriptors since no structural information is captured. In
this study our descriptor set based on atom counts was called ‘Atom Counts’ and
contained counts of the most common atom types in metabolites, namely H_Count,
C_Count, N_Count, O_Count, F_Count, P_Count, S_Count, Cl_Count. 'Atom Counts'

descriptors were computed using the component 'Element Count' from PipelinePilot
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Student Edition 6.1 [36]. The physicochemical properties used were the Atom Counts
descriptors mentioned above together with the following properties: the number of
atoms (Num_Atoms in PipelinePilot), a calculated logP value (ALogP), a calculated
logD value (LogD), the number of hydrogen donors (Num_H_Donors) and acceptors
(Num_H_Acceptors), the number of rotatable bonds (Num_RotatableBonds), the
number of rings (Num_Rings), the number of aromatic rings (Num_AromaticRings), a
calculated value of solubility (Molecular_Solubility), a calculated value of the polar
surface area (Molecular_PolarSurfaceArea), and a calculated value for the minimized
energy (Minimized _Energy). All these properties, listed in detail in Table 1, were
calculated with the components 'Element Count', 'Calculate Properties', 'ALogP’,
'LogD’, 'Surface Area and Volume',

'Molecular Energy' as implemented in PipelinePilot Student Edition 6.1 [36].

Descriptors Properties
Atom Counts H_Count, C_Count, N_Count, O_Count, F_Count, P_Count, S_Count, Cl_Count
PP_desc Atom Counts, Molecular_Weight, Num_Atoms, ALogP, LogD, Num_H_Donors,
Num_H_Acceptors, Num_RotatableBonds, Num_Rings, Num_AromaticRings,
Molecular_Solubility, Molecular_PolarSurfaceArea, Minimized_Energy

Table 2 List of atom counts and physicochemical properties used to describe the molecules of this study. PP_desc
include Atom Counts and the listed physicochemical properties.

b) Fingerprints

2D ECFP_X and FCFP_X are “Extended Connectivity” molecular fingerprints where
features are descriptions of the neighborhood of the atoms up to a certain distance
or radius X. In the ECFP fingerprint the atom identifier is based on the atom type,
while in FCFP it is based on the functional class of the atom [31]. In this work, ECFP
and FCFP fingerprints with radius 4 were calculated using the component 'Molecular
Properties' in PipelinePilot Student Edition 6.1 [36] with the parameter 'Convert
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Fingerprint To' set to 'Leave As-Is'. These fingerprints can produce thousands of
features for a molecular library, including features that are present in very few
molecules, which can easily lead to over fitting. Hence, we folded the fingerprints to
a fixed length of 1024 bits, using PipelinePilot Student Edition 6.1 [36] component
'Convert Fingerprint', to an output format of 'Fixed length Array of Bits', 'Fixed Bit

Length' of 1024, and 'Output Bit Order' of 'Pack Least-Significant First'.

MDL keys [32] were used as well for classification. MDL Public Keys are a key-based
molecular representation defined by the presence or absence of 166 predefined
keys, or molecular substructures. Since the size of this key set is only 166 bits, folding

is not necessary.

Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical transformation that projects
the dataset onto a lower dimension defined by uncorrelated variables, the so-called
‘principal components’ [43]. Such components are ordered according to the
percentage of variance in the dataset that they explain, which means that the first
principal component explains the highest variance. We performed a PCA on the
training set of metabolites and non-metabolites in order to understand better the
nature of the chemistry contained in both classes. PCA was performed using the R

library FactoMineR [44] and data was standardized to unit variance before analysis.
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Hierarchical Clustering

Hierarchical Clustering groups objects together that are close in the particular
representation chosen and assigns a hierarchy to the resulting clusters. This grouping
can be agglomerative, where initially each object is a cluster by itself and where
clusters are subsequently combined, or divisive, where the whole dataset is assigned
to a single cluster initially which is then iteratively split into smaller clusters.
Furthermore, two other factors determine the output of the clustering, the distance
metric between objects and the method used to link two clusters, i.e. the method
used to calculate the distance between clusters. We have used the agglomerative
hierarchical clustering offered by FactoMineR [44] on the results of the PCA as
described above in combination with an Euclidean distance metric and Ward's
linkage method. Finally, the hierarchy of clusters is presented on a dendogram that
needs to be cut at some point to split the clusters. The criteria employed to cut the
dendogram was the default in FactoMineR, which splits the clusters at the point of
maximal loss of intra-cluster inertia. The clustering results are used to evaluate if
some natural grouping emerges from the data; in our case, whether metabolite

space actually contains several distinct subspaces.

Classification Trees

Classification trees are machine-learning methods that use a univariate partition to
split the dataset in subsets [45]. At each step the data is split using the predicting
variable that optimizes a certain criteria. In our case, we make use of conditional
inference trees (CIT) as implemented in the R package party [46]. Conditional

inference trees perform a covariate selection that relies on permutation tests and
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statistical significance. Applying CIT to a two-class classification problem can be seen
as a binary tree where at each node the dataset is split into two subsets using the
covariate that has the strongest association to the response variable. In the case that
features are binary fingerprints, the presence or absence of a given feature
determines the data split performed. Variables are selected if they maximize the
‘purity’ of the split, this is, that each subset contains mostly objects of one class. The
result is a tree that depicts the best variables to split the data and provides
information about relevant variables for each class of objects. In the course of the
present study, classification trees were applied particularly to ECFP_4 fingerprints, in
order to determine which features distinguish metabolite space from non-

metabolite space.

Fragment Analysis

In this part of the work, we further analyzed the fragment composition of metabolite
and ‘purchasable chemistry’ spaces as a means to better understand the
composition of (and differences between) both compound spaces. From the point of
view of a chemist, molecular fragments are easier to interpret and convey more
meaning than a fingerprint or a sensitivity percentage. Therefore we used the
component 'Generate Fragments' from PipelinePilot Student Edition 6.1 [36] to
enumerate (in PipelinePilot terminology) rings, ring assemblies, bridge assemblies,
chains, and Murcko assemblies (scaffolds that contain ring systems and ring systems
connected by linkers, but no side chains) [47]. The top 20 most frequent fragments
from our two datasets, human metabolites and purchasable compounds were

collected and analyzed.
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Machine Learning

Three machine-learning algorithms were used to generate the models of metabolite-
likeness, namely Support Vector Machines (SVM) [33], Random Forests (RF) [34], and
the Naive Bayes Classifier (NB) [48]. We used the implementations of these
algorithms in the statistical software package R [49]. For SVM, we employed the
library e1071 [50], which is an implementation of the standard C++ libsvm [51]. As
for RF, we opted for the library randomForest [52], an R port of the original code of

Breiman [34]. Again e1071 was the library chosen for NB.

SVM is one of the most robust and widely used algorithms in machine learning and it
belongs to the class of maximum margin classifiers [33, 53]. In a two-class problem,
SVM tries to define a boundary that maximizes the separation between the two
classes. Provided the classes are linearly separable, SVM builds a hyperplane with a
maximal margin to neighboring objects of the two classes. When the linear
separation is not feasible, a kernel function executes a nonlinear mapping of the
data to a higher dimension where it can be linearly separated. SVM requires the
tuning of two metaparameters, gamma, which regulates the level of non-linear
behavior of the kernel, and C, the cost of violating the constraints, in order to
achieve an optimal performance. The kernel type was set to the default Gaussian
Radial Basis Function (RBF). SVMs have been successfully used in molecular

classification before, such as for classifying ‘drug-likeness’ [54, 55].

RF is an ensemble of classification trees [34] in which each tree classifies, or votes,

the class of an object given a randomly chosen subset of the full variable set. Many
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of such trees are grown (as determined by the variable ntree) and majority voting is
used to obtain one final classification result. RF requires the tuning of the

metaparameter mtry, which determines the number of variables randomly sampled.

The last classification algorithm is the Naive Bayes algorithm [48], which relies on the
assumption that the variable values are conditionally independent of the class label.
This strong assumption usually does not hold, but in practice this approach still
allows building good models for multidimensional data, as was shown for bioactivity
datasets before [56, 57]. Compared to SVM and RF, NB only requires one parameter
to be tuned, the cut-off value for the class membership probability (equivalent to
changing the choice of the ‘prior’), which was however not explored in this work and
it was set to its theoretical optimum (it was set to 50% in the case of balanced
datasets, as proposed previously) [58]. According to this, a molecule with a predicted
metabolite-likeness of 50% of higher is considered to be a metabolite, and with less

than 50% metabolite-likeness, a non-metabolite.

Cross Validation and Model Generation

Concerning RF and SVM, k-fold cross validation [59-61] is a recommended method
to tune metaparameters and avoid over fitting. We opted to apply a 5 fold cross
validation, a previously recommended value for k [62, 63], to the 1,064 molecules in
the training dataset. In the case of RF, for each cross validation split a range of values
for mtry metaparameter were tested, while the number of trees in the forest, ntree,
was set to the default value of 500. The mtry giving the highest averaged Area Under

the Curve (AUC) and smallest classification error was chosen as the optimal value for
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building the model. Cross validation was performed in the same fashion for SVM
(Table S1 shows the best values obtained for the metaparameters). Once the optimal
metaparameters were selected, final RF (RF variable importance of PP_desc
descriptors are listed in Table S2, and for MDL Public Keys in Table S3), SVM, and NB
models were generated using the complete set of 1,064 molecules in the training
dataset. This process of metaparameter determination and model building was
performed for each pair of three different classifiers (RF, SVM, and NB) and five
molecular representations (PP_desc, Atom Counts, ECFP_4, FCFP_4, and MDL Public

Keys), resulting in a total of 15 different classification exercises.

Model Benchmarking

Once the training step was finished, we needed to evaluate what pair of classifier
and representation gave the best results on the test set, consisting of an additional
6,422 metabolites as well as 6,422 non-metabolites that were not used at any stage
during model training. To evaluate model performance we used sensitivity and
specificity values derived from the confusion matrices, together with ROC curves and
their associated AUC. After applying the models to the test set, the final step
involved classification of the molecules contained to the prospective, external
validation sets described above. The distribution of the metabolite-likeness scores
for these datasets as well as the percentage of correctly classified compounds are

discussed in the Results and Discussion section.
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Results and Discussion
PCA and Hierarchical Clustering

PCA was performed to the training set and the loadings and scores plots for the first
four dimensions are presented in Figure 1. For this PCA, we focus on
physicochemical properties (PP_desc) for the sake of interpretability (PCA results for
MDL Public Keys are presented in Figure S1 and Figure S2, and the percentage of
variance explained in Table S4). Almost 71% of the variance is explained in the first
four components. A slight separation between metabolites and non-metabolites can
be observed in the score plots of PP_desc (Figure 1A and Figure 1C). The loadings
plots for PP_desc (Figure 1B and Figure 1D) one can see which variables are
correlated or inversely correlated with each class of compounds. For the first two
dimensions (Figure 1B), the variables that contribute the most to the variance are
Molecular Solubility, Molecular Weigh, Molecular Polar Surface Area (PSA), and the
number of carbon atoms per molecule (C_Count). Metabolites hence tend to have
higher water solubility, lower molecular weight, and fewer carbon atoms than non-
metabolites. These observations are in accordance to the work of Nobeli et al. [27]
and Dobson et al. [30], who concluded that metabolites are hydrophilic and have
less heavy atoms than non-metabolites. PSA tends to be bigger than the one of non-
metabolites, suggesting that metabolites do not penetrate cell membranes as
efficiently as the non-metabolites. Furthermore, the loadings plot for the third and
fourth dimensions (Figure 1D), shows that the most contributing variables are Num
Rings, Num Rotatable Bonds, N Count, S Count, and Minimized Energy. The number

of rings, rotatable bonds, and minimized energy, for which metabolites obtain lower
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values than non-metabolites, are indicators of molecular complexity, and, therefore,
one can conclude that metabolites have simpler chemical structures than non-
metabolites. Interestingly, metabolites also have fewer nitrogen and sulfur atoms
than non-metabolites, as is the case for all atom types except for oxygen and

phosphor, which are more frequent for metabolites as opposed to non-metabolites.

PCA scores for PP_desc PCA loadings for PP_desc

o Molecular_Solubilify
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Figure 1 Principal Components Analysis of the PP_desc training set. PCA plots (A,C) and variable contributions
(B,D) for the training datasets PP_desc.

The results of the PCA of PP_desc and MDL Public Keys were subject to hierarchical
clustering. (Plots are presented in Figure S3). In both cases the optimal cluster split,
according to the loss of intra-cluster inertia, returned 3 clusters. The distribution of
metabolites and non-metabolites in each cluster is listed in Table 2. It can be seen
that for PP_desc and MDL Public Keys 2 large clusters and a third small one are

formed, each of them containing one dominant class of compounds. The first cluster

82



Understanding and classifying metabolite space and metabolite-likeness

for PP_desc has a purity of 70.2% (370 metabolites and 157 non-metabolites), the
second cluster has a purity of 89.65% (52 metabolites and 6 non-metabolites), and
the third cluster has a purity of 77.03% (110 metabolites and 369 non-metabolites).
Using MDL Public Keys, the first cluster has a purity of 78.81% (372 metabolites and
100 non-metabolites), the second cluster has a purity of 73.03% (134 metabolites
and 363 non-metabolites), and the third cluster has a purity of 72.63% (26
metabolites and 69 non-metabolites). However, the purity of each cluster is not high
and this, together with the lack of separation observed in the PCA, leads us to think
that the separation of metabolites from non-metabolites requires the utilization of
more sophisticated methods like random forests, or other nonlinear classifiers as

explored in the following.

Cluster Type PP_desc MDL Public Keys
1 HMDB 370 372
1 ZINC 157 100
2 HMDB 52 134
2 ZINC 6 363
3 HMDB 110 26
3 ZINC 369 69

Table 2 Cluster distribution of the molecules in the training datasets, using PP_desc and MDL Public Keys. The
clustering performed was a hierarchical clustering and the dendogram was cut at the point of maximal inertia
loss.

Fingerprint Features and Fragment Analysis

A classification tree was built upon the training set, which was described using non-
hashed ECFP_4 fingerprints (Figure 2). The results give a general idea of which
chemical moieties are characteristic of each class of compounds. As expected, the
most discriminating feature was the hydroxyl group, in agreement with the work by

Gupta et al. [28], with a higher frequency among metabolites. On the other hand,
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the presence of chemical moieties containing nitrogen, in particular secondary
amines and secondary imines, is highly correlated with a class membership of the
non-metabolites. Finally, in the case a molecule lacks hydroxyl functionalities
(demonstrated to be metabolite-like moieties), but it also lacks five or three member
rings, ether-like features, and primary amines, it will likely be a metabolite (which is

the combination of features in the left-most branch of the tree in Figure 3).
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Figure 2 Conditional inference tree of the ECFP_4 features in the training set. Hydroxyls, carboxylic acids, and
linear structures are associated with metabolites, whereas secondary amines and secondary imines are
associated with non-metabolites.
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When looking at the frequent fragments of metabolites (Figure 3) and non-
metabolites (Figure 4), we corroborate this finding. Among metabolites, hydroxyls
and carboxylic acids are frequent as well as rings containing oxygen atoms. In the
case of non-metabolites, either rings or linear fragments containing nitrogen and
sulfur abound, which is in accordance to the classification tree results, in accordance
to the findings of Hert et al. [64]. Other frequent fragments of metabolites are the
phosphate group, characteristic of some classes of metabolites like nucleotides and
phospholipids, as well as the steroid and adenine scaffolds. This importance of class-

specific fragments can make two metabolites from different classes very different,
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and it hence poses a challenge when building models that aim to capture such
diversity within a given class. One option is to build local models for each subclass of
metabolites; but in this study we aimed at building a global model for metabolites,
and as a result, we rely on complex classifiers to predict the metabolite-likeness of
molecules. These classification models were built using the methods and data

described in the methods section and they were applied to our test set.
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Figure 3 Top 20 most frequent fragments in HMDB. The 20 most frequent ring systems, chain assemblies, and
Murcko assemblies in the metabolite data set (HMDB compounds). ‘H’ refers to the frequency of fragments in
the HMDB dataset, ‘Z’ to the frequency of fragments in the ZINC dataset. Fragments with less than 4 heavy atoms
were excluded. Oxygen containing rings, phosphate group, hydroxyl, carboxylic acid, and the steroid scaffold,
among others, are common fragments in metabolites.
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Figure 4 Top 20 most frequent fragments in ZINC. The 20 most frequent ring systems, chain assemblies, and
Murcko assemblies among the ZINC compounds, here chosen as a non-metabolite-like set. ‘H’ refers to the
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frequency of fragments in the HMDB dataset, ‘2’ to the frequency of fragments in the ZINC dataset. Fragments
with less than 4 heavy atoms were excluded. Nitrogen containing rings dominate the most frequent fragments.

Test Set

In this study we used 5 molecular representations and 3 classifiers. Our aim was to
select which combination of molecular representation and classifier yielded the best
classification results for metabolites. The classification results on the test set for
each combination are presented in Table 3 and visualized graphically in Figure 5.
MDL Public Keys and RF, reporting 99.84% sensitivity and 88.79% specificity, achieve
best results. ECFP_4 is the best performing molecular representation when used
with SVM, achieving 99.55% sensitivity, while PP_desc achieves the highest AUC of
98.66%. MDL Public Keys also outperformed the other representations for NB, with a
sensitivity of 96.71%, specificity of 86.97%, and an AUC of 97.99%. Another
representation that exhibits a solid performance across the whole study is ECFP_4
(which is in line with previous studies [65, 66]). This fingerprint has the best
sensitivity for SVM, 99.55%, the second best AUC for RF, 99.07%, and the second
best sensitivity, 97.15%, and AUC, 94.25% for NB. A conceptually related fingerprint,
namely FCFP_4, shows surprisingly worse performance than MDL Public Keys and
ECFP_4 fingerprints by having smaller AUC values for RF, SVM, and NB, 98.16%,
94.19%, and 80.80% respectively. Molecular descriptors, both PP_desc and Atom
Counts, perform well: PP_desc reports better AUC for RF and SVM, 98.93% and
98.66% respectively, than FCFP_4, 98.13% and 94.19% respectively. Atom Counts
descriptors also outperform FCFP_4 in SVM in terms of AUC, 98.02% the former and
94.19% the latter. On the other hand, PP_desc and Atom Counts underperformed

when used with NB, where the AUC obtained was 61.57% and 58.95%, respectively.
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Random Forest SVM Naive Bayes Average
Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity ~ Specificity AUC

PP_desc 99.17% 88.60% 98.93% | 96.82%  88.93% 98.66% | 42.51% 86.56% 61.57%| 79.50% 88.03% 86.39%

Atom |9791% 85.57% 97.33% | 98.05% 84.10% 98.02% | 36.66% 92.90% 58.95%| 77.54% 87.52% 84.77%
Counts

ECFP4 99.80% 86.27% 99.07% | 99.55%  83.43% 98.23% | 97.15% 83.29% 94.25%| 98.83% 84.33% 97.18%

FCFP4 99.55% 87.84% 98.16% | 81.89%  86.53% 94.19% | 99.75% 44.80% 80.80%| 93.73% 73.06% 91.05%

MDL 99.84% 88.79% 99.13% | 98.54%  86.48% 97.45% | 96.71% 86.97% 97.99%| 98.36% 87.41% 98.19%

Average | 99.26% 87.41% 98.52% | 94.97%  85.90% 97.31% | 74.56% 78.90% 78.71%| 89.59% 84.07% 91.52%

Table 3 Classification results of the test set. Results for the test set, including the percentage of correctly
classified metabolites (Sensitivity), the percentage of correctly classified non-metabolites (Specificity) and the
Area Under the Curve (AUC). It can be observed that the best combination of descriptor and classifier is MDL
Public Keys and Random Forest and that the second best is ECFP_4 fingerprints and Random Forest.
Interestingly, physicochemical descriptors (PP_desc) perform well both with Random Forest and Support Vector
Machines classifiers. (A molecule is considered metabolite if its metabolite-likeness > 50%)
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mPP_desc
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Figure 5 Classification accuracy on the test set. Percentage of correctly classified molecules of the test set for
each combination of fingerprint and classifier. Sensitivity is in most cases larger than 90%, except for FCFP_4 and
SVM, and Atom Counts and PP_desc and NB. Specificity is larger than 80% in most cases, except FCFP_4 and NB.
It can be observed that metabolites are classified more accurately than non-metabolites when using RF and SVM.
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By looking at the average AUC results for the different representations we conclude
that MDL Public Keys (with 98.19%) and ECFP_4 (with 97.18%) are the best
performing representations overall. If we observe the average results obtained by
the classifiers, RF outperforms SVM and NB in each category with averages of

99.26% sensitivity, 87.41% specificity, and 98.52% AUC.

From the results presented in this work we see that with the optimal combination of
molecular descriptors and classifier, MDL Public Keys and RF, 99.84% of the
metabolites and 88.79% of the non-metabolites in the test set are classified
correctly. These results are slightly better than those presented by Gupta et al. [28],
who reported 97% correct predictions for KEGG metabolites using RF and global
molecular descriptors, which are similar to the PP_desc descriptors used in the
current work. While these 97% correct predictions were achieved on the dataset
used to train the model, our 99.84% correctly classified metabolites were not
employed in training the model. Interestingly, it is also observed in our predictions
that metabolites have a smaller false positive rate than non-metabolites, which
reinforces the idea that it is easier to determine what makes a metabolite a
metabolite, than what makes a non-metabolite a non-metabolite. The ZINC
molecules that have been classified as metabolites (some of them shown in Figure
S4), form an interesting set for further research, since according to the models they
exhibit metabolite-like features, which would give them an increased likelihood of

being bioactive in experimental screening [64].
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With respect to the classification algorithms, RF and SVM have demonstrated their
status as the ‘state of the art’ in machine learning, as applied to this dataset. This
good performance comes however at the expense of having to optimize
metaparameters, which is more demanding for SVM, where finding the right gamma
and cost results in changing the value ranges multiple times. From this experience,
when facing a classification problem where objects are described by a large number
of variables and only a modest computational power is available, RF is a good

compromise.

As seen in previous research, ECFP_4 is a solid ‘all-round performer’ [65, 66], which
obtains good results in combination with the different classification approaches. The
most surprising feature is that with simpler molecular representations than ECFP_4,
like MDL Public Keys or PP_desc molecular descriptors, one can achieve similar or
slightly improved results from the above, as it has been observed before [67]. This
finding confirms the idea that (at least known) ‘Metabolite Space’ is a well-defined
subset of all ‘Chemical Space’, and that hence its diversity can be modeled with

success using either 1D or 2D descriptors.

Apart from the discussion of general model performance we also investigated cases
where our model failed, which may be either due to wrong data annotation or
wrong predictions of the model. Figure 6 depicts false negative predictions, i.e. those
metabolites with a metabolite-likeness value of 50% or lower, and which were
therefore being considered as non-metabolites in combination with the MDL Public

Keys and the RF classification method. Although these molecules would be
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considered non-metabolites by our model, 9 out of 10 obtain a metabolite-likeness
of 40% or more. It is interesting to note that the lowest scoring compound,
debrisoquine with a score of 35.4%, is in fact a drug. Since it was not described as
such by the HMDB taxonomy, our filtering step did not eliminate it. The same occurs
for entacapone, which is a drug and has a predicted metabolite-likeness of 48.8%.
Nevertheless, our classification method was able to assign to both drugs the lowest
metabolite-likeness scores. Non-endogenous compounds are also present in this
group of compounds, such as nicotine glucuronide, and 4b-Hydroxystanozolol, a
metabolite of the synthetic anabolic steroid stanozolol. In the same fashion, we find
in this set vanillylamine, with 49% of predicted metabolite-likeness, which is a
metabolite of the natural product Vanillin and which structure resembles the
endogenous metabolite 4-Methoxytyramine, which obtains a metabolite-likeness
score of 48.8%. Unfortunately, some endogenous metabolites like Uroporphyrin Il, 3-
Methylhistamine, Melatonin, and Vitamin K1 2,3-epoxide, received a low score
without an obvious reason, and they are hence false-negative predictions of our

model
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HMDBO00869
Uroporphyrin Il (47%)

HMDBO01389
Melatonin (40%)

N

HMDBO06543
Debrisoquine (35.4%)

T

HMDBO01272
Nicotine glucuronide (47%)

HMDB12309
Vanillylamine (49%)

HMDB02972
Vitamin K1 2,3-epoxide (42%)

HMDB12226
Entacapone (48.8%)

HMDB01861
3-Methylhistamine (46.2%)

HMDB03318
4b-Hydroxystanozolol (44.8%)

NHj
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o
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4-Methoxytyramine (48.8%)

Figure 6 Metabolites in the test set predicted as non-metabolites. The 10 only false negative metabolites from
the test set. These metabolites obtained a Metabolite-likeness score smaller than 50%, therefore being classified
as non-metabolites, using the best model, MDL Public Keys and Random Forest. Debrisoquine obtains the lowest
score; it is a drug that was not taxonomically described as such. 9 out of 10 compounds have 40% or more
metabolite-likeness, which is very close to our cut-off used to predict metabolites.

Prospective Validation

Three prospective datasets containing metabolites, drugs, and small molecules, were
next classified using our two best performing models, using RF and either MDL Public
Keys or PP_desc. The results are displayed in Table 4 and indicate that 95.84% of the

new metabolites (obtained after model training has been finished) are correctly
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classified as metabolites, indicating the generalizability of our model to classify new
data. As for the drugs (represented by DrugBank compounds), 54.37% are assigned a
metabolite-likeness of 50% or higher, which is in accordance with our assumption
that many drugs indeed resemble metabolites (as has been presented before [64]).
For the third dataset, the screening compounds from ChEMBL, molecules predicted
to be metabolites only represent 22.39% of the total dataset, hence a smaller

percentage than for drugs.

RF Prediction

Metabolites | Non-Metabolites

HMDB_unofficial 95.84% 4.15%
DrugBank 54.37% 45.62%
ChEMBL 22.39% 77.61%

Table 4 Percentage of molecules classified as metabolites or non-metabolites for three independent sets. 95.84%
of independent metabolites are correctly classified. More than half of the drugs in DrugBank are considered
metabolites. Only 22.39% of the screening compounds in ChEMBL are predicted as metabolites. (A molecule is
considered metabolite if its metabolite-likeness > 50%)

In Figure 7 the distributions of metabolite-likeness for each dataset are visualized.
We see that most of the new HMDB compounds (HMDB_unofficial) show high values
of metabolite-likeness, while the ChEMBL molecules give values that are
accumulating at the lower-scoring end of the distribution. The DrugBank molecules
on the other hand are evenly distributed among all the metabolite-likeness ranges,
with slight peaks at both the metabolite-like, as well as the non-metabolite-like end
of the spectrum. This result is in accordance to the work of Ertl et al. [68], where a
Natural Product-Likeness score was reported after studying natural products, drugs,

and screening compounds. Natural products are molecules produced by living
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organisms, and therefore they can be regarded as to some extend similar to the
human metabolites we employed in our work. Ertl et al. concluded that drugs are
more similar to natural products than screening compounds, a similar finding to
what we have presented. This biogenic bias is also present in screening libraries, as
presented by Hert et al. [64]; however, the wide spread of drugs along the spectrum
of metabolite-likeness (in particular with slight peaks at either end of the scale) has

not been previously reported.

3.0 1 ~

W ChEMBL
B DrugBank
m HMDB_unofficial -

2.5 1

2.0 1 -

Density
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n
1
T
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0.0 H

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Metabolite-Likeness using Random Forest and MDL P ublic Keys

Figure 7 Metabolite-likeness distribution of the prospective validation sets. Distribution of predicted metabolite-
likeness for the three classes of molecules in the prospective evaluation set using our best predicting model, RF
and MDL Public Keys (namely metabolites from HMDB, drugs from DrugBank and bioactive compounds from
ChEMBL). Most of the metabolites are predicted at a metabolite-likeness of 60% or higher. Most of non-
metabolites from ChEMBL obtain low values. Drugs from DrugBank are spread across the whole range of values,
with higher concentrations at both ends, which indicate a presence of synthetic drugs, for low values, and
metabolite-like drugs at high values.

While numerical performance is one thing, the chemical interpretation of model
predictions remains crucial. Hence, in order to explore further the results of the
prospective validation, molecules of the three different classes (metabolites, drugs,

bioactive compounds), which fall into different bins of metabolite-likeness scores,

93



Chapter 3

are presented in Figure 8. The first noticeable feature is the absence of a metabolite
with a predicted metabolite-likeness smaller than 10%, underlining the homogeneity
of metabolites as a class (as opposed to non-metabolites). As a matter of fact, the
metabolite HMDB13193 obtained the lowest metabolite-likeness, 17%, contains two
chlorine atoms, which is not common in metabolites. Another interesting situation
occurs with molecules that have a steroid scaffold, a common fragment in
endogenous metabolites. Metabolite HMDB12524 and drug DB00180 (flunisolide)
obtain metabolite-likeness values of 60.6% and 52%, respectively. Here flunisolide
possesses a fluorine atom, which is not frequent in metabolites, and which might
have hence reduced its metabolite-likeness score. Conversely, ChEMBL compound
CHEMBL1163241 also has the steroid scaffold but obtains a score of just 35.2% on
the metabolite-likeness scale, corresponding related to having two fluorine atoms
and a secondary amine, features that the classification tree revealed to be common
in non-metabolites. Finally, examples of compounds with high values of predicted
metabolite-likeness are DB00131 (adenosine monophosphate), DB00125 (L-
arginine), CHEMBL6422, and CHEMBL14568, which receive 84.2%, 99%, 82.8%, and
96.8% respectively. Adenosine monophosphate includes the phosphate group,
frequently found in metabolites together with two hydroxyl groups. Metabolite-
likeness features of L-Arginine, like linearity and a carboxylic group, outweigh the
non-metabolite features like the nitrogen containing functional groups. Compound
CHEMBL6422 possesses a carboxylic acid and hydroxyl functionalities, while and
CHEMBL14568 is small, linear, and also exhibits a hydroxyl group, leading to a very

high metabolite-likeness score.
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Figure 8 Molecules of the prospective validation sets with different predicted metabolite-likeness values.
Compounds of the 3 classes present in the prospective evaluation set using our best predicting model, RF and
MDL Public Keys, sorted according to their predicted metabolite-likeness. Non-metabolite compounds exhibit
moieties characteristic of metabolites like carboxylic acids and phosphate groups, which make them obtain high
values of metabolite-likeness.

The results obtained from the prospective validation demonstrate that our model is
successful at identifying whether a molecule is a metabolite or not, which we expect
to help studies that involve metabolite identification in the future. Furthermore,
metabolite-likeness helps to detect non-metabolites that exhibit features

characteristic of metabolites, which can be of interest for drug discovery In our
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future work, we will explore both of those avenues with results to be communicated

shortly.

In this work we evaluated various machine-learning models with respect to their
ability to discriminate metabolites from non-metabolites, and hence, to calculate the
metabolite-likeness score of a given molecule. Our best model detects 99.84% of the
metabolites from the test set and 95.84% of the metabolites from a prospective
validation set, hence underlining the applicability of the classifier to the majority of
novel metabolites. While we confirm that drugs are, on average, more metabolite-
like than other compound classes, we noted a considerable spread of drugs across
the metabolite-likeness spectrum, with two small (but distinct) peaks at either end
of the spectrum, illustrating that both synthetic molecules and metabolite-like
compounds may become successful drugs. As for the application side, metabolite-
likeness is a tool to rank compounds that ‘need’ to resemble metabolites, which may
be (as above) certain types of drugs, but also in particular candidate structures in
metabolite identification. Given the performance of our model, we will now
continue with our work to apply our model in precisely those areas. Accordingly, we
expect to use this tool in metabolomics studies where no database match is found
for the unknown compound and therefore, candidate structures are generated
based on mass spectrometry data, e.g. elemental composition, using a structure
generation tool. These output molecules would be then ranked according to their
Metabolite-Likeness. Furthermore, we have also studied which functional groups,
fragments, and physicochemical properties help describe the Metabolite Space. Our

findings give a general idea of what metabolites look like, but also encourage us to
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look closer at the different subclasses of metabolites and to explore the applicability

of a local model approach if we want to expand our knowledge of metabolites.
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mtry Gamma Cost
PP_desc 9 4.768372e-07 32768
Atom Counts 2 4.882812e-04 262144
ECFP4 10 3.051758e-05 16
FCFP4 30 1.907349e-06 8192
MDL 30 1.907349e-06 8192

Table S1 Optimal metaparameters for classifiers. mtry for Random Forest, Gamma and Cost for Support Vector
Machines, obtained after performing Cross Validation on the training set.
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HMDB ZINC MeanDecreaseAccuracy | MeanDecreaseGini
N_Count 1.3067688 1.2609013 1.0014388 46.898305
Molecular_Solubility 1.2788442 1.02582 0.9656276 96.271476
LogD 1.2191826 1.0680953 0.9642439 50.24542
Num_H_Donors 1.3046778 0.8545617 0.9567927 29.876567
Num_RotatableBonds 1.012057 1.17285022 0.8988967 26.85855
Molecular_Weight 1.1004754 0.99654993 0.8885767 31.778377
Minimized_Energy 1.1796855 0.69780848 0.8681832 32.409426
H_Count 1.2011563 0.24332713 0.8579638 24.73855
Molecular_PolarSurfaceArea 1.1207631 0.70494526 0.8549427 23.351115
ALogP 0.9248217 0.72155958 0.7985026 25.724204
Num_Atoms 0.7790244 0.76550378 0.7354873 20.597452
Num_H_Acceptors 0.9853438 0.35682066 0.7293065 10.555502
F_Count 1.0559811 | -0.08105052 0.7200118 5.685859
Num_Rings 0.8475657 0.73452855 0.7184914 24.290726
C_Count 0.9386965 0.62885999 0.7131295 41.595612
Num_AromaticRings 0.7248383 0.81406126 0.6912011 22.524017
O_Count 0.8782411 0.45284146 0.6735855 10.741794
S_Count 0.7923043 0.02593264 0.4822221 4.077548
Cl_Count 0.7362878 | -0.37414425 0.3897458 2.297109
P_Count 0.35386364 0.980051

-0.133703

0.1807093

Table S3 Importance given to the PP_desc descriptors by Random Forest. High values on Mean Decrease
Accuracy and in Mean Decrease Gini indicate that this variable is important to discern between metabolites and
non-metabolites. These importance values have been obtained from the Random Forest model built with the

training set.
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HMDB ZINC MeanDecreaseAccuracy | MeanDecreaseGini
MDLPublicKeys.140 1.24138956 1.229133216 0.941920823 53.91841097
MDLPublicKeys.126 0.83892897 0.70907696 0.663644388 23.62313439
MDLPublicKeys.163 0.78447704 0.746221036 0.640603474 23.23559085
MDLPublicKeys.50 1.17048163 1.023474316 0.885259239 15.04553608
MDLPublicKeys.143 0.69289234 0.696664822 0.593501328 14.91132605
MDLPublicKeys.108 0.99957857 0.489609227 0.713694188 14.48014674
MDLPublicKeys.157 0.63767173 0.675822066 0.603715398 13.07839857
MDLPublicKeys.123 0.58418556 0.407174217 0.474627005 13.02194646
MDLPublicKeys.146 0.87558184 0.687488161 0.703815276 12.6453885
MDLPublicKeys.95 0.79652399 0.624375878 0.637617052 10.20590729
MDLPublicKeys.135 0.90220951 0.439277352 0.637256942 9.92262443
MDLPublicKeys.145 0.62671793 0.411886181 0.50576454 8.80818597
MDLPublicKeys.122 0.56884211 0.176402217 0.42077643 8.25408405
MDLPublicKeys.132 0.70757544 0.285691095 0.519554788 6.57286614
MDLPublicKeys.138 0.5532357 0.466305805 0.478651557 6.54776274
MDLPublicKeys.128 0.57303747 0.41742079 0.494394286 6.48147908
MDLPublicKeys.53 0.8537977 0.309679345 0.609916532 6.05340169
MDLPublicKeys.82 0.72725636 0.393078873 0.547102936 5.88552798
MDLPublicKeys.76 0.46225838 0.21721732 0.368584167 5.84646577
MDLPublicKeys.140 1.24138956 1.229133216 0.941920823 53.91841097

Table S4 Importance given to the MDL Public Keys by Random Forest. High values on Mean Decrease Accuracy
and in Mean Decrease Gini indicate that this variable is important to discern between metabolites and non-
metabolites. These importance values have been obtained from the Random Forest model built with the training

set.

Component Atom Counts PP_desc MDL Public Keys
1 25.44165 33.29614 11.54531
2 44.54251 57.11561 18.74551
3 58.67426 66.05534 23.8788
4 71.17018 71.99137 28.55269
5 82.20865 77.25728 32.71371
6 92.29973 82.01365 36.04002
7 98.71144 86.32577 38.95153
8 90.20601 41.51726

Table S5 Cumulative percentage of variance explained of the first 8 principal components. PCA was performed on
the Atom Counts, PP_desc, and MDL Public Keys datasets.
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Figure S4 Non-metabolites predicted as metabolites. Some non-metabolites from the test set that obtained a Metabolite-
likeness score greater than 50%, therefore being classified as metabolites, using the best model, MDL Public Keys and
Random Forest. These are the 20 cluster centers selected from the clustering performed on all the false positivesS4.
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An automated pipeline for de novo
metabolite identification using mass
spectrometry-based metabolomics

Metabolite identification is one of the biggest bottlenecks in metabolomics.
Identifying human metabolites poses experimental, analytical and computational
challenges. Here we present a pipeline of previously developed cheminformatic
tools and demonstrate how it facilitates metabolite identification using solely LC-
MS" data. These tools process, annotate, and compare MS" data, and propose
candidate structures for unknown metabolites either by identity assignment of
identical mass spectral trees or by de novo identification using substructures of
similar trees. The working and performance of this metabolite identification
pipeline is demonstrated by applying it to LC-MS" data of urine samples. From
human urine, 30 MS" trees of unknown metabolites were acquired, processed and
compared to a reference database containing MS" data of known metabolites.
From these 30 unknowns, we could assign a putative identity for 10 unknowns by
finding identical fragmentation trees. For 11 unknowns no similar fragmentation
trees were found in the reference database. Based on elemental composition only,
a large number of candidate structures/identities were possible, so these
unknowns remained unidentified. The other 9 unknowns were also not found in
the database, but metabolites with similar fragmentation trees were retrieved.
Computer assisted structure elucidation was performed for these 9 unknowns: for

4 of them we could perform de novo identification and propose a limited number



An automated pipeline for de novo metabolite identification using mass spectrometry-
based metabolomics

of candidate structures, and for the other 5 the structure generation process could
not be constrained far enough to yield a small list of candidates. The novelty of this
work is that it allows de novo identification of metabolites that are not present in
a database by using MS" data and computational tools. We expect this pipeline to
the basis for the computer-assisted identification of new metabolites in future
metabolomics studies, and foresee that further additions will allow identifying

even a larger fraction of the unknown metabolites.

Metabolomics is the study and characterization of metabolites, which are the small
molecules (molecular weight below 1000 Daltons) of an organism, biofluid, tissue, or
biocompartment. Metabolites are substrates or products of metabolic processes and
therefore describe accurately the phenotype of an organism.[1] Metabolite
identification is frequently cited as one of the major bottlenecks in metabolomics.[2—
4] Knowing the identity of the metabolites that are relevant in studies is necessary
for a proper biological interpretation of the results. This work focuses on Mass
Spectrometry (MS) only rather than including Nuclear Magnetic Resonance (NMR)

because the former is more sensitive than the latter.

While no agreement exists on how to perform metabolite identification, some
guidelines do exist that define how to report identities of metabolites.[5] The highest
reporting level is Level 1, where an identity is proposed and validated using two
independent and orthogonal data sources relative to an authentic compound
analyzed under identical experimental conditions, for instance accurate mass and

Multi Stage Mass Spectrometry (MS") spectra or retention time and m/z or MS" data.
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Level 2 is used for putatively annotated compounds, where an identity is proposed
based on MS/MS or MS" spectral similarity of the unknown to the spectra of a
known compound present in a database, but the identity is not validated with
chemical reference standards. Level 3 includes putatively annotated compound
classes, based on spectral similarity of the unknown to known compounds belonging
to a certain chemical class. Level 4 includes unknown compounds that can be traced
and quantified using spectral data in different experiments, but no structural
information has been reported before. At the beginning of an identification project
the unknown compounds can be divided into “known unknowns” and “unknown
unknowns”.[6] A known unknown is a compound that has been previously described
for a certain analytical platform, for instance by a certain mass and retention time
window, but that has not yet been identified in the current study. An unknown

unknown is a new compound that has not been previously described or identified.

MS experiments yield the m/z of the compound, from which the mass can be
derived. For each mass, one or multiple elemental compositions are possible; and
the more accurate the mass is determined the fewer candidate elemental
compositions are obtained. The mass accuracy depends on the instrument employed
and even for high accuracies, such as in the low part per million (ppm) or sub-ppm
range, unigue elemental compositions cannot always be obtained.[7] The number of
possible elemental compositions can be reduced by incorporating information on
the other molecules present in the sample and the possible biotransformations that
could have occured.[8] Additionally, a database of ionization products and frequent

neutral losses when MS/MS data are available, can be used to annotate the
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elemental compositions of metabolites.[9] In the case a unique elemental
composition is available, multiple molecules can still be found with that composition.
Additional information of the compound can be obtained by performing MS/MS
experiments, where the compound is fragmented and the m/z of the resulting
fragments can be measured. These spectra can then be matched with existing

spectra databases for identity assignment or similarity search.[10]

As an alternative, MS" data can be used to characterize a compound in more detail
by fragmenting it, detecting its fragments, isolating them and fragmenting them
multiple times.[11] The resulting information is a mass spectral tree of fragments
connected hierarchically to the original parent ion,[11, 12] which contains more
structural information of the unknown compound than regular MS and MS/MS data.
MS" data can be processed and enriched with open source tools like the Multistage
Elemental Formula (MEF),[13] which creates a fragmentation tree where the parent
ion and each fragment ion are annotated with their elemental composition, instead
of the mass and a tree of neutral losses representing the fragmentation pattern of
the compound. Actually, this tool can be used to exclude many possible elemental
compositions for a given MS" tree, so that often only one elemental composition for

a spectral tree is obtained.

Different approaches have been recently presented to query and compare spectral
data, most of them relying on concepts of fingerprint similarity. A fingerprint from
the fragmentation tree of an unknown compound is an array of features like the

elemental compositions of the fragments and the different branches, and it is used
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to query a database of known compounds, for which a fragmentation tree
fingerprint has been previously computed. The assumption for using fingerprint
similarity is that similar fragmentation trees are produced by similar compounds.[14]
Hypothetical fragmentation trees have been derived using a probabilistic model not
from MS" data, but from HPLC-MS/MS[15] or GC-TOF-MS,[16] and used to build a
fingerprint comparison method[17] that could assign the class of unknown
compounds and in some cases the identity. A different approach[18] involved
building a spectral fingerprint directly from the MS/MS spectrum and relate it to a
fingerprint containing structural information of the molecule. Recently, Rojas-Cherté
et al[14] developed a similar approach using MS" data to build fingerprints and use
them to query experimental MS" data, where the hierarchical relations between
fragments in the fragmentation tree were measured experimentally instead of
computationally simulated. These fingerprints were implemented in the web

application MetiTree to process, handle, store and analyse MS" spectra.[19]

In the best case, querying fragmentation trees using fingerprint similarity can return
a perfect match if the unknown was present in the database, which would be a level
1 identification of a “known unknown” (if the unknown and the standard were
measured in the same conditions). In a less favorable case, the unknown is not in the
database and it is necessary to propose candidate structures via computer assisted
structure elucidation (CASE) like our open source structure generator OMG.[20] In
such situations, Rojas-Chertd et al[14] suggested to use the chemical structures of
the similar trees in the fragmentation tree database to create the maximum

common substructure (MCSS) under the assumption that the unknown metabolite,
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which belongs to the same class, will possess the same moiety. This MCSS together
with the elemental composition of the unknown could be the input for a structure
generator that would produce all the possible molecules complying with these
criteria. CASE has been used to identify pollutants and toxic compounds in
environmental samples by generating candidates with a structure generator like
MOLGEN and filter or rank them using specific criteria related to the problem at
hand.[21] In a similar fashion, Schymanski et al[22] initially used gas chromatography
coupled with electron-ionization mass spectrometry (GC/EI-MS) and possible
filtering criteria were the prediction of spectra using tools like MetFrag,[23]
retention index prediction and steric energy calculation, and in a posterior study[24]

a consensus score combining these criteria was used to rank candidate molecules.

MS" data and software tools to process and evaluate these data have been
presented as the key factors of success for the identification of small molecules.[25]
Many cheminformatics tools that contribute to the elucidation of compounds have
been developed, but in the field of metabolite identification, they require the
unknown metabolite to be present in a database like PubChem.[26-28]
Furthermore, no combination of tools in a pipeline has been used for de novo
metabolite identification as it was done for environmental pollutants, which used
MS/MS data. Previous studies[29] used MS" to identify plant metabolites, but
required manual intervention and concluded that there is a need for pipelines of
chemoinformatics to improve metabolite identification. In the work presented here,
we combine different tools in a pipeline that enables, for the first time, de novo

identification of metabolites from MS" data as well as identity assignment in an
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automated fashion. In order to demonstrate the use of such an identification
pipeline, we acquired 30 mass spectral trees of metabolites present in human urine

and attempted to identify them with this pipeline.

Materials and methods

Mass spectral trees were acquired for the features measured in human urine
samples. Details on analytical methods are provided in Supplementary Information.
More than 450 metabolite features representing most probably metabolites were
detected with deconvolution (using the software Dissect, Bruker Daltonics, Bremen,
Germany) in urine. Mass spectral trees were acquired for the 30 most abundant
peaks (Table S1) and processed with the metabolite identification pipeline
presented. The identities of these 30 features and their trees were unknown upon
selection. Our approach did not attempt to provide a comprehensive analytical
coverage of urine metabolites. The aim of this study was to illustrate how the
software pipeline can improve the identification of “known unknowns” and

“unknown unknowns” in metabolomics.

Mass Spectral Tree Processing and MS" Database

The first step in the pipeline (Figure 1) is to process and annotate the mass spectral
trees into fragmentation trees. Mass spectral trees were processed using the MEF
tool,[13] which resolves a unigque elemental composition for each parent and
fragment ion, as well as for the neutral losses. The result of using the MEF tool to
process a mass spectral tree is a fragmentation tree and a neutral loss tree with

elemental compositions assigned to the nodes of the tree. An in-house library of MS"
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data of reference metabolites was used as described by Rojas-Cherto et al.[14] This
database contains fragmentation trees and neutral loss trees of 447 human
metabolites and 118 plant polyphenolic metabolites. All MS" spectra in the library

were processed with MEF tool.

MSn Tree

| Find Similar FT

Identity
Assignment

Structure Generation
Candidate rejection

Candidate
Structures

Figure 1 Metabolite identification pipeline. Abbreviations: MEF, Multistage Elemental Formula; EC, Elemental

Composition; FT, Fragmentation Tree; MCSS, Maximum Common Substructure; Sim, Similarity.

Data Comparison and Fragmentation Tree Similarity Search

The 30 unknown metabolites were compared to the known metabolites stored in
the MS" database using the fragmentation tree fingerprint and similarity calculation
presented by Rojas-Chertd et al.[14] A 10% similarity or more was considered to be
relevant for identification purposes by educated guess.[14] In the case an unknown
compound has 100% similarity with a metabolite in the database, we assign the

identity to the “known unknown”, which in our case is level 1 identification. When
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no metabolite is found with 100% similarity, we are facing the identification of an
“unknown unknown”. In such case, multiple metabolites can be found with a certain
degree of similarity, which is class assignment (level 3 identification) if these
metabolites belong to the same class. Additionally, we used these similar
compounds to calculate the maximum common substructure (MCSS) they shared

and assumed it to be present in the structure of the unknown metabolite.

Candidate Structure Generation

We used the structure generator Open Molecule Generator (OMG)[20] to in silico
generate all possible candidate structures for the unknowns (Figure 2), taking as an
input the elemental composition of the unknown. OMG generates all the possible
chemical structures containing exactly those atoms. This list of candidates, even for
small elemental compositions, tends to contain millions or billions of possible
molecules. Optionally, one can force the output molecules to contain one or multiple
non-overlapping prescribed substructures, which reduces drastically the number of
candidate structures generated. The bigger the substructure or the more
substructures used, the fewer candidates are produced. In this work, we used the

MCSS found in the similarity search to be present in the generated structures.
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Open Molecule Generator
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Figure 2 Structure generation and candidate rejection. Abbreviations: EC, Elemental Composition; MCSS,
Maximum Common Substructure.

Candidate Structure Filtering

We used three filters (Figure 2) to remove unlikely candidate chemical structures:
steric energy, metabolite-likeness, and fragmentation prediction. While OMG
produces candidate structures that are valid according to the valence rule, many are
unstable and therefore, unlikely to be found in a biological system. First, we used the
component “Molecular Energy” from Pipeline Pilot Student Edition 6.1 [30] to
calculate the internal energy of the generated structures and those with an energy
value of 100 or above were removed. This threshold value was selected after
observing that all the metabolites present in the Human Metabolome Database
(HMDB)[31] have energy values below 100 when calculated with the same
component. In order to use the energy score for further candidate ranking, we
scaled energy values to unit range between 0% (for a candidate with energy value of

100) and 100% (for the candidate with the lowest energy value). Second, we used a
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predictive model of Metabolite-Likeness[32] to remove candidate structures that are
unlikely to structurally resemble human metabolites. We reported that almost all
known human metabolites obtain a Metabolite-Likeness of 50% or more. Therefore,
we set a conservative minimum threshold of 60% Metabolite-Likeness to consider
structures for further identification. Third, we used the spectra prediction tool
MetFrag[23] to remove candidates that cannot explain many of the peaks observed
in the experimental spectra. MetFrag uses as an input a list of molecules and a list of
the experimental spectral peaks, defined by the m/z and intensities. By cleavage of
bonds, MetFrag fragments the molecules and computes for each one how many of
the provided spectral peaks can be explained by the fragments. With this
information, a score is built describing how well each candidate molecule can
describe the experimental spectra. We used the settings of [M+H] mode, positive
charge, 0.01 Mzabs and 10 Mzppm. We rejected candidate structures that did not
obtain at least 50% MetFrag score. Lastly, we combined the three scores in a unique
consensus score, as proposed by Schymanski et al[24] to rank the remaining

structures in order and prioritize them for further manual identification by an expert.

Results

MS" spectral trees of 30 unknown metabolites acquired in human urine were
analyzed with the metabolite identification pipeline described in the Methods
section. The fragmentation trees of the unknowns were used to query the MS"
database for identical or similar fragmentation trees. From the 30 unknown
metabolites, 10 obtained a 100% fragmentation tree similarity match, 9 found one

or more similar trees (10% < similarity value < 100%) and 11 did not obtain a single
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hit in the database. At this stage, for these 11 unknowns we could only derive the
elemental composition from the data. Using OMG to generate candidate structures
for them would return billions of structures, therefore, these unknowns were not
studied further and remained unidentified. This indicates that the MS" database

used in this study should be enriched with more and varied metabolites.

Identity Search

The database query returned a 100% similarity match for 10 fragmentation trees
(Table S2). This is the highest possible similarity score and implies that both the
fragmentation tree and neutral loss tree are identical for the unknown metabolite
and the standard compound in the database. These 10 identified metabolites are
creatinine, acetaminophen, phenylalanine, 7-methylxanthine, uric acid, hippuric

acid, paraxanthine, o-tyrosine, |-acetylcarnitine and tryptophan.

Both the authentic standards present in the database and the unknown metabolites
from urine were acquired using high resolution MS and MS" in the same lab using
the same equipment (as described in Methods). Hence, we are confident to have
achieved a full Level 1 identification as proposed in the MSI[5] for these 10 unknown
compounds. The authentic standards were acquired by direct infusion, in order to
obtain deep and wide mass spectral trees, containing as much structural information
as possible. Therefore, they miss an associated retention time. ldeally, these
standards should be measured in the same HPLC system as the unknowns in order to
have an extra analytical technique to support the full identification. It is interesting

to mention that despite being characteristic of the chemical structure, a mass
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spectral tree could theoretically not be unique for a given molecule, i.e. two isomeric
structures with the same elemental composition but different structure could
produce the same mass spectral tree. Hence, the need of complementary analytical

methods, like NMR, to validate the identification of metabolites.

Similarity Search

For 9 of our 20 remaining unknown metabolites, we found in the database
metabolites with similar fragmentation trees. Three metabolites only found one
similar metabolite in the database. In such cases, we were neither able to propose
the class of the unknown nor to extract a maximum common substructure, since we
would need at least two similar metabolites of the same class. The only possible
course of action according to our pipeline was to generate candidate structures
using OMG for the elemental composition. Additionally, candidate molecules that
are structurally dissimilar to the metabolite in the database could be removed using
a chemical similarity filter, but this was out of the scope of the current work,
because the resulting list of candidates would be too large. Unknown 16 returned 21
similar metabolites, which produced a very small MCSS (C-C). Such a MCSS, when
used in OMG would not constrain the generation process and return billions of
candidate structures. Therefore we did not proceed with the identification of this

unknown.

Identification of unknowns
Five unknowns returned two or three similar metabolites in the database. All the

similar metabolites are found in urine according to HMDB. We calculated a MCSS
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from these metabolites, generated structures using OMG and filtered the candidates
using the three filtering criteria. For unknown 28, similarity search returned two
similar metabolites, with 25% to 3-methoxytyramine and 11% to sinapic acid using

fragmentation tree similarity (Table 1).

Unknown 28 9 17 15 27
Candidate 6.8M 150M Billions Billions Billions
Structures
EC | Hits | CoH100, 2 C;H,NO, 2 CgHgN4O5 2 CqHgNO, 2 C9H13NO4P2| 3
N 00 Q o , H 0.0 g |
Similar JiS g Nl e :2: ;gi Naliae é % E
Structures ) = - o ’ )
T 7 i 5 ))\ /%7 /j{ 5 ))\ ! v !
Similarity 25% 11% 19% 11% 18% 10% 24% 12% 32% 30% 13%
N O: 7N
FT 0 Q/)\ ‘ N%‘?‘ 5
Candidate
Structures 82 65,445 4 8 281
MCSS
Candidate
structures 8 2,312 4 5 182 (40)
filtering

Table 1 De novo metabolite identification of “unknown unknown” metabolites that are not present in the MS"
database, but have a degree of fragmentation tree similarity with one or more fragmentation trees of known
metabolites in the database. Candidate structures are generated with Open Molecule Generator using the EC and
MCSS and filtered using energy, Metabolite-Likeness and MetFrag.

The MCSS used as prescribed substructure in the candidate generation process with
OMG returned only 82 molecules, instead of 6.8 million molecules if only the
elemental composition was used. This list of candidate structures was reduced by
using energy, metabolite-likeness and MetFrag filters. This resulted in 8 candidate

structures, which are presented in Table 2 sorted by a consensus score (CS).
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Candidate Energy Met likeness | MetFrag Consensus Score
Structure HMDB / InChiKey
/@ -1.35 (100%) 81.0% 99.5% 93.5%
1 Pl
= "0
0 None / XNKMCBYYBMXTPO-UHFFFAOYSA-N
~ (;;:;;) 80.8% 94.4% 91.7%
’ i
© HMDB13744 / YOMSJEATGXXYPX-UHFFFAOYSA-N
(8152::‘12%) 68.6% 93.4% 82.8%
3 <OI J '
None / QTPWGUHKASDDHO-UHFFFAOYSA-N
| 57.76 75.4% 93.6% 70.2%
4 : o (41.86%)
None / HUYRKDVFJCZQOM-UHFFFAOYSA-N
. 7 (3654":;;) 72.2% 90.2% 66.0%
5 © .
None / WNOKBMFZDXCSRN-UHFFFAOYSA-N
3 (3671555;) 61.8% 93.3% 64.4%
6| [ '
’ None / YOYNEOCOGAQSSV-UHFFFAOYSA-N
o (135?.’4.15;5%) 66.6% 93.6% 58.9%
| o
None / QVXRGADGDBVPIE-UHFFFAOYSA-N
94.26
77.2% 93.4% 58.9%
5.66%)
8 fb (

None / SYCBYIPPZGRLQD-UHFFFAOYSA-N

Table 2 Candidate structures for unknown 28

For unknown 9, the database query returned two similar

metabolites, with

fragmentation tree similarity of 19% to hippuric acid and 11% to isovalerylglycine

(Table 1). OMG generates more than 150 million molecules for the elemental

composition of this unknown and using the MCSS derived from the similar

metabolites, this list is reduced to 65,445 compounds and filtered further to 2,312

candidate structures, of which 1,279 obtained a CS of 90% or higher. This made a
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selection of smaller list of candidate structures not feasible. For unknown 17 two
metabolites with similar fragmentation trees, 18% similarity to 1,3-dimethyluric acid
and 10% to 1,3,7-trimethyluric, were found in the database (Table 1). OMG
generated a much smaller list of candidate structures, only 4, using the MCSS as

constraint (Table 3).

Candidate Energy | Met likeness| MetFrag Consensus Score

Structure

HMDB / InChiKey

\ 18.91 98.4% 100% 99.4%

N _N_O 0,
1 #NLJ (100%)

o]

HMDB01970 / ODCYDGXXCHTFIR-UHFFFAOYSA-N

\ 21.09
e | (97.31%
2 #NI(T ( )

HMDB01973 / XJEJWDFDVPDMAS-UHFFFAOYSA-N

97.6% 100% 98.3%

NO 21.49 96.2% 100% 97.7%

LT | (96.82%)
3 /I(

HMDB11107 / YHNNPKUFPWLTOP-UHFFFAOYSA-N

NN 18.98 98.4% 89.7% 96.0%

qiﬁf\“ (99.91%)

HMDB03099 / QFDRTQONISXGJA-UHFFFAOYSA-N

Table 3 Candidate structures for unknown 17

Similarity search returned 2 metabolites similar to unknown 15, with fragmentation
tree similarity of 24% to hippuric acid and 12% to isovalerylglycine. At this step we
observed three things: i) the elemental composition of the unknown was the
elemental composition of to hippuric acid with an extra oxygen atom; ii) the
fragmentation tree similarity of 24% was due to the neutral loss tree, which were
identical for the unknown and the compound in the database, indicating that both
compounds had a similar structure and fragmentation pattern; iii) the fragmentation

tree measured for the unknown was almost identical to the one in the database,
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except for an additional oxygen atom in each of the fragment ions. This indicated
that the chemical structure of the unknown was the structure of hippuric acid, which
we used as MCSS (Table 1), with an additional oxygen atom. OMG generated 8
candidate molecules using the MCSS as constraint (Table 4), which result of adding
one oxygen atom in all possible ways to hippuric acid. Further filtering using our
three criteria removed candidates 6, 7 and 8, which despite having favorable values
of energy score and metabolite-likeness, were not able to explain any of the
experimental fragments and therefore MetFrag assigned them a 0% score. A close
examination of the in silico fragments proposed by MetFrag for the experimental
fragment revealed that all of them contained a phenol group, a feature that is not
present in the three rejected candidates. Therefore, we propose that unknown 15
has the same structure as a compound with an oxygen atom attached to the
benzene ring. The position of the oxygen in the phenol group remains unknown.
Additionally, NMR measurements of standards could be used to elucidate the

position of the oxygen in the molecule and confirm the identity of this unknown.
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Candidate Energy |Met likeness| MetFrag Consensus Score
Structure HMDB / InChiKey
'1'501 96.8% 100% 98.9%
1| i Y@ (100%)

HMDB06116 / XDOFWFNMYJRHEW-UHFFFAOYSA-N

-1.51

S| 1 01| oma

HMDB06116 / XDOFWFNMYJRHEW-UHFFFAOYSA-N

96.8% 100% 98.9%

) -1.49
3| o [ (99.99%)

o]}

96.8% 100% 98.9%

HMDB13678 / ZMHLUFWWWPBTIU-UHFFFAOYSA-N

) -1.39 ] - -
al (99.88%) 94.6% 100% 98.1%

HMDB00840 / ONJSZLXSECQROL-UHFFFAOYSA-N

-1.39

0, 0, 0
: )L/N (99.88%) 94.6% 100% 98.1%

HMDB00840 / ONJSZLXSECQROL-UHFFFAOYSA-N

-1.11
6 O\(N\iwo (99-61%)
None / NVVKRZSRWCCEAU-UHFFFAOYSA-N

96.2% 0% 65.2%

-0.53

. 98.2% 0% 65.7%
99.03%)
7). N%@ (
HMDB02404 / GCWCVCCEIQXUQU-MRVPVSSYSA-N
1.04
87% 0% 61.5%
8| J_i p (97.49%) o ° °

None / FMYVYJPEMYKYRE-UHFFFAOYSA-N

Table 4 Candidate structures for unknown 15

Similarity search for unknown 27 returned three metabolites with fragmentation
tree similarity of 32% to I-tyrosine, 30% to o-tyrsine, and 13% to dl-dopa (Table 1).
OMG generated a list of 281 candidate structures using the MCSS, which was
reduced to 182 after filtering. We observed that two of the similar metabolites in the

database had a phenol (benzene ring with an attached oxygen atom) and the third
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one a catechol, (benzene ring with two attached oxygen atoms). Hence, we assumed
that our unknown also had at least one oxygen atom attached to the benzene ring.
We selected from the 182 candidates those that contained a phenol, which resulted
in a final list of 40 candidate structures. A P-P bond was present in all the candidates,
which despite being a rarity among known metabolites did not penalize the scores
obtained by the molecules. This P-P moiety would immediately raise an alarm flag
for any metabolite identification expert. It could be caused by poor experimental
acquisition of the mass spectral tree or by an incorrect assignment of the elemental
composition by MEF. Inspection by an expert determined that for a m/z of
262.03809 MEF should produce an elemental composition like CO9H13NOG6P, which
belongs to phosphotyrosine, instead of COH14NO4P2. Therefore, we confirmed that
the analytical conditions were identical for this unknown as for the other compounds
and that all the elemental compositions generated and forced MEF to use the
elemental composition C9H13NOG6P for the parent ion, but it failed to annotate the
elemental compositions of the fragments. In other words, this elemental
composition could not explain the fragment ions measured experimentally. As a
result, we considered the experimental data and the elemental composition
C9H14NO4P2 to be valid and all 40 candidates to be possible. Ideally, authentic
standards of them should be measured and compared with the spectral data of the

unknown.

Tentative validation of MCSS assignment
We assessed whether the use of the MCSS and the filtering can lead to a wrong

identification or to miss the good molecule in the list of candidate structures. We
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applied the structure generation and filtering strategy to the 10 identified
metabolites. For only four of these metabolites similar trees were found in the
database and a MCSS could be generated (Table S3). We observed in each of these
four cases that the MCSS found is a substructure of the metabolite, with which OMG
generated among others the good structure. The filtered list of candidate structures
always contained the good molecule, which was ranked high according to the
consensus score in three of the four cases. In previous work[14], it was observed
that with a tree similarity below 20% the MCSS obtained was not very informative. In
these four examples, the MCSS used were informative enough when obtained from
metabolites with at least 12% tree similarity. When including metabolites with tree
similarity between 12% and 10% the MCSS was a carboxylic acid for unknowns 22,
12, and 18. For unknown 28 it was a benzene ring. These MCSS belong to the
metabolite, but OMG would return millions of candidates, therefore we did not use
them for further confirmation. From this we conclude that the use of the pipeline
can provide good candidate structures. Further validation should be performed to
understand whether there are cases for which the pipeline could lead to incorrect

results.

Discussion

The results presented demonstrate how this metabolite identification pipeline can
be used to identify metabolites using MS" data from human urine samples. This
workflow could be adapted to work with MS/MS data, although data processing and
similarity search of spectra should be then modified. Here we only used MS" data

and applied it to those features for which a similar fragmentation tree was present in
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the MS" database. Such MS" database can be used locally, MetiTree,[19] or online,
Massbank[33] and MzCloud. The number of metabolites that can be identified in this
way depends on how comprehensive the database of MS" is. Furthermore, we
showed for the first time how metabolites not present in a database could be

identified.

Having substructure information is crucial to identify unknown metabolites. In our
case, we observed that using a large MCSS (or alternative multiple prescribed
substructures) reduced significantly the number of candidate structures, therefore
future work should focus on developing more reliable ways of generating more or
larger MCSS. In the case of unknown 9, the MCSS found was linear, which allowed
for the formation of many rings and therefore, a list of more than 2,000 candidate
structures. For the same unknown and for unknown 28 we observed that the
filtering using energy, metabolite-likeness and MetFrag yielded a 10-fold reduction
in the number of candidates, proving the value of incorporating these criteria. In
those cases where the MCSS described most of the structure of the unknown, OMG
produced a short list of candidates and this was not significantly reduced with the
filters, since most of the structures were acceptable. Additionally, more filters could
be added in the future depending on the data available, like retention time
prediction[34—36]. Fragmentation prediction by MetFrag proved to be useful at
rejecting candidates, like for unknown 15, that did not have an oxygen atom

attached to a ring but to a chain.
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The use of mass spectral trees was crucial to assign identities and to derive structural
information of the unknown metabolite from similar metabolites. We observed that
very similar metabolites could have low fragmentation tree similarity, because their
fragmentation trees were different. Fortunately, the structural resemblance was
captured in the neutral loss trees, which in some cases were identical between the
unknown and a similar metabolite, despite having different fragmentation trees. This
shows the importance of including neutral loss information in the fragmentation tree
fingerprint approach and encourages future research on how to better combine

fragmentation tree and neutral loss tree information for similarity search.

Conclusion

In this work we have presented a pipeline that enables metabolite identification
using MS" data and that can be used in metabolomics studies involving experimental
data. Starting from the experimental MS" data of unknown metabolites, this pipeline
processes, annotates, and compares MS" data, and assigns the identity or provides a

few putative identities for de novo identification of unknown metabolites.

By means of fragmentation tree similarity, this pipeline can assign the identity to an
unknown metabolite, provided its MS" spectra have been previously measured and
stored in a database. In the case this metabolite is not in the database, this pipeline
is capable of doing de novo metabolite identification by extracting common moieties
in similar compounds and using structure generation to propose candidate

structures. De novo identification is in itself the biggest contribution of this work to
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the field of metabolomics as the pipeline does not require the unknown metabolite

to be present in any database to propose a handful of possible structures.

While the unknown is not required to be in a database to be identified, the number
of the candidate structures returned will be fewer, provided substructures of the
unknown can be discovered. Ideally, these substructures could be found by matching
subtrees of the unknown with a database of annotated MS" trees, i.e. where a
structure has been assigned to the fragment ions. Unfortunately, these annotated
databases are not yet available for MS" data, and therefore we searched for similar
metabolites to the unknown in the MS" database and generated the MCSS. On the
one hand, it appears necessary to enrich MS" databases with experimental data of
more and varied metabolites to increase the chances of finding similar metabolites.
On the other hand, finding too many compounds with similar fragmentation trees
can produce a small MCSS if the chemical structures are different, which will not
constrain enough the generation of candidate molecules. Therefore, it is interesting
to study better ways to find similar compounds, like an initial clustering of the
known metabolites and a posterior MCSS calculation within each cluster could
benefit de novo identification. Additionally, the similarity threshold of fragmentation
trees could be modified in order to obtain less similar compounds and as

consequence a larger MCSS, provided we have a rich and comprehensive database.

To the best of our knowledge this is the first implementation of a metabolite
identification pipeline that enables identity assignment and de novo metabolite

identification and that makes use solely of LC- MS" data, and we foresee that further
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additions such the ones proposed above will allow to identify even a larger fraction

of the unknown metabolites.
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Supplementary materials
Chemicals
All reagents and chemicals were of HPLC grade purity or higher and purchased from

Sigma-Aldrich.

Human urine samples

Urine samples were collected from healthy volunteers (3 males and 2 females) in the
morning. The samples were individually diluted with water in a ratio of 1:1 (v/v) to a
final volume of 2 mL. The samples were subsequently centrifuged at 16,100 rpm for

10 min at 10 °C. The supernatant was collected.

HPLC-MS

LC separation was carried out on an Agilent 1200 LC system. Samples were
separated in an Atlantis C18 T3 column (Waters, 100 x 2.1 mm, 3 um) using a mobile
phase linear gradient from 98% water/2% acetonitrile + 0.1% formic acid to 98%
acetonitrile/2% water + 0.1% formic acid. The injection volume was 5 pL and the

flow 250 plL/min.

MS detection was carried out on a Finnigan LTQ-Orbitrap XL instrument (Thermo
Electron Corp.). Electrospray ionization was carried out in the positive ionization
mode. Mass spectra were acquired in the centroid mode in the range m/z 60-1000 at

a resolution of 60,000.
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The LTQ-Orbitrap was adapted with a chip-based nano-electrospray ionization
source/fractionation robot (NanoMate Triversa, Advion BioSciences). The eluent
flow was split by the NanoMate, at 249.075 pL/min to the fraction collector and 925
nL/min to the nano-electrospray source. LC-fractions were collected every 5 s (i.e.,

21 pL) into a 384 wells plate (Twin tec, Eppendorf), cooled at 10°C.

Mass spectral tree acquisition

The chip-based nano-electrospray ionization source (Triversa NanoMate, Advion
Biosciences) was also used for automated direct sample infusion of the collected
fractions into the LTQ-Orbitrap. MS" data of the collected fractions were recorded
using a data-dependent scanning function with the criteria to select the highest peak
and from this the five most intense ions detected for MS® and the three most intense
ions for the rest of the MS" levels. For signal averaging, the mass spectrometer was
set with five microscans. The Orbitrap was operated at 30,000 resolution, a

normalized collision energy of 35% and an isolation window of 1 Th.

Unknown m/z Elemental Composition [M+H] |Depth of tree|# fragments
1 227.0775 C8H11N404 MS4 16
2 243.13405 C11H19N204 MS5 33
3 271.07492 C11H15N204S MS5 36
4 313.08582 C13H17N205S MS5 132
5 447.10675 C21H23N205S2 MS5 28
6 146.08102 C6H12NO3 MS3 5
7 152.07057 C8H10NO2 MS2 2
8 167.05627 C6H7N402 MS2 2
9 170.04449 C7H8NO4 MS4 8
10 181.06073 C8HI9N203 MS4 11
11 265.11835 C13H17N204q MS5 40
12 180.06531 C9H10NO3 MS4
13 204.12299 C9H18NO4 MS3
14 197.06703 C7HON403 MS4 9
15 196.06024 C9H10NO4 MS4 7
16 185.09195 C8H13N203 MS4 17
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17 183.05112 C6H7N403 MS3 6
18 182.08107 C9H12NO3 MS5 19
19 169.03558 C5H5N403 MS4 10
20 205.09718 C11H13N202 MS5 10
21 181.07181 C7HON402 MS3 4
22 166.08606 C9H12NO2 MS4 9
23 268.1 C10H14N504 MS2 2
24 114.06562 C4H8N30 MS2 1
25 144.10164 C7H14NO2 MS2 2
26 195.06522 C4H12N403P MS4 12
27 262.03809 CO9H14NO4P2 MS5 34
28 151.07513 C9H1102 MS3 8
29 271.16553 C13H23N204 MS5 38
30 310.20163 C17H28NO4 MS4 40

Table S1 30 MS" trees of unknown metabolites acquired from human urine, with retention time, m/z, elemental
composition, MS level achieved and number of fragments in the fragmentation tree.

Unknown 24 7 22 8 19 12 21 18 13 20
m/z 114.06 |152.07| 166.09 167.05 169.03 | 180.06 | 181.07 (182.08| 204.12 | 205.10
Elemental
. CgHyioN CoH1oN | C;HgN4O [CoH1,N| CoHigN | Cq1Hy3N
Compositi | C,HsN;0 301° CoH1,NO, | CeHN4O, | CsHsN,4O; 901" 7T 9012 9018 “013 2
on [M+H] 2 3 2 3 4 2
Aceta 7 0 L
n . - R . - -
MS" DB Creatinine m- Pherlylala Methylxa | Uric acid anp.url Par?xant Tyrosi | Acetylc Tryptoph
match nophe nine . c acid hine s an
n nthine ne |arnitine
\N/§—O D/KN : /i fN/ N N NYO ;‘LD /N NYO O \Ni : O
Structure //\\N — © N /N\i:’\?:o U#NL(N o N <NL(N\ . N o %_\E H )
N f 0 0 5 ! 6] >‘O -0 N

Table S2 10 Identified metabolites that are found in the MS" database with 100% fragmentation tree similarity.
Chemical structures belong to the metabolite found in the database.
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Unknown 22 12 18 20
' H o N N ON |
Structure b O% j;}/\/@
5 :
EC Hits C9H1002 11 C9H9N03 2 C9H11N03 8 C11H12N202 4
N’LO o ¢ ¢ ° ° ’ H : a : M o o (o] N /LO
Similar o || oo b TN i " < N ; - \
Structures 5\( 5 o))\ ) LY 4 o~ \\)/j@/o
0 : N N
Similarity 27% 15% 24% 12% | 86% | 19% 12% 44% 15% 13%
~ 0 o N
0, o O ® H
MCSS b TN : ?\/@
O/)\ N
Candidate
Structures 92 475,242 9 28,925
MCSS
Candidate
structures 43 419 8 952
filtering
Rank 4th 1st 7th 217th

Table S3 Validation of the MCSS assignment on 4 identified metabolites. The metabolite contains the MCSS
found and the correct structure is in the filtered list of candidate structures.
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Metabolite identification is a major bottleneck in metabolomics. Proposing
chemical structures for unknown metabolites is essential to give interpretation to
scientific results and it requires new software tools. We have implemented PMG,
an open source parallel structure generator, especially designed for metabolomics.
It is an extended version of OMG, the earlier released structure generator. PMG
produces molecules faster than OMG, it accommodates multiple prescribed
substructures and it removes unstable structures using a bad list of rings and
substructures that are not found in human metabolites. These substructures can
be obtained from different sources like MS", NMR, and manual annotation or
library search. PMG has been tested using elemental compositions and
substructures of known human metabolites as well as unknown metabolites found
in human urine. The new PMG algorithm represents a 100-fold increase in speed
versus OMG in most cases, while the use of bad rings and bad substructures yields
a 10-fold reduction of candidate structures in the best cases. In all of the test cases
the good chemical structure is returned in the list of candidate structures. We
expect PMG in its current form to significantly contribute to the de-novo
identification of metabolites and due to its open source nature, to be the core of

future metabolomics identification software. In addition, PMG can be also used for
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the de-novo identification of other molecules than metabolites or applied in other

applications requiring a structure generator.

One of the major bottlenecks in metabolomics is metabolite identification, the
precise elucidation of the chemical structure of a metabolite.[1-3] When an
unknown metabolite is not present in reference molecular databases, a de novo
identification of the metabolite is necessary, and one needs other tools and
algorithms than library searches. Mass spectrometry (MS) is a common analytical
tool used in metabolomics. It returns the mass over charge ratio (m/z) of an ion (or
more ions) after ionization of a molecule, from which elemental compositions (ECs)
can be derived. In addition multi stage mass spectrometry (MS") has been used in
metabolite identification [4, 5] since it offers substructure information of the
unknown molecule by fragmenting ions subsequently into smaller ions. With such a
strategy, the information obtained for an unknown molecule is its EC and sometimes
one or more substructures. In order to generate candidate chemical structures of
the unknown metabolite the use of a structure generator (ideally open source)[6]
like the recently introduced Open Molecule Generator (OMG)[7] is obviously a very

attractive option.

A structure generator receives as input the elemental composition of the unknown
and optional constraints, like wanted and unwanted substructures, to limit the
search space. Ideally, a structure generator produces all the possible molecules
without duplicates. Structure generation is a combinatorial problem that can lead to

a computational explosion in order to get complete results. In practice, it is more
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desirable to get a short list of realistic candidate structures,[4] which in any case
contains the structure of the unknown, at the cost of longer computational time,
than a long list of (mostly) unrealistic structures.[8] A short list of candidates is easier
to check manually by an expert and to filter computationally. Ultimately, the
structure generator should return one or a handful of candidate structures, allowing
the experimental validation of the proposed identity of the unknown molecule. On
the downside, including more constraints in the generation process requires more
computation time. Some constraints can be evaluated for non-finished molecules
during the generation process and other constraints can be evaluated only for
complete molecules. In either case, these checks add to the number of computations
performed per molecule. The use of faster computers or faster algorithms can

circumvent the impact of this increase in computation time.

In our earlier work with OMG [7] we observed that executing in parallel the structure
generator calculations was possible but would not be the ultimate solution for the
poor speed performance of OMG compared to the commercial structure generator
MOLGENI[9]. The original OMG code generated molecules using the canonical
augmentation path approach, which required the calculation of the canonical
representative of each graph (two isomorphic graphs or molecules have the same
canonical representative). It is known in graph theory that obtaining the canonical
representative of a graph is more complex than checking if the graph is the canonical
representative.[10, 11] Therefore, removing the use of the graph canonizer and
using a computationally cheaper canonicity test was a logical way to improve the

performance of our algorithm.
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In computer assisted structure elucidation, constraints like prescribed substructures
or required physicochemical properties are often used to reduce the number of
generated molecules at the expense of increasing the computation time. Such
constraints can be used to reject unwanted molecules while they are generated or
after all the molecules have been produced, the former being less computationally
demanding than the latter. In a previous metabolomics study,[4] substructure
information was indispensable to turn the identification of unknown metabolites
into a tractable problem. In addition, posterior filtering of unstable molecules based
on high values of force field internal energy and on low metabolite-likeness[12]

prediction yielded a short list of candidate structures.

This work extends upon previous studies in which we introduced OMG,[7] and upon
lessons learned after attempting to identify human metabolites using an automated
pipeline of software tools and MS" data.[4] We observed the need for a faster
algorithm, which should as well accommodate more constraints derived from
metabolomics analytical data to generate a shorter list of candidate structures. Here
we present Parallel Molecular Generator (PMG), an improved OMG, a generic open
source multi-core structure generator for metabolomics. It takes as an input the
elemental composition of the unknown, and optionally several prescribed
substructures, a list of bad rings and lists of good and bad substructures. PMG
accommodates a faster canonization algorithm and allows the use of multiple CPUs.
Its open source nature allows users to implement other constraints that are
adequate for their requirements. We assessed the speed improvement and the

effect of (i) using multiple cores generating candidate structures for elemental
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compositions, (ii) constraining with bad rings and bad substructures, and (iii) with
and without prescribed substructures. In order to demonstrate how the input of
elemental compositions and substructures are used by PMG, two different test sets
were used. The first set contained elemental compositions from known metabolites
present in the Human Metabolome Database (HMDB)[13] and the substructures
were drawn using Marvin.[14] The second set contained known and unknown
metabolites measured in human urine, for which the elemental composition was
obtained using the Multi-stage Elemental Formula (MEF) tool[15] and the
substructures were derived using MS" data, fragmentation tree similarity[16] and
the maximum common substructure (MCSS) approach. We present the effect in time
and number of generated molecules when using PMG in multiple processors with
and without constraints. We demonstrate how PMG can contribute to transform the

identification challenge of an unknown metabolite into a solvable problem.

Materials and methods

Structure Generation Via Orderly Generation

There are many approaches to generate a complete set of non-duplicate molecules,
like the homomorphism principle used by MOLGEN, the orderly generation [17, 18]
and the canonical augmentation path proposed by McKay[19]. Brinkman[20],

Faulon[21] and Meringer[22] provided a simple description of these methods.

Structure generation with OMG[7] can be regarded as a search tree with multiple
levels where the root contains the atoms of the elemental composition without

bonds and the leaves or end points of the tree represent complete molecules. It
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follows an algorithm first proposed by Faulon[21], where at each level a bond is
added to the intermediate molecules. The structure generator should return all
possible valid molecules without duplicates. In order to improve the speed of the
algorithm used in OMG two strategies are devised: i) usage of faster computational
techniques to check for and remove duplicates and ii) in some cases, make use of (a
priori) constraints that can be applied early in the search tree to prune branches,

since the less branches in the tree the less duplicate check and removal is needed.

The choice of algorithm to generate molecules determines the completeness of the
results and the speed of obtaining them. In the current approach followed for PMG,
we use orderly generation and consider a special ordering on graphs, such that for
every two graphs (with the same number of vertices, bonds and degree), we can
determine the bigger and the smaller one. Among isomorphic graphs, we consider
the smallest (minimal) one as the canonical one. Each node (atom) is given a
number, and therefore each edge (bond) can be represented as a triplet <x,y,d>
where x and y (x<y) are the numbers associated to the connected atoms and d
shows the degree of the bond. An edge <x,y,d> is smaller than the edge <x', y', d'> if :
x<x';or,

x=x"andy<y'; or,

x=x'andy=y'andd>d".

This is, if the labeling of the atoms is smaller, or for a similar labeling, the degree of
the edge is smaller. In orderly generation, we start from the smallest possible graph,
i.e., a graph with vertices but no edges (which can be seen as a triplet <0,0,0>), and

continue adding edges following this principle: we can only add an edge to a graph
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which is bigger than all the edges already in the graph. Furthermore, we only keep
growing a graph if it fulfills a criterion, like being semi-canonical or minimal. Graph
theory will then guarantee us that in the end we will generate all possible graphs and

exactly one instance of them.

Generating the edges in ascending order already removes some intermediate
possible structures and therefore increases speed. However, the test for minimality
is computationally expensive. Nevertheless, testing for minimality is still less
computationally expensive than generating the equivalent minimal graph.
Generating the minimal graph, which is equivalent to canonizing the graph, was the
approach used in OMG. We expect that substitution the canonicity test for the
minimality test will increase the speed of the algorithm. An alternative to the
minimality test to speed up the computation is to use a simpler though not complete
test, called semi-canonicity, for intermediate structures and test minimality only in
complete structures.[23] By using this test instead of the full minimality check, we
can very quickly reject most of the non-minimal structures. However, we may end up
with some duplicate structures. Therefore, we still need to do the full minimality
check on the final structures to keep only the canonical structures. The ideal solution
is to combine the two approaches above. More precisely, we can first apply the very
quick semi-canonicity check to reject most of the non-minimal structures, and then
apply immediately the full minimality check on the remaining intermediate
structures. Alternatively, intermediate tests are performed once blocks in the

adjacency matrix that stores the graph are filled, for further details we refer to the
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work of Meringer.[22, 23] This way, we will end up performing the costly operation

of minimality test less.

PMG implements three structure generation modes: (default mode) semi-canonicity
and minimality tests combined, (mode 0) semi-canonicity test for intermediate
molecules and minimality test for finished molecules, and (mode 1) minimality test
for intermediate and finished molecules. All three modes generate the same
molecules, but they require a different amount of time depending if the input is only
the EC or also prescribed substructures. On the one hand, semi-canonicity is faster to
check than minimality, but it removes less intermediate molecules, which results in
more branches in the search tree. On the other hand, minimality, yet more
computationally demanding, constrains more and produces fewer branches in the
search tree. The effect on computation time of performing a faster test more times
(semi-canonicity) versus a slower test less times (minimality) needs to be assessed.
Additionally we assess the impact of using or not using good and bad substructure
and bad rings have on the overall performance of the different modes available in

PMG.

Multi-core execution

The algorithm used for OMG allowed theoretically parallel execution, but this was
not implemented as such. In the current PMG we have implemented the new
algorithm in a thread-safe way to allow its execution in parallel. We tested how well
the three execution modes and the different multi-core setups (increasing number

of cores) performed. In order to show how PMG can be applied in a metabolomics
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context, we used the elemental compositions and prescribed substructures used
in[7] and compared the results, both in time and structures generated, by PMG with

those obtained by OMG.

Priori Constraints

PMG, as OMG did, accepts prescribed non-overlapping substructures. These are
substructures that should be present in the finished molecules and they fix how a
part of the whole structure is connected, reducing drastically the number of
generated molecules. In our previous work we obtained prescribed substructures for
unknown metabolites by finding metabolites with similar MS" spectra to the
unknown, and calculating their maximum common substructure (MCSS). The MCSS is
the biggest part of the chemical structures that they share. The assumption was that
our unknown would have a chemical structure that is similar to the structures of
metabolites having similar spectra. We demonstrated that removing molecules with
a high force field energy value significantly reduced the number of candidate
structures. Additionally, we observed that certain ring moieties contribute
significantly to an increase of the energy value of a molecule. Therefore, we have
implemented an efficient way to test if certain unrealistic molecular rings and ring
systems (Figure 1) are present in our intermediate molecules. The bad rings
implemented in PMG are: a ring of any size with a triple bond; an atom with two
double bonds, which are in a ring; two three member rings fused together; a three
member ring with a double bond; a four member ring with two double bonds. When
a double or triple bond is created, or a ring is closed we test if whether unwanted

rings are present in the molecule. These bad rings match all types of heavy atoms,
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i.e. they are not specific for carbon atoms. Rejecting intermediate molecules with
bad rings reduces the number of finished candidate structures and speeds up the

execution of PMG.
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Figure 1 Bad rings used as prior constraint in PMG.

Posterior Constraints

Not all constraints can be applied from the beginning to intermediate structures to
reduce the search space. Therefore, these constraints need to be applied on finished
molecules before they are considered as acceptable candidates. As mentioned
above, prescribed substructures should not overlap. In metabolomics studies it is
possible to have multiple substructures that we want our candidate structures to
contain, but we cannot know if they overlap or not. In such a situation, the biggest
(more constraining) substructure is provided as prescribed substructure (a priori
constrain) and the smaller substructures (which we refer to as good list) tested on
finished molecules (posterior constrain). PMG makes use of the Small Molecule
Subgraph Detector (SMSD) library[24] to query if the substructures in the good list
are present in the finished molecules. Finished molecules will only be accepted

provided they contain all the substructures present in the good list.
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When multiple substructures are available and it is not possible to know if they
overlap, the biggest substructure should be provided as prescribed and the smaller
substructures as good list. These substructures can be obtained from analytical data,
for instance, by matching MS/MS spectra with a database of annotated spectra[25],
by manual[26] or automated[27] interpretation of MS" data, by calculating the MCSS
of metabolites with similar MS" spectra,[16] or by interpreting NMR spectra.[28] If
an analytical method has been used that includes derivatization of metabolites, the
attached moiety can be provided as well in the good list. Alternatively the good list
can be built using biological knowledge, for instance, if the unknown belongs to a

metabolic pathway where all its metabolites share common substructures.

Apart from rejecting molecules that contain bad rings and do not contain
substructures from the good list, we implemented a bad list rejection option in PMG
using SMSD. Here, the user can provide other substructures different than the bad
rings that he does not want in his finished molecules. Finished molecules will be
rejected if they contain one of the unwanted substructures in the bad list. We offer
an example of a bad list containing benzene and cyclopentane fused with 3 and 4-
membered rings (Figure 2). These ring systems are energetically unfavorable and
unstable, thus not likely present in metabolites. To support this claim, we queried
these ring systems in HMDB and we did not find human metabolites that contained
them. Alternatively, different unwanted substructures can be drawn with a chemical
editor (like Marvin Sketch or ISIS/ ChemDraw), stored as an SD file and provided as
bad list. Again, biological knowledge can be used to derive a bad list. For example, a

certain metabolic pathway is studied and all the metabolites involved, including the
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unknown, do not contain rings. To prevent PMG of generating ring containing

molecules a bad list could be assembled with different rings.
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Figure 2 Bad list of substructures used as posterior constraint in PMG.
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We evaluated the effect and the suitability for metabolite identification of the
improvements in PMG. Firstly, to test the speed improvement of PMG, we used the
same elemental compositions (Tables 1 and 2) and fragments (Table 3) employed in
the original OMG publication.[7] These elemental compositions belong to human
metabolites found in HMDB. The fragments, manually sketched, were present in the
metabolites and likely to be found in experimental MS" data. We assessed the speed
gain of the new algorithm by comparing the total time per elemental composition of
the single core execution of the three modes in PMG with OMG, when the input is
only an elemental composition or an elemental composition and prescribed

substructures. Secondly, we also assessed the effect of using multiple cores by
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comparing the number of molecules generated per second when using one, two,
four, seven and ten cores. Lastly, we used elemental compositions and substructures
of real unknown metabolites found in human urine to test the effect of using the
filters of prescribed substructures, bad rings, good and bad lists. MS" data of known
and unknown metabolites present in human urine were acquired, processed with
MEF and compared to a spectral database of known metabolites. From those
metabolites in the database found to be similar to the unknowns, a MCSS was
calculated and proposed as a prescribed substructure. Additionally, the
fragmentation trees of these unknowns underwent manually annotation, which in
some cases provided additional substructures, which were used as good list for the

evaluation of PMG.

Results and discussion

The speed of the three algorithms implemented in PMG is compared for some
typical metabolites, which we detected earlier in urine[4] with the original results of
OMG. PMG was executed in the same computer and under the same conditions used
to obtain the results for OMG in out previous work. All three algorithms in PMG
outperform OMG when using only elemental formulas containing carbon, oxygen
and hydrogen atoms (Table 1) and other additional elements like nitrogen, phosphor
or sulfur (Table 2). For elemental compositions with a small number of elements like
C3H403 and C,HsNO,, OMG and PMG need approximately the same amount of
computation time. When the elemental composition has more elements and the
structure generators should produce thousands or millions of molecules, PMG can

be 40 times faster than OMG using only one core. From the three algorithms, semi-

150



De novo identification of metabolites with open molecule generator for metabolomics

canonicity & minimality combined appeared to be the fastest, followed by

minimality and finally by semi-canonicity. The test for minimality is more time

expensive than the test for semi-canonicity but at the same time it is more

constraining. With these results we conclude that it is helpful to use the combined

semi-canonicity & minimality mode when the only input is the elemental
composition.
Name # Candidate OMG PMG - SC-Min PMG - SC PMG - Min
Structure HMDB ID
Elemental Structures Time (s) Time (s) Time (s) Time (s)
Composition
o Pyruvic acid
%o HMDB00243 152 0.51 0.34 0.33 0.33
o (1 core) (1 core) (1 core)
C3H403
o Malic acid
o 1.85 1.95 1.89
oA HMDBO00156 8,070 27.07
5 (1 core) (1 core) (1 core)
C4HOs
D-Xylose
S 4.75 6.73 5.19
Q HMDBO00098 18,092 125
AR (1 core) (1 core) (1 core)
CsH100s
S D-Fructose
X—f HMDB00660 267,258 5,035 121 305 145
o o (1 core) (1 core) (1 core)
CeH1206
P Sedoheptulose
oA A HMDB03219 4,106,823 186,248 427 2259 >67
o o (10 cores) (10 cores) (10 cores)
C7H14O7
o 0 Pectin
U{g—f HMDBO03402 3,183,337 46,320 129 453 155
Rl (10 cores) (10 cores) (10 cores)
: CeH100;
. Galactonic acid
P 55.1 166 70.22
M HMDB00565 767,569 22,475 (10 cores) (10cores) | (10 cores)
CeH120;
o Galactaric acid
SO 484 1,704 599
2\2\2\? HMDB00639 8,568,129 186,730 (10 cores) (10 cores) (10 cores)
CeH100s
. HCthléi)gcslfg * More than * not * not * not * not
2,147,483,646 | available available available available
Ca4H1005
Phenyllactic
acid ** not 877 4,653 901
HMDB00779 48,496,265 available (10 cores) (10 cores) (10 cores)
CoH1003

Table 1 Number of candidate substructures produced by PMG using only an elemental composition (only C,H,0)
and the time in seconds to generate them using 1 or 10 cores. Abbreviations: SC-Min, Semi-canonicity &
minimality combined; SC, semi-canonicity; Min, minimality. SC-Min outperforms the other two methods and is
the preferred method when only using elemental compositions as input.
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Name # Candidate OMG PMG - SC-Min PMG - SC PMG - Min
Structure HMDB ID
Elemental Structures | Time (s) Time (s) Time (s) Time (s)
Composition
; Glycine
UEAN HMDB00123 97 0.45 0.34 0.33 0.33
C,HsNO,
o Acetyl-glycine
C’Y\Nk HMDBO00532 26,530 126 4.76 6.13 4.93
¢ C,H,NO;
Phenylalanine * " "
° _<:> not 17,254.79 not not
Jd W HMDB00159 >16,741,797 available (10 cores) available available
CgH11NO,
. Glutamic acid
wo HMDB00148 685,392 12,348 22.17 47.40 22.87
N (10 cores) (10 cores) (10 cores)
CsHoNO,
Phosphoenolpyruvic
acid
HMDB00263 83,977 761 29.48 34.87 30.01
C3HsOgP
0 Creatinine
&N HMDB00562 303,601 3,921 128 201 127
. C4H,N50
N Guanidinoacetic acid
Oy NN HMDB00128 124,808 1,962 68.13 82.04 67.59
’ C3H,N50,
N Cytosine
N7 HMDB00630 491,299 3,952 135 198 134
0N C4HsN30
N g Uric acid * More than * not * not * not * not
O:/\Nf,:\)lo HMDB00289 464,899,034 | available available available available
CsH4N,O5
" Histamine
NJ—@ HMDB00870 134,278 26.56 74.14 180 74.33
CsHoN3
0 D-Cysteine
K:/k\o HMDBO03417 15,978 131 6.38 7.23 6.36
N C3HsNO,S
p-Cresol sulfate " « " « "
o QO HMDB11635 More than not not not not
o 82,000,000 | available available available available
CsHg0,S

Table 2 Number of candidate substructures produced by PMG using only an elemental composition and the time
in seconds to generate them using 1 or 10 cores. Abbreviations: SC-Min, Semi-canonicity & minimality combined;
SC, semi-canonicity; Min, minimality. SC-Min and Min perform equally well. SC-Min is the preferred method
when only using elemental compositions as input, since it performs better than Min when the elemental
compositions contain only C,H and O.

The speed improvement becomes more significant when we provide prescribed
substructures to the structure generator (Table 3). In this case, PMG using the semi-
canonicity & minimality mode achieves in some cases a 100-fold increase in speed
compared to OMG. We observe this for both small metabolites with prescribed

substructures (phenylalanine) and large metabolites with substructures (cholic acid).
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In some other cases, like malic acid, PMG only achieved a 4-fold improvement. We
also see that the semi-canonicity & minimality mode performs similarly to the semi-
canonicity mode and both outperform the minimality mode. In all cases the same
number of candidate structures were obtained with the three PMG modes. Since
semi-canonicity & minimality is the best performing algorithm with only elemental
compositions and also when substructures are provided, we conclude that semi-
canonicity & minimality is the best generic algorithm for structure generation and
should be used as default. We also observe that, in some cases, PMG produces more
molecules than OMG when using prescribed substructures. This had to do with the
way the original OMG algorithm handled atom elements of multiple valences (N
valence 3 and 5; S valence 2,4, and 6; P valence 3 and 5) when using substructures.
PMG improved this and generates all possible and valid valances when using

prescribed substructures.

Name OMG PMG - SC-Min PMG - SC |PMG - Min
HMDB ID Prescribed # #
Structure i ) i ) . )
Elemental Substructures | Candidate |Time (s) | Candidate | Time (s) | Time (s) | Time (s)
Composition Structures Structures
. Glycine
Y HMDB00123 O 0 6 0.54 6 0.26 0.22 0.22
C,HsNO,
0 D-Cysteine
Ki/go HMDB03417 O 0 210 3.18 210 0.97 0.91 0.98
N C3H,NO,S
0 (o]
. Phenylalanine
" HMDB00159 © 107,155 19,386 | 119,955 356 356 2,002
CgH11NO,
© 00 595 271 595 3.47 3.47 5.56
D oo
X
289 172 289 2.48 2.38 2.39
N-C
S
2~ 26 25.15 26 097 | 0094 0.92
N o]
0| Cholic acid ¢
HMDB00619 M 334 120 334 077 | 0.78 0.88
C24H4005 o ¢
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W“ 2,505 119 250 | 147 | 138 1.38
QM
o o Malic acid
oA | HMDBO0156 Ox0 1,436 | 469 | 1,436 | 116 | 112 4.90
i C4HeOs
o Uric acid Q N .
<Y HMDB00289 Ay 6,069,863 | 155,828 | 7,357,453 | 9,593 avai?:;e avaiTaC)I;Ie
N~y
CsHaN,4O5 \—/
0 Phenyllactic
i acid g 26,164 | 163 | 29,580 | 24.97 | 24.89 570
: HMDB00779 ' ' ' ‘
CoH1003
Tl oeo 525 397 | 525 | 116 | 116 1.46
p-Cresol o
. ,3@ sulfate )
- DB 1635 o5 13,177 | 63.05 | 13,177 | 1278 | 57.33 | 10.34
CHg0,S
g 17,232 | 1,204 | 19,132 | 6485 | 110 989

Table 3 Number of candidate substructures produced by PMG using an elemental composition and prescribed
substructures and the time in seconds to generate them using 1 core. Abbreviations: SC-Min, Semi-canonicity &
minimality combined; SC, semi-canonicity; Min, minimality. SC-Min performs similar to SC and outperforms Min,
therefore SC-Min is the preferred method when only using elemental compositions as input.

The impact of running PMG on multiple cores for the structure generation of
molecules where only the elemental compositions is provided, is presented in Figure
3, and for those with given elemental compositions and prescribed substructures in
Figure 4. The results are presented in molecules per second (in logarithmic scale)
using the semi-canonicity & minimality combined method. We see for both cases
about a 10-fold improvement from OMG to PMG in the number of molecules
generated per second for a single core execution (Figures 3 & 4). When only
elemental compositions are used as input, the speed of generation of molecules with
PMG increase rather linear with the number of cores. When using also prescribed
substructures as input, we observe a comparable improvement in the speed of
generation of molecules with the increasing the number of cores only for half of the

examples, and especially for those that need longer computation times.
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Figure 3 Number of molecules generated (logarithmic scale) only with elemental compositions using OMG and
PMG in single core, and PMG in multiple cores. PMG in single core is 10 times faster than OMG. Multicore
execution of PMG achieves near linear speed up.

Molecules per Second Log scale

10000

1000

100

10

Semicanonicity + Minimality Using Elemental
Compositions And Fragments

=—(CZH5NO02
=—C3H7NO2S
—C9H11NO2
=—=C9H11NO2_2
—C9H11NO2_3
~—==C9H11NO2_4
C24H4005

—=(C24H4005_2
C4H605

——=(C5H4N403

~—=C9H1003
C24H4005_2

Figure 4 Number of molecules generated (logarithmic scale) with elemental compositions and prescribed
substructures using OMG and PMG in single core, and PMG in multiple cores. In most of the cases, PMG in single
core achieves more than 50-fold increase in speed compared to OMG. Multicore execution of PMG achieves
from no speed improvement to linear speed up.
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The results of using bad rings as a prior constraint and a bad list as posterior
constraint are presented in Table 4: the number of molecules generated by PMG
unconstrained are compared with PMG using the above constraints, where both
executions used the semi-canonicity & minimality combined method and 10 cores.
We observed that in some cases (C;HsNO,, C;H1407, CsH1007) PMG only rejected a
few molecules, or in other cases no rejection of structures at all was achieved
(CsH100s, CsH1206). The reason for this is that the number of hydrogen atoms in
these formulas impedes rings to be formed, therefore no bad rings or bad
substructures can be found. For formulas that allow ring formation, PMG using the
constraints removes in some cases 82% (C4HsN30), 62% (C4H7N30) or 61% (CsHgN3)
of the candidate structures. In these cases, constraining the generation of molecules
in PMG with bad rings and bad list of substructures can provide a significant

reduction in the number of generated molecules.

# Candidate Calcualtion time # Candidate Structures . .
Calculation time (s)
Formula Structures (s)
Without constraints With bad rings and bad list constraints
C,HsNO, 97 0.35 95 0.69
C4H/NO; 26,530 1.75 21,329 6.70
CyH11NO, 516,741,797 17,254.80 235,017,993 77,723
CsHgNO, 685,392 22.17 582,745 168
C3H,0;3 152 0.35 129 0.80
C4HqOs 8,070 2.24 7,464 4.00
C3HsOgP 83,977 4.45 74,422 23.63
CoH1003 48,496,265 877 28,468,157 8,065
C4HsN30 303,601 15.36 115,475 25.32
CsH,Ns0, 124,808 9.16 78,753 22.43
C4HsN30 491,299 16.77 88,400 23.51
CsHgN3 134,278 9.25 52,574 12.41
C3H;NO,S 15,978 2.07 12,054 4.62
CsH100s 18,092 1.74 18,092 7.01
CeH1205 267,258 13.27 267,258 74,571
C,H140; 4,106,823 427 4,106,823 1,201
CeH1007 3,183,337 129 3,057,256 836

Table 4 Number of candidate structures generated by PMG with and without bad rings and bad list constraints
and the time in seconds to generate them using 1 core.

156



De novo identification of metabolites with open molecule generator for metabolomics

We tested further the use of prior and posterior constraints in addition to the
elemental compositions and prescribed substructures (Table 5) of unknown
metabolites found in human urine in our earlier work.[4] Some prescribed
substructures were obtained using the fragmentation tree similarity[16] and MCSS
methods. Other prescribed substructures and the good list substructures were
annotated by an expert after manual interpretation of the MS" trees. For unknown
28, PMG produces 86 candidate structures using a prescribed substructure and only
12 using the same prescribed substructure and the bad rings constraint. This
reduction is comparable to the one obtained by OMG and a posterior filtering based
on energy, metabolite-likeness[12] and fragmentation prediction.[29] In other cases,
like unknown 9, using prescribed substructure and good list results in PMG
generating one unique candidate structure. For unknown 27, prescribed
substructures and good list produced 45 structures, which was reduced to 3
candidates using the bad rings constraints. As we can see, only in a few cases the use
of bad rings and bad list filtering reduces further the number of candidates. But in
those cases, the effect is similar to removing molecules with high force field energy
and low metabolite-likeness. It also has to be taken into account that the prescribed
substructure fixes a big part of the chemical structure, making it difficult to produce
bad rings with the remaining atoms. The combination in PMG of prescribed
substructures, good list, bad list and bad rings achieves a significant reduction in the

number of generated molecules for real unknown metabolites.
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# Candidate Struct
Unknown Elemental Prescribed Good andidate Structures
Composition | Substructure list without | with
bad rings and bad list constraints
0 o
7 CsHoNO, QN N2 32 32
0 o]
7 CsHoNO, QN Y 1 1
7 CsHoNO, C)e Osr 270 270
o
7 CsHoNO, e i 42 42
12 CoHoNO3 b 121,363 50,003
18 CoH11NO3 C)e 00 4,251 4,245
20 C11H12N,0, @\/\< O © 1,891 1,748
N
22 CoH1;NO, @J 080 165 165
28 CoH100, ) ﬁ; 86 12
0o
0, (e}
9 C,H,NO, TN 80,489 53,194
oA
0, (s}
9 C;H;NO TN 0. 4 1 1
7v17 4 \ /
PN
/O
9 C;H,NO, ® 17,680 14,800
(0]
15 CoHoNO, OTNHL O 5 5
15 CgHgNO, 5 5 5
O\ o
27 CoH1sNOLP, N o 45 3
O\ o
27 CoH13NO,P, “% 281 264

Table 5 Number of candidate structures generated by PMG (SC-Min; 10 cores) applied to the identification of
unknown metabolites in urine using prescribed substructures, good list, and with/without bad rings and bad list

constraints.

In previous work we used OMG to identify unknown metabolites in human urine.[4]
After the generation step we used an internal energy filter and a metabolite-likeness
filter to reduce further the list of candidates. The use of these filters after PMG is

obviously possible, but was not in the scope of this work. However, we observed
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that using the bad rings and bad substructures constraints was rather equivalent to

remove energetically unfavorable molecules.

Conclusion

We presented PMG, an open source multi-core structure generator developed for
de-novo metabolite identification. We implemented a new algorithm based on semi-
canonicity and minimality tests, with a multi-core architecture. This implementation
generates candidate structures up to 100 times faster than our previous structure
generator OMG. Next to the elemental composition, PMG allows as input prescribed
substructures and bad and good lists of substructures. The use of good substructures
limits the search space while the bad rings removes energetically unfavorable
molecules. This results in a short list of candidate structures, without missing the
correct structure. We have used substructures obtained from MS" spectra, derived
by manual annotation and using cheminformatic tools, to illustrate the use of PMG.
Alternatively, these substructures could have originated from NMR or from database

search.

We are convinced that PMG will improve de-novo metabolite identification by
providing a short yet correct list of candidate structures at a high-speed. Obviously,
PMG can be also applied to the identification of also other molecules than

metabolites only or applied in other applications requiring a structure generator.
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Metabolite identification is still one of the biggest bottlenecks in metabolomics. The
de novo structure elucidation of metabolites is very time consuming and poses
several challenges. However, without the identity of a peak detected with mass
spectrometry-based metabolomics methods its biological role cannot be interpreted.
In addition, effective integration with other ‘omics’ data such as genomics and
proteomics requires the identity of metabolites. Therefore there is a huge need for
more efficient strategies to identify metabolites. Multi-stage mass spectrometry
(MS") is a promising type of mass spectrometry from which information on the

fragmentation pattern of the metabolite can be obtained.

In this thesis new algorithms and methods that enable the de novo identification of
metabolites have been developed. The aim was to find methods to propose
candidate structures for unknown metabolites using MS" data as starting point.
Ideally this list of candidate identities should be as short as possible by using
additional constraints so that an expert can easily inspect it and select some
structures for further validation. The algorithms and methods, which have been
developed in this thesis and a parallel project, have been integrated to into a semi-
automated pipeline to identify new metabolites starting from multi-stage mass
spectrometry. The focus in this thesis was on human metabolites. The discovery of
new metabolites will improve our capability to understand disease via its metabolic

fingerprint, to develop personalized treatments and to discover new drugs. In
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addition, the cheminformatics methods presented in this thesis increase our

understanding on the properties of human metabolites.

In Chapter 2 a structure generator, the Open Molecule Generator (OMG), was
developed. This tool allowed generating candidate structures for unknown
metabolites with a certain elemental composition and known substructure(s). While
research in computer assisted structure elucidation (CASE) dates back to the 1960s,
recent developments have been scarce. The most notable example was MOLGEN, an
efficient, but at the same time “black box” commercial structure generator.
Therefore the in Chapter 2 developed structure generator was customizable and
open source: this allowed to implement methods and algorithms that were relevant
to the envisioned identification pipeline as described in Chapter 5. Being open
source, OMG permits other scientists to improve it further and to adapt it to future

needs.

The efficiency of the generation of structure candidates for a given elemental
composition (EC) and substructure(s) was demonstrated for a number of
metabolites. The results showed that OMG produced all possible chemical structures
for a given input (EC and/or substructure(s)). These results only contained chemically
valid structures according to the valence rule, whereas MOLGEN could produce
some unwanted atom types: for instance, for P valence 5, MOLGEN would generate
P atoms with a triple and a double bond. OMG allowed also to use several
substructures as constrain, whereas MOLGEN allows only one substructure as

constrain. The use of prescribed substructures constrained significantly the number
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of candidate structures obtained. They reduced for example a list of hundreds of
millions of molecules (unconstrained generation) to a few thousand structures
(constrained generation). While this is a significant reduction, reducing the list
further using additional constraints appeared essential to turn the identification of
unknowns into a tractable problem. In conclusion, a structure generator was
developed which was superior to MOLGEN in several aspects. However, OMG was
slow when generating many molecules. The reason was that the algorithm used in
OMG was based on the canonical augmentation path. This algorithm produces all
possible molecules without duplicates, but it requires the use of a canonizer for
duplicate removal. This canonizer calculates the canonical representative for each
intermediate (unfinished) molecule. This conversion from a molecule to its canonical
representative is computationally time expensive. We concluded that a better
algorithm with a better duplicate removal approach was required to speed up
calculations and make the tool more attractive for practical use. Such an algorithm

was developed in Chapter 5.

In Chapter 3 we studied the nature of human metabolites. The aim was two-fold: (i)
to learn what characteristics differentiate metabolites from other small (< 1000 Da)
non-metabolite molecules and (ii) to predict the metabolite-likeness of a chemical
structure, i.e. how likely it is to be a human metabolite. In the classification of
molecules, as in many machine-learning problems, one has to deal with an
interpretability trade off. While easy to understand molecule descriptions (such as
physicochemical properties or scaffolds) combined with easy to interpret predictive

models mostly provide poor predictive results, complex descriptions (structural
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fingerprints) together with difficult to interpret models provide often better
predictions. In other words, if we want to accurately predict metabolite-likeness we
will probably not be able to easily understand in chemical terms what these

predictions are based on.

We observed that metabolites are a heterogeneous family of compounds and
compared to non-metabolites, metabolites have simpler structures, less ring
systems, more hydrophilic groups, less nitrogen and sulfur atoms, and more oxygen
and phosphor atoms. These easy to interpret features were not complex enough to
be used in a model that would discern between metabolite and non-metabolite
molecules. Therefore, we developed and validated a metabolite-likeness predicting
model, which used the molecular descriptor MDL Public Keys and the Random Forest
classification algorithm to assign a metabolite score to a molecule. This model
achieved the highest classification accuracy at the expense of low interpretability.
The model was effectively used in Chapter 4 to reject non-metabolite candidate
structures for unknown metabolites, demonstrating that metabolite-likeness
prediction is one of the tools that can be routinely used in metabolite identification

studies.

In Chapter 4 the tools developed in Chapters 2 and 3 of this thesis and developed in
a parallel project within the Netherlands Metabolomics Centre [69-71) were integrated
into a pipeline to identify metabolites. This pipeline was composed of four modules.
The first module annotated MS" data to obtain a fragmentation tree comprising

fragment ions and neutral losses of known elemental composition using the
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Multistage Elemental Formula (MEF) tool [69]. The second module compared this
fragmentation tree of an unknown with the fragmentation trees of known
metabolites in a home-build database. If a fragmentation tree with 100% similarity
was found, the identity of the unknown was provisionally assigned. If more than one
fragmentation tree was found with less than 100% similarity, a substructure of that
unknown metabolite was calculated via the maximum common substructure (MCSS)
from the metabolites being similar to the fragmentation tree. The third module was
the OMG structure generator, using as input the elemental composition and, if
found, a substructure of that metabolites. The fourth module used three filters to
reduce the list of candidates generated by OMG: (i) a Metabolite-likeness filter,
which kept only molecules resembling human metabolites, (ii) a internal energy
filter, which kept only energetically stable molecules and (iii); the MetFrag filter,
which predicted the mass spectral fragmentation of molecules and kept only those
candidate molecules that could explain half of the fragments observed

experimentally.

This metabolite identification pipeline was tested for the identification of 30
different MSn spectra obtained from unknown metabolites in a human urine sample
For 10 of the 30 unknowns a perfect match of the acquired fragmentation tree and a
fragmentation tree of a known metabolite in the database was found, and therefore,
these metabolites were provisionally identified. For 9 unknown metabolites two or
more similar metabolites were found in the MS" database, which allowed the
calculation of a maximum common substructure as input to constrain the number of

structures obtained by the OMG structure generator. For 3 out of these 9 unknowns,
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OMG and the different filters provided a short list of 8 or less candidate structures.
For 6 out of these 9 unknowns, the list of candidates was excessively large, i.e. larger
than 40 candidates. Lastly, 11 unknowns remained unidentified because no similar
metabolite was found in the database and therefore OMG using only the elemental

composition provided more than one million of candidate structures.

In summary, the developed identification pipeline proved to be useful at identifying
unknown metabolites using only MS" data. If a metabolite is already in a MS"
database, the metabolites can be well provisionally identified based only on the MS"
spectrum; obviously, in this manner only metabolites already known can be
identified. In order to identify truly new metabolites, i.e. de novo identification, one
needs to produce a short list of candidate structures for a given fragmentation tree,
and that is only possible if sufficient substructure information is available and
powerful filters are used. This actually depends heavily on the availability of
comprehensive MS" database of known metabolites from which similar metabolites
can be found and a maximum common substructure can be derived. It would be very
beneficial if annotated subtrees in the database with their corresponding
substructures would be available. This would allow finding multiple annotated
subtrees with their substructures for a MS" tree of an unknown metabolites in such a
database. This would provide multiple prescribed substructures as input for the
structure generator. Such multiple substructures as input are only possible using
manual interpretation of a MS" tree. The three filters used (Metabolite-Likeness,
internal energy and fragmentation prediction) proved to be useful at reducing the

number of candidates to an amount that could be inspected by an expert for further
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validation. Obviously this identification pipeline for known and fully unknown
molecules (i.e. not reported in any database) does not only apply to human
metabolites, but can be applied also to plant metabolites or other types of

molecules.

In Chapter 5, we implemented and tested the Parallel Molecule Generator (PMG).
This structure generator addresses some of the lessons learned in Chapter 2 (OMG)
and Chapter 4 (metabolite identification pipeline). Firstly in both chapters we
observed that using multiple substructures as constraints could make many
identification problems feasible using the in Chapter 4 developed identification
pipeline. Secondly, OMG should be improved by using a faster algorithm, by
reducing the need for a full canonizer, i.e. use a less computationally demanding
method to remove duplicate structures, and by parallel execution of the algorithm.
Lastly, in Chapter 4 we have learned that filters like removing energetically
unfavorable structures are important and they should be already incorporated in the
structure generating process. The rationale for implementing such filters in PMG is
that providing a short list of candidates produced slowly is more desirable than a
long list of candidates produced quickly, since a shorter list of candidates brings us
closer to the identification of the unknown metabolite. We achieved a reduction in
the number of possible candidate structures for a given elemental composition by
including several constraints, i.e. using prescribed substructures, good and bad lists,
exclusion of energetically unfavorable bad rings. In addition, we reduced the impact
on the computational time of including these constraints in the method by

implementing two new algorithms. These run in parallel, therefore they produce
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results faster, they can accommodate more constraints and their results are as

complete as those the original OMG algorithm.

The increase in speed using PMG compared to the OMG was evaluated for the same
elemental compositions and associated substructures as we used for the validation
of the OMG in Chapter 2. In terms of generating molecules using a single core
computing, PMG provided all possible structures about 40-fold faster compared to
OMG with elemental compositions as only input. The speed increases was even up
to 100-fold for PMG compared to OMG when also prescribed substructures were
provided as input. The time to generate molecules could be further reduced by
executing PMG in multiple cores, which OMG does not allow, represents an almost

linear speed up increase as more cores are added.

The efficiency in reducing the number of structures obtained with the additional
constrains was tested for the unknown metabolites found in human urine of Chapter
4. An expert annotated manually 30 MS" spectral trees, of unknown metabolites
found in human urine, which provided substructures for the good list. For the
unknowns for which the elemental composition allowed structures with rings, the
use of all additional constraints as introduced in PMG removed up to 82% of the
candidate structures. In conclusion, PMG is a further improvement in the efficient
generation of candidate structures for a given elemental composition, substructures
and using additional constraints. We expect that the open source nature of PMG
allows further improvements by other researchers, especially when more knowledge

over the type of molecules to be identified is known.

171



Chapter 6

Metabolomics is a growing field that still suffers from some limitations specific for
metabolites, and some limitations that are also observed for other ‘omics’ areas
such as proteomics. So far no generic procedure is available that allows the
identification and quantification of all metabolites present in a sample compared to
sequencing of a full genome, which is possible for currently just a few thousands of
euros. One challenge is that databases containing metabolites and experimental
data such as MS, MS", and NMR spectra of metabolites have been for many decades
kept in-house of companies or research groups, and the available databases are
containing only a fraction of the metabolites being expected. Fortunately, more
international consortia are being established to tackle the challenges in

metabolomics.

The research described in this thesis has shown that the success of de novo
metabolite identification relies on the synergy between analytical chemistry
methods (i.e. LC-MS") and cheminformatics tools. It can be expected that the
analytical instrumentation and methods will further develop and faster methods will
require less amount of sample and will detect more metabolites, for which masses
and fragment ions will be detected with mass spectrometry with more accuracy and
better reproducibility. The key factor for the success of MS as a standard technique
for metabolite identification is its ability to produce substructure information for
many analytes. Important will be also to obtain MS" spectra on-the-flight, i.e.

without the need of fractionation prior to direct infusion into the MS.
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Conclusions and perspectives

In this thesis it has been presented that knowing the elemental composition and
certain substructures of an unknown metabolite allows to limit the number of
possible structures of that unknown. In this thesis the concept of the maximum
common substructure (MCSS) from similar MS" spectra was used to derive a
substructure for the unknown metabolites. However, better alternative to
determine substructures in an unknown metabolite should be developed as there
are cases that not the correct substructure was obtained, or the substructure was
too small. A better alternative could be to relate shared branches or subtrees among
metabolites with shared substructures, i.e. the building block principle. Or, even
better, an MS" database of known metabolites should have annotated the branches
and subtrees of the metabolites with their corresponding substructures. In such an
approach, matching a subtree of the unknown metabolite with and annotated
subtrees in the database will provide a higher confidence that the unknown contains
that substructure(s). And as shown in this thesis the more substructures are used as
constraints for the structure generator the fewer candidate structures are obtained.
Having an MS" database with tens of thousands of annotated metabolites would

allow the identification of metabolites in a semi high-throughput fashion.

Generally high benefits can be expected from the computerization of human
expertise, as was for example demonstrated for chess playing supercomputers and
artificial intelligence software. However, for metabolite identification in the current
situation also for the in this thesis developed pipeline the input of a human expert is
still required. Human expertise is necessary at different steps of the metabolite

identification process. Humans are required to evaluate the correctness of the
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analytical data acquired from biological samples. It does not matter how good a
software pipeline is, if the initial input is of bad quality, the output will be of bad
quality. Software helps us at performing repetitive tasks more efficiently. Where
software underperforms humans is at detecting anomalies in a pipeline. An expert
can use tools like common sense and intuition to detect that results are overly
optimistic, on the one hand, or to focus on those candidates that have more chances
of succeeding. However, it can be expected that with the further development of
the identification pipeline the required input from a human expert will become less

and less over time.
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Metabolomics is één van de ‘omics’ disciplines die gebruikt wordt om biologische
systemen beter te begrijpen. Het is uitermate geschikt om variatie op fenotypisch
niveau te begrijpen die niet volledig op genetische basis verklaard kan worden. In
metabolomics worden metabolieten bestudeerd. Dit zijn kleine moleculen die
betrokken zijn bij allerlei metabolische processen. Terwijl genen gedurende de
levensduur van een organisme niet significant veranderen, veranderen metabole
processen, en de daarbij betrokken metabolieten, continu. Vandaar dat

metabolieten ideale markers zijn voor de staat waarin een organisme zich bevindt.

Een klassiek voorbeeld van het gebruik van metabolieten binnen biomedisch
onderzoek is het vinden van metabolieten die verschillend zijn tussen een groep van
zieke en gezonde patiénten. De significante aanwezigheid (of afwezigheid) van een
bepaald metaboliet (of een groep van metabolieten) in de zieke groep kan gebruikt
worden als indicator, ook wel biomarker genoemd, voor die ziekte. Voordat
metabolieten gebruikt kunnen worden om de biologie beter te begrijpen, moet eerst
de chemie van metabolieten begrepen worden. Met andere woorden, wat zijn de
chemische structuren van de metabolieten die indicatoren zijn voor een bepaalde
ziekte? Het beantwoorden van deze vraag is het doel van Metaboliet Identificatie,
één van de grootste knelpunten binnen metabolomics, en het doel van dit

proefschrift.
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In dit proefschrift heb ik gewerkt aan het maken van een aaneenschakeling van
software tools die het mogelijk maken om chemisch structuren te identificeren van
nieuwe metabolieten gevonden in humane monsters waarbij alleen LC-MSn data

wordt gebruikt.

Identificatie van nieuwe metabolieten wordt een uitdaging als de structuur van de
metabolieten niet terug te vinden is in een database of wanneer deze niet
vergeleken kunnen worden met de structuren van chemische standaard
verbindingen. Vandaar dat de structuur voorspeld moet worden. In Hoofdstuk 2
beschrijf ik de ontwikkeling van de Open Molecule Generator (OMG). OMG is een
open-source structuur generator die voor een onbekend metaboliet, gegeven de
elementaire compositie, een volledige lijst met mogelijke chemische structuren
produceerd. De gebruikte kanonische augmentatie aanpak (origineel binnen de
graaftheorie ontwikkeld om grafen te genereren) is daarvoor zodanig aangepast dat
alle mogelijke molecuulstructuren zonder duplicaten worden gegenereert. Tevens
accepteert de generator als additionele invoer substructuren die de uiteindelijke
structuren van de onbekende metabolieten moeten bevatten. OMG genereert
miljoenen kandidaat structuren gegeven de elementaire atoomsamenstelling van
gangbare humane metabolieten, zelfs wanneer substructuren als additionele invoer
worden gebruikt om het aantal mogelijkheden te beperken. Additionele stappen
waren nodig om deze lijst met mogelijke structuren te verkleinen zodat uiteindelijk

alleen maar een beperkt aantal mogelijke structuren overblijft.
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In Hoofdstuk 3 implementeerde ik een model dat voorspelt in hoeverre een
molecuul met een bepaalde chemische structuur lijkt op een metaboliet, de
Metabolite-likeness. Met andere woorden, het model bepaalt hoe waarschijnlijk een
molecuul een humaan metaboliet is. Twee mogelijke redenen zijn aan te geven
betreffende de toepassing van deze tool. Ten eerste, om beter de intrinsieke
eigenschappen van humane metabolieten te begrijpen en ten tweede om de
Metabolite-likeness te gebruiken als een filter om kandidaat structuren
geproduceerd door OMG, die niet op humane metabolieten lijken, te verwijderen. lk
heb daarvoor humane metabolieten uit de Human Metabolome Database (HMDB)
vergeleken met niet-metaboliet moleculen uit de ZINC database. Ik heb verschillende
klassificatie modellen en chemische descriptoren getest en gezien dat uiteindelijk de
combinatie van de Random Forest klassificatie methode met MDL Public Keys

descriptoren het beste Metabolite-likeness voorspelden.

In Hoofdstuk 4 creéerde ik een metaboliet identificatie pipeline door OMG en
Metabolite Likeness te koppelen aan twee, ook op dezelfde afdeling ontwikkelde,
tools, de Multistage Elemental Formula (MEF) tool en een algoritme die MSn data
met elkaar vergelijkt samen met een energie en een fragmentatie voorspeller filter.
Het idee was om een pipeline van tools te hebben die als invoer MSn data van
onbekende metabolieten gebruikte om ze vervolgens te identificeren of een kleine
lijst met kandidaat structuren te genereren. Deze pipeline werd getest aan de hand
van een humaan urine monster waarvoor MSn spectra van 30 onbekende
metabolieten was opgenomen. Van deze 30 onbekenden werden er 10

geidentificeerd doordat hun spectra samenvielen met spectra in een database met
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bekende metabolieten. Voor 3 onbekenden werd een relatief korte lijst met minder
dan 8 kandidaat structuren verkregen. Voor 6 andere onbekenden werd een lange
lijst met kandidaten verkregen. Ten slotte kon voor de overige 11 onbekenden geen
lijst met kandidaten gegenereerd worden. Deze resultaten ondersteunden het idee
dat metaboliet identificatie mogelijk is gebruikmakende van alleen MSn data in
combinatie met slimme cheminformatica tools, maar dat er nog steeds ruimte voor

het aanbrengen van verbeteringen is.

Deze verbeteringen werden ingevoerd in Hoofdstuk 5 in de vorm van de Parallel
Molecule Generator (PMG). In hoofstuk 4 leerden we dat het verkrijgen van een
korte lijst met kandidaten essentieel is om nieuwe metabolieten te identificeren. Dit
is de reden waarom wij in PMG meer chemische randvoorwaarden toevoegden,
zoals de verwijdering van moleculen die instabiele ringstructuren en ongewenste
substructuren bevatten, om de lijst met kandidaat structuren verder te verkleinen.
Omdat de berekening van deze additionele randvoorwaarden extra computertijd
kost, werd PMG zodanig geimplementeerd dat het parallel kon draaien in een multi-
core omgeving. Deze verbetering resulteerde in een significante afname van de tijd
nodig om de kandidaatlijst te genereren. PMG was gemiddeld 100 maal sneller dan
OMG voor onbekende metabolieten waarvoor een lijst met substructuren

voorhanden was.

Kortom, dit proefschrift laat zien dat het succes van de-novo metaboliet identificatie
sterk bepaald wordt door een goede synergie tussen de analytische chemische

methoden en de cheminformatica tools. Tevens werd gepresenteerd dat als de
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elementaire compositie en bepaalde substructuren van een onbekende metaboliet
bekend zijn, het mogelijk is om de hoeveelheid mogelijke structuren voor de

onbekende metaboliet te beperken.
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