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1.1 Cardiovascular system 

The cardiovascular system is a blood distribution network which consists of the 
heart, blood vessels, and blood. The heart is about the size of a closed fist and 
functions as the body’s circulatory pump which takes in deoxygenated blood returned 
from the body and delivers it to the lungs to release carbon dioxide and absorb oxygen 
before pumping it into the artery network. On average, the heart beats 70 times per 
minute and even at rest, the heart can easily pump over 7 ton of blood throughout the 
body every day. Blood vessels transport blood from the heart to all body tissue and 
back again quickly and efficiently. There are three major types of blood vessels: the 
arteries, which carry blood away from the heart; the capillaries, where the actual 
exchange of gases, nutrients, and waste products between the blood and the tissues 
takes place; and the veins, which carry blood back to the heart. All vessels contain a 
hollow area called the lumen through which blood can flow and the lumen size 
corresponds with the amount of blood that can pass through it. Blood is composed of 
blood cells suspended in plasma. On average, an adult has about 5 liters of blood. The 
main function of blood is to deliver substances like nutrients, wastes, hormones and 
gases which not only help to maintain the body’s homeostasis, but also play major 
roles in the body’s defense against infection [1, 2]. 

1.2 Coronary circulation 

The heart powers the whole cardiovascular system [3] while the blood transported 
to the myocardium is delivered by the coronary circulation in which the left and right 
coronary arteries branch off from the aorta and deliver oxygen-rich blood to the left 
and right sides of the heart. The deoxygenated blood from the heart muscle is returned 
to the vena cava by the coronary sinus. Figure 1 shows part of the cardiovascular 
system near the heart including the coronary circulation system. Only when healthy, 
these arteries are capable of autoregulation to maintain coronary blood flow at levels 
that appropriate to the heart muscle demands. Since the coronary circulation is the 
only source of blood supply to the myocardium and it contains little redundant blood 
supply, the ischemia caused by coronary vessel narrowing or blockage could be fatal 
[4]. 

1.3 Coronary artery disease 

Coronary artery disease (CAD), which causes coronary heart disease (CHD), is the 
number one cause of death in the developed countries and a major cardiovascular 
disease in the rest of the world. Healthy arteries are elastic and smooth, but when CAD 
occurs, mixtures of cholesterol, inflammatory cells, lipoprotein and calcium, called 
plaques, start to deposit under the intima. The artery walls become thick and rigid 
while plaques release chemicals to promote the healing. In addition, plaques slowly 
build up and narrow the coronary arteries so that the blood flow to the myocardium 
becomes insufficient as Figure 2 presented. On the other hand, the ischemia can occur 
acutely as a sudden rupture of vulnerable plaques or thrombi can immediately reduce 
or even totally block the blood supply to heart or other organs. The traditional risk 
factors for CAD are high level of low-density lipoprotein (LDL) cholesterol, low level of 
high-density lipoprotein (HDL) cholesterol, high blood pressure, family history, 
diabetes, smoking, being older than 55 for women and being older than 45 for men. 
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High stress, lack of physical activity and obesity are also suspicious risk factors [5]. 
Without proper treatment, CAD will weaken the heart muscle and lead to arrhythmias, 
heart attack, heart failure and stroke. 

 

Figure 1-1. Part of the cardiovascular system near the heart including four heart 
chambers, main arteries and veins are labelled in blue text. On the heart, the coronary 
vessels are labelled in red text. (Source: http://en.Wikipedia.org/wiki/ File:Coronary_ 
arteries.png) 

 

Figure 1-2. Coronary artery disease is caused by plaques build up in the coronary 
artery. Plaques can rupture and cause blood clots which block the supply of blood and 
oxygen to the heart. A blockage that is not treated properly will cause the affected heart 
muscle to die. (Source: http://www.nlm.nih.gov/medlineplus/ magazine/issues/ 
winter09/articles/winter09pg25-27.html) 
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1.4 CAD treatment  

CAD cannot be fully cured, but in most of the cases, proper treatments are able to 
relieve the symptoms like chest pain and lower the risk of death. There are three main 
strategies of treatment: lifestyle changes, medications and medical interventions.  

A healthy lifestyle including weight control, smoking cessation, physical exercise 
and healthy diet can be a preventive measure to delay or even prevent the 
atherosclerosis development which usually takes many years and could have no sign 
at all in the beginning. Patients with CAD can also benefit from the healthy lifestyle as 
it reduces the risk of further episodes and there is hope that CAD can be regressed 
before it causes serious CHD. 

When lifestyle changes are insufficient, many different types of medications can be 
used to treat CAD. Antiplatelet drugs, such as aspirin, can keep platelets in the blood 
from sticking together. Anticoagulants are another class of drugs that prevent blood 
from clotting. Cholesterol-modifying drugs, like statins, decrease the level of LDL 
cholesterol which is one of the primary materials of plaques. Calcium channel 
blockers are used to decrease blood pressure, alter heart rate and alleviate chest pain. 
Beta blockers can reduce the oxygen request of myocardium by lowering the heart rate 
and blood pressure. On the other hand, Nitroglycerin can relax coronary arteries to 
increase the blood supply. Medications may help patients to delay or even avoid the 
demands of medical surgery. However, medications usually have side effects and are 
limited when facing severe CAD situations.  

Medical interventions are required when lifestyle changes and medications do not 
work sufficiently. Coronary surgery and percutaneous coronary intervention (PCI) are 
the two primary means of revascularization. Coronary artery bypass graft (CABG) 
surgery was first introduced in 1960 and the idea is grafting healthy arteries or veins 
from other parts of the body to the narrowed coronary arteries. The grafted vessel 
bypasses atherosclerotic narrowing and creates a new path for blood flow to the heart 
muscle. CABG is particularly suitable for situations like the left main coronary artery 
blockage, multiple artery narrowings and poor heart function, but also has risks as any 
type of surgery. 

PCI is a class of nonsurgical procedures that utilize coronary catheterization to 
open narrowed or even blocked coronary arteries, which serves as a chance for non-
surgical candidates [6]. Coronary catheterization accesses the coronary circulation 
and blood filled chambers of the heart using a catheter for both diagnostic and 
interventional (treatment) purposes. During the catheterization, a guide wire is 
inserted into a big vessel in the arm or groin through a needle, and threaded to the 
heart under the guidance of a special x-ray imaging system. It helps doctor position 
catheters correctly. Next, the needle is replaced by a tapered tube called sheath. 
Through the sheath, a hollow guiding catheter is slid over the guide wire to the target 
region and then the guide wire can be removed. After the catheter reaches the right 
spot, diagnostic tests or treatments on the heart can be applied through it. For PCI 
treatment, a second guide wire is threaded through the guide catheter and passes the 
vessel blockage. It assists another catheter with a balloon on the end (balloon catheter) 
through the guide catheter to the narrowed region. Once in place, the balloon is 
inflated with a high pressure to push the plaque against the artery wall, relieving the 
blockage and restoring blood flow. Next, the balloon is deflated and withdrawn 
together with the catheter, guide wire and sheath. Unless the artery is too small, a 
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medical device called stent can be implanted during the PCI. A coronary stent is a tiny 
tube-like mesh that is used to support the narrowed vessel wall and keep the lumen 
open during the follow up. When implanting, a stent is constrained on a deflated 
balloon and delivered to the narrowed region during or after the balloon angioplasty. 
While the balloon is expanding, the stent is opened to support the vessel wall (Figure 
3). In addition, there are also self-expanding stents. An introduction of stent is given in 
the next section. The advantages of PCI relative to CABG include less procedure time, 
ease of use, no general anesthesia, faster patient recovery and decreased systemic 
complications. Commonly, PCI is the first choice for stable as well as unstable CAD 
patients and it may delay or eliminate the future need for coronary artery bypass 
surgery [7-9].  

 

Figure 1-3. Stenting for coronary artery disease. First, the stent restricted on a deflated 
balloon is threaded to the narrowing of the vessel. The balloon is inflated to press 
plaques against the vessel wall and open the stent at the same time. The balloon is 
deflated and removed, leaving the stent to keep the lumen open. (Source: 
http://www.themedschoolproject.com/2012/02/valentines-day-special-way-to-mans. 
html)  

1.5 Coronary stent 

1.5.1 Bare metal stents 

The PCI procedure, which was pioneered by Grüntzig in 1977, has become the 
most frequently performed therapeutic procedure in medicine [10]. The coronary 
balloon angioplasty was a breakthrough in treating CAD and quickly accepted 
worldwide. However, unpredictable risks of acute vessel closure caused by occlusive 
coronary dissection became evident. Sometimes, an emergency CABG surgery is 
required to save the patient. Besides, in up to one third of cases, too much tissue grows 
within the treated portion of the artery which re-narrows or even blocks the artery 
during the follow-up [11]. It is called late restenosis and mainly caused by constrictive 
remodeling [12, 13], elastic recoil [14] or the neointimal hyperplastic healing response 
[14, 15]. Although the luminal enlargement could be performed many times, it costs 
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more and does not eliminate the risks. These problems diminished the value of 
balloon angioplasty.  

After a series of trial tests [16, 17], bare metal stents (BMS) were heralded as the 
second revolution in interventional cardiology to overcome the disadvantages of 
balloon angioplasty [11]. It provides a solution to acute vessel closure by moving 
intimal and medial flaps away from the lumen and maintaining radial support to 
prevent elastic recoil. The rate of sub-acute occlusion was successfully reduced to 1.5% 
so that emergency bypass surgery becomes a rare occurrence during the PCI. 
Furthermore, the late restenosis rate was significantly decreased by more than 10% 
[17]. By 1999, angioplasty paired with coronary stent implantation comprised 84.2% of 
all PCI procedures [18].  

1.5.2 Drug-eluting stent 

Despite the tremendous success in preventing the acute recoil and post-injury 
arterial shrinkage associated with balloon angioplasty, BMS still has a high restenosis 
rate of 22% during the follow up. As the implanted stents are foreign objects, they 
increase the risk of sub-acute thrombosis and late in-stent neointimal hyperplasia. 
The neointimal hyperplasia inside the stent was even more prominent than with 
balloon angioplasty, necessitating repeat treatment in numerous patients [19].  

To reduce the in-stent neointimal hyperplasia, drug-eluting stents (DES) were 
invented. A drug-eluting stent consists of three components: a metallic stent as the 
platform, a polymer layer covering the stent as the carrier and some antiproliferative 
medicines as the agent. The medicines are slowly and continuously released into the 
artery to prevent it from becoming blocked again. Large trials have proved that the in-
stent restenosis rate dropped greatly, but the increased risk of late stent malapposition 
and late stent thrombosis became evident [10].   

1.5.3 Bioresorbable vascular scaffold 

Metallic stents, including BMS and DES, are both permanent devices. As they 
caged the vessel, late luminal enlargement and advanced vascular remodeling could 
no longer occur. To solve their problems, the principle of temporary vascular scaffold, 
called bioresorbable vascular scaffold (BVS) was put forward (Figure 4). A BVS should 
provide a solid support to the vessel wall after the implantation to prevent acute vessel 
closure and recoil and persistently release antiproliferative medicines to prevent the 
restenosis. After restoring the artery, the scaffold will be fully degraded or resorbed 
during the follow-up. In the end, a BVS leaves no foreign object in the vessel but all 
future options open for the patient. Current trials showed that BVS has a better 
outcome in many fields than metallic stents [20, 21]. This nascent technology is 
evolving rapidly and more research and trials are ongoing for validation and 
improvement.  
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Figure 1-4. A comparison of a bioresorbable vascular scaffold (A) and a drug-eluting 
stent (B) (Source: http://interventions.onlinejacc.org/article.aspx?articleid= 1112042)  

1.5.4 Stent design 

Over the years, stent designs including pattern, material, coating and tissue-metal 
interface have been developed in addition to accompanying drug treatments. 
Although none of the current designs of coronary stents are ideal, constant research 
and improvement are being made especially with respect to homogeneous 
distribution of force, ease of placement, stability and conformability [22]. For example, 
the stent cell pattern affects the ability of vessel wall support. Small cells usually have 
better support but they can lower the side branch access through them.   

1.6 Invasive imaging techniques 

Symptoms of CAD, like chest pain, shortness of breath, palpitations and even 
fatigue, can be used for diagnosis. However, to diagnose and evaluate the CAD 
accurately, medical imaging techniques are necessary. For the past fifty years, 
sophisticated research of imaging the heart and vascular vessels has been studied 
enormously. Two main strategies of imaging techniques have been investigated: 
invasive imaging, such as coronary angiography, intravascular ultrasound (IVUS) and 
intravascular optical coherence tomography (IVOCT) and noninvasive imaging, such 
as computed tomography (CT), magnetic resonance imaging (MRI), x-ray and 
echocardiography. In the beginning, noninvasive methods were most preferred as 
they are safe and cheap. After the increased understanding of coronary artery diseases, 
the limitation of noninvasive methods became evident as they do not have sufficient 
resolution and penetration to give a detailed description of small structures, for 
example atherosclerosis, specifically vulnerable plaque with thin cap, the neointimal 
thickness and tissue coverage of struts. Nowadays, invasive imaging methods have 
become dominant for CAD diagnosis and treatment guidance.  

1.6.1 Coronary angiography 

Coronary angiography, since the 1960s, has been one of the most matured invasive 
imaging techniques for artery blockage diagnosis, evaluation and treatment. It is a 
modality that utilizes special x-ray and harmless dye (contrast) to show the insides of 
arteries. Similar as the PCI procedures, it is applied using the cardiac catheterization 
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procedure. Once the catheter is properly placed, the contrast will be injected through 
the catheter and released into the bloodstream. The mixture flows through the 
coronary arteries, making the lumen visible in the x-ray images. Due to the volume of 
the mixture, the vessel lumen size can be appreciated so that when a plaque has built-
up inside an artery, a narrowed or restricted blood flow can be visualized. If the 
angiography reveals a blocked artery, a PCI procedure could be applied to restore 
blood flow instantly and the contrast will be injected again to assess the treatment 
outcome. 

Coronary angiography is the traditional way of imaging during diagnostic and 
interventional coronary procedures as it can easily provide an accurate real-time 
illustration. The images can support accurate and highly reproducible measurements 
for clinical decision-making and research to estimate the regression and progression 
of coronary obstructions, particularly the lumen size, for the PCI outcome assessment 
[23]. However, coronary angiography loses accuracy in the presence of vessel 
superposition or foreshortening. Furthermore, only the lumen of the vessel is 
visualized by x-ray angiography, while the information about the vessel wall and 
plaque is absent. Therefore, it only has limited ability to characterize tissue and 
plaques beyond the detection of dissections and very advanced plaques with extensive 
calcification in the vessel wall. Thus, there are some scenarios in which 
complementary information is required besides the coronary angiography. 

1.6.2 IVUS 

IVUS imaging is a sound-based technique for visualizing arterial structure. A 
catheter with a high frequency ultrasound transducer mounted on the tip is threaded 
to the target vessel region by using cardiac catheterization. Because circulating blood 
is an excellent medium for transmission of ultrasound waves, the ultrasound 
transducer can emit a beam of ultrasound to the vessel tissue and receive the echo 
signal to acquire two-dimensional (2D) cross-sectional images of coronary arteries. 
The catheter is pulled back through the target region to generate real-time three-
dimensional (3D) images and the images are recorded on the fast external storage for 
future analysis. 

The frequency of ultrasound used in IVUS has a typical range of 20 - 40 MHz. The 
higher frequency of the signal results in the higher resolution of the images, but the 
lower penetration depth of tissue. Current IVUS imaging systems have a resolution of 
100 – 250 μm. IVUS not only has the advantage of accurate determination of luminal 
dimensions of vessels, but also has the potential to assess the presence and extent of 
the atherosclerotic plaque and the characterization of arterial wall components. 
Compared with coronary angiography, IVUS does not cause radiation damage or 
require contrast injection. However, its common pullback speed is only 0.5 - 1 
mm/sec, therefore, the IVUS imaging can be influenced by cardiac motion. 
Furthermore, the IVUS resolution still has limitations when measuring tiny structures 
like the vulnerable cap of a plaque. 

1.6.3 IVOCT 

IVOCT has emerged as an attractive new imaging modality, which offers superior 
resolution (approximately 10 μm) for in-vivo coronary plaque morphology. Figure 5(A) 
illustrates a commercial IVOCT system. Like IVUS, IVOCT uses an imaging catheter to 
acquire cross-sectional images of the target vessel, but instead of ultrasound, the 
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IVOCT imaging catheter emits near-infrared light beam to the vessel tissue. Due to the 
speed of light, interferometry techniques are necessary to measure the backscattered 
light since a direct quantification is not available. The reflected light from a point of the 
sample and the reference light generate an interference pattern so that a detector can 
create a pixel for this specific site based on the produced light and dark pattern. The 
imaging catheter is being rotated and pulled back by a motor when acquiring images 
and a fluid-filled semitransparent polymer tube, named protective sheath, is used to 
cover the imaging catheter. After scanning cross-sections successively at different 
transverse positions, a full 3D image of the vessel is generated. This procedure is 
usually assisted by a standard guide wire. Therefore, a typical IVOCT image always 
contains the imaging catheter, protective sheath, guide wire and vessel lumen. Besides 
these common components, there also could be stent struts, side branches, thrombi, 
plaques and other lesions. The major limitation of IVOCT is blood attenuation due to 
the backscattering properties of red blood cells, thus the blood is temporarily 
displaced from the field of view during imaging acquisition by infusing saline or 
contrast through the vessel. An example of a typical IVOCT image is given in Figure 
5(B). 

There are two IVOCT imaging systems: the time-domain IVOCT and the frequency-
domain IVOCT [24]. The frequency-domain IVOCT imaging system facilitates high-
speed pullbacks (20 mm/sec) during image acquisition without necessitating transient 
balloon occlusion of the coronary artery. The high pullback speed also greatly 
alleviates the impact of cardiac motion. However, some errors and artifacts still can be 
found in IVOCT images which may induce imprecise assessment and measurements. 
For example, the optic path length of the imaging catheter could be slightly different 
during the whole pullback run which results in different image scale as Figure 5(C) 
presented. Hence, an image calibration, called Z-offset correction, should be applied 
throughout the entire pullback to adjust the image scale. If the blood is not completely 
displaced, there will be residual blood in the lumen which blurs the boundary of the 
protective sheath and lumen like Figure 5(D). Residual blood artifacts also could be 
mistakenly labelled as thrombi. The small air bubbles inside the protective sheath can 
cause bright noise which will significantly attenuate the signal from behind and make 
poor definition of the protective sheath and imaging catheter. The seaming artifact is 
the result of rapid artery or imaging catheter shifting in a single frame, leading to 
misalignment of the lumen border. Figure 5(E) illustrated these two artifacts. In 
addition, when the imaging catheter passes a vessel tortuosity or simply sweeps during 
the pullback, its rotational speed could be nonuniform which conduces to nonuniform 
rotational distortion. It would lead to shape distortion or focal image loss [24-27]. 
There are also artifacts owing to the eccentric catheter position, such as sunflower 
artifact of metallic stent struts which appears as a bending of stent struts toward the 
imaging catheter. It means that a metallic strut parallel to the lumen wall could appear 
obliquely oriented to the lumen wall because when the light beam from the imaging 
catheter rotates over the strut, only the portion that is perpendicular to the light beam 
reflects light back. Thus, the strut orientation and apposition could be mistakenly 
assessed [28, 29]. An example is given in Figure 5(D). All these artifacts should be 
reduced in the next-generation IVOCT systems.  
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Figure 1-5. An IVOCT imaging system (St. Jude Medical, Westford, MA, USA) and an 
IVOCT image are presented in the figures (A) and (B). The top part of (B) is the cross-
sectional image of vessel lumen which including the imaging catheter, protective 
sheath, guide wire, vessel lumen and metallic stent struts. The bottom section 
illustrates the longitudinal cut-up view of the whole scanned vessel region. The image 
center region is zoomed in in figure (C) which indicates the Z-offset correction failure 
as the 4 fiduciaries should align to fit the outer surface of the protective sheath. In 
figure (D), the residual blood results in bright noise inside the lumen and the eccentric 
imaging catheter causes the sunflower artifact of metallic stent struts (Arrow). An 
example of bubble noise in the protective sheath is given in figure (E) at 1 o’clock and 
the image behind it is blurred relative to other regions. At 2 o’clock, there is also a 
seaming artifact. (Source: http://professional-intl.sjm.com/products/vas/ 
intravascular-diagnostics-imaging/ffr-oct/c7-xr-oct-intravascular-imaging-system# 
overview) 

Although not perfect, IVOCT is currently the only intravascular imaging technique 
having sufficient resolution to delineate the microscopic characteristics of fine 
structures, such as the thin fibrous cap thickness, thin neointimal hyperplasia and 
plaque type. Moreover, IVOCT can detect subtle structural changes after PCI 
procedures, such as plaque disruption including tissue prolapse and protrusion with 

A B 

E D 

C 
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high sensitivity [30]. Due to the high frequency light source, IVOCT has a limited 
penetration ability of about 3 mm. However, within the limitation, IVOCT has better 
sensitivity and specificity for detecting calcification, lipid pool, fibrous cap, fibrosis, 
neointimal hyperplasia, intracoronary thrombus and thin cap plaque than IVUS [31]. 
IVOCT has been increasingly used for PCI guiding and evaluation [32]. 

1.7 Image processing challenges in IVOCT images 

In recent years, IVOCT with both original 2D cross-sectional images and 3D 
reconstructions has been a powerful tool in the diagnosis and treatment of complex 
CAD. The demand for IVOCT-based applications is increasing, such as IVOCT-guided 
PCI, stent analysis and diagnostic assessment of coronary atherosclerosis including 
lipid necrotic core, thin fibrous cap, and inflammation region. Althougth enormous 
progress has been made since the invention of IVOCT, there are still increasing 
challenges in IVOCT image processing. The imaging catheter, guide wire, protective 
sheath and lumen are the common components in all typical IVOCT pullback runs 
and need to be segmented in many situations. For example, because the high intensity 
of imaging catheter affects the lumen segmentation, S. Tsantis, et al. detected the 
imaging catheter using Hough transform [33]. However, this method could be 
influenced by imaging catheter mirror artifacts [34] which appear as several concentric 
circles around the real imaging catheter. In order to measure in-stent neointimal 
hyperplasia, S. Gurmeric, et al. removed the imaging catheter by using a Gaussian 
filter and a morphological opening operation [35], which erases many details from the 
image and does not result in the position of imaging catheter. We also found that the 
imaging catheter can also mislead stent strut detection which is based on intensity 
analysis and it can be segmented by applying a min-filter over the whole pullback run 
in the z-direction [36]. However, this method is only applicable to Z-offset corrected 
pullback runs in which the imaging catheter is located in the same position. Appearing 
like a metallic stent strut, a guide wire could be mistakenly detected as a strut by many 
methods [36-39] and should be filtered out. Moreover, the guide wire and its shadow 
can obstruct the protective sheath and lumen contour detection, vessel wall analysis 
and 3D reconstructions [40, 41]. In the current commercial IVOCT systems, the 
protective sheath acts as a reference for optimal Z-offset determination within a 
pullback run because it has a fixed diameter [26]. This calibration of Z-offset is critical 
for accurate measures as 1% change in the magnitude of the ideal Z-offset can result in 
about 13% error in area measurements. Besides, small Z-offset errors can also amplify 
contour distortion, which may result in misinterpretation of the image [25]. However, 
the current calibration can fail due to the air bubble noise in the protective sheath, 
wrong manual adjustment and proximity of protective sheath to vessel wall. According 
to statistics, only 38% of the IVOCT images illustrated in peer-reviewed papers were 
calibrated correctly [34]. Lumen contour detection is one of most common image 
segmentation steps for such as region of interest definition, in-stent restenosis and 
lumen area measurement. The existing methods include Markov random field and 
wavelet transform analysis [33], fuzzy c-means clustering and wavelet transform [42] 
or deformable spline model [35]. However, in many cases, a light-weight and fast 
lumen contour estimation is more suitable for real-time applications.  

IVOCT images have already been extensively used to guide, analyze and evaluate 
the stent implantation, which leads to optimized stent size, inflation pressure, 
deployment position and post-processing which thereby reduces the risk of restenosis 
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and thrombosis and increases the post-intervention minimal stent area. For example, 
an under-expanded stent cannot provide sufficient support to the vessel wall and 
thereby can result in late neointimal hyperplasia. Before covered by healing tissue, 
malapposed struts are also a main predisposing factor of acute in-stent thrombosis. 
Accurate strut position detection in the post-stenting IVOCT images can verify stent 
apposition to the vessel wall and provide additional information related to the 
presence of edge dissections, stent fracture, plaque protrusion, and the need for post-
dilation or additional stenting. Detected struts also assist the 2D strut distribution 
analysis because nonuniform struts can influence the stenting treatment outcome. 
Fewer struts and a big maximum inter-strut angle contribute to in-stent restenosis, 
plaque rupture and thrombus [43-45]. The demands of 3D stent reconstruction have 
been rising as it is a more effective way to present the deployed stents and offers the 
possibilities for precise stent measurements, such as stent cell size and maximum 
circular unsupported area. Furthermore, 3D stent cell pattern can affect the spatial 
support to the vessel wall, bending flexibility and the dosing of antiproliferative 
medicines released from DES. Hence, both 2D and 3D information are necessary for 
stent design evaluation and optimization [46-49]. In addition, the strut area is of 
interest for the analysis of the bioresorption process of neoteric bioresorbable vascular 
scaffolds [50, 51]. 

Side branch detection is another important application as they are one of the most 
reliable landmarks for image registration and labeling. In both research and clinical 
practice, features in IVOCT pullback runs at different time-points may need to be 
compared, for instance, the valid lumen size or BVS strut area. IVOCT is also popular 
in image fusion with many other modalities like IVUS and near-infrared spectroscopy 
images, which would offer more tissue characterization information to increase our 
understanding of vessel morphology and aid the management of complex vascular 
pathology. Besides, the position and size of side branches in the lesion region should 
be taken into account for stenting and blood volume analysis as a stent in front of a 
side branch can cause thrombus formation and obstruct the blood flow to the side 
branch. With both 3D reconstructed stents and side branches, cardiologists can assess 
the side branch access through stent cells, which may help them to decide if the stent 
ostium in front of a side branch needs to be expanded [52-55].  

1.8 Motivation and objectives 

As mentioned above, IVOCT, as a novel imaging modality, has played an active role 
in a wide range of CAD applications, including research and clinical routine. Due to its 
unparalleled high resolution and the ability to delineate complex vascular structures 
[56], IVOCT technology makes many precise measurement and novel applications 
possible. However, currently, a lot of analyses in IVOCT images are still relying on the 
manual work which decreases their value. The goal of this thesis is to develop robust 
and accurate (semi)automated methods that can detect and segment the interesting 
components in IVOCT pullback runs, such as implanted stent struts and side branches 
in 3D for accurate measurement, so that the results could contribute to medical 
research as well as for clinical decision-making. As such, the specific objectives of this 
thesis are threefold:  

1. To develop fast and reproducible approaches for the metallic stent strut and 
BVS strut detection in IVOCT pullback runs for quantitative analysis, 3D 
reconstruction and PCI improvement.  
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2. To precisely measure the stent cell size and side branch access through stent 
cells in 3D space by reconstruct stent cell contours and stent surfaces based 
on the detected struts, so that the stent influence to the vessel wall and side 
branches could be assessed.  

3. To detect side branches in IVOCT pullback runs fully automatically based on 
precise segmentation of all the common components in typical IVOCT images 
for stenting optimization and image registration. The segmentation methods 
also can be used for other advanced image processing.  

1.9 Thesis outline 

The remainder of this thesis is organized as follows: 

Chapter 2 presents a novel automated algorithm to detect metallic stent struts in 
IVOCT pullback runs [57]. This method detects the pixels that belong to a strut by 
analyzing the intensity profile of every scan line and clusters these pixels using the 
constraint of stent strut shadow regions. Guide wires are automatically removed. The 
detected struts can later be used for 3D stent reconstruction, coverage measurement, 
implantation validation and follow-up analysis. 

Chapter 3 introduces an automatic method to detect the new BVS struts in IVOCT 
pullback runs [58]. The translucency BVS struts appear as black cores with bright 
boundaries which are very different from the metallic stent strut. Two different 
strategies were used for BVS strut detection in baseline and follow-up datasets, 
separately. In both situations, the black core areas are segmented and their centers are 
computed. The validation results suggest that this method can be a useful tool for BVS 
analysis and 3D visualization.  

Chapter 4 studies the impact of an implanted stent to the vessel wall and side 
branches in the deployment region [52]. Stent cells are reconstructed in 3D space 
through simple user interactions in 2D space. Stent cell size is measured based on a 
precisely reconstructed 3D stent surface from detected struts. Moreover, a 2D 
approximation of the 3D stent cell surface is generated for maximum circular 
unsupported surface area measurement. In the end, stent covered side branches are 
segmented to combine with stent cells for side branch access measurement. The 
accuracy and robustness of this method were validated in both phantom and in-vivo 
IVOCT datasets.  

Chapter 5 describes a fully automated side branch detection method which utilizes 
a precise segmentation pipeline for all the common components in typical IVOCT 
pullback runs including imaging catheter, guide wire, protective sheath and lumen 
[59]. The algorithmic results from segmentation pipeline and side branch detection 
method contain only a little error compared with the ground truth and, thereby 
suggest the new segmentation and detection methods could be used to improve our 
previous presented methods, guide stenting operation and register images. 

Chapter 6 summarizes the main work described in different chapters of this thesis. 
This chapter also includes the future perspectives on the IVOCT imaging modality 
with respect to CAD diagnosis, treatment and research. 
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ABSTRACT 

We developed and evaluated an automatic stent strut detection method in 
intravascular optical coherence tomography (IVOCT) pullback runs. Providing very 
high resolution images, IVOCT has been rapidly accepted as a coronary imaging 
modality for the optimization of the stenting procedure and its follow-up evaluation 
based on stent strut analysis. However, given the large number of struts visible in a 
pullback run, quantitative three-dimensional analysis is only feasible when the strut 
detection is performed automatically. The presented method first detects the 
candidate pixels using both a global intensity histogram and the intensity profile of 
each A-line. Gaussian smoothing is applied followed by specified Prewitt compass 
filters to detect the trailing shadow of each strut. Next, the candidate pixels are 
clustered using the shadow information. In the final step, several filters are applied to 
remove the false positives such as the guide wire. Our new method requires neither a-
priori knowledge of the strut status nor the lumen/vessel contours. In total, 10 IVOCT 
pullback runs from a one-year follow-up study were used for validation purposes. 
18311 struts were divided into three strut status categories (malapposition, apposition 
or covered) and classified based on the image quality (high, medium or low). The 
inter-observer agreement is 95%. The sensitivity was defined as the ratio of the number 
of true positives and the total number of struts in the expert defined result. The 
proposed approach demonstrated an average sensitivity of 94%. For malapposed, 
apposed and covered stent struts, the sensitivity of the method is respectively 91%, 
93% and 94%, which shows the robustness towards different situations. The presented 
method can detect struts automatically regardless of the strut status or the image 
quality, and thus can be used for quantitative measurement, 3D reconstruction and 
visualization of the stents in IVOCT pullback runs. 
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2.1 Introduction 

Heart disease is a leading cause of death in the developed countries and coronary 
artery disease (CAD) is the most common form [1]. In the treatment of CAD, stents are 
placed in the coronary arteries by means of the percutaneous coronary intervention 
(PCI) procedure. A stent is a tiny tube-like structure that is usually made of a wire 
mesh which is designed to be inserted into a vessel and functions as a scaffold device 
to keep the vessel open. The first generation of stents were bare metal stents, which 
have proven to be associated with an increased risk of coronary restenosis during the 
vessel wall healing process based on long term follow up studies [2, 3]. The second 
generation—drug eluting stents (DES) significantly decreased the occurrence of 
restenosis, but they are associated with late acquired stent malapposition which may 
lead to in-stent thrombosis [4]. Although newly implanted stents usually are located at 
the lumen boundary without tissue coverage (apposition) and later on nicely covered 
with a thin layer of tissue, still acute malapposition may occur or they may obstruct the 
blood flow to side-branches [5]. Therefore, detecting the stent strut position is highly 
important for stent placement evaluation and its follow-up analysis.  

Intravascular ultrasound (IVUS) has been used for automatic stent strut detection, 
but its limited spatial resolution and low signal-to-noise ratio makes the detection 
difficult. To the best of our knowledge, no paper has been published for precise strut 
segmentation in IVUS pullback runs. As a relatively new optical signal acquisition 
technique, IVOCT imaging has a very high resolution (10-20 μm) which is about ten 
times higher than IVUS. IVOCT has been used as the exclusive technology for the 
precise in-vivo evaluation of strut coverage and vessel wall healing [6-8]. The 
acquisition is performed similar to IVUS; the imaging catheter acquires cross-sectional 
images of the coronary artery by emitting near infrared light instead of ultrasound 
towards the vessel wall in a radial manner while the transducer is rotating and the 
catheter is pulled back with a high and constant pullback speed. The superior 
sensitivity of the newly developed frequency-domain OCT systems is not only a key 
factor in achieving high image resolution, but also an important prerequisite for high 
speed imaging. It allows an acquisition speed of 100 – 160 frames per second and a 
very fast pull back speed (15–25 mm/second) which highly decreases the imaging 
time; on the other hand, it results into a large amount of images for each single 
procedure [9, 10]. Two IVOCT images in different coordinate systems are shown in Fig. 
1.  

Research is being carried out worldwide on IVOCT images, but an automated strut 
detection method that works robustly on routinely acquired clinical datasets remains a 
challenge. Many studies still depend on the manual strut detection. Two approaches 
[11-12] require the lumen and vessel wall contour to define the region of interest 
(ROI), and subsequently detect the newly implanted and covered struts in two 
different modes. For severely malapposed struts, they may be located outside the ROI 
and therefore cannot be detected. Another approach [13] detects the strut luminal 
surface in each A-line (scan-lines in the polar image) using flexible intensity 
thresholds. A-priori knowledge of the strut status (apposed or covered) is needed for 
stent strut detection. The type of the implanted device is also required for apposition 
assessment. The catheter artifacts and guide wire are masked with a fixed region and 
the guide wires beyond the mask region are manually detected and removed, which 
may be time-consuming.  
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Separating modes for different strut status: “malapposition”, “apposition” and 
“covered” usually can improve the detection accuracy, but a pullback run or even a 
single image may contain struts with different status. In this paper, we present a robust 
algorithm to process an entire IVOCT pullback run, which requires neither a-priori 
status information, nor lumen or vessel wall contours. 

   

Figure 2-1. Examples of IVOCT images in (a) Cartesian coordinate system and in (b) 
polar coordinate system respectively. In both images, a stent strut, the guide wire and 
the imaging catheter are annotated. 

2.2 Materials 

The During this research, all of our IVOCT pullback runs were acquired using a C7-
XR FD-OCT intravascular imaging system with a C7 Dragonfly™ Intravascular Imaging 
catheter (LightLab Imaging, Inc., Westford, MA, USA). The intravascular imaging 
catheter works together with a 6F guiding catheter. The automated pullback speed is 
20 mm/s with a data frame rate of 100 frames per second. During the acquisition, a 
standard 0.014 inch steerable guide wire may be used. Temporary blood flushing was 
performed with a contrast infusion.  

We use the 16-bit raw image data in polar coordinate system instead of the 
commonly used 8-bit Cartesian image representation [12], because it contains all of 
the original information and some details might get lost during the conversion from 
polar to Cartesian. Each polar frame has the same size of 960 × 504 pixels.   

Although all the pullback runs were acquired with the same IVOCT system, they 
differ significantly in image quality. There are multiple reasons for that: for example, 
the noise can be caused by the residual blood after the infusion or by tiny air bubbles 
[7]. Moreover, the limited penetration depth, imaging catheter position, cardiac 
motion, redundant echo and many other factors can also affect the image quality. 

2.3 Method 

2.3.1 General approach for stent strut detection 

The automatic strut detection method was developed using the MeVisLab toolbox 
(MeVis Medical Solutions AG, Bremen, Germany) together with in-house developed 

b a 
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C++ modules. As the flow chart in Fig. 2 shows, our detection method consists of five 
steps: first, the pullback runs are preprocessed to de-noise and define the proper ROI. 
Next, the strut candidate pixels are detected by locating the front edges of the struts in 
IVOCT images. In order to remove false candidate pixels and to cluster the remaining 
pixels into discrete struts, the shadow edges are detected. Finally after clustering, the 
guide wire and some false positives are removed using 3D information of the whole 
pullback run. In the following sections, each of the subsequent steps for the strut 
detection in IVOCT is described in further detail.  

 
Figure 2-2. Flow chart of the strut detection algorithm processing steps. 

2.3.2 Preprocessing 

The preprocessing starts with noise reduction in the IVOCT pullback run since it 
hampers the strut detection. The main part of the noise has a relatively low intensity 
value. According to Ughi et al. [13], the lowest 5% intensity values of the histogram can 
be considered as noise. In a similar fashion, we determine the histogram of the whole 
pullback run and set all pixels below this threshold value to 0.  

The preprocessing continues with the definition of the Region of Interest (ROI). In 
order to detect also the malapposed struts, we need to select a bigger ROI than the 
region between lumen contour and vessel wall contour. However in the lumen area, 
the imaging catheter may generate very bright artifacts which have similar intensity 
values as stent struts. The ROI should exclude these artifacts. 

The catheter artifact appears like rings in the center of the image as Fig.1 (a) shows. 
After a proper z-offset correction, they are constant in all frames of a single pullback 
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run [14]. In the polar data, these artifacts are shown as parallel vertical lines at the left 
side of the images and they may affect the strut detection. To exclude these artifacts, a 
minimum filter in z-direction and a vertical line detection method [15] are applied to 
each IVOCT pullback run. The region to the right of these continuous straight vertical 
lines determines the ROI for our detection method.  

 

 
Figure 2-3. Examples of intensity profiles in polar images. The A-line (1) in Fig 3a 
crosses a stent strut and its corresponding intensity profile in Fig 3b has a higher peak 
point and a sharp fall to the shadow area, compared to the A-line (2) in Fig3a, which 
passes purely through tissue and its corresponding intensity profile in Fig 3b has a 
longer distance between the peak point and the shadow area. “Dist” indicates the 
distance between the peak point and the start point of the trailing shadow. 

2.3.3 Candidate pixel detection 

In IVOCT images, a metal stent strut appears normally as a bright spot with a 
trailing shadow behind it, since the strut reflects most of the light, while normal vessel 
tissue scatters and attenuates the light. Therefore, a strut has higher intensity values 
than the surrounding tissue. The pixels having the maximum intensity value in each A-
line are candidates, under the assumption that there is only one strut per A-line. This 
also means that currently we exclude overlapping stents. Fig. 3 shows two examples of 
the intensity profile.  

In general, one cannot state that the struts always have the highest intensity values 
in an entire pullback run. For that reason, a global intensity threshold is not 
applicable, and we have decided to use the slope of the intensity profile. By detecting 
the maximum intensity and the distance between this peak point and the first pixel of 

a 
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the potential shadow area, the slope is calculated. The potential shadow area is 
defined by a window of 30 continuous low intensity pixels. The maximum intensity 
value of the potential shadow region was set as the 89th percentile of the intensity 
histogram of the ROI in the entire pullback run. The slope reflects the local intensity 
change, and strut pixels usually are associated with a steeper slope than tissue pixels. 
An example of the candidate pixel results is shown in Fig. 4 (b). Because the distance 
from struts to their trailing shadows are similar, we determine the slope threshold 
based on the histogram as well. 

    

    

    

Figure 2-4. Results of each step in the shadow edge detection. (a) shows the original 
image. (b) shows the results of the candidate pixel detection including false positives. 
Peak points are indicated as ‘o’. (c) shows the result after Prewitt compass edge 
detection for only bottom edges. In (d), the top edges are indicated by ‘+’ and the 
bottom edges by ‘×’. (e) shows the clustering results which are indicated by ‘o’. In (f) 
the final results after guide wire removal are presented with the struts indicated by ‘o’. 

a b 

c d 
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2.3.4 Shadow edge detection 

To cope with artifacts such as the sunflower artifact [14], the position of a stent strut 
is defined by the middle point of its front edge. It reflects the start position of a strut, 
which can be used for the quantitative analysis of strut and the 3D stent 
reconstruction.  

The middle point is calculated by the average position of a group of candidate 
pixels. However, it is difficult to cluster the candidate pixels into individual struts 
directly, because both the width of the struts and the gap between two neighboring 
struts can vary significantly. We also need to remove the false candidate pixels most of 
which are located in the tissue area outside the struts regions as Fig. 4(b) shows. In 
order to solve these issues, the width and the location of each strut are needed. 
Additional information is gathered by using the trailing shadows behind the struts. As 
the trailing shadows align with the imaging catheter, they are almost horizontal in the 
polar image, and their width and location are approximations of the corresponding 
strut width and location. The top and the bottom edge of a shadow define the 
clustering region for the strut.  

A Gaussian filter is applied to smooth the images before the shadow edge 
detection. Next, a Prewitt compass operator with two special kernels is applied to 
detect the top and bottom edges separately [16]: one kernel is only sensitive to the 
horizontal bright to dark edges (top edges); while the other kernel is only sensitive to 
the horizontal dark to bright edges (bottom edges). An example of the bottom edges is 
shown in Fig. 4(c). Only edges above a certain length were accepted, to avoid the short 
false shadow edges such as those associated with an eccentric lumen boundary. 

2.3.5 Clustering 

The detected edges divide the polar images into consecutive intervals, which define 
the location and width of the struts. We cluster the candidate pixels in each interval. 
Special attention is paid to edges at the top and bottom of the polar images, since they 
actually could belong to each other, but have been split into two halves due to the 
nature of the polar image. At the start of the clustering, each candidate pixel is a cluster 
[17]. Clusters merge if the minimal distance between them is shorter than a threshold, 
in our case determined experimentally at a 4 pixel distance. This procedure continues 
until no more clusters can merge. 

In some cases, only one edge of the shadow can be detected, because the other 
edge is too short or too blurred, especially when a strut is located far away from the 
imaging catheter. At the same time, false edges may be included if there is e.g. a 
seaming artifact [12] or highly eccentric lumen boundary. An example of the seaming 
artifact is shown in Fig. 6(c). To avoid the false clusters caused by these influences, we 
need to select the correct candidate struts from the clusters. Because the strut is right 
below its top edge and above its bottom edge, for each top edge, the first cluster below 
it will be selected. Similarly, for each detected bottom edge, the first cluster above it 
will be selected. All the other clusters are removed. The average position of the 
candidate pixels of the same cluster determines the corresponding strut position. 

In cases where the struts are located far away from the imaging catheter or covered 
with a thick layer of hyperplasia, a strut may have a low intensity value comparable to 
the surrounding tissue, and the described candidate pixel detection may fail. If there is 
no candidate strut between a pair of top and bottom edges, we check if there is a non-
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bright strut. We first assign a search range based on the start points of the shadow 
edges. In this search range, the pixel with the highest intensity value of each A-line in 
the shadow region is detected. All the pixels with an intensity value higher than the 
maximum shadow intensity threshold will be clustered as a non-bright strut. 

 

 

 

Figure 2-5. (a) shows the detected guide wire from the whole pullback run. In some 
frames, there is more than one guide wire because of the artifacts; (b) shows the strut 
results after the guide wire removal. In the beginning and the ending segments of this 
pullback run, no real stent exists; (c) shows the result after stented segment detection. 

2.3.6 False positive removal 

If a guide wire is present during the image acquisition, it also reflects most of the 
energy and causes a trailing shadow behind it. It will be improperly recognized as a 
strut by our method. Compared with the real struts, a guide wire is usually located 
closer to the imaging catheter and its coordinates are continuous throughout the 
whole pullback run. Therefore, we have defined a guide wire distance threshold to 
measure the guide wire continuity. By using this spatial feature, a guide wire filter was 
developed, which searches a series of continuous candidate struts which are located 
closer to the imaging catheter than any other. Fig. 4(f) shows the strut detection result 

a 

b 
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after the guide wire removal. If no guide wire is used, the filter will not remove any 
candidate struts. Fig. 5 shows the result for the guide wire removal. 

In Fig. 5(b), it is clearly demonstrated that there are only a few strut candidates in 
the proximal and distal part of the pullback run. The reason is that the pullback usually 
is much longer than the stent length. By analyzing the amount of struts detected in 
each frame of the pullback run, we can identify the stented segment automatically and 
remove all the strut candidates outside this segment. An example result is shown in 
Fig. 5(c). 

2.4 Validation 

To evaluate our automatic detection algorithm, we used 10 pullback runs of stented 
coronary segments of 7 retrospectively selected patients from a one-year follow-up 
study. Eight of our polar IVOCT pullback runs have 271 frames each, and the other two 
pullback runs both have 541 frames.  

We applied our approach to all 10 pullback runs which in total contain 3250 
frames. One observer (A) indicated the start point of the struts in all the images to 
compare them to the automated results for validation. In three pullback runs, there are 
a total of 19 frames that were not marked because of the very low image quality. We did 
not take these frames into account for our validation. In a total of 3231 frames, 18311 
struts were marked manually. 

    

    

Figure 2-6. Examples of the three image quality groups. (a) and (b) show a good 
quality image and a medium quality image respectively. (c) and (d) are two low quality 
images; (c) has blurred shadows and a seaming artifact, while (d) shows some struts 
having only clear shadow without bright spot. 

d 
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To determine how accurate a human observer can find and indicate exactly the 
same location for the same strut, a second independent observer (B) analyzed a subset 
of 179 images from 8 of the 10 pullbacks. On this subset observer A indicated 2033 
struts, while observer B indicated 1864 struts, resulting in 1841 corresponding struts. 
Expert observer A also categorized all the IVOCT pullback runs into three groups 
based on the image quality: high, medium and low. This selection was based on the 
amount of noise in the images, and the experienced difficulty during the manual 
definition of the strut positions. In this paper, 4 pullback runs were assigned to the 
high quality group, 3 pullback runs to the medium quality group and the remaining 3 
pullback runs to the low quality group. Each strut was also assigned to one of three 
categories based on the strut status: malapposition, apposition and covered. The 
malapposition group contains all the malapposed struts and the struts over the side-
branches. The apposition group includes uncovered struts and the struts with 
minimum neointimal hyperplasia. There are 681 struts in the malapposition group, 
5382 for the apposition group and 12248 for the covered group, respectively. 

To examine the robustness of our method, we compared the results from our 
method with the manual results from observer A for different combinations of image 
quality and strut status. We also tested each main parameter for three values, the 
recommended value and +/- 20% of the recommended value to investigate the 
sensitivity of the algorithm. In Table 3, the performance and the distance error are 
presented to quantify the effect of these parameter variations. 

2.5 Results 

The inter-observer agreement is defined as the number of agreements divided by 
the average number from two observers and the agreement was found to be 95%. The 
mean and standard deviation of the distance between these corresponding struts were 
found to be 2.9 ± 3.3 pixels. According to our experts, a 10-pixels distance (about 0.05 
mm) is an acceptable distance when comparing the algorithmic results to the expert 
results of observer A. Within this acceptable distance, the mean and standard 
deviation of the distance error is 1.7 ± 1.1 pixels. Table 3 shows the distance error 
between two manual results and the distance error between the manual results of 
expert A and the automated results. 

The sensitivity of the detection method is defined as the ratio between the number 
of struts correctly detected by our algorithm and the number of struts found by expert 
observer A. In Table 1, the average sensitivity of our automated approach for the 
different categories is given in percentages. The false positives (FPs) show the ratio of 
the number of false positives in the automatic results compared to the number of 
struts as defined by observer A. Next, the subtotals of the algorithm performance for 
different image qualities or different strut status categories are also given in Table 1. 

In all groups, our method shows a good agreement with the expert results. For 
high, medium and low quality IVOCT images, the new method found 96%, 92% and 
89% of the stent struts, respectively. For apposition, malapposition and covered status, 
91%, 93% and 94% of the struts were found, respectively. The average sensitivity is 94%. 
All combinations contain only a few false positives (4%).  
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Table 1. The sensitivity of the new algorithm for all combinations of the image 
quality and strut status. The numbers indicate the sensitivity of the algorithm in 
percentages. FPs means the percentage of false positive detected struts 
compared to the manual results 

          Strut 
Image       
status quality 

Malapposed 

(%) 

Apposed 

(%) 

Covered 

(%) 

Subtotal 

(%) 

FPs 

(%) 

High 92 98 96 96 4 

Medium 87 93 92 92 4 
Low 92 88 89 89 6 

Subtotal 91 93 94 94 4 

 

According to our validation, the algorithm works best for apposed struts in high 
quality images, since they usually appear as very clear bright spots and have nice 
trailing shadows. Malapposed struts may have short or blurred shadows which cause 
difficulties in the detection. Generally, in our low quality data set, malapposed struts 
are brighter than other struts. The most difficult situations are the apposed and 
covered struts in low quality images. Compared to the other struts, they usually have a 
less bright appearance and blurred shadows because of the noise or the thick coverage 
which causes more absorption and scattering of light. Their trailing shadows appear 
fuzzier and shorter compared to the other situations. Our algorithm is relatively robust 
in case of different image quality, but low image quality is still the main reason for false 
positives and false negatives. In case of severe restenosis, a strut is not visible anymore 
except for a weak trailing shadow. Even experts have difficulty to mark these correctly. 
It is also not always clear how to separate a cluster due to the structure of the stent. All 
these factors may affect the result of the proposed algorithm. 

Eight of the pullback runs were acquired with a guide wire, while the remaining 
two had no guide wire. Our guide wire filter successfully detected the pullback runs 
that contain guide wires, and filtered all the guide wires from them. For the other two 
pullback runs that contain not guide wire, the filter did not remove any strut 
candidates. 

For processing, we used a Windows XP Professional x64 Edition Version 2003 with 
SP2 computer with 2.0 GHz CPU and 4 GB memory. Generally, it takes less than 5 
minutes to process a pullback run containing 271 frames with MeVisLab 2.1. We also 
implemented a pure C++ version of this method, which decreases the computing time 
to less than 2 minutes. 

2.6 Discussion 

Automatic stent strut detection is important as it can simplify and speed up 
quantitative stent strut analysis and 3D stent reconstruction. We present a 3D 
detection method for stent struts in IVOCT pullback runs, which is based on the 
intensity features and shadow edge detection. It is also important to note that spatial 
information is used to remove the guide wire and the false struts in the empty frames. 
Because only in an IVOCT pullback run which contains a guide wire, a continuous list 
of strut candidates through the whole pullback run can be found. With a good 
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performance in all situations, our method can detect stent struts robustly and 
independent of strut status or image quality. The validation study showed that the new 
method successfully detected 94% of the 18311 struts from 10 pullback runs. 
Compared to former research, our method requires no lumen contour or vessel wall 
segmentation and it is relatively insensitive to the image quality. Moreover, the new 
method does not require different modes for different strut status, so that no a-priori 
information or user input is needed. Additionally, we presented a novel guide wire 
filter to classify and remove guide wire automatically. 

2.6.1 Parameter selection and sensitivity analysis 

The whole method contains more than 10 parameters. Some parameters are 
related to the size of the input image, while some other parameters are fixed based on 
the histogram of the input image, for example, the maximal intensity threshold for 
trailing shadow and the slope threshold for candidate pixels detection. The most 
important parameters for our method are presented in Table 2. We used the same 
parameter rule for all the pullback runs.  

Table 2. The major parameters used in this method 

Parameter Value 

Max shadow intensity threshold 89th percentile of the histogram 

Sliding shadow size 30 pixels 

Slope threshold -48 

Shadow edge length threshold 100 pixels 

Clustering distance threshold 4 pixels 

Guide wire distance threshold 40 pixels 

To evaluate our method when the parameters are changed, we varied the main 
parameters by ±20%. We also computed the mean distance error between the 
algorithmic results and the manual results from observer A and its standard deviation. 
The distance error is calculated only between the successfully detected struts. The 
performance and the distance error are shown in Table 3 and demonstrate that even if 
the parameters are changed by 40% (±20%); the position of the struts that are detected 
by our algorithm does not change much. 
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Table 3. The correlation and the distance between the manual result from 
observer A and the algorithmic results with standard parameters and after the 
parameters are changed by ±20%. The distance error and its standard deviation 
are measured in pixel size 

Parameter Performance TP [FP]* (%) Distance Error (pixel) 

Change 0% -20% +20%  0% -20% +20% 

Max shadow 
intensity 
threshold 

94 [4] 91 [5] 94 [7] 
 

1.7 ±1.1 1.8±1.3 1.8±1.3 

Sliding shadow 
size 

94 [4] 92 [5] 93 [5] 
 

1.7 ±1.1 1.7±1.2 1.7±1.2 

Slope 
threshold 

94 [4] 93 [7] 92 [5] 
 

1.7 ±1.1 1.8±1.3 1.8±1.2 

Shadow edge 
length 
threshold 

94 [4] 85 [12] 88 [5] 

 

1.7 ±1.1 1.8±1.3 1.8±1.3 

Clustering 
distance 
threshold 

94 [4] 94 [6] 93 [4] 
 

1.7 ±1.1 1.8±1.2 1.7±1.2 

* Performance TP value means the sensitivity our method. FP value in [ ] shows the percentage 
of false positive detected struts compared to the manual results 

2.6.2 Limitations 

The presented method can cluster the strut even if only one shadow edge was 
detected. However, for severe in-stent restenosis, some struts are covered by such a 
thick layer of new tissue that only bright spots exist without any trailing shadow. The 
trailing edge is blurred away due to scattering in the thick layer of tissue. 

In another situation, some struts have only a trailing shadow without a bright spot. 
These situations are very common in bad quality pullback runs as Fig. 6 (c) and (d) 
show. Both the expert and our detection method have difficulty to deal with these 
cases. The edge detection has difficulties to eliminate sew-up stitches as showed in Fig. 
4 (f). Although the shadow edge based clustering can largely eliminate this problem, 
false edge may introduce false struts. 

Unlike the guide wire which consists of a single wire cable, the stent patterns are 
much more complex. Without knowing the pattern of the implanted stent, it is difficult 
to remove or recover stent struts within the stented segment using the spatial 
information. Taking into account that there are hundreds of different stent designs, 
using the 3D stent structure information for stent strut detection is a very challenging 
task. In addition, the described method is not suitable for new bioabsorbable stent 
struts which appear as small dark boxes instead of bright spots in IVOCT images. 
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2.7 Conclusion and future research 

With the high resolution of in-vivo microstructure in coronary arteries, IVOCT 
allows a better understanding of the pathophysiology of coronary disease. We 
presented an automatic stent strut detection method in IVOCT image sequences 
regardless of strut status and image quality. The new method uses the local image 
intensities to detect the candidate pixels of the stent struts in preprocessed IVOCT 
image sequences. The edges of the trailing shadows are detected to assist the 
candidate pixels clustering for each strut, to reduce the false positives and to find the 
dark struts with clear shadows. After clustering, the guide wire is filtered out using 3D 
restriction. The method is independent of pre-selection the strut status or 
lumen/vessel wall segmentation.  

A clinical data analysis was carried out to evaluate the performance of our method. 
Automatic results were compared with the results that were manually detected by 
expert observers. For IVOCT images with different quality levels, it turned out to be a 
robust and reliable automatic method. In conclusion, with ongoing development of 
IVOCT technology, our method could be helpful for stent implanting treatment 
evaluation, patient follow up and vascular response of different types of stent. As a next 
step, the result will be used as input for 3D visualization and quantification. 
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ABSTRACT 

Bioresorbable vascular scaffolds (BVS) have gained significant interest in both the 
technical and clinical communities as a possible alternative to metallic stents. For 
accurate BVS analysis, intravascular optical coherence tomography (IVOCT) is 
currently the most suitable imaging technique due to its high resolution and the 
translucency of polymeric BVS struts for near infrared light. However, given the large 
number of struts in an IVOCT pullback run, quantitative analysis is only feasible when 
struts are detected automatically. In this paper, we present an automated method to 
detect and measure BVS struts based on their black cores in IVOCT images. Validated 
using 3 baseline and 3 follow-up data sets, the method detected 93.7% of 4691 BVS 
struts correctly with 1.8% false positives. In total, the Dice’s coefficient for BVS strut 
areas was 0.84. It concludes that this method can detect BVS struts accurately and 
robustly for tissue coverage measurement, malapposition detection, strut distribution 
analysis or 3D scaffold reconstruction. 
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3.1 Introduction 

In coronary artery disease (CAD), plaques build up in the vessels and obstruct the 
oxygen-rich blood supply to the heart muscle, which can cause angina or eventually a 
heart attack. Nowadays, stenting after angioplasty is one of the main treatment options 
for CAD. Stents are tiny tube-like devices that are usually made of metal meshes, 
designed to support the vessel wall to prevent the acute vessel recoil after the plain-old 
balloon angioplasty [1]. The first introduced stent was the bare metal stent (BMS), with 
a known risk of neointimal hyperplasia (NIH) which re-narrows of the vessel lumen 
[2]. The drug-eluting stent (DES) emerged as an alternative to the BMS. It can alleviate 
NIH significantly, but later, multiple risk factors became evident, such as late stent 
thrombosis and late acquired malapposition [3, 4]. As a result, a new concept of the 
temporary stent or scaffold was proposed. Such a device is designed to offer temporary 
radial strength to avoid the acute vessel closure as a consequence of the acute vessel 
recoil, and at a later stage, it will be fully absorbed, leading to restoration of lumen 
patency and vascular flow [5, 6]. A series of temporary vascular stents, termed 
“Bioresorbable Vascular Scaffold (BVS)”, have been developed and undergone 
extensive clinical evaluation in the past ten years [4, 7-10]. ABSORB BVS (Abbott 
Vascular, Santa Clara, California, US) is one of first developed temporary scaffolds 
which have been used for clinical treatment. It consists of a backbone of poly-L-lactide 
coated with poly-D,L-lactide which contains and controls the release of the 
antiproliferative drug everolimus (Novartis, Basel, Switzerland) [11]. The thickness of 
backbone with coated drug layer is 158 μm. ABSORB BVS will be fully absorbed 
approximately two years after implantation and has exhibited strong positive clinical 
and angiographic results [12]. 

 

Figure 3-1. A baseline IVOCT image in (a) the Cartesian coordinate system and (b) the 
polar coordinate system. In both images, the imaging catheter (IC), the protective 
sheath (PS), the guide wire, a micro vessel and a BVS strut are marked. 

Intravascular optical coherence tomography (IVOCT) is being increasingly used 
during BVS studies and clinical trials for accurate BVS analysis to assess the rate of 
bioresorption and to inspect the response of vessel walls [13]. As a relatively new 
optical signal acquisition technique, IVOCT imaging has a radial resolution of about 10 
μm which is ten times higher than its comparable technique: intravascular ultrasound 



38 │ Chapter 3 

 

(IVUS). IVOCT has a limited penetration of 3 mm, but it provides a better signal-to-
noise ratio than IVUS within the limitation. Furthermore, IVOCT imaging is 
particularly suitable for BVS struts as they are made of translucent polymers [12]. The 
transmitted light can readily pass through them and backscattering originates from the 
difference in refractive index between a strut and its environment (flush fluid or 
tissue), which results in bright boundaries. Besides, if a strut contains a big fracture 
which appears as a scattering center, it looks similar to confluent struts [14]. An IVOCT 
image with newly implanted BVS struts in two different coordinate systems is shown in 
Fig. 1. There are different BVS strut shapes; however, struts having bright boundaries 
and box-shape black cores account for 100% of the shapes at baseline, more than 82% 
at 28 days and 80% at 24 months of all the struts [15]. Therefore in this paper we will 
focus on the box-shape type of BVS struts. The strut area is measured based on its 
black core. The bright boundary is not included since when a strut is covered by tissue, 
its boundary cannot be precisely defined, while for a newly implanted strut, its 
thickness will be overestimated by measuring the distance between the leading-edges 
of its adluminal wall and abluminal wall [12]. 

Many automated metallic stent strut detection methods [16-19] have been 
published. However, to the best of our knowledge, current BVS analyses in IVOCT 
images still rely on the labor intensive manual delineation of struts. Given the large 
number of struts in a pullback run, quantitative analysis is feasible only when struts 
can be detected automatically. In this paper, we present an automated method to 
detect BVS struts and to measure their black core areas in IVOCT pullback runs. 

3.2 Method 

To detect struts accurately, a-priori information of the input IVOCT data set type 
(baseline or follow-up) is requested, as the presented algorithm has two slightly 
different strategies for baseline and follow-up images with respect to some different 
parameters, false positive filters and the region of interest (ROI). However, in this 
section, the described procedures are implicitly used for both strategies, unless stated 
differently in context. As Fig. 2 shows, both strategies contain five main steps: 1) Pre-
processing. The bright components in the lumen including the imaging catheter, the 
guide wire and the protective sheath should be detected and masked; 2) Image 
transformation. The lumen contour and center are detected so that we can transform 
Cartesian IVOCT images into new polar images based on the lumen center. In the new 
polar images, the shapes of BVS struts are usually more rectangular than these in the 
original polar images; 3) Candidate strut detection. In the new polar images, short 
candidate segments describing black cores are detected and later clustered as 
candidate struts; 4) False positive removal. These are removed using a series of false 
positive filters; 5) Strut contour refining. The strut contours are refined to be smooth 
and accurate for area measurement and center calculation. In the following 
subsections, each step of the method is described in more detail. 
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Figure 3-2. The flow chart of the BVS strut detection method. 

3.2.1 Preprocessing 

Bright components inside the lumen, including the imaging catheter, the guide 
wire and the protective sheath, were masked to improve the further processing. The 
imaging catheter center is the center of Cartesian images, and as Fig. 1(a) shows, the 
imaging catheter produces a series of very bright concentric circles, which appear as 
vertical lines in the polar images as presented in Fig. 1(b). After a proper Z-offset 
correction, the imaging catheter is located in the same position in the whole pullback 
run and hence can be detected in the minimum image of the entire pullback run by 
checking the intensity sum of every column [20]. If a guide wire is used during the 
image acquisition, it blocks the light signal and consequently generates a black 
shadow behind it. According to its intensity profile, the guide wire and its shadow were 
detected using a previously developed method [21]. 

The imaging catheter is always covered by a protective sheath which appears as a 
ring with a certain width dependent on the manufacturer and catheter type. During 
the image acquisition, the imaging catheter moves sideways inside the protective 
sheath, thus the protective sheath position varies during the pullback and therefore 
must be detected frame by frame. First, a ROI was defined for the detection. It started 
from the outer wall of the imaging catheter and was wide enough to cover the 
protective sheath. As the protective sheath diameter and the image resolution are 
known, a proper width of the ROI can be computed. Next, the Prewitt compass edge 
filter with a kernel sensitive to vertical edges [22] was applied to the image, so that the 
outer (bright-to-dark) edge of the protective sheath was represent by strong negative 
values. The gradient image was used as a cost matrix to which Dijkstra’s algorithm [23] 
was applied to detect the minimum cost path dynamically. This path is the outer 
boundary of the protective sheath. An example of the detection results of the imaging 
catheter, the protective sheath and the guide wire shadow region is given in Fig. 3(a). 
To avoid creating new dark to bright edges that may influence the lumen contour 
detection, the image region inside the protective sheath was masked using the 
background intensity value. It was computed based on a fixed percentile of the 
histogram of the entire image sequence. An example of the preprocessed image is 
presented in Fig. 3(b).  
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Figure 3-3. The detected imaging catheter (dashed straight line “1”), protective sheath 
(solid curve “2”) and guide wire shadow region (area “3”) are given in figure (a). The 
masked image is given in figure (b). Inside the protective sheath, it is masked with the 
background intensity value, while the guide wire shadow region is masked as 0. 

3.2.2 Image transformation 

Our BVS strut detection is applied to polar images. However, the box-shape BVS 
struts are usually distorted like parallelograms in the original polar images, since they 
are converted from Cartesian images based on the catheter center instead of the stent 
contour center. To improve the BVS strut appearance, new polar images should be 
created from Cartesian images based on the stent contour center. As lumen contour is 
similar to the stent contour in most of the cases, its center was used as an 
approximation of the stent contour center.  

 

Figure 3-4. The gradient images of a baseline image and a follow-up image are given 
in figures (a) and (b). They are used for lumen detection. Yellow curves indicate the 
detected minimal cost paths. In figures (c) and (d), the original polar images are 
presented with lumen contours (white curves). The new polar images transformed 
based on the lumen center are shown in figures (e) and (f) in which most of the BVS 
struts are more rectangular than in original polar images. 
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The lumen boundary was detected in the original polar images. First, the images 
were denoised using a median filter [24] to smooth the lumen boundary. Next, a 
gradient image was generated by applying the Prewitt compass edge filter with the 
kernel for vertical edges to the smoothed image. Two examples are given in Figs. 4(a) 
and 4(b). In the gradient image, the lumen boundary is represented by strong negative 
values and hence Dijkstra’s minimum cost path detected in it was treated as the lumen 
boundary as Figs. 4(c) and 4(d) demonstrate. The detected lumen boundary was 
converted into the Cartesian coordinates system and its center was detected using a 
distance transformation method presented in [25]. Based on the lumen center, a 
Cartesian image can be transformed into a new polar image like Fig. 4 (e). Compared 
with the original polar images, the shapes of most BVS strut are more rectangular. 
However, in some cases, the lumen contour is highly irregular, so that BVS struts are 
still not rectangular after the image transformation as Fig. 4(f) shows. They have 
irregular shapes and different thickness in the vertical direction. The proposed method 
contains procedures to detect these irregular struts in the further steps, but in the 
worst situation, these struts cannot be detected. 

3.2.3 Candidate strut detection 

In the new transformed polar images, candidate BVS struts were detected. As 
mentioned in the beginning, the presented method has two different strategies to 
detect baseline and follow-up struts, separately. There are three main differences 
between them:  

1. Different ROI for strut detection. For baseline data sets, the struts are usually 
aligned with the lumen boundary or malapposed, which means most of the struts are 
inside the lumen contour as Fig. 4(e) demonstrates. However, the lumen detection 
may be affected by confluent struts or struts placed inside the tissue, so that the 
detected lumen contour may follow the front wall of these struts instead of the back 
wall. To cover all the baseline struts, the detected lumen contour needs to be extended 
with an offset equal to BVS strut thickness. The ROI of baseline strut detection is 
between this extended contour and the previously detected protective sheath contour. 
In contrast, in the follow-up data sets, most of the BVS struts are outside the lumen 
contour as Fig. 4(f) shows, but when some struts are not covered by tissue, the 
detected lumen contour could pass behind them mistakenly. To include all the follow-
up struts, we need to shrink the lumen contour to the lumen center direction with an 
offset equal to BVS strut thickness. Therefore, the ROI for follow-up strut detection is 
between the shrunken lumen contour and the image boundary. 

2. Different thickness threshold. After implantation, BVS struts start to be 
degenerated and covered by healing tissue. Hence, the boundaries of the follow-up 
struts are less sharp than newly implanted struts. Consequently, the method uses a 
slightly bigger thickness threshold to detect follow-up struts than the newly implanted 
struts. This parameter is set based on the image resolution and will be described later 
in this section. 

3. Different degree of the boundary completeness. The boundary of a newly 
implanted strut usually contains many small gaps as Fig. 4(c) shows. Because a 
baseline strut is not covered by tissue, its box-shape boundary is mostly created by the 
backscattering at the strut surfaces which could be affected by the strut position and 
orientation. Parts of the boundary could be blurred or even missing. Moreover, the 
residual blood and other artifacts also can affect the completeness of the box-
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structure. At follow-up stage, struts are usually covered by tissue which helps to 
generate bright boundaries as Fig. 4(d) shows. Compared with the newly implanted 
struts, the follow-up struts have a more complete box-shape boundary and hence the 
method is stricter with regard to their boundary shape and completeness. 

 

Figure 3-5. Figures (a) and (b) show a scan-line (white line) passing through a BVS 
strut in a baseline image and a follow up image, respectively. The corresponding 
gradient images are presented in figures (c) and (d). The intensity profile (yellow curve) 
and the gradient profile (white curve) are given in figures (e) and (f). A BVS strut 
always has low intensity values in the black core region and strong gradient values 
along the boundary. 

In the ROI, we first detected the candidate line segments between the front and 
back walls of BVS struts scan-line by scan-line and later clustered these segments into 
candidate struts. To detect candidate segments, both original and gradient images 
were used. Again, the Prewitt compass edge filter for vertical edges was applied to 
generate gradient images in which dark-to-bright edges are represented by negative 
values and bright-tot-dark edges are positive values. The intensity profile and the 
gradient profile of a scan-line that passes through a BVS strut are given in Fig. 5. 
According to these profiles, one can state that the BVS region starts with a relatively 
high intensity (front wall) followed by a certain low intensity region (black core) and it 
ends with another relatively high intensity (back wall). As a result, candidate segments 
constituting BVS struts were detected with four main rules: 

1. It has low intensity black core region. In this method, the low black core intensity 
threshold was calculated based on a fixed percentile of the histogram of the pullback 
run.  
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2. It has a strong positive gradient value in the beginning and a strong negative 
gradient value in the end. Both the gradient value thresholds were computed 
according to fixed percentiles of the histogram of the gradient images. 

 

Figure 3-6. Figure (a) shows a new polar baseline image that is transformed based on 
the center of Figure (a) shows a new polar baseline image that is transformed based on 
the center of a highly irregular lumen contour. The BVS struts in figure (a) still appear 
distorted and their thickness in the vertical direction is very different. Figure (b) 
demonstrates a follow-up image transformed based on the center of a circular lumen 
contour. The BVS struts are less distorted than these in figure (a). The detected 
candidate line segments (short white lines) are presented in both figures (c) and (d). 
Both white and black arrows point out the candidate segments caused by residual 
blood or noise in tissue. These candidates will be clustered as false candidate strut 
during the clustering. After the false positive removal, only real struts are left as figures 
(e) and (f) shows. 

3. It has a reasonable length. Segment length represents the strut thickness in scan-
line direction. Ideally, the thickness of BVS struts in a pullback run should be the same 
in each scan-line. However, BVS struts could still appear distorted after the image 
transformation in section 2.2, since the lumen is not always circular. Moreover, the 
strut boundary thickness can be influenced by the distance and orientation of the 
struts. Struts close to the imaging catheter or uncovered by tissue usually are 
characterized by a wider boundary. Therefore, the thickness of the strut cores in a 
single pullback run can be different from the standard thickness. In our approach, a 
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range of acceptable thicknesses of BVS strut cores was set based on the standard 
thickness. 

4. Candidate segments should not be overlaid in the same scan-line. In case the 
noise has stronger edge than real struts, the algorithm allows more than one candidate 
segment in the same scan-line. However, when two candidate segments were found 
overlaid in the same scan-line, only the one having the highest intensity sum of the 
front and back walls was selected. If they both had the same intensity sum, the longest 
one was saved. 

For example, the candidate segment results for Figs. 6(a) and 6(b) are presented in 
Figs. 6(c) and 6(d), which still contain some false candidate segments. They are 
generated due to the residual blood, micro-vessels, plaques and weak signal region 
deep in the tissue. 

After having obtained the BVS candidate segments, a clustering method was 
applied to merge these segments into candidate struts. As Figs. 6(c) and 6(d) show, the 
candidate segments belonging to the same BVS strut are connected, while the false 
positives are usually randomly distributed. In this method, the segments were 
clustered according to their position. It started from the first un-clustered candidate 
segment and searched for the next segment close to it. A candidate segment can be 
added to the cluster if it is connected with the last segment in the cluster. The 
searching continues until no more segments can be attached. Next, we checked if a 
cluster has top and bottom boundaries as BVS struts should have box-shape 
boundaries. The follow-up BVS strut boundary is usually complete due to the tissue 
coverage so that only clusters having both top and bottom edges were saved. In 
baseline data sets, the BVS strut could have an incomplete box-structure, so that the 
method allows a cluster to miss its top or bottom boundaries. 

3.2.4 False positive removal 

During the clustering, many false candidate struts were generated from false 
candidate segments as presented in Figs. 6 (c) and 6(d). Therefore, a series of false 
positive filters were applied to the clustering results to remove them. First, the strut 
size was used for filtering. A BVS strut should contain a certain number of candidate 
segments. Small clusters are usually caused by random noise or artifacts in the images. 
In our research, clusters containing less than 3 candidate segments were removed as 
false positives. A second filter was applied to search for overlaid struts in each scan-
line, because there should be at most one strut in any radial direction, but some false 
positives can share parts of the boundary with real struts. As a result, when two 
clusters were overlaid in the radial direction, only the one with complete box-structure 
was saved. If both clusters had complete box-structures, the bigger cluster was kept. 

The third filter is only applicable for follow-up data sets. After the first two filters, a 
few false positives may still exist in the deep tissue region which contains much 
random noise due to the weak signal. Compared with the true positives, these false 
positives were commonly located deeper in the tissue; therefore, a filter was applied to 
remove outliers based on the thickness of tissue coverage (the distance between struts 
and the lumen boundary) for each candidate strut, so that a candidate strut having a 
very different thickness of tissue coverage with the majority was considered as a false 
positive, since the thickness of tissue coverage changes smoothly in the follow-up data 
sets. After the previous filtering, the majority of current results should be true 
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positives. Therefore, the median coverage thickness was computed for outlier 
detection. To be accurate, the clusters in the neighboring frames were used to estimate 
the median coverage thickness as well. This filter also removed most of the false 
positives caused by micro vessels and plaques. However, it is not applicable for 
baseline data sets, as the malapposed struts could have very different distances to the 
lumen boundary. Examples of the false positive removal results are given in Figs. 6 (e) 
and 6(f). 

3.2.5 Strut contour refining 

After false positive removal, the main bodies of the strut black cores were detected. 
As the candidate segments were always selected with the strongest boundary intensity, 
the detected adluminal and abluminal walls of BVS struts were usually rough. Besides, 
the original boundary could be fluctuating because of the noise, inside fractures and 
low image quality. Examples of the unsmoothed BVS strut contours are shown in Fig. 
7(a). Therefore, the front wall and back wall of each detected strut were smoothed 
using a median filter. Any outliers were replaced by the interpolated point between the 
nearest neighboring points. The smoothing results are show in Fig. 7(b). 

 

Figure 3-7. The original boundaries of clusters formed by white points in figure (a) 
and the smoothed boundaries in figure (b). 

 

Figure 3-8. Figure (a) shows the smoothed boundaries of a cluster in yellow dots. In 
figure (b), two white lines are fitted to the top part of the strut boundary and two light 
blue lines are fitted to the bottom part of the strut boundary. Along the fitted lines, the 
missed boundaries in the sharp tip regions are recovered as figure (c) demonstrated 
and the final refined strut contour is generated as (d) presents. 

The main bodies of the strut cores were formed by line segments with a range of 
acceptable thickness. However, an irregular shape strut could contain sharp tips in 
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one or both ends as Fig. 8(a) shows. The core regions in the sharp tips have smaller 
thickness than the acceptable thickness and usually contain more noise than the main 
body. As a result, the sharp tip regions might be missed during the detection. To 
recover these tip regions, a post-processing was applied. First, the adluminal and 
abluminal boundaries were fitted into lines using the least-square error method and 
the fitted lines specify the ROI for tip refining. Due to the irregular lumen contour, a 
long BVS strut could be curved, so its front and back walls cannot be fitted into one 
single line. To be accurate, we fitted two separated lines for the top and bottom 
boundary of the struts containing more than 20 candidate segments as Fig. 8(b) 
presents. Next, along the fitted lines, the adluminal and abluminal walls for the missed 
sharp tip regions were recovered by searching continuous boundaries in the Prewitt 
edge filtered polar images. The searching ended when the fitted line met the top or 
bottom edges. The recovered boundary can be seen in Fig. 8(c). In the end, a spline 
contour was generated for each BVS strut based on the refined boundary as Fig. 8(d) 
shows. At the same time, the center of each BVS strut was calculated. 

3.3 Validation and results 

The automatic BVS strut detection and measurement method was developed using 
the MeVisLab toolbox (Fraunhofer MeVis, Bremen, Germany) together with in-house 
developed C++ modules. For validation purposes, 6 pullback runs were used which 
were acquired using a C7-XR FD-OCT intravascular imaging system together with a C7 
Imaging catheter (St. Jude Medical Inc., St. Paul, MN, USA). The automated pullback 
speed was 20 mm/s with a data frame rate of 100 frames per second. All the pullback 
runs are in the original 16-bit polar format and each contains 271 frames. Three 
pullback runs were acquired at baseline, while the other three at 6 to 24 months, 
respectively. In both baseline and follow-up groups, one pullback run contains no 
guide wire and the other two contain a standard 0.014 inch steerable guide wire. 
Temporary blood flushing was performed with a contrast infusion. All the stents are 
the ABSORB 1.1 bioresorbable vascular scaffold (Abbott Vascular, Santa Clara, CA, 
USA). Overtime struts are absorbed. According to the trails for the ABSROB BVS [15], 
there is about 9% reduction of struts in IVOCT images over 6 months and 35% 
reduction over 24 months. Already due to the difference in position of the IVOCT 
catheter for the same scaffold at the same time point, there could be a difference in the 
number of struts. In our study, the baseline and follow up data sets are from different 
patients and therefore the number of struts is different. Part of the BVS struts could 
become undetectable after 24 months, but every visible strut in the 6 in-vivo IVOCT 
pullback runs were used for validation purposes, including struts without box-shape 
and the struts partly blocked by guide wire shadows.   

To generate the ground truth, one observer manually drew all 4691 black cores of 
BVS struts in the 6 pullback runs, 2183 cores from the baseline group and 2508 from 
the follow-up group. A second independent observer manually drew all the struts in a 
subset containing one baseline data set and one follow-up data set. The second 
observer drew one contour for a strut with big fractures. These struts contain more 
than one black core, and have similar appearance as confluent struts. Therefore, the 
ground truth from the second observer contains some bright regions between black 
cores compared with that from the first observer as Figs. 9(a) and 9(b) shows. For 
incomplete struts, both observers marked the contour based on experience. In total, 
726 newly implanted struts and 795 follow-up struts were marked by the second 
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observer. In the same subset, the first observer marked 783 baseline cores and 819 
follow-up strut cores. The agreements for BVS strut were given in Sensitivity and the 
core area agreements were computed using the Dice’s coefficient. The inter-observer 
agreement of the BVS struts was 98.8% for baseline struts and 99.6% for follow-up 
struts. The strut area similarity was both 0.83 in the baseline group and the follow-up 
group. The area difference is mainly because the first observer did not include the 
bright region caused by big fractures.  

 

Figure 3-9. Figure (a) shows two black cores marked by the first observer and they 
were marked as a big strut by the second observer as figure (b) presents. A comparison 
of the ground truth (solid white contours) from the second observer and the 
algorithmic results (dashed yellow contour with white translucent mask) in a baseline 
image is presented in figure (c) and another comparison of the ground truth from the 
first observer and the algorithmic results in a follow-up image is given in figure (d). 
The enlarged images of the white rectangle regions are given in figures (e) and (f). 

During the evaluation, if a detected strut overlays the area of a ground truth, it was 
counted as a true positive. Otherwise, it is a false positive. The accuracy of black core 
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area was measured by Dice’s coefficient as well. According to the first observer, on 
average, the method correctly detected 90.0 ± 3.2% struts with 3.1 ± 0.7% false positives 
in every baseline data set and the Precision was 97.0 ± 0.1%. The Dice’s coefficient for 
the BVS strut area was 0.83 ± 0.02. If we measure only the area of the correctly detected 
struts, the Dice’s coefficient was 0.86 ± 0.01. For the follow-up group, the method 
detected 96.6 ± 2.0% struts correctly with only 0.8 ± 0.8% false positives and the 
Precision was 99.2 ± 0.1%. The Dice’s coefficient for the strut area was 0.85 ± 0.02. For 
only the true positive struts, the number was 0.86 ± 0.01. According to the second 
observer, the method successfully detected 90.8% of baseline struts with 4.3% false 
positives and the Precision was 95.9%. 92.6% of follow-up struts were detected with 
2.2% false positives and the Precision was 97.7%. The Dice’s coefficient for baseline 
and follow-up strut areas was 0.76 and 0.75, separately. Counting only true positive 
areas, the Dice’s coefficient was 0.79 and 0.77. Some examples of the ground truth 
from both observers and algorithmic results are given in Figs. 9(c)–9(f). The strut 
detection and the area measurement performance for each individual pullback run are 
presented in Table 1 and Table 2, separately. 

The center position error of the correctly detected strut was computed as well. The 
average distance error of the strut centers was 17.0 ± 22.5 μm for newly implanted 
struts, 13.9 ± 11.1 μm for follow-up struts and 15.3 ± 21.0 μm for all struts. The median 
distance errors for two groups were both 11.1 μm. 

 

Table 1. The strut detection results of the presented method for each validation 
data set. For each data set, the number of frames containing struts (Frame No.), 
the numbers of struts in the ground truth (GT), the percentages of true positive 
(TP) and false positive (FP) are given 

 

  

Strut status Data set Frame No. 
(with struts) No. of GT TP (%) FP (%) 

Baseline 

1 89 630 85.5 3.8 

2 94 770 92.2 3.3 

3 93 783 92.5 2.0 

Follow-up 

4 97 868 93.7 0.0 

5 91 819 98.0 0.6 

6 97 821 90.4 1.8 

Total - 561 4691 93.7 1.8 
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Table 2. The strut area measurement performance of the present method in 
each validation data set. The area of the ground truth (GT) and the Dice’s 
coefficient between the ground truth and the algorithmic results are given for all 
struts and only successfully detected struts 

Strut status Data 
set Area of all struts  Area of only true 

positives 
  GT area (mm2) Dice  GT area (mm2) Dice 

Baseline 

1 16.4 0.81  15.0 0.86 

2 14.3 0.82  13.7 0.85 

3 15.9 0.85  15.4 0.87 

Follow-up 

4 20.1 0.87  19.9 0.88 

5 19.8 0.83  19.0 0.85 

6 18.3 0.84  18.0 0.85 

Total - 104.8 0.84  101.0 0.86 

3.4 Discussion 

According to the validation results, the algorithm successfully detected 96.6 ± 2.0% 
follow-up struts with only 0.8 ± 0.8% false positives and 90.0 ± 3.2% newly implanted 
struts with 3.1 ± 0.7% false positives. The strut center error was 15.3 ± 21.0 μm. 
Generally, the presented method is accurate and robust under different image 
circumstances. The performance for the follow-up group is slightly better than the 
baseline group, because follow-up BVS struts have more complete box-shape 
boundaries due to the tissue coverage. Backscattering on the interface between struts 
and tissue creates strong bright boundaries. By checking the boundary completeness 
during the clustering, the algorithm can easily remove most of the false positive from 
the follow-up pullback runs. In contrast, the contour of newly implanted struts can be 
influenced by noise in the lumen, such as residual blood, and hence contains many 
gaps. The algorithm keeps the clusters that have mild incomplete boundaries to avoid 
removing too many true positives, but fails to keep the real struts having severe 
incomplete boundaries. On the other hand, it also leaves more false positives in the 
results than the follow-up data set. Most of these false positives can be later removed 
by the filters, but still a few could leave as they are difficult to distinguish. Actually, 
most of the final false positives are from the baseline group. Similarly, the strut area 
performance in the follow-up pullback runs (0.85 ± 0.02) is also better than in the 
baseline pullback runs (0.83 ± 0.02).  

When a BVS strut fractures, it generates bright scattering regions that separate the 
strut into several black cores as Fig. 9(a) shows. In this case, the first observer marked 
each cores separately, while the second observer drew one big contour for all the cores 
including the bright fractures as Fig. 9(b) presents. Hence, the manual results from the 
second observer contain fewer struts but more strut areas than those from the first 
observer, and the false positive rate according the second observer is 3.2% and the 
Dice’s coefficient for the strut area is 0.75. However, if we count only the agreed areas 
between two observers, 95.1% and 96.9% of these areas were correctly detected for 
baseline and follow-up groups, separately. It suggests that the algorithmic results have 
a good agreement with the black core regions from both observers. The area errors in 
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the baseline data sets are largely caused by incomplete boundaries, because the strut 
areas may be overestimated or underestimated. The area errors for follow-up struts are 
mainly due to the blurred boundary edges, because struts are slowly bioresorbed after 
implantation. Tissue coverage also weakens the sharpness of strut boundaries. As this 
method prefers strong edges when detecting struts, the final follow-up strut contours 
could be distorted. 

The strut detection also replies on the proper preprocessing. The imaging catheter, 
the guide wire and the protective sheath should be removed to facilitate the lumen 
detection. Besides, these bright components also can negatively impact the baseline 
strut detection. The lumen center is used as an approximation of the stent contour 
center. After transforming the Cartesian image to a new polar image based on the 
lumen center, we could get more rectangular strut contours. However, when the 
lumen contour is highly irregular, the BVS strut in the transformed polar image could 
be still distorted like a parallelogram and in many cases, the strut edges are not 
straight. Therefore, the thickness and the shape of these struts could vary a lot during 
in the pullback run. To handle this situation, the presented method allows a range of 
acceptable thickness instead of only the standard thickness to detect as many 
candidate segments as possible, and in the end, refines irregular strut contours to be 
more accurate. In a rare case, a strut can be highly distorted in the new polar image 
and therefore, cannot be detected by this method. 

Most of the parameters used in the presented method are related to the image size 
and image resolution, while the remaining three parameters were set based on the 
histogram of the original images or the gradient images. These parameters are the 
minimum intensity threshold for strut boundary, the minimum absolute gradient 
threshold for edges and the maximum intensity threshold for black core regions. One 
data set from each group was used for parameter tuning. The same parameter setting 
was applied to all the pullback runs during the validation.  

The presented method also has limitations. The BVS struts can have four different 
appearances: preserved box, open box, dissolved black box and dissolved bright box 
[15]. This method can only detect the majority of the cases, being the preserved box, 
which has a closed high intensity boundary and a low intensity core. All other three 
types cannot be detected. It also has limitations to handle struts with an incomplete 
boundary. Moreover, in a few cases, BVS struts can be overlaid after the implantation, 
but our method cannot detect the overlapping BVS struts, because a false positive filter 
checks all the overlapping results in radial direction. Only one of these struts could be 
left in the results. This research is based on the ABSORB 1.1 BVS struts; hence our 
results cannot be directly generalized to other type of BVS struts which may have 
different appearance with ABSORB 1.1 BVS after implantation and during the follow 
up. 

3.5 Conclusion and future work 

In conclusion, with the ongoing development of BVS technology, automated BVS 
strut detection methods become important as they can simplify and speed the 
quantitative analysis for both clinical research and medical care. In this paper, we 
implemented an automatic method to detect and measure BVS struts based on the 
black core region in both baseline and follow-up IVOCT image sequences. The 
validation results suggest that the proposed algorithm is very accurate and robust, 
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which could be a helpful tool for tissue coverage thickness measurement, strut 
distribution analysis, 3D visualization, BVS bioresorption validation and vascular 
response research. In future, we plan to improve the current detection method and to 
detect BVS struts without box-shape contours.  
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ABSTRACT 

We present a semi-automatic approach to assess the maximum circular unsupported 
surface area (MCUSA) of selected stent cells and the side branch access through stent 
cells in intravascular optical coherence tomography (IVOCT) pullback runs. Such 3D 
information may influence coronary interventions, stent design, blood flow analysis or 
prognostic evaluation. First, the stent struts are detected automatically and stent cells 
are reconstructed with users’ assistance. Using cylinder fitting, a 2D approximation of 
the stent cell is generated for MCUSA detection and measurement. Next, a stent 
surface is reconstructed and stent-covered side branches are detected. Both the stent 
cell contours and side branch lumen contours are projected onto the stent surface to 
indicate their areas, and the overlapping regions are measured as the side branch 
access through these stent cells. The method was evaluated on phantom data sets and 
the accuracy of the MCUSA and side branch access was found to be 95% and 91% 
respectively. The usability of this approach for clinical research was proved on 12 in 
vivo IVOCT pullback runs. 
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4.1 Introduction 

Over Coronary stents are widely used in the treatment of coronary artery disease. 
During a percutaneous coronary intervention (PCI), a stent is delivered to a stenosis 
and extended by inflating a balloon to keep it open. Clinical research has 
demonstrated that the support of an implanted stent to the vessel wall positively 
influences the outcome of the PCI [1-3]. Given these positive results, there is an 
increasing demand from clinical researchers for detailed stent analysis. However, the 
past research on the stent support mainly focused on the 2D stent struts distribution in 
cross-sectional images, such as the stent contour area, the number of visible struts and 
the inter-strut angle in a single frame [4-6]. Recently, 3D assessment like the size of 
every stent cell [7-9] has become popular for stent analysis. Stent cell size assessment 
may be used to evaluate the actual stent designs with respect to the struts distribution 
[10-12] or even the mechanism of controlled drug release from drug-eluting stents 
[13]. As a new desired feature, the maximum circular unsupported surface area 
(MCUSA) of stent cells was proposed to describe the support to the vessel wall [14;15]. 
It was defined as the maximal circular area that can be fit inside a 2D approximation of 
a stent cell.  

Stents with smaller cells usually provide better support to the vessel wall, but when 
a stent covers a side branch, small stent cells in front of the side branch may lead to 
restenosis or obstruction of the blood flow to the side branch due to bridging [16-18]. If 
necessary, a stent cell in front of the side branch can be expanded by a second balloon 
to enlarge its ostium, but it may lead to stent fracture [19;20]. For interventional 
cardiologists, assessing the side branch access through stent cells may assist the PCI 
treatment prognosis of stent-covered side branches and the stent design evaluation.  

To measure stent cells accurately, a precise description of the stent position is 
necessary. As a relatively new 3D optical imaging technique, intravascular optical 
coherence tomography (IVOCT) is increasingly being used to evaluate in-vivo 
coronary lesions [21;22]. It provides very high resolution (about 10 μm) cross-sectional 
images of coronary arteries so that the stent measurement can benefit from it. In 
IVOCT pullback runs, the implanted stents are visible as individual bright spots 
(struts) with a black shadow behind them [23;24]. Fig. 1 presents two in-vivo IVOCT 
images in Cartesian coordinate system and polar coordinate system separately.  

In this paper, we present a semi-automatic approach to assess the MCUSA of every 
selected stent cell and the side branch access through stent cells. The details of the 
method are presented in section 2, while the validation method and the empirical 
results from a phantom data set and twelve in-vivo IVOCT pullback runs are presented 
in section 3 and section 4. The analysis of the results is given in section 5 and the 
conclusions and future work in section 6.  
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Figure 4-1. Two examples of in-vivo IVOCT images with an implanted stent. Figure (a) 
shows a Cartesian image, while figure (b) shows the corresponding polar image. In 
both images, a stent strut, the shadow behind this stent strut, the guide wire and the 
imaging catheter are annotated. 

4.2  Methods  

The presented methodology consists of six main steps: (1) automatic stent strut 
detection; (2) semi-automatic stent cell contour reconstruction; (3) 2D stent cell 
approximating and MCUSA assessment; (4) irregular stent surface reconstruction; (5) 
stent-covered side branch detection; (6) assessment of the side branch access through 
stent cells. A flow chart of the methodology is shown in Fig. 2. More details are given in 
the following sections. 

 

Figure 4-2. The flow chart of the presented method for MCUSA and side branch 
access measurement. 

4.2.1 Stent strut detection 

Before measuring the MCUSA and the side branch access, we need to reconstruct 
stent cells. The strut positions are needed because stents appear as struts in IVOCT 
pullback runs. Stent struts can be manually detected but it will be very time-
consuming and lack of reproducibility. Several (semi-)automatic strut detection 
methods have been published [6;23-26]. In this manuscript, our recently published 
automatic stent strut detection method was used [23]. It segments the struts and the 
guide wire in polar IVOCT pullback runs automatically. This method was validated 
using almost 20000 struts under different conditions (malapposed, apposed and 

a b 
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covered) in 10 various quality in-vivo pullback runs, and the method has 
demonstrated that about 94% of the stent strut can be automatically detected.  

4.2.2 Stent cell reconstruction 

Without enough a-priori information, it is challenging to recognize a stent cell fully 
automatically, as different stents have different cell structures and their shapes can be 
distorted during the implantation. Additionally, if a stent cell in front of a side branch 
has been extended for better blood access, its shape and size will be greatly different 
from the other stent cells. Due to the irregular stent shapes and variable cell structures, 
automatic stent cell reconstruction methods may have limited performance. To come 
up with an accurate and maximally robust technique, we have decided for a semi-
automatic stent cell reconstruction method, whereby users are requested to observe 
the stent cell pattern and confirm the struts belonging to a particular stent cell by 
manual interaction. 

This means that the user needs to click on the struts belonging to a single stent cell 
in 2D space. Although users can observe stent cell structures in 3D space as Fig. 3(a) 
shows, these structures are not very clear due to the illusion of perspective projection. 
Besides, it is difficult for user to click struts in 3D space. To simplify the user 
observation and interaction, the stent is cut up along the longitudinal direction and 
opened as a 2D mesh. To do this, the stent contour center in each frame is required as 
the first step. As shown in Fig. 1 (a), the cross section of the implanted stent is elliptical, 
so it is reasonable to fit an ellipse to the stent struts as the approximation of the stent 
contour. Here, a least-square method [27] is chosen to fit the ellipse. In some frames, 
there are not enough struts for an accurate ellipse fitting result. Under such 
circumstances, struts from neighboring frames are projected to the current frame for 
ellipse fitting as well, because the stent contour position does not change much 
between two neighboring frames. In case there are still not enough stent struts 
available (typically < 6), the stent contour in this frame will be linearly interpolated 
from the neighboring stent contours. The fitted ellipses are first used to remove the 
outliers from the struts detected in section 2.1. All the struts are checked by computing 
their distance to the elliptic stent contour. If a strut is located too far away from the 
ellipse, it will not be used for the stent surface reconstruction.  

After the elliptical stent contours are fitted, an imaginary cylinder is created along 
the centerline of the pullback run with the diameter being the average length of all 
ellipse axes. The struts in the individual frames are shifted until the stent center 
overlays the original Cartesian image center. Next, all the stent struts are projected 
onto this cylinder along a ray shot from the image center; Fig. 3 (b) shows an example 
of a projection result. This step guarantees that there will be no overlaid struts during 
the projection. When the cylinder is opened into 2D, the stent is converted to a 2D 
mesh (Fig. 3 (d)). This 2D mesh is only used to simplify the users’ observation and 
interaction, but not for stent cell size measurement; for this reason, a mapping is kept 
between the 2D struts and the original 3D struts. Later in section 2.6, the detected side 
branch lumens are also projected onto this imaginary cylinder and opened together 
with the stent, so that the stent cells which may be in front of side branches could be 
detected easily as Fig. 3 (d) shows. 

Users are requested to observe and recognize stent cells in the 2D mesh, and then 
click on the struts belonging to a stent cell in the proper order. When a strut is 
indicated in the 2D mesh, the corresponding original 3D strut position is found based 
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on the known mapping between 2D and 3D struts. The time required for this 
interactive process depends on the stent structure complexity and the number of 
struts. Typically, it takes about 15 seconds to indicate all the struts belonging to a stent 
cell. Next, the stent cell contour is generated by linking the 3D struts in the proper 
order using a natural-spline. An example of a reconstructed stent cell contour is 
presented in Fig. 3(e). 

   

   

Figure 4-3. (a) Elliptic stent contours are fitted to the original stent struts (blue dots) 
from an in-vivo IVOCT pullback run. Based on the ellipse centers (yellow dots), (b) 
struts are shifted and projected onto a cylinder. (c) An irregular stent surface is 
reconstructed from the original struts. (d) The stent is opened into 2D and the struts 
are presented as black dots, while a user detected stent cell is presented in blue. 
Similarly, a side branch lumen (gray area) is also projected onto the cylinder and 
opened to show its relative location with respect to the stent cells. (e) A 3D stent cell is 
reconstructed according to the 2D/3D struts mapping. The cell contour is generated by 
linking struts with a natural spline. (f) A 2D approximation of the stent cell is given and 
the grey value inside the contour is the distance transform result. Its MCUSA (the blue 
circular area) is detected by searching for the highest intensity pixel in it. (g) The cell 
contour is projected onto the stent surface to determine the cell surface for the further 
side branch access assessment. 

4.2.3 MCUSA estimation 

The MCUSA of a stent cell is the maximum circular area inside this stent cell. As a 
3D structure, every stent cell needs a 2D approximation to compute its MCUSA. This 
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approximation should preserve the main stent cell size and shape details. It can be 
generated by fitting a regular shape to the stent cell and opening into 2D. In the case of 
a stent, the logical choice for the regular shape is a cylinder. Fitting the whole stent to a 
single cylinder could introduce errors, because stents are bended and distorted during 
the implantation procedure e.g. at side branches (Fig. 3 (a)). In order to minimize the 
introduced errors, a cylinder side surface is fitted to only the struts belonging to a 
single stent cell instead of all the struts. The fitting is based on a least-squares cylinder 
fitting method [28], which minimizes the error between struts and the fitted cylinder 
side surface. The initial orientation of the cylinder is set as the longitudinal direction of 
the pullback run and the initial radius is the average length of the stent ellipse axes. 
After the cylinder fitting, the stent struts are projected onto the fitted cylinder and 
opened into 2D. Struts are linked by a natural spline as Fig. 3 (f) shows. Before 
opening, a connectivity check is applied to make sure that stent cell cannot be split 
into two halves. If a stent cell could be split, the opening position of the cylinder will be 
rotated to the outside of the stent cells.  

The largest circle which can be found inside this 2D approximation is the MCUSA. 
The center of the MCUSA is the point which has the maximum shortest distance to its 
surrounding boundary. To detect this point, first a binary image is generated from the 
2D approximation. Next, the distance transform algorithm [29] is applied to this binary 
image. In the resulting image, the pixel with the highest intensity defines the center of 
the MCUSA and its intensity value is the radius of the MCUSA. An example is given in 
Fig. 3 (f). Please note that although there may be more than one maximum circle, they 
all have the same size. 

4.2.4 Stent surface reconstruction 

As Fig. 5 (a) presents, the side branch access through a stent cell can be measured 
by computing the overlaid region between the side branch and the stent cell. To 
achieve the common region between them, we need to reconstruct a precise stent 
surface for the implanted stent. The stent cell surface and the side branch lumen 
surface will be segmented on the stent surface. During the stent extension, the balloon 
cannot evenly expand in all areas because the hardness of tissue and plaques is 
different. Therefore, the shape of the implanted stents is irregular in general. In our 
approach, a precise and piecewise smooth stent surface is reconstructed from the 
detected stent struts using Hoppe’s method[30]. The surface consists of many tiny 
triangles. This method requires a group of relatively evenly distributed points and has 
two parameters: the neighborhood size and the sample spacing. The first parameter is 
the average neighbor number of each strut which is used to estimating the local 
surface orientation. Here, it depends on the average number of struts in each frame. 
The second parameter is used to specify the spacing of the 3D sampling grid. An 
example of the reconstructed stent surface is shown in Fig. 3 (c). 

If a guide wire is used during the IVOCT image acquisition, it blocks all the 
information behind it including stent struts. Missing struts due to the guide wire 
shadow will cause breaches and distortion on the reconstructed stent surface. To solve 
this problem, imaginary struts are added behind the guide wire on the elliptical stent 
contours. Different locations of the imaging catheter and the guide wire result in 
different size of guide wire shadows. To estimate the possible number of blocked 
struts, we deduce the angle of the blocked arcs based on the guide wire shadow edges 
detected in section 2.1. On the covered ellipse arc, an imaginary strut is added every 30 
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degrees. A special mark is given to these imaginary struts, because they will be only 
used for the stent surface reconstruction, but not for stent cell reconstruction.   

4.2.5 Side branch detection 

To measure the side branch access through stent cells, the stent-covered side 
branches need to be detected. In IVOCT pullback runs, a side branch appears like a 
black lacuna on the main vessel lumen. Therefore, it can be detected by checking the 
distance changing from the lumen center to the lumen boundary. If the distance 
profile shows a sharp increase in a certain region, it could indicate the presence of a 
side branch. Because the centers of Cartesian IVOCT images represent the imaging 
catheter positions but not the lumen centers, the lumen centers have to be detected 
first. In the typical situation where a stent is well extended to support the vessel wall, 
the stent contour center can be treated as an approximation of the lumen center. In 
this research, only the side branches which are covered by apposed or covered stents 
are analyzed, therefore, the ellipse centers from section 2.2 were used.  

As demonstrated in Fig. 4 (a), the image catheter and the guide wire are present 
between the lumen center and the lumen boundary. Before the distance is computed, 
these bright regions have to be masked out. During the IVOCT imaging acquisition, 
the imaging catheter generates bright vertical lines in the polar images. With a proper 
z-offset correction, the artifacts are located in the same position during the whole 
pullback run. Therefore, these are detected by applying a dynamic programing 
algorithm to the whole pullback run in the longitudinal direction and later masked 
out. The guide wire has been detected during the strut detection [23], so they are 
masked out as well. After masking, the polar IVOCT images are converted into 
Cartesian images and a median filtering is applied followed by a Gaussian smoothing 
to smooth the bright tissue region. To specify the lumen region, images are converted 
into binary images by thresholding the intensity values. The threshold is computed 
based on the histogram of the whole image.  An example of a binary image is 
presented in Fig. 4 (b). 

The distance from the center to the lumen boundary is measured every half degree 
and Fig. 4 (c) shows the distance profile of a single frame. The side branches and the 
guide wire result in the two peaks with sharp increasing and decreasing in the profile. 
As the automatic stent strut detection also detects guide wire besides the stent struts 
[23], peaks resulting from guide wire will be ignored. After removing the guide wire 
peaks, the highest peaks in the profile indicate the possible side branch positions. Four 
main rules are used to identify a side branch: 1) the distance is longer than the median 
value of all the distances in each frame; 2) this region starts and ends with significant 
distance changes; 3) the width of this region is at least 30 degrees; and 4) a candidate 
side branch should have a reasonable size in the longitudinal direction. If a candidate 
side branch is found, its start and end points will be detected by computing the biggest 
changes of the distance. Next, the start and the end of each side branch are marked out 
as Fig. 5 (b) shows. The side branch lumen contour is generated by linking these starts 
and ends with a natural spline. We also noticed that in a few cases, the struts in front of 
a side branch were covered by tissue composing a bridge over the side branch. In 
these cases, a manual correction could be needed. 
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Figure 4-4. (a) presents an in-vivo IVOCT image with a side branch and a guide wire. 
After processing, the image result is shown in figure (b). From the fitted ellipse center 
(the small white square in the middle), the distance to the lumen contour is computer 
over all 360 degrees. The scan-line ends at the lumen contour or the image edge with 
green dots. The profile of this distance is presented in figure (c). There are two peaks in 
the profile which represent the side branch and the guide wire respectively. 

4.2.6 Side branch access measurement 

In this paper, the side branch access through a stent cell is defined by the ostium 
which is generated by the stent cell above the side branch. As Fig. 5 (a) presents, the 
side branch access through a stent cell is measured by computing the overlaid region 
between stent cells and side branches. Since the stent surface has been reconstructed, 
both stent cell areas and side branch areas can be segmented on it.  

Here, the stent cell contour is used for this segmentation. Because the stent cell 
contour is generated by linking struts using a natural spline, the interpolated part may 
not be exactly located on the stent surface. For accuracy, the cell contours are 
projected onto the stent surface to segment the 3D stent cell surfaces. As the stent cell 
contours are almost located on the stent surface, a simple linear extrusion is used for 
performance issues. The cell contour is extruded toward to the stent center; thereby 
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generating a hollow object which intersects with the stent surface as Fig. 5 (d) shows. 
The contour extrusion direction and length is set by a vector which is orthogonal to the 
centerline of the stent and passes through the center of the bounding box of the stent 
cell. The collision part is segmented from the stent surface resulting in the 3D cell 
surface as Fig.3 (g) shows. This cell surface comprises many small triangles and its size 
is the sum of the areas of these triangles.  

 

 

 

 

Stent cell structures are easily observed in the 2D stent mesh. If the stent-covered 
side branch lumen is shown together with the 2D mesh, the stent cells that may be in 
front of this side branch can easily be detected. This could speed up the manual 
interaction. To do this, the side branch contour is projected onto the same imaginary 
cylinder for stent cell contour detection in section 2.2 and opened into 2D as Fig. 3 (d) 
shows. The side branch lumen contour is projected onto the stent surface to segment 
the side branch lumen area. Unlike stent cell contour projection, side branch lumen 
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Figure 4-5. (a) A stent covers a 
side branch. The black contour 
indicates a stent cell. The side 
branch appears as a hole on the 
red vessel wall. The blue area 
shows the side branch access 
through a stent cell. (b) shows 
the struts (yellow dots), the side 
branch lumen contour 
(delineated by blue dots) and 
the fitted stent surface (light 
grey). (c) The 3D side branch 
lumen contour (white) is located 
far away from the stent surface 
(red), and the blue contour is 
the projection result. (d) The 
stent cell contour (white) is 
almost located on the stent 
surface. The linear extrusion of 
the contour (green) generates 
the contour projection (white) to 
segment the access area (yellow) 
on the side branch lumen 
surface (blue). 
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contours usually are located further away from the stent surface as Fig. 5 (b). If they are 
extruded linearly, the results will contain large errors. Therefore, an accurate 
projection method is used for side branches. Since the side branch contour surrounds 
the cylindrical stent surface, each point on the side branch contour should be 
projected toward to the lumen center. Practically, each point on the lumen contour 
shoots a ray to the lumen center in the same longitudinal position. The intersected 
points between the rays and the stent surface are linked using a natural spline to 
segment the side branch lumen surface. An example is shown in Fig. 5 (c). As the stent 
cell surfaces and the side branch lumen surfaces are all segmented from the stent 
surface, the overlaid part between a stent cell surface and a side branch lumen surface 
represents the side branch access through this stent cell. An example is given in Fig. 5 
(d). 

4.3 Validation method 

For in-vivo stents, the ground truth of their stent cell size and the side branch 
access through stent cells are not available. Because first, the implanted stents cannot 
be removed from the patients, and second, the irregular stent surface is not suitable for 
validation, because it is almost impossible to achieve its ground truth. To validate the 
new presented methods, a phantom data set was created by scanning a 3.0 mm × 8.0 
mm coronary stent using Micro CT. As Fig. 6 (a) shows, in the CT data set, the stent is 
visible as struts similar in IVOCT pullback runs. Besides, although Micro CT can scan 
only small objects, it provides a higher resolution than IVOCT (30 times higher than 
IVOCT in the longitudinal direction). The phantom size is 1024 pixels × 1024 pixels × 
1240 frames with a voxel size of 5.86 μm × 5.86 μm × 6.62 μm. Therefore, Micro CT data 
sets were used for the presented method validation and the stent cell contours 
generated from the phantom data set are accurate enough to be treated as the ground 
truth, as Fig. 6 (b) presents. Without any resistance from the vessel wall, the stent was 
extended evenly and can thus be treated as a cylinder. Although this is not the 
situation for a real stent inside a patient, it allows us to validate the method itself 
without potential measuring errors resulting from an irregular stent surface. By 
projecting the stent cell contours onto the stent cylinder, the ground truth of the stent 
cell size can be estimated. 

The extended stent was found to be 3.1 mm × 8.2 mm; therefore it was represented 
by a cylinder of the same size. All the struts in the phantom data set were detected and 
the stent cells were reconstructed. Next, every stent cell contour was projected onto 
the cylinder and opened into 2D. The size of these opened stent cell surfaces were 
recorded as the ground truth of the stent cell surface size. At the same time, the ground 
truth of the MCUSA of every stent cell was computed as well. Since the phantom data 
set contains no side branches, four ellipses were generated as virtual side branches 
outside the stent cylinder surface. Each ellipse has a different position and orientation. 
Side branch surfaces were segmented by projecting all the ellipses onto the stent 
cylinder and opened into 2D as Fig. 7 (a) shows. Compared with the stent cell surfaces, 
the ground truth of the side branch access through stent cells can be measured by the 
common areas (Fig. 7 (b)). 

To evaluate the accuracy of the proposed method, the stent should be scanned in a 
phantom by an IVOCT system and a Micro CT system. However, we did not have a 
proper phantom which was both IVOCT and micro-CT compliant. Therefore, the CT 
data set was resampled to simulate the in-vivo IVOCT data set. In our in-vivo IVOCT 
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pullback runs, the voxel size is 6.85 μm × 6.85 μm × 200 μm. Therefore, the original 
phantom data set was re-sampled by selecting 1 frame out of every 30 frames, resulting 
in the similar resolution as IVOCT pullback runs (5.86 μm × 5.86 μm × 200 μm) as Fig. 6 
(c) shows. The re-sampled phantom data set was processed by the presented 
approach and the results were compared with the ground truth for validation. Besides, 
the accuracies of 2D stent cell approximations and stent cell surfaces segmented from 
stent surface were also validated as essential pre-steps. 

 

Figure 4-6. (a) a single Micro CT frame with stent struts (white points), which looks 
similar to clinical IVOCT images. In both figures, the stent struts appear as bright spots. 
(b) half of the struts detected in the original phantom data set and (c) half of the struts 
detected in the re-sampled phantom data set. There are much more struts in the 
original phantom data set than the re-sampled data set and its cell contour can be 
treated as the ground truth. 

 

   

Figure 4-7. (a) The opened 2D stent cells (yellow) in the original phantom data set and 
an opened imaginary side branch lumen (blue). (b) An example of a side branch 
access through the stent cell from the original phantom data set. The brightest region 
in the image is the side branch access to the main vessel through this stent cell. 
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To examine the usability of this approach on clinical data sets, a total of 12 
randomly selected IVOCT pullback runs from a one-year follow up study were used. 
They were acquired with a C7-XR OCT intravascular imaging system (LightLab, 
Westford, MA, USA). Their resolution is 6.85 μm × 6.85 μm × 200 μm. Ten pullback 
runs contained 271 frames using a pullback speed of 20 mm/s, while the other two 
contained 541 frames with speed of 10 mm/s. Nine data sets were acquired with a 
guide wire, while the others contain no guide wire. All the stents were drug-eluting 
stents, except for one bioresorbable vascular scaffold (BVS). They contained a total of 
726 recognizable stent cells and 27 side branches were located in the stented regions. 
Because of the IVOCT image quality and guide wire shadows, not all of the stent cells 
and side branches could be measured. From the measureable stent cells, we randomly 
selected 105 stent cells for subsequent testing. The 3D stent cell surface and the 
corresponding 2D stent cell approximation should have similar size. Some of the stent 
cells in front of the side branch had been extended, so we also checked whether their 
full cell size and the MCUSA are reasonable bigger than the other stent cells. For stent-
covered side branches, extended stent cells should offer a bigger access than 
unextended stent cells. Therefore, the average percentage of the biggest side branch 
access through stent cells was computed. 

As Figure 3 (d) shows, the stent cells in the 2D mesh are very clearly visible, so we 
expected the stent cell results from different experts to be the same. Therefore, the 
assessment of the inter/intra-operator variability is not considered in this research. 
One trained expert selected and reconstructed all the stent cell contours and side 
branch lumen contours as the ground truth. 

4.4 Results 

Table 1 presents the full stent cell size and the MCUSA size results from both 
original and re-sampled phantom data sets. For 12 in-vivo IVOCT pullback runs, the 
results are given in Table 2. Comparisons of the 3D stent cell surface and the 2D stent 
cell approximation in both original and re-sampled phantom data sets are shown in 
Figure 8.  

The side branch access measurement results in all original CT data set, re-sampled 
CT data set and in-vivo IVOCT data sets are given in Table 3. According to the results, 
the average size of side branches was 1.2 ± 0.8 mm2, and each side branch was covered 
by 1.7 ± 0.8 stent cells. The average side branch access through each stent cell was 0.7 ± 
0.5 mm2. Fifteen of the side branches were covered by only one stent cell, so no stent 
wire would block their entrances. Eight of the side branches were covered by two stent 
cells. Three side branches were covered by three stent cells and one by six stent cells.  

The automatic strut detection method was developed using the MeVisLab toolbox 
2.2 (MeVis Medical Solutions AG, Bremen, Germany) and VTK toolkit 5.10 
(www.vtk.org) together with in-house developed C++ modules. For processing, we 
used Windows 7 Professional x64 Edition with a 2.0 GHz CPU and 4 GB of memory. 
Generally, it takes less than 1 minute to detect all the stent struts in a pullback run of 
271 frames. The semi-automatic stent cell reconstruction costs about 10 seconds for 
every stent cell, while the other processing usually takes about 1 minute. If 
implemented using pure C++ code, the computing time could be further shortened. 
The whole processing time depends on the length of the stent and how many stent 
cells need to be measured. 
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Table 1. The maximum, minimum, mean value (with standard deviation) and 
the sum of the stent cell size from both original and re-sampled phantom data 
set. The stent cell size and MCUSA from the original phantom data set are 
treated as the ground truth, so that the errors for the 3D stent cell surface, 2D 
stent cell approximation and MCUSA from the re-sampled data set can be 
computed. 

Data set Feature Max 
(mm2) 

Min 
(mm2) 

Mean ± 
SD (mm2) 

Sum 
(mm2) Error (%) 

Original 
Phantom data 
set (ground 
truth) 

Full stent 
cell size 5.74 3.96 4.75 ± 0.44 71.27 -- 

MCUSA 1.70 0.95 1.29 ± 0.22 19.28 -- 

Re-sampled 
Phantom data 
set (algorithmic 
results) 

Stent cell 
surface 5.64 3.97 4.72 ± 0.44 70.77 0.96 ± 0.64 

2D app-
roximation 5.74 3.99 4.79 ± 0.45 71.90 0.98 ± 0.74 

MCUSA 1.70 0.87 1.25 ± 0.22 18.76 5.0 ± 5.2 

Table 2. The maximum, minimum, mean value (with standard deviation) and 
the sum of the stent cell surface size, 2D stent cell approximation size and 
MCUSA size in 12 in-vivo IVOCT data sets. 

Data set Feature Max 
(mm2) 

Min 
(mm2) 

Mean ± SD 
(mm2) 

Sum 
(mm2) 

In-vivo IVOCT 
pullback runs 

Stent cell surface 10.04 1.00 3.01 ± 1.39 328.06 

2D 
approximation 9.55 1.07 3.10 ± 1.34 337.38 

MCUSA 1.40 0.25 0.96 ± 0.80 104.21 

Table 3. The maximum, minimum and mean size (with standard deviation) of 
the side branch access from the original and re-sampled phantom data sets and 
in-vivo IVOCT data sets. The sum of the side branch access equal to the sum of 
side branch lumen areas. The amount of side branches and the stent cells in 
front of side branches and the percentage of the average maximum side branch 
access comparing to the average side branch lumen in every group are also 
given.  

Data set Max 
(mm2) 

Min 
(mm2) 

Mean 
(mm2) 

Sum 
(mm2) 

Side 
branch 
amount 

Cell 
amount 

Max 
access 
(%) 

Original 
phantom 2.30 0.23 0.86 ± 0.86 12.83 4 21 53.69 

Re-sampled 
phantom 2.39 0.26 0.89 ± 0.88 13.46 4 21 53.31 

In-vivo IVOCT 
data sets 4.21 0.22 0.68 ± 0.49 31.06 27 46 77.59 
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Figure 4-8. (a) shows the results of 3D stent cell surface and 2D stent cell 
approximation in the original phantom data set, while (b) shows these results from the 
re-sampled phantom data set. (c) indicates the results of 3D stent cell surface in both 
original and re-sampled phantom data sets, while chart (d) compares the 
corresponding size of 2D stent cell approximation in both original and re-sampled 
phantom data sets. 

4.5 Discussion 

To validate the accuracy of the presented approach, the relative errors of our 
algorithmic results were computed. The mean and the standard deviation of the 
relative errors were determined to demonstrate the performance. Table 1 shows that 
the ground truth of the whole stent surface area is 71.27 mm2 and the sum of the 
MCUSA is 19.28 mm2. In the re-sampled phantom data set, the estimated stent surface 
size is 70.77 mm2 from the summation of 3D stent cell surfaces and 71.90 mm2 from the 
summation of 2D stent cell approximations, while the summation of the MCUSA is 
18.76 mm2. Compared to the ground truth, the average error of the every 3D stent cell 
surface is 0.96 ± 0.64%, while that of the 2D stent cell approximation is 0.98 ± 0.74% 
and the MCUSA error is 5.0 ± 5.2%. In the re-sampled phantom data sets, the 3D stent 
cell surface and 2D stent cell approximation results are almost the same as the ground 
truth like Fig. 8 (a) and (b) show. It suggests that our approach is very accurate when 
measuring the stent cell size within the resolution of in-vivo IVOCT pullback runs. Fig. 
8 (c) and (d) demonstrate that the stent cell surface size is usually a little bit smaller 
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than the 2D stent cell approximation size. A possible explanation is that the stent cell 
surface is segmented from the reconstructed stent surface that consists of thousands of 
small triangles, while the 2D stent cell approximation calculates the stent cell using the 
opened surface from the fitted cylinder. For a curved surface, the opened surface 
should be bigger than the surface that is approximated with triangle polygons. 

Table 2 shows the quantitative analysis results of 105 stent cells from 12 clinical 
IVOCT pullback runs. The mean difference between the 3D stent cell surfaces and 2D 
approximations is 4.2 ± 2.3%. Since the distributed stent struts do not fit to any regular 
shape in 3D space, we could not obtain the ground truth of in-vivo stent cell areas. 
However, our methods provide an intuitive approximate measurement of the stent cell 
size in clinical data sets.  

According to Table 3, the experimental results of the side branch access through 
stent cells in both original and re-sampled phantom data sets indicate that the average 
error of the algorithmic results is 8.9 ± 7.0%. For the in-vivo IVOCT pullback runs, 
more than 60% of the side branches have more than one stent cell ostia. On average, 
the largest ostium includes more than 77.6% of the side branch lumen area, and the 
sum of the largest two ostia includes 92.6% of the lumen area. By contrast, the 
numbers in the phantom data set with un-extended cells are smaller as 53.1% and 
75.9%. The experimental results clearly show that, in most of our in-vivo cases, the 
stents cells in front of side branches have been extended so that side branches are less 
covered. The only exception is the BVS stent, because compared to bare metal and 
drug-eluting stents, BVS stents are less flexible and can break easier. Consequently, in 
the BVS data set, one side branch is covered by 6 stent cells while another side branch 
has 3 stent cells and none of the stent cells are extended.  

IVOCT image sequences provide the longitude image data of the implanted stent 
along the imaging catheter. In practice, the imaging catheter may be curved. Without 
the 3D tracking of the imaging catheter, the cell area in IVOCT data may contain an 
error when the imaging catheter bends. However, in most cases, the trajectory of the 
imaging catheter has only very smooth curvatures so that the error for distortion is 
limited. Therefore, this method is expected to give a good approximation of the stent 
cell area. This method requires only stent strut positions for stent surface 
reconstruction and stent cell indication. Therefore, it is available for any type of bare 
metal stents, drug-eluting stents or BVS stents. With provided struts and side branches 
information, it can compute the MCUSA and side branch access for any stents. 

If a side branch is fully or partly covered by the guide wire shadow or a bridge, this 
side branch will not be detected or measured, since its contour is incomplete. The 
same situation could happen for stent cells and these cells cannot be indicated or 
measured as well. Imaginary struts can be added to assist the stent surface 
reconstruction, but if more than half of the stent is covered or unclear, the 
reconstructed stent surface is less reliable for assessment. In most of our cases, guide 
wire shadow regions cover less than a quarter of the stent contour and the imaginary 
struts are concentrated only in the shadow region. Hence the reconstructed stent 
surface can be separated as real surface part and imaginary surface part. Imaginary 
part will not affect the shape of the real surface part and the measurement is applied 
only on the real surface part. The presented side branch detection method could fail if 
the lumen contour appears like a highly narrowed ellipse, because the distal lumen 
can be missed due to the limited penetration (< 2 mm) of IVOCT [23]. In these special 
cases, a manual correction is requested.  
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The side branch projection should follow the angle between the side branch and 
the main vessel. However, due to the limited penetration of IVOCT, the angle of the 
side branch cannot be measured. Therefore, in the presented method, the projection 
direction is always vertical to the center-line of the stent. For stent cell contours and 
side branch contours, we chose different projection methods. Theoretically, the 
projection method for side branches should be the optimal way. However, the 
projection of stent cells will introduce only tiny error but is much time efficient. The 
stent cell surface results are accurate enough and the computing is easy and fast. 

During the IVOCT acquisition, some artifacts may arise as results of many different 
reasons. Some artifacts like residual blood noise [31] and the sun-flower artifact [23] 
were mostly removed during our processing, while many artifacts were not taken into 
account in this research, such as non-uniform rotational distortion (NURD) [32], 
because the new frequency-domain IVOCT system has a very fast speed to reduce 
these artifacts.  

4.6 Conclusion and future work 

With its high resolution, IVOCT allows a better understanding of the stent 
structures in the coronary arteries. We have presented an approach to measure the 
stent support degree and the side branch access in IVOCT pullback runs. It detects 
stent struts, reconstructs stent cells, generates 2D stent cell approximations, detects 
stent-covered side branches and reconstructs the irregular stent surface for MCUSA 
and side branch access assessment. A full resolution phantom data set and its re-
sampled data set were used to evaluate the feasibility and the accuracy of this 
approach. Next, it was applied to twelve in-vivo IVOCT data sets. Quantitative 
evaluation reveals that the approach has achieved high accuracy for the MCUSA and 
side branch access measurement. The results suggest that this method can be a useful 
tool for the stent implantation improvement, stent design evaluation, blood flow 
analysis and computer-guided diagnosis. There are still artifacts that may affect the 
results of the presented method, and we will work on that in future. 
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ABSTRACT 

Side branches in the atherosclerotic lesion region are important as they highly 
influence the treatment strategy selection and optimization. Moreover, they are 
reliable landmarks for image registration. By providing high resolution delineation of 
coronary morphology, intravascular optical coherence tomography (IVOCT) has been 
increasingly used for side branch analysis. This paper presents a fully automated 
method to detect side branches in IVOCT images, which relies on precise 
segmentation of the imaging catheter, the protective sheath, the guide wire and the 
lumen. 25 in-vivo data sets were used for validation. The intraclass correlation 
coefficient between the algorithmic results and manual delineations for the imaging 
catheter, the protective sheath and the lumen contour positions was 0.997, 0.949 and 
0.974, respectively. All the guide wires were detected correctly and the Dice’s 
coefficient of the shadow regions behind the guide wire was 0.97. 94.0% of 82 side 
branches were detected with 5.0% false positives and the Dice’s coefficient of the side 
branch size was 0.85. In conclusion, the presented method has been demonstrated to 
be accurate and robust for side branch analysis. 
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5.1 Introduction 

Despite decades of progress in understanding the development of coronary artery 
disease (CAD), it remains the most common cause of death in the world. Nowadays, 
percutaneous coronary intervention (PCI) with stenting is widely performed to open 
narrowed coronary arteries and to restore the oxygen-rich blood supply to the 
myocardium. Bifurcation lesions, accounting for about 20% of the PCI cases and 
expecting to further increase, are continuous one of the most complex anatomic 
structures and remain a challenge for interventionalists. Without a single preferred 
approach, a bifurcation lesion should be analyzed prior to the PCI to plan the 
interventional strategy, because bifurcation stenting often suffers from higher risks of 
acute and chronic complications such as acute thrombosis or late restenosis [1-3]. 
Furthermore, a stent placed in the main branch may partially obstruct the blood flow 
to small side branches and impact the PCI outcome [4-6]. Medical imaging, like 
coronary angiography (CA) and intravascular ultrasound (IVUS), has been used for 
side branch analysis [7-11]. Current approaches require the combination of multiple 
imaging modalities to assess lesion characteristics, analyze the blood flow and 
optimize stent placement with respect to optimal stent selection, deployment and 
expansion since every modality has its limitations. For image registration in the same 
or different modalities, side branches are reliable landmarks [12, 13]. 

 

Figure 5-1. Two in-vivo IVOCT image examples. Figure (a) shows a Cartesian image, 
while figure (b) shows the corresponding polar image. In both images, a side branch, a 
guide wire, a metallic stent strut, the imaging catheter and the protective sheath are 
visible and annotated. 

The continuous drive for optimal patient care demands precise delineation of the 
coronary vascular structures for accurate and reproducible quantifications. They can 
increase the understanding of CAD objectively and guide the intervention effectively, 
especially for patients with complex lesions. As a novel image modality, intravascular 
optical coherence tomography (IVOCT) has played a particular role in the setting of 
contemporary stenting by providing very high resolution (<20 μm) intracoronary 
images. It utilizes a fiber optic catheter to emit near-infrared light toward samples and 
receive the back scattered signal. A protective sheath covers the fiber catheter when it 
is rotating and being pulled back through the vessel and a guide wire is usually applied 
to facilitate the placement of the imaging catheter. Figure 1 presents two typical IVOCT 
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images. Compared with IVUS, the current golden standard for assessing lesion 
situation, IVOCT is more accurate and reproducible for quantitative analysis in many 
fields [14-19]. It is becoming a routine modality to guide PCI and quantify clinically 
interesting features including side branches and has be used in image fusion to 
provide detailed plaque composition and lesion extent [20-22].  

Currently, most of the side branch identification in IVOCT images is done 
manually. In this paper, we present a fully automated method to detect side branches 
in IVOCT pullback runs based on accurate segmentations of all the common 
components of typical IVOCT images. The details of the method are described in 
section 2, while the validation method and the empirical results are presented in 
section 3 and section 4. The discussion and the conclusions of the proposed methods 
are given in section 5 and section 6, respectively. 

5.2 Methods 

As Fig. 1 shows, a side branch appears as a cavity in the vessel tissue so it can be 
detected by analyzing the distance variation between the lumen center and the 
leading-edge of the intimal layer. To accomplish this, all the bright components inside 
the lumen have to be removed and the guide wire shadow cavity in the vessel wall 
should be fixed in the beginning. Therefore, polar IVOCT images are pre-processed in 
four steps: (1) first, the imaging catheter is segmented and removed, so it will not affect 
the next step; (2) the guide wire is detected by analyzing the intensity profile of every 
scan-line; (3) after guide wire masking, the protective sheath is segmented for image 
correction and masking purposes; and in the end (4) the lumen contour is detected for 
lumen center calculation and guide wire shadow fixing. After the pre-processing, polar 
IVOCT images are converted into the Cartesian coordinate system, so that the distance 
between the lumen center and the leading-edge of the intimal layer can be computed 
and analyzed for side branch detection. In Fig. 2, a flow chart illustrates the main steps 
of this methodology. Details of each step are discussed in the follow paragraphs.  

 

Figure 5-2. The flow chart of the presented side branch detection method. 

5.2.1 Imaging catheter detection  

As Fig. 1(b) shows, the imaging catheter appears as the rightmost bright vertical 
line in the polar IVOCT image and should be at a constant position in all frames in a 
pullback run. However, due to slight optical path length changes, the zero-point of a 
frame, also called Z-offset, can be different, which may lead to imaging catheter radius 
changes in a pullback run. As a result, the imaging catheter is segmented frame by 
frame. An extra complication is that the abluminal wall of the imaging catheter can be 
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blurred by the protective sheath attached to it or by bright (air bubble/blood) noise 
between the imaging catheter and the protective sheath. In contrast, the adluminal 
wall of the imaging catheter is always clear and can be used to define a region of 
interest (ROI) for the abluminal wall detection.  

First, the image is converted into a binary image use a denoising threshold based 
on a percentile of its intensity histogram [23]. In this paper, it is the 80th percentile. 
Next, a vertical edge Prewitt compass operator is applied to generate a gradient image, 
followed by a normalizing operation on every scan-line. The normalized gradient in 
every column is multiplied by a coefficient based on the distance to the left boundary 
of the polar image, so that the imaging catheter has stronger weighted gradient value 
than other vertical lines. The coefficient equals to the column index divided by the 
image width. An example is presented in Fig. 3. To be more precise, the adluminal wall 
of the imaging catheter is first segmented and next, to its right, the abluminal wall is 
detected within a certain distance range. By analyzing their position variation in the 
pullback, outliers are replaced by interpolated results from neighboring frames. 
Finally, the imaging catheter and the image region to its left are masked so that the 
next processing will not be affected.  

 

Figure 5-3. The imaging catheter and two other parallel vertical lines can be seen on 
the left of figure (a) and the corresponding distance weighted gradient image is given 
in figure (b). In figure (b), the adluminal wall of the imaging catheter is represented by 
negative values and the abluminal wall by positive values. 

5.2.2 Guide wire detection 

The guide wire appears as a bright crescent followed by a dark shadow because it 
reflects all the light during the IVOCT scanning. It needs to be segmented in this 
method as it can negatively affect the protective sheath and lumen contour detection. 
Moreover, cavities in the vessel wall caused by guide wire shadows should be fixed 
before the side branches can be effectively detected. Figure 4(a) demonstrates the 
intensity profile of a scan-line passing through a guide wire. The guide wire contains 
the highest intensity of this scan-line. After the peak point, the intensity value of the 
shadow region is close to zero. In contrast, in a scan-line passing through vessel tissue, 
the sum of intensities behind the peak point occupies a bigger proportion of the whole 
intensity sum like Fig. 4(b) shows. Hence, the guide wire can be detected by analyzing 
the intensity profiles. 
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Figure 5-4. The Following imaging catheter removal, the intensity profile of a scan-
line passing through a guide wire is given in figure (a) and passing through only tissue 
in figure (b). The candidate clusters (dots) detected in a polar pullback run are 
presented in two different viewpoints in figures (c) and (d). The yellow dots are noise 
like metallic struts and the blue dots indicate the guide wire which is continuous 
during the pullback run and located close to the imaging catheter. Figure (e) shows the 
shadow edges of the guide wire as blue dots. 

The guide wire detection algorithm works as follows. First, for each scan-line, we 
detect its peak point (with maximum intensity value) and compute the proportion of 
the intensity sub-sum behind the peak point. If the proportion is lower than a 
threshold, this peak point may belong to a guide wire. In this research, this threshold is 
0.75. These peak points are clustered into guide wire candidates frame by frame based 
on the distance as we have presented in [23]. As Figs. 4(c) and 4(d) present, the 
clustering results may contain false positives such as metallic stent struts, since they 
have a similar appearance as guide wires. In contrast to metallic struts and other noise, 
a guide wire is present in the all the frames of a pullback run. Moreover, its position 
does not change significantly between two adjacent frames and is usually close to the 
imaging catheter. To remove these, Dijkstra’s algorithm [24] is used to detect the 
clusters which can be linked by the shortest path through the entire pullback. The cost 
function is the absolution position offset between two clusters from the adjacent 
frames. If multiple shortest paths were found, the one located closer to the imaging 
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catheter was selected. Based on the width of the cluster, the guide wire shadow edge 
positions can be detected as follow. First, a horizontal edge Prewitt compass operator 
is applied to the original polar image. Next, the guide wire shadow edges are detected 
by searching for the scan-line that has the strongest gradient sum within a certain 
distance from the initial top or bottom position of a guide wire cluster. The detected 
edges are given in Fig. 4(e).  

5.2.3 Protective sheath detection 

The protective sheath is a transparent tube-like cover which protects the imaging 
catheter from the vessel tissue. As Fig. 5(a) illustrates, the protective sheath usually 
appears as two bright parallel curved layers in the polar images because the image 
center is not the center of the protective sheath. Both the inner and outer layers have 
their own adluminal and abluminal wall. The protective sheath and the bright noise in 
it will be removed as they influence the lumen detection. Moreover, as the protective 
sheath has a fixed diameter, it is used for Z-offset correction [25]. The challenge lies in 
the complex image situations, as there could be bright noise between the imaging 
catheter and protective sheath, inside a protective sheath or between the protective 
sheath and vessel lumen as Figs. 5(b)–(d) show. Therefore, any of these four edges 
could be very unclear and should not be used alone for the segmentation.  

First, a ROI is set in the polar image for protective sheath detection. It starts from 
the abluminal wall of the imaging catheter and should contain the whole protective 
sheath, and as little vessel tissue as possible. In this study, the ROI width was 
calculated based on the image resolution. Within the ROI, the polar images are down 
sampled by a factor of four to reduce the computation time and to smooth the final 
boundary. Next, a vertical edge Prewitt compass operator is applied to represent the 
dark-to-bright edges by positive values and bright-to-dark edges by negative values. To 
enhance the abluminal wall of the outer layer, its gradient value is combined with the 
gradient values of the other three edges [26]. As all four edges are generally paralleled, 
their relative distances are stable. According to the image resolution and protective 
sheath size, the distance between two layers is about 14 pixels and the layer thickness 
is about 6 pixels. More formally, the original gradient value at point (x, y) is denoted as
( , )g x y . The combined gradient value ( , )f x y is related to the sum of four points: 
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Next, Dijkstra’s algorithm is applied to detect the minimum cost path in the 
combined gradient image as the outer abluminal wall of the protective sheath. The 
cost function is ( , )f x y . Examples are given in Figs. 5(a)–(d). Like Fig. 5(e), the 
detected contours are converted into the Cartesian coordinate system and then fitted 
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to circles using a least-squares method [27]. Because the diameter and the center of 
the protective sheath should not change much between the neighboring frames, a 
median filter is applied to remove outliers and replace them by interpolation. Figure 
5(f) presents the center shifting and size changing of the protective sheath along the 
pullback run. The Z-offset is corrected according to the protective sheath diameter in 
every frame. Finally, the protective sheath is masked out before lumen detection. 

 

Figure 5-5. Figure (a) illustrates a normal protective sheath appearance. However, 
bright noise may exist between the imaging catheter and the protective sheath like 
figure (b), between the protective sheath and the lumen contour like figure (c) shows, 
or inside the protective sheath like figure (d). White curves indicate the detected 
protective sheath. A 3D visualization of the protective sheath contours in a Cartesian 
dataset is given in figure (e). The corresponding contour center (yellow dots) and the 
radii (yellow vectors) are presented in figure (f). In figures (e) and (f), the scale 
between the axial direction and longitudinal direction is about 1:10. 

  

Figure 5-6. Figure (a) shows the originally detected lumen contour (white dots in each 
scan-line). The segment in front of the guide wire shadow does not fit the lumen trend. 
Using the guide wire width information, this part of the lumen contour is smoothly 
interpolated like figure (b) demonstrates. 

5.2.4 Lumen contour detection 

To compute the lumen center accurately, the lumen detection must follow the 
main vessel wall as much as possible, and pass over possible cavities like side 
branches or guide wire shadows. In this work, Dijkstra’s algorithm is used with a side-
step restriction. The cost matrix is the gradient image and the side step was limited to 
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10 pixels in accordance to the image size in this research to insure the minimum cost 
path passing over cavities. The side-step cost is 80. To avoid the strong gradient inside 
the tissue, first, all the intensity values above a given threshold are replaced by the 
constant value. The threshold is computed for each frame based on a fixed percentile 
of the intensity histogram, because even in the same pullback run, vessel tissue can 
have very different intensities in different frames. We have chosen the 85th percentile. 
After thresholding, the same Prewitt compass operator for vertical edges is applied to 
generate a gradient image as the cost matrix and the minimum cost path in this matrix 
is detected and defined as the lumen contour. 

As the guide wire shadow in the lumen tissue region does not contain any edge 
information, the detected minimum cost path in this region could be wrong as shown 
in Fig. 6(a). This piece of lumen contour is located according to the guide wire width 
detected in section 2.2. It is replaced by linear interpolation in the polar coordinate 
system for smoothness as shown in Fig. 6(b), because the width of a guide wire usually 
is narrow when compared with that of the whole image. After converted into Cartesian 
coordinate system, the whole lumen contour looks natural. Along with the 
interpolated curve, the guide wire shadow cavity in the vessel tissue is fixed (filled) 
before the side branch detection.  

5.2.5 Distance computing 

A side branch can be detected by analyzing the distance variation between the 
lumen center and the leading edge of the intimal layer. A sharp increase in the 
distance indicates the possible existence of a side branch. Since very small side 
branches barely have clinical significance and cannot be used as reliable landmarks 
for image registration, we focus on side branches which are more than 8 degrees wide 
in the circumferential direction and continuous in at least 4 frames (about 0.8 mm). 
This is also the size restriction of the presented side branch detection method. First, 
the lumen center is determined. In case a detected main lumen area contains parts of 
a big side branch lumen as Fig. 7(a) shows, the center of the lumen contour would 
move to the side branch position, which results in a shorter distance than normal. To 
avoid this error, the main lumen region needs to be located. As the main vessel can be 
treated as a tube containing the imaging catheter, the maximum circle inside the 
lumen contour which contains the imaging catheter is defined as the main lumen 
region and its center is the lumen center. The lumen center is determined by using a 
distance transformation based method [5]. First, a binary image was generated from 
the detected lumen contour in which the lumen region was presented as 1 and the 
others as 0. Next, a distance transformation converted the binary image into another 
image where all nonzero pixels get a value which corresponds to the distance to the 
nearest lumen contour boundary. The center of the lumen is now identified by 
determining the maximum value in the distance transformation image. After detecting 
the lumen center, the distance to the intimal layer is computed every two degrees by 
looking for the first pixel having intensity value above the tissue threshold defined in 
section 2.4. If no tissue pixel is found, the search stops at the image border. Two 
examples are given in Figs. 7(b) and 7(c).  
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Figure 5-7. Figure (a) presents a detected lumen contour (yellow) containing part of a big 
side branch. The white overlay in the contour is the distance transformation result. The 
lumen center (yellow “+”) and the image center (blue “×”) are given as well. From the 
lumen center, the leading-edge of intimal layer is detected in all angles and the results are 
presented as white dots in figures (b) and (c). They show two cross-sections (vertical line 1 
and 2) of figure (d). The distance matrix for this pullback run can be treated as a 2D image 
like figure (d) in which side branches are detected as yellow contours. Arrows indicate the 
side branches in figures (b) and (c). Figure (e) shows the corresponding 3D side branches 
(yellow contours). Arrows point to the opening of some side branches. Parts of side branch 
walls are visible. Figures (f) and (g) show the side branches in an opened vessel with the 
opposite view angles. To show side branches clearly, the viewing angles follow the side 
branch direction. The white dots are implanted bioresorbable stent struts. 
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5.2.6 Side branch detection 

After the distance computation, we get a 2D matrix which contains the distance for 
all angles along the whole pullback run. The distances are normalized in each frame to 
unify different lumen sizes. While normalizing, the median distance in each frame is 
scaled to 1.0 and the other distances are scaled proportionally. By converting distances 
to intensities, the matrix can be treated as a 2D image as shown in Fig. 7(d) in which 
the side branches are represented by bright regions which have high intensity values 
and acceptable size. To detect these regions, the image is first smoothed and a 2D 
region growing method is applied to find all the connected pixels above a threshold. In 
this study, the threshold is set to 1.4. To filter out false positives caused by highly 
eccentric elliptical lumen contours, bright regions should contain at least one pixel 
whose intensity value is two times higher than the median value. Next, the regions 
which are too small according to the size restriction in section 2.5 are removed. The 
detection results are shown in Fig. 7(d). Finally, all these 2D results are transformed 
back to the original 3D IVOCT pullback runs based on the lumen centers and their 
distance to the lumen centers as Figs. 7(e)–(g) demonstrate. 

5.2.7 False positive removal 

The detected results could still contain false positives because black cavities in the 
vessel tissue are not always side branches. Because of the limited penetration 
capability of IVOCT, it may result in a cavity in the vessel wall when the imaging 
catheter touches the tissue as Fig. 8 illustrates. However, in this situation, the angle 
difference between the image center and the edges of this cavity is close to zero. Based 
on this feature, this type of false positives is easily removed. 

 

Figure 5-8. The false positive (based on the dashed lines) resulted from the tissue 
coverage over the imaging catheter. The angles from the image center to the side 
branch edges (between the solid lines) are almost the same. 

If a pullback contains densely spaced incomplete apposed metallic stent struts, 
they could generate wide shadows in the vessel tissue and may lead to false positives. 
In a previous paper [23], we presented an automated method to detect metallic stent 
struts and their shadow regions. The stent strut and their shadow positions can be 
used for cross checking with the side branch candidates. A side branch candidate that 
is overlaid mainly with struts can be a false positive and should be removed.  
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5.3 Materials and validation method 

The presented side branch detection method was developed using the MeVisLab 
toolbox 2.2.1 (MeVis Medical Solutions AG, Bremen, Germany) together with in-house 
developed C++ modules. A total of 25 random selected in-vivo IVOCT pullback runs 
were used to evaluate the presented method. All the images were acquired with a C7-
XR OCT intravascular imaging system (St. Jude Medical, Westford, MA, USA) and the 
image resolution is 5.86 μm × 5.86 μm × 200 μm. The pullback runs include baseline 
datasets and follow-up datasets at different time points. For 23 out of 25 datasets, each 
contains 271 frames (using a pullback speed of 20 mm/sec) while for the other 2 
datasets, each contains 541 frames (using a pullback speed of 10 mm/sec). 19 datasets 
contain guide wires. 14 pullback runs contain metallic stents; 6 pullback runs have 
bioresorbable vascular scaffolds (BVS) and 5 others contain no stent or scaffold.  

One observer manually marked the imaging catheter, the guide wire region, the 
protective sheath contour and the lumen contour in one frame out of every 25 frames 
in each pullback. The boundaries of all side branches that are more than 8 degrees 
wide in the circumferential direction and continuous in at least 4 frames were marked. 
In total, 82 side branches were marked in 22 pullback runs and in the remaining 3 
pullback runs, no visible side branches were found due to guide wire shadow 
blockage, massive residual blood noise or poor image quality. Therefore, they were 
excluded from the side branch detection validation. A second independent observer 
marked the ground truth in a subset containing 5 pullback runs. When marking the 
ground truth, in case a side branch was partly blocked by a guide wire shadow or 
residual blood, its boundary was estimated based on the 3D information and personal 
experience.  

5.4 Results 

The inter-observer agreements were measured using the intraclass correlation 
coefficient (ICC) and the Dice’s coefficient. The ICC of the imaging catheter radius, the 
protective sheath radius and the lumen contour position between two observers were 
0.983, 0.942 and 0.999. Here, the lumen contour positions were compared in radial 
direction from the image center in every 2 degrees. The distance between the 
protective sheath centers was 1.21 ± 0.57 pixels. The average Dice’s coefficient 
between the corresponding guide wire shadow regions was 0.97 ± 0.02. Both two 
observers agreed on all 15 side branches in the subset and the average Dice’s 
coefficient of their angle regions were 0.92 ± 0.07.  

During the validation, the performance of the presented methods was measured 
using the ICC and the Dice’s coefficient. Moreover, the radius error of the imaging 
catheter and protective sheath, the distance error of the protective sheath center and 
lumen contour were computed as well. Compared with the ground truth from the first 
and the second observer, the detected imaging catheter radii had an average error of -
0.63 ± 1.13 and -0.93 ± 1.40 pixels. The corresponding ICC was 0.998 and 0.977. The 
detected protective sheath radii had an average error of 0.90 ± 0.67 and 1.05 ± 0.61 
pixels while the corresponding ICC was 0.986 and 0.949. The average distance error of 
the protective sheath centers was 1.25 ± 0.79 and 1.15 ± 0.61 pixels. The average Dice’s 
coefficient for guide wire region was 0.97 ± 0.03 and 0.97 ± 0.02. The lumen contour 
distance error was computed in radial direction from the image center for every 2 
degrees and the average error was -2.56 ± 12.21 and 1.49 ± 7.27 pixels. The ICC of the 
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lumen contour position was 0.940 and 0.974. Overall, 94.0% of 82 side branches were 
correctly detected with 4.9% of false positives, while in the subset, 93.3% of 15 side 
branches were detected with 6.7% false positives. The average Dice’s coefficient of the 
angle region between the detected side branches and the ground truth from two 
observers was 0.85 ± 0.06 and 0.77 ± 0.07, separately. Overall, 31 side branches were at 
least 1.0 mm in the longitudinal direction and had a maximum angle region of at least 
60 degrees. These big side branches are more important than small side branches as 
they are solid bio-landmarks for image registration and essential for bifurcation lesion 
treatment. In the validation, 100% of these big side branches were successfully 
detected. A summary of the detailed inter-observer agreements and validation results 
are presented in Table 1. 

Table 1. The similarity and difference among the ground truth (GT1) from the 
first observer, the ground truth (GT2) from the second observer and the 
algorithmic result (AR). For the imaging catheter radius (ICR), protective sheath 
radius (PSR) and lumen contour position (LM), the similarity is given as the 
intraclass correlation coefficient (ICC) and the difference is given as the average 
size difference (Diff) in pixels. The protective sheath center (PSC) position error 
is also measured by the average distance difference in pixels. The true positive 
rate (TP) and false positive rate (FP) are used for side branch (SB) detection 
performance. The overlaid region for the guide wire (GW) and SB is measured 
by the average Dice’s coefficient (Dice) 

 

5.5 Discussion 

The performance of the presented side branch detection method depends heavily 
on the accuracy of the image segmentation in the pre-processing step. Moreover, 
segmentations of all the common components in IVOCT images are also important for 
many image processing and quantitative analyses. For example, imaging catheter 
detection is commonly required for lumen detection [28, 29] and metallic strut 
detection [23], because its high intensity is a negative influence. A guide wire could be 
mistakenly detected as a metallic strut due to its appearance [30, 31]. The protective 
sheath diameter can be used for Z-offset correction [25] as 1% change in the 
magnitude of the ideal Z-offset can result in a 12% to 14% error in area measurements, 
which may lead to misinterpretation [32]. Currently, only 38% of the peer-reviewed 
papers present correctly calibrated images [29]. Lumen contour detection is one of 
most common image segmentation steps and the published methods include Markov 
random field and wavelet transform analysis [28], fuzzy C means clustering and 

Groups 
ICR 

GW 
region 

PSR PSC Lumen SB (%) 
SB 
region 

ICC Diff Dice’s ICC Diff Diff ICC Diff TP FP Dice’s 

GT1/GT2 0.983 -1.40 0.97 0.942 0.18 1.21 0.999 -0.13 100 0.0 0.92 

GT1/AR 0.998 -0.63 0.97 0.986 0.90 1.25 0.940 -2.56 94.0 5.0 0.85 

GT2/AR 0.977 0.93 0.97 0.949 1.05 1.05 0.974 1.49 94.0 5.1 0.77 
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wavelet transform [33], deformable spline models [34] and dynamic programming 
[35]. However, in many cases, only a light-weight and fast lumen contour estimation 
like our method is needed. 

As the adluminal wall of an imaging catheter is clearer and more reliable than the 
abluminal wall, the firstly detected adluminal wall indicated an accurate ROI for the 
following abluminal wall detection. According to the validation results, the detected 
imaging catheter radii had an average error of less than 1 pixel. The error was mainly 
caused by the bright air bubble, blood noise or attached protective sheath which 
blurred the abluminal wall. The errors caused by these artifacts were mostly corrected 
by the median filter because they normally did not affect the majority of a pullback 
run. 

All the guide wires were detected with no false positions. The Dice’s index between 
the detected guide wire region and the ground truth was 0.97. The presented method 
searched for guide wire shadow edges for lumen fixing but a guide wire shadow edge 
could be blocked by metallic struts, so that the guide wire width may be overestimated. 
A similar situation was when a guide wire shadow region is overlaid with side 
branches. However, the searching depth limitation prevents the overestimation goes 
too far. A limitation is that only one guide wire can be detected automatically in a 
pullback run. A-priori knowledge of guide wire number is needs to detect additional 
guide wires. 

The radius error and the center position error of the detected protective sheath are 
both about 1 pixel, which ensures accurate Z-offset correction in IVOCT images. 
Combining all four edges of the protective sheath greatly prevents the segmentation 
from being affected by complex noise around the protective sheath. Furthermore, 
circle fitting overcomes local distortions and the radius filter can remove outliers in the 
whole pullback.  

In the radial direction, the detected lumen contour had an average distance error 
about 3 pixels. Most of the large differences between the algorithmic results and the 
ground truth occurs when side branches or part of a large lumen were invisible due to 
the limited penetration depth of IVOCT. Since we set a side-step limitation for the 
dynamic programming method, it returned a relatively smooth lumen contour which 
skipped sharp peaks and cavities. The ground truth was drawn based on personal 
experience which could be different. Some errors also resulted from the bright noise 
inside the lumen such as thrombi and malapposed struts, especially when they were 
located close to the real lumen boundary. In these cases, the detected lumen contour 
followed the leading edge of the bright noise instead of the lumen.  

With the foregoing precise pre-processing steps, our method successfully detected 
94.0% of 82 side branches including all the big side branches with less than 5% false 
positives. The Dice’s index of the side branch angle size is 0.85. The side branch 
boundary was detected based on the distance change which is highly reproducible. 
The biggest side branch size errors were caused by the guide wire shadows. When a 
side branch was partly blocked by a guide wire, the detected side branch would be 
incomplete due to the guide wire shadow fixing. In contrast, the observers included 
these areas when they draw the side branch boundaries, so that the ground truth 
contained the shadow blocked region which resulted in a difference with the 
algorithmic results. However, these guide wire blocked side branches can still be used 
as landmarks or awareness of the existence of side branches, but their size is no 
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reliable for assessment. The other side branch results could be used for precise 
measurement. 

In case the detection result is inaccurate, our prototype system provides a user 
interface for correction. All the detected side branches are indexed so the user can 
select or delete any side branch contour. As the 3D contour is generated from side 
branch edge points in each cross-sectional frame, the corresponding adjustment will 
be done in the 2D images. After modifying or adding the 2D side branch edge points, a 
new 3D side branch contour can be generated. 

The presented side branch method also has limitations. It depends on the cavity 
detection in the tissue, but the guide wire, residual blood, plaque rupture, thrombus 
and calcified nodule also cause cavities and only the guide wire shadows were fixed. In 
the algorithmic results, we found 60% of the false positives were caused by the residual 
blood shadow. The remaining 40% of the false positives resulted from the shadows due 
to air bubbles in the protective sheath. Furthermore, using only distance based 
detection could also fail to detect some side branches, especially when a stent was 
present, because the malapposed struts and the tissue coverage may seal side 
branches. Two of five false negatives in the validation results were almost sealed by 
dense malapposed struts and very thick tissue coverage. The third false negative was 
caused by the guide wire shadow which covered the majority of this side branch. 
Another missed side branch was narrow and almost perpendicular to the scan line 
from the lumen center, so that the distance between lumen center and the leading-
edge of intimal layer did not reveal the existence of this side branch. The last false 
positive was a tiny side branch on a very big main vessel lumen. Only in one frame, it 
was 8 degrees wide in circumferential direction. After the normalization, this side 
branch area shrank and later was removed mistakenly. Poor image quality including 
residual blood or other artifacts in the side branch area could affect the detection 
performance as well.  

5.6 Conclusion and future work 

As IVOCT contributes to clinical researchers and cardiologists by providing a better 
understanding of the in-vivo artery situation, there are increasing demands of side 
branch analysis in IVOCT images. In this paper, we presented a fully automated side 
branch detection method in IVOCT pullback runs based on an image segmentation 
pipeline including the imaging catheter, the protective sheath, the guide wire and the 
lumen. The validation showed a good agreement between the algorithmic results and 
the ground truth which suggested that this method could be used to indicate side 
branches and assist image registration. The accuracy of the image segmentation for 
pre-processing also implied that the segmentation results of all the common 
components in IVOCT images may contribute to accurate IVOCT Z-offset correction, 
stent strut detection, 3D visualization and many other quantitative analysis 
applications. 

In future, we would like to improve the detection method by adding new false 
positive filters, using pullback runs acquired with a higher frame rate and utilizing 
extra information including longitudinal cross-sectional IVOCT images. 
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6.1 Summary and conclusions 

For decades, coronary artery disease (CAD) has remained one of the leading causes 
of death worldwide despite the enormous progress in modern medical knowledge of 
diagnosing and treating. Atherosclerosis development in coronary arteries is the major 
pathophysiology of CAD which narrows the lumen volume and results in restricted 
oxygen-rich blood supply to myocardium. The CAD treatment includes lifestyle 
changes, medications and medical procedures. In 1977, the invention of balloon 
angioplasty by Andreas Grüntzig struck a prelude to the revolution of percutaneous 
coronary intervention (PCI) as a new revascularization method for CAD treatment. 
Undergone an evolution over the past few decades, PCI has been proven to be an 
effective and less costly medical procedure compared with surgeries such as coronary 
artery bypass grafting and regarded as one of the primary choices to treat the ischemic 
heart disease. Nowadays, stenting operation has been applied in most of the PCI 
procedures as one of the most remarkable improvements. Stent is a small medical 
device to support vessel wall after the angioplasty to overcome the risk of acute vessel 
closure. The first available stent was a bare metal stent (BMS) and later the drug-
eluting stent (DES) was invented to overcome the risks of BMS such as in-stent 
neointimal hyperplasia. Both BMS and DES are permanent so that the stented vessel is 
caged by metal and late advanced vascular remodeling could no longer be applied. 
Therefore, bioresorbable vascular scaffold (BVS) was invented as a temporary device 
which can support the vessel after the implantation and slowly be absorbed by tissue 
during the follow up.  

Continuous demand for optimal CAD diagnosis and treatment drives the evolution 
of medical imaging technologies. Before the invention of intravascular optical 
coherence tomography (IVOCT), many image modalities, including non-invasive ones 
like computed tomography (CT) and invasive ones like coronary angiography and 
intravascular ultrasound (IVUS), have been conventionally used during the research 
and clinical routine for CAD treatment. However, none of them have sufficient 
resolution to delineate fine structures such as thin fiber caps of vulnerable plaques or 
thin tissue coverage of stent struts. IVOCT is a new near-infrared light source based 
imaging technology which can acquire three-dimensional (3D) in-vivo images of 
vessels with a resolution of about 10 micrometers. The latest frequency-domain 
IVOCT imaging system has already dramatically improved the imaging speed and 
signal to noise ratio. Its unparalleled resolution makes it currently the only image 
modality for accurate stent analysis. The goal of this thesis was therefore to develop 
efficient and accurate algorithms to process IVOCT images for stent analysis and 
stenting optimization. 

Stent analysis, for example the strut distribution, strut number, strut position and 
intra-strut angle, is highly interested as it has assisted the continuous improvements in 
stent manufacturing for such as better support to vessel well, flexibility for 
implantation and dosing of drug from DES. Furthermore, stent analysis is also 
increasingly used to improve the efficacy of stenting in PCI procedures by suggesting 
optimal stent size and proper stent expansion. Undersized stent or insufficient 
expansion can result in stent malapposition while stent deployment failure can cause 
incomplete lesion coverage. The risks include late neointimal hyperplasia and late 
stent malapposition. As a result, an accurate stent strut detection method in IVOCT 
could significantly reduce the risks of vessel revascularization. However, given the 
large number of the struts visible in a pullback run covering an entire stent length, 
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quantitative analysis is only feasible when the strut detection is carried out 
automatically. In Chapter 2, we presented a novel automated method to detect 
metallic stent struts in IVOCT pullback runs. As the metallic stent strut appears as a 
bright spot with a long, dark shadow behind it, the proposed algorithm analyzed the 
intensity distribution in every scan line to detect the candidate pixels that may belong 
to metallic struts. Next, strut shadow edges were detected and innovatively used as 
restrictions to remove the false candidate pixels and cluster the rest into candidate 
struts. Even if candidate pixel detection fails for a strut due to the thick tissue coverage 
or artifacts, this strut could be retrieved only based on its shadow edges. In the end, 
guide wires were removed and the strut center positions were computed. Validated 
with all 18001 struts in 10 in-vivo pullback runs with different image quality (high, 
median and low), 91% of malapposed struts, 93% of apposed struts and 94% of tissue-
covered struts were detected with only 4% of false positives. With the validation results, 
the presented detection method demonstrated its possibility to be used for 
quantitative stent analysis. 

Unlike metallic stents, BVS is commonly made of various polymers and has 
different appearance in IVOCT images. For accurate BVS strut analysis, IVOCT is 
currently the most suitable imaging technique due to its high resolution and the 
translucency of polymeric BVS struts. The internal composition of a BVS strut is 
homogeneous so that transmitted light can pass through it and backscattering 
originates from the difference in refractive index between the strut and its 
environment such as flush fluid or tissue. Therefore, BVS struts appear as bright boxes 
with black cores. Similar as metallic strut detection, BVS strut detection also could be 
used for stent analysis. Moreover, to track the bioresorption process of BVS, the strut 
area is also interested. Therefore, in Chapter 3, we presented an automated BVS strut 
detection method in IVOCT pullback runs to segment the black cores of BVS struts. 
Based on the strut location difference between baseline and follow-up datasets, the 
lumen contour was used to indicate different reliable regions of interest (ROI) for strut 
detection. This method detected short line segments belonging to black cores and 
then clustered them to generate smoothed black core contours. Validated with 6 in-
vivo IVOCT pullback runs, including 3 baseline datasets and 3 follow-up datasets, this 
algorithm correctly detected 90.4% of 2183 baseline BVS struts and 96.6% of 2508 
follow-up BVS struts with 3.0% and 0.8% false positives, respectively. BVS strut area 
was measured by the black core region and the performance was validated using 
Dice’s coefficient. For baseline datasets, the Dice’s coefficient between the ground 
truth and algorithmic results was 0.83 while in follow-up datasets, the Dice’s 
coefficient is 0.85. The validation study showed that the new method can accurately 
detect BVS struts and measure their core areas which could be a useful tool for 3D 
reconstruction, tissue coverage thickness measurement, malapposition analysis, strut 
distribution and bioresorption assessment. 

In addition to the stent type evolution, the impact of the stent design to the 
treatment outcome has gained increasing attentions. Existing stent design analysis 
mainly focuses on the two-dimensional (2D) information such as strut number, 
distribution or inter-angle in a single frame. However, it has been proved that stent cell 
structure could influence the stent support ability, expansion ability, flexibility, 
conformability, dosing distribution and side branch access. As it is naturally a 3D 
structure, the stent cell should be measured in 3D space. Both full stent cell size and 
maximum circular unsupported surface area (MCUSA) are currently used to evaluate 
stent influence to the vessel wall. In Chapter 4, we presented a semi-automated 
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method to measure the stent cell size, MCUSA and side branch access through stent 
cells. First, the 3D stent surface and stent cell contour were reconstructed from the 
detected struts for the stent cell surface segmentation and measurement. A 2D 
approximation of the stent cell surface was generated to detect and measure its 
MCUSA. In the end, the side branch access through a stent cell was computed based 
on the side branch surface and stent cell surface. This method was implemented using 
VTK toolkit with in-house developed modules and validated with a phantom dataset. 
The error of the algorithmic results for the 3D stent cell surface, 2D stent cell surface 
approximation, MCUSA and side branch access was 0.96 ± 0.64%, 0.98 ± 0.74%, 5.0 ± 
5.2% and 8.9 ± 7.0%, respectively. The usability of this approach in clinical datasets was 
tested with 12 in-vivo IVOCT datasets from a one-year follow-up study. With the 
presented results, we concluded that the proposed method could be used to analyze 
the efficacy and performance of different stent designs to improve the outcome of PCI 
treatments. 

In Chapter 4, stent covered side branches were detected for stent analysis. 
However, demands for uncovered side branch detection in the lesion region of a 
coronary artery have increased in the past decades, because the side branch location 
and size can suggest the optimal stent type, length, diameter, deployment position and 
operation plan before implanting a stent or during the diagnosis. This essential 
information can greatly impact the outcome of PCI treatment. Moreover, the side 
branch is also one of the most reliable landmarks used for image registration between 
baseline and follow-up datasets or multi-modality image fusion. Therefore, in Chapter 
5, we presented a fully automated detection algorithm for both covered and uncovered 
side branches in IVOCT pullback runs. As side branches appear as cavities in the 
vessel tissue, they were detected by computing and analyzing the distance between the 
lumen center and the leading-edge of the intimal layer. To compute this distance, we 
need to remove all the bright components inside the lumen, fix the cavity caused by 
guide wire shadow and detect the lumen center. As a result, an image segmentation 
pipeline to segment the imaging catheter, protective sheath, guide wire and lumen was 
implemented. To validate the image segmentation pipeline and side branch detection 
method, 25 in-vivo IVOCT pullback runs from a two-year follow-up study were used. 
The image datasets were acquired with different pullback speed in different time 
periods and contain different types of stents or no stent at all. The intraclass 
correlation coefficient (ICC) of the imaging catheter radius, protective sheath radius 
and lumen contour position between the algorithmic results and ground truth was 
0.997, 0.949 and 0.974, respectively. 100% of the guide wires were detected and the 
Dice’s coefficient of the guide wire shadow region between the algorithmic results and 
ground truth was 0.97. In this chapter, only the side branches which are at least 0.8 
mm in longitudinal direction and 8 degrees in the circumferential direction were 
included. The validation results show that 94.0% of 82 side branches were detected 
with less than 5.0% false positives. The Dice’s coefficient of the angle region in 
circumferential direction between the ground truth and algorithmic results was 0.85. 
With the presented results, it is concluded that our image segmentation pipeline is 
accurate and robust enough for many advanced image processing algorithms that 
require the segmentations of these common components in IVOCT images. For 
example, it could be used to improve the robustness and accuracy of our strut 
detection methods. In Chapter 2, the metallic strut detection method should skip the 
bright imaging catheter because its high intensity value can influence the intensity 
profile analysis.  In case there is bright air bubble noise in the protective sheath, it 



Summary and Conclusions │ 97 

 

Chapter 

6 

should be skipped as well. In Chapter 3, the performance of the BVS strut detection 
method is influenced by the accuracy of lumen contours which indicate the ROIs. The 
automated side branch detection method offers a new option for accurate 3D side 
branch analysis in IVOCT pullback runs to optimize the CAD treatment or for image 
registration. 

6.2 Future works 

According to the validation results demonstrated in this thesis, we can conclude 
that our goals in each chapter have been achieved to a certain degree. However, there 
is still plenty of room for further improvement of this work. 

6.2.1 3D stent model 

In Chapter 2 and 3, the stent strut detection relies on only 2D information in 
individual frames. Actually, a stent is usually formed by repeated structures called 
stent cells and can be presented as a 3D model. This pattern should globally match the 
stent strut distribution. The complexity, when using the stent model, is that different 
stents have different models and a stent structure could be distorted during the 
expansion because the hardness of tissue and plaques is different. Due to these 
reasons, stent pattern model is not used in this thesis. In future, stent pattern model 
could be used to supervise the stent strut detection. It can be fitted to the detected 
stent struts, and help to remove the false positives that locate in the wrong position or 
retrieve the false negative struts by checking the trend of each stent wire. For a new 
type of stent without existing model, a model could be manually defined based on the 
detected struts and later used to supervise future strut detection for the same type of 
stents. The stent pattern model can also help the 3D stent cell contour reconstruction 
in Chapter 4 and improve the efficiency of the 3D stent cell analysis. Furthermore, the 
spiral information of the stent wire could be used to reconstruct the whole implanted 
stent skeleton automatically for visualization and further measurement. 

6.2.2 IVOCT image improvements  

Ideally, in IVOCT images, different tissue should be represented by different 
intensity values so that segmentations can be easily applied. However, we noticed that 
homogeneous tissue also has very different gray-scale in the same pullback run or 
even in the same frame. The main reasons for the non-uniform gray-scale include the 
distance between the imaging catheter and scanned sample, tissue coverage of the 
sample or the angle of incidence. Once an image correction model is set up, the 
intensity of IVOCT images can be unified and the segmentation and detection 
performance in Chapter 2, 3 and 5 should be greatly improved. Better strut detection 
results also positively influence the stent cell analysis in Chapter 4.  

Relative low longitudinal resolution of frequency-domain IVOCT images could 
hamper the quantitative analysis in IVOCT images. Both time-domain IVOCT and new 
super-high speed OCT catheter can increase the longitudinal resolution by reducing 
the slice distance which makes small side branch detection and side branch lumen 
smoothness possible in Chapter 5. Furthermore, the strut detection methods in 
Chapter 2 and 3 also can benefit from the additional slices, because smaller slice 
distance suggests that when analyzing one frame, its neighboring frames could be 
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used as reliable references. All above can consequently help to generate more accurate 
stent surface and stent cell contours in Chapter 4. 

6.2.3 Image registration 

Despite IVOCT is one of the best image modality for intuitive visualization of fine 
coronary vascular structures as well as accurate and reproducible quantifications, 
every single modality has its drawbacks and is insufficient to provide all necessary 
information. The modern approach requires the combination of multiple imaging 
modalities to be able to assess the CAD situation. The main shortcoming of IVOCT is 
its limited penetration which cannot delineate deep structures such as plaques with 
thick coverage or side branch lumen wall. Eccentrically located imaging catheter in a 
big lumen could also cause image blurring or even missing in the region far away from 
the catheter. Besides, the longitudinal image acquired by IVOCT system does not 
contain the sensor travelling trajectory so that could not outline the original tortuosity 
of the artery. Multi-modality image registration could be a solution for this challenge. 
Compare with IVOCT, IVUS has lower resolution but much deeper penetration. If both 
IVUS and IVOCT images are acquired for the same vessel, these images can be co-
registered based on the side branches detected in Chapter 5, and the IVUS image 
could provide the deep region information of the vessel. Moreover, the detected side 
branches can assist the registration between IVOCT and coronary angiography, CT or 
other image modalities, which will help us to reconstruct the real 3D tortuosity of 
vessels for IVOCT images. Image registration can lead to a comprehensive and 
objective understanding of coronary disease and guide the intervention effectively, 
especially for patients with complex lesions. 
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7.1 Samenvatting en conclusies 

Sinds tientallen jaren zijn aandoeningen aan het hart de nummer één 
doodsoorzaak wereldwijd ondanks de enorme vooruitgang van de moderne medische 
kennis op het gebied van diagnose en behandeling. De vorming van atherosclerose in 
de coronair vaten is een belangrijke aandoening bij hartziekten dat een vernauwing 
van het vat veroorzaakt wat weer de bloedtoevoer van zuurstofrijk bloed naar de 
hartspier verminderd. De behandeling van hartzieken bestaat uit; verandering in 
leefstijl, medicijnen en medische ingrepen. De uitvinding van de ballon angioplasty 
(PCI) in 1977 door Andreas Gruntizig was een grote revolutie in de kransslagader 
interventies in de vorm van een nieuwe methode bij de behandeling van hartziekten. 
De PCI technieken zijn de afgelopen jaren verder geëvalueerd en zijn bewezen een 
kosteneffectieve behandelmethode vergeleken met het plaatsen van een bypass en 
wordt beschouwd als eerste optie bij het behandelen van ziekten in de kransslagader. 
Tegenwoordig is het plaatsen van een stent de beste verbetering van de ingreep. Een 
stent is een klein medisch object dat ondersteuning geeft aan de vaatwand na het 
oprekken van het vat door een ballon om te voorkomen dat het vat zich weer sluit. De 
eerste stents waren metalen stents en later werd de drug verspreidende stents 
geïntroduceerd om het risico van instent restenosis zoals bij de kale metalen stents te 
verminderen. Zowel de metalen stent als de medicijn verspreidende stent zijn 
permanent waardoor een vat met een stent eigenlijk ingekooid is door metaal en het 
normale vasculaire remodeling proces verder niet kan doorgaan. Daarom zijn 
oplosbare scaffold ontwikkeld als een tijdelijk device die de vaatwand ondersteund 
direct na het inbrengen en daarna langzaam wordt afgebroken. 

De constante vraag voor de optimale diagnose en behandeling technieken van 
hartziekten stimuleert de ontwikkeling van medische beeldverwerkingstechnieken. 
Voor de introductie van intravasculaire optical coherence tomography (IVOCT), 
werden reeds veel ander beeldmodaliteiten, inclusief niet-invasieve technieken zoals 
computed tomography (CT) en invasieve technieken zoals coronaire angiografie en 
intravasculaire ultrasound (IVUS) gebruikt voor onderzoek en klinische routine bij de 
behandeling van vaatziekten. Echter geen van deze technieken bezit een resolutie die 
hoog genoeg is om de kleine structuren zoals dunne fibreuze afdekkingen van 
kwetsbare plaque of de dunne laag cellen die de stent struts bedekken zichtbaar te 
maken. IVOCT is een nieuwe beeldvormende techniek gebaseerd op nabije infrarood 
licht dat in staat is om driedimensionale (3D) opnames in-vivo van bloedvaten te 
maken met een resolutie van ongeveer 10 micrometer. De nieuwe frequentie domein 
IVOCT systemen hebben een sterk verbeterde acquisitie snelheid en signaal – ruis 
verhouding. De niet geëvenaarde resolutie maakt het op dit moment de enige beeld 
modaliteit voor de nauwkeurige analyse van de stent. Het doel van dit proefschrift is 
daarom om efficiënte en nauwkeurige beeldverwerkingsalgoritmes te ontwikkelen 
voor de stent analyse en stent plaatsing optimalisatie in IVOCT beelden. 

Stent analyse, bijvoorbeeld de strut distributie, aantal struts, strut positie en de 
hoeken tussen de struts is erg belangrijk aangezien het helpt bij de voortdurende 
verbetering van de stent fabricage om; een beter ondersteuning van de vaatwand te 
verkrijgen, meer flexibiliteit te geven voor het inbrengen van de stent en een betere 
dosering van de drugs voor de drug verspreidende stents. Verder wordt stent analyse 
ook steeds meer gebruikt voor het verbeteren van PCI door een betere inschatting van 
de benodigde stent lengte en diameter. Te kleine stents of stents die niet voldoende 
zijn uitgezet, kunnen resulteren in stent malappositie, terwijl verkeerde stent plaatsing 
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tot een onvolledige bedekking van een vernauwing kan leiden. Het risico is onder 
meer late neointima hyperplesia en late stent malappositie. Een nauwkeurige stent 
strut detectie methode in IVOCT kan daarom significant het risico op een vervolg 
procedure verminderen.  

Gegeven het groot aantal zichtbare struts in een pullback run van een volledige 
stent is een kwantitatieve analyse alleen maar mogelijk wanneer de strut detectie 
automatisch wordt uitgevoerd. Hoofdstuk 2 presenteert daarom een nieuwe methode 
om metalen stent struts automatisch te detecteren in IVOCT pullback runs. Omdat 
metalen stent struts te zien zijn als heldere punten met daarachter een lange donkere 
schaduw, analyseert het voorgestelde algoritme de intensiteitsverdeling van elke scan 
lijn om kandidaat pixels te vinden die mogelijke bij een strut horen. Vervolgens 
worden de schaduw randen opgezocht en op een innovatieve manier gebruikt als 
kenmerk om foute kandidaat pixels te verwijderen en de resterende pixels te 
groeperen in kandidaat struts. In het geval dat struts bedekt zijn met een dikke laag 
weefsel waardoor de kandidaat pixel detectie faalt, kunnen deze struts alsnog 
gevonden worden op basis van hun schaduw randen. Als laatste worden de 
voerdraden weg gefilterd en de centra van de strut punten berekend. Bij de validatie 
met 18001 struts in 10 in-vivo pullbacks van wisselende beeldkwaliteit (goed, matig en 
slecht) werden 91% van de malapposed struts, 93% van de apposed struts en 94% van 
de bedekte struts gevonden met slecht 4% foute positieven. De validatie resultaten 
laten zien dat de voorgestelde methode kan worden gebruikt voor de kwantitatieve 
stent analyse. 

In tegenstelling tot metalen stens zijn biologisch oplosbare stents (BVS) gemaakt 
van diverse polymeren en zien er anders uit in IVOCT beelden. Om een nauwkeurige 
BVS strut analyse uit te voeren is IVOCT op dit moment de beste afbeeldingstechniek 
vanwege de hoge resolutie en de doorzichtigheid van de polymere BVS struts. De 
interne samenstelling van een BVS strut is homogeen waardoor het licht erdoor heen 
kan gaan en het teruggekaatste signaal veroorzaakt wordt door het verschil in 
brekingsindex tussen de strut en zijn omgeving zoals spoelvloeistof en weefsel. 
Daarom zien BVS struts eruit als heldere rechthoekjes met een donkere kern. 
Vergelijkbaar met de metalen stent analyse, kan BVS strut detectie worden gebruikt 
voor stent analyse. Om het oplosproces van BVS struts te volgen, is de strut 
oppervlakte ook interessant. Hoofdstuk 3 beschrijft daarom een automatische BVS 
stent strut detectie methode in IVOCT pullback runs om de donkere kernen van BVS 
struts te vinden. Om het zoekgebied voor de struts detectie aan te geven, wordt voor de 
post interventie en de follow-up data sets verschillend omgegaan met de lumen 
contour aangezien de strut locaties verschillend zijn. De methode maakt gebruik van 
kleine lijnstukjes die bij een donkere kern behoren en deze worden vervolgens 
gegroepeerd om een egale donkere kern te vormen. Bij de validatie met 6 in-vivo 
pullback runs met 3 baseline en 3 follow-up data sets detecteerde dit algoritme 90.4% 
van de 2183 baseline BVS struts en 96.6% van de 2508 follow-up BVS struts met 3.0% en 
0.8% foute positieven respectievelijk. De oppervlakte van de BVS strut werd bepaald 
aan de hand van de donkere kern en de prestatie werd gevalideerd door gebruik te 
maken van de Dice index. Voor de baseline dataset, de Dice index tussen de gouden 
standaard en de resultaten van het algoritme was 0.83, voor follow-up datasets, was 
deze Dice index 0.85. De validatie studie laat zien dat de nieuwe methode nauwkeurig 
BVS struts kan detecteren en de kern oppervlaktes kan meten. Dit kan behulpzaam 
zijn voor 3D reconstructie, bepalen van de hoeveelheid weefsel op de struts, 
malappositie analyse, de strut verdeling, en het volgen van het oplos proces. 
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Naast de ontwikkeling van nieuw stent types, heeft de invloed van het stent 
ontwerp op het effect van de behandeling veel meer aandacht gekregen. De bestaande 
stent analyse is voornamelijk gericht op tweedimensionale informatie zoals; aantal 
struts en de verdeling of de hoek tussen de struts in een enkel beeld. Echter is het 
aangetoond dat de stent cel structuur invloed heeft op het vermogen om te 
ondersteunen, vermogen om uit te zetten, flexibiliteit, aanligeigenschappen, 
dosisdistributie en de toegang tot de zijtakken. Aangezien een stent een 3D structuur 
is, moet een stent cel ook in de 3D ruimte worden geanalyseerd. Zowel de volledige 
stent cel grootte als de maximale circulaire niet-ondersteunde wand oppervlakte 
(MCUSA) worden gebruikt om de invloed van een stent op te vaatwand te evalueren. 
Hoofdstuk 4 beschrijft een halfautomatische methode om de stent cel grootte 
(MCUSA) en de toegang tot de zijtak door de stent cel te meten. Eerst wordt de 3D 
stent wand en de stent cel contour gereconstrueerd aan de hand van de gedetecteerde 
struts en gebruikt voor de stent cel oppervlakte segmentatie en de metingen. Een 2D 
benadering van de stent cel oppervlakte wordt gebruikt om de MCUSA te bepalen en 
te meten. Als laatste werd de zijtaktoegankelijkheid door een stent cel bepaald op basis 
van de zijtakoppervlakte en de stent cel oppervlakte. Deze methode is 
geïmplementeerd met behulp van de VTK toolkit met zelf ontwikkelde modules en 
gevalideerd met een fantoom data set. De fout in het algoritme uitkomsten voor de 3D 
stent cel oppervlakte, 2D stent cel oppervlakte benadering, MCUSA en de 
zijtaktoegankelijkheid was 0.96 ± 0.64%, 0.98 ± 0.74%, 5.0 ± 5.2% en 8.9 ± 7.0%, 
respectievelijk. De bruikbaarheid van deze benadering is getest in klinische datasets 
van 12 in-vivo IVOCT datasets uit een één jaar follow-up studie. Aan de hand van de 
gepresenteerde resultaten konden we concluderen dat de voorgestelde methode 
gebruikt kan worden om het effect van verschillende stent ontwerpen te analyseren 
om de uitkomst van katheterisatie procedures te verbeteren.  

In hoofdstuk 4 werden de zijtakken die met struts zijn bedekt gedetecteerd. Echter 
de interesse voor het detecteren van niet bedekte zijtakken neemt de laatste jaren toe 
omdat de positie en grootte van de zijtakken gebruikt kunnen worden voor de selectie 
van de optimale stent type, lengte, diameter, positie van de stent en het plan van 
aanpak voor dat een stent geplaatst wordt of tijdens de diagnose. Deze essentiële 
informatie heeft grote invloed op de uitkomst van een katheterisatie behandeling. 
Verder zijn zijtakken ook één van de meest betrouwbare anatomische markeerpunten 
die gebruikt kunnen worden voor beeld registratie tussen baseline en follow-up 
studies of voor multimodale beeldfusie. Daarom beschrijft hoofdstuk 5 een volledig 
automatisch algoritme voor het detecteren van bedekte en niet bedekte zijtakken in 
IVOCT pullback datasets. Aangezien zijtakken er uit zien als gaten in de vaatwand, 
worden zij gedetecteerd door de afstand tussen het lumen centrum en de startpunten 
van de intima laag te berekenen en te analyseren. Om deze afstand te kunnen 
berekenen, moesten alle heldere onderdelen in het lumen worden verwijderd en de 
gaten die worden verzaakt door de voerdraad schaduw hersteld worden en het 
detecteren van de het lumen centrum. Om dit te bereiken werd een beeld segmentatie 
pijplijn geïmplementeerd voor het segmenteren van de beeldkatheter, beschermende 
hoes, voerdraad en het lumen. Om deze beeld segmentatie pijplijn te valideren zijn 25 
in-vivo IVOCT pullback runs gebruikt. De datasets waren opgenomen met 
verschillende terugtreksnelheden op verschillende tijdstippen en bevatten 
verschillende types stents of geen stent. De interclass correlatie coëfficiënt (ICC) van 
de straal van de beeldkatheter, de straal van de beschermende hoes, en de positie van 
het lumen contour tussen de uitkomsten van de algoritmes en de gouden standaard 
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was 0.997, 0.949 en 0.974 respectievelijk. 100% van de voerdraden waren gedetecteerd 
en de Dice index van de voerdraad schaduw gebied bepaald door het algoritme en de 
gouden standaard was 0.97. In dit hoofdstuk waren alleen zijtakken met een lengte van 
minimaal 0.8 mm in de lengterichting en 8 graden in de omtrek meegenomen. De 
validatie gaf aan dat 94.0% van de 82 zijtakken werden gevonden met minder dan 5.0% 
foute positieven. De Dice coëfficiënt van de hoek gebieden in de omtrek richting 
tussen de resultaten van het algoritme en de gouden standaard was 0.85. Gegeven de 
gepresenteerde resultaten is geconcludeerd dat de beeldverwerkingspijplijn 
nauwkeurig en robuust genoeg is voor de vele geavanceerde 
beeldverwerkingsalgoritmes die de segmentatie van de algemene structuren in de 
IVOCT beelden vereisen als voorbewerking. Bijvoorbeeld zou het de robuustheid en 
nauwkeurigheid van de stent strut detectie methode kunnen verbeteren. De metalen 
stent strut detectie methode uit hoofdstuk 2 zou de heldere beeldkatheter moeten 
overslaan omdat de hoge intensiteit het intensiteitsprofiel analyse kan verstoren. In 
het geval dat er luchtbelletjes in the beschermende hoes zitten moeten deze ook 
overgeslagen worden. De prestatie van de BVS detectie in hoofdstuk 3 wordt 
beïnvloed door de nauwkeurigheid van de lumen contour detectie die de ROI bepaald. 
Deze automatische zijtakdetectie biedt een nieuw mogelijkheid voor nauwkeurige 3D 
zijtakanalyse in IVOCT pullback runs om de hartziekte behandeling te optimaliseren 
of voor beeld registratie. 

7.2 Toekomstig werk 

Zoals de validatie resultaten in dit proefschrift laten zien, kunnen we concluderen 
dat de doelstellingen in elk hoofdstuk zijn bereikt tot een zekere hoogte. Echter is er 
nog veel ruimte voor verbetering. 

7.2.1 3D stent model 

In hoofdstuk 2 en 3 maakt de strut detectie methode alleen gebruik van 2D 
informatie in afzonderlijke beelden. Eigenlijk bestaat een stent uit repeterende 
patronen; de zogenaamde stent cellen en kunnen als een 3D model worden 
gepresenteerd. Dit patroon zou globaal terug moeten komen in de stent strut 
distributie. De beperkende factor bij het gebruik van een stent model is het feit dat er 
verschillende stent modellen zijn en de structuur van de stent verstoord kan zijn 
tijdens het opblazen door de stijfheid van de plaque en het verschil in plaque. Daarom 
zijn er in dit proefschrift geen stent patroon modellen gebruikt. In de toekomst zouden 
deze stent patroon modellen kunnen worden gebruikt om de strut detectie te sturen. 
Het kan gefit worden aan de gedetecteerde stent struts om verkeerd gedetecteerde 
struts te verwijderen door de trend bij elke stent draad te controleren. Voor nieuwe 
type stents zonder een bestaand model, kan het model handmatig gedefinieerd 
worden op basis van de gedetecteerde struts en later kan dit model weer gebruikt 
worden om de strut detectie van dezelfde type stent te sturen. Dit stent patroon model 
kan ook helpen bij de 3D stent cel contour reconstructie in Hoofdstuk 4 om de 
efficiency van de 3D stent cel analyse te verhogen. Verder kan de spiraal informatie 
van de stent draad worden gebruikt om de gehele geïmplanteerde stent skelet 
automatisch te reconstrueren voor visualisatie en verder metingen. 
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7.2.2 IVOCT beeldverbetering 

Onder ideale omstandigheden zouden de verschillende weefsel types door 
verschillende intensiteiten worden weergegeven zodat segmentatie eenvoudig is. 
Echter hebben we waargenomen dat homogeen weefsel reeds ook verschillende 
grijswaardes heeft binnen dezelfde pullback dataset en zelf binnen het zelfde frame. 
De algemene reden voor deze non-uniforme grijswaarde verdeling binnen een beeld is 
het verschil in afstand tussen de beeldkatheter en het stukje weefsel, weefsel 
bedekking van het stukje of de hoek van inval van het licht. Als eenmaal een correctie 
model is ontwikkeld, kan de intensiteit binnen IVOCT beelden meer uniform worden 
gemaakt waardoor de segmentatie en de detectie uitkomsten in hoofdstukken 2, 3 en 
5 sterk verbeterd zullen worden. Een betere strut detectie zal ook tot een betere stent 
cel analyse in hoofdstuk 4 leiden. 

De relatieve laag resolutie in de lengterichting van frequentie domein IVOCT 
beelden heeft invloed op de kwantitatieve analyse van de IVOCT beelden. Zowel 
tijddomein IVOCT en nieuw zeer hoge snelheid OCT katheters kunnen de resolutie in 
de lengte richting verbeteren door de afstand tussen de individuele beelden te 
verminderen wat de detectie van kleine zijtakken mogelijk maakt en de zijtak lumen 
ruwheid verminderd zoals in hoofdstuk 5. Verder zullen de strut detectie methoden in 
hoofdstuk 2 en 3 ook voordeel hebben van extra beelden aangezien een kleinere 
afstand inhoud dat informatie uit aanliggende frames kan worden gebruikt als 
betrouwbare referentie. Alles hierboven kan daarom helpen bij het genereren van 
betrouwbaarder stent oppervlakten en stent cel contouren in hoofdstuk 4. 

7.2.3 Beeldregistratie 

Ondanks het feit dat IVOCT de beste beeldmodaliteit is voor zowel een intuïtieve 
visualisatie van kleine coronaire vaatstructuren als voor een nauwkeurige en 
reproduceerbare kwantificatie, heeft elke modaliteit ook zijn nadelen en kan het niet 
alle benodigde informatie verschaffen. De moderne benadering vereist de combinatie 
van meerdere beeldmodaliteiten om de toestand van het hart goed te kunnen 
beoordelen. De grootste tekortkoming van IVOCT is de beperkte indringingsdiepte 
waardoor dieper gelegen structuren zoals plaques met een dikke bedekking of de 
lumen wand van een zijtak niet te zien zijn. Een sterk uit het midden gelegen 
beeldkatheter in een groot vat kan ook beeld vertroebeling veroorzaken of dat zelfs 
stukken beeld missen ver weg van de katheter. Verder bevat het longitudinale beeld 
zoals dat word opgenomen met IVOCT geen informatie over het traject dat de sensor 
aflegt en kan daarom niet de oorspronkelijke kronkeling van het vat weergeven. Het 
registreren van meerder beeldmodaliteiten kan een oplossing zijn voor deze uitdaging. 
Vergeleken met IVOCT heeft IVUS een lagere resolutie, maar een veel hogere diepte 
doordringing. Als zowel IVUS als IVOCT worden opgenomen van hetzelfde vat, dan 
kunnen deze beelden worden geregistreerd op basis van de zijtakken zoals 
gedetecteerd in hoofdstuk 5 en de IVUS kan dan de informatie verschaffen over de 
diepere structuren in het vat. Verder kunnen de gedetecteerde zijtakken helpen bij het 
registreren tussen IVOCT en een coronair angiogram, CT of een andere modaliteit, die 
kan helpen om de echte 3D structuur van een vat te reconstrueren van de IVOCT 
beelden. Beeldregistratie kan leiden tot een inzichtelijke en objectieve beoordeling 
van aandoeningen aan de kransslagaderen en de ingrepen op een effectieve manier te 
ondersteunen, speciaal bij patiënten met complexe vernauwingen.
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List of abbreviations 

BMS  bare-metal stents 

BVS  bioresorbable vascular scaffold 

CABG  coronary artery bypass graft 

CAD  coronary artery disease 

CHD  coronary heart disease 

CT  computer tomography 

DES  drug-eluting stents 

FP  false positive 

GT  ground truth 

GW  guide wire 

HDL  high-density lipoprotein 

ICC  intraclass correlation coefficient 

IVOCT  intravascular optical coherence tomography 

IVUS  intravascular ultrasound 

LDL  low-density lipoprotein  

MCUSA  maximum circular unsupported surface area 

MRI  magnetic resonance imaging 

OCT  optical coherence tomography 

PCI  percutaneous coronary interventions  

PS  protective sheath 

ROI  region of interest 

SB  side branch 

TP  true positive 
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