
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/29764 holds various files of this Leiden University 
dissertation. 
 
Author: Takes, Frank Willem 
Title: Algorithms for analyzing and mining real-world graphs 
Issue Date: 2014-11-19 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29764
https://openaccess.leidenuniv.nl/handle/1887/1�


ISBN 978-90-5335-957-0

Uitnodiging 

voor de openbare verdediging 
van het proefschrift

Algorithms for Analyzing and 
Mining Real-World Graphs

door

Frank Takes

op 

woensdag 19 november 
2014 om 16.15 uur

in 

Academiegebouw 
Universiteit Leiden
Rapenburg 67-73 

Na afloop is er een receptie 
met gelegenheid tot felicitatie.

Graag tot ziens!

Paranimfen: 
Fenne Bodrij (0620962554)
Nancy Takes (0654223539)

Met tijdrovende parkeerbezig-
heden dient rekening te worden 
gehouden. Na aanvang is geen 

toegang mogelijk.

Algorithms for Analyzing
and Mining Real-World Graphs

Frank W. Takes

A
lg

o
rith

m
s fo

r A
n
alyz

in
g
 an

d
 M

in
in

g
 R

eal-W
o
rld

 G
rap

h
s 

 
   Fran

k
 W

. T
ak

es

12366_Takes_OS.indd   1 15-10-14   16:17



Algorithms for Analyzing and Mining

Real-World Graphs

Frank W. Takes



The author of this PhD thesis was employed at Leiden University.

The work in this thesis has been carried out under the auspices of the research school

IPA (Institute for Programming research and Algorithmics).

This research was financed by the Netherlands Organization for Scientific Research

(NWO) as part of the Complex Patterns in Streams (COMPASS) project.

Copyright 2014 by Frank W. Takes

Open-access: https://openaccess.leidenuniv.nl

Typeset using LATEX, figures generated using TIKZ and GNUPLOT

Printed by Ridderprint B.V.

ISBN 978-90-5335-957-0



Algorithms for Analyzing and Mining
Real-World Graphs

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 19 november 2014

klokke 16.15 uur

door

Frank Willem Takes

geboren te Leidschendam

in 1986



Promotiecommissie

Promotor prof. dr. J.N. Kok

Copromotor dr. W.A. Kosters

Commissieleden prof. dr. T.H. Bäck

prof. dr. H. Blockeel (KU Leuven)

prof. dr. T. Calders (Vrije Universiteit Brussel)

dr. H.J. Hoogeboom

prof. dr. A.P.J.M. Siebes (Universiteit Utrecht)







Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Graph algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Graph Algorithms 13

2 Determining the Diameter of Small-World Networks 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Small-world networks . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 BoundingDiameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Selection strategies . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.6 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



viii

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Measurement methodology . . . . . . . . . . . . . . . . . . . . 30

2.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 GPU parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Computing the Eccentricity Distribution of Large Graphs 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Exact algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Eccentricity bounds . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Example run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Random node selection . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Hybrid algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Neighborhood approximation . . . . . . . . . . . . . . . . . . . 53

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Exact algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 Hybrid algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 A Bounding Framework for Computing Extreme Graph Measures 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Experiments on real-world graphs . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Correlation with graph properties . . . . . . . . . . . . . . . . . 67

4.5 Experiment on a synthetic graph . . . . . . . . . . . . . . . . . . . . . 72

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



ix

5 Adaptive Landmark Selection for Shortest Path Computation 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.3 Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Landmark framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Landmark selection . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Landmark processing . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Balancing centrality and covering . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Adaptive landmark selection . . . . . . . . . . . . . . . . . . . . 84

5.5.2 Greedy central neighbor processing . . . . . . . . . . . . . . . . 86

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.2 Measurement methodology . . . . . . . . . . . . . . . . . . . . 91

5.6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Identifying Prominent Actors in Online Social Networks 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.3 Online social networks . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Prominent nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.1 Node properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.2 BiasedRandomWalk . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6.1 Node properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6.2 BiasedRandomWalk . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



x

II Path Traversal Patterns 111

7 The Difficulty of Path Traversal in an Information Network 113

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.1 Concepts & definitions . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.2 Wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.3 The Wiki Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.4 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Node-based difficulty measures . . . . . . . . . . . . . . . . . . . . . . 121

7.4.1 Degree measures . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.2 Neighborhood measures . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Path-based difficulty measures . . . . . . . . . . . . . . . . . . . . . . . 124

7.5.1 Path length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5.2 Number of shortest paths . . . . . . . . . . . . . . . . . . . . . 124

7.5.3 Uniqueness of shortest paths . . . . . . . . . . . . . . . . . . . 126

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Mining User-Generated Path Traversal Patterns 129

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 Wikipedia graph . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.2 The Wiki Game dataset . . . . . . . . . . . . . . . . . . . . . . 132

8.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4 Path traversal patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4.2 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . 135

8.4.3 User-defined node centrality . . . . . . . . . . . . . . . . . . . . 136

8.4.4 Measure evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.5 Global patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5.1 Frequent traversal graphs . . . . . . . . . . . . . . . . . . . . . 139

8.5.2 Subgraph centrality . . . . . . . . . . . . . . . . . . . . . . . . 141

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 158

Samenvatting 159



xi

Curriculum Vitae 163

Dankwoord 165

Publication List 167

Titles in the IPA Dissertation Series since 2008 169





1
Introduction

1.1 Introduction

We live in a connected world. In our social and digital lives, we are confronted with

networks (or graphs) on a daily basis. When someone tells a story, it is likely that

this story passed through various other people that together form a network of so-

cial interactions. Online social networks such as Facebook are based on gigantic net-

works in which people are connected trough so-called friendship links. Browsing the

internet means traversing a large network of pages that is connected via clickable

(hyper)links. Accessing one webpage on a mobile phone creates a few dozen wired

or wireless connections between devices in a matter of microseconds. Networks are

everywhere around us, and influence the way in which we communicate, socialize,

search, navigate and consume information.

When networks are stored in a digital format, they can produce an enormous

amount of data. Such a large volume of data is sometimes called big data, not only

because of its quantity, but also because the data may arrive at an enormous speed

and because the data is usually diverse in terms of what type of information it repres-

ents. Data is used in many disciplines of science to verify hypotheses about a certain

domain. Popularized under the name data science, large (network) datasets are be-

ing generated and investigated by commercial organizations as well as a number of

research disciplines.

Within the field of computer science, we specifically consider tasks related to stor-

ing, retrieving, manipulating and understanding data in an automated and efficient

way. The most simple type of data is called unstructured data, which may for example

be the textual content of a news article or numeric measurements from a temper-

ature sensor. On the other hand there is structured data, which refers to data that



2 1.2. Graphs

is organized according to some data structure or model (note that other researchers

sometimes use the term unstructured data for tabular data, and structured data for

graphs). A common example of structured data (according to the first definition) is a

database, which is made up of tabular structures consisting of different objects (rows)

along with attributes (columns) that describe the objects. The majority of this text

will however focus on graphs, a type of structured data which will be described in

Section 1.2. Next, in Section 1.3 the focus will be on algorithms for computing cer-

tain properties of graph data. Given a dataset, one may also be interested in getting

a better understanding of the knowledge incorporated in the data, a task broadly

addressed by the field of data mining, which will be introduced in Section 1.4. This

introductory chapter is concluded in Section 1.5 with an outline of how graphs, al-

gorithms and data mining form the main topics of the following chapters of this thesis.

1.2 Graphs

A graph [135] is one of the most fundamental data structures used in computer sci-

ence. Graphs are used to describe the relationship between objects within a certain

domain. In a graph, the objects are commonly referred to as nodes (also called ver-

tices, actors or entities) and the relationship between two vertices is called an edge

(also called a link, an arc or a tie). An example of a small graph is shown in Fig-

ure 1.1.

This thesis primarily focuses on real-world graphs, often by other disciplines re-

ferred to as networks. Note that from a computer science perspective, and especially

from an algorithmic point of view, the term “graph” is often preferred over “network”,

as the latter is often interpreted as a structure of physical connections between mul-

tiple devices. A well-known example of a real-world graph is a social network, in

which a node represents a person, and a link represents a social relationship between

the two people that it connects. Throughout this chapter, online social networks are

used as a running example to describe the various concepts that are relevant in (real-

world) graphs.

Online social networks (OSNs) [25] are commonly accessed through a website or

(mobile) application, and allow a user to create a profile, and then link this profile

to other users, forming a network of social connections called the friendship graph.

The profile can be enriched with user attributes such as the age, location and gender

of the user. Furthermore, the OSN can be used to communicate with other users or

to share information by means of for example text, images or video. The first online

social networks were introduced around the year 2000, and roughly five years later

Facebook, LinkedIn and Twitter were on their way to become online social networking



Chapter 1. Introduction 3

C

A

B

D

E

F

G

H

Figure 1.1: A node-labeled unweighted directed graph with 8 nodes and 12 links.

services with over a hundred million members each.

Moving back to the abstract concept of a graph, there are various ways to charac-

terize a graph based on properties of both the nodes and the edges. If a graph contains

different types of nodes, it is called heterogenic, whereas if all nodes are of the same

type, it is called homogenic. A homogenic graph is also called a one-mode network. A

heterogenic graph with two types of nodes is called a two-mode network or affiliation

network if the set of nodes is bipartite, meaning that the node set can be split into two

sets of nodes such that for every edge, the source and target node of that edge are

in a different set. A two-mode network can be converted into a one-mode network

consisting only of nodes of either one of the two types. In the resulting homogenic

network, an edge between two nodes (of the one and only type) is present if both

nodes linked to the same node of the other type in the original one-mode network.

If the relationships in a graph are explicit, then this means that both actors explicitly

form a connection (as is the case with a link in the friendship graph of for example

Facebook). When links are implicit, it means that the link is based on some common

activity or common property of the two actors, such as the fact that two users sent

each other a message. A graph with implicit links is likely to be a projection of a

two-mode network.

A node can have one or more attributes describing properties of the particular

node. In the OSN example this could be the age and location of the person represented

by the node. Similarly, an edge can have one or more attributes describing the type of

relationship. Graphs with attributes on the nodes or edges are also called annotated

graphs. If an edge has one numeric attribute, then this edge attribute is often called

the weight of the edge, and the graph is called a weighted graph. In unweighted graphs,

there is no edge weight (but for computational reasons, the weight of an edge is

usually assumed to be equal to one).

In some cases, the direction of a link is relevant, and the graph is called a directed

graph. This is for example the case in the online social network Twitter, where one

user can follow another user, without this other user having to explicitly approve this

connection. The term reciprocity is used to denote the extent to which links are mu-



4 1.2. Graphs

tual. Clearly, in a directed graph such as Twitter, reciprocity is only partial. On the

other hand, the friendships in Facebook obviously form an undirected graph, as two

people are always each other’s friend, and the relationship is thus always symmetric,

realizing full reciprocity by design. The number of incoming links of a node in a direc-

ted graph is called the indegree (e.g., the number of followers of a Twitter user), and

similarly the number of outgoing links is called the outdegree of that node (e.g., the

number of people a user follows). In an undirected graph, the indegree and outde-

gree are equal, and there is simply the notion of the degree of a node (e.g., the number

of friends of a user on Facebook). The majority of this thesis deals with directed or

undirected homogenic (one-mode) unweighted graphs.

A common property of the graphs that are investigated in this thesis, is that they

are based on real-world data, meaning that the nodes of the graph represent for ex-

ample actual people, physical objects, locations, organizations, digital information or

written articles. An example is the so-called webgraph: the “graph of the internet”,

representing the way in which millions of pages are connected by means of billions

of clickable hyperlinks. Other examples are citation and collaboration networks, in

which a node represents a scientist, and a link between two nodes indicates respect-

ively a citation (a directed link) or collaboration (an undirected link).

An example of a collaboration network is given in Figure 1.2. In this figure, a node

represents a staff member of the computer science department of Leiden University,

and an undirected edge between two people indicates that they collaborated between

2005 and 2012 by writing a paper together. In this figure, the edge width is propor-

tional to the number of co-authored papers, and a thinner gray edge indicates indirect

collaboration through a common co-author not employed in Leiden. This one-mode

collaboration network can be seen as a projection of a two-mode network consisting

of authors and publications, with edges connecting publications to their authors.

Furthermore, Figure 1.2 explains the concept of connected components: groups of

nodes where for any two nodes in this group, there exists a path (a sequence of nodes

connected through edges) between these two nodes. The figure has three connected

components. The distance between two nodes is defined as the minimum number of

edges that has to be traversed to get from one node to the other, or alternatively, as the

length of a shortest path between these two nodes. Obviously, this measure of distance

has a different semantic meaning depending on the type of graph that is considered.

In a collaboration network such as that of Figure 1.2, the distance between two people

could be an indication of the similarity of these people’s research.

Noteworthy is the fact that many real-world graphs have similar structural proper-

ties, even though they are based on completely different data. First of all, real-world

graphs are typically sparse, meaning that the number of edges is very low compared to

the maximum number of edges that may possibly exist between all the nodes. Second,



Chapter 1. Introduction 5

Figure 1.2: A graph of 117 scientific collaborations (undirected edges) between 72

staff members (nodes) of the computer science institute of Leiden University. Data

is based on staff publication lists from 2005 to 2012. Visualized using NodeXL

(http://nodexl.codeplex.com).

http://nodexl.codeplex.com


6 1.3. Graph algorithms

these large graphs usually have one large connected component containing the vast

majority of the nodes. For example, of a particular online social network considered

in Chapter 6, over 99.9% of the in total eight million users is connected via friendship

links. Third, most graphs are scale-free, meaning that they have a power-law degree

distribution with a fat tail, i.e., there are a lot of nodes with a very low degree, and

only a few nodes with a high degree. The fat tail implies that high degree nodes have

a degree that is many times larger than the average degree over all nodes. Indeed,

high degree nodes of the graph often serve as hubs in the network, realizing very

low average node-to-node distances. This fourth commonly observed property is of-

ten referred to as the “small-world phenomenon” [71], which is closely related to the

concept of “six degrees of separation”, a theory which says that the majority of the

people in the world are connected via only six handshakes.

Graphs are studied in many different disciplines of science. Since the sixties, pop-

ularized under the name “social network analysis”, networks of social interaction

have been extensively studied within the social sciences [139]. There, the goal is to

get an understanding of the social interaction between the different actors in a net-

work. Furthermore, physicists refer to large graphs as “complex networks”, and study

for example the different models behind networks [7]. It has been shown that the

interaction between proteins can be understood by modeling them as a graph [64],

demonstrating the applicability of graphs as a model in bioinformatics. Within the

field of public administration, large networks of corporations are also studied, for ex-

ample to model and better understand the global network of corporate control [59].

The structure of such a corporate graph is shown in Figure 1.3, in which a node rep-

resents a company in the Netherlands and an edge between two nodes denotes the

fact that these companies have a common senior level director.

Indeed, graphs are everywhere, and the interaction between objects that they

model is relevant in many areas of research. Whereas other disciplines of science are

usually interested in the domain-specific information incorporated in these graphs,

for computer scientists, the emphasis is on creating efficient algorithms for storing,

analyzing, understanding and computing certain aspects of the graph and addressing

the complexity issues that arise when larger graphs are considered.

1.3 Graph algorithms

An algorithm [91] can be defined as a sequence of instructions to solve a particular

problem. Computer scientists are generally interested in designing algorithms that

solve a problem efficiently, both in terms of time and memory usage.

This thesis specifically considers algorithms for large graphs. This classification of



Chapter 1. Introduction 7

Figure 1.3: A graph of 3,711 board interlocks (undirected edges) between 1,422

companies (nodes) in the Netherlands. Data originates from the ORBIS database

of Bureau van Dijk. Visualized using the Fruchterman-Reingold and ForceAtlas2 al-

gorithms in Gephi (http://gephi.org).

http://gephi.org


8 1.3. Graph algorithms

size may seem rather vague when considering the seemingly ever-increasing amount

of available storage, memory and computation power. A more precise way would be to

say that large graphs cannot be stored in memory as an adjacency matrix, but only as

an adjacency list, making certain operations (such as computing the distance between

every pair of nodes) more complex. Algorithms for large graphs usually iterate over

the nodes or edges of the graph a constant number of times: quadratic (or worse)

complexity in the number of nodes or edges is prohibited, and to ensure practical use

the complexity of algorithms should be somewhat linear in the number of nodes or

edges. To make these “large” numbers a bit more concrete, large graphs today typic-

ally have hundreds of thousands or even millions of nodes, and possibly hundreds of

millions or billions of links. Usually, it is very hard to properly visualize graphs once

the number of nodes and edges increases. See for example Figure 1.3, which shows

a graph consisting of “only” 1,422 nodes and 3,711 undirected edges. Standard tools

for visualizing graphs are no longer suitable when the size of the graph exceeds say

a hundred thousand nodes. Therefore, when computation or measurements on lar-

ger graphs have to be done, specialized frameworks that store and manipulate the

graph (without worrying about visualization) are used. For most of the experiments

presented in this thesis, a custom C++ framework was used.

A substantial number of graph algorithms proposed in the literature deals with

modeling or generating graphs using a mathematical model. The focus of graph al-

gorithms discussed in this thesis is on computing or measuring certain properties or

characteristics of a given (real-world) graph. A well-known example of such a graph

algorithm is Dijkstra’s shortest path algorithm [43], which computes the distance

between two nodes of a graph. Graph properties can roughly be divided into local,

global and subglobal properties.

Examples of global properties of the graph include the graph diameter (longest

shortest path length, see Chapter 2), its average clustering coefficient (the degree to

which nodes tend to cluster together on a global scale), or the number of connected

components of the graph. On the other hand, local properties say something about

individual nodes, with a commonly addressed issue being that of node centrality, the

importance of a node in the graph. In the friendship graph of an online social net-

work, the number of friends of a user (the degree of the node) is a typical centrality

measure. The importance of pages in the webgraph of the internet is commonly as-

sessed using the PageRank [107] centrality measure, which ranks webpages based on

how many other high-ranked pages link to the considered page. These two measures

are incorporated in Figure 1.3, where the size of a node is proportional to its degree

(larger size means a higher degree), and the node color corresponds to its PageRank

value (darker means a higher PageRank value).

A third type of graph algorithms deals with graphs on a subglobal level, computing



Chapter 1. Introduction 9

or deriving aspects of a group of nodes, with community detection [89] algorithms as

a well-known example. These algorithms try to cluster the nodes in the graph so that

groups of nodes that are more connected amongst each other than with the rest of

the graph, form one community. Clustering is also a frequently addressed task in the

field of data mining, which is the topic of the next section.

1.4 Data mining

Data mining [143] is the field of research that focuses on getting a better understand-

ing of a (large) dataset in an automated way, for example by searching for patterns in

the data. The goal is often to find “something new”, i.e., to discover knowledge that is

not immediately visible by using common sense or by manually inspecting the data.

Alternatively, one could say that data mining deals with converting information into

knowledge, a process called knowledge discovery. With this in mind, it is often said

that data mining is somewhat related to the fields of artificial intelligence, machine

learning and statistics. The remainder of this section describes several common data

mining tasks, using the small over-simplified database (table) of online social network

users from Table 1.1 as an example dataset.

Association is the task of relating attributes of the objects, forming so-called asso-

ciation rules that describe the data. In Table 1.1, a possible association rule could be

that if the age attribute has a high value, then the number of friends is low. Indeed,

age seems somewhat associated with the number of friends in the example table.

Clustering refers to the task of grouping sets of objects together because they have

certain attributes in common. Again considering the example dataset, a possibility

would be to group the users into two clusters based on their gender and location: all

female users happen to be from the United States, and all male users are not. Outlier

detection deals with finding single objects or small groups of objects that “stand out”

because they do not comply with the patterns or constraints that the other objects do.

A possible outlier in the example dataset could for example be Hugo, because he does

Name Gender Age Location Photos Friends

Charlie male 23 United Kingdom 4 416

Hugo male 27 Mexico 0 238

Jack male 42 Australia 8 164

Kate female 31 United States 815 158

Rose female 65 United States 39 16

Table 1.1: A small database (table) containing users of an online social network.



10 1.5. Thesis outline

not have any photos.

The three techniques described above are all descriptive: they attempt to describe

or summarize the data, for example to discover the knowledge incorporated in the

data, or to find interesting patterns that provide more insight in the considered do-

main. A more predictive task in data mining is that of classification: the process of

determining, given an object and its attributes, some other (initially unknown) attrib-

ute, which is then referred to as the class of the object. In the example dataset, the

class attribute could be the gender of the user, and one way of predicting this class

using the data given in Table 1.1 could be to say that all users with more than 30

photos are female.

For the (too) simple example table, each of the traditional data mining tasks de-

scribed in this section can be executed more or less perfectly. However, more often

than not, a dependency or pattern is only true for a (hopefully large) percentage of

the instances, and numeric measures have to be used to assess the accuracy of a de-

rived result. When a set of association rules has been derived, a clustering has been

made, or an outlier has been found, it can also be a challenging task to determine

whether or not the results make sense within the given context of the data. A clus-

tering might be based on a coincidence in the data, an association rule may be based

on a trivial dependency in the attributes, and an outlier may just be an error in the

dataset. Therefore in data mining it is important to have a ground truth that can be

used to verify patterns. Alternatively, one can use separate datasets for training and

validating the technique, so that the performance of a certain technique can object-

ively be measured. Obviously, carefully choosing a correct, suitable and fair ground

truth is essential for the verification of results obtained by a data mining algorithm.

When data mining techniques are applied to graph data, we speak of link min-

ing [49] or graph mining [33]. A well-known predictive task in this context is that

of link prediction: given a graph of existing nodes and edges, which edges are likely

to appear (or disappear) in the future? A common descriptive graph mining task is

frequent subgraph detection: given a graph, which subgraph occurs more frequently

than expected, and may indicate a pattern in the graph? For each of these tasks, it is

important to keep the network aspect of the data in mind: it is not only the objects

and their attributes, but also the relationships between the objects that may define

the knowledge that is incorporated in the data.

1.5 Thesis outline

This thesis consists of two parts. Part I deals with efficient computation of distance-

related measures and properties of graphs. The algorithms and techniques introduced



Chapter 1. Introduction 11

in this first part help answer questions such as:

• What is the diameter of a given real-world graph? (Chapter 2)

• How can we determine which nodes form the center of a large graph? (Chapter 3

and Chapter 4)

• How can we efficiently assess the distance between two pages on the internet?

(Chapter 5)

• What measures and techniques are able to identify the prominent actors in an

online social network? (Chapter 6)

In Chapter 2, an algorithm for efficiently computing the exact diameter of large graphs

is introduced, and a similar technique is used in Chapter 3 to also compute the ec-

centricity distribution. Chapter 4 provides a generalized version of the algorithms

presented in the previous two chapters to efficiently compute various other distance

measures including the radius, center and periphery of a graph. In each of these

chapters, shortest paths in graphs are exactly computed. To speed up this process at

the cost of exactness, in Chapter 5 so-called landmark strategies are discussed, which

can be used to approximate the distance between two nodes with high accuracy. Fi-

nally, Chapter 6 can be seen as a case study in which the (former) Dutch online social

network Hyves is considered in the context of so-called centrality measures that de-

termine the importance of a node in a graph.

Part II of this thesis is more oriented towards data mining in information networks,

as both chapters are based on data from users that are navigating the well-known

free online encyclopedia Wikipedia. The second part addresses issues related to the

following questions:

• How difficult is it for humans to navigate through a network of Wikipedia art-

icles? (Chapter 7)

• What are the differences between human search strategies and algorithmic

search strategies? (Chapter 7)

• What can be learned from the patterns in human navigation paths in informa-

tion networks? (Chapter 8)

In Chapter 7 and Chapter 8, the studied dataset of human traversal patterns origin-

ates from the Wiki Game, an online game in which the main task is to link two given

random Wikipedia articles by means of clicking the hyperlinks between these pages.



12 1.5. Thesis outline

Chapter 7 focuses on both failed and successful user-generated paths in order to as-

sess the difficulty of this path finding task, whereas Chapter 8 considers mining the

successful paths in an attempt to better understand the human search strategy.

Each of the seven chapters following this introduction ends with a conclusion,

summarizing the results presented in that chapter and providing suggestions for fu-

ture work.

Publications

The different chapters of this thesis are based on the following peer-reviewed publi-

cations:

• F. W. Takes and W. A. Kosters. Determining the diameter of small world net-

works. In Proceedings of the 20th ACM International Conference on Information

and Knowledge Management (CIKM 2011), pages 1191–1196, 2011 (Chapter 2)

• F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large

graphs. Algorithms, 6(1):100–118, 2013 (Chapter 3 and Chapter 4)

• F. W. Takes and W. A. Kosters. Adaptive landmark selection strategies for fast

shortest path computation in large real-world graphs. In Proceedings of the

IEEE/ACM International Conference on Web Intelligence (WI 2014), pages 27–34,

2014 (Chapter 5)

• F. W. Takes and W. A. Kosters. Identifying prominent actors in online social net-

works using biased random walks. In Proceedings of the 23rd Benelux Conference

on Artificial Intelligence (BNAIC 2011), pages 215–222, 2011 (Chapter 6)

• F. W. Takes and W. A. Kosters. The difficulty of path traversal in information

networks. In Proceedings of the International Conference on Knowledge Discovery

and Information Retrieval (KDIR 2012), pages 138–144, 2012 (Chapter 7)

• F. W. Takes and W. A. Kosters. Mining user-generated path traversal patterns in

an information network. In Proceedings of the IEEE/ACM International Confer-

ence on Web Intelligence (WI 2013), pages 284–289, 2013 (Chapter 8)

A full list of publications by the author can be found on page 167 of this thesis.



Part I

Graph Algorithms





2
Determining the Diameter

of Small-World Networks

This chapter presents a novel approach to determine the exact diameter (longest

shortest path length) of large graphs, in particular of the nowadays frequently studied

small-world networks. Typical examples include social networks, biological networks,

webgraphs and internet topology networks. Due to complexity issues, the diameter

is often computed based on a sample of only a fraction of the nodes in the graph, or

some approximation algorithm is applied. Instead, we propose an exact algorithm that

uses various lower and upper bounds as well as effective node selection and pruning

strategies in order to evaluate only the critical nodes which ultimately determine the

diameter. The proposed algorithm is able to quickly determine the exact diameter of

various large small-world networks with millions of nodes and hundreds of millions

of links, whereas before only approximations could be given. This chapter is based

on:

• F. W. Takes and W. A. Kosters. Determining the diameter of small world net-

works. In Proceedings of the 20th ACM International Conference on Information

and Knowledge Management (CIKM 2011), pages 1191–1196, 2011



16 2.1. Introduction

2.1 Introduction

With the rapidly increasing amount of graph data that is being generated and aca-

demically studied, researchers are often interested in quickly deriving various global

properties of their graphs. While several trivial static properties of the graph such as

the graph density (number of edges of the graph vs. the maximum number of edges

that could possibly exist) can easily be computed, determining other properties of

large graphs using straightforward algorithms may require a lot more computation

time. One of these more “expensive” properties is the diameter of a graph, which is

defined as the maximal distance (length of a longest shortest path) between any two

nodes in the graph. Exact algorithms for computing the diameter traditionally require

running an All Pairs Shortest Path (APSP) algorithm for each node in the graph, ul-

timately returning the length of one of the longest shortest paths that was found.

While this will indeed return the exact diameter of the graph, complexity for a graph

with n vertices and m edges is in the order O(n3) for weighted graphs and O(mn) for

sparse unweighted graphs. This naive method for obtaining the diameter is clearly not

feasible in extremely large graphs with for example millions of vertices and a billion

edges.

We will study the diameter of small-world networks: sparse networks that are

most typically characterized by an average distance between two random nodes that

grows only proportionally to the logarithm of the total number of nodes in the net-

work [71]. Examples of small-world networks that are frequently studied are web-

graphs [8, 28], internet topology networks [66] and biological networks [6, 67], but

perhaps nowadays most well-known are social networks [120, 139]. With the intro-

duction of online social networks such as Facebook, LinkedIn and Orkut, even more

than before, the study of social networks has become interesting for computer sci-

entists, as the data behind these networks can easily be gathered in a digital format.

Other (implicit) social networks are telephone call graphs, e-mail networks [73] and

scientific collaboration networks [13].

The diameter is a relevant property of a network for many reasons. For example

in social networks, the diameter could be an indication of how quickly information

reaches literally everyone in the network. Within a scientific collaboration network, a

high diameter may indicate that there are groups of researchers that are not working

together very closely. In an internet routing network, the diameter could reveal some-

thing about the worst-case response time between any two machines in the network.

In a way, the diameter can be seen as a measure of how data or information spreads

over the network in the worst case.

The diameter is not just a static property of a graph, but it is also used in vari-

ous algorithms in which it serves as the maximum depth of a search procedure, for



Chapter 2. Determining the Diameter of Small-World Networks 17

example in a Depth Limited Search algorithm [117]. Work is also being done on

studying how a graph evolves over time [42]. There, knowing the exact point in time

when the diameter changes can be interesting, which may favor an exact answer over

an approximation. Another important advantage of studying the exact diameter is

that we can observe the actual path that realizes the diameter, a piece of information

that we do not get when for example an approximation algorithm is used, or when

the diameter is estimated by looking at a sample.

The main contribution of this chapter consists of a new algorithm for determin-

ing the exact diameter of small-world networks. Based on various lower and upper

bounds and critical node selection strategies, we improve upon the straightforward

APSP algorithm as well as upon existing approximation algorithms, obtaining the ex-

act diameter of networks with millions of nodes in a matter of seconds or minutes.

The performance is empirically verified on various large small-world networks.

The rest of the chapter is structured as follows. Section 2.2 introduces various

definitions and a short analysis of the problem’s complexity, after which we will cover

relevant related work in Section 2.3. We will use Section 2.4 to outline our algorithm

for deriving the diameter of a graph, and discuss experimental results in Section 2.5.

In Section 2.6 we look at a parallel version of the proposed algorithm, and finally

Section 2.7 concludes.

2.2 Preliminaries

In this section we will first consider some basic definitions related to graphs, distances,

eccentricity, graph diameter and shortest path problems, and then give some insight

in the complexity of determining these measures. After that we will briefly discuss

small-world networks.

2.2.1 Definitions

A graph G = (V,E) consists of a set of vertices (or nodes) V and a set of links (or

edges) E ⊆ V × V . Throughout the chapter we will use n to denote the number of

nodes |V |, and for the number of links |E| we use m. The distance d(v, w) between

two nodes v, w ∈ V is defined as the length of a shortest path from v to w. This

chapter deals with unweighted graphs, and we will assume that graphs are undirected,

meaning that (v, w) ∈ E iff (w, v) ∈ E and thus d(v, w) = d(w, v). Our definition

of an edge does not allow parallel edges, and we furthermore disallow self-loops.

Thus note that m is the number of (directed) links between distinct nodes and m/2 is

the number of (undirected) edges. The degree of a node v in an undirected graph is

simply defined as the number of (undirected) edges connected to that node. Finally,



18 2.2. Preliminaries

we assume that the graph is connected, implying that for each v, w ∈ V , d(v, w) is a

finite number. We are now ready to define the two most important concepts used in

this chapter, node eccentricity and graph diameter:

Eccentricity The eccentricity e(v) of a node v ∈ V is defined as maxw∈V d(v, w): the

length of a longest shortest path starting at node v.

Diameter The diameterD(G) of a graphG is defined as maxv,w∈V d(v, w): the longest

shortest path length between any pair of nodes, or equivalently as the maximum

eccentricity over all nodes: maxv∈V e(v).

Note that when used as a variable, we simply use D to denote the diameter. For con-

venience, we define two combinatorial problems that are frequently addressed in this

chapter and are tightly related to eccentricity. First, the Single-source Shortest Path

(SSP) problem is the problem that deals with finding all shortest paths from a single

source node v ∈ V to all other nodes in the graph. For non-sparse graphs this prob-

lem has the traditional time complexity of O(n2) (Dijkstra’s shortest path algorithm).

When the graph is sparse, it can more efficiently be stored using an adjacency list

instead of an adjacency matrix. Then in our unweighted case, time complexity can

even be reduced to O(m), as a Breadth First Search (BFS) from the starting node is

sufficient to find all shortest paths starting at that node. In essence, solving the SSP

problem for a node means that we have found the eccentricity of that particular node.

Next, we can define the All Pairs Shortest Paths (APSP) problem as the problem

of finding the shortest paths between all pairs of nodes of the graph, which increases

the previous time complexity by a factor n to O(n3) for weighted graphs, and O(mn)

for the considered sparse unweighted graphs. The maximum distance value that the

APSP algorithm obtains, is then the maximum eccentricity (which is computed for a

node v using the function ECCENTRICITY() in Algorithm 2.1) over all nodes and thus

equal to the diameter of the graph. So if we solve the APSP problem, we have also

found the diameter of the graph.

Algorithm 2.1 DIAMETERAPSP

1: Input: Graph G

2: Output: Diameter of G

3: D ← −∞
4: for v ∈ V do

5: D ← max(D,ECCENTRICITY(v)) // one BFS

6: end for

7: return D



Chapter 2. Determining the Diameter of Small-World Networks 19

2.2.2 Small-world networks

In this chapter we will specifically look at the diameter of small-world networks. A

good overview of algorithmic properties of these networks, of which we will discuss a

few, is given in [71]. First of all, small-world networks are generally sparse: the total

number of links m is very small compared to the maximum number of links n(n− 1).

This may cause the reader to believe that nodes have a rather long shortest paths

between them, as there are very few links in general. However, a second interesting

characteristic is that even though the network is very sparse, the average distance

between two nodes is very small. More specifically, this distance is typically some-

what proportional to the logarithm of the total number of nodes. The node degree

distribution of a small-world network usually follows a power law: there are only a

few nodes with a very large number of connections, the so-called hubs, and there are

many nodes with relatively few connections. Hubs are in turn responsible for realiz-

ing very low average shortest path lengths. So even though many nodes are not direct

neighbors of one another, most nodes can be reached from every other node via only a

small number of steps. A last property of small-world networks, is that they generally

contain one very large connected component (the giant component) which contains

the vast majority of the nodes.

2.3 Related work

A lot of work has been done on devising algorithms for the estimation of the dia-

meter [44, 115]. Such estimation algorithms typically determine the diameter of any

type of graph (sparse or dense) with some very small additive error, but using signific-

antly less computation time than the APSP algorithm. For example in [3], a method is

suggested which finds the diameter in O(n2.5
√
logn) time with an additive error of 2.

Work has also been been done on testing if the diameter is (with some small margin

of error) equal to a certain value [110].

A popular method which is used in many graph analysis toolkits, is the Approxim-

ate Neighborhood Function (ANF) by Palmer et al. [109]. This technique approxim-

ates the size of the neighborhood of (sets of) nodes, and is thus also able to approxim-

ate the diameter. Based on this technique, a variant of the diameter called the effective

diameter was introduced, which is defined as the 90-th percentile of the cumulative

distribution of shortest path lengths. Though this measure may appear more robust

to outliers, it is claimed that the diameter and the effective diameter “tend to exhibit

qualitatively similar behavior” [86]. Another measure closely related to the diameter

that is sometimes mistakenly spoken of as if it were the real diameter, is what some

call the average diameter, which is actually the average shortest path length: the aver-



20 2.4. BoundingDiameters

age distance between any pair of nodes, i.e., 1/(n(n− 1))
∑

v 6=w∈V d(v, w). This value

is often approximated by selecting a few thousand random pairs of nodes from the

graph, and determining the average of their pairwise distances.

In work which does not focus on actually determining the diameter, but where it

is found only as a static property of the dataset, a sample of the graph is frequently

used to determine the diameter [84, 103]. There are at least two directions to de-

termining the diameter when using a sample. The first option would be to select a

sample of the nodes in the original network using a suitable sampling approach [84],

and then determining the diameter of this sample using the straightforward APSP

algorithm. The second option would be to assess the diameter based on selecting a

few nodes from the original graph that are likely to have a high eccentricity value,

which is somewhat the idea behind the method described in [88]. In this work, the

diameter is determined by, starting from a random node, repeatedly selecting the

farthest node, meanwhile keeping track of the highest distance so far. If this value no

longer increases after a certain number of iterations, then this value is a lower bound

on the diameter has been found. Similar techniques are employed in [17, 34, 95], and

it is argued that using a handful of Breadth First Searches, empirically tight bounds

on the diameter can be obtained.

Most exact algorithms for finding the diameter are actually implementations of

matrix multiplication that solve the APSP problem and thus also find the diameter.

While these algorithms work well and have time complexity O(n2.376) [9], they usu-

ally suffer from large hidden constants, and are often very unpractical due to large

memory requirements. To the best of our knowledge, the exact approach suggested

by Crescenzi et al. [36, 37] is the only other exact algorithm for determining the dia-

meter of large graphs. The suggested approach uses a strategy somewhat similar to

the algorithm that we propose in this chapter. A comparison is provided in [36, 99].

2.4 BoundingDiameters

In this section we describe our approach for computing the diameter. We will start

with some observations about the eccentricity of neighboring nodes and how they

influence the diameter. Then we describe the actual algorithm called BOUNDINGDIA-

METERS, which makes use of these observations to improve upon the APSP algorithm.

Next we discuss the algorithm’s complexity and some simple optimization techniques.

2.4.1 Observations

If we compute the eccentricity e(v) for some node v, we know that for all nodes w

with d(v, w) = k, their eccentricity e(w) lies between e(v)−k and e(v)+k. The upper



Chapter 2. Determining the Diameter of Small-World Networks 21

bound follows because any node w at distance k of v can get to v in exactly k steps,

and then reach any other node in at most e(v) steps. The lower bound can be derived

in the same way, by interchanging v and w in the previous statement. In the “best”

case, w is on some path that realizes the eccentricity of v, and has an eccentricity

e(w) of only e(v) − k. This lower bound can of course never be less than k itself: if

the shortest path between v and w has length k, then e(w) is at least equal to k. In

essence, we are making use of the triangle inequality in graphs. So we have:

Observation 2.1 Node eccentricity bounds

If a node v ∈ V has eccentricity e(v), then for all nodes w ∈ V we have:

max(e(v)− d(v, w), d(v, w)) ≤ e(w) ≤ e(v) + d(v, w)

The proof of this observation is simple: we know that the diameter of a graph is equal

to the maximum eccentricity over all nodes. Therefore, the maximum lower bound

on the eccentricity over all nodes, is also a lower bound for the diameter. Similarly,

the maximum upper bound on the eccentricity over all nodes can be seen as an upper

bound on the diameter. The upper bound can even be made more tight by observing

that this bound can be at most twice as big as the smallest eccentricity upper bound

over all nodes, as also observed in [95]. These observations can be formalized as

follows to form lower and upper bounds on the diameter:

Observation 2.2 Diameter bounds

Let eℓ(v) and eu(v) denote currently known lower and upper bounds for the eccentricity

of node v ∈ V . For the diameter D(G) of a graph G it holds that:

max
v∈V

eℓ(v) ≤ D(G) ≤ min(max
v∈V

eu(v), 2 ·min
v∈V

eu(v))

We will denote these lower and upper bounds on the diameter by Dℓ and Du, re-

spectively. Note that as opposed to the even upper bound of e(v) ≤ D(G) ≤ 2 · e(v)
suggested in [95], the proposed algorithm is able to derive an odd upper bound,

which is obviously necessary for finding the exact diameter when the diameter itself

has an odd value.

2.4.2 Algorithm

The bounds mentioned above can be used to improve the original APSP algorithm

from Algorithm 2.1 by reducing the number of eccentricity computations, as only

nodes that can actually contribute to the diameter bounds are considered. Pseudo-

code for the BOUNDINGDIAMETERS algorithm is given in Algorithm 2.2.



22 2.4. BoundingDiameters

After setting some initial values (lines 3–7), in the main while-loop, the algorithm

repeatedly selects a node v (line 9) from the candidate set W , which initially contains

all the nodes. The various mechanisms for selecting the next node to be examined

are outlined in Section 2.4.4. The algorithm then computes the eccentricity of that

node v (line 10), and uses the result to update the lower and upper bound of the

graph diameter (Dℓ and Du, lines 11–12), cf. Observation 2.2. Note that we use e[v]

when we reference to the (array) variable containing the eccentricity e(v) of node v.

Next, the eccentricity bounds of all nodes in the candidate set W are updated (lines

14–15) according to Observation 2.1. Then we determine which nodes (including v)

can be removed from the set of candidates (line 17). This can happen either because

the eccentricity of the node is already known since the lower and upper bounds are

identical (which is always the case for the current node v), or because a node can

no longer “contribute” to the diameter of the graph by increasing the lower bound

or decreasing the upper bound (line 16). Note that because we performed a BFS to

compute the eccentricity of v, we know for each node w the distance d(v, w) which

is needed to apply Observation 2.1. After adjusting the node eccentricity bounds, the

diameter upper bound is further tightened using the largest node eccentricity upper

bound, again cf. Observation 2.2 (line 20). Finally, the algorithm stops when all nodes

have been examined, or when the lower bound is equal to the upper bound (line 8).

It then returns the lower bound of the diameter, which at that point contains the real

value of the diameter (line 22).

A proof of the correctness of this algorithm can be constructed by considering the

fact that Dℓ, which is returned on line 22, contains the largest computed eccentricity

value (line 12). So, given Observation 2.1 and the assumption that in line 16 only

nodes that can not potentially increase the value of Dℓ are removed, the algorithm

returns the correct value of the diameter.

2.4.3 Complexity

Computing the eccentricity of a node using the ECCENTRICITY() function (line 10) is

the critical operation of the algorithm, as this requires running a SSP algorithm (one

BFS), taking O(m) time. In the best case, we only have to compute the eccentricity of

two nodes v and w, only to find that e(w) = 2 · e(v) (or vice versa), which means that

the diameter is equal to e(w). In the worst case the algorithm needs to investigate the

eccentricity of every single node, not improving the traditional APSP time complexity

ofO(mn). An example of a graph in which all nodes have to be investigated in order to

determine the diameter, is a graph where the nodes are connected through exactly one

circle of edges, meaning that all nodes have identical eccentricity. Of course, graphs

are generally not shaped as a circle, neither is the diameter always equal to two times



Chapter 2. Determining the Diameter of Small-World Networks 23

Algorithm 2.2 BOUNDINGDIAMETERS

1: Input: Graph G

2: Output: Diameter of G

3: W ← V Dℓ ← −∞ Du ← +∞
4: for w ∈W do

5: eℓ[w]← −∞
6: eu[w]← +∞
7: end for

8: while Dℓ 6= Du and W 6= ∅ do

9: v ← SELECTFROM(W )

10: e[v]← ECCENTRICITY(v)

11: Dℓ ← max(Dℓ, e[v])

12: Du ← min(Du, 2 · e[v])

13: for w ∈W do

14: eℓ[w] = max(eℓ[w],max(e[v]− d(v, w), d(v, w)))
15: eu[w] = min(eu[w], e[v] + d(v, w))

16: if (eu[w] ≤ Dℓ and eℓ[w] ≥ Du/2) or

(eℓ[w] = eu[w]) then

17: W ←W − {w}
18: end if

19: end for

20: Du ← min
(

Du,maxw∈V (eu[w])
)

21: end while

22: return Dℓ;

the eccentricity of some node in the graph (if we are even able to quickly find two

such nodes). In general, the eccentricity values of nodes in a network differ, and how

much they differ will likely influence the number of iterations that is required, as

larger differences in eccentricity values will result in tighter eccentricity bounds on

surrounding nodes.

We claim that the algorithm specifically works well on small-world networks,

which we believe is due to power law degree distribution within such networks, as

discussed in Section 2.2.2. A small-world network has relatively few nodes with a very

high degree (hubs), that will often (but not always) have a relatively low eccentricity

value. The remainder of the nodes typically have a much lower degree, often (again,

not always) resulting in a relatively high eccentricity value. Thus, due to the expec-



24 2.4. BoundingDiameters

ted existence of a large diversity in eccentricity values of the nodes in a small-world

network, the bounds on the diameter will typically converge very quickly. When we

look at a degree-based selection strategy in Section 2.4.4.1, we will verify this claim

empirically.

2.4.4 Selection strategies

This section describes the different strategies that can be used to select the next node

for which we want to compute the eccentricity, outlining the possible functionality of

the SELECTFROM() function that is called in line 9 of Algorithm 2.2. First notice how

enumerating the nodes in some order, or selecting them at random, will in essence

mean that we are executing the APSP algorithm, only now we discard nodes that

can no longer contribute to the diameter bounds. While this will no doubt already

improve upon the APSP algorithm, it mainly serves as a baseline of comparison, as

the main objective is to tighten the bounds of the diameter as quickly as possible in

order to efficiently reduce the size of the set of candidate nodes.

Any strategy that we come up with has to be easy to compute so that it does

not influence the overall complexity of the diameter algorithm. More specifically, it

should be possible to determine the next node by iterating over the set of nodes once,

such that the selection function could even be done on-the-fly while updating the

bounds in the previous iteration. We will test the performance of (combinations of)

the strategies described below in Section 2.5.

2.4.4.1 Degree centrality

Perhaps the simplest strategy would be to select nodes based on their degree, hoping

that high degree nodes have a low eccentricity value, and vice versa. This measure,

known as degree centrality, is often suggested as a simple measure of the centrality

of a node within a network, but is far from perfect for predicting the eccentricity.

For example, in Figure 2.2 node F has the highest degree (6 links) and eccentricity

e(F ) = 5, whereas node J with lower degree 3 has eccentricity e(J) = 4. Also, a low

degree is no guarantee for a low eccentricity value, as in small-world networks there

are typically many nodes with a low degree, and these nodes may still be connected to

the most central nodes, resulting in a low eccentricity value even though the degree

is also very low. The problem here is that degree centrality is merely a local measure:

it does not take into account any aspects of the graph beyond its own neighborhood.

Indeed, as Figure 2.1 suggests, node degree and node eccentricity are not directly

related: not all nodes with a high degree have a low eccentricity value, and not all

nodes with a low degree have a high eccentricity value. Therefore we suggest using

the degree as a secondary selection mechanism only, mainly to break ties in other



Chapter 2. Determining the Diameter of Small-World Networks 25

selection methods, or to select the very first node to be examined. We mention that

although many more centrality measures exist [27], a downside is that they are often

as hard to compute as the eccentricity or the diameter itself and therefore not suitable

to serve as a selection mechanism.

2.4.4.2 Eccentricity bound difference

During the execution of the proposed algorithm, the difference eu(v)− eℓ(v) between

the lower and upper eccentricity bound could be an interesting feature, as it says

something about how much we already know about the eccentricity of node v and

its neighborhood. If for a certain node this difference is very big, determining its

eccentricity may tighten the bounds of many nearby nodes. In essence, sorting by

bound difference in decreasing order means that we are repeatedly taking a node in

an area of the graph which has not been very thoroughly explored yet.

2.4.4.3 Interchanging eccentricity bounds

Inspired by traditional branch-and-bound algorithms that repeatedly select the nodes

with the best bound value for expansion, we could choose to select nodes from the

candidate set based on their their quality in terms of how well we expect them to

100

101

102

103

 6  7  8  9  10  11  12  13  14

de
gr

ee

  

eccentricity

Figure 2.1: Degree (vertical axis) and eccentricity (horizontal axis) of the nodes in

the ENRON graph.



26 2.4. BoundingDiameters

contribute to tightening the diameter bounds. To find nodes with high eccentricity,

we can select the node v with the largest upper bound eu(v), and similarly we choose

a node with a small lower bound eℓ(v) to find nodes with a low eccentricity value. As

the goal is to increase the lower bound and decrease the upper bound, we propose

to interchange the selection of the node with the smallest lower bound and the node

with the largest upper bound.

2.4.4.4 Repeated farthest distance

Another option is to select a node based on its distance to the previously investigated

node, and then select a node with the highest distance. So starting from some initial

node v, we repeatedly select the farthest possible candidate node w with d(v, w) =

e(v). This is a variation of the heuristic for approximating the diameter suggested

in [88]. The only difference is that in this context, the stopping criterion for the

algorithm is exactly defined, namely when the diameter lower and upper bounds are

equal.

2.4.5 Example

We will give an example of how BOUNDINGDIAMETERS would determine the diameter

of the graph depicted in Figure 2.2. As a selection strategy we alternately choose the

largest upper bound and smallest lower bound (cf. Section 2.4.4.3), breaking ties by

choosing the nodes with the highest degree (cf. Section 2.4.4.1). Any remaining ties

are broken by choosing a random node. In this example, we will denote the lower

and upper eccentricity bounds eℓ(v) and eu(v) of a node v by [eℓ(v); eu(v)].

Initially, all nodes form the candidate set, and all lower bounds and all upper

bounds are equal. We start at node F which has the highest degree, and remove it

from the candidate set. The situation of Figure 2.2 depicts the situation after the first

iteration, where node F has been investigated. The diameter lower and upper bounds

are now equal to Dℓ = e(F ) = 5 and Du = 2 · e(F ) = 10, respectively. Notice how

for node M and N we set the bounds to [3; 8] and not to [2; 8], because d(M,F ) =

d(N,F ) = 3 and the eccentricity is at least equal to 3. The current eccentricity bounds

do not yet require us to remove any nodes from the candidate set.

In the second iteration, we determine the eccentricity of the node with the largest

eccentricity upper bound, which could be T or S as they both have bounds [5; 10]. We

choose T . The eccentricity of node T turns out to be 7, and the eccentricity bounds

after the second iteration are depicted in Figure 2.3. Here, nodes that can no longer

contribute to computing the diameter are green if the lower and upper bounds have

become equal and red if they have bounds such that they cannot contribute to either

increasing the lower bound or decreasing the upper bound. The graph diameter now



Chapter 2. Determining the Diameter of Small-World Networks 27

C
6

4

B
7

3

A
7

3

F
5

5

E
6

4

D
6

4

G
6

4

J
6

4

H
6

4

I
7

3

L
7

3

M
8

3

N
8

3

P
8

3

K
7

3

Q
9

4

R
9

4

S
10

5

T
10

5

Figure 2.2: Example graph with eccentricity bound values after the first BFS from F .

C
6

6

B
7

7

A
7

7

F
5

5

E
6

6

D
6

6

G
6

5

J
6

4

H
6

6

I
7

6

K
7

7

L
7

4

M
8

4

N
8

4

P
8

5

Q
9

4

R
8

6

S
10

5

T
7

7

Figure 2.3: Example graph with eccentricity bounds after the second BFS from T .

C
6

6

B
7

7

A
7

7

F
5

5

E
6

6

D
6

6

G
6

5

J
5

4

H
6

6

I
7

6

K
7

7

L
4

4

M
5

4

N
5

4

P
5

5

Q
6

4

R
7

6

S
7

5

T
7

7

Figure 2.4: Example graph with eccentricity bound values after the third BFS from L.



28 2.4. BoundingDiameters

lies between Dℓ = 7 and Du = 10. We can now remove A, B, C, D, E, H and K from

the candidate list, as we have found the exact eccentricity of these nodes (but without

having computed it explicitly). We can also remove node I and node G with bounds

[6; 7] because they can no longer contribute to raising the lower bound or decreasing

the upper bound.

For the third loop of the algorithm we compute the eccentricity of the node with

the smallest lower bound (and as secondary selection, the highest degree), which is

node L. It has an eccentricity of 4, meaning that we can now discard all nodes based

on the same arguments as in the previous iteration, resulting in all nodes being visited

(see Figure 2.4), terminating the algorithm after only 3 eccentricity computations, and

returning the maximum over all lower bounds as the final value of the diameter: 7.

2.4.6 Pruning

The size of the graph can be reduced by applying the following pruning strategy

beforehand. For every node we can determine if removing all of its adjacent edges

would disconnect the graph. If this is the case, and multiple identically structured

small subgraphs remain, we can remove each but one of them, and still obtain the

correct diameter value, assuming of course that a path that realizes the diameter of

the graph does not run from one subgraph to another (pruned) subgraph. Therefore,

the diameter of the pruned subgraph has to be smaller than D(G)/2.

For example node C in Figure 2.2 is connected to two identical subgraphs, namely

the subgraph consisting of node A and the subgraph consisting of node B. We could

prune one of these subgraphs, as they will both have identical eccentricity (bound)

values. Similarly, P is connected to identical subgraphs Q − S and R − T , both with

identical eccentricity values. Indeed, in the second iteration of the example run de-

scribed in Section 2.4.5, we could have chosen either S or T , both resulting in the

same adjustments to the bound values of the remaining nodes.

The proof of the validity of this pruning strategy can be constructed based on the

concept of graph isomorphism, a bijection from one graph to another graph in which

the connectedness of the graph is preserved. More precisely, a graph isomorphism

h : G → G′ of a graph G = (V,E) to another graph G′ = (V ′, E′) is a bijection

h : V → V ′ from the set of nodes V in the original graph to the set of nodes in the

projected graph V ′ such that (u, v) ∈ E iff (h(u), h(v)) ∈ E′ [60]. In the example

from the previous paragraph, node A and B map to each other, as do nodes Q and S

to nodes R and T , respectively. Because graph isomorphism preserves connectedness,

distance measures such as the eccentricity are also preserved. Although the general

problem of deciding if there exists a isomorphism from one graph to another graph is

NP-complete, the strategy described above is able to efficiently detect the simple type



Chapter 2. Determining the Diameter of Small-World Networks 29

of isomorphism, namely that of subgraphs of a very small size that arise when only

one edge is removed.

Nodes that are pruned contribute to speeding up the algorithm in two ways:

pruned nodes do not have to be considered during the eccentricity computation and

also do not have to be included in the set of candidate nodes.

2.5 Experiments

This section starts with a brief description of the datasets (graphs), and then describes

a measurement methodology for the different selection strategies described in Sec-

tion 2.4.4. Next, the results of applying these strategies in the BOUNDINGDIAMETERS

algorithm are discussed.

2.5.1 Datasets

We will verify the algorithm on various small-world networks. Characteristics of these

graphs, such as the number of nodes, the number of links, the average degree deg ,

average node-to-node distance d and the diameter D(G), are given in Table 2.1.

Numbers are based solely on the largest connected component of each graph, and

originally directed graphs are interpreted as if they are undirected. Therefore, slight

deviations from statistics presented in the original papers describing these graphs may

be observed.

The CA-ASTROPH dataset is a an undirected network of scientific collaborations

(co-authorship) in the field of astrophysics, which was obtained through arXiv and

analyzed in [87]. ENRON [73] is a well-known network of e-mail contacts within a

Dataset Nodes n Links m deg d D(G)

CA-ASTROPH [87] 17,903 393,944 21 4.15 14

ENRON [73] 33,696 361,622 10 4.07 13

WEB-GOOGLE [88] 855,802 8,582,704 10 6.30 24

YOUTUBE [103] 1,134,890 5,975,248 5 5.32 24

FLICKR [103] 1,624,992 30,953,670 18 5.38 24

AS-SKITTER [86] 1,694,616 22,188,418 13 5.08 31

WIKIPEDIA-NL [10] 2,213,236 23,520,520 11 4.81 18

ORKUT [103] 3,072,441 234,370,166 76 4.16 10

LIVEJOURNAL3 [103] 5,189,809 97,839,882 19 5.48 23

HYVES [128] 8,083,964 912,067,984 112 4.75 25

Table 2.1: Characteristics of the datasets: various small-world graphs.



30 2.5. Experiments

company, in which a node represents an e-mail address and two nodes are connected

if an e-mail has been sent between these two addresses. The WEB-GOOGLE dataset is

a partial crawl of the world wide web [88]. The FLICKR, LIVEJOURNAL, ORKUT and

YOUTUBE datasets are partial crawls of the respective online social networks, and

are studied in detail in [103]. AS-SKITTER is an undirected internet topology graph

created from network traceroutes, which is analyzed in detail in [86]. WIKIPEDIA-

NL is a full crawl of the Dutch Wikipedia graph as present in DBpedia 3.5 [10],

a community effort to extract structured information from Wikipedia. The dataset

denoted by HYVES is the full friendship graph of a Dutch online social network (see

Chapter 6).

2.5.2 Measurement methodology

In the following experiments we will compare the three different node selection

strategies from Section 2.4.4:

• Strategy 1: Largest eccentricity bound difference (cf. Section 2.4.4.2)

• Strategy 2: Interchanging largest upper bound and smallest lower bound (cf.

Section 2.4.4.3)

• Strategy 3: Farthest distance (see Section 2.4.4.4)

Ties are broken by taking the node with the highest degree (cf. Section 2.4.4.1).

Any remaining ties are broken by picking the lexicographically first node, which is

determined by the order in which the nodes are read from the input file. Thus, each

of the selection strategies is deterministic.

The critical step of the algorithm is clearly one BFS, so the step of computing the

actual eccentricity of one node. The number of times that a BFS is executed (which we

will refer to as the number of iterations) will therefore serve as a basis of comparison

of the three strategies. Note that the number of iterations that the traditional APSP

algorithm from Algorithm 2.1 would perform, is one eccentricity computation for

each node in the graph, so a total of n iterations. We have chosen to only implement

the simple optimization strategy (see Section 2.4.6) of pruning duplicate connected

subgraphs consisting of one node.

2.5.3 Results

The number of iterations for each of the three strategies is given in the second, third

and fourth column of Table 2.2, where a bold value indicates the best result amongst

the three strategies. The last column indicates the number of pruned nodes as well as

the percentage of the total number of nodes that was pruned.



Chapter 2. Determining the Diameter of Small-World Networks 31

The results show that with only a few actual eccentricity computations, the al-

gorithm is able to determine the exact diameter of the datasets, with Strategy 2 as the

best-performing node selection strategy. We expect this to be because interchanging

the search for low and high eccentricity nodes means that we are interchanging the

selection of a node in the dense and the peripheral part of the small-world network,

quickly lowering the upper bound and increasing the lower bound, respectively. We

believe that Strategy 1 did not perform so well, because although this strategy gives

a hint towards areas of the graph that have note been thoroughly explored, it does

not give any guarantees on the size of this area (which could be very small) and the

number of such areas (which could be very large). Strategy 3 appeared to perform

worse because it was not able to find any low-eccentricity valued nodes that could

lower the diameter upper bound.

We observed that even when no selection strategy is applied (so, by selecting

candidate nodes at random), using the suggested lower and upper eccentricity bounds

can help to converge on the diameter more quickly than using the APSP algorithm.

For larger datasets, this number was well over 10, 000 and thus still far too time-

consuming, but for CA-ASTROPH 260 ± 95, for ENRON 316.5 ± 142 and for WEB-

GOOGLE a total of 5, 975± 2, 249 iterations were needed (the number of iterations is

averaged over 10 runs, so we also report the standard deviation) to obtain the exact

diameter. This may suggest that contrary to the various selection strategies, random

candidate node selection does not scale as the size of the graph increases.

We mention that for the YOUTUBE dataset, Strategy 2 only needs 2 eccentricity

computations to determine the diameter, demonstrating the best-case performance of

the algorithm. It turned out that the node with the highest degree had eccentricity

12, causing nodes with bounds [12; 24] to exist. One of these nodes apparently had

Dataset Strategy 1 Strategy 2 Strategy 3 Pruned nodes

CA-ASTROPH 18 9 63 185 (1.0%)

ENRON 12 11 61 8,715 (25.8%)

WEB-GOOGLE 20 4 28 91,965 (10.7%)

YOUTUBE 2 2 2 399,553 (35.2%)

FLICKR 10 3 7 553,242 (34.0%)

AS-SKITTER 10 4 19 114,803 (6.8%)

WIKIPEDIA-NL 21 3 583 947,582 (30.8%)

ORKUT 357 106 389 27,429 (0.9%)

LIVEJOURNAL 6 3 14 318,378 (6.1%)

HYVES 40 21 44 446,258 (5.6%)

Table 2.2: Performance (number of iterations) of different node selection strategies.



32 2.5. Experiments

an eccentricity of value 24, realizing bounds of [24; 24] and terminating the algorithm

after just 2 iterations.

For the ORKUT dataset, compared to the other graphs, a relatively large number of

eccentricity computations was needed to determine the diameter. To further analyze

this, we look at how quickly the number of candidate nodes decreases during the

execution of the algorithm. Therefore we show the number of unvisited nodes and the

lower and upper bounds on the diameter during the execution of the algorithm using

Strategy 2 on the ORKUT dataset in Figure 2.5. After 16 computations, another 90

computations were needed to decide whether the diameter was equal to 9 or 10, and

the number of nodes to be examined only decreases by 1 or 2 after each eccentricity

computation. Apparently the remaining unvisited nodes are positioned in the graph

in such a way that the computation of the actual eccentricity of these nodes can not

be avoided using the neighboring bounds. Although in this case it takes a while to

find the exact diameter, tight bounds on the diameter are quickly available, as we

have narrowed down the value diameter down to either one of two values.

The last column of Table 2.2 shows how the pruning strategy is able to significantly

reduce the size of the problem. This is not surprising as small-world networks typically

have many low degree nodes, and it is quite likely that many of these nodes are linked

to the same node, and can thus be pruned.

100

101

102

103

104

105

106

 0  20  40  60  80  100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

ca
nd

id
at

e 
no

de
s

bo
un

d 
va

lu
e

iterations

candidate nodes (left axis)
diameter lower bound (right axis)
diameter upper bound (right axis)

Figure 2.5: Candidate nodes (left vertical axis; logarithmic) and lower and upper

bounds (right vertical axis) vs. iterations (horizontal axis) for the ORKUT dataset.



Chapter 2. Determining the Diameter of Small-World Networks 33

As an interesting side result it turned out that, very often, the actual eccentricity

has been found for a large portion of the nodes in the graph when the algorithm has

terminated, because the eccentricity lower and upper bounds of these nodes have be-

come equal. For example, for the ORKUT dataset, 777, 257 actual eccentricity values

(25%) were obtained, while only 106 values were explicitly computed. Similar num-

bers were observed for the other datasets. Also interesting to note is that the exact

diameter that we computed for the ENRON and AS-SKITTER datasets deviates from

the values of respectively 12 and 24 that were approximated in previous work.

Although not related to the performance measurement methodology, we mention

that with a straightforward C++ implementation, one node eccentricity computation

takes around six seconds for a dataset with 8 million nodes and 912 million edges

on a standard 3.2GHz machine with 10GB of memory. This means that we are able

to determine the exact diameter in a matter of seconds or minutes, which is a big

improvement over the traditional APSP approach which would easily take over a year

of computation time. More information on the datasets used in this chapter, the ob-

tained diameter paths, and a simple implementation can be found at the supporting

website: www.liacs.nl/~ftakes/diameter/. In later experiments, we ran the pro-

posed diameter algorithm on a much larger set of graphs. The results can be found in

Chapter 4. For a comparison of the proposed algorithm with related work, we refer

the reader to two works that were published after the original article on which this

chapter is based [36, 99].

2.6 GPU parallelism

A well-known technique to improve the performance of almost any algorithm, is to in-

troduce parallelism in (parts of) the computation. With dual, quad and octa-core CPUs

available in standard desktop machines, CPU parallelism can be an excellent way

to reduce the runtime of an algorithm by performing certain operations in parallel.

Nowadays, graphics processing units (GPUs) have even hundreds of cores, suggesting

a much higher potential for exploiting parallelism compared to the CPU. However,

whereas with a CPU algorithm it is often possible to obtain a speedup equal to the

number of cores, using the GPU the speedup is usually much lower than the num-

ber of cores, as the architecture of the GPU is typically more “exotic” compared to

what a regular CPU algorithm would expect. This section, which is largely based on

work [41] together with Giso Dal, briefly summarizes to what extent GPU parallel-

ism using the Nvidia CUDA framework can be applied to the BOUNDINGDIAMETERS

algorithm.

Parallelizing an existing sequential algorithm is not always trivial, and involves

www.liacs.nl/~ftakes/diameter/


34 2.7. Conclusion

carefully selecting procedures within the algorithm that can be parallelized. In case

of the BOUNDINGDIAMETERS algorithm discussed in this chapter, it turned out that

97% of the running time (the performance of GPU algorithms is usually measured

in seconds instead of iterations) is spent on computing eccentricity values (line 10 of

Algorithm 2.2). Therefore it makes sense to optimize the eccentricity computation (so,

one SSP run or one BFS). In general the specific architecture of the considered GPU

should be carefully taken into account when designing data structures and algorithms

that are to be used on a GPU. Extensive research on parallelizing graph traversal on a

GPU has been done, and it is clear that compared to sequential CPU algorithms, GPU

parallelism introduces new challenges with respect to for example shared memory

and synchronization [57, 101].

For the considered NVIDIA GPU (Fermi, compute 2.0), this means that the data

structure used to store the frontier of the BFS should be optimized for the specific

access pattern for which the GPU memory achieves the best performance. A straight-

forward GPU implementation of the eccentricity function, where a thread is assigned

to each node in the frontier of the BFS, already results in a speedup factor up to 12×
on various large real-world graphs. The speedup appears to be somewhat dependent

on the properties of the considered graph. Most notably, it appears to be influenced

by the relation between the diameter and the effective diameter. A clear bottleneck of

the standard (thread-based) GPU algorithm is the size of adjacency lists and the num-

ber of vertices in the frontier of the BFS. This problem can be overcome by looking at

the number of nodes in the frontier at each step of the BFS. If this number is above a

certain threshold, a different approach can be used, which utilizes a so-called “warp”

of 32 parallel threads that processes the longer adjacency list more efficiently. Thus, a

choice is made between either using one thread per adjacency list, or using multiple

threads per list (but processing fewer lists in parallel). The resulting hybrid approach,

which picks a different eccentricity algorithm (thread-based or warp-based) depend-

ing on the stage of the BFS, is able to realize a speedup of up to 21× compared to the

sequential CPU algorithm. For a more detailed description of these GPU algorithms

and experimental results, the reader is referred to [41].

2.7 Conclusion

We have shown that the proposed algorithm, BOUNDINGDIAMETERS, is able to effi-

ciently determine the exact diameter of small-world networks, making use of lower

and upper bounds on the eccentricity of the nodes and on the diameter itself. A

proper selection strategy allows the algorithm to exploit the characteristic proper-

ties of small-world networks. Moreover, we have outlined a pruning strategy which



Chapter 2. Determining the Diameter of Small-World Networks 35

reduces the size of the problem. We have also shown that even when the diameter is

not found very quickly, very tight bounds on the diameter are available after only a

few iterations.

In future work we will investigate if the proposed algorithm can be used to de-

termine the radius (minimum eccentricity value over all nodes) of a graph. We fur-

thermore want to see if we can obtain the eccentricity of all nodes in the network,

allowing the study of the exact eccentricity distribution of a graph. These two issues

will be addressed in Chapter 4 and Chapter 3, respectively.

It may also be interesting to look at the problem of determining the diameter of

the strongly connected component of a directed graph, and that of weighted graphs.

In line with results presented in related work [39], we expect that the bounding

approach will also work well on weighted graphs, as the diversity in edge weights

and thus path lengths will undoubtedly influence the difference in eccentricity values

and speed up the convergence of lower and upper eccentricity bounds and therewith

the diameter bounds. In preliminary experiments we see that by using only the lower

diameter bounds, significant improvements over the APSP algorithm can already be

observed. Following up on the GPU implementation of the proposed algorithm briefly

discussed in Section 2.6, work can still be done on parallelization using the CPU or a

combination of the CPU and GPU. Last but not least, we hope to investigate how the

exact diameter of small-world networks behaves over time, and how the algorithm

can be adjusted to adapt to changes in the network, i.e., the addition and deletion of

nodes and links.





3
Computing the Eccentricity

Distribution of Large Graphs

The eccentricity of a node in a graph is defined as the length of a longest shortest

path starting at that node. The eccentricity distribution over all nodes is a relevant

descriptive property of the graph, and its extreme values allow the derivation of meas-

ures such as the radius and diameter of the graph. This chapter describes two new

methods for computing the eccentricity distribution of large graphs such as social

networks, biological networks, webgraphs and routing networks. We first propose an

exact algorithm based on eccentricity lower and upper bounds that is significantly

faster than the straightforward algorithm when computing both the extreme values

of the distribution as well as the eccentricity distribution as a whole. The second al-

gorithm that we describe is a hybrid strategy that combines the exact approach with

an efficient sampling technique in order to obtain an even larger speedup on the com-

putation of the entire eccentricity distribution. We perform a set of experiments on a

number of large graphs in order to measure and compare the performance of the pro-

posed algorithms, and demonstrate how we can efficiently compute the eccentricity

distribution of various large real-world graphs. This chapter is based on:

• F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large

graphs. Algorithms, 6(1):100–118, 2013



38 3.1. Introduction

3.1 Introduction

There exist all kinds of interesting properties that better describe the relationships

between the objects in a dataset modeled by a graph. One of these properties is the

eccentricity distribution, which indicates the distribution of the eccentricity over all

nodes, where the eccentricity of a node refers to the length of a longest shortest path

starting at that node. This distribution differs from properties such as the distance

distribution in the sense that eccentricity can be seen as a more “extreme” measure of

distance. It also differs from indicators such as the degree distribution in the sense that

determining the eccentricity of every node in the graph is computationally expensive:

the traditional method computes the eccentricity of each node by running an All Pairs

Shortest Path (APSP) algorithm, requiring O(mn) time for a graph with n nodes and

m edges. Unfortunately, this approach is too time-consuming if we consider large

graphs with possibly millions of nodes.

The aforementioned complexity issues are frequently solved by determining the

eccentricity of a random subset of the nodes in the original graph, and then deriving

the eccentricity distribution from the obtained values [118]. While such an estimate

may seem reasonable when the goal is to determine the overall average eccentricity

value, we will show that this technique does not perform well when the actual extreme

values of the distribution are of relevance. The nodes with the highest eccentricity val-

ues realize the diameter of the graph and form the so-called graph periphery, whereas

the nodes with the lowest values realize the radius and form the center of the graph.

Finding exactly these nodes can be useful within various application areas.

In routing networks, for example, it is interesting to know exactly which nodes

form the periphery of the network and thus have the highest worst-case response time

to any other device [96]. Also, when (routing) networks are modeled, for example

for research purposes, it is important to measure the exact eccentricity distribution

so that the model can be evaluated by comparing it with the distribution of real

routing networks [98]. The eccentricity also plays a role in biological networks [67],

for example in networks that model some biological system. There, proteins (nodes

in the network) that have a low eccentricity value are easily functionally reachable

by other components of the network [111]. The diameter, defined as the length of

a longest shortest path, is the most frequently studied eccentricity-based measure,

and efficient algorithms for its computation have been discussed in Chapter 2 of this

thesis.

Generally speaking, eccentricity can be seen as an extreme measure of centrality,

i.e., the relative importance of a node in a graph. Eccentricity centrality [15], centroid

centrality [23] and graph centrality [26] have been suggested as centrality measures

based on the eccentricity of a node. Compared to other measures such as closeness



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 39

centrality, the main difference is that a node with a very low eccentricity value is

relatively close to every other node, whereas a node with a low closeness centrality

value is close to all the other nodes on average.

In this chapter we first discuss an algorithm based on eccentricity lower and up-

per bounds for determining the exact eccentricity of every node of a graph. We also

present a useful pruning strategy, and show how the proposed method significantly

improves upon the traditional APSP-based algorithm. To realize an even larger spee-

dup, we propose to incorporate a sampling technique on a specific set of nodes in the

graph which allows us to obtain the eccentricity distribution much faster, while still

ensuring a low error on the full eccentricity distribution and an exact result for the

eccentricity-based graph properties such as the radius and diameter.

The rest of this chapter is organized as follows. We consider some notation and

formulate the main problems addressed in this chapter in Section 3.2, after which

we cover related work in Section 3.3. Section 3.4 describes an exact algorithm for

determining the eccentricity distribution. In Section 3.5, we explain how sampling

can be incorporated. Results of applying the methods to various large graphs are

presented in Section 3.6, and finally Section 3.7 summarizes the chapter and offers

suggestions for future work.

3.2 Preliminaries

We consider a graph G = (V,E), where V is the set of |V | = n vertices (nodes)

and E ⊆ V × V is the set of |E| = m edges (also called links). The distance d(v, w)

between two nodes v, w ∈ V is defined as the length of a shortest path from v to

w, i.e., the minimum number of edges that have to be traversed to get from v to w.

We assume that graphs are undirected, meaning that (v, w) ∈ E iff (w, v) ∈ E and

thus d(v, w) = d(w, v) for all v, w ∈ V . Note that each edge (v, w) is thus included

twice in E: once as a link from v to w and once as a link from w to v. We will also

assume that G is connected, meaning that d(v, w) is always finite. Furthermore it is

assumed that there are no parallel edges and no loops linking a node to itself. The

neighborhood N(v) of a node v is defined as the set of all nodes connected to v via

an edge: N(v) = {w ∈ V | (v, w) ∈ E}. The degree deg(v) of a node v can then be

defined as the number of nodes connected to that node, i.e., its neighborhood size:

deg(v) = |N(v)|.
The eccentricity e(v) of a node v ∈ V is defined as the length of a longest shortest

path from v to any other node: e(v) = maxw∈V d(v, w). The eccentricity distribution

counts the frequency f(x) of each eccentricity value x, and can easily be derived

when the eccentricity of each node in the graph is known. The relative eccentricity



40 3.2. Preliminaries

distribution lists for each eccentricity value x its relative frequency F (x) = f(x)/n,

normalizing for the number of nodes in the graph. Figure 3.1 shows the relative

eccentricity distributions of a number of large graphs (for a detailed description of

these datasets, see Section 3.6.1).

Various other measures can be derived using the notion of eccentricity, such as

the average eccentricity e(G) of a graph G, defined as e(G) = 1
n

∑

v∈V e(v). Another

related measure is the diameter D(G) of a graph, which is is defined as the max-

imum eccentricity over all nodes in the graph: D(G) = maxv∈V e(v). Similarly, we

define the radius R(G) of a graph as the minimum eccentricity over all nodes in the

graph: R(G) = minv∈V e(v). The graph center C(G) refers to the set of nodes with

an eccentricity equal to the radius, C(G) = {v ∈ V | e(v) = R(G)}. Similarly, the

graph periphery P (G) is defined as the set of nodes with an eccentricity value equal

to the diameter of the graph: P (G) = {v ∈ V | e(v) = D(G)}. For ease of nota-

tion, we will often denote these measures as variables e, D, R, C and P . Each of the

metrics explained above can be derived when the eccentricity of all nodes is known.

Figure 3.3 shows an example of a graph that explains the different measures covered

in this section. In Figure 3.2, a larger graph in which the node color corresponds to

the eccentricity value is shown.

Computing the eccentricity of one node can be done by running Dijkstra’s al-

gorithm, and returning the largest distance found (i.e., the distance to a node fur-

10-5

10-4

10-3

10-2

10-1

100

 6  8  10  12  14  16

re
la

tiv
e 

fr
eq

ue
nc

y

eccentricity value

CA-HepPh
Cit-HepPh
Cit-HepTh

Enron
Facebook

Figure 3.1: Relative eccentricity distributions of various large graphs.



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 41

Figure 3.2: The YEAST graph, consisting of 1458 nodes and 1948 undirected edges.

The color of a node represents its eccentricity value in the range from 11 to 19 from

low (lighter) to high (darker) and the size of a node is proportional to its degree.

Visualized using the ForceAtlas2 algorithm in Gephi (http://gephi.org).

http://gephi.org


42 3.2. Preliminaries

F
4

B
4

A
5

G
3

C
4

H
5

D
6

I
5

E
6

J
4

K
4

L
6

Figure 3.3: Toy graph consisting of 12 nodes and 14 edges. The number next to a

node denotes its eccentricity value. The graph has average eccentricity 4.67, radius 3

realized by center node G, and diameter 6 realized by periphery nodes D, E and L.

thest away from the starting node). Because we only consider unweighted graphs

and thus, starting from the current node, can simply explore the neighboring nodes

in level-order, computing the eccentricity of one node can be done in O(m) time. The

process of determining the eccentricity of one node v is denoted by ECCENTRICITY(v)

in Algorithm 3.1, representing one Breadth First Search (BFS) starting at node v.

Algorithm 3.1 simply computes the eccentricity for each of the n nodes, result-

ing in an overall complexity of O(mn) to determine the eccentricity of every node

in the graph. Clearly, in graphs with millions of nodes and possibly hundreds of mil-

lions of edges, this approach is too time-consuming. The rest of this chapter describes

more efficient approaches for determining the eccentricity distribution, where we are

interested in two things:

• The (relative) eccentricity distribution as a whole.

• Finding the extreme values of the eccentricity distribution, i.e., the radius and

diameter, as well as derived measures such as the center and periphery.

We will address these issues by answering the following two questions:

Algorithm 3.1 NAIVEECCENTRICITIES

1: Input: Graph G

2: Output: List e, containing e(v) for all v ∈ V

3: for v ∈ V do

4: e[v]← ECCENTRICITY(v)

5: end for

6: return e



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 43

• How can we obtain the exact eccentricity distribution by efficiently computing

the exact value of e(v) for all nodes v ∈ V ? (Section 3.4)

• How can we obtain an accurate approximation of the eccentricity distribution by

using a sampling technique? (Section 3.5)

3.3 Related work

Work on the eccentricity distribution dates back to at least 1975, when the term “ec-

centric sequence” was used to denote the sequence that counts the frequency of each

eccentricity value [90]. The facility location problem was suggested as an example of

the usefulness of eccentricity as a measure of centrality. When considering the place-

ment of emergency facilities such as a hospital or fire station, assuming the map is

modeled as a graph, the node with the lowest eccentricity value might be a good

location for such a facility. In other situations, for example for the placement of a

shopping center, a related measure called closeness centrality, defined as the average

distance from a particular node v to every other node ( 1
n−1

∑

w∈V d(v, w)), is more

suitable. Generally speaking, the eccentricity is a relevant measure when some strict

criterion (the firetruck has to be able to reach every location within ten minutes) has

to be met [56]. An application of eccentricity as a measure on a larger scale is the

network routing graph, where the eccentricity of a node says something about the

worst-case response time between one machine and all other machines [98].

The most well-known eccentricity-based measure is the diameter, which has been

extensively investigated in Chapter 2 and in [37, 95]. Several measures related to the

eccentricity and diameter have also been considered. Kang et al. [68] study the effect-

ive radius, which they define as the 90th-percentile of all the shortest distances from

a node. In a similar way, the effective diameter can be defined, which is shown to be

decreasing over time for many large real-world graphs [86]. Each of these measures

is computed by using an approximation algorithm [109] to determine the neighbor-

hood of a node, a technique on which we will elaborate in Section 3.5.3. An overview

of algorithms for approximating the radius and diameter is given in [115].

To the best of our knowledge, there are no efficient techniques that have been

specifically designed to determine the exact eccentricity distribution of a graph. Ob-

viously, the naive approach, for example as suggested in [29], is too time-consuming.

Efficient approaches for solving the APSP problem (which makes deriving the eccent-

ricities trivial) have been developed, for example using matrix multiplication [147].

Unfortunately, such approaches are still too complex in terms of time and memory re-

quirements. The remainder of this chapter describes both a new exact algorithm and

a new approximation algorithm to efficiently compute the eccentricity distribution.



44 3.4. Exact algorithm

3.4 Exact algorithm

In order to obtain an algorithm that can compute the eccentricity of all n nodes in a

graph faster than simply recomputing the eccentricity n times (once for each node in

the graph), we have two options:

1. Reduce the size of the graph to speed up one eccentricity computation.

2. Reduce the total number of eccentricity computations.

In this section we propose to use lower and upper bounds on the eccentricity, a

strategy that accommodates the second type of speedup. We will also discuss a prun-

ing strategy that helps to reduce both the number of nodes that have to be investig-

ated, as well as the size of the graph.

3.4.1 Eccentricity bounds

We propose to use the following bounds on the eccentricity of all nodes w ∈ V :

Observation 3.1 Node eccentricity bounds

If a node v ∈ V has eccentricity e(v), then for all nodes w ∈ V we have:

max(e(v)− d(v, w), d(v, w)) ≤ e(w) ≤ e(v) + d(v, w)

For an explanation of these bounds, we refer the reader to Section 2.2, in which the

same observation was used to determine which nodes can contribute to the process

of computing the diameter of a graph. We employ an algorithm similar to what is

proposed in Chapter 2, but this time using the eccentricity bounds to compute the full

eccentricity distribution of the graph. The approach is outlined in Algorithm 3.2.

First, the candidate set W and the lower and upper eccentricity bounds are ini-

tialized (lines 3–7). In the main loop of the algorithm, a node v is repeatedly selected

(line 9) from W , its eccentricity is determined (line 10), and finally all candidate

nodes are updated (lines 11–18) according to Observation 3.1. Note that the value

of d(v, w) which is used in the updating process does not have to be computed, as it

is already known because it was computed for all w during the computation of the

eccentricity of v. If the lower and upper eccentricity bounds for a node have become

equal, then the eccentricity of that node has been derived and it is removed from W

(lines 14–17). Algorithm 3.2 returns a list containing the exact eccentricity value of

each node. Counting the number of occurrences of each eccentricity value results in

the eccentricity distribution.

An overview of possible selection strategies for the function SELECTFROM can be

found in Section 2.4.4. In line with results presented in Chapter 2, we found that



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 45

Algorithm 3.2 BOUNDINGECCENTRICITIES

1: Input: Graph G

2: Output: List e, containing e(v) for all v ∈ V

3: W ← V

4: for w ∈W do

5: eℓ[w]← −∞
6: eu[w]← +∞
7: end for

8: while W 6= ∅ do

9: v ← SELECTFROM(W )

10: e[v]← ECCENTRICITY(v)

11: for w ∈W do

12: eℓ[w]← max(eℓ[w],max(e[v]− d(v, w), d(v, w)))
13: eu[w]← min(eu[w], e[v] + d(v, w))

14: if (eℓ[w] = eu[w]) then

15: e[w]← eℓ[w]

16: W ←W − {w}
17: end if

18: end for

19: end while

20: return e

when determining the eccentricity distribution, interchanging the selection of a node

with a small lower bound and a node with a large upper bound, breaking ties by

taking a node with the highest degree, yielded by far the best results. As described

in Section 2.4.3, examples of graphs in which this algorithm would definitely not

work are complete graphs and circle-shaped graphs. However, most real-world graphs

adhere to the small-world property [71], and in these graphs the eccentricity values

are sufficiently diverse so that the proposed eccentricity lower and upper bounds can

effectively be utilized.

3.4.2 Example run

For an example run of the proposed algorithm, consider the problem of determining

the eccentricities of the nodes of the toy graph from Figure 3.3. We will denote the

lower and upper eccentricity bounds eℓ(v) and eu(v) of a node v by [eℓ(v); eu(v)]. If

we compute the eccentricity of node G, which is 3, then we can derive bounds [2; 4]



46 3.4. Exact algorithm

F
2

4

B
2

4
A

2

5

G
3

3

C
2

4

H
2

5

D
3

6

I
2

5

E
3

6

J
2

4
K

2

4
L

3

6

Figure 3.4: Eccentricity bounds (lower and upper bound respectively below and above

the node) of the toy graph in Figure 3.3 after computing the eccentricity of node G.

F
4

4

B
3

4
A

3

5

G
3

3

C
4

4

H
5

5

D
6

6

I
5

5

E
6

6

J
4

4
K

4

4
L

6

6

Figure 3.5: Eccentricity bounds of the toy graph in Figure 3.3 after subsequently com-

puting the eccentricity of node G and E.

F
4

4

B
4

4
A

5

5

G
3

3

C
4

4

H
5

5

D
6

6

I
5

5

E
6

6

J
4

4
K

4

4
L

6

6

Figure 3.6: Eccentricity bounds of the toy graph in Figure 3.3 after subsequently com-

puting the eccentricity of node G, E and A.



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 47

for the nodes at distance 1 (B, C, F , J and K), [2; 5] for the nodes at distance 2 (A, H

and I) and [3; 6] for the nodes at distance 3 (D, E and L), as depicted in Figure 3.4.

If we then compute the eccentricity of node E, which is 6, we derive bounds [5; 7]

for node I, [4; 8] for node F , [3; 9] for nodes A, B and G, [4; 10] for nodes C, J and

K, [5; 11] for node H , and [6; 12] for nodes D and L. If we combine these bounds for

each of the nodes cf. lines 12-13 of Algorithm 3.2, then we find that lower and upper

bounds for a large number of nodes have become equal: [4; 4] for C, F , J and K, [5; 5]

for H and I, and [6; 6] for D and L, as shown in Figure 3.5. Finally, computing the

eccentricity of nodes A and B results in a total of 4 BFSes to compute the complete

eccentricity distribution (Figure 3.6), which is a speedup of 3 compared to the naive

algorithm, which would simply compute the eccentricity for all 12 nodes in the graph.

To give a first idea of the performance of the algorithm on larger real-world

graphs, Figure 3.7 shows the number of iterations (vertical axis) that are needed to

compute the eccentricity of all nodes with given eccentricity value (horizontal axis)

for a number of large graphs (for a description of the datasets, see Section 3.6.1). We

can clearly see that especially for the extreme values of the eccentricity distribution,

very few iterations are needed to compute all of these eccentricity values, whereas

many more iterations (though still much less than n) are needed to derive the values

in between the extreme values.

101

102

103

104

 5  10  15  20  25

ite
ra

tio
ns

eccentricity value

CA-HepPh
Cit-HepPh
Facebook

Flickr
Itdk0304

Figure 3.7: Eccentricity values (horizontal axis) vs. number of iterations to compute

the eccentricity of all nodes with this eccentricity value (vertical axis, logarithmic).



48 3.5. Approximation algorithms

3.4.3 Pruning

In this subsection we introduce a pruning strategy that is somewhat based on the

pruning step introduced in Section 2.4.6. The pruning strategy is based on the follow-

ing observation:

Observation 3.2 Assume that n > 2. For a given v ∈ V , all nodes w ∈ N(v) with

deg(w) = 1 have e(w) = e(v) + 1.

Node w is only connected to node v, and will thus need node v to reach every other

node in the graph. If node v can do this in e(v) steps, then node w can do this is in

exactly e(v) + 1 steps. The restriction n > 2 on the graph size excludes the case in

which the graph consists of v and w only.

All interesting real-world graphs have a lot more than two nodes, making Obser-

vation 3.2 applicable in the proposed algorithm. Observation 3.2 can be beneficial in

two ways. First, when computing the eccentricity of a single node, the pruned nodes

can be ignored in the shortest path algorithm. Second, when the eccentricity of a node

v has been computed or derived (line 10 or lines 14–17) of Algorithm 3.2), and this

node has adjacent nodes w with deg(w) = 1, then the eccentricity of these nodes w

can be set to e(w) = e(v) + 1.

In Figure 3.3, node G has two neighbors with degree one, namely J and K. Ac-

cording to Observation 3.2, the eccentricity values of these two nodes are equal to

e(J) = e(K) = e(G) + 1 = 4. The same argument holds for nodes D and L with re-

spect to node H. We expect that Observation 3.2 can be applied quite often, as many

of the graphs that are nowadays studied have a power law degree distribution [46],

meaning that there are many nodes with a very low degree (such as a degree of 1).

Furthermore, there is no significant additional computation time involved in identify-

ing prunable nodes.

The pruning strategy described in this section is conceptually similar to the prun-

ing strategy used in Section 2.4.6 of Chapter 2. The major difference is that there,

pruned nodes are not useful for computing the diameter and can be completely re-

moved from the graph, whereas for computing the eccentricity distribution, the actual

nodes that are pruned are relevant when the final eccentricity distribution is derived

from the list of eccentricity values, and should thus not be removed from the node

set.

3.5 Approximation algorithms

The use of sampling to determine the eccentricity distribution will be discussed in

Section 3.5.1. Sampling is a technique in which a subset of the original dataset is



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 49

evaluated in order to estimate (the distribution of) characteristics of the (elements in

the) complete dataset, with faster computation as one of the main advantages. We

also take into account situations where we not only want to estimate the distribution

of the eccentricity values, but also want to assess some parts of it (the extreme values)

with high reliability. For that purpose we propose a hybrid technique to determine the

eccentricity distribution that combines the exact approach from Section 3.4 with non-

random sampling in Section 3.5.2. Finally in Section 3.5.3 we consider an adaptation

of an existing approximation approach from literature.

3.5.1 Random node selection

If we want to apply sampling to the naive algorithm for obtaining the eccentricity

distribution, we could choose to evaluate only a subset of size n′ of the original n

nodes (clearly, here 0 < n′ < n), and multiply the values of the sampled eccentricity

distribution by a factor n/n′ to get an idea of the real eccentricity distribution, a

process referred to as random node selection.

Indeed, taking only a subset of the nodes would clearly speed up the computation

of the eccentricity distribution and realize the second type of speedup discussed in

Section 3.4: reducing the total number of eccentricity computations. The trade-off

here is that we no longer obtain the exact eccentricity distribution, but only get an

approximation. The main question is then whether or not this approximation is rep-

resentative of the original distribution. The effectiveness of sampling by random node

selection with respect to various graph properties has been demonstrated in [84]. Us-

ing similar arguments as presented in [38, 45], the absolute error can be assessed;

indeed, when the chosen sampling subset is sufficiently large, the error is effectively

bounded.

However, there are situations where we are not interested in minimizing the abso-

lute error, but in minimizing the relative standard deviation (i.e., the absolute stand-

ard deviation divided by the mean) of the distribution of a particular eccentricity

value. This especially makes sense when each eccentricity value is of equal import-

ance, which might be the case when the extreme values of the distribution that are

realizing the radius and diameter are of relevance. Let us consider an example. The

real exact eccentricity distribution over all nodes in the ENRON graph [73] is listed in

Table 3.1.

e(v) 7 8 9 10 11 12 13

f(e(v)) 248 12,210 17,051 3,647 485 44 11

Table 3.1: Eccentricity distribution of the ENRON graph.



50 3.5. Approximation algorithms

Figure 3.8 shows the relative standard deviation for each eccentricity value for

different sample sizes (1%, 2%, 5%, 10%, and 20%). For each sample size, we took 100

random samples to average the result. We note that low relative standard deviations

can be observed for the more common eccentricity values (in this case, 8, 9 and

10). However, the standard deviation is quite large for the extreme values, meaning

that on many occasions, the sample did not correctly reflect the frequency of that

particular eccentricity value. Indeed, if only 11 out of 33,696 nodes (0.03%) have

a particular eccentricity value (in this case, a value of 13), we need a sample size

of at least 100%/11 = 9% if we want to expect just one node with that particular

eccentricity value.

Figure 3.8 shows that even with a large sample size of 20%, the standard devi-

ation for the extreme value of 13 is very high (0.63). For sample sizes of 1% or 2%,

the eccentricity value of 13, that exists in the real distribution, was never even found.

Similar events were observed for the other datasets, which is not surprising: the ec-

centricity distributions are tailed on the extremes, and these tails are likely to be left

out in a sample. So clearly sampling does not suffice when extreme values of the ec-

centricity distribution have to be found, because such extreme values are simply too

rare. However, for the more common eccentricity values, errors are very low, even for

small sample sizes.

 0.01

 0.1

 1

 6  8  10  12  14

re
la

tiv
e 

st
an

da
rd

 d
ev

ia
tio

n

eccentricity

1% sample
2% sample
5% sample

10% sample
20% sample

Figure 3.8: Relative standard deviation (vertical axis) of eccentricity values (hori-

zontal axis) for different random sample sizes of the ENRON dataset.



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 51

3.5.2 Hybrid algorithm

From Figure 3.7 and Figure 3.8 we can conclude that the exact approach is able to

quickly derive the more extreme values of the eccentricity distribution, whereas a

sampling technique is able to approximate the values in between the extremes with

a very low error. Therefore we propose to combine the two approaches in order to

quickly converge to an accurate estimation of the eccentricity distribution using a

hybrid approach. We mention that the proposed technique assumes that the eccentri-

city distribution has a somewhat unimodal shape, which is the case for all real-world

graphs that we have investigated.

The sampling window consists of bounding variables ℓ and r that denote between

which eccentricity values the algorithm is going to use the sampling technique. The

sampling window obviously depends on the distribution itself, which is not known un-

til the exact algorithm has finished. Therefore we set the value of ℓ and r dynamically

as outlined on lines 19–20 of Algorithm 3.3, which we will call BOUNDINGECCENT-

RICITIESLR. The main difference with respect to Algorithm 3.2 is a change in the

stopping criterion in line 8. This means that the algorithm should now stop when

there are no more candidates that are potentially part of the center or the periphery

of the graph. Note that these bounds apply to the candidate set W , but (via the values

of ℓ and r) we use information about all nodes V , ensuring that at least the center and

periphery are known before the exact phase is terminated. When the exact algorithm

has done its job, it can tighten ℓ and r even further, based on the eccentricity of the re-

maining candidate nodes, as outlined on lines 22–23. This can be beneficial when the

center is much harder to find than the periphery (or the other way around), in which

case the distribution of more eccentricity values may already have been computed ex-

actly, resulting in the advantage that for these eccentricity values no sampling has to

be done. After this, ℓ and r become static, and the rest of the eccentricity distribution

will be derived by using the sampling approach outlined in Algorithm 3.4.

Compared to Algorithm 3.2, the difference in terms of input is that the hybrid al-

gorithm given in Algorithm 3.4 takes as input both the original graph and a sampling

rate q between 0 and 1, where q = 0.10 means that 10% of the nodes have to be

sampled. In Section 3.6 we will perform experiments to determine how q should be

set. The resulting list f holds the eccentricity distribution and is initialized based on

the exact eccentricity values e′ for values outside the sampling window (line 7). Nodes

for which the exact eccentricity is not yet known are added to set Z (line 9). In lines

12–17, the eccentricity of a total of n ·q random nodes are computed, and if this value

lies within the specified window, the frequency of this eccentricity value is increased

proportionally to the sample size. Finally, the eccentricity distribution f is returned.

To get a first idea of how the hybrid algorithm works, we look at Figure 3.9 of



52 3.5. Approximation algorithms

Algorithm 3.3 BOUNDINGECCENTRICITIESLR (adjustment of Algorithm 3.2)

1: Input: Graph G and a reference to variables ℓ and r

2: Output: List e, containing e(v) for values of e(v) outside [ℓ; r]

3: W ← V ℓ← 0 r ←∞
4: . . . // original BOUNDINGECCENTRICITIES algorithm

8: while {w ∈W | eℓ[w] = ℓ or eu[w] = r} 6= ∅ do

9: . . . // original BOUNDINGECCENTRICITIES algorithm

19: ℓ = minv∈V eℓ[v]

20: r = maxv∈V eu[v]

21: end while

22: ℓ = minv∈W eℓ[v]− 1

23: r = maxv∈W eu[v] + 1.

24: return e

Algorithm 3.4 HYBRIDECCENTRICITIES

1: Input: Graph G and sampling rate q

2: Output: List f , containing the eccentricity distribution of G, initialized to 0

3: e′ ← BOUNDINGECCENTRICITIESLR(G, ℓ, r)

4: Z ← ∅

5: for v ∈ V do

6: if e′[v] 6= 0 and (e′[v] ≤ ℓ or e′[v] ≥ r) then

7: f [e′[v]]← f [e′[v]] + 1

8: else

9: Z ← Z ∪ {v}
10: end if

11: end for

12: for i← 1 to n · q do

13: v ← RANDOMFROM(Z)

14: e[v]← ECCENTRICITY(v)

15: f [e[v]]← f [e[v]] + (1/q)

16: Z ← Z − {v}
17: end for

18: return f



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 53

the CA-HEPPH graph with radius R = 7 and diameter D = 13. The figure shows for

each eccentricity value on the left axis the number of exact iterations to compute all

eccentricities of that value (just like Figure 3.7) and the relative standard deviation

when sampling (just like Figure 3.8) on the right axis. Clearly, if we exactly compute

the eccentricity values 7, 12 and 13, and use sampling within the window [8; 11],

then the region below the horizontal line in Figure 3.9 indicates how we obtain the

eccentricity distribution of the CA-HEPPH graph with very low errors, while not using

many exact BFSes for the extreme values. Note that we could also have chosen [8; 12]

as a sampling window, as the sampling error for an eccentricity value of 12 is still

rather low. We will further analyze the performance of the hybrid approach using a

larger set of graphs in Section 3.6.

3.5.3 Neighborhood approximation

Algorithms for efficiently computing the neighborhood function have been introduced

in [18, 68, 109]. These algorithms can be adjusted as follows to also approximate the

eccentricities. For an integer h > 0, the normalized size of the neighborhood Nh(u)

of a node u can be defined as:

Nh(u) =
1

n− 1
| {v ∈ V | 0 < d(u, v) ≤ h} |

100

101

102

103

104

 6  7  8  9  10  11  12  13  14
10-2

10-1

100

ex
ac

t i
te

ra
tio

ns

sa
m

pl
in

g 
er

ro
r

eccentricity value

exact iterations (left axis)
sampling error (right axis)

Figure 3.9: Number of exact iterations and sampling relative standard deviation for

different eccentricity values of the CA-HEPPH dataset.



54 3.5. Approximation algorithms

If we determine the value of Nh(u) for increasing values of h, then the eccentricity

e(u) is the smallest h such that the approximated value of Nh(u) is sufficiently close

to 1 or does not change in successive iterations.

We have used the Approximate Neighborhood Function (ANF) [109] algorithm

by Palmer et al. in order to approximate Nh(u) (using the C source code available at

the author’s website). Figure 3.10 shows the actual relative eccentricity distribution

of the ENRON dataset, as well as the distribution that was approximated using the

ANF-based approach. As ANF gives an approximate result, we averaged the result of

100 runs. We note that although the distribution shapes are very similar, ANF clearly

underestimates the eccentricity values. We furthermore mention that the obtained

distribution is clearly an approximation: a real eccentricity distribution would never

have eccentricity values for which the smallest and largest value differ more than a

factor of 2. Similar results were observed for other datasets, which leads us to believe

that these approximation algorithms are not suitable for determining the eccentricity

distribution, especially because they fail at assessing the width and the extreme values

of the distribution.

10-5

10-4

10-3

10-2

10-1

100

 2  4  6  8  10  12  14

re
la

tiv
e 

fr
eq

ue
nc

y

eccentricity value

Exact
ANF

Figure 3.10: Exact relative eccentricity distribution of the ENRON dataset and an ap-

proximation using ANF.



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 55

3.6 Experiments

In this section we will use a number of large real-world datasets to assess the per-

formance of both the exact algorithm from Section 3.4 and the hybrid algorithm from

Section 3.5. The performance of the algorithms is measured by comparing the num-

ber of iterations (actual eccentricity computations by means of a BFS) and is therefore

independent of the hardware and software used to implement and run the algorithm.

3.6.1 Datasets

We use a variety of graph datasets, of which the name and source are listed in the first

column of Table 3.2. The set of graphs covers a broad range of real-world graphs:

• Citation networks (CIT-HEPTH, CIT-HEPPH)

• Scientific collaboration networks (CA-HEPTH, CA-HEPPH, CA-CONDMAT and

DBLP20080824)

• Communication networks (ENRON, SLASHDOT)

• Peer-to-peer networks (P2P-GNUTELLA)

• Potein-protein interaction networks (YEAST, DIP20090126),

• Router topology networks (ITDK0304-RLINKS, AS-SKITTER)

• Social networks (FACEBOOK, EPINIONS, SOC-SLASHDOT, FLICKR)

• Webgraphs (WEB-STANFORD, WEB-NOTREDAME, EU-2005)

We will only consider the largest connected component of each graph, which is always

the vast majority of the original graph. We also mention that some directed graphs

have been interpreted as if they were undirected, and that self-edges and parallel

edges are ignored. These factors may cause minor differences between the number

of nodes and edges that we present here, and the numbers presented in the source

papers. In Table 3.2 we also present for each dataset the exact average eccentricity e,

radius R, diameter D and center and periphery sizes |C| and |P |. For a more detailed

description of these graphs, we refer the reader to the source papers in which the

datasets were introduced.

Looking at the exact eccentricity distributions that we were able to compute for

each of the graphs, we can conclude that the distribution is not perfectly Gaussian

as [97] suggests, but does appear to be unimodal. The distribution appears to be

somewhat “tailed”: a positive skew is noticeable in Figure 3.1, which shows the relat-

ive eccentricity distribution of a number of graphs. The tail also becomes clear when



56 3.6. Experiments

comparing the average eccentricity value e with the radius and diameter of the graph:

for every dataset, the average eccentricity is closer to the radius. For example, for the

CIT-HEPTH dataset with radius 8 and diameter 15, the average eccentricity is 10.14.

3.6.2 Exact algorithm

In order to determine the performance of the exact algorithm (Algorithm 3.2), we

can count the number of shortest path computations that are needed to obtain the

full distribution, and compare this value to n, the number of iterations performed by

the naive algorithm (Algorithm 3.1). The number of iterations performed by the exact

algorithm is displayed in the third column of Table 3.3, followed by the speedup factor

compared to the naive algorithm. We note that significant speedups can be observed

in terms of the number of iterations, especially for datasets for which the eccentricity

distribution is wide, i.e., the difference between the radius and diameter is very large.

Dataset Nodes n Links m e R D |C| |P |

YEAST [64] 1,458 3,896 13.28 11 19 48 4

CA-HEPTH [87] 8,638 49,612 12.53 10 18 74 4

CA-HEPPH [87] 11,204 235,238 9.40 7 13 12 17

DIP20090126 [121] 19,928 82,404 22.01 15 30 1 2

CA-CONDMAT [86] 21,363 182,572 10.58 8 15 6 11

CIT-HEPTH [86] 27,400 704,080 10.14 8 15 4 4

ENRON [73] 33,696 361,622 8.77 7 13 248 11

CIT-HEPPH [86] 34,401 841,612 9.18 7 14 1 2

SLASHDOT [52] 51,083 243,780 11.66 9 17 7 3

P2P-GNUTELLA [87] 62,561 295,754 8.94 7 11 55 118

FACEBOOK [103] 63,392 1,633,772 9.96 8 15 168 7

EPINIONS [114] 75,877 811,476 9.74 8 15 614 6

SOC-SLASHDOT [88] 82,168 1,086,761 8.91 7 13 484 3

ITDK0304 [121] 190,914 1,215,220 17.09 14 26 155 7

WEB-STANFORD [88] 255,265 3,883,852 106.49 82 164 1 3

WEB-NOTREDAME [12] 325,729 2,180,216 27.76 23 46 12 172

DBLP20080824 [121] 511,163 3,742,140 14.79 12 22 72 9

EU-2005 [121] 862,664 32,276,936 14.03 11 21 3 4

FLICKR [103] 1,624,992 30,953,670 15.03 12 24 17 3

AS-SKITTER [86] 1,694,616 22,188,418 21.22 16 31 5 2

Table 3.2: Number of nodes, links, average eccentricity, radius, diameter, center size

and periphery size of the various graph datasets.



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 57

We believe that this is due to the fact that the nodes that form the periphery of the

network are sufficiently eccentric to have a large influence on the more central nodes,

so that their lower and upper eccentricity bounds can very quickly be fixed by the

bounding technique. We mention that the performance of the exact algorithm does

not appear to be directly related to the number of nodes.

The reduction in terms of the number of nodes as a result of the proposed prun-

ing strategy (see Section 3.4.3) is displayed in the column labeled “Pruned”, and is

diverse, yet sometimes very significant (anywhere between 1% and 34%). To get a

better idea of the performance of the algorithm, we propose to look at the quality of

both the lower and upper bounds as the exact algorithm iterates over the candidate

nodes. For this we define the measure of bound accuracy as the percentage of bound

values that are correct at that iteration:

Dataset
Exact algorithm Hybrid algorithm

Pruned Iter. Speedup Exact Sampled Total Speedup

YEAST 399 213 8.7 104 483 587 3.1

CA-HEPTH 351 1,055 8.2 150 350 500 17.3

CA-HEPPH 282 1,588 7.1 57 264 321 34.9

DIP20090126 3,032 224 89.0 8 1,321 1,329 15.0

CA-CONDMAT 353 3,339 6.4 73 388 461 46.3

CIT-HEPTH 140 8,104 3.4 57 444 501 54.7

ENRON 8,715 678 49.7 536 145 681 49.5

CIT-HEPPH 150 10,498 3.3 37 271 308 112

SLASHDOT 19,255 31 1,648 24 180 204 250

P2P-GNUTELLA 16,413 21,109 3.0 8,575 177 8,752 7.1

FACEBOOK 1,075 11,185 5.7 780 168 948 66.9

EPINIONS 20,779 4,302 17.6 1,308 75 1,383 54.9

SOC-SLASHDOT 14,848 1,460 56.3 990 156 1,146 71.7

ITDK0304 16,434 10,830 17.6 312 960 1,272 150

WEB-STANFORD 10,350 9 28,363 8 1,198 1,206 212

WEB-NOTREDAME 141,178 143 2,277 94 1,381 1,475 4,528

DBLP20080824 22,579 42,273 12.1 150 355 505 1,012

EU-2005 26,507 59,751 14.4 71 1,630 1,701 507

FLICKR 553,242 4,810 338 200 1,618 1,818 932

AS-SKITTER 114,803 42,996 39.4 14 308 322 5,502

Table 3.3: Performance of the exact algorithm (Algorithm 3.2) and the hybrid al-

gorithm (Algorithm 3.4).



58 3.6. Experiments

bound accuracy =
1

n
| {v ∈ V | ereal(v) = ebound(v)} |

Here, ereal(v) is the actual eccentricity value, and ebound(v) is the (lower or upper)

bound that we investigate. Figure 3.11 shows the lower and upper bound accuracy

for a number of datasets. We can observe that for each of the datasets, after just a few

iterations, the lower bound gives a very accurate indication of the actual eccentricity

values. Apparently, the majority of the iterations are spent lowering the upper bound,

whereas the lower bound quickly reflects the actual eccentricity distribution. Thus, in

order to get an online estimate of the distribution, we could choose to consider only

the lower bound, and obtain an accuracy of around 90% after a handful of iterations.

3.6.3 Hybrid algorithm

In the second set of experiments, we have evaluated the performance of the hybrid

approach that incorporates sampling for the non-extreme values of the distribution

(Algorithm 3.4). We will verify the quality of the obtained distribution by using the

measure of distribution error, defined as the sum of the absolute difference between

the eccentricity counts of real relative eccentricity distribution F (x) and the estimated

distribution F̂ (x):

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

bo
un

d 
ac

cu
ra

cy

iterations

Enron lower bound
Enron upper bound

CA-HepPh lower bound
CA-HepPh upper bound
Cit-HepTh lower bound
Cit-HepTh upper bound

Itdk0304 lower bound
Itdk0304 upper bound

Figure 3.11: Bound accuracy vs. number of iterations for Algorithm 3.2.



Chapter 3. Computing the Eccentricity Distribution of Large Graphs 59

distribution error =

D
∑

x=R

|F (x) − F̂ (x)|

Here a distribution error value of 0 indicates a perfect match between the actual and

estimated relative eccentricity distributions. So for the hybrid approach, the error

outside the sampling window is always equal to 0. Note that as a result of the ex-

act approach, we have access to the real eccentricity distribution to make this error

comparison. Therefore we can investigate the number of iterations that are needed

to obtain an error of 0.05 (or lower) in order to determine how we should set the

sampling rate q.

The fifth column of Table 3.3 shows the number of iterations needed to (exactly)

compute the extreme values, which together with the column titled “Sampling” (av-

eraged over 10 runs) results in the value denoted in column “Total”, which shows the

total number of iterations needed to obtain an error of 0.05 or lower. Apparently, for

large graphs (over 100,000 nodes), a sampling rate of q = 0.10 is more than sufficient

to accurately derive the eccentricity distribution. An alternative would be to change

the number of samples to a constant number, which would ensure that the number of

eccentricity computations does not exceed some fixed maximum.

An advantage of the exact approach is obviously that the nodes that have a cer-

tain eccentricity value can be pointed out exactly, whereas this is only possible for the

extreme values in case of the hybrid approach. The hybrid approach does however im-

prove upon the exact algorithm in terms of computation time (number of iterations)

in many cases, especially for the larger graphs (over 100,000 nodes) with relatively

tight eccentricity distributions, as can be seen in the rightmost column of Table 3.3.

A bold value indicates the largest of the two speedups when comparing the hybrid

approach to the exact approach. The exact approach performs better than the hybrid

approach in a few cases, which we believe is due to the fact that the sampling phase

should not have a too large window when the number of nodes is very small, because

then a large number of iterations would be needed to obtain a representative sample

of the distribution. This is especially the case for WEB-STANFORD, which has a very

long tail. For this dataset, the exact algorithm performs really well, whereas the hybrid

approach needs quite a few more iterations. It would be possible to determine a priori

whether the exact or the hybrid algorithm should be used, as after a few BFSes the

expected width of the eccentricity distribution is already known. We mention that,

analogously to the performance of the exact algorithm, the performance of the hybrid

algorithm does not appear to be correlated with the number of nodes.

From the experiments in this section we can generally conclude that we have

developed a flexible approach for determining the eccentricity distribution of a large



60 3.7. Conclusion

graph with high accuracy, while guaranteeing an exact result on the extreme values

of the distribution.

3.7 Conclusion

In this chapter we have studied means of computing the eccentricity of all nodes in

a graph, resulting in the (relative) eccentricity distribution of the graph. It turns out

that the eccentricity distribution of real-world graphs has an unimodal shape and

tends to have a positive tail. We have shown how large speedups compared to the

traditional method can be achieved by considering lower and upper bounds on the

eccentricity, and by applying a pruning strategy. Even when the exact algorithm does

not immediately give a satisfying result, the lower bounds proposed in this chapter

can serve as a reliable online estimate of the distribution as a whole.

We have also investigated the use of sampling as a means of computing the eccent-

ricity distribution. The resulting hybrid algorithm uses the exact approach to derive

the extreme values of the distribution and a sampling technique within a specific

sampling window to accurately assess the values in between the extreme values. This

results in an overall approach that is able to efficiently determine the eccentricity dis-

tribution with only a fraction of the number of computations required by the naive

approach.

In future work we would like to investigate the extent to which eccentricity and

other centrality measures are related, and when the eccentricity can be used as a

meaningful centrality measure. We furthermore found that the radius, center and

periphery of the graph can be derived using the exact algorithm proposed in this

chapter. The question remains whether or not these measures can be computed more

efficiently if the right stopping criterion is used, which we will discuss in Chapter 4.

It may also be interesting to look at how the eccentricity distribution of a graph that

is evolving through the addition and deletion of nodes and edges can be efficiently

computed and monitored.



4
A Bounding Framework for

Computing Extreme Graph Measures

In this chapter, the two algorithms for computing the exact diameter and eccentricity

distribution introduced in Chapter 2 and Chapter 3 are combined and generalized

so that the resulting framework can not only be used to efficiently compute the dia-

meter and eccentricity values, but also to efficiently compute the radius, center and

periphery of a graph. We will report on a number of experiments on a large set of 75

real-world graphs as well as a synthetic graph, and attempt to link the performance

of the proposed framework to the various properties of the considered graphs.



62 4.1. Introduction

4.1 Introduction

Graphs have all kinds of interesting metrics that are based on the distance between

nodes. This chapter specifically considers so-called extreme distance measures that are

based on node eccentricity (longest shortest path length from a particular node). The

focus is on a unified framework for computing the exact diameter (see Chapter 2),

radius, center (size) and periphery (size) (see Chapter 3) of a graph. Obviously, if we

know the full distance matrix of the graph, then we can immediately derive distance

extrema by simply determining and counting the lowest and highest values in the

matrix. However, graphs that are nowadays studied are typically very large, and exact

computation of the full distance matrix by using an All Pairs Shortest Path (APSP) like

approach is impossible due to time and memory limitations.

An example of an application of extreme distance measures can be found in the

well-known concept of “six degrees of separation”, which is sometimes interpreted

as every other person in the world (a large social network of people) being at most

six handshakes away from each other. Some other definitions conveniently relax this

statement to six handshakes on average, as the average node-to-node distance in many

social networks is often somewhere between 4 and 6. However, if we consider the

first definition, then every node should have an eccentricity value of six, and a node’s

degree of separation is equal to its eccentricity. For example, the degrees of separation

of various movie stars in a network in which nodes represent actors and edges connect

two actors that played together in a movie, are presented in [21].

Our framework for computing different extreme distance measures is based on the

diameter algorithm from Chapter 2 and the exact eccentricity algorithm discussed

in Chapter 3. Although the eccentricity algorithm is in theory able to derive each

of the other extreme distance measures (including the diameter), there are some

significant differences. Specifically, the stopping condition, the policy of when a node

is discarded as a candidate, the bound updating rules and the extent to which the

pruning strategy is helpful, are different for each of the considered measures. These

factors also influence the performance: the number of iterations required to determine

the radius of the graph is significantly less when we specifically tune the algorithm to

find the radius, as compared to when we would simply discover it as a by-product of

the eccentricity distribution.

For an overview of more applications of extreme distance measures, the advant-

ages of using an exact instead of an approximation algorithm, best and worst case

complexity, an example run of the bounding algorithms, the proposed pruning strategy,

node selection strategies and an overview of related work, we refer the reader to

Chapter 2 and Chapter 3. This chapter contributes to the previous two chapters by

providing a larger number of experiments on 75 different real-world graphs consisting



Chapter 4. A Bounding Framework for Computing Extreme Graph Measures 63

of up to 60 million nodes, as well as an analysis of how the algorithm’s performance

is related to specific properties of the graph. The strongest observed relation is then

verified in a more confined experiment on a synthetic graph.

The rest of this chapter is organized as follows. We formally define the differ-

ent extreme distance measures that we consider in this chapter in Section 4.2. Next,

Section 4.3 explains the proposed unified bounding framework. In Section 4.4 and

Section 4.5, a number of experiments is performed on respectively a large set of real-

world graphs and a synthetic graph. Section 4.6 concludes the chapter.

4.2 Definitions

Given an unweighted graph G = (V,E) with n = |V | nodes and m = |E| edges,

the distance d(u, v) between two nodes u, v ∈ V is the minimum number of edges

that connects nodes u and v. We assume that the graph is undirected, meaning that

(u, v) ∈ E iff (v, u) ∈ E. So, each undirected edge is included in the set of edges twice

(once in each direction). The assumption is that G is connected, i.e., d(u, v) is finite

for all nodes u and v. Recall that we have the following definitions:

• the eccentricity e(v) of a node v is the length of a longest shortest path starting

at node v, i.e., e(v) = maxw∈V d(v, w).

• the diameter D(G) is the length of a longest shortest path over all nodes and

defined as maxv∈V e(v).

• the radius R(G) is the length of a shortest shortest path over all nodes, and thus

the minimum eccentricity over all nodes, i.e., minv∈V e(v).

• the periphery P (G) is the set of nodes for which the eccentricity is equal to the

diameter, i.e., {v ∈ V | e(v) = D(G)}.

• the center C(G) is the set of nodes for which the eccentricity is equal to the

radius, i.e., {v ∈ V | e(v) = R(G)}.

The eccentricity of a node v can be determined by performing one Breadth First

Search (BFS) rooted in node v, using O(m) time. A naive algorithm for the four

measures does this for each of the n nodes, costing a total of O(mn) time, essentially

performing an All Pairs Shortest Path (APSP) run. An extension to weighted graphs is

trivial, as the distance function can take edge weights into account. We do not con-

sider directed graphs, but do mention that in the directed case we can either compute

the desired measure only for the strongly connected component, or apply the notion

of forward and backward eccentricity as described in [99].



64 4.3. Framework

4.3 Framework

This section describes the proposed algorithm for computing each of the four meas-

ures described in the previous section. First, some bounds on the eccentricity are

discussed, after which the general framework is outlined. Each of the measures that

we compute uses this framework in a different way. A simple implementation can be

found at http://www.liacs.nl/~ftakes/bounding.

4.3.1 Bounds

The following bounds, in case of the diameter D(G) also discussed in Section 2.4.1,

are important for efficiently determining extreme distance measures.

4.3.1.1 Diameter and radius bounds

Given two lists of length n of bounds eℓ(v) and eu(v) of derived lower and upper

bounds of the eccentricity of each of the nodes v in the graph (cf. Section 2.4.1), we

say that:

• For the diameter D(G) it holds that Dℓ(G) ≤ D(G) ≤ Du(G) with:

– The diameter lower bound Dℓ(G) = maxv∈V eℓ(v).

– The diameter upper bound Du(G) = maxv∈V eu(v).

• For the radius R(G) it holds that Rℓ(G) ≤ R(G) ≤ Ru(G) with:

– The radius lower bound Rℓ(G) = minv∈V eℓ(v).

– The radius upper bound Ru(G) = minv∈V eu(v).

4.3.1.2 Usefulness

The proposed framework keeps a set of candidate nodes that can contribute to com-

puting the considered metric, and the following expressions precisely define this use-

fulness:

• For the diameter D(G), a node v is useful if:

– eu(v) > Dℓ(G): v can potentially increase the diameter lower bound.

– 2 · eℓ(v) < Du(G): v can potentially decrease the diameter upper bound.

• For the radius R(G), a node v is useful if:

– eℓ(v) < Ru(G): v can potentially decrease the radius upper bound.

http://www.liacs.nl/~ftakes/bounding


Chapter 4. A Bounding Framework for Computing Extreme Graph Measures 65

– ⌈eu(v)/2⌉ > Rℓ(G): v can potentially increase the radius lower bound.

• For the periphery P (G), a node v is useful if:

– eu(v) ≥ Dℓ(G): v can potentially realize (or increase) the diameter (lower

bound) and thus belong to the periphery.

– 2 · eℓ(v) ≤ Du(G): v can potentially decrease the diameter upper bound.

This can be discarded when the diameter has been found.

• For the center C(G), a node v is useful if:

– eℓ(v) ≤ Ru(G): v can potentially realize (or decrease) the radius (upper

bound) and thus belong to the center.

– ⌈eu(v)/2⌉ > Rℓ(G): v can potentially increase the radius lower bound. This

can be discarded when the radius has been found.

If the eccentricity bounds of a node are such that they cannot contribute to the current

metric, then the eccentricity of this node does not have to be computed to determine

the metric, meaning that it can be removed from the candidate set. This is the basis

of our algorithm.

4.3.2 Algorithm

The main algorithm of our framework is outlined in Algorithm 4.1. Lines 3–6 initialize

some bound values as well as the candidate set W , which is used in the stopping

criterion (line 7) of the main loop of the algorithm.

The SELECTFROM-function (line 8) selects a node from the candidate set for which

the eccentricity is going to be determined. In Section 2.4.4, a set of experiments

is performed to see which selection method works best. Indeed, a good selection

method is crucial for quickly converging the lower and upper bounds and thus for

quickly finding the value of the considered metric. Generally, it turns out that the best

performance is obtained when repeatedly selecting the node with the smallest lower

bound and then the one with the largest upper bound. Any ties are broken by taking

the node with the highest degree, as this node has the most potential to influence the

eccentricity of neighboring nodes.

The ECCENTRICITY-function (line 9) computes the eccentricity of one node (so, it

performs one full BFS from the source node). In doing so, it also conveniently finds

the distance from that node to every other node. These distances are needed by the

distance function d used to update the eccentricity bounds on line 11 and 12. The

maximum distance found is obviously the value of the eccentricity of the node.



66 4.3. Framework

Algorithm 4.1 EXTREMABOUNDING

1: Input: Graph G = (V,E), desired output measure Q

2: Output: Value of Q

3: for v ∈ V do

4: eℓ[v]← −∞ eu[v]←∞
5: end for

6: W ← V

7: while W 6= ∅ do

8: v ← SELECTFROM(W )

9: e[v]← ECCENTRICITY(v)

10: for w ∈W do

11: eℓ[w]← max(e[w], e[v]− d(v, w), d(v, w))
12: eu[w]← min(e[w], e[v] + d(v, w))

13: if not ISUSEFUL(w,Q) then

14: W ←W − {w}
15: end if

16: end for

17: end while

18:

19: return VALUE OF(Q)

The ISUSEFUL-function (line 13) determines whether or not a node w is useful

for on the one hand computing the current metric Q (either one of the measures

discussed in Section 4.2), and on the other hand for tightening the lower and upper

bounds of the eccentricity values. Depending on the considered metric, this function

behaves according to the expressions with respect to usefulness in Section 4.3.1. Note

that this is the part of the algorithm that determines which metric is actually com-

puted. So depending on the desired output metric Q, the candidate set may shrink

faster or slower, determined by whether or not the remaining nodes are useful for

determining the current metric.

We note that the pruning strategy outlined in Section 2.4.6 can be applied before

the algorithm is run. For the radius and diameter, this will not influence the result,

but for the center and periphery size some simple book-keeping has to be done to

ensure a correct result.

For a partial comparison of the proposed algorithm with related work, we refer

the reader to [21, 36, 99].



Chapter 4. A Bounding Framework for Computing Extreme Graph Measures 67

4.4 Experiments on real-world graphs

This section presents an extensive number of experiments on a number of graph data-

sets, as well as a numeric comparison of this performance with properties of the re-

spective graphs.

4.4.1 Datasets

For a total of 75 graph datasets, we list basic statistics such as the name of the dataset,

its source (website or article), the number of nodes n, the number of links m and the

average node-to-node distance d and average eccentricity e (both sampled over 1, 000

random node (pairs)) in Table 4.1 and Table 4.2. In the following columns, we list

the exact radius R, diameter D, center size |C| and periphery size |P | of the graph.

In the last four columns of the table, the number of iterations IR, ID, IC and IP to

compute each of these four respective measures is listed.

4.4.2 Results

As noted in the previous chapters, the proposed bounding algorithm gives a large

improvement over the traditional APSP approach. For all 75 graphs, varying in size

up to 60 million nodes and over 1.5 billion edges, the number of iterations is extremely

low with respect to the number of nodes n. Note that small differences in the number

of iterations compared to the results in Chapter 2 can sometimes be observed, which

is due the fact that some minor optimizations have been done in terms of whether the

algorithm starts by selecting the node with the smallest lower bound or the largest

upper bound.

In the beginning of this chapter, we argued that which measure is being computed

significantly influences the number of iterations of the bounding algorithm. The fact

that the number of iterations differs depending on the computed measure is already

shown in Table 4.2, where most of the time for each measure the number of iterations

is different. Furthermore, the size (and therewith the contents) of the set of candid-

ate nodes also differs significantly, as shown in Figure 4.1, in which the number of

iterations versus the number of candidate nodes at that iteration is shown for each of

the four measures.

4.4.3 Correlation with graph properties

To get an idea of the link between different graph measures and the performance

of the bounding algorithm, Table 4.3 gives an overview of the Pearson correlation

coefficient of the different graph properties and the number of iterations to compute



68 4.4. Experiments on real-world graphs

Dataset n m d e R D |C| |P | IR ID IC IP

YEAST [64] 1.5K 4K 7.1 13.3 11 19 48 4 7 16 65 29

PETSTER-HAMSTER [74] 1.8K 25K 3.5 9.7 7 14 2 3 3 3 4 3

CORA [122] 2.5K 10K 6.2 13.3 10 19 1 2 3 6 51 21

MUS-MUSCULUS [82] 3.7K 10K 7.1 13.5 10 20 2 2 5 5 32 13

PPI-DIP-SWISS [82] 3.8K 24K 4.1 8.1 6 12 2 4 3 3 63 8

CA-GRQC [87] 4.2K 27K 5.8 11.6 9 17 13 8 9 24 22 22

P2P-GNUTELLA08 [86] 6.3K 42K 4.6 7.2 6 9 856 55 21 473 1,758 1,931

WIKI-VOTE [85] 7.1K 201K 3.2 5.5 4 7 121 46 2 9 2,638 173

P2P-GNUTELLA09 [86] 8.1K 52K 4.8 7.5 6 10 129 9 7 179 308 1,235

CA-HEPTH [87] 8.6K 50K 5.8 12.6 10 18 74 4 6 14 78 33

P2P-GNUTELLA06 [86] 8.7K 63K 4.6 7.4 6 10 338 4 19 30 1,675 864

P2P-GNUTELLA05 [86] 8.8K 64K 4.6 7.1 6 9 824 39 12 837 2,262 2,594

PGPGIANTCOMPO [14] 11K 49K 7.8 16.5 12 24 2 3 2 2 20 3

P2P-GNUTELLA04 [86] 11K 80K 4.7 7.4 6 10 214 12 8 309 843 1,522

CA-HEPPH [87] 11K 235K 4.6 9.4 7 13 12 17 9 20 38 62

GOOGLENW [108] 16K 297K 2.5 4.7 4 7 5,267 93 2 2 5,700 36

CA-ASTROPH [87] 18K 394K 4.2 10.0 8 14 139 12 11 18 244 102

DIP20090126 [121] 20K 82K 8.2 21.9 15 30 1 2 5 5 6 5

CA-CONDMAT [86] 21K 183K 5.5 10.7 8 15 6 11 3 13 255 53

COND-MAT-95-99 [13] 22K 117K 6.1 9.2 8 12 1,306 4 181 498 3,637 1,896

P2P-GNUTELLA25 [86] 23K 109K 5.6 8.6 7 11 983 5 12 862 1,367 2,857

P2P-GNUTELLA24 [86] 26K 131K 5.4 8.3 6 11 1 9 4 8 254 328

CIT-HEPTH [86] 27K 704K 4.5 10.2 8 15 4 4 3 5 277 31

EMAIL-ENRON [73] 34K 362K 4.0 8.7 7 13 248 11 3 10 304 21

CIT-HEPPH [86] 34K 842K 4.4 9.2 7 14 1 2 9 9 18 28

P2P-GNUTELLA30 [86] 37K 177K 5.6 8.7 7 11 602 29 20 1,526 2,234 5,409

PPI-GCC [82] 37K 271K 7.2 18.3 14 27 8 4 5 6 12 29

BRIGHTKITE [32] 57K 426K 5.0 11.8 9 18 1 4 2 2 263 3

P2P-GNUTELLA31 [87] 63K 296K 6.1 9.0 7 11 55 118 12 4,865 1,017 13,167

SOC-EPINIONS1 [114] 76K 811K 4.3 9.9 8 15 614 6 2 8 6,566 20

SOC-SLASHDOT [88] 82K 1.0M 4.0 8.9 7 13 484 3 3 5 778 36

WAVE [137] 156K 2.1M 23.8 41.8 31 56 17 3 18 65 104 118

ITDK0304 [121] 191K 1.2M 6.8 17.1 14 26 155 7 6 19 619 42

GOWALLA-EDGES [32] 197K 1.9M 4.4 10.8 8 16 1 29 5 5 7 15

M14B [137] 215K 3.4M 23.3 39.2 26 51 1 45 37 51 60 244

CITESEER [20] 221K 1.0M 8.4 32.0 26 52 2 3 3 3 31 3

EMAIL-EUALL [87] 225K 680K 4.0 10.0 7 14 1 48 3 3 7 3

WEB-STANFORD [88] 255K 3.9M 6.1 107 82 164 1 3 5 5 6 6

Table 4.1: Results of the BOUNDINGEXTREMA algorithm applied to 75 large graphs.



Chapter 4. A Bounding Framework for Computing Extreme Graph Measures 69

Dataset n m d e R D |C| |P | IR ID IC IP

AMAZON0302 [83] 262K 1.8M 8.5 24.7 19 38 1 7 5 5 5 5

COM-DBLP [144] 317K 2.1M 6.7 15.3 12 23 3 4 3 8 358 43

CNR-2000 [19] 326K 5.5M 10.5 23.7 17 34 2 3 7 7 8 7

WEB-NOTRED [12] 326K 2.2M 7.4 27.9 23 46 12 172 3 3 38 3

MATHSCINET [116] 333K 1.6M 7.6 16.1 13 24 317 9 16 20 731 53

COM-AMAZON [83] 335K 1.9M 11.6 32.8 24 47 21 5 3 7 52 14

AMAZON0312 [83] 401K 4.7M 6.5 13.8 11 20 194 14 20 20 587 77

AMAZON0601 [83] 403K 4.9M 6.6 16.7 13 25 69 25 3 28 189 21

AMAZON0505 [83] 410K 4.9M 6.5 14.8 11 22 1 11 3 3 209 9

AUTO [137] 449K 6.6M 37.9 62.9 47 82 40 4 50 276 311 338

DBLP [121] 511K 3.7M 6.2 14.8 12 22 72 9 7 59 191 82

YDATA-YSM [82] 653K 4.6M 5.9 15.7 12 24 4 3 5 5 8 5

WEB-BERKSTAN [88] 655K 13M 7.1 126 104 208 1 2 5 5 6 5

WEB-GOOGLE [88] 856K 8.6M 6.0 15.4 12 24 1 11 5 5 196 12

EU-2005 [121] 863K 32M 4.9 14.0 11 21 3 4 5 16 7 232

IMDB [82] 880K 75M 4.1 9.4 8 14 19,751 24 8 32 20,797 276

ROADNET-PA [88] 1.09M 3.1M 325 617 402 794 2 4 11 61 16 82

YOUTUBE [103] 1.13M 6M 5.4 14.9 12 24 2 11 2 2 646 2

ROADNET-TX [88] 1.35M 3.8M 424 802 540 1,064 3 11 13 78 15 113

IN-2004 [19] 1.35M 26M 8.7 26.5 22 43 49 11 3 14 441 34

FLICKR [103] 1.62M 31M 5.2 15.0 12 24 17 3 3 3 92 4

SOC-POKEC [123] 1.63M 45M 4.7 9.2 7 14 2 3 3 3 8,724 21

AS-SKITTER [86] 1.69M 22M 4.8 21.2 16 31 5 2 4 6 9 7

ROADNET-CA [88] 1.96M 5.5M 329 664 494 865 2 4 29 178 30 211

ENWIKI-20071018 2.07M 85M 3.2 6.0 5 9 16,277 6 4 7 19,109 540

WIKI-TALK [88] 2.39M 9.3M 3.9 7.5 6 11 2,385 2 3 7 12,583 157

ORKUT [103] 3.07M 234M 4.2 7.1 5 10 2 2 13 130 1,063 212

CIT-PATENTS [86] 3.76M 33M 8.0 17.8 14 26 4 4 13 95 50 167

LIVEJOURNAL1 [144] 4.00M 69M 5.4 13.6 11 21 31 6 3 8 2,923 19

LIVEJOURNAL2 [88] 4.84M 86M 5.5 12.8 10 20 1 2 3 6 2,103 12

LIVEJOURNAL3 [103] 5.19M 97M 5.2 15.3 12 23 18 5 3 5 89 17

P2P [82] 5.38M 284M 3.8 6.7 5 9 762 27 12 58 1,115 4,015

HYVES [128] 8.08M 912M 4.8 16.1 13 25 410 11 3 7 8,612 21

ARABIC-2005 [19] 22.6M 1.10B 7.3 29.6 24 47 3 7 3 9 46 49

WIKIPEDIA-EN [74] 25.9M 1.20B 3.7 50.0 43 85 6 3 3 4 8 5

WEB [82] 39.3M 1.56B 7.1 19.9 17 32 10,606 50 95 78 10,673 150

FACEBOOK [116] 58.8M 184M 7.9 15.4 13 24 3,198 9 17 21 5,204 125

Table 4.2: Continuation of Table 4.1 (K = thousand, M = million, B = billion).



70 4.4. Experiments on real-world graphs

100

101

102

103

104

105

106

 0  50  100  150  200  250  300  350

ca
nd

id
at

e 
no

de
s

iterations

radius
diameter

center
periphery

Figure 4.1: Number of candidate nodes (vertical axis) vs. number of iterations (hori-

zontal axis) for computing each of the four measures for the AUTO dataset.

each of the measures. Here, a value close to zero indicates no significant correlation,

whereas the correlation is higher as the value of the coefficient approaches 1 or −1.

We will say that a numeric value greater than 0.4 (or smaller than −0.4) indicates

that there is some correlation between the two variables (values in bold), whereas a

value greater than 0.8 (or smaller than −0.8) indicates a definite correlation (value in

bold and italics).

In Chapter 3 we have already noticed that when the difference between the radius

and diameter is very large (relative to the radius and/or diameter itself), then the

number of iterations is typically very low, reflected in the last row of Table 4.3 by

the correlation of the number of iterations for computing the radius, diameter and

periphery with (D(G) − R(G))/D(G). So, when the eccentricity distribution is less

wide, it is harder to compute the various measures. Table 4.3 furthermore shows

that the number of iterations to find the center IC is correlated with the center size

|C(G)| itself. A related observation was made in [99], where it was shown that the

center size can only be determined using a number of iterations which is greater than

the size of the center, as the eccentricity of each of these nodes has to be computed

explicitly to confirm whether or not it has an eccentricity value equal to the radius.

We do note that the proposed node selection strategy is apparently able to identify

center candidates very efficiently, as the difference between the center size and the



Chapter 4. A Bounding Framework for Computing Extreme Graph Measures 71

Measure IR ID IC IP

Nodes n 0.188 -0.061 0.221 -0.058

Links m 0.205 -0.060 0.244 -0.033

Average degree m/n -0.034 -0.117 0.481 0.014

Average distance d -0.059 -0.040 -0.059 -0.054

Density m/(n(n− 1)) -0.074 -0.048 -0.094 -0.059

Average eccentricity e 0.069 -0.030 -0.110 -0.075

Radius R(G) 0.059 -0.028 -0.118 -0.074

Diameter D(G) 0.051 -0.033 -0.119 -0.078

Center size |C(G)| 0.155 -0.030 0.870 -0.010

Periphery size |P (G)| 0.039 0.445 0.069 0.424

(D(G) −R(G))/D(G) -0.418 -0.509 -0.173 -0.541

Table 4.3: Correlation of different graph measures with the number of iterations of

the bounding algorithm as displayed in Table 4.1 and Table 4.2.

number of iterations is not that large, but the different between n and the number

of iterations is. The number of iterations to compute the center also appears to be

correlated with the average degree.

The above observations regarding the number of iterations to compute the cen-

ter do not hold for the eccentricity value of periphery nodes, which can also be de-

rived using the proposed bounds, as we already showed during the example run in

Section 2.4.5. The diameter and periphery appear to be dependent on the size of

the periphery. This can be explained by the fact that if the periphery is large, then

the number of nodes with an eccentricity value equal to the diameter minus one is

probably also large, meaning that it may be hard for the algorithm to select correct

diameter-realizing nodes by taking a node with the largest upper bound, as there may

be many of such nodes.

Clearly, for each of the measures the performance does not appear to be dependent

of the number of nodes, links, the average distance, density, average eccentricity or

the radius or diameter itself, demonstrating the scalability of the algorithm. Finally we

mention that the variables investigated in Table 4.3 are not independent. Specifically,

we note that a high average degree means that there are probably many nodes that

belong to the center, explaining the correlation of IC with both the center size and

the average degree. This dependency is further investigated in the following section.



72 4.5. Experiment on a synthetic graph

4.5 Experiment on a synthetic graph

In Section 4.4.2, we demonstrated how the number of iterations to compute the cen-

ter appears to correlate with the average degree and the center size itself. To verify

these correlations based on more confined experiments, we generate a number of

synthetic graphs with increasing average degree.

The synthetic graph is generated as follows. First, a graph G = (V,E) is initialized

with |V | = 1000 nodes E = ∅ (so, a graph with no edges). Then For N iterations, an

undirected edge (u, v) is added to E, where u is selected at random, and v is selected

with a probability proportional to its degree, reflecting the well-known preferential

attachment model [104]. This results in a graph in which the average degree grows

gradually, as the number of nodes in the largest component will quickly be consistent

and the number of edges grows linearly.

We performed the procedure explained above forN = 75, 000, resulting in a graph

with 150, 000 links and an average degree of 150. After 4, 222 iterations, 99% of the

nodes resided in the giant component, and after 6, 399 iterations this value increased

to 100%. At each iteration, after an edge is added, the center is re-computed using the

proposed algorithm. The results are depicted in Figure 4.2. First of all, we observe that

indeed the center size and the number of iterations are correlated, as they exhibit a

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

101 102

ite
ra

tio
ns

 / 
ce

nt
er

 s
iz

e

average degree

iterations
center size

Figure 4.2: Center size and number of iterations to compute the center (vertical axis)

vs. average degree (horizontal axis) for a synthetic graph.



Chapter 4. A Bounding Framework for Computing Extreme Graph Measures 73

similar curve. The various peeks around various low average degrees and degrees of 4,

13, 24 indicate a drop in the radius, resulting in a smaller center (size). This explains

why the correlation between the average degree and the number of iterations is not

high, but certainly notable.

4.6 Conclusion

In this chapter, the results of applying the bounding framework for computing ex-

treme graph measures (radius, diameter, center and periphery) to a large set of 75

real-world graphs are discussed. We have identified various factors that influence the

performance by looking at the correlation of the performance with different graph

properties, and found the following correlations:

• The radius, diameter and periphery are harder to compute using the bounding

framework when the eccentricity distribution width is relatively small ((D(G)−
R(G))/D(G) < 0.5).

• The diameter and periphery become harder to compute using the bounding

framework as the size of the periphery increases.

• The center is harder to compute using the bounding framework when the center

itself is very large or when the average degree is very high (two variables which

we believe to be dependent).

Regardless of the correlations presented above, the proposed bounding technique

always improves significantly upon the traditional APSP-based method for computing

these measures.





5
Adaptive Landmark Selection

Strategies for Fast Shortest Path

Computation

This chapter considers the task of answering shortest path queries in large real-world

graphs. The traditional Breadth First Search (BFS) approach for solving this problem

is too time-consuming when networks with millions of nodes and possibly billions

of edges are considered. A common technique to address this issue uses a small set

of landmark nodes from which the distance to all other nodes is precomputed in or-

der to then answer arbitrary distance queries by navigating via one of the selected

landmarks. The problem of finding an optimal set of landmarks has been shown to

be NP-hard. This chapter investigates the graph characteristics that determine the

successfulness of a landmark selection strategy. Then, we propose a new adaptive

heuristic for selecting landmarks that does not only pick central nodes, but also en-

sures that these landmarks properly cover different areas of the graph. Experiments

on a diverse set of large graphs show that the proposed selection strategy and assist-

ing node processing technique can efficiently estimate the node-to-node distance in

graphs with millions of nodes with very high accuracy, while using the same amount

of precomputation time as previously proposed strategies. This chapter is based on:

• F. W. Takes and W. A. Kosters. Adaptive landmark selection strategies for fast

shortest path computation in large real-world graphs. In Proceedings of the

IEEE/ACM International Conference on Web Intelligence (WI 2014), pages 27–34,

2014



76 5.1. Introduction

5.1 Introduction

A large part of computer science research deals with finding or computing simple

paths, shortest paths or distances between objects in a dataset that can be modeled

as a graph. An example of a path-related query is a request for a simple yes or no an-

swer to the question of whether or not two nodes are connected, solving the so-called

reachability problem [145] in graphs, with well-known applications in for example

XML parsing and ontology querying [55]. In transportation science, the focus of solv-

ers for so-called vehicle routing problems (VRPs, see [126]) is to service a set of nodes

(customers) by finding paths (routes) that are as short as possible An optimal route

is not necessarily required, and when large graphs are considered, not even comput-

able in polynomial time [81]. In this chapter we will focus on the problem of finding

the length of a shortest path between a given pair of nodes, assuming that all nodes

in the graph are connected. More specifically, we consider the task of answering dis-

tance queries in large graphs, which has been shown to be a complex and challenging

task [121]. By large graphs we mean that the distance matrix cannot be stored in

main memory, and algorithms with quadratic space or time complexity in the num-

ber of nodes or edges are not acceptable. Common examples of large graphs include

social networks, biological networks, communication networks and webgraphs.

The problem of efficiently computing the shortest path length, i.e., the distance

between two nodes in a graph, has been extensively studied [150]. In unweighted

graphs, which we mainly consider in this chapter, finding a shortest path originating

from a particular node can be done by performing a Breadth First Search (BFS) until

the goal node is found. For a graph with n nodes andm edges, one BFS considers each

edge at most once, realizing a time complexity of O(m). Doing this for each of the

n nodes in the graph results in a complexity of O(mn) for determining the shortest

path length between all possible pairs of nodes, essentially solving the well-known All

Pairs Shortest Path (APSP) problem. Clearly, for the large graphs that are nowadays

studied a traditional brute-force approach is not feasible in terms of time and memory

consumption.

Because of these complexity issues, approximation and estimation techniques have

been introduced, most notably methods based on so-called beacons [72] or land-

marks [112] that do some precomputation in order to then answer a shortest path

query very quickly. Often, a small set of landmarks (nodes) is selected, for which the

actual distance to every node is precomputed. When a distance query is received, an

approximation based on the distance to and from these landmarks is given, using

some smart lower and upper bounds on the landmark distances, assisted by checks

for trivial cases in which an exact answer can be returned. Typically, the precomputa-

tion step is orders of magnitude faster than computing all the shortest paths, the size



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 77

of the landmark set is orders of magnitude smaller than the number of nodes n, and

the distance query time is orders of magnitude faster than the traditional BFS query

time. Ultimately, there is a trade-off between space, precomputation time, query time

and accuracy [121].

Although a random set of landmark nodes for estimating the shortest path lengths

already works quite well [72], it has been shown that a careful selection strategy, for

example based on nodes with a high centrality value [112], or based on a tree which

covers different areas of the graph [5, 65] can greatly improve the performance of the

landmark method. Clearly, not every selection strategy performs well on every type of

graph, and choosing the correct landmark selection strategy can be of great influence

on the accuracy of the method for a particular graph. The problem of selecting the

perfect minimal set of landmarks, has been proven to be NP-hard [112].

The main contribution of this chapter consists of a careful analysis of what makes a

certain landmark selection strategy perform well. We will look at the nodes for which

the error is high, and attempt to characterize these nodes by their position in the

graph. Based on the obtained insights, we propose two new techniques that attempt

to improve landmark selection techniques based on common centrality measures.

The rest of this chapter is structured as follows. In Section 5.2 we consider some

notation and precisely formulate the problem statement and landmark approach.

Next, related work is discussed in Section 5.3, after which we explain the landmark

framework in detail in Section 5.4. Most notably, two new landmark strategies are

proposed in Section 5.5. In Section 5.6 we perform a number of experiments to com-

pare the suggested techniques on a set of large real-world graphs. Finally Section 5.7

summarizes the chapter and provides suggestions for future work.

5.2 Preliminaries

In this section, basic notation is briefly discussed, a formal problem statement is given,

and finally the landmark approach and its constraints are explained.

5.2.1 Notation

We consider an undirected and unweighted graph G = (V,E) with n = |V | nodes

and m = |E| edges. Because the graph is undirected, each edge is included twice, so

(u, v) ∈ E iff (v, u) ∈ E. Then, a path is defined as a sequence of nodes connected by

edges. A shortest path between two nodes u, v ∈ V is a path consisting of a minimal

number of edges that connects the two nodes. The length of this shortest path, or

the distance d(u, v) between nodes u and v, is simply the number of edges in such

a shortest path. The assumption is that G is connected, i.e., d(u, v) is finite for all



78 5.2. Preliminaries

nodes u and v. The degree deg(v) of a node v is the number of edges connected to that

node. We assume that the graphs are sparse, meaning that m is much smaller than

the maximum number of edges n(n− 1).

5.2.2 Problem definition

We consider the problem of accurately and efficiently estimating d(u, v) for any given

pair of nodes u, v ∈ V . By accurate, we mean that the estimated value should not

differ too much from the actual distance value, i.e., the error, which we will define

more precisely in Section 5.6.2, has to be as low as possible. By efficient, we mean

that the computational step of one distance estimation should be significantly faster

than one simple BFS, which can be done in O(m). Practically speaking, it should be

possible for large graphs to estimate thousands of these distance values in a matter

of seconds. The computational step of a distance estimation, which we call the query

time, should only iterate over the set of nodes (or a subset), meaning that it should

be done in at most O(n) time.

To realize a low shortest path computation time, a relatively short precomputation

phase is allowed. In the precomputation phase, an algorithm typically iterates over the

set of nodes and/or edges a constant number of times, for example to perform a few

real BFS runs (each taking O(m) time). So for a reasonably small integer constant

c > 0, the precomputation time should be restricted to cm. The same requirement

holds for the space complexity: the precomputation data should take no more memory

than the graph data itself.

5.2.3 Landmarks

As a precomputation step, we select a set of landmarks B ⊆ V consisting of k =

|B| nodes (with k ≪ n) for which we precompute for all pairs v, w (with v ∈ B

and w ∈ V ) the exact value of d(v, w). Because we deal with undirected graphs, we

automatically also compute d(w, v). Note that k is typically very small compared to

n, and thus storing k × n distances is possible. In contrast, storing n × n distances,

i.e., the full distance matrix, is not possible. Indeed, for k = n we would essentially

be solving the All Pairs Shortest Path (APSP) problem which is prohibited due to time

and memory constraints. The problem of selecting a good set of landmarks B from

the original set of nodes V is considered in Section 5.4 and Section 5.5.

When we answer a distance query, i.e., a request for finding the distance d(u, v)

between two nodes u and v, we first check for the applicability of some trivial cases

(assuming the graph is stored using adjacency lists) for which an exact distance can

easily be derived:



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 79

• If u or v is a landmark, then we can return the exact value of d(u, v) as this

value is stored for the landmark.

• If u and v are identical, then obviously d(u, v) = 0.

• If u and v are direct neighbors, which can be determined in O(log(m/n)) by

searching for v in the sorted list of neighbors of u (or vice versa), then obviously

d(u, v) = 1.

• If u and v are at distance 2, then we can also detect this efficiently in O(m/n)

as we can iterate over the sorted lists of neighboring nodes of both u and v, in

search for a duplicate entry, resulting in d(u, v) = 2.

Any distance larger than 2 will have to be estimated using the landmark set by con-

sidering each of the k nodes in the precomputed set of landmarks. As observed

in [112], due to the triangle equality, the following statement holds regarding the

value of d(u, v) given a set of landmarks B: maxw∈B(|d(u,w) − d(w, v)|) ≤ d(u, v) ≤
minw∈B(d(u,w) + d(w, v)). Thus, by considering the precomputed distances for the

landmarks, we can obtain a lower and upper bound L and U on the distance d(u, v)

between u and v. Here, L is at least equal to 3, as otherwise we would have found the

distance as one of the trivial cases. So we have:

L = max
(

max
w∈B

(|d(u,w)− d(w, v)|), 3
)

U = min
w∈B

(d(u,w) + d(w, v))

When asked for an estimate, we can returnL or U itself, the mean, geometric mean, or

some other variation using the two variables. It turns out that using U as an estimate

gives the lowest error rate [112].

5.3 Related work

The problem of exactly determining the distance between any or all pairs of nodes has

been widely addressed. Initially, algorithms that do fast matrix multiplication [3] were

frequently used. Such algorithms improve upon the straightforward Floyd-Warshall

algorithm for solving the APSP problem, but suffer from large constants and obvious

memory constraints. Other exact approaches are based on A* [51], but still have poor

worst-case complexity.

Considering estimation and approximation techniques, data structures for answer-

ing distance queries were introduced under the name “distance oracles”, providing

some theoretical results on the accuracy of the estimation [134]. Although elegant



80 5.4. Landmark framework

in design, these techniques are not very useful when graphs with many low distance

values are considered [72], as the actual difference between the approximated and

real distance can be large, which is undesirable in large graphs with relatively low

pairwise distances. This happens to be the case in many of the real-world graphs that

are nowadays studied, as they usually belong to the class of so-called small-world

networks [71] with very low average pairwise distances.

Methods based on beacons [72] or landmarks [54, 112] were suggested as a better

way of handling distance queries in this type of graphs. Selecting a minimal set of

landmarks such that the graph is covered, meaning that the estimate for d(u, v) is

correct for all pairs u, v ∈ V , was shown to be NP-hard [112]. Selecting an efficient

set of landmarks based on the centrality of a node or based on a “highway” [65] or

a tree decomposition [5, 47] of the graph were suggested as heuristics for selecting

an optimal set of landmarks. Various optimizations based on pruning the BFS, bitwise

tricks and parallelism were introduced in [4]. Furthermore, the landmark selection

method in evolving graphs with edge additions and deletions has been described in

[136].

The landmark method has clearly been widely addressed, but because of the NP-

hardness of the landmark selection problem, it remains a challenging method worth

studying.

5.4 Landmark framework

This section describes the landmark framework, which consists of two parts: landmark

selection and landmark processing. Landmark selection, considered in Section 5.4.1,

deals with the problem of sorting the nodes based on their likeliness of being a good

landmark. Section 5.4.2 is about landmark processing, which deals with the question

of how and which of the identified landmarks should finally be used. Some smaller

optimizations are discussed in Section 5.4.3.

5.4.1 Landmark selection

Landmark selection deals with the task of selecting a total of k nodes from the full set

of n nodes that are going to serve as landmarks. As an improvement over a random

selection of k landmarks, several landmark selection strategies based on the centrality

of the nodes in the graph are suggested in [112]. The idea behind this is to compute

the centrality value C(v) of all nodes v ∈ V , and then select the k most central nodes

(with the highest value of C(v)) as landmarks. In this chapter we will consider the

following centrality measures:



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 81

Degree centrality

Cd(v) =
deg(v)

n− 1

Closeness centrality

Cc(v) =
1

n− 1

∑

w∈V

d(v, w)

Betweenness centrality

Cb(u) =
∑

v,w∈V

v 6=w,u6=v,u6=w

σu(v, w)

σ(v, w)

Here, σ(u,w) is the number of shortest paths from u to w and σv(u,w) is the

number of shortest paths that run through node v [26]. This measure can be

normalized to the interval [0; 1] by dividing it by the largest betweenness value

over all nodes.

PageRank CPR(v), which is the value of PR(v) after iteratively (usually 100 itera-

tions is enough for convergence) and simultaneously applying:

PR(v)← 1− d
n

+ d





∑

w∈N ′(v)

PR(w)

deg(w)





for each of the nodes v ∈ V , where PR(v) is initialized to 1/n and N ′(v) is the

set of nodes that links to node v and the well-known random-surfer parameter

d equals 0.15 [107].

Each of the four measures is normalized to the interval [0; 1], where a higher value

indicates that the node is more central according to the considered measure. Between-

ness and closeness are two centrality measures that are just as hard to compute as the

distance between all nodes (they require O(mn) time). Luckily both measures can be

estimated by means of sampling, reducing complexity to cm where c is the number

of samples. Computing the PageRank value of all the nodes also means iterating over

the set of m edges a constant number of times, resulting in a similar time complexity.

Although numerous other centrality measures have been suggested in literature,

we believe that these four measures are the most common, but more importantly are

of four different types. Respectively, they are based on a local property of the nodes

(degree), the number of shortest paths that runs through a node (betweenness), the

average distance from the node to every other node (closeness) and the centrality of

the node based on a propagation model (PageRank).

Intuitively, the best nodes to be selected as landmarks for finding shortest paths

length, would be the nodes with the highest betweenness centrality value, as the value



82 5.4. Landmark framework

of this measure inherently suggests that the node is part of a large portion of all the

shortest paths. However, if we consider an error measure which takes the difference

between the estimated and real distance into account (see Section 5.6.2), then nodes

on almost-shortest paths (e.g., realizing distance plus one) are also good, but do not

necessarily have the highest betweenness value. This suggests that there might be a

better landmark selection strategy than simply selecting the nodes with the highest

(betweenness) centrality value.

5.4.2 Landmark processing

When a set of nodes has been generated based on some (centrality) measure or

strategy, a sorted list of nodes can be generated with the most central nodes on top.

The simplest form of node selection is then to take the top k nodes (recall that k is

the number of landmarks) without any further evaluation of how these nodes are po-

sitioned in the graph. In [112], a number of improvements over this processing tech-

nique are suggested. First, one could choose to select as landmarks the highest ranked

nodes from the list from each partition in the graph as defined by some partitioning or

clustering algorithm. Although intuitively useful, this suggested improvement did not

produce a significantly much lower error, but comes with an additional computation

cost and is thus not considered further in this chapter.

A second suggested processing technique is to process the list from top to bottom,

but skipping nodes that are at most at distance x from previously selected landmarks.

The idea behind this is that a central node that is close to previously selected land-

marks does not contribute equally compared to a central node further away from

previously selected landmarks. The latter optimization hints towards a second pitfall

in simply using the most central nodes as landmarks, namely that central nodes are

often direct neighbors. Although it turned out that x = 1 performed best, sometimes

this processing step gives no improvement or even increases the error.

5.4.3 Optimizations

Several optimizations that can be applied after a path based on landmarks has been

derived, have been suggested in [54]. Most notably, if for determining d(u, v) the

concatenation of paths from node u to landmark w to node v includes the same node

more than once, then the intermediary nodes can be skipped, known as cycle elim-

ination. Furthermore it is suggested that when two paths have been concatenated,

a quick check for a shortcut can be done by determining for each node in the path

whether its neighborhood contains any of the successors in the path, and if so, using

this edge instead of the subpath to that successor.



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 83

We introduce an additional seemingly obvious optimization specifically for in-

creasing the bound value for nodes with degree 1. If node u has a degree of 1, then u

always needs its direct neighbor to navigate to every other node in the graph. Thus,

for this node, the lower or upper bound of the neighboring node plus 1 can be re-

turned. Real-world graphs typically have a power law degree distribution, and nodes

with degree 1 are expected to be very common.

5.4.4 Example

To get an idea of how the landmark framework as defined in Section 5.2.3 assisted

by the various discussed optimizations in Section 5.4.3 can answer distance queries,

we will give various examples of such queries using the example graph shown in

Figure 5.1. Note that this graph has two landmark nodes F and P .

• d(L, J): Node L and J are direct neighbors ((J, L) ∈ E), so the distance is equal

to 1.

• d(B,D): Node B and D have common neighbor C, so the distance is equal to

2.

• d(F,Q): Node F is a landmark for which all distances have been precomputed,

so we can simply look up d(F,Q), which is 4.

• d(A,K): Using landmark node F , we find the upper bound d(A,F )+d(F,K) ≤
2+2 = 4. No further optimizations can be applied, so the (in this case correctly)

assessed value is 4.

• d(E,N): Using landmark P we find upper bound d(E,P )+d(P,N) ≤ 4+1 = 5.

C

B

A

F

E

D

G

J

H

I

K

L

M

N

P

Q

R

S

T

Figure 5.1: Example graph with landmark nodes F and P .



84 5.5. Balancing centrality and covering

Via landmark F we find d(E,F )+d(F,N) ≤ 1+3 = 4. The minimal upper bound

and thus the (in this case correctly) assessed path length is 4.

• d(G,M): Using landmark node F , we find upper bound d(G,F ) + d(F,M) ≤ 4.

Alternatively, via landmark P we would find the path (G, J, L, P, L,M) with

length 5. Optimizing the first path (G,F, J, L,M) via F we find that (J,G) ∈
E, meaning that we can take a shortcut by eliminating node F , resulting in

path (G, J, L,M) with length 3. Note that after cycle elimination, the path via

landmark P would also result in the shortest path (G, J, L,M).

• d(I, L): Using landmark node F , we find upper bound d(I, F ) + d(F,L) ≤ 4.

After looking for shortcuts, the intermediary node F can be removed resulting in

an upper bound of 3. However, node I has a degree of 1, meaning that we could

have just looked at node G and found that G and L have common neighbor J ,

resulting in a distance of 2 + 1 = 3.

5.5 Balancing centrality and covering

The previous section has described two problems when it comes to using the most

central nodes as landmarks. First, centrality measures often do not take into ac-

count almost-perfect distances and second, most importantly, central nodes are often

grouped together, not properly covering different parts of the graph. In this section,

improvements for overcoming these two problems are suggested for both the land-

mark selection and the landmark processing step discussed in the previous section.

5.5.1 Adaptive landmark selection

The landmark selection strategy that we propose in this chapter is adaptive, meaning

that the strategy improves its set of landmarks based on the error reduction of its

nodes. First, let us look at a preliminary figure of the performance of different selec-

tion strategies based on centrality measures in Figure 5.2. Clearly, the percentage of

correctly assessed path lengths (which we will call the success rate) increases mono-

tonically with the number of landmarks. An important observation is that centrality

measures work regardless of the size of the landmark set: landmarks selected based

on centrality measures are able to realize a significantly higher success rate than land-

marks that were selected at random. The same was observed for the other real-world

graphs that we studied, although there was no single best-performing centrality meas-

ure.

We furthermore note that not every landmark appears to evenly contribute to

increasing the success rate: some landmarks (horizontal steps in Figure 5.2 from k



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 85

to k + 1 landmarks) contribute significantly more to the success rate than others.

Ideally the nodes that realize a big increase in the success rate should be ranked

higher than nodes that only marginally increase the success rate. Although obviously

the increase realized by a landmark node is highly dependent on previously chosen

landmarks, we do expect nodes with a great incremental contribution over previously

selected landmarks to give a high contribution to the performance in general. This

observation is the basis for the adaptive landmark selection strategy:

1. Sort the set of nodes V based on degree centrality, resulting in a list of ranked

nodes, with the most central node v having rank R(v) = 1.

2. Perform the sampling phase, in which a number of BFS runs is performed, stor-

ing how many times each node v is part of one or more shortest paths.

3. Compute the value of S(R(v)), the success rate at each successive rank. Note

that here the rank is equal to the potential landmark count. This means that

we are generating the plot in Figure 5.2 for the particular centrality measure

chosen in Step 1.

4. For rank i = 1 to n, derive for each rank i the value of ∆S(R(v)): the increase

in the success rate realized by the landmark node v at rank i.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  10  100  1000  10000

su
cc

es
s 

ra
te

 (
%

)

  

landmarks

Betweenness
Degree

Closeness
PageRank

Random

Figure 5.2: Success rate of different centrality measures as landmark selection

strategies, applied to the CA-CONDMAT network.



86 5.5. Balancing centrality and covering

5. Re-sort the list of nodes according to ∆S(R(v)), resulting in a list with the (node

with the) highest increase in success rate on top.

6. Use the list from step 5 as input for the processing step of the landmark frame-

work, cf. Section 5.4.2.

In step 1, we have chosen degree centrality, because this measure does not require any

additional computation time. Recall that in step 2, counting the number of shortest

paths is just as complex as computing the shortest path [26]. Furthermore, performing

one BFS from a particular node to every other node, and then comparing the actual

distances with the estimated distances, allows us to quickly sample n − 1 distance

computations using only one BFS. Note that the sampling procedure described above

replaces the computational step of for example betweenness centrality or closeness

centrality. Because the number of samples in step 2 is equal to the number of samples

needed to compute the node centrality values of some centrality measure, there is no

additional computation time involved in the adaptive landmark selection technique.

The intuition behind this method is that because we first sort the list based on a

centrality measure and then compute the success rate difference of each node in the

list, we are taking both the centrality aspect and the covering aspect into account, as

nodes that do not significantly increase the success rate, apparently do not cover parts

of the graph that are not already covered by other nodes. Although step 2 through

step 5 could be performed in an iterative process until the error converges to a min-

imum, we found that one iteration always results in improvement, but more than one

iteration almost never improves and sometimes even results in worse performance.

The latter is likely due to the fact that after multiple iterations the influence of the

centrality measure is lost. Furthermore, an iterative process requires more BFS runs

and thus more computation time.

5.5.2 Greedy central neighbor processing

The second contribution of this chapter is an alternative landmark processing tech-

nique called greedy central neighbor processing (in short: gcn-processing), which works

as follows. When processing the list of nodes generated using some strategy or cent-

rality measure, we select for each node in the list h times its most central neighbor,

if such a better neighbor exists and if this neighbor is not already a landmark. For

example, we select for each node in the node list sorted by the success rate as a result

of the adaptive landmark selection from the previous section, the neighbor with the

highest degree (if that degree is higher than the degree of the currently considered

node). The intuition behind this method is that it solves problems with many central

nodes being clustered together, not covering the rest of the graph. Note that for each



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 87

node in the list, one central neighbor at most h hops away is selected, so the landmark

count k remains unchanged. Furthermore, the suggested technique is greedy: it does

not look at the full neighborhood (which would be computationally expensive), but

merely repeatedly picks the most central neighbor.

As an example, consider Figure 5.3 and Figure 5.4 that both show a visualization

of the CA-HEPPH network (for a description of this graph, see Section 5.6.1). In these

two visualizations of the same graph, the size of a node is proportional to its degree,

and the color of a node denotes the error (see Section 5.6.2 for a description of this

error measure) observed when computing a shortest path from or to that particular

node. In Figure 5.3, shortest paths were computed using k = 100 landmarks selected

using degree centrality, whereas the errors in Figure 5.4 are from k = 100 landmarks

that were selected using random node selection, but when processing the list, each

time in a greedy way selecting the most central neighbor of the considered node

(with h = 3). All low error nodes (and thus all high degree nodes) in Figure 5.3

are grouped together in one densely connected cluster. The error is much higher for

the rest of the graph, with higher errors as the distance to the high degree cluster

increases. On the other hand, in Figure 5.4 the error is much lower in the entire graph,

demonstrating the usefulness of the greedy central neighbor processing approach in

solving the problem of all central nodes residing in one cluster.

In a way, the gcn-processing technique combines two centrality measures: one

measure is used in the landmark selection phase and another measure is used as a

guide for greedy central neighbor landmark processing. It is essentially an alternat-

ive for taking the weighted average of two measures. In order not to increase the

complexity of the precomputation step, the degree can be used as a measure for de-

termining which neighbor has to be selected. In Section 5.6 we will have a detailed

look at the performance of gcn-processing for each of the previously discussed land-

mark selection strategies.

5.6 Experiments

In this section we perform experiments on a large set of networks to determine the

performance of the different landmark selection techniques, specifically the two new

selection and processing techniques introduced in the previous section: adaptive land-

mark selection and greedy central neighbor processing. We start by describing the

used graph datasets in Section 5.6.1 and a verification approach in Section 5.6.2,

after which we discuss the results in Section 5.6.3.



88 5.6. Experiments

Figure 5.3: Absolute error in estimated distances in the CA-HEPPH graph from low

(blue) to red (high) with 100 landmarks using degree centrality.



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 89

Figure 5.4: As Figure 5.3, but with random landmarks and gcn-processing. Visualized

using ForceAtlas2 in Gephi (http://gephi.org).

http://gephi.org


90 5.6. Experiments

5.6.1 Datasets

Table 5.1 gives an overview of the graph datasets used in this study, including for

each graph a reference to the paper in which its properties are discussed in detail.

The second column indicates the type of the graph, including (scientific) collabor-

ation and citation networks, webgraphs, communication networks, social networks

and electronic networks. All graphs represent real-world data, are typically sparse,

and adhere to the small-world property [71]. For each graph, of the largest connec-

ted component of (the undirected version of) the graph, the number of nodes n, edges

m and average node-to-node distance d (sampled over 1, 000 node pairs) are listed.

We performed experiments for five landmark selection strategies: random selection,

betweenness centrality, PageRank, degree centrality, and the newly proposed adaptive

landmark selection. For each selection strategy, we experimented with six landmark

processing techniques: plain top-k selection (0), skip-1 processing as described in Sec-

tion 5.4.2, and greedy central neighbor processing for h = 2, h = 3, h = 4 and h = 5,

as described in Section 5.5.2. Table 5.1, which is continued in Table 5.2, the column

“gcn” indicates the lowest error as well as between brackets the value of h for which

this error was observed.

Closeness centrality never performed better than other measures such as between-

ness centrality (see for example Figure 5.2), so was left out of the result table. Fur-

thermore, random selection with skip-1 processing and degree centrality with gcn-

Dataset Type n m d
Random Degree

0 gcn (h) 0 gcn (h)

CA-HEPPH [86] collab. 11.2K 235K 4.66 .509 .080 (3) .137 .091

GOOGLENW [108] web 15.7K 297K 2.46 .224 .000 (3) .001 .003

CA-CONDMAT [86] collab. 21.3K 182K 5.47 .551 .068 (2) .100 .098

CIT-HEPTH [86] cit. 27.4K 704K 4.29 .562 .040 (4) .047 .071

ENRON [73] comm. 33.7K 362K 4.05 .615 .013 (4) .012 .102

SOC-SLASHDOT [88] social 82.2K 1.09M 3.94 .764 .048 (4) .049 .053

DBLP [144] coll. 99.3K 1.09M 3.94 .605 .135 (4) .113 .096

M14B [137] elec. 100K 1.28M 52.5 1.17 .743 (3) .270 .174

WAVE [137] elec. 156K 2.1M 22.9 .531 .461 (2) .164 .120

WEB-STANFORD [88] web 255K 3.88M 7.31 .343 .007 (2) .007 .010

WEB-GOOGLE [88] web 856K 8.58M 6.18 .884 .149 (3) .006 .009

WIKI-TALK [88] comm. 2.39M 9.31M 3.91 .775 .030 (4) .039 .088

LIVEJOURNAL1 [144] social 4.00M 69.3M 5.39 .831 .163 (3) .082 .079

HYVES [128] social 8.08M 912M 4.75 .528 .038 (3) .034 .060

Table 5.1: Performance (error, lower is better) of different landmark selection

strategies on various large real-world graphs.



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 91

processing (which is based again on degree centrality) make no sense, so these re-

spective result columns were also left out.

5.6.2 Measurement methodology

In our experiments, we have consistently used 1% of the nodes in the connected

component of the graph as landmarks, with a maximum of k = 100 landmarks. As

this chapter specifically considers landmark selection strategies, we do not compare

our methods with other distance estimation methods. For a general comparison of the

landmark framework with such methods, we refer the reader to [112]. Assessing the

performance of a landmark strategy can be done by computing the error (sampled

over 1, 000 node pairs), defined as:

|dreal − destimate | / dreal

Recall that the success rate discussed in Section 5.5.1 only counted the number of

times a landmark node was on a shortest path. Here, destimate is the estimated dis-

tance (for the real distance dreal) by employing the full landmark framework as de-

scribed in Section 5.4, so including checks for trivial distances and the described

optimizations. Depending on the type of application that is considered, alternative

error measures such as counting the percentage of distances that differ by at most 1

could be used.

The number of iterations in the precomputation step is fixed, and the final dis-

tance result is measured using the error measure. Therefore, clock time is not a rel-

evant performance measure, nor are the specific properties of the machine used for

the experiments. However, to put the results in perspective, we do mention that one

BFS using our straightforward C++ code takes about six seconds for the graph con-

sisting of 8 million nodes listed in Table 5.1. This means that the total precomputation

time for approximating betweenness centrality and the adaptive landmark selection

strategy, methods which both perform a total of k = 100 BFS runs along with some

book-keeping, can be done in a few minutes, even for the largest graph. The same

holds for PageRank, which can be computed in roughly the same time, also using 100

iterations. Random landmark selection and degree centrality obviously do not require

any precomputation time.

5.6.3 Results and discussion

As we already demonstrated for one graph in Section 5.5, random landmark selec-

tion is clearly outperformed by centrality measures. We note that of the centrality



92 5.6. Experiments

measures, most of the time betweenness centrality has the lowest error. Degree cent-

rality and PageRank are in most cases equally good. Because the newly introduced

adaptive landmark selection technique builds upon degree centrality, we say that the

new adaptive strategy is successful if it outperforms degree centrality, as otherwise

the new method would not be worth the additional computation time compared to

degree centrality. As Table 5.1 shows, this is the case for all 14 graphs, demonstrat-

ing the usefulness of the newly proposed adaptive selection strategy. On a number

of datasets, the adaptive landmark selection strategy even outperforms betweenness

centrality, a result which strengthens the claim that we made in the beginning of the

chapter: nodes that are part of a large number of shortest paths do not necessarily

serve as the best landmarks. The error observed when using the skip-1 optimization

is diverse. Although there is a big increase in performance for the adaptive landmark

selection for the WAVE graph, most of the time the error is similar or worse as was

also observed in [112].

The second contribution of this chapter is the greedy central neighbor processing

strategy. Obviously, this method mainly assists a landmark selection strategy in the

final processing phase. To get an idea of the contribution in terms of performance

of gcn-processing, we can look at the error for a random set of landmarks as com-

pared to a random set of landmarks processed using gcn-processing (so, the column of

Table 5.1 titled “Random”). We see that the greedy central neighbor processing tech-

Dataset
Betweenness PageRank Adaptive

0 skip-1 gcn (h) 0 skip-1 gcn (h) 0 skip-1 gcn (h)

CA-HEPPH .045 .078 .045 (2) .140 .090 .093 (3) .117 .103 .080 (3)

GOOGLENW .001 .004 .000 (3) .001 .003 .001 (2) .000 .003 .000 (2)

CA-CONDMAT .044 .064 .045 (2) .059 .066 .054 (3) .064 .083 .056 (3)

CIT-HEPTH .031 .059 .029 (3) .048 .069 .046 (3) .051 .086 .044 (3)

ENRON .010 .009 .008 (2) .011 .098 .009 (4) .022 .145 .012 (3)

SOC-SLASHDOT .081 .052 .048 (2) .085 .046 .053 (2) .078 .052 .032 (4)

DBLP .090 .109 .091 (2) .103 .105 .099 (3) .093 .102 .093 (3)

M14B .276 .116 .267 (3) .501 .152 .377 (3) .059 .065 .054 (2)

WAVE .199 .142 .194 (3) .270 .126 .211 (3) .121 .079 .096 (3)

WEB-STANFORD .003 .006 .003 (2) .005 .007 .006 (2) .010 .008 .004 (4)

WEB-GOOGLE .006 .019 .005 (3) .006 .006 .005 (4) .006 .010 .005 (4)

WIKI-TALK .038 .122 .038 (3) .037 .040 .037 (4) .036 .128 .036 (2)

LIVEJOURNAL1 .067 .079 .067 (2) .075 .082 .071 (2) .069 .074 .071 (2)

HYVES .045 .065 .035 (3) .035 .055 .035 (2) .042 .069 .029 (3)

Table 5.2: Performance (error, lower is better) of different landmark selection

strategies (continuation of Table 5.1).



Chapter 5. Adaptive Landmark Selection for Shortest Path Computation 93

nique always greatly improves upon plain random landmark selection, most notably

in case of the CA-HEPPH and WIKI-TALK graphs, where the gcn-processing technique

applied to a random set of nodes even outperforms degree centrality. In all other

cases, random selection with gcn-processing does not improve upon degree central-

ity, suggesting that the selected nodes are merely a local minimum. We note that for

h > 4 there was never an increase in performance compared to smaller values of h.

We also applied gcn-processing to the betweenness and PageRank selection meth-

ods, and there we also observe increases in performance. Apparently, although between-

ness and PageRank both take the global aspect of the graph into account, locally

some optimization using the gcn-processing technique can still be achieved. In case of

the adaptive landmark strategy, the increase in performance obtained by using gcn-

processing is diverse, but often relevant. For example in case of the SOC-SLASHDOT

or CA-HEPPH network, the error is actually significantly lower when gcn-processing

is used.

In general we can conclude that the new landmark selection and landmark pro-

cessing techniques work well for the set of real-world graphs, as shortest path lengths

can be determined with an error that is consistently lower than 0.10. We note that

even when the average distance in the graph is relatively high, such as for the AMAZON

and WAVE graphs, the error remains low. Finally we note that based on the results that

we obtained, the error does not appear to be influenced by variables such as the num-

bers of nodes or edges or the average node-to-node distance, which demonstrates the

scalability of the suggested techniques.

5.7 Conclusion

The performance of the landmark methodology for assessing shortest path lengths in

large real-world graphs heavily depends on the chosen landmark selection strategy.

Using various experiments we have shown that the task of selecting a good set of

landmarks involves at least two aspects: selecting a set of central nodes and properly

covering different areas of the graph. In order to address these two aspects, in this

chapter we have compared different landmark selection strategies and introduced

the adaptive landmark selection strategy and the greedy central neighbor processing

technique. Experimental results on a number of real-world graphs show that using

the same amount of precomputation time, the proposed strategies outperform and

improve previously suggested landmark selection techniques based on centrality.

The question remains whether or not it is possible to determine beforehand which

landmark strategy is expected to show the best performance. In future work we would

like to investigate how we can link different graph-based properties to the perform-



94 5.7. Conclusion

ance of a specific selection and processing technique in order to determine a priori a

suitable landmark selection strategy. Although we have demonstrated the success of

the proposed strategies on a number of real-world graphs, more research is needed to

determine the worst-case performance in order to give an upper bound on the error.

Furthermore we want to see if the proposed adaptive landmark selection strategy as

a whole can also be applied to the problem of determining shortest path lengths in

evolving graphs that are growing and shrinking as nodes and edges are added and

deleted.



6
Identifying Prominent Actors

in Online Social Networks

using Biased Random Walks

In this chapter, the structural properties of the friendship graph of a large online so-

cial network consisting of 8 million users and close to 1 billion links are investigated.

The main focus is on characterizing the prominent users that reside within the online

social network based on their position in the graph. The derived structural node prop-

erties will then be used to steer an automated classification algorithm based on biased

random walks for distinguishing between prominent and regular nodes (users). The

effectiveness of the proposed approach is assessed using the online social network at

hand, for which it is known which nodes have been manually identified as prominent

individuals. It turns out that using the proposed random walk algorithm, it is possible

to efficiently identify a large portion of the prominent nodes in the network, outper-

forming standard web-inspired measures such as HITS and PageRank. This chapter is

based on:

• F. W. Takes and W. A. Kosters. Identifying prominent actors in online social net-

works using biased random walks. In Proceedings of the 23rd Benelux Conference

on Artificial Intelligence (BNAIC 2011), pages 215–222, 2011



96 6.1. Introduction

6.1 Introduction

Nowadays, online social networks (OSNs) such as Facebook, Twitter and LinkedIn are

extremely popular, with numbers as high as hundreds of millions of users and billions

of friendship links. The main concept of these online social networks is simple: a

user creates a profile with some personal attributes and then links this profile to

other users, the so-called friends, creating a very large graph of befriended users: the

friendship graph. In order to better understand the structure of social networks, the

friendship graph is extensively being measured, modeled and mined [2, 76, 103].

In this chapter, we consider the (former) Dutch online social network HYVES,

which was online for about 9 years between 2004 and 2013. We will investigate

one full snapshot of the network which was obtained in September 2010. At that

time, little over 8 million users participated in the friendship graph of the network,

together forming well over 900 million friendship links. The main question discussed

in this study is how we can automatically identify the most important users in this

online social network, based only on the structure of the network. Being able to

identify such prominent actors has various useful applications. For example, com-

panies nowadays frequently use online social networks for their viral marketing [83]

campaigns, in which they want to deliver a message to as many people as possible

through the linking structure of the social network. Prominent nodes may just be the

places where such a campaign should start in order to efficiently reach a large number

of people [61].

A relevant question is then how prominence or importance of a node within a

network should actually be defined for the network that we consider. While various

definitions may be correct, we will assume that someone is prominent, or important, or

influential, if he or she has some celebrity status (famous politicians, soccer players,

artists, movie actors, etc.) in the real world. We believe that this definition can be

justified based on the fact that both online and in the real world, celebrities have

a certain status, or reputation. If a celebrity promotes a certain brand, people are

far more likely to identify with that brand, compared to when a regular person would

promote the brand [105]. Within the online social network Twitter, tweets originating

from people like president of the United States are far more likely to be “retweeted”

than when they would come from a normal person in the network. Thus, the president

could be seen as a more prominent actor in the network.

In this chapter we first study the difference in characteristics between regular and

prominent nodes. We consider various existing methods of determining the import-

ance of nodes in the friendship graph of an online social network, and then introduce

a new method which is based on the characteristics of the prominent nodes that we

obtained. Next, we verify the performance of the discussed techniques empirically on



Chapter 6. Identifying Prominent Actors in Online Social Networks 97

a large complete dataset of the online social network. For this network, we know ex-

actly which users are considered to be prominent, allowing us to verify the obtained

results against a predefined ground truth.

The rest of the chapter is structured as follows. In Section 6.2 we formally define

the main problem, after which we discuss related and previous work in Section 6.3.

In Section 6.4 we discuss the characteristic properties of prominent nodes, and how

these properties can be incorporated in a random walk algorithm. Next, in Section 6.5

we describe the dataset that we will use in Section 6.6 to compare the performance

of the discussed methods. Section 6.7 concludes.

6.2 Preliminaries

In this section we will discuss some basis concepts, formulate the problem statement

and describe the application domain.

6.2.1 Definitions

We are given a friendship graph G = (V,E), where V is the set of n = |V | nodes

(individuals) and E ⊆ V × V is the set of m = |E| edges (connections). The graph

is undirected, meaning that the set of edges is symmetric, so if (u, v) ∈ E then also

(v, u) ∈ E. A path or walk from u to v is a sequence of edges, starting with an edge

containing u and ending with an edge containing v. The distance d(u, v) between two

nodes u and v is defined as the length of a shortest path between these nodes. Because

the graph is undirected, d(u, v) = d(v, u) for all u, v ∈ V . A connected component is

a maximal subset of the set of nodes V such that the any pair of nodes within this

subset is connected via one or more edges.

We define the neighborhood N(v) of a node v as the set of nodes at distance 1 of

v, more specifically: N(v) = {u ∈ V | (u, v) ∈ E}. The degree of a node v is defined as

the number of edges starting (or ending) at node v, i.e., the size of the neighborhood

of that node: deg(v) = |N(v)|.

6.2.2 Problem statement

Amongst the nodes in the network, there is an initially unknown set W ⊆ V , of size

k = |W |, which contains the nodes that are considered to be “prominent”. Logically,

k ≤ n, but in practice, k is much smaller than n, as only a small portion of the nodes

is typically considered to be prominent. The main goal is to find, given only the graph

G = (V,E), an as small as possible subset I ⊆ V such that |I ∩W | is maximal, i.e.,

we are trying to find as many prominent nodes as possible.



98 6.2. Preliminaries

F

E

C

A

B G

D H

I

J

K

L

M

P

N Q

S

R

Figure 6.1: A graph consisting of 18 nodes of which 2 nodes (F and L) are manually

labeled as “prominent”.

In this chapter we describe various existing, derived, and new methods for de-

termining node importance. For each of these methods M we assign a normalized

value CM (v) ∈ [0, 1] to each node v ∈ V which determines its importance. We will

assume that higher values indicate a higher level of importance. In order to determine

the performance of a method M , we sort the list of nodes by their importance value

CM (v) in descending order, and define I to be the top ℓ nodes of this sorted list. The

precision and recall, |W ∩ I|/|I| and |W ∩ I|/|W |, respectively, will ultimately determ-

ine the performance of a method M . More generally, we can say that the F-measure,

(2 × precision × recall)/(precision + recall), measures the balance between the two.

Note that if ℓ = k, precision, recall and F-measure are equal.

An example of a network with 18 nodes of which 2 nodes (F and L) are manually

labeled as “prominent”, is given in Figure 6.1. If some method would determine that

nodes F and J are the prominent nodes, then W ∩I = {F,L}∩{F, J} = {F} and the

performance of this method (in terms of both precision and recall) would be 50%.

6.2.3 Online social networks

Topological properties of online social networks have been studied in great detail [103].

Social networks are usually sparse and contain one large connected component con-

sisting of the majority of the nodes, called the giant component. Often, there are a

few smaller isolated communities, as well as various singletons [2]. Furthermore, it

is well-known that the structure of online social networks resembles that of real-life

social networks [139]. Online social networks generally belong to the class of small-

world networks [140]. Such networks are characterized by relatively small pairwise

distances between nodes, i.e., the average distance between two nodes is very small



Chapter 6. Identifying Prominent Actors in Online Social Networks 99

(typically around four to eight) compared to the total number of nodes (easily more

than one million). Online social networks also tend to exhibit a node degree distri-

bution that follows a power law: there are relatively few nodes with an exceptionally

high degree, and many nodes with a low(er) degree. The high degree nodes func-

tion as hubs, and are often grouped in a densely connected core, realizing the short

pairwise distances between the more “peripheral” nodes.

6.3 Related work

Various studies have addressed the problem of identifying the prominent actors within

large (online) (social) networks. Some related work deals with finding experts, or

who can be trusted within some semantic social network [50, 148]. We will distin-

guish from these methods by not considering semantics, but only structural properties

of the nodes.

Centrality measures have been popularized by social scientists as possible measures

for the importance, or “prestige” of a person within a social network [139]. These

measures identify nodes that have a central position based on the structure of the

network. Such a central position usually means that the node is connected to many

other nodes, possibly indirectly via some (short) path(s). Degree centrality is by far

the simplest and most common measure, and is in case of an online social network

simply equal to the number of friends of a user. As we will see later on, the number

of friends is a good indication of the prominence of a node, but definitely not perfect.

The complexity of computing other more complex distance-based centrality measures

is in the order of O(mn) or worse [27], and therefore not considered in this chapter.

Propagation-based methods such as PageRank [107] are known to be very suc-

cessful in determining the importance of web pages [80], citation networks [31] and

Wikipedia articles [69]. Therefore, in this study we will also consider the PageRank

measure CPR as defined in Section 5.4.1 as a method for identifying the prominent

actors in our online social network. We will furthermore consider HITS:

Hyperlink Induced Topic Search (HITS) CHITS . HITS [70] is a technique for as-

sessing node centrality which assigns a hub score h(v) and an authority score

a(v) to every node v in the graph, both initialized to 1. Then, for a certain num-

ber of iterations (100 iterations is usually enough for convergence), for each

node v the value of a(v) is set to the sum of the (normalized) h(u) values of

the nodes u for which there exists a link (u, v), after which for each node v the

value of h(v) is set to the sum of the (normalized) a(w) values of the nodes w

for which there exists a link (v, w). For the centrality measure CHITS , we use

the authority score a(v).



100 6.4. Prominent nodes

The NODERANKING algorithm was proposed in [113] as a method based on ran-

dom walks for determining the importance of authors in a directed citation network.

Random walk algorithms generally traverse the graph, moving to a random neighbor

with probability 1− p, and jumping to a random node with probability p. The distin-

guishing property of the NODERANKING algorithm is that it jumps with a probability

depending on the degree of the current node, where a low degree indicates a high

jumping probability. In Section 6.6.2 we will compare approach discussed in the next

section with each of the algorithms discussed above.

6.4 Prominent nodes

We will now outline the proposed approach for finding the prominent nodes in an

online social network. First we sketch the expected characteristic properties of the

target nodes. After that, we will describe an algorithm based on random walks which

uses these node properties to guide the walk towards the prominent nodes.

6.4.1 Node properties

The simplest intuition that we have about prominent people, is that they have a large

number of connections. Therefore we expect the degree of a node to play a great role

in determining the importance of a node. So we could state that degree centrality,

determining the importance of a node v based on its number of connections, could be

a good first indication of importance, formally:

Cd(v) =
|N(v)|
n− 1

However, there may be nodes in the graph with many connections, that are not prom-

inent, or vice versa, prominent people with a smaller number of connections.

Let us recall several observations regarding social networks in general, which have

been described in literature. People tend to use social networks for two reasons: so-

cial searching, and social browsing [78]. These two terms refer to reconfirming real-life

friendships online, and browsing for completely new relationships, respectively. An-

other common concept is that of triadic closure: the vast majority of all friendships

formed within a social network takes place between two people who have at least

one friend in common. The probability of a link being formed has been shown to

increase with the number of common acquaintances [75] as well as with the degree

of a node, a phenomenon called preferential attachment [104]. For example, in the

graph in Figure 6.1, the connection (A,B) would be more likely to appear than the

connection (A,K), as A and B have node C as a common friend, and A and K have



Chapter 6. Identifying Prominent Actors in Online Social Networks 101

no direct common friends. The connection (A,E) would in turn be more likely than

(A,B), as E already has a higher degree.

Based on the observations above, we expect that a user adding someone like the

president of the United States, is not within the circle of friends of the president, mak-

ing this friendship more like a result of the aforementioned social browsing instead of

searching. More generally, we argue that the friends of prominent nodes have fewer

connections in common than regular nodes. We call this concept the neighborhood

density (nd) of a node:

Cnd (v) = 1−
∑

w∈N(v)

|N(w)|>1

|N(w) ∩N(v)|
(|N(w)| − 1) · |N(v)|

Here, the numerator defines the number of common connections, whereas the de-

nominator normalizes the result so that it is independent of the degree of v or the

degree of w. If |N(v)| > 1, Cnd (v) is minimal in case N(v) is fully connected, and

becomes larger as a smaller fraction of the neighborhood is interconnected. The pro-

posed measure differs from related measures such as the clustering coefficient in a

sense that this measure normalizes for both the neighborhood size of the considered

node as well as the neighborhood of each of the adjacent nodes.

6.4.2 BiasedRandomWalk

We believe that a combination of the two measures from Section 6.4.1 will be able

to identify a large portion of the various prominent actors. Therefore we devised an

algorithm based on random walks, which has a parameterized bias towards each of

these properties. The random walk algorithm has as an advantage that it only needs

local information to determine the next state of the algorithm, allowing the algorithm

to run efficiently even when the entire graph can not be stored in main memory.

The proposed algorithm, called BIASEDRANDOMWALK (BRW), takes as input an

unweighted graph G = (V,E) and parameters N , p and α, and outputs a function

value CBRW (v) for each node v ∈ V in the graph, determining its importance. Here

N is the number of steps in the random walk algorithm, p is the jumping probability

(which we fix at 0.15 as suggested in literature [84]), and α is used to define the focus

on either one of the two measures that we discussed.

The procedure is outlined in Algorithm 1, and works as follows. After setting some

initialization values in lines 3–6, the algorithm starts by selecting a random node from

V (line 7). After that, forN iterations, the algorithm repeatedly increases the function

value (line 9) of the current node v by 1/N (to keep the final function value within

[0; 1]). Then, the algorithm either selects a new node from the neighborhood N(v) of



102 6.4. Prominent nodes

Algorithm 6.1 BIASEDRANDOMWALK

1: Input: Graph G = (V,E), N, p, α

2: Output: List CBRW , containing CBRW [v] for each node v ∈ V

3: for v ∈ V do

4: CBRW [v]← 0

5: end for

6: i← 0

7: v ← RANDOMNODEFROM(V )

8: while (i < N) do

9: CBRW [v]← CBRW [v] + (1/N)

10: if (rand(0, 1) > p) then

11: v ← BIASSELECTFROM(N(v), α)

12: else

13: v ← RANDOMNODEFROM(V )

14: end if

15: i← i+ 1

16: end while

17: return CBRW [ ]

v using the function BIASSELECTFROM() with probability 1− p (line 11), or jumps to

a completely random node with probability p, denoted by the RANDOMNODEFROM()

function (line 13).

If in the function BIASSELECTFROM() a random neighbor is selected, the algorithm

would be a plain random walk algorithm. However, in this specific case, the function

BIASSELECTFROM() selects a node with a probability dependent on different function

values of the prominence measures, as we expect that each of these functions tells us

something about the probability of that node being prominent. This means that given

current node v, the probability P (w) of selecting node w ∈ N(v) in the next step, is

equal to:

P (w) =
αCd(w) + (1− α)Cnd (w)

∑

u∈N(v)

(

αCd(u) + (1 − α)Cnd (u)
)

Here, α ∈ [0, 1] defines the focus on either one of the two measures. Not surpris-

ingly, setting the value of α to 1 resulted in roughly the same result as degree cent-

rality. A value of 0 for α did not find any of the prominent actors, which we believe

is due to the fact that even though Cnd is normalized, the degree plays a significant

role in identifying the prominence of a node, and very low degree nodes can still get



Chapter 6. Identifying Prominent Actors in Online Social Networks 103

a high neighborhood density score. In an attempt to linearly tune parameter α with

steps of 0.1, it turned out that any value between 0.2 and 0.8 gave consistently better

results than a lower or higher value. Thus apparently, both of the discussed meas-

ures to some extent influence the final result. Therefore we fixed the parameter to

0.5 to give equal focus to both measures. Finally, N , the number of iterations, should

be set to a value significantly larger than the number of nodes n. We investigate the

value of N more precisely in Section 6.6.2 when we look at the convergence of the

BIASEDRANDOMWALK algorithm.

6.5 Dataset

In this chapter, we consider an anonymized full snapshot of the friendship graph of

the Dutch online social network HYVES from September 2010. Some statistics such as

the number of nodes and edges, the average degree and the density (defined as the

number of edges divided by the maximum number of edges, i.e., m/(n(n − 1))) of

this graph are given in Table 6.1.

Although the graph has almost 10, 000 connected components (see Figure 6.2 and

note the logarithmic vertical axis), the vast majority of the nodes resides within the

largest connected component. According to the statistics provided on the website of

the social network at the time the snapshot of the network was made, the website

Full network

Nodes 8,113,017

Links 912,120,070

Average degree 112

Density 1.386 · 10−5

Connected components 9,926

Largest component

Nodes 8,083,964

Nodes % 99.6%

Links 912,067,984

Links % 99.99%

Density 1.396 · 10−5

Average distance 4.75

Radius 13

Diameter 25

Table 6.1: Friendship graph statistics.



104 6.5. Dataset

100

101

102

103

104

 0  20  40  60  80  100

fr
eq

ue
nc

y

component size

Figure 6.2: Component size distribution (excluding the largest component of

8, 083, 964 nodes).

had over 11 million members. This means that there were roughly 3 million users

that were not participating in the friendship graph at all. The node degree distribu-

tion of the graph is shown in Figure 6.3. This distribution follows a clear power law,

and has an even longer tail than visible, going all the way up to one node with a

degree of 285, 827. Note that the social network had a maximum number of friends at

1, 000, 1, 500 and 2, 000 which could only be removed upon request with the network

administrators, causing some noise in the tail of the degree distribution.

The node-to-node distance distribution shown in Figure 6.4 demonstrates how

the network adheres to the small-world property (see Section 6.2.3). This distribu-

tion was obtained by sampling 100, 000 node pairs u, v ∈ V , computing the value of

distance d(u, v), and then counting for each obtained distance value how frequently it

was observed. This distance distribution was also used to the derive the average dis-

tance of 4.75 listed in Table 6.1. The radius and diameter of the graph were computed

using the algorithms described in Chapter 2 and Chapter 4.

A set of nodes W of size |W | = 4, 867 (0.06%) has been manually labeled by the

network administrators as “prominent”. This subset consists of various Dutch politi-

cians, artists, athletes and actors and will be considered as a ground truth for assess-

ing the performance of different measures of prominence. We note that all prominent

nodes are part of the giant component.



Chapter 6. Identifying Prominent Actors in Online Social Networks 105

100

101

102

103

104

105

106

107

 0  500  1000  1500  2000  2500

fr
eq

ue
nc

y

degree

all nodes
prominent nodes

Figure 6.3: Degree distribution.

100

101

102

103

104

105

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

fr
eq

ue
nc

y

distance

Figure 6.4: Distance distribution.



106 6.6. Experiments

To the best of our knowledge, the only other study of a full snapshot of the full

HYVES graph is provided in [35]. In this work, similar observations regarding the

structural properties of the network are reported, and the distribution of various node

attributes such as the age of the user are given.

6.6 Experiments

In this section we will compare the proposed algorithm to various existing approaches

for determining node importance in networks. The algorithm as well as other dis-

cussed measures have been implemented in C++. Experiments were run on a 3.2GHZ

machine with 10GB memory, allowing us to keep the large network dataset in memory.

We start with a verification of the different node properties, after which we assess the

performance of the BIASEDRANDOMWALK algorithm.

6.6.1 Node properties

We have verified the two measures discussed in Section 6.4.1 on the discussed online

social network dataset (see Section 6.5 for a description of the dataset). From the de-

gree distribution shown in Figure 6.3, we can conclude that prominent users indeed

have many more friends than regular users. A simple strategy for identifying promin-

ent users would be to say that any user with more than for example 2, 000 friends is

prominent. However, this would not only be incorrect because such a cut-off may be

domain-specific and dependent on the type of social network, but it will also not help

to identify the significant number of prominent users with anywhere between 0 and

2, 000 friends. For this degree range, there is also a (much larger) number of regular

users with the same degree (notice the logarithmic vertical axis of Figure 6.3).

For the neighborhood density Cnd , we computed this value for 1, 000 randomly

selected regular nodes and 1, 000 randomly selected prominent nodes, and found

values of 1−0.131 = 0.869 and 1−0.035 = 0.965, respectively (the one minus notation

is used to indicate the significant difference in the density summation of the measure

of neighborhood density, see Section 6.4.1). This result is consistent with the intuition

of regular users having a relatively more dense neighborhood than prominent users.

Clearly, both of the properties that we discussed are related to the prominence of a

user in the considered network.

6.6.2 BiasedRandomWalk

To verify the applicability of the proposed random walk algorithm, we first consider its

convergence in terms of whether or not the set of identified prominent nodes becomes



Chapter 6. Identifying Prominent Actors in Online Social Networks 107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2M 4M 6M 8M 10M

pr
ec

is
io

n

 

iterations

Figure 6.5: BIASEDRANDOMWALK convergence: number of iterations (horizontal axis)

vs. precision (vertical axis) for a n = 1 million node sample of the original network.

consistent as the random walk algorithm runs. The result is displayed in Figure 6.5

for a 1 million node sample of the original graph. Clearly, the obtained value of the

precision of the algorithm converges. We experimented with various sample sizes

(10, 000, 100, 000 and 1 million nodes) of the original 8 million node dataset, and

consistently found that after N = 10 · n iterations, the precision did not show any

significant improvement. Thus, for this network we conclude the parameter N can be

set to 10 ·n to ensure a suitable result is obtained, which means that the running time

would scale linearly with the number of nodes.

6.6.3 Results

The results of applying the various algorithms to the full friendship graph are out-

lined in Table 6.2. Here we compare the results of each of the methods based on

k = ℓ, meaning that we select exactly as many prominent people as there are in the

dataset. Recall from Section 6.4 that we thus select the top ℓ = k nodes from the

list of nodes sorted by their prominence function value. The BIASEDRANDOMWALK al-

gorithm was executed with a budget of N = 10 · n = 81 million iterations. Except for

degree centrality which is fully deterministic, results are averaged over 10 runs in or-

der to flatten the effect of outliers due to the inherent randomness of the approaches,

resulting in standard deviations of less than 3% for each of the methods.



108 6.6. Experiments

Measure Precision Time

Random 0.06% 0sec

HITS 51.4% 10min

PageRank 56.4% 10min

RandomWalk 63.9% 1min

NODERANKING 64.0% 1min

Degree Centrality 64.2% 0sec

BIASEDRANDOMWALK 70.1% 13min

Table 6.2: Precision and indication of computation time of various importance meas-

ures with k = ℓ.

As a baseline for comparison we could say that if we were to select ℓ random

nodes from the complete set of nodes V to form the set W , we would on average

find 0.06% of the prominent nodes in the network. Degree centrality, RandomWalk

and the NODERANKING algorithm have roughly equal performance, and greatly im-

prove upon this baseline by already identifying about 64.0% correctly. It turns out that

HITS and PageRank performed significantly worse, which might be due to the fact

that these three algorithms were at least initially designed for directed graphs. The

proposed BIASEDRANDOMWALK method improves another 6 percentage points upon

degree centrality, the best performing existing method, demonstrating the advantage

of looking at both the degree and the neighborhood density during the random walk.

As for the running time, obviously random selection and degree centrality require

no additional computation time. PageRank and HITS both iterate over the set of edges

100 times to update the node values based on their neighboring nodes, each taking

roughly 10 minutes in doing so. The random walk algorithms each run for 10 · n
steps, where in case of the plain random walk and the NODERANKING algorithm, no

additional computation is done in each node. The BIASEDRANDOMWALK method picks

the neighbor with the highest CBRW value which takes some computation time (but,

assuming the graph is static, can be cached), running in little over 13 minutes in total.

One may argue that the number of prominent actors in a network is not always

known in advance. Therefore we also did experiments in which we varied ℓ between

0.01 ·k and 2 ·k on the 1 million node sample of the full dataset, allowing the study of

the precision, recall and F-measure curves. Assuming that we want to take a number

of false positives for granted as is often permitted in practical applications, we may

choose to focus solely on maximizing the recall value. Therefore, the recall value for

each of the approaches as a function of the fraction of k is presented in Figure 6.6. In

Figure 6.7 we furthermore present a comparison of the different F-values. At 0.75 · k,

the F-value appears optimal for BIASEDRANDOMWALK, and we would have a good



Chapter 6. Identifying Prominent Actors in Online Social Networks 109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

re
ca

ll

fraction of k

Degree Centrality
Random Walk

BiasedRandomWalk

Figure 6.6: Recall for each of the methods.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

F
-v

al
ue

fraction of k

Degree Centrality
Random Walk

BiasedRandomWalk

Figure 6.7: F-value for each of the methods.



110 6.7. Conclusion

balance between recall and precision. This optimum lies slightly lower around 0.70 ·k
for the measure of degree centrality (we left out the other two identically performing

measures because they both performed somewhat equal to degree centrality). Finally,

note that for small values of ℓ (up to 0.3 · k), the obtained result is always perfect

regardless of the method considered: apparently the top of the list is the same for each

of the measures. It turns out these nodes simply had an enormously high degree (over

2, 000, see Figure 6.3), and were therefore selected by each of the methods. In general,

we can conclude that the proposed BIASEDRANDOMWALK method works well, and is

able to identify a significant portion of the prominent actors of the friendship graph

of the considered online social network.

6.7 Conclusion

We have outlined various characteristic node properties of prominent actors in an on-

line social network, and used these properties to create an algorithm for identifying

prominent actors. Our algorithm, called BIASEDRANDOMWALK, combines the meas-

ures of degree centrality and neighborhood density in a random walk algorithm by

having a bias towards nodes with high values for these two measures. Neighborhood

density can be seen as a measure of the percentage of triadic closure, which is signi-

ficantly lower for prominent actors as compared to regular nodes. On the other hand,

the degree of prominent nodes is typically high. Experiments show that the proposed

method works quite well, as standard centrality measures such as degree centrality,

HITS and PageRank are outperformed in terms of precision, recall and F-measure.

In future work we would like to verify the extent to which the proposed random

walk technique can be applied to other types of (social) networks, and how we can

make the method parameter-free, or determine good parameter values based on prop-

erties of the network. We also want to consider the temporal aspect of importance,

and study how properties of prominent nodes within a social network change over

time.

Acknowledgment

We thank HYVES for making the structure of their (anonymized) friendship graph

available.



Part II

Path Traversal Patterns





7
The Difficulty of Path Traversal in an

Information Network

This chapter introduces a set of measures for determining the difficulty — for a human

— of traversing paths in networks. The focus is on determining which node-based and

path-based structural graph properties and measures say something about the diffi-

culty of finding a certain path between two given nodes in a graph. Using a large

corpus of over two million traversed paths on the online information network Wiki-

pedia it is possible to demonstrate how the proposed techniques are able to accurately

assess the human difficulty of finding a path between two given Wikipedia articles.

The clickpaths analyzed in this chapter originate from the Wiki Game, an online game

in which the main task is to connect two given random Wikipedia articles in as few

clicks as possible. This chapter is based on:

• F. W. Takes and W. A. Kosters. The difficulty of path traversal in information

networks. In Proceedings of the International Conference on Knowledge Discovery

and Information Retrieval (KDIR 2012), pages 138–144, 2012



114 7.1. Introduction

7.1 Introduction

Searching and navigating through structured information such as Wikipedia, the web

or a social network has become a common activity for many users. In this chapter

we will analyze the way in which humans traverse structured data in search of a

specific piece of information. The main goal of this study is to measure, understand

and predict the difficulty of finding a path between two documents within a structured

collection of information.

The motivation for this work comes from the idea that understanding the difficulty

of path traversal may lead to a better understanding of human search behavior in

general [62], which may in turn lead to improvements in the search strategy of an

artificially intelligent search algorithm. Moreover, if we understand the aspects which

complicate path traversal within structured data, then this information can possibly

be used to improve the structure of the linked data itself [16].

Although search engines [40] can often help to find the content within a struc-

tured dataset that the user is looking for, sometimes search engine performance does

not exactly meet the needs of the user [133]. This can happen for example because the

user does not know the exact keyword that describes what he is looking for, because

the search query was misinterpreted by the search engine, or because the required in-

formation is not indexed and is possibly located within the so-called Deep Web [58].

The Deep Web is the part of the internet which is not accessible to search engines,

for example because the content resides within a database, because the pages are

dynamic based on specific properties or settings of the user or because the content is

only accessible from a limited range of machines.

When browsing for a piece of information within an information network, the

user will have to reach the desired article by traversing the links that exist between

the articles within the information network, forming a path towards the correct piece

of information. We will study this type of path traversal by analyzing over two million

paths traversed by (human) users of the well-known online encyclopedia Wikipedia

(http://www.wikipedia.org). An advantage of studying paths on Wikipedia com-

pared to for example clickstreams from the world wide web [11] is that Wikipedia

contains much less “noise”, referring to to duplicate, false or untrusted information.

The Wikipedia paths analyzed in this chapter were gathered from the Wiki Game

(http://www.thewikigame.com), a free online game in which the user is asked to

connect two given random articles on Wikipedia. That is, starting from a certain

source article, the main objective of the user is to reach the goal article by repeatedly

following the clickable links within Wikipedia articles. This paper studies the difficulty

of this particular task. If we are able to a priori determine the expected difficulty of a

task, then this can be used to define multiple levels of difficulty for the Wiki Game.

http://www.wikipedia.org
http://www.thewikigame.com


Chapter 7. The Difficulty of Path Traversal in an Information Network 115

Figure 7.1: Subgraph of a (fictive) Wikipedia graph.

As an example of a path traversal task which is to be solved by a player of the

Wiki Game, consider the path from the Wikipedia article on MP3 to the article on

Northern Ireland. An actual (computed) shortest path of length 3 runs subsequently

via the articles on the United States and Ice Hockey (see Figure 7.1). Human users

attempting to find a path tend to know that Northern Ireland is somewhere in Europe,

so from the article on MP3 they first find their way to an article related to Europe,

for example via the page on the Internet which is a direct link from the article on

MP3. Next, they will for example navigate to the article on the United Kingdom, from

where they find the article on Northern Ireland. Some users take another detour on

the way, for example via the page on the Republic of Ireland and the page on Ireland

(island).

In turns out that humans, especially after some practice, are often able to link two

given random articles on Wikipedia in less than ten clicks. This is actually a quite re-

markable accomplishment, because even though a standard backtracking algorithm

is certainly able to match or even beat humans in terms of path length, a human

instead does not use millions of backtracking steps, but rather relies on background

knowledge in terms of expected semantic relatedness [48] to find a path. Incorpor-

ating such extensive knowledge into an algorithm for classifying path difficulty, for

example via ontologies [146], may in large information networks such as Wikipedia

be very complex.

Throughout this chapter a range of node-based and path-based structural network

properties and measures are proposed as indicators for the difficulty of connecting

two articles. An advantage of considering structural features is that they may capture

the direct relationship between the various concepts within the network, independ-

ent of which exact information network is studied. Also, structural properties are



116 7.2. Preliminaries

relatively easy to derive and compute, and do not require prior knowledge about the

dataset. Moreover, while both the content as well as the linking structure of Wikipe-

dia are subject to change, the classifiers that are proposed will only be affected by the

second type of change, as article semantics are not considered. We will measure the

quality of the proposed difficulty indicators by comparing their performance with the

average human performance in terms of success or failure at completing a path.

The rest of this chapter is organized as follows. First, Section 7.2 discusses some

notation, the various datasets used in this chapter and the main problem statement.

We discuss related work in Section 7.3. Next we describe, analyze, test and compare

the aspects which influence the difficulty of path traversal, at a node-based and a

path-based scale, in Section 7.4 and 7.5, respectively. Finally, Section 7.6 concludes.

7.2 Preliminaries

In this section we discuss various concepts, definitions, notation and the considered

datasets. Finally, we formulate the main problem statement and verification approach.

7.2.1 Concepts & definitions

The information network is represented by a directed graph G = (V,E) with n = |V |
nodes and m = |E| links. When we talk about a path between two nodes u, v ∈ V ,

we mean a sequence consisting of at least two nodes, starting at u and ending at v,

where there is a link from each node to the next node in the sequence. A shortest path

between two nodes u, v ∈ V is a path of length ℓ ≥ 1 between u and v for which there

is no other path from u to v of length smaller than ℓ. The length of such a shortest

path, or in short the distance, is denoted by d(u, v). Obviously, cycles may occur in

paths, but not in shortest paths. Of course, it can happen that there are no (shortest)

paths (d(u, v) =∞) or that there are multiple (shortest) paths connecting two nodes.

Because the graph is directed, it can happen that d(u, v) 6= d(v, u). We define the

indegree of a node v ∈ V as the number of links pointing to node v, and similarly, the

outdegree as the number of links pointing from node v to some other node.

7.2.2 Wikipedia

According to its own definition, “Wikipedia is a free, web-based, collaborative, mul-

tilingual encyclopedia project with over 3.9 million articles in English alone” (as ob-

served in 2011). Considering solely the content of the articles and the links it con-

tains, Wikipedia can be seen as a large directed graph, where each node represents

an article, and each directed link a hyperlink within the source article pointing to the



Chapter 7. The Difficulty of Path Traversal in an Information Network 117

Property Value

Articles (n) 3, 464, 902

Directed links (m) 82, 019, 786

Largest WCC 99.9%

Average indegree 26

Average outdegree 22

Average distance (d) 4.8

Effective diameter 7

Diameter 11

Table 7.1: Wikipedia dataset.

target article. In this study we will use the August 2011 English dataset of Wikipedia

pagelinks from DBpedia version 3.7 (see [10] or http://dbpedia.org), from which

we consider only the links to other Wikipedia articles, so we exclude links to external

websites. Links to “special” articles such as articles describing a file, the category to

which an articles belongs, or translations of the article, are also ignored. After some

pruning and cleaning, the final Wikipedia graph that will be used for this study has

statistics as presented in Table 7.1.

We note that the edge-to-node ratio, the diameter, defined as the length of a

longest shortest path, the effective diameter (the 90-th percentile of the cumulat-

ive distribution of shortest path lengths), the average distance (between two nodes,

sampled over 10, 000 node pairs) and the size of the largest weakly connected com-

ponent (WCC) are consistent with that of other small-world networks [140]. The Wiki-

pedia network furthermore has a power-law node degree distribution [149], suggest-

ing that the Wikipedia graph indeed resembles other frequently studied real-world

networks, such as the world wide web [12], internet topology networks [46] and

social networks [76].

7.2.3 The Wiki Game

The Wiki Game is an online game launched in 2009, in which the user is assigned the

task of connecting two given random articles on Wikipedia. Starting from a certain

source article, the main objective is to reach the goal article by repeatedly clicking

links on the page of the current article. While various types of games such as “Five

clicks to Jesus”, and “Six degrees of Wikipedia” exist, we will solely focus on “Speed

Race” games, in which the task is to connect two given random Wikipedia articles in

as few steps as possible, as quickly as possible, ultimately with a time limit of 120

seconds.

http://dbpedia.org


118 7.2. Preliminaries

Property Value

Tasks attempted 407, 268

User-generated paths 2, 278, 986

Failed paths 72.0%

Successful paths 28.0%

Table 7.2: The Wiki Game dataset used in Chapter 7.

The Wiki Game dataset T consists of games (or tasks) and associated user-generated

paths. A task t ∈ T is essentially a (start, goal) pair (u, v) indicating between which

two articles u and v (with u, v ∈ V ) a path has to be formed. For each of these tasks

we have a list of paths generated by the (fully anonymized) users that made an at-

tempt at solving this task. These paths describe either a successful or a failed attempt

at finding the goal article, and each have an associated path length. The data was

filtered to exclude non-serious attempts (more than 40 clicks per task, or no clicks at

all). This resulted in a dataset as presented in Table 7.2. Apparently, on average a task

was performed by 5 to 6 users, and little less than one third of the total set of tasks

presented to the users was successfully completed.

Figure 7.2 further clarifies the shortest path lengths of the tasks in the dataset,

as well as the path length of the user-generated paths. We observe that even though

shortest paths of length greater than 6 exist within Wikipedia, none of these tasks

were included in the database of attempted tasks. Most tasks had a shortest path

length somewhere between 2 and 4. Apparently, the average distance between the

two pages composing a task is lower than the average distance in the entire Wikipedia

dataset, indicating a small bias towards less obscure start and goal pages in the task

database.

Figure 7.2 also shows how the distribution of the successful user-generated paths

follows the same distribution as that of the shortest paths, but with an average path

length that is roughly 2 times larger than the shortest path length (between 5 and 7),

and a relatively fat tail. The distribution of the path length over all user-generated

paths is clearly dominated by the failed paths, but as opposed to the successful paths,

these distributions roughly follow a fat-tailed power law, indicating that when people

“drop out” the path traversal process, they frequently do this early in the traversal

process.

7.2.4 Problem definition

The main goal is to assess the difficulty of finding a path between two nodes in a

directed graph:



Chapter 7. The Difficulty of Path Traversal in an Information Network 119

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

re
la

tiv
e 

fr
eq

ue
nc

y

 

path length

all user-generated paths
failed user-generated paths

successful user-generated paths
shortest path length over all tasks

Figure 7.2: Relative frequency (vertical axis, logarithmic) of various path lengths (ho-

rizontal axis).

Given a directed graph G = (V,E) and nodes u, v ∈ V , can we assign

a function value f(u, v) ∈ [0; 1] indicating the difficulty of finding a path

from u to v?

In this chapter we will consider various approaches (or difficulty classifiers) of assign-

ing such a function value. We will evaluate the quality of an approach based on a

comparison with the results obtained by the users on tasks from the Wiki Game. For

each of the user-generated paths of a certain task t ∈ T we know whether or not

the path was successfully formed, allowing the definition of the average percentage

of success g(t) ∈ [0; 1] for task t. This information will serve as a ground truth for

assessing the quality of the various difficulty classifiers.

Each difficulty classifier f can assign a function value f(t) to all tasks t ∈ T , which

allows us to create a partition {T1, T2, . . . , Tq} of the set of tasks T . The partitioning

is done in such a way that the tasks within each Ti have the same function value

(range), so that the (average) function value of the tasks in Ti is always greater than

the average function value of the tasks in Ti−1, and where every Ti is maximal in size.

The partitions can be used to define q different difficulty levels for the Wiki Game.

The overall quality of a classification measure will be determined by computing

the Pearson correlation coefficient c(f, g) of the classifier f and average percentage of

success of the user-generated paths g, defined as:



120 7.3. Related work

c(f, g) =
q
∑

i f(i) g(i)−
∑

i f(i)
∑

i g(i)
√

q
∑

i f(i)
2 −

(

∑

i f(i)
)2

√

q
∑

i g(i)
2 −

(

∑

i g(i)
)2

Here, f(i) is equal to the average function value f(t) of paths t ∈ Ti, and g(i) is the

average percentage of success of the paths in Ti. As a second measure of comparison

we will also consider the Spearman rank correlation coefficient rc(f, g) of f and g,

defined as:

rc(f, g) =

∑

i(f(i)− f)(g(i)− g)
√

∑

i

(

f(i)− f
)2

∑

i

(

g(i)− g
)2

Here, f and g are equal to the average value over all i of f(i) and g(i), respectively.

This coefficient measures the extent to which the relation between the classifier out-

put and path difficulty can be described using a monotonic function. If we want a task

at a certain difficulty level to always be harder than a task at the previous level, then

we primarily aim for a high rank correlation coefficient.

In general, we will call a measure f correlated with path difficulty if it has a cor-

relation greater than 0.8 (or smaller than −0.8) with the percentage of success g. For

simplicity, we will denote the correlation coefficient and rank correlation coefficient

by c and rc, respectively.

7.3 Related work

The structure behind Wikipedia has been analyzed in great detail, addressing tasks

such as improving the linking structure [102] and automatic disambiguation of art-

icles [63]. Furthermore, Wikipedia is frequently used as a knowledge base for ex-

ternal knowledge discovery tasks [138], and can serve as an excellent platform for

computing (semantic) relatedness of concepts [48]. Patterns within clickpaths have

also been analyzed extensively [24], and have proven useful for tasks such as page

prediction [1, 119]. These patterns are often found within clickstreams from the web,

where there is a great deal of “noise”, i.e., duplicate, false or untrusted information.

On the web, information is frequently authored by one person or a very small group

of people, whereas the number of participating users of Wikipedia is sufficiently large

to counter spammers that spread for example false or biased information.

West and Leskovec [141] have compared human navigation in information net-

works such as Wikipedia with that of agents, using a dataset similar to the dataset



Chapter 7. The Difficulty of Path Traversal in an Information Network 121

studied in this chapter. They found that humans, when navigating within an inform-

ation network, have expectations about what links should exist and base a high level

reasoning plan upon this, and then use local information to navigate through the net-

work. They furthermore mention that humans often miss “good” link opportunities on

a page as their idea of semantic relatedness often overrules opportunistic clicking. In

[142], the same authors show that progress in a goal-finding task is easiest far from

and close to the target, with hubs being crucial in the beginning. To the best of our

knowledge, the issue of path difficulty has so far not been addressed.

7.4 Node-based difficulty measures

In this section we consider node-based difficulty measures, by which we refer to prop-

erties that can be derived solely based on a node and its neighborhood (so, local

information), in this case the Wikipedia article and its linked or linking articles. The

advantage of such properties is that they are relatively easy to compute, and that they

do not require knowledge about the entire dataset, which can be an advantage in

extremely large datasets such as the world wide web or Wikipedia.

7.4.1 Degree measures

Having a large number of outgoing links for a certain node is likely to make it easier

to directly reach a larger part of the graph from that particular node. Similarly, we

expect that the number of incoming links of a node will probably make it relatively

more easy to reach that node from any other node. We will verify the actual influence

of these two measures of path difficulty by analyzing q = 100 ranges of the indegree

of the goal article and the outdegree of the start article. The result is depicted in

Figure 7.3, and a Bezier curve is drawn to better visualize the overall correlation.

We observe no real significant correlation with the outdegree of the starting article

(c = 0.637 and rc = 0.789). However, a strong correlation (c = 0.850 and rc = 0.960)

is noticeable with respect to the indegree of the goal article and the actual percentage

of success.

We can conclude from these results that the degree of the goal article is of signi-

ficant influence to the difficulty of finding a certain path, whereas the degree of the

starting node does not appear to play a notable role. An advantage of the node-based

degree measure is that because the graph is stored as an adjacency list, the measure

can be computed in O(1).



122 7.4. Node-based difficulty measures

7.4.2 Neighborhood measures

As the indegree is apparently a relevant indicator for the difficulty of finding a certain

goal, it makes sense to refine this measure. Therefore we define the h-neighborhood

Nh(v) of a node v ∈ V as the set of nodes with distance at most h from v, more

specifically: Nh(v) = {w ∈ V | d(v, w) ≤ h}. Similarly, we can define N ′
h(v) =

{u ∈ V | d(u, v) ≤ h}, the reverse neighborhood, which is the set of all articles

u with distance at most h to v. The h-neighborhood size is the number of nodes

in the neighborhood of v, denoted by |Nh(v)|, and similarly we can define the re-

versed h-neighborhood size |N ′
h(v)|. Obviously, 1-neighborhood size and reversed 1-

neighborhood size are equal to the outdegree and indegree of a node plus 1 (the

node itself), respectively.

We compared the neighborhood measures described above with path difficulty

and found a significant correlation with the reversed 2-neighborhood size, which is

essentially looking one step further than indegree. The functionality of this method

can be explained by looking at the example graph in Figure 7.1. There, the article on

Ice Hockey and the article on Ireland (island) both have an indegree of 1, while based

on the degree of the neighbors, Ice Hockey seems much easier to reach than Ireland

(island). This is nicely reflected by the reversed 2-neighborhood size, as |N ′
2(Ireland

(island))| = 3 and |N ′
2(Ice Hockey)| = 6, whereas the indegree would consider the

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

102 103 104

101 102 103

pe
rc

en
ta

ge
 s

uc
ce

ss
fu

l

goal indegree

start outdegree

goal indegree
start outdegree

Figure 7.3: Start outdegree and goal indegree (horizontal axes, logarithmic) vs. per-

centage successful (vertical axis).



Chapter 7. The Difficulty of Path Traversal in an Information Network 123

two nodes equally difficult to reach.

Figure 7.4 shows a plot of q = 100 intervals of the reversed 2-neighborhood of

the goal article, again compared to the success percentage, and strong correlation

coefficients (c = 0.915 and rc = 0.978) can be observed. Especially for the hardest

tasks in the database (g(t) < 0.35), looking beyond the indegree helps to increase the

amount of monotonicity.

In line with results from the previous section, the 2-neighborhood of the start-

ing node did not appear to be correlated with the path difficulty (c = 0.397 and

rc = 0.492). Furthermore we mention that, even though in some graphs it might

make sense to look at (reverse) neighborhoods larger than h = 2, in the dense Wiki-

pedia graph, considering more than the 2-neighborhood will quickly yield almost the

entire graph, and indeed, correlation coefficients lower than 0.5 are observed when

considering larger neighborhoods.

The neighborhood measures discussed in this subsection can be computed in

O((m/n)h−1) time per task. The average node indegree (or outdegree), (m/n), is

between 20 and 30, still allowing for quick computation of the measure, especially

in case of h = 2. So, the reversed 2-neighborhood size is a good indicator for path

difficulty, whereas measures related to the degree of the starting article or neighbor-

hood do not appear to be good at classifying path difficulty. This can be explained

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

103 104 105 106

103 104

pe
rc

en
ta

ge
 s

uc
ce

ss
fu

l

goal reversed 2-neighborhood size

start 2-neighborhood size

goal reversed 2-neighborhood size
start 2-neighborhood size

Figure 7.4: Start and goal 2-neighborhood measures (horizontal axes, logarithmic)

vs. percentage successful (vertical axis).



124 7.5. Path-based difficulty measures

by considering the small-world property of the Wikipedia: with relatively few steps it

is possible to reach a large portion of the graph. It seems plausible that the starting

node on its own is of little influence in general, because the user will often find his

way to a hub-like node very quickly, from where the actual search for the goal node

starts.

7.5 Path-based difficulty measures

In contrast with the previous section, we will now look at path-based properties,

meaning that we look at actual paths between start and goal nodes in order to de-

termine the difficulty of finding a path, possibly using global knowledge about the

entire graph. Although the outcome in terms of difficulty prediction strength is expec-

ted to be higher, the computation time of path-based measures is longer: O(m) per

task.

7.5.1 Path length

When selecting two random articles on Wikipedia, due to the small-world property

of the Wikipedia graph, the probability of selecting a pair of articles that is at a small

distance of each other, is quite large. This is reflected in Figure 7.2, where the shortest

path distribution of all played games is depicted, as well as the distribution of human

formed path lengths of all successful paths. As mentioned in Section 7.2, the distribu-

tion of human path lengths does appear to have the same distribution shape as that of

the actual shortest paths, suggesting a correlation between shortest path length and

path difficulty.

Whereas we were able to aggregate the node-based measures from the previous

section into q = 100 intervals, in case of path length we only have 6 different values.

In Figure 7.6, the solid line shows for each actual distance (shortest path length) the

percentage of successful human paths. This shows a strong correlation coefficient of

c = −0.957 between the computed shortest path length and the percentage of suc-

cessful paths, and an obvious rank correlation of rc = −1.000. However, a downside

of considering distance as an indicator for difficulty is obviously the fact that it is only

possible to define q = 6 different difficulty levels.

7.5.2 Number of shortest paths

We may also choose to look at the number of shortest paths σ(u, v) between the

start and goal article u and v. Intuitively, if there is only one shortest path from the

start node to the end node, the task will be much harder compared to when there



Chapter 7. The Difficulty of Path Traversal in an Information Network 125

would have been thousands of shortest paths. Luckily, computing actual shortest path

lengths is as easy as counting the number of shortest paths, as σ(u, u) = 1 and

σ(u, v) =
∑

w∈B(u,v) σ(u,w) with B(u, v) = {w ∈ N ′
1(v) | d(u, v) = d(u,w) + 1}

[26]. The question is then how the number of shortest paths should be incorporated

in a function value for assessing path difficulty. The number of shortest paths alone

showed no significant correlation with path difficulty, which is understandable: a path

of length 2 with 20 possible shortest paths is expected to be much easier to find than

a path of length 4 with 20 shortest paths. So we propose to combine the distance with

the number of shortest paths:

dsp(u, v) = d(u, v) + α

(

1− log σ(u, v)

maxw,z∈V (log σ(w, z))

)

The reason why we take the log of σ(u, v) is motivated by Figure 7.5, where the plots

of “shortest paths” indicate how the distribution of the number of shortest paths for

each shortest path length decreases logarithmically. The parameter α ≥ 0 defines

the amount of focus on the number of shortest paths as compared to the distance. If

this parameter is set to 1, then a path of length 4 with only 1 possible shortest path

is assumed to be easier to find than a path of length 5 with 2000 different shortest

paths. Using linear parameter tuning with steps of 0.25, we obtained the best result

for α = 1.5, where we observe a strong correlation of c = −0.895 and rc = −0.876

101

102

103

104

105

 0  200  400  600  800  1000  1200

fr
eq

ue
nc

y

number of shortest paths / unique nodes on shortest paths

 

distance 2 - shortest paths
distance 3 - shortest paths
distance 4 - shortest paths
distance 5 - shortest paths
distance 6 - shortest paths
distance 2 - unique nodes
distance 3 - unique nodes
distance 4 - unique nodes
distance 5 - unique nodes
distance 6 - unique nodes

Figure 7.5: Frequency (vertical axis) of the number of shortest paths and number of

unique nodes (horizontal axis) on these paths for each distance.



126 7.5. Path-based difficulty measures

with path difficulty. The results are depicted in Figure 7.6.

7.5.3 Uniqueness of shortest paths

To further refine the measure from the previous section, we propose to look at the

number of distinct nodes that occur within these shortest paths. This measure is based

on the intuition that shortest paths quickly overlap, and that the extent to which paths

overlap may influence the difficulty of a path finding task. For example, in Figure 7.1,

the 3 shortest paths of length 3 from MP3 to United Kingdom run through a total

of 4 different nodes: United States, Internet, Europe and Ice Hockey. The maximum

number of unique nodes on 3 shortest paths of length 3 is 6 (3 times 2 unique inter-

mediary nodes). Somewhat inspired by betweenness centrality, we propose to divide

the number of nodes on the actual shortest paths by the maximum possible number

of intermediary nodes, a measure which we will call shortest paths uniqueness. For the

example, this results in a score of 4
6 ≈ 0.67. We will incorporate this measure along

with the distance in the difficulty classifier defined as:

dusp(u, v) = d(u, v) + β

(

1− log (ψ(u, v))

log (d(u, v) · σ(u, v))

)

Here, ψ(u, v) is a function that returns the number of distinct nodes on the shortest

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6  7

pe
rc

en
ta

ge
 s

uc
ce

ss
fu

l

path-based measure value

 

distance
distance + number of shortest paths

distance + shortest paths uniqueness

Figure 7.6: Various path-based measures (horizontal axis) vs. percentage successful

(vertical axis).



Chapter 7. The Difficulty of Path Traversal in an Information Network 127

Difficulty classifier Complexity q c rc

goal indegree O(1) 100 0.850 0.960

start outdegree O(1) 100 0.637 0.789

goal reversed 2-neighborhood size O(m/n) 100 0.915 0.978

start 2-neighborhood size O(m/n) 100 0.397 0.492

start-goal distance O(m) 6 −0.957 −1.000
distance + number of shortest paths O(m) 100 −0.895 −0.876
distance + shortest paths uniqueness O(m) 100 −0.924 −0.925

Table 7.3: Summary of correlation coefficients (c), rank correlation coefficients (rc)

and complexity (per task) of the proposed difficulty classifiers for q difficulty classes.

paths between u and v. The used values are again logarithmic as a result of the

distribution of the number of unique nodes on the shortest paths, as depicted by the

set of plots of “unique nodes” at various distances in Figure 7.5. The parameter β ≥ 0

indicates the amount of focus on the number of distinct nodes over all shortest paths,

and linear tuning of this parameter in steps of 0.25 showed that the best results were

obtained for β = 1.75. The performance of the measure is displayed by the dotted

line in Figure 7.6. We note that there are some “hickups” present in Figure 7.6, which

might suggest that there is a better way of combining the two measures of distance

and the uniqueness and number of shortest paths. The method nevertheless shows

a correlation of c = −0.924 and rc = −0.925, demonstrating how shortest paths

uniqueness does refine the path-based difficulty indicator from Section 7.5.1 based

on the node-to-node distance.

7.6 Conclusion

Throughout this chapter we have proposed and analyzed the effectiveness of a range

of techniques for classifying path traversal difficulty in information networks. The

results are summarized in Table 7.3, in which the best-performing node-based and

path-based measures are shown in bold.

With respect to the effectiveness of the various measures, we can generally say that

node-based measures related to the goal article, such as the reversed neighborhood

size, appear to be most effective, whereas node-based properties of the source article

appear to be of little influence to path difficulty. In line with related work, we found

that a user generally tends to quickly find his way to a hub node, from where the

actual search process starts.

As for the path-based measures considered in this work, the distance between



128 7.6. Conclusion

two articles is a good measure of difficulty, although as a result of the small-world

property of Wikipedia, the range of different distances and thus the range of difficulty

levels is very limited. Incorporating the number of shortest paths and the percentage

of unique nodes over all shortest paths results in a path-based classifier with slightly

better performance. However, a clear downside of the proposed path-based methods

based on the number of shortest paths and their uniqueness, is that they require

one parameter to be tuned. Furthermore, due to the higher complexity of path-based

measures, one may favor the node-based classifiers in a practical application, such as

in the Wiki Game. There, the difficulty classifiers outlined in this chapter could be

used to improve the user experience by allowing users to select a desired difficulty

level at which they want to play.

In future work we would like to improve our difficulty measures by including more

article-specific information, such as the link density of the considered article. Further-

more, we want to analyze the frequent subpaths that exist both in the successful as

well as in the failed paths created by humans. This information may help to obtain a

better understanding of the search process of a certain user or group of similar users,

possible allowing personalization of the difficulty indicators.

Acknowledgment

We thank Alex Clemesha, creator of the Wiki Game, for providing the data.



8
Mining User-Generated Path Traversal

Patterns in an Information Network

This chapter studies patterns occurring in user-generated clickpaths within the online

encyclopedia Wikipedia. The clickpath data originates from over seven million goal-

oriented clicks gathered from the Wiki Game, an online game in which the goal is

to find a path between two given random Wikipedia articles. First we propose to

use node-based path traversal patterns to derive a new measure of node centrality,

arguing that a node is central if it proves useful in navigating through the network. A

comparison with centrality measures from literature is provided, showing that users

generally “know” only a relatively small portion of the network, which they employ

frequently in finding their goal, and that this set of nodes differs significantly from

the set of central nodes according to various centrality measures. Next, we consider

so-called frequent traversal graphs, i.e., graphs that arise from considering the nodes

and edges of the top-k frequent path traversal patterns. We demonstrate how a small

set of patterns is enough to obtain a subgraph with structural properties similar to

that of the original graph, showing that users are able to identify a small yet efficient

portion of the graph that is useful for successfully completing their navigation goals.

This chapter is based on:

• F. W. Takes and W. A. Kosters. Mining user-generated path traversal patterns in

an information network. In Proceedings of the IEEE/ACM International Confer-

ence on Web Intelligence (WI 2013), pages 284–289, 2013



130 8.1. Introduction

8.1 Introduction

A large part of the gigantic amount of information that is nowadays available is or-

ganized in some sort of network structure. Examples include the world wide web,

an online social network or an information network such as Wikipedia. In these net-

works (or graphs), each node represents an entity or a piece of information, and each

link represents a tie or relationship between two entities. An important task that hu-

man users perform on a daily basis, is searching for a piece of content within such

a network. Although search engines can often assist the user in performing such a

search task, navigating to the desired page by means of clicking the links between

the nodes in the network is still a common activity, as sometimes search engine per-

formance does not exactly meet the user’s needs [133]. In such cases, the user will

have to reach the correct page by traversing hyperlinks that exist between the pages

in the network, forming a path towards the correct piece of information. Throughout

this chapter we consider the task of mining traversal patterns that occur within these

types of clickpaths. The obtained patterns are useful for understanding pathfinding

strategies in networks, and may even be useful in getting a better understanding of

human search behavior in general [62].

The data used in this chapter originates from the Wiki Game, an online game in

which the main task is to link two given random pages on Wikipedia. Employing his

perception of the structure of the network, a user has to find his way to the goal

article by clicking the directed links that exist between the various articles in the

Wikipedia graph, essentially generating a goal-oriented clickpath. We will consider

a newer version of the Wiki Game dataset introduced in Chapter 7, containing more

than one million clickpaths, comprising a total of seven million goal-oriented clicks on

Wikipedia pages. It is important to note that these clicks are fundamentally different

from simply counting the number of visits to a certain page, as these counts would for

example also include visits that immediately reach the desired goal page, for example

via a search engine. Instead, the clickpaths that we will study consist of Wikipedia

pages and links between pages that were actually considered useful, by the user, in

traversing the network.

We will use node-based traversal patterns to address a problem within the field of

network analysis called node centrality, defined as the importance of a node within

the network. So-called centrality measures are widely used to assess this issue of node

centrality, and examples include PageRank [107] as well as centrality measures that

originate from the field of social network analysis such as degree centrality, close-

ness centrality and betweenness centrality [26]. While the aforementioned centrality

measures all employ the structure of the network to assess the importance of a node,

none of them incorporates the human perception of the information incorporated in



Chapter 8. Mining User-Generated Path Traversal Patterns 131

the network. As it is ultimately the user who is going to assess whether or not a page

is actually relevant, one could say that it is not the structure of the network which

should serve as the basis of the centrality measure, but it should instead be the user’s

perception of the network that is going to determine the importance of a node. It may

very well be that certain structurally central nodes in the network are not considered

important or useful by the user, and vice versa. Therefore we introduce a user-defined

measure of centrality based on frequently traversed nodes, arguing that a page is im-

portant if it proves useful in navigating through the network. Especially in networks

where the user perception of the data plays a central role, such as in the world wide

web, or in an information network, we believe that a user-defined measure makes

more sense than a conventional user-insensitive approach. Furthermore, we intro-

duce the measure of subgraph centrality which determines the centrality of a group

of connected nodes with respect to the rest of the network, allowing an experimental

verification of the quality in terms of ease of navigation of the user-perceived central

nodes.

The rest of this chapter is organized as follows. In Section 8.2 we discuss some

definitions and introduce our dataset. After discussing related work in Section 8.3,

we introduce node-based patterns and our user-defined measure of centrality in Sec-

tion 8.4. In Section 8.5 we analyze different types of subgraphs derived from frequent

traversal patterns, and we perform experiments demonstrating the successful use of

these subgraphs by humans. Section 8.6 concludes the chapter and provides sugges-

tions for future work.

8.2 Preliminaries

This section starts with some basic definitions regarding graphs and paths that will

later on allow us to precisely define our path traversal patterns and various derived

measures. We also describe the clickpath dataset to which we will later on apply our

path traversal pattern mining techniques.

8.2.1 Wikipedia graph

We will model the information network Wikipedia as a directed graph G = (V,E)

with n = |V | nodes and m = |E| directed links between pairs of nodes. The indegree

indeg(v) of a node v ∈ V is equal to the number of incoming links of v, and similarly

outdeg(v) denotes the number of outgoing links. We define a path as a vector p of

visited nodes, where for each subsequent node pair (vi, vi+1) ∈ p there exists a link

e = (vi, vi+1) ∈ E in the original graphG. The path length is then equal to the number

of links that was traversed to get from the first to the last node in the path. We define



132 8.2. Preliminaries

the distance d(u, v) as the length of the shortest path between nodes u and v, meaning

the minimum number of links that has to be traversed to get from u to v. If there is

no path between u and v, then d(u, v) = ∞. In such cases, the graph has multiple

strongly connected components, meaning that some nodes are not reachable from

every other node by considering the directed links between the nodes. This does not

necessarily mean that there are multiple weakly connected components, which we

define as maximal sets of nodes such that every node can reach every other node by

means of traversing the links between the nodes, regardless of the direction of the

link. For convenience in later definitions, we denote the number of shortest paths

between two nodes by σ(u, v), and the number of shortest paths from u to v that runs

through node w as σw(u, v).

In this research, we use a Wikipedia graph consisting of the pagelinks from the

English version of DBpedia version 3.7 and 3.8 (see [10] or http://dbpedia.org),

which were mined from the original Wikipedia datasets in 2011 and 2012. We men-

tion that by only considering actual pagelinks and ignoring links to special pages or

external websites, each page represents an actual piece of information within the in-

formation network. Although the used Wikipedia graph is a bit newer than the version

presented in Table 7.1 in Chapter 7, some more pruning of “special” Wikipedia pages

was done, resulting in a graph with n = 3, 416, 126 nodes and m = 83, 271, 539 direc-

ted links, and further statistics similar to what we presented in the previous chapter.

8.2.2 The Wiki Game dataset

The clickpath data used in this chapter is based on clicks made by users of the Wiki

Game (http://www.thewikigame.com). In this game, users are assigned the task of

connecting two given random articles on Wikipedia by traversing the links that exist

between Wikipedia articles. For additional information and an example of this game,

the reader is referred to Section 7.2.3 of Chapter 7. Compared to the previous chapter,

we study a newer version of the Wiki Game dataset. Furthermore, the focus is on the

actual completed clickpaths, and failed paths are ignored.

Property Value

All user-generated paths 3, 219, 641

Clicks in all user-generated paths 17, 151, 824

Percentage successful 35.3%

Successful paths 1, 137, 337

Clicks in successful paths 7, 135, 060

Table 8.1: The Wiki Game dataset used in Chapter 8.

http://dbpedia.org
http://www.thewikigame.com


Chapter 8. Mining User-Generated Path Traversal Patterns 133

The dataset used in this chapter consists of clickpaths generated between 2009

and 2012, where one clickpath corresponds to a played game (or task), which is is

essentially a (start, goal) pair between which a path has been formed. In this chapter,

we will only consider paths with a length between 3 and 20, thus filtering out non-

serious attempts. A total of 3, 219, 641 paths was generated, consisting of 17, 151, 824

clicks in total. Of these tasks, little over one third was successfully completed, which

is the part of the dataset that we consider in this chapter. This results in a dataset of

1, 137, 337 clickpaths consisting of a total of 7, 135, 060 clicks. The statistics discussed

above are summed up in Table 8.1. Figure 8.1 shows the relative frequency of the

lengths of all user-generated paths, as well as that of the computed shortest path

lengths of the tasks.

8.3 Related work

Path traversal patterns in a hyperlinked environment have been a popular subject of

study since the introduction of the web [30]. A lot of work has been done on mining

the top-k frequent traversal patterns [93], often by using algorithms from the field of

frequent itemset mining [53]. With the enormous amount of web traffic taking place

these days, studying path traversal patterns from a stream has also become a useful

10-4

10-3

10-2

10-1

100

 2  4  6  8  10  12  14  16  18  20

re
la

tiv
e 

fr
eq

ue
nc

y

 

path length

all paths
failed paths

successful paths
shortest paths

Figure 8.1: Relative frequency (vertical axis, logarithmic) of various path lengths (ho-

rizontal axis) of the filtered dataset.



134 8.4. Path traversal patterns

task [92]. Most of the research in which clickpaths are analyzed within a confined

environment considers weblogs from a particular website [1]. This chapter differs

from such studies in a sense that all clicks in our dataset are goal-oriented and clicks

are identifiable as one unique topic, namely the subject of the Wikipedia page. An

overview of additional related work, for example on analysis of Wikipedia itself, can

be found in Section 7.3.

In Chapter 7, we have investigated the difficulty of forming a path between two

given random pages, showing that in Wiki Game, the indegree of the goal page as

well as the reversed neighborhood, both local properties of the goal page, are good

predictors of the difficulty of performing such a path traversal task. We have also

demonstrated how the start page is of little influence as the user just navigates away

from it quickly in search for a hub. Whereas the previous chapter only considered

path traversal success or failure, in this chapter, we consider the patterns that arise

from the actual clicks made by the users.

8.4 Path traversal patterns

In this section we will first introduce three types of path traversal patterns, after which

we look in detail at node-based traversal patterns, and how these patterns can serve

as a basis of a user-defined measure of centrality. We will compare this new measure

with centrality measures from literature, that we briefly describe in Section 8.4.2.

8.4.1 Patterns

Given a dataset P consisting of a large number of clickpaths, we are interested in

patterns, i.e., observable phenomena that occur more frequently than expected. For

our clickpath dataset, it is possible to distinguish between the following frequencies

in order to define our patterns:

• Node traversal frequency: the number of times a node v occurs in all paths p

from P .

• Edge traversal frequency: the number of times an ordered pair of subsequent

nodes (v1, v2) occurs in all paths p from P .

• Subpath traversal frequency: the number of times an ordered sequence of three

or more subsequent nodes (v1, v2, v3, . . .) appears in all paths p from P .

Obviously, relaxing the definition of subpath traversal frequency to length two or one,

yields the definitions of respectively edge and node traversal frequency. Similar to the



Chapter 8. Mining User-Generated Path Traversal Patterns 135

definitions often given in the area of frequent itemset mining [53], we call an ob-

servation frequent if it occurs more often than a certain threshold θ > 0 amongst all

paths, allowing the definition of our patterns: frequent nodes, frequent edges and fre-

quent subpaths. For a given threshold θ, every node within a frequent edge and every

edge within a frequent subpath, is also frequent. We define the set of top-k frequent

patterns as the set of k ≥ 1 patterns with the highest frequency, allowing us to again

define derived sets called top-k frequent nodes, top-k frequent edges and top-k frequent

subpaths. The most simple patterns based on frequent nodes are further discussed in

this section, whereas graphs derived from more complex traversal patterns are con-

sidered in Section 8.5.

8.4.2 Centrality measures

Node centrality as the importance of a certain node in the graph. A centrality measure

M returns the centrality CM (v) of a node v ∈ V . We consider the following (existing)

centrality measures, somewhat ordered by their complexity in terms of computation

time:

Indegree centrality

Cindeg(v) =
indeg(v)

n− 1

Closeness centrality

Cc(v) =
1

1
n−1

∑

w∈V d(v, w)

PageRank

CPR(v) = PR(v)

HITS

CHITS (v) = a(v)

Betweenness centrality

Cb(u) =
∑

v,w∈V

v 6=w,u6=v,u6=w

σu(v, w)

σ(v, w)

A discussion and more elaborate definition of these measures is given in Section 5.4.1

and Section 6.3. Each of the centrality measures results in a number between 0 and

1, where a higher score indicates that the node is more central. For convenience, we

normalize the centrality values such that the most central node has a centrality value

of 1. Clearly, distance based measures do not perform well when there is more than



136 8.4. Path traversal patterns

one connected component. Therefore we will only consider the largest strongly con-

nected component of the Wikipedia graph. We believe that we have covered the most

common and applicable ones in this subsection, using similar arguments regarding

the type of measures as presented in Section 5.4.1.

8.4.3 User-defined node centrality

Recall from Section 8.4.1 that considering the top-k frequent nodes means that if we

sort the list of nodes by their node frequency value, we consider the k nodes with the

highest frequency. For our clickpath dataset, this means that we are looking at the k

nodes that were most frequently used to traverse the graph. This list is actually quite

interesting, as it indicates which k nodes are considered important, by the user, in

navigating through the graph. We use this data as a basis for our user-defined meas-

ure of centrality, proposing to count the number of clicks that an article v received

(denoted by clicks(v)) and divide it by the total number of clicks made in order to

obtain our user-defined measure of centrality:

User-defined centrality

Cud(v) =
clicks(v)

∑

w∈V clicks(w)

To get an idea of the values returned by this function, Figure 8.2 shows the frequency

of each node traversal count over all nodes in the graph. The distribution follows a

clear power-law, meaning that many nodes are visited only a few times, and a few

nodes are visited quite often. We are obviously interested in the tail of the distribution:

the set of nodes that is visited very frequently.

8.4.4 Measure evaluation

Assessing the quality of a centrality measure is not a trivial task, and often comes

down to simply comparing one centrality measure with another centrality measure.

An alternative would be to have a subjective evaluation done by a human, and then

determine the extent to which the ranking produced by the centrality measures re-

sembles the user’s perception of the importance of these nodes. An example of a

more authoritative ground truth for centrality is provided in Chapter 6 in the context

of online social networks, where celebrities have a special labeling created by the ad-

ministrators of the network, reflecting the celebrity status of the real-world person

behind the profile. However, often researchers rely on manual inspection of the top-k

most central nodes [106], or simply compare their measure with other existing cent-

rality measures [22]. If we are only interested in the relative ranking of entities in



Chapter 8. Mining User-Generated Path Traversal Patterns 137

two top-k lists, measures such as Kendall’s tau and Spearman’s weighted footrule can

be used [79].

In our experiments, we will use two different ways of comparing centrality meas-

ures, as suggested in [22] (though in a somewhat different setting). Often, a centrality

measure is used to find the top-k most central nodes, and we mention that the eval-

uation techniques that we discuss here are designed such that thus only the top-k

nodes are evaluated. A rather basic technique is to compare top-k nodes of two cent-

rality measures and determine the percentage of nodes that overlap. For example, for

k = 1, we simply verify whether the most central node is equal for both measures. We

call this measure top-k precision, defined as follows:

top-k precision =
|Ak ∩Bk|

k

Here, Ak, Bk ⊆ V represent the sets of top-k nodes returned by centrality measures

A and B. Alternatively, when the actual centrality value of the top-k nodes is also of

importance, we can look at the correlation between the centrality values in two lists of

nodes. We call this measure top-k correlation and define it as the Pearson correlation

coefficient between the centrality values of the two methods. Important to note here

is that measure A is considered as the ground truth: we compare the centrality values

of the top-k nodes of measure A with that of measure B.

101

102

103

104

101 102 103

fr
eq

ue
nc

y 
of

 tr
av

er
sa

l c
ou

nt

 

node/edge traversal count

frequency of node traversal count
frequency of edge traversal count

Figure 8.2: The frequency (vertical axis, logarithmic) of different node and edge tra-

versal counts (horizontal axis, logarithmic).



138 8.4. Path traversal patterns

8.4.5 Experiments

In this section we use the user-defined measure of node centrality introduced in

Section 8.4.3 as a ground truth for comparing the centrality measures listed in Sec-

tion 8.4.2. We compare the different measures up to k = 250, based on an evaluation

using both top-k precision (see Figure 8.3 and Table 8.2) and top-k correlation (see

Table 8.2).

We note that for small values of k, big deviations for the top-k precision measure

can be observed, which is due to the fact that with a low value of k, one mismatch

has a relatively high influence on the actual percentage. In our experiments we also

found that it is important not to lose the directed aspect of the Wikipedia network, as

otherwise overview pages containing listings of events or people will be ranked too

high. This is also the reason why both outdegree centrality and the HITS algorithm

using the hub score instead of the authority score did not produce meaningful results.

Looking at the performance of the different centrality measures in Table 8.2, we

can generally conclude that PageRank gives not only the highest, but judging from

Figure 8.3 also gives the most consistent results when top-k precision is considered.

Indegree centrality is a good second choose if top-k correlation is important. We men-

tion that for values greater than k = 250, a somewhat consistent precision is observed.

Altogether, it appears that centrality measures are able to explain only roughly half

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

to
p-

k 
pr

ec
is

io
n

 

k

Betweenness
Closeness
HITS Auth

Indegree
PageRank

Figure 8.3: User-defined top-k precision (vertical axis) for different k (horizontal

axis).



Chapter 8. Mining User-Generated Path Traversal Patterns 139

Measure Top-k precision Top-k correlation

User-defined 1.00 1.00

PageRank 0.51 0.76

Closeness 0.49 0.53

Indegree 0.37 0.83

Betweenness 0.32 0.71

HITS 0.28 0.62

Table 8.2: Comparison of centrality measures with user-defined centrality for k = 100.

of the nodes that are frequently used by humans to traverse the graph. This may lead

us to believe that either humans are able to assess half of the central nodes in the

graph, or that existing centrality measures are simply not able to produce the portion

of nodes which is considered useful by the user. In the latter case, the only remaining

question is then whether or not the set of nodes returned by the centrality measures

is better or worse at ensuring that a large portion of the graph is easily reachable and

thus useful for completing navigation goals. We will try to answer this question in the

next section by looking at global properties of the path traversal patterns.

8.5 Global patterns

In this section we consider the global properties of the frequent patterns, creating

subgraphs of the original network by considering the frequent node and edge traversal

patterns.

8.5.1 Frequent traversal graphs

We define a frequent traversal graph as a graph consisting of frequent traversal pat-

terns, distinguishing between two types of graphs:

• Node-based frequent traversal graph: the subgraph consisting of all nodes v ∈ V
and their connecting edges for which it holds that v is traversed more often than

a certain threshold θ > 0.

• Edge-based frequent traversal graph: the subgraph consisting of all links (u, v) ∈
E and their node endpoints for which it holds that (u, v) is traversed more often

than a certain threshold θ > 0.

Analogously to the definitions given in Section 8.4.1, we can define top-k node-based

and edge-based frequent traversal graphs, consisting of the top-k most frequently



140 8.5. Global patterns

visited nodes and edges, respectively. Iterating over increasing values of k then yields

node-based and edge-based evolving graphs.

Some properties of these two types of subgraphs are shown in Figure 8.4 and

Figure 8.5 for respectively the frequent nodes and frequent edges of our Wikipedia

clickpath dataset. We note that when considering frequent edges, the average distance

between two nodes quickly (from roughly k = 5, 000 onwards) resembles that of the

original Wikipedia graph (4.55), and then remains surprisingly stable as k increases.

The node-based frequent traversal graph does not resemble the distance distribution

of the original graph, as this type of subgraph also contains many edges that were not

actually traversed, but are simply present between the frequent nodes in the original

graph, creating many more connections between the nodes than were actually tra-

versed. Indeed, considering only the edge-based frequent patterns might make more

sense, as the user apparently “knew” these exact links, and not just the nodes. The

findings presented here may indicate that the user is able to select a representative

portion of the edges (and by that a portion of the nodes). In the next section, an

attempt is made to measure the effectiveness of this central portion of nodes.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4000  8000  12000  16000  20000
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

ed
ge

/n
od

e 
ra

tio

av
er

ag
e 

di
st

an
ce

k

edge/node ratio
average distance

average distance in Wikipedia

Figure 8.4: Values (vertical axes) of different properties of the node-based frequent

traversal graph for different k (horizontal axis).



Chapter 8. Mining User-Generated Path Traversal Patterns 141

8.5.2 Subgraph centrality

The final question which we aim to answer in this chapter, is whether or not the

frequent traversal graphs are actually better or worse than graphs derived from tra-

ditional centrality measures in terms of being able to quickly reach a large portion of

the original graph, and thus ensuring ease of navigation. To do this, we introduce the

measure of subgraph centrality, which we define as the centrality (according to some

existing measure, in our case closeness centrality) of a set of nodes, namely the set

of top-k nodes obtained through a centrality measure. To determine the centrality of

this set of nodes, we merge the set of top-k frequent nodes into one node, realizing

the equivalent of setting the weight of all edges between frequent nodes to zero.

In Figure 8.6 we show for increasing k the subgraph centrality values derived from

the frequent nodes in the user-defined measure and the PageRank centrality measure.

We have chosen to provide a comparison with PageRank and indegree because they

performed best in terms of precision and correlation according to our experiments in

Section 8.4.5. We observe how the subgraph centrality of the user-defined frequent

traversal graph compares quite well to that of the PageRank subgraph, which indicates

that the user is able to select a portion of nodes which in terms of reachability is equal

to that of a centrality measure. For k > 1, 200, the quality of the user-defined centrality

is even higher than that of PageRank, suggesting that users are able to select a portion

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20000  40000  60000  80000  100000
 2

 2.5

 3

 3.5

 4

 4.5

 5

ed
ge

/n
od

e 
ra

tio

av
er

ag
e 

di
st

an
ce

k

edge/node ratio
average distance

average distance in Wikipedia

Figure 8.5: Values (vertical axes) of different properties of the edge-based frequent

traversal graph for different k (horizontal axis).



142 8.6. Conclusion

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0  2000  4000  6000  8000  10000

su
bg

ra
ph

 c
en

tr
al

ity

 

k

User-defined
PageRank

Indegree

Figure 8.6: Comparison of subgraph centrality (vertical axis) of various centrality

measures for different values of k (horizontal axis).

of the nodes of the graph which is better for realizing a low node-to-node distance

than a traditional measure such as PageRank.

8.6 Conclusion

Throughout this chapter we have looked at mining path traversal patterns from the

information network Wikipedia, aiming to understand and measure the quality in

terms of navigation of user-generated traversal patterns. Using data gathered from

over seven millions clicks made in the Wiki Game, we have derived a new measure of

node centrality based on frequently traversed nodes.

It turns out that roughly half of the set of most frequently traversed nodes overlaps

with the set of central nodes according to centrality measures such as PageRank. The

additional nodes that are frequently visited by the users do appear to be useful, which

we have demonstrated by using frequent traversal graphs and the notion of subgraph

centrality. The subgraphs that can be derived from the frequently traversed nodes

appear to be more central than the set of nodes derived from an existing centrality

measure. This shows how users are apparently able to select an efficient portion of

the graph that is useful in traversing the graph, specifically realizing a short distance

to all other nodes in the graph. Although we have shown that the user is able to select



Chapter 8. Mining User-Generated Path Traversal Patterns 143

an efficient subset of the graph for completing navigation goals, it remains an open

question exactly how the user selected this subset. Clearly, a subset derived using a

centrality measure or a random subset performs similar or worse, so from an artificial

intelligence point of view, the performance of the user is quite remarkable.

In future work, we want to see if we can extend the study of traversal patterns

to more complex patterns based on frequent edges, possibly to study edge central-

ity [100], or based on frequent (interleaved) subpaths. Last but not least, the topics

and techniques discussed in this chapter can possibly be extended to other types of

graphs such as social networks, in which frequently traversed nodes and edges may

indicate important actors and ties in the network.

Acknowledgment

We thank Alex Clemesha, creator of the Wiki Game, for providing the data.





Bibliography

[1] R. Agarwal, K. Veer Arya, and S. Shekhar. An architectural framework for

web information retrieval based on user’s navigational pattern. In Proceedings

of the International Conference on Industrial and Information Systems (ICIIS),

pages 195–200, 2010.

[2] Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of topological

characteristics of huge online social networking services. In Proceedings of the

16th International World Wide Web Conference (WWW 2007), pages 835–844,

2007.

[3] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of dia-

meter and shortest paths (without matrix multiplication). SIAM Journal on

Computing, 28(4):1167–1181, 1999.

[4] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries

on large networks by pruned landmark labeling. In Proceedings of the ACM

International Conference on Management of Data (SIGMOD 2013), pages 349–

360, 2013.

[5] T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-path queries for complex

networks: Exploiting low tree-width outside the core. In Proceedings of the 15th

International Conference on Extending Database Technology (EDBT 2012), pages

144–155, 2012.

[6] R. Albert. Scale-free networks in cell biology. Journal of Cell Science, 118:4947–

4957, 2005.



146 Bibliography

[7] R. Albert and A. Barabási. Statistical mechanics of complex networks. Reviews

of Modern Physics, 74(1):47, 2002.

[8] R. Albert, H. Jeong, and A. Barabási. Internet: Diameter of the world-wide

web. Nature, 401(6749):130–131, 1999.

[9] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest

path problem. Journal of Computer and System Sciences, 54(2):255–262, 1997.

[10] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia:

A nucleus for a web of open data. In The Semantic Web, volume 4825 of Lecture

Notes in Computer Science, pages 722–735. 2007.

[11] A. Banerjee and J. Ghosh. Clickstream clustering using weighted longest com-

mon subsequences. In Proceedings of the SIAM Workshop on Web Mining, pages

33–40, 2001.

[12] A. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random net-

works: the topology of the world-wide web. Physica A: Statistical Mechanics

and its Applications, 281(1):69–77, 2000.

[13] A. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek. Evol-

ution of the social network of scientific collaborations. Physica A: Statistical

Mechanics and its Applications, 311(3-4):590–614, 2002.

[14] V. Batagelj and A. Mrvar. Pajek datasets. Accessed February 28, 2014.

http://vlado.fmf.uni-lj.si/pub/networks/data.

[15] K. Batool and M. A. Niazi. Towards a methodology for validation of centrality

measures in complex networks. PloS ONE, 9(4), article e90283, 2014.

[16] C. Bizer, T. Heath, and T. Berners-Lee. Linked data: The story so far. Interna-

tional Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

[17] K. Boitmanis, K. Freivalds, P. Ledi, and R. Opmanis. Fast and simple approx-

imation of the diameter and radius of a graph. In Experimental Algorithms,

volume 4007 of Lecture Notes in Computer Science, pages 98–108. 2006.

[18] P. Boldi, M. Rosa, and S. Vigna. HyperANF: Approximating the neighbourhood

function of very large graphs on a budget. In Proceedings of the 20th Interna-

tional Conference on World Wide Web (WWW 2011), pages 625–634, 2011.

[19] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In

Proceedings of the 13th International World Wide Web Conference (WWW 2004),

pages 595–601, 2004.

http://vlado.fmf.uni-lj.si/pub/networks/data


Bibliography 147

[20] K. D. Bollacker, S. Lawrence, and C. L. Giles. Citeseer: An autonomous web

agent for automatic retrieval and identification of interesting publications. In

Proceedings of the 2nd International Conference on Autonomous Agents, pages

116–123, 1998.

[21] M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, and F. W. Takes.

On the solvability of the six degrees of Kevin Bacon game — A faster graph

diameter and radius computation method. In Proceedings of the 7th Interna-

tional Conference on Fun with Algorithms (FUN 2014), volume 8496 of Lecture

Notes in Computer Science, pages 52–63. 2014.

[22] S. P. Borgatti, K. M. Carley, and D. Krackhardt. On the robustness of centrality

measures under conditions of imperfect data. Social Networks, 28(2):124–136,

2006.

[23] S. P. Borgatti and M. G. Everett. A graph-theoretic perspective on centrality.

Social Networks, 28(4):466–484, 2006.

[24] J. Borges and M. Levene. Data mining of user navigation patterns. In Web

Usage Analysis and User Profiling, volume 1836 of Lecture Notes in Computer

Science, pages 92–112. 2000.

[25] D. Boyd and N. Ellison. Social network sites: Definition, history, and scholar-

ship. Journal of Computer-Mediated Communication, 13(1):210–230, 2007.

[26] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathem-

atical Sociology, 25(2):163–177, 2001.

[27] U. Brandes and C. Pich. Centrality estimation in large networks. International

Journal of Bifurcation and Chaos, 17(7):2303–2318, 2007.

[28] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Wiener. Graph structure in the web. Computer networks,

33(1):309–320, 2000.

[29] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, 1990.

[30] M.-S. Chen, J. S. Park, and P. S. Yu. Efficient data mining for path traversal

patterns. IEEE Transactions on Knowledge and Data Engineering, 10(2):209–

221, 1998.

[31] P. Chen, H. Xie, S. Maslov, and S. Redner. Finding scientific gems with Google’s

PageRank algorithm. Journal of Informetrics, 1(1):8–15, 2007.



148 Bibliography

[32] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: User movement

in location-based social networks. In Proceedings of the 17th ACM International

Conference on Knowledge Discovery and Data Mining (KDD 2011), pages 1082–

1090, 2011.

[33] D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.

[34] D. G. Corneil, F. F. Dragan, and E. Köhler. On the power of BFS to determine a

graph’s diameter. Networks, 42(4):209–222, 2003.

[35] R. Corten. Composition and structure of a large online social network in the

Netherlands. PloS ONE, 7(4), article e34760, 2012.

[36] P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino. On computing

the diameter of real-world undirected graphs. Theoretical Computer Science,

514:84–95, 2013.

[37] P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino. Finding the

diameter in real-world graphs. In Proceedings of the 18th Annual European

Symposium on Algorithms (ESA 2010), pages 302–313, 2010.

[38] P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. A comparison of three al-

gorithms for approximating the distance distribution in real-world graphs. In

Theory and Practice of Algorithms in (Computer) Systems, volume 6595 of Lec-

ture Notes in Computer Science, pages 92–103. 2011.

[39] P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. On computing the diameter

of real-world directed (weighted) graphs. In Experimental Algorithms, volume

7276 of Lecture Notes in Computer Science, pages 99–110. 2012.

[40] W. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in

Practice. Addison-Wesley, 2010.

[41] G. H. Dal, W. A. Kosters, and F. W. Takes. Fast diameter computation of large

sparse graphs using GPUs. In Proceedings of the 22nd IEEE International Confer-

ence on Parallel, Distributed and Network-based Processing (PDP 2014), pages

632–639, 2014.

[42] P. Desikan and J. Srivastava. Mining temporally evolving graphs. In Proceedings

of the 6th WEBKDD Workshop in conjunction with the 10th ACM International

Conference on Knowledge Discovery and Data Mining (KDD 2004), 10 pages,

2004.



Bibliography 149

[43] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[44] D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM Journal

on Computing, 29(5):1740–1759, 2000.

[45] D. Eppstein and J. Wang. Fast approximation of centrality. In Proceedings of

the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pages

228–229, 2001.

[46] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the

internet topology. ACM SIGCOMM Computer Communication Review, 29:251–

262, 1999.

[47] L. Fu and J. Deng. Graph calculus: Scalable shortest path analytics for large

social graphs through core net. In Proceedings of the IEEE/ACM International

Conference on Web Intelligence (WI 2013), pages 417–424, 2013.

[48] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using

Wikipedia-based explicit semantic analysis. In Proceedings of the 20th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2007), volume 7, pages

1606–1611, 2007.

[49] L. Getoor and C. P. Diehl. Link mining: A survey. ACM SIGKDD Explorations

Newsletter, 7(2):3–12, 2005.

[50] J. Golbeck and J. Hendler. Accuracy of metrics for inferring trust and repu-

tation in semantic web-based social networks. In Lecture Notes in Computer

Science, volume 3257, pages 116–131, 2004.

[51] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A*: Efficient point-

to-point shortest path algorithms. In Proceedings of the SIAM Workshop on

Algorithm Engineering and Experiments (ALENEX 2006), pages 129–143, 2006.

[52] V. Gómez, A. Kaltenbrunner, and V. López. Statistical analysis of the social

network and discussion threads in Slashdot. In Proceedings of the 17th ACM

International Conference on World Wide Web (WWW 2008), pages 645–654,

2008.

[53] G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using FP-

trees. IEEE Transactions on Knowledge and Data Engineering, 17(10):1347–

1362, 2005.



150 Bibliography

[54] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and accurate estim-

ation of shortest paths in large graphs. In Proceedings of the 19th ACM Inter-

national Conference on Information and Knowledge Management (CIKM 2010),

pages 499–508, 2010.

[55] A. Gubichev and T. Neumann. Path query processing on very large RDF graphs.

In Proceedings of the 14th International Workshop on the Web and Databases

(WebDB 2011), 6 pages, 2011.

[56] P. Hage and F. Harary. Eccentricity and centrality in networks. Social Networks,

17:57–63, 1995.

[57] P. Harish and P. Narayanan. Accelerating large graph algorithms on the GPU

using CUDA. In High Performance Computing (HiPC 2007), volume 4873 of

Lecture Notes in Computer Science, pages 197–208. 2007.

[58] B. He, M. Patel, Z. Zhang, and K. Chang. Accessing the deep web. Communic-

ations of the ACM, 50(5):94–101, 2007.

[59] E. M. Heemskerk, F. Daolio, and M. Tomassini. The community structure of the

European network of interlocking directorates 2005–2010. PLoS ONE, 8(7),

article e68581, 2013.

[60] P. Hell and J. Nešeťril. Graphs and Homomorphisms. Oxford University Press,

2004.

[61] O. Hinz, B. Skiera, C. Barrot, and J. U. Becker. Seeding strategies for viral

marketing: an empirical comparison. Journal of Marketing, 75(6):55–71, 2011.

[62] I. Hsieh-Yee. Research on web search behavior. Library & Information Science

Research, 23(2):167–185, 2001.

[63] J. Hu, G. Wang, F. Lochovsky, J. Sun, and Z. Chen. Understanding user’s query

intent with Wikipedia. In Proceedings of the 18th International Conference on

World Wide Web (WWW 2009), pages 471–480, 2009.

[64] H. Jeong, S. P. Mason, A. Barabási, and Z. N. Oltvai. Lethality and centrality

in protein networks. Nature, 411(6833):41–42, 2001.

[65] R. Jin, N. Ruan, Y. Xiang, and V. Lee. A highway-centric labeling approach

for answering distance queries on large sparse graphs. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD 2012), pages

445–456, 2012.



Bibliography 151

[66] S. Jin and A. Bestavros. Small-world characteristics of internet topologies and

implications on multicast scaling. Computer Networks, 50(5):648–666, 2006.

[67] B. H. Junker and F. Schreiber. Analysis of Biological Networks. John Wiley &

Sons, 2008.

[68] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Hadi:

Mining radii of large graphs. ACM Transactions on Knowledge Discovery from

Data, 5(2):8, 2011.

[69] A. M. Kentsch, W. A. Kosters, P. van der Putten, and F. W. Takes. Exploratory

recommendations using Wikipedia’s linking structure. In Proceedings of 20th

Belgium Netherlands Conference on Machine Learning (Benelearn 2011), pages

61–68, 2011.

[70] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of

the ACM, 46(5):604–632, 1999.

[71] J. Kleinberg. The small-world phenomenon: An algorithm perspective. In

Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC 2000),

pages 163–170, 2000.

[72] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and embedding using

small sets of beacons. In Proceedings of the 45th IEEE Symposium on Founda-

tions of Computer Science (FOCS 2004), pages 444–453, 2004.

[73] B. Klimt and Y. Yang. The Enron corpus: A new dataset for email classification

research. In Machine Learning: ECML 2004, volume 3201 of Lecture Notes in

Computer Science, pages 217–226. 2004.

[74] KONECT. Koblenz network collection. Accessed February 28, 2014.

http://konect.uni-koblenz.de/networks/.

[75] G. Kossinets and D. Watts. Empirical analysis of an evolving social network.

Science, 311(5757):88–90, 2006.

[76] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social

networks. In Proceedings of the 12th ACM International Conference on Know-

ledge Discovery and Data Mining (KDD 2006), 2006.

[77] P. D. Kusuma, D. Radosavljevik, F. W. Takes, and P. van der Putten. Combin-

ing customer attribute and social network mining for prepaid mobile churn

prediction. In Proceedings of 22th Belgian Netherlands Conference on Machine

Learning (Benelearn 2013), pages 50–58, 2013.

http://konect.uni-koblenz.de/networks/


152 Bibliography

[78] C. Lampe, N. Ellison, and C. Steinfield. A Face(book) in the crowd: Social

searching vs. social browsing. In Proceedings of the 20th Anniversary Conference

on Computer Supported Cooperative Work, pages 167–170, 2006.

[79] A. Langville and C. Meyer. Who’s #1? The Science of Rating and Ranking. Prin-

ceton University Press, 2012.

[80] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science of

Search Engine Rankings. Princeton University Press, 2006.

[81] G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–

416, 2009.

[82] LASAGNE. Laboratory of algorithms, models and analysis of graphs and net-

works. Accessed February 28, 2014. http://piluc.dsi.unifi.it/lasagne.

[83] J. Leskovec, L. Adamic, and B. Huberman. The dynamics of viral marketing.

ACM Transactions on the Web, 1(1):5, 2007.

[84] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings of

the 12th ACM International Conference on Knowledge Discovery and Data Mining

(KDD 2006), pages 631–636, 2006.

[85] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and neg-

ative links in online social networks. In Proceedings of the 19th International

Conference on World Wide Web (WWW 2010), pages 641–650, 2010.

[86] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification

laws, shrinking diameters and possible explanations. In Proceedings of the 11th

ACM International Conference on Knowledge Discovery in Data Mining (KDD

2005), pages 177–187, 2005.

[87] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification

and shrinking diameters. ACM Transactions on Knowledge Discovery from Data,

1(1), article 2, 2007.

[88] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure

in large networks: Natural cluster sizes and the absence of large well-defined

clusters. Internet Mathematics, 6(1):29–123, 2009.

[89] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical comparison of algorithms

for network community detection. In Proceedings of the 19th International

World Wide Web Conference (WWW 2010), pages 631–640, 2010.

http://piluc.dsi.unifi.it/lasagne


Bibliography 153

[90] L. Lesniak. Eccentric sequences in graphs. Periodica Mathematica Hungarica,

6:287–293, 1975.

[91] A. Levitin. Introduction to the Design and Analysis of Algorithms. Addison-

Wesley, 3rd edition, 2011.

[92] H.-F. Li, S.-Y. Lee, and M.-K. Shan. On mining webclick streams for path tra-

versal patterns. In Proceedings of the 13th ACM International World Wide Web

Conference (WWW 2004), pages 404–405, 2004.

[93] H.-F. Li, S.-Y. Lee, and M.-K. Shan. DSM-TKP: Mining top-k path traversal

patterns over web click-streams. In Proceedings of the IEEE/ACM International

Conference on Web Intelligence (WI 2005), pages 326–329, 2005.

[94] M. Luiten, W. A. Kosters, and F. W. Takes. Topical influence on Twitter: A

feature construction approach. In Proceedings of 24th Benelux Conference on

Artificial Intelligence (BNAIC 2012), pages 139–146, 2012.

[95] C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically tight

bounds for the diameter of massive graphs. ACM Journal of Experimental Al-

gorithmics, 13, article 10, 2009.

[96] D. Magoni and J. Pansiot. Analysis of the autonomous system network topo-

logy. ACM SIGCOMM Computer Communication Review, 31(3):26–37, 2001.

[97] D. Magoni and J. Pansiot. Internet topology modeler based on map sampling.

In Proceedings of the 7th International Symposium on Computers and Commu-

nications (ISCC 2002), pages 1021–1027, 2002.

[98] D. Magoni and J.-J. Pansiot. Analysis and comparison of internet topology gen-

erators. In NETWORKING 2002: Networking Technologies, Services, and Proto-

cols; Performance of Computer and Communication Networks; Mobile and Wire-

less Communications, volume 2345 of Lecture Notes in Computer Science, pages

364–375. 2002.

[99] A. Marino. Algorithms for Biological Graphs: Analysis and Enumeration. PhD

thesis, Università degli Studi di Firenze, 2012.

[100] P. D. Meo, E. Ferrara, G. Fiumara, and A. Ricciardello. A novel measure of edge

centrality in social networks. Knowledge-Based Systems, 30:136–150, 2012.

[101] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph traversal. ACM

SIGPLAN Notices, 47(8):117–128, 2012.



154 Bibliography

[102] D. Milne and I. H. Witten. Learning to link with Wikipedia. In Proceedings of the

17th ACM International Conference on Information and Knowledge Management

(CIKM 2008), pages 509–518, 2008.

[103] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee. Meas-

urement and analysis of online social networks. In Proceedings of the 7th

ACM SIGCOMM International Conference on Internet Measurement, pages 29–

42, 2007.

[104] M. E. Newman. Clustering and preferential attachment in growing networks.

Physical Review E, 64(2):025102, 2001.

[105] T. O’Guinn, C. Allen, and R. Semenik. Advertising and Integrated Brand Promo-

tion. Cengage Learning, 2011.

[106] T. Opsahl, F. Agneessens, and J. Skvoretz. Node centrality in weighted net-

works: Generalizing degree and shortest paths. Social Networks, 32(3):245–

251, 2010.

[107] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:

Bringing order to the web. Technical Report, Stanford Digital Library Technolo-

gies Project, 1998.

[108] G. Palla, I. J. Farkas, P. Pollner, I. Derenyi, and T. Vicsek. Directed network

modules. New Journal of Physics, 9(6):186, 2007.

[109] C. Palmer, P. Gibbons, and C. Faloutsos. ANF: A fast and scalable tool for

data mining in massive graphs. In Proceedings of the 8th ACM International

Conference on Knowledge Discovery and Data Mining (KDD 2002), pages 81–

90, 2002.

[110] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures &

Algorithms, 20(2):165–183, 2002.

[111] G. Pavlopoulos, M. Secrier, C. Moschopoulos, T. Soldatos, S. Kossida, J. Aerts,

R. Schneider, and P. Bagos. Using graph theory to analyze biological networks.

BioData Mining, 4, 10 pages, 2011.

[112] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path distance

estimation in large networks. In Proceedings of the 18th ACM International

Conference on Information and Knowledge Management (CIKM 2009), pages

867–876, 2009.



Bibliography 155

[113] J. Pujol, R. Sangüesa, and J. Delgado. Extracting reputation in multi agent

systems by means of social network topology. In Proceedings of the International

Joint Conference on Autonomous Agents and Multiagent Systems, pages 467–

474, 2002.

[114] M. Richardson, R. Agrawal, and P. Domingos. Trust management for the se-

mantic web. In The Semantic Web - ISWC 2003, volume 2870 of Lecture Notes

in Computer Science, pages 351–368. 2003.

[115] L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the

diameter and radius of sparse graphs. In Proceedings of the 45th Annual ACM

Symposium on the Theory of Computing (STOC 2013), pages 515–524, 2013.

[116] R. A. Rossi and N. Ahmed. Network repository. accesssed February 28, 2014.

http://networkrepository.com.

[117] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 3rd edition, 2009.

[118] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Zhao. Measurement-

calibrated graph models for social network experiments. In Proceedings of the

19th International Conference on the World Wide Web (WWW 2010), pages 861–

870, 2010.

[119] R. Sarukkai. Link prediction and path analysis using Markov chains. Computer

Networks, 33(1):377–386, 2000.

[120] J. Scott. Social Network Analysis: A Handbook. Sage Publications, Inc, 1991.

[121] C. Sommer. Shortest-path queries in static networks. ACM Computing Surveys,

46(4), article 45, 2014.

[122] L. Šubelj and M. Bajec. Model of complex networks based on citation dynam-

ics. In Proceedings of the 22nd International Conference on World Wide Web

(WWW 2013), pages 527–530, 2013.

[123] L. Takac and M. Zabovsky. Data analysis in public social networks. In Interna-

tional Scientific Conference and International Workshop on Present Day Trends

of Innovations, Lomza, Poland, 6 pages, 2012.

[124] F. W. Takes. Sokoban: Reversed solving. In Proceedings of 2nd NSVKI Student

Conference, pages 31–36, 2008.

http://networkrepository.com


156 Bibliography

[125] F. W. Takes and W. A. Kosters. Solving Samegame and its chessboard vari-

ant. In Proceedings of 21st Benelux Conference on Artificial Intelligence (BNAIC

2009), pages 249–256, 2009.

[126] F. W. Takes and W. A. Kosters. Applying Monte Carlo techniques to the capa-

citated vehicle routing problem. In Proceedings of 22th Benelux Conference on

Artificial Intelligence (BNAIC 2010), 2010.

[127] F. W. Takes and W. A. Kosters. Determining the diameter of small world net-

works. In Proceedings of the 20th ACM International Conference on Information

and Knowledge Management (CIKM 2011), pages 1191–1196, 2011.

[128] F. W. Takes and W. A. Kosters. Identifying prominent actors in online social

networks using biased random walks. In Proceedings of the 23rd Benelux Con-

ference on Artificial Intelligence (BNAIC 2011), pages 215–222, 2011.

[129] F. W. Takes and W. A. Kosters. The difficulty of path traversal in information

networks. In Proceedings of the International Conference on Knowledge Discovery

and Information Retrieval (KDIR 2012), pages 138–144, 2012.

[130] F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large

graphs. Algorithms, 6(1):100–118, 2013.

[131] F. W. Takes and W. A. Kosters. Mining user-generated path traversal patterns

in an information network. In Proceedings of the IEEE/ACM International Con-

ference on Web Intelligence (WI 2013), pages 284–289, 2013.

[132] F. W. Takes and W. A. Kosters. Adaptive landmark selection strategies for fast

shortest path computation in large real-world graphs. In Proceedings of the

IEEE/ACM International Conference on Web Intelligence (WI 2014), pages 27–

34, 2014.

[133] J. Teevan, C. Alvarado, M. Ackerman, and D. Karger. The perfect search engine

is not enough: A study of orienteering behavior in directed search. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, pages

415–422, 2004.

[134] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM,

52(1):1–24, 2005.

[135] K. Thulasiraman and M. N. Swamy. Graphs: Theory and Algorithms. John Wiley

& Sons, 2011.



Bibliography 157

[136] K. Tretyakov, A. Armas-Cervantes, L. Garćıa-Bañuelos, J. Vilo, and M. Dumas.

Fast fully dynamic landmark-based estimation of shortest path distances in

very large graphs. In Proceedings of the 20th ACM International Conference

on Information and Knowledge Management (CIKM 2011), pages 1785–1794,

2011.

[137] C. Walshaw. The graph partitioning archive. Accessed February 28, 2014.

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition.

[138] P. Wang, J. Hu, H. Zeng, and Z. Chen. Using Wikipedia knowledge to improve

text classification. Knowledge and Information Systems, 19(3):265–281, 2009.

[139] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.

Cambridge University Press, 1994.

[140] D. Watts and S. Strogatz. Collective dynamics of small-world networks. Nature,

393(6684):440–442, 1998.

[141] R. West and J. Leskovec. Automatic versus human navigation in information

networks. In Proceedings of the AAAI International Conference on Weblogs and

Social Media (ICWSM 2012), pages 362–369, 2012.

[142] R. West and J. Leskovec. Human wayfinding in information networks. In

Proceedings of the 21st ACM International World Wide Web Conference (WWW

2012), pages 619–628, 2012.

[143] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning

Tools and Techniques. Elsevier, 3rd edition, 2011.

[144] J. Yang and J. Leskovec. Defining and evaluating network communities based

on ground-truth. In Proceedings of the KDD Workshop on Mining Data Se-

mantics, article 3, 2012.

[145] J. Yu and J. Cheng. Graph reachability queries: A survey. In Managing and

Mining Graph Data, volume 40 of Advances in Database Systems, pages 181–

215. 2010.

[146] J. Yu, J. Thom, and A. Tam. Ontology evaluation using Wikipedia categor-

ies for browsing. In Proceedings of the 16th ACM International Conference on

Information and Knowledge Management (CIKM 2007), pages 223–232, 2007.

[147] R. Yuster and U. Zwick. Answering distance queries in directed graphs us-

ing fast matrix multiplication. In Proceedings of the 46th IEEE Symposium on

Foundations of Computer Science (FOCS 2005), pages 389–396, 2005.

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition


158 Bibliography

[148] J. Zhang, M. Ackerman, and L. Adamic. Expertise networks in online com-

munities: Structure and algorithms. In Proceedings of the 16th International

Conference on World Wide Web (WWW 2007), pages 221–230, 2007.

[149] V. Zlatić, M. Božičević, H. Štefančić, and M. Domazet. Wikipedias: Collab-

orative web-based encyclopedias as complex networks. Physical Review E,

74(1):016115, 2006.

[150] U. Zwick. Exact and approximate distances in graphs: A survey. In Algorithms

ESA 2001, volume 2161 of Lecture Notes in Computer Science, pages 33–48.

2001.



Samenvatting

Dit proefschrift gaat over algoritmen voor het analyseren van netwerken, in de in-

formatica vaak grafen genoemd. Een netwerk bestaat uit objecten (knopen) die met

elkaar verbonden zijn door middel van links (takken). In tegenstelling tot synthetische

grafen die doorgaans het resultaat zijn van het toepassen van een bepaald wiskun-

dig model, ligt de nadruk hier op “real-world” grafen, waarmee wordt bedoeld dat

de betreffende graaf is gebaseerd op verzamelde data uit een bestaand domein. Een

voorbeeld is een online sociaal netwerk zoals Facebook, waarin personen met elkaar

zijn verbonden door vriendschappen, of een webgraaf, een netwerk waarin internet-

pagina’s door middel van links naar elkaar verwijzen. Een ander voorbeeld is een

netwerk van wetenschappers, waarin de onderlinge relaties tussen de wetenschap-

pers bijvoorbeeld worden bepaald op basis van of zij elkaar citeren of co-auteurs zijn

van een artikel (zie bijvoorbeeld Figuur 1.2 in Hoofdstuk 1).

Alhoewel de grafen die in dit proefschrift worden bekeken van elkaar verschillen

in termen van wat voor data zij representeren, toont de structuur van deze grafen ver-

rassende overeenkomsten. Zo zijn “real-world” grafen doorgaans “sparse”, wat betek-

ent dat het aantal takken van de graaf klein is ten opzichte van het maximale aan-

tal takken. Desalniettemin bevatten dergelijke grafen vaak één grootste samenhan-

gende component waarin doorgaans het merendeel (meer dan 99%) van de knopen

zich bevindt. De distributie van de graad (het aantal buren van een knoop) over alle

knopen van de graaf volgt vrijwel altijd een machtsfunctie met een lange staart, wat

betekent dat er veel knopen zijn met een relatief lage graad, en enkele knopen met

een hele hoge graad ver boven de gemiddelde graad. Deze knopen doen doorgaans

dienst als zogenaamde “‘hubs”, die ondanks het feit dat de graaf “sparse” is, ervoor



160 Samenvatting

zorgen dat de gemiddelde afstand tussen twee knopen klein is ten opzichte van totale

het aantal knopen. Deze zogenaamde “small-world” eigenschap wordt vaak geasso-

cieerd met “six degrees of separation”, een theorie uit de sociologie die zegt dat twee

willekeurige personen doorgaans slechts zes handschuddingen van elkaar verwijderd

zijn.

Voor informatici ligt de uitdaging op het gebied van de analyse van grafen onder

andere in het efficiënt opslaan, zoeken en rekenen in deze grafen met behulp van

algoritmen. Hierbij zijn traditionele graafalgoritmen vaak niet praktisch inzetbaar.

Zo wordt voor het berekenen van de afstand tussen twee knopen traditioneel het

kortstepadalgoritme van Dijkstra ingezet, of Breadth First Search wanneer de graaf

ongewogen is. Dergelijke algoritmen zijn echter te complex in termen van tijd en

ruimte wanneer de graaf uit miljoenen knopen en misschien wel honderden miljoenen

of miljarden takken bestaat, en er duizenden kortste paden per seconde berekend

dienen te worden. Een veelgebruikte techniek om toch snel de afstand tussen twee

knopen in een grote graaf te bepalen maakt gebruik van zogenaamde “landmarks”

waarvoor de afstanden vooraf zijn uitgerekend en waarvia vervolgens kan worden

genavigeerd wanneer de afstand tussen twee willekeurige knopen berekend dient

te worden. In Hoofdstuk 5 worden manieren voor het selecteren van een dergelijke

verzameling landmarks besproken, en blijkt dat zowel een gespreide ligging als een

hoge centraliteit belangrijk zijn.

De centraliteit van een knoop zegt iets over hoe centraal een knoop in de graaf

ligt op basis van de structuur van de graaf. De meest simpele maat is “degree central-

ity”, een maat op basis van de graad van een knoop, waarbij er van uit wordt gegaan

dat een knoop centraal ligt wanneer deze veel buren heeft. Deze maat is eenvoudig

te berekenen, niet in de laatste plaats omdat grote grafen doorgaans niet als matrix

maar als een lijst van knopen en buren (“adjacency list”) worden opgeslagen, waar-

door het aantal buren eenvoudig afleesbaar is. Complexere centraliteitsmaten zoals

“closeness centrality” en “betweenness centrality” kijken respectievelijk naar de gem-

iddelde afstand van een knoop tot alle andere knopen en naar het genormaliseerde

aantal keren dat een knoop op een kortste pad voorkomt, maar zijn in tegenstelling

tot “degree centrality” moeilijker om te berekenen.

In webgrafen is PageRank een veelvoorkomende centraliteitsmaat. Deze techniek

geeft een hogere centraliteitswaarde aan een pagina wanneer er een groot aantal

andere pagina’s met een hoge centraliteit naar de betreffende pagina verwijzen. Deze

maat wordt in de praktijk door zoekmachine Google gebruikt in de vorm van een

waarde voor een webpagina tussen 0 (niet belangrijk) en 10 (zeer belangrijk). In

Hoofdstuk 6 worden diverse centraliteitsmaten toegepast op de vriendschapsgraaf

van een groot Nederlands online sociaal netwerk, en blijkt dat voor het vinden de

prominente personen binnen dit netwerk zowel de graad van een persoon als het



Samenvatting 161

genormaliseerde aantal driehoeksrelaties van de vrienden van een persoon een rol

speelt.

Waar kortste paden en centraliteitsmaten doorgaans een eigenschap van één of

enkele knopen berekenen, zijn er ook maten die iets zeggen over de volledige graaf.

Een dergelijke maat is de diameter: de maximale afstand tussen twee knopen ofwel

de lengte van een langste kortste pad in de graaf. De diameter kan worden gezien als

een worst-case maat van afstand, en zegt bijvoorbeeld iets over hoe informatie zich in

het ergste geval verspreidt binnen een netwerk. Een näıeve manier om de diameter te

berekenen is door middel van het “All Pairs Shortest Path” algoritme, wat voor ieder

paar knopen de onderlinge afstand berekent. De hoogst gevonden waarde is vervol-

gens de diameter. Deze methode is kwadratisch in het aantal knopen en takken en

derhalve niet praktisch inzetbaar in het geval van de grote grafen die in dit proefs-

chrift worden bestudeerd. In Hoofdstuk 2 wordt een nieuw algoritme gëıntroduceerd

wat in staat is om de diameter van een gegeven graaf veel sneller te bepalen door

slim gebruik te maken van onder- en bovengrenzen per knoop en voor de graaf in

het geheel. Dit zorgt ervoor dat er niet zoals bij de bovengenoemde methode op basis

van het APSP algoritme voor iedere knoop een Breadth First Search berekening uit-

gevoerd dient te worden, maar dat met slechts enkele tientallen berekeningen en wat

“book-keeping” de diameter exact bepaald kan worden.

Een alternatieve manier om de bovengenoemde diameter te definiëren, is door te

zeggen dat de diameter gelijk is aan de maximale eccentriciteit over alle knopen. De

eccentriciteit van een knoop is de lengte van een langste kortste pad van die knoop

naar een andere knoop. In Hoofdstuk 3 wordt zowel een exact algoritme als een

slimme afschattende methode gepresenteerd om de eccentriciteit van alle knopen in

een graaf te berekenen. De bovengenoemde methode kan tevens worden ingezet om

andere zogenaamde extreme afstandsmaten te berekenen. Voorbeelden zijn de straal

(minimale eccentriciteit over alle knopen), het centrum (de verzameling knopen met

een eccentriciteit gelijk aan de straal) en de periferie (de verzameling knopen met een

eccentriciteit gelijk aan de diameter) van een graaf (zie Hoofdstuk 4).

Naast de hierboven beschreven algoritmen voor het berekenen van eigenschappen

van (de knopen van) een graaf, zijn er voor informatici bij grote grafen ook uitdagin-

gen op het gebied van data mining. Data mining heeft veelal als doel om kennis of

informatie te verkrijgen uit data, en de gebruikte methoden zijn doorgaans in te delen

in voorspellende en beschrijvende technieken.

Voorspellende data miningtechnieken hebben als doel het voorspellen van bepaalde

attributen van (groepen van) objecten in de data. In Hoofdstuk 7 wordt gekeken

naar een dataset van door gebruikers gegeneerde klikpaden in het informatienetwerk

van de online encyclopedie Wikipedia. Daarbij ligt de nadruk op het bepalen van de

moeilijkheid voor een gebruiker van het vinden van een bepaalde doelpagina door



162 Samenvatting

het klikken op de links die aanwezig zijn in de diverse Wikipedia-artikelen. Een ana-

lyse van meer dan twee miljoen klikpaden toont aan dat lokale eigenschappen van de

doelpagina voldoende in staat zijn om met hoge precisie te bepalen hoe moeilijk het

voor een gebruiker is om een bepaalde pagina te vinden.

Beschrijvende data miningtechnieken proberen doorgaans om de informatie die

zich in data bevindt naar boven te krijgen, bijvoorbeeld door te zoeken naar patronen

die niet direct zichtbaar zijn door de data handmatig te inspecteren. In Hoofdstuk 8

wordt gekeken naar de individuele pagina’s binnen de eerder genoemde verzameling

klikpaden in Wikipedia, en wordt gekeken hoe de verzameling van knopen die door

gebruikers frequent wordt gebruikt om door het netwerk te navigeren verschilt van

een verzameling die is geselecteerd met behulp van eerdergenoemde centraliteits-

maten. Het blijkt dat de door gebruikers geselecteerde verzameling pagina’s beter

helpt om efficiënt door het netwerk te navigeren, dan een verzameling die geselect-

eerd is met behulp van een centraliteitsmaat.

De toenemende hoeveelheid data die tegenwoordig wordt gegenereerd kan vaak

worden gemodelleerd als een graaf. Voor informatici is er vervolgens een uitdaging

weggelegd om deze data efficiënt te analyseren en om er geautomatiseerd inform-

atie en kennis uit te extraheren. Door slim te kijken naar de eigenschappen van de

graaf en de complexiteit van diverse methoden en technieken, is het vaak zonder een

enorme hoeveelheid brute rekenkracht of gespecialiseerde hardware mogelijk om het

gewenste resultaat te bereiken.



Curriculum Vitae

Frank Takes is geboren op donderdag 15 mei 1986 te Leidschendam en groeide op

in Zoetermeer, waar hij in 2004 op het Alfrink College zijn VWO-diploma behaalde.

In 2008 voltooide Frank zijn bachelor Informatica met minor Bedrijfswetenschappen

aan de Universiteit Leiden, gevolgd door zijn master Computer Science cum laude in

2010, tevens in Leiden.

Tijdens zijn studie nam Frank deel aan diverse programmeerwestrijden, waaron-

der de noordwest Europese regionale wedstrijden in 2008 in Stockholm. Hij was

student-assistent bij diverse bachelorvakken en als studentambassadeur betrokken

bij de voorlichtingsactiviteiten van zowel de opleiding als de universiteit. Daarnaast

nam Frank zitting in achtereenvolgens de opleidingscommissie van de opleiding In-

formatica, de faculteitsraad van de faculteit Wiskunde en Natuurwetenschappen en

de universiteitsraad van de Universiteit Leiden.

Van 2010 tot 2014 voerde Frank onder begeleiding van dr. Walter Kosters pro-

motieonderzoek uit aan het Leiden Institute of Advanced Computer Science (LIACS),

het informatica-instituut van de Universiteit Leiden. Frank was tijdens zijn promoti-

etijd betrokken bij de practica van de vakken Programmeermethoden en Kunstmatige

Intelligentie, gaf diverse gastcolleges over zijn onderzoek, en verzorgde als onderdeel

van een aantal vakken van de opleiding Informatica diverse hoorcolleges. Tijdens zijn

promotietijd nam hij zitting in de instituutsraad en de commissie voor de organisa-

tie van gezelligheidsactiviteiten voor medewerkers van het instituut. Vanaf 2007 was

Frank tevens part-time actief in het bedrijfsleven als freelance IT-er.

Na zijn promotie streeft Frank in de eerste instantie een part-time wetenschap-

pelijke carrière en een part-time carrière in het bedrijfsleven na.





Dankwoord

Deze pagina is uitsluitend beschikbaar in de gedrukte versie van dit proefschrift.





Publication List

Below is a chronological list of publications by the author up to June 2014.

• F. W. Takes and W. A. Kosters. Adaptive landmark selection strategies for fast

shortest path computation in large real-world graphs. In Proceedings of the

IEEE/ACM International Conference on Web Intelligence (WI 2014), pages 27–34,

2014

• M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, and F. W. Takes.

On the solvability of the six degrees of Kevin Bacon game — A faster graph

diameter and radius computation method. In Proceedings of the 7th International

Conference on Fun with Algorithms (FUN 2014), volume 8496 of Lecture Notes in

Computer Science, pages 52–63. 2014

• G. H. Dal, W. A. Kosters, and F. W. Takes. Fast diameter computation of large

sparse graphs using GPUs. In Proceedings of the 22nd IEEE International Con-

ference on Parallel, Distributed and Network-based Processing (PDP 2014), pages

632–639, 2014

• F. W. Takes and W. A. Kosters. Mining user-generated path traversal patterns in

an information network. In Proceedings of the IEEE/ACM International Confer-

ence on Web Intelligence (WI 2013), pages 284–289, 2013

• P. D. Kusuma, D. Radosavljevik, F. W. Takes, and P. van der Putten. Combining

customer attribute and social network mining for prepaid mobile churn predic-

tion. In Proceedings of 22th Belgian Netherlands Conference on Machine Learning

(Benelearn 2013), pages 50–58, 2013



168 Publication List

• F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large

graphs. Algorithms, 6(1):100–118, 2013

• M. Luiten, W. A. Kosters, and F. W. Takes. Topical influence on Twitter: A feature

construction approach. In Proceedings of 24th Benelux Conference on Artificial

Intelligence (BNAIC 2012), pages 139–146, 2012

• F. W. Takes and W. A. Kosters. The difficulty of path traversal in information

networks. In Proceedings of the International Conference on Knowledge Discovery

and Information Retrieval (KDIR 2012), pages 138–144, 2012

• F. W. Takes and W. A. Kosters. Determining the diameter of small world net-

works. In Proceedings of the 20th ACM International Conference on Information

and Knowledge Management (CIKM 2011), pages 1191–1196, 2011

• F. W. Takes and W. A. Kosters. Identifying prominent actors in online social net-

works using biased random walks. In Proceedings of the 23rd Benelux Conference

on Artificial Intelligence (BNAIC 2011), pages 215–222, 2011

• A. M. Kentsch, W. A. Kosters, P. van der Putten, and F. W. Takes. Exploratory

recommendations using Wikipedia’s linking structure. In Proceedings of 20th

Belgium Netherlands Conference on Machine Learning (Benelearn 2011), pages

61–68, 2011

• F. W. Takes and W. A. Kosters. Applying Monte Carlo techniques to the capa-

citated vehicle routing problem. In Proceedings of 22th Benelux Conference on

Artificial Intelligence (BNAIC 2010), 2010 (based on the author’s master thesis)

• F. W. Takes and W. A. Kosters. Solving Samegame and its chessboard variant.

In Proceedings of 21st Benelux Conference on Artificial Intelligence (BNAIC 2009),

pages 249–256, 2009 (based on the author’s master project study)

• F. W. Takes. Sokoban: Reversed solving. In Proceedings of 2nd NSVKI Student

Conference, pages 31–36, 2008 (based on the author’s bachelor thesis)



Titles in the IPA Dissertation Series

since 2008

W. Pieters. La Volonté Machinale: Understand-

ing the Electronic Voting Controversy. Faculty

of Science, Mathematics and Computer Science,

RU. 2008-01

A.L. de Groot. Practical Automaton Proofs in PVS.

Faculty of Science, Mathematics and Computer Sci-

ence, RU. 2008-02

M. Bruntink. Renovation of Idiomatic Crosscutting

Concerns in Embedded Systems. Faculty of Electrical

Engineering, Mathematics, and Computer Science,

TUD. 2008-03

A.M. Marin. An Integrated System to Manage Cross-

cutting Concerns in Source Code. Faculty of Elec-

trical Engineering, Mathematics, and Computer

Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-based Integration

and Testing of High-tech Multi-disciplinary Systems.

Faculty of Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax: Syntax

Definition, Parsing, and Assimilation of Language

Conglomerates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive: Design

and Formal Verification of Optimistic Fair Exchange

Protocols. Faculty of Sciences, Division of Mathem-

atics and Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test Strategies for

Complex Manufacturing Machines. Faculty of Mech-

anical Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coalgebras. Fac-

ulty of Science, Mathematics and Computer Sci-

ence, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms: Two Taxonom-

ies and a Toolkit. Faculty of Mathematics and Com-

puter Science, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov Chains: Tech-

niques and Tools. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimental Study

of Geometric Networks. Faculty of Mathematics and

Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifications Us-

ing Context-Sensitive Wildcards. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2008-13

F.D. Garcia. Formal and Computational Crypto-

graphy: Protocols, Hashes and Commitments. Fac-



170 IPA Dissertation Series since 2008

ulty of Science, Mathematics and Computer Sci-

ence, RU. 2008-14

P. E. A. Dürr. Resource-based Verification for Ro-

bust Composition of Aspects. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2008-15

E.M. Bortnik. Formal Methods in Support of

SMC Design. Faculty of Mechanical Engineering,

TU/e. 2008-16

R.H. Mak. Design and Performance Analysis of

Data-Independent Stream Processing Systems. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2008-17

M. van der Horst. Scalable Block Processing Al-

gorithms. Faculty of Mathematics and Computer

Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects: Decomposi-

tions and Applications. Faculty of Mathematics and

Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems with Data -

Enumerative Methods and Constraint Solving. Fac-

ulty of Electrical Engineering, Mathematics & Com-

puter Science, UT. 2008-20

E. Mumford. Drawing Graphs for Cartographic Ap-

plications. Faculty of Mathematics and Computer

Science, TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured Data, The-

oretical and Experimental Aspects of Pattern Eval-

uation. Faculty of Mathematics and Natural Sci-

ences, UL. 2008-22

R. Brijder. Models of Natural Computation: Gene

Assembly and Membrane Systems. Faculty of Math-

ematics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewriting and Its Cer-

tification. Faculty of Mathematics and Computer

Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid Systems:

Comparison and Development. Faculty of Mathem-

atics and Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time in Pro-

cess Algebras for Performance Evaluation. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2008-26

H. Kastenberg. Graph-Based Software Specification

and Verification. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from Noisy Data

Theory and Applications. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor Networks in

Motion: Clustering Algorithms for Service Discovery

and Provisioning. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Validating Distrib-

uted Embedded Real-Time Control Systems. Faculty

of Science, Mathematics and Computer Science,

RU. 2009-01

M. de Mol. Reasoning about Functional Pro-

grams: Sparkle, a proof assistant for Clean. Faculty

of Science, Mathematics and Computer Science,

RU. 2009-02

M. Lormans. Managing Requirements Evolution.

Faculty of Electrical Engineering, Mathematics, and

Computer Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-based Test-

ing of Hybrid Systems. Faculty of Mathematics and

Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Software Sys-

tems. Faculty of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewriting Tech-

niques. Faculty of Mathematics and Computer Sci-

ence, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Applications

in Automata Theory and Modal Logic. Faculty of Sci-

ences, Division of Mathematics and Computer Sci-

ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-based

Single-page Web Applications. Faculty of Electrical

Engineering, Mathematics, and Computer Science,

TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Getting Generic

Programming Ready for Prime Time. Faculty of Sci-

ence, UU. 2009-9

K.R. Olmos Joffré. Strategies for Context Sens-

itive Program Transformation. Faculty of Science,

UU. 2009-10



IPA Dissertation Series since 2008 171

J.A.G.M. van den Berg. Reasoning about Java pro-

grams in PVS using JML. Faculty of Science, Math-

ematics and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage Devices. Integra-

tion in Energy-Constrained Mobile Systems. Faculty

of Electrical Engineering, Mathematics & Computer

Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic Analysis

Techniques for Program Comprehension. Faculty of

Electrical Engineering, Mathematics, and Com-

puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Network In-

trusion Detection Systems. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2009-14

H.L. Jonker. Security Matters: Privacy in Voting and

Fairness in Digital Exchange. Faculty of Mathemat-

ics and Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust Management.

Faculty of Electrical Engineering, Mathematics &

Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes. Faculty of Sci-

ences, Division of Mathematics and Computer Sci-

ence, VUA. 2009-17

C. Kaliszyk. Correctness and Availability: Building

Computer Algebra on top of Proof Assistants and

making Proof Assistants available over the Web. Fac-

ulty of Science, Mathematics and Computer Sci-

ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Completeness:

Formalizing Logic and Analysis in Type Theory. Fac-

ulty of Science, Mathematics and Computer Sci-

ence, RU. 2009-19

B. Ploeger. Improved Verification Methods for Con-

current Systems. Faculty of Mathematics and Com-

puter Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis of Prob-

abilistic Models. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies for Para-

meter Optimization and Their Applications to Med-

ical Image Analysis. Faculty of Mathematics and

Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational Complex-

ity of Probabilistic Networks. Faculty of Science,

UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-Oriented Law

Enforcement. Faculty of Mathematics and Natural

Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty of Science,

UU. 2009-25

M.A.C. Dekker. Flexible Access Control for Dynamic

Collaborative Environments. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2009-26

J.F.J. Laros. Metrics and Visualisation for Crime

Analysis and Genomics. Faculty of Mathematics and

Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code Inspections.

Faculty of Electrical Engineering, Mathematics, and

Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking Nondetermin-

istic and Randomly Timed Systems. Faculty of Elec-

trical Engineering, Mathematics & Computer Sci-

ence, UT. 2010-02

J. Endrullis. Termination and Productivity. Faculty

of Sciences, Division of Mathematics and Computer

Science, VUA. 2010-03

T. Staijen. Graph-Based Specification and Verifica-

tion for Aspect-Oriented Languages. Faculty of Elec-

trical Engineering, Mathematics & Computer Sci-

ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Protocol Dynam-

ics. Faculty of Science, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and Probab-

ility in Model Checking Timed Automata. Faculty

of Science, Mathematics and Computer Science,

RU. 2010-06

A. Nugroho. The Effects of UML Modeling on the

Quality of Software. Faculty of Mathematics and

Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of Science,

Mathematics and Computer Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery of Know-

ledge - Foundations, Implementations and Applica-

tions. Faculty of Mathematics and Natural Sciences,

UL. 2010-09



172 IPA Dissertation Series since 2008

D. Costa. Formal Models for Component Connectors.

Faculty of Sciences, Division of Mathematics and

Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Service: Schedulab-

ility Analysis of Real-Time and Distributed Ser-

vices. Faculty of Mathematics and Natural Sciences,

UL. 2010-11

R. Bakhshi. Gossiping Models: Formal Analysis of

Epidemic Protocols. Faculty of Sciences, Department

of Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of the Template En-

igma: Software Code Generation with Templates.

Faculty of Mathematics and Computer Science,

TU/e. 2011-02

E. Zambon. Towards Optimal IT Availability Plan-

ning: Methods and Tools. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2011-03

L. Astefanoaei. An Executable Theory of Multi-

Agent Systems Refinement. Faculty of Mathematics

and Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordination of distributed

components. Faculty of Mathematics and Natural

Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Confidentiality Risk

Assessment in Networks of Organizations. Faculty of

Electrical Engineering, Mathematics & Computer

Science, UT. 2011-06

M. van der Bijl. On changing models in Model-Based

Testing. Faculty of Electrical Engineering, Mathem-

atics & Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component Connectors.

Faculty of Mathematics and Natural Sciences,

UL. 2011-08

M.E. Andrés. Quantitative Analysis of Information

Leakage in Probabilistic and Nondeterministic Sys-

tems. Faculty of Science, Mathematics and Com-

puter Science, RU. 2011-09

M. Atif. Formal Modeling and Verification of Distrib-

uted Failure Detectors. Faculty of Mathematics and

Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computability to Execut-

ability – A process-theoretic view on automata the-

ory. Faculty of Mathematics and Computer Science,

TU/e. 2011-11

Z. Protic. Configuration management for models:

Generic methods for model comparison and model

co-evolution. Faculty of Mathematics and Computer

Science, TU/e. 2011-12

S. Georgievska. Probability and Hiding in Concur-

rent Processes. Faculty of Mathematics and Com-

puter Science, TU/e. 2011-13

S. Malakuti. Event Composition Model: Achieving

Naturalness in Runtime Enforcement. Faculty of

Electrical Engineering, Mathematics & Computer

Science, UT. 2011-14

M. Raffelsieper. Cell Libraries and Verification.

Faculty of Mathematics and Computer Science,

TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and Visibility on

Triangulated Terrains. Faculty of Mathematics and

Computer Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality of Service

of Component Connectors. Faculty of Mathematics

and Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and Exploiting Abstract

Views of States in OO Verification. Faculty of Math-

ematics and Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Improving the Qual-

ity of Model Transformations. Faculty of Mathemat-

ics and Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Programs in Prac-

tice. Faculty of Science, Mathematics and Computer

Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for Program-

ming Language Grammars. Faculty of Science,

UvA. 2011-21

M. Izadi. Model Checking of Component Connect-

ors. Faculty of Mathematics and Natural Sciences,

UL. 2011-22

L.C.L. Kats. Building Blocks for Language Work-

benches. Faculty of Electrical Engineering, Mathem-

atics, and Computer Science, TUD. 2011-23



IPA Dissertation Series since 2008 173

S. Kemper. Modelling and Analysis of Real-Time

Coordination Patterns. Faculty of Mathematics and

Natural Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems. Faculty of Math-

ematics and Natural Sciences, UL. 2011-25

A. Khosravi. Optimal Geometric Data Structures.

Faculty of Mathematics and Computer Science,

TU/e. 2012-01

A. Middelkoop. Inference of Program Properties

with Attribute Grammars, Revisited. Faculty of Sci-

ence, UU. 2012-02

Z. Hemel. Methods and Techniques for the Design

and Implementation of Domain-Specific Languages.

Faculty of Electrical Engineering, Mathematics, and

Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organizational Security

Policies: Theory and Practice. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2012-04

S. Sedghi. Towards Provably Secure Efficiently

Searchable Encryption. Faculty of Electrical En-

gineering, Mathematics & Computer Science,

UT. 2012-05

F. Heidarian Dehkordi. Studies on Verification of

Wireless Sensor Networks and Abstraction Learning

for System Inference. Faculty of Science, Mathemat-

ics and Computer Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic Visualiz-

ation. Faculty of Mathematics and Computer Sci-

ence, TU/e. 2012-07

D.E. Nadales Agut. A Compositional Interchange

Format for Hybrid Systems: Design and Imple-

mentation. Faculty of Mechanical Engineering,

TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein Interaction

Networks by Means of Annotated Graph Mining Al-

gorithms. Faculty of Mathematics and Natural Sci-

ences, UL. 2012-09

S.D. Vermolen. Software Language Evolution. Fac-

ulty of Electrical Engineering, Mathematics, and

Computer Science, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches to Reliable

Software. Faculty of Mathematics and Computer

Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Models – An En-

gineering Perspective. Faculty of Mathematics and

Computer Science, TU/e. 2012-12

W. Heijstek. Software Architecture Design in Global

and Model-Centric Software Development. Faculty of

Mathematics and Natural Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Faculty of

Sciences, Department of Computer Science,

VUA. 2012-14

A. Osaiweran. Formal Development of Control

Software in the Medical Systems Domain. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2012-15

W. Kuijper. Compositional Synthesis of Safety Con-

trollers. Faculty of Electrical Engineering, Mathem-

atics & Computer Science, UT. 2012-16

H. Beohar. Refinement of Communication and

States in Models of Embedded Systems. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2013-01

G. Igna. Performance Analysis of Real-Time Task

Systems using Timed Automata. Faculty of Science,

Mathematics and Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transformation – The-

ory and Practice. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-Oriented Pro-

gramming for Incident Response Applications. Fac-

ulty of Science, Mathematics and Computer Sci-

ence, RU. 2013-04

G.T. de Koning Gans. Outsmarting Smart Cards.

Faculty of Science, Mathematics and Computer Sci-

ence, RU. 2013-05

M.S. Greiler. Test Suite Comprehension for Mod-

ular and Dynamic Systems. Faculty of Electrical

Engineering, Mathematics, and Computer Science,

TUD. 2013-06

L.E. Mamane. Interactive mathematical documents:

creation and presentation. Faculty of Science, Math-

ematics and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Composition and syn-

chronization of real-time components upon one pro-

cessor. Faculty of Mathematics and Computer Sci-

ence, TU/e. 2013-08



174 IPA Dissertation Series since 2008

J. Businge. Co-evolution of the Eclipse Framework

and its Third-party Plug-ins. Faculty of Mathemat-

ics and Computer Science, TU/e. 2013-09

S. van der Burg. A Reference Architecture for Dis-

tributed Software Deployment. Faculty of Electrical

Engineering, Mathematics, and Computer Science,

TUD. 2013-10

J.J.A. Keiren. Advanced Reduction Techniques for

Model Checking. Faculty of Mathematics and Com-

puter Science, TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling: Computing

push plans for disk-shaped robots, and dynamic la-

belings for moving points. Faculty of Mathematics

and Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Generation and

Analysis of Markov Automata. Faculty of Electrical

Engineering, Mathematics & Computer Science,

UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Structures in the

Black-Box Model. Faculty of Mathematics and Com-

puter Science, TU/e. 2013-14

L. Lensink. Applying Formal Methods in Software

Development. Faculty of Science, Mathematics and

Computer Science, RU. 2013-15

C. Tankink. Documentation and Formal Mathemat-

ics — Web Technology meets Proof Assistants. Fac-

ulty of Science, Mathematics and Computer Sci-

ence, RU. 2013-16

C. de Gouw. Combining Monitoring with Run-time

Assertion Checking. Faculty of Mathematics and

Natural Sciences, UL. 2013-17

J. van den Bos. Gathering Evidence: Model-

Driven Software Engineering in Automated Digital

Forensics. Faculty of Science, UvA. 2014-01

D. Hadziosmanovic. The Process Matters: Cyber Se-

curity in Industrial Control Systems. Faculty of Elec-

trical Engineering, Mathematics & Computer Sci-

ence, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-Enhanced Pri-

vacy for Recommender Systems. Faculty of Elec-

trical Engineering, Mathematics & Computer Sci-

ence, UT. 2014-03

C.-P. Bezemer. Performance Optimization of Multi-

Tenant Software Systems. Faculty of Electrical En-

gineering, Mathematics, and Computer Science,

TUD. 2014-04

T.M. Ngo. Qualitative and Quantitative Information

Flow Analysis for Multi-threaded Programs. Faculty

of Electrical Engineering, Mathematics & Computer

Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core Model Check-

ing. Faculty of Electrical Engineering, Mathematics

& Computer Science, UT. 2014-06

J. Winter. Coalgebraic Characterizations of

Automata-Theoretic Classes. Faculty of Science,

Mathematics and Computer Science, RU. 2014-07

W. Meulemans. Similarity Measures and Al-

gorithms for Cartographic Schematization. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring Model-Based

Testing. Faculty of Electrical Engineering, Mathem-

atics & Computer Science, UT. 2014-09

A.P. van der Meer. Domain Specific Languages and

their Type Systems. Faculty of Mathematics and

Computer Science, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collaboration in

Online Software Communities. Faculty of Mathem-

atics and Computer Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap between

Active Learning and Real-World Systems. Faculty

of Science, Mathematics and Computer Science,

RU. 2014-12

N. Noroozi. Improving Input-Output Conformance

Testing Theories. Faculty of Mathematics and Com-

puter Science, TU/e. 2014-13

M. Helvensteijn. Abstract Delta Modeling: Software

Product Lines and Beyond. Faculty of Mathematics

and Natural Sciences, UL. 2014-14

P. Vullers. Efficient Implementations of Attribute-

based Credentials on Smart Cards. Faculty of

Science, Mathematics and Computer Science,

RU. 2014-15

F.W. Takes. Algorithms for Analyzing and Mining

Real-World Graphs. Faculty of Mathematics and

Natural Sciences, UL. 2014-16


