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1.  The immune system; basic mechanisms and function

The immune system constitutes a network of specialized bone marrow derived cells 

which detect, isolate and eradicate potential harmful microorganisms or malignant cells. It 

consists of two arms; the innate and the adaptive immune system which collectively protect 

the human body from pathogens 1,2. Communication between cells of the immune system 

and other non-immune cells proceeds via cell-surface and secreted signaling molecules 3-5  

produced in response to the detection of danger signals 5,6.

The innate immune system is activated after the detection of danger signals, for example 

an invading pathogen. The innate immune system comprises immune cells that can rapidly 

engage and elicit their effector functions forming the first line of defense. Innate immune 

cells are characterized by their antigen (Ag) non-specific effector functions, and lack of 

immunological memory. Innate immune cells recognize genetically conserved patterns 

expressed on non-self- and altered self-tissues 7-9. 

Failure of the innate immune system to eliminate an invading pathogen leads to the 

activation of a more “tailor-made” immune defense mechanism; the adaptive immune 

system. Initial encounter of the adaptive immune system with a potentially harmful 

pathogen is characterized by a reaction time of 3 – 7 days. During this period, pathogen-

specific lymphoid cells; B cells, CD4+ and CD8+ T cells are primed (activated). Upon priming, 

B and T cells vigorously multiply (proliferate) and exert their Ag-specific effector functions. 

The adaptive immune system can form immunological memory resulting in a rapid, within 

hours, secondary response which efficiently clears the pathogen upon reinfection with 

the same pathogen. For instance, the long lived protection against measles is based on 

the formation of immunological memory against the virus after original infection and 

clearance. 

Some aspects of the immune system and vaccination will be briefly introduced in the 

following paragraphs which will facilitate the reader to interpret the research data 

described in this thesis. 

2.  First line of defense; the innate immune system and the de-
tection of “danger”

Micro-organisms encode and express various molecular motifs, pathogen-associated 

molecular pattern (PAMP), crucial for their pathogenicity 2,10,11, such as DNA/RNA and/
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or glycosylated proteins and lipids. The innate immune system has evolved to recognize 

these molecular motifs as danger signals and thus alarming for the presence of an invading 

pathogen. 

Recognition of PAMP proceeds via several intra- and extracellular genetically conserved 

pathogen recognition receptors (PRRs). An important group of PRRs are the Toll-like 

receptors (TLRs). Ligation of TLRs results in intracellular signaling cascades and ultimately, 

cell activation and expression of cell-surface co-stimulatory molecules, chemokines and 

cytokines that signal to other cells in their environment, initiating inflammation 4,12,13.

Phagocytic myeloid cells form a major subset of the innate immune system, they are 

distributed throughout the body and participate in the surveillance of (non-)lymphoid 

tissues for the presence of invading microbiological threats. Phagocytic cells continuously 

engulf, process and “analyze” the content for possible PAMPs. The majority of phagocytic 

cells are formed by monocytes and macrophages (MΦ). The latter are also referred to as 

“scavenger cells and have an important role in the clearance of cellular debris, apoptotic 

bodies and pathogens from the body 14. MΦ are specially equipped for this purpose as 

they efficiently translocate engulfed Ag into intracellular degradation compartments. 

Monocytes are subdivided into two subsets based on their functional properties, the first 

subset, the “patrolling monocytes” have a special role in tissue repair and wound healing. 

The second subset are the so called “inflammatory monocytes” which produce tumor-

necrosis factor and inducible nitric oxide synthase during infections 15. Moncytes are also 

thought to contribute to an immune response by differentiating into macrophage- or 

dendritic cell (DC) like effector cells 15,16. The final differentiation of monocytes is largely 

dependent on the type of danger signal detected. 

Dendritic cells form a small percentage of the phagocytic cell population, 5–15%, but 

DCs are arguably the most important cell type of the innate immune arm as they link the 

innate and adaptive immune response. DCs and their functions will be described in more 

detail in paragraph 2.1.

2.1  Dendritic cells; linking innate and adaptive immunity 

DCs function as the gate-keepers of the immune system 17-19. DCs are strategically located 

throughout the body at sites where contact with “non-self” material is the most frequent, 

such as the skin and mucosal lining of the lungs and the gut. DCs use their extensive 
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arsenal of PRRs to detect invading pathogens and have a pivotal role during the onset 

and control of immune responses (Figure 1.1).

TLRs contain transmembrane signaling motifs and their ligands triggers intracellular 

signaling cascades which regulates among others NF-ΚB gene-transcription, important 

for cell activation. Ultimately, these signaling cascades result in the transformation of DCs 

into fully competent Ag presentation cells (APC), a process termed “DC maturation” (Figure 

1.1). DC maturation is characterized by efficient processing of internalized exogenous Ag 

Figure 1.1  Immature DC encounters a pathogen and becomes activated.

Invading pathogens express molecular patterns which are recognized by DC via their TLRs 

expressed on the cell surface or inside intracellular compartments. TLR triggering activates 

intracellular signaling pathways which culminate in the NF-ΚB transcription and the initiation 

of DC maturation. The engulfed pathogens are translocated inside intracellular compartments, 

phagosomes, where they are killed and degraded.

immature DC

TLR

TLR

CD40

TLR

Pathogen

NF-ΚB Start of maturation 
process
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and presentation in the context of major histocompatibility class (MHC) class I and class 

II molecules, increased expression of T co-stimulatory molecules and secretion of pro-

inflammatory cytokines. These changes endow DC with the superior capacity to prime 

naïve and T cells (Figure 1.2). 

At the site of inflammation, DCs internalize pathogen-derived material present in the 

extracellular environment. In parallel, PAMPs are recognized as danger signals and initiate 

DC maturation. Mature DCs express the lymph node homing chemokine receptor, CCR7, 

permitting migration from the infection site towards the lymph nodes (LNs). In the LN the 

mature DC encounter T cells 20. 

Stimulation of T cells by DCs is the first step in the activation of the adaptive immune 

system. In summary, DCs dictate the breadth and potency of an immune response via 

their capacity to activate the adaptive immune arm when the innate immune arm is 

incapable of clearing the disease causing entity. DCs play a critical role in balancing an 

ensuing response; a weak immune-response leaves the body vulnerable to the pathogen 

but an excessive immunological response can result in epitope spreading 21-25 which might 

cause damage to healthy tissues of the host 26,27. Systemic Lupus Erythematosus (SLE) is 

a well-known disease resulting from excessive stimulation of auto-reactive T cells by DC 

presenting self-Ag derived from apoptotic cells 28.

3.  The adaptive immunity; “acquired, antigen specific” effector 
functions

Adaptive immune responses can be sub-divided into a humoral response, carried out 

by B cells and type 2 CD4+ T cells, and cellular response, carried out by type 1 CD4+ and 

CD8+ T cells. In contrast to immune cells of the innate immune system, B and T cells are 

characterized by their Ag-specific effector functions. 

The nearly unlimited different Ag-specificities and different degree of affinity of the T-cell 

receptors (TCRs) T cells are a product of the enormous diversity in possible V(D)J gene-

rearrangements at the chromosomal loci encoding the TCR 29. T cells undergo positive 

and negative selection in the thymus. In the first round, T cells are screened which can 

successfully recognize self MHC class I molecules; positive selection. T cells failing to 

recognize MHC class I molecules are deleted. In a second screening, T cells are selected 

based on the affinity of their TCR for its specific epitope presented in MHC class I molecules. 
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Figure 1.2 Mature DC prime and activate naïve T cells.

DC maturation leads to the up regulation of co-stimulatory molecules and production of cytokines 

important for an efficient activation of T cells. Mature DC acquires potent antigen processing 

and presentation capacity. Pathogen or vaccine specific epitopes are processed and presented 

in the context of MHC class I (CD8+ T cells) or II molecules (CD4+ T cells). The expression of the co-

stimulatory molecules CD40, CD80 and CD86 on DC facilitates T cell activation and proliferation 

via the ligation of T cell expressed molecules, CD154 and CD28. In addition, IL-12 production by 

DC programs T cells to acquire a type 1 pro-inflammatory phenotype, characterized by high IL-2, 

IFN-γ and TNF-α production.

IL-12R
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In this process, T cells showing a supra-threshold affinity TCR are deleted; negative selection. 

Negative selection is important for “central tolerance” and functions to prevent the release 

of high-affinity self-reactive T cells from the thymus into the periphery where they can 

cause autoimmunity 30-32.

B cell receptors (BCRs) are membrane-bound immunoglobulins which recognize 

conformational epitopes which can be derived from various Ags, such as protein, 

polysaccharides, lipids and nucleic acids. BCRs are produced in process similar to TCRs, 

based on the V(D)J rearrangements 21,33. Every B cell will express on its cell-surface BCRs 

with a single Ag-specificity. Ligation of BCRs initiates B cell maturation into plasma cells 

which secrete high amounts of soluble BCRs; antibodies 34. Somatic hypermutation (SHM); 

a process whereby the total antibody avidity to a specific Ag is increased by “affinity 

maturation” of the genes encoding the Ag-specific BCR and by selection of higher-affinity B 

cell clones, regulates the efficiency of B cell responses. The B cells with the high(er) affinity 

BCR will out-compete the low(er) affinity B cells for the specific Ag resulting in apoptosis 

of the “weak” B cells. The net result is the induction of an Ag-specific high avidity antibody 

response through the activation of the selected high affinity B cells 21. Secreted antibodies 

have two distinct functions 1) bind specifically to pathogens or their toxins, neutralizing 

the pathogen and inhibit their capacity to infect cells and 2) recruitment off- and signaling 

to other immune cells to target, engulf and kill the invading pathogen after binding by 

the antibody; antibody dependent cell cytotoxicity (ADCC).

TCRs, in contrast to BCRs, are expressed only as membrane-bound molecules. TCR-

triggering via its specific epitope stimulates intracellular signaling cascades leading to T 

cell activation. TCR differ from BCR in an important way: TCR recognizes linear epitopes of 

proteins, lipids or glycolipids; short (peptide) fragments derived from pathogen-associated- 

or tumor associated Ag in the context of classical MHC 35. 

3.1  Immune activation to self or non-self Ag by signals of danger

The danger-model proposed by Matzinger et al. 36-38 is an alternative theory to the original 

self-non self-theory set forward by Burnet et al who stated that an immune response can 

be explicitly be mounted to only “foreign” in other words, non-self-entities. In contrast, 

Matzinger’s theory proposes that the immune system is also possible to against self-entities 

as long as there is a sense of “danger” present. Both theories offer plausible explanations 

for the activation of the immune system, however, both theories obviously have some 
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limitations 39. Most cancers express self-Ag; in cancer patients the cancerous cells perhaps 

fail to trigger an adequate immune response because the (pre-)malignant lesions fail to 

present an imminent and acute sense of danger to the body. Considering Matzinger’s 

danger theory from the viewpoint of vaccinology, it does offer an important basis for the 

use of adjuvants to enhance potency and efficacy cancer vaccines. Namely, adjuvants 

based on synthetic, well-defined small-molecular compounds mimicking PAMPs 22,24,25. 

The addition of an adjuvant, will cause an acute sense of “danger” as the immune system 

will be tricked that a harmful pathogen is present in the body and thus prime (or boost) 

a cancer vaccine-specific immune response.

Cancer immunotherapy based on vaccination will be discussed in more detail in the 

following paragraphs.

4.  Ag uptake, processing and presentation to T cells by DC

DC and other myeloid cells, for example MΦ, are very efficient phagocytic cells and possess 

multiple endocytic mechanisms allowing internalization of vast amounts of exogenous 

materials for intracellular processing. DC and MΦ have several shared characteristics 40,41 

However DC differ from MΦ as they mainly contain intracellular compartments dedicated 

for Ag-processing 42 and Ag-storage 43 but less well equipped for Ag-degradation 43,44. MΦ 

on the contrary contain mainly intracellular compartments specialized for Ag-degradation. 

Internalized Ag is cleaved, trimmed and processed in a controlled manner by various 

proteases present inside endo-lysosomes and the cytosol 45-48. DCs are specialized Ag 

presentation in MHC class II molecules, which are recognized by CD4+ T cells (Figure 1.3), and 

MHC class I molecules, which are recognized by CD8+ T cells 49. MHC class I Ag presentation 

of exogenous material is known as Ag cross-presentation 46 (Figure 1.4). 

Classically, exogenous materials were postulated to be processed only into MHC class 

II molecules whereas MHC class I molecules existed to present solely endogenous, self, 

produced proteins. These two processing pathways were described to function fully 

independent of each other. However it is now known that MHC class I and II Ag presentation 

consist of overlapping processing pathways 44,46,49. MHC class I Ag cross-presentation is a 

crucial pathway by which the immune system can detect and respond to bacterial, viral and 

parasitic infections that exclusively invade non-hematopoietic cells or reside in extracellular 

environments. Notably, MHC class I Ag cross-presentation is the primary mechanism how 
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CD8+ T cells are primed against tumor-associated Ags which are otherwise only presented 

on malignant cells 50-52. 

DCs are the principal APC endowed with the capacity to cross-present Ag into MHC class 

I molecules. Depending on the type of Ag, DCs use phagocytosis, pinocytosis, fluid-

Figure 1.3 MHC class II processing and presentation of Ag by DC.

Exogenous antigens are internalized by DC inside phagosomes, or alternatively endosomes. 

Lysosomes inside DC, which are acidic intracellular compartments containing pH-sensitive 

proteases, so called cathepsins, fuse with phagosomes or endosomes. This fusion is also referred 

to as endo- or phagosomal maturation. This process is characterized by pH drop inside these 

compartments, thereby activating the cathepsins. The Ag content is degraded of into smaller 

peptide strands 12–20 aminoacid, epitopes. MHC class II molecules are assembled inside the 

endoplasmatic reticulum (ER) and translocated via the Colgi apparatus into MHC class II loading 

compartments. In these compartments, the epitopes are loaded on MHC class II molecules and 

transported to the cell-surface where they are recognized by CD4+ T cells.

Golgi apparatus

Endoplasmic reticulum

Phagosome

Lysosome
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phase endocytosis and receptor-mediated endocytosis for Ag-internalization. It has been 

suggested that the mechanism of Ag-internalization dictates how the Ag is processed and 

presented by DC on MHC class I and II molecules 53.

4.1  Ag-processing by DC; mechanisms of MHC class I Ag cross-presentation

Several MHC class I Ag cross-presentation processing pathways have been reported 52,54,55. 

For simplicity these pathways can be grouped in two principal pathways, commonly 

referred to as the classical/cytosolic (Figure 1.4) and an endosomal/vacuolar pathway.

Ag routed via the classical pathway is processed through similar mechanisms as endogenous 

self-protein Ag, mediated mainly by the proteasome, located in the cytosol. This suggests 

that internalized exogenous material must access the cytosol from the endosomes, become 

ubiquitinated and transferred to the proteasome system. The mechanisms involving the 

translocation of an Ag into the cytosol remains a matter of debate and extensive studies 

and is most likely influenced by the type of Ag. Proteasome-cleaved peptides are then 

transported into the Endoplasmic Reticulum (ER) by the transporter associated with antigen 

processing (TAP) for loading on newly formed MHC class I molecules (Figure 1.4). The majority 

of MHC class I epitopes are loaded on MHC class I molecules inside the ER. However, there 

is no firm evidence that peptide loading on MHC class I molecules occurs exclusively in the 

ER. Therefore, the cytosolic pathway of MHC class I Ag cross-presentation refers primarily to 

the intracellular location where exogenous Ag is processed, the cytosol, without taking into 

account the compartment where the loading of MHC class I molecules occurs. 

The “endosomal/vacuolar” pathway is generally independent of proteasome activity and 

TAP-mediated transfer of cleaved peptides into the ER. However, Ag-processing through the 

endosomal/vacuolar pathway, is sensitive to endo-lysosomal proteases, such as cathepsins 48, 

and dependent on the pH-environment inside endo-lysosomes. The key factor distinguishing 

the two cross-presentation pathways is thus whether the internalized exogenous material 

is translocated from the endolysomes to the cytosol for processing or not 46.

5.  Cancer

Cancer is the collective name given to more than 100 neoplastic diseases, which are 

characterized by uncontrolled growth of malignant cells, their subsequent metastasis and 

invasion of healthy tissues impairing their normal functioning. The development of cancer 
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is a multistep process originating from DNA mutations in oncogenes or tumor-suppressor 

genes and, importantly, failure to repair mutated damaged DNA sequences. Malignant 

transformation and DNA mutations can be caused by both exogenous and endogenous 

triggers; carcinogens 56-58. Succeeding DNA mutations malignant cells acquire various 

Figure 1.4 MHC class I Ag (cross-)presentation by DC.

Exogenous Ag engulfed by DC are present inside phagosomes or endosomes (Figure 1.3). The Ag 

content is translocated from these compartments into the cytosol by yet unknown mechanisms. 

Inside the cytosol, Ag-derived proteins are degraded by the cytosolic protease, the proteasome, 

into short 8–9 aminoacids peptide strands. The transporter associated with antigen processing 

(TAP) next transfers the peptide strands from the cytosol into the ER where MHC class molecules 

are assembled and loaded with their specific epitopes. The loaded MHC class I molecules are then 

transported via the Colgi apparatus to the cell surface where CD8+ T cells are able to triggered 

via the TCR.
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hallmarks of cancer; continuous proliferative signaling, insensitivity to growth suppressors, 

resistance of apoptosis, activation of replicative immortality, induction of angiogenesis, and 

activation of metastasis invasion of other organs 59,60. Cancer can partially be designated 

an immunological disease, already at the initial stages of carcinogenesis, (pre-)malignant 

lesions and the immune system are involved in a two way battle. The immune system is 

able to recognize tumors as implied by 1) rejection of experimental tumors 2) increased 

carcinogenesis in immunodeficient animals and/or 3) increased incidence of some cancers 

in immunodeficient patients and in the elderly. A strong evidence for potent tumor-specific 

immunity is provided by studies on cancer patients with paraneoplastic syndrome. For 

example, oncoproteins of neural origin can in some cases of breast and ovarian cancer be 

expressed by the tumor. In healthy individuals these (onco)proteins are expressed only 

in immune-privileged sites, such as neurons. However, in these cancer patients, a strong 

CD8+ T-cell response is generated which effectively controls tumor growth but also induces 

severe auto-immune neurological diseases. Thus, in cancer patients despite the induction 

of a tumor specific immune response, the tumor is not controlled and grows out; tumor 

escape. Mechanisms resulting in tumor escape are many. DNA mutations does not only 

modulate oncogenes and tumor suppressor genes but also facilitate carcinogenesis 

by driving tumor promoting inflammation 61,62, angiogenesis 63,64 and induction of local 

immune suppression via the attraction/induction of T regulatory cells 65,66 and myeloid 

derived suppressor cells (MDSCs) 67. Several other factors have been attributed to the 

overall lack of a potent anti-tumor response in cancer patients 68-70 and combined these 

factors lead to a weak immunogenic tumor microenvironment allowing escape of the 

tumor from surveillance by the immune system. 

5.1  Cancer; disease prevalence in the Netherlands

In the Netherlands, 100,600 new cases of cancer were diagnosed in 2011. This number is 

4% higher than the previous year, 96,500. Skin cancer is the most common with 14,400 

cases followed by breast cancer (14,100), colorectal cancer (13,300), lung & tracheal cancer 

(11,700) and 11,400 cases of prostate cancer. The stepest rise was seen with skin cancer 

with 1,500 new cases in 2011 compared to 2010. The expectation is that an annual increase 

of 3% in total cancer cases will be evident for the next ten years 

Life expectancy of cancer patients has increased approximately with 3 years in the past 

decade. In general, the longer people live the higher their chances of being diagnosed 
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with cancer. Another factor contributing to the rise of cancer prevalence is the change 

in daily activities. For example, more women reported being a regular smoker, a habit 

which most likely is the cause the increase of lung cancer among women. Nowadays, 

the chance of getting cancer for women is 1 in 3, was 1 in 4, and for men 1 in 2, was 

1 in 3. This clear increase is most evident in patients of 85 years and older. Unhealthy 

diets, alcohol consumption and lack of physical exercise have also been related to the 

increase in cancer.

In 2011, 43,139 persons in the Netherlands died from cancer or related complications. 

That is 42% of the the total cancer cases in the same year. Thus, it is very clear that better 

treatment modalities are required (Dutch Association of Comprehensive Cancer Centers).

6.  Vaccines

The use of classical prophylactic vaccines dates back to the late 18th century when it was 

shown by Jenner and others that humans could be protected against small-pox by cross-

immunity against cow-pox after inoculation with pus from cow-pox blisters. This important 

observation initiated the field of vaccine development. Although Jenner successfully 

induced immunity and protection in his patients, he was not aware of the entity causing 

this protection. Koch et al. then showed that infectious diseases are caused by pathogenic 

microorganisms, each one responsible for a particular disease. These findings led to the 

culture of artificially weakened strains of virulent pathogens by Pasteur, which were then 

used as vaccines against rabies and anthrax. 

Immunostimulatory agents, adjuvants, were introduced in the 20th century by Gaston 

Ramon. “Adjuvant” is derived from the latin word adjuvare (translation “to help”). An 

adjuvant potentiates the working of a vaccine by hyperactivation of the immune system. 

The use of aluminum salts based adjuvants (alum) were one of the first to be applied in the 

modern era to boost immune responses elicited by prophylactic vaccines. Alum remained 

for decades the only clinically approved adjuvant for human use. Alum effectively enhances 

Type 2 (TH2) humoral responses, prolongs antibody production and promotes the formation 

of memory B cells. Nowadays there are other clinically approved adjuvants based on water-

in-oil (w/o) emulsions such as MF59TM (Novartis) and the adjuvant systems (AS) marketed 

by Glaxo-Smith-Kline. These adjuvants are used primarily as agents to enhance the efficacy 

of prophylactic vaccines which is based on the induction of neutralizing antibodies. 
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Although tumors do stimulate humoral responses and the production of tumor-specific 

antibodies with cytotoxic effects 61,62,71, tumor cell killing is primarily achieved through 

the mechanisms of the cellular immune system, in other words T cells. For the purpose of 

tumor specific vaccination, therapies are required to boost not only the antibody response 

but more importantly the tumor specific T cell response. 

7.  Cancer immunotherapy

The natural capacity of the body`s own immune system to recognize and eradicate cancers 

allows the possibility for treatments which enhances anti-tumor effector mechanisms, 

cancer immunotherapy. The need for new treatments against cancer is direct consequence 

of the critical challenges imposed by conventional treatments against cancers, such 

as surgery, chemotherapy and radiotherapy. Their clinical efficacy is poor and causes 

significant adverse effects in treated individuals. There is a high requirement for a more 

personal, tumor-specific and efficacious cancer therapy with considerably lower treatment-

related adverse effects. 

Significant improvements in immunology have provided greater understanding of the 

interactions between malignant and immune cells. It is now well accepted that avoiding 

destruction by the immune system is a hallmark of cancer 60. This knowledge also allows the 

development of novel strategies and medical interventions aiming to boost the immune 

system against a growing tumor. Several cancer immunotherapies have been successfully 

devised which are currently undergoing (pre-)clinical testing or have already been approved 

for standard 1st line therapy. These include the enhancement of B cell responses 72-75,  

antibody-based cancer immunotherapy 71,76-78, adoptive cell transfer of cytotoxic CD8+ T 

cells 79-82, DC based vaccines 83-85, inhibitors of immune checkpoint blockade, such as the 

FDA approved anti-CTLA4 mAb, YERVOY® (Ipilumimab) 86-89 or cancer vaccines based on 

proteins 90,91, short peptides encoding minimal CTL epitopes 92-96 or the main focus of the 

tumor immunology group at LUMC, long peptide vaccines 97-102.

Vaccination against cancer represents a promising treatment modality and is based on the 

principle of activating or boosting specific T cell responses against a tumor-associated Ag 

(TAA). From the pharmaceutical point of view; vaccinations with (long) peptides offers the 

possibility of having an “off the shelf” product which can be manufactured in large numbers 

and under GMP-conditions. More and more TAA are being discovered and described 103-106 

allowing the production of long peptide vaccines for these targets.
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7.1  Cancer immunotherapy; therapeutic vaccines

Successful cancer immunotherapy requires a strong pro-inflammatory Type 1 (TH1) CD4+ 

and CD8+ T cell responses. Advances in molecular immunology have led to the development 

of a broad range of novel synthetic adjuvants that are currently being explored in clinical 

trials in combination with vaccines 60,107-109. Adjuvants, such as synthetic TLR agonists 

mimic PAMPs expressed by pathogen resulting in immune activation of the immune 

system. The Ag-composition of vaccines themselves have also undergone considerable 

developments; from completely undefined material such as pus from cow-pox blisters, 

modern immunologists aim to vaccinate with precisely defined Ag, from DNA-sequences, 

protein or peptides, encoding or representing a specific pathogen-associated or tumor-

associated Ag (TAA). Therapeutic cancer vaccines aim to successfully activate or boost 

an effective anti-tumor T cell immune response. DC hold the key to this process, thus the 

main objective of vaccination regimens against cancer should be the specific and efficient 

delivery of the vaccine, encoding a TAA, to DC.

7.2  Cancer Immunotherapy; soluble Ag vaccines – pros and cons

Historically, protein and/or peptides in their soluble, native, form were the first vaccine Ag 

candidates tested in pre-clinical experimental tumor models or in the clinic. These vaccines 

have led to promising observations of enhanced tumor-specific T cells responses 110-112. 

Nevertheless, in most, if not all, clinical trials, soluble protein and peptide vaccines have 

failed to induce complete and durable responses in cancer patients despite increasing 

tumor immunity. 

Regarding soluble protein vaccines, it’s suggested that their capacity to boost the CD8+ T-cell 

repertoire against a tumor to be rather poor 113-115. Efficient anti-tumor immune responses 

require potent cytotoxic CD8+ T cell responses to achieve the desired clinical benefit. 

Synthetic short-peptide (SSP) vaccines, encoding minimal MHC class I molecule binding 

epitopes on the other hand considerably boost the CD8+ T cell tumor immunity which 

translated into improved clinical responses. But vaccinations with SSP are associated 

with significant limitations on the long term 116-119. SSP-vaccines do not directly stimulate 

CD4+ T cell responses. It is well known that the co-activation or CD4+ T cells is crucial in all 

aspects of CD8+ T cell responses and plays an important role during the priming, effector 

and memory phase CD8+ T cells 120-125. Thus when SSP are used as vaccines, the ensuing 

CD8+ T cell responses are short-lived 116 and of sub-optimal potency. Other restrictions 
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related to the use of SSP vaccines are the necessity for HLA-typing for each patient to 

be treated and tolerance induction due to SSP presentation by non-professional APC 116. 

Another disadvantage of SSP is the short-lived in vitro Ag presentation in comparison to 

SLP 126 which, next to SSP loading on non-professional APC might underlie the vanishing 

CD8+ T-cell responses observed in vivo post-vaccination 116. 

The concept of synthetic long peptide (SLP) vaccines was introduced by Melief et al. 114,115,127, 

as way to improve the efficacy of peptide vaccines. The SLPs are overlapping synthetic 

peptides of 15–35 amino acids that 1) cover the entire sequence of the native protein TAA 

to which an immune response is targeted to, 2) SLP require DC-specific internalization and 

processing for optimal presentation in MHC class I and class II molecules and 3) do not 

require HLA-typing as ingestion by DC of overlapping strands of peptides allows epitope 

selection in vivo based on the patient’s own HLA-profile 4) facilitates simultaneous priming 

of T-cells against multiple dominant and subdominant epitopes stimulating a broad T-cell 

response 114. Therapeutic vaccinations with SLP encoding the E6 and E7 oncoproteins of 

high risk HPV16 successfully boosts CD4+ and CD8+ T-cell responses in pre-clinical murine 

models of cervical cancer and in patients with (pre-)malignant disease of the cervix and 

the vulva 128,129. SLP vaccines have also been used against other types of cancers 119,130-132 

and against other immunological diseases 133,134. In a direct comparison, SLP vaccines 

were more efficient in inducing CD8+ T-cell responses than protein vaccines 119 and lead 

to stronger and more effective Ag-specific immune responses. 

The positive effect on the anti-tumor responses and resulting clinical benefits are well 

described for SLP vaccines. But still, soluble SLP vaccines carry some disadvantages 

especially related to the method of administration. Montanide-based water-in-oil (w/o) 

emulsions are mostly used to formulate SLP vaccines, but also protein vaccines, for 

administration to patients enrolled in clinical trials 133-138. Montanide w/o emulsions function 

as an Ag-depot and triggers inflammation at the site of injection. However, the properties 

of Montanide which cause inflammation are poorly described. In addition, the use of w/o 

formulations cause significant local side effects in treated patients because of their non-

biocompatible/non-biodegradable properties. Moreover, unpredictable Ag release rates 

and lack of long-term stability of the w/o emulsions limit pharmaceutical scalability 128,129,139. 

Besides the disadvantages related to the delivery system, once released from the w/o 

emulsion based Ag-depot, SLPs are rapidly cleared via the kidney from the body 140,141 

because of their typically small size of ≤ 5 kD. As a result, injected SLPs are inefficiently 
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target to- and internalized by DCs when administered s.c. or i.d. in vivo. Thus alternative 

methods to deliver SLP vaccines are highly required. Particulate vaccine carriers prepared 

from bio-degradable, biocompatible polymers offer a suitable substitute for Montanide 

or other w/o emulsions due to their relative ease of pharmaceutical formulation and 

immunological properties.

7.3  Cancer immunotherapy; particulate vaccine carriers based on PLGA-
nanoparticles

To date, many particulate vaccine carriers have been successfully formulated from 

various types of biocompatible polymers 142-150. These resulting “particulate vaccines” 

boosts Ag-specific humoral and cellular responses with higher efficiency compared to 

soluble vaccines. Their method of action is for a large part based on facilitated uptake of 

particulate Ag by APCs compared to soluble protein- and/or peptide Ag. From a cancer 

therapy perspective, one would desire to develop particulate carriers, carrying TAA that 

can efficiently target DC, either actively or passively, promote Ag processing and MHC 

class I and II presentation and finally generate of potent immune responses capable of 

tumor control 151-154. 

Biodegradable particulate vaccine carriers prepared with the polymer Poly-(Lactic-co-

Glycolic-acid) (PLGA) have yielded positive results as a carrier for various types of Ag, from 

DNA, proteins to peptides 152-158. The use of PLGA-nanoparticles (PLGA-NP) offer some 

unique advantages over the administration of the soluble vaccine-Ag encoding TAA or 

the use of W/O based delivery vehicles; these include 1) PLGA is an FDA approved polymer 

2) protection of the Ag cargo from premature degradation, 3) encapsulation of Ag in NP 

increases the total size of the vaccine and slows renal clearance, 4) enhanced uptake of 

the Ag by DC. 5) PLGA-NP makes it possible to accommodate both Ag and adjuvant in 

“one” particle to create a single immune activating “pathogen-like entity” and finally 6) 

PLGA-NP immunogenicity can be further modified by coupling of various ligands to- or 

surface coating of the NP to modulate the in vivo bio distribution and immune cell specific 

uptake of particles.

Owing to these favorable characteristics of PLGA-NP as vaccine delivery carriers and the 

crucial requirement to improve the immunogenicity of SLP-vaccines currently administered 

in Montanide a study was designed to assess several aspects of PLGA-NP as potential 

clinically applicable delivery vehicle/vaccine carrier for SLP-vaccines.
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8.  Scope of this thesis

Chapter 2 describes our studies exploring the mechanisms of long peptide-Ag-processing 

by DC. Understanding these mechanisms will allow further fine-tuning of SLP vaccines, 

with the goal to enhance their in vivo potency which may ultimately lead to improved 

treatment of cancer patients. We set out to enhance SLP-vaccine potency through the 

encapsulation in PLGA-NP. 

In chapter 3 we studied the feasibility to encapsulate SLP in PLGA-NP as a method to 

improve the immunogenicity of SLP. This study focused on the physical and formulation 

criteria necessary to successfully encapsulate SLP in PLGA-NP (PLGA-SLP). Subsequently, 

we studied the efficacy of cross-presentation by DC of PLGA-SLP in comparison to soluble 

SLP. We next studied the intracellular mechanisms used by DC to process PLGA-SLP in 

chapter 4 and in addition describe the in vivo vaccine potency of PLGA-SLP in comparison 

to soluble SLP. 

In chapter 5 we report the application of PLGA-NP encapsulating protein Ag as a delivery 

vehicle to enhance DC-mediated stimulation of Ag-specific T cells ex vivo which could be 

used for adoptive T cell immunotherapy. 

Because plain PLGA-particles have sub-optimal adjuvant properties in vivo, the optimization 

of PLGA-NP vaccines to achieve efficient anti-tumor responses is the topic of chapter 6 in 

which nanoparticles and microparticles where studied in a head-to-head comparison in 

their capacity to activate B and T cell responses. 

Chapter 7 continuous with the optimization of PLGA-NP vaccines where PLGA-NP vaccines 

were formulated co-encapsulating protein Ag and TLRL combined with active targeting 

of DC via CD40 molecules expressed on the cell-surface. In chapter 8 a follow up study 

was performed to analyze different targeting strategies to enhance delivery of PLGA-

NP encapsulated Ag to DC. For this purpose, PLGA-NP encapsulating TLRL and Ag were 

targeted to CD40 (a TNF-receptor family molecule), DEC-205 (a C-type lectin receptor) and 

CD11c (an integrin receptor). 

Finally, in chapter 9 we will discuss the most important findings described in this thesis and 

present a general overview. The contribution of the results to the further understanding of 

the immune system and the field of cancer vaccine development will put into context of 

known literature. Finally we will highlight the clinical relevancy of our findings and debate 

the future perspectives for particulate carriers as vehicles for SLP-vaccines.
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Abstract

The efficiency of antigen (Ag) processing by dendritic cells (DCs) is vital for the 

strength of the ensuing T-cell responses. Previously we and others have shown that 

in comparison to protein vaccines, vaccination with synthetic long peptides (SLPs) 

has shown more promising (pre-)clinical results. Here we studied the unknown 

mechanisms underlying the observed vaccine efficacy of SLPs. We report an in vitro 

processing analysis of SLPs for MHC class I and class II presentation by murine DCs and 

human monocyte-derived DC (MoDCs). Compared to protein, SLPs were rapidly and 

much more efficiently processed by DCs, resulting in an increased presentation to CD4+ 

and CD8+ T cells. The mechanism of access to MHC class I loading appeared to differ 

between the two forms of Ag. Whereas whole soluble protein Ag ended up largely in 

endo-lysosomes, SLPs were detected very rapidly outside the endo-lysosomes after 

internalization by DCs, followed by proteasome- and TAP-dependent MHC class I 

presentation. Compared to the slower processing route taken by whole protein Ags, 

our results indicate that the efficient internalization of SLPs, accomplished by DCs 

but not by B or T cells and characterized by a different and faster intracellular routing, 

leads to enhanced CD8+ T-cell activation. 
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Introduction

DCs are the major antigen (Ag) presenting cells (APCs) of the immune system and initiate 

adaptive T-cell responses 1. Therapeutic vaccination in cancer immunotherapy aims 

at the induction of potent effector CD4+ and CD8+ T-cell responses able to target and 

eradicate malignant cells. Vaccination with properly folded protein Ag efficiently induces 

CD4+ T helper cell responses that can exert effector function by themselves, and strongly 

promotes (neutralizing) antibody formation and has therefore successfully been applied for 

prophylactic vaccination against viral infections 2-4. Although protein vaccines can induce 

CD8+ T-cell responses 5, efficient anti-tumor immune responses require a more robust 

and efficient induction of potent cytotoxic CD8+ T cells. However, improvement of the 

quality and quantity of CD8+ T-cell responses by vaccination remains a major challenge 6,7.  

Our group has previously reported successful induction of potent CD4+ and CD8+ T-cell 

responses in preclinical models and patients with (pre-)malignant disease of the cervix via 

therapeutic vaccination with synthetic long peptides (SLPs) of the E6 and E7 oncoproteins 

of high risk HPV16 8-10. The SLPs used as vaccines in these studies are overlapping synthetic 

peptides of 15–35 amino acids that i) Cover the entire sequence of the native protein Ag 

to which an immune response is targeted and ii) Require internalization and processing by 

DCs for optimal presentation in MHC class I and class II molecules 11 iii) Do not require HLA-

typing as ingestion by antigen-presenting cells of overlapping strands of peptides allows 

epitope selection in vivo based on the patient’s own HLA-profile iv) Facilitates simultaneous 

priming of T cells against multiple dominant and subdominant epitopes stimulating a broad 

T-cell response 12. SLP vaccines have also been used against other types of cancers. T-cell 

immunity was induced against p53 in patients with metastatic colorectal cancer using 

SLP vaccines 13 and robust immune responses were similarly induced against NY-ESO-1 

in patients with ovarian cancer 14. In addition, SLP vaccines have shown promising results 

against other immunological diseases 15-18. In a direct comparison, SLP vaccines were more 

efficient in inducing CD8+ T-cell responses than protein vaccines 6,17 and lead to stronger 

and more effective Ag-specific immune responses 19-21. The positive effects of SLP vaccines 

in pre-clinical models and in patients are well described, but little is known concerning 

the mechanisms underlying the vaccine efficacy and the intracellular processing and 

efficiency of MHC class I and class II presentation of SLPs. It is believed that substitution of 

whole protein Ag by overlapping long peptide Ag facilitates the internalization, processing 

and presentation of the relevant epitopes by DC 11. We now report studies on the uptake, 

intracellular localization, and efficiency of processing and MHC presentation of SLPs by 
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murine and human DCs, including scrutiny of the role of the proteasome, TAP and endo-

lysosomal processing in MHC class I cross-presentation of SLPs. To our knowledge this is 

the first report presenting how DC efficiently process SLPs, for presentation to CD8+ T cells. 

We observed a distinct cellular localization of SLPs compared to protein in DC following 

exposure to Ag, compatible with the different kinetics and efficiency of cross-presentation 

and subsequent CD8+ T-cell activation. These results highlight the fact that SLPs behave 

fundamentally different from proteins as an Ag for T-cell response induction. This insight 

can serve as a starting point for further optimization of SLP-based vaccines.

RESULTS

Superior Ag presentation of SLPs by DCs compared with that of protein 

The capacity of DCs to process and present different forms of exogenous Ag in MHC class 

I and II was studied by loading BMDCs with SLP-OVA24aa or soluble OVA protein (OVA-

protein) for 24 h and measuring B3Z CD8+ T-cell and KZO CD4+ T-cell activation. DCs loaded 

with SLPs potently activate B3Z and KZO T cells suggesting that SLPs is internalized and 

efficiently routed into the MHC class I and II Ag presentation pathways (Figure 2.1A and 

B). In contrast, DCs loaded with protein completely failed to activate CD8+ T cells but did 

successfully activate KZO CD4+ T cells, albeit with at least 64-fold lower efficiency compared 

to SLP-loaded DCs (Figure 2.1B). Pre-stimulation of DCs with the TLR4 ligand LPS had no 

effect on the MHC class I presentation of OVA-protein but improved Ag presentation of SSP-

OVA8aa (data not shown) and long peptide Ag (Figure 2.1C). HLA-B7-restricted presentation 

by human MoDCs of HIV-derived protein and SLPs was also studied. We were unable to 

detect cytokine production by CD8+ T cells co-cultured with GAG-protein-loaded DCs. In 

contrast, SLP-GAG22aa induced significant CD8+ T-cell activation (see Figure 2.2 and below). 

Together, these data show that cross-presentation of SLPs is superior to that of proteins 

as examined with both mouse and human DCs.

Rapid Ag presentation of SLPs by murine and human DCs

The efficiency of SLP-processing was assessed by studying the time required for DCs to 

present Ag on MHC class I (H2-Kb) molecules. Murine DCs were incubated with a single 

concentration of SLPs, SSPs or protein for the indicated time-periods. The minimal peptide, 

SSPs, was rapidly presented to CD8+ T cells resulting in strong activation already after 1 
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h. DCs loaded with SLP- also activated CD8+ T cells 1 h after Ag loading but with lower 

potency. We excluded that SLPs- were cleaved extra-cellularly, processed and loaded on 

MHC class I and II molecules by incubating PFA-fixed cells for with the peptide Ag and 

observed no cross-presentation (data not shown). DCs loaded with 10 µM OVA-protein 

failed to induce significant CD8+ T-cell activation (Figure 2.2A). I-Ab-restricted MHC class 

II presentation was next studied and we observed that within 1 h of Ag incubation DC 

loaded with SLP-OVA17aa and SLP-OVA31aa activated CD4+ T cells with similar efficiency even 

though the peptides varied in length. In contrast, DC loaded with OVA-protein stimulated 

OT-IIZ CD4+ T cells with lower potency and it took at least 3 h of Ag loading, suggesting 

Figure 2.1  Efficient MHC class I and class II presentation by mouse DCs incubated with SLPs.

C57BL/6 x C3H F1 BMDCs were incubated for 24 h with titrated amounts of SLP-OVA24aa or OVA-

protein and co-cultured overnight in the presence of (A) B3Z CD8+ T cells or (B) KZO CD4+ T cells. 

T-cell activation was determined as described in Materials and Methods. (C) D1 cells were pre-

cultured with 10 μg/ml LPS (LPS DC) and compared with immature DCs (imDC) in their capacity 

to activate B3Z T cells after 24 h incubation with Ag. Data are shown as mean + SD of 3 samples 

from one representative experiment representative of four (A), two (B) and three (C) experiments 

performed. ***P < 0.001, *P < 0.05, two-way ANOVA and Bonferroni posttests.
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slower uptake and processing mechanisms involved for the MHC class II processing of 

protein compared to SLPs (Figure 2.2B). The rapid and efficient processing of SLPs into 

MHC class I molecules was also observed with human DCs (Figure 2.2C). MoDCs loaded 

with SLPs activated CD8+ T cells already 1 h post-incubation. Ag presentation increased 

further with longer incubation periods and appeared to reach plateau levels at 3 h post-

incubation. In line with the experiment shown in Figure 2.1A, no Ag presentation could be 

detected after incubation of MoDCs with GAG-protein, even when the concentration of the 

Figure 2.2  Rapid cross-presentation by mouse and human DCs loaded with SLPs compared 

with soluble protein. 

Murine DCs were pulsed for 1, 3 or 5 h with 10 nM SSP-OVA8aa, 10 µM SLP-OVA17aa, SLP-OVA24aa, SLP-

OVA31aa or OVA-protein, washed 3x times with PBS/0.2% FCS and fixed with 0.4% paraformaldehyde. 

Ag-loaded DCs were cultured overnight with (A) B3Z CD8+ T cells or (B) OT-IIZ CD4+ T cells. (C) 

Human MoDCs were incubated for 1, 3 or 5 h with GAG protein, SLP-GAG22aa or SLP-GAG9aa (2 μM), 

cells fixed, and HIV-specific CD8+ T cells added overnight. IFN-γ production measured by ELISA 

was used to determine CD8+ T-cell activation. MoDCs were incubated for 24 h with SLP-GAG22aa, 

soluble GAG-protein and a CNBr/EndoGluc-treated GAG-protein digest. (D) HIV-specific T cells 

were added and total IFN-γ- or TNF-α-producing cells were determined by flow cytometry. Data 

are shown as mean + SD of 3 samples from one experiment representative of three (A) or two 

(B, C) or from one single experiment (D). (A-C) Data were analyzed with two-way ANOVA and 

Bonferroni posttests, ***P < 0.001, **P < 0.01.
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protein was increased five-fold (data not shown). SSPs showed robust cytokine production, 

within 1 hour of Ag-loading. In general, the percentages of IFN-γ-producing CD8+ T cells 

stimulated by SLP-loaded DCs were lower compared to stimulation by DCs loaded with 

SSPs. GAG-protein could be cross-presented, however, if offered in an alternative way to 

APC. DCs loaded with protein fragments obtained by treatment with cyanogen bromide 

(CNBr) and Endo-Glu-C cross-presented the protein digest and activated HIV-specific 

CD8+ T cells, but with lower potency compared to SLP-GAG22aa (Figure 2.2D). The CNBr 

and Endo-Glu-C generated GAG-protein digest was analyzed and yielded the specific 

fragments highlighted in Supporting Information Figure S2.1. HIV-specific CD8+ T cells 

readily recognized processed GAG-protein in its native conformation. DCs were incubated 

with NYVAC-C-infected apoptotic HeLa cells expressing among other viral proteins the 

GAG-protein 58, inducing potent activation of CD8+ T cells. DCs incubated with HeLa cells 

infected with NYVAC-WT (HIV GAG-negative) failed to activate HIV-specific CD8+ T cells. 

(Supporting Information Figure S2.2) Taken together, our data suggest that the method of 

Ag delivery is crucial for cross-presentation to be efficient and indicate that both murine 

and human DCs more efficiently internalize and process SLPs compared to soluble protein.

SLPs are primarily located outside endo-lysosomes upon internalization

To assess the internalization of SLPs by DCs, murine DCs were incubated for indicated time 

periods with fluorescently labeled SLP-OVA24aa-Bodipy-FL (Figure 2.3A) or SLP-OVA17aa-

Bodipy-FL (Figure 2.3B) and the uptake was analyzed by confocal imaging. SLPs were 

internalized by DCs within 2 h of incubation. The fluorescence intensity increased with 

longer incubation, indicating continuous uptake of SLPs during 24 h. The integrity of the 

Bodipy-labeled SLPs was confirmed by analysis on Tricine-gel, excluding that Bodipy-dye 

was intracellularly cleaved from the SLPs resulting in free dye and SLP inside the cells 

(Supporting Information Figure S2.3). Next, the intracellular localization of SLPs and 

protein was compared. To this purpose, DCs were incubated with Ag and Lysotracker red 

and the co-localization between the Ag (green) and endo-lysosomes (red) was studied. 

Although SLPs is internalized within 2 h, we observed that DCs internalized SLP-OVA24aa-

Bodipy-FL and, the much slower endocytosed, OVA-protein-Alexa488 in sufficient amounts 

to be accurately detected and quantified after 24 h. The disparity in green fluorescence 

intensity is related to the intrinsic differences in the green dyes (1 Bodipy-FL dye per SLP 

molecule versus 4 – 5 Alexa488 dye`s per protein molecule) used in the analysis. We have 

confirmed previously that Alexa488 and Bodipy-FL dyes do not differentially modulate 
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uptake, intracellular routing and processing of Ag 22. Internalized SLPs was detectable 

diffusely inside DCs (Figure 2.3C). The use of the lysotracker red allowed the identification 

of distinct round (red fluorescent) organelles which represented endo-lysosomes. Upon 

overlay of the green and red fluorescent images, a low level of co-localization of the two 

colors was detected in DCs that were cultured with SLPs, indicating that SLPs was primarily 

outside the endo-lysosomes. In contrast, DCs which had internalized protein contained 

Figure 2.3  Distinct intracellular localization of SLPs and protein Ag in DCs. 

DCs were incubated with 20 µM (A) SLP-OVA24aa-Bodipy-FL or (B) SLP-OVA17aa–Bodipy-FL for 2, 5 

and 24 h and analyzed by confocal microscopy (63x objective, scale bar, 20 µm). (C, D) DCs loaded 

with 10 µM SLP-OVA24aa-Bodipy-FL or 10 µM OVA-Alexa488-protein for 24 h were co-stained with 

Lysotracker red for visualization of endo-lysosomes. Confocal images of DCs incubated with (C) 

SLP-OVA24aa-Bodipy-FL and (D) OVA-Alexa488 are shown as Bodipy/Alexa488/green fluorescence 

(top left), Lysotracker/red fluorescence (top right), bright field (bottom left) and overlay image 

(bottom right). (C, D) All scale bars, 5 µm. (E, F) Co-localization of the green-fluorescence of (E) SLP-

OVA24aa-Bodipy-FL and (F) OVA-Alexa488 with endo-lysosomes was analyzed using Leica software 

(scatter plots) and (G) quantified results are depicted as mean + SEM of 10-20 samples from one 

experiment representative of two performed. Results are representative of four (A, B) or two (C–G) 

independent experiments analyzing 10–20 images per experiment. The Mann-Whitney test was 

applied to determine the difference between SLP-OVA24aa-Bodipy-FL vs. OVA-Alexa488, ***P < 0.001.



45

Efficient processing of long peptides compared to proteins by DC

2
distinct green-fluorescent hot spots within the cell which in addition had a high degree of 

co-localization with Lysotracker red resulting in a nearly complete absence of single red 

fluorescent compartments and appearance of yellow(ish) spots (Figure 2.3D). The results 

indicate that most, if not all, endo-lysosomes contained protein upon internalization by 

DCs. Co-localization was quantified by analyzing DCs which internalized SLPs (Figure 2.3E) 

or protein (Figure 2.3F). On average, in DCs cultured with SLPs, 8 ± 3% of the green signal 

detected co-localized with the red fluorescence detected. In comparison, in DCs loaded 

with protein (Figure 2.3F) as much as 56 ± 18% of the green signal detected co-localized 

with the red fluorescence (Figure 2.3G). In summary, after 24 h of Ag uptake, the majority 

of SLPs is localized outside of the endo-lysosomes whereas the majority of protein is 

present inside endo-lysosomes.

MHC class I Ag cross-presentation by DCs loaded with SLPs is proteasome- 
and TAP- dependent

The contribution of the proteasome, the transporter associated with Ag processing (TAP) 

and endosomal processing in the MHC class I cross-presentation of SLPs by DCs was 

investigated with SLP-OVA24aa as model Ag. To this purpose, WT BMDCs were incubated 

with titrated amounts of SLPs (Figure 2.4A) or alternatively, the proteasome inhibitor 

epoxomicin was added during culture of DCs and SLPs (Figure 2.4B). We observed a nearly 

complete loss in MHC class I cross-presentation of SLPs when the proteasome function 

was inhibited, indicating that intracellular processing of SLPs is dependent on proteasome 

functionality. Epoxomicin-treated DCs cross-presented particulate forms of SLPs under 

similar conditions (Supporting Information Figure S2.4B), suggesting that the decrease 

of MHC class I cross-presentation via inhibition of the proteasome was mainly associated 

with the processing of soluble SLPs. 

In comparison to WT BMDC, TAP1 KO BMDCs were largely deficient in activating CD8+ T cells 

(Figure 2.4C). All DC conditions used to study MHC class I presentation of SLP efficiently 

presented SSP-OVA8aa on MHC class I molecules indicating that epoxomicin or the absence 

of functional TAP did not affect the general MHC class Ag I presentation machinery of DCs 

(Figure 2.4D). A potential role of endo-lysosomal acidification in the processing by DCs 

of SLPs was assessed by Ag-loading in the presence of titrated amounts of bafilomycin 

A (Baf A), a lysotropic reagent which inhibits acidification of endo-lysosomes thereby 

influencing the activity of pH-sensitive proteases present in these compartments. Only 

a moderate effect of Baf A on MHC class I cross-presentation was observed, reflected by 
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a maximally 35% decrease in CD8+ T-cell activation at the highest concentration of the 

compound used (Figure 2.4E). DCs cross-presented SLPs with similar efficiency over a 

range of Ag-concentrations in the presence of Baf A comparable with that of untreated 

DCs whereas the cross-presentation of particulate SLPs was considerably decreased 

(Supporting Information Figure S2.4C, D and E). Lack of Cathepsin S did not modulate 

MHC class I cross-presentation of SLPs (Supporting Information 4C and E). Collectively, the 

results suggest that SLPs, upon internalization are most likely cross-presented into MHC 

class I molecules via classical cytosolic Ag presentation pathways. 

Figure 2.4  MHC class I Ag cross-presentation of SLPs depends on proteasome activity and 

TAP translocation. 

WT C57BL/6 BMDCs were (A) left untreated or (B) pretreated for 60 min with 1 µM epoxomicin 

before culture with titrated amounts of SLP-OVA24aa or (D) 0.5 nM SSP-OVA8aa. (C, D) TAP1- KO BMDCs 

were loaded with titrated amounts of SLP-OVA24aa or 0.5 nM SSP-OVA8aa. (E) D1 cells were cultured 

with the indicated amounts of Baf A for 1 h and then loaded with 5 µM SLP-OVA24aa and 0.5 nM 

SSP-OVA8aa in continuous presence of Baf A. Ag incubation was carried out for 24 h, cells washed 

3x times with complete medium and B3Z CD8+ T-cell activation determined after stimulation with 

Ag-loaded DCs. Data are shown as mean + SD of 3 samples from one experiment representative 

of three performed. (E) Statistical significance determined with two-way ANOVA and Bonferroni 

posttests, ***P < 0.001 & *P < 0.05.
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SLPs are efficiently cross-presented by murine DCs but poorly by other cell 
types

Freshly isolated B and T cells were incubated with SLP-OVA24aa their MHC class I presentation 

capacity of SLPs compared to DCs. Maximum MHC class I presentation by the different cell 

types was based on the presentation of SSP-OVA8aa. DCs (Figure 2.5A-C) were superior in 

cross-presentation of SLPs in comparison to B or T cells. Within this setting, B and T cells 

failed to activate CD8+ T cells upon loading with protein (data not shown). To better mimick 

the in vivo ratio of DC, B and T cells present in the draining lymph nodes (DLN) 23,24, MHC 

Figure 2.5  DCs specifically and more efficiently cross-present SLPs than B and T cells to 

CD8+ T cells. 

(A-C) Five thousand (A) DCs, (B) B cells and (C) T cells were loaded with titrated amounts SLP-

OVA24aa and SSP-OVA8aa. B and T-cell numbers were increased 10-fold (50,000 cells) and subsequently 

loaded with (D) 0.5 µM SSPs and 5 µM SLPs or with (E) LPS (10 µg/ml) added to the cultures. Ag 

incubation was carried out for 24 h, followed by washing steps and and incubation with B3Z T 

cells. Mice were vaccinated with mixtures of 40 nmol SLP-OVA24aa and 5 nmol CpG ODN 1826. 24 h 

after vaccination, animals were sacrificed, DLNs removed and CD11c+, CD19+ and CD3+ cells FACS-

sorted out and used as APCs in a 72 h ex vivo culture with OT-I splenocytes. CD8+ OT-I proliferation 

was determined by 3H-thymidine incorporation. (A-E) Data are shown as mean + SD of 3 samples 

from one out of two independent cell isolations/experiments performed. (F) The averages ± SEM 

from two independent experiment/injections are shown. (D, E) Statistical significance determined 

with one-way ANOVA and Bonferroni posttests; (F) data compared using a Student’s t-test. ***P 

< 0.001, **P < 0.01.
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class I Ag presentation by 10-fold higher numbers of B and T cells were also compared to 

DCs. However, no improvement of CD8+ T-cell activation was observed (Figure 2.5D). LPS 

stimulation of B cells resulted in comparable presentation of SSPs to CD8+ T cells as by 

DCs, but DCs were still superior APC in cross-presenting SLPs even in the presence of LPS 

(Figure 2.5E). Finally, direct vaccinations with SLPs resulted in preferential internalization 

in vivo and presentation by DCs whereas SSPs can also be presented by B cells (Figure 

2.5F). Collectively, these results point to DCs as the primary and most efficient APC to 

cross-present SLPs in MHC class I molecules.   

Discussion

Using two distinct experimental Ag models, we show that both mouse and human DCs 

more efficiently cross-present SLPs in MHC class I molecules in contrast to whole protein 

Ag, which poorly induces MHC class I cross-presentation and under the conditions tested 

fails to activate CD8+ T cells. The improved MHC class I cross-presentation of SLPs is possibly 

related to the distinct intracellular localization of SLPs compared with that of protein Ag 

upon uptake by DCs. SLPs were shown to be located primarily outside the endo-lysosomes 

as early as 2 h after Ag incubation. The role of the proteasome and TAP next to the cytosolic 

presence suggest that SLP Ag is rapidly cross-presented into MHC class I molecules via the 

classical MHC class I Ag processing pathway 25,26, leading to efficient and potent activation 

of CD8+ T cells. Employing a faster cytosolic route upon internalization of SLPs, in contrast 

to the slower lysosomal route traveled by protein Ag 27,28, is compatible with the shorter 

time span needed for SLPs cross-presentation by DCs.

The advantages of substituting proteins or short peptides by SLPs in active immunization 

protocols, to enhance in vivo priming of anti-tumor CD4+ and CD8+ T cells have been shown 

and published before by our group 29 and also by others 6. In these reports, mostly (pre-)

clinical in vivo observations were described but not the processing mechanisms of SLPs by 

DCs and the efficiency of the ensuing MHC class I and class II presentation. We have now 

analyzed the mechanistic aspects of SLP processing and presentation by DCs and show in 

direct comparisons that SLPs facilitated MHC class I and II Ag presentation by DCs compared 

with that of equimolar concentrations of protein Ag. These results are in accordance with the 

study by Zhang et al. 6 who showed that, in comparison to long peptide vaccines, vaccinations 

with soluble protein led to poor protection of mice against a lethal viral challenge which 

was associated with insufficient CD4+ T-cell responses and low specific CD8+ T-cell responses. 
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Relatively poor potency of protein based vaccines to induce CD8+ T-cell responses in vitro 

and in vivo can be enhanced by coupling of targeting moieties 30-33 or via encapsulation 

in PLGA-particles 34. These methods are all believed to improve uptake and processing by 

professional APCs. Likewise, potency of SLPs can be further enhanced, via encapsulation 

in PLGA-particles 35, by antibody-targeting strategies 32 and as published previously by 

our group, production of SLP-TLRL peptide-conjugates 22 that will undergo phase I clinical 

trial testing in the near future.

Our data at face value might contradict other pre-clinical studies showing better MHC class 

I Ag presentation and CD8+ T-cell activation using OVA-protein as Ag 27. This discrepancy 

can be explained by the fact that the B3Z CD8+ T-cell clone used in our study to analyze 

MHC class I Ag presentation is co-stimulation independent and is purely dependent 

on the recognition of the H2-kb/SIINFEKL complexes. Using co-stimulation dependent 

OT-I CD8+ T cells MHC class I cross-presentation of OVA was detected at concentrations 

starting from 0.0025 µM (data not shown) in accordance with other published reports 36. 

However, the use of co-stimulation-independent T-cell clones was vital in the current study 

to accurately analyze the efficiency of MHC-restricted Ag processing and presentation 

without interference by additional stimuli modulating T-cell activation. 

In the human model, no MHC class I cross-priming of HIV-specific CD8+ T cells was detected 

using whole soluble GAG-protein. MHC class I presentation could be induced by loading 

DCs with pre-cleaved protein fragments. This observation suggests that the intracellular 

processing of internalized whole soluble GAG-protein is very inefficient and that pre-

cleaved protein fragments facilitate internalization and intracellular Ag processing. 

SLPs were clearly present inside DCs after 2 h of incubation. Previous work by our group 

revealed that DCs required more than 30 min to internalize the SLPs 22. As observed before, 

internalized soluble intact protein ended up mainly in the endosomes of DCs 37,38, whereas 

most of the internalized SLPs was localized outside the endo-lysosomal compartments 

at all the time points analyzed. Our results partially differ from an earlier published study 

reporting a larger fraction of internalized long peptides inside the lysosomes. In this study 

internalized long peptides were detected outside lysosomes at early- but not at late time 

points 6. In addition, the authors reported dotted patterns of long peptide Ag inside DCs 

in contrast to the diffuse pattern of internalized SLPs, mainly located outside the endo-

lysosomes, as we show here. These differences might be related to the DCs used in the 

respective studies with possibly different functional properties. Zhang et al. used the 
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DC2.4 murine bone marrow-derived DCs cell line 39. We used D1 cells, a cell line closely 

resembling primary DCs 40. Confocal analysis with freshly cultured BMDCs confirmed that 

internalized SLPs were present throughout the cell (data not shown). Importantly, both 

our results and those of Zhang et al. 6 show that protein Ag does not or poorly access the 

cytosol upon internalization by DCs. Therefore, we can conclude that (synthetic) long 

peptide Ag and protein Ag are routed differently in DCs. 

Lack of specific markers for the cytosol thwarted our attempts to conclusively show 

that SLPs are in the cytosol. Nevertheless, the proteasome inhibition experiments and 

experiments with TAP1 KO DCs provide important evidence that ingested SLPs end up in 

the cytosol for processing and presentation. 

Some recent reports have indicated that some proteases associated with MHC class II 

Ag presentation could also play a role in class I cross-presentation 25,26. Ag trimming in 

endo-lysosomes by proteases are pH-dependent. A significant role for Cathepsin S, which 

has optimal activity at neutral pH 41, in the processing of SLPs into MHC class I molecules 

was excluded. Inhibitors of endo-lysosomal acidification have been shown to block the 

translocation of protein from the endosomes to the cytosol 42. The minor decrease in MHC 

class I presentation of SLPs by DCs in the presence of Baf A might be due to decreased 

translocation of internalized SLPs from the endo-lysosomes to the cytosol, limiting the 

amount of SLPs cleaved by the proteasome.. 

DCs incubated with SSPs resulted in the most rapid and vigorous T-cell activation in 

comparison to the SLPs. However, immunizations with SSPs are associated with considerable 

limitations 43,44; for example the lack of CD4+ T-cell help characterizing the use of short 

peptides representing minimal CD8+ T-cell epitopes. Other restrictions are the necessity for 

HLA-typing for each patient to be treated and tolerance induction due to SSP presentation 

by non-professional APC 11. Another disadvantage of SSPs is the short-lived in vitro Ag 

presentation in comparison to SLPs 45 which, next to SSP loading on non-professional APCs 

might underlie the vanishing CD8+ T-cell responses observed in vivo following vaccination 

with SSPs 46. SLPs are not able to bind directly to MHC class I and their presentation to CD8+ 

T cells therefore requires uptake and processing by DCs before they are presented 43,47. 

Interestingly, Eikawa et al showed that MHC class I presentation by human APC of NY-ESO-1 

long peptides could be blocked by inhibiting actin filament formation 47.

A vital aspect of efficient T-cell priming in vivo is specific Ag presentation by DCs and not 

by other immune cells that lack the capacity to provide adequate co-simulation and thus 
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may cause T-cell tolerance 48,49. DCs are present in lower numbers in human blood but also 

in lymphoid tissues 23,24. In addition, s.c. or intradermally administered SLP-vaccines do not 

require active transport by phagocytic cells due to their small size (1.5 – 5 kD). Most likely 

SLP-vaccines enter the DLN through passive transport 50 where they encounter abundant 

numbers of B cells in the B-cell follicles before accessing resident or migrating DCs present 

in the T-cell zone 51,52. But B cells isolated from vaccinated animals were not capable of 

priming naïve CD8+ T cells ex vivo 1 day post subcutaneous vaccination with SLPs (Figure 

2.5), whereas CD11c+ DCs isolated from the same DLN showed potent capacity to prime 

naïve CD8+ T cells. in accordance with the data of Bijker et al. 8. 

Previous reports describing the in vivo potency of vaccinations with SLPs have not revealed 

a mechanistic basis for the observed enhanced anti-tumor T-cell responses in cancer 

patients 9,53. 

Our novel findings, involving a head to head comparison show conclusively that SLPs 

are far more efficiently processed into both the MHC class I and class II Ag presentation 

pathways by DCs in comparison with soluble protein. MHC class I cross-presentation of SLPs 

is accomplished via processing mechanisms most commonly associated with the classical 

cytosolic MHC class I Ag cross-presentation pathways 54. In addition, DCs loaded with SLPs 

potently activate CD4+ T cells. Dual priming of both CD4+ and CD8+ T cells by the same 

DCs likely underlies the potent and efficient adaptive cellular immune responses observed 

upon therapeutic vaccinations with SLPs in patients with (pre-)malignant diseases.

Material and methods

Mice

WT C57BL/6 (CD45.2/Thy1.2; H2-Kb) mice were obtained from Charles River Laboratories 

(France). F1 progeny of C57BL/6 x C3H (H2-Kk) and OT-I/Thy1.1/CD45.2 were bred in the 

specific pathogen-free animal facility of the Leiden University Medical Center. TAP1 KO 

mice (C57BL/6 CD45.2/Thy1.2; H2-Kb) were purchased from the Jackson laboratory (Bar 

Harbor, ME). All mice were used at 8–12 weeks of age in accordance with national legislation 

and under supervision of the animal experimental committee of the University of Leiden. 
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Peptides and proteins

For the murine OVA-experimental model, peptides were generated, purified, dissolved 

and stored as described previously 55. Fluorescent labeling of SLP-OVA24aa with BODIPY-

FL N-(2-aminoethyl) maleimide was performed as described before (Table 2.1) 55 and 

endotoxin-free ovalbumin (OVA, Worthington LS003048) used. Ovalbumin-Alexa Fluor® 

488 was purchased from Invitrogen. Table 2.1 also describes the peptides used for the 

experiments with human cells. HIV-1 GAG-protein was generated as described before 56, 

over-expressed in Escherichia coli BL21 (DE3) and purified as described before 57.

Cells 

Human monocyte derived DC (MoDC) were obtained from freshly isolated peripheral 

blood mononuclear cells (PBMCs) in buffy coats of healthy blood donors and generated 

by isolating CD14+ monocytes. The generation of the HIV-specific CD8+ T-cell line has been 

Table 2.1  List of peptides used

Abbreviation

Location in 
protein  
(begin-end) Chemical modifications Sequence

SSP-OVA8aa 257–264 SSP-OVA257–264 SIINFEKL

SSP-OVA8aa 257–264 SSP-OVA257–264-Bodipy SIINFEKL-Bodipy

SLP-OVA24aa 247–264 SLP-OVA247–264A5K DEVSGLEQLESIINFEKLAAAAAK

SLP-OVA24aa-
Bodipy

247–264 SLP-OVA247–264A5K-Bodipy DEVSGLEQLESIINFEKLAAAAAK-Bodipy

SLP-OVA31aa 240–264 SLP-OVA240–264A5K SMLVLLPDEVSGLEQLESIINFEKLAAAAAK

SLP-OVA31aa-
Bodipy

240–264 SLP-OVA240–264A5K-Bodipy SMLVLLPDEVSGLEQLESIINFEKLAAAAAK-
Bodipy

SLP-OVA17aa 323–339 SLP-OVA323–339 ISQAVHAAHAEINEAGR

SLP-OVA17aa-
Bodipy

323–339 SLP-OVA323–339-Bodipy ISQAVHAAHAEINEAGR-Bodipy

SLP-OVA31aa 316–346 SLP-OVA316–346 SSAESLKISQAVHAAHAEINEAGREVVGSAE

SLP-OVA31aa-
Bodipy

316–346 SLP-OVA316–346-Bodipy SSAESLKISQAVHAAHAEINEAGREVVGSAE-
Bodipy

SSP-GAG9aa 223–231 SSP-GAG223–231 GPGHKARVL

SLP-GAG22aa 216–237 SLP-GAG216–237 TACQGVGGPGHKARVLAEAMSQ
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described before 58. Freshly isolated murine DC were cultured from mouse bone marrow 

(BM) cells, as described before 59. The D1 cell line, an immature primary splenic DC line 

(C57BL/6-derived), was cultured as described elsewhere 60. B3Z CD8+ T cells, OT-IIZ and 

KZO CD4+ T-cells are hybridoma cell lines expressing a β-galactosidase construct which 

upon T-cell activation can be measured by a colorimetric assay 22.

Murine MHC class I and class II Ag presentation assays

Unless otherwise indicated, 100,000 DC were plated out in triplicate using Greiner flat 

bottom 96-wells plate (#655101) and incubated for 24 hr with the Ags at the indicated 

concentrations. In some experiments, DCs were cultured in the presence of 10 µg/ml LPS 

prior to Ag incubation. Cells were washed 3x times with complete medium to remove 

excess Ag before the T-cell hybridoma B3Z CD8+ T cells (H2-kb/SIINFEKL), KZO CD4+ T cells 

(I-Ak/DEVSGLEQLESI) or OT-IIZ CD4+ T cells (I-Akb/ISQAVHAAHAEINEAGR) were added. 

T cells were cultures in the presence of Ag-loaded DC O/N at 37°C. To study kinetics of 

MHC class I and class II presentation, DCs were incubated with 10 nM SSPs, 10 µM SLPs 

or 10 µM protein for 1, 3 or 5 hr. After 3x washing, DCs were fixated by adding 50 µl/well 

of 0.2% PFA for 15 min. Fixation was blocked by adding 150 µl/well complete medium. 

In experiments aimed to study intracellular processing pathways involved in SLP-cross 

presentation in MHC class I molecules, BMDC or D1 cells were pre-incubated with 

epoxomicin (324800, Merck) or bafilomycin A1 (196000, Merck) followed by Ag-incubation 

as described above in the presence of the compounds. To assess Ag presentation by 

other cells in comparison to DC, B and T cells were isolated from total spleen single cell 

suspensions, FACS-sorted, and incubated with titrated amounts of SLP-OVA24aa, SSP-

OVA8aa or OVA and subsequently used as APC in co-cultures with B3Z CD8+ T cells as  

described above.

In vitro analysis of human T-cell activation

Human CD8+ T-cell activation was studied using MoDC cross-presenting Ags to human 

HIV-specific CD8 T cells. The cytokine production of HIV–specific CD8+ T cells was used 

as read out. To this purpose, MoDC were incubated for the indicated time with Gag-

protein, SLP-GAG22aa, SSP-GAG9aa or medium as a control. After the indicated incubation, 

MoDC were fixed with 0.2% paraformaldehyde (PFA) to prevent further processing and 

HIV-specific CD8 T cells were added (at approximately 5 T-cell: 1 DC ratio) followed by 
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overnight culture at 37oC/5%CO2. After 18 hr, supernatant was harvested to determine 

IFN-γ production by ELISA according to the manufacturer’s protocol (Sanquin, Amsterdam, 

The Netherlands).

In vitro analysis of human T-cell activation by MoDC incubated with Endo-
Gluc-CNBr GAG-protein fragments

Human CD8+ T-cell activation was studied using MoDC cross-presenting EndoGluc-CNBr 

GAG-protein fragments, which were generated as described above, to human HIV-specific 

CD8 T cells. The cytokine production of HIV–specific CD8+ T cells was used as read out. For 

this purpose, MoDC were incubated with GAG-protein, SLP-GAG22aa and EndoGluc-CNBr 

GAG-protein fragments. After 24 hr incubation, HIV-specific CD8 T-cells were added (at 

approximately 5 T-cell: 1 DC ratio) followed by overnight culture at 37°C/5%CO2. Brefeldin 

A (10 µg/ml, Sigma-Aldrich) was added to retain cytokines within the T-cells allowing 

the detection of multiple cytokines. After 18 hr, intracellular cytokine staining (ICS) was 

performed as described 61. Cells were fixed and permeabilized using Cytofix/Cytoperm™ 

Fixation/Permeabilization Solution Kit (BD). Cells were then incubated with α-TNF PE-Cy7 

(clone MAb11, eBiosciences), α-IFN-γ FITC, α-IL-2 APC, α-MIP-1β PE (all three from BD) and 

α-CD8 PerCP (Dako). After washing, cells were analyzed by flow cytometry using a LSRII 

flow ctyometer (BD Pharmingen) and analyzed with FlowJo software (Treestar). Cells were 

first gated based on the characteristics forward and side scatter properties, followed by 

identification of CD3+CD8+ T cells followed by intracellular analysis of cytokines produced 

within the gated CD8+ T cells. Net accumulation of activated GAG-specific CD8+ T-cells is 

the percentage of live CD8+ cells expressing one or more of the analyzed cytokines upon 

stimulation with MoDC loaded with Ag.

Confocal microscopy

DC were incubated for 2, 5 and 24 hr with 20 µM SLP-OVA17aa-Bodipy and SLP-OVA24aa-

Bodipy at 37°C. After incubation cells were washed 3 times to remove excess and unbound 

Ag, resuspended at a concentration of 2x105 cells in 200 µl complete medium and plated 

into poly-d-lysine coated glass-bottom dishes (MatTek) followed by mild centrifugation 

to allow the cells to adhere. Adhered cells were then fixed with 0.2% paraformaldehyde. 

All experiments were carried out on a Leica TCS SP5 confocal microscope (HCX PL APO 

63×/1.4 NA oil-immersion objective, 12 bit resolution, 1024×1024 pixels, pinhole 2.1 Airy 
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discs, zoomfactor 1 or 7). Imaging was performed using the 488 nm line from an Argon 

laser collecting emission between 500 and 600 nm. 

Alternatively, DC were incubated for 24 hr with 10 µM OVA-protein-Alexa488 or SLP-

OVA24aa-Bodipy at 37°C. After incubation cells were washed 3 times to remove excess and 

unbound Ag followed by 30 min incubation with 300 nM Lysotracker® red (Invitrogen) to 

stain endo-lysosomal compartments. After incubation, cells were washed and resuspended 

at a concentration of 2x105 cells 200 µl and plated into poly-d-lysine coated glass-bottom 

dishes (MatTek) 2 hr before analysis to allow cells to adhere. Cells were imaged using an 

inverted Leica TCS SP5 confocal microscope. Dual color images were acquired by sequential 

scanning, with only one laser per scan to avoid cross talk. The images were analyzed using 

the Leica software program (LAS AF).

Vaccination and ex vivo Ag presentation

Animals were injected subcutaneously (s.c.) with 40 nmol of SLPs or SSPs mixed with 5 

nmol CpG (Invivogen). One day later, sacrificed and draining lymph nodes (DLN) harvested 

and single cell suspensions prepared. To assess ex vivo Ag presentation, CD11c+ DC, CD19+ 

B and CD3+ T cells were isolated purified using FACS-sorting from DLN cell suspensions 

and subsequently used as APC in co-cultures with OT-I CD8+ T cells. 

Statistics

Statistical analyses applied to determine the significance of differences are described in 

the figure legends. 
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Supporting Information – Material and methods

HIV-1 GAG-protein Identification by Mass Spectrometry (MS)

HIV-GAG protein was digested with CNBr and endoproteinase GluC as follows: 400 µg 

HIV-GAG was reduced with DTT and alkylated with iodoacetamide. Chemical cleavage 

at methionine with CNBr in 70% formic acid was performed as described by 1. After 

lyophilization, the protein was additionally digested for 16 h at ambient temperature with 

40 ug endoproteinase GluC (Worthington) in ammonium bicarbonate pH 7.8. The mixture 

was passed through a 30 kD Microcon (Millipore) filter and peptides recovered from the 

filtrate (flow-through). The filtrate was lyophilized, dissolved in 95/3/0.1 v/v/v water/

acetonitril/formic acid and subsequently analyzed by on-line nanoHPLC MS/MS using an 

1100 HPLC system (Agilent Technologies), as previously described 2. Peptides were trapped 

at 10 µL/min on a 15-mm column (100-µm ID; ReproSil-Pur C18-AQ, 3 µm, Dr. Maisch GmbH) 

and eluted to a 200 mm column (50-µm ID; ReproSil-Pur C18-AQ, 3 µm) at 150 nL/min. 

All columns were packed in house. The column was developed with a 30-min gradient 

from 0 to 50% acetonitrile in 0.1% formic acid. The end of the nanoLC column was drawn 

to a tip (ID ~5 µm), from which the eluent was sprayed into a 7-tesla LTQ-FT Ultra mass 

spectrometer (Thermo Electron). The mass spectrometer was operated in data-dependent 

mode, automatically switching between MS and MS/MS acquisition. Full scan MS spectra 

were acquired in the FT-ICR with a resolution of 25,000 at a target value of 3,000,000. The 

two most intense ions were then isolated for accurate mass measurements by a selected 

ion monitoring scan in FT-ICR with a resolution of 50,000 at a target accumulation value 

of 50,000. Selected ions were fragmented in the linear ion trap using collision-induced 

dissociation at a target value of 10,000. In a post-analysis process, raw data were first 

converted to peak lists using Bioworks Browser software v 3.2 (Thermo Electron), then 

submitted to the Swissprot database using Mascot v. 2.2.04 (www.matrixscience.com) for 

protein identification. Mascot searches were with 2 ppm and 0.8 Da deviation for precursor 

and fragment mass, respectively, and no enzyme specified. Collision-induced dissociation 

spectra were manually inspected (see Supporting Information Figure S2.1B)

Human Ag presentation assays with apoptotic HeLa cells

Ag presentation to HIV- and vaccinia-specific human CD8 T-cells was studied using MoDC 

cross-presenting Ag from HeLa cells that were infected with NYVAC-C as described by 
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Quakkelaar et al. 3. The cytokine production of HIV-specific CD8 T-cells was assessed. In 

brief, HeLa cells were harvested by EDTA and infected with NYVAC-C or NYVAC-WT at a 

MOI of 5 for 1 hour. Cells were extensively washed to remove residual virus. After overnight 

incubation, cells were irradiated with UV-C (200 µW/cm2) to ensure that no residual virus and 

no viable cells were present and thus exclude direct presentation. Apoptotic virus-infected 

HeLa cells were harvested and added to MoDC at a 2:1 ratio. After 6 hr incubation, HIV- or 

vaccinia-specific CD8 T-cells were added (at approximately 5 T-cell: 1 DC ratio) followed 

by overnight culture at 37°C/5%CO2. Brefeldin A (10 µg/ml, Sigma-Aldrich) was added to 

retain cytokines within the T-cells allowing the detection of multiple cytokines. After 18 

hr, intracellular cytokine staining (ICS) was performed as described 4. Cells were fixed and 

permeabilized using Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD). Cells 

were then incubated with α-TNF PE-Cy7 (clone MAb11, eBiosciences), α-IFN-γ FITC, α-IL-2 

APC, α-MIP-1β PE (all three from BD) and α-CD8 PerCP (Dako). After washing, cells were 

analyzed by flow cytometry using a LSRII flow ctyometer (BD Pharmingen) and analyzed 

with FlowJo software (Treestar). Cells were first gated based on the characteristics forward 

and side scatter properties, followed by identification of CD3+CD8+ T cells followed by 

intracellular analysis of cytokines produced within the gated CD8+ T cells. Net accumulation 

of activated GAG-specific CD8+ T-cells is the percentage of live CD8+ cells expressing one 

or more of the analyzed cytokines upon stimulation with MoDC loaded with apoptotic 

NYVAC-C-infected HeLa cells. Background levels of cytokine production were determined, 

and subtracted from percentages obtained by GAG-specific stimulation, by culturing GAG-

specific CD8+ T-cells with MoDC incubated with NYVAC-WT infected HeLa.

Analysis of dendritic cell lysates incubated with fluorescent SLP by Tricine–
SDS-PAGE

DC in 2 ml medium containing 2x106 cells where incubated with SLP-OVA31aa-Bodipy for 

24 hr. After incubation, cells were harvested and washed twice with PBS to remove non-

internalized excess Ag. Supernatant was removed, the cell pellet resuspended in 50 µl 

lysis buffer (LB) (pH 7,4) and stored in eppendorf tubes at -80ºC till further use. Cell lysates 

were subsequently obtained by repetitive freeze-thaw cycles by placing tubes for 30 sec 

in liquid nitrogen followed by 30 sec in heating blocks (eppendorf thermostat plus) set 

at 60ºC. Cell lysates were analyzed using Tricine-SDS-PAGE gel as described before 5 with 

minor modifications. Briefly, 15 µl cell lysate was then mixed in a 1:1 ratio with reducing 

sample buffer and heated to 95ºC for 10 minutes. Samples were next loaded onto a 1.5 
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mm SDS-PAGE gel (49.5%T 3%C stacking gel and 49.5%T 6%C separating gel). Samples 

were ran at 90 V through the stacking gel and followed by 5 hr run at 35 V through the 

separating gel (Biorad systems). Protein and peptides fragments where visualized using 

Coomassie (Supporting Information Figure S2.3A). Green-fluorescent fragments were 

imaged and analyzed for EPI fluorescence intensity applying IVIS Imaging Systems, measuring 

the fluorescence at 520nm emission wavelength (Supporting Information Figure S2.3B).

PLGA-SLP preparation

Poly-(lactic-co-glycolic-acid) (PLGA) nanoparticles loaded with SLP-OVA24aa were prepared 

using a double emulsion with solvent evaporation method 6. 

MHC class I Ag presentation by soluble SLP compared to SLP encapsulated 
in PLGA-NP in the presence of epoxomicin

BMDC were left untreated or pre-incubated with 1 µM epoxomicin (324800, Merck) 

incubated for 24 hr with SSP, SLP or protein or SLP encapsulated in PLGA-NP at the 

indicated concentrations. Cells were washed three times with medium before the T-cell 

hybridoma B3Z CD8+ T-cells were added followed by O/N incubation at 37°C. MHC class I 

Ag presentation of OVA257–264 in H-2Kb was detected by activation of B3Z cells. 

MHC class I Ag presentation by DC in the presence of Bafylomicin or in the 
absence of Cathepsin S

BMDC were left untreated (A) or pre-incubated with 50 nM of bafilomycin A1 (196000, 

Merck) followed by Ag-incubation as described above in the presence of the compound 

(B). Cells were washed three times with medium before the T-cell hybridoma B3Z CD8+ 

T-cells were added followed by O/N incubation at 37°C. BMDC from cathepsin S-deficient 

(Cathepsin KO) mice were cultured in the presence of titrated amounts of SLP-OVA24aa 

and SSP-OVA8aa followed by analysis of B3Z CD8+ T-cell activation after co-culture with 

Ag loaded BMDC (C). MHC class I Ag presentation of OVA257–264 in H-2Kb was detected by 

activation of B3Z CD8+ T cells.
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Supporting information figure 1

= GPGHKARVL-epitope sequence presented in HLA-B7 and    
   recognized by the HIV-specific CD8+ T cell clone 

HIV-1 GAG-protein Identification by Mass Spectrometry (B) HIV-GAG protein was 
digested with CNBr and endoproteinase GluC and analyzed by mass spectrometry (MS) as 
described in supplemental M&M. Full scan MS spectra were acquired. In a post-analysis 
process, raw data were first converted to peak lists using Bioworks Browser software v 3.2 
(Thermo Electron), then submitted to the Swissprot database using Mascot v. 2.2.04 
(www.matrixscience.com) for protein identification. 
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manuscript), washed 3x to remove excess Ag and co-cultured 
overnight in the presence of B3Z CD8+ T cells  T-cell activation 
was determined as described in M&M.  
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     1 MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL 
    51 LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA 
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   451 SRPEPTAPPE ESFRSGVETT TPPQKQEPID KELYPLTSLR SLFGNDPSSQ 
   501 

Supporting Information Figure S2.1A  Similar processing and MHC class I presentation by 

DC of native and modified SLP-OVA24aa. 

WT BMDC were incubated for 24 hr with titrated amounts of native SLP-OVA with C-terminus 

sequence TEWTS or the SLP-OVA24aa (see Table 2.1 in manuscript), washed 3x to remove excess Ag 

and co-cultured overnight in the presence of B3Z CD8+ T cells T-cell activation was determined 

as described in M&M.

Supporting Information Figure S2.1B  HIV-1 GAG-protein Identification by Mass Spec-

trometry. 

HIV-GAG protein was digested with CNBr and endoproteinase GluC and analyzed by mass spec-

trometry (MS) as described in Supporting Information M&M. Full scan MS spectra were acquired. In 

a post-analysis process, raw data were first converted to peak lists using Bioworks Browser software 

v 3.2 (Thermo Electron), then submitted to the Swissprot database using Mascot v. 2.2.04 (www.

matrixscience.com) for protein identification.
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overnight in the presence of B3Z CD8+ T cells  T-cell activation 
was determined as described in M&M.  

A B
Matched peptides shown in Bold Red

     1 MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL 
    51 LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA 
   101 LDKIEEEQNK SKKKAQQAAA DTGHSNQVSQ NYPIVQNIQG QMVHQAISPR 
   151 TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM 
   201 LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEQIGWM 
   251 TNNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF 
   301 YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC 
   351 QGVGGPGHKA RVLAEAMSQV TNSATIMMQR GNFRNQRKIV KCFNCGKEGH 
   401 TARNCRAPRK KGCWKCGKEG HQMKDCTERQ ANFLGKIWPS YKGRPGNFLQ 
   451 SRPEPTAPPE ESFRSGVETT TPPQKQEPID KELYPLTSLR SLFGNDPSSQ 
   501 
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Supporting Information Figure S2.2  CD8+ T cell recognition of processed native GAG-

protein presented by human DC loaded with apoptotic HeLa cells. 

HeLa cells were harvested by EDTA and infected with NYVAC-C or NYVAC-WT at a MOI of 5 for 1 

hour. Cells were extensively washed to remove residual virus. After overnight incubation, cells 

were irradiated with UV-C (200 μW/cm2) to ensure that no residual virus and no viable cells were 

present and thereby excluding direct presentation. Apoptotic virus-infected HeLa cells were har-

vested and added to MoDC at a 2:1 ratio. After 6 hr incubation, HIV- or vaccinia-specific CD8 T-cells 

were added (at approximately 5 T-cell: 1 DC ratio) followed by overnight culture at 37°C/5%CO2. 

Brefeldin A (10 μg/ml, Sigma-Aldrich) was added to retain cytokines within the T-cells allowing 

the detection of multiple cytokines. After 18 hr, intracellular cytokine staining was performed. 

Cells were fixed and permeabilized using Cytofix/Cytoperm™ Fixation/Permeabilization Solution 

Kit (BD). Cells were then incubated with anti-TNF PE-Cy7 (clone MAb11, eBiosciences), anti-IFN- γ 

FITC, anti-IL-2 APC, anti-MIP-1β PE (all three from BD) and anti-CD8 PerCP (Dako). After washing, 

cells were analyzed by flow cytometry using a LSRII flow ctyometer (BD Pharmingen) and analyzed 

with FlowJo software (Treestar).
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Supporting information figure 2

CD8+ T cell recognition of processed native GAG-protein presented by human DC 
loaded with apoptotic HeLa cells. HeLa cells were harvested by EDTA and infected 
with NYVAC-C or NYVAC-WT at a MOI of 5 for 1 hour. Cells were extensively 
washed to remove residual virus. After overnight incubation, cells were irradiated with 
UV-C (200 µW/cm2) to ensure that no residual virus and no viable cells were present 
and thereby excluding direct presentation. Apoptotic virus-infected HeLa cells were 
harvested and added to MoDC at a 2:1 ratio. After 6 hr incubation, HIV- or vaccinia-
specific CD8 T-cells were added (at approximately 5 T-cell: 1 DC ratio) followed by 
overnight culture at 37°C/5%CO2. Brefeldin A (10 µg/ml, Sigma-Aldrich) was added to 
retain cytokines within the T-cells allowing the detection of multiple cytokines. After 
18 hr, intracellular cytokine staining was performed. Cells were fixed and 
permeabilized using Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD). 
Cells were then incubated with anti-TNF PE-Cy7 (clone MAb11, eBiosciences), anti-IFN-
γ FITC, anti-IL-2 APC, anti-MIP-1β PE (all three from BD) and anti-CD8 PerCP (Dako). 
After washing, cells were analyzed by flow cytometry using a LSRII flow ctyometer 
(BD Pharmingen) and analyzed with FlowJo software (Treestar).
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Supporting information figure 2

CD8+ T cell recognition of processed native GAG-protein presented by human DC 
loaded with apoptotic HeLa cells. HeLa cells were harvested by EDTA and infected 
with NYVAC-C or NYVAC-WT at a MOI of 5 for 1 hour. Cells were extensively 
washed to remove residual virus. After overnight incubation, cells were irradiated with 
UV-C (200 µW/cm2) to ensure that no residual virus and no viable cells were present 
and thereby excluding direct presentation. Apoptotic virus-infected HeLa cells were 
harvested and added to MoDC at a 2:1 ratio. After 6 hr incubation, HIV- or vaccinia-
specific CD8 T-cells were added (at approximately 5 T-cell: 1 DC ratio) followed by 
overnight culture at 37°C/5%CO2. Brefeldin A (10 µg/ml, Sigma-Aldrich) was added to 
retain cytokines within the T-cells allowing the detection of multiple cytokines. After 
18 hr, intracellular cytokine staining was performed. Cells were fixed and 
permeabilized using Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD). 
Cells were then incubated with anti-TNF PE-Cy7 (clone MAb11, eBiosciences), anti-IFN-
γ FITC, anti-IL-2 APC, anti-MIP-1β PE (all three from BD) and anti-CD8 PerCP (Dako). 
After washing, cells were analyzed by flow cytometry using a LSRII flow ctyometer 
(BD Pharmingen) and analyzed with FlowJo software (Treestar).
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Supporting information figure 3

1) Resolution of the Bio Rad Precision plus Protein all blue standard protein kit    
    250 kD- 10 kD in 49,5%T, 3%C gel. 
2) Cellysate of DC mock incubation
3) soluble SLP-OVA8aa-Bodipy-FL
4) Cellysate of DC incubated with SLP-OVA31aa-Bodipy-FL for 24 hr
5) soluble SLP-OVA31aa-Bodipy-FL
6) soluble SLP-OVA31aa

 

10 kD

25 kD

75 kD
37 kD

10 kD

25 kD

75 kD
37 kD

1            2           3             4           5            6

1            2            3             4           5           6
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Gel front

Gel front

SLP-Bodipy-FL are intact upon internalization by DC. DC in 2 ml 
medium containing 2x106 cells were incubated with SLP-OVA31aa-Bodipy 
for 24 hr. After incubation, cells were harvested and washed twice with 
PBS to remove non-internalized excess Ag. Supernatant was removed, the 
cell pellet resuspended in 50 µl lysis buffer (LB) (pH 7,4) and stored in 
eppendorf  tubes at -80ºC till further use. Cell lysates were subsequently 
obtained by repetitive freeze-thaw cycles by placing tubes for 30 sec in 
liquid nitrogen followed by 30 sec in heating blocks (eppendorf thermostat 
plus) set at 60ºC. Cell lysates were analyzed using Tricine-SDS-PAGE gel 
as described before (35) with minor modifications. Briefly, 15 µl cell 
lysate was then mixed in a 1:1 ratio with reducing sample buffer and 
heated to 95ºC for 10 minutes. Samples were next loaded onto a 1.5 mm 
SDS-PAGE gel (49.5%T 3%C stacking gel and 49.5%T 6%C separating 
gel). Samples were ran at 90 V through the stacking gel and followed by 5 
hr run at 35 V through the separating gel (Biorad systems). Protein and 
peptides fragments where visualized using Coomassie (supplemental 
figure 2A). Green-fluorescent fragments were imaged and analyzed for 
EPI fluorescence intensity applying IVIS Imaging Systems, measuring the 
fluorescence at 520nm emission wavelength 

Supporting Information Figure S2.3  SLP-Bodipy-FL are intact upon internalization by DC. 

DC in 2 ml medium containing 2x106 cells were incubated with SLP-OVA31aa-Bodipy for 24 hr. After 

incubation, cells were harvested and washed twice with PBS to remove non-internalized excess 

Ag. Supernatant was removed, the cell pellet resuspended in 50 μl lysis buffer (LB) (pH 7,4) and 

stored in eppendorf tubes at -80°C till further use. Cell lysates were subsequently obtained by 

repetitive freeze-thaw cycles by placing tubes for 30 sec in liquid nitrogen followed by 30 sec in 

heating blocks (eppendorf thermostat plus) set at 60°C. Cell lysates were analyzed using Tricine-

SDS-PAGE gel as described before (35) with minor modifications. Briefly, 15 μl cell lysate was then 

mixed in a 1:1 ratio with reducing sample buffer and heated to 95°C for 10 minutes. Samples were 

next loaded onto a 1.5 mm SDS-PAGE gel (49.5%T 3%C stacking gel and 49.5%T 6%C separating 

gel). Samples were ran at 90 V through the stacking gel and followed by 5 hr run at 35 V through 

the separating gel (Biorad systems). Protein and peptides fragments where visualized using 

Coomassie (Supporting Information Figure S2.2A). Green-fluorescent fragments were imaged and 

analyzed for EPI fluorescence intensity applying IVIS Imaging Systems, measuring the fluorescence 

at 520nm emission wavelength.
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Optimization of encapsulation of 
a synthetic long peptide in PLGA 

nanoparticles: low burst release is crucial 
for efficient CD8+ T cell activation
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Chapter 3

Ana Luisa Silva, Rodney A. Rosalia, Arzu Sazak, Myrra G. Carstens, 
Ferry Ossendorp, Jaap Oostendorp & Wim Jiskoot



Chapter 3

72

Abstract

Overlapping synthetic long peptides (SLP) hold great promise for immunotherapy of 

cancer. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) are being developed as 

delivery systems to improve the potency of peptide-based therapeutic cancer vaccines. 

Our aim was to optimize PLGA NP for SLP delivery with respect to encapsulation 

and release, using OVA24, a 24-residue long synthetic Agic peptide covering a CTL 

epitope of ovalbumin (SIINFEKL), as a model antigen (Ag). Peptide-loaded PLGA NP 

were prepared by a double emulsion/solvent evaporation technique. Using standard 

conditions (acidic inner aqueous phase), we observed that either encapsulation was 

very low (1–30%), or burst release extremely high (> 70%) upon resuspension of NP in 

physiological buffers. By adjusting formulation and process parameters, we uncovered 

that the pH of the first emulsion was critical to efficient encapsulation and controlled 

release. In particular, an alkaline inner aqueous phase resulted in circa 330 nm sized NP 

with approximately 40% encapsulation efficiency and low (< 10%) burst release. These 

NP showed enhanced MHC class I restricted T cell activation in vitro when compared 

to high-burst releasing NP and soluble OVA24, proving that efficient entrapment of 

the Ag is crucial to induce a potent cellular immune response. 
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Introduction

In recent years there is an increased interest in the application of therapeutic vaccination for 

treatment of cancer 1. Therapeutic cancer vaccines aim to induce a strong cellular response 

against tumor associated Ags 2. Dendritic cells (DC) are professional Ag presenting cells 

(APCs) that play a major role in the initiation of such an immune response, by continuously 

sampling the environment for foreign Ags and establishing the communication between 

the innate and adaptive immune system 3,4. Only appropriately activated DC are capable 

of inducing a robust cytotoxic T cell (CTL) response, which is required for effective 

immunotherapy of established tumors 5-8. For this purpose, DC are the major target cells 

for cancer immunotherapy vaccines 2,8. 

Therapeutic vaccination with overlapping synthetic long peptides (SLP), covering the 

entire amino acid sequence of tumor associated protein Ags and thus containing all 

possible MHC class I and II epitopes, has been successfully applied in murine models and 

clinical therapeutic vaccination trials 9-13. Moreover, vaccination of patients suffering from 

human papillomavirus 16 (HPV16) induced premalignant vulvar intraepithelial neoplasia 

with an HPV16-based SLP vaccine resulted in complete clinical regression of the lesions 

in some cases 11-13.

So far, Montanide-based water-in-oil (w/o) emulsions have been applied to formulate SLP 

in the majority of clinical therapeutic cancer vaccination trials 12-18. The use of Montanide-

based formulations has some important limitations, including non-biodegradability, 

causing significant local side effects, poorly controlled Ag release rates and limited 

scalability because of lack of long-term stability 19-21. Biodegradable delivery systems 

based on poly(lactic-co-glycolic acid) (PLGA) offer a promising alternative strategy for 

peptide-based cancer vaccines. PLGA is well suited for the preparation of micro- and 

nanoparticles (NP) 22-25, which can protect Ag from proteolytic enzymatic degradation and 

rapid clearance 26-29, allow co-encapsulation and simultaneous delivery of both Ag and 

adjuvants, and facilitate Ag uptake by DC 30-33. PLGA has a long safety record and is Food 

and Drug Administration (FDA) approved as an excipient, owing to its biodegradability and 

biocompatibility, with several slow-release formulations currently on the market 31,34. PLGA 

undergoes hydrolysis in the body to produce the original monomers, lactic acid and glycolic 

acid, which are natural by-products of metabolic pathways. Ag release can be regulated 

e.g. by varying the lactic acid/glycolic acid ratio 35-37. PLGA-based particulate systems can 

be manufactured reproducibly according to Good Manufacturing Practice conditions 
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and have been studied extensively for the delivery of a wide variety of Ags 24,34,38-40.  

Ags encapsulated in PLGA microparticles have shown to induce immune responses 

comparable to those of Ags adjuvanted with Montanide 51 37,41. PLGA is also known to have 

several disadvantages regarding instability of protein Ags, e.g., due to the hydrophobicity 

of the polymer and the local acidification of the microenvironment that occurs during 

degradation of the polymer at physiological pH 42-44. However, for synthetic peptides, which 

do not possess a tertiary structure, this is less problematic and several peptides in PLGA 

microspheres have been successfully launched on the market 34,40,44. 

The aim of this study was the pharmaceutical characterization of PLGA NP as a suitable 

delivery system for encapsulation of SLP for cancer immunotherapy. OVA24, a 24-residue 

long synthetic Agic peptide covering a CTL epitope of ovalbumin (OVA; SIINFEKL), was 

studied as a model SLP, because of its proven capability to induce CTL responses in vitro 

and in vivo 45. Efficient entrapment of OVA24 SLP in the polymeric matrix was obtained by 

exploring and fine tuning of formulation and process parameters. OVA24-loaded PLGA 

NP were characterized for Ag encapsulation efficiency, Ag burst release, particle size and 

zeta-potential, and the obtained formulations were immunologically evaluated in vitro for 

their potency to induce CD8+ T cell activation.

Materials and methods

Materials

Synthetic long peptide 24-mer OVA24 (DEVSGLEQLESIINFEKLAAAAAK) 46, covering the 

cytotoxic T lymphocyte (CTL) epitope SIINFEKL of ovalbumin (OVA) was synthesized at the 

interdepartmental GMP facility of the Department of Clinical Pharmacy and Toxicology 

of Leiden University Medical Center as described previously 10. Poly(D,L-lactic-co-glycolic 

acid) [PLGA], Resomer® RG 502H was purchased from Boehringer Ingelheim (Ingelheim, 

Germany). 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES), sodium cholate, 

dichloromethane (DCM), dimethyl sulfoxide (DMSO), and trifluoroacetic acid (TFA) were 

purchased from Sigma-Aldrich (Steinheim, Germany). Acetonitrile (ACN) and methanol 

(MeOH) were obtained from Biosolve BV (Valkenswaard, the Netherlands), Polyvinil 

alcohol (PVA) 4-88 (31 kDa) was purchased from Fluka (Steinheim, Germany). Tween 20 

was purchased from Merck Schuchardt (Hohenbrunn, Germany). Sodium hydroxide was 

purchased from Boom (Meppel, Netherlands). Reversed phase HPLC column ReproSil-Pur 
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C18-AQ 3 µm (150x4 mm) was purchased from Dr. Maisch HPLC GmbH (Ammerbuch-

Entringen, Germany). Phosphate-buffered saline (NaCl 8.2 g/L; Na2HPO4.12 H2O 3.1 g/L; 

NaH2PO4.2H2O 0.3 g/L) (PBS) was purchased from B. Braun (Melsungen, Germany). Iscove’s 

Modified Dulbecco’s Medium (IMDM) was purchased from Lonza (Walkersville, USA). All 

other chemicals were of analytical grade and all aqueous solutions were prepared with 

milli Q water.

Nanoparticle preparation

General particle preparation process

Nanoparticles loaded with OVA24 were prepared using a double emulsion with solvent 

evaporation method 47. In brief, 50 mg of PLGA dissolved in 1 ml of dichloromethane 

was emulsified under sonication (30 s, 20 W) with a solution containing 1.4 mg OVA24 

(for solution compositions, see results). To this first emulsion (w1/o), 2 ml of an aqueous 

surfactant solution (for surfactant types, see results) were added immediately, and the 

mixture was emulsified again by sonication (30 s, 20 W), creating a double emulsion 

(w1/o/w2). The emulsion was then added dropwise to 25 ml of extraction medium 

(0.3% w/v surfactant) previously heated to 40°C under agitation, to allow quick solvent 

evaporation, while stirring, which was continued for 1 h. The particles were then collected 

by centrifugation for 15 min at 15000 g at 10°C, washed, and resuspended in deionized 

water, aliquoted and freeze-dried at -55°C in a Christ Alpha 1-2 freeze-drier (Osterode am 

Harz, Germany) for 12 hours.

As starting conditions, the method described by Slütter et al. 47 was used, with 1% v/v 

Tween 20 in 25 mM Hepes pH 7.4 as the aqueous phase for second emulsion, with the 

following modifications: DMSO used as inner phase instead of PBS pH 7.4 and 5% (w/v) 

PLGA was used instead of 2.5%. 

Optimization of formulation parameters

In order to achieve an optimum formulation, the following parameters involved in the 

particle preparation were varied, and their effect on peptide encapsulation efficiency 

was investigated.

a)	 Surfactant type: investigated by dissolving different surfactant types (PVA; 

Tween 20; sodium cholate) in the second aqueous phase (w2) during the 

second emulsion step.
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b)	 Inner solvent: investigated by dissolving the peptide in different solutions 

(w1), i.e. DMSO; 50% ACN + 0.1% TFA; 50% ACN in 25 mM NaOH; and 50% 

ACN in 0.25 mM NaOH + 400 μL Hepes pH 8.0 at different concentrations).

c)	 Volume ratio (w1/o): investigated by varying the volume of the inner 

aqueous phase w1 (50 μL, 100 μL; 500 μL).

Nanoparticle characterization

Dynamic light scattering and zeta-potential

The Z-average size and polydispersity index (PDI) of NP were measured by dynamic light 

scattering, using a Zetasizer (Nano ZS, Malvern Ltd., United Kingdom). The zeta-potential 

was measured by laser Doppler electrophoresis, using the same device. For that purpose, 

NP were diluted to 2.5 mg/ml in 1 mM Hepes pH 7.4. 

Ag content and encapsulation efficiency 

Peptide encapsulation efficiency was determined by measuring the peptide content 

of digested particles by reversed phase HPLC. For that purpose, 200 μL NP suspension 

(containing 10 mg NP) was freeze-dried overnight. The lyophilizate was then dissolved 

in 250 μL DMSO and the solution was agitated at 50°C for 30 min. Next, 750 μL 50% ACN 

with 0.1% TFA were added and the mixture was agitated at 50°C for an extra 60 min, to 

allow dissolution of the peptide and degradation/precipitation of PLGA, which was then 

eliminated by centrifugation for 10 min at 18000 g. The supernatant containing the peptide 

was collected and 50μL were injected into a HPLC system equipped with a C18 column 

(Dr. Maisch Reprosil-Pur C18-AQ, 3 mg, 150 x 4.6 mm) and an ultraviolet detector (Waters 

486). Mobile phases applied were 5% ACN in water with 0.1% TFA (solvent A), and 95% 

ACN in water with 0.085% TFA (solvent B). Separation was performed by applying a linear 

gradient from 0% to 78% solvent B over 20 min, at a flow rate of 1 ml/min, and peptide 

detection was performed by absorbance at 220 nm. Peptide concentration in each sample 

was calculated using a calibration curve created with known concentrations of OVA24. 

In vitro release studies

To determine burst release (BR) at time zero (t0), freeze-dried NP were resuspended in 1x 

PBS, 1x IMDM cell culture medium, or 5% w/v glucose solution at a concentration of 10 
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mg PLGA NP/mL and the mixture was vortexed for 30 seconds at room temperature to 

allow complete resuspension of the particles. Then particles were centrifuged for 10 min 

at 18000 g, the supernatant recovered and the pellet resuspended. Both fractions were 

freeze-dried overnight, and extraction was performed as described previously, before 

being analyzed by HPLC for peptide quantification. 

For longer release studies, peptide-loaded PLGA NP were prepared as described, 

resuspended in 1x PBS pH 7.4 at a concentration of 10 mg and maintained at 37°C in a 

water bath under constant tangential shaking at 100/min in a GFL 1086 shaking water 

bath (Burgwedel, Germany). At regular time intervals, 250 μL samples of the suspension 

were taken, centrifuged for 10 min at 18000 g, and the supernatant recovered. To eliminate 

undesirable PLGA degradation products affecting detection by HPLC, the supernatant 

was freeze-dried over night, and extraction was performed as described, with the final 

supernatant being analyzed by HPLC for peptide quantification. Peptide release profiles 

were generated for each NP formulation in terms of cumulative Ag release (%) over time. 

In vitro Ag presentation

D1 cells, a long term growth factor-dependent immature splenic DC line derived from 

C57BL/6 (H-2Kb) mice, were cultured as described previously 48. B3Z, cultured as described 

before, is a CD8+ T-cell hybridoma cell line, specific for the H-2Kb-restricted ovalbumin 

derived CTL epitope SIINFEKL, that expresses a β-galactosidase construct under the 

regulation of the NF-AT element from the IL-2 promoter 49. DC were incubated for 2.5 h with 

soluble OVA24 (sOVA24) or OVA24 encapsulated in PLGA NP at the indicated concentrations. 

Cells were washed three times with medium before the T-cell hybridoma B3Z cells were 

added followed by overnight incubation at 37°C. MHC class I Ag presentation of SIINFEKL 

(OVA257–264) in H-2Kb was detected by activation of SIINFEKL-specific CD8+ B3Z T cells. 

Upon T-cell receptor (TCR) ligation, lacZ protein is produced under the control of the IL-2 

promoter thus allowing measurement of the IL-2 production indirectly by a colorimetric 

assay using chlorophenol red-β-d-galactopyranoside (CPRG) as substrate to detect lacZ 

activity in cell lysates. Color conversion is determined by measuring absorbance (optical 

density, OD) at 590 nm.
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Statistical analysis

Graph Pad Prism software was used for statistical analysis. Burst release in different 

physiological media and the effect of inner solvent and emulsion volume on burst release 

between different formulations in PBS were analyzed by two-tailed unpaired Student’s 

t-test. CD8+ T cell activation of SIINFEKL-specific CD8+ T cells by a two-tailed paired 

Student’s t-test. Effect of the inner phase composition on apparent pH and the effect of 

Hepes concentration in the inner phase on release were analyzed using two-way ANOVA.

RESULTS

Ag encapsulation and burst release in PLGA NP 

In this study, a 24-mer SLP covering a well-known CTL epitope (SIINFEKL) of ovalbumin, here 

designated as OVA24, was used as a model Ag to study the encapsulation of SLP in PLGA NP 

by a double emulsion with solvent evaporation method, as function of formulation and 

process parameters. As starting point, a slightly modified version of the standard double 

emulsion method described by Slütter et al. 47 was applied (see section 2.2.1), in which 

OVA24 was dissolved in DMSO and Tween 20 used as surfactant in the outer phase (Table 

3.1, formulation 1). Since this method led to very low encapsulation efficiencies (ca. 1%), 

DMSO as inner phase was replaced by 50% ACN/0.1% TFA, which resulted in a marginal 

improvement (see Table 3.1, formulation 2). Attempts to dissolve OVA24 in the PLGA-

containing dichloromethane phase failed (results not shown). Therefore, several process 

parameters were investigated in order to increase the encapsulation efficiency of OVA24 

in PLGA NP. First, commonly used surfactants for making NP, sodium cholate and PVA 23,47, 

were tested in replacement of Tween 20 (Table 3.1, formulations 3–7). The type of surfactant 

used to stabilize the second emulsion had a dramatic positive effect on the encapsulation 

efficiency. Using 50% ACN/0.1% TFA (with an apparent pH of 2.0) as first emulsion medium 

and PVA as surfactant in the second emulsion step resulted in the highest encapsulation 

efficiency (EE) (up to about 30%, see Table 3.1, formulations 4–7). PVA concentrations of 

1% and 2% (w/v) PVA yielded comparable EE and particle size (Table 3.1, formulations 6 

and 7). PVA concentrations below 1% led to a lower encapsulation efficiency and a larger 

particle size (Table 3.1, formulations 4 and 5). For our further studies, OVA24-loaded PLGA 

NP prepared with 50% ACN/0.1% TFA as inner solvent and 1% PVA as surfactant in the 

second emulsion (Table 3.1, formulation 6) were selected.
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Formulation 6 was tested for burst release of the peptide in PBS and IMDM (cell culture 

medium), which are commonly used for in vitro and in vivo applications. Directly upon 

resuspension (t = 0) in either PBS or IMDM, OVA24-loaded PLGA NP showed a very high 

release, ranging from 80 to 90% (Figure 3.1), indicating that initial encapsulation results 

were misleading. In contrast, a release study in isotonic 5% glucose solution (Figure 3.1), 

did not induce substantial peptide release.

With the purpose to decrease the very high burst release, new solutions were tested as 

inner phase (w1) in the NP preparation process, where the effect of pH was studied. Instead 

of using pHs below the isoelectric point (pI) of the peptide (pI = 4.3), we decided to use 

pHs above it, which would change the charge distribution in the peptide and thereby 

could affect encapsulation, as well as inner phase volume, which might affect the peptide’s 

distribution between the inner and outer aqueous phases present during formation of 

the double emulsion. Therefore, instead of 50% ACN/0.1% TFA (apparent pH 2.0), OVA24 

was dissolved in 50% ACN/25 mM NaOH (apparent pH 12.5).

Improvement was observed in neither encapsulation efficiency nor burst release when 

using an inner alkaline phase volume of 100 µl (Table 3.1, formulation 9; Figure 3.2a). 

However, a concomitant increase of inner emulsion volume, by using an inner phase 

volume of 500 µl (Table 3.1, formulation 11), drastically reduced burst release from circa 

90% to less than 10%, while improving encapsulation efficiency. Still, when at acidic pH, 

Figure 3.1  Burst release of OVA24 in different physiological media (PBS, IMDM cell culture medium, 

5% glucose) from PLGA NP (Table 3.1, formulation 6). Data are presented as average ± standard 

deviation of n = 3 independent batches. Data was analyzed by two-tailed unpaired Student’s t-test. 

P values are presented as non-significant (ns) = P > 0.05; * = P < 0.05; ** = P < 0.01; *** = P < 0.0001.
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Figure 3.2  (A) Effect of inner solvent and emulsion volume on burst release of OVA24 in PLGA NP, 

assessed upon resuspension in PBS (Formulations 8–11). (B) Effect of the inner phase composition 

on apparent pH before and after the addition of OVA24 (P < 0.0001) (formulations 8, 11–16). (C) 

Effect of Hepes concentration in the inner phase on release, assessed at t0 (burst release) and 1 h 

after resuspension (P < 0.0001) (formulations 12–16). Data are presented as average ± standard 

deviation of n=3 independent batches. Formulation numbers are according to Table 3.1. P values 

are presented as non-significant (ns) = P > 0.05; * = P < 0.05; ** = P < 0.01; *** = P < 0.0001.
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a higher inner emulsion volume (Table 3.1, formulation 10) did not affect encapsulation 

efficiency or burst release compared to previous values, confirming the central effect of 

pH in the matter. Indeed we observed that the peptide was very acidic, most likely due 

to remaining TFA from synthesis, drastically decreasing pH of solutions upon dissolution, 

with only the higher volumes containing enough base/buffer molecules to neutralize the 

acid contained in the peptide (Figure 3.2b), and keep the pH above 7.

The size and zeta-potential of the prepared OVA24-loaded NP was measured in 1 mM Hepes 

pH 7.4. Irrespective of the preparation method, the particles were negatively charged, with 

zeta-potentials ranging from -10 to -15 mV (see Table 3.1), when prepared using 1% PVA as 

surfactant. Though the inner emulsion ratio is generally thought to influence final particle 

size, with a larger ratio typically yielding bigger particles 22, we did not observe significant 

differences in average size (Table 3.1), with final particle sizes ranging from 300 to 400 nm 

for higher inner phase volumes and polydispersity indices below 0.3. 

Since it is well known that extreme pH values may harm peptide structure and stability, we 

decided to lower the working pH. Therefore, NaOH concentrations were decreased from 

25 mM (apparent pH 12.5) to 0.25 mM NaOH (yielding an apparent pH of 10.5), and after 

dissolving the peptide in 50% ACN 0.25 mM NaOH, pH was adjusted by diluting 5 fold 

in Hepes buffer pH 8.0 at different Hepes concentrations (Table 3.1, formulations 12–16). 

We observed that a buffer concentration of at least 50 mM was necessary to maintain a 

basic pH in presence of peptide (Figure 3.2b), with the final pH having a direct effect on 

burst release (Figure 3.2c). Since the formulation with a relatively mild inner phase with 

an apparent pH of 8.0 (see Table 3.1, formulation 16) showed a comparable EE and burst 

release as the formulation with an apparent inner phase pH of 10.5 (Table 3.1, formulation 

11), formulation 16 was adopted for further functional studies. With this formulation we 

obtained particles with an encapsulation efficiency of 38%, with an average size of 328 

nm, and zeta potencial of -13.6 mV.

Release kinetics

Since the particles are meant to be delivered to DC and taken up by DC rapidly after 

administration, short term release properties of the peptide-loaded particles (Table 3.1, 

formulation 16) were assessed for 24 h. It can be observed that after 1 h OVA24 shows 

approximately 30% release in PBS at 37°C under shaking 100/min (Figure 3.3). Over the 

next 24 h, no further release was observed. The slight decline in initial concentration of 
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OVA24 was due to aggregation and, hence, partial precipitation during the centrifugation 

step. Indeed, free OVA24 dissolved in PBS at 37°C under agitation aggregated over time, as 

detected by DLS (results not shown). Adding Tween 80 (0.1 % w/v) to the release medium 

did not help. We did not further study this phenomenon, but it obviously limited the 

duration of the release study.

In vitro Ag presentation of SLP Ag encapsulated in NP

The effect of encapsulation of OVA24 on the efficiency of DC uptake and processing into 

MCH class I for Ag cross-presentation resulting into activation of CD8+ T cells was tested 

in vitro (Figure 3.4). For that purpose, the different formulations were incubated with DC 

for 2.5 h, washed to remove excess unbound Ag, followed by co-culture in the presence 

of OVA-specific B3Z CD8+ T cells. OVA24-containing PLGA NP with low (< 10%) burst release 

(Table 3.1, formulation 16) were compared with those exhibiting high (> 75%) burst release 

(Table 3.1, formulation 9), against soluble OVA24, empty particles, and a mixture of soluble 

OVA24 and empty particles. Encapsulation of OVA24 in PLGA-NP resulted in significantly 

enhanced activation of B3Z CD8+ T cells compared to soluble OVA24. Although both 

tested NP formulations enhanced MHC class I Ag cross-presentation, we observed that 

delivery of OVA24 via encapsulation in PLGA NP with low (< 10%) burst release resulted in 

improved T cell responses in comparison to OVA24-containing PLGA NP with high (ca. 75%) 

burst release. The addition of empty NP to soluble OVA24 did not show an effect on T cell 

Figure 3.3  Release kinetics of OVA24 from PLGA NP (Table 3.1, formulation 16) in PBS at 37°C 

under shaking 100/min. Data are presented as average ± standard deviation of n = 3 independent 

batches.
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activation in comparison to soluble OVA24 alone, indicating the strict necessity of peptide 

encapsulation in NP for enhanced processing in MHC class I Ag presentation pathways. 

Taken together, these data demonstrate that effective entrapment of Ag in PLGA with low 

burst release is crucial for efficient Ag cross-presentation by DC.   

Discussion

The aim of this study was to develop a method to efficiently encapsulate OVA24 in PLGA, 

and perform a full characterization of the obtained formulation. This approach may result in 

Ag-bearing biodegradable particles that can be actively taken up by DC, generating specific 

T cell immunity and improving the efficacy of synthetic peptide-based cancer vaccines. 

Figure 3.4  Normalized CD8+ T cell activation of SIINFEKL-specific CD8+ T cells (B3Z) after co-

culturing with DC incubated for 2.5 hours with titrated amounts of different OVA24 SLP formulations: 

low-burst releasing (LBR) PLGA NP loaded with OVA24 (Table 3.1, formulation 16), high-burst 

releasing (HBR) PLGA NP loaded with OVA24 (Table 3.1, formulation 9), soluble OVA24 mixed with 

empty NP (OVA24 + Empty NP), empty NP, and soluble OVA24 (sOVA24). Data are presented as 

average ± SD of triplicate measurements. Representative results from one out of 3 experiments are 

shown. Graphs depict normalized T cell activation data based on the maximal OD 590 nm value/T 

cell activation measured upon incubation of DC with 1 µM of the minimal H2-Kb epitope OVA8/

SIINFEKL-peptide (OD 590 nm value of 0.918 = 100%) as positive control. P values are presented 

as * = P < 0.05; ** = P < 0.01.
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Whereas hydrophilic and hydrophobic peptides have been successfully encapsulated in 

PLGA NP and/or microparticles in the past 23,37,40,50, efficient entrapment of the moderately 

hydrophobic OVA24 proved to be challenging. OVA24 does not readily dissolve in aqueous 

solutions and is insoluble in solvents like DCM or chloroform. However, it can be dissolved 

in a suitable matrix such as 50% v/v ACN in water, as well as in the commonly used solvent 

DMSO, prior to dilution in aqueous solutions. Standard encapsulation procedures generally 

used for encapsulation of hydrophilic or hydrophobic Ags led to low encapsulation 

efficiencies and high burst release once NP were resuspended in isotonic solutions at 

physiological pH. Therefore, several formulation parameters, particularly inner and outer 

emulsion compositions, were studied in order to increase encapsulation. The positive effect 

of using PVA in the outer aqueous phase on EE may be due to fact that it is not a classical 

surfactant with a distinct hydrophobic tail and hydrophilic headgroup, but a polymer that 

coats the surface, stabilizing the emulsion. In contrast, both Tween 20 and cholate are able 

to form micelles at concentrations above their critical micelle concentrations (0.07 and 0.6% 

w/v for Tween 20 and cholate, respectively), that may capture and solubilize the peptide 

during the emulsification process and thereby favor its extraction in the external water 

phase. A measurable difference between NP formulated with Tween 20 or sodium cholate 

(Table 3.1, formulations 1–3) and those formulated with PVA (Table 3.1, formulations 5–16) 

was that the negative zeta-potential of the former formulations was significantly higher. 

While the relatively high zeta-potential values obtained with cholate can be explained by 

the negative charge of the surfactant, we can only speculate that the nonionic surfactant 

Tween 20, due to its lower molecular size, does not shield the negative charge of the PLGA 

as much as PVA coating does. 

The observed high burst release in the formulations with acidic inner phase led us to the 

notion that the majority of the OVA24 molecules might not be encapsulated in the NP’s 

polymeric matrix, but instead were adsorbed to their surface, masking real encapsulation 

efficiencies. This would explain the rapid release of peptide from the NP in presence 

of salt by disruption of electrostatic interactions between the peptide and the PLGA 

surface, due to the presence of counter ions that may shield the charges, and/or alter 

the peptide’s solubility. Indeed, the high burst release is highly consistent with observed 

release profiles for a tumor necrosis factor alpha blocking peptide adsorbed to PLGA NP 39,  

occurring once exposed to salt-based isotonic solutions at physiological pH. Increasing 

particle hydrophobicity by using different types of PLGA with higher molecular weights 

and lactic acid/glycolic acid ratio (PLGA 75:25), as well as using DMSO as solvent, creating 



Chapter 3

86

an oil-in-water emulsion, instead of water-in-oil-in-water to reduce porosity 51,52, did not 

result in a decrease of the burst release (data not shown), concurring with the adsorption 

hypothesis, in opposition to diffusion due to high porosity. Moreover, resuspension in 

either water or isotonic 5% (w/v) glucose solution did not lead to substantial burst release 

(Figure 3.1), which provides further evidence that the instant release was not due to high 

particle porosity and peptide diffusion due to osmosis.

A clear correlation between burst release and pH of the inner phase was observed (Figure 

3.2), confirming that the pH of the inner phase is of primary importance for efficient peptide 

encapsulation. The effect of the higher inner phase volume on the burst release is mainly 

pH related, by providing a higher number of base/buffer molecules able to neutralize the 

acidic peptide and maintain an alkaline pH, whereas a higher acidic inner volume showed 

no effect (Table 3.1, formulation 10). 

In order to better understand the physicochemical characteristics of the peptide and the 

effect of pH of the inner (w1) phase on the observed encapsulation efficiency and burst 

release, the sequence of the peptide was analyzed using ProtParam, the online protein 

identification and analysis software that is available through the ExPASy World Wide 

Web server 53. Using this tool, the theoretical isoelectric point of the OVA24 peptide was 

determined as 4.3, and the grand average of hydropathicity (GRAVY) as 0.087 54. According 

to this index, amino acids are separated into hydrophilic (negative GRVAY value) and 

hydrophobic (positive GRAVY value). The amino acids with GRAVY values closer to zero 

correspond to the least hydrophobic and hydrophilic ones, which are respectively alanine 

(1.8) and glycine (-0.4). The slightly positive value of the OVA24 peptide confirms its slight 

hydrophobic nature. 

Hydrophobic protein domains have shown to adsorb to polymer surfaces by electrostatic 

and/or hydrophobic interactions, and particle surface properties can influence adsorption 55.  

Though for the OVA24/PLGA system the mechanism of encapsulation versus surface 

localization is still not clear, we hypothesize that efficient encapsulation at a higher pH of 

the inner phase may result from a more favorable partitioning of the peptide between 

internal/external aqueous phases and interfaces. A closer look at the peptide sequence and 

position of its charged residues (D-E-VSGLE-QLE-SIIN-FE-K+LAAAAAK+) allows us to divide 

it into two sections, with distinct characteristics. At low pHs, below the peptide’s pI, the 

DEVSGLEQLESIINFE part should be mostly neutral, with the exception of the N-terminal 

amine group, and therefore rather hydrophobic. On the other hand, the K+LAAAAAK+ 
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sequence might act as a charged headgroup, thereby rendering the molecule surface active 

and prone to migrate to the surface. Free peptide in the external phase may also adsorb to 

the particles through electrostatic interactions between positively charged residues and 

negatively charged PLGA NP surfaces. Once exposed to saline solutions at higher pHs, the 

’hydrophobic tail’ will become negatively charged, hence more hydrophilic, by which the 

molecule may loose its surface activity, as well as repel from negatively charged PLGA, 

whereas the electrostatic interactions between the positively charged residues and PLGA 

may also be displaced by the presence of counter ions, which could explain the release in 

PBS pH 7.4, but not in water (i.e., during washing of the particles during preparation) or 

isotonic glucose solutions with acidic pHs. 

Previous studies with the short synthetic peptide SIINFEKL in PLGA microparticles showed 

nearly total release of the peptide within 24 hours in PBS 24. Studies with longer peptides 

(13 to 43 amino acids) or recombinant human growth hormone in microparticles showed 

20–70% release over the first 24 h 56-59, whereas insulin also shows 30–40% release from 

PLGA NP within 24 h 60. With our method we were able to encapsulate OVA24 with nearly 

40% EE in NP showing minimal burst release and a total peptide release of circa 30% over 

24 h. The better retention of SLP will allow delivery of encapsulated peptide to DC, which 

is a great improvement compared to release over the same period of time of high releasing 

formulations. This is especially important if we consider subsequent development of this 

particulate system for delivery of SLP, which may include co-encapsulation of adjuvants, 

such as Toll-like receptor ligands (TLRL), or even surface modification with targeting 

moieties that require covalent binding to the particles at controlled pH such as described 

by Cruz et al. 23 without losing most of the Ag during the manufacturing process or shortly 

after administration.

The effect of OVA24 encapsulation on Ag cross-presentation to activate CD8+ T cells was 

tested in vitro with conclusive results. OVA24-containing PLGA NP with low burst release 

showed significantly higher capacity of CD8+ T cell activation comparing to those with high 

burst release (Figure 3.4). Likewise, soluble peptide mixed with empty particles did not 

show any improvement when compared to soluble peptide, further proving the need of 

effective entrapment of Ag in PLGA to increase Ag cross presentation by DC. Furthermore, 

we showed that not only encapsulation of OVA24 in PLGA NP is required, but also the 

release characteristics are of vital importance, with low burst release being fundamental to 

induce a potent cellular immune response. This is probably due to enhanced uptake and/

or processing by DC of particulate Ag. When incubated with low-burst releasing particles, 
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DC may efficiently uptake the Ag cargo still encapsulated in PLGA particles, whereas with 

high-burst releasing particles, DC will take up less encapsulated peptide, thereby lowering 

the overall efficiency by which the peptide is internalized and routed into MHC class I Ag 

presentation pathways. The improved MHC class I Ag presentation observed with low-burst 

releasing particles is indicative of sustained release of the peptide inside the DC, similar 

to other Ag delivery systems to DC 61.

Conclusion

In this study we described a method for efficient encapsulation of a model SLP in PLGA 

NP, resulting in a particle delivery system able to enhance CD8+ T cell activation in vitro. 

This encapsulation method, employing an apparent inner phase pH above the pI of the 

encapsulated SLP, may be a promising approach for encapsulation of peptides with 

amphiphilic and/or hydrophilic properties, and may be considered as a firm basis for the 

development of NP formulations for SLP-based immunotherapy of cancer. Preliminary 

studies showed that the method is applicable to other SLP as well (unpublished results). 

Additionally, this study shows the importance of thorough characterization of peptide 

encapsulation process in PLGA NP to achieve a successful formulation. In conclusion, this 

study has shown that encapsulation and release characteristics are strongly dependent 

on the pH of the first emulsion, whereas a direct comparison between NP with similar 

physicochemical characteristics in terms of charge, size and Ag loading, but different 

release profiles, uncovered the importance of low burst release to induce a potent cellular 

immune response.
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Abstract

We previously reported the succesfull incorporation of synthetic long peptides (SLPs) 

in poly(lactic- co-glycolic acid) (PLGA) nanoparticles (NP) as a vaccine delivery vehicle. 

We showed that the burst release of the encapsulated SLP was crucial to improve 

MHC class I presentation and CD8+ T cell activation in comparison to soluble SLP 

(sSLP). Using SLP-OVA24aa as vaccine antigen (Ag) and Pam3CSK4 as an adjuvant 

encapsulated in PLGA-NP (PLGA-SLP and PLGA-SLP/TLR2L), we show in this report 

that toll like receptor (TLR) 2 stimulation enhances MHC class I presentation of PLGA-

SLP by dendritic cells (DCs), however co-encapsulation of the TLR ligand was not 

required for this effect. DC loaded with PLGA-SLP(/TLR2L), route internalized NP into 

endo-lysosomal compartments and not the cytosol as occurs with sSLP. Moreover, 

PLGA-NP encapsulated SLP could be detected for prolonged periods inside endo-

lysosomal compartments. Prolonged presence of NP inside DC resulted in MHC class 

I presentation of PLGA-NP encapsulated SLP for up to 96 hr, which led to sustained 

CD8+ T cell proliferation in vivo adoptive transfer of PLGA-SLP loaded DC. These findings 

explains the in vivo effectiveness of nanoparticle vaccination and shows that PLGA-SLP 

is a promising delivery vehicle for clinical application as a cancer immunotherapy. 
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Introduction

Cancer immunotherapy is a promising treatment modality to enhance the tumor associated 

antigen (Ag) specific T cell responses in cancer patients. Efficient MHC class I Ag presentation 

and subsequent CD8+ T cell priming are pre-requisites for optimal clinical efficacy of a 

cancer immunotherapy vaccine 1,2. We recently reported that synthetic long peptides (SLP) 

considerably facilitate MHC class I presentation in comparison to protein, which was related 

to faster uptake and processing of SLP by dendritic cells (DC) compared to that of protein Ag 3. 

SLP-vaccines emulsified in Montanide(-ISA51) water-in-oil-in-water emulsion have been 

studied in the clinic against various forms of cancer 4,5 and other immunological diseases 6,7.  

However, the use of Montanide is associated with considerable adverse effects 8-11. In 

addition, montanide has poorly defined adjuvant properties and the release kinetics of 

the emulsified vaccine-Ag cannot be controlled. Alternative vaccine delivery systems and 

adjuvants for SLP, being at least as efficient as but having less side effects than Montanide, 

are therefore highly required like well-defined Toll like receptor ligands (TLRL). In light of 

this we have previously reported the succesful application of nanoparticles (NP) formulated 

with the fully biocompatible polymer, poly-(lactic-co-glycolic-acid) (PLGA) as delivery 

vehicle for SLP vaccines. Encapsulating SLP in PLGA led to a significant enhancement 

of MHC class I Ag presentation and CD8+ T cell activation compared to soluble SLP 10. 

However, PLGA-NP have low immunostimulatory properties by itself but allows controlled 

co-encapsulation and release of TLRL 12,13.  

The aim of the present paper was to study 1) how PLGA-NP encapsulated SLP is routed 

and processed into MHC class I molecules and 2) how a defined adjuvant co-encapsulated 

in NP affects the efficiency and duration of CD8+ T cell activation by DC. For this purpose, 

NP were formulated together with a TLR2L (Pam3CSK4) as adjuvant, which effectively 

boosted vaccine-Ag specific immune responseswhen covalently conjugated to SLP 14,15. 

We show here that co-encapsulating TLR2L with SLP in PLGA-NP further enhances the 

efficiency of MHC class I cross-presentation of SLP by DC compared to plain PLGA-SLP. In 

addition, loading of DC using PLGA-NP results in sustained MHC class I presentation of SLP 

compared to soluble SLP. However, the effect of sustained MHC clas I presentation was not 

related to TLR2L-mediated DC maturation but likely because of the prolonged presence 

of PLGA-NP encapsulated SLP inside endo-lysosomal compartments upon uptake by DC. 

These organels are similar to the storage compartments in DC we have described for other 

antigen targeting system like FcR-mediated uptake 16.
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Finally, we show that adoptive transfer of DC loaded with PLGA-SLP/TLR2L stimulated 

CD8+ T cells over a sustained period of time whereas soluble SLP loaded DC failed to do 

so. Therefore, this study presents additional evidence for the use of PLGA-NP as a clinically 

suitable vaccine delivery systems to enhance direct MHC class I Ag presentation and T cell 

activation but also maintain CD8+ T cell responses over a prolonged time period.

Material and methods

Mice

WT C57BL/6 (CD45.2/Thy1.2; H2-Kb) mice were obtained from Charles River Laboratories 

(France). TAP1 KO mice (C57BL/6 CD45.2/Thy1.2; H2-Kb) were purchased from the Jackson 

laboratory (Bar Harbor, ME). All mice were used at 8–12 weeks of age in accordance with 

national legislation and under supervision of the animal experimental committee of the 

University of Leiden. 

Materials

The synthetic long peptide DEVSGLEQLESIINFEKLAAAAAK (SLP-OVA24aa) 
17, covering the 

H2-Kb restricted CD8+ T cell epitope SIINFEKL of ovalbumin (OVA) and SLP-OVA24aa-Bodipy-FL 

(Bp) were synthesized at the interdepartmental GMP facility of the Department of Clinical 

Pharmacy and Toxicology of Leiden University Medical Center as described previously 10. 

Poly(D,L-lactic-co-glycolic acid) [PLGA], Resomer® RG 502H was purchased from Boehringer 

Ingelheim (Ingelheim, Germany). 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid 

(HEPES), dichloromethane (DCM), dimethyl sulfoxide (DMSO), and trifluoroacetic acid 

(TFA) were purchased from Sigma-Aldrich (Steinheim, Germany). Acetonitrile (ACN) and 

methanol (MeOH) were obtained from Biosolve BV (Valkenswaard, the Netherlands), 

Polyvinyl alcohol (PVA) 4-88 (31 kDa) was purchased from Fluka (Steinheim, Germany). 

Reversed phase HPLC column ReproSil-Pur C18-AQ 3 µm (150x4 mm) was purchased from 

Dr. Maisch HPLC GmbH (Ammerbuch-Entringen, Germany). Pam3CSK4 and Pam3CSK4-

Rhodamine were purchased from Invivogen (San Diego, USA). Iscove’s Modified Dulbecco’s 

Medium (IMDM) was purchased from Lonza (Walkersville, USA). All other chemicals were 

of analytical grade and all aqueous solutions were prepared with milli Q water.
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Nanoparticle preparation and characterization

Nanoparticles loaded with SLP-OVA24aa were prepared using a double emulsion with solvent 

evaporation method as previously described 10. In brief, 1.4 mg SLP-OVA24aa were dissolved 

in 100 μL 50% ACN in 0.25 mM NaOH and then added to 400 μL 50 mM Hepes, pH 8.0. This 

solution was then added to 50 mg of PLGA in 1 ml of dichloromethane and the mixture was 

emulsified under sonication (30 s, 20 W). To this first emulsion (w1/o), 2 ml of an aqueous 

surfactant solution (for surfactant types, see results) were added immediately, and the 

mixture was emulsified again by sonication (30 s, 20 W), creating a double emulsion (w1/o/

w2). The emulsion was then added drop-wise to 25 ml of extraction medium (0.3% w/v 

surfactant) previously heated to 40°C under agitation, to allow quick solvent evaporation, 

and left stirring for 1 h. The particles were then collected by centrifugation for 15 min at 

15000 g at 10°C, washed, resuspended in Milli Q water, aliquoted and freeze-dried at -55°C 

in a Christ Alpha 1-2 freeze-drier (Osterode am Harz, Germany) overnight. For particles 

co-encapsulating SLP-OVA24aa and Pam3CSK4, 250 μg of Pam3CSK4 were dissolved in DCM 

together with PLGA, and for particles containing SLP-OVA24aa-Bp-FL, circa 10% labeled 

peptide was added to the peptide solution.

Particle characterization was performed as described 10. NP were diluted to 2.5 mg/ml in 

1 mM Hepes pH 7.4. Size and polydispersity index (PDI) of NP were measured by dynamic 

light scattering, and zeta-potential was measured by laser Doppler electrophoresis, using 

a Zetasizer (Nano ZS, Malvern Ltd., United Kingdom). 

The encapsulation efficiency (EE) was calculated according to equation 4.1 and drug loading 

(DL) by equation 4.2. EE of OVA24 was determined by measuring the peptide content of 

digested particles by reversed phase HPLC as described 10. 

EE of Pam3CSK4-Rhodamine was determined by measuring fluorescence detected in the 

supernatant against a calibration curve and expressed as percentage of the total amount 

added. 

								        (4.1)

								        (4.2)
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Cells 

Freshly isolated murine DCs were cultured from mouse bone marrow (BM) cells, as 

described before 18. The D1 cell line, an immature primary splenic DC line (C57BL/6-derived), 

was cultured as described elsewhere 19. B3Z CD8+ T cells (H2-kb/SIINFEKL) are hybridoma 

cell lines expressing a β-galactosidase construct which upon T-cell activation can be 

measured by a colorimetric assay 20.

Murine MHC class I Ag presentation assays

C57BL/6 BMDCs or D1 cells (1*105 cells/well) were plated out in triplicate using 96-

well plates (Greiner #655101) and incubated for 2.5 hr with the Ag at the indicated 

concentrations. Cells were washed 3x with complete medium to remove excess Ag 

before the B3Z CD8+ T cells were added to assess MHC class I cross-presentation. T cells 

were cultured in the presence of Ag-loaded DC for 2.5 at 37°C. In some experiments, 

BMDC or D1 cells were pre-incubated with epoxomicin (324800, Merck) or bafilomycin 

A1 (196000, Merck) followed by Ag-incubation as described above in the presence of 

the compounds. D1 cells were pre-incubated with bafilomycin A1 (196000, Merck) and 

MHC class I Ag presentation determined as described above. To study sustained MHC 

class I Ag presentation, 2*106 immature D1 cells were incubated for 2.5 hr with 4 μM SLP 

in different formulations. After incubation, cells were harvested and transferred to 50 ml 

Falcon tubes, resuspended in complete medium and centrifuged . This procedure was 

performed 3x to wash away unbound Ag. Cells were either used directly as Ag presentating 

cells (APC) (“direct condition”) or plated out again in petri dishes and further cultured 

for 96 hr (“chase condition”). Ag loaded D1 cells were then harvested and plated out in 

96-wells plates (5*104 cells/well) and used as APC in co-culture with B3Z CD8+ T cells to 

detect capacity to cross-present SLP in MHC class I molecules using a colorometric assay 

as described before 20.

Adoptive transfer of Ag loaded DC 

C57BL/6 BMDC cells (10*106 cells/petri dish, Corning # 430589) were loaded with 4 μM 

PLGA-SLP, PLGA-SLP/TLR2L and sSLP on t = - 96 hr and t = -2.5 hr. Cells were washed to 

remove unbound Ag and either used directly or further cultures in the absence of Ag. 

On t = - 1 day, splenocytes from Thy1.1+ OT-I mice were harvested and transferred i.v. to 

recipient animals (10*106 splenocytes/mouse). On t = 0, OVA-specific T cells enriched mice 
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received i.v. 1*106 DC loaded with PLGA-SLP, PLGA-SLP/TLR2L. Tail vein bloodsamples were 

collected on t = day 3 post-transfer of DC and analyzed for the percentages of Thy1.1+ CD8+ 

T cells using rat anti-mouse CD90.1-APC, CD3-AF800 and CD8-FITC antibodies (Biolegend). 

Samples were measured using an LSRII flow cytometer (BD) and analyzed with FlowJo 

software (Treestar). 

Confocal microscopy

DCs were incubated for 24 hr with 10 µM SLP-OVA24aa-Bodipy-FL in different formulations 

at 37°C. Specific murine DC used is described in the figure legends. After incubation cells 

were washed 3 times to remove excess and unbound Ag, resuspended at a concentration 

of 2x105 cells in 200 µl complete medium and plated into poly-d-lysine coated glass-bottom 

dishes (MatTek) followed by mild centrifugation to allow the cells to adhere. Adhered cells 

were then fixed with 0.2% paraformaldehyde. All imaging experiments were carried out 

on a Leica TCS SP5 confocal microscope (HCX PL APO 63×/1.4 NA oil-immersion objective, 

12 bit resolution, 1024×1024 pixels, pinhole 2.1 Airy discs, zoom factor 1 or 7). Imaging 

was performed using the 488 nm line from an Argon laser collecting emission between 

500 and 600 nm. Dual color images were acquired by sequential scanning, with only one 

laser per scan to avoid cross talk. The images were analyzed using the Leica software 

program (LAS AF).

Analysis of cytokine production by DC using Enzyme-linked Immunosor-
bent Assay (ELISA)

*BMDC were incubated for 24 hr with NP. Supernatants were harvested and tested for IL-

12 p70 (BD OptEIA™ MOUSE IL-12 Cat. Nr 555256) following manufacturer’s instructions.

Statistics

Graphpad prism was used as the main statistical software. Statistical analyses applied to 

determine the significance of differences are described in the figure legends.
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RESULTS

Characterization of formulated PLGA-SLP and PLGA-SLP/TLR2L NP 

PLGA-NP were formulated using a modified double emulsion method and solvent 

evaporation technique with SLP-OVA24aa as described before, PLGA-SLP 10. This formulation 

was adapted by adding the TLR2 ligand (TLR2L) Pam3CSK4 in the organic phase to yield 

PLGA-NP co-encapsulating SLP and adjuvant, PLGA-SLP/TLR2L. For visualization purposes 

selected batches were formulated with 10 % SLP-OVA24aa-Bodipy-FL (SLP-Bp). Fluorescent 

SLP was added during formulation. Particle characteristics are described in Table 4.1. 

Co-encapsulation of TLR2L and/or SLP-Bp did not affect the physical properties of the 

formulated NP, with several batches showing very similar characteristics (Table 4.1).

Enhanced cross-presentation of PLGA-NP encapsulated SLP in the presence 
of TLR2L

DC loaded with PLGA-SLP cross-presented SLP in the context of MHC class I molecules with 

higher efficiency compared to sSLP, as published previously 10. TLR-stimulation is known 

to improve proteasome activity and thus enhance MHC class I Ag cross-presentation. 

Indeed, the presence of TLR2L during Ag-loading enhanced MHC class I cross-presentation 

Table 4.1  Characterization of PLGA-SLP/TLR2L NP

Formulation %DL SLPº
%EE 
SLPº

%DL 
Pam3CSK4

%EE 
Pam3CSK4

Size 
(nm) PDI

ZP 
(mV)

PLGA-SLP* 1.06 ± 0.15 39 ± 6 n/a n/a 322 ± 44 0.19 ± 0.04 -12 ± 1

PLGA-SLP/
TLR2L*

1.02 ± 0.17 38 ± 6 0.32 ± 0.05 67 ± 10 293 ± 19 0.18 ± 0.04 -13 ±1

PLGA-SLP-
Bp**

1.01 37 n/a n/a 312 0.23 -16

PLGA-SLP/
TLR2L-BP**

0.95 35 0.16 33 304 0.20 -13

ºSLP-OVA24aa (DEVSGLEQLESIINFEKLAAAAAK).
*Values represent average ± SD of > 4 independently prepared batches.
**Values obtained from 1 batch.
DL = drug loading; EE = encapsulation efficiency; PDI = poly dispersity index; variance, an arbitrary measure 
for the degree of dispersity in particle size within one batch of particles suspension, PDI values below 0.3 was 
considered monodisperse and accepted for follow up studies 21; ZP = zeta potential; The magnitude of the 
zeta potential is predictive of the colloidal stability. Nanoparticles with Zeta Potential values greater than +25 
mV or less than -25 mV typically have high degrees of stability. Dispersions with a low zeta potential value will 
eventually aggregate due to Van Der Waal inter-particle attractions.
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of all SLP-formulations tested compared to DC loaded in the absence of TLR2L (Figure 

4.1A). PLGA-SLP/TLR2L resulted in better CD8+ T cell activation than PLGA-SLP. However, 

co-encapsulation of TLR2L was dispensable to enhance MHC class I presentation of PLGA-

encapsulated SLP in vitro as mixtures of PLGA-SLP + soluble TLR2L (sTLR2L) showed similar 

potency to PLGA-SLP/TLR2L. 

TLR2 stimulation failed to improve the cross-presentation of sSLP to comparable levels 

as observed with PLGA-encapsulated SLP (Figure 4.1A). This observation stresses the 

importance of an optimal delivery method to achieve high levels of Ag intracellularly and 

to improve MHC class I Ag processing.

In summary, combining TLR2L stimulation with PLGA-NP delivery of SLP significantly 

improves MHC class I presentation compared to Ag loading in the absence of TLR2L. The 

positive effect of TLR2L was irrespective of co-encapsulation in PLGA-NP.

Ag-delivery via PLGA-NP results in prolonged MHC class I Ag cross-presen-
tation

The duration of MHC class I presentation and TCR recognition/binding is an important 

factor determining CD8+ T cell priming. Short TCR-stimulation leads to sub-optimal T 

cell priming which is associated in impaired effector functions anergy 21,22. The long term 

effects on MHC class I cross-presentation of SLP was studied by stimulating B3Z CD8+ T 

cells with 96 hr rested Ag-loaded DC. DC were incubated for 2.5 hr in the presence of 4 

μM SLP in either soluble or particulate form with or without TLR2L. As a positive control, 

DC were incubated with SLP-TLR2L conjugates which induce the formation of Ag-storage 

compartments upon internalization. These compartments facilitate prolonged MHC class 

I presentation and sustained CD8+ T cell priming as we have previously reported 14,18. DC 

loaded with sSLP failed to activate CD8+ T cells 96 hr post Ag-incubation (Figure 4.1B). Only 

DC incubated with PLGA-encapsulated Ag and the SLP-TLR2L conjugate were capable of 

MHC class I SLP cross-presentation after 96 hr (Figure 4.1B). 

TLR-stimulation has been shown to slow down the decay of MHC class I molecules thereby 

prolonging cell-surface expression of MHC class I molecule/peptide complexes 23. In our 

system however, prolonged presence of MHC class I molecules/peptide complexes is 

unlikely to be the main mechanism facilitating sustained CD8+ T cell activation by PLGA-

SLP as plain particles in the absence of additional adjuvants poorly matured DC. PLGA-SLP 

had no phenotypical (Figure 4.2A) nor functional DC maturating effects (Figure 4.2B) on 
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Figure 4.1  TLR2 stimulation improves MHC class I cross-presentation of PLGA-NP encap-

sulated SLP. 

D1 cells were incubated for 2.5 h with titrated amounts of SLP-OVA24aa in different formulations 

with our without Pam3CSK4 (TLR2L) and co-cultured overnight in the presence of (A) B3Z CD8+ 

T cells. T-cell activation was determined as described in Materials and methods. (B) D1 cells were 

incubated with 4 μM Ag for 2.5 hr on t = -96 hr (chase) and on t = -2.5 hr (direct). “Chase” and “di-

rect” Ag loaded DC were harvested at t = 0 hr and their APC capacity to activate B3Z CD8+ T cells 

compared. Data are shown as mean + SD of three samples from one representative experiment 

representative of four (A) and three (B) experiments performed. *** P < 0.001 using a two-way 

ANOVA and Bonferroni posttests.
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DC. Addition of Pam3CSK4 to PLGA-SLP formulations, to obtain PLGA-SLP/TLR2L, very 

efficiciently matured DC (Figure 4.2). However, TLR2L stimulation did not further MHC class 

I Ag cross-presentation by DC loaded with PLGA-SLP or sSLP loaded DC and then rested for 

96 hr in culture in the absence of Ag. Therefore, TLR2-stimulation by itself cannot explain 

our observations of prolonged Ag presentation by DC pulsed by PLGA-SLP.

Figure 4.2  Addition of TLR2L to plain PLGA-SLP and sSLP improves adjuvanticity and 

results in DC maturation. 

D1 cells were incubated in the presence of titrated amounts of SLP formulations with or without 

Pam3CSK4 (Invivogen, tlrl-pms), and soluble LPS (TLR4L) (Sigma L4130, Escherichia coli 0111:B4). 

After 24 hr supernatants were collected, DC harvested and stained for MHC class II and CD86 and 

their expression analyzed by FACS (A). Percentages indicate the numbers of double positive cells. 

Supernatants were analyzed via ELISA for IL-2 levels (B). Data shown are representative of three 

independent experiments.
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In conclusion, Ag delivery via PLGA-NP results in prolonged MHC class I presentation in 

vitro and sustained CD8+ T cell activation. Prolonged MHC class I presentation of SLP was 

not dependent on DC maturation.

DC loaded with SLP encapsulated in NP are capable of sustained in vivo 
priming after adoptive transfer

The in vitro observations were confirmed in vivo by transferring DC which were loaded 

with Ag on t = -96 hr into recipient mice enriched with OT-I CD8+ T cells on day before 

adoptive transfer. The extent of CD8+ T cell expansion was compared to mice receiving 

DC loaded with Ag (-2.5 hr, “direct”).

Only DC which were loaded with PLGA-SLP or PLGA-SLP/TLR2L induced significant OT-I 

CD8+ T expansion using freshly Ag-loaded DC (Figure 4.3). DC loaded with sSLP performed 

Figure 4.3  PLGA-SLP loaded DC possesses APC capacity and stimulated CD8+ T cells 96 hr 

after Ag-loading. 

Ag loaded BMDC (C57BL/6) were tested for their capacity to expand specific CD8+ T cells in vivo. 

WT C57BL/6 animals received 10*106 OVA-specific Thy1.1+ OT-I splenocytes i.v. on t = day -1. On 

t = 0, OVA-specific T cell enriched mice received i.v. 1*106 DC loaded with PLGA-SLP, PLGA-SLP/

TLR2L and sSLP on t = -96 hr and t = -2.5 hr. Blood samples were taken on t = day 3 post-transfer of 

DC and analyzed for the percentages of Thy1.1+CD8+ T cells. DC loaded with SIINFEKL and 10 μg/

ml LPS and antigen naïve DC were used as positive (pos) and negative (neg) control. Percentages 

determined for each individual mice are displayed and data shown are representative of one 

independent experiments. * P < 0.05 using a unpaired student t-test.
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poorly as APC at the concentrations of sSLP tested. Poor priming of OT-I CD8+ T cells can be 

related to the lower MHC class I presentation of sSLP compared to PLGA-SLP but is most 

likely a result of sub-optimal activation of naive OT-I CD8+ T cells, which are co-stimulation 

dependent, by sSLP loaded DC which have a immature phenotype (Figure 4.2). PLGA-SLP 

and even PLGA-NP in general, do not mature DC. However NP-based Ag delivery is very 

efficient leading to high density of Ag-epitope loaded MHC class I molecules on the cell-

surface leading to sufficient triggering of OT-I CD8+ T cells for them to proliferate in vivo. 

PLGA-SLP with co-encapsulated TLR2L results in significant OT-I expansion even after 96 hrs 

incubation indicating sustained antigen storage of the particle-delivered antigen by DC.

Re-routing and prolonged presence of SLP into the endosomes by encap-
sulation in PLGA-NP

We analyzed if the intracellular localisation of PLGA-SLP after uptake by DC might play 

a role in the observed MHC class I presentation. For this purpose DC were incubated 

with sSLP, PLGA-SLP and PLGA-SLP/TLR2L and analyzed directly by confocal microscope. 

D1 dendritic cells and BMDC were highly capable to internalizing Bp-labeled SLP in the 

tested formulations (green fluorescence, Figures 4.4 & 4.5). sSLP internalized by DC was 

present for a large part outside the endo-lysomes as we showed before 3 whereas PLGA-

encapsulated SLP showed high co-localization, with endo-lysomes, suggested by the 

formation of bright yellow spots, marked in the Figures 4.4 & 4.5 by the arrows. DC which 

took up NP tend to have larger endo-lysosomal compartments (bright red spots, Figures 

4.4 & 4.5) compared to DC which internalized sSLP which might suggest formation of 

phagolysosomes. The results indicate that encapsulation of SLP inside PLGA-SLP modulates 

intracellular trafficking of SLP by keeping the Ag inside endosomal compartments, thereby 

directing it away from the cytosol. 

Brighter yellow spots were observed when BMDC internalized PLGA-SLP in comparison to 

sSLP. This suggest that DC take up much higher amounts of SLP on a single cell basis when 

it is encapsulated in PLGA-NP, pointing to the more efficient uptake by DC of SLP when 

encapsulated (Figure 4.4). Interestingly, encapsulation of TLR2L in PLGA-NP (PLGA-SLP/

TLR2L) even further enhanced the efficiency (Figure 4.4B) and rapidity of NP internalization 

(Figure 4.4C) by BMDC suggesting an additional role for TLR2 in the internalization of NP. 

DC are known to preserve internalized PLGA-(micro)spheres inside endo-lysosomal 

compartments for up to 48 hr which suggests that intracellular hydrolysis of PLGA particles 
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Figure 4.4  Rerouting of SLP into endo-lysosomal compartments upon encapsulation of 

in PLGA-NP. 

BMDC were incubated with 20 μM sSLP-Bp, 20 μM PLGA-SLP-Bp (10% SLP-Bodipy-FL) or 20 μM 

PLGA-SLP-Bp/TLR2L (10% SLP-Bodipy-FL) (excitation- 488nm, visualized as the green signal) for 

2.5 hr and co-stained with Lysotracker red for visualization of the endo-lysosomes (red signal) 

and visualized by confocal microscopy. (A) 1st column shows images depicting green signal as 

the fluorescence of Bodipy-FL (488nm). 2nd column shows images depicting red signal as the 

fluoresence of the lysotracker red/endo-lysosomes (625nm). 3rd column depicts overlay images of 

red/green. Yellow-overlay signal marks co-localization. Images were analyzed using Leica software. 

BMDC were incubated at 4°C and 37°C with (B) titrated amounts of PLGA-SLP, PLGA-SLP/TLR2L and 

PLGA-SLP + sTLR2L (10% SLP-Bodipy-FL). (C) Alternatively, DC were incubated with with 2.5 μM of 

PLGA-SLP and PLGA-SLP/TLR2L (10% SLP-Bodipy-FL). Ag uptake was quantified by flow cytometry 

and data shown are absolute values (% NP+ DC at 37°C - % NP+ DC at 4°C) and represent Avg + 

SEM of 3 independent experiments (A) and Avg + SD of 2 independent experiments.
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to be a slow process. In our study, sustained MHC class I cross-presentation of PLGA-

encapsulated SLP could be detected even after 96 hr. We therefore analyzed D1 cells loaded 

with sSLP, PLGA-SLP, PLGA-SLP/TLR2L directly after loading (Figure 4.5A) or after 96 hr rest 

(Figure 4.5B). sSLP-loaded D1 cells analyzed after 96 hr rest showed clear differences with 

DC analyzed directly after Ag-loading. Fluorescent signal of SLP was largely undetectable 

in DC cultured with sSLP whereas labeled SLP originated from the PLGA-SLP or PLGA-SLP/

TLR2L could be clearly detected still inside endosomal compartments (Figure 4.5). 
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Figure 4.5  Sustained presence of PLGA-NP encapsulated SLP in endo-lysosomes. 

D1 cells were incubated with 20 μM sSLP-Bp, 20 μM PLGA-SLP-Bp (10% SLP-Bodipy-FL) or 20 μM 

PLGA-SLP-Bp/TLR2L (10% SLP-Bodipy-FL) (488nm) for 2.5 hr on t = - 2.5 hr (A) and t = - 96 hr (B)and 

co-stained with Lysotracker red for visualization of the endo-lysosomes on t = - 15 min. Live cell 

imaging were performed at t = 0. 1st column shows images depicting green signal as the fluorescence 

of Bodipy-FL (488nm). 2nd column shows images depicting red signal as the fluoresence of the 

lysotracker red/endo-lysosomes (625nm). 3rd column depicts overlay images of red/green. White 

arrow indicates hotspots (yellow) within a cell were green and red co-localize. Closed circles show 

cells containing green-flourescent signal (and red fluorescent signal). Dashed circles depict cells 

containing only red fluorescent signals. Images were analyzed using Leica software.
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It is known that internalized soluble proteins are also routed into endosomal compart- 

ments 24-26. However, endosomal presence of an Ag does not guarantee preservation as 

soluble protein was not detected inside DC after 96 hr (Supporting Information Figure 

S4.1). This observation fits with our previous reports showing that soluble proteins do not 

lead to sustained Ag presentation 18. 

Processing of PLGA-NP encapsulated SLP can be blocked by inhibitors of 
endo-lysosomal acidification, proteasome and TAP

Exogenous Ag routed towards the MHC class I cross-presentation pathway can follow two 

pathways I) the classical cytosolic pathway or II) the endosomal pathway 27-29. The endosomal 

pathway is dependent on the pH inside the endo-lysosomes but the cytosolic pathway 

is (mostly) independent of the pH gradient inside endo-lysosomes 29. We observed that 

CD8+ T cell activation by DC loaded with PLGA-SLP and PLGA-SLP/TLR2L can be completely 

blocked (Figure 4.6) in a dose dependent manner using the lysotropic agent, bafilomycin 

A (Baf A). MHC class I cross-presentation of sSLP was slightly decreased as observed 

before 3 but CD8+ T cell activation could still be detected at the highest concentration of 

the compound tested in this study. The presentation of the minimal MHC class I binding 

peptide (OVA8) was unaffected over the whole range of concentrations used. PLGA-SLP 

MHC class I cross-presentation was reduced in the presence of a proteasome inhibitor 

(Figure 4.6B & C). MHC class I processing of PLGA-SLP was significantly impaired in the 

absence of functional TAP (Figure 4.6B & E) or when when endo-lysozomal acidification 

is blocked (Figure 4.6B & D).   

Discussion

In this study, we analyzed the effects on MHC class I presentation of co-encapsulating 

a TLR2L with SLP in PLGA-NP. SLP and PLGA-NP are inert synthetic materials with poor 

immunestimulating properties. The therapeutic effectivity of cancer vaccines is largely 

based on its potency to activate DCs, which have superiour capacity to induce robust 

anti-tumor T cell responses.

We previously reported the succesful formulation of PLGA-SLP using a novel double 

emulsion and solvent-evaporation technique. Applying PLGA-NP as a vaccine delivery 

system, the efficacy of MHC class I Ag presentation and subsequent CD8+ T cell activation 
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by DCs was significantly enhanced 10 compared to sSLP. We have also shown recently 

that plain PLGA-NP have poor DC activating properties compared to TLRL 12. With the 

purpose of further increasing the vaccine potency of PLGA-SLP, we have included a TLR2L, 

Pam3CSK4; an adjuvant which has led to promising pre-clinical results when covalently 

coupled to SLP. To this end, TLR2L was co-encapsulated in PLGA-NP with the goal to achieve 

asubstantial DC activation leadingleads to better CD8+ T cell activation in comparison to 

particles which are not adjuvanted. 

In light of our recent findings showing that sSLP are efficiently cross-presented because of 

a rapid translocation into the cytosol facilatating proteasome dependent processing; the 

intracellular location of PLGA-SLP was studied to elucidate if PLGA-NP further enhances 

translocation of SLP, after release from the NP, to the cytosol or if different mechanisms are 

involved in the handling of PLGA-encapsulated SLP in comparison to the sSLP.

We show here that the addition of Pam3CSK4 to PLGA-NP encapsulating SLP strongly 

promotes DC maturation and CD8+ T cell activation. The difference on Ag uptake and MHC 

class I cross-presentation of PLGA-SLP versus PLGA-SLP/TLR2L was was max 3-fold. Lower 

than we expected given our previous studies using SLP-TLR2L 14. 

This moderate enhancement can be explained considering the already very efficient 

uptake, processing and presentation of plain PLGA-SLP (NP) by DC which perhaps is already 

close to maximum levels.

Moreover, Pam3CSK4 was not to required to be encapsulated inside particles for it to exert 

its positive effects on MHC class I presentation of SLP. Mixing sTLR2L with plain PLGA-SLP 

led to similar results as using PLGA-SLP/TLR2L. Thus Pam3CSK4 has a different effect on 

the potency of SLP when co-encapsulated in NP compared to covalently coupling the 

compound to a peptide, which results in very strong enhancement of CD8+ T cell activation 

compared to mixtures of SLP and Pam3CSK4 14. 

Pam3CSK4 has a lipidic nature and contains positively charged lysine residues which direct 

adsorbtion to to the negatively charged PLGA-NP surface due to hydrophobic and (or) 

electrostatic interactions 3. The adsorbtion of Pam3CSK4 to PLGA-SLP when mixed might 

lead to similar NP-characteristics as PLGA-SLP/TLR2L. This effect could explain why both 

the mixing or co-encapsulation will result in an similar participation of Pam3CSK4 in MHC 

class I presentation. 
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In conclusion, we show that addition of a Pam3CSK4, whether co-encapsulated or not, 

further improves MHC class I cross-presentation of SLP and improves CD8+ T cell activation 

compared to plain PLGA-SLP.  

sSLP present in the cytosol are degraded via ubiquitin proteasome system (UPS) 30, 

whereas the Ag present inside endo-lysosomal compartments can be protected from 

rapid degradation by the UPS. Upon internalization of PLGA-NP by DC, a majority of the 

Ag could be detected inside the endo-lysosomes where hydrolysis of the polymer takes 

place releasing the encapsulated SLP 31. Thus, the PLGA-NP encapsulated Ag inside endo-

lysosomal compartments (Figure 4.4) serves as an intracellular reservoir which gradually 

releases the SLP for processing via the classical proteasome-TAP dependent MHC class I 

processing pathways. Baf A clearly interferes with MHC class I Ag presentation of PLGA-

SLP. One possibility is that the compound blocks the transportation of SLP from the 

endo-lysosomes to the cytosol 32. Another possibility is that Baf A modulates the activity 

of endo-lysosomal cathepsins 31. Cathepsin S has been shown to have a role in MHC 

class I cross-presentation 27. Using BMDC generated from Cathepsin S KO mice, we did 

not observe differences in MHC class I cross-presentation of PLGA-SLP compared to WT 

BMDC (data not shown). Taken our results using proteasome inhibitors and TAP-deficient 

BMDC we show that SLP encapsulated in PLGA-NP is cross-presented via the classical MHC 

class I processing pathway but we cannot exclude that the endo-lysosomal environment 

and other pH dependent proteases still play a role in the observed MHC class I Ag cross-

presentation 28,29.

The most important observation of this study was that encapsulation of sSLP in PLGA-

NP results in sustained presence of the Ag inside DC upon internalization. More over, DC 

loaded with PLGA-SLP or PLGA-SLP/TLR2L showed prolonged MHC class I presentation 

in comparison to DC loaded with sSLP. Prolonged Ag presentation was not dependent on 

TLR2L stimulation but the addition of Pam3CSK4 does improve and sustain CD8+ T cell 

activation over a longer time period in vivo. Others observed similar results using PLGA-

particles encapsulating proteins 33. However, in contrast to our results, it has been reported 

that PLGA-particles induce membrane rupture and rapid endo-lysosomal 34 followed by 

“leakage” of the PLGA-encapsulated Ag inside the cytosol; so called endosomal escape 33.  

Membrane rupture by particulate Ag is associated with inflammasome activation and 

secretion of IL-1β by APC 35. In our system, however we could not detect IL-1β in culture 

supernatants using ELISA after 24 hr incubations of DC with PLGA-SLP nor PLGA-SLP/

TLR2L (data not shown). As mentioned before, we could detect green-fluorescent signal 
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of the SLP-OVA24aa-Bodipy-FL and CD8+ T cell activation even after 96 hr indicating that 

in our study the majority of PLGA-encapsulated SLP was not directly tranported to the 

cytosol after DC internalized the NP. Thus, internalized PLGA-NP show functional similarities 

with intracelullar storage compartments as reported for other targeted vaccine delivery 

systems 14,18. 

Therefore, we postulate that the efficient and prolonged MHC class I presentation 

observed using PLGA-SLP and PLGA-SLP/TLR2L is related to preservation of the Ag inside 

intact intracellular compartments. We show here based on the intracellular localization of 

internalized PLGA-NP and functional studies that these partilces also end up in Ag storage 

compartments 18. 

Finally, direct s.c. vaccinations with PLGA-SLP/TLR2L but not PLGA-SLP induces endogenous 

Ag-specific CD8+ T cells capable of target cell lysis (Supporting Information Figure S4.2). In 

conclusion, the study reported here supports a mechanism that CD8+ T cell responses is 

enhanced when the Ag is cross-presented in MHC class I molecules in a sustained manner. 

We show that the co-encapsulation of a TLR2L further boosts these effects and thus 

supports the use of PLGA-NP co-encapsulating long peptide vaccines and adjuvants as an 

anti-cancer vaccine. Cancer cells are notorious for providing very few “danger signals”, which 

is one of the causes why the immune system sometimes fails to clear cancers. However, if 

one vaccinates with PLGA-SLP/TLR2L, encoding tumor associated Ag (TAA), for example 

the sustained release of Ag and adjuvant will lead to strong DC maturation, enhanced 

and prolonged MHC class I presentation and efficient priming of cytotoxic CD8+ T cells. 

Indeed, vaccination with PLGA-NP based vaccines results in robust anti-tumor responses 

with the capacity to significantly control tumor out growth 36-39.
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Supporting Information

Bodipy-FL Lysotracker red Overlay (green/red) Brightfield Overlay (Total)
(488nm) (625nm)

Direct

96 hr chase

Supplemental figure 1

Supplemental figure 1. Endosomal localisation of whole protein after internalization does not lead to prolonged Ag

presence.

D1 cells were incubated with 20 μM ovalbumin-Alexa488 (excitation- 488nm, visualized as the green signal) for 2.5 hr and either

directly analyzed (upper panels) or further cultured in the absence of additional Ag or stimuli for 96 hr (lower panels). Co-staining

with Lysotracker red was performed for visualization of the endo-lysosomes (red signal) and visualized by confocal microscopy. 1st

column shows images depicting green signal as the fluorescence of the dye (488nm). 2nd column shows images depicting red signal

as the fluoresence of the lysotracker red/endo-lysosomes (625nm). 3rd column depicts overlay images of red/green. Yellow-overlay

signal marks co-localization. Images were analyzed using Leica software.

Supporting Information Figure S4.1  Endosomal localisation of whole protein after 

internalization does not lead to prolonged Ag presence. 

D1 cells were incubated with 20 μM ovalbumin-Alexa488 (excitation- 488nm, visualized as the green 

signal) for 2.5 hr and either directly analyzed (upper panels) or further cultured in the absence of 

additional Ag or stimuli for 96 hr (lower panels). Co-staining with Lysotracker red was performed for 

visualization of the endo-lysosomes (red signal) and visualized by confocal microscopy. 1st column 

shows images depicting green signal as the fluorescence of the dye (488nm). 2nd column shows 

images depicting red signal as the fluoresence of the lysotracker red/endo-lysosomes (625nm). 3rd 

column depicts overlay images of red/green. Yellow-overlay signal marks co-localization. Images 

were analyzed using Leica software.
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Supplemental figure 2

Supplemental figure 2. Vaccinations with PLGA-SLP/TLR2L but not PLGA-SLP induces CD8+ T cells with in vivo cytotoxic capacity.

Priming efficacy of endogenous cytotoxic CD8+ T cells by PLGA-SLP formulations, mice were vaccinated with 20 nmol SLP encapsulated in PLGA

with or without Pam3CSK4 co-encapsulated. On day 7 post-vaccination, SIINFEKL-loaded (OVA-specific) target and control-target cells were injected.

To obtain OVA-specific target cells, splenocytes from naïve congeneic C57BL/6 Ly5.1 mice were pulsed for 1 h with 1 µM of SIINFEKL-peptide and

co-stained with 10 µM CFSE (CFSE-high) (Molecular Probes, Eugene, OR). As a negative control, 1 µM of the immunodominant ASNENMETM-

peptide derived from the influenza virus nucleoprotein co-stained with 0.5 µM CFSE (CFSE-low) was used. Specific and non-specific target cells were

mixed 1:1 and injected intravenously (i.v.; 10 x 106 cells of each population). 18 hr after cells were transferred, mice were sacrificed and spleen cells

were harvested to prepare single cell suspensions that were then subjected to flow cytometric analysis. Injected cells were distinguished by APC-

conjugated rat anti-mouse CD45.1 mAb. The percentage specific killing was calculated as follow: 100 - ([(% SIINFEKL-peptide pulsed in treated/%

ASNENMETM-pulsed in treated)/(% SIINFEKL-peptide pulsed in non-treated/% ASNENMETM-pulsed in non-treated)] x 100).

Supporting Information Figure S4.2  Vaccinations with PLGA-SLP/TLR2L but not PLGA-SLP 

induces CD8+ T cells with in vivo cytotoxic capacity. 

Priming efficacy of endogenous cytotoxic CD8+ T cells by PLGA-SLP formulations, mice were 

vaccinated with 20 nmol SLP encapsulated in PLGA with or without Pam3CSK4 co-encapsulated. 

On day 7 post-vaccination, SIINFEKL-loaded (OVA-specific) target and control-target cells were 

injected. To obtain OVA-specific target cells, splenocytes from naïve congeneic C57BL/6 Ly5.1 mice 

were pulsed for 1 h with 1 μM of SIINFEKL-peptide and co-stained with 10 μM CFSE (CFSE-high) 

(Molecular Probes, Eugene, OR). As a negative control, 1 μM of the immunodominant ASNENMETM-

peptide derived from the influenza virus nucleoprotein co-stained with 0.5 μM CFSE (CFSE-low) 

was used. Specific and non-specific target cells were mixed 1:1 and injected intravenously (i.v.; 

10 x 106 cells of each population). 18 hr after cells were transferred, mice were sacrificed and 

spleen cells were harvested to prepare single cell suspensions that were then subjected to flow 

cytometric analysis. Injected cells were distinguished by APC-conjugated rat anti-mouse CD45.1 

mAb. The percentage specific killing was calculated as follow: 100 - ([(% SIINFEKL-peptide pulsed 

in treated/% ASNENMETM-pulsed in treated)/(% SIINFEKL-peptide pulsed in non-treated/% 

ASNENMETM-pulsed in non-treated)] x 100).
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Abstract

Protein antigen (Ag)-based immunotherapies have the advantage to induce T cells 

with a potentially broad repertoire of specificities. However, soluble protein Ag 

is generally poorly cross-presented in MHC class I molecules and not efficient in 

inducing robust cytotoxic CD8+ T cell responses. In the present study, we have applied 

poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) which strongly improve protein 

Ag presentation by dendritic cells (DC) in the absence of additional TLR ligands or 

targeting devices. Protein Ag loaded DC were used as antigen presenting cells (APC) 

to stimulate T cells in vitro and subsequently analyzed in vivo for their anti-tumor 

effect via adoptive transfer, a treatment strategy widely studied in clinical trials as a 

therapy against various malignancies. In a direct comparison with soluble protein Ag, 

we show that DC presentation of protein encapsulated in plain PLGA-NP results in 

efficient activation of CD4+ and CD8+ T cells as reflected by high numbers of activated 

CD69+ and CD25+ interferon (IFN)-γ and interleukin (IL)-2-producing T cells. Adoptive 

transfer of PLGA-NP-activated CD8+ T cells in tumor-bearing mice displayed good in 

vivo expansion capacity, potent Ag-specific cytotoxicity and IFN-γ cytokine production, 

resulting in curing mice with established tumors. We conclude that delivery of protein 

Ag through encapsulation in plain PLGA-NP is a very efficient and simple procedure 

to stimulate potent anti-tumor T cells.

Précis

This paper shows that DC loaded with protein encapsulated in biodegradable and 

clinically applied polymer particles efficiently activate CD8+ T cells in vitro which upon 

adoptive transfer in vivo show potent anti-tumor immune responses.
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Introduction

The adaptive immune system plays a major role in anti-tumor control. Induction of a 

specific immune response against tumor-associated antigen (Ag) is a potential approach 

for targeted immunotherapy of cancer. The first step in the initiation of an effective anti-

tumor response is the uptake of tumor-associated Ag by dendritic cells (DC) and their 

subsequent presentation to naïve T cells 1-3. DC are highly efficient antigen presenting cells 

(APC) and play a central role in initiating and regulating adaptive immunity. DC internalize 

and process exogenous protein Ag and present processed peptide epitopes in the grooves 

of MHC class I and II molecules to prime CD8+ cytotoxic T cells (CTL) and CD4+ helper T 

(Th) cells, respectively 4. CTL are capable of direct clearance of malignant cells 5. Th cells 

have shown to be vital in CTL priming through CD40-CD40L interactions with DC 6,7. In 

addition, activated Th cells secrete cytokines like IL-2 important for CTL proliferation 8,9. 

Full-length protein Ag comprise all potential naturally occurring Th and CTL epitopes 

and can be clinically applied irrespective of the patient’s HLA haplotype. For that reason, 

protein-based tumor-associated Ag is currently being applied in a variety of immuno-

therapeutic approaches against cancer 10,11. However, recent studies have indicated that 

cross-presentation of protein Ag is an inefficient process leading to poor CTL responses 12,13.  

Therefore, improving cross-presentation of protein Ag by DC is essential to further exploit 

cancer immunotherapy.

Nanoparticles (NP) prepared from the polymer poly(lactic-co-glycolic acid) (PLGA) are 

promising clinical grade carriers for improving Ag delivery to DC 14-16. PLGA polymers were 

originally reported for their use as sutures and implants for surgery 17 and since then they 

have been applied for the preparation of particles for drug delivery purposes, including the 

delivery of anti-cancer agents 18-20. Internalization of protein Ag-loaded PLGA particles by DC 

is very efficient, resulting in adequate MHC class I cross-presentation and CTL proliferation 

in vitro 21. Despite highly efficient DC uptake and cross-presentation in vitro, experimental 

tumor models have shown that the therapeutic effect of PLGA particle-based protein 

vaccination in vivo is strictly dependent on co-encapsulation of Toll like receptor ligands 

(TLRL) 22. The necessity for the addition of TLRL for in vivo responses is most likely related to 

observations showing that PLGA-polymers on their own exhibit poor DC or macrophage 

stimulatory capacity in comparison to TLR4L 23,24. However TLRL are dispensable for T cell 

activation in vitro, as reported by two previous studies using biodegradable polymer based 

artificial APC as a method to stimulate T cells in vitro. Applying an elegant method to 
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formulate artificial APC using PLGA, T cells were stimulated in vitro with efficient proliferative 

and cytokine producing capacity 25,26. However, the in vivo effector functions of the in vitro 

stimulated T cells were not studied in those reports. 

In the present study, the intrinsic capacity of plain protein Ag-loaded PLGA-NP to induce 

anti-tumor effector T cells with potent functionality in vivo is reported. DC, the immune 

system’s natural and most potent APC, express known and yet unknown co-stimulatory 

molecules and produce various cytokines vital for optimal T cell priming 27,28. Using murine 

DC, we performed a detailed analysis of the ability of protein Ag-loaded PLGA-NP, lacking 

any additional TLRL or targeting moiety, to induce potent tumor-specific effector T cells. For 

this analysis, we have used a murine model for adoptive T cell transfer therapy, a treatment 

modality that has been successfully tested in various (pre-)clinical studies against various 

types of cancer 29,30. In this murine adoptive T cell transfer therapy model, we show that 

protein Ag encapsulated in PLGA efficiently and rapidly induces highly activated specific 

effector CD8+ T cells with a type I cytokine profile that vigorously expand in vivo in tumor-

bearing mice and have the potency to eradicate established aggressive tumors.

Material and methods

Cells

D1 cells, a GM-CSF dependent immature dendritic cell line derived from spleen of WT 

C57BL/6 (H-2b) mice, were cultured as described previously 31. Freshly isolated DC (BMDC) 

were cultured from mouse bone marrow (BM) cells by collecting femurs from WT C57BL/6 

strain and cultured as published previously by our group 32. After 10 days of culture, large 

numbers of typical DC were obtained which were at least 90% positive for murine DC 

marker CD11c (data not shown). B3Z CD8+ T cell hybridoma cell line, specific for the H-2Kb-

restricted OVA257–264 CTL epitope SIINFEKL, expressing a β-galactosidase construct under 

the regulation of the NF-AT element from the IL-2 promoter, was cultured as described 

before 33 OT-IIZ, a CD4+ T cell hybridoma cell line, specific for the I-Ab-restricted OVA323–339 

Th epitope, expressing the same β-galactosidase construct, was produced in house. The 

weakly immunogenic and highly aggressive OVA-transfected B16 tumor cell line (B16-OVA), 

syngeneic to the C57BL/6 strain, was cultured as described 34.
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Preparation and characterization of protein Ag-loaded PLGA-NP

PLGA-NP were prepared using 7-17 kDa PLGA 50:50 (Resomer RG502H, Boehringer 

Ingelheim, Ingelheim, Germany) by applying a modified “water-in-oil-in-water” solvent 

evaporation method as described 35. In brief, 50 μl of 20 mg/ml pure, endotoxin-free 

ovalbumin (OVA, Worthington LS003048) dissolved in 25 mM Hepes buffer (pH 7.4) 

was emulsified with 1 ml of dichloromethane (DCM) containing 25 mg of PLGA with 

an ultrasonic processor for 15 s at 70 W (Branson Instruments, CT, USA). The secondary 

emulsion was prepared with 2 ml of 1% (w/v) polyvinyl alcohol (PVA) in water. The double 

emulsion was then transferred into 25 ml of a 0.3% (w/v) PVA solution, and stirred at 

37°C for 1 h, and the resulting NP were harvested and washed twice with Milli-Q water 

by centrifugation at 8000 g for 10 min. The NP suspension was aliquoted in cryovials and 

lyophilized for 24 h. Prior to use, lyophilized NP particle size distribution was determined 

by means of dynamic light scattering (DLS) using a NanoSizer ZS (Malvern Instruments, 

Malvern UK) after resuspension of the particles in Milli-Q water. The zeta potential of the 

particles was also measured with the NanoSizer ZS by laser Doppler velocimetry. The OVA 

content of the particles was determined with a BCA protein assay (Pierce, Rockford, IL, 

USA) according to the manufacturer’s instructions, and encapsulation efficiency (%EE) was 

determined according to equation 5.1. 500 µg lyophilized PLGA-OVA were resuspended in 

350 µl sterile MQ water and endotoxin content were determined with Bacterial endotoxins 

methode D. Chromogenic kinetic method’ an assay according to European Pharmacopeia 

2.6.14 seventh edition. 

								        (5.1)

In vitro release study of PLGA-encapsulated protein

For release studies, protein-loaded PLGA NP were prepared as described, but with the 

addition of 1% (w/w total OVA) of Ovalbumin-Alexa Fluor® 488 (PLGA-OVA-Alexa488) 

(Invitrogen). Encapsulation of OVA-Alexa488 proceeds with similar efficiency as the regular 

OVA with no dye conjugated (See Table 5.1). PLGA-OVA-Alexa488 were resuspended in 

1x PBS pH 7.4 at a concentration of 10 mg PLGA/ml and maintained at 37°C in a water 

bath under constant tangential shaking at 100 rpm in a GFL 1086 shaking water bath 

(Burgwedel, Germany). At regular time intervals, 250 µl samples of the suspension were 

taken, centrifuged for 20 min at 18,000×g and supernatants were stored at 4°C until 

fluorescence intensity, was determined by fluorescence spectrometry (Tecan, Infinite M 

100  
massprotein    total

NPin   massproteinEE % 
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1000). Concentration of OVA-Alexa488 in the supernatant was assessed against a calibration 

curve containing known concentrations of OVA-Alexa488. Protein release profiles were 

generated for each NP formulation in terms of cumulative antigen release (%) over time. 

Release was determined according to equation 5.2.

									         (5.2)

Enzyme-linked Immunosorbent Assay (ELISA)

DC (100,000/well) were plated into a 96-well round bottom plate and incubated for 24 hr 

with titrated amounts of Ag. Supernatants were harvested and tested for IL-12 p40 using 

an ELISA assay kit (BD OptEIA™ MOUSE IL-12 Cat. Nr 555165) following manufacturer’s 

instructions.

MHC class I or class II-restricted Ag presentation and T cell proliferation

DC were incubated for 24 h with soluble OVA (sOVA) or OVA encapsulated in PLGA-NP 

(PLGA-OVA) at the indicated concentrations. Cells were washed followed by overnight 

incubation at 37°C in the presence of either B3Z - to measure MHC class I Ag presentation 

of SIINFEKL (OVA257–264) in H-2Kb - or OT-IIZ cells - to assess MHC class II Ag presentation 

of ISQAVHAAHAEINEAGR (OVA323–339) in I-Ab. A colorimetric assay using chlorophenol red-

β-D-galactopyranoside (CPRG) as substrate was used to detect IL-2 induced lacZ activity. 

OVA-specific proliferation of naïve CD8+ and CD4+ T cells was performed by culturing OT-I 

or OT-II splenocytes in the presence of DC loaded with titrated amounts of PLGA-OVA or 

sOVA. After 24 h incubated cells were pulsed with [3H]-thymidine and cultured further 

overnight. Samples were then counted on a TopCountTM microplate scintillation counter 

(Packard Instrument Co., Meridan, CT, USA).

100  
NPin   massprotein   t  supernatanin   massprotein

t supernatanin   massprotein R % 


  

Table 5.1  PLGA-NP characteristics

Formulation Size (nm) PDI ZP (mV)

Protein 
loading (μg 
OVA/mg 
PLGA)

OVA 
encapsulation 
efficiency (%)

Endotoxin 
level (IU/
ml)

PLGA-OVA 274 ± 19 0.18 ± 0.02 -27 ± 1 25 ± 1 62 ± 2 0.03 ± 0.00

PLGA-OVA Alexa 338 ± 12 0.22 ± 0.10 -27 ± 5 20 ± 1 49 ± 4 0.03 ± 0.03

PLGA empty 311 ± 52 0.14 ± 0.06 -30 ± 7 n/a n/a n/a
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Analysis of T cell phenotype and T cell cytokine profile

DC were loaded for 24 h with 0.25 µM OVA in PLGA (PLGA-OVA) or soluble OVA (sOVA), 

washed extensively and used as APC to stimulate spleen suspensions from OT-I and OT-II 

mice. DC and splenocytes were co-cultured for 24 h in the presence of 7.5 µg/ml Brefeldin 

A. Total cells were harvested, washed twice with PBA buffer (0.01 M sodium phosphate, 

0.15 M NaCl, 1% (w/v) BSA, and 0.01% (w/v) sodium azide) followed by staining with 

PerCP rat anti-mouse CD8α monoclonal antibodies (mAb) and AF-conjugated rat anti-

mouse CD3 mAb. To assess T cell activation, cells were stained with FITC-conjugated rat 

anti-mouse CD69 mAb or PeCy7-conjugated rat anti-mouse CD25 mAb. To study the T cell 

cytokine profile, CD8+ T cells were stained as above and subjected to intracellular cytokine 

staining using the Cytofix/Cytoperm kit according to the manufacturer’s instructions (BD 

Pharmingen). Intracellular IFN-γ in the T cells was stained with APC-conjugated rat anti-

mouse IFN-γ. Similarly, IL-2 and IL-4 were stained using PE-conjugated rat anti-mouse 

IL-2, IL-4 respectively. TNF-α was stained with FITC-conjugated rat anti-mouse TNF-α 

mAb. All antibodies were purchased from BD Pharmingen. Flow cytometry analysis was 

performed using a LSRII flow cytometer (BD Pharmingen) and analyzed with FlowJo 

software (Treestar).

In vivo cytotoxicity

To obtain OVA-specific effector CD8+ T cells, single cell suspensions were prepared 

from spleen and lymph nodes of OT-I mice, washed twice and resuspended in IMDM 

supplemented with 10% (v/v) FCS. Whole single cell suspensions were cultured in 

6-wells plates with Ag (0.25 µM) loaded DC for 24 h at a ratio of 25:1. DC and splenocyte 

cultures were incubated for 24 hr at 37°C. Purified CD8+ T cells were obtained by a 

negative selection protocol using the Mouse CD8 T Cell Lymphocyte Enrichment Set - 

DM (BD Biosciences) according to the manufacturer’s instructions. This protocol yielded 

CD8+ T cell purities of at least 90% (data not shown). 2.5 x 106 Purified CD8+ T cells were 

transferred to syngeneic WT C57BL/6 animals that were rested for 24 h after adoptive cell 

transfer. To obtain OVA-specific target cells, splenocytes from naïve congeneic C57BL/6 

Ly5.1 mice were pulsed for 1 h with 1 µM of SIINFEKL-peptide and co-stained with 10 

µM CFSE (CFSE-high) (Molecular Probes, Eugene, OR). As a negative control, 1 µM of the 

immunodominant ASNENMETM-peptide derived from the influenza virus nucleoprotein 

co-stained with 0.5 µM CFSE (CFSE-low) was used. Specific and non-specific target cells 
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were mixed 1:1 and injected intravenously (i.v.; 10 x 106 cells of each population). Eighteen 

hours after cells were transferred, mice were sacrificed and spleen cells were harvested 

to prepare single cell suspensions that were then subjected to flow cytometric analysis. 

Injected cells were distinguished by APC-conjugated rat anti-mouse CD45.1 mAb. The 

percentage specific killing was calculated as follow: 100 - ([(% SIINFEKL-peptide pulsed in 

treated/% ASNENMETM-pulsed in treated)/(% SIINFEKL-peptide pulsed in non-treated/% 

ASNENMETM-pulsed in non-treated)] x 100).

Adoptive transfer OVA-specific T cells in B16-OVA tumor bearing and naïve 
mice

WT C57BL/6 mice were injected subcutaneously (s.c.) in the right flank with 2 x 105 B16-

OVA melanoma cells. Seven days after tumor injection, when tumors were palpable, mice 

were treated by intravenous infusion of 2.5 x 106 purified effector CD8+ T cells derived 

from OT-I mice, ex vivo stimulated for 24 h in the presence of DC loaded with either 

PLGA-OVA or sOVA. Tumor growth was measured 1–3 times a week and survival was 

monitored daily. Tumor size (mm2) was calculated by (length) × (width). Mice with tumor 

sizes that equaled or exceeded 140 mm2 were sacrificed. Tail vein blood samples were 

collected on day 10, 17 and 31 after CD8+ T cell transfer. Blood samples were prepared 

by erythrocyte lysis, followed by 2 washing steps with PBA buffer. Transferred CD8+ T 

cells were analyzed by co-staining with APC-conjugated rat anti-mouse Thy1.1 mAb, 

FITC-conjugated anti-mouse CD8α mAb and AF-conjugated rat anti-mouse CD3 mAb in 

combination with APC-Cy7-conjugated anti-mouse CD44 antibody and PB-conjugated 

anti-mouse CD62L antibody. OVA-specific CD8+ T cell mediated cytokine production was 

detected by overnight stimulation of peripheral blood cells with SIINFEKL-peptide in the 

presence of 7.5 µg/ml Brefeldin A. Medium was used as a negative control to correct for 

baseline cytokine production. Cytokine profile was analyzed by intracellular cytokine 

staining as described above.

Statistical analysis

Graph Pad Prism software was used for statistical analysis. Values and percentages of 

specific CD8+ T cells and secreted cytokine production were analyzed by two-tailed 

unpaired Student t test. Differences in animal survival between the different groups were 

calculated using Log-rank (Mantel-Cox) test.
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RESULTS

Nanoparticle characterization and protein antigen load and release 

We prepared several batches of PLGA-OVA NP with similar characteristics. Particles used 

in our study had an average size of 327 ± 65 nm (mean ± SD; n = 7) and a polydispersity 

index (PDI) of 0.19 ± 0.07. Encapsulation efficiency of OVA in NP was determined to be 59 ± 

5%. Empty particles used as control particles in this study had a comparable size (311 ± 52 

nm) and PDI (0.15 ± 0.05). The endotoxin levels were determined for the prepared batches 

and was shown to be below 0.04 IU/ml in particle suspensions prepared as described in 

material and methods (see Table 5.1). Release kinetics of OVA from the PLGA-OVA particles 

were analyzed over a period of 35 days. The validity of using OVA-Alexa 488 fluorescence 

as a measure of (unlabeled) OVA release was confirmed by measuring the OVA content of 

the nanoparticles and the total amount released at the end of the release study by BCA 

assay, which gave very similar values as the fluorescence method (results not shown).

The NP had a burst release of the encapsulated OVA of 28.1 ± 0.2%. At the end of the 

analysis, we could detect 80.4 ± 2.2% of released OVA in suspension indicating that after 

35 days about 20% of the originally encapsulated OVA was still associated with NP showing 

the slow release character of these NP (see Supporting Information Figure S5.1).

Efficient protein MHC class I and class II Ag presentation by DC loaded with 
protein encapsulated in PLGA-NP

The efficiency of Ag (cross)-presentation of encapsulated protein Ag in comparison to 

soluble protein Ag was studied in vitro. DC were incubated for 24 h with titrated amounts 

of Ag, as indicated in µM, either encapsulated in PLGA-NP (PLGA-OVA) or in soluble form 

(sOVA). Ag presentation by MHC class I or II was assessed using the CD8+ (B3Z) and CD4+ 

(OT-IIZ) T cell hybridomas. DC loaded with PLGA-OVA very efficiently triggered B3Z T cells 

(Figure 5.1a). In contrast, DC pulsed with sOVA poorly stimulated B3Z CD8+ T cells unless 

very high concentrations (≥ 64 µM) of sOVA were used (data not shown). MHC class I 

cross-presentation of protein Ag was strictly dependent on encapsulation in PLGA-NP, as a 

mixture of the sOVA with empty PLGA-NP did not induce CD8+ T cell activation (Figure 5.1b). 

In addition, DC loaded with PLGA-OVA resulted in at least 100-fold enhanced activation 

of OT-IIZ CD4+ T cells in comparison to DC loaded with sOVA, indicating that also MHC 

class II presentation was dramatically improved by encapsulation (Figure 5.1c). Next to 
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Ag presentation, we analyzed proliferation of naïve CD8+ (OT-I) and CD4+ (OT-II) T cells 

induced by DC loaded with PLGA-OVA or sOVA. Co-culture of Ag pulsed DC with either OT-I 

or OT-II T cells for 72 h, including overnight incubation in the presence of [3H]-thymidine 

for the last 18 h showed that PLGA-OVA was at least 1000-fold more efficient than sOVA in 

inducing OT-I T cell proliferation (Figure 5.1d) and 100-fold better than sOVA in inducing 

Figure 5.1  Efficient MHC class I and- class II presentation of OVA Ag incorporated in PLGA-NP. 

(A) D1 cells were pulsed for 24 h with titrated amounts (µM) of OVA, either in soluble form sOVA 

or encapsulated in PLGA-NP (PLGA-OVA). MHC class I presentation was detected by co-culture 

with H-2Kb/SIINFEKL-specific B3Z CD8+ T cells; (B) D1 cells were pulsed for 24 h with 0.25 µM 

OVA in PLGA-OVA, empty PLGA-NP, or a mixture of empty PLGA-NP with 0.25 µM sOVA, washed 

and co-cultured with B3Z CD8+ T cells to assess MHC class I Ag presentation; (C) D1 cells were 

pulsed for 24 h with titrated amounts of PLGA-OVA or sOVA, washed, and co-cultured with I-Ab/

ISQAVHAAHAEINEAGR-specific OT-IIZ CD4+ T cells to assess MHC class II Ag presentation. BMDC 

were loaded with titrated amounts of PLGA-OVA or sOVA. Ag loaded DC were subsequently used 

to activate naïve OT-I (D) or OT-II T (E) cells for 72 h. T cell proliferation was measured in triplicate 

by 3[H]-thymidine uptake. Data shown are means of triplicate measurements ± SD from one 

representative example out of at least three independent experiments.
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OT-II T cell proliferation (Figure 5.1e). Similar to the used D1 dendritic cells, freshly isolated 

BMDC loaded with PLGA-OVA were superior in comparison to sOVA-loaded BMDC in the 

stimulation of OT-I and OT-II T cells resulting in improved T cell proliferation (Supporting 

Information Figure S5. 2). In addition, we analyzed DC maturation by surface expression of 

CD86 and determining the amount of IL-12 in culture supernatants after incubation with 

the NP after 24 hr incubation. Our data show that the empty or OVA-loaded PLGA NP do 

not detectably activate and mature DC (Supporting Information Figure S5.3) in contrast 

to LPS (TLR4L) or PolyI:C (TLR3L). This indicates that encapsulation of soluble protein 

antigen in plain PLGA NP strongly enhances antigen presentation by DC irrespective of 

DC maturation.

Activation of T cells by DC loaded with PLGA-NP-encapsulated protein Ag

We analyzed whether PLGA-NP based delivery of protein Ag could induce T cell activation 

and production of pro-inflammatory cytokines. Naïve OVA-specific CD8+ (OT-I) and CD4+ 

(OT-II) T cells were stimulated for 24 h in the presence of PLGA-OVA- or sOVA-loaded DC 

and analyzed for cells expressing the early activation marker CD69. Both CD8+ (Figure 5.2a) 

and CD4+ (Figure 5.2b) T cells showed strongly enhanced percentages of CD69+ cells upon 

stimulation by PLGA-OVA pulsed DC in a dose-dependent manner. By contrast, and in line 

with poor Ag presentation, stimulation with sOVA pulsed DC resulted in low expression 

of CD69 on T cells. The majority of CD8+ T cells stimulated with PLGA-OVA pulsed DC 

also expressed the interleukin-2 receptor-alpha chain (CD25) after 24 h, whereas only a 

small population of sOVA induced CD8+ T cells showed expression of CD25 (Figure 5.2c). 

Furthermore, we analyzed the capacity of activated CD8+ and CD4+ T cells to produce IL-2, 

IFN-γ, TNF-α and IL-4 by intracellular cytokine analysis of the T cells. Whereas hardly any 

cytokine-producing CD8+ and CD4+ T cells were observed after stimulation with sOVA 

pulsed DC, high numbers of IFN-γ- and IL-2-producing CD8+ T cells (Figure 5.2d) and 

CD4+ T cells (Figure 5.2e) were detected after stimulation with PLGA-OVA-loaded DC. The 

majority of cytokine-producing CD4+ T cells were single producers of IL-2, whereas cytokine 

producing CD8+ T cells consisted of a population of IL-2 and IFN-γ double producers, single 

IFN-γ producers and a relatively smaller population of IL-2 single producers. The cytokines 

IL-4 and TNF-α could not be detected after in vitro stimulation of either CD8+ or CD4+ T 

cells with PLGA-OVA pulsed DC (data not shown).
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DC loaded PLGA-NP-encapsulated protein Ag induces CD8+ T cells with in 
vivo cytotoxic capacity 

To assess their cytotoxic capacity, CD8+ T cells stimulated in vitro by PLGA-OVA-loaded DC 

were studied for their ability to lyse Ag-pulsed target cells in vivo. Following stimulation, 

the purified CD8+ T cells were transferred into recipient mice. After 24 h SIINFEKL-loaded 

target and control-target cells were injected and 18 h later mice were sacrificed and 

spleen single cell suspensions were analyzed by flow cytometry. In line with the observed 

activation status and cytokine profile, CD8+ T cells stimulated with PLGA-OVA-loaded DC 

Figure 5.2  DC pulsed with PLGA-OVA, but not sOVA, induce strong activation of T cells. 

D1 cells were pulsed for 24 h with titrated amounts of sOVA or PLGA-OVA. Ag loaded DC were 

washed to remove excess Ag, and co-cultured for an additional 24 h with OT-I or OT-II splenocytes. 

Cells were harvested and analyzed by flow cytometry for the cell surface expression of CD69 on 

CD8+ T (A) cells and CD4+ T cells (B); (C) Expression of CD25 and CD69 was analyzed on CD8+ T 

cells which were stimulated for 24 h with DC which were loaded with either PLGA-OVA or sOVA. 

Immature DC without Ag served as negative control. Intracellular production of IL-2 and IFN-γ by 

CD8+ T cells (D); and CD4+ T (E) cells was analyzed by flow cytometry after 24 hr stimulation with 

DC pulsed with titrated amounts of PLGA-OVA or sOVA. One representative experiment out of 

three independent experiments is shown. Data shown are means of triplicate measurements ± SD.
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demonstrated cytotoxicity against SIINFEKL-loaded target cells. In contrast, CD8+ T cells 

co-cultured in the presence of sOVA-loaded DC were not capable of killing target cells 

(Figure 5.3a and b). 

PLGA-NP-encapsulated protein Ag induces CD8+ T cells with potent anti-
tumor activity

To investigate the therapeutic potential of CD8+ T cells induced by DC loaded with PLGA-

NP-encapsulated protein antigen against established tumors, mice were inoculated s.c. 

with OVA-expressing B16 melanoma tumor cells. After 7 days, animals were treated by 

adoptive T cell transfer therapy by a single i.v. injection of 2.5 x 106 purified OVA-specific 

CD8+ T cells stimulated for 24 h in vitro in the presence of DC loaded with either PLGA-OVA 

or sOVA. Tumor growth and animal survival in CD8+ T cell transferred mice were compared 

to those in non-treated animals. Animals were developing palpable tumors within 10 days 

Figure 5.3  Enhanced in vivo cytotoxicity of ex vivo PLGA-OVA-stimulated CD8+ T cells. 

(A) Mice were transferred with purified CD8+ OT-I T cells which were in vitro stimulated with D1 cells 

loaded with PLGA-OVA and sOVA. Differentially CFSE-labeled SIINFEKL-peptide loaded and control 

target cells were i.v. administered. After 18 h the spleens from recipient animals were harvested 

and analyzed by flow cytometry for percentage of specific killing of target cells; (B) Experiment 

was performed twice and averages ± SEM of n = 7 mice for each condition are shown in bar graphs.
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after s.c. tumor inoculation. In tumor-bearing mice that were treated by adoptive transfer 

with OVA-specific CD8+ T cells stimulated in the presence of PLGA-OVA-loaded DC, we 

observed a clear therapeutic effect which resulted in delayed tumor growth in comparison 

to non-treated animals and animals treated with CD8+ T cells stimulated with sOVA loaded 

DC. We observed regression of tumors in the range of 2–4 mm2 in some animals by day 

14, which were undetectable on day 18 after tumor challenge (insert in Figure 5.4a). By 

day 22, four animals within this group had tumor recurrences which eventually grew out. 

Nevertheless, 8 out of 12 tumor-challenged mice treated with PLGA-OVA induced CD8+ T 

cells remained tumor free for the duration of the experiment (Figure 5.4a). By contrast, in 

tumor challenged animals that received sOVA induced CD8+ T cells, tumors reappeared in 

11 out of 12 mice and grew out, albeit at a decreased rate when compared to non-treated 

animals (Figure 5.4b). In all non-treated animals, tumors grew out fast and all mice were 

sacrificed by day 24, because of maximum allowed tumor burden (Figure 5.4c). Tumors 

that did grow in animals that received PLGA-OVA induced CD8+ T cells had a significantly 

slower average growth rate when compared to tumors from mice that received sOVA 

induced CD8+ T cells. Consequently, the survival of mice treated with PLGA-OVA induced 

CD8+ T cells was significantly higher when compared to mice treated with CD8+ T cells 

stimulated in the presence of sOVA-loaded DC (Figure 5.4d).

CD8+ T cells stimulated with PLGA-NP-encapsulated protein Ag efficiently 
expand and produce type I cytokines in vivo

We measured by flow cytometry the actual numbers of OVA-specific CD8+ T cells 

(CD8+Thy1.1+ OT-I cells) in peripheral blood of tumor challenged mice up to a month after 

adoptive transfer. Ten days after adoptive transfer of equal amounts of purified OVA-specific 

CD8+ T cells, mice that had received PLGA-OVA induced cells showed 5-fold higher levels of 

CD8+ T cells than animals that had received sOVA stimulated CD8+ T -cells (Figure 5.5a). The 

percentage of PLGA-OVA induced CD8+ T cells remained significantly higher at day 17 and 

31 after transfer (Figure 5.5b). A similar in vivo expansion capacity of PLGA-OVA induced 

CD8+ T cells was observed upon transfer in naïve mice, i.e. not challenged with tumors 

(data not shown). Furthermore, we analyzed the production of cytokines by CD8+ T cells 

in peripheral blood by intracellular staining. To this end, peripheral blood mononuclear 

cells were harvested from mice at day 10, 17 and 31 after adoptive transfer and stimulated 

overnight in the presence of SIINFEKL-peptide. IFN-γ-, IL-2- and TNF-α-producing CD8+ T 

cells were detectable by flow cytometry. On day 10 after adoptive transfer, we observed 
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significantly higher percentages of IFN-γ-producing CD8+ T cells in mice that had received 

PLGA-OVA induced CD8+ T cells when compared to mice that had received sOVA induced 

CD8+ T cells. We were unable to detect IFN-γ-producing CD8+ T cells in tumor-bearing 

animals which were not treated using adoptive T cell transfer therapy (data not shown). 

Although, the percentage of IFN-γ producing CD8+ T cells declined at day 17 and 31 

after adoptive transfer, the IFN-γ-producing CD8+ T cells remained significantly higher 

throughout the analysis period (Figure 5.5c). A trend in increased levels of IL-2- and TNF-

α-producing CD8+ T cells could be observed in mice transferred with PLGA-OVA but not 

Figure 5.5  PLGA-OVA stimulated CD8+ T cells expand and persist in the peripheral blood 

and have higher capacity to produce IFN-γ. 

(A) Tumor bearing animals received a single i.v. injection of CD8+ T cells stimulated with PLGA-OVA-

loaded DC. Tail vein blood samples were taken on day 10 after adoptive transfer of the CD8+ T cells 

and numbers of CD8+Thy1.1+ T cells were measured by flow cytometry; (B) In vivo persistence of 

i.v. transferred CD8+Thy1.1+ T cells in tumor bearing animals was monitored for 4 weeks in blood 

on day 17 and 31; (C) Intracellular IFN-γ production by CD8+ T cells was analyzed on day 10, 17 and 

31 after adoptive transfer; (D) Memory phenotype of transferred DC/PLGA-OVA in vitro stimulated 

CD8+Thy1.1+ T cells was determined by analysis of CD44 and CD62L surface expression. Results 

shown are averages ± SEM from n = 3–12 mice per group, dependent on the number of animals 

alive at each time-point post tumor challenge. * = P < 0.05 for animals treated with DC/PLGA-OVA 

compared to DC/sOVA induced CD8+ T cells using a un-paired student t test.
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with sOVA induced CD8+ T cells (data not shown). In addition, the phenotype of peripheral 

blood OVA-specific T cells at day 17 and 31 after adoptive transfer of PLGA-OVA induced 

CD8+ T cells was analyzed. The majority of the cells possessed a central memory phenotype 

based on high expression of CD62L (L-selectin) and CD44 (Figure 5.5d) showing the 

superior functionality of the T cells expanded with this simple expansion protocol with 

NP encapsulated protein antigen.   

Discussion

In this study we analyzed the phenotype and in vivo functionality of T cells stimulated 

in vitro by DC loaded with plain PLGA-NP encapsulated protein Ag with no additional 

immune stimulatory agent or targeting moiety. We showed that encapsulation of protein 

Ag in plain PLGA-NP not only enhanced Ag (cross-)presentation by DC but also improved 

the functionality of the induced T cells to cure animals from tumors upon adoptive T cell 

transfer. OVA antigen in PLGA-NP was more efficiently processed and presented in MHC 

class I and II by DC and resulted in potent activation and proliferation of OVA-specific CD8+ 

and CD4+ T cells, high production of type I cytokines and tumor control resulting in an 

overall survival of 75% of tumor-bearing animals.

PLGA-based particles as vaccine delivery systems were pioneered already more than 30 

years ago 14. Several studies have shown that efficient anti-tumor immune responses 

in vivo by PLGA-particles require not only encapsulated Ag, but also a co-encapsulated 

adjuvant such as a TLRL, surface coating of particles with mannan or protamine to stimulate 

immunity or DC targeting moieties, for example anti-DEC205 antibodies 22,36-38. 

CD8+ T cells induced in our study were applied for adoptive T cell transfer purposes. 

Adoptive T cell transfer therapy potency in (pre)clinical setting is enhanced upon efficient 

ex vivo/in vitro stimulation/manipulation of donor T cells 30,39,40. Using a similar murine 

model, efficient stimulation of T cells with potent effector functions was reported using 

artificial APC systems 26. They constructed PLGA-based artificial APC expressing MHC class 

I molecules containing a specific CTL short-peptide epitope, which also provides T cell 

co-stimulation in the form of CD28 and CD3 triggering and releases IL-2 41,42. We propose 

that our simple approach with natural APC is equally efficient and has the advantage that 

our method is not restricted to the known MHC class I and II-presented T cells epitopes. 

In addition, the use of natural DC as APC might facilitate priming of T cells via more co-

stimulatory pathways 43-45 and additional DC-mediated cytokines required for optimal 
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type I pro-inflammatory T cell activation, for example IL-12 46, and avoids sub-optimal 

formation of the immunological synapse as has been described for other bead-based 

artificial APC systems 47. 

Adoptive T cell therapy has yielded promising results as a cancer immunotherapy in the 

last decade 30,48. Standard adoptive transfer protocols mandate that T cells are cultured 

for 2–14 days in the presence of specific Ag and exogenous cytokines 39,49-51 for optimal 

stimulation and expansion. In contrast, we opted for a short 24 h stimulation of T cells 

without addition of any exogenous cytokines. We favor short incubation with DC loaded 

with PLGA-OVA, which potently activates T cells, because longer incubation periods might 

tip the balance to activation induced cell death (AICD) 52,53. In addition, our protocol allowed 

us to transfer T cells that were not skewed based on the cytokines added to the cultures 54,55  

nor negatively affected by the added cytokines 42,56,57. 

In our culture systems we used two types of DC: D1 cells, a well characterized murine 

splenic DC cell line, originally isolated from WT C57BL/6 animals 58 and bone marrow 

derived DC. Both CD11c+ myeloid types of DC were cultured as immature cells in GM-CSF 

containing media. D1 DC do not exhibit substantial functional differences with BMDC, they 

possess equal capacity to prime T cells and upon transfer to recipient animals show similar 

efficiency to induce protective anti-tumor immunity 32. We compared CD4+ and CD8+ T cell 

proliferation by PLGA-NP encapsulated protein Ag and we observed similar observations 

using either D1 cells or WT BMDC as APC. Therefore, easily cultured myeloid types of DC 

are well suited for the T cell activation protocol with NP encapsulated Ag we describe here.

In this study splenocytes from OT-I mice, which contain high numbers of OVA-specific T 

cells, were used to activate and adoptively transfer into recipient animals. We are aware 

that in clinical settings, majority of patients which were treated with adoptive T cell transfer 

therapy exhibit lower precursor frequencies of TAA-specific T cells that require stimulation 

and expansion to yield sufficient numbers for adoptive transfer. Our system still works by 

DC/PLGA-OVA stimulation of cell cultures containing lower amounts (between 1–10%) of 

OVA-specific T cells regarding T cell activation and cytokine production (data not shown). 

On the other hand, higher precursor frequencies of both CD4+ and CD8+ Ag-specific T cells 

have been observed in draining lymph nodes of cervical cancer patients 59,60. These cells 

were able to produce type I pro-inflammatory cytokines and proliferate upon specific 

stimulation suggesting that these cells might be suitable for future adoptive T cell transfer 

protocols. Indeed, in a melanoma patient case report, it was shown that CD4+ T cells isolated 
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in relatively higher precursor frequencies could be successfully stimulated and transferred 

to the recipient back to the patient resulting in a clinical response 61.

The PLGA-OVA particles used in our study are devoid of any additional TLRL or 

immunostimulatory agents. We observed no differences in T cell proliferation by MyD88 

KO BMDC loaded with PLGA-OVA (data not shown), it is therefore unlikely that any 

unanticipated TLR-stimulation plays a role in our system. The enhanced T cell proliferation 

and activation is most likely the result of enhanced uptake of Ag available for efficient 

processing and MHC presentation. Uptake of particulate matter proceeds via phagocytosis 
62,63 of protein Ag-loaded PLGA particles by DC resulting in adequate MHC class I cross-

presentation to CTL 64. DC internalize particles and maintain these intracellularly for up to 

72 hr 65. Prolonged presence of Ag inside cells has been shown to result in sustained MHC 

class I Ag presentation and efficient priming of CD8+ T cells 66. 

Transferred DC/PLGA-OVA stimulated CD8+ T cells were still detectable 31 days post 

adoptive transfer and the majority of these cells possessed a central memory phenotype 

correlating with tumor control. Numbers of specific T cells in vivo have been shown to 

directly correlate with tumor-regression 67. Efficient tumor killing is achieved upon efficient 

CD8+ T cell activation accompanied with high production of type I pro-inflammatory 

associated cytokines which is dependent on the method of in vitro activation 68,69. Our 

data are in line with these reports as peripheral CD8+ T cells from mice which received 

DC/PLGA-OVA stimulated CD8+ T cells were capable of producing type I pro-inflammatory 

cytokines upon specific peptide stimulation. Indeed, expansion of IFN-γ producing T cells 

correlates with clinical effect in patients with human papillomavirus type 16 induced vulvar 

intraepithelial neoplasia 70. 

Numbers of cytokine-producing cells decreased with time in all treated animal groups The 

decrease in numbers of cytokine-producing OVA-specific CD8+ T cells in time might be 

related to lack of sufficient OVA-specific CD4+ T cells. Co-transfer of DC/PLGA-OVA in vitro 

stimulated CD4+ T cells may prolong and sustain higher numbers of cytokine producing 

effector CD8+ T cells 71. 

We conclude that protein Ag delivery by PLGA-NP might be an attractive and simple 

strategy to improve ex vivo tumor-specific T cell stimulation for clinical adoptive T transfer 

therapy. Apparently, the intrinsic characteristics of PLGA-Ag NP to be efficiently internalized 

and processed by DC is sufficient to induce effector T cells in vitro with expansion capacity 

in vivo, and with strong therapeutic effectiveness. So, encapsulation of tumor associated 
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protein Ag in PLGA-NP may serve as a clinically feasible strategy to generate T cells with 

optimal effector quality for adoptive transfer-based immunotherapy of cancer.
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Supporting Information

Supporting Information Figure S5.1 Encapsulated OVA is released gradually from PLGA-NP. 

PLGA-OVA-Alexa488 with an average OVA content of 14.11 ± 2.89 μg OVA/mg PLGA were re-

suspended at a concentration of 10 mg/mL of PBS and incubated at 37°C under constant shaking. 

At indicated time points 250 μl samples were collected, centrifuged for 20 min at 18,000xg and 

the amount of OVA-Alexa488 in the supernatant determined by fluorescence, as described in the 

material and methods. Average results of two independent release studies with four different 

batches of PLGA-OVA are shown, mean ± SD.

Supplemental figure 1

Supplemental figure 1. Encapsulated OVA is released gradually from PLGA-NP

PLGA-OVA-Alexa488 with an average OVA content of 14.11 ± 2.89 µg OVA/mg PLGA were re-suspended at a concentration of 10 mg/mL of PBS and 

incubated at 37ºC under constant shaking. At indicated time points 250 µl samples were collected, centrifuged for 20 min at 18,000xg and the amount of 

OVA-Alexa488 in the supernatant determined by fluorescence, as described in the material and methods. Average results of two independent release studies 

with four different batches of PLGA-OVA are shown, mean ± SD.
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Supporting Information Figure S5.2 Improved CD4+ and CD8+ T cell proliferation by BMDC 

loaded with PLGA-OVA in comparison to sOVA-loaded BMDC. 

WT C57BL/6 BMDC were incubated with titrated amounts of PLGA-OVA or sOVA. Ag loaded BMDC 

were subsequently used as APC in a co-culture with naïve OT-I (A) or OT-II T (B) cells for 72 h. T cell 

proliferation was measured in triplicate by 3[H]-thymidine uptake. Data shown are representative 

of two independent experiments.

Supplemental figure 2

A

µM OVA µM OVA

PLGA-OVA
sOVA

PLGA-OVA
sOVA

B

Supplemental figure 2. Improved CD4+ and CD8+ T cell proliferation by BMDC loaded with PLGA-OVA in comparison to 

sOVA-loaded BMDC. WT C57BL/6 BMDC were incubated with titrated amounts of  PLGA-OVA or sOVA. Ag loaded BMDC 

were subsequently used as APC in a co-culture with naïve OT-I (a) or OT-II T (b) cells for 72 h. T cell proliferation was 

measured in triplicate by 3[H]-thymidine uptake. Data shown are representative of two independent experiments
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Abstract

Poly(lactide-co-glycolide) (PLGA) particulate vaccines have been extensively studied 

as delivery systems to improve the potency of protein based vaccines. In this study 

we analyzed how the size of PLGA particles, and hence their ability to be engulfed 

by dendritic cells, affects the type and magnitude of the immune response. PLGA 

microparticles (MP, volume mean diameter ≈ 112 μm) and nanoparticles (NP, 

Z-average diameter ≈ 350 nm) co-encapsulating ovalbumin (OVA) and poly(I:C), with 

comparable antigen (Ag) release characteristics, were prepared and characterized. 

NP were efficiently taken up by dendritic cells and induced MHC I Ag presentation 

in vitro, whereas MP failed to do so. Vaccination with NP resulted in significantly 

higher numbers of Ag-specific CD8+ T cells compared to MP and OVA emulsified with 

incomplete Freund’s adjuvant (IFA). In addition, NP induced a balanced TH1/TH2-type 

antibody response, whereas MP failed to increase antibody titers and vaccinations 

with IFA led to a predominant TH2-type response. In conclusion, we postulate that 

particulate vaccines should be formulated in the nano- but not micro-size range to 

achieve efficient uptake, significant MHC class I cross-presentation and improved T 

and B cell responses. 
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Introduction

In the past few years, extensive efforts in the field of cancer immunotherapy have led 

to the development of several therapeutic vaccine strategies currently being studied 

in clinical trials against various immunological diseases 1-3. Protein- and peptide-based 

vaccines are popular forms of therapeutic vaccines 3-5 which have been tested succesfully 

in (pre-)clinical studies against various forms of cancer 6-8. However, clinical benefits can 

still be significantly improved. Different methods can be applied to improve the efficacy of 

protein- or peptide-based vaccines, such as the combination with adjuvants, for example 

toll-like receptor ligands (TLRL), to enhance the otherwise poor immunogenicity of 

synthetic proteins and peptides 9,10. In addition, optimizing the delivery of vaccines through 

the usage of biodegradable particles as vaccine carriers has resulted in promising results 

and significantly improved vaccine efficacy. Usage of biodegradable particles facilitates 

the co-delivery of a vaccine antigen (Ag) and TLR as one entity to dendritic cells (DC) 11,12. 

DC are the most important and potent Ag-presenting cells (APC) of the immune system, 

scavenging the environment for potential pathogens 13,14. DC have superior capacity to 

cross-present exogenous Ag in MHC I molecules and activate CD8+ T cell responses. TLR-

stimulation leads to DC maturation. Mature DC possess improved capacity to prime robust 

T cell response, essential for eradication of established tumors or clearance of pathogens. 

Therefore DC are considered the major target for cancer vaccines 15-17. 

Montanide-based water-in-oil (w/o) emulsions are currently the main vaccine delivery 

systems used in the clinic. Montanide is a GMP-grade version of incomplete Freund’s 

adjuvant (IFA). The Ag is dispersed in the emulsion which is injected subcutaneously 

(s.c.) or intradermal (i.d.) forming a local depot which slowly releases the emulsified Ag. 

Montanide (and) IFA have poorly defined adjuvant properties, but it is known to trigger 

inflammation at the injection site and immune cell infiltration 18,19. However, the use of 

Montanide is associated with significant local adverse effects 6. For these reasons, there is 

an urgent need for an alternative Ag delivery system 20. 

Biodegradable particulate delivery systems are promising alternatives for Montanide 21.  

Nanoparticles (NP) and microparticles (MP) prepared from poly(L-lactic-co-glycolic acid) 

(PLGA) have been studied extensively for the sustained delivery of proteins and therapeutic 

agents 22-24 Plain PLGA particles have sub-optimal adjuvant properties 10,25 but PLGA-

particulate vaccines have shown potent anti-tumor effects by co-encapsulating tumor-

associated Ag (TAA) and TH1-immunity promoting Toll like Receptor ligands (TLRL) 11,26,27.  
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Generally, particulate Ag (Ag) are better routed into MHC class I cross-presentation 

pathways, compared to soluble Ag, and therefore facilitate the priming of strong CD8+ T 

cell responses. 

It is generally assumed that NP, compared to MP, are ideal for (targeted) drug delivery due 

to better bio-distribution 28,29 and ability to cross biological barriers 30. However, there is 

little agreement when it comes to vaccines for immunotherapy 31,32. This may be related 

to different parameters that can direct the type and potency of the immune response, the 

target APC which the vaccine should be delivered to 33,34, efficiency of vaccine uptake by 

APC, Ag release kinetics and route of administration upon vaccination 35-38. We have recently 

shown that low-burst release of the encapsulated Ag is critical for efficient MHC class I Ag 

presentation and CD8+ T cell activation 39. Accession of the MHC class I cross-presentation 

pathways was also shown to be dependent on particle size 40, however which size leads 

to the most efficient Ag cross-presentation remains debatable.

In this study, to compare the importance of particle uptake for the induction of an immune 

response, we developed NP and MP, formulated using PLGA, co-encapsulating the model 

Ag ovalbumin (OVA) and the TLR3L poly(I:C). NP can be internalized by DC 40, releasing 

the Ag inside endo-lysosomal compartments or directly inside the cytosol after uptake 41,  

versus MP which are poorly taken up by DC. MP most likely releases the encapsulated Ag in 

the extracellular matrix at the site of injection, similarly to Montanide. Formulated NP and 

MP contained equivalent amounts of Ag and TLRL and had comparable long-term Ag release 

profiles. We report here that NP are more efficiently internalized by DC in vitro and resulting 

in efficacious MHC class I cross-presentation and subsequent CD8+ T cell activation in vitro. 

In vivo, NP showed superior vaccine potency compared to MP to stimulate cellular immune 

responses. In addition, NP out-performed water-in-mineral oil emulsion IFA as a vaccine 

carrier, more efficiently boosting CD8+ T cell activation and (IgG2a) antibody production.

Materials and methods

Animals

WT C57BL/6 (CD45.2/Thy1.2; H-2b) were obtained from Charles River Laboratories. Ly5.1/

CD45.1 (C57BL/6 background) were bred in the specific pathogen-free animal facility of 

the Leiden University Medical Center. All animal experiments were approved by the animal 

experimental committee of Leiden University. 
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Reagents

PLGA Resomer RG 502H (50:50 MW 5,000–15,000 Da) was purchased from Boehringer 

Ingelheim (Ingelheim am Rhein, Germany) and PLGA Resomer RG 752H (75:25 MW 4,000-

15,000 Da) was purchased from Sigma-Aldrich (Steinheim, Germany). Ovalbumin (OVA) 

grade V, 44 kDa was purchased from Worthington (LS003048) (New Jersey, USA). Alexa Fluor 

488 labeled OVA was obtained from Invitrogen (Merelbeke, Belgium). Dichloromethane 

(DCM), dimethyl sulfoxide (DMSO), Hepes were purchased from Sigma–Aldrich (Steinheim, 

Germany). Tween 20 was purchased from Merck Schuchardt (Hohenbrunn, Germany) and 

polyvinyl alcohol (PVA) 4–88 (31 kDa) was purchased from Fluka (Steinheim, Germany). 

Poly(I:C) LMW and rhodamine labeled poly(I:C) were purchased from InvivoGen (San Diego, 

USA). Incomplete Freund adjuvant (IFA) was purchased from Difco Laboratories (Detroit, 

USA) Phosphate-buffered saline (NaCl 8.2 g/L; Na2HPO4.12 H2O 3.1 g/L; NaH2PO4.2H2O 0.3 

g/L) (PBS) was purchased from B. Braun (Melsungen, Germany). All fluorescently labeled 

antibodies used for staining were purchased from BD Pharmingen (San Diego, USA) and 

the APC-SIINFEKL/H2-Kb tetramers were produced in house. All other chemicals were of 

analytical grade and all aqueous solutions were prepared with milli Q water. 

IFA vaccine formulations were prepared by vortexing for 30 min a 1:1 IFA:PBS mixture. The 

vaccine-Ag was suspended in the PBS prior to addition to the IFA.

Cells

D1 cells, a GM-CSF dependent immature dendritic cell line derived from spleen of WT 

C57BL/6 (H-2b) mice, were cultured as described previously 42. Bone-marrow derived 

DC (BMDC) were freshly isolated from femurs from WT C57BL/6 strain and cultured as 

published previously 43. After 10 days of culture, large numbers of cells were obtained 

which were at least 90% positive for murine DC marker CD11c (data not shown). B3Z CD8+ 

T cell hybridoma cell line, specific for the H-2Kb-restricted OVA257–264 CTL epitope SIINFEKL, 

expressing a β-galactosidase construct under the regulation of the NF-AT element from the 

IL-2 promoter, was cultured as described before 44. OT-IIZ, a CD4+ T-cell hybridoma cell line, 

specific for the I-Ab-restricted OVA323–339 Th epitope, expressing the same β-galactosidase 

construct, was produced in house. The weakly immunogenic and highly aggressive OVA-

transfected B16 tumor cell line (B16-OVA), syngeneic to the C57BL/6 strain, was cultured 

as described 45.
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Preparation and characterization of OVA- and poly(I:C)-loaded PLGA 
particles

In this study, NP and MP were prepared containing the model Ag OVA and the TLR3 ligand 

poly(I:C). Plain PLGA-NP particles exhibit low immune activating properties 25 and are 

therefore poor vaccine-candidates. For this reason, all experiments were performed with 

particles co-encapsulating PolyI:C. 

PLGA 50:50 and PLGA 75:25 NP were prepared by a water-in-oil-in-water (w/o/w) double 

emulsion with the solvent evaporation method as previously described [24]. The two types 

of PLGA, with different lactic acid:glycolic acid ratios (50:50 or 75:25 PLGA), influences 

hydrophobicity, polymer degradation rate and the release kinetics of OVA and poly(I:C).

In brief, 1 mg OVA (Worthington LS003048), 0.25 mg poly(I:C), were dissolved in 85 μl 

of 25 mM Hepes pH 7.4 and emulsified in 1 ml dichloromethane (DCM) containing 25 

mg PLGA with an ultrasonic processor for 15 s at 20 W (Branson Instruments, CT, USA). A 

second emulsion was obtained by addition of 2 ml of 1% (w/v) PVA followed by sonication 

as described above. The double emulsion was added drop wise to 25 ml of an aqueous 

0.3% PVA (w/v) solution at 40°C and the resulting mixture was stirred for 1 h. The resulting 

particles were harvested and washed twice with water by centrifugation (8000 g, 10 min). 

PLGA 50:50 MP were prepared by adding 1 mg OVA, 0.25 mg poly(I:C) dissolved in 500 

μl of 25 mM Hepes pH 7.4 to 1 ml DCM containing 125 mg PLGA 50:50. The mixture was 

emulsified with a homogenizer (30 sec) (max speed = 25,000 rpm) (Heidolph Ultrax 900, 

Sigma, Germany). The resulting emulsion was transferred to 10 ml of 2% (w/v) PVA and 

the 2nd emulsion was obtained by magnetic stirring (10 min, 750 rpm) at RT. Stirring was 

continues for 1 hr (500 rpm) (40°C) to allow evaporation of DCM. MP were harvested and 

washed with water twice by centrifugation (2000 g, 2 min). Particles ≥ 20 µm were separated 

via dia-filtration with 3 L water under continuous stirring in a Solvent Resistant Stirred 

Cell (Milipore, USA) filtration system with a 20 μm stainless steel metal sieve (Advantech, 

USA). The retentate was collected and MP recovered by centrifugation (2000 g, 2 min). 

MP larger than 200 μm were elimanated by using a 200 μm stainless steel metal sieve 

(Advantech, USA). The intactness of MP before and after filtration, were visualized with an 

Axioskop microscope (50 μl samples), equipped with an Axiocam ICc 5 (Carl Zeiss, Munich, 

Germany), using a 20x amplification objective. Images were collected using the ProgRes 

CapturePro v2.8.8 software (Jenoptik AG, Jena, Germany). Both NP and MP suspensions 

were aliquoted in cryovials and freeze-dried. 
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Alternatively, some particles were formulated with and 10 μg (10% w/w) OVA-Alexa488 

and 1 μg (0.4%) poly(I:C)-rhodamine which were added to the inner emulsion for the 

preparation of NP and MP. This allowed quantification based on fluorescence and 

visualization by flow cytometry.

Mean size, size distribution and polydispersity index (PDI), obtained by dynamic light 

scattering (DLS) and Zeta potential (ZP) (applyting laser Doppler velocimetry) of NP were 

using a NanoSizer ZS (Malvern Instruments, Malvern, UK) at room temperature (RT) in 5 

mM Hepes pH 7.4. The size distribution of MP was determined by light obscuration (LO) 

using a PAMAS SVSS system (PAMAS GmbH, Rutesheim, Germany) equipped with an HCB-

LD-25/25 sensor and a 1-ml syringe. Results are averages of triplicate measurements, using 

runs, each of 0.2 ml (flow rate of 10 ml/min).  

BCA assay (Pierce, Rockford, IL, USA) was used to determine OVA concentration in particles 

(before and after filtration) according to the manufacturer’s instructions, after dissolving 

the particles in DMSO and 0.5 M NaOH + 0.5% SDS 46. Encapsulation efficiency (EE) (see 

equation 6.1) of the protein was based on the OVA-Alexa-488 fluorescence (excitation 

495 nm, emission 520 nm) and of TLR3L based on poly(I:C)-rhodamine (excitation 546 

nm, emission 576 nm) detected in the supernatant using an Infinite® M 1000 Pro (Tecan, 

Switzerland) microplate reader. The drug loading (DL) was calculated according to equation 

6.2. (“compound” stands for OVA or poly(I:C)): 

								            (6.1)

								            (6.2)

Microscopic analysis showed the quality and intactness of MP before filtration (BF) and after 

filtration (AF) (Figure 6.1). Physicochemical characterization of NP and MP is summarized 

in Table 6.1. NP were fairly monodisperse (PDI < 0.25), with NP 50:50 being 357 ± 25 nm 

and NP 75:25 being 400 ± 16 nm. The two different NP-formulations were produced 

with the aim to obtain NP of similar size but with varying release characteristics of the 

encapsulated protein. In addition, it was of importance to obtain NP with comparable Ag 

(and adjuvant)-release characteristics as MP for the purpose of studying the importance 

of size, while excluding other factors.
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For MP, size distribution, the average mean diameter based on volume Supporting 

Information Figure S6.1A and number Supporting Information Figure 6.1B before- and 

after filtration was determined. 

The particle number-based mean diameter of MP, which is the average when considering 

the number distribution, increased from 5 ± 1 μm before filtration to 17 ± 5 µm after 

Figure 6.1  Representative images of MP preparations analyzed by optical microscopy (20x 

magnification) before and after stirred-cell filtration.

Figure 1 
 A                                                     B                                                       

Before Filtration                                                                 After Filtration

Table 6.1  Physical characteristics of OVA/poly(I:C)-loaded PLGA NP and MP*

Formulation Size PDI
ZP

(mV)

OVA Poly I:C

EE DL EE DL

PLGA 50: 
50# NP

357 ± 25 nm 0.16 ± 0.03 -41± 7 52 ± 7 2.01 ± 0.27 66 ± 8 0.63 ± 0.07

PLGA 75: 
25# NP

400 ± 16 nm 0.25 ± 0.02 -25 ± 3 75 ± 1 2.87 ± 0.03 59 ± 7 0.56 ± 0.07

PLGA 50: 
50# MP

17 ± 5 μm (n)
112 ± 26 µm (v)

n/a -14 ± 3 86 ± 2 0.68 ± 0.01 81 ± 2 0.16 ± 0.00

*Values represent mean +/- standard deviation of 3 independently prepared batches .
#The two types of PLGA, with different lactic acid:glycolic acid ratios (50:50 or 75:25 PLGA), influences 
hydrophobicity, polymer degradation rate and the release kinetics of OVA and poly(I:C).
DL = drug loading; is a quantitative value for the ratio of protein:polymer; EE = encapsulation efficiency; is a 
qualitative value to define the efficiency of the formulation process to entrap the protein in the PLGA-polymer 
matrix = particles; PDI = poly dispersity index; variance, an arbitrary measure for the degree of dispersity in 
particle size within one batch of particles suspension, PDI values below 0.3 was considered monodisperse and 
accepted for follow up studies 47; ZP = zeta potential; The magnitude of the zeta potential is predictive of the 
colloidal stability. Nanoparticles with Zeta Potential values greater than +25 mV or less than -25 mV typically 
have high degrees of stability. Dispersions with a low zeta potential value will eventually aggregate due to 
Van Der Waal inter-particle attractions.
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filtration, showing that the filtration step effectively decreased the number of particles 

smaller than 20 μm, though not totally. However, the particle volume-based mean diameter 

was similar BF and AF (114 ± 16 vs 112 ± 26 µm) showing the relative minor contribution 

of small particles to the total particle volume. During the double-emulsion and solvent 

evaporation process, the OVA-protein added is equally distributed through the PLGA-

polymer matrix and resulting particles. Thus the volume-based mean diameter results 

indicate that less than 1% of the total volume, and consequently the amount of the OVA 

added during formulation, corresponded to particles with diameters smaller than 20 µm 

after filtration (Supporting Information Table S6.1). Therefore, it is unlikely that residual NP 

after filtration would have a significant effect on Ag uptake, MHC class I Ag presentation 

and CD8+ T cell activation, making them insignificant in terms of final immune response. 

Encapsulation efficiency of OVA (EE) was above 50% for all particle batches formulated 

with MP generally having higher EE% compared to NP. As explained above, the higher EE 

of OVA corresponds to the higher amount of PLGA content of MP compared to NP, which 

is reflected by the lower drug loading DL (Table 6.1). The use of different ratio of PLGA-

polymer to formulate NP did not affect the EE of the protein nor the poly(I:C). 

In vitro release studies 

For release studies, PLGA particles (encapsulating 1% (w/w) of OVA-Alexa-488 and Poly(I:C)-

rhodamine were resuspended in PBS/0.01% Tween-20/0.01% NaN3 (pH 7.4) (10 mg PLGA/

ml) at continous tangential shaking (100 rpm) at 37°C in a GFL 1086 water bath (Burgwedel, 

Germany) for 30 days. At indicated time points, 250 µl samples of the suspension were 

taken, and centrifuged (18000xg) for 20 min and stored at 4°C until fluorescence intensity 

was determined as described above. Concentrations of OVA-Alexa-488 and poly(I:C)-

rhodamine was assessed against a calibration curve. Release kinetics were based on 

fluorescence intensity because of the higher sensitivity achieved in comparison to the 

BCA assay. OVA content in the remaining supernatant (SN) on the last day of the release 

study were also analyzed using a BCA assay to compare to the results obtained using 

fluorescence measurements. The BCA assay and fluorescence assay showed comparable 

results (Supporting Information Table S6.2), justifying the use of fluorescence to assess 

OVA release from PLGA particles.

Release (R) profiles were generated in terms of cumulative release (%), as determined by 

equation 6.3, where “compound” is OVA or poly(I:C). 
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(6.3)

The OVA and poly(I:C) release kinetics were followed for 30 days. Release studies showed 

sustained release of OVA and poly(I:C) from PLGA 50:50 NP over this period (Figure 6.2A). 

Ag-release properties of MP were matched to those of NP by modifying the inner volume 

and salt content of the first emulsion during preparation of the MP (see Supporting 

Information Figure S6.2 for inner phase compositions).

OVA dissolved in 500 µl of 25 mM HEPES resulted in the fastest OVA release from MP (circa 

40% OVA released after 15 days) comparable to that from NP (Figure 6.2C). The burst release 

of MP was decreased after filtration (AF) in comparison to MP analyzed before filtration 

(BF), most likely due to the elimination of the smaller MP (Supporting Information Figure 

S6.1 & Table 6.1). PLGA 75:25 NP (Figure 6.2B) showed release profiles resembling those of 

the MP. Thus, we formulated NP and MP using PLGA 50:50 with a similar composition but 

different Ag release properties; and NP using PLGA 75:25 with similar Ag-release profiles 

as PLGA 50:50 MP. 

Ag release from particles appears to consist of an initial burst, followed by sustained 

release. After 30 days we observed a total release of 66 ± 6% OVA and 94 ± 7 poly(I:C) 

for NP 50:50, 51 ± 6% OVA and 64 ± 3 poly(I:C) for NP 75:25, and 44 ± 5% OVA and 54 ± 3 

poly(I:C) for MP 50:50 (Figure 6.2).

In summary, we prepared NP and MP with similar long-term release characteristics, which 

will allow us to fairly compare the effects of particle size on in vitro DC uptake, MHC class 

I presentation and resulting in vivo immune activating properties.

Analysis of particle uptake by DC

Particle uptake by DC was determined by plating out D1 cells in 96-wells plate (105 cells/

well) and pre-cooling the cells on on ice (10 min). Pre-cooled cells were then further cultured 

for 1 h at 4°C (on ice) or at 37°C in the presence of PLGA particles (PLGA-OVA/poly(I:C) NP/

MP containing OVA-Alexa488) at the indicated concentrations. After incubation, cultured 

cells were washed and centrifuged twice with cold saline buffer to remove unbound 

particles and cells fixed with 4% paraformaldehyde (100 μl/well). Fixation was blocked 

by the addition of 100 μl/well fetal calf serum (FCS) and washing with cold PBS. From this 

point on cells were kept at RT and stained with rat anti-mouse CD45.2-APC fluorescent 

100  
particlesin  mass compound t supernatanin  mass compound

t supernatanin   mass compound R % 
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antibodies to allow detection of cells which were positive for particle association, based 

on OVA-Alexa488 fluorescence as analyzed using a BD LSRII flow cytometer. Samples were 

acquired using the BD FACS DIVA software and analyzed with Flow Jo software (treestar).

MHC class I Ag presentation

DC were incubated for 2 hr with PLGA-OVA formulations at the indicated concentrations, 

washed and followed by an overnight incubation (37°C) in the presence of B3Z CD8+ T cell 

hybridoma’s to measure MHC class I presentation. A colorimetric assay using chlorophenol 

red-β-D-galactopyranoside as substrate was used to detect IL-2 induced lacZ activity after 

recognition of SIINFEKL (OVA257–264) in H-2Kb by B3Z T cells 48. To determine the relative 

maximum B3Z T cell activation DC were loaded with the minimal epitope SIINFEKL and 

the extinction value set as 100% (OD590nm = 2.53 = 100% = maximal CD8+ T cell activation).

Vaccination studies

Animals were vaccinated with the various PLGA-OVA/poly(I:C) formulations, soluble OVA/

poly(I:C) in PBS, or OVA/poly(I:C) emusified in IFA by s.c. injection into the right flank. 

Animals were vaccinated again on day 28 (boost). Priming of in vivo cytotoxic CD8+ T cells 

was assessed seven days after the 1st vaccination or 14 days after the 2nd vaccination by 

transferring splenocytes prepared from congeneic Ly5.1 C57BL/6 animals which were 

pulsed with the SIINFEKL short peptide (OVA8, vaccine specific target cells) or ASNENMETM 

Figure 6.2  In vitro release kinetics of OVA and poly(I:C) from NP and MP. 

OVA and poly(I:C) release in PBS/0.01% Tween-20/0.01% NaN3 (pH 7.4) of (A) NP PLGA 50:50, (B) 

NP PLGA 75:25, and (C) MP PLGA 50:50 were monitored for 30 days at 37°C. Data are presented as 

average ± SD of 3 independent batches.
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short peptide (FLU9, vaccine non-specific control target cells). The target cells were labeled 

with either 10 μM (OVA) or 0.5 μM (Flu) CFSE. The cells were mixed 1:1 and 107 total cells were 

injected intravenously (i.v.) into the vaccinated animals. 18 hr post transfer of target cells, 

animals were sacrificed and single cell suspensions were prepared from isolated spleens. 

Injected target cells were distinguished by APC-conjugated rat anti-mouse CD45.1 mAb 

(BD Pharmingen, San Diego, USA). In vivo cytotoxicity was determined by flow cytometry 

as described above after 18 hr using equation 6.4: 

									         (6.4)

OVA-specific CD8+ T cells present in the spleens were analyzed by co-staining with 

APC-conjugated SIINFEKL/H2-Kb tetramers, AF-conjugated anti-mouse CD8α mAb and 

V500-conjugated rat anti-mouse CD3 mAb. Flow cytometry analysis was performed as 

described above.

Detection of antibody responses

Antibody responses were determined by collecting serum samples on day 21 after initial 

vaccination (1 week before 2nd vaccination) and on day 35 (1 week after 2nd vaccination). 

IgG1, IgG2a and IgG2b titers against OVA were determined by ELISA. In brief, high absorbent 

96-wells (Nunc immunoplates) plates were coated with 5 μg/ml OVA in PBS and incubated 

with titrated serum samples in 10% FCS in PBS. The specific antibodies were detected 

using streptavidine conjugated rabbit anti-murine IgG1, IgG2a and IgG2b mAb, followed 

by addition of horse-radish-peroxidase conjugated biotin. 3,3’,5,5’-Tetramethylbenzidine 

(TMB) was used as a substrate and the color conversion was stopped after 10 min with 

0.16 M H2SO4, which was then measured on a spectrophotometer by absorbance at 450 

nm (OD450nm). To determine immune polarization the IgG2a/IgG1 ratios were determined 

using OD450nm values determined at 1:100 dilution given that values applied were ≥ 2-fold 

OD450nm of the negative control (sera from non-immunized mice).
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RESULTS

PLGA-particles in the nano-size range facilitate efficient internalization by 
DC compared to MP 

Efficiency of particle association with DC was studied by culturing DC in the presence of 

the 3 different particle formulations at 4°C (binding) and 37°C (binding & internalization). 

DC showed very high capacity to bind and internalize NP compared to MP (Figure 6.3A). 

DC were incubated with various concentrations of protein Ag encapsulated in both sizes 

of particles and we observed consistently that both 50:50 and 75:25 PLGA-NP showed 

similar effects and were engulfed with higher efficacy than (PLGA 50:50) MP (Figure 

6.3B & C).

Efficient MHC class I Ag presentation by DC incubated with NP

MHC class I Ag cross-presentation of encapsulated protein Ag in NP compared to MP 

by dendritic cells was studied in vitro. DC were incubated with titrated amounts of Ag 

formulations and specific antigen presentation was analyzed by OVA epitope (SIINFEKL)-

specific T cells. DC loaded with NP 50:50 and 75:25 efficiently activated B3Z CD8+ T cells 

(Figure 6.4). Normalized values in panel A were calculated based on the OD590nm values 

obtained using DC loaded with SIINFEKL cultured together with B3Z CD8+ T cells (OD590nm 

= 2.53 = 100% = maximal CD8+ T cell activation). In contrast, DC pulsed with MP 50:50 

poorly stimulated B3Z CD8+ T cells. 

Effective in vivo priming of Ag-specific CD8+ T cells by NP-encapsulated 
protein

The in vitro experiments showed that NP, in contrast to MP, are efficiently internalized by 

DC followed by processing of encapsulated protein Ag into the MHC class I processing 

pathways, resulting in strong activation of B3Z CD8+ T cells. NP 50:50 and NP 75:25 showed 

similar effects. Moreover, NP 50:50 showed similar or CD8+ T cell priming in vivo as NP 75:25 

(data not shown). Therefore, NP 50:50 were used for comparative in vivo studies with MP 

50:50 and classical IFA emulsions.

The in vivo vaccine potency of NP and MP formulations was analyzed in comparison to 

protein Ag and poly(I:C) solution emulsified in IFA. Animals were vaccinated and 7 days 
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later sacrificed to determine the number of primed endogenous Ag-specific CD8+ T cells in 

the spleen (Figure 6.5). Vaccinations with NP 50:50 resulted in significantly higher numbers 

of SIINFEKL-TM+ CD8+ T cells compared to MP 50:50 (P = 0.01) and IFA (P = 0.04).

Figure 6.3  Binding and uptake of NP-encapsulated protein Ag by dendritic cells compared 

to MP-encapsulated Ag. 

(A) D1 dendritic cells cells were incubated for 1 h with titrated amounts (µM) of OVA encapsulated 

in PLGA-NP (PLGA-OVA/poly(I:C) NP 50:50 or PLGA-OVA/poly(I:C) NP 75:25, or PLGA-MP PLGA-OVA/

poly(I:C) MP 50:50 containing OVA-Alexa488 dye. Ag incubation with DC was performed in paral-

lel at (B) 4°C (binding) and (C) 37°C (binding & internalization), followed by extensive washing 

to remove unbound Ag and cell fixation with 4% PFA. Cells were analyzed by flow cytometry to 

determine green fluorescence. Percentages of DC positive for OVA-Alexa-488 were quantified at 

different Ag concentrations. Data shown are measurements from one experiment.
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Figure 6.4  Efficient MHC class I cross-presentation of protein Ag incorporated in PLGA-NP 

but not PLGA-MP. 

D1 cells were pulsed for 2 h with titrated amounts (µM) of OVA (and Poly(I:C) encapsulated in 50:50 

PLGA-NP or 75:25 PLGA-NP or 50:50 PLGA-MP. MHC class I presentation of processed OVA protein 

antigen was detected by co-culture with H-2Kb/SIINFEKL-specific B3Z CD8+ T cells. Data shown 

are means of triplicate measurements ± SD as % from one representative example out of at least 

three independent experiments.

Figure 4
A

25
0

12
5

62
.5

31
.2

5
0.

0

25
0

12
5

62
.5

31
.2

5
0.

0

25
0

12
5

62
.5

31
.2

5
0.

00

20

40

60

80

100 PLGA-OVA/PolyI:C NP 50:50
PLGA-OVA/PolyI:C NP 75:25
PLGA-OVA/PolyI:C MP 50:50

nM OVA in PLGA-particle

%
 B

3Z
 C

D
8+  T

 c
el

l a
ct

iv
at

io
n

NS

***

0.0

0.5

1.0

1.5

PLGA-OVA NP 50:50
PLGA-OVA MP 50:50
IFA-OVA
Non-vaccinated

%
 T

M
+ 

C
D

8+  T
 c

el
ls

** *

Figure 6.5  PLGA-OVA/poly(I:C) NP vaccine shows effective CD8+ T cell priming potency. 

Naïve animals received a single s.c. vaccination with the 50 μg OVA and 20 μg poly(I:C) formulated 

in particles or in IFA. Mice were sacrificed on day 7 after vaccination and the % of SIINFEKL-TM+ 

CD8+ T cells were measured by flow cytometry. Results shown are representative of one experi-

ment out of two and present averages ± SEM from n = 3–5 mice per group, * = P < 0.05 & ** = P 

< 0.01 using an unpaired student t test. Each symbol represents the specific T cell response in an 

individual mouse.
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PLGA NP efficiently prime CD8+ cytotoxic T cells which produce IFN-γ

Splenocytes of vaccinated mice were re-stimulated ex vivo with the minimal CD8+ T cell OVA 

epitope SIINFEKL. The cytokines IL-2 and IFN-γ were analyzed in the culture supernatants 

after 72 h (Figure 6.6). Significant amounts of IFN-γ were detected with the highest amounts 

produced by spleen cultures from animals vaccinated with NP 50:50 (Figure 6.6A) compared 

to the other vaccinated groups. However after one single vaccination, IL-2 production was 

barely above background levels (Figure 6.6B). Under these condition e also analyzed the 

CD8+ T cell in vivo cytotoxicity induced by vaccination with NP 50:50 compared to IFA-OVA/

poly(I:C). In line with the relative higher number of specific CD8+ T cells induced with NP, we 

observed that animals vaccinated with NP 50:50 showed effective OVA-specific cytotoxicity 

to injected target cells in vivo (Supporting Information Figure S6.3). 

Long term immune responses after a boost vaccination on day 28 were studied by analyzing 

ex vivo cytokine production on day 42. Using OVA-protein based vaccine formulations, poor 

overall production of IFN-γ was detected at this time point (Figure 6.6C). Notably, the 2nd 

Figure 6.6  IFN-γ and IL-2 production after vaccination with PLGA-OVA/poly(I:C) NP. 

Animals were vaccinated with 50 μg OVA and 20 μg poly(I:C) formulated in particles or in IFA. 

Mice were sacrificed on day 7 post-vaccination, spleens harvested and single cell suspensions re-

stimulated with 1 μM SSP-OVA8aa (SIINFEKL). 72 h later the amount of Ag-specific (A) IFN-γ and (B) 

IL-2 produced determined by ELISA. Animals vaccinated twice (day 0 and 28) were sacrificed on 

day 42 and the ex vivo (C) IFN-γ and (D) IL-2 cytokine production analyzed 72 h later. Red dotted 

lines indicate average background production of cytokines in the absence of specific stimulation.
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vaccination on day 28 resulted in higher levels of specific Ag-specific IL-2 production by 

splenocytes especially with MP 50:50 rather than the other groups (Figure 6.6D). 

In conclusion, vaccination with NP resulted in the strongest production of IFN-γ compared 

to IFA or MP based vaccine formulations. NP did not induce strong production of IL-2 after 

a single vaccination nor double vaccinations. In contrast, MP were capable of inducing 

IL-2 production, but not IFN-γ, and only after the boost.

Ag-specific TH1 type humoral responses induced by vaccinations with PLGA-
NP in contrast to IFA based vaccine

Blood samples were collected on day 21 or 35 after vaccinations. The titers of IgG1, IgG2a 

and IgG2b antibodies were determined as described in the section “materials & methods”. 

NP 50:50 and IFA, but not MP, induced IgG1 production after one single vaccination (prime) 

(Figure 6.7A). Low titers of IgG2a and IgG2b were detected after NP and IFA vaccinations 

(Figure 6.7B & C). A second vaccination (boost) considerably enhanced the antibody titers. 

IFA and NP 50:50 led to the highest titers of IgG1, with MP formulations again failing to 

induce IgG1 titers (Figure 6.7D). Significant IgG2a titers were induced after a 2nd vaccination 

with NP 50:50 but poorly by the other vaccines (Figure 6.7E). IgG2b titers were induced 

to a similar level by vaccinations with IFA and NP 50:50 (Figure 6.7F). IgG2a is the IgG-

subtype associated with TH1 responses in mice. Analysis of the IgG1/IgG2a ratio allows 

one to determine the immune-polarization. Vaccinations with NP 50:50 resulted in a more 

balanced TH1/TH2 antibody response characterized by similar titers of IgG1 and IgG2a 

(IgG1/IgG2a ≈ 1). In contrast, vaccinations with IFA led to a predominant TH2 response 

(IgG1/IgG2a > 2) (Figure 6.7G). 

Discussion

Particulate vaccines are promising vaccine modalities to enhance immune activation. 

The immune system reacts more vigorously to vaccines presented in a particulate form 

compared to soluble ones 20,49,50. However, the exact parameters needed to achieve robust 

immune responses using particulate vaccines are a matter of debate. Using PLGA particles 

co-encapsulating protein Ag and a TLR3L, we compared NP versus MP and studied the 

advantages of internalization of particles by DC to induce MHC class I cross-presentation in 

vitro and improve immune responses in vivo. We report here the importance to formulate 
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nano-sized particles, to enhance MHC class I Ag-cross presentation and to improve both 

cellular and humoral immune responses. 

Our observations are most probably associated with the fact that MP are poorly internalized 

as an whole entity cause of their large size. MP release the encapsulated via an initial burst 

followed by a more gradual escape of the Ag (Figure 6.2) due to the hydrolysis of the 

polymer. Therefore, MP basically deliver soluble Ag to DC. We and others have previously 

shown that DC poorly cross-present protein Ag when it’s delivered in plain soluble form. 

Therefore, if the aim is to induce a robust CD8+ T cell response through vaccination, MP 

might not be the right candidates for this purpose. Indeed, we observed very poor immune 

activation using MP as a vaccine carrier. 

Our results argue against the application of MP as T cell vaccine carrier, however there 

exists some controversy in the literature regarding particle size and its importance for 

the formulation of efficient vaccine delivery systems and its effect on the activation of an 

immune response 37,38,51,52. APC may take up and process Ag with similar dimensions to 

pathogens, from viruses, to bacteria, with the size influencing the mechanisms of uptake 

and processing by APC 53. It has been reported that particles in the range of 20–200 nm 

are efficiently taken up by DC and facilitate the induction of cellular immune responses, 

whereas particles of 0.5–5 µm mainly generates humoral responses. There was limited 

uptake of 10 µm or larger particles leading to defective immune activation 32,36. In contrast, 

others have reported that vaccinations with MP to also induce CTL responses, comparable 

to IFA or Montanide based delivery systems 20,54. 

To study the effect of particle uptake on the subsequent immune response, NP and MP 

co-encapsulating OVA and poly(I:C) were required with similar Ag-release properties. Using 

the well-described double emulsion and solvent evaporation MP formulation technique 55,  

we at first obtained MP with very slow Ag-release properties (data not shown). Hence, 

the formulation process was modified and MP were engineered to accelerate release and 

to match the release properties of NP. For this purpose the inner emulsion volume and 

composition were modified to create a more porous matrix by adding salt to the inner 

water phase. Increasing the porosity accelerates drug diffusion and release from particles 
56-59. Replacing water with 25 mM Hepes pH 7.4 resulted in an increased Ag release rate from 

MP comparable to NP 75:25, respectively. TLRL always shows higher release rate than Ag, 

most likely due to its smaller size and more hydrophilic nature. NP are internalized by DC, 

whereas MP are not. We hypothesize that when administered in vivo, NP we formulated to 
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be taken up by APC as shown by others (Groettrup et al., JI 2012, Zhang et al., Biomaterials 

2011), leading to sustained intracellular release 41,60. 

MP were inferior to NP in facilitating MHC class I cross-presentation of encapsulated Ag 

with both NP 50:50 and NP 75:25 performing similarly, irrespective of release kinetics. Our 

observations are strengthened by the report of Joshi et al., who observed that efficiency 

of particle uptake and up regulation of MHC class I and CD86 expression on BMDC was 

dependent on particle size. However, considering the big differences in release kinetics 

observed, caution should be taken to conclude if there observations are indeed only 

dependent on the size and not caused by the considerable difference in Ag and TLRL 

release properties of the particles, since the initial (burst) release accounted for nearly all 

of the total Ag and or TLRL release. 

Vaccinations with NP led to considerably higher numbers of Ag-specific CD8+ T cells compared 

to MP (P = 0.01) and IFA (P = 0.04), with almost no difference being observed between 

vaccination with MP and non-vaccinated mice (Figure 6.5). NP also performed better than 

IFA, suggesting that internalization of the particles may be of importance in inducing a 

stronger cellular immune response in comparison to sustained release from a local Ag depot. 

Though observing a substantial difference in burst release, the initial difference between 

NP and MP eventually attenuates over time, as MP slowly release Ag and TLRL into the 

extracellular matrix. Co-encapsulation of OVA and TLRL has previously shown to induce 

anti-OVA (IgG) humoral responses, as well as polarization of the immune response 36,61-63.  

Vaccinations with NP 50:50 resulted in a more balanced TH1/TH2 antibody response 

characterized by similar titers of IgG1 and IgG2a (IgG1/IgG2a ≈ 1). In contrast, vaccinations 

with IFA led to a predominant TH2 response (IgG1/IgG2a > 2), which might contribute to the 

differences in CD8+ T cell responses detected after vaccinations. A predominant humoral 

TH2 response will likely be accompanied by a weak CD8+ T cell response. A balance between 

type 1 and type 2 responses is accompanied by robust CD8+ T cell response induction in 

our NP system. The higher production of IgG2a after particle vaccination is linked to the 

increased uptake by DC of particles encapsulating the protein and adjuvant 64, compared 

to soluble protein and (most likely also) Poly(I:C). In addition, direct stimulation of B cells 

by the particles compared might also promote better IgG2a responses compared to IFA-

based vaccine formulations 65,66. 

In conclusion, our results show that the ability of a DC to internalize PLGA-particles is a 

crucial factor when aiming to achieve effective MHC class I presentation and to elicit an 
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immune response against encapsulated and processed Ag. Furthermore, because of the 

superior responses induced in comparison to IFA, our data support the application of 

biodegradable PLGA-NP delivery systems as a substitute for mineral oil emulsions for the 

delivery of protein vaccines for cancer immunotherapy.
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Supporting Information

Supporting Information Table S6.1  Distribution of MP diameters (μm) determined before 
(BF) and after filtration (AF) in terms of % of total particle numbers and of total particle 
volume. Mean diameter values calculated using the PAMAS PMA software are presented 
in the last row

% Number % Volume

Diameter (μm) BF AF BF AF

1–2 33.2 ± 6.7 39.0 ± 11.0 0.0 ± 0.0 0.0 ± 0.0
2–5 38.6 ± 7.1 16.9 ± 2.9 0.5 ± 0.3 0.0 ± 0.0
5–10 21.2 ± 3.0 10.5 ± 5.4 2.4 ± 1.4 0.1 ± 0.1
10–15 3.7 ± 2.1 4.3 ± 3.2 1.7 ± 1.2 0.1 ± 0.1
15–20 1.3 ± 1.0 4.0 ± 3.1 1.4 ± 1.1 0.4 ± 0.3
20–25 0.6 ± 0.6 4.1 ± 2.7 1.1 ± 0.8 0.8 ± 0.7
25–30 0.3 ± 0.4 3.2 ± 1.7 1.2 ± 0.9 1.2 ± 0.9
30–40 0.4 ± 0.5 4.8 ± 0.1 2.3 ± 1.4 3.2 ± 2.1
40–50 0.2 ± 0.2 3.4 ± 0.6 2.7 ± 0.9 5.0 ± 3.5
50–60 0.1 ± 0.1 2.4 ± 0.3 2.5 ± 1.4 5.9 ± 3.8
60–75 0.1 ± 0.1 2.2 ± 0.3 6.0 ± 1.9 10.6 ± 7.6
75–100 0.2 ± 0.2 2.4 ± 1.2 17.1 ± 3.7 19.3 ± 8.5
100–125 0.1 ± 0.1 1.4 ± 1.5 20.4 ± 4.3 15.3 ± 2.7
125–150 0.0 ± 0.0 0.6 ± 0.8 11.8 ± 5.7 10.0 ± 5.9
150–200 0.0 ± 0.0 0.8 ± 1.1 29.0 ± 17.1 28.2 ± 18.1
Mean diameter 5 ± 1.0 17 ± 5.0 114 ± 16.0 112 ± 26.0

Supporting Information Table S6.2  OVA concentration sampled on the last day (day 30) of 
the release study. OVA concentration in supernatant (SN) was quantifed by BCA assay and 
by fluorescence expressed as % of total encapsulated OV

Particles BCA Assay (% in SN) Fluorescence (% in SN)

PLGA 50:50 NP 82 ± 14  85 ±14

PLGA 75:25 NP 53 ± 10 52 ± 9

PLGA 50:50 MP 48 ± 10 40 ± 3



Chapter 6

180

Supplemental figure 1
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Supplemental Figure 1: Size distribution of MP before filtration (BF) and after filtration (AF)

determined by LO. A) Number distribution. B) Volume distribution. Data are presented as average ±

standard deviation of n=3 independent batches.

Supporting Information Figure S6.1  Size distribution of MP before filtration (BF) and after 

filtration (AF) determined by LO. 

(A) Number distribution. (B) Volume distribution. Data are presented as average ± standard 

deviation of n = 3 independent batches.
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Supplememtal figure 2

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60
Hepes 50 ul (BF)

Hepes 500 ul (BF)
Water 500 ul (BF)

Hepes 500 ul (AF)

Time (days)

O
VA

 R
el

es
ed

 (%
)

Supplemental Figure 2: OVA release after filtration (AF) and before filtration (BF) of MP with

different inner phase composition using PLGA 50:50 observed for 15 days. Hepes 50 µl (BF) (open

diamonds) corresponds to an inner phase of 50 µl of 20 mg/ml OVA solution in 25 mM Hepes pH 7.4; and

Water 500 μl (BF) (open triangles) to an inner phase of 500 µl of 2 mg/ml OVA in water. Hepes 500 µl (BF)

(closed squares) and Hepes 500 µl (AF) (closed circles) correspond to an inner phase of 500 µl of 2 mg/ml

OVA in 25 mM Hepes pH 7.4, before and after stirred-cell filtration, respectively.

Supporting Information Figure S6.2  OVA release after filtration (AF) and before filtration 

(BF) of MP with different inner phase composition using PLGA 50:50 observed for 15 days. 

Hepes 50 μl (BF) (open diamonds) corresponds to an inner phase of 50 μl of 20 mg/ml OVA solution 

in 25 mM Hepes pH 7.4; and Water 500 μl (BF) (open triangles) to an inner phase of 500 μl of 2 

mg/ml OVA in water. Hepes 500 μl (BF) (closed squares) and Hepes 500 μl (AF) (closed circles) 

correspond to an inner phase of 500 μl of 2 mg/ml OVA in 25 mM Hepes pH 7.4, before and after 

stirred-cell filtration, respectively.

Supporting Information Figure S6.3  PLGA-OVA/poly(I:C) NP induce cytotoxic CD8+ T cells 

in vivo. 

In vivo cytotoxic capacity of primed OVA-specific T cells were determined in animals which received 

a single s.c. vaccinations with the 50 μg OVA and 20 μg poly(I:C) formulated in 50:50 PLGA-NP 50:50 

or IFA. Vaccinated mice received CFSE-labeled SIINFEKL (specific) or ASNENMETM (control) short 

peptide loaded target cells (Ly5.1. splenocytes) 7 days after vaccination. Animals were sacrificed 

18 hr later and the % target cells determined flow cytometry and calculated as described in M&M. 

Results shown are from one experiment and present averages ± SEM from n = 5 mice per group.

Supplemental figure 3
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Supplemental Figure 3: PLGA-OVA/poly(I:C) NP induce cytotoxic CD8+ T cells in vivo

In vivo cytotoxic capacity of primed OVA-specific T cells were determined in animals which received a single s.c. 

vaccinations with the 50 μg OVA and 20 μg poly(I:C) formulated in 50:50 PLGA-NP 50:50 or IFA. Vaccinated mice received

CFSE-labeled SIINFEKL (specific) or ASNENMETM (control) short peptide loaded target cells (Ly5.1. splenocytes) 7 days

after vaccination. Animals were sacrificed 18 hr later and the % target cells determined flow cytometry and calculated as

described in M&M. Results shown are from one experiment and present averages ± SEM from n = 5 mice per group.
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Abstract

Dendritic cells (DC) play a prominent role in the priming of CD8+ T cells. Vaccination is a 

promising treatment to boost tumor-specific CD8+ T cells which is crucially dependent 

on adequate delivery of the vaccine to DC. Upon subcutaneous (s.c.) injection, only a 

small fraction of the vaccine is delivered to DC whereas the majority is cleared by the 

body or engulfed by other immune cells. 

To overcome this, we studied vaccine delivery to DC via CD40-targeting using a multi-

compound particulate vaccine with the aim to induce potent CD8+ T cell responses. 

To this end, biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP) were 

formulated encapsulating a protein Ag, Pam3CSK4 and Poly(I:C) and coated with 

an agonistic αCD40-mAb (NP-CD40). Targeting NP to CD40 led to very efficient and 

selective delivery to DC in vivo upon s.c. injection and improved priming of CD8+ T cells 

against two independent tumor associated Ag. Therapeutic application of NP-CD40 

enhanced tumor control and prolonged survival of tumor-bearing mice. 

We conclude that CD40-mediated delivery to DC of NP-vaccines, co-encapsulating Ag 

and adjuvants, efficiently drives specific T cell responses, and therefore, is an attractive 

method to improve the efficacy of protein based cancer vaccines undergoing clinical 

testing in the clinic.
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Introduction

Dendritic Cells (DC) are the main antigen (Ag) presenting cells (APC) of the immune  

system 1,2 and their ability to orchestrate innate and adaptive immunity is widely being 

exploited to develop cancer immunotherapies 3. Immature DC have high endocytic 

capacity, express various intra- and extracellular pathogen recognition receptors, such as 

toll-like receptors (TLR), and continuously sample their surroundings for danger signals. 

TLR-triggering results in phenotypical changes, facilitated Ag processing, MHC presentation 

and increased cytokine production, a process termed DC maturation 4. 

Therapeutic vaccinations against cancer are centered on the delivery of tumor associated 

Ag (TAA) to DC which then initiate Ag-specific T cell responses 5,6. However, in vivo 

generation of robust anti-tumor cytotoxic CD8+ T cells (CTL) remains a major challenge. 

Targeted delivery of TAA to DC using nanoparticle (NP) vaccine carriers formulated with 

poly(lactic-co-glycolic acid) (PLGA) is an attractive approach to enhance specific T cell 

responses. PLGA NP can be formulated to encapsulate protein 7 or short- 8 and long-

peptide 9 Ag encoding TAA and TLR ligands (TLRL) 10. Encapsulation of Ag in NP facilitates 

MHC Ag presentation 8 and in vivo anti-tumor T cell responses compared to soluble Ag 11. 

Encapsulation of Ag in NP facilitates MHC Ag presentation and in vivo anti-tumor T cell 

responses compared to soluble Ag. 

Due to their physical characteristics, NP are prone to be internalized by scavenger cells, 

such as macrophages (Mɸ), which offer poor T cell priming capacity compared to DC. 

Protection from nonspecific uptake is achieved by pegylation of NP which also prolongs 

the in vivo half-life 12. Pegylated NP can be specifically (re-)targeted to DC by additional 

surface modifications which is suggested to enhance in vivo T cell responses. Indeed, 

C-type lectin specific antibodies coated to PLGA-PEG NP 13,14 but also compounds such 

as protamine and mannose coated to the PLGA-NP surface core 15,16 have been shown to 

improve in vitro binding and internalization by DC and promote better T cell responses. 

However, no direct evidence was provided in these studies for selective DC-targeting and 

improved delivery of the vaccine to DC in vivo.

Facilitating in vivo delivery of PLGA-NP-vaccines to DC via CD40 and the resulting vaccine 

induced T cell responses is the subject of this study. CD40 is a tumor necrosis factor-receptor 

family cell surface receptor highly expressed on DC. CD40/CD40L ligation plays a crucial 

role in the maturation of DC into fully competent APC and is a key signal for CD4+ T helper 

dependent CD8+ T cell priming 17,18. Moreover, targeting soluble Ag via CD40 using antibody 
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constructs was shown to facilitate the internalization of Ag into early-endosomes 19,  

intracellular compartments associated with efficient MHC class I Ag cross-presentation, 

and promotes tumor-specific T cell responses 20.  

In this study, we evaluated CD40-targeting of a particulate Ag, by formulating PLGA-NP 

co-encapsulating ovalbumin protein, the adjuvants Pam3Csk4 (TLR2L) and Poly(I:C) 

(TLR3L), as well as the murine αCD40-mAb FGK45 17 coupled to the NP-surface, PLGA(-Ag/

TLR2+3L)-αCD40 (NP-CD40). 

We report here, that NP-CD40 administered as a vaccine displays selective and improved 

capacity to deliver Ag to DC in vivo, over other APC, and better DC maturation in comparison 

to non-targeted NP-vaccines. Vaccinations with NP-CD40 resulted in the priming of robust 

Ag-specific CD8+ T cells with the capacity to control tumor growth and prolong survival 

of tumor-bearing animals. 

Material and methods

Animals

C57BL/6 (CD45.2/Thy1.2; H-2b) mice were obtained from Charles River Laboratories. Ly5.1/

CD45.1 (C57BL/6 background), CD40 KO (C57BL/6 background), transgenic OT-I/Thy1.1/

CD45.2 (specific for the OVA257–264 CTL epitope presented by H2-Kb) and transgenic OT-II/

Ly5.1/CD45.1 mice (specific for the OVA323–339 Th epitope presented by I-Ab) were bred in the 

specific pathogen-free animal facility of the Leiden University Medical Center. All animal 

experiments were approved by the animal experimental committee of Leiden University.

DC and cell lines

Mouse BMDC were cultured published previously 18. In brief, Freshly isolated mouse bone 

marrow (BM) cells from WT C57BL/6 mice or CD40 KO femurs were and cultured for 10 

days in medium supplemented with GM-CSF (50 ng/ml). After 10 days of culture, large 

numbers of typical DC were obtained which were at least 90% positive for murine DC 

marker CD11c (data not shown). D1 cells, a GM-CSF dependent immature dendritic cell 

line were cultured as described before 21. OVA-transfected B16 tumor cell line (B16-OVA), 

syngeneic to the C57BL/6 strain, was cultured as described previously 22.
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Preparation and characterization of targeted PLGA-NP

PLGA-NP (Ag/TLRL)-mAb were formulated encapsulating a model protein Ag and in 

combination with TLR2L (Pam3Csk4) and/or TLR3L (Poly(I:C)) using double-emulsion 

and solvent evaporation technique as previously described 20. PLGA-NP was coated with 

mAbs, murine agonistic αCD40 mAb, FGK45 and mouse IgG2a Isotype control respectively, 

essentially as described before 23. In brief, 100 mg of PLGA in 2 mL of ethyl acetate 

containing OVA antigen free from endotoxin (10 mg) and/or Poly(I:C) (InvivoGen) (4 mg) 

and/or Pam3CSK4 (InvivoGen) (1 mg) were emulsified under sonification (Branson, sonofier 

250) during 60 seconds. This first emulsion was rapidly added to 1 mL of 1% polyvinyl 

alcohol/7% ethyl acetate in distillated water during 15 second. A combination of pegylated 

lipids (DSPE-PEG(2000) succinic acid (6 mg) and mPEG 2000 PE (6 mg)) were dissolved in 

chloroform and added to the vial. The chloroform was removed by a stream of nitrogen 

gas. Subsequently, the emulsion was rapidly added to the vial containing the lipids and 

the solution was homogenized during 30 seconds using a sonicator. This solution was 

added to 100 mL of 0.3% PVA/7% of ethyl acetate in distillated water and stirred overnight 

to evaporate ethyl acetate. The PLGA-NP were collected by centrifugation at 12000 x g for 

10 min, washed four times with distilled water and lyophilized. Next, mAbs was covalently 

coupled to 10 mg of PLGA-NP by activating surface carboxyl groups in isotonic 0.1 M MES 

buffer pH 5.5 containing 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride 

(10 equiv.) and N-hydroxysuccinimide (10 equiv.) for 1 h. Mouse IgG2a Isotype control 

(Clone:C1.18.4 Catalog #:BE0085) was purchased from Bio X Cell Antibody Production and 

Purification. The activated carboxyl-PLGA-NP was washed one time with MES buffer by 

centrifugation. Subsequently, mAbs (200 μg per mg NP) were added and the suspension 

was stirred during 3 h at room temperature and later overnight at 4°C. Unbound antibodies 

were removed by centrifugation (12000 x g, during 10 min) and the PLGA-NPs-mAbs was 

washed four times with PBS. The presence of Abs on the particle surface was determined 

by Coomassie dye protein assay. Physicochemical characteristics of formulated NP are 

summarized in Table 7.1. 

Dynamic light scattering and zeta-potential measurements

Dynamic light scattering (DLS) measurements were taken on different PLGA-NP using an 

ALV light-scattering instrument equipped with an ALV5000/60X0 Multiple Tau Correlator 

and an Oxxius SLIM-532 150 mW DPSS laser operating at a wavelength of 532 nm. A 
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refractive index matching bath of filtered cis-decalin surrounded the cylindrical scattering 

cell, and the temperature was controlled at 21.5 ± 0.3 °C using a Haake F3-K thermostat. 

In each sample, the g2(τ) auto-correlation function was recorded ten times at a detection 

angle of 90°. For each measurement, the diffusion coefficient (D) was determined by using 

the second-order cumulant, and the corresponding PLGA-NP diameter was calculated 

assuming that the PLGA-NP were spherical in shape. Zeta potential measurements were 

performed on PLGA-NP using a Malvern ZetaSizer 2000 (UK).

Quantifying encapsulated OVA in NPs

OVA-protein encapsulating efficiency was determined after hydrolyzing 5 mg PLGA-NPs 

in 0.5 mL 0.8 M NaOH overnight at 37°C. The OVA-protein content was then measured 

using Coomassie Plus Protein Assay Reagent (Pierce) according to the manufacturer’s 

protocol. OVA encapsulation efficiency was calculated by dividing the measured amount 

of encapsulated Ag by the theoretical amount assuming all was encapsulated.

Quantifying encapsulated TLR ligands

Biodegradable PLGA-NP was hydrolyzed with 0.8 M NaOH overnight at 37°C. The 

encapsulation efficiency of Poly(I:C) was determined by reversed-phase high-performance 

liquid chromatography (RP_HPLC) and was also determined by UV spectrometry using 

a Nanodrop system (Thermo Scientific). Poly(I:C) was assayed by RP-HPLC at room 

temperature using a Shimadzu system (Shimadzu Corporation, Kyoto, Japan) equipped 

with a reversed-phase Symmetric C18 column (250 mm x 4.6 mm). The flow rate was fixed 

at 1 mL/min and detection was obtained by UV detection at 254 nm. A linear gradient 

of 0% to 80% of acetonitrile (containing 0.036% trifluoroacetic acid) in water (containing 

0.045% trifluoroacetic acid) was used for Poly(I:C). The retention time of the Poly(I:C) was 

approximately 20 min. The regression analysis was constructed by plotting the peak–area 

ratio of Poly(I:C) versus concentration. The calibration curves were linear within the range 

of 2.5 µg to 150 µg for Poly(I:C). The correlation coefficient (R2) was greater than 0.99. 

Analysis of in vitro NP-association with DC

WT C57BL/6 or CD40 KO BMDC (100,000/well) were plated into a 96-well flat bottom plate 

and incubated for 1 hr at either 4°C (binding analysis) or 37°C (uptake analysis) with titrated 
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amounts of CD40-targeted or non-targeted (PLGA-Ag/TLR2+3L)-PEG-mAb formulations 

labeled with the near infrared dye (near-IR dyes, CW800). Cells were washed twice to 

remove residual non-bound NP. Binding and uptake of PLGA-NP by DC was determined 

based on near-IR fluorescence using odyssey equipment (LI-COR) at 800 nm. Data analyses 

were corrected for the number of amount cells per measurement via co-staining with 

TO-PRO® (Invitrogen) at 700 nm. 

Analysis of in vivo NP-uptake by immune cells

Animals were vaccinated with the CD40-targeted or non-targeted (PLGA-Ag/TLR2+3L)-PEG-

mAb formulations containing OVA-Alexa647 (Invitrogen) by subcutaneous (s.c.) injection 

into the right flank. In vivo NP-uptake by cells was analyzed 24 or 48 hr after vaccination 

by sacrificing the animals and isolating the inguinal lymph nodes. Single cell suspensions 

were prepared and flow cytometry was used to determine the fluorescence intensity of 

OVA-Alexa647 in F4/80-CD11b+CD11c+ DC and CD19+B220+ B cells as a measure for NP-

uptake. All fluorescent-mAb used for staining were purchased from BD Pharmingen. Flow 

cytometry was performed using a LSRII (BD Pharmingen) and data analyzed with FlowJo 

software (Treestar).

In vitro MHC class II-restricted Ag presentation and T cell priming

DC were incubated for 5 hr with the various (PLGA-Ag/TLRL)-mAb formulations at the 

indicated OVA concentrations. After incubation, supernatants were harvested and cells 

were then further co-cultured for 72 hr in the presence of OT-II splenocytes to assess OVA-

specific MHC class II-restricted proliferation of naïve CD4+ T cells. Cells were pulsed with [3H]-

thymidine for the last 16 hours of culture. Samples were then counted on a TopCountTM 

microplate scintillation counter (Packard Instrument Co., Meridan, CT, USA). Stimulation 

index was used as a measure for proliferation and was calculated as the fold increase of 

[3H]-thymidine CPM over the CPM counts obtained with medium as negative control. 

Analysis of cytokine production by DC or T cells using Enzyme-linked Im-
munosorbent Assay (ELISA)

DC (100,000/well) were plated into a 96-well round bottom plate and incubated for 24 

hr with titrated amounts of Ag. Supernatants were harvested and tested for IL-12 p70 by 

ELISA (BD OptEIA™ MOUSE IL-12 Cat. Nr 555256) following the manufacturer’s instructions.
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Vaccination and immunization schemes

Animals were vaccinated with the various targeted or non-targeted NP formulations 

(Table 7.1) by s.c. injection into the right flank. In vivo priming of cytotoxic CD8+ T cells was 

studied 1 week post-vaccination by transferring splenocytes prepared from congeneic 

Ly5.1 C57BL/6 animals which were pulsed with the SIINFEKL (OVA8/specific target cells) or 

ASNENMETM (FLU9/non-specific target cells) short peptide. The target cells were labeled 

with either 10 μM (OVA) or 0.5 μM (Flu) CFSE mixed 1:1 and 107 total cells were injected 

intravenously (i.v.) into vaccinated animals. 18 hr post transfer of target cells, animals were 

sacrificed and single cell suspensions were prepared from isolated spleens. Injected target 

cells were distinguished by APC-conjugated rat anti-mouse CD45.1 mAb (BD Pharmingen). 

In vivo cytotoxicity was determined by flow cytometry using the following formula:(1-

[(CFSE-peak OVA/CFSE-peak FLU)vaccinated animals x (CFSE-peak OVA/CFSE-peak FLU)non-vaccinated 

animals]) x 100%. Vaccine efficacy against the HPV-E7 oncoprotein was determined in blood 

of TC-1 tumor bearing mice (60000/TC-1 cells per mice inoculated s.c. in the left flank). Mice 

were vaccinated on day 7 with 15 μg HPV-E7 protein encapsulated in CD40-targeted NP, 

control formulations or in soluble form and HPV-E7 -specific CD8+ T cell responses were 

measured by quantification via flow cytometry of RAHYNIVTF/H2-Db-TM (APC-labeled) 

positive CD8+ T cells co-stained with AF-conjugated anti-mouse CD8α mAb and V500-

conjugated rat anti-mouse CD3 mAb.

Tumor challenge

Therapeutic and prophylactic vaccine capacity of CD40-targeted NP and relevant controls 

were studied by analyzing their efficiency to induce anti-tumor immune responses. For 

prophylactic tumor challenges mice were vaccinated s.c. in the right flank and seven days 

later OVA-expressing melanoma cells (B16-OVA) were inoculated s.c. on the opposite 

flank. Tumor size (mm3) was calculated by (length) × (width) × (length + width/2). Animal 

survival was then followed and mice were sacrificed when humane end-points were met 

as described in Code of practice for animal experiments in oncological related research 

(Code of practice dierproeven in het kankeronderzoek). 

To assess the therapeutic capacity of CD40-targeted NP we inoculated 2 x 105 B16-OVA 

melanoma cells s.c. in the right flank of WT C57BL/6 mice. On day 7 and day 17 post tumor 

inoculation, mice were s.c. vaccinated with 10 µg of OVA encapsulated in PLGA-(OVA/

TLR2+3L)-αCD40 and PLGA-(OVA/TLR2+3L)-IgG2a NP (12 mice per group) on the opposite 
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flank. Tumor growth was measured 1–3 times a week and survival was monitored daily. Tail 

vein blood samples were collected on day 14 after tumor challenge. Blood samples were 

prepared by erythrocyte lysis, followed by 2 washing steps with PBA buffer. OVA-specific 

CD8+ T cells were analyzed by co-staining with APC-conjugated SIINFEKL/H2-Kb tetramers 

(TM), AF-conjugated anti-mouse CD8α mAb and V500-conjugated rat anti-mouse CD3 

mAb. All fluorescent-antibodies used for staining were purchased from BD Pharmingen 

and the APC-SIINFEKL/H2-Kb tetramers were produced in house. Flow cytometry analysis 

was performed as described above.

Statistical analysis

Graph Pad Prism software version 5 was used for statistical analysis. Two-way analysis 

of variance (ANOVA) tests were used to evaluate cytokine production by DC or T cells 

across different concentrations of PLGA-(OVA/TLR)-mAb and to analyze differences in in 

vitro binding/uptake studies. The differences in OVA-Alexa647 fluorescence upon in vivo 

uptake by immune cells were analyzed using the two-tailed unpaired Students t test or 

Mann Whitney test. Dose-response in vitro studies were analyzed using two-way ANOVA 

with Bonferroni posttests. Differences in animal survival were calculated using Log-rank 

(Mantel-Cox) test. Statistical significance was considered when P < 0.05.

RESULTS

Coupling of αCD40-mAb to NP improves binding and internalization by DC 
in vitro and in vivo 

The efficiency of targeting via CD40 was analyzed by determining the efficacy of binding 

and internalization of NP by DC. Two types of formulations were compared and unless 

otherwise stated PLGA-(Ag/TLR2+3L)-αCD40 NP are referred to as NP-CD40 and PLGA-(Ag/

TLR2+3L)-IgG2a (NP) as NP-Iso (IgG2a-isotype control mAb coated NP). DC were incubated 

for 1 hr with fluorescently labeled NP at 4°C (binding) and 37°C (internalization). Coupling of 

the αCD40-mAb significantly improved the association of NP with DC compared to isotype 

control mAb (Figure 7.1). The effect of CD40-targeting was also observed in a mixed cell 

culture. NP-CD40 added to spleen single cell suspensions in vitro were internalized better 

by DC than B cells (Supporting Information Figure S7.1). But F4/80+CD11b+CD11c- Mɸ 
showed poor capacity to take up NP, irrespective of targeting (data not shown).
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The in vivo uptake was examined by injecting mice s.c. in the flank with NP-CD40 or NP-Iso 

and the draining inguinal lymph node (LN) excised 48 hr later. Higher amounts of NP-

CD40 were taken up by CD11c+CD11b+F4/80- DC than NP-Iso (Figure 7.2A). In addition, 

the LN contained significantly higher numbers of NP+ DC when NP-CD40 were injected 

(Figure 7.2B). CD19+B220+ B cells also internalized NP-CD40 although to a lesser extent 

than DC (Figure 7.2C and 7.2D). Control injections of NP-Iso mixed with same amount of 

soluble anti-CD40 showed the necessity of coating the αCD40-mAb to the NP surface. In 

summary, CD40-targeting of NP improves binding and uptake and facilitates efficient in 

vivo delivery of NP to DC.

Enhanced maturation of DC via CD40-targeted delivery of TLR2 and TLR3 
ligands encapsulated in PLGA-NP

The potency of various NP formulations (Table 7.1) to activate DC was studied in vitro by 

analyzing the cell-surface expression of the T cell co-stimulatory molecules CD86 and 

Figure 7.1  DC more efficiently binds and internalizes NP-CD40 compared to NP-Iso.

WT BMDC were incubated with titrated amounts of NP-CD40 or NP-Iso for 1 hr at 4°C to study bind-

ing (A) or 37°C for uptake (B) followed by extensive washing with medium to remove unbound 

NP. CD40-mediated binding and uptake of NP was tested CD40 KO BMDC (C & D). Fluorescence 

intensity was measured by scanning on the Odyssey® and results shown are mean fluorescence 

intensities of a duplicate analysis + deviation. Data are from one out of two independent experi-

ments performed with two different batches of NP. Differences in NP-binding and uptake were 

analyzed applying two-way ANOVA with Bonferroni posttests,* = P < 0.05 or *** = P < 0.0001.
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CD40 on DC and the capacity of these cells to produce IL-12. The strongest DC maturation 

resulted from incubation with NP-CD40 as reflected by the highest production of IL-12, 

(Figure 7.3A), but also by IL-6 and IL-2 production (data not shown) and the enhanced 

surface expression of CD86 and CD40 (Figure 7.3B & C). At the concentrations tested, single 

formulations of (PLGA-Ag/TLRL)-mAb NP containing either Pam3Csk4, Poly(I:C) or FGK45 

showed poor (FGK45 & TLR2L), or low (Poly(I:C)) capacity to activate DC compared to NP 

formulations co-encapsulating Pam3Csk4 and Poly(I:C) (Supporting Information Figure 

S7.2). Coupling of the αCD40-mAb to NP encapsulating TLRL appeared to be essential to 

achieve the synergistic activation of DC as NP-Iso mixed with soluble (free) αCD40-mAb 

showed lower potency compared to NP-CD40 (Figure 7.3D). Furthermore, DC incubated 

Figure 7.2  NP-CD40 are better targeted in vivo to and internalized by DC upon s.c. injection.

WT mice were injected s.c. in the right flank with NP-CD40 or NP-Iso encapsulating 10 μg OVA-

Alexa647 or NP-Iso mixed with soluble aCD40. After 48 hr mice were sacrificed and single-cell 

suspensions prepared from the inguinal LN and stained with fluorescent DC-specific mAb. The 

different immune cell populations positive for Alexa-647 fluorescence were distinguished by 

flow cytometry. The absolute numbers of NP+ CD11c+CD11b+F4/80- DC were calculated and the 

results shown are averages ± SEM of two independent experiments using 3–5 mice per group 

(A). Relative amount of particles internalized per cell was based on the Alexa-647 MFI on the NP+ 

DC and values depicted as mean ± SEM (B). NP+ CD19+B220+ B cells (C) and MFI on the NP+ B cells 

(D) were quantified. The Mann Whitney or the unpaired student`s test was used to compare the 

absolute numbers of NP+ cells after vaccinations with NP-CD40 and NP-Iso and the resulting MFI 

on NP+ cells, * = P < 0.05 & ** = P < 0.01.
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with mixtures of NP-Iso with PLGA-(Ag)-αCD40 NP (lacking both TLR ligands) did not 

induce DC maturation to a similar extent as NP-CD40 (Figure 7.3E). No DC maturation was 

induced by NP formulations encapsulating just OVA, independent of CD40-targeting (data 

not shown). We tested up to 25-fold higher amounts of soluble OVA compared to the 

amount encapsulated in NP, either alone or in combination with TLRL and αCD40-mAb but 

observed no additive stimulatory effect on DC maturation (data not shown). In summary, 

we show that CD40-targeted delivery of NP, co-encapsulating Poly(I:C) and Pam3Csk4, 

synergistically enhances DC maturation in contrast to non-targeted NP containing the 

same Ag/TLRL cargo. 

Figure 7.3  CD40-targeted PLGA-(Ag/TLR2+3L) NP show superior capacity to mature DC 

compared to non-targeted NP.

WT BMDC (100,000 cells/well) were incubated with titrated amounts of NP-CD40 or NP-Iso for 24 

hr at 37°C. Culture supernatants were harvested and the amount of IL-12 determined by ELISA 

(A). Post-incubation, DC were stained with fluorescent antibodies against CD86 (B) and CD40 

(C) followed by Flow Cytometry analysis. IL-12 was determined in culture supernatants after 24 

hr incubation of DC with NP-CD40, NP-Iso and control formulations of NP-Iso mixed with soluble 

αCD40 mAb (D) or PLGA-(OVA)-αCD40 NP (E). Differences in cytokine production were analyzed 

applying two way ANOVA with Bonferroni posttests, *** = P < 0.001.
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Improved CD4+ T cell proliferation and IFN-γ production by NP-CD40

We studied if DC loaded with NP-CD40 resulted in efficient MHC class II Ag processing and 

activation of naïve CD4+ T cells in vitro. In line with the previous results, OVA-specific CD4+ 

T cells proliferated better but especially produced significantly higher amounts of IFN-γ 

when primed by DC loaded with NP-CD40 compared to stimulation by NP-Iso loaded DC 

(Figure 7.4). In conclusion, CD40-targeted delivery to DC of Pam3Csk4 and Poly(I:C) co-

encapsulated with protein Ag in NP, also facilitates MHC class II presentation and enhances 

effector CD4+ T cell functionality. DC loaded with NP-CD40 and NP-Iso both had potent 

APC capacity resulting in similar proliferation and IFN-γ production by naïve CD8+ T cells 

in vitro (data not shown).   

Vaccination with NP-CD40 improves CD8+ T cell responses  

The quantity and quality of TAA-specific CD8+ T cells are important determinants for a 

robust anti-tumor immune response. Enhancing CD8+ T cell responses in the presence 

Figure 7.4  DC loaded with NP-CD40 have improved APC-capacity to stimulate CD4+ T cell 

proliferation and IFN-γ production.

BMDC from C57BL/6 were incubated with titrated amounts of NP-CD40 or NP-Iso for 5 hr at 37°C. 

After incubation with Ag, 75% of the culture medium was removed and splenocytes from OT-II mice 

added (200000 splenocytes/200 μl/well). OVA-specific CD4+ T cell proliferation was analyzed 72 hr 

later by analysis of [3H]-thymidine incorporation which was added in the final 16 hours of culture 

(A). Samples were taken after 48 hr of co-culture between Ag-loaded DC and OT-II splenocytes and 

analyzed for IFN-γ levels (B). Differences in CD4+ T cell proliferation and cytokine production were 

analyzed using the two way ANOVA with Bonferroni posttests, * = P < 0.5 and *** = P < 0.0001.
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of a tumor is a crucial merit of therapeutic vaccines. Therefore, to study how NP-CD40 

modulate an ongoing anti-tumor CD8+ T cell response we collected blood samples of 

tumor-bearing animals 7 days after vaccination. NP-CD40 significantly boosted the % 

Figure 7.5  Vaccinations with NP-CD40 prime CD8+ T cells with improved cytotoxic capacity 

compared to NP-Iso. 

Tail vein blood samples were taken on day 14 post-tumor inoculation from tumor bearing mice 

which received vaccinations with either NP-CD40 or NP-Iso. Blood samples were prepared as 

stated in M&M and stained with SIINFEKL-Tetramers to determine OVA-specific CD8+ T cells by 

FACS (A) WT mice were vaccinated s.c. with 10 μg OVA encapsulated in CD40-targeted PLGA-(Ag/

TLR2+3L) NP or non-targeted PLGA-(Ag/TLR2+3L) control NP in the right flank. On day 7 day post 

vaccination, SIINFEKL-loaded CFSEhigh OVA-specific target cells and ASNENMETM-loaded CFSElow 

INFLUENZA-specific target cells (negative controls) were injected i.v. in a 1:1 ratio and mice sacri-

ficed 18 hr later to determine the degree of OVA-specific lysis of the target cells (B). The average 

% OVA-specific target cell killing, of 3 independent experiments, was quantified as described in 

M&M (C). TC-1 tumor-bearing mice were vaccinated on day 7 with NP-formulations encapsulating 

15 μg HPV-E7 protein and TLRL or soluble protein/TLRL mixture. On day 15, tail vein blood samples 

were collected and the % of RAHYNIVTF/H2-Db specific CD8+ T cells determined (D). Differences 

in % of Ag specific CD8+ T cells and in vivo killing or target cells were analyzed applying the Mann 

Whitney tests, * = P < 0.05.
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of TAA-specific CD8+ T cells compared to NP-Iso vaccinated and untreated mice (Figure 

7.5A). Ag-specific CD8+ T cells after vaccination of naïve animals with NP-CD40 showed 

strong in vivo cytotoxic capacity (Figure 7.5B), which resulted in efficient killing of target 

cells (Figure 7.5C). Similarly, CD40-targeted NP encapsulating HPV-E7 protein significantly 

enhanced RAHYNIVTF-specific CD8+ T cells in blood after a single vaccination compared 

to non-targeted NP formulations or a mixture of soluble HPV-E7-protein and adjuvants. 

Encapsulation of specific Ag in CD40-targeted NP was required for the observed T cell 

priming as TLRL and an irrelevant protein targeted to CD40 failed to boost HPV-E7 specific 

responses (Figure 7.5D). NP formulations with no or only one TLRL were inferior vaccines 

as compared to NP-CD40 (Supporting Information Figure S7.3). These observations show 

significant improvement of CD8+ T cell quantity and functional quality via CD40-targeted 

NP-vaccines. 

CD40-targeting of NP improves anti-tumor vaccine potency

The prophylactic vaccine potency of NP-vaccines was studied in a murine melanoma-OVA 

model. Mice were vaccinated or left un-treated and 7 days later challenged with B16-OVA 

tumors. But both NP-vaccines inhibited tumor growth (Figure 7.6A) and exhibited similar 

efficacy (P < 0.001) in prolonging animal survival compared to un-treated mice (Figure 

7.6B). Single TLRL NP-vaccines also induced partial protection against tumor challenge, 

however; NP-CD40 inhibited tumor out growth in 50% of tumor bearing animals resulting 

in the longest median survival time compared to animals vaccinated with the other NP-

vaccines (Supporting Information Figure S7.4).

The therapeutic vaccine potency of NP-CD40 and NP-Iso was assessed by vaccinating 

tumor-bearing mice on day 7 and 17 post tumor inoculation. Comparison based on average 

tumor size per group could be determined until day 22; hereafter the first animals were 

sacrificed because of tumor burden. NP-CD40 vaccinated animals displayed statistically 

smaller tumors compared to non-treated (P < 0.01) and NP-Iso treated animals (P < 0.05) 

(Figure 7.6D). Furthermore, NP-CD40 vaccinated animals displayed a better prolonged 

survival compared to the control groups (P < 0.02) (Figure 7.6D). Collectively, the results 

indicate that CD40-targeting of PLGA-(Ag/TLR2+3L)-NP potentiates vaccine efficacy and 

induces (or boosts) anti-tumor responses inhibiting tumor growth and prolonging survival 

of animals. 
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Figure 7.6  Vaccinations with PLGA-(Ag/TLR2+3L)-αCD40 NP induce potent anti-tumor 

responses. 

WT mice were vaccinated in the right flank with 10 μg OVA encapsulated in NP-CD40 and NP-Iso 

on day 0 or left untreated. On day 7 post-vaccination 2 x 105 B16-OVA tumor cells were inoculated 

s.c. on the opposite flank. Tumor growth (A) and animal survival (B) were monitored. Untreated 

animals were all required to be sacrificed because of tumor burden by day 29. 2 x 105 B16-OVA 

tumor cells were inoculated s.c. in the left flank of WT mice and these rested for 1 week followed 

by vaccinations on day 7 and 17 with 10 μg OVA encapsulated in NP. Average tumor size per group 

was followed in time until day 22, the final time point when all animals were still alive (C), and 

survival monitored (D). Differences in tumor sizes per group were determined by regular two-way 

ANOVA with Bonferroni posttests to calculate the difference in mean values at each time point. 

Animal survival per group was assessed using Log-rank (Mantel-Cox) test, *** = P < 0.001, ** = P 

< 0.01 and * = P < 0.05.
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In this study we formulated a PLGA-NP based multi-compound particulate vaccine which 

target DC and deliver protein Ag and adjuvants via the cell-surface molecule CD40 with 
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the aim to activate efficient cytotoxic CD8+ T cell responses. The effects of CD40-targeting 

on vaccine potency were evaluated using a murine melanoma tumor model.

The results described here indicate that the selective and efficient in vivo delivery of 

particulate NP-vaccines to DC via CD40 is feasible and results in efficacious T cell responses. 

Combined CD40-targeting with TLR2- and TLR3-triggering synergistically enhanced IL-12 

production by DC and IFN-γ production by CD4+ T cells in vitro, suggesting that NP-CD40 

facilitates a TH1-mediated pro-inflammatory immune response. TH1 immune polarization 

by vaccines is essential to sustain robust anti-tumor CD8+ T cell responses in vivo 24. In line 

with this direct vaccinations with NP-CD40 improved the induction of Ag-specific cytotoxic 

CD8+ T cells and tumor-control.

The covalent coupling of the αCD40-mAb to the NP (NP-CD40) greatly enhanced the 

maturation effect of the NP-vaccine on DC (Figure 7.3). The better capacity of NP-CD40 to 

mature DC is possibly a consequence of triggering distinct adapter proteins involved in 

signaling pathways upstream of NF-κβ transcription regulation of DC maturation; TRAF 

(CD40) 25, MyD88 (TLR2) and TRIF (TLR3) 26. Another possibility is that receptor-mediated 

internalization via CD40 leads to higher quantities of Poly(I:C) and Pam3Csk4 inside 

intracellular compartments of DC compared to non-targeted NP 13 inducing stronger TLR-

stimulation. Additional experiments are ongoing to elucidate the mechanisms responsible 

for the enhanced DC maturation by NP-CD40.  

Enhanced vaccine-delivery to DC can also be achieved via passive targeting by modifying 

the size of the vaccine which influences lymph node drainage of the vaccine 27. Alternatively, 

active vaccine-targeting strategies via CD40, as shown in this study, or through C-type 

lectins such as DEC-205, DC-SIGN and Glec9a greatly improves Ag delivery, processing 

and T cell priming by DC over non-targeted controls 14,16,23,28,29. 

It is clear that DC express many cell-surface molecules which can function as potential 

targets for vaccine-delivery resulting in improved binding and internalization of the 

vaccine. The cell-surface molecule chosen is based on the DC-subtype possessing the 

optimal APC-properties for the desired type of immune response 30 one aims to activate. 

Figdor and colleagues have recently questioned to necessity to target vaccines to 

specific DC-subsets 31, even though some DC-subtypes can possess a specialized role in 

peripheral tolerance 32,33 or in the activation of CD8+ T cell mediated immune responses 34. 

However, owing to the plasticity in function of several DC-subtypes 35,36 and on the results 

described here and published previously by our group 37 we hypothesize that the success 
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of therapeutic vaccinations is not critically dependent on the DC-subtype targeted but 

rather on the efficient delivery of the vaccine and importantly the adjuvants in sufficient 

amounts to activate CD11c+ DC instead of non-professional APC. 

We recently performed a study using PLGA-(Ag/TLR3+7L)-NP and compared the delivery 

to DC via the targeting of CD40, CD11c or DEC-205. Our results indicate that the binding 

and internalization of the NP via these molecules similarly facilitate DC maturation in 

vitro but that CD40-targeting leads to slightly better CD8+ T cell responses in vivo (L.Cruz 

& R.Rosalia et al., manuscript in press 10.1016/j.jconrel.2014.07.040).

The surface expression of most targeting molecules is promiscuous on several immune 

cells. CD40 expression is not restricted to DC. For example, B cells also express CD40 and 

therefore might contribute to the anti-tumor responses observed after vaccinations 

with NP-CD40. A small percentage of B cells bind NP in vivo, however due to their inferior 

endocytic capacity 38 and T cell activating capacity 39 compared to DC it is likely that T cell 

stimulation by B cells in vivo played a minor role in this study. 

PLGA-particles were shown to be internalized by Mɸ in vivo leading to cross-presentation 

of particle-encapsulated protein and priming of CD8+ T cells 40. We observed that Mɸ 
poorly internalized NP-CD40 and NP-Iso compared to DC (data not shown) likely because 

of the PEG-layer on the NP which blocks non-specific phagocytosis 41. Targeting to 

CD40 did not lead to better in vivo internalization of NP-CD40 by Mɸ and we observed 

that CD11c+CD11b+F4/80- DC have higher cell-surface expression of CD40 compared 

to CD19+B220+ B cells and CD11c-CD11b+F4/80+ Mɸ (data not shown). The higher CD4-

expression on DC may form a mechanistic basis for the improved in vivo delivery of NP-

CD40 compared to other APC.  

Lymphoid organ resident CD8α+ DC are considered the main Ag cross-presenting and CD8+ 

T cell priming DC in the mouse 42. We observed a trend that CD8a+ DC more efficiently 

internalized NP (Supporting Information Figure S7.1) than CD8a- DC. A surprising finding 

as CD8+ and CD8- CD11c+ DC were shown to possess similar phagocytic capacity 43, but 

differed in the mechanisms and efficiency of Ag-presentation 44. Cell-surface expression 

of CD40 was reported to be higher on CD8a+ DC in mice 45 which could explain why more 

CD8a+ DC internalize higher numbers of NP-CD40 via receptor mediated endocytosis. 

CD40 seems to be a suitable target to deliver other types of particulate vaccines. Similar 

ex vivo and in vivo DC-specific delivery of a CD40-targeted adenoviral tumor vaccine was 

previously reported 46 inducing stronger anti-tumor responses than the non-targeted 
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vectors, which supports CD40 on DC to be a suitable target to deliver not only PLGA-NP 

based vaccines but also other types of particulate vaccines. 

DC were poorly matured by (PLGA-Ag)-αCD40 NP or soluble αCD40-mAb in the absence 

of TLRL. This was surprising as αCD40-mAb bound to polystyrene 47, poly(γ-glutamic 

acid) 48 and porous silicon NP 49 resulted in DC maturation. FGK45 is a relatively weaker 

DC activating adjuvant compared to most TLRL 50 and we hypothesized that coupling of 

αCD40-mAb to PLGA-NP would improve the cross-linking of CD40 on DC and enhance 

the stimulatory effect of FGK45. But, our data suggests that the stimulating properties of 

FGK45 coupled to PLGA-NP at the quantities tested were insufficient to strongly activate 

DC as a single adjuvant. Higher concentrations of FGK45, than reported in our study, 

coupled to NP could not be achieved due to already saturating amounts of the mAb 

coupled to the NP-surface. Of course, increasing the size (Table 7.1) of the NP would allow 

the coupling of more antibodies, but we opted not to as the amounts of αCD40-mAb 

coupled to the NP were already sufficient to significantly boost the immune activating 

properties of TLRL encapsulated in NP. And importantly, higher dosages of systemic 

αCD40-mAb after injection might lead to liver toxicity as reported recently by Fransen 

et al. 51. Vaccinations using NP-CD40 resulted in the most efficient T cell responses in vitro 

and in vivo. Multi-adjuvant vaccines are known to improve immune responses compared 

to single adjuvant based vaccines 52 and Berzofsky et al. recently showed that this effect 

is related to a qualitative differences of the primed effector T cells 53. Our observations 

support this report as the strongest CD8+ T cell cytotoxicity was achieved with vaccines 

combining TLR2L, TLR3L and αCD40-mAb. 

Efficient and potent therapies against infectious diseases and cancer are highly necessary 

in the clinic. With recent exciting developments in immunotherapy, active vaccinations 

are close to being implemented as an accepted anti-cancer therapy but also against 

infectious diseases, for example Influenza 54. However, fine-tuning is required to achieve 

maximum vaccine potency via DC-controlled anti-tumor immune responses. We show 

here that CD40-targeting is an attractive strategy to deliver PLGA-NP-based well-defined 

vaccines to CD11c+ DC resulting in significant tumor control. Using the TC-1 tumor model, 

we showed in a clinically-relevant Ag model that CD40-targeting enhances HPV-E7 specific 

CD8+ T cell responses (Figure 7.5D) suggesting broad applicability of CD40-targeted NP-

vaccines to boost immune responses against other TAA. But possibly also as therapy for 

other diseases caused by microorganisms with known Ag-specificity, for example the 

parasite Plasmodium vivax which causes malaria. 
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In conclusion, significant boosting of effector T cells is achieved by improving the delivery 

of PLGA-(Ag/TLR2+3L) NP to DC via CD40 targeting. DC efficiently internalized the 

vaccine leading to full blown maturation and efficient priming of CD8+ T cells which led 

to prolonged survival of tumor-bearing animals.
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Supporting Information

Supporting Information Figure S7.1  DC and B Cells internalize NP-CD40 and NP-Iso in vitro 

and NP-CD40 are preferentially internalized by CD8+CD11+ DC. 

Splenocytes were were for 1 hr with (200.000 cells/well of a 96-wells plate) with titrated (2-step 

dilutions based on encapsulated OVA-protein in NP) amounts of PLGA-(OVA/TLR2+3L)-αCD40 or 

PLGA-(OVA/TLR2+3L)-IgG2a NP containing OVA-Alexa647. Cells were kept cold after incubation, 

washed 3x with PBS to remove unbound NP. Cells were then stained with antibodies against 

various cell surface molecles and anayzed by flow cytometry DC were designated as CD3-F4/80-

CD11b+CD11c+ (A) or divided into CD8+ or CD8- cells (C). B cells were gated as CD3-CD19+B220+ 

cells (B). NP encapsulated was determined based on the OVA-Alexa647 fluorescence intensity. 

C57BL/6 animals were vaccinated s.c. in the right flank with 10 μg OVA-Alexa647 encapsulated in 

NP and sacrificed 48 hr post-vaccination and the inguinal LN harvested and single-cell suspensions, 

stained with various fluorescent antibodies to distinguish the different immune cell populations 

which are positive for Alexa-647 fluorescence by Flow Cytometry (D).
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Supporting Information Figure S7.2  Combining triplicate adjuvants (TLR2L, TL3L and 

αCD40-mAb) leads to strong synergistic activation of DC compared to singlet or doublet 

adjuvant combinations. 

WT BMDC (100,000 cells/well) were incubated with titrated amounts of various PLGA-NP 

formulations encapsulating TLR2L, TLR3L or αCD40-mAb. Culture supernatants were harvested 

and the amount of IL-12 determined by ELISA (A, B and C). Post-incubation, DC were stained 

with fluorescent antibodies against CD86 (D) and CD40 (E) followed by Flow Cytometry analysis. 

Differences in cytokine production were analyzed applying two way ANOVA with Bonferroni 

posttests, *** = P < 0.001.
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Supporting Information Figure S7.3  CD40-targeted delivery of two TLRL co-encapsulated 

with protein Ag in NP results in superior priming of effector CD8+ T cells. 

C57BL/6 were vaccinated s.c. in the right flank with 10 μg OVA encapsulated in various CD40-

targeted PLGA-(Ag/TLRL) NP formulations. On day 7 day post vaccination, SIINFEKL-loaded CFSEhigh 

OVA-specific target cells and ASNENMETM-loaded CFSElow INFLUENZA-specific target cells (negative 

controls) were injected i.v. in a 1:1 ratio. Mice were sacrificed 18 hr later and the degree of OVA-

specific lysis of the target cells determined by FACS and the % killing of OVA-specific target cells 

quantified as described in M&M. Differences in in vivo cytotoxicity of primed CD8+ T cells were 

analyzed applying the Mann Whitney tests, *** = P < 0.001, ** = P < 0.01 & * = P < 0.05.
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Supporting Information Figure S7.4  Vaccinations with PLGA-(Ag/TLRL)-mAb NP prolong 

survival of tumor challenged animals. 

C57BL/6 were vaccinated on the right flank with 10 μg OVA encapsulated in different PLGA-(Ag/

TLRL)-mAb NP formulations (Table 7.1 manuscript). On day 7 post-vaccination 2 x 105 B16-OVA 

tumor cells were inoculated s.c. on the opposite flank. Tumor growth was followed and animal 

survival in the treatment groups were assessed and compared to untreated animals. Untreated 

animals were all required to be sacrificed because of tumor burden by day 29.   Animal survival per 

group was assessed and differences between the different groups were calculated using Log-rank 

(Mantel-Cox) test. *** = P < 0.0001 for animals treated with the different PLGA-(Ag/TLRL)-mAb NP 

formulations vs untreated. Numbers in red indicate median survival in days.
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Abstract

Here we demonstrate the importance of targeting antigens (Ags) to dendritic cell (DC) 

receptors to achieve an efficient cytotoxic T cell response which was associated with 

a strong activation of DC. Pegylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles 

(NP), encapsulating Ovalbumin (OVA) as a model protein Ag and Toll like receptor (TLR) 

3 and 7 ligands were targeted to distinct DC cell-surface molecules; CD40, a TNF-α 

family receptor, DEC205, a C-type lectin receptor or CD11c, an integrin receptor, by 

means of specific monoclonal antibodies (mAb) coupled to the NP. The efficiency 

of these different targeting strategies to activate DC and elicit a potent CD8+ T cell 

response was studied. PLGA-(Ag/TLR3+7L) NP were more efficiently targeted to and 

internalized by DC in vitro compared to the control non-targeted NP. We observed 

a small but significantly improved internalization of CD40-targeted NP compared 

to DEC-205 or CD11c targeted NP. In contrast to non-targeted NP, all targeted NP 

equally stimulated IL-12 production and expression of co-stimulatory molecules 

by DC, inducing strong proliferation and IFN-y production by T cells in vitro. Upon 

subcutaneous (s.c.) vaccination CD40, DEC-205 and CD11c targeted NP consistently 

showed higher efficacy than non-targeted NP to stimulate CD8+ T cell responses. 

However, all targeted NP vaccines showed equal capacity to prime CD8+ T cells capable 

of target cell lysis in vivo. In conclusion, delivery of NP-vaccines to DC by targeting via 

cell-surface molecules leads to strong enhancement of vaccine potency and induction 

of T cell responses compared to non-specific delivery of NP to DC.
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Introduction

The specificity, strength, and persistence of the immune response have led many research 

teams to focus their efforts on producing vaccines against various immunological diseases. 

It is well described that the immune system has the potential to recognize and eliminate 

cancerous cells 1-3. The primary goal of cancer vaccination is the generation of robust and 

specific T cell responses with the capacity to inhibit tumor growth 4-6 in cancer patients with 

otherwise poor natural tumor specific immunity. In this respect, dendritic cells (DCs) have 

a crucial role as these cells are considered the most efficient and specialized Ag-presenting 

cells (APCs) with the capacity stimulate strong cytotoxic T cell responses by cross-presenting 

tumor-derived protein antigens. Vaccination strategies involving DCs have been studied 

owing to their function in coordinating innate and adaptive immune responses in vivo 7-9. 

and given that DCs are stimuled appropriately they initiate and direct robust antitumor 

immune responses. DC-based therapies have shown some clinical benefits; however their 

use is hampered by laborious vaccine preparations requiring multiple and complex steps 

to adhere to good manufacturing practices (GMP)-regulations and donor variabilities. 

The drawbacks of DC-based therapies can be circumvented by delivery of specific protein 

antigens (Ags) to DCs directly in vivo via specific surface receptors using for example poly-

(lactic-co-glycolic-acid) (PLGA) particulate delivery systems. One of the greatest benefits 

of particle-based Ag delivery systems resides in their capacity to carry polypeptide Ags 

and adjuvants concomitantly to the same APC, which was shown to efficiently induce 

T cell responses 10-13. Furthermore, the targeted delivery of Ags to DC surface receptors 

enhances presentation to T cells 14. However, it is not fully clear, which cell surface molecule 

or receptor expressed by DC should targeted for optimal T cell activation.

To address this issue, three distinct cell-surface receptors will be analyzed for the targeting 

and delivery of NP-based vaccines to DC: CD40, a TNF-α family receptor with known DC 

activating properties after binding of its specific ligand, DEC-205, a C-type lectin receptor, 

and integrin receptor CD11c which does not induce DC activation after binding of their 

respective ligands. In this work, Ovalbumin protein Ag will be encapsulated together 

with the Toll-like Receptor (TLR) ligands (TLRLs) polyinosinic:polycytidylic acid (poly I:C) 

(TLR3) and resiquimod (R848) (TLR7), two potent immunostimulatory agents that mimic 

pathogen-derived material and function by triggering endosomal TLRs. 

NP delivery to DC by targeting the appropriate cell-surface receptor might further enhance 

the activation of DC by TLRLs, either via enhanced internalization of the TLRLs into the 
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endosomes or through triggering of cell-surface molecules with separate downstream 

DC-activating signaling pathways which possibly synergizes with TLR-stimulation. 

Herein a comparative study of the responses induced by targeting these different DC 

receptors is presented. We show here the strong requirement for cell surface molecule 

targeting on DC to enhance internalization of NP by DC and enhance immune activation 

compared to non-targeted controls. However in our model, targeting CD40, DEC-205 or 

CD11c resulted in comparable immune responses. This is highlighted by observing similar 

rates of diffusion of all targeted NP out of the injection site, whereas non-targeted NP were 

significantly slower in this process. In addition, vaccination with the different targeted NP 

led to CD8+ T cell responses with similar proliferative potential, IFN-γ production and in 

vivo cytotoxicity against specific target cells.

Material and methods

Materials and reagents

PLGA (Resomer RG 502 H, lactide:glycolide molar ratio 48:52 to 52:48); MW: 7000-17000 

Da was purchased from Boehringer Ingelheim, Germany. Solvents for peptide synthesis 

and PLGA preparation (dichloromethane (DCM), N,N’-dimethylformamide (DMF) and 

ethyl acetate) were obtained from Sigma-Adrich (The Netherlands). Lipids purchased from 

Avanti Polar Lipids (USA) include 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[succinic acid(polyethylene glycol)2000] (ammonium salt) and 1,2-distearoyl-sn-glycero-

3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (mPEG 

2000 PE). R848 was from Axorra, poly I:C from Sigma and endotoxin free OVA from Hyglos 

GmbH.

Anti-CD40 mAb (clone FGK45, IgG2a) was produced in house after obtaining the hybridoma 

from A. Rolink (Basel Institute for Immunology, Basel, Switzerland) 15. Mouse anti-CD11c 

and the murine anti-DEC205 (CD205) Abs were from BIO-X-CELL (West Lebanon, NH). 

Mouse IgG2a Isotype control (Clone:C1.18.4 Catalog #:BE0085) and mouse IgG2b Isotype 

control (Clone:MPC-11Catalog #:BE0086) were also purchased from Bio X Cell Antibody 

Production and Purification.
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Preparation and characterization of PLGA NP

PLGA-NP coated with Abs was generated using the copolymer PLGA essentially as 

described before 16,17. In brief, 100 mg of PLGA in 2 mL of ethyl acetate containing OVA Ag 

free endotoxin (10 mg) and/or poly I:C (4 mg) and/or R848 (1 mg) were emulsified under 

sonification (Branson, sonofier 250) during 60 seconds. This first emulsion was rapidly 

added to 1 mL of 1% polyvinylalcohol(PVA)/7% ethyl acetate in distillated water during 

15 second. A combination of lipids (DSPE-PEG(2000) succinic acid (8 mg) and mPEG 

2000 PE (8 mg)) were dissolved in chloroform and added to the vial. The chloroform was 

removed by a stream of nitrogen gas. Subsequently, the emulsion was rapidly added 

to the vial containing the lipids and the solution was homogenized during 30 seconds 

using a sonicator. This solution was added to 100 mL of 0.3% PVA 7% of ethyl acetate 

in distillated water and stirred overnight to evaporate ethyl acetate. The PLGA-NP were 

collected by centrifugation at 12000 x g for 10 min, washed four times with distilled water 

and lyophilized. Next, abs was covalently coupled to 10 mg of PLGA NP by activating 

surface carboxyl groups in isotonic 0.1 M MES buffer pH 5.5 containing 1-ethyl-3-[3-

dimethylaminopropyl] carbodiimide hydrochloride (10 equiv.) and N-hydroxysuccinimide 

(10 equiv.) for 1 h. The activated carboxyl-PLGA NP was washed one time with MES buffer 

by centrifugation. Subsequently, abs (αCD40, αCD11c, αDEC-205 and isotype controls 

respectively (200 μg per mg NP) were added and the solution was stirred during 3 h at 

room temperature and later overnight at 4°C. Unbound antibodies were removed by 

centrifugation (12000 x g, during 10 min) and the PLGA NPs-Abs was washed four times 

with PBS. The presence of Abs on the particle surface was determined by Coomassie dye 

protein assay (Table 8.1). 

Dynamic light scattering and zeta-potential measurements

Dynamic light scattering (DLS) measurements were taken on different PLGA-NP using an 

ALV light-scattering instrument equipped with an ALV5000/60X0 Multiple Tau Correlator 

and an Oxxius SLIM-532 150 mW DPSS laser operating at a wavelength of 532 nm. A 

refractive index matching bath of filtered cis-decalin surrounded the cylindrical scattering 

cell, and the temperature was controlled at 21.5 ± 0.3 ºC using a Haake F3-K thermostat. 

In each sample, the g2(τ) auto-correlation function was recorded ten times at a detection 

angle of 90°. For each measurement, the diffusion coefficient (D) was determined by using 

the second-order cumulant, and the corresponding PLGA NP diameter was calculated 
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assuming that the PLGA NP were spherical in shape. Zeta potential measurements were 

performed on PLGA NP using a Malvern ZetaSizer 2000 (UK).

Quantifying encapsulated OVA in NP

OVA-protein encapsulating efficiency was determined after hydrolyzing 5 mg PLGA NP 

in 0.5 mL 0.8 M NaOH overnight at 37°C. The OVA-protein content was then measured 

using Coomassie Plus Protein Assay Reagent (Pierce) according to the manufacturer’s 

protocol. OVA encapsulation efficiency was calculated by dividing the measured amount 

of encapsulated Ag by the theoretical amount assuming all was encapsulated.

Quantifying encapsulated TLR ligands

Biodegradable PLGA NP was hydrolyzed with 0.8 M NaOH overnight at 37°C. The 

encapsulation efficiency of TLR ligands was determined by high-performance liquid 

chromatograph (HPLC). HPLC analysis was performed at room temperature using a 

Shimadzu system (Shimadzu Corporation, Kyoto, Japan) equipped with a RP-C18 symmetry 

column (250 mm x 4.6 mm). The flow rate was fixed at 1 mL/min and detection was obtained 

by UV detection at 220 nm. A linear gradient of 0% to 100% of acetonitrile (0.036% TFA) in 

water containing (0.045% TFA) was used for the separation of R848 and Poly I:C. The peak 

of R848 was well separated from that of the Poly I:C in the established chromatographic 

condition. The retention times of the Poly I:C and R848 were approximately 20 and 26 min, 

respectively. The regression analysis was constructed by plotting the peak–area ratio of 

R848 or Poly I:C versus concentration (ug/mL). The calibration curves were linear within 

the range of 1 ug/mL to 10 ug/mL for R848 and 2.5 ug/mL to 100 ug/mL for Poly I:C. The 

correlation coefficient (R2) were always greater than 0.99, indicating a good linearity.

Animals

WT C57BL/6 mice (CD45.2/Thy1.2; H-2b) were obtained from Charles River Laboratories. 

Albino B6 (B6(Cg)-Tyrc-2J/J), Ly5.1/CD45.1 (C57BL/6 background), transgenic OT-I/Thy1.1/

CD45.2 (specific for the OVA257–264 CTL epitope presented by H2-Kb,) and transgenic OT-II/

Ly5.1/CD45.1 mice (specific for the OVA323–339 Th epitope presented by I-Ab) were bred in the 

specific pathogen-free animal facility of the Leiden University Medical Center. All animal 

experiments were approved by the animal experimental committee of Leiden University. 
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Cell lines

D1 cells, a GM-CSF dependent immature dendritic cell line derived from spleen of WT 

C57BL/6 (H-2b) mice were cultured as described previously 18. Freshly isolated DC (BMDC) 

were cultured from mouse bone marrow (BM) cells by collecting femurs from WT C57BL/6 

mice or CD40 KO mice and cultured as published previously by our group 18. After 10 days 

of culture, large numbers of typical DC were obtained which were at least 90% positive 

for murine DC marker CD11c (data not shown). The weakly immunogenic and highly 

aggressive OVA-transfected B16 tumor cell line (B16-OVA), syngeneic to the C57BL/6 strain, 

was cultured as described 19.

Analysis of in vitro NP-association with DC

WT C57BL/6 or CD40 KO BMDC (100,000/well) were plated into a 96-well flat bottom plate 

and incubated for 1 h at either 4°C (binding analysis) or 37°C (uptake analysis and kinetic 

uptake) with titrated amounts of targeted or non-targeted (PLGA-CW800-Ag/TLR3+7L)-

PEG-mAbs (DC40, DEC-205, CD11c, IgG2b and IgG2a) formulations labeled with the near 

infrared dye (near-IR dyes, CW800). Cells were washed four times to remove residual 

non-bound NP. Binding, uptake and kinetic uptake of PLGA NP by DC was determined 

based on near-IR fluorescence using odyssey scanning (LI-COR) at 800 nm. Data analyses 

were corrected for the number of amount of cells per measurement via co-staining with 

TO-PRO® (Invitrogen) at 700 nm. 

Analysis of in vivo NP-uptake upon vaccination

Animals were vaccinated with the CD11c, DEC-205 and CD40-targeted or non-targeted 

(PLGA-Ag/TLR3+7L) NP formulations containing OVA-Alexa647 (Invitrogen) by subcu-

taneous injection into the right flank. In vivo NP-uptake by cells was analyzed 48 h after 

vaccination by sacrificing the animals and isolating the inguinal lymph nodes and spleens. 

Single cell suspensions were prepared and flow cytometry was used to determine the 

fluorescence intensity of OVA-Alexa647 in F4/80-CD11b+CD11c+ DC as a measure for 

NP-uptake. All fluorescent-mAb used for staining were purchased from BD Pharmingen. 

Flow cytometry analysis was performed using a LSRII flow cytometer (BD Pharmingen) 

and analyzed with FlowJo software (Treestar).
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In vitro MHC class I and II-restricted Ag presentation and T cell priming

DC were incubated for 5 h with the various (PLGA-Ag/TLRL)-mAb formulations at the 

indicated concentrations of OVA-protein Ag encapsulated in NP. After Ag incubation, 

supernatant were harvested and cells were then further co-cultured for 72 h in the presence 

of OT-I and OT-II splenocytes to assess OVA-specific MHC class II and class I-restricted 

proliferation of naïve CD4+ T cells and CD8+ respectively. Cells were pulsed with [3H]-

thymidine for the last 16 hours of culture. Samples were then counted on a TopCountTM 

microplate scintillation counter (Packard Instrument Co., Meridan, CT, USA). Stimulation 

index was used as a measure for proliferation and was calculated as the fold increase of 

[3H]-thymidine CPM over the CPM counts obtained with medium as negative control. 

Analysis of cytokine production by DC or T cells using Enzyme-linked 
Immunosorbent Assay (ELISA)

DC (100,000/well) were plated into a 96-well round bottom plate and incubated for 24 h 

with titrated amounts of Ag. Supernatants were harvested and tested for IL-12 p70 (BD 

OptEIA™ MOUSE IL-12 Cat. Nr 555256), IL-2 (BD OptEIA™ MOUSE IL-2 Cat. Nr 555148), 

following manufacturer’s instructions.

In vivo visualization of NP vaccines

Nanoparticles carrying OVA labeled with the near-infrared fluorescent dye CW800 were 

visualized using the IVIS Spectrum preclinical in vivo imaging system (PerkinElmer). The 

fluorescent signal at the injection site was measured in time by drawing a region of interest 

(ROI) around the injection site and quantifying the total radiant efficiency in the 840 nm 

emission filter, expressed in [p/s]/ [µW/cm2]. The signal was corrected for the background 

signal based on an identical ROI at an irrelevant position of the mouse.

OT-I transfer and analysis of CD8+ T cell expansion

The spleen was taken of an OT-I mouse on a CD90.1 background, mashed on a 70 um cell 

strainer to create a single-cell suspension. Then the CD8-negative cells were depleted by 

the CD8+ enrichment kit from BD. These cells were injected intravenously in the tail vein 

of the mice, in 200 uL PBS.		
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The mice were sacrificed and the inguinal LNs and the spleen were taken and mashed 

on a 70 um cell strainer. The left and right inguinal LNs were pooled, as they are both 

vaccine-draining. The cells were then stained with 7-AAD and with fluorescently labeled 

antibodies against CD8b and CD90.1. The in vivo proliferation of the OT-I cells was analyzed 

by calculating the percentage of CD90.1+ cells within the total CD8b+ population, excluding 

all 7-AAD+ (dead) cells from the analysis.				  

Vaccination and immunization schemes

Animals were vaccinated with the various targeted or non-targeted (PLGA-Ag/TLRL) NP 

formulations by subcutaneous (s.c.) injection into the right flank or in the tail base region. 

Vaccine potency and activation of CD8+ T cells were studied by transferring purified CD8+ 

T cells from OT-I mice 2 days after tail-base vaccinations with different NP formulations. 

Priming of in vivo cytotoxic CD8+ T cells were assessed seven days after vaccination 

in the right-flank by transferring spleen cells prepared from congeneic Ly5.1 C57BL/6 

animals which were pulsed with the SIINFEKL short peptide (OVA8/specific target cells) or 

ASNENMETM short peptide (FLU9/non-specific target cells). The target cells were labeled 

with either 10 μM (OVA) or 0.5 μM (Flu) CFSE. The cells were mixed 1:1 and 10*106 total cells 

were injected intravenously (i.v.) into the vaccinated animals. 18 h post transfer of target 

cells, animals were sacrificed and single cell suspensions were prepared from isolated 

spleens. Injected target cells were distinguished by APC-conjugated rat anti-mouse CD45.1 

mAb (BD pharmingen). In vivo cytotoxicity was determined by flow cytometry using the 

following formula: (1-[(CFSE-peak OVA/CFSE-peak FLU)vaccinated animals x (CFSE-peak OVA/

CFSE-peak FLU)non-vaccinated animals]) x 100%.

Statistical analysis

Graph Pad Prism software version 5 was used for statistical analysis. Two-way Analysis of 

Variance (ANOVA) tests were used to evaluate cytokine production by DC or T cells across 

different concentrations of PLGA-NP containing adjuvants. Two-way ANOVA was also 

used to analyse differences in in vitro binding/uptake studies measuring NIR fluorescence. 

The differences in OVA-Alexa647 fluorescence upon in vivo uptake by immune cells were 

analyzed using the two-tailed unpaired Student t test or Mann Whitney test. Dose-response 

in vitro studies were analyzed using two-way ANOVA with Bonferroni posttests.
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RESULTS

Design, preparation and characterization of PLGA NP 

PLGA NP vaccines were generated using the biodegradable polymer PLGA. Figure 8.1 

shows a schematic diagram of the targeted NP vaccine. The PLGA NP surface was coated 

with a polyethylene glycol (PEG)-lipid layer to minimize non-specific binding to cells other 

than DCs and to allow the incorporation of distinct DC receptors-specific Abs to effectively 

target mouse DCs. The morphology of PLGA NP was determined by transmission electron 

microscopy (TEM). Figure 8.1 shows a representative picture where the PLGA NP were 

uniform in size and showed spherical shape. TEM imaging clearly shows the presence of 

the PEG-lipid layer on the PLGA NP.

The characteristics of targeted PLGA NP containing fluorescent OVA Ag and TLR ligands 

(size distribution, polydispersity index, zeta potential, fluorescent Ag entrapment 

efficiency and amount of Abs conjugated to PLGA NP surface) are shown in Table 8.1. 

The encapsulation efficiency of fluorescent OVA Ag and TLRLs within the PLGA NP 

was determined by fluorescence assay and reverse phase high performance liquid 

chromatography respectively (Table 8.1). Exploiting dynamic light scattering (DLS) we 

found that the size of PLGA NP harboring fluorescent OVA with TLR ligands varied from 

192.1 ± 11.3 nm and 246.0 ± 16.1 nm. It should be noted that the conjugation of Abs to 

Figure 8.1  Schematic diagram of PLGA NP vaccines targeting DC-specific receptor on mouse 

DCs and PLGA NP analysis by TEM. 

NP vaccines were generated carrying fluorescent OVA in combination with the TLR3 ligand poly 

I:C and the TLR7/8 ligand R848. Carriers were coated with a lipid-PEG layer to which distinct Abs 

(αCD40, αDEC-205, αCD11c and isotypes) were covalently attached on the PLGA NP surface. TEM 

image of a representative PLGA preparation. Image analysis revealed the presence of the PEG-lipid 

layer surrounding the NP. (Scale bar, 200 nm; magnification, 25000 x).

200 nm

Fluorescent
(OVA)

Poly I:C

R848

Anti‐mouse CD40, DEC‐205, 
CD11c or isotypes control

DC

DC‐receptor
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the PLGA NP alters the size. The hydrodynamic diameter of the PLGA NP increases when 

the Abs were incorporated on the PLGA NP surface. In addition, the zeta potential of Ab-

coated PLGA NP was considerably less negative than the PLGA NP without Abs (Table 8.1). 

This reduction in the zeta potential reflects the conjugation reaction between the carboxyl 

group of PLGA NP and the amino groups of the Abs, providing additional evidence that 

the Abs were present on the PLGA NP surface. The amount of Abs present on the PLGA NP 

surface was in the range of 29.1 ± 3.1 µg to 37.0 ± 2.5 µg per mg PLGA, as determined by 

a Coomassie-based protein assay (see Table 8.1). All PLGA NP showed a relatively uniform 

size distribution, which was reflected by low polydispersity indexes (below to 0.234).

Analysis of PLGA NP binding and uptake by DC in vitro

DCs from wild type C57BL/6 mice were incubated with different amounts of PLGA NP 

(CW800-Ag/TLR3+7L)- targeted to CD40, DEC205 and CD11c receptors and isotype control 

(non-targeted) respectively at 4°C to determine their binding capacity towards DCs (Figure 

8.2A). Fluorescence intensity was measured by Odyssey scanning as the ratio of PLGA NP 

containing CW800-OVA at 800 nm and the number of cell amount determined by nuclei 

staining at 700 nm. The ratio value indicates the level of binding of PLGA NP to the DC. A 

direct relation between the PLGA NP concentration and binding capacity was observed. 

Targeted PLGA NP showed statistically significant differences with respect to their non-

targeted counterparts, being PLGA NP targeted to CD40 which presented the greatest 

binding capacity to the DC (Figure 8.2A).

Similar behavior was observed when the assay was performed at 37°C to analyze the uptake of 

PLGA NP by DCs (Figure 8.2B). Again, all the targeted PLGA NP showed statistically significant 

differences with respect to non-targeted NP and a direct relation among uptake and NP 

concentration was observed (Figure 8.2B). Additionally, when the kinetics of NP uptake by DC 

were studied over a 24 h period (Supporting Information Figure S8.1) a significant difference 

in the uptake of targeted PLGA NP was observed with respect to non-targeted PLGA NP.

Activation of DCs in vitro by targeted PLGA NP

The expression of CD40 and CD86, co-stimulatory molecules associated with DC-

maturation, was studied by flow cytometry (Figure 8.3A). Almost the whole (> 90%) 

population of DCs was CD40+CD86+ double positive when PLGA NP were targeted to 

CD40, DEC205 and CD11c with respect to the their non-targeted counterparts or soluble 
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Figure 8.2  Targeting PLGA NP to DC facilitates binding and internalization compared to 

non-targeted NP. 

WT C57BL/6 BMDC (100000 cells/well) were incubated with titrated amounts of PLGA-(Ag/

TLR3+7L)-αCD40, PLGA-(Ag/TLR3+7L)-αDEC-205 and PLGA-(Ag/TLR3+7L)-αCD11c NP or isotype 

control (PLGA-(Ag/TLR3+7L)-non-targeted(pool of IgG2a and IgG2b bound PLGA-(Ag/TLR3+7) 

NP NP-formulations for 1 h at 4°C (A) or 37°C (B). Following washing (at least four time) to remove 

unbound NP, cells were co-staining with DNA-binding TO-PRO®, allowing quantification of number 

of cells per well and correlate with PLGA NP-binding or uptake per cells. Fluorescence intensity was 

measured by scanning on the Odyssey (LI-COR) and results shown the ratio of 800/700 nm fluo-

rescence intensities of a duplicate analysis + deviation. Data are from one out of two independent 

experiments performed with two different batches of PLGA NP. Differences in PLGA NP-binding 

and uptake were analyzed applying two-way ANOVA with Bonferroni posttests, * = P < 0.05, ** = 

P < 0.01 and *** = P < 0.0001.
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Figure 8.3  Improved maturation of targeted DC receptors by PLGA-(Ag/TLR3+7L) NP 

compared to PLGA-(Ag/TLR3+7L)-Isotype NP. 

C57BL/6 BMDC (100000 cells/well) were incubated with titrated amounts of PLGA-(Ag/TLR3+7L) 

NP, either targeted or not, for 24 h at 37°C. Culture supernatants were harvested and the amount 

of IL-12 determined by ELISA (A and B). Differences in cytokine production were analyzed applying 

two way ANOVA with Bonferroni posttests, * = P < 0.05, ** = P < 0.01 and *** = P < 0.0001. Data 

shown are mean ± SD from one representative experiment out of 3 independent experiments. (C) 

D1 dendritic cells (C57BL/6 background) were pre-incubated for 1 hr at 37°C with titrated amounts 

of cytochalasin D followed by a 24 h incubation with PLGA-(Ag/TLR3+7L) NP (based on 0.2 μg/

mL encapsulated OVA), either targeted to CD40, DEC-205 and CD11c or non-targeted. Indicated 

amounts of cytochalasin D were maintained during the 24 h incubation with NP. After incubation, 

culture supernatants were harvested and analyzed for IL-12 amounts by ELISA as described in 

Material and methods.
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compounds which resulted in 50% or 30% CD40+CD86+ double positive cells, respectively 

(Figure 8.3A).  

The in vitro production of IL-12 was also determined; DC loaded with PLGA NP targeted to 

the different receptors (namely CD40, DEC205 and CD11c) showed better IL-12 production 

with respect to the controls (Figure 8.3B). However, no activation differences were observed 

between the distinct formulations of targeted PLGA NP assayed for the above-mentioned 

receptors. Furthermore, it seems that an activation threshold exists with respect to the 

PLGA NP content. Thus, no differences were observed at the two highest amounts of NP 

used, indicated by 1 and 0.2 μg/mL of OVA, in contrast with the sharp drop observed when 

< 0.2 μg or lower were tested (Figure 8.3B). A lower production of IL-12 was observed using 

the isotype control NP and the soluble components (OVA, Poly I:C and R848 mixed) at all 

concentrations tested (Figure 8.3B).

Dendritic cells treated with titrated concentrations of Cytochalasin D, an inhibitor of actin 

polymerization which disrupts actin microfilaments associated with phagocytic uptake 

of exogenous material, showed a marked reduction of IL-12 production when cultured in 

the presence of targeted NP (Figure 8.3C). However, treatment with Cytochalasin D did 

not reduce the IL-12 production of DC cultured with non-targeted NP or soluble TLRLs 

(Figure 8.3C) (not shown).

T cell activation induced in vitro by PLGA NP containing Ag and TLR ligands 
targeted to specific DCs receptors

DC treated with the different PLGA-NP vaccines were used as APCs in co-cultures with  

splenocytes from OT-I mice (Figure 8.4A and C) or OT-II mice (Figure 8.4B and D) to 

determine the CD8+ and CD4+ T cell proliferation and IFN-γ production.  

T cell proliferation (expressed as T cell stimulation index) of both CD8+ and CD4+ cells were 

efficiently induced by DCs loaded with targeted NP but not by the non-targeted counterparts 

(Figure 8.4A and B). However, no significant differences in the induction of T cell proliferation 

were observed between DCs loaded with the different targeted NP vaccines. 

Similar observations were made analyzing IFN-γ amounts in culture supernatants after 48 

h of culture (Figure 8.4C and D). Noteworthy was the sharp drop in IFN-γ amounts for all 

targeted formulations when < 0.2 μg/mL of OVA encapsulated in NP was tested (Figure 

8.4C and D).
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Vaccination of C57BL/6 mice with PLGA NP targeted to CD40, DEC-205 or 
CD11c receptors 

Vaccination with non-targeted or CD11c, DEC-205 or CD40 targeted NP (PLGA-Ag/TLR3+7L) 

containing TLR3 and 7 agonists and CW800-fluorescent labeled OVA as Ag were performed 

by subcutaneous injection into the tail base. At the indicated time points over a period 

Figure 8.4  DCs loaded with CD40, DEC-205 or CD11C targeted NP containing OVA and TLR7 

and 3 agonists show improved T cell stimulatorycapacity compared to non-targeted controls. 

BMDC from C57BL/6 were incubated for 5 h at 37°C with titrated amounts of PLGA-(Ag/TLR3+7L) 

NP, either targeted to CD40, DEC-205 and CD11c or non-targeted. After incubation with Ag, 75% 

of the culture medium was removed and splenocytes (20,0000 splenocytes/well in a final volume 

of 200 μL/well) from OT-I (A) or OT-II (B) mice were added. OVA-specific T cell proliferation was 

measured 72 h later by analysis of [3H]-thymidine incorporation which was added the last 16 hours 

of culture. Culture supernatants taken after 48 h of co-culture between Ag-loaded DC and OT-I or 

OT-II splenocytes were analyzed for IFN-γ levels (C and D). Differences compared to non-targeted 

in T cell proliferation and cytokine production at the different conditions were analyzed applying 

two way ANOVA with Bonferroni posttests, * = P < 0.05, ** = P < 0.01 and *** = P < 0.0001. Data 

shown are mean ± SEM of two independent experiments.
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Figure 8.5  Facilitated transport out of the vaccination site results in better priming of CD8+ 

T cells by targeted PLGA NP. 

Albino B6 mice were vaccinated s.c. in the tail-base region with 500 μg of PLGA NP containing 

CW800 fluorescent dye labeled OVA. PLGA NP were targeted to CD40, DEC-205 and CD11c or non-

targeted. At designated time points animals were anesthetized. Live imaging of the vaccination 

site was performed to determine the outflow of particles in time (A) and graphically quantified as 

fluorescence intensity (B). 48 h after vaccination, mice received 1·106 purified OT-I CD8+ T cells. 4 days 
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of 6 days (Figure 8.5A) animals were anesthetized and live imaging of the fluorescence 

intensity at the injection site was carried out to determine the outflow of NP in time. The 

fluorescent signal declined over the first 24 h to 40–60% for all the formulations, whether 

targeted or not. The fluorescent signal progressively decreased during the next five days 

by 70%, except for the non-targeted formulation which remained at 40% (Figure 8.5B). 

To determine the T cell activation induced by the targeted and non-targeted PLGA NP, 48 h 

after vaccination, mice received 1*106 purified OT-I CD8+ T cells. Four days later mice were 

sacrificed and the expansion specific of CD8+ T cells in the draining inguinal lymph nodes 

(Figure 8.5C) and spleens (Figure 8.5D) was quantified by flow cytometry. CD40 targeted 

PLGA NP were most efficient in inducing T cell activation and expansion (Figure 8.5C and D). 

Spleen cells from vaccinated animals were re-stimulated ex vivo with an OVA SIINFEKL-short 

peptide for 72 h and the production of IFN-γ was quantified in the culture supernatant 

(Figure 8.5E). A trend was observed that the CD40 targeted PLGA NP improved cytokine 

production after peptide stimulation compared to DEC205 and CD11c targeted PLGA NP 

but due to the high variability the differences were not statistically different (Figure 8.5E).

Vaccination of wild type mice with CD40, DEC-205 or CD11c-targeted PLGA-
(Ag/TLR3+7L)-NP induces CD8+ T cells with potent cytotoxic capacity in vivo

C57BL/6 mice were vaccinated s.c. in the right flank with 10 μg OVA encapsulated in CD40, 

DEC-205 or CD11c-targeted PLGA-(Ag/TLR3+7L) NP or non-targeted PLGA-(Ag/TLR3+7L) NP 

as a control. On day 7 post vaccination, target cells were labeled differentially with the CFSE 

label, pulsed with SIINFEKL short peptide (OVA8/specific target cells) and negative control 

peptide as described in materials and methods. Cytotoxic activity induced by vaccination 

with PLGA NP targeted to DCs receptors was determined 18 h post transfer of these CFSE-

Ag loaded target cells by flow cytometric analysis of single cell suspensions prepared from 

later after CD8+ T cell transfer mice were sacrificed and the % of OT-I cells from total CD8+ T cells was 

analyzed in the DLN (C) and spleen (D). Titrated amounts of spleen cells from vaccinated animals 

were stimulated with SIINFEKL-peptide for 72 h and the amount of IFN-γ in culture supernatants 

determined by ELISA (E). Differences in fluorescence intensity were determined using student t 

tests (144 h post vaccination). Differences in OT-I CD8+ T cell priming were analyzed applying the 

Mann Whitney test, * = P < 0.05 and cytokine production by the different vaccinated groups were 

compared using two-way ANOVA with Bonferonni post-test, * = P < 0.05. Data shown are from 

one experiment using 2–4 mice per group.
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isolated spleens of sensitized animals. Injected target cells were distinguished from host 

spleen cells by the congenic marker CD45.1. Flow cytometric analyses showed the nearly 

complete disappearance of the target cell population (Figure 8.6A), while this population 

remains present in the animals vaccinated with the non-targeted PLGA NP and still more 

clearly in non-vaccinated animals (Figure 8.6A). Vaccination with PLGA NP targeted to CD40, 

DEC205 or CD11c induced efficient in vivo cytotoxicity, about 80% specific killing, compared 

to 40% induced by non-targeted PLGA NP loaded with the same Ag and adjuvants, or no 

killing by the control non-vaccinated animals (Figure 8.6B). 

Figure 8.6  Vaccinations with PLGA-(Ag/TLR3+7L)-αCD40, DEC205 or CD11c NP induce 

better CD8+ T cells with potent in vivo cytotoxic capacity compared to PLGA-(Ag/TLR3+7L)-

non-targeted NP. 

C57BL/6 were vaccinated s.c. in the right flank with 10 μg OVA encapsulated in CD40, DEC-205 and 

CD11c- targeted PLGA-(Ag/TLR3+7L) NP or non-targeted PLGA-(Ag/TLR3+7L)-non-targeted (pull of 

IgG2a and IgG2b) control NP. On day 7 day post vaccination, SIINFEKL-loaded CFSEhigh OVA-specific 

target cells and ASNENMETM-loaded CFSElow INFLUENZA-specific target cells (negative controls) 

were injected i.v. in a 1:1 ratio. Mice were sacrificed 18 h later and the degree of OVA-specific lysis 

of the target cells determined by FACS (A) and the % killing of OVA-specific target cells quantified 

as described in M&M. In vivo cytotoxicity was determined using the following formula: (1-[(CFSE-

peak OVA/CFSE-peak FLU)vaccinated animals x (CFSE-peak OVA/CFSE-peak FLU)non-vaccinated animals]) x 100% 

(B). Data shown are from one experiment consisting of 3 mice per group and differences in in vivo 

cytotoxicity of primed CD8+ T cells were analyzed applying an unpaired student t-test, ** = P < 

0.01 comparing targeted NP versus non-targeted NP.
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Discussion

Despite the large amount of successful protective vaccines against several infectious 

agents, efforts to develop effective therapeutic vaccines against cancer have been largely 

disappointing. However, effector mechanisms to eradicate cancer cells and pathogens 

are present in the immune system as has been demonstrated by the multiple examples 

of tumor immune surveillance 2,3. Therefore, cancer vaccines should potentially be able 

to achieve similar success as vaccines against infectious agents 20. However, tumors are 

weakly immunogenic, and therefore cancer vaccines must trigger the release of danger 

signals to potently activate the immune system against the tumor-associated Ags. This 

could be achieved by incorporating TLRLs in the vaccine formulation, which induce a strong 

immune response 21. In our work we have introduced Poly I:C and R848, synthetic agonists 

of the TLR 3 and 7 respectively, in the PLGA NP produced in the vaccine development. 

Furthermore, unless DCs are cultured and loaded in vitro, a technically complex and costly 

process, cancer vaccines could be dispersed and/or degraded in body fluids (reduced half-

life) and even activate inappropriate cells when administered in soluble form via injections. 

Therefore, in order to protect Ags from degradation and to ensure efficient delivery of the 

Ag to DC, we encapsulated the model protein Ag in NP coated with polyethylene glycol 

(PEG), which helps to avoid non-specific interactions 22, and couple mAb targeted to CD40, 

DEC-205 or CD11c receptors expressed on the surface of DCs. Binding of these receptors can 

facilitate internalization, activation of signalling pathways which induce the maturation of 

DC and finally increase Ag presentation and enhance the induction of T cell responses 23-25.  

The mechanism of Ag internalization by DC of targeted NP was demonstrated by the strong 

inhibition induced by Cytochalasin D, a potent inhibitor of actin polymerization which 

disrupts actin microfilaments associated with phagocytosis. Therefore, internalization of NP 

via CD40, DEC-205 and to a lesser extent CD11c requires actin polymerization to translocate 

NP towards antigen processing compartments to produce peptides for presentation by 

MHC class I and MHC class II. Indeed, uptake of targeted NP resulted in very efficient CD8+ 

and CD4+ T cell priming.

Targeting strategies to improve vaccine efficacy and to achieve increased delivery to DC 

have been tested by passive 26,27 and active targeting 14. It was shown that DC targeting 

endocytic lectin receptors, such as DC-SIGN and DEC-205 with mAb coupled to PLGA NP 

induces strong CD8+ T cell responses 28,29, which demonstrated that exogenous Ags taken 

up by these receptors reach the cytoplasm by endosomal escape and are then presented to 
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T cells via MHC I, a process known as cross-presentation 30. Endocytosis via CD40 has been 

shown to facilitate MHC class I cross-presentation of exogenous Ag by routing internalized 

Ag into early endosomal compartments 31 whereas DEC-205 targeted Ag are routed to 

late endosomes, compartments associated with sub-optimal MHC class I presentation, 

which was not confirmed in our work. CD11c is a receptor predominantly expressed 

on dendritic cells (DC), to which Ag targeting has been shown to induce an efficient Ag 

processing and presentation on MHC classes I and II products, as well as robust CD4+ and 

CD8+ T cell immunity 32.

In this work, although CD40 showed a trend at performing slightly better in facilitating NP 

uptake in vitro, no significant differences were observed in vivo between the immunological 

responses induced by the PLGA NP targeted to different receptors (CD40, DEC-205 or 

CD11c). This suggests that the most important parameter in NP vaccine targeting is to 

facilitate and optimize endocytic capacity of the NP by DC. The inclusion of potent TLRLs 

will subsequently lead to robust T cell responses, irrespective of the DC surface molecule 

targeted. 

Therefore, the T cell priming capacity of the DC-targeted NP could be more related to the 

presence of TLR3 and 7 agonists than to the activation of targeted receptors itself, or at 

most they are additive. Possibly the activation by TLR ligands could be substantially higher 

than those induced by the receptors targeted by the PLGA NP, therefore hiding the effect 

of the latter. However, targeting seems essential, since non-targeted PLGA NP containing 

the TLR3 and 7 agonists did not show strong activation capacity both in vitro and in vivo. 

In vivo assays show that the PLGA NP dispersion is much higher in non-targeted NP, or 

at least targeting PLGA NP to phagocytic receptors seems to be important for uptake by 

DCs (Figure 8.5 and 6). Furthermore, the capacity to induce specific in vivo killing shows 

significant differences between targeted and non-targeted NP in vivo (Figure 8.6B) 

indicating that targeted NP can prime specific cytotoxic CD8+ T cells from the endogenous 

naïve T cell repertoire.

To investigate the influence of the target specificity of PLGA NP in the whole body 

biodistribution in vivo, NP were loaded with Alexa-647-OVA (fluorescent marker). 48 h 

post-injection mice were sacrificed and the main organs were harvested. PLGA NP can be 

quickly cleared from the blood by the reticulo-endothelial system or can remain in organs, 

such as the liver, lung and spleen, for prolonged periods of time. Design considerations, 

such as size, shape, surface coating and dosing, can be manipulated to prolong blood 
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circulation and enhance treatment efficacy, but nonspecific distribution has thus far 

been unavoidable. It has been described that NP remained detectable in the brain, heart, 

kidney, liver, lungs, and spleen after 7 days 33-35. In our work, no obvious differences in 

tissue biodistribution of PLGA NP targeted to the CD11c, DEC-205 and CD40 receptors, or 

non-targeted (isotype control) were observed after 48 h (Supporting Information Figure 

S8.2). This suggests that, despite the high numbers of PLGA NP draining freely throughout 

the body and being available for uptake in the major organs, PLGA NP are more efficiently 

scavenged by DCs when carrying receptor-specific Abs. In draining lymph nodes and other 

lymphoid organs small differences in fluorescence intensity in favor of specific targeted 

NP were observed (Supporting Information Figure S8.3).

In conclusion, we present here a study using PLGA NP-vaccines containing an Ag model 

and TLR agonist, as adjuvants, coated with mAb targeted to specific receptors on DCs. 

Targeted NP have shown to be a potent system to induce strong immune responses, 

both CD4 and CD8 in vitro and in vivo. Due to the flexibility of the PLGA to encapsulate 

multiple polypeptide Ags, this is a versatile system to develop NP-vaccines tailored to 

different types of tumors.
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Supporting Information

Analysis of PLGA NP kinetic uptake by DC in vitro

DCs from wild type C57BL/6 mice were incubated with different PLGA NP (CW800-Ag/

TLR3+7L)- targeted to CD40, DEC205 and CD11c receptors and isotype control (non-targeted) 

respectively at 37ºC to determine their kinetic of internalization capacity towards DCs 

(Supporting Information Figure S8.1). Thereby, the kinetics uptake was studied during 24 h. 

Fluorescence intensity was measured by odyssey scanning by the ratio of PLGA NP containing 

CW800-OVA at 800 nm and the number of cell amount determined by nuclei staining at 700 

nm. The ratio value indicates the level of uptake of PLGA NP to DC. A direct relation between 

the PLGA NP concentration and uptake capacity was observed. Targeted PLGA NP showed 

statistically significant differences with respect to their non-targeted counterparts. 

Supporting Information Figure S8.1  Kinetic uptake of targeting NP to DC improves 

internalization compared to non-targeted NP. 

WT C57BL/6 BMDC (100000 cells/well) were incubated with fixed amounts of 5 µg/mL PLGA-(Ag/

TLR3+7L)-αCD40, PLGA-(Ag/TLR3+7L)-αDEC-205 and PLGA-(Ag/TLR3+7L)-αCD11c NP or isotype 

control (PLGA-(Ag/TLR3+7L)-IgG2a and PLGA-(Ag/TLR3+7L)-IgG2b) NP-formulations at distinct time 

points at 37°C. Following washing for the removal of unbound PLGA NP cells were co-stained with 

DNA-binding TO-PRO®, allowing quantification of number of cells per well and correlation with 

PLGA NP-binding or uptake per cells. Fluorescence intensity was measured by scanning on the 

Odyssey (Li-Cor) and results show the ratio of 800/700 nm fluorescence intensities of a duplicate 

analysis + deviation. Data are from one out of two independent experiments performed with two 

different batches of PLGA NP.
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Biodistribution of targeted and non-targeted PLGA NP

No obvious differences in tissue biodistribution of PLGA NPs targeted to the CD11c, DEC-205 

and CD40 receptors, or non-targeted (isotype control) were observed after 48 h (Supporting 

Information Figure S8.2). This suggests that, despite the fact that high numbers of PLGA NPs 

drain freely throughout the body and are available for uptake, PLGA NP are more efficiently 

scavenged by DCs when carrying receptor-specific Abs. Although PLGA NP were mainly 

found in major organs of the body as previously described, in draining lymph nodes (DLN) 

and other lymphoid organs differences in fluorescence intensity in favor of specific targeted 

NP were observed.

Supporting Information Figure S8.2  Biodistribution of targeting and non-targeted PLGA NP. 

Mice were vaccinated s.c. with 10 µg of Alexa-647-OVA. Mice were sacrificed 48 h post-injection 

and the main organs were harvested. Tissue biodistribution profile of targeted and non-targeted 

PLGA NPs harboring Alexa-647-OVA was determined. Relative fluorescent values were determined 

for each group depicted as mean ± SEM (D).

      Biodistribution of targeted and non-targeted PLGA NP to DC after 48 hrs sc
injection

DLN Not DLN Spleen Liver Kidney Lung
0

2.0107

4.0107

6.0107

8.0107

2.0108

4.0108

6.0108

8.0108

1.0109

PLGA NP-CD11C
PLGA NP-DEC-205
PLGA NP-CD40

PLGA NP-IgG2b
PLGA NP-IgG2a

To
ta

l i
nt

en
si

ty
 a

t 7
00

 n
m

 



241

Targeting nanoparticles to dendritic cells strongly enhances immune responses

8

Better in vivo DC-uptake of targeted PLGA-(Ag/TLR3+7L) NP compared to 
non-targeted PLGA NP

This suggests that high numbers of PLGA NPs are specifically taken up by DCs in the spleen. 

Therefore, PLGA NP are more efficiently scavenged by DCs when carrying receptor-specific 

Abs (Supporting Information Figure S8.3).

Supporting Information Figure S8.3  Improved in vivo DC-uptake by targeted PLGA-(Ag/

TLR3+7L) NP compared to isotype control and non-targeted PLGA NP. 

C57BL/6 animals were vaccinated s.c. in the right flank with 10 μg OVA-Alexa647 encapsulated in 

PLGA-(Ag/TLR3+7L)-αCD40, PLGA-(Ag/TLR3+7L)-αDEC-205 or PLGA-(Ag/TLR3+7L)-αCD11c NP, as 

well as with non-targeted PLGA-(Ag/TLR3+7L)-IgG2a and PLGA-(Ag/TLR3+7L)-IgG2b NP. Animals 

were sacrificed 48 hr post-vaccination and the Spleen harvested and single-cell suspensions 

prepared. Analysis by flow cytometry of the different immune cell populations which were positive 

for Alexa-647 fluorescence was performed by staining cells with various fluorescent antibodies. 

Results shown are from one experiment using 3 mice per group.
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In this thesis we described our studies aimed at optimizing the efficacy of synthetic 

long peptide (SLP) vaccines via the encapsulation in Poly-(lactic-co-glycolic acid) (PLGA) 

particles. Encapsulation in biodegradable PLGA particles could serve to improve the 

delivery of the SLP to professional antigen presenting cells (APC), allow better control of 

the pharmacokinetics and biodistribution of the vaccine and finally, reduce the therapy 

related side effects associated with the current (pre-)clinical procedure of administering 

SLP vaccines delivery emulsified in water-in-oil preparations. 

Immunotherapy based on SLP-vaccines has resulted in strong tumor specific immune 

response 1-4 and importantly, improved clinical benefit in patients with pre-malignant 

lesions 5. 

SLPs used as vaccines are overlapping synthetic peptides of 15–35 amino acids; thus 

considerably longer than the minimal CTL-epitopes of 8–9 amino acids. SLP vaccines will 

1) cover the entire sequence of the native TAA-encoding protein to which an immune 

response is targeted. SLPs 2) require internalization and processing by DCs for optimal 

presentation in MHC class I and class II molecules 3,6,7. 3) SLP vaccines makes the necessity 

for HLA-typing of cancer patients obsolete because internalization of overlapping peptides 

by APCs allows natural epitope processing and selection in vivo based on the patient’s 

own HLA-profile. APC-specific processing of SLPs will 4) facilitate simultaneous priming of 

T cells against multiple epitopes, both dominant and sub-dominant. Thus vaccinations will 

result in a broad T-cell response which decreases the chance of tumor escape related to 

loss of expression of immuno-dominant TAA-epitope 8-11. With each novel TAA discovered/

described, SLP-vaccines targeting this TAA can be manufactured in advance, in large 

quantities and under the required strict GMP-quality standards making SLP-vaccines a 

clinically and pharmaceutically attractive therapeutic compound.  

One important drawback associated with SLP-vaccines is their current form of 

administration in montanide, a clinical grade water-in-oil (w/o) emulsion. Montanide and 

Incomplete Freunds Adjuvant (IFA), the emulsion used for pre-clinical studies, consist of 

mineral oils with mannide monooleate as a surfactant emulsified with saline. 

Aside from its slow release characteristics and protection of the antigen for degradation, 

w/o emulsions induce local inflammation and attraction of immune cells to the site of 

injection 12. Montanide however causes significant side-effects at the site of injection 5,13.  

Overwijk et al. showed that short peptide vaccines administered in w/o emulsions lead 

to poor tumor bed infiltration by activated CD8+ T cells which was a consequence of 
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the primed CD8+ T cells being “trapped” in the high inflammatory environment at the 

injection site containing the water-in-oil emulsion Ag depot 14. Interestingly, substituting 

short peptide vaccines with SLP-vaccines abrogated this negative effect and resulted in 

superior tumor control.

The aim of this Ph.D project was to device an alternative method of delivery which 

overcomes the drawbacks associated with the use of Montanide. For this purpose we 

explored the use of PLGA (nano)particles (NP) as a delivery vehicle for SLP. Several important 

aspects of SLP encapsulated in PLGA NP (PLGA-SLP) were assessed in this thesis; from the 

pharmaceutical formulation to the immunological characterization of different PLGA-SLP 

preparations.

Together, the data presented in this thesis show that PLGA-NP mediated delivery of SLP 

is a very efficient method to target, load and mature Dendritic cells (DCs) as immune 

stimulatory compounds can be co-encapsulated with the vaccine Ag.

Although the results of these studies have been discussed in detail in the separate chapters 

preceding this general discussion, some remaining points will be discussed below including 

the applicability of PLGA particles vaccines to improve SLP-based immunotherapy and 

the tasks which need to be overcome to successfully translate this promising therapeutic 

application to the clinic.

Efficient internalization and processing of vaccine Ag by DCs is an important aspect to 

consider when developing peptide vaccines for therapy against cancers. The use of synthetic 

long peptide (SLP) vaccines based on the elongation of the N- and/or C-terminus 15,16  

of the minimal cytotoxic CD8+ T cell or CD4+ T cell peptide epitopes were shown by our 

group 5,17-20 and others 2,21-23 to elicit, robust and sustained in vivo T cell responses with 

the capacity to control the growth of experimental tumors and eradicate pre-malignant 

lesions of the vulva. In patients with late-stage cancers, SLP-vaccines in the majority of 

cases failed to induce durable clinical responses even though the administration of the 

vaccines strongly enhanced specific immunity to tumor associated antigens (TAA) 24. 

SLP-vaccines have also been studied in combinatorial approaches with DNA-vaccines as a 

therapy against AIDS 25,26. These studies have led to encouraging observations; the vaccines 

elicited high frequencies of simian immunodeficiency virus-specific IFN-γ-positive T cells 

which could afford partial protection against a subsequent viral challenge.    

To summarize, the use of SLP-vaccines leads to the potent CD4+ and CD8+ T cell responses 

with broad a cytokine profile and anti-tumor effector functions. Importantly, administering 
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cocktails of overlapping SLP covering the whole sequence of the native protein more 

effectively boosts the immune system when compared to vaccination with the native 

protein 27. Nevertheless, owing to the low clinical benefit in cancer patients, it is clear that 

therapies based on SLP-vaccines require optimization. To proceed in this process, it is vital 

to understand how DCs “handle” long peptide Ag. 

In chapter 2 we showed the superior capacity of both mouse and human DCs to 

cross-present long peptides in MHC class I molecules in contrast to whole protein Ag. 

Interestingly, we were able to detect SLP at early time-points outside of endo-lysosomes 

implying that SLP internalized from the extracellular environment are translocated to the 

cytosol very fast once inside the DC. We were puzzled by this observation and considered 

the possibility that the long peptides directly access the cytosol via passive diffusion 

through the cell membrane. Others have shown that facilitated Ag-delivery into the 

cytosol endows even non-professional APC with MHC class I cross-presentation capacity 28  

which would suggest that all immune cells can potentially cross-present SLP. However, 

internalization via passive diffusion of SLP into the cytosol through the cell membrane is 

unlikely; in vitro and ex vivo MHC class I Ag cross-presentation was specifically detected only 

when DCs were used as APC (chapter 2, Figure 2.5) and not by other immune cells, such as 

B cells. The transport of SLP into the cytosol was recently described by Menager et al. who 

using human DCs established a role for the ER-associated degradation machinery (ERAD)-

related protein p97/VCP in the transport of SLP from early endosomes to the cytosol 29.  

We also studied the method of SLP internalization using murine and human DCs. But the 

uptake and MHC class I cross-presentation of SLP(-OVA24aa) by DC cultured in the presence 

of Filipin (caveolae-dependent endocytosis), dimethyl amiloride (macropinocytosis), 

monodansylcadavanine (inhibitor of clathrin-mediated endocytosis) or cytochalasin D 

(inhibitor of actin polymerization dependent phagocytosis) were inconclusive. Another 

group, using cytochalasin B, another inhibitor of receptor-mediated endocytosis, showed, 

that treatment of human DCs during SLP-Ag loading decreased, but not fully blocked, 

CD8+ T cell activation 30 demonstrating that DC internalize long peptides at least partially 

via a yet unknown endocytic receptor. 

Taken the data described in chapter 4 into consideration one can conclude that MHC class 

I Ag cross-presentation by DC of long peptides or protein Ag is influenced by the capacity 

to rapidly internalize large amounts of Ag and the localization of the Ag inside the cell 

post-internalization. Soluble SLP (sSLP) are taken up much faster by DC than whole protein 

resulting in better MHC class I and II Ag presentation. Soluble proteins in contrast are 
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internalized slower and collect inside endolysosomal compartments where it poorly gains 

entry in the cytosol resulting in poor MHC class I and II presentation. The poor translocation 

of proteins into the cytosol is likely related to the much larger size compared to SLP (43 

kD vs 2.4 kD). Size of an Ag critically determines the extent of transport to the cytosol 31. 

Despite of the high amounts of sSLP internalized in the first hours, peptides were barely 

detectable inside the cytosol after 24 hr suggesting near complete degradation by ubiquitin 

proteasome system (UPS) 32,33. Interestingly, encapsulation of SLP in PLGA-NP seems to 

re-route or, alternatively, store the SLP inside the endo-lysosomal compartments where 

it can be detected up to the 72 hr post Ag loading. This observation suggests that the Ag 

present inside endo-lysosomal compartments is protected from the rapid degradation 

by the UPS as occurs with sSLP. This mechanism of sustained antigen presence in storage 

compartments has also been observed using immunecomplexed protein and TLRL-SLP 

conjugates 34.

The prolonged CD8+ T cell activation observed using PLGA-SLP points to the possibility 

that the internalized NP gradually releases the encapsulated SLP inside the endo-lysosomal 

compartments, via hydrolysis of the polymer. The released SLP is then transported into 

the cytosol which results in the continuous proteasome processing and sustained MHC 

class I Ag presentation. The enhanced MHC class I presentation observed using PLGA-SLP 

compared to sSLP is most probably related to the sheer higher amounts of Ag taken up 

through phagocytosis of NP compared to sSLP. DCs loaded with PLGA-SLP showed modest 

capacity to sustain in vivo CD8+ T cell responses. Co-encapsulation of Pam3CSK4, a TLR2 

agonist, significantly enhances the capacity for DCs to prolong MHC class I Ag presentation 

and CD8+ T cell activation in vivo. TLR stimulation promotes Ag processing and increases 

the half-life of MHC class I molecules on the cell surface 35-37 which together with the 

prolonged presence of PLGA-SLP/TLR2L inside endolysomal compartments can account 

for the sustained CD8+ T cell activation we described. 

For successful implementation of PLGA-NP as a delivery vehicle for SLP-vaccines in the clinic, 

the pharmaceutical formulation should be straightforward, reproducible and meet GMP 

quality requirements and regulations. Of importance, PLGA-NP should be applicable to 

encapsulate cocktails of various SLP with different physicochemical properties, for example 

the overlapping long peptides encoding the HPV-16 oncoproteins. Our initial attempts 

to successfully encapsulate the model Ag, SLP-OVA24aa using the well-known “double 

emulsion method with solvent evaporation” technique commonly used to encapsulate 
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proteins or short peptides 38-42 in PLGA-particles required considerable modifications, as 

we reported in chapter 3. Several formulation parameters were modified, especially the 

inner and outer emulsion compositions which led to successful encapsulation of SLP-

OVA24aa. One important advantage of PLGA-particles is the capacity to control the release 

kinetics of the encapsulated Ag from the particles upon s.c. administration. Ag dosing 

over time in vivo is crucial as it determines the breadth of an immune response 43. With 

our novel PLGA-NP formulation method we were able to encapsulate SLP-OVA24aa with 

up to 40% encapsulation efficiency, exhibiting minimal burst release, and a total peptide 

release of circa 30% over the first 24 hr. We applied the novel formulation method to 

encapsulate SLP-OVA17aa and two versions of gp100-SLP encoding for an immunodominant 

CTL-epitope present in this melanoma associated differentiation Ag 44. Thus different SLP 

can be successfully encapsulated inside PLGA-NP using our novel “double emulsion and 

evaporation” formulation technique. This PLGA-NP formulation wil allow us to encapsulate 

the overlapping SLP encoding the HPV-E6 or HPV-E7 proteins inside PLGA-NPs and test 

these vaccines in pre-clinical models or on patient peripheral blood samples. 

The use of particulate vaccine delivery systems is considered a promising method to 

achieve the desired robust and potent T cell responses that is sometimes lacking when 

administering vaccines in soluble form emulsified in Montanide or mixed in PBS. 

The unexpected challenges at the start of the Ph.D project associated with the poor 

encapsulation of SLP-OVA24aa and SLP-OVA8aa initiated a parallel project pursuing the 

use of liposome based vaccine delivery strategies, which were argued to offer facilitated 

incorporation of SLPs compared to PLGA-NP delivery systems. Liposomes encapsulating 

the SLP-MUC-125aa and MPLA-4, L-BLP25, have led to significant survival benefits in stage 

III non-small cell lung cancer patients compared to the patients receiving the standard 

treatment alone 45. Despite these promising results, the authors describe that liposomal 

formulation includes several disadvantages that possibly limit its application in large 

clinical settings. Most of these disadvantages are related to the pharmaceutical formulation 

of the liposomes; such as laborious and expensive procedures, difficulties to scale-up 

the formulation process and production of sterile products. In contrast to liposomes, 

the formulation process of PLGA-NPs and scaling-up are easier and cost-effective 46. Of 

importance, the use of PLGA co-polymers provides extra advantages over liposomes 

related to the ability to manipulate several physicochemical properties of the particle 

carrier and control the degradation rate and Ag release kinetics as discussed before in 

more detail in chapter 3. 
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Regarding the encapsulation of protein, it was convincingly shown that PLGA-particles 

are superior carriers to induce T cell responses with the capacity to control a bacterial 

challenge. In this study, PLGA-NP and Liposome-NP induced similar antibody titers, 

however liposomes failed to trigger a robust T cell response, whereas PLGA-particles 

showed potent capacity to induce IFN-γ producing, memory phenotype, CD8+ T cells 35-37,47.  

However, results obtained with protein Ag do not necessarily predicts results using 

long peptides as vaccine-Ag. Therefore, the ongoing studies with liposomes in our 

group, will address which particulate carrier is the best suited for the in vivo delivery of  

SLP-vaccines.

In chapter 6, we studied the role of particle size to induce an immune response. Our results 

point towards the use of NPs instead of microparticles (MPs) for the purpose of cancer 

immunotherapy as the first induced much better CD8+ T cell responses. Other studies have 

led to similar conclusions 48,49. Taking into consideration particle size, Ag release kinetics, 

adjuvanticity and in vivo uptake we can conclude that a robust CD8+ T cell response 

is obtained by using nanoparticles, but not microparticles, co-encapsulating potent 

immunostimulatory agents (chapter 4, 5 and 8). The formulated particles should have a 

low burst release of the encapsulated Ag for optimal MHC class I presentation (chapter 

3), to allow uptake of the particle co-encapsulating Ag and TLRL 50 by APC. Succeeding 

the initial phase when the PLGA-particles comes in contact with an aqueous environment, 

the release of the encapsulated Ag should be gradual, in other words “slow” rather than 

“fast”, to induce an humoral response and most likely also efficient CD8+ T cell responses 47.  

Interestingly, we observed better CD8+ T cells responses using PLGA-NP in comparison 

to IFA as a vaccine delivery system. Thus, our data and other studies 47,51 support the 

application of PLGA-NP delivery systems for vaccination purposes. Biodegradable NPs are 

a suitable replacement for w/o emulsions or Aluminium based adjuvants for the delivery 

of protein vaccines for cancer immunotherapy.

In chapter 7 and chapter 8 we explored novel targeting strategies to enhance the immune 

activating potency of PLGA-NP based vaccines. CD40, DEC-205 and CD11c molecules, 

which are highly expressed on the cell surface of DCs were the receptors of choice for 

these studies. Given the essential role that CD40 molecules have in DC activation and 

subsequent T cell priming, we hypothesized that delivering PLGA-NP encapsulated Ag via 

CD40 would convey two complementary effects; 1) enhance DC activation and 2) improve 

Ag uptake, MHC class I and II presentation and subsequent T cell priming. 



Chapter 9

250

Ag delivery via the targeting of the C-type lectin DEC-205 has been successfully used by 

many others and is therefore an established method to enhance T cell responses with 

tumor controlling properties 52-54. Interestingly, DEC-205 has also been used a targeting 

molecule with the aim to facilitate the induction of immune tolerance, through the priming 

of Ag-specific Tregs 36,37. DEC-205 targeting promotes vaccine delivery to CD8α+ secondary 

lymphoid organ resident DCs and CD103+ migratory skin-resident DC. Especially the latter 

has been associated with strong induction of Ag-specific immune tolerization 55-57. CD11c, 

an integrin, likewise has been studied in the murine system as a method to increase delivery 

of several types of vaccines to DC to potentiate tumor immunity. Indeed, targeting DC via 

CD11c significantly enhances anti-tumor immune responses 58,59 or anti-viral immunity 60. 

We compared the efficacy to prime CD8+ T cells injecting particles containing TLR7 and 

TLR8 and protein Ag targeted to these three receptors vs the control formulation without 

a targeting mAb. Our results point to the importance of targeting to achieve efficient 

priming of T cell responses as the non-targeted NPs poorly triggered CD8+ T cell activation. 

Interestingly, we did not detect significant differences to stimulate OT-I CD8+ T cells or 

induce in vivo cytotoxicity by endogenous T cells using the three targeting strategies. 

As we discussed in chapter 8, it is possible that the efficacy of cancer immunotherapy based 

on PLGA-NPs is not critically dependent on the DC subtype targeted as has been shown 

for soluble Ag 61 as long as the vaccine is efficiently transferred to the early endosomes 62,63. 

Indeed, the necessity to target DC has been questioned recently by Figdor and colleagues 64. 

One study analysing the requirement for DC to prime cytotoxic T cells showed conclusively 

that CD8+ T cells could be primed after vaccination of PLGA-particles in the absence of 

CD8α+ and CD103+ DCs implying the in vivo other APC, considered to be inferior cross-

presenting cells are playing a role in the priming of vaccine Ag-specific CD8+ T cells. In fact, 

the same study pointed to the priming of CD8+ T cells by MΦ and CD8α- DCs. However our 

data in chapter 7 show that upon injection, CD40-targeted PLGA-NP preferably bound 

CD11c+CD8α+ DCs but poorly bound MΦ or CD8α- DCs.

In conclusion, targeting PLGA-NP to DC is essential to stimulate a robust CD8+ T cell 

mediated response. But the critical importance of targeting only one DC subtype based on 

the specific expression of a specific cell-surface receptor, for optimal immune activation, 

remains to be studied and clarified. 

For the clinical application, the results described in this thesis present sufficient evidence 

for the use of PLGA-NP as a vaccine delivery system to target DC and being an alternative 
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for montanide as clinical vaccine carrier. However, the formulation, reproducibility and 

GMP-production of large amounts of different PLGA-NP vaccines might be a hurdle as 

multi-compound vaccines will probably require fine-tuning and modification of the original 

double-emulsion-method-with-solvent-evaporation technique to successfully encapsulate 

the desired SLP and/or adjuvant which each having unique physicochemical properties. 

Of importance, approval of multi-compound vaccines for clinical use will require that each 

individual compound encapsulated in the NP is tested first for toxicity and potentially also 

for therapeutic benefit.  

From immunological perspective, however, we have strong evidence that encapsulation 

of SLP together with a potent immunostimulatory agent in PLGA-NP is a suitable strategy 

to optimize SLP-vaccines and enhance the clinical efficacy in cancer patients.

Future perspectives on the use of SLP-vaccines and particulate-based de-
livery methods for their delivery

The potency of SLP-vaccines to boost TAA-specific CD4+ and CD8+ T cell responses is clear 

as shown by our group and others. But despite the significant induction of tumor-specific 

immunity post-vaccination with SLP, objective and durable clinical responses have been 

rare. 

Tumor immunity is complex phenomena consisting of pro-inflammatory anti-tumor effector 

mechanisms and, arguably of even more significance, anti-inflammatory, suppressive 

mechanisms that unfortunately turns out very hard to overcome in cancer patients. In 

this thesis we have described our studies how to enhance the pro-inflammatory milieu 

anti-tumor effector mechanisms by co-encapsulating long peptide Ag, or alternatively 

protein Ag, in PLGA-NP. Our results show the potency of PLGA-NP-vaccines to prime CD8+ 

T cells which could control tumor growth. 

Bearing in mind the several promising cancer vaccines formulated in our research groups 

but also the multitude of other vaccines undergoing (pre-)clinical testing or already 

successfully tested in phase I and/or II trials, I believe that the main obstacle for the use 

of therapeutic (SLP) cancer vaccines will not lie with the incapacity to prime strong T 

cell responses. Instead, immunologists and clinicians should implement combinatorial 

treatment approaches to maintain the potency of these vaccine-induced T cell responses. 

It is well established that T cell exhaustion and the induction of tumor-induced immune-

suppression have a detrimental effect on the clinical efficacy of cancer vaccines. 
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Anti-CTLA-4, anti-PD1 and anti-PDL1 mAbs are immune checkpoint blockade inhibitors 

which are emerging as very potent immunotherapies. Their administration has led to 

several cases of durable clinical benefits in end-stage cancer patients. One can envision 

a treatment strategy starting with a cocktail of TAA-encoding SLP-vaccines to stimulate 

a broad T cell response followed by the administration these modulators of anti-CTLA-4, 

anti-PD1 or both to sustain the potency of the ongoing anti-tumor immune response. 

Another attractive strategy and the topic of my current post-doctoral research project is 

the combination of SLP vaccines with cytokine immunotherapy. Combining IL-2/anti-IL-2 

mAb complexes (IL-2-Cx) with SLP-vaccines leads to synergistic anti-tumor responses 

resulting improved tumor control compared to single therapies of SLP-vaccines or IL-2-Cx. 

Addition of IL-2-Cx not only boosted the effector functions also seemed to rescue 

tumor infiltrating lymphocytes from exhaustion, evident by decreased PD-1 expression. 

Therefore, the provision of IL-2-Cx post SLP-vaccines will 1) supply vaccine-activated T 

cells with essential growth-factors and enhance their numbers and 2) maintain their pro-

inflammatory phenotype by promoting their effector functions such as IFN-y and granzyme 

B production. Finally, IL-2-Cx will 3) counter T cell exhaustion. 

Based on these arguments I propose combining IL-2-Cx with the “best SLP-vaccine on the 

market” to boost tumor specific T cell responses. I strongly support the use of DC-targeting 

vaccines. Following vaccination, treatment cycles with IL-2-Cx will sustain the ongoing 

anti-tumor responses. 

This combinatorial immunotherapy approach will likely result in significantly better 

therapeutic benefits over the individual monotherapies, consisting of only SLP-vaccines 

or IL-2-Cx, and lead to improved patient treatment with manageable adverse effects.
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English summary

Cancer is the collective name given to several neoplastic diseases, which are characterized 

by uncontrolled growth of malignant cells, their subsequent metastasis and invasion of 

healthy tissues impairing their normal functioning. 

Cancer is an aggressive and unfortunately often fatal disease and very few patients with 

metastasis survive beyond two years after diagnosis. This is for a large part caused by the 

fact that conventional cancer therapies, such as surgery, chemotherapy and radiotherapy, 

have so far failed to lead to the desired clinical benefits in most cancer patients with an 

advanced disease. Novel and more efficacious treatments are therefore highly necessary.

Cancer immunotherapy, a treatment modality based on the activation of the immune 

system against tumors have resulted in promising clinical observations and reports of 

durable or even complete responses in end-stage cancer patients. Immunotherapy boosts 

the tumor-specific responses and thereby facilitates the eradication of malignant cells. 

At the Leiden University Medical Center (LUMC), therapeutic vaccinations using synthetic 

long peptides (SLP) encoding tumor associated antigens (TAA) have been researched for 

over 10 years. Several (pre-)clinical studies have conclusively shown that SLP efficiently 

strengthens the immune system against tumors.

SLP are administered via sub cutaneous injections into the skin of cancer patients. 

Treatment success and the efficacy of therapeutic vaccines for cancer is critically dependent 

on the efficient delivery of the SLP, or any other cancer vaccine, to Dendritic cells (DC). DC 

play a prominent role in the immune system, they are considered the primary and most 

efficient antigen presenting cell (APC) with strong capacity to initiate and orchestrate 

immune responses. DC can effectively prime and activate tumor specific cytotoxic CD8+ 

T cells (CTL) which are capable of directing recognizing and killing tumor cells.

Montanide-based water-in-oil (w/o) emulsions have been applied to formulate SLP in 

the majority of clinical trials assessing the therapeutic capacity of SLP-vaccines. The use 

of Montanide-based formulations, however, is associated with local but prolonged side 

effects because of the non-biodegradable nature of the (w/o) emulsions. In addition, poorly 

defined adjuvant properties, sub-optimal delivery of the vaccine to DC, poorly controlled 

Ag release rates and lack of long-term stability hamper the use of Montanide as a clinically 

attractive vaccine delivery system. Biodegradable delivery systems based on poly(lactic-

co-glycolic acid) (PLGA) offer a promising alternative approach for SLP-vaccines cancer 
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vaccines. PLGA is suitable for the preparation of micro- and nanoparticles (NP), which 

can protect the vaccine-antigen (Ag) from proteolytic enzymatic degradation and rapid 

clearance, allow co-encapsulation and simultaneous delivery of both Ag and adjuvants, 

and facilitate Ag delivery to DC. The use of PLGA is Food and Drug Administration (FDA) 

approved, owing to its biodegradability and biocompatibility, with several slow-release 

formulations currently on the market. 

This thesis describes the results of several studies performed aimed at optimizing the 

efficacy SLP-vaccines via the encapsulation in PLGA-NP. By encapsulating SLP, or a model 

protein Ag, in PLGA-NP we attempted to improve the delivery of the SLP to DC, achieve 

better control of the pharmacokinetics and biodistribution of the vaccine and finally, 

reduce the therapy related side effects associated with the current (pre-)clinical procedure 

of administering SLP-vaccines emulsified in Montanide. 

The efficiency of Ag-processing by DC is vital for the strength of the ensuing T-cell 

responses. Chapter 2 described our studies exploring the Ag-processing and presentation 

mechanisms underlying the observed in vivo therapeutic efficacy of SLP-vaccines. 

Understanding the mechanisms of SLP-Ag in its free, soluble and chemically unmodified 

form as it was successfully tested in human trials, allows better understanding of SLP-

vaccines and allow further fine-tuning to improve the therapeutic efficacy and improve 

the treatment of cancer patients. We reported an in vitro MHC class I and class II Ag 

processing and presentation analysis of SLP, in comparison to whole proteins, by murine 

and human DC. We showed that SLPs were much faster and efficiently processed by 

DC, resulting in an increased presentation to CD4+ and CD8+ T cells. The mechanism of 

access to MHC class I loading appeared to differ between SLP and proteins. Whole soluble 

protein Ag ended remained in endo-lysosomes whereas SLP were detected very rapidly 

outside the endo-lysosomes upon internalization by DC resulting in a proteasome- and 

TAP-dependent MHC class I presentation much like the Ag processing and presentation 

pathways of endogenous proteins and peptides generated within all cells of the body. 

Our results suggest that the efficient internalization of SLP, accomplished specifically by 

DC and characterized by an alternative and faster intracellular routing, leads to enhanced 

CD8+ T-cell activation observed in vivo. 

SLP-vaccines showed potent therapeutic efficacy against pre-malignant lesions but failed to 

achieve durable clinical responses in patients with cancer. Therefore, SLP-vaccines require 

optimization to enhance its therapeutic efficacy in cancer patients. To this end we studied 
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in chapter 3 the feasibility to encapsulate SLP in PLGA-NP as a method to improve the 

immunogenicity of SLP-vaccines, and decrease the onset of adverse effects associated 

with the use of Montanide in the clinic. The research was aimed at defining physical and 

formulation parameters necessary to successfully encapsulate SLP in PLGA-NP (PLGA-SLP). 

Using the standard “double emulsion and solvent evaporation” formulation, well described 

for the encapsulation of proteins, we observed very low (< 30%) encapsulation efficiency of 

SLP in PLGA-NP, or extremely high burst release rates (> 70%) upon resuspension of NP in 

physiological buffers. Therefore, we adjusted the formulation and process parameters and 

uncovered that the pH of the first emulsion was critical to achieve efficient encapsulation 

and controlled release of SLP. In particular, we showed that an alkaline inner aqueous phase, 

instead of the acidic aqueous phase as required to encapsulate proteins, resulted in circa 

330 nm sized NP with approximately 40% encapsulation efficiency and low (< 10%) burst 

release. We next studied the efficacy of MHC class I cross-presentation of these “low-burst 

release” and CD8+ T cell activation by DC loaded with PLGA-SLP in comparison to soluble 

SLP and observed that PLGA-SLP were superior in facilitating MHC class I presentation 

and CD8+ T cell activation. 

A follow up study was subsequently performed in an attempt to characterize the intracellular 

mechanisms used by DC to process PLGA-SLP and study the immunological effects on SLP-

vaccines when combined with an adjuvant. In chapter 4 we describe that toll like receptor 

(TLR) 2 stimulation, using the adjuvant Pam3CSK4, enhances MHC class I presentation 

of PLGA-SLP by DC. However, this effect was not dependent on the co-encapsulation of 

Pam3CSK4 together with SLP in PLGA-NP (PLGA-SLP/TLR2L). DC loaded with PLGA-SLP 

or PLGA-SLP/TLR2L route internalized NP into endo-lysosomal compartments and not 

the cytosol as occurs with sSLP. We detected PLGA-NP encapsulated SLP for prolonged 

periods inside these endo-lysosomal compartments which led to sustained MHC class I 

presentation of PLGA-NP encapsulated SLP for up to 96 hr. Vaccinations with PLGA-SLP 

and especially PLGA-SLP/TLR2L induced sustained CD8+ T cell proliferation.

In chapter 5 we showed that PLGA-NP, encapsulating protein Ag, is a superior vehicle to 

deliver Ag to DC which could be applied to stimulate Ag-specific CD8+ T cells. The DC/

PLGA-NP ex vivo stimulated CTL used in an adoptive T cell immunotherapy setting showed 

superior capacity to lyse target cells and were more efficient at tumor control resulting 

in prolonged survival of tumor bearing animals. In contrast, soluble protein Ag failed to 

elicit the same effects and thus confirmed that encapsulation of protein Ag or SLP-Ag in 

PLGA-NP leads to strong improvement of MHC class I presentation and CTL activation. 
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Chapter 6 discusses a comparative study between NP versus microparticles (MP) in their 

efficacy to deliver Ag to DC, facilitate MHC class I Ag presentation and stimulate T and B 

cell responses in vivo. We showed that the efficient uptake of Ag is crucial to induce an 

immune response. Whereas NP were efficiently internalized by DC upon in vitro incubation, 

MP were poorly detectable inside DC, as a result MHC class I presentation was mainly 

observed when DC were cultured with NP. Upon s.c. vaccinations with NP and MP, we could 

detect significantly higher numbers of Ag-specific CD8+ T cells in mice vaccinated with NP 

compared to MP or OVA emulsified in incomplete Freund’s adjuvant (IFA). Moreover, NP 

led to better antibody responses compared to MP. We concluded that efficient immune 

responses are better achieved with NP but not MP.  

Chapter 7 and chapter 8 describes active-targeting strategies to enhance the delivery of 

vaccine to DC in vivo. In general, upon s.c. injection, only a small fraction of the vaccine is 

delivered to DC whereas the majority is cleared by the body or engulfed by other immune 

cells. To study how to overcome these negative effects preventing optimal vaccine efficacy 

we formulated multi-compound particulate vaccines based on PLGA-NP encapsulating 

TLRL and protein-Ag which were subsequently targeted to CD40 (a TNF-receptor family 

molecule), DEC-205 (a C-type lectin receptor) and CD11c (an integrin receptor). The 

efficiency of these different targeting strategies to activate DC and elicit a potent CD8+ T 

cell response was studied. We observed that targeted PLGA-(Ag/TLR3+7L) NP were more 

efficiently bound and internalized by DC in vitro compared to the control non-targeted 

NP and reported a small but significantly improved Ag-delivery using CD40-targeted NP 

compared to DEC-205 or CD11c targeted NP. In comparison to non-targeted NP, all targeted 

NP stimulated IL-12 production and induced the expression of co-stimulatory molecules 

by DC to a similar extent. In line with these effects, targeted NP but not non-targeted 

NP led to strong proliferation and IFN-y production by T cells in vitro. Vaccinations with 

CD40, DEC-205 and CD11c targeted NP showed consistently higher efficacy than non-

targeted NP to stimulate CD8+ T cell responses. There was a trend towards better CD8+ T 

cell priming with CD40-targeted NP. Based on these observations we performed a study 

with the goal to control tumor outgrowth using CD40-targeting of PLGA-(Ag/TLR2+3L) 

NP-vaccines. Targeting NP to CD40 very efficiently and selectively delivered the vaccine 

to DC in vivo upon s.c. injection and significantly improved priming of CD8+ T cells against 

two independent tumor associated Ag. Finally, therapeutic application of CD40-targeted 

NP led to enhanced tumor control and prolonged survival of tumor-bearing mice whereas 

non-targeted NP-vaccines failed to do so. 
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In conclusion, the results described here present sufficient evidence to use PLGA-NP as 

a vaccine delivery system for SLP-vaccines. Especially the use of targeted PLGA-NP will 

significantly enhance the delivery of SLP-vaccines to DC and be considered as an alternative 

for Montanide as clinical vaccine carrier. 
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Kanker is de verzamelnaam voor verschillende ziektes waarin ongecontroleerde groei 

van maligne cellen plaatsvindt. Kanker wordt soms gekenmerkt door het verspreiden en 

binnendringen van maligne cellen in gezonde weefsels en organen, ook wel uitzaaiingen 

genoemd. Door deze uitzaaiingen kan het gezonde weefsel niet meer goed functioneren. 

Kanker is een agressieve en helaas vaak dodelijke ziekte waarbij weinig patiënten met 

uitzaaiingen langer dan twee jaar na de diagnose nog leven. De oorzaak is voor een groot 

deel te verklaren doordat de conventionele kankertherapieën, zoals chirurgie, chemothe-

rapie en radiotherapie, niet goed genoeg werken in kankerpatiënten met een gevorderde 

ziekte. Nieuwe en meer effectieve behandelingen zijn dan ook zeer noodzakelijk. 

Kanker immunotherapie, een behandelmethode gebaseerd op de activatie van het im-

muunsysteem tegen tumoren, is een veelbelovende therapie en er zijn zelfs gevallen 

van volledige genezing van terminale kankerpatiënten. Immunotherapie stimuleert de 

natuurlijke en tumor-specifieke afweer en versterkt het immuunsysteem waardoor de 

tumorcellen beter herkend en gedood worden. 

In het Leids Universitair Medisch Centrum (LUMC) heeft men veel ervaring met thera-

peutische vaccinaties tegen tumoren gebaseerd op synthetische lange peptiden (SLP) 

die coderen voor de tumor-geassocieerde antigenen. Verschillende klinische studies 

hebben aangetoond dat SLP zeer efficiënt is in het activeren van het immuunsysteem 

tegen tumoren. 

SLP vaccins worden toegediend via injecties in de huid van de patiënten. Het succes van 

de behandeling en de efficiëntie van therapeutische vaccins tegen tumoren is sterk af-

hankelijk van de beschikbaarheid van de SLP (of het vaccine) voor de dendritische cellen 

(DC’s). DC’s spelen een belangrijke rol in het immuunsysteem en worden beschouwd als 

de beste en voornaamste antigeen presenterende cel (APC) met de unieke capaciteit om 

het immuunsysteem te activeren. DC kunnen tumor-specifieke cytotoxische CD8+ T-cellen 

(CTL) programmeren, zodat die tumorcellen kunnen herkennen en doden. 

Tot nu toe werden in klinische trails met SLP-vaccins de SLP gemengd in Montanide, een 

water-in-olie (w/o) emulsie. Het gebruik van Montanide-formuleringen leidt echter tot 

lokale maar langdurige bijwerkingen omdat de w/o emulsie niet biologisch afbreekbaar 

is. Bovendien heeft Montanide zwakke immuun-stimulerende eigenschappen en wordt 

het suboptimaal opgenomen door DC’s na injectie in de huid, en is het vrijlaten van de 
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SLP slecht te reguleren. Bovendien hebben Montanide-formuleringen een beperkte 

houdbaarheid. Al deze eigenschappen van Montanide belemmeren een succesvol en 

lange-termijngebruik in de kliniek. 

Biologisch afbreekbare afgiftesystemen op basis van poly(lactic-co-glycolic acid) (PLGA), 

een co-polymeer dat bestaat uit melkzuur en glycolzuur, bieden een veelbelovend al-

ternatief voor het toedienen van SLP-vaccins tegen tumoren. PLGA is geschikt voor het 

formuleren van nano-partikelen (NP) en micro-partikelen (MP) waarin het SLP-vaccin 

wordt ingekapseld. Deze partikelen beschermen het SLP tegen proteolytische afbraak en 

verminderen dat het vaccine snel uitgescheiden wordt uit het lichaam.

Het gebruik van PLGA in mensen is goedgekeurd door de Amerikaanse Food and Drug 

Administration (FDA). 

Dit proefschrift beschrijft de resultaten van verschillende studies die gericht waren op 

het optimaliseren van SLP-vaccins door deze in te kapselen in PLGA-NP. Door SLP, of een 

modeleiwit Ag, in te kapselen in PLGA-NP hebben we geprobeerd een betere toediening 

van SLP aan DC’s te bewerkstelligen. Ook wilden we een betere beheersing van de far-

macokinetiek en biodistributie van het vaccin bereiken en de bijwerkingen verminderen 

gerelateerd aan het in Montanide geformuleerde SLP-vaccin. 

De efficiëntie van Ag-processering door DC’s is essentieel voor de sterkte van de daarop-

volgende T-cel immuunresponsen. Hoofdstuk 2 beschrijft een in vitro analyse van de MHC 

klasse I en klasse II Ag-processering en presentatie van SLP, in vergelijking met het eiwit 

Ag, door muis en humane DC’s. We hebben aangetoond dat SLP veel sneller en efficiënter 

verwerkt wordt door DC’s, wat leidt tot betere stimulering van CD4+ en CD8+ T-cellen. Het 

mechanisme van toegang tot MHC klasse I processering was verschillend tussen SLP en 

eiwitten. Na opname door DC’s was het eiwit Ag voornamelijk aantoonbaar in intracellulaire 

compartimenten, de endo-lysosomen. SLP was in tegenstelling tot eiwitten nauwelijks in 

de endo-lysosomen detecteerbaar, maar juist zeer snel in het cytosol van de cel aanwezig. 

Vervolgens werden SLP verwerkt, vergelijkbaar met endogene antigenen geproduceerd in 

cellen van het lichaam. Onze resultaten suggereren dat een efficiënte internalisatie door 

DC’s van SLP, gekenmerkt door een alternatieve en snellere intracellulaire routing, leidt 

tot een verhoogde CD8+ T–cel-activatie. 

SLP-vaccins hebben geleid tot veelbelovende resultaten in patiënten met pre-maligne vor-

men van kanker. Maar SLP-vaccins zijn minder succesvol in patiënten met vergevorderde 

kanker. Daarom is het noodzakelijk dat SLP-vaccins verbeterd worden. In hoofdstuk 3 heb-
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ben we bewezen dat het inkapselen van SLP in PLGA-NP (PLGA-SLP) een goede methode 

is om de immunogeniciteit van SLP-vaccins te verbeteren. In het bijzonder hebben we 

aangetoond dat MHC klasse I presentatie en CD8+ T-cel-activatie door DC’s sterk verbeterd 

worden in vergelijking met niet ingekapseld, oftwel vrij, SLP.

Op basis van deze resultaten werd een vervolgonderzoek uitgevoerd om de intracellulaire 

mechanismen te beschrijven die door DC worden gebruikt om PLGA-SLP te verwerken. Ook 

werd onderzocht of de toevoeging van een adjuvant de immunogeniciteit van PLGA-SLP 

verhoogt. De resultaten hiervan worden beschreven in hoofdstuk 4, waarin we beschrijven 

dat het adjuvant Pam3CSK4 sterk de MHC klasse I presentatie van PLGA-SLP door DC’s 

verbetert zonder dat het samen met de SLP ingekapseld moet zijn in de NP. DC’s beladen 

met PLGA-SLP kunnen langdurig SLP Ag beschermen en kunnen ook voor een langere 

periode CD8+ T-cellen activeren, bepaald tot 96 uur.

In hoofdstuk 5 laten we zien dat PLGA-NP ook gebruikt kan worden om tumor-specieke 

CD8+ T-cellen te stimuleren ex vivo. Transplantatie met de DC/PLGA-NP ex vivo gestimu-

leerde CTL leidde tot een zeer sterk therapeutisch effect tegen tumoren.  

Hoofdstuk 6 beschrijft de verschillen tussen NP en MP om DC te beladen met een Ag en 

vervolgens MHC klasse I Ag presentatie te induceren. In muizen hebben we bestudeerd 

of NP beter zijn dan MP om T- en B-cel-responsen te activeren. We concludeerden dat een 

efficiënte opname van Ag door DC’s essentieel is om een ​​immuunrespons te induceren. 

Opname van Ag was het sterkst met het gebruik van NP. Bij s.c. vaccinaties met NP en MP 

detecteerden wij significant hogere Ag-specifieke CD8+ T-cellen na vaccinaties met NP ten 

opzichte van MP. Bovendien leidde NP tot betere antilichaamresponsen. We concludeerden 

dat een efficiënte immuunrespons beter wordt bereikt met NP maar niet met MP. 

In hoofdstuk 7 en hoofdstuk 8 bestuderen we strategieën om PLGA-NP-vaccins specifiek 

te sturen naar DC’s, DC-targeting. In het algemeen komt slechts een kleine fractie van een 

geïnjecteerd vaccin bij de DC’s terecht, terwijl de meerderheid wordt uitgescheiden door 

het lichaam of door andere immuuncellen opgenomen wordt. Om deze negatieve effecten 

te voorkomen en de werking van een vaccin te verbeteren hebben wij PLGA-NP-vaccins 

geformuleerd die zowel Ag en adjuvantia bevatten, die vervolgens werden getarget naar 

moleculen welke tot expressie komen op de oppervlakte van DC’s. We hebben vaccins 

geformuleerd gericht tegen CD40 (een molecuul van de TNF-receptorfamilie), DEC-205 

(een C-type lectinereceptor) en CD11c (integrinereceptor). De efficiëntie van deze verschil-

lende targetingstrategieën om DC’s te activeren en een krachtige CD8+ T-cel-respons op te 
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wekken werd onderzocht. We ontdekten dat getargette PLGA-(Ag/TLR3+7L) NP efficiënter 

werden gebonden en geïnternaliseerd door DC’s in vitro in vergelijking met de controle 

niet-getargette NP. In vergelijking met niet getargette NP, kon alle getargette NP IL-12 de 

productie door DC’s stimuleren. Getargette NP, maar niet de ongetargette NP, leidde tot 

een sterke T–cel-respons en IFN-y-productie door T-cellen. Vaccinaties met CD40, DEC-205 

en CD11c getargette NP vertoonden constant een hogere mate van CD8+ T-cel-stimulatie 

van ongetargete NP. CD40 getargette NP was iets beter in het stimuleren van CD8+ T-cel-

responsen. Op basis van deze observaties hebben we een onderzoek uitgevoerd met als 

doel de tumoruitgroei te blokkeren door middel van toediening van CD40-getargette 

PLGA-(Ag/TLR2+3L) NP-vaccins. Targeting van NP-vaccins naar CD40 werkte zeer efficiënt 

en leverde selectief het vaccin af bij DC na injectie in de huid. Dit leidde tot significant be-

tere activatie van CD8+ T-cellen. Tenslotte toonden we aan dat CD40-getargette NP-vaccins 

een therapeutisch effect hebben en de levensduur van muizen met een tumor verlengde.

Gebaseerd op de resultaten beschreven in dit proefschrift concluderen wij dat PLGA-NP 

een efficiënt middel is om de effectiviteit van SLP-vaccins te verhogen. Vooral het ge-

bruik van getargette PLGA-NP zullen tot een aanzienlijke verbetering leiden en moeten 

naar onze mening beschouwd worden als een alternatief voor Montanide voor klinische 

toepassingen.
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