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Chapter 1
Introduction

Microscopes have enabled mankind to increase the resolution of their vision in the
micro and nano-scales. Fabulous visualizations can be achieved in this manner,
but there are still patterns in these visualizations that need to be addressed. The
technical developments in microscope instrumentation are incredible and have
made it possible to observe biological structures at near molecular scale up to
the tissue and organismal level (cf. Figure 1). The developments of digital in-
struments and computers have further boosted the area of microscope analysis.
Microscopes are equipped with digital cameras and researchers can produce large
amounts of high quality digital images. In these images there are patterns to
be analyzed and thus we need to look for efficient and correct ways to extract
information from these images and find patterns in this information. This partic-
ularly holds for the description of biological specimens that are observed in one
way or the other by microscopy. The research of this thesis contributes to the
efforts to find solutions in working with large amounts of images and extracting
information in a correct and comprehensive way.

In this thesis, we discuss solutions of phenotype description based on the mi-
croscopy image analysis to deal with biological problems both in 2D and 3D
space. Our description of patterns goes beyond conventional features and helps
to visualize the unseen in feature dataset. These solutions share several common
processes which are based on similar principles. Furthermore, we notice that ad-
vanced features and classifier strategies can help us improve the performance of

the solutions. The biological problems that we have studied include the endocy-
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tosis routing using high-throughput screening in 2D and time and 3D geometrical
representation from biological structures.

In order to have a general view of the solutions, we would first introduce the
generic workflow as shown in Figure 1.2 which is applicable for both 2D and 3D

objects. For 3D images additional techniques are required.

Human Eye

Light Microscope

Electron Microscope

10mm Imm 100pm 10pm 1pm 100nm 10nm 1nm
Tissue Bacteria Virus Protein
Cell Molecule

Figure 1.1. Resolution required for several objects (middle line) and the
imaging equipment with which this resolution can be achieved (upper half) and

the typical resolution of objects (lower half).

New B Decision
experiment making
h 4
Image Image Image Machine
o > . > . » Measurement > .
acquisition preprocessing segmentation learning
A
1 | T
Annotation » Modelling

Figure 1.2. Image processing and image analysis pipeline. Image processing
includes image preprocessing and image segmentation. Image analysis includes
image annotation, modelling, measurement and machine leaning. The pipeline

influences the decision making for a new experiment.

1.1 2D and 3D microscopy images acquisition

In the imaging pipeline, the first step is the image acquisition from microscopes.
In this thesis our inputs come from different microscopes. We utilize the bright-

field microscope for invasive sectioning of large structures in X,Y,Z space. For
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non-invasive observation on cell level, we use confocal microscopy both for single
slide screening in X,Y,T space and multiple slides sectioning in X, Y, Z space.
Bright-field microscope is suitable for the imaging of stained tissue sections of
specimens because the easiest way to deal with thicker specimens (3D images) is
to slice the specimen into many consecutive thin sections. Given the resolution of
the imaging system, they provide clear information in x and y axis (2D images),
but limited information in z axis. This invasive sectioning enables the application
of staining techniques so that molecular phenotype of the specimen under study
can be revealed [Verbeek, 1999b]. This approach is useful for larger sections of
tissue whose z-resolution is of the order of millimeters, but it will not work in the
micro-nano range.

Confocal microscopy can be used in cellular high-throughput screening. It also
enables observation of thick specimens by optical sectioning which eliminate the
artifacts existed in specimen preparation by physical sectioning. However, optical
penetration into the specimen has its limitations. The scope of confocal micro-
scope is very good on the cellular level but less effective on the level of an organ
or a tissue; concluded from Figure 1.1. Consequently, for 3D reconstruction of
a larger embryo or a substantial part of it, confocal microscope is usually not
always the most appropriate technique [Verbeek, 1999b].

Optical projection tomography (OPT) is another non-invasive sectioning tech-
nique for 3D biological specimens. It aims at producing high-resolution 3D im-
ages of both fluorescent and nonfluorescent biological material with a thickness
of up to 15 millimeters. OPT microscopy allows the rapid mapping of the tissue
distribution of RNA and protein expression in intact embryos or organ systems
and can therefore be instrumental developmental biology studies for objective
phenotype description. [Sharpe et al., 2002]

Subsequent to image acquisition, the process of image and data analysis starts.
For both 2D and 3D microscopy images, the solutions for analysis are quite
similar. In this thesis, the major focus is on the description of the phenotype
measurement and data analysis. Therefore, we introduce a generalized solution

for 2D and 3D images in the following sections.
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1.2 Image processing and analysis

The aim of image processing and analysis is to accomplish image understand-
ing and data reduction. The pipeline includes image enhancement or restoration
and image segmentation. The first step of image processing and analysis for
microscopy is to improve the quality of images by enhancing the foreground as
well as suppressing the background. Image enhancement aims for improving the
interpretability or perception of information in images for human viewers [Maini
and Aggarwal, 2010]. We see it separated into two main categories: spatial do-
main filters and frequency domain filters. Spatial domain filters directly deal with
the image pixels such as histogram enhancement. Frequency domain filters are
performed using the Fourier transform of the image and include low-pass filters,
bandpass filters and high-pass filters. Noise suppression algorithms often make a
tradeoff between actual noise removal and preservation of real low-contrast detail.
Most commonly used methods are linear filters such as Gaussian filter, Wiener
filer [Wiener, 1964] and non-linear filters such as median filter and the filters
based on the paradigm of its mathematical morphology [Serra, 1983].

Image segmentation is the technique dividing the image constituent parts most
notably in foreground and background. So it results in a separation of foreground
and background. In microscopy it is specifically used to detect objects, object re-
gions or edges in an image. Basically the image segmentation is divided into two
approaches: region-based segmentation and edge-based segmentation [Tripathi
et al., 2012]. Region-based segmentation partitions an image into regions that
are similar according to a set of predefined criteria [Gonzalez and Woods, 2001].
Some representative methods include thresholding, clustering and region growing.
The thresholding operation converts a gray-scale image into a binary image by a
set of thresholds. Popular methods include the mazimum entropy method [Leung
and Lam, 1994], Bernsen’s method [Bernsen, 1986|, Niblack’s method [Niblack,
1985], Isodata method [Manakos et al., 2000], Otsu’s method [Otsu, 1979]. Clus-
tering partition the image into the sets or clusters of pixels which have similar
feature space. Clustering methods can be further divided into k-means clustering
[Kanungo et al., 2002] and fuzzy clustering [Naz et al., 2010]. Region growing ex-

tracts a region of the image that is connected based on predefined criteria [Chen
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and Shen, 2010]. Region growing techniques are often used in noisy images where
edges are extremely difficult to detect. Some well-known region based segmenta-
tion methods include the level set method [Qu et al., 2007], watershed transfor-
mation [Vincent and Soille, 1991] and texture segmentation [Ray et al., 2008]. In
Edge-based segmentation, an image is partitioned based on abrupt changes in the
intensity values [Gonzalez and Woods, 2001]. In Edge-based segmentation first
the edges are identified. These are linked together to form consistent boundaries.
Many edge operators are applied to locate edges in images such as the Sobel oper-
ator, the Prewitt operator and the Canny operator [Gonzalez and Woods, 2001].
The canny operator is used to find the edge pixels while eliminating the influence
of noise. Other well-known edge-based segmentation method is active contours
[Kass et al., 1988].

If the aim is to measure information on objects in the image then subsequent to
segmentation a labeling operation is required. Each object from the segmenta-
tion process is attributed a label which can, if necessary, be given an annotation
[Verbeek, 1999a] to provide biological context. An automatic annotation method
can be regarded as a multi-class object classification which is based on image
analysis to extract features and data analysis to train a proper classifier. In the

next section, we introduce the necessary concepts and context for this thesis.

1.3 Phenotype measurement

In order to correctly annotate each object separated from the segmentation
method, we need to quantify the object into all kinds of features describing the
unique pattern of the object for further multi-class classification. This quantifi-
cation step is, de facto, the measurement of the phenotype. Here we introduce

two basic definition on phenotype measurement.

Definition 1.3.1. "Phenotype is the set of observable characteristics of an indi-

vidual resulting from the interaction of its genotype with the environment.”

Definition 1.3.2. ”Phenotype measurements imply the measurement of observ-
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able attributes, reflecting the biological function of gene variants as affected by
the environment.” [Paulus et al., 2013/

For biological specimens, phenotype measurement is the next important step
in image analysis. The phenotype measurements will be used to classify objects
obtained from the segmentation into different categories that are meaningful with
respect to the biology. Thus, it is crucial to measure representative features for
each object in the image. These features, often, represent the characteristics of
shape, intensity and texture of the objects.

Generally in 2D space, we can categorize the phenotype measurements into two
groups: basic measurements and localized measurements. Basic measurements of
the phenotype cover shape descriptors, texture patterns and invariant features.
Localized measurements of phenotype describe the assessment of the correlation
between multiple information channels. The information channels in the context
of the research presented in this thesis are the imaging channels. The reason for
splitting the channels in different parts of the color spectrum is that each chan-
nel contains individual characteristics of the object under investigation due to a
specific staining method resulting in biological meaning.

For 3D images and 3D geometrical models, we need to look at different features.
One group concerns the feature-based measurements including both global shape,
such as volume and surface area, and local features such as surface curvature. An-
other part of phenotype measurements is graph based indicating the use of the
geometrical and topological shape properties such as skeleton and centerline; in
such a way that faithful and intuitive features can be derived.

For each study that we will introduce in this thesis, we intend to find the advanced
and representative phenotype measurements from the biological image dataset so
as to facilitate the solution of a specific biological question. There is no general
standard for the selection of phenotype measurements and it is unrealistic to use
all the extracted features for pattern classification. Normally, related phenotype
measurements are based on the biological descriptions and further use feature
selection methods to distill the feature dimensions for classification training. In
order to extract related features, the knowledge combined from biologists and
computer scientists is required. The image features as described by the biol-

ogists, are based on biological principles. These features are observable. The
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computer scientists need to translate the feature description into features that
can be derived through computation. We call it hidden features. Hidden features
are those that can not be derived other than through computation from the dig-
itized image. These features intend to use some advanced and invariant features
to represent the biologists’ description. In addition, the computer scientists can
detect the variance of some other advanced measurements which can be further

introduced in the phenotype measurements process.

1.4 Data analysis

Feature
Ground truth extraction Classifier Error Final classification
data preparation ™ Feature | training estimation or evaluation
selection
Ideal and real

feature calculation

Figure 1.3. The model of phenotype data analysis.

Data analysis pipeline includes ground truth data preparation, feature reduction
and classification as shown in Figure 1.3. For a description of phenotype we need
ground truth data. For data analysis a good idea of ground truth is important; so
for phenotype analysis we need good ground truth examples. But what is ground

truth? Therefore we first give a definition.

Definition 1.4.1. In machine learning, the term ”ground truth” refers to the ac-
curacy of the classification of the training for supervised learning techniques. This

accuracy 1s used in statistical models to prove or disprove research hypotheses.

In image processing, ground truth data could be derived from manual delin-
eation by experts, synthetic images or analytical models based on mathematical

expressions. These ground truth data set is used in both phenotype classification
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and performance evaluation. Phenotype classification is discussed in 1.4.3.

In our workflow, after having ground truth data for reference, the next step is
feature reduction including feature selection and feature extraction in the feature
space. This step intends to find prominent features from the feature pool. Fea-
ture selection reduces the dimensionality of the feature set by selecting the subset
of features from the original set. Feature extraction maps the original feature set
into a new set with a reduced dimensionality. Next, classifier training tries dif-
ferent kinds of classifiers and uses an error estimation step to select the classifier
with the lowest error.

We strive at using the best performing combination of feature reduction and
classifier method for phenotype classification. For the process of performance
evaluation, we start with preparing the ground truth data. Then, we measure
the ideal features from the ground truth data and real features from the output
of the methods. Next, we calculate the difference between ideal and real features

by an error estimation.

1.4.1 Ground truth data

The verb ”ground truthing” refers to the process of gathering the proper objective
data for the test. Based on this ground truth, researchers train a suitable classifi-
cation method to deliver probabilistic predictions for new observations [Kirchner
et al., 2010]. For example, in next generation sequencing technology (NGS),
ground truth data is used to train a standard supervised machine learning al-
gorithm for the purpose of identifying somatic mutations from NGS data [Ding
et al., 2011]. In classification of plant organs from laser scanned point clouds, the
commercial software Geomagic Studio 12 is used to manually assign the ground
truth data [Paulus et al., 2013].

Apart from classification training, ground truth is also used for performance eval-
uation of algorithms and methods. It checks whether the algorithm produces the
right output or not. It is frequently used in the evaluation of image segmenta-
tion algorithms. The ground truth could be artificial or synthetic images which
provide an unbiased ground-truth. Regarding a performance test with the mi-

croscopy images, the ground truth images are obtained by manual segmentation
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performed by biologists through tracing on a digitizer surface. In order to reduce
the observation bias during the manual segmentation, the experts need to repeat
several times to obtain an idea of inter user variance [Yan and Verbeek, 2012b].
Similar ground truth production construction is used for algorithm evaluation
including retinal vessel segmentation methods [Kaba et al., 2014], simultaneous
recognition and segmentation (SRS) of cells [Qu et al., 2011] and microarray
segmentation algorithms [Lehmussola et al., 2006]. The ground truth is also
used in other methods evaluation discussed as follows: the study in [Lee et al.,
2012] computes the distance between the reconstruction and the ground truth to
analyze the accuracy of the 3D Neuronal Structure Reconstruction method; in
next-generation sequencing, read mapping and genome-wide domain annotations
are combined as the ground truth for evaluating the read classification sensitivity
and specificity [Zhang et al., 2013]. For a better use of ground truth data, there
are even further discussions on introducing a way to design ground-truthed data
to compare and evaluate the performance of the real-world detectors [Vedaldi
et al., 2010] and creating a ground truth database to evaluate algorithms in the

field of mobile robots [Takeuchi et al., 2003].

1.4.2 Feature selection/extraction

In the pool of quantified features, some redundant or irrelevant features can occur
within the feature set. Therefore, feature selection process is applied to select a
subset of relevant features for further classification. Some popular feature selec-
tion methods include the branch and bound procedure, sequential backward and
forward selections, best individual feature selection.

The branch and bound procedure is a top-down procedure without exhaustive
search. It constructs a tree by deleting features successively based on the mono-
tonicity property [Webb and Copsey, 2011].

Sequential forward selection is a bottom-up search procedure that starts with a
null set and adds new features to the feature set one at a time until the final
feature set is reached. An important disadvantage of the method is the lack of a

mechanism of deleting features from the feature set once they have been added.
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Sequential backward selection is the other way around. It is a top-down procedure
starting with a complete feature set and deleting features one at a time until a
predefined dimensionality of the set is reached. The disadvantage of the back-
ward selection method is that it is computationally more demanding compared
to forward selection during the criterion function evaluation.

The best individual feature selection [Webb and Copsey, 2011] is the simplest se-
lection method, it might also be the one giving poorest performance; such occurs
especially when the features are highly correlated [Webb and Copsey, 2011].

In addition, feature extraction is used to reduce the dimension of the feature set
by combining the original features into reduced new features with functions.
Feature extraction is divided into supervised and unsupervised methods. Prin-
cipal component analysis (PCA) is a typical unsupervised feature extraction
method. This method aims at deriving new variables (in decreasing order of
importance) that are linear combinations of the original variables and that are
uncorrelated. Principal component analysis is a variable-directed technique and
therefore is described as an unsupervised feature extraction technique [Webb and
Copsey, 2011]. Linear discriminant analysis (LDA) is a supervised feature ex-
traction method. It searches the directions for the maximum discrimination of
classes in addition to the dimensional reduction. The criterion proposed by LDA
is the ratio of between-class to within-class variances. It is generally believed
that when it comes to solving pattern classification problems, LDA algorithms
outperform PCA-based ones, since the former optimizes the low dimensional rep-
resentation of the objects and focus on the most discriminant features, while the
latter achieves simply object reconstruction [Youness and Hamid, 2013].

From analysis the microscopy images we can derive large amount of features.
However, these features are not all prominently describing the phenotypical dif-
ferences. Therefore we require a feature reduction method to control the redun-
dancy and consistency that exist in our original feature set. If these two feature
reduction process are carefully selected, the prominent information from original
feature set could be extracted to perform a more efficient classification using this

reduced feature set rather than using the complete original set of features.

10
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1.4.3 Classification

Classification is a procedure in pattern recognition to identify objects in specific
categories based on a training set of data containing labeled objects of known
category. As for a supervised learning, the training set, in our case also regarded
as ground truth data, is crucial for a correct classification. It needs to include a
sufficiently large dataset with a variety of situations. Algorithms that implement
classification schemes are called classifiers. Classifiers are divided into parametric
and non-parametric categories. The linear classifier and the quadratic classifier
belong to parametric category and the k-nearest neighbor classifier is in non-
parametric category. Linear and quadratic discriminant functions are based on
a normal distribution. The linear discriminant rule is quite robust and divides
dataset from the normal distributions under the assumption of an equal covari-
ance matrix. However, it is often better to use the quadratic rule if the sam-
ple distributions are not separated by the mean-difference but separated by the
covariance-difference [Fukunaga, 1990; Webb and Copsey, 2011|. The k-nearest
neighbor classifier assigns a point z to a particular class based on a majority
vote among the classes of the k nearest training points to z. It is a simple and
flexible classifier with a good classification performance. However, as the number
of objects in the training set increases, it may lead to an excessive computational
overhead [Fukunaga, 1990; Webb and Copsey, 2011].

After classification, the phenotypes in segmented objects from images are sorted
into different categories. Subsequently we can analyze the changes of a specific
category with different biological treatments or across a time line. These changes

or trends are meaningful to proof a hypothesis in bio-medical research.

1.4.4 3D model representation

3D models can be represented in three ways: voxel, contour and surface [Verbeek
et al., 1995]. voxel models use volume to represent the objects. These models
are more realistic but more difficult to construct. The surface models use a sur-
face element to represent the objects such as triangulated surface. These models

are easier to deal with since the scale of the computing dataset is much smaller

11
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than voxel models. Thus, surface models are often used to represent 3D models
nowadays. Surface representation can contribute to the phenotype measurement
considerably well. Many shape based features, such as surface area, volume, cur-
vature, can be calculated well from a surface description. This requires a good

surface description.

1.4.5 3D surface reconstruction

A large amount of research has been performed on surface reconstruction from
a stack of 2D slices i.e. plan parallel sampled data. One direction is called con-
tour based reconstruction methods. The existing approaches mostly fall into two
categories: contour stitching and volumetric methods. Contour stitching directly
connect the adjacent contours, while the volumetric methods need to interpolate
intermediate gray-values firstly and extract the isosurface from the volumetric
field.

The other, evenly popular direction is referred to as point cloud based reconstruc-
tion methods. In the literature, the proposed approaches are generally classified
into two categories: explicit representation and implicit approximation. The
major explicit representations include parametric surfaces and triangulated sur-
faces. Parametric surfaces attempt to represent all shapes with a set of elemen-
tary shapes such as super-quadratics, generalized cylinders, parametric patches,
etc. In the explicit representation, all or most of the points are directly in-
terpolated based on structures from computational geometry, such as Delaunay
triangulations [Boissonnat, 1984], alpha shapes [Amenta et al., 2000], or Voronoi
diagrams [Amenta et al., 1998|. The implicit approximation is based on a scheme
which integrates characteristic of each point on the surface into a feature func-
tion, a.k.a. the implicit function such as Fourier-based reconstruction scheme
[Kazhdan, 2005] and Poisson reconstruction method. The selection of a surface
reconstruction method is important to precisely preserve the surface characteris-
tics and show robustness in the presence of noise. This is addressed in this thesis

to be able to come to good features derived from 3D images.

12
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1.5 Structure of the thesis

The image data that are the basis of the phenotypical descriptions are the level of
2D dynamic images (x,y,t) and 3D images (x,y,z). Chapter 2 and Chapter 3 exem-
plify the image and data analysis of dynamic 2D image at cellular level as derived
from high-throughput screening experiment. Chapter 4, Chapter 5 and Chapter
6 describe the 3D image representation and analysis at tissue/organ/organismal
level.

The research in Chapter 2 illustrates the design and implementation of a sys-
tem for automated high-throughput image and data analysis. The phenotypes
are characterized according to a model that describes the process of endocytosis,
i.e. the ability of cells to absorb molecules, in three characteristic stages. These
stages are referred to as episodes and through image processing we try to establish
these episodes and the vesicles involved in the ensocytosis are different for each
episode. In the late process these vesicles are forming a cluster near the region of
the nucleus. According to the model and the observations that it was conceived
from, such cluster is larger, brighter and close to the nucleus. From the perspec-
tive of image processing, this requires to compuet the area, integrated intensisty
of the vesicle and many more possible features derived from objects, i.e. vesicles,
that are indentified in the image. From the computer scientists’ point of view, it
means to calculate the area, the intensity of the labeled object etc. Apart from
standard phenotype measurements, we make use of the localized feature of phe-
notype such as closest object distance which is the distance between the object
and the nuclei region so as to describe the correlation between two information
channels. We obtained the ground truth data for classifier training by having the
three characteristic episode groups manually delineated by biologists; this gives
as binary mask. We make use of these binary masks for further phenotype mea-
surements and derive the training set for the supervised classification procedure.
Next, we use the model of phenotype data analysis for the classification of the
three episodes (plasma-membrane, vesicle and cluster). We evaluate the perfor-
mance of the combination of different feature selection and classification methods
and select one with the lowest error estimation. The experimental results show

that our analysis setup for high-throughput screening provides scalability and

13
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robustness in the temporal analysis of an EGFR endocytosis model.

In Chapter 3, the results of Chapter 2 are further evaluated. Chapter 3 illus-
trates an integrated method employing a hierarchical classification strategy and
wavelet-based texture measurements to further improve the recognition of pheno-
typic episodes of EGFR during endocytosis. During the previous single classifier
training in Chapter 2, we find that the similarity between cluster and vesicle
is higher than with plasma-membrane. As a result, we construct an advanced
hierarchical classification strategy. This hierarchical classification strategy can
construct the classes in a tree structure and train the classifier for each parent
node to distinguish two child nodes that belong to the same parent node. We also
introduced wavelet texture features to distinguish endosomes phenotype variation
across timeline instead of the average intensity for each object, because a texture
feature in a local patch is more discriminative than pixel intensities for candidate
identification [Song et al., 2013]. The result of the hierarchical classifiers with
wavelet-based texture measurements shows a noticeable improvement compared
to the single classification strategy.

In Chapter 4, the work uses an analytical approach to evaluate four classical sur-
face reconstruction methods. We make use of the ground truth concept for the
evaluation of 3D surface reconstruction methods. In order to make an objective
assessment of the surface quality, we utilize three synthetic objects for the error
estimation. From mathematics, an analytical description of each synthetic ob-
jects is available. The three synthetic objects are the sphere, the ellipsoid and the
ovoid. The parametrical mathematical representation of these synthetic surfaces
helps us to compute the ideal surface features and provides a ground truth for
the error estimation of surface. For the real surface feature calculation, we firstly
deviate the ideal model by adding different levels of noise. Next, we use the noisy
point cloud as our input for the reconstruction algorithms. Finally, we calculate
the real surface feature from the reconstructed surface model. The aim of this
evaluation study is to select the outstanding reconstruction method to improve
reliability in surface reconstruction of biological models.

In order to apply the findings of Chapter 4, optimized 3D geometrical descrip-
tions are requried. In Chapter 5, we therefore provide a pipeline to optimize the

stack of biological images in 3D space and analyze the phenotypical difference by
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extracting related shape features from the 3D biological model.

In Chapter 6 we applied the results from Chapter 4 and Chapter 5 for phenotype
measurements; we extract centerline of the rodent newborn lactiferous duct to un-
fold the branch structure embedded in the duct rather than use standard surface
descriptions. Next, we use the quantified features from the centerline to detect
the morphological changes on the duct surface model. Furthermore, we extended
the usage of ground truth for the simulation of mammary gland in Chapter 6.
With the inspiration from the tree-like structure of mammary gland, we use a
mathematical model: Lindenmayer systems (L-systems) which is a mathematical
theory developed for the description of growth patterns in plants. We create a
specified model for lactiferous duct of the new-born mouse from the L-system as
our ground truth. With this mathematical model, we can simulate the phenotypi-
cal variation between various treatments by changing the parameters representing
prominent features derived from phenotype measurements.

We conclude the discussion of this thesis in Chapter 7 with the insights that are

obtained from the research describes in the Chapters 2-6.
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Chapter 2

Pattern Recognition in
High-Content Cytomics Screens
for Target Discovery: Case

Studies in Endocytosis

Based on:

L. Cao, K. Yan, L. Winkel, M. de Graauw, F.J. Verbeek. Pattern Recognition
in High-Content Cytomics Screens for Target Discovery: Case Studies in
Endocytosis. Pattern Recognition in Bioinformatics 2011, Delft, LNCS
Springer, pages 330-342, 2011
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Abstract:Finding patterns in time series of images requires dedicated ap-
proaches for the analysis, in the setup of the experiment, the image analysis as
well as in the pattern recognition. The large volume of images that are used
in the analysis necessitates an automated setup. In this paper, we illustrate
the design and implementation of such a system for automated analysis from
which phenotype measurements can be extracted for each object in the analy-
sis. Using these measurements, objects are characterized into phenotypic groups
through classification while each phenotypic group is analyzed individually. The
strategy that is developed for the analysis of time series is illustrated by a case
study on EGFR endocytosis. Endocytosis is regarded as a mechanism of at-
tenuating epidermal growth factor receptor (EGFR) signaling and of receptor
degradation. Increasingly, evidence becomes available showing that cancer pro-
gression is associated with a defect in EGFR endocytosis. Functional genomics
technologies combine high-throughput RNA interference with automated fluores-
cence microscopy imaging and multi-parametric image analysis, thereby enabling
detailed insight into complex biological processes, like EGFR endocytosis. The
experiments produce over half a million images and analysis is performed by au-
tomated procedures. The experimental results show that our analysis setup for
high-throughput screening provides scalability and robustness in the temporal

analysis of an EGFR endocytosis model.
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2.1 Introduction

In this paper we address the problem of deriving a phenotype of a cell in the
context of time-lapse cytomics data; in particular we investigate the process of
endocytosis and epidermal growth factor receptor (EGFR) signaling,.

Enhanced epidermal growth factor receptor (EGFR) signaling triggers breast can-
cer cells to escape from the primary tumor and spread to the lung, resulting in
poor disease prognosis. Moreover, it may result in resistance to anti-cancer ther-
apy. In normal epithelial cells, EGFR signaling is regulated via endocytosis, a
process that results in receptor degradation and thereby attenuation of EGFR
signaling. However, in cancer cells the endocytosis pathway is often defective,
resulting in uncontrolled EGFR signaling. Over the past years, RNA interference
combined with fluorescence microscopy-based imaging has become a powerful
tool to the better understanding of complex biological processes [Pelkmans et al.,
2005]. Such combined experiment often produces over half a million multi-channel
images; manual processing of such data volume is impractical and jeopardizes ob-
jective conclusions. Therefore, an automated image and data analysis solution is
indispensable. To date, analysis was done with simple extraction of basic pheno-
types from EGFR images using tools such as BioApplication [Ghosh et al., 2005],
ImageXpress [Galvez et al., 2007] and QMPIA [Collinet et al., 2010]. However,
these tools are not suitable for a profound study of the dynamics behind EGFR
endocytosis which requires more attention. From the existing literature [Collinet
et al., 2010; Galvez et al., 2007; Ghosh et al., 2005; Li et al., 2009; Roepstorff
et al., 2008; Tarcic et al., 2009; Ung et al., 2011] a generic model, defining four
major episodes of EGF-induced EGFR endocytosis, can be distilled. (1) Under
control conditions, EGFR localizes at the plasma-membrane site for internal-
ization, which is in our study defined as the ”plasma-membrane” episode. (2)
Upon binding of EGF to the receptor, EGFR is taken up into small vesicular
structures and starts sorting in early endosomes, which is defined here as the
"vesicle” episode. (3) Over time EGFR containing vesicles are transported to
late endosomes localizing near the nuclear region and form into a larger complex
multi-vesicular body, defined here as the ”cluster” episode. (4) In final episode,
EGFR is degraded in the lysosomes. In addition to this route, EGFR can also
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partly be transported back to the plasma-membrane sites. Using this dynamic
model as the major guideline, the analysis of EGFR-regulation-related gene path-
way could be linked to each stage of EGFR endocytosis. Instead of looking at
one fixed time point, our current experimental design includes a series of time
points at which images are captured. An image potentially contains a ratio in
the first three characteristic episodes in the EGFR endocytosis process. The im-
age analysis solution should be able to extract basic phenotype measurements as
well as to identify the stage of EGFR. In this paper, we illustrate the design and
implementation of an automated setup for high-content image and data analysis
which can properly capture EGFR dynamics and classify different EGFR pheno-
types.

Our workflow for automated analysis solution is depicted in Figure 2.1. Each high
throughput screening (HTS) experiment starts with the design of the experimen-
tal scheme, followed by the wet-lab experiment and high throughput microscopy-
based imaging. Both experimental schemes and image data are organized and
stored in a database. Subsequently, image analysis is used to extract phenotype
measurements from these images and classifiers are introduced to recognize each
phenotypic stage of EGFR. Finally, comprehensive conclusions are drawn based
on comparisons of EGFR expression at each stage and time point.

In this paper, we limit the scope to image analysis and data analysis, some bi-
ology will be explained. Accordingly, the organization of this paper is divided
into three major sections. In section 2.2, we introduce the methodology including
image acquisition and image analysis; several innovative algorithms will be briefly
introduced. After segmentation of the images, EGFR phenotype measurements
are obtained. We will illustrate the categorization of phenotypic stages using fea-
ture selection and classification. The best combination pair is applied on image
data to classify three phenotypic stages and construct a phenotype model. The
experimental results are presented in section 2.3 with two case studies. The first
case study tests our solution in identifying dynamic phenotype stages. The sec-
ond study case examines robustness and scalability of our solution in analyzing

a large number of phenotypes.
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2.2 Methodology

Modern techniques in fluorescence microscopy allow visualizing various cell struc-
tures so that these can be specifically subject to analysis. Together with a
computer-controlled microscope, a high-throughput image acquisition scheme,
known as high-throughput screening (HTS), has become feasible. Depending on
the biological question at hand, a HTS experiment may produce up to half million
images. Such a volume of images is beyond the capacity of manual processing
and therefore, image processing and machine learning are required to provide an
automated analysis solution for HTS experiments. In this section, we will intro-
duce the image acquisition protocol followed by approaches for image analysis

and data analysis.

~ Workflow of HTS Analysis System

Decision Making Data Map

p
Designing Upload Plate Upload HTS
Plates Designs Images
t Plate .
Design

!-f-fet-lah ; High-throughput
Experiment using Screen (HTS)
Plate design

Figure 2.1. Workflow of our HTS Analysis System. The basic entity for
processing cells is the 96 well culture plate. A virtual plate (layout) is designed

before the experiment and the data are often kept together per ”plate”.

2.2.1 Image acquisition

The workflow for data preparation for the experiment discussed in this chapter
here includes three essential steps: (1) cell culturing, siRNA transfection and EGF

exposure, (2) fluorescent staining of proteins of interest and (3) image acquisition.
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Here we use a design of an EGFR-regulation related siRNA screening to illustrate
this workflow. In this design, cells are cultured in 96 well culture plate and trans-
fected using Dharmafect smartpool siRNAs. Subsequently, the transfected cell
population is exposed to epidermal growth factor (EGF) for a different duration
of time. Cells are fixed at different time points and visualized with a confocal
laser microscope (Nikon TE2000). Image acquisition automation is realized with
an automated stage and an auto-refocusing lens controller. For each well, images
are captured from ten randomly selected locations. For each image three chan-
nels are captured: (1) a red channel containing P-ERK expression staining (Cy3),
(2) a green channel containing EGFR expression staining (Alexa-488) and (3) a
blue channel containing a nuclear staining (Hoechst #33258). Upon completion
of the acquisition process all images are uploaded to a database server for image

analysis.

2.2.2 Image analysis
2.2.2.1 High-content analysis

Basically, the image analysis procedure converts raw microscope images into
quantifications representing characteristic biological phenomena. A number of
steps are elaborated to achieve this purpose; starting from image acquisition,
three steps are distinguished: (1) noise suppression, (2) image segmentation and
(3) phenotype measurement. Image segmentation refers to the process of parti-
tioning an image into multiple regions with the goal to simplify and/or change the
representation of an image into something that is easier to analyze. For fluores-
cence microscopy cell imaging we specifically designed a segmentation algorithm:
i.e. watershed masked clustering (WMC). The WMC algorithm (cf. Figure 2.2d)
[Yan and Verbeek, 2012b] is an innovative and customized segmentation algo-
rithm that serves different types of cytomics studies like dynamic cell migration
analysis [Bera and Jarque, 1981; Roepstorff et al., 2008; Yan et al., 2009a] and
protein signaling modeling [Qin et al., 2012b]. Due to the absence of an indicator
for the cell border (cf. 2.1), a border reconstruction and interpolation algorithm is
designed to provide artificial representations of the cell borders; i.e. the weighted
Voronoi diagram based reconstruction (W-V) algorithm [Qin et al., 2012b]. The
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W-V algorithm (cf. Figure 2.2¢) offers the possibility to measure both border-
related signal localization [Qin et al., 2012b] and protein expression in terms of
continuity and integrity [Qin et al., 2012b]; it does not require a complete cell
border or cytoplasmic staining. Both binary mask and artificial cell border are

used to derive a number of phenotype measurements for further data analysis.

2.2.2.2 Phenotype measurement

In the current experiment and imaging protocol, the phenotype measurements
can be categorized into two subgroups: (1) basic measurements of the pheno-
types covering shape descriptors and (2) the localization phenotype describing
the assessment of the correlation between two information channels. The ba-
sic phenotype measurement [Damiano et al., 2011; Le Dévédec et al., 2010; Yan
et al., 2009a] includes a series of shape parameters listed in Table 2.2. In ad-
dition to the basic phenotype measurement [Damiano et al., 2011; Le Dévédec
et al., 2010; Qin et al., 2012b; Yan et al., 2009a], localization measurements can
be derived for a specific experimental hypothesis; e.g. the expression ratio be-
tween protein channels or shape correlation between objects. The localization
phenotypes are quantifications of comparative measurement between information
channels such as relative structure-to-nucleus distance or structure-to-border dis-
tance [Qin et al., 2012b]. In this paper, we will limit the scope of phenotype
measurements to the set employed by the study on EGFR endocytosis. In Table
2.3 a list of EGFR screening based localization phenotypes is shown. On the basis
of the phenotype measurements, objects are classified into phenotypic stages. For

the assessment of significance statistical analysis is performed.

2.2.3 Data analysis

The aim of the endocytosis study is to quantify the process of EGF-induced EGFR
endocytosis in human breast cells and to identify proteins that may regulate
this process. The EGFR endocytosis process can roughly be divided into three
characteristic episodes:plasma-membrane, vesicle and cluster. The characteristic
episodes are the read-out for HT'S. Based on this model it is believed that EGFR
endocytosis regulators may be potential drug targets for EGFR~induced breast
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cancer. Studying each of the stages (cf. Figure 2.3), i.e. plasma-membrane,

vesicle and cluster, may provide a deeper understanding of the EGFR endocytosis

process.

Table 2.2. Basic measurements for a phenotype (after segmentation to binary

mask)

Feature Name

Description

Size The size of object, aka as the surface area.
Perimeter The perimeter of the object.
) Derived from 2nd-order invariants of the object [Hu, 1962;
Extension
Yan et al., 2009a].
) ) Derived from 2nd-order invariants of the object [Hu, 1962;
Dispersion
Yan et al., 2009a].
) Derived from 2nd-order invariants of the object [Hu, 1962;
Elongation
Yan et al., 2009a].
) ) Derived from 2nd-order moments of the object [Hu, 1962;
Orientation
Yan et al., 2009a].
Intensity Average intensity of all pixels belong to an object.
, ) Area-to-perimeter ratio; higher compactness suggests a
Circularity

more smooth and less protrusive shape.

Semi-major axis

length

Derived from 2nd-order moments of the object [Hu, 1962;
Yan et al., 2009a].

Semi-minor axis

length

Derived from 2nd-order moments of the object [Hu, 1962;
Yan et al., 2009a].

Closest object

distance

The distance to nearest neighbor of the object, the
distance is measured similar to the border distance in
Table 2.3.

In nucleus

Boolean describing if the object is included in nucleus

mask.

2.2.3.1 Phenotypic sub categorization

Here we introduce a profound explanation of the whole procedure employed in

the phenotypic sub-categorization including the production of a training set and
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the procedure for the training of the classifier. The training set is derived from
manually delineated outlines of each phenotypic group and is subsequently used
to train a classifier distinguishing three different phenotypes. From two case
studies the capability of our solution with respect to identifying characteristic
episodes in the process under study stages as well as the scalability in describing
different phenotypic groups, is assessed.

Preparation of the Training Set. Ground truth data were obtained by the outlines
of the three characteristic episode groups, i.e. cell border/plasma-membrane,
vesicle and cluster. These were separately delineated by biologists using our
dedicated annotation software (TDR) with a digitizer tablet (WACOM, Cintiq
LCD-tablet). From each outline a binary mask is created for each phenotypic
stage. In Figure 2.4(b) the vesicle mask derived from a manually selected vesicle
outline is shown. This mask is overlaid with the mask obtained from the WMC
algorithm so as to extract the intersection set of two masks as shown in Figure
2.4(d). Finally, the phenotype measurements are computed with this mask. In
similar fashion the ground truth datasets for the plasma-membrane and cluster

groups are prepared.

Table 2.3. Localization measurement

Feature Name Description

Distance between structure and nucleus, measured as the
Nucleus distance average distance between each pixel in an object and the

center of mass of the corresponding nucleus.

Distance between structure and cell membrane, measured
Border distance as the average distance between each object-pixel and the

center of mass of the cell border (membrane).

Overlap between structure expression and cell membrane
Intactness o
divided by the total length of cell membrane.

The training dataset includes three characteristic episode groups with 2254
objects and 14 features. Given the huge differences in the feature ranges, it is
necessary to normalize the dataset. Normalization is accomplished by shifting
the mean of the dataset to the origin and scaling the total of variances of all

features to 1. In this way the magnitude effect is successfully removed and the
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recognition accuracy can be significantly improved [Okun, 2004]. The normalized

dataset is used for training of the EGFR classifier.

(b) (c) (d)
Figure 2.2. (a) Original image: PERK(red), EGFR (green) and nucleus

(blue), (b) Component definition: artificial cell border (red) and binary mask of
protein expression (green), (c) cell border reconstruction : artificial cell border
(W-V), (d) image segmentation: binary mask of EGFR channel by WMC.

(a) (b)

Figure 2.3. Sample images of the 3 phenotypic groups with (a)

Plasma-membrane, (b) Vesicle, (c¢) Cluster.

(b) () (d)

Figure 2.4. Ground truth data production. (a) Original image, (b) manual
mask, (¢) WMC mask, (d) overlay of the mask.

26



2. PATTERN RECOGNITION IN HIGH-CONTENT SCREENS

Feature Selection. First, it is crucial to make a selection of the probabilistic
distance criterion for the discriminability estimation. For this we choose the Ma-
halanobis distance [Mahalanobis, 1936a] since it takes the correlations among the
variables into consideration and, in addition, it is scale-invariant. Other distance
criteria, such as the Euclidean or Manhattan distance, are, more or less, related
to the assumption that all features are independent and have an equal variance.
We cannot be certain that all features in our dataset are independent and there-
fore the Mahalanobis distance is preferred.

Second, we have selected three representative search algorithms including para-
metric and non-parametric search algorithms; i.e. the branch and bound proce-
dure [Land and Doig, 1960al, best individual N features and sequential backward
selection [Jain et al., 2000]. Branch and bound is a top-down procedure, begin-
ning with the set of variables and constructing a tree by deleting variables succes-
sively: i.e. an optimum searching procedure requiring the evaluation of partially
constructed or approximate solutions without involving exhaustive search. Best
individual N features procedure is the simplest suboptimal method for choosing
the best N features by individually assigning a discrimination power estimate to
each of the features in the original set. In some cases, especially if the features
from original set are uncorrelated, this method results in a well-defined feature
sets. Sequential backward selection is another suboptimal search algorithm. Vari-
ables are deleted one at a time until the required number of measurements remains
[Fukunaga, 1990]. The advantage of backward selection is its capability for global
control during the feature selection.

Third, we choose three classifiers covering both linear and non-linear categories;
i.e. the linear classifier (LDC), the quadratic classifier (QDC) and k-nearest neigh-
bor classifier (KNNC). A linear classifier makes a classification decision based on
the value of a linear combination of the characteristics [Mitchell, 2005]. If the
data are strongly non-Gaussian, they can perform quite poorly relative to nonlin-
ear classifiers [Devroye et al., 1996]. A quadratic classifier, which is generalization
of the linear classifier; it separates measurements of classes by a quadric surface.
Finally, the k-nearest neighbor classifier classifies an object by a majority vote of
its neighbors, with the object being assigned to the class most common amongst

its k nearest neighbors. The k-nearest neighbor rule achieves a consistent high
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performance, without a priori assumptions about the distributions from which
the training examples are drawn. Moreover, it is robust with respect to noisy
training data and still effective if the training dataset is large. By permutation
we obtained 9 pairs of combinations