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We use Arakelov theory to define a height on divisors of degree zero
on a hyperelliptic curve over a global field, and show that this height
has computably bounded difference from the Néron-Tate height of the
corresponding point on the Jacobian. We give an algorithm to compute
the set of points of bounded height with respect to this new height. This
provides an ‘in principle’ solution to the problem of determining the sets
of points of bounded Néron-Tate heights on the Jacobian. We give a
worked example of how to compute the bound over a global function
field for several curves, of genera up to 11.

1. Introduction

1.1. Previous explicit computational work on Néron-Tate heights.
The Néron-Tate height was defined by Néron [Nér65]. The problems of

computing the height of a given point on the Jacobian of a curve and com-
puting the (finite) sets of points of bounded height on the Jacobian have been
studied since the work of Tate in the 1960s, who used a different (equiva-
lent) definition to that of Néron. Using this definition, Tate (unpublished),
Dem’janenko [Dem68], Zimmer [Zim76], Silverman [Sil90] and more recently
Cremona, Prickett and Siksek [CPS06] and Uchida [Uch06] have given in-
creasingly refined algorithms for the case of elliptic curves. Meanwhile, in
the direction of increasing genus, Flynn and Smart [FS97] gave an algorithm
for the above problems for genus 2 curves building on work of Flynn [Fly93],
which was later modified by Stoll ([Sto99] and [Sto02]). Stoll has announced
an extension to the hyperelliptic genus 3 case [Sto12].

The technique used by all these authors was to work with a projective
embedding of the Jacobian or a quotient (usually the Kummer variety), to-
gether with equations for the duplication maps, and thereby obtain results
on heights using Tate’s ‘telescoping trick’. However, such projective embed-
dings become extremely hard to compute as the genus grows - for example,
the Kummer variety is P1 for an elliptic curve, is a quartic hypersurface in
P3 for genus 2 and for genus 3 hyperelliptic curves is given by a system of
one quadric and 34 quartics in P7 [Mue10]. It appears that to extend to
much higher genus using these techniques will be impractical.

In [Hol12a], the author used techniques from Arakelov theory to give an
algorithm to compute the Néron-Tate height of a point on a hyperelliptic
curve, and a similar (though different) algorithm for the same problem was
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given by Müller in [Mue13]. Both gave computational examples in much
higher genera (9 and 10 respectively) than had been possible with previ-
ous techniques. In this paper, we apply Arakelov theory to the problem of
computing the sets of points of bounded height. For practical reasons, we
will eventually make certain restrictions on the fields considered and on the
shape of the curve, namely we insist that the field either has positive char-
acteristic or is Q, and that there is a rational Weierstrass point at infinity.
This is discussed in Remark 20.

1.2. Relation to classical näıve heights. Let p = [D − g · ∞] be a
point on the Jacobian J , where D is a suitably chosen divisor on the curve.
We will define various intermediate heights, but the final näıve height of p
(denoted h†(p)) is given by the height of the polynomial which vanishes at
the ‘x-coordinates’ of points in D (with multiplicity). This is equal to the
‘classical’ näıve height of the image of p under the projective embedding
given by a certain linear subspace of H0(J, 2ϑ). As such, it is clear that

h† ≤ ĥ + c for some positive constant c; the main result of this paper is to
give a practical method to find a bound.

1.3. Practicality regarding searching for points of bounded height.
To determine the number of points of bounded Néron-Tate height on a

Jacobian, one usually constructs a ‘näıve’ height with bounded difference
from the Néron-Tate height, and then searches for points of bounded näıve
height. As such, the two main determinants of the speed of such an algorithm
will be the size of the bound on the height differences and the dimension of
the region in which one must search for points.

1.3.1. Number fields. Let C be a curve of genus g. The algorithm in this
paper requires a search region of dimension g. In this paper we do not
give a new algorithm for bounding the local Archimedean height difference
(see Section 5.1), but we can estimate the sizes of the bounds produced by
techniques in the literature. Bounds using Merkl’s theorem [CE+11] will be
extremely large. Indeed, a Merkl atlas must contain at least 2g + 2 charts
(since every Weierstrass point must lie at the centre of a chart), and the
form of Merkl’s theorem then yields a summand like 1200(2g+2)2 ≈ 4800g2

in the difference between the heights. A factor like g2 seems hard to avoid
(for example such a factor appears again in Lemma 33), but the coefficient
4800 is very bad from a practical point of view; since these are differences
between logarithmic heights, we obtain a factor like exp(4800g2) in the ratio
of the exponential heights, making a search for rational points unfeasible in
practise. The author’s PhD thesis [Hol12b] contains an alternative algo-
rithm that does not make use of Merkl’s theorem (and so may yield better
bounds) but is much more cumbersome to write down. There is some hope
that techniques from numerical analysis may give much sharper bounds, but
unfortunately they will not readily give rigorous bounds. This is important
as the main intended application of these results is to proving statements
about sets of points of bounded height. If you only need something that
almost certainly works in practice, then simply hunting for points of ‘rea-
sonably large’ näıve height should be sufficient.
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1.3.2. Function fields. In the case of a positive-characteristic global field,
the height-difference bounds in this paper become substantially smaller, but
still not yet small enough to be useful. In Theorem 41, we compute bounds
for three curves (of genera 2, 4 and 11) over Fp(t) of the form y2 = x2g+1 +t.
The bounds we obtain are very roughly of the size g4 log p. Even in the
genus 2 example (where we work over F3, obtaining a bound of 108 log 3),
to complete a very näıve search for points would require approximately p300

factorisations of univariate polynomials over F3, which is entirely impractical
(though with sieving techniques one could hope to do much better). The
algorithm presented in this paper is not optimised, so with further work we
hope it will be possible in future to make this method practical in some
higher genera.

1.3.3. Applications. If the algorithms in this paper can be made practical,
they have applications to the problem of saturation of Mordell-Weil groups
(see [Sik95] or [Sto02]), to the computation of integral points on hyperelliptic
curves (see [BMS+08]), to the use of Manin’s algorithm [Man71], and for
numerically testing cases of the Conjecture of Birch and Swinnerton-Dyer.

1.3.4. Some open problems.

• improve the bounds produced by this algorithm, to make searching
for points practical in some small genera;
• find a practical way to compute bounds at Archimedean places, and

even to find good (small) bounds;

1.4. Other algorithms for heights in arbitrary genus. It appears that
it would be possible to extend the projective-embedding-based approaches
mentioned above to give ‘in principle’ algorithms for bounding the difference
between the Néron-Tate and näıve heights for curves of arbitrary genus.
Mumford [Mum66] and Zarhin and Manin [ZM72] describe the structure
of the equations for abelian varieties embedded in projective space and the
corresponding heights and height differences, respectively. To apply these
results it is necessary to give an algorithm to construct these projective em-
beddings for Jacobians for curves of arbitrary genus. Work in this direction
includes [VW98] and [Rei72] in the hyperelliptic case, and [And02] in the
general case. A bound on the difference between the Néron-Tate height and
the näıve height arising from such an embedding is given by Propositon 9.3
(page 665) in the paper [DP02] of David and Philippon, using an embed-
ding of the Jacobian using 16ϑ. An algorithm for the construction of this
embedding has yet to be written down.

1.5. This paper bears some resemblance to the final two chapters of the
author’s PhD thesis [Hol12b]. The author would like to thank Samir Siksek
for introducing him to the problem, and also Steffen Müller and Ariyan
Javanpeykar for many helpful discussions, as well as very thorough readings
of a draft version.
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2. Setup

Definition 1. We work over a fixed global field K with 2 ∈ K× and with
fixed algebraic closure Kalg. We fix an integer g > 0 and a separable poly-
nomial f(x, s) =

∑2g+2
i=1 fix

is2g+2−i ∈ K[x, s]. We denote by C the curve
of genus g over K embedded in weighted projective space P(1, 1, g + 1) with
coordinates x, s, y, defined by the equation y2 = f(x, s). We call such a
curve a hyperelliptic curve. We write X = x/s, Y = y/sg+1, S = s/x and
Y ′ = y/xg+1. We often write Xp for the value of X at p, etc.

Definition 2. We say that a divisor D on C is semi-reduced if it is effective
and if there does not exist a prime divisor p of C such that D ≥ p+p− (where
p− denotes the image of p under the hyperelliptic involution). In particular,
any Weierstrass point appearing in the support of D has multiplicity 1. If
in addition we have deg(D) ≤ g, then we say D is reduced.

Definition 3. For a global field L, a proper set of absolute values for L
is a non-empty multi-set of non-trivial absolute values on L such that the
product formula holds. We fix once and for all such a multi-set MK of
absolute values for K such that every Archimedean absolute value ν comes
from a embedding of K into C with the standard absolute value. Given a
finite extension L/K, we fix a proper multi-set of absolute values ML for L
by requiring that for all absolute values ν ∈ML, the restriction of ν to K lies
in MK . We denote by M0

L the sub-multi-set of non-Archimedean absolute
values and M∞L the sub-multi-set of Archimedean absolute values.

Definition 4. Given a global field L, we define the curve BL to be the unique
normal integral scheme of dimension 1 with field of rational functions L and
such that BL is proper over SpecZ. For example, if L is a number field then
BL is the spectrum of the ring of integers of L.

Definition 5. Let C1 denote the Zariski closure of C in PBK (1, 1, g + 1).
A result of Hironaka, contained in his appendix to [CGO84] (pages 102 and
105) gives us an algorithm to resolve the singularities of C1 by a sequence
of blowups at closed points and along smooth curves (the latter replacing
normalisations); we observe that C1 may locally be embedded in P2

BK
, and

so Hironaka’s result can be applied. We fix once and for all a choice of
resolution C of C1 using this algorithm of Hironaka - thus we fix both the
model C and the sequence of blowups at smooth centres used to obtain it.

2.1. Local Néron pairings. Given an absolute value ν of K, we write
Div0(CKν ) for the group of degree-zero divisors on the base change of C to
the completion of K at ν. The local Néron pairing at ν is a biadditive map

[−,−]ν :
{

(D,E) ∈ Div0(CKν )×Div0(CKν )| supp(D) ∩ supp(E) = ∅
}
→ R.

Its definition depends on whether ν is an Archimedean or non-Archimedean
absolute value.

Suppose first that ν is a non-Archimedean absolute value. Write OKν for
the ring of integers of the completion Kν . We write ιν for the (rational-
valued) intersection pairing between divisors over ν (as defined in [Lan88,
IV, §1]). Let D and E be elements of Div0(CKν ). We extend D and E to hor-
izontal divisors D and E on CKν := C ×BK SpecOKν . Write QFDiv(CKν )
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for the group of Q-divisors on CKν supported on the special fibre (CKν )ν .
We define a map (cf [Lan88, III, §3])

Φ : Div0(CKν )→ QFDiv(CKν )

Q(C )ν

by requiring that for all fibral divisors Y ∈ FDiv(CKν ), we have

ιν
(
Y,D + Φ(D)

)
= 0.

Then define the local Néron pairing by

[D,E]ν = log(#κ) ιν
(
E,D + Φ(D)

)
,

where κ is the residue field at ν.
Suppose now that ν is an Archimedean absolute value of K. Fix an

algebraic closure of Kν , and view Cν = C(Kalg
ν ) as a compact connected

Riemann surface of positive genus and let µ denote the canonical (Arakelov)
(1,1)-form µ on Cν . We write G(−,−) : Cν ×Cν → R≥0 for the exponential
Green’s function on Cν × Cν associated to µ, and gr for its logarithm. We
normalise the Green’s function to satisfy the following three properties.

1) G(p, q) is a smooth function on Cν × Cν and vanishes only at the
diagonal. For a fixed p ∈ Cν , an open neighbourhood U of p and a local
coordinate z on U centred at p, there exists a smooth function α such that
for all q ∈ U with p 6= q we have

gr(p, q) = log |z(q)|+ α(q).

2) For all p ∈ Cν we have ∂q∂q gr(p, q)2 = 2πiµ(q) for q 6= p.
3) For all p ∈ Cν , we have∫

Cν

gr(p, q)µ(q) = 0.

Write D =
∑

i aipi and E =
∑

j bjpj with ai, bj ∈ Z and pi, qj ∈ Cν .
Then the local Néron pairing at ν is defined by

[D,E]ν =
∑
i,j

aibj gr(pi, qj).

3. Outline

Let L/K be a finite extension. We define the height of an element x ∈ L
by

h(x) =
1

[L : K]

∑
ν∈ML

log max(|x|−1
ν , 1)

and H(x) = exp h(x). This extends to give a well-defined height on the
algebraic closure Kalg of K.

The definition of our first näıve height is analogous to this. For each
absolute value ν of our global field, we will construct a metric or pseudo-
metric dν on divisors which measures how far apart they are in the ν-adic
topology. Given a suitable degree-zero divisor D on C corresponding (up to



6 DAVID HOLMES

2-torsion points) to the point [D] on the Jacobian of C, we define the näıve
height of [D] by

hn([D]) =
∑
ν∈MK

log dν(D,D′)−1

where D′ is a chosen divisor which is linearly equivalent to −D (up to 2-
torsion points). Since curve C is compact and our metrics continuous, the
function dν(D,D′)−1 is bounded below uniformly in D, and so we may use
log(−) in place of log (max(−, 1)).

We define these metrics at non-Archimedean absolute values in Definition
6. Theorem 8 bounds the difference of the distance between two divisors and
their local Néron pairing at a non-Archimedean absolute value. The hardest
aspect of this is allowing for the fact that the model of C obtained by taking
the closure inside projective space over BK is not in general a regular scheme,
so we must compute precisely how the process of resolving its singularities
will affect the intersection pairing. In Definition 15 we define a pseudo-
metric on C at each Archimedean absolute value. Theorem 18 bounds the
difference between this function and the local Néron pairing.

We apply Theorem 22 (due to Faltings and Hriljac) to bound the difference
between our height and the Néron-Tate height. We then write down two
more näıve heights, with successively simpler definitions, each time bounding
in an elementary fashion the difference from the Néron-Tate height. We
give a method to compute the number of points of bounded height for the
simplest of these näıve heights, completing the algorithm. In Theorem 41
we give a worked example of how to compute these bounds for a certain
genus 11 curve over F101(t).

4. Non-Archimedean absolute values

4.1. Defining metrics.

Definition 6. For each absolute value ν ∈ MK , we fix (Kalg
ν , |−|ν) to be

an algebraic closure of the completion Kν together with the absolute value

which restricts to ν on K ⊂ Kalg
ν . For non-Archimedean absolute values ν

we define

dν : C(Kalg
ν )× C(Kalg

ν )→ R≥0

by

dν((xp : sp : yp), (xq : sq : yq))

=


max

(
|xp/sp − xq/sq|ν ,

∣∣∣yp/sg+1
p − yq/sg+1

q

∣∣∣
ν

)
if |xp|ν ≤ |sp|ν and |xq|ν ≤ |sq|ν

max
(
|sp/xp − sq/xq|ν ,

∣∣∣yp/xg+1
p − yq/xg+1

q

∣∣∣
ν

)
if |xp|ν ≥ |sp|ν and |xq|ν ≥ |sq|ν

1 otherwise.

Proposition 7. For each ν ∈ M0
K , d = dν is a metric on C(Kalg

ν ). More-
over, for each such ν, we have dν(p, q) ≤ 1 for all p and q.

Proof. We omit the subscripts ν from the absolute values. We begin by

observing that if (x : s : y) ∈ C(Kalg
ν ) then

|x| ≤ |s| =⇒ |y| ≤ |s|g+1 and |x| > |s| =⇒ |y| ≤ |x|g+1 .
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Combining this with the fact that |−| is non-Archimedean, we see for all p,

q ∈ C(Kalg
ν ) that d(p, q) ≤ 1.

For showing that d is a metric, only the triangle inequality is non-obvious.
Let p = (xp, sp, yp), q = (xq, sq, yq) and r = (xr, sr, yr). Suppose firstly that
|xp| ≤ |sp|, |xq| ≤ |sq| and |xr| ≤ |sr|. Then

d(p, q) + d(q, r)

= max

(∣∣∣∣xpsp − xq
sq

∣∣∣∣ ,
∣∣∣∣∣ ypsg+1
p

− yq

sg+1
q

∣∣∣∣∣
)

+ max

(∣∣∣∣xqsq − xr
sr

∣∣∣∣ ,
∣∣∣∣∣ yqsg+1
q

− yr

sg+1
r

∣∣∣∣∣
)

≥ max

(∣∣∣∣xpsp − xq
sq

∣∣∣∣+

∣∣∣∣xqsq − xr
sr

∣∣∣∣ ,
∣∣∣∣∣ ypsg+1
p

− yq

sg+1
q

∣∣∣∣∣+

∣∣∣∣∣ yqsg+1
q

− yr

sg+1
r

∣∣∣∣∣
)

≥ d(p, r).

The other cases are similar. �

4.2. Comparison of the metric and the Néron pairing. The main
aim of this section is to prove the following result:

Theorem 8. Given a non-Archimedean absolute value ν ∈M0
K , there exists

an explicitly computable constant Bν with the following property:
Let D = D1 − D2 and E = E1 − E2 be differences of reduced divisors

on C with no common points in their supports, and assume that D and E
both have degree zero. Let L denote the minimal field extension of Kν such
that D and E are pointwise rational over L, and over L write D =

∑
i dipi,

E =
∑

j ejqj, with di, ej ∈ Z and pi, qj ∈ C(L). Recall from Section 2.1

that [D,E]ν denotes the local Néron pairing of D and E at ν. Then∣∣∣∣∣∣[D,E]ν −
∑
i,j

diej log

(
1

dν(pi, qj)

)∣∣∣∣∣∣ ≤ Bν .

Moreover, if C is smooth over ν, then we may take Bν = 0.

The proof of this result is postponed to the end of this section.
For the remainder of this section we fix a non-Archimedean absolute value

ν ∈ M0
K . We write Kν for the completion of K at ν, and OKν for the ring

of integers of Kν .
We begin by bounding the function Φ. Let F denote the free abelian group

generated by prime divisors supported on the special fibre of C over ν, and
let V denote the finite-dimensional Q-vector space obtained by tensoring F
over Z with Q. Let M : V × V → Q be the map induced by tensoring the
restriction of the intersection pairing on C to its special fibre with Q. Then
V has a canonical basis of fibral prime divisors, so we may confuse M with
its matrix in this basis. Call the basis vectors Y1 . . . Yn; we use the same
labels for the corresponding fibral prime divisors.

Lemma 9. Let M+ denote the Moore-Penrose pseudo-inverse (see [Pen55])
of M , let m− denote the infimum of the entries of M+ and m+ their supre-
mum. Let D = D1 −D2 and E = E1 −E2 be differences of reduced divisors
on C with no common points in their supports, and assume that D and E
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both have degree zero. Then∣∣ιν (Φ(D), E
)∣∣ ≤ g2(m+ −m−).

Proof. Let d denote the vector
∑n

i=1 ιν
(
D,Yi

)
Yi, and similarly set e to equal∑n

i=1 ιν
(
E, Yi

)
Yi, a pair of vectors in V . Now by definition of Φ we have

that for all vectors v ∈ V :

v · dT + v ·M · Φ(D)T = 0,

and hence that
dT = −M · Φ(D)T .

Recall that if for any matrix A the linear system Ax = b has any solutions,
then a solution is given by x = A+b where A+ is the Moore-Penrose pseudo-

inverse of A. As such, we can take Φ(D) to be −d · (M+)
T

, and so we
find

ιν
(
Φ(D), E

)
= −d ·

(
M+

)T · eT .
Now since D and E are differences of reduced divisors, d and e are vectors
each formed by assigning at most g copies of ‘+1’ and g copies of ‘−1’ to the
basis elements Y1, . . . , Yn (allowing multiple ±1s to be assigned to a single
basis vector), and so the result easily follows. �

By base change and Definition 5, we have a chosen resolution CKν of the
singularities of the closure C1 of C in weighted projective space over OKν .
Let bν denote the longest length of a chain of blowups involved in obtaining
this resolution (one blowup is considered to follow another if the centre of
one blowup is contained in the exceptional locus of the previous one). Note
that bν = 0 if C1 is smooth over OKν .

For the remainder of this section, let D and E be effective divisors on C
with disjoint support, of degrees d and e respectively. Let Lν/Kν be the
minimal finite extension (of degree m with residue field l) such that D and

E are both pointwise rational over Lν . Write D =
∑d

i=1 pi and E =
∑e

i=1 qi,
and write D and E for the Zariski closures of D and E respectively on the
regular model CKν over OKν (more precisely, take closures of the prime
divisors in the supports of D and E, then define D and E to be appropriate
linear combinations of these new prime divisors). Write ω for the maximal
ideal of OLν .

Lemma 10. We have

− log(#κ(ν))bνde ≤ log(#κ(ν)) ιν (D ,E )− log

(
1∏

i,j d(pi, qj)

)
≤ 0,

where κ(ν) is the residue field at ν.

The proof of Lemma 10 may be found after Lemma 14. To avoid an excess
of notation, we will from now on drop the subscript ν from the fields and
models we are considering, since we will exclusively be working locally at ν
and places dividing it for the remainder of this section.

Lemma 11. Let p, q ∈ C(L) with p 6= q. Write

Ip,q
def
=
∑
Ω|ω

log(#κ(Ω)) lengthOL

(OC1×OKOL,Ω

Ip + Iq

)
,
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where the sum is over closed points Ω (with residue field κ(Ω)) of C1×OKOL
lying over ω, and Ip and Iq are defining ideal sheaves for the closures p and
q in C1 ×OK OL of the images of p and q in C ×K L. Then

Ip,q = m log

(
1

d(p, q)

)
(recall that m = [L : K]).

Proof. Write p = (xp : sp : yp), q = (xq : sq : yq) with xp, sp, xq, sq ∈ OL.
If |xp| < |sp| and |xq| > |sq| or vice versa, then p and q do not meet on the
special fibre so ιω (p, q) = 0, and by definition we see that d(p, q) = 1.

Otherwise, possibly after changing coordinates, we may assume that p and
q are of the form (xp : 1 : yp) and (xq : 1 : yq) respectively, for xp, yp, xq,
yq ∈ OL. We may moreover assume that p and q meet on the special fibre;
let Ω be the closed point where p and q meet. After multiplying the defining
equation F of C on the coordinate chart containing p and q by a power of
a uniformiser at ν, we may asume F is integral at ν and is irreducible. We
have

OC1×OKOL,Ω

Ip + Iq
∼=

OL[x, y](x,y)

(F, x− xp, y − yp, x− xq, y − yq)

∼=
OL

(xp − xq, yp − yq)
,

so

lengthOL

(OC1×OKOL,Ω

Ip + Iq

)
= min (ordω(xp − xq), ordω(yp − yq)) .

Now given a ∈ L, we find

log(#l) ordω(a) = −m log |a| ,

so

lengthOL

(OC1×OKOL,Ω

Ip + Iq

)
= m

min (− log |xp − xq| ,− log |yp − yq|)
log(#l)

,

and hence

Ip,q = mmin (− log |xp − xq| ,− log |yp − yq|) .
Moreover,

log(1/d(p, q)) = min (− log |xp − xq| ,− log |yp − yq|) ,

so we are done. �

Lemma 12. Recalling that over L we can write D =
∑d

i=1 pi and E =∑e
i=1 qi, we define Oωi,j to be the local ring at the closed point of C1×OK OL

where pi meets qj if such exists, and the zero ring otherwise. Letting ID and
IE denote the ideal sheaves of the closures of D and E respectively on C1,
we have∑

i,j

lengthOL

( Oωi,j
Ipi + Iqi

)
= lengthOL

(
OC1 ⊗OK OL

(ID + IE)⊗OK OL

)
.

The analogous statement on C also holds.
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Proof. We may decompose ID and IE into iterated extensions of the sheaves
Ipi and Iqi , whereupon the result follows from additivity of lengths in exact
sequences. �

Lemma 13. Let ID and IE denote the ideal sheaves on C1 corresponding
to the closures of the divisors D and E respectively. We have:

lengthOK

(
OC1

ID + IE

)
· ram.degL/K = lengthOL

(
OC1 ⊗OK OL

(ID + IE)⊗OK OL

)
.

The analogous statement on C also holds.

Proof. Let M be a finite length OK-module. We show

lengthOK (M) · ram.deg(L/K) = lengthOL(M ⊗OK OL).

Let M = M0 ⊂ M1 ⊂ · · · ⊂ Ml = 0 be a composition series for M , so
each Mi/Mi+1 is simple. Since OK is local, we have by [Mat80, p12] that

Mi/Mi+1
∼= OK/mK .

By additivity of lengths, it suffices to show

lengthOL

(
OK
mK
⊗OK OL

)
= ram.deg(L/K),

but this is clear since mK · OL = m
ram.deg(/K)
L . �

Lemma 14. Let φ : C3 → C2 be one of the blowups involved in obtaining C
from C1. Let p, q ∈ C(L) with p 6= q. Then

0 ≤ lengthOL

(
OC2×OL
Ip + Iq

)
− lengthOL

(
OC3×OL
Ip + Iq

)
≤ ram.deg(L/K).

Proof. In this proof, we will omit the subscripts ‘OL’ from the lengths, since
all lengths will be taken as OL-modules. If p does not meet q on C2 × OL
then both the lengths are zero, so we are done. Otherwise, let Ω be the
closed point on C2 × OL where p meets q, and let α be the closed point of
C2 such that Ω lies over α.

Let u, v be local coordinates on the (three-dimensional) ambient space to
C2 at α, and let R denote the completion at (u, v) of the étale local ring of
the ambient space to C2 at α. Let B ⊂ R be the centre of the localisation
of φ at α. We have

R ∼= ÕK [[u, v]](u,v,a)

where ÕK is a maximal unramified extension of OK and a is a uniformiser
in ÕK , and that

B = (u, v, a) or B = (u, a),

depending on whether we are blowing up a point or a smooth fibral curve.
Blowups commute with flat base change, and the strict transform of a

closed subscheme under a blowup is the corresponding blowup of that closed
subscheme (see [Liu02, Corollary 8.1.17]), so we can be relaxed with our
notation. We may write

p = (u− aup, v − avp) q = (u− auq, v − avq)
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where up, vp, uq and vq are in OL · ÕK . Setting ω′ to be a uniformiser in

the maximal ideal of ÕK · OL, we have

length

(
OC2×OL
Ip + Iq

)
= min (ordω′(aup − auq), ordω′(avp − avq)) .

In the case B = (u, v, a) we look at the affine patch of the blowup given by
setting a 6= 0; the equations for p and q transform into

p′ = (u− up, v − vp) and q′ = (u− uq, v − vq),
so

length

(
OC3×OL
Ip + Iq

)
= min (ordω′(up − uq), ordω′(vp − vq))

= length

(
OC2×OL
Ip + Iq

)
− ordω′(a).

In the case B = (u, a) we look again at the affine patch of the blowup given
by setting a 6= 0; the equations for p and q transform into

p′ = (u− up, v − avp) and q′ = (u− uq, v − avq),
so

length

(
OC3×OL
Ip + Iq

)
= min (ordω′(up − uq), ordω′(avp − avq))

= length

(
OC2×OL
Ip + Iq

)
− (0 or 1) ordω′(a),

so the result follows from the fact that, since ÕK is unramified over OK , we
have

ordω′(a) = ram. deg(L · K̃/K̃) = ram.deg(L/K).

�

Proof of Lemma 10. To prove Lemma 10, we apply Lemmata 11, 14, 12 and
13 in that order to find that there exists 0 ≤ β ≤ bde log(#κ(ν)) such that∑
i,j

log

(
1

d(pi, qj)

)
=

1

m

∑
i,j

∑
Ω|ν

log(#κ(Ω)) lengthOL

(OC1×OKOL,Ω

Ip + Iq

)

=
1

m

∑
i,j

∑
Ω|ν

log(#κ(Ω)) lengthOL

(OC×OKOL,Ω

Ip + Iq

)
+ β

=
1

m
log(#κ(ω)) lengthOL

(
OC×OL
ID + IE

)
+ β

=
1

m
log(#κ(ω)) lengthOK

(
OC

ID + IE

)
· ram. deg(L/K) + β

= log(#κ(ν)) ιν (D ,E ) + β.

�

Proof of Theorem 8. Let M+ be the matrix from Lemma 9, let m− denote
the infimum of the entries of M+ and m+ their supremum. Let d, e and bν
be the integers appearing in Lemma 10. Set

Bν =
(
g2(m+ −m−) + bνde

)
log(#κ(ν)).
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Then the result follows from Lemmas 9 and 10. �

5. Archimedean absolute values

5.1. Defining metrics. As in the non-Archimedean setting, we will de-
fine a metric and compare the distance between divisors in this metric to
the local Néron pairing between the divisors (more precisely, between the
corresponding points on the Jacobian).

Definition 15. For Archimedean absolute values ν we define

dν : C(Kalg
ν )× C(Kalg

ν )→ R≥0

by

dν((xp : sp : yp), (xq : sq : yq))

= min

(
1,max

(∣∣∣∣xpsp − xq
sq

∣∣∣∣
ν

,

∣∣∣∣∣ ypsg+1
p

− yq

sg+1
q

∣∣∣∣∣
ν

)
,max

(∣∣∣∣ spxp − sq
xq

∣∣∣∣
ν

,

∣∣∣∣∣ ypxg+1
p

− yq

xg+1
q

∣∣∣∣∣
ν

))
.

Recall that the Archimedean local Néron pairing is defined in terms of
(logarithmic) Green’s functions with respect to the Arakelov metric. Such
Green’s functions are unique up to addition of scalars - in particular, the
pairing between two degree-zero divisors is well-defined. One applies the
theory of admissible metrics to give a well defined pairing between all di-
visors (not strictly necessary for our applications, but allows for simpler
notation).

Proposition 16. Fix an embedding of K into C. Let gr be a Green’s func-
tion with respect to the Arakelov 1-1 form on the Riemann surface C(C)
(defined using this embedding). Then there is a constant c ≥ 0 such that for
all pairs of distinct points p, q ∈ C(C), we have

|gr(p, q) + log dν(p, q)| ≤ c.

Proof. Let ∆ be the diagonal in the product C ×K C. The Green’s function
gr can be taken to be the logarithm of the norm of the canonical section of the
line bundle OC×C(∆) (see [MB85, 4.10] for details). We need to show that
the functions gr(−,−) and log dν(−,−) differ by a bounded amount. This
is easy: both functions are continuous outside the diagonal ∆, and exhibit
logarithmic poles along the diagonal ([MB85, 4.11]), so their difference is
bounded by a compactness argument. �

The following proposition is the Archimedean analogue of theorem 8,
except we omit the ‘explicitly computable’. This makes it much easier to
prove.

Proposition 17. Given an Archimedean absolute value ν ∈ M0
K , there

exists a constant Bν with the following property:
Let D = D1 −D2 and E = E1 − E2 be differences of reduced divisors on

C with no common points in their supports, and assume that D and E both
have degree zero. Write D =

∑
i dipi, E =

∑
j ejqj, with di, ej ∈ Z and



HEIGHTS ON HYPERELLIPTIC JACOBIANS 13

pi, qj ∈ C(C). Recall from Section 2.1 that [D,E]ν denotes the local Néron
pairing of D and E at ν. Then∣∣∣∣∣∣[D,E]ν −

∑
i,j

diej log

(
1

dν(pi, qj)

)∣∣∣∣∣∣ ≤ Bν .

We call such a constant Bν a height-difference bound at ν.

Proof. This follows immediately from the definition of the Néron local pair-
ing and proposition 16. �

The key result is now:

Theorem 18. There exists an algorithm which, given an Archimedean place
ν, will compute a height difference bound Bν at ν.

The author is aware of at least 2 proofs of this result. The first was
given in [Hol12b]; it begins by analysing the case were the points in the
support of D and E are not too close together using an explicit formula
from [Hol12a] for the Green’s function in terms of theta functions, together
with explicit bounds on the derivatives of theta functions. The case where
some points in the support are close together is handled by a ‘hands-on’
computation of how the Green’s function and theta functions behave under
linear equivalence of divisors. The proof occupies 33 pages. The second proof
was given in a previous version of this paper [Hol12c]; it uses Merkl’s theorem
[CE+11], and requires 13 pages. The problem with these approaches is that
they will be hard to implement, and more importantly will give extremely
large bounds - with Merkl’s theorem terms like exp(4800g2) appear in the
difference between the exponential heights, making this entirely impractical
for calculations. Problems with methods coming from numerical analysis
are discussed in the introduction.

What is needed is an algorithm which is practical to implement and gives
small, rigorous bounds. It seems that at the time of writing no such algo-
rithm is known. Since the existing algorithms are lengthy to write down and
have no practical application (due to the size of the bounds they produce),
we will not describe them in detail here.

6. The first näıve height

Assumption 19. In this section we will for the first time require that
#M∞K ≤ 1 (so charK > 0 or K = Q). We also assume that the curve
C has a rational Weierstrass point, and we move a rational Weierstrass
point of C to lie over s = 0, so that the affine equation for C has degree
2g + 1. We denote this point by ∞. We further assume that there is no
Weierstrass point d with Xd = 0. None of these assumptions are essential,
but they simplify the exposition.

Remark 20. The assumption that #M∞K ≤ 1 is to ensure the existence of
divisors E and E′ in the next definition. To treat the general case, one may
have to use several pairs of divisors E and E′, one for each Archimedean
place of K. The comparisons of the heights will then become more involved.
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Definition 21. If K has positive characteristic, set µ = 1. Otherwise,
let µ := 1

3 minw,w′ dν(w,w′) where the minimum is over pairs of distinct
Weierstrass points of C, and ν is the Archimedean absolute value.

Given a rational point p of the Jacobian JacC of C, write p = [D −
deg(D)∞] where D is a reduced divisor on C such that the coefficient of
∞ in D is zero (such a D is unique). If the support of D contains any
Weierstrass points, replace D by the divisor obtained by subtracting them
off. Let d denote the degree of the resulting divisor D.

Choose once and for all a pair of degree-d effective divisors E and E′ with
disjoint support, supported on Weierstrass points away from ∞, such that
no point in the support of D is within Archimedean distance µ of any point
in the support of E or E′. The existence of such divisors is clear since there
are 2g+1 Weierstrass points away from ∞ and reduced divisors have degree
g.

Let D− denote the image of D under the hyperelliptic involution. Let L/K
denote the minimal field extension over which D, E and E′ are pointwise
rational. Over L, we write D =

∑
i di, E =

∑
i q

1
i and E′ =

∑
i q

2
i . Given

an absolute value ν of L, define

dν(D − E,D− − E′) :=
∏
i,j

dν(pi, p
−
j )dν(q1

i , q
2
j )

dν(pi, q2
i )dν(p−i , q

1
i )
.

Define the height Hn : JacC(K)→ R≥1 by

Hn(p) =

 ∏
ν∈ML

1

dν(D − E,D− − E′)

 1
[L:K]

.

Note that that dν(D − E,D− − E′) = 1 for all but finitely many absolute
values ν, and so the product is finite. We define a logarithmic näıve height
by hn(p) = log(Hn(p)).

Theorem 22 (Faltings, Hriljac). Let D1 and D2 be two divisors of degree
zero on C with disjoint support. Suppose D1 is linearly equivalent do D2,
and write [D1] = [D2] for the point they define in the Jacobian of C. Then∑

ν∈MK

[D1, D2]ν = −ĥ([D1])

where ĥ denotes the Néron-Tate height function.

Proof. See [Fal84] or [Hri83] for the case where K is a number field. The
same proof works when K is a global field as has been remarked by number
of authors, see e.g. [Mue13]. �

Theorem 23. There exists a computable constant δ1 ≥ 0 such that for all
p ∈ JacC(K) we have ∣∣∣ĥ(p)− hn(p)

∣∣∣ ≤ δ1.

Proof. For each absolute value ν of K, let Bν be the real number defined in
Theorem 8 for ν non-Archimedean, and in Proposition 17 for ν Archimedean.
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Note that Bν = 0 for ν a non-Archimedean absolute value of good reduction
for C. Define

δ1 :=
∑
ν∈MK

Bν .

Let D, D−, E, E′ be the divisors associated to p as in Definition 21. Then
by Theorem 8 and Proposition 17 we have that∣∣∣∣∣∣

∑
ν∈MK

[D − E,D− − E′]ν − hn(p)

∣∣∣∣∣∣ ≤ δ1.

Write [D − E] = −[D− − E′]− τ , for some 2-torsion point τ . By Theorem
22 and the biadditivity of the local Néron pairing, we have that

ĥ([D − E]) =
∑
ν∈MK

−[D − E,D − E]ν

=
∑
ν∈MK

[D − E, (D− − E′) + τ ]ν

=
∑
ν∈MK

[D − E,D− − E′]ν +
∑
ν∈MK

[D − E, τ ]ν

=
∑
ν∈MK

[D − E,D− − E′]ν ,

since τ is torsion. Finally, since (as points in the Jacobian of C) [D − E]
and p differ by translation by another 2-torsion point (we subtracted off

some Weierstrass points when defining the divisor D), we see that ĥ(p) =

ĥ([D − E]), and we are done. �

7. Refined näıve heights

We define two new näıve heights which are each in turn simpler to com-
pute, and we bound their difference from the Néron-Tate height. We will be
able to compute the finite sets of points of bounded height with respect to
the last of these heights.

Definition 24. Given p ∈ A(K), let D =
∑d

i=1 pi denote the corresponding
divisor over some finite L/K as in Definition 21, and write pi = (Xpi , Ypi).
Then set

h♥(p) =
d∑
i=1

h(Xpi),

(where h is the usual height on an element of a global field) and set

h†(p) = h

(
d∏
i=1

(X −Xpi)

)
,

where the right hand side is the height of a polynomial, which by definition
is the height of the point in projective space whose coordinates are given by
its coefficients.

We will give computable upper bounds on h♥−hn and on
∣∣h♥−h†

∣∣.
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Lemma 25. There exist computable constants 0 < δ2 < δ3 such that for all
non-Weistrass points p = (x : s : y) ∈ C(Kalg), and for all Archimedean
absolute values ν ∈M∞K on K with their unique extensions to Kalg, we have

δ2 ≤ dν(p, p−)/(2 min(|Y |ν ,
∣∣Y ′∣∣

ν
)) ≤ δ3,

where as usual we write Y = y/sg+1 and Y ′ = y/xg+1.

Proof. Fix an Archimedean absolute value ν. Recall that dν is the metric
defined in 15. A brief calculation shows that

dν(p, p−)

(2 min(|Y |ν , |Y ′|ν))
= min

(
1,

1

min(|Y |ν , |Y ′|ν)

)
.

Recall that C is given by

y2 =

2g+2∑
i=1

fix
is2g+2−i,

and set a =
√∑

i |fi|ν . Then |x/s|ν ≤ 1 implies |Y |ν ≤ a and |s/x|ν ≤ 1
implies |Y ′|ν ≤ a, so we find

1

2a
≤ dν(p, p−)

(2 min(|Y |ν , |Y ′|ν))
≤ 1.

�

Definition 26. Let L/K be a finite extension, and let p 6= q ∈ C(L) be
distinct points. Set

〈p, q〉L =
−1

[L : K]
log

∏
ν∈ML

dν(p, q).

Lemma 27. There exists a computable constant δ4 with the following prop-
erty:

let L/K be a finite extension, and let p = (x : s : y) ∈ C(L) be a non-
Weierstrass point. Then∣∣〈p, p−〉

L
− (g + 1) h(x/s)

∣∣ ≤ δ4

Proof. For |−|ν non-Archimedean, we have that if |x|ν ≤ |sν | then dν(p, p−) =∣∣2y/sg+1
∣∣
ν
, and if |s|ν ≤ |x|ν then dν(p, p−) =

∣∣2y/xg+1
∣∣
ν
. Hence for non-

Archimedean ν we obtain

dν(p, p−) = |2y|ν min(1/ |x|g+1
ν , 1/ |s|g+1

ν ).

By Lemma 25, for Archimedean ν we have computable 0 < δ2 < δ3 such
that

δ2 < dν(p, p−)/min(
∣∣2y/xg+1

∣∣
ν
,
∣∣2y/sg+1

∣∣
ν
) < δ3.

Hence∏
ν∈M∞

L

1/δ3 ≤
∏
ν∈ML

1/dν(p, p−)∏
ν∈ML

|2y|−1
ν

∏
ν∈ML

max(|x|ν , |s|ν)g+1
≤

∏
ν∈M∞

L

1/δ2.
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Now
∏
ν∈M∞

L
δ2
−1/[L:K] is bounded uniformly in L, and similarly for δ3.

Finally, note ∏
ν∈ML

|2y|−1
ν

 ∏
ν∈ML

max(|x|ν , |s|ν)

g+1

= H(x/s)[L:K](g+1).

�

Definition 28. Let ν ∈MK . We write |−|ν for the unique extension of |−|ν
to the algebraic closure of Kν . For each non-Archimedean absolute value ν
of K, we define λν to be the smallest real number ≥ 1 such that the following
conditions hold.

• For all Weierstrass points d ∈ W with d 6= ∞, we have 1/λν ≤
|Xd|ν ≤ λν (c.f. Assumption 19).
• For all pairs of Weierstrass points d, d′ ∈ W \ {∞} with d 6= d′ we

have 1/λν ≤ |Xd −Xd′ |ν ≤ λν .
• We have 1/λν ≤ |f2g+1|ν ≤ λν , where f2g+1 is the leading coefficient

of the defining polynomial f of the curve C.

Note that λν = 1 for all but finitely many absolute values ν. We define
λν = 1 for all Archimedean absolute values ν, and set

δ5 = (2g + 3/2)
∑
ν∈MK

log λν .

Lemma 29. Let L/K be a finite extension, and let p, d ∈ C(L) with p 6= d
be such that sp 6= 0 and d is a Weierstrass point with sd 6= 0. Then

−
∑
ν∈M0

L

log dν(p, d) ≤ [L : K]

(
1

2
h(Xp −Xd) + δ5

)
.

Proof. The right hand side naturally decomposes as∑
ν∈ML

(
1

2
log+ |Xp −Xd|−1

ν + (4g + 3) log λν′

)
,

where ν ′ is the absolute value on K which extends to ν. Now it is clear that∑
ν∈M∞

L

1

2
log+ |Xp −Xd|−1

ν ≥ 0,

so it suffices to prove that for each non-Archimedean ν we have

− log(dν(p, d)) ≤ 1

2
log+ |Xp −Xd|−1

ν + (4g + 3) log λν′ ,

or equivalently that (at this point we drop the subscript ν from the norm)

(1) dν(p, d)2 ≥ min(|Xp −Xd| , 1)/λ4g+3.

The proof of this inequality falls into a number of cases depending on the
valuations of Xp, Xd etc. We will only give the details of the case

1 < |Xd| , 1 < |Xp| ≤ λ.
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In this case, we have

dν(p, d)2 = |Xp −Xd|max

(
|Xp −Xd|
|Xp|2 |Xd|2

,
|f2g+1|

∏
d′∈W\{d,∞} |Xp −Xd′ |
|Xp|2g+2

)

≥ |Xp −Xd|
λ2g+2

max

|Xp −Xd| , |f2g+1|
∏

d′∈W\{d,∞}

|Xp −Xd′ |

 .

Now suppose that |Xp −Xd| < λ and

|f2g+1|
∏

d′∈W\{d,∞}

|Xp −Xd′ | < 1/λ2g+1.

Then there exists d0 ∈ W \ {d,∞} such that |Xd0 −Xp| < 1/λ, so by the
strong triangle inequality we have

|Xd −Xd0 | ≤ max(|Xd −Xp| , |Xp −Xd0 |) < 1/λ,

a contradiction. Hence

max

|Xp −Xd| , |f2g+1|
∏

d′∈W\{d,∞}

|Xp −Xd′ |

 ≥ 1/λ2g+1,

and Equation (1) follows. �

Lemma 30. Let L/K be a finite extension, and let H denote the usual expo-
nential height on L. Let X1, X2 ∈ L. Then H(X1+X2) ≤ 2# M∞

K H(X1) H(X2).

Proof. Omitted. �

Lemma 31. There exists a computable constant δ6 with the following prop-
erty.

Let L/K be a finite extension, and let p, d ∈ C(L) such that sp 6= 0 and
d is a Weierstrass point with sd 6= 0. Suppose also that dν(p, d) ≥ µ for all
Archimedean ν (where µ is the constant from Definition 21). Then

〈p, d〉L ≤
1

2
h(Xp) + δ6.

Proof. From Lemma 29 we see that

〈p, d〉L ≤
1

2
h(Xp −Xd) + δ5 − log(µ).

Now by Lemma 30, we have

h(Xp −Xd) ≤ h(Xp) + h(Xd) + #M∞K log(2).

We define

δ6(d) = − log(µ) +
1

2
h(Xd) +

#M∞K
2

log(2) + δ5.

Then we find that for all L and p as in the statement, we have

〈p, d〉L ≤
1

2
h(Xp) + δ6(d).

Finally, there are only finitely may Weierstrass points, so setting δ6 =
maxd δ6(d), we are done. �
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Lemma 32. There exists a computable constant δ7 such that the following
holds.

Given p ∈ A(K), let D, E and E′ denote the divisors given in Definition
21. Let L/K be the minimal finite extension such that D, E and E′ are all
pointwise rational over L. We write

D =
d∑
i=1

pi , E =
d∑
i=1

qi , E′ =
d∑
i=1

q′i.

Then

hn(p) ≥
d∑
i=1

〈pi, p−i 〉L − d∑
j=1

〈pi, qj〉L −
d∑
j=1

〈
pi, q

′
j

〉
L

+ δ7,

where p−i is the image of pi under the hyperelliptic involution.

Proof. Recall that

hn(p) =
d∑

i,j=1

〈
pi, p

−
j

〉
L

+
d∑

i,j=1

〈
qi, q

′
j

〉
L
−

d∑
i,j=1

〈pi, qj〉L −
d∑

i,j=1

〈
p−i , q

′
j

〉
L
.

Since the qi and q′i are distinct Weierstrass points we easily bound
∑d

i,j=1

〈
qi, q

′
j

〉
L

.

It remains to find a lower bound on the terms
〈
pi, p

−
j

〉
. Note that dν is

bounded above by 1 for all ν, hence
〈
pi, p

−
j

〉
≥ 0. �

Lemma 33. There exists a computable constant δ8 such that in the setup
of Lemma 32 we have

hn(p) ≥
d∑
i=1

h(Xpi) + δ8.

Proof. In Lemma 32 we showed

hn(p) ≥
d∑
i=1

〈pi, p−i 〉L − d∑
j=1

〈pi, qj〉L −
d∑
j=1

〈
pi, q

′
j

〉
L

+ δ7.

In Lemma 27 we showed (using that the pi are never Weierstrass points)
that for some computable δ4 we have∣∣〈pi, p−i 〉L − (g + 1) h(Xpi)

∣∣ ≤ δ4.

In Lemma 31 we showed that

〈pi, qj〉L ≤
1

2
h(Xpi) + δ6,

and similarly for q′j .
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Combining these, we see using d ≤ g that for each i〈
pi, p

−
i

〉
L
−

d∑
j=1

〈pi, qj〉L −
d∑
j=1

〈
pi, q

′
j

〉
L
≥ (g + 1) h(Xpi)− 2

d∑
j=1

1

2
h(Xpi)− δ4 + 2dδ6

= ((g + 1)− 2d
1

2
) h(Xpi)− δ4 + 2dδ6

≥ h(Xpi)− δ4 + 2dδ6.

from which the result follows. �

Theorem 34. There exists a computable constant δ9 such that for all p ∈
A(K) we have

ĥ(p) + δ9 ≥ h♥(p).

Proof. Set δ9 = δ1 + δ8. The result follows from Theorem 23 and Lemma
33. �

Lemma 35. Fix a finite extension L/K. Given a1, . . . , an ∈ L, set ψn =∏n
i=1(t− ai) ∈ L[t]. If charK > 0 then h(ψn) =

∑n
i=1 h(ai), otherwise∣∣∣∣∣h(ψn)−

n∑
i=1

h(ai)

∣∣∣∣∣ ≤ n log 2

We summarise this by writing∣∣∣∣∣h(ψn)−
n∑
i=1

h(ai)

∣∣∣∣∣ ≤ (n log 2)δcharK

Proof. [Sil09, Theorem VIII.5.9] �

Corollary 36. For all p ∈ A(K) we have∣∣∣h♥(p)− h†(p)
∣∣∣ ≤ (g log 2)δcharK .

Definition 37. Given a real number B, we define

M̂(B) := {p ∈ A(K)|ĥ(p) ≤ B}
and

M †(B) := {p ∈ A(K)| h†(p) ≤ B}.

The main result of this paper is the following.

Corollary 38. Let B ∈ R. Let B′ = B + δ9 + (g log 2)δcharK . Then for all
real numbers B we have

M̂(B) ⊂M †
(
B′
)
.

Moreover, the finite set M †(B′) is computable, and hence by results in

[Hol12a] so is the finite set M̂(B).

Proof. The inclusion follows from the results above. We describe one algo-
rithm to compute M †(B).

1) Let S be the finite set of all polynomials
∏d
i=1(X − ai), for d ≤ g, of

height up to B.
2) It suffices to determine for each a ∈ S whether a is the ‘x-coordinate

polynomial’ of a divisor in Mumford representation; in other words, whether
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there exists another univariate polynomial b such that (a, b) satisfy the prop-
erties of a Mumford representation. This corresponds to checking whether
the polynomial f − a2 has a factor of degree less that deg a, which is widely
implemented. �

8. A worked example

Given a prime number p, we fix a proper multi-set of absolute values
MFp(t) by requiring it to contain exactly once the unique |−|t such that

|t|t = p−1. We begin by bounding the difference between the first and final
näıve heights for a certain infinite family of curves. First we define the
infinite family:

Definition 39. Fix an integer g > 0. Let p be a prime number not dividing
2(2g + 1), and let K = Fp(t). Let C denote the hyperelliptic curve given by
affine equation

y2 = x2g+1 + t.

Proposition 40. For all points q ∈ JacC(K), we have

hn(q) +
g(8g2 + 15g + 4) log p

2g + 1
≥ h♥(q) = h†(q).

Proof. We will need to compute various heights and valuations of elements
of K and extensions. Fix a primitive (2g + 1)-th root ζ of 1 in Kalg. Write
f = x2g+1 + t, and write α0, · · · , α2g for the roots in Kalg of f , ordered such
that αn = α0ζ

n. For all absolute values ν ∈ MK , we have |ζ|ν = 1 and
hence for all n we have

|αn|ν = |α0|ν = |t|1/2g+1
ν .

Now |t|t = p−1 and |t|1/t = p, and |t|ν = 1 for all other ν ∈ MK . From

this we deduce that h(t) = log p and for all n that h(αn) = (log p)/(2g+ 1).
Noting that αn − αm = α0(ζn − ζm), we have for all n 6= m and ν ∈ MK

that |αn − αm|ν = |α0|ν . From this we deduce that for all pairs of distinct
Weierstrass points di 6= dj , we have

〈di, dj〉L =
2 log p

2g + 1
,

independent of the field L.
Since K has no Archimedean absolute values we immediately see that we

may take δ2 = δ3 = δ4 = 0. We have λν = 1 for all ν apart from ν = (t) and

ν = (1/t), where we have λν = p1/2g+1. From this we see

δ5 =
(4g + 3) log p

2g + 1
.

We have

δ6 =
1

2
max
n

h(αn) + δ5 =
log p

4g + 2
+

(4g + 3) log p

2g + 1
,

and since ∑
d6=d′

〈
d, d′

〉
L

= 4g log p
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(the sum is over distinct points d, d′ in W \ {∞}) we may take

δ7 = 4g log p.

Finally we see δ8 = 2g2δ6 + δ7, and the result follows. �

Finally, for three members of this family of curves, we will bound the dif-
ference between the Néron-Tate height and the näıve heights. This requires
constructing a regular model of the curve, which we do in MAGMA using Steve
Donnelly’s ‘regular models’ function. First we give two examples with small
genus over small fields, to illustrate the sizes of the bounds, and then we give
an example in higher genus, to illustrate that the method to find bounds
remains practical.

Theorem 41. Let p = 3 and g = 2, and let C be as in (39). Then for all
points q ∈ JacC(K), we have

ĥ(q) + 108 log 3 ≥ h♥(q) = h†(q).

Let p = 5 and g = 4, and let C be as in (39). Then for all points
q ∈ JacC(K), we have

ĥ(q) + 667 log 5 ≥ h♥(q) = h†(q).

Let p = 101 and g = 11, and let C be as in (39). Then for all points
q ∈ JacC(K), we have

ĥ(q) + 11820 log 101 ≥ h♥(q) = h†(q).

Proof. We give details for the genus 11 example, the others are similar.
Applying Proposition 40, it is enough to compute the constants Bν from
Theorem 8. The model given by

uy2 = usx2g+1 + ts2g+2

in weighted projective space P(1, 1, g + 1) over BK is regular except over
u = 0, and moreover all fibres outside u = 0 are irreducible. Hence Bν = 0
whenever ν does not correspond to the prime (u).

Next we use MAGMA to compute the regular model of C over (u). We
rearrange the equation

uy2 = ux23 + 1

to ỹ2 = ux̃23 + u23, absorbing u into x̃ and ug+1 into ỹ (this process is
equivalent to performing g + 2 = 13 blowups). Now the equation is of a
form where we can plug it into MAGMA, which yields a regular model after
68 blowups, so 81 = 68 + 13 blowups were used in total (32 are needed in
the genus 4 case, 18 in genus 2). We have made no attempt to count the
longest chain of blowups, we just know the total number of blowups used;
it would not be hard to improve this. This regular model has 49 irreducible
components in its special fibre (21 in the genus 4 case, 13 in genus 2), and
the Moore-Penrose pesudo-inverse of its 49 × 49 intersection matrix has
maximum entry 4.102 · · · and minimum entry −8.076 · · · . As a result, we
find that

B(u) = (g2(4.102 · · ·+ 8.076 · · · ) + 81g2) log 101

= 11274.6 · · · log 101.
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MAGMA code for performing this computation can be obtained by downloading
the source files for this paper (arXiv version).

Proposition 40 yields a bound of

11(8(112) + 15 · 11 + 4)

23
= 543.78 · · ·

from which the result follows. �

Remark 42. The computations for Theorem 41 took under 10 seconds to
perform (and could have been done by hand with reasonable patience for
genus 2). It is clear that, with the methods developed in this paper, the
bottleneck is now searching for points of bounded näıve height, not finding
a bound. As such, it would be very useful to improve the bounds given in
these examples, but there seems little point in speeding up the algorithm to
compute the bounds.
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