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Chapter 1

Introduction

Microscopes have enabled mankind to increase the resolution of their vision in the

micro and nano-scales. Fabulous visualizations can be achieved in this manner,

but there are still patterns in these visualizations that need to be addressed. The

technical developments in microscope instrumentation are incredible and have

made it possible to observe biological structures at near molecular scale up to

the tissue and organismal level (cf. Figure 1). The developments of digital in-

struments and computers have further boosted the area of microscope analysis.

Microscopes are equipped with digital cameras and researchers can produce large

amounts of high quality digital images. In these images there are patterns to

be analyzed and thus we need to look for efficient and correct ways to extract

information from these images and find patterns in this information. This partic-

ularly holds for the description of biological specimens that are observed in one

way or the other by microscopy. The research of this thesis contributes to the

efforts to find solutions in working with large amounts of images and extracting

information in a correct and comprehensive way.

In this thesis, we discuss solutions of phenotype description based on the mi-

croscopy image analysis to deal with biological problems both in 2D and 3D

space. Our description of patterns goes beyond conventional features and helps

to visualize the unseen in feature dataset. These solutions share several common

processes which are based on similar principles. Furthermore, we notice that ad-

vanced features and classifier strategies can help us improve the performance of

the solutions. The biological problems that we have studied include the endocy-
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1. INTRODUCTION

tosis routing using high-throughput screening in 2D and time and 3D geometrical

representation from biological structures.

In order to have a general view of the solutions, we would first introduce the

generic workflow as shown in Figure 1.2 which is applicable for both 2D and 3D

objects. For 3D images additional techniques are required.

Figure 1.1. Resolution required for several objects (middle line) and the

imaging equipment with which this resolution can be achieved (upper half) and

the typical resolution of objects (lower half).

Figure 1.2. Image processing and image analysis pipeline. Image processing

includes image preprocessing and image segmentation. Image analysis includes

image annotation, modelling, measurement and machine leaning. The pipeline

influences the decision making for a new experiment.

1.1 2D and 3D microscopy images acquisition

In the imaging pipeline, the first step is the image acquisition from microscopes.

In this thesis our inputs come from different microscopes. We utilize the bright-

field microscope for invasive sectioning of large structures in X,Y,Z space. For
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1. INTRODUCTION

non-invasive observation on cell level, we use confocal microscopy both for single

slide screening in X,Y,T space and multiple slides sectioning in X, Y, Z space.

Bright-field microscope is suitable for the imaging of stained tissue sections of

specimens because the easiest way to deal with thicker specimens (3D images) is

to slice the specimen into many consecutive thin sections. Given the resolution of

the imaging system, they provide clear information in x and y axis (2D images),

but limited information in z axis. This invasive sectioning enables the application

of staining techniques so that molecular phenotype of the specimen under study

can be revealed [Verbeek, 1999b]. This approach is useful for larger sections of

tissue whose z-resolution is of the order of millimeters, but it will not work in the

micro-nano range.

Confocal microscopy can be used in cellular high-throughput screening. It also

enables observation of thick specimens by optical sectioning which eliminate the

artifacts existed in specimen preparation by physical sectioning. However, optical

penetration into the specimen has its limitations. The scope of confocal micro-

scope is very good on the cellular level but less effective on the level of an organ

or a tissue; concluded from Figure 1.1. Consequently, for 3D reconstruction of

a larger embryo or a substantial part of it, confocal microscope is usually not

always the most appropriate technique [Verbeek, 1999b].

Optical projection tomography (OPT) is another non-invasive sectioning tech-

nique for 3D biological specimens. It aims at producing high-resolution 3D im-

ages of both fluorescent and nonfluorescent biological material with a thickness

of up to 15 millimeters. OPT microscopy allows the rapid mapping of the tissue

distribution of RNA and protein expression in intact embryos or organ systems

and can therefore be instrumental developmental biology studies for objective

phenotype description. [Sharpe et al., 2002]

Subsequent to image acquisition, the process of image and data analysis starts.

For both 2D and 3D microscopy images, the solutions for analysis are quite

similar. In this thesis, the major focus is on the description of the phenotype

measurement and data analysis. Therefore, we introduce a generalized solution

for 2D and 3D images in the following sections.
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1. INTRODUCTION

1.2 Image processing and analysis

The aim of image processing and analysis is to accomplish image understand-

ing and data reduction. The pipeline includes image enhancement or restoration

and image segmentation. The first step of image processing and analysis for

microscopy is to improve the quality of images by enhancing the foreground as

well as suppressing the background. Image enhancement aims for improving the

interpretability or perception of information in images for human viewers [Maini

and Aggarwal, 2010]. We see it separated into two main categories: spatial do-

main filters and frequency domain filters. Spatial domain filters directly deal with

the image pixels such as histogram enhancement. Frequency domain filters are

performed using the Fourier transform of the image and include low-pass filters,

bandpass filters and high-pass filters. Noise suppression algorithms often make a

tradeoff between actual noise removal and preservation of real low-contrast detail.

Most commonly used methods are linear filters such as Gaussian filter, Wiener

filer [Wiener, 1964] and non-linear filters such as median filter and the filters

based on the paradigm of its mathematical morphology [Serra, 1983].

Image segmentation is the technique dividing the image constituent parts most

notably in foreground and background. So it results in a separation of foreground

and background. In microscopy it is specifically used to detect objects, object re-

gions or edges in an image. Basically the image segmentation is divided into two

approaches: region-based segmentation and edge-based segmentation [Tripathi

et al., 2012]. Region-based segmentation partitions an image into regions that

are similar according to a set of predefined criteria [Gonzalez and Woods, 2001].

Some representative methods include thresholding, clustering and region growing.

The thresholding operation converts a gray-scale image into a binary image by a

set of thresholds. Popular methods include the maximum entropy method [Leung

and Lam, 1994], Bernsen’s method [Bernsen, 1986], Niblack’s method [Niblack,

1985], Isodata method [Manakos et al., 2000], Otsu’s method [Otsu, 1979]. Clus-

tering partition the image into the sets or clusters of pixels which have similar

feature space. Clustering methods can be further divided into k-means clustering

[Kanungo et al., 2002] and fuzzy clustering [Naz et al., 2010]. Region growing ex-

tracts a region of the image that is connected based on predefined criteria [Chen
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1. INTRODUCTION

and Shen, 2010]. Region growing techniques are often used in noisy images where

edges are extremely difficult to detect. Some well-known region based segmenta-

tion methods include the level set method [Qu et al., 2007], watershed transfor-

mation [Vincent and Soille, 1991] and texture segmentation [Ray et al., 2008]. In

Edge-based segmentation, an image is partitioned based on abrupt changes in the

intensity values [Gonzalez and Woods, 2001]. In Edge-based segmentation first

the edges are identified. These are linked together to form consistent boundaries.

Many edge operators are applied to locate edges in images such as the Sobel oper-

ator, the Prewitt operator and the Canny operator [Gonzalez and Woods, 2001].

The canny operator is used to find the edge pixels while eliminating the influence

of noise. Other well-known edge-based segmentation method is active contours

[Kass et al., 1988].

If the aim is to measure information on objects in the image then subsequent to

segmentation a labeling operation is required. Each object from the segmenta-

tion process is attributed a label which can, if necessary, be given an annotation

[Verbeek, 1999a] to provide biological context. An automatic annotation method

can be regarded as a multi-class object classification which is based on image

analysis to extract features and data analysis to train a proper classifier. In the

next section, we introduce the necessary concepts and context for this thesis.

1.3 Phenotype measurement

In order to correctly annotate each object separated from the segmentation

method, we need to quantify the object into all kinds of features describing the

unique pattern of the object for further multi-class classification. This quantifi-

cation step is, de facto, the measurement of the phenotype. Here we introduce

two basic definition on phenotype measurement.

Definition 1.3.1. ”Phenotype is the set of observable characteristics of an indi-

vidual resulting from the interaction of its genotype with the environment.”

Definition 1.3.2. ”Phenotype measurements imply the measurement of observ-
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1. INTRODUCTION

able attributes, reflecting the biological function of gene variants as affected by

the environment.” [Paulus et al., 2013]

For biological specimens, phenotype measurement is the next important step

in image analysis. The phenotype measurements will be used to classify objects

obtained from the segmentation into different categories that are meaningful with

respect to the biology. Thus, it is crucial to measure representative features for

each object in the image. These features, often, represent the characteristics of

shape, intensity and texture of the objects.

Generally in 2D space, we can categorize the phenotype measurements into two

groups: basic measurements and localized measurements. Basic measurements of

the phenotype cover shape descriptors, texture patterns and invariant features.

Localized measurements of phenotype describe the assessment of the correlation

between multiple information channels. The information channels in the context

of the research presented in this thesis are the imaging channels. The reason for

splitting the channels in different parts of the color spectrum is that each chan-

nel contains individual characteristics of the object under investigation due to a

specific staining method resulting in biological meaning.

For 3D images and 3D geometrical models, we need to look at different features.

One group concerns the feature-based measurements including both global shape,

such as volume and surface area, and local features such as surface curvature. An-

other part of phenotype measurements is graph based indicating the use of the

geometrical and topological shape properties such as skeleton and centerline; in

such a way that faithful and intuitive features can be derived.

For each study that we will introduce in this thesis, we intend to find the advanced

and representative phenotype measurements from the biological image dataset so

as to facilitate the solution of a specific biological question. There is no general

standard for the selection of phenotype measurements and it is unrealistic to use

all the extracted features for pattern classification. Normally, related phenotype

measurements are based on the biological descriptions and further use feature

selection methods to distill the feature dimensions for classification training. In

order to extract related features, the knowledge combined from biologists and

computer scientists is required. The image features as described by the biol-

ogists, are based on biological principles. These features are observable. The

6



1. INTRODUCTION

computer scientists need to translate the feature description into features that

can be derived through computation. We call it hidden features. Hidden features

are those that can not be derived other than through computation from the dig-

itized image. These features intend to use some advanced and invariant features

to represent the biologists’ description. In addition, the computer scientists can

detect the variance of some other advanced measurements which can be further

introduced in the phenotype measurements process.

1.4 Data analysis

Figure 1.3. The model of phenotype data analysis.

Data analysis pipeline includes ground truth data preparation, feature reduction

and classification as shown in Figure 1.3. For a description of phenotype we need

ground truth data. For data analysis a good idea of ground truth is important; so

for phenotype analysis we need good ground truth examples. But what is ground

truth? Therefore we first give a definition.

Definition 1.4.1. In machine learning, the term ”ground truth” refers to the ac-

curacy of the classification of the training for supervised learning techniques. This

accuracy is used in statistical models to prove or disprove research hypotheses.

In image processing, ground truth data could be derived from manual delin-

eation by experts, synthetic images or analytical models based on mathematical

expressions. These ground truth data set is used in both phenotype classification

7



1. INTRODUCTION

and performance evaluation. Phenotype classification is discussed in 1.4.3.

In our workflow, after having ground truth data for reference, the next step is

feature reduction including feature selection and feature extraction in the feature

space. This step intends to find prominent features from the feature pool. Fea-

ture selection reduces the dimensionality of the feature set by selecting the subset

of features from the original set. Feature extraction maps the original feature set

into a new set with a reduced dimensionality. Next, classifier training tries dif-

ferent kinds of classifiers and uses an error estimation step to select the classifier

with the lowest error.

We strive at using the best performing combination of feature reduction and

classifier method for phenotype classification. For the process of performance

evaluation, we start with preparing the ground truth data. Then, we measure

the ideal features from the ground truth data and real features from the output

of the methods. Next, we calculate the difference between ideal and real features

by an error estimation.

1.4.1 Ground truth data

The verb ”ground truthing” refers to the process of gathering the proper objective

data for the test. Based on this ground truth, researchers train a suitable classifi-

cation method to deliver probabilistic predictions for new observations [Kirchner

et al., 2010]. For example, in next generation sequencing technology (NGS),

ground truth data is used to train a standard supervised machine learning al-

gorithm for the purpose of identifying somatic mutations from NGS data [Ding

et al., 2011]. In classification of plant organs from laser scanned point clouds, the

commercial software Geomagic Studio 12 is used to manually assign the ground

truth data [Paulus et al., 2013].

Apart from classification training, ground truth is also used for performance eval-

uation of algorithms and methods. It checks whether the algorithm produces the

right output or not. It is frequently used in the evaluation of image segmenta-

tion algorithms. The ground truth could be artificial or synthetic images which

provide an unbiased ground-truth. Regarding a performance test with the mi-

croscopy images, the ground truth images are obtained by manual segmentation

8



1. INTRODUCTION

performed by biologists through tracing on a digitizer surface. In order to reduce

the observation bias during the manual segmentation, the experts need to repeat

several times to obtain an idea of inter user variance [Yan and Verbeek, 2012b].

Similar ground truth production construction is used for algorithm evaluation

including retinal vessel segmentation methods [Kaba et al., 2014], simultaneous

recognition and segmentation (SRS) of cells [Qu et al., 2011] and microarray

segmentation algorithms [Lehmussola et al., 2006]. The ground truth is also

used in other methods evaluation discussed as follows: the study in [Lee et al.,

2012] computes the distance between the reconstruction and the ground truth to

analyze the accuracy of the 3D Neuronal Structure Reconstruction method; in

next-generation sequencing, read mapping and genome-wide domain annotations

are combined as the ground truth for evaluating the read classification sensitivity

and specificity [Zhang et al., 2013]. For a better use of ground truth data, there

are even further discussions on introducing a way to design ground-truthed data

to compare and evaluate the performance of the real-world detectors [Vedaldi

et al., 2010] and creating a ground truth database to evaluate algorithms in the

field of mobile robots [Takeuchi et al., 2003].

1.4.2 Feature selection/extraction

In the pool of quantified features, some redundant or irrelevant features can occur

within the feature set. Therefore, feature selection process is applied to select a

subset of relevant features for further classification. Some popular feature selec-

tion methods include the branch and bound procedure, sequential backward and

forward selections, best individual feature selection.

The branch and bound procedure is a top-down procedure without exhaustive

search. It constructs a tree by deleting features successively based on the mono-

tonicity property [Webb and Copsey, 2011].

Sequential forward selection is a bottom-up search procedure that starts with a

null set and adds new features to the feature set one at a time until the final

feature set is reached. An important disadvantage of the method is the lack of a

mechanism of deleting features from the feature set once they have been added.

9



1. INTRODUCTION

Sequential backward selection is the other way around. It is a top-down procedure

starting with a complete feature set and deleting features one at a time until a

predefined dimensionality of the set is reached. The disadvantage of the back-

ward selection method is that it is computationally more demanding compared

to forward selection during the criterion function evaluation.

The best individual feature selection [Webb and Copsey, 2011] is the simplest se-

lection method, it might also be the one giving poorest performance; such occurs

especially when the features are highly correlated [Webb and Copsey, 2011].

In addition, feature extraction is used to reduce the dimension of the feature set

by combining the original features into reduced new features with functions.

Feature extraction is divided into supervised and unsupervised methods. Prin-

cipal component analysis (PCA) is a typical unsupervised feature extraction

method. This method aims at deriving new variables (in decreasing order of

importance) that are linear combinations of the original variables and that are

uncorrelated. Principal component analysis is a variable-directed technique and

therefore is described as an unsupervised feature extraction technique [Webb and

Copsey, 2011]. Linear discriminant analysis (LDA) is a supervised feature ex-

traction method. It searches the directions for the maximum discrimination of

classes in addition to the dimensional reduction. The criterion proposed by LDA

is the ratio of between-class to within-class variances. It is generally believed

that when it comes to solving pattern classification problems, LDA algorithms

outperform PCA-based ones, since the former optimizes the low dimensional rep-

resentation of the objects and focus on the most discriminant features, while the

latter achieves simply object reconstruction [Youness and Hamid, 2013].

From analysis the microscopy images we can derive large amount of features.

However, these features are not all prominently describing the phenotypical dif-

ferences. Therefore we require a feature reduction method to control the redun-

dancy and consistency that exist in our original feature set. If these two feature

reduction process are carefully selected, the prominent information from original

feature set could be extracted to perform a more efficient classification using this

reduced feature set rather than using the complete original set of features.

10



1. INTRODUCTION

1.4.3 Classification

Classification is a procedure in pattern recognition to identify objects in specific

categories based on a training set of data containing labeled objects of known

category. As for a supervised learning, the training set, in our case also regarded

as ground truth data, is crucial for a correct classification. It needs to include a

sufficiently large dataset with a variety of situations. Algorithms that implement

classification schemes are called classifiers. Classifiers are divided into parametric

and non-parametric categories. The linear classifier and the quadratic classifier

belong to parametric category and the k-nearest neighbor classifier is in non-

parametric category. Linear and quadratic discriminant functions are based on

a normal distribution. The linear discriminant rule is quite robust and divides

dataset from the normal distributions under the assumption of an equal covari-

ance matrix. However, it is often better to use the quadratic rule if the sam-

ple distributions are not separated by the mean-difference but separated by the

covariance-difference [Fukunaga, 1990; Webb and Copsey, 2011]. The k-nearest

neighbor classifier assigns a point x to a particular class based on a majority

vote among the classes of the k nearest training points to x. It is a simple and

flexible classifier with a good classification performance. However, as the number

of objects in the training set increases, it may lead to an excessive computational

overhead [Fukunaga, 1990; Webb and Copsey, 2011].

After classification, the phenotypes in segmented objects from images are sorted

into different categories. Subsequently we can analyze the changes of a specific

category with different biological treatments or across a time line. These changes

or trends are meaningful to proof a hypothesis in bio-medical research.

1.4.4 3D model representation

3D models can be represented in three ways: voxel, contour and surface [Verbeek

et al., 1995]. voxel models use volume to represent the objects. These models

are more realistic but more difficult to construct. The surface models use a sur-

face element to represent the objects such as triangulated surface. These models

are easier to deal with since the scale of the computing dataset is much smaller
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than voxel models. Thus, surface models are often used to represent 3D models

nowadays. Surface representation can contribute to the phenotype measurement

considerably well. Many shape based features, such as surface area, volume, cur-

vature, can be calculated well from a surface description. This requires a good

surface description.

1.4.5 3D surface reconstruction

A large amount of research has been performed on surface reconstruction from

a stack of 2D slices i.e. plan parallel sampled data. One direction is called con-

tour based reconstruction methods. The existing approaches mostly fall into two

categories: contour stitching and volumetric methods. Contour stitching directly

connect the adjacent contours, while the volumetric methods need to interpolate

intermediate gray-values firstly and extract the isosurface from the volumetric

field.

The other, evenly popular direction is referred to as point cloud based reconstruc-

tion methods. In the literature, the proposed approaches are generally classified

into two categories: explicit representation and implicit approximation. The

major explicit representations include parametric surfaces and triangulated sur-

faces. Parametric surfaces attempt to represent all shapes with a set of elemen-

tary shapes such as super-quadratics, generalized cylinders, parametric patches,

etc. In the explicit representation, all or most of the points are directly in-

terpolated based on structures from computational geometry, such as Delaunay

triangulations [Boissonnat, 1984], alpha shapes [Amenta et al., 2000], or Voronoi

diagrams [Amenta et al., 1998]. The implicit approximation is based on a scheme

which integrates characteristic of each point on the surface into a feature func-

tion, a.k.a. the implicit function such as Fourier-based reconstruction scheme

[Kazhdan, 2005] and Poisson reconstruction method. The selection of a surface

reconstruction method is important to precisely preserve the surface characteris-

tics and show robustness in the presence of noise. This is addressed in this thesis

to be able to come to good features derived from 3D images.
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1.5 Structure of the thesis

The image data that are the basis of the phenotypical descriptions are the level of

2D dynamic images (x,y,t) and 3D images (x,y,z). Chapter 2 and Chapter 3 exem-

plify the image and data analysis of dynamic 2D image at cellular level as derived

from high-throughput screening experiment. Chapter 4, Chapter 5 and Chapter

6 describe the 3D image representation and analysis at tissue/organ/organismal

level.

The research in Chapter 2 illustrates the design and implementation of a sys-

tem for automated high-throughput image and data analysis. The phenotypes

are characterized according to a model that describes the process of endocytosis,

i.e. the ability of cells to absorb molecules, in three characteristic stages. These

stages are referred to as episodes and through image processing we try to establish

these episodes and the vesicles involved in the ensocytosis are different for each

episode. In the late process these vesicles are forming a cluster near the region of

the nucleus. According to the model and the observations that it was conceived

from, such cluster is larger, brighter and close to the nucleus. From the perspec-

tive of image processing, this requires to compuet the area, integrated intensisty

of the vesicle and many more possible features derived from objects, i.e. vesicles,

that are indentified in the image. From the computer scientists’ point of view, it

means to calculate the area, the intensity of the labeled object etc. Apart from

standard phenotype measurements, we make use of the localized feature of phe-

notype such as closest object distance which is the distance between the object

and the nuclei region so as to describe the correlation between two information

channels. We obtained the ground truth data for classifier training by having the

three characteristic episode groups manually delineated by biologists; this gives

as binary mask. We make use of these binary masks for further phenotype mea-

surements and derive the training set for the supervised classification procedure.

Next, we use the model of phenotype data analysis for the classification of the

three episodes (plasma-membrane, vesicle and cluster). We evaluate the perfor-

mance of the combination of different feature selection and classification methods

and select one with the lowest error estimation. The experimental results show

that our analysis setup for high-throughput screening provides scalability and
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robustness in the temporal analysis of an EGFR endocytosis model.

In Chapter 3, the results of Chapter 2 are further evaluated. Chapter 3 illus-

trates an integrated method employing a hierarchical classification strategy and

wavelet-based texture measurements to further improve the recognition of pheno-

typic episodes of EGFR during endocytosis. During the previous single classifier

training in Chapter 2, we find that the similarity between cluster and vesicle

is higher than with plasma-membrane. As a result, we construct an advanced

hierarchical classification strategy. This hierarchical classification strategy can

construct the classes in a tree structure and train the classifier for each parent

node to distinguish two child nodes that belong to the same parent node. We also

introduced wavelet texture features to distinguish endosomes phenotype variation

across timeline instead of the average intensity for each object, because a texture

feature in a local patch is more discriminative than pixel intensities for candidate

identification [Song et al., 2013]. The result of the hierarchical classifiers with

wavelet-based texture measurements shows a noticeable improvement compared

to the single classification strategy.

In Chapter 4, the work uses an analytical approach to evaluate four classical sur-

face reconstruction methods. We make use of the ground truth concept for the

evaluation of 3D surface reconstruction methods. In order to make an objective

assessment of the surface quality, we utilize three synthetic objects for the error

estimation. From mathematics, an analytical description of each synthetic ob-

jects is available. The three synthetic objects are the sphere, the ellipsoid and the

ovoid. The parametrical mathematical representation of these synthetic surfaces

helps us to compute the ideal surface features and provides a ground truth for

the error estimation of surface. For the real surface feature calculation, we firstly

deviate the ideal model by adding different levels of noise. Next, we use the noisy

point cloud as our input for the reconstruction algorithms. Finally, we calculate

the real surface feature from the reconstructed surface model. The aim of this

evaluation study is to select the outstanding reconstruction method to improve

reliability in surface reconstruction of biological models.

In order to apply the findings of Chapter 4, optimized 3D geometrical descrip-

tions are requried. In Chapter 5, we therefore provide a pipeline to optimize the

stack of biological images in 3D space and analyze the phenotypical difference by
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extracting related shape features from the 3D biological model.

In Chapter 6 we applied the results from Chapter 4 and Chapter 5 for phenotype

measurements; we extract centerline of the rodent newborn lactiferous duct to un-

fold the branch structure embedded in the duct rather than use standard surface

descriptions. Next, we use the quantified features from the centerline to detect

the morphological changes on the duct surface model. Furthermore, we extended

the usage of ground truth for the simulation of mammary gland in Chapter 6.

With the inspiration from the tree-like structure of mammary gland, we use a

mathematical model: Lindenmayer systems (L-systems) which is a mathematical

theory developed for the description of growth patterns in plants. We create a

specified model for lactiferous duct of the new-born mouse from the L-system as

our ground truth. With this mathematical model, we can simulate the phenotypi-

cal variation between various treatments by changing the parameters representing

prominent features derived from phenotype measurements.

We conclude the discussion of this thesis in Chapter 7 with the insights that are

obtained from the research describes in the Chapters 2-6.
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Chapter 2

Pattern Recognition in

High-Content Cytomics Screens

for Target Discovery: Case

Studies in Endocytosis

Based on:

L. Cao, K. Yan, L. Winkel, M. de Graauw, F.J. Verbeek. Pattern Recognition

in High-Content Cytomics Screens for Target Discovery: Case Studies in

Endocytosis. Pattern Recognition in Bioinformatics 2011, Delft, LNCS

Springer, pages 330-342, 2011
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2. PATTERN RECOGNITION IN HIGH-CONTENT SCREENS

Abstract:Finding patterns in time series of images requires dedicated ap-

proaches for the analysis, in the setup of the experiment, the image analysis as

well as in the pattern recognition. The large volume of images that are used

in the analysis necessitates an automated setup. In this paper, we illustrate

the design and implementation of such a system for automated analysis from

which phenotype measurements can be extracted for each object in the analy-

sis. Using these measurements, objects are characterized into phenotypic groups

through classification while each phenotypic group is analyzed individually. The

strategy that is developed for the analysis of time series is illustrated by a case

study on EGFR endocytosis. Endocytosis is regarded as a mechanism of at-

tenuating epidermal growth factor receptor (EGFR) signaling and of receptor

degradation. Increasingly, evidence becomes available showing that cancer pro-

gression is associated with a defect in EGFR endocytosis. Functional genomics

technologies combine high-throughput RNA interference with automated fluores-

cence microscopy imaging and multi-parametric image analysis, thereby enabling

detailed insight into complex biological processes, like EGFR endocytosis. The

experiments produce over half a million images and analysis is performed by au-

tomated procedures. The experimental results show that our analysis setup for

high-throughput screening provides scalability and robustness in the temporal

analysis of an EGFR endocytosis model.
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2.1 Introduction

In this paper we address the problem of deriving a phenotype of a cell in the

context of time-lapse cytomics data; in particular we investigate the process of

endocytosis and epidermal growth factor receptor (EGFR) signaling.

Enhanced epidermal growth factor receptor (EGFR) signaling triggers breast can-

cer cells to escape from the primary tumor and spread to the lung, resulting in

poor disease prognosis. Moreover, it may result in resistance to anti-cancer ther-

apy. In normal epithelial cells, EGFR signaling is regulated via endocytosis, a

process that results in receptor degradation and thereby attenuation of EGFR

signaling. However, in cancer cells the endocytosis pathway is often defective,

resulting in uncontrolled EGFR signaling. Over the past years, RNA interference

combined with fluorescence microscopy-based imaging has become a powerful

tool to the better understanding of complex biological processes [Pelkmans et al.,

2005]. Such combined experiment often produces over half a million multi-channel

images; manual processing of such data volume is impractical and jeopardizes ob-

jective conclusions. Therefore, an automated image and data analysis solution is

indispensable. To date, analysis was done with simple extraction of basic pheno-

types from EGFR images using tools such as BioApplication [Ghosh et al., 2005],

ImageXpress [Galvez et al., 2007] and QMPIA [Collinet et al., 2010]. However,

these tools are not suitable for a profound study of the dynamics behind EGFR

endocytosis which requires more attention. From the existing literature [Collinet

et al., 2010; Galvez et al., 2007; Ghosh et al., 2005; Li et al., 2009; Roepstorff

et al., 2008; Tarcic et al., 2009; Ung et al., 2011] a generic model, defining four

major episodes of EGF-induced EGFR endocytosis, can be distilled. (1) Under

control conditions, EGFR localizes at the plasma-membrane site for internal-

ization, which is in our study defined as the ”plasma-membrane” episode. (2)

Upon binding of EGF to the receptor, EGFR is taken up into small vesicular

structures and starts sorting in early endosomes, which is defined here as the

”vesicle” episode. (3) Over time EGFR containing vesicles are transported to

late endosomes localizing near the nuclear region and form into a larger complex

multi-vesicular body, defined here as the ”cluster” episode. (4) In final episode,

EGFR is degraded in the lysosomes. In addition to this route, EGFR can also
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partly be transported back to the plasma-membrane sites. Using this dynamic

model as the major guideline, the analysis of EGFR-regulation-related gene path-

way could be linked to each stage of EGFR endocytosis. Instead of looking at

one fixed time point, our current experimental design includes a series of time

points at which images are captured. An image potentially contains a ratio in

the first three characteristic episodes in the EGFR endocytosis process. The im-

age analysis solution should be able to extract basic phenotype measurements as

well as to identify the stage of EGFR. In this paper, we illustrate the design and

implementation of an automated setup for high-content image and data analysis

which can properly capture EGFR dynamics and classify different EGFR pheno-

types.

Our workflow for automated analysis solution is depicted in Figure 2.1. Each high

throughput screening (HTS) experiment starts with the design of the experimen-

tal scheme, followed by the wet-lab experiment and high throughput microscopy-

based imaging. Both experimental schemes and image data are organized and

stored in a database. Subsequently, image analysis is used to extract phenotype

measurements from these images and classifiers are introduced to recognize each

phenotypic stage of EGFR. Finally, comprehensive conclusions are drawn based

on comparisons of EGFR expression at each stage and time point.

In this paper, we limit the scope to image analysis and data analysis, some bi-

ology will be explained. Accordingly, the organization of this paper is divided

into three major sections. In section 2.2, we introduce the methodology including

image acquisition and image analysis; several innovative algorithms will be briefly

introduced. After segmentation of the images, EGFR phenotype measurements

are obtained. We will illustrate the categorization of phenotypic stages using fea-

ture selection and classification. The best combination pair is applied on image

data to classify three phenotypic stages and construct a phenotype model. The

experimental results are presented in section 2.3 with two case studies. The first

case study tests our solution in identifying dynamic phenotype stages. The sec-

ond study case examines robustness and scalability of our solution in analyzing

a large number of phenotypes.
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2.2 Methodology

Modern techniques in fluorescence microscopy allow visualizing various cell struc-

tures so that these can be specifically subject to analysis. Together with a

computer-controlled microscope, a high-throughput image acquisition scheme,

known as high-throughput screening (HTS), has become feasible. Depending on

the biological question at hand, a HTS experiment may produce up to half million

images. Such a volume of images is beyond the capacity of manual processing

and therefore, image processing and machine learning are required to provide an

automated analysis solution for HTS experiments. In this section, we will intro-

duce the image acquisition protocol followed by approaches for image analysis

and data analysis.

Figure 2.1. Workflow of our HTS Analysis System. The basic entity for

processing cells is the 96 well culture plate. A virtual plate (layout) is designed

before the experiment and the data are often kept together per ”plate”.

2.2.1 Image acquisition

The workflow for data preparation for the experiment discussed in this chapter

here includes three essential steps: (1) cell culturing, siRNA transfection and EGF

exposure, (2) fluorescent staining of proteins of interest and (3) image acquisition.
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Here we use a design of an EGFR-regulation related siRNA screening to illustrate

this workflow. In this design, cells are cultured in 96 well culture plate and trans-

fected using Dharmafect smartpool siRNAs. Subsequently, the transfected cell

population is exposed to epidermal growth factor (EGF) for a different duration

of time. Cells are fixed at different time points and visualized with a confocal

laser microscope (Nikon TE2000). Image acquisition automation is realized with

an automated stage and an auto-refocusing lens controller. For each well, images

are captured from ten randomly selected locations. For each image three chan-

nels are captured: (1) a red channel containing P-ERK expression staining (Cy3),

(2) a green channel containing EGFR expression staining (Alexa-488) and (3) a

blue channel containing a nuclear staining (Hoechst #33258). Upon completion

of the acquisition process all images are uploaded to a database server for image

analysis.

2.2.2 Image analysis

2.2.2.1 High-content analysis

Basically, the image analysis procedure converts raw microscope images into

quantifications representing characteristic biological phenomena. A number of

steps are elaborated to achieve this purpose; starting from image acquisition,

three steps are distinguished: (1) noise suppression, (2) image segmentation and

(3) phenotype measurement. Image segmentation refers to the process of parti-

tioning an image into multiple regions with the goal to simplify and/or change the

representation of an image into something that is easier to analyze. For fluores-

cence microscopy cell imaging we specifically designed a segmentation algorithm:

i.e. watershed masked clustering (WMC). The WMC algorithm (cf. Figure 2.2d)

[Yan and Verbeek, 2012b] is an innovative and customized segmentation algo-

rithm that serves different types of cytomics studies like dynamic cell migration

analysis [Bera and Jarque, 1981; Roepstorff et al., 2008; Yan et al., 2009a] and

protein signaling modeling [Qin et al., 2012b]. Due to the absence of an indicator

for the cell border (cf. 2.1), a border reconstruction and interpolation algorithm is

designed to provide artificial representations of the cell borders; i.e. the weighted

Voronoi diagram based reconstruction (W-V) algorithm [Qin et al., 2012b]. The
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W-V algorithm (cf. Figure 2.2c) offers the possibility to measure both border-

related signal localization [Qin et al., 2012b] and protein expression in terms of

continuity and integrity [Qin et al., 2012b]; it does not require a complete cell

border or cytoplasmic staining. Both binary mask and artificial cell border are

used to derive a number of phenotype measurements for further data analysis.

2.2.2.2 Phenotype measurement

In the current experiment and imaging protocol, the phenotype measurements

can be categorized into two subgroups: (1) basic measurements of the pheno-

types covering shape descriptors and (2) the localization phenotype describing

the assessment of the correlation between two information channels. The ba-

sic phenotype measurement [Damiano et al., 2011; Le Dévédec et al., 2010; Yan

et al., 2009a] includes a series of shape parameters listed in Table 2.2. In ad-

dition to the basic phenotype measurement [Damiano et al., 2011; Le Dévédec

et al., 2010; Qin et al., 2012b; Yan et al., 2009a], localization measurements can

be derived for a specific experimental hypothesis; e.g. the expression ratio be-

tween protein channels or shape correlation between objects. The localization

phenotypes are quantifications of comparative measurement between information

channels such as relative structure-to-nucleus distance or structure-to-border dis-

tance [Qin et al., 2012b]. In this paper, we will limit the scope of phenotype

measurements to the set employed by the study on EGFR endocytosis. In Table

2.3 a list of EGFR screening based localization phenotypes is shown. On the basis

of the phenotype measurements, objects are classified into phenotypic stages. For

the assessment of significance statistical analysis is performed.

2.2.3 Data analysis

The aim of the endocytosis study is to quantify the process of EGF-induced EGFR

endocytosis in human breast cells and to identify proteins that may regulate

this process. The EGFR endocytosis process can roughly be divided into three

characteristic episodes:plasma-membrane, vesicle and cluster. The characteristic

episodes are the read-out for HTS. Based on this model it is believed that EGFR

endocytosis regulators may be potential drug targets for EGFR-induced breast
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cancer. Studying each of the stages (cf. Figure 2.3), i.e. plasma-membrane,

vesicle and cluster, may provide a deeper understanding of the EGFR endocytosis

process.

Table 2.2. Basic measurements for a phenotype (after segmentation to binary

mask)

Feature Name Description

Size The size of object, aka as the surface area.

Perimeter The perimeter of the object.

Extension
Derived from 2nd-order invariants of the object [Hu, 1962;

Yan et al., 2009a].

Dispersion
Derived from 2nd-order invariants of the object [Hu, 1962;

Yan et al., 2009a].

Elongation
Derived from 2nd-order invariants of the object [Hu, 1962;

Yan et al., 2009a].

Orientation
Derived from 2nd-order moments of the object [Hu, 1962;

Yan et al., 2009a].

Intensity Average intensity of all pixels belong to an object.

Circularity
Area-to-perimeter ratio; higher compactness suggests a

more smooth and less protrusive shape.

Semi-major axis

length

Derived from 2nd-order moments of the object [Hu, 1962;

Yan et al., 2009a].

Semi-minor axis

length

Derived from 2nd-order moments of the object [Hu, 1962;

Yan et al., 2009a].

Closest object

distance

The distance to nearest neighbor of the object, the

distance is measured similar to the border distance in

Table 2.3.

In nucleus
Boolean describing if the object is included in nucleus

mask.

2.2.3.1 Phenotypic sub categorization

Here we introduce a profound explanation of the whole procedure employed in

the phenotypic sub-categorization including the production of a training set and
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the procedure for the training of the classifier. The training set is derived from

manually delineated outlines of each phenotypic group and is subsequently used

to train a classifier distinguishing three different phenotypes. From two case

studies the capability of our solution with respect to identifying characteristic

episodes in the process under study stages as well as the scalability in describing

different phenotypic groups, is assessed.

Preparation of the Training Set. Ground truth data were obtained by the outlines

of the three characteristic episode groups, i.e. cell border/plasma-membrane,

vesicle and cluster. These were separately delineated by biologists using our

dedicated annotation software (TDR) with a digitizer tablet (WACOM, Cintiq

LCD-tablet). From each outline a binary mask is created for each phenotypic

stage. In Figure 2.4(b) the vesicle mask derived from a manually selected vesicle

outline is shown. This mask is overlaid with the mask obtained from the WMC

algorithm so as to extract the intersection set of two masks as shown in Figure

2.4(d). Finally, the phenotype measurements are computed with this mask. In

similar fashion the ground truth datasets for the plasma-membrane and cluster

groups are prepared.

Table 2.3. Localization measurement
Feature Name Description

Nucleus distance

Distance between structure and nucleus, measured as the

average distance between each pixel in an object and the

center of mass of the corresponding nucleus.

Border distance

Distance between structure and cell membrane, measured

as the average distance between each object-pixel and the

center of mass of the cell border (membrane).

Intactness
Overlap between structure expression and cell membrane

divided by the total length of cell membrane.

The training dataset includes three characteristic episode groups with 2254

objects and 14 features. Given the huge differences in the feature ranges, it is

necessary to normalize the dataset. Normalization is accomplished by shifting

the mean of the dataset to the origin and scaling the total of variances of all

features to 1. In this way the magnitude effect is successfully removed and the
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recognition accuracy can be significantly improved [Okun, 2004]. The normalized

dataset is used for training of the EGFR classifier.

(a) (b) (c) (d)

Figure 2.2. (a) Original image: PERK(red), EGFR (green) and nucleus

(blue), (b) Component definition: artificial cell border (red) and binary mask of

protein expression (green), (c) cell border reconstruction : artificial cell border

(W-V), (d) image segmentation: binary mask of EGFR channel by WMC.

(a) (b) (c)

Figure 2.3. Sample images of the 3 phenotypic groups with (a)

Plasma-membrane, (b) Vesicle, (c) Cluster.

(a) (b) (c) (d)

Figure 2.4. Ground truth data production. (a) Original image, (b) manual

mask, (c) WMC mask, (d) overlay of the mask.
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Feature Selection. First, it is crucial to make a selection of the probabilistic

distance criterion for the discriminability estimation. For this we choose the Ma-

halanobis distance [Mahalanobis, 1936a] since it takes the correlations among the

variables into consideration and, in addition, it is scale-invariant. Other distance

criteria, such as the Euclidean or Manhattan distance, are, more or less, related

to the assumption that all features are independent and have an equal variance.

We cannot be certain that all features in our dataset are independent and there-

fore the Mahalanobis distance is preferred.

Second, we have selected three representative search algorithms including para-

metric and non-parametric search algorithms; i.e. the branch and bound proce-

dure [Land and Doig, 1960a], best individual N features and sequential backward

selection [Jain et al., 2000]. Branch and bound is a top-down procedure, begin-

ning with the set of variables and constructing a tree by deleting variables succes-

sively; i.e. an optimum searching procedure requiring the evaluation of partially

constructed or approximate solutions without involving exhaustive search. Best

individual N features procedure is the simplest suboptimal method for choosing

the best N features by individually assigning a discrimination power estimate to

each of the features in the original set. In some cases, especially if the features

from original set are uncorrelated, this method results in a well-defined feature

sets. Sequential backward selection is another suboptimal search algorithm. Vari-

ables are deleted one at a time until the required number of measurements remains

[Fukunaga, 1990]. The advantage of backward selection is its capability for global

control during the feature selection.

Third, we choose three classifiers covering both linear and non-linear categories;

i.e. the linear classifier (LDC), the quadratic classifier (QDC) and k-nearest neigh-

bor classifier (KNNC). A linear classifier makes a classification decision based on

the value of a linear combination of the characteristics [Mitchell, 2005]. If the

data are strongly non-Gaussian, they can perform quite poorly relative to nonlin-

ear classifiers [Devroye et al., 1996]. A quadratic classifier, which is generalization

of the linear classifier; it separates measurements of classes by a quadric surface.

Finally, the k-nearest neighbor classifier classifies an object by a majority vote of

its neighbors, with the object being assigned to the class most common amongst

its k nearest neighbors. The k-nearest neighbor rule achieves a consistent high
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performance, without a priori assumptions about the distributions from which

the training examples are drawn. Moreover, it is robust with respect to noisy

training data and still effective if the training dataset is large. By permutation

we obtained 9 pairs of combinations. The result of the error estimation is shown

in Figure 2.5. An interesting characteristic can be observed in these plots. The

weighted error of the quadratic classifier jumps abruptly when the number of

features exceeds a certain threshold (10 for individual feature selection, 12 for

branch & bound, and 5 for backward feature selection). This is caused (1) by

including a feature with which it is hard to distinguish three phenotypic groups

and (2) by the fact that the distribution of the three classes might be more prop-

erly classified by the linear and k-nearest neighbor classifier rather than quadratic

classifier.

Feature extraction. Feature extraction is another category to manage multi-

dimensional features by reducing dimensionality of features trough combining.

For the final result, we also test the performance of the feature extraction com-

bined with the three classifiers selected. As our starting point is a labeled train-

ing dataset, a supervised feature extraction method is most suitable. The Fisher

mapping [Fukunaga, 1990] is chosen as extraction method. Fisher mapping finds

a mapping of the labeled dataset onto an N-dimensional linear subspace such

that it maximizes the between-scatter over the within-scatter. It should be taken

into account that the number of dimensions to map is less than the number of

classes in the dataset. We have three phenotype classes and consequently the

labeled dataset can only be mapped onto a 1D or 2D linear subspace. The result

of the performance estimation is shown in Figure 2.6(a). In addition, in Figure

2.6(b,c,d), the scatter plots of mapped data with corresponding classifiers are

shown.

Comparison of the results. Each weighted classification error curve (cf. Fig. 2.5

and 2.6(a)) represents a combination of a feature selection/extraction method

and a classifier algorithm. For each combination, we select the lowest point value

representing the best feature selection/extraction performance of the combina-

tion and, subsequently, compare the weighted error and standard deviation of

each lowest point. The combination of branch and bound feature selection with

k-nearest neighbor classifier has the lowest minimal value and relatively small
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standard deviation, as can be concluded from Table 2.4.

Table 2.4. Minimal value of Mean Weighted Errors and its Standard Deviation

Individual B&B Backward Fisher

min σ min σ min σ min σ

LDC 0.0586 0.0093 0.0562 0.0098 0.0534 0.0109 0.0555 0.0105

QDC 0.0609 0.0119 0.0626 0.0117 0.0815 0.0113 0.0589 0.0125

KNNC 0.0502 0.0092 0.0450 0.0091 0.0535 0.009 0.0587 0.0124

The three selected features, derived from branch and bound feature selection

with the best performance, are closest object dist, object intensity and area. The

closest object dist is a distance measurement between an object and its nearest

neighbor. It defines the local numerical density of an object. The cluster and

vesicle categories usually have a much lower closest object dist since they tend

to appear in clusters. The amount of fluorescence therefore directly relates to

the amount of EGFR and can be measured as intensity at a certain spot. We

suppose that plasma-membrane, vesicle or cluster are all composed of EGFR and

the expression of EGFR is more evenly distributed in the plasma-membrane and

gradually increases concentration in vesicle and cluster. Intensity represents the

amount of EGFR and is significant. Size is undoubtedly the major feature for

describing three characteristic episode groups. The results confirm our expecta-

tions. We have chosen the combination of branch and bound feature selection

with k-nearest neighbor classifier as the best classifier for the case studies.

Statistical Analysis. We provide two case studies in order to sustain the perfor-

mance of our solution. The first case study is aimed at a better understanding

of EGFR endocytosis across time series. The EGFR endocytosis procedure is as

follows: in the absence of EGF, EGFR localizes at the cell membrane (e.g. cell

border localization). Upon EGF exposure, a portion of the plasma membrane

containing EGFR is invaginated and pinched off forming a membrane-bounded

vesicle. Some vesicles would be accumulated in clusters in the peri-nuclear region.

As for the experimental design, the cells in separate wells are treated with EGF

for a variable amount of time. In this way each well represents a fixed time point.

After fixation, cells are stained and visualized. The images that have a clear rep-

resentation of phenotype stage are carefully selected by a specialist. The result of
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image and data analysis based on selected images provides a notable capability

of our solution on identifying the dynamics in the characteristic episodes. The

source images include a total of 13 time points with 2 pairs of images each.

(a)

(b) (c)

Figure 2.5. Weighted classification error curves, with (a) Individual feature

selection, (b) Branch and bound feature selection and (c) Backward feature

selection.

The second case study is on identification of mediators of EGFR endocyto-

sis. The results demonstrate that our automated high-content analysis solution

can properly describe different phenotypic groups and is capable to manage large

quantities of phenotypes. For each culture plate ten images are acquired per well;

i.e. 9610 images are used in the image and data analysis. In order to evaluate the

phenotype difference between wells, we calculate the number of each phenotypic

group (vesicle, plasma-membrane, and cluster) per nucleus in each well. The

plasma-membrane, representing the composed EGFR evenly distributed on the

30



2. PATTERN RECOGNITION IN HIGH-CONTENT SCREENS

cell membrane, is always continuously linked between cells. The quantification is

accomplished by calculating the pixels of plasma-membrane per nucleus.

An analysis with both the Jarque-Bera [Bera and Jarque, 1981] and Lillie test

[Lilliefors, 1969] established that over 80% of our measurement data of the compo-

sition vesicle/plasma-membrane/cluster is not normally distributed. We, there-

fore, use the Kolmogorov-Smrinov test [Massey, 1951a] with siCtrl#2 as control

sample to identify significant changes in EGFR endocytosis.

(a) (b)

(c) (d)

Figure 2.6. Results of feature extraction: (a) Weighted classification error

curve of Fisher feature extraction, (b) Fisher feature extraction with Linear

Discriminant Classifier,(c) Fisher feature extraction with Quadratic

Discriminant Classifier, (d) Fisher feature extraction with K-Nearest Neighbor

Classifier.
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(a)

(b)

Figure 2.7. Average number of plasma-membrane (a) and vesicle (b) per

nucleus.

(a)

(b) (c)

Figure 2.8. (a) Number of vesicles per nucleus, (b) Number of clusters per

nucleus (c) Plasma-membranes (pixel) per nucleus.
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2.3 Experimental results

2.3.1 Dynamic phenotype stage

The results shown in Figure 2.7a illustrate that the amount of EGFR local-

ized at the plasma-membrane (e.g. number of plasma-membranes, expressed as

pixel/nucleus) decreases over time. This fits with the EGFR endocytosis process

during which EGF exposure causes a gradual EGFR re-distribution from the

plasma-membrane into vesicles. Meanwhile, the number of vesicles per nucleus

increases caused by the formation vesicles as illustrated in Figure 2.7b. These

graphs indicate the trend of the endocytosis process and are representative to

illustrate phenotype stage dynamics.

2.3.2 Phenotype classification

We validate our automated high throughput image analysis using siRNA-mediated

knock-down of several known EGFR endocytosis regulators (e.g. siGrb2, siEEA1,

siCFL) To this end images are selected from WT cells (not treated with siRNA),

control siRNA treated cells (siCtrl#2 and siGFP), siEGFR treated cells and three

target siRNAs. In Figure 2.8a-c the comparison of selected results with three phe-

notypic groups is shown. In Figure 2.9 some sample images are depicted to check

the correctness of our solution for phenotype description. Our analysis shows that

cells treated with siCtrl#2 resemble non-treated WT cells, while siGFP differs

significantly; indicating that siCtrl#2 is the best control for further analysis. The

siEGFR shows decreased levels in vesicle and cluster classes since treatment of

cells with siEGFR results in > 90% knock-down of EGFR. In addition, siGrb2,

siEEA1 and siCFL behave as expected. These results demonstrate that the au-

tomated high throughput analysis could be used for large scale siRNA screening.

A comprehensive overview of the results of a complete experiment is shown in the

heatmaps depicted in Figure 2.10. The data are derived from a siRNA screening

of more than 200 potential regulators of EGFR endocytosis. The y-axis repre-

sents different siRNA targets (regulators) and the x-axis represents the features

plus the number of different phenotypic groups.
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(a) (b) (c) (d)
Figure 2.9. Characteristic images with anti-body staining applied in this

experiment: PERK(red), EGFR (green) and nucleus (blue). (a) no siRNA no

EGF, (b) EGFR, (c) GRB2, (d) BIN1 (> response).

(a) (b)

Figure 2.10. (a) Vesicle p-value heat map (b) Plasma-membrane p-value heat

map.

2.4 Conclusions

This paper provides an efficient solution to analyze the high-throughput image

data sets on the level of protein location. The experimental results of both case
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studies show that our automated analysis procedure can be involved in the iden-

tification of the characteristic episodes in the EGFR process and provides a set of

robust and precise phenotypic descriptions. From the case studies it is illustrated

that our solution is suitable for a robust analysis of different phenotypes in a

siRNA based HTS. Furthermore, the whole process, from image segmentation,

phenotypic quantification to classification, is part of a successfully automated

procedure. Our solution can be easily extended to cope with studies utilizing

fluorescence microscopy.
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M. Klop, K. Yan, C. Pont, V. M. Rogkoti, A. Tijsma, A. Chaudhuri, R. Lalai,

L. Price, F.J. Verbeek, B. van de Water. Annexin A2 depletion delays EGFR

endocytic trafficking via cofilin activation and enhances EGFR signaling and

metastasis formation. Oncogene, pages 1-10, 2013

37



3. HIERARCHICAL CLASSIFICATION STRATEGY

Abstract: Endocytosis is regarded as a mechanism of attenuating the epider-

mal growth factor receptor (EGFR) signaling and of receptor degradation. There

is increasing evidence becoming available showing that breast cancer progression

is associated with a defect in EGFR endocytosis. In order to find related Ri-

bonucleic acid (RNA) regulators in this process, high-throughput imaging with

fluorescent markers is used to visualize the complex EGFR endocytosis process.

Subsequently a dedicated automatic image and data analysis system is devel-

oped and applied to extract the phenotype measurement and distinguish differ-

ent developmental episodes from a huge amount of images acquired from high-

throughput imaging. For the image analysis, a phenotype measurement quantifies

the important image information into distinct features or measurements. There-

fore, the manner in which prominent measurements are chosen to represent the

dynamics of the EGFR process becomes a crucial step for the identification of the

phenotype. In the subsequent data analysis, classification is used to categorize

each observation by making use of all prominent measurements obtained from

image analysis. Therefore, a better construction of classification strategy will

help to raise the performance level in our image and data analysis system. In

this paper, we illustrate an integrated method employing wavelet-based texture

measurements and a hierarchical classification strategy to further improve the

recognition of phenotypic episodes of EGFR during endocytosis. Different strate-

gies for normalization, feature selection and classification are evaluated. The

performance estimation results show that our hierarchical classification scheme

combined with wavelet-based texture measurements provides a notable improve-

ment in the temporal analysis of EGFR endocytosis. The scheme could be further

applied for the drug discovery to constrain the defect EGFR endocytosis process.
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3.1 Background

The epidermal growth factor receptor (EGFR) is important for normal growth

and function of breast tissue. Its signaling is regulated via endocytosis, a process

that results in receptor degradation and thereby attenuation of EGFR signaling.

In cancer cells, however, the endocytosis pathway is often found to be defective,

resulting in an uncontrolled EGFR signaling. These enhanced EGFR signaling

triggers breast cancer cells to escape from the primary tumor and spread to the

lung, resulting in a poor prognosis for the disease progression. Moreover, it may

result in complications like resistance to anti-cancer therapy.

From the literature [Geldner and Jürgens, 2006] a generic model of epidermal

growth factor induced (EGF-induced) EGFR endocytosis can be distilled into

four characteristic episodes. (1) Under normal conditions, EGFR is localized at

the plasma-membrane site for internalization; this is in our study defined as the

”plasma-membrane” episode. (2) Upon binding of EGF to the receptor, EGFR

is taken up into small vesicular structures and starts sorting in early endosomes;

in our study this is defined in our study as the ”vesicle” episode. (3) Over time,

EGFR containing vesicles are transported to late endosomes localized near the

nuclear region and these form into a larger complex multi-vesicular body; in our

study this defined as the ”cluster” episode. (4) In final episode, EGFR is de-

graded in the lysosomes. In addition to this route, EGFR can also be partly

transported back to the plasma-membrane sites. Using this dynamic model as

the major guideline, the analysis of the EGFR-regulation-related genetic pathway

could be linked to the analysis of the characteristic episodes in EGFR endocyto-

sis. In this paper, we will focus on the analysis of this dynamic model but only

the first three characteristic episodes as shown in Figure 3.1, since, in the final

episode the EGFR signaling can not be traced.

Over the past years, RNA interference in combination with fluorescence microscopy-

based imaging has become a powerful high-throughput tool for the visualization

of complex EGFR endocytosis processes [Goldoni et al., 2006; Muniz Feliciano

et al., 2013; Rappoport and Simon, 2009]. With these techniques, it becomes

feasible to distinguish characteristic episodes and identify potential EGFR en-

docytosis regulators. However, it is impossible to perform manual processing of
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such a large volume of image data. This requires an automated method for the

analysis of EGFR endocytosis [de Graauw et al., 2013].

(a) (b) (c)

Figure 3.1.Sample images of the 3 phenotypic groups: (a) Plasma-membrane,

(b) Vesicle and (c) Cluster. Red channel is P-ERK expression staining (Cy3);

green channel is EGFR expression staining (Alexa-488); blue channel is nuclear

staining (Hoechst #33258).

In the solution presented here, a single-step multi-class classification solution is

demonstrated to properly capture the EGFR dynamics which transforming along

three characteristic episodes and classify different EGFR episodes. From earlier

application we have identified some weaknesses require better solutions. First, the

same subset of features is used to classify three episodes. Second, the flat classifi-

cation ignores the existence of potential hierarchical relationships that may exist

in the data set. Another shortcoming is including the average intensity in the

phenotype measurements. A variation of fluorescent intensity in image datasets

is always presented. Thus, a more advanced classification strategy is required.

For our observation from previous results, we found the vesicle and cluster have

more morphological similarity with each other than with plasma-membrane episode.

As a result, we designed a new hierarchical classification strategy [Silla and Fre-

itas, 2011]. Hierarchical classification strategies are an efficient way to deal with

complex classification problems. First of all, the problem is divided in an hier-

archical manner where classes with higher similarity to each other are grouped

together into a sub-class, resulting in a simplification of original problem [Kumar

et al., 2002]. Each parent node in the hierarchical tree has an individual classifi-
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cation scheme choosing related features and the best classifier to distinguish the

child nodes. Specifically, this hierarchical classification strategy separates clas-

sifier training into two levels. For the first level, we train the first level a local

classifier to distinguish the plasma membrane from endosome, the subgroup con-

taining vesicle and cluster. Subsequently, we train a second level local classifier to

separate vesicle from cluster. With this strategy, we can make use of prominence

in the subsets of features and thereby improve the performance of the classifier

noticeably. Meanwhile, instead of using average of intensity directly, we introduce

a set of texture measurements including those from wavelet transform to describe

the intensity characteristics in a more sophisticated way.

3.2 Methods

3.2.1 Cell material and preparation

The study of cell systems at the cellular level at large scale is called cytomics. The

workflow for image data preparation in cytomics includes three essential steps:

(1) cell culturing, (2) labeling, preparation for imaging and (3) image acquisition.

In this paper we use a workflow of an EGFR-regulation related siRNA screening

to illustrate this workflow. In this design, breast cells from human breast carci-

noma cell line (HBL100) were cultured in 96 well culture plate and transfected

using Dharmafect smartpool Small interfering RNAs (siRNAs). Subsequently,

the transfected cell population was exposed to epidermal growth factor (EGF)

for a specific duration of time. Cells were fixed at different time points and

visualized as confocal slice with a confocal laser microscope (Nikon TE2000).

3.2.2 Image acquisition and processing

Automated image acquisition was realized with a controlled motion stage equipped

with an auto-refocusing module. For each well, images were captured from ten

randomly selected locations. For each image three channels were captured: (1) a

red channel containing staining of Phospho-ERK(P-ERK) expression (Cy3), (2)

a green channel containing EGFR expression staining (Alexa-488) and (3) a blue
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channel containing a nuclear staining (Hoechst #33258).

The subsequent image processing consists of two major steps: noise suppression

and image segmentation. Image segmentation refers to the process of partition-

ing an image into multiple regions with the goal to simplify and/or change the

representation of an image into comprehensive components. For fluorescence mi-

croscopy cell imaging, we utilized a customized segmentation algorithm known as

the watershed masked clustering (WMC [Yan and Verbeek, 2012a]). The WMC

algorithm is an innovative segmentation algorithm that is particularly suitable for

images in which the individual objects exhibit a variation in fluorescence. The

WMC algorithm serves different types of cytomics studies like dynamic cell mi-

gration analysis [Roepstorff et al., 2008; Yan et al., 2009b] and protein signaling

modeling [Qin et al., 2012a]. Output binary mask was used to derive a number

of phenotypic measurements for further data analysis.

3.2.3 Phenotype measurement

A phenotype is considered as the composite of an organism’s observable char-

acteristics or traits: such as its morphology or development (cf Chapter 1). It

is important for the detection of genetic variants in complex traits. Therefore,

researchers should be aware of the theoretical importance of unbiased, reliable

and replicable measurements [Johannsen, 1911]. In our previous work, we have

already introduced amount of basic measurements and localization phenotype

measures [Cao et al., 2011]. In order to attempt finding more prominent phe-

notype measurements to characterize the three EGFR phenotypes, two aspects

were considered. On the one hand, the phenotype measurements should be rep-

resentative and relevant. On the other hand, these measurements must be robust

to small variations in fluorescent intensity, meaning that the measurements are

scale-free and self-normalized.

Based on the empirical observations in a ground truth data set, several poten-

tial texture patterns in object intensities were identified to characterize EGFR

episodes. For instance, the vesicle (1st episode) has a higher intensity in the cen-

tral region and relatively lower intensity around the boundary. In contrast, the

cluster episode (2nd episode) has a more evenly distributed intensity throughout
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the region of interest. In addition, these three EGFR episodes could also present

distinctively in different texture features. Therefore, we introduced several tex-

ture measurements to describe different phenotypical characteristics.

3.2.3.1 Texture measurement

Table 3.1.Phenotype measurements description

Feature

Name
Expression Description

std
f1 =√∑

i

(i−mean)2H(i)
The standard deviation of intensity

from all the pixels in a region.

Smoothness f2 = 1− 1
(1+f2

1 )

The relative smoothness of the

intensity in a region. It is 0 for a

region of constant intensity and 1 for a

region with large excursion in the

values of its intensity levels.

Skewness f3 =
∑
i

(i−mean)3H(i)

The order moment about the mean.

The departure from symmetry about

the mean intensity. It is 0 for

symmetric histograms, positive for

histograms skewed to the right and

negative for histograms skewed to the

left.

Uniformity f4 =
∑
i

H2(i)

The sum of squared elements in

Histogram. It reaches maximum when

all intensity levels are equal and

decreases from there.

Entropy
f5 =

−
∑
i

H(i) log2H(i) The statistical measure of randomness.

i represents the intensity value. H(i) is the histogram of intensity. mean

symbolizes the average intensity.

The most frequently used approach for texture measurements are the First Order

Statistics; these are derived from statistical properties of the intensity histogram
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of an image [Bountris et al.]. We used standard First Order Statistics for each

individual object as obtained from the segmentation; i.e. standard deviation of

intensity, smoothness, skewness, uniformity and entropy. Definitions and formu-

lations of these texture measurements are presented in Table 3.1.

3.2.3.2 Wavelet texture measurement

Table 3.2.Wavelet texture measurements
Feature

Name

Description

H mean The average intensity of Horizontal detail

from discrete wavelet transformation.

H std The intensity variation of Horizontal detail

from discrete wavelet transformation.

H Entropy The statistical randomness of Horizontal de-

tail from discrete wavelet transformation.

V mean The average intensity of Vertical detail from

discrete wavelet transformation.

V std The intensity variation of Vertical detail from

discrete wavelet transformation.

V Entropy The statistical randomness of Vertical detail

from discrete wavelet transformation.

D mean The average intensity of Diagonal detail from

discrete wavelet transformation.

D std The intensity variation of Diagonal detail

from discrete wavelet transformation.

D entropy The statistical randomness of Diagonal detail

from discrete wavelet transformation.

Recently, texture analysis based on the discrete wavelet transform (DWT) has

shown to be feasible [Goldoni et al., 2006; Tsiaparas et al., 2012] as it turns out

to be an efficient descriptor for phenotyping [Materka, 2001]. DWT provides a

set of texture representations consisting of coefficients in different directions. We

calculated our wavelet-based texture measurements by multiplying each direc-
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tion detail with the binary mask obtained from the segmentation and calculating

the mean, standard deviation and entropy of intensity for each labeled object in

each direction details (see in Table 3.2). In this study, we include a biorthogonal

wavelet because it has the property of exact reconstruction and it is an out-

standing wavelet representation for image decomposition. After decomposition,

it generated the coefficient matrices of the level-one approximation and horizon-

tal, vertical and diagonal details. Subsequently, we reconstructed the level-one

details respectively from the corresponding coefficients. In this way, we derived

the texture details from three different directions on the same scale as the original

image.

Figure 3.2.Hierarchical tree of EGFR Endocytosis Process.

3.2.4 Production of ground truth data

Collecting objective and sufficient ground truth data is important for supervised

classification. We use the ground truth data as our training set during the clas-

sifier training.

Ground truth data were obtained by outlining the three characteristic episode

groups, i.e. plasma-membrane, vesicle and cluster. These were separately drawn

by biologists using our annotation software (TDR) with a digitizer tablet (WA-

COM, Cintiq LCD-tablet)[Verbeek and Boon, 2002]. From each outline a binary

mask was created for each phenotypic stage. The Figure 3.4(b) illustrates the

vesicle mask derived from a manually selected vesicle outline. This mask was

multiplied with the mask obtained from the WMC algorithm so as to extract the

intersection (cf. Figure. 3.4(d)). Finally, the phenotype measurements were com-

puted from these masks. The ground truth datasets for the plasma-membrane
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and cluster episodes were prepared in a similar manner. The training dataset

included the three characteristic episode groups with a total of 2254 objects and

25 features per object.

Figure 3.3.Hierarchical classification workflow.

(a) (b) (c) (d)

Figure 3.4.Ground truth data production. (a) Original image, (b) Manual

mask, (c) WMC mask, (d) Multiply b and c.
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3.2.5 Hierarchical classification strategy workflow

On the basis of first three characteristic episodes of the generic model of epider-

mal growth factor induced EGFR endocytosis, vesicle is single/early endosomes

and cluster is clustered/late endosomes. These two episodes have more morpho-

logical similarity with each other compared to plasma-membrane. The vesicle

and cluster episodes are located in the cytoplasma which have evenly distributed

high intensity value and relatively circular shape. The plasma-membrane episode

is located around cell membrane which has an elongated shape with a low and

unevenly distributed intensity value. Therefore, we have constructed the three

characteristic episodes into a hierarchical tree as shown in Figure 3.2. Subse-

quently, we use a local classifier per parent node approach to train a multi-class

classifier for each parent node in the class hierarchy. From this approach one

avoids the problem of making inconsistent predictions and takes into account the

natural constrains of class membership [Davies et al., 2007; Neuwald et al., 2012;

Silla and Freitas, 2011]. In this manner, both the best classifier and the most

prominent features are selected for each parent node classifier so as to classify

the dynamic model with three episodes in a better fashion. The workflow of the

hierarchical classification strategy is shown in Figure 3.3. In our workflow, we

normalized the dataset per feature, performed the feature selection, applied the

classifier and calculated the weighted classification error in order to evaluate the

performance of the classification. We look for the best combination of classifi-

cation process according to the error estimation and use it for EGFR episode

classification.

3.2.5.1 Feature normalization

The features can have a quite substantial difference in their dynamic range. Such

is the case with the features that we use in this setup. Therefore, it is necessary

to normalize our dataset. Feature normalization is required to approximately

equalize ranges of the features and make them have roughly the same effect in

the computation of similarity [Aksoy and Haralick, 2001]. The main advantage

of normalization is to avoid attributes with larger numerical ranges to dominate

over those with smaller numerical ranges. Another advantage is to avoid numeri-
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cal complications during the computations. Because kernel values depend on the

inner products of feature vectors, large attribute values might introduce numeri-

cal complications [Hsu et al., 2010].

We applied two types of normalization schemes to normalize the dataset. One

standard normalization scheme was accomplished by shifting the mean of the

dataset to the origin and scaling the total of variance for all features to 1, thereby,

neglecting class priors. The other scheme was achieved by shifting the mean of the

dataset to the origin and normalizing the average class variances (within-class).

Class priors were taken into account. The concept of within-class covariance nor-

malization for support vector machines (SVM) classifier was recently introduced

[Hatch et al., 2006]. For the evaluation of the methods considered in this paper,

we are evaluating these two normalization schemes and we are interested to see

whether, in our case, within-class covariance normalization outperforms the stan-

dard normalization. We will benefit from the fact that the normalization avoids

differences in numerical scales.

3.2.5.2 Feature selection

After normalization, we applied feature selection procedure. We did not use

the supervised linear feature extraction method because of the limitation that

the number of extracted features can, at most, be one less than the number of

classes. Therefore, no more than this number of new features can be obtained. In

our case, for each hierarchical step we can map all the features into a 1D linear

subspace since we simply have two classes for each step. It would cause diffi-

culties in the discrimination between two classes [Shadvar and Erfanian, 2010].

Furthermore, in our study, the feature extraction method is not outstanding as

feature selection method compared to [Cao et al., 2011].

For feature selection a metric is required that considers strong correlation among

the variables, therefore, the Mahalanobis distance [Mahalanobis, 1936b; Webb

and Copsey, 2011] was chosen. Subsequently we selected two representative search

algorithms: the branch and bound procedure [Land and Doig, 1960b] and best

individual-N features. Branch and bound is a top-down procedure, beginning

with the set of variables and constructing a tree by successively deleting vari-
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ables. This feature selection method showed a robust and high performance in

our previous study [Cao et al., 2011]. Best individual-N features procedure is a

computationally efficient method for choosing the best N features by assigning

a discrimination power estimate to each of the features in the original set. This

method could have a well-defined feature set when the features are uncorrelated.

We would use these two search algorithms in the feature selection part.

3.2.5.3 Prior probability setting

In probability theory and applications, the Bayes’ theorem shows the relation

between a conditional probability P (A|B) and its reverse form P (B|A), expressed

as:

P (A|B) =
P (B|A)P (A)

P (B)

Table 3.3.Prior probability comparison

C-variance(branch&bound)

equal

prior

knnc ldc qdc neurc svc

mean std mean std mean std mean std mean std

1st step 0.0333 0 0.095 0.0224 0.0317 0.0075 0.0633 0.0149 0.0333 0

2nd step 0.0575 0.0335 0.0575 0.0335 0.15 0 0.055 0.0224 0.1025 0.0112

no prior
knnc ldc qdc neurc svc

mean std mean std mean std mean std mean std

1st step 0.0181 0.0014 0.0365 0.0057 0.0221 0.0037 0.01 0.0031 0.0142 0.001

2nd step 0.0292 0 0.0357 0.0088 0.043 0.0121 0.0348 0.0065 0.0402 0.0069

with prior
knnc ldc qdc neurc svc

mean std mean std mean std mean std mean std

1st step 0.0053 0.0011 0.0061 0.0038 0.0059 0.0028 0.0061 0.0029 0.0061 0.0038

2nd step 0.0214 0.0031 0.0321 0.0011 0.056 0.0019 0.0231 0.0048 0.0214 0.002

A prior probability P(A) is the probability distribution of A before the specific

condition is taken into account [Haldane, 1948; Witten and Frank, 2005]. It

means to attribute uncertainty rather than randomness to the quantity under

investigation. A prior is often a purely subjective assessment of an expert. In

order to obtain this prior knowledge, we chose a group of images with 6 dif-

ferent time stages and manually counted the number of the three characteristic
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episodes. Subsequently, we calculated the ratio between plasma-membrane and

the subgroup (cluster and vesicle) as 0.0526 and the ratio between cluster and

vesicle as 0.0556. This ratio is ascertained by biologists through observation.

In addition, we verified the performance of this prior probability with simply

no prior probability and with equal prior probability. The within-class covari-

ance normalization was selected for this optimization scheme. Subsequently, the

weighted error of different classifiers was calculated after branch and bound fea-

ture selection. The results in Table 3.3 show that the performance is increased

when the prior probability is included.

3.2.5.4 Classifier

The classifiers were selected on their ability to cover both linear and non-linear

categories; i.e. the linear classifier (LDC), the quadratic classifier (QDC), the k-

nearest neighbor classifier (KNNC), the support vector machine classifier (SVC)

and the neural network classifier (NEURC). The linear classifier makes a classi-

fication decision based on the value of a linear combination of the characteristics

[Mitchell, 1997]. Compared to nonlinear classifiers, the performance of linear clas-

sifier is less preferred in data that are strongly non-Gaussian distributed [Devroye

et al., 1996]. The quadratic classifier is generalized form of the linear classifier that

separates classes on the basis of a quadratic hyperplane. The k-nearest neigh-

bor classifier distinguishes an object by majority voting of its neighbors, with

the object being assigned to the class most common amongst its neighbors. The

Support Vector Machine (SVM) is primarily a classifier method that performs

classification tasks by constructing hyperplanes in a multidimensional space that

separates cases of different class labels. [Cortes and Vapnik, 1995] Key to the

SVM is the use of kernels, the absence of local minima, the sparseness of the

solution and the capacity control obtained by optimizing the margins [Cristianini

and Shawe-Taylor, 2000].

In a neural network, units (neurons) are arranged in layers and these layers con-

vert an input vector into some output. Each unit takes an input, applies a (often

nonlinear) function to it and then passes the output on to the next layer [Zhang,

2000]. There are many artificial neural network (ANN) models; i.e., Feed-Forward
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Networks, Radial Basis Function Networks, Recurrent Networks, etc. The ad-

vantage of neural networks is two-fold. First, neural networks are data driven

self-adaptive methods. The flexibility is created by the combination of different

nodes with related kernels. Second, they are universal functional approximators

in which neural networks can approximate any function with arbitrary accuracy.

The disadvantage of neural networks is that they are notoriously slow and is

very difficult to determine the optimal number of kernel types, layers and nodes

[SangitaB and Deshmukh, 2011]. In this study we used the biologically inspired

feed-forward neural network with a single hidden layer. The feed-forward neural

network is defined as a unit feeding its output to all the units in the next layer,

but there is no feedback to the previous layer. It is the simplest form of artificial

neural network and it can yet limit the complexity of network calculation.

3.2.5.5 Analysis

In order to find a panel of classifiers to address the categorization of our dynamic

model with three episodes, we included two normalization schemes, two feature

selection methods and five classifiers. We have presented the results of a weighted

error estimation. The classification are the results of a weighted error estimation

procedure as implemented in PRTools [Duin et al., 2007]. The results are de-

picted in Figure 3.5, 3.6. For the first classifier training (plasma-membrane vs.

subgroup of cluster and vesicle ), we observe in Figure 3.5, the weighted error

of the linear classifier increases abruptly when the number of features exceeds a

certain threshold (three for branch and bound and eight for individual feature

selection method). The weighted error of the k nearest-neighbor classifier, how-

ever, is more stable and equals the lowest point in the branch and bound feature

selection group. As for the second classifier training (cluster vs. vesicle), we

noticed, in Figure 3.6, the weighted error of quadratic classifier performs worst.

We created scatter plots of mapped data with a linear classifier and a quadratic

classifier so as to indicate the reasons of the worst performance with the quadratic

classifier; depicted in Figure 3.7. The error line of the support vector machine

classifier shows quite stable; it obtains the lowest values in the group of branch

and bound feature selection method. Nevertheless, in the individual feature se-
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lection group, the error of neural network classifier always evaluates as the best

performance in terms of magnitude of the error.

For a global observation, we selected the minimal mean error from all weighted

error with different feature dimensions. This value represents the best perfor-

mance of the combination between feature selection and classifier. In Table 3.4,

the standard deviation of each minimal mean value is shown. The combination

of branch and bound feature selection with k-nearest neighbor classifier has the

lowest minimal value and relatively small standard deviation for the first classi-

fier training with both normalization schemes. For the second classifier training,

both the combination of branch and bound feature selection with support vec-

tor machine classifier and the combination of individual feature selection with

neural network classifier have the same lowest minimal value and comparatively

small standard deviation in two normalization schemes. In order to make a final

combination more general and with a lower feature dimension, we choose the com-

bination of branch and bound feature selection with k-nearest neighbor classifier

for first step classification with variance normalization scheme. For the second

step, the combination of branch and bound feature selection with support vector

machine classifier is chosen with variance normalization scheme. The reason for

the selection of branch and bound feature selection method is the existence of

correlated features on our feature set which causes the low performance of the

best individual-N feature selection method. The branch and bound feature selec-

tion method guarantees the optimal feature subset without explicitly evaluating

all possible feature subsets because the criterion function fulfils the monotonicity

condition [Somol et al., 2004]. The K-nearest neighbor classifier as the selection

of the first step is a simple but efficient classifier for the basic recognition problem

such as two classes classification problem. On the other hand, a higher value of K

provides smoothness which reduces the vulnerability to noise in the training data.

For the second step, support vector machine is selected for its flexibility in thresh-

old choosing since its function is non-parametric. Additionally, support vector

machine has the ability of maximizing the generalization because it is trained to

maximize the margin.
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(a) (b)

(c) f(d)

Figure 3.5.First classifier training (plasma-membrane VS subgroup of cluster

and vesicle ). (a) Branch&bound feature selection method with standard

variance normalization (b) Branch&bound feature selection method with

within-class variance normalization (c) Individual feature selection method with

standard variance variance normalization (d) Individual feature selection

method with within-class variance normalization.

The prominent features we choose for the first step are long axis, D-entropy and

standard deviation of intensity. For the second step we choose the top five fea-

tures; i.e. skewness, entropy, H-entropy, closest object Dist, area. The evaluation

of the feature selection performance is shown in Table 3.5. We do the evalua-

tion by calculating the probability of each feature being selected by the feature

selection method. These highly selected features reflect the phenotype changes

between three characteristic episodes. For example, for the step 1, Long Axis is

chosen most of the time because the plasma membrane is around the membrane

which tends to have an elongated shape than other two episodes. In step 2, the

intensity entropy is selected because clusters have a flatter region than vesicles

which results in a lower entropy value. In Figure 3.8 and Figure 3.9 scatter-plots

are shown for both hierarchical steps. The evaluation results tell us that there

is no relevance in using large amounts of features. Just a few will contribute to
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the final results. We can also see both steps choose the wavelet texture features

that we introduced in this research; these clearly resulted in a better performance

compared to the previous classifier scheme.

(a) (b)

(c) (d)

Figure 3.6.Second classifier training (cluster VS vesicle). (a) Branch&bound

feature selection method with standard variance normalization, (b)

branch&bound feature selection method with within-class variance

normalization, (c) Individual feature selection method with standard variance

variance normalization, (d) Individual feature selection method with

within-class variance normalization.

Figure 3.7.Scattered plot of training data with ldc and qdc.
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Table 3.4.Weighted error comparison

1st

step
knnc ldc qdc neurc svc

C-V mean std mean std mean std mean std mean std

B&B 0.0053 0.0011 0.0061 0.0038 0.0059 0.0028 0.0061 0.0029 0.0061 0.0038

IND 0.0058 0.0023 0.0061 0.0038 0.0059 0.0028 0.0055 0 0.0057 0.0014

2nd

step
knnc ldc qdc neurc svc

C-V mean std mean std mean std mean std mean std

B&B 0.0214 0.0031 0.0321 0.0011 0.056 0.0019 0.0231 0.0048 0.0214 0.002

IND 0.0261 0 0.0267 0 0.0607 0 0.0214 0.0021 0.0261 0

1st

step
knnc ldc qdc neurc svc

VAR mean std mean std mean std mean std mean std

B&B 0.0053 0.0011 0.0061 0.0038 0.0059 0.0028 0.0055 0.0018 0.0061 0.0038

IND 0.0058 0.0023 0.0061 0.0038 0.0059 0.0028 0.0056 0 0.0058 0.0019

2nd

step
knnc ldc qdc neurc svc

VAR mean std mean std mean std mean std mean std

B&B 0.0237 0.0044 0.0319 0.0015 0.0563 0.0027 0.0236 0.0069 0.0218 0.0028

IND 0.0263 0 0.0272 0.0029 0.0598 0.004 0.0218 0.004 0.0265 0.001

C-V represents c-variance. B&B represents branch & bound. IND represents indi-

vidual. VAR represents variance.
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Table 3.5.Feature selection performance

Features Step

1

Long Axis 100

Int Std 100

D entropy 87

H entropy 7

V entropy 5

Smoothness 1

Area 0

Perimeter 0

Extension 0

Dispersion 0

Elongation 0

Orientation 0

Compact Factor 0

Border Dist/Nucleus

Dist

0

Closest FA Dist 0

Short Axis 0

Skewness 0

Int Uniformity 0

Int Entropy 0

H mean 0

H std 0

V mean 0

V std 0

D mean 0

D std 0

Features Step

2

Closest FA Dist 100

Int Entropy 100

Area 96

Int Std 73

Compact Factor 44

Int Uniformity 34

Smoothness 14

H entropy 8

Border Dist/Nucleus

Dist

7

Perimeter 6

Long Axis 6

Short Axis 5

D std 5

Skewness 2

Extension 0

Dispersion 0

Elongation 0

Orientation 0

H mean 0

H std 0

V mean 0

V std 0

V entropy 0

D mean 0

D entropy 0
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Figure 3.8.Step 1 Scattered Plot.

Figure 3.9.Step 2 Scattered Plot.

3.3 Results and discussion

3.3.1 EGFR endocytosis regulator identification

Our hierarchical classification strategy was used to validate siRNA-mediated

knock-down of several known EGFR endocytosis regulators (e.g. siGrb2, siEEA1,

siCFL). We selected 10 sample points per well from WT cells (not treated with

siRNA), control siRNA treated cells (siCtrl#2 and siGFP), siEGFR treated cells

and three target siRNAs. After image processing and data analysis, we calculated

the number of objects belonging to each episode group per nucleus and compared

the result. This is depicted in Figure 3.10. As expected, cells treated with siEGFR

show a decreased level of all three classes since treatment of cells with siEGFR

results in > 90% knock-down of EGFR. Cells incubated with siGrb2 show a dras-

tic reduction in number of endosomes (vesicle and cluster) because siGrb2, as a

known regulator of EGFR endocytosis, can significantly inhibit EGFR internal-

ization [Jiang et al., 2003]. In general the increase in number of endosomes
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(a)

(b) (c)

no siRNA siCtrl#2 GFP EGFR

GRB2 EEA1 CFL1 BIN1

Figure 3.10. EGFR endocytosis regulator identification results. (a) Pixels of

plasma-membrane, (b) Number of clusters, (c) Number of vesicles.
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(a) (b)

0 min 10 min 30 min 60 min 120 min

c. sample images with different time point

Figure 3.11.Dynamic stages of EGFR endocytosis. (a) Number of EGFR

localized at Plasma-membrane (pixels/nucleus), (b) Number of EGFR as vesicle

in early endosome (number/nucleus).

(vesicle and cluster) can be caused either by enhanced uptake of EGFR resulting

in an enhanced EGFR endocytosis and EGFR degradation, or by delayed endo-

cytosis and EGFR breakdown. For EEA1 (a member of the early endosomes), an

increase in number of endosomes (vesicle and cluster) is due to delayed endocy-

tosis [Leonard et al., 2008]. Cofilin (CFL) regulates the cytoskeleton and because

of these changes in the actin cytoskeleton the endocytosis route of EGFR changes

[Nishimura et al., 2006]. At present, there is not a lot of knowledge about BIN1

in EGFR endocytosis. Regarding the result, BIN1 depletion decreases EGFR at

plasma-membrane, increases the number of vesicles and clusters, suggesting that

it potentiates EGFR endocytosis and possibly signaling. These results demon-

strate the robustness of our hierarchical classification scheme and the capability

to predict new EGFR endocytosis regulators.
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3.3.2 Dynamic EGFR endocytosis stage

In this case study, HBL100 cells were exposed to EGF (50 ng/ml) for indicated

timepoints (Figure 11c). The number of EGFR localizations at the plasma-

membrane and the vesicles was quantified. The amount of EGFR localized at

the plasma-membrane, expressed as pixels of plasma-membrane per nucleus, de-

creases over time as shown in Figure 11a. This fits with the EGFR endocytosis

process during which EGF exposure is causing a gradual EGFR re-distribution

from the plasma-membrane into vesicles. Meanwhile, the number of vesicles per

nucleus increases at early endosome caused by the EGFR internalization, then

decreases at the late endosome stage when the vesicles form into a larger complex

clusters and degrades at the end as illustrated in Figure 11b. These graphs indi-

cate the trend of EGFR endocytosis process and are representative in illustrating

the dynamics of EGFR endocytosis stages.

3.4 Conclusions

This chapter discusses an improved image and data analysis system for High-

throughput screening including texture wavelet-based measurements and a hier-

archical classification strategy. Having learned from earlier results [Cao et al.,

2011] we have improved the phenotype description with the new texture features

and improved the classification of the characteristic episodes with an alternative

classification scheme. For the image analysis we use an innovative image segmen-

tation algorithm combined with representative phenotype measurements which

include relative texture features with wavelet transform to replace the absolute

intensity feature so as to decrease the impact of fluorescent intensity variation.

For the data analysis part, we change from a single-step multi-class classification

solution into a two step Hierarchical classification strategy to categorize three

dynamic phenotypes of EGFR endocytosis process. We include two feature nor-

malization methods, two feature selection methods and five classifiers to find the

best classification strategy. After evaluation of different combinations, we have

chosen the combination of branch and bound feature selection with k-nearest

neighbor classifier as for first step classification after normalization of variance.
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As shown in Table 3.4, the combination of branch and bound feature selection

with support vector machine classifier is chosen for the second step classification

after having applied the same normalization method.

With the selected combination, the classifier shows a notable improvement in

distinguishing plasma-membrane from the dataset. This improvement is due to

three factors. First, it benefits from the hierarchical classification scheme which

introduce multilevel classifiers to deal with two subset classes at a time. Sec-

ond, we introduced the exact prior probability for the classifier training which

improve the performance of the classification strategy significantly. Third, the

relative texture measurements show their potential to describe the phenotype

characteristics.

This explicit hierarchical classification solution can identify the characteristic

episodes in the EGFR endocytosis process and is helpful to find new regulators

in this crucial process relating to breast cancer progression. With all kinds of phe-

notype measurement and flexible classifier training strategy that we introduced

in this work, it is easy to detect morphological changes of phenotype and extend

our solution to cope with studies utilizing fluorescence microscopy in a siRNA

based high-throughput screening (HTS).
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Chapter 4

Evaluation of Algorithms for

Point Cloud Surface

Reconstruction through the

Analysis of Shape Parameters

Based on:

L. Cao, F.J. Verbeek. Evaluation of algorithms for point cloud surface

reconstruction through the analysis of shape parameters. 3D Image Processing

(3DIP) and Applications 2012, Proceedings SPIE Vol. 8290,Bellingham,

82900G, 2012

L. Cao, F.J. Verbeek. Analytical evaluation of algorithms for point cloud

surface reconstruction using shape features. Journal of Electronic Imaging, 22

(4), 043008, October 2013
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Abstract:In computer vision and graphics, reconstruction of a 3D surface

from a point cloud is a well-studied research area. As the surface contains in-

formation that can be measured, the application of surface reconstruction may

be potentially important for applications in bio-imaging. In the past decade, a

number of algorithms for surface reconstruction have been developed. Generally

speaking, these algorithms can be separated into two categories: explicit repre-

sentation and implicit approximation. Most of these algorithms have a sound

basis in mathematical theory. However, so far, no analytical evaluation between

these algorithms has been presented. The straightforward method of evaluation

has been by convincing through visual inspection. Therefore, we designed an

analytical approach by selecting surface distance, surface area and surface cur-

vature as three major surface descriptors. We evaluate these features in varied

conditions. Our ground truth values are obtained from analytical shapes: the

sphere, the ellipsoid and the oval. Through evaluation we search for a method

that can preserve the surface characteristics best and which is robust in the pres-

ence of noise. The results obtained from our experiments indicate that Poisson

reconstruction method performs best. This outcome can now be used to produce

reliable surface reconstruction of biological models.
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4.1 Introduction

The problem of 3D surface reconstruction from a point cloud is widely studied

and we consider it as important in the field of geometric modeling and analysis

of biological objects (models) that have been acquired by an imaging device; for

that matter we are specifically interested in objects at the microscopic scale.

At present, a number of approaches have been introduced to represent a 3D sur-

face. The approaches are generally classified into two categories: explicit repre-

sentation and implicit approximation. The major explicit representations include

parametric surfaces and triangulated surfaces. Parametric surfaces, such as B-

splines [He and Qin, 2004; Pfeifle and Seidel, 1996; Pottmann and Leopoldseder,

2003; Sun et al., 2006] and Bezier patches, attempt to represent all shapes with a

set of elementary shapes, i.e. super-quadratics, generalized cylinders, parametric

patches, etc. These parametric surfaces can be described by only a few parame-

ters. The reconstructed surface is smooth whilst the data set can be non-uniform.

There is, however, one major drawback of parametric surfaces, which is that sev-

eral parametric patches need to be combined to form a closed surface, resulting

in seams between the patches.

Another explicit representation is denoted as triangulated surfaces. In this rep-

resentation, all or most of the points are directly interpolated based on struc-

tures from computational geometry, such as Delaunay triangulations [Boisson-

nat, 1984], alpha shapes [Amenta et al., 2000], or Voronoi diagrams [Amenta

et al., 1998]. The CRUST method [Amenta et al., 1998] is the first one with a

provable reconstruction. The CRUST algorithm exploits the Voronoi diagram of

the input-point set to reconstruct the surface. Subsequently, POWER CRUST

[Amenta et al., 2001] uses a weighted Voronoi diagram to produce a water-tight

surface. This algorithm, however, introduces many extra points in the output and

also does not produce a triangulated surface. As an improvement to CRUST, the-

oretical as well as practical, the COCONE algorithm [Amenta et al., 2000] was

introduced. In time this was followed by SUPER COCONE [Dey et al., 2001],

TIGHT COCONE [Dey and Goswami, 2003] and ROBUST COCONE [Dey and

Goswami, 2004]. Triangulated methods have a profound basis in theory and

thereby a guaranteed solution, nevertheless, the implicit interpolations have a
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negative effect on the sensitivity to noise. Consequently, in order to produce

smooth surfaces from noisy data [Kolluri et al., 2004; Mederos et al., 2005], ex-

tensive pre- and/or post-processing is required.

The implicit approximation is based on a scheme which integrates characteristic

of each point on the surface into a feature function, a.k.a. the implicit function.

The implicit function can be constructed in different ways, such as local fitting,

global fitting and combined fitting.

In terms of the local fitting method, Hoppe et. al.[Hoppe et al., 1992] recon-

structed the surface by locally estimating the implicit function as the signed

distance to the tangent plane of the closest point. In a volumetric approach Cur-

less and Levoy [Curless and Levoy, 1996] extended the distance function approach

for laser range data, in which they also derive error and tangent plane informa-

tion. Another approach is to capture the local shape of the surface by adaptively

subdividing the space [Ohtake et al., 2003]. Global fitting methods normally use

globally supported radial basis functions as the implicit function to reconstruct

smooth surfaces [Carr et al., 2003]. Radial basis functions based methods are

especially useful for repairing large and irregular holes in an incomplete surface.

In these methods serious difficulties are encountered in capturing sharp surface

features. In combined fitting methods the advantages from both global and local

fitting schemes are integrated. In a Fourier-based reconstruction scheme [Kazh-

dan, 2005] the Fast Fourier Transform (FFT) is used to derive a characteristic

function of the solid model. The Poisson reconstruction [Kazhdan et al., 2006a] is

associated with the so called ambient space rather than the data points and has

a simple hierarchical structure that results in a sparse, well-conditioned system.

The implicit function is derived from a Poisson equation , computing a scalar

function whose Laplacian equals the divergence of the oriented point samples .

All the implicit approaches are particularly convenient since they all guarantee a,

so called, watertight 2-manifold surface approximation [Dey and Goswami, 2003].

A large volume of research papers is available on methods for surface reconstruc-

tion from a point cloud. A great deal of effort has been put into method design.

The existence of such large number of methods makes a systematic evaluation

necessary. Although error estimation is available for several methods, the evalua-

tions are still rather inefficiently described. In most cases a rather straightforward
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way of evaluation is based on visual inspection. One of the apparent reasons for

the lack of more comprehensive evaluation is probably related to the amount of

parameters that have to be analyzed when comparing reconstruction methods.

As indicated, we are particularly interested in applying surface reconstruction

methods in the field of biology. In molecular genetics and developmental biology,

the analysis of gene expression is important and requires the development of new

elaborate tools for shape analysis. We are modeling the genetic markup through

gene expression in relation to development and shape for the Zebrafish (Danio

rerio) and the Frog (Xenopus laevis) [Verbeek et al., 1999b]; to this end, we study

the development of the embryo. A surface is used as a shape descriptor and as a

means to project gene expression. As for the features it holds that subtle changes

in shape need to be noticed so that phenotypical changes can be understood.

Therefore, the surface representation needs to be precise and robust. The source

datasets that we use for the reconstruction are derived from microscopy [Ver-

beek, 1999a]; these are stacks of plan parallel images that are aligned as precise

as possible. Surfaces are derived from specific labeled volumes in the 3D image

and given the context of the application; we need to preserve these surfaces as

precise as possible. Numerous contour-based surface reconstruction algorithms

exist [Barequet et al., 2003; Braude et al.; Ekoule et al., 1991; Ganapathy and

Dennehy, 1982; Jones and Chen, 1994; Klein et al., 2000], however, the more

advanced point-based reconstruction technique will support shape analysis in a

better manner and parameterization of the surface provides a good starting point.

In the contour-based surface reconstruction these algorithms are increasingly used

[Barequet et al., 2003]. In order to assess the surface reconstruction we need de-

velop profound insight in the point-based reconstruction technique; i.e. we need

to know which algorithm would preserve the shape characteristics best and with

the highest accuracy.

In order to complete an analysis of the point bases surface reconstruction algo-

rithms, we have selected four representative algorithms from two major classes.

The quality of the surface created by the different algorithms is assessed under

noise conditions and compared to known analytical values. In this paper, the

point cloud models that we utilized are the sphere, the ellipsoid and the oval;

these shapes resemble the early embryo and therefore are realistic as a model.
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The evaluation is performed with four methods and for our experiment some re-

lated parameters will be selected in the methods evaluation. Given the number

of parameters that will be assessed in the evaluation, it should be clear that this

evaluation approach requires large memory resources and considerable computa-

tion time.

The remainder of this paper is organized follows. In section 4.2, we introduce

and propose our evaluation methods. In section 4.3, the experimental results are

presented. Finally, in section 4.4, we present our conclusions and indicate direc-

tions for our future research.

4.2 Evaluation design

In this paper, we aim at obtaining a higher level of understanding of the major

reconstruction approaches currently available. To that end we have selected four

representative surface reconstruction methods. Two methods are typical to the

group of explicit representation, i.e. Power Crust and Robust Cocone. Two other

methods are typical to the group of implicit representation and derive a surface

from an implicit approximation, i.e. Fourier-based reconstruction and Poisson re-

construction. According a visual evaluation presented by Kazhdan et al.[Verbeek

et al., 1999b] the latter two implicit methods perform best.

In order to make an objective assessment of the quality we will use an error esti-

mation of surface distance, surface area and surface curvature in a comparison of

the surface that results from the reconstruction to analytical descriptions of the

shape. These three major characteristics of the surface are chosen because: (1)

surface distance provides volumetric information of the model which is known as

an important global Riemannian invariant, (2) surface area represents the shape

of the surface which is a notable integral property, and (3) surface curvature is one

of the critical intrinsic properties for providing information on the local shape of

a surface. These three features are the paramount ones providing the geometric

information of the surface model. A sound error estimation based on these three

features would present us a good and objective impression of the performance of

each of the surface reconstruction methods.
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The point cloud models used in the evaluation are three synthetic objects i.e.

the sphere, the ellipsoid and the oval. The reason for employing synthetically

generated objects is that we can compute the surface area and surface curvature

from the parametrical mathematical representation of these synthetic surfaces.

Furthermore, it is also convenient for the calculation of surface distance between

synthetic objects and reconstructed objects. Moreover, the biological models that

we intend to reconstruct also portray these spherical or elliptical surface charac-

teristics. Thus, this analytical approach supports a more thorough understanding

the behavior of different reconstruction methods in the context of the intended

application.

Figure 4.1. Evaluation Design Workflow.

4.2.1 Generation of points and noise

According to our observations, surface curvature differs with point location of

the point on the surface, e.g. the surface curvature on the sphere is always equal

while the curvature on the ellipsoid changes with spatial location. Therefore, we

generate point samples for the synthetic objects in accordance with the surface

curvature, so as to properly preserve the surface characteristics. For the sphere,

the best way to represent its curvature is generating the surface sample points

with a uniform distribution. For the ellipsoid, we generate the points sample

according to the equation:
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(x− xc)2

xr2
+

(y − yc)2

yr2
+

(z − zc)2

zr2
= 1, (4.1)

Where [xc,yc,zc] represents the center of ellipsoid and xr, yr and zr denotes the

equatorial radii (along the x y and z axes). In the case of the oval shape, we

use the equation provided by Yamamoto [Solvenus and Yamamoto, 2011]. They

treat an oval shape by rotating the oval curve around x axis. The equation of a

3D oval surface is given by the following equations:

x = a cos θ

y = b cos(
θ

4
) sin θ cosφ

z = b cos(
θ

4
) sin θ sinφ

0 ≤ θ ≤ π

(4.2)

where a = 0.5, b = 0.37, 0 < φ < 2. With the coordinates data calculated from

Equation 2, we can obtain a nicely distributed point cloud without holes existing

on both poles that properly represent the surface curvature characteristic.

For the Fourier-based reconstruction and the Poisson reconstruction methods,

the generation of point position as an input is not sufficient. These two methods

require an oriented point-set as an input. We, therefore, apply point normal cal-

culation as described by Hoppe et al.[Hoppe et al., 1992].

Uniformly distributed noise is added randomly on the point cloud so as to esti-

mate the robustness of each of the methods in the presence of noise. Most of the

methods are robust to the Gaussian noise, e.g. the Fourier-based reconstruction

algorithm; we therefore have chosen to observe the performance of these methods

using uniformly distributed noise. For this type of evaluation we consider uni-

formly distributed noise to be valid and meaningful.
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4.2.2 Surface area calculation

Unlike the surface area of a sphere, the surface area of a general ellipsoid cannot

be expressed exactly by an analytical function. The equation to approximate the

surface area of an ellipse is given as:

A ≈ 4π(
apbp + apcp + bpcp

3
)1/p (4.3)

where a and b denote the equatorial radii (along the x and y axes), c denotes

the polar radius (along the z-axis) and, according to Knud Thomsen’s formula

p ≈ 1.6075.

Since the equation of oval surface can be treated as parametric surface −→r =
−→r (u, v), we thereafter make use of the definition for surface area of parametric

surface to calculate the oval area. The surface area can be calculated by integrat-

ing the length of the normal vector −→ru × −→rv to the surface over the appropriate

region D in the parametric uv plane:

A(D) =

∫∫
D

|−→ru ×−→rv | dudv (4.4)

We use the surface area equation expressed in terms of the first fundamental form

as follows:

A(D) =

∫∫
D

√
EG− F 2dudv (4.5)

where E = −→ru .−→ru , F = −→ru .−→rv , G = −→rv .−→rv . The expression under the square root

is precisely |−→ru ×−→rv |, and so it is strictly positive at the regular points.

In order to estimate the error between the ideal value derived from formulas above

and the real value calculated from the output model, we also need to calculate

the area of the reconstructed surface. Since the output of the surface is a trian-

gulation, we can derive the overall area by summation of all areas of the triangle

patches on the surface.
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4.2.3 Point distance calculation

With respect to the point distance error evaluation, we compute the distance from

the points on the output triangulated surface to the synthetic surface model. It is

easy to find the shortest distance from a point in 3D surface to the sphere surface

centered at the origin of the coordinate system.

D = Rp −Rs (4.6)

where Rp denotes the distance from point to the origin, and Rs denotes the radius

of the sphere. For the ellipsoid the distance calculation is less straightforward.

In the literature [Eberly, 2011] algorithms are described to compute the distance

from an arbitrary point to an ellipsoid; we have adhered to this approach.

Since oval is a parametric surface, we can treat this specific problem of finding

the shortest distance from a point to oval surface as a general one of projecting

a point onto a parametric surface. Therefore, we apply the method provided by

Shi-min [Hu and Wallner, 2005] to project a point orthogonally onto a surface.

This method consists of a geometric second order iteration which converges faster

than first order methods and whose sensitivity to the choice of initial values is

small.

4.2.4 Surface curvature calculation

With respect to curvature, we estimate the error between ideal and real curvature

value:

Errorc =

∑n
i=1 ||idealc| − |realc||

n
(4.7)

where idealc represents the analytically obtained value and realc represents the

measured value from the point cloud reconstruction. From its remarkable sym-

metry [Conway and Sloane, 1999], we know that the ideal Gaussian and mean

curvatures of sphere model are constant. Therefore, for each point on the sphere,

the Gaussian curvature is K = 1/R2 and the mean curvature is H = 1/R where

R is the radius of the sphere. As for the point on the ellipsoid surface, the
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Gaussian and mean curvature are derived from equation introduced by Jacobs et

al.[Jacobsen et al., 2009]. As we have learned, the oval surface is a parametric

type surface. For the parametric surface, the first and second fundamental forms

of a surface determine its important differential-geometric invariants: the Gaus-

sian curvature, the mean curvature, and the principal curvatures. So we derive

the surface curvature of oval by the equation:

K =
LN −M2

EG− F 2
, H =

EN − 2FM +GL

2(EG− F 2)
(4.8)

where E = −→ru .−→ru , F = −→ru .−→rv , G = −→rv .−→rv , L = −→ruu.−→n , M = −→ruv.−→n , N = −→rvv.−→n ,
−→n is a unit normal vector to the parameterized surface at a regular point:

−→n =
−→ru ×−→rv
|−→ru ×−→rv |

(4.9)

Up to a sign, these quantities are independent of the parameterization used. How-

ever we only use the absolute value of Gaussian curvature and mean curvature

to estimate the curvature error, as a result, these quantities are thoroughly inde-

pendent during our curvature error estimation.

However, because of the addition of noise, points on the output surface are not

necessary still on the original ellipsoid surface. To that end, we first find the near-

est point on ellipsoid surface for each point on output surface and then calculate

the ideal Gaussian/mean curvature of each point on output surface as that of its

nearest point on ellipsoid surface.

A large number of approaches have been proposed for triangulated surface cur-

vature calculation [Magid et al., 2007], some of which give very unpredictable

results. In order to estimate the real curvature value of points on the output sur-

face, we choose the paraboloid fitting approach [Sander and Zucker, 1990] which is

by far one of the most stable methods in the field of surface curvature calculation.
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4.3 Experimental results

We evaluate the four representative algorithms on our synthetic models i.e. a

sphere with the radius 0.8004, an ellipsoid (a=0.5, b=0.8547, c=1.2) and an oval

(a=1, b=0.78). In this case, these three synthetic models can be more compa-

rable since they are evaluated with the same volume. First of all we need to

establish if the number of points generated for the point cloud provides sufficient

information for the reconstruction process. In other words, we need to check if

the points sample set results in a situation of oversampling or under-sampling.

Subsequently, we take a local observation of each algorithm to check the perfor-

mance at different noise level. Finally, we have an overall view of all the methods

to see which one has the best stability and resilience.

4.3.1 Under/oversampling estimation

For the estimation of the under/oversampling, a number of factors need to be

taken into consideration. Scale is one of the important parameters included in

both the Fourier-based algorithm and Poisson reconstruction method, though

slightly different definitions for scale are used by these methods. Generally speak-

ing, the scale factor is defined as a floating point value that specifies the ratio

of diameters between the cube used for reconstruction and the bounding cube

of the samples. In this estimation we select two factors i.e. input point number

and scale. We applied Fourier-based algorithm on the point cloud representing a

sphere model without noise and evaluate the surface distance error.

In Figure 4.3 the result of under/oversampling estimation is depicted. As can

be seen, the distance error decreases when the number of input points increases.

Moreover, the decay of the distance error is relatively sharp at the beginning

while in the end it diminishes, especially in the range of 30000 to 50000 input

points the error is almost stable. From these results we conclude that if the input

point number is over 30000, then, for the reconstruction methods, the model can

be considered oversampled.
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(a) (c) (e)

(b) (d) (f)

Figure 4.2. Models with and without noise (snapshots from Meshlab [Cignoni,

2010]). (a) Sphere model without noise, (b) Sphere model with noise, (c)

Ellipsoid model without noise, (d) Ellipsoid model with noise, (e) Oval model

without noise, (f) Oval model with noise.

(a) (b)

Figure 4.3. Under/oversampling estimation. (a) front view, (b) top view. We

apply point distance calculation to estimate the range of the input point

number when the model is oversampled. The change of the stripe color from

dark blue to red shows the increase of distance error. Therefore, red indicates

undersampling.
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4.3.2 Local observation

4.3.2.1 Sphere model distance/area error estimation

For convenience of the evaluation procedure, the algorithms are divided into two

groups. The first group consists of Power Crust (PC) and Robust Cocone (RCC).

By changing the number of input points we observe the performance of two meth-

ods under different noise levels. In the reconstruction process we use the default

settings of each algorithm. In table 4.1 the changes in the number of output points

with respect to the number of input points without the addition noise. Power

Crust adds a large number of additional points on the output surface while, for

Robust Cocone, the number of output points remains the same. Figure 4.4 (a)

and (b) demonstrate that the distance error estimations of these two methods are

almost the same. However, in Figure 4.4 (c) and (d) the area error estimation

shows clear differences. The area error of Robust Cocone is lower and more sta-

ble. Nevertheless, both methods demonstrate the same trend that at increasing

levels of noise, the distance error and the area error escalate accordingly.

The second group includes Fourier-based reconstruction (FOU) and Poisson re-

construction (POI) as they have a similar structure of processing and parameters

(i.e. resolution, scale). We compare these methods with an oversampling and

input of 50000 points; using the same resolution. Their performance is tested

within a range of the scale factor and under different levels of noise. In the

Fourier-based reconstruction method, as shown in Figure 4.5(a) and 4.5(c), the

output number increases together with scale factor. At smaller scales, the error

in both parameters is large. This is due to the inadequacy of characteristics in-

tegrated in the implicit function since the model only has less than 30 points on

the surface, as shown in Figure 4.6(a). When the scale is increasing, the error

reduces drastically. An example is shown in Figure 4.6(b). However, at a scale

> 0.95, the error in the area increases again. This is due to the fact that the

diameter of the cube used for reconstruction is too small to have any points in the

cube. As a result, the output surface model is no longer watertight (i.e. closed)

and consequently the area error increases. This is shown in Figure 4.6(c).

In contrast, in the Poisson reconstruction method, the scale setting is the inverse

of the scale in Fourier-based reconstruction. As can be seen in Figure 4.5(b) and
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4.5(d); i.e. when the scale increases, the error increases. Although the Poisson

error estimation curves are not smooth, the error ranges for both measurements

remain relatively small compared to Fourier-based reconstruction method.

Table 4.1. Output points comparison

IP 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

PC 2146 4272 6797 8548 11261 13588 15266 18049 20184 22209 25483

RCC 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

IP=input points, PC= Power Crust output points,

RCC=Robust Cocone output points

(a) (b)

(c) (d)

Figure 4.4. Sphere PC/RCC distance and area error estimation. (a) PC

Distance error, (b) RCC Distance error, (c) PC Area error, (d) RCC Area error.

* the ranges of the noise and the glyphs used in the graphs in (a-d).
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(a) (b)

(c) (d)

Figure 4.5. Sphere FOU/POI distance and area error estimation. (a) FOU

Distance error, (b) POI Distance error, (c) FOU Area error (d) POI Area error.

* the ranges of the noise and the glyphs used in the graphs in (a-d).

(a) (b) (c)
Figure 4.6. Sphere output samples of Fourier-based reconstruction method

(snapshot in Meshlab [Cignoni, 2010]).(a) sphere output model with scale 0.04,

(b) sphere output model with scale 0.2, (c) sphere output model with scale 0.98.
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4.3.2.2 Ellipsoid model distance/area error estimation

(a) (b)

Figure 4.7. Ellipsoid RCC distance and area error estimation (a)RCC

Distance error, (b)RCC Area error. * the ranges of the noise and the glyphs

used in the graphs in (a-b).

From this part of the evaluation we exclude Power Crust reconstruction methods

since the output model is easily broken and obviously not resilient to noise. The

remaining three methods are used for further evaluation. Figure 4.7 and Figure

4.8 provide the distance and area evaluations for these three methods. It is clear

that the error in distance and area demonstrate the same trend. For example,

when the scale factor in Poisson reconstruction increases, both the distance and

area error increase as shown in Figure 4.8(c) and 4.8(d). Interestingly, for the

results of both Fourier-based and Poisson reconstruction there usually exists an

optimum for the minimal distance and area error.

4.3.2.3 Oval model distance/area error estimation

For the oval model, most of the graphs show the same trend as the sphere model

and the ellipsoid model. However, in Figure 4.10(d), the area error for Poisson

reconstruction method demonstrates some difference. When the noise increases,

the area error shows high up at a low scale level. That is because, for a more com-

plicated model, the Poisson reconstruction method integrates more noise points

as a feature factor into the characteristic function. As a result the output surface
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(a) (b)

(c) (d)

Figure 4.8. Ellipsoid FOU and POI distance and area error estimation. (a)

FOU Distance error, (b) FOU Area error, (c) POI Distance error, (d) POI Area

error. * the ranges of the noise and the glyphs used in the graphs in (a-d).

(a) (b)

Figure 4.9. Oval RCC distance and area error estimation (a)RCC Distance

error, (b)RCC Area error. * the ranges of the noise and the glyphs used in the

graphs in (a-b).
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(a) (b)

(c) (d)

Figure 4.10. Oval FOU and POI distance and area error estimation. (a) FOU

Distance error, (b) FOU Area error, (c) POI Distance error, (d) POI Area error.

* the ranges of the noise and the glyphs used in the graphs in (a-d).

Figure 4.11. Output surface of Poisson reconstruction method with the noise

level 0.1 and the scale 1.1 (snapshot in Meshlab [Cignoni, 2010]).

would be rougher and the area error is increasing. In Figure 4.11, we compare

the output surface of the sphere, the ellipsoid and the oval from Poisson recon-
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struction method with the same noise level and a same low scale setting.

4.3.2.4 Sphere model curvature error estimation

The discussion of curvature error estimation is continued in following three sec-

tions. So as to find the reconstruction method that best preserves the curvature

characteristic, three methods would be further evaluated. Moreover, in order to

obtain a better observation of the results, we use the standard deviation of mean

as our error bar for the curvature error estimation sessions.

When we take into a close look at the output surface model from Robust Cocone,

we find the orientation of each triangulated surface is not coherent. Moreover,

some of the output surface model has non manifold faces. However, for the

paraboloid fitting scheme, all the faces on the output surface should be coher-

ently oriented. As a result, we use the script of Meshlab [Lindblad, 2005] software

to remove non manifold faces and re-orient all the faces before we estimate the

mean/Gaussian curvature. The curvature estimation results from Robust Cocone,

as shown in Figure 4.8(a) and 4.8(b), seem irrational. Apart from noise level 0, at

increasing noise, the mean/Gaussian curvature error is decreasing. This is caused

by the fact that in the reconstruction process of Robust Cocone, at higher levels

of noise in the input point cloud, the output number of triangulated points is

reduced so as to preserve the smoothness of the output surface. Thus, producing

the same number of input points, lower levels of noise generate a surface model

with higher resolution resulting in a rougher output surface and a higher local

curvature error.

Since with the same scale setting the point number of output surface remains

the same, the results of Fourier-based and Poisson reconstruction methods are

much more rational. At increasing output resolution, the curvature error de-

creases at very beginning and increases again at the end. The reason is that, take

Fourier-based reconstruction method as an example, when the scale is small the

resolution of output surface model is quite low, as shown in Figure 4.6(a). As

a result, the local curvature error is high. On the other hand, when the scale

is high, more noisy points are preserved. Therefore, the local curvature error is

still high. In Figure 4.12 it is illustrated that the Fourier-based and Poisson re-

construction methods have a smaller error in curvature compared to the Robust
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Cocone method.

(a) (b)

(c) (d)

(e) (f)

Figure 4.12. Sphere curvature error estimation. (a) RCC Mean curvature, (b)

FOU Mean curvature, (c) POI Mean curvature, (d) RCC Gaussian curvature,

(e) FOU Gaussian curvature, (f) POI Gaussian curvature. * the ranges of the

noise and the glyphs used in the graphs in (a-f).
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4.3.2.5 Ellipsoid & oval model curvature error estimation

(a) (b)

(c) (d)

(e) (f)

Figure 4.13. Ellipsoid curvature error estimation. (a) RCC Mean curvature,

(b) FOU Mean curvature, (c) POI Mean curvature, (d) RCC Gaussian

curvature, (e) FOU Gaussian curvature, (f) POI Gaussian curvature. * the

ranges of the noise and the glyphs used in the graphs in (a-f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14. Oval curvature error estimation. (a) RCC Mean curvature, (b)

FOU Mean curvature, (c) POI Mean curvature, (d) RCC Gaussian curvature,

(e) FOU Gaussian curvature, (f) POI Gaussian curvature. * the ranges of the

noise and the glyphs used in the graphs in (a-f).
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For the ellipsoid and the oval, the curvature errors show the same trend. In Figure

4.13(a),(b) and Figure 4.14(a),(b), as noise increasing the mean/Gaussian cur-

vature error of Robust Cocone is decreasing. For the Fourier-based and Poisson

reconstruction methods the curvature error decreases at very beginning and in-

creases again at the end when the output resolution ascends. Overall the Fourier-

based and Poisson reconstruction methods have a smaller error in curvature com-

pared to the Robust Cocone method as shown in Figure 4.13 and Figure 4.14.

4.3.3 Global observation

Table 4.2. Sphere distance/area comparison.

Table 4.3. Sphere Gaussian/mean curvature comparison.

Table 4.4. Ellipsoid distance/area comparison.

Table 4.5. Ellipsoid Gaussian/mean curvature comparison.

Table 4.6. Oval distance/area comparison.
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Table 4.7. Oval Gaussian/mean curvature comparison.

After an evaluation based on observations in the local ranges, we still need to

compare the results as a whole so as to establish the method with the best per-

formance. To that end, we change the input point number from 1000 to 50000

at 1000 point intervals and at the same time change the scale factor in a range

of 50 different values. The uniformly distributed noise is added to each set in 4

different levels (cf. Figure 4.8). This procedure has been repeated 50 times for

each reconstruction setting. Finally, we calculated the minimum, average and

standard deviation for the distance error, the area error, the Gaussian and mean

curvature error as estimated from each data set.

Table 4.2 to Table 4.7 present the general evaluation for the combination of all the

noise levels. With respect to the sphere model evaluation (Table 4.2 and Table

4.3), Poisson reconstruction method performs more stable (cf. the column). The

mean values indicate that Poisson reconstruction still has the best performance

with respect to distance error, area error and surface curvature error estimation.

For the minimum values, Robust Cocone reconstruction method shows the high-

est incidence to be in the top. Regarding the Ellipsoid model evaluation (cf. Table

4.4 and Table 4.5), Poisson has the best mean value with relatively high stability

in distance error and area error. While Fourier-based reconstruction method has

the best mean value in curvature error estimation. However, Poisson always has

the lowest standard deviation value. According to the lowest minimum value,

Robust Cocone is on top of distance error and mean curvature error evaluation,

while Poisson reconstruction method has the lowest minimum value in the area

error estimation and Fourier-based reconstruction method has the lowest mini-

mum value in the Gaussian curvature error estimation. As for the oval model

(Table 4.6 and Table 4.7), Poisson reconstruction method always has the lowest

mean value with the best stability. Robust Cocone has the lowest minimum value

of distance error and curvature error estimation, meanwhile, Poisson reconstruc-

tion method has the lowest minimum value of area error evaluation.
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4.4 Conclusion and future work

In this paper, we have presented an analytical approach to the evaluation of four

different methods for 3D surface reconstruction from a point cloud. We generate

the point cloud of synthetic geometrical objects i.e. sphere, ellipsoid and oval,

and perform error estimation by comparing surface area, distance and curvature

between output surface models and ideal synthetic models. By evaluating all

parameters of the algorithm and at different noise levels, the total size of the

experimental dataset exceeded 50000 files (ply format). From our experimen-

tal results we conclude that the Poisson reconstruction method [Kazhdan et al.,

2006a] has the most stable performance and is most resilient with increasing

amounts of noise in the data. The Fourier-based reconstruction method comes

second. Therefore, we can conclude that the class of implicit surface reconstruc-

tion methods clearly performs better than the interpolation based class for the

surface reconstruction. That is, as we evaluate it to analytical criteria.

The rationale of this work is to obtain a profound assessment of different 3D

surface reconstruction approaches, in particular, with respect to measurements

that can be derived from reconstructed surfaces. The evaluation will help us in

a motivated method selection of surface reconstruction for biological 3D models.

For the progress in the research area of bio-imaging and image modelling, such

analysis is crucial. With the results surface features for biological shapes can be

derived from the data that are obtained by some imaging device, i.e. a micro-

scope. Modern imaging techniques produce 3D images and with the methods

described in this paper we can derive surface estimations directly from the image

data. In general, these images are pre-processed and sublimated to 3D models. In

that case, the methodology will be applied in the same manner; that is, starting

from an annotated 3D model [Verbeek, 1999a].

Given a 3D representation, other approaches for surface area computation have

been described; early methods use the statistical approach from stereology [Bad-

deley et al., 1986] to come to an estimation of the surface area. These methods

can be very efficient if prior information on the shape can be used; and the stere-

ology approach is still successfully used [Ziegel and Kiderlen, 2010]. Taking a
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sampled volume as the starting point, estimators for digitized surfaces have been

developed [Lindblad, 2005; Mullikin and Verbeek, 1993]; these are based on the

probability that a certain voxel-position can contribute to the surface area and

weights are assigned to surface voxel configurations. Moreover, the estimators

on volume data require an isotropically sampled image; this is not in all cases

possible. Stereology is able to deal with the non-isotropically sampled data and

the undersampling in the z-direction is specifically addressed. The stereology

is therefore successfully used with images obtained from physical sections. The

method based on implicit surface reconstruction can very well deal with under-

sampling and therefore it is suitable for models derived from physical sections or

otherwise undersampled input.

The methods described in this paper first derive a surface which is subsequently

used in the measurements. In this manner the initial sampling is surpassed; the

surface description allows extracting a number of features from the surface, i.e.

surface area, curvature and others. The analytical shapes that we have used

for the assessment of the surface description provide useful information on the

surface representations. From tables 4.2-4.7 we learn that the more the shape

resembles a sphere, the more accurate the measurement will be. The ovaloid

shape is closer to the sphere than the ellipsoid shape and this is reflected in the

resulting error measurement. Including previous results [Cao and Verbeek, 2012]

we conclude that the error of the shape increases with size. Importantly, with

the given shapes the error and the coefficient of variation are below the range

that one expects as variation in a measurement of a population of individuals

as is common in biology. Therefore the measurements can be used to describe

differences between individuals of treated/untreated groups, although in all cases

reflection on the outcome remains important. Moreover, the analytical shapes

that we have exploited are also representing shapes, or at least partially, as we

encounter them in nature. The results can therefore be used to assess the range

of the error that can be expected with the reconstruction of a surface of a shape;

i.e. it resembles more of a sphere or an ellipsoid.

From the results presented in this paper, it is clear that we intend to further

exploit the Poisson reconstruction method. Next, we will specifically utilize the

results on biological 3D models so as to improve the quality of the surface rep-
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resentations as well as making the surface representations suitable for analytical

approaches. The imaging research supporting analytical description of 3D shapes,

i.e. embryos in molecular genetics and development, will greatly benefit from the

possibilities provided in this study.
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Chapter 5

Optimizing 3D model

representations for 3D phenotype

analysis

Partially based on:

L. Cao, F.J. Verbeek. Nature inspired phenotype analysis with 3D model

representation optimization. The 4th International Conference on Innovations

in Bio-Inspired Computing and Applications,Ostrava, 2013
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Abstract:In support of research in biology 3D models are constructed. These

are made for visualization and analysis. In micro-anatomy these models often suf-

fer from undersampling in the plane perpendicular to the sampling plane. In this

paper we present a pipeline for optimization of 3D models obtained from plan-

parallel images so that the 3D model is more suitable for shape analysis. In

particular, we intend to create an optimized 3D model for analyzing phenotypi-

cal differences originating from different conditions and we extract shape features

from the 3D models. The optimization is required for obtaining shape features

that properly represent the object. The 3D model contains structures represented

as contours that were extracted from the image stack. Starting from a point cloud

based reconstruction method, i.e. Poisson reconstruction, we devised a method

to convert a stack of contours into a uniformly distributed point cloud. The en-

tire point cloud is integrated in the surface construction resulting in a surface

that accurately represents the shape. The feasibility of our method has been

confirmed by a representative case study in zebrafish development. The method

can be successfully used for datasets from different types of imaging modalities.
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5.1 Introduction

In recent studies [Long et al., 2012; Ng et al., 2012; Rubel et al., 2010] three-

dimensional(3D) morphological information is used to find the various pheno-

types in a sample population. Here a sample population consists of biological

objects from images captured with a microscope at a certain magnification. The

phenotype differences in the population are found in the micro-anatomy and char-

acterized by shape features. It is clear that 3D models derived from microscope

images potentially offer deeper insights for analysis. Therefore, 3D images and 3D

models are frequently used for biological object visualization and analysis. With

3D microscopy techniques such as bright field [Tadrous, 2012; Willis et al., 1993]

and confocal microscopy [Gouaillard et al., 2009; Natalie et al., 2004] it is possible

to obtain 3D information from a plan-parallel stack of 2D slices. For bright field

microscopy, the sampling is often realized by invasive physical sections that are

acquired to capture images and then reassembled to a 3D image stack. Another

option is to acquire images on the confocal laser scanning microscope (CLSM)

and process the non-invasive optical sections to 3D models. The physical section-

ing technique is very suitable for modelling histological information and larger

structures such as tissues or organisms. The confocal technique is more geared

towards imaging specific small structures such as cells and small multi-cellular

structures such as embryos.

From the 3D stack of images a graphical model can be derived by segmenta-

tion or manual delineation of structures of interest. Manual delineation is used

when specific structural knowledge cannot directly be derived from the image;

a specialist then selects the specific information through graphical annotation

[Verbeek et al., 1999a], aka delineation. A set of contours as extracted from the

stack subsequently represents the 3D model. The general observation is that the

output stack of 2D contours is (nearly) always under-sampled perpendicular to

the direction of sampling. In order to improve the model some kind of interpola-

tion can be applied. The classical way of performing such interpolation between

section images (slices) is an interpolation of the gray values in the slices so as

to estimate the gray values in the missing slices [Herman et al., 1992]. A linear

interpolation for estimating the missing slices, however, may lead to artifacts. A
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more advanced manner is a shape-based interpolation [Herman et al., 1992] which

is applied directly to the contours of the model.

Two dominant methods of 3D shape reconstruction from consecutive contours are

contour stitching and volumetric methods. Contour stitching methods directly

connect the vertices of adjacent contours and produce a mesh that passes through

all contours such as the methods provided by Keppel [Keppel, 1975] and Boisson-

nat [Boissonnat, 1988]. Keppels method intends to maximize a function based

on the volume of the triangulated surface model. However, this early technique

is not handling special cases such as branching. Boissonnat utilizes Delaunay

tetrahedralization to successfully cope with branching structures in the model.

Contour stitching methods construct the surface by consecutively building up the

triangulated patches slice by slice. It disregards the whole picture of the object

which could result in noise remaining in between the slices and creating incorrect

topologies in the structure of the model. The volumetric methods treats the stack

of images as a whole by first interpolating intermediate gray-values and extracting

the isosurfaces from a volumetric field. Representative methods are described by

Levin [Levin, 1987] and Barrett et al. [Barrett et al., 1994]. Volumetric methods

derive the isosurfaces directly from the interpolated gray-values. The smoothness

of the surface model depends on the interpolation scheme. We tackle the problem

of surface reconstruction using a point cloud based surface reconstruction method.

The point cloud reconstruction method treats each point as a feature and inputs

features into a mathematical model for an isosurface construction. The merit of

a point cloud based reconstruction method is that as abstraction from a specific

case to a general problem it sheds light on the critical aspects of the problem

[Hoppe et al., 1992]. The process of mathematical model construction facilitates

unwanted noise suppression and prominent feature preserving of the surface. In

our analytical evaluation of point cloud based reconstruction methods [Cao and

Verbeek, 2012] a review of recent methods is given. We aim at reconstructing

the surface and suppressing the noise with the information from three directions

(xyz). As a result, we develop a pipeline to produce a precise and smooth surface

from a set of plane-parallel contours and extract important surface features to

analyze the model that is derived from sampling under different conditions.
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The remainder of this paper is structured as follows. In section 5.2 we introduce

our methodology. In section 5.3 we validate our method with two case studies:

zebrafish embryo and the mouse mammary gland. In section 5.4 we present our

conclusions and discuss the results.

Figure 5.1. Pipeline of our system.

5.2 Methodology for model optimization

The input of our pipeline for model optimization is a stack of nicely aligned bi-

nary images with annotation information e.g. as obtained from an annotation

software (TDR). Our pipeline is divided into several steps; the individual steps

are as schematically shown in Figure 5.1: (1) contour interpolation, (2) 3D surface

reconstruction and (3) phenotype analysis. Following to acquisition, the data are

organized in a database and, structures apparent in the images are delineated by

a contours. This is done either, for each slice through a manual delineation using

our dedicated annotation software (TDR [Verbeek et al., 1993]) or automated

segmentation; for manual delineation a WACOM digitizer tablet (WACOM, Cin-

tiq LCD-tablet) is used. The contour stacks that are the basis of our models are

well aligned by procedures prior to the modeling [Boon et al., 2000] and in case

of the confocal images the alignment is an intrinsic quality of the microscope. In

our pipeline we use the stack of images with only the contours as input.
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Figure 5.2. Contour interpolation procedure from 5 example slices. Mask=

Binary mask of the contour; DT= Distance transformation represented by

Gray-value.

Figure 5.3. Piecewise cubic Hermite interpolation.

5.2.1 Contour interpolation

The sampling of an image stack derived from physical sectioning specifically is,

in general, insufficient in the direction of sectioning (z direction). The insufficient
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information in the Z-direction would prevent us from making a good surface de-

scription. Therefore, we introduce a method of subsampling through interpolation

and develop the method to produce a truthful interpolation. In this process, we

make use of a shape-based contour interpolation method [Verbeek, 1992; Verbeek

et al., 1995]. To that end a distance transform is applied in the contour as shown

in figure 5.2; each point in the resulting image represents the shortest distance

to the contour. The points on the contour are zero. Now, the distances inside

the contour set positive whereas the distances outside the contour are multiplied

with -1 and thus these have a negative value. Setting the negative value is to dis-

tinguish between the pixels outside of the object and the pixels belonging to the

object. For each pixel-column in the z-direction, a 1D monotone piecewise cubic

spline [Fritsch and Carlson, 1980] is constructed to interpolate distance values in

z-direction [Braude et al., 2006]. A monotone cubic interpolation is based on the

cubic Hermite spline with a coefficient matrix that looks as follows:

P (t) =
[
t3 t2 t 1

]


2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0




p0

p1

v0

v1

 (5.1)

where p0 and p1 are two endpoints; v0 and v1 are two related tangents. If a cubic

Hermite spline is used for interpolation of a monotonic data set, the interpolated

function will not necessarily be monotonic, but monotonicity can be preserved

by adjusting the tangents. In Figure 5.3 an example for the construction of a

1D-interpolation in z-direction is shown. A monotone piecewise cubic spline is

used to obtain a smooth function from interpolation. The output spline preserves

the shape of the data and at the same time respects monotonicity. In this manner

derived overshooting artifacts are eliminated by the method. So as to say, it will

not introduce extra or artificial surface information to the biological model. We

project the biological model in a bounding box before we do the interpolation so

as to neglect unnecessary interpolation calculation. Once the spline is constructed

from each vertical column within the bounding box, the intensity of intermediate

missing slices at the same column can be evaluated by providing different position

values in the z-direction. Finally, the interpolated contour is extracted by setting
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Figure 5.4. Example of original images of zebrafish embryo from confocal

microscope.

Figure 5.5. Example of contour interpolation of zebrafish embryo.
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Figure 5.6. Example of original images of mammary gland from bright field

microscope.

Figure 5.7. Example of contour interpolation of mammary gland.

the threshold of gray-value to zero for each slice. This approach results in an

interpolated and equidistant sampled boundary for the model. The number of

extra slices we have added for our model is based on the amount of difference

in resolution at x,y directions and at z direction. For example, we capture a ze-

brafish embryo with a confocal microscope using a 10x objective (N.A. 0.5). The

average volume of the zebrafish embryo is 0.1136 cubic millimeter. The pixel size

in x,y direction is 0.821µm and the optical cutting distance in z direction is 5 µm.

Therefore, we added 6 extra slices in between two consecutive slices to obtain an

equidistant sampling.
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5.2.2 3D surface reconstruction

In order to be able to use the point cloud based reconstruction method, the stack

of binary contour images needs to be converted into a point cloud in 3D space.

Each pixel is converted to a point in 3D space taking the corresponding z-position

of the slice into consideration. In this manner the point cloud is created without

losing any detail and at the same time it is indisputably oversampled in both x,y

and z directions. From a previously performed evaluation of point cloud based

reconstruction methods [Cao and Verbeek, 2013], we concluded that the Pois-

son reconstruction method [Kazhdan et al., 2006b] performs the best for taking

shape preservation and noise suppression into account. The Poisson reconstruc-

tion method, however, requires an oriented point cloud as an input. This means

the method does not only need the location but also the normal of each point

in the point cloud data. Therefore the normal for each point in the point cloud

data is calculated using Hoppe’s algorithm [Hoppe et al., 1992]. The normal of

a point Xi is determined by gathering together the k nearest points to Xi; ex-

pressed as a nearest neighborhood function (Nbhd). The tangent plane of Xi

is constructed as the least squares best fitting plane to Nbhd(Xi). The normal

of point Xi is calculated using a principle component analysis. The covariance

matrix of Nbhd(Xi) is formulated from:

Cov =
∑

y∈Nbhd(Xi)

(y − oi)
⊗

(y − oi) (5.2)

where
⊗

denotes the operation of outer product vector. y is one point in the

nearest neighborhood set. oi is the centroid of Nbhd(Xi). The normal of point

Xi is either positive or negative of the smallest eigenvalues of Cov. The positive

or negative selection depends on the consistency of orientation of nearby tangent

planes.

After having obtained on oriented point cloud data set, the Poisson reconstruc-

tion method is applied to create a precise and smooth surface for the model. If

necessary, the resolution of the resulting surface model can be tuned by chang-

ing the scale parameter which is part of the Poisson reconstruction method. We

evaluated the effect of the scale parameter on the reconstruction step by chang-
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ing the scale value and compare the error between the ideal and real output

with the analytical models. The scale parameter we have used here is based on

this evaluation and sufficient for the biological model reconstruction (scale=2).

The scale parameter still retains sufficient details on the surface for phenotype

measurement.

5.2.3 Phenotype measurement

With the reconstructed surface model, we need to find a way for 3D shape de-

scription so as to distinguish a difference in phenotype with various treatments.

The type of measurements extracted from the 3D model strongly depends on the

model at hand and the hypothesis posed to resolve phenotypical differences. We

extract a range of different features as shown in Figure 5.8, some are derived

directly from surface including global shape, i.e. volume and surface area, and

local features such as surface curvature per point.

More features can be extracted from a graph based representation of the shape,

i.e. skeleton or centerline. These features encode geometrical and topological

shape properties in a faithful and intuitive manner [Akgül et al., 2009]. The cen-

terline is useful to describe the topology information of tubular structures such

as blood vessels. Additional features can be extracted from the centerline such as

number of branches and nerves, average branch-length, number of bifurcations,

and so on. These basically follow from the graph structure.

Figure 5.8. 3D shape descriptors.
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5.3 Evaluation of the methodology

After the illustration of the methodology of model optimization, we continue with

the evaluation of several important steps. We have three main steps as shown

in Figure 5.1. Apart from the 3D surface reconstruction step, it is a parametric

free pipeline. The step of 3D surface reconstruction is already evaluated in our

former work [Cao and Verbeek, 2013]. In this section, we will look in detail

on the contour interpolation, because this method might introduce interpolation

error when the model reaches to a higher level of complexity. We want to check

how well our solution is in dealing with different kinds of models. The second

evaluation is given a general view on the level of improvement of the surface

reconstruction compared to methods used earlier.

5.3.1 Evaluation of interpolation method

The interpolation by the 1D monotone piecewise cubic spline can introduce inac-

curacies for topologically complex 3D models that are common in biology. Thus,

in order to check the topological correctness of this important processing step ap-

plied to the 3D model, we also use a more complex 3D model for our evaluation.

To this end the mammary gland is very suitable because it has a higher level of

complexity in the shape structure, i.e. branches.

We design following evaluation method. The interpolation part is a crucial step

in the construction of the relationship between slices and at the same time the

correct topology of the model needs to be preserved.

Figure 5.9. (a) original contour sections; (b) surface model.
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Table 5.1. Evaluation result of interpolation part

Model

name

#Contours #Incorrect

contours

Percentage

DES 1126/1271 0/0 100%/100%

EP 904/508 4/9 99.56%/99.01%

OLIE 852/1071 0/0 100%/100%

WT 746/924 0/0 100%/100%

Total 7402 13 99.82%

DES: a group exposed to a range of concentration of diethylstilbestrol; EP:a

group exposed to a cocktail of estrogen and progesterone; OLIE: a condition

control group exposed to an inert component; WT: a control group which is not

exposed.

Note: Only in EP there is a problem.

• Therefore, first of all, we labeled the branches in original model with different

IDs as shown in figure 5.9(c).

• Next, we manually annotate each contour derived from interpolation method

with the same ID system relating to a specific branch by checking the correlated

location on the output surfaces.

• Subsequently, we validate each contour ID in one section from the interpolation

method with the corresponding contour ID in two closest slides from original

model.

In this manner, we know how many contours from interpolation method mismatch

with each other. By treating each contour as an individual object, we finally

calculate the percentage of correctness.

From a selection of 8 mammary gland models that are obtained from species that

have been exposed to different conditions (cf. Chapter 6) the evaluation result

is shown in Table 5.1. These models are constructed through physical sectioning

with a standard histology staining and acquired on a section by section basis

with a bright field microscope. Therefore, it is undersampled in Z direction

and also deformed. The incorrect contours we found were mostly because two

contours are too close to each other, the interpolation method cannot nicely

separate them. However, the percentage of correctness is still high which shows

that the interpolation method can properly preserve the complex topology such

103



5. 3D MODEL PHENOTYPE ANALYSIS

as in our mammary gland models. Thus, we could confidently apply this method

in our process.

a b c

d e f
Figure 5.10. Comparison between two reconstruction methods. a. stack of

contours; b. surface model from Boissonnat method in TDR; c. surface model

from Boissonnat method in Meshlab; d. interpolated point cloud; e. close view

of the interpolated point cloud; f. surface model from Poisson reconstruction

method.

5.3.2 Evaluation of surface reconstruction method

The requirements of the surface quality for phenotype measurement are two fold.

First, the surface should have a consistent surface orientation. Second, the surface

should be a closed 2-manifold surface without holes on it.

A method that we successfully used for contour-based reconstruction is designed

by Boissonnat and Geiger [Boissonnat and Geiger, 1993; Verbeek et al., 1995].

Their method is based on tetrahedralization of a volume. The method uses the

medial axis to correct a nearest neighbor connection between adjacent slices. It is

good at reconstructing complex contours such as complicated branching patterns

and topologies with holes. However, extra postprocessing is required so as to
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make the surface model ideal for phenotype measurements.

However, we need extra processing to adjust the output surface for the phenotype

measurement. As we can see from Figure 5.10c, the reconstructed surface model

does not guarantee a consistent orientation of the faces. We need post processing

to reoriented the faces. Furthermore, a closed surface is a compact connected

2-manifold. But the surface model has some not 2-manifold faces which makes

the re-orientation of the surface even harder, since we need to find the location

of the problematic faces, delete it and try to fill the holes on the surface. These

problems can be addressed by the Poisson reconstruction method as shown in

Figure 5.10f. It is an implicit reconstruction method which consider all points as

a whole. The output surface is closed and consistently faced. Additionally, the

surface is much smoother with more characteristics preserved.

5.4 Results

The dataset resulting from the surface reconstruction method is used for the

shape analysis. In this chapter, we will illustrate this with models obtained

through confocal imaging i.e. the point cloud of zebrafish embryos.

5.4.1 Zebrafish embryo, measurement verification

We want to illustrate that the surface reconstruction process can be very well

applied to a stack of images. As a test data set, an experiment with confocal

image stacks of zebrafish embryos are used. The images are part of an experiment

that consists of two treatments and therefore two different groups; i.e., a control

group that develops under normal oxygen levels and a treatment group that

develops under a condition of hypoxia; i.e. oxygen deprivation. For each stack,

a 3D model of the embryo is constructed by extracting embryo contour per slice.

In total the set consists of 21 embryo models (14 with normal treatment, 7 with

hypoxia treatment). In Figure 5.11(a) and (b) an example of embryo models with

different treatments are shown.

For each model we calculated the surface area and the volume. The result from

the point-cloud reconstruction to shape measurements is a triangulated surface.

105



5. 3D MODEL PHENOTYPE ANALYSIS

The surface area is computed by integration over all the triangle patches on

the surface. The volume is calculated directly from the grid using divergence

theorem introduced in [Zhang and Chen, 2001]. For an objective assessment of

the differences between two treatments, we use the sphericity [Wadell, 1935] as

shape descriptor, described as follows:

Ψ =
π

1
3 (6V )

2
3

A
(5.3)

where V represents the volume of the object and A represents the surface area of

the object. The sphericity is a shape descriptor and for a sphere it equals 1. The

higher the sphericity of the object the more it resembles a perfect sphere.

Our dataset is not guaranteed to adhere to a normal distribution. To test for

differences, the Kolmogorov-Smirnov Test (KS-test) is used [Massey, 1951b]. The

KS-test is a better choice than Student t-test when the dataset is not guaranteed

to adhere to a normal distribution. Sphericity is computed for all our models and

thus mean and standard deviation of the set are available. We can classify two

groups on the basis of the measurement of sphericity. The results are depicted in

Figure 5.11(c) and Table 5.2. On the basis of the measurements we could classify

into two classes. The test results indicate that sphericity of the control group

is significantly smaller than that of hypoxia group. This is consistent with the

biology; the hypothesis states that the embryo is spherical at the very beginning

and starts to unfold during the development. Hypoxia slows the development of

the zebrafish embryo. Under normal levels of oxygen the development is faster.

The embryo develops uneven in different directions and does not resemble the

spherical shape anymore that it started from. The development of embryo with

hypoxia, however, is restrained by the lack of oxygen as a result the shape is

closer to spherical state that it started from.

Table 5.2. Measurements of Zebrafish embryo

Type A(mm2) σ V(mm3) σ S σ
Normal 0.3397 0.0209 0.0127 0.0007 0.7759 0.037

Hypoxia 0.3568 0.02695 0.0154 0.0016 0.8388 0.0136

A=Area; V=Volume; S=Sphericity; σ=Standard deviation.

106



5. 3D MODEL PHENOTYPE ANALYSIS

(a) (b)

(c)

Figure 5.11. Results of Zebrafish embryo (a) Normal condition (b) Hypoxia

condition (c) Bar chart of sphericity feature indicating the constrained embryo

development under the condition of hypoxia.

5.5 Discussion & conclusion

In this chapter, we have computed a system for 3D representation and analysis

from stack of images through a 3D model representation that is derived from that

stack. We intend to use the representation for phenotype analysis. The input

data for our system is a stack of images whose annotation and alignment are com-

pleted. However, the 3D model starts undersampled which is fine for visualization

but not for quantification and therefore optimization is required. To that end a
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point cloud based reconstruction method is used. In this manner the stack of

contours in the model is efficiently converted into a uniformly distributed point

cloud in 3D space. As such it changes a specific contour based reconstruction

problem to a much more generalized point cloud based reconstruction method.

Since we take all the 3D points at once to construct the surface representation

it makes full use of the boundary point cloud relationship in 3D space. In this

way we overcome the restriction imposed by the stack of contours which does not

efficiently use the relationship in the z-direction. From former results [Cao and

Verbeek, 2012, 2013] we have learned that the Poisson reconstruction method

performs well in both shape preserving and noise suppression. This is confirmed

in our current study.

Our purpose, i.e. representation and analysis of 3D biological models, the anal-

ysis pipeline presented here combines all best techniques and helps us observe

the real situation. The verification of the pipeline which includes evaluation of

important steps and zebrafish embryo surface analysis confirms the potential of

our system in dealing with shape related studies in biology. The pipeline is ap-

plicable to different kinds of datasets that originate from different microscopes

and sampling conditions. The number of additional slices interpolated in between

two consecutive slices are defined by the differences in resolution at x,y direction

and z direction. The complexity that one can find in micro-anatomy can be well

covered by the pipeline. The pipeline needs further tuning though the type of

models that we have now worked with illustrate the soundness of the pipeline.

Henceforward, we will continue to develop this pipeline and include more tech-

niques to be able to deal with the large variation of experimental settings for 3D

phenotype analysis in biomedical research.
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Chapter 6

Phenotype analysis of arborized

structures from 3D models

Extended from:

L. Cao, F.J. Verbeek. Nature inspired phenotype analysis with 3D model

representation optimization. The 4th International Conference on Innovations

in Bio-Inspired Computing and Applications,Ostrava, 2013
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Abstract:In biology 3D models should reflect nature as close to true nature as

possible that these models can be used for a accurate analysis. The visualization

of these models helps in the further understanding and conveying of the research

problem. In Chapter 5 we have introduced a solution of 3D model representation

optimization. We verified our pipeline under different levels of complexity of 3D

structures. In this Chapter, we further focus on the investigation of complex

structures from lactiferous duct of newborn mice to gain understanding of the

3D structure and the deviation as a result of enviromental factors. We make use

of Lindenmayer systems (L-systems) and the results of our analysis for gaining

understanding of lactiferous duct development. The approach also produces a

framework for analysis of complex 3D models derived from 3D images.

The optimized 3D models we obtain through the pipeline of Chapter 5 are used

in the analysis of phenotypical differences originating from experimental condi-

tions by extracting related shape features from the model. In order to make sure

we can extract the branching structure in the right manner we make use of the

centerline extraction method and further design an evaluation method to verify

the method. We consider that the lactiferous duct has an innate blue-print of its

arborazation and assume this blue-print is kind of rewriting rule as can be simu-

lated with an innate L-system. We analyze the duct as it is exposed to different

environmental conditions and reflect on the effect on the innate L-system.

Our method can deal with the complex 3D models, the features separate the ex-

perimental conditions. The results provide a means to reflect on the manipulation

of an L-system through external factors.
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6.1 Introduction

Figure 6.1. Overview of the data acquisition process.

In the previous Chapter we have illustrated the optimization of contour based

reconstruction method. We make use of the method for the optimization and

surface reconstruction of a complex structure: lactiferous duct of newborn mice.

The study of the lactiferous duct aims to illustrate the effect of substances in

the environment that mimic hormones and therefore have a potential effect on

development of sexual organs or secondary sexual organs. This effect is known as

endocriene disruption [Mandrup et al., 2014]. The study consists of 4 groups. In

the data set presented here 4 different conditions are introduced; meaning that

through the food the mother was exposed to these conditions and we would like

to measure a maternal effect in the offspring. The control group: wildtype is

not exposed (WT). A conditional control group is exposed to an inert component

(OLIE). One group is exposed to a range of concentrations of diethylstilbestrol

(DES). Another group is exposed to a cocktail of estrogen and progesterone (EP)

in a range of different concentrations. An overview of the experiment is shown
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in Figure 6.1. From the reconstruction it shows that the mouse lactiferous duct

has distinct tree-like structure as depicted in Figure 6.2.

We want to illustrate the capability of our 3D representation method in dealing

with complex structures and introduce a workflow for 3D phenotype analysis.

This Chapter therefore focuses on the extraction of the complex topological fea-

tures to detect the morphological changes under different treatment conditions.

Graph based measurements have the potential of encoding geometrical and topo-

logical shape properties in a more faithful and intuitive manner [Akgül et al.,

2009]. The skeleton is one of them defined as a thinned version of the shape of

which all elements are equidistant to its boundaries. In 3D, skeletons generally

contain surface patches. Centerline is a special case of the skeleton in which the

skeleton is simplified to a 1D representation of the original 3D object, consist-

ing only of curves [Dey and Sun, 2006]. In case of an arbor-like structure, the

centerline is derived from the two outermost sections of an arborized structure

which locally maximizes the distance from the boundary [Piccinelli et al., 2009].

The centerline describes the topology information of arborized structures in a

compact and efficient way.

Numerous centerline extraction methods have been presented for medical imag-

ing. They can be separated into three categories: topological thinning, distance-

based methods and polygon-based methods.

The topological thinning deals with a volumetric dataset. Boundary voxels are

iteratively peeled off according to topological rules until the whole volume has

been peeled and left with the centerline [Lee et al., 1994; Xie et al., 2003]. Thin-

ning procedures usually create centerline connected of one voxel thick. However,

undesirable small branches are also created on coarse object boundaries due to

the principle of end-point preservation. End-point means that the point on the

one voxel graph has less than 2 neighbors. As a result, the topological thinning

method needs to be coupled with an efficient pruning method [Nmeth et al., 2010].

Distance-based methods compute the boundary distance transform and find the

centerline as the local maximum or ridge. However, the output centerline is usu-

ally disconnected, not guaranteed to be one voxel thick, and quite sensitive to

noise on the boundary [Cardenes et al., 2010; Van Uitert and Bitter, 2007]. The

reason is that the local maximum extraction might produce a surface based skele-
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ton and not a centerline. There would exist a planar set of voxels in the middle

of the object which would comply with the local maximum criterion [Telea and

Vilanova, 2003].

The polygon-based methods directly deal with the surface and the output cen-

terline is suitable to topological analysis of arborized structures. It is useful to

obtain a centerline of a complex; e.g. arborized network. It however is a heuris-

tic method which lacks a sound theoretical framework and guaranteed solution

[Piccinelli et al., 2009]. In our case it has shown to perform well.

The centerline preserves the minimal topology of an arborized surface, therefore,

for our research, the features from the centerline can be used to describe rele-

vant parts of the arborization structure. Furthermore, several prominent features

that distinguish the various treatment groups are helpful in the construction of

a formalized system. To that end we investigate the connection from an arbor-

like structure to an L-system [Lindenmayer, 1968; Rozenberg and Salomaa, 1980,

1986] and reason over the phenotypical effects as a result of different conditions

to which the subjects have been exposed.

The L-systems have been applied successfully in arborizations such as neural

tissue [Ascoli and Krichmar, 2000; Jelinek et al., 2002]. The computational con-

struction of neurons using L-system provide an efficient and reliable method to

investigate the relationships between neuromorphology and neurophysiology [As-

coli, 1999; Jelinek et al., 2004]. The mammary gland also has a noticeable branch-

ing feature; as a result, we intend to use L-system to simulate the mammary gland

structure. L-systems were firstly introduced as a mathematical system to describe

the developmental patterns of algae in 1968 [Lindenmayer, 1968] by a theoretical

biologist: Aristide Lindenmayer. Subsequently, Lindenmayer’s method was ex-

tended with a geometric interpretation and became a versatile method for plant

modeling. In general, an L-system is a system of rewriting. Rewriting is a tech-

nique for defining complex objects by successively replacing parts of a simple

initial object using a set of rewriting rules or productions [Prusinkiewicz and Lin-

denmayer, 1990]. The most known rewriting rules operate on character strings.

L-systems are one of them with distinctive characteristics. Specifically, L-systems

consist of two trivial elements: an axiom, and a set of productions. The axiom

is the starting point of the rewriting process. The set of productions are the
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derivative rules. In L-systems, the productions are applied on a parallel and si-

multaneous manner replacing all letters in a given string.

6.2 Methodology for arborization structure

analysis

In order to understand the arborization structure we first have to extract the

topological features from the optimized 3D surface model. We investigate how

this can be accomplished with a minimal representation of the topology of a model

i.e. the centerline. It facilitates quantitative analysis of the arborized structures.

Arborization structure analysis is discussed in many areas. Researchers have

recently proposed methods to trace neurons or reconstruct the neuronal structure

by tracking arborized line structures in a 3D image volume [Lee et al., 2012; Zhao

et al., 2011]. The quantitative analysis of the tree is substantially simplified by

transforming a voxel-level tree object into a set of interconnected single-voxel

centerlines representing individual tree branches [Kalman et al., 2006].

Centerline analysis is also used for the blood vessel quantification and meaningful

parameter extraction from 3D vascular images [Kang et al., 2009].

All considered, we have therefore chosen the centerline extraction method. Extra

and useful topology related and relevant measurements for the analysis of the

lactiferous duct structures, can be extracted from the centerline; i.e. number of

branches, average length of branches, number of bifurcations, and so on.

6.2.1 Centerline extraction

Polygon-based centerline extraction method can create a connected one voxel

thick centerline without the undesired small branches. Futhermore, it can be

implemented in fully automatic fashion which help to prevent subjective infor-

mation entering into the process; i.e. the approach make the subsequent pheno-

type measurements more objective. The method we implement in our workflow

is a mesh-based centerline extraction created by Piccinelli et al. [Piccinelli et al.,

2009] for identifying vessel bifurcations and arborized network organization. First,
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the algorithm identifies the bifurcations by analyzing the whole network of the

arborized model with a moving sphere. In this manner the method is able to

decompose the network into bifurcations and single branches. Since the complex-

ity of the algorithm is linear with the number of surface mesh vertices, it is very

efficient. There are, however, some limitations. Nested bifurcations with a very

short distance between each other may be grouped into a single bifurcation if the

probing sphere radius on the junction part is greater than the distance between

the bifurcations [Piccinelli et al., 2009]. Centerlines can extend outside the model

if the boundary has a particularly non-convex shape [Piccinelli et al., 2009]. As a

result, we evaluate this centerline extraction method in section 6.3 so as to check

the performance specifically, with our dataset in mind.

6.2.2 Evaluation of centerline extraction method

Figure 6.2. Branch structure and surface model with opacity.

Since the centerline extraction method has its limitations, it would be necessary

for us to evaluate it in our own dataset. With a good evaluation, we can safely

continue with the measurements, classification and modeling. The ground truth

for the evaluation is the original surface model. We verify the correctness of the

centerline in the ParaView software environment [Henderson, 2004] as shown in

Figure 6.2. We compare each branch and bifurcation between original model and
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Table 6.1. Evaluation result of centerline extraction method
Model

name

#Branch #Bifurcation #Wrongly

connected

branch

#Low quality

bifurcation

DES 1 6 3 0 0

DES 2 11 5 0 0

DES 3 5 2 0 0

DES 4 21 9 0 0

EP 1 11 7 1 1

EP 2 7 3 1 0

EP 3 25 12 1 0

EP 4 23 11 1 0

OLIE 1 17 8 0 1

OLIE 2 17 8 0 0

OLIE 3 5 2 0 0

OLIE 4 9 4 0 0

WT 1 7 3 0 0

WT 2 9 4 0 0

WT 3 5 2 0 0

WT 4 5 2 0 0

Total 183 85 4 2

DES: a group exposed to a range of concentration of diethylstilbestrol; EP:a

group exposed to a cocktail of estrogen and progesterone; OLIE: a condition

control group exposed to an inert component; WT: a control group.

cneterline so as to make sure they are extracted correctly. In [Piccinelli et al.,

2009] there are two limitations for this method. One is the failed identification of

two bifurcations which are too close to each other. The other is the centerlines

that can extend outside the ”ducts”. In the mammary gland model, however, we

do not find so many exceptional cases. In some cases, we find branches that are

connected wrong. Some of the bifurcations locate far from the arbor center and

do not nicely represent the original topology. Therefore, in an initial evaluation,
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we focus on number of branches wrongly connected and the low quality bifur-

cations. We have randomly selected 16 out of 42 mammary gland models with

automatic extraction of the centerlines and calculate the number of branches and

bifurcations per model as well as the wrongly connected branches and low quality

bifurcations. The results are shown in Table 6.1.

As we can compute from Table 6.1, 97.81% of the branches are detected with cor-

rect topology of the tree structure in mammary gland. Those who are connected

wrong which are mostly occurring in EP condition are due to the sequence that

the topology structure is relatively complicated and some small portions of the

surface from two branches stick together because they are too close to each other

and the interpolation method cannot separate them apart. Additionally 97.65%

of the bifurcations are properly situated in the model. Although the automatic

extracted centerlines do not perfectly fit to the ideal centerline, it sufficiently de-

tects most of the branches and bifurcations correctly. Conclude that we can safely

apply this automatic centerline extraction method for our model and compute

features from it.

6.3 L-system construction

Within the feature set we have obtained from our experiments, we look for fea-

tures that is prominent in representing phenotype changes of mammary gland

under different treatment. Subsequently, we can generate a general L-system for

mammary gland simulation by making use of these features.

The mammary gland that we study with is from newborn mouse whose mothers

were exposed to different endocrine-like components. It is in the stage of sec-

ondary sprout: lactiferous duct or epithelial cords. In human, the amount of

lactiferous ducts could reach to 10-20 for each nipple. However, in the mouse

embryo, only one epithelial cord grows from the mammary bud. Thus, only one

lactiferous duct exists for each nipple. This initial round of branching growth

results in a primary duct with several initial branches [Cowin and Wysolmerski,

2010].

After extracting several prominent branch features from the centerline of actual

3D lactiferous duct, we would introduce these morphological features into an L-
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system to model simulation of the lactiferous duct.

The platform we have chosen to construct the L-system model for lactiferous

duct is L-Py: an L-system simulation framework for modeling plant architecture

development based on the Python language [Boudon et al.]. We use a dynamic

language to enhance the development of lactiferous duct growth models. It pro-

vides seamless control of the differential turtle geometry [Prusinkiewicz and Lin-

denmayer, 1990]. The turtle is a drawing tool for the geometric interpretation

of a character string as a sequence of segments. During the string reading, the

turtle moves on the line with varying segment lengths and angles. The turtle can

move in the 3D space based on differential geometry and using quantities such as

local tangent, curvature, and step size [Boudon et al.].

As for our first construction of lactiferous duct model using an L-system as de-

scribed in a pseudo code of Algorithm 1, the production rules mainly focus on

realizing the elongation and bifurcation of the duct. The measurements that we

integrate in the system include branch length, curvature, radius and the num-

ber of branches. These features are the prominent ones based on our previous

study to distinguish the morphological variation of lactiferous duct with various

treatments. The way to integrate branch length, curvature and the radius of

maximal inscribed sphere are relatively straightforward. The changing number

of branches is realized by changing the probability of bifurcation construction.

The probability density function we use is the uniform distribution.

6.4 Results

6.4.1 material and preparation

Our study is based on 3D model of the lactiferous duct of newborn mice. There

were 4 different conditions introduced: control group consisting of 7 models; a

condition control group as shown in Figure 6.4(c),(d) consists of 12 models; a

treated group exposed to DES consists of 8 models in different increasing concen-

trations; another treated group exposed to EP shown in Figure 6.4(a),(b) consists

of 8 models in different increasing concentrations. The distinct tree-like structure
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of the wildtype mouse lactiferous duct is depicted in Figure 6.2.

Algorithm 1 Pseudo code for L-system

1: Initialize maximum number of branch order to 4
2: Initialize increment of radius through time to 0.0001
3: Initialize maximum duration of a branch relating to the branch order
4: Initialize branch angle with a random number from 15 to 25 weighted with

the branch order
5: Initialize branch angle to a random number from 3 to 7
6: Initialize total number of iteration of the system
7: for time is smaller than iteration time do
8: Set time to zero
9: Set branch order to zero

10: if time is shorter than maximum duration of a branch then
11: Continue growing with a set branch angle and length
12: Set time to time +1
13: else
14: Create bifurcation with a set roll angle around the previous branch

and a set angle in between the bifurcation
15: Set branch order to order +1
16: end if
17: Decrement radius of the branch
18: end for

The 3D models are obtained from serial sections and acquired with a dedicated

bright field microscope imaging setup [Boon et al., 2000]. The images of the

lactiferous duct are acquired and a stack of aligned images is used as input for

the 3D model [Verbeek and Huijsmans, 1998; Verbeek et al., 1995]. For each stack

the lactiferous duct structures are delineated by a specialist resulting in initial

3D models.

For all models, model optimization (cf. Chapter 5) and surface reconstruction

(cf. Chapter 4) is applied. Subsequently, the centerlines of all branches in the

arbor-like structure are extracted. To derive the topological structure a known

centerline extraction method is used as described in [Piccinelli et al., 2009]. We

use the centerlines to assess the topological shape differences in the models. These

centerlines are also the basis for the L-system representation.

For each of the models from each global centerline we extract individual branches.
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For each branch we calculate phenotype measurements including branch length,

curvature, torsion, tortuosity, minimal radius, maximal radius, mean of the radius

and median of the radius. The curvature of a branch is defined as the average

curvature over all branch-points. The curvature of a point is the inverse of the

radius of the local osculating circle, i.e.

K =
1

R
(6.1)

where, K is the curvature of a point and R is the radius of the local osculating

circle. The torsion is defined as the degree by which the osculating plane rotates

along the line [Pressley, 2010]. The tortuosity is defined as the ratio between the

branch length and the distance of the branch end-points. The radius is defined

as the radius of maximum inscribed sphere for each point.

6.4.2 Prominent feature extraction

The main focus of this study is topological shape description for 3D geometrical

models derived from microscope image. We have obtained experimental data from

the development of the lactiferous duct; in early development a mouse embryo is

exposed to different environmental factors. These factors a.k.a. endocrine dis-

ruptors influence development of reproductive organs in primary and secondary

stages by altering the structure of the duct.

Changes in the duct configuration are considered changes in the innate layout of

the duct. The innate layout can be modeled with an L-system. So, changes in

the duct layout changes the innate coding of the L-system and this will result in

a different structure or phenotype. We measure the phenotype in order to show

the effect of the environmental factor and at the same time we can reason from

the result how the L-system is affected.

Our question is whether we can accurately separate complex 3D structure using

measurements. We construct a dataset by collecting all the branches with mea-

surements from the same treatment groups. Because the measurements are not

all normally distributed, we use the KS-test to check significant differences for

every measurement.
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The hypothesis is that DES and EP will have an effect on the development of

the lactiferous duct; this effect should not be seen in the OLIE and WT group

in which development should not be affected at all. We treat the OLIE and WT

group as our ground truth. The DES and EP group should be very dissimilar

from the OLIE and WT group. We therefore employ the KS-test to compare

three groups with the null hypothesis that the compared groups are from the

same continuous distribution: one between the groups DES and EP (DES-EP);

one between the groups OLIE and WT (OLIE-WT); the other one between the

combined groups DES with EP and OLIE with WT (DE-OW). In Table 6.1 the

results are shown. The p-value refers to the significance level. If the test rejects

the null hypothesis at the set significance level, the result value h is 1 or -1. Value

h is 1 if the first dataset is significantly larger than the second. Value h is -1 if the

first dataset is significantly smaller than the second dataset. Otherwise, value h

is 0. The significance level was set to p = 0.01. From the results we can see the

KS-test cannot reject the null hypothesis between group OLIE and WT which

means these two groups are from the same continuous distribution. Group DES

and group EP are almost the same except for the curvature, because the group

EP has more curved branches compared to the group DES as we observed during

the evaluation of centerline extraction method (cf. Chapter 5). Nevertheless, the

combined group DES with EP and group OLIE with WT are significantly differ-

ent in length, curvature, maximal radius, mean of the radius and median of the

radius. These features are prominent ones over torsion, tortuosity and minimal

radius. The results support the hypothesis and also confirm the feasibility of our

3D analysis for such complex system.
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Figure 6.3. (a) original contour sections; (b) surface model; (c) centerline.

Table 6.2. Results of the different treatment groups

DES: a group exposed to a range of concentration of diethylstilbestrol; EP:a

group exposed to a cocktail of estrogen and progesterone; OLIE: a condition

control group exposed to an inert component; WT: a control group; DE:

combined group of DES and EP; OW: combined group of OLIE and WT; h: the

result of KS-test; p: the significance level of KS-test.
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Figure 6.4. Different branch structures of lactiferous duct (a) surface model

from group EP; (b) centerline of the model from group EP; (c) surface model

from group OLIE; (d) centerline of the model from group OLIE.

6.4.3 L-system modeling

In this section, we intend to use the measurements, write production rules and

built an L-system. This L-system model mainly focuses on the simulation of

elongation and bifurcation of the centerline of the lactiferous duct. We show

the simulation of our L-system model in two different kinds of lactiferous ducts:

i.e. the wild type and the DES exposed type. The parameters are derived from

measurement on 3D models as shown in Table 6.3.

Table 6.3. Input parameters of lactiferous duct

Type MBL σm MBC σm MBR σm MBN σm
WT 303.1 34.19 0.0096 0.0004 28.45 1.37 6.17 0.75

DES 193.1 12.85 0.0101 0.0003 27.90 0.74 14.625 3.19

WT: a control group which is not exposed; DES: a group exposed to a range of

concentration of diethylstilbestrol; MBL: Mean of branch length in micrometer;

MBC: Mean of branch curvature; MBR: Mean of branch radius in micrometer;

MBN: Mean of branches number; σm: standard deviation of mean.

According to our findings, compared to wild type, the lactiferous duct with DES

treatment would have significant difference such as more branches with shorter

branch length. The result of our production rules and L-system visualization in
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a virtual model of the lactiferous duct are shown in Figure 6.5.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 6.5. Resemblance between real surface models and L-system centerline

simulation. WT centerline simulation (a) example 1 and (b) example 2; WT

surface model (c) view 1 and (d) view 2; DES centerline simulation (e) example

1 and (f) example 2; DES surface model (g) view 1 and (h) view 2.

In addition, we reflect on the feasibility of ground truth of the L-system and

introduce some constraints. We attempt to introduce a space constrain for the

mammary gland development. Therefore, we introduce an ellipsoid as a fat pad

and iterate our L-system model further to simulate the stage of puberty of the
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mammary gland as shown in Figure 6.5. This is still a primitive model simulat-

ing the development of the mammary gland up to puberty stage. For a better

simulation, we need extra quantified phenotype measurements to tune the model.

Figure 6.6. L-system simulation for the stage of puberty.

6.5 Discussion & conclusion

In this chapter, we focus on the analysis of complex 3D model with arborized

structures. We study and analyze the rodent lactiferous duct under different

treatment conditions. The aim is to use feature description to distinguish pheno-

typical changes with different treatments. We start with an optimized 3D surface

model of the lactiferous duct using the method introduced in Chapter 5. We

extract the centerline structure from the surface model so as to minimize the

topological description. Phenotype measurements are calculated and prominent

features are slected from centerline structure so as to analyse 3D models from

mammary glands developed under exposure of different ”potential” endocrine

disruptors. We presented that we are able to differentiate the different conditions

and characterize the effect of the exposures. In order to accommodate the branch-

ing structure that we analyze in a formal structure we invoke the L-system. This

nature inspired formal system can help in the understanding of the branching; in
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fact, we consider an L-system to represent the blue-print of the normal develop-

ment of the branching duct. Our experimental results illustrate the change of the

L-system under environmental conditions and the features we have derived rep-

resent the change in phenotype. At the same time the features from the various

conditions represent the mutations in the L-system. Thus, this analysis of in-

duced phenotypes helps us in bringing new inspiration to the manipulation of the

L-system in which the features provide a quantifiable twist to this system. Our

primary L-system model reports the potential for the simulation of mammary

gland development and maturation. The L-system can provide a ground truth

model from real data. Our research will be directed into this delicate interplay

of nature inspired systems and nature driven models.
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Chapter 7

Conclusion and Future Work

In this thesis, different ways to represent and analyse biological models from im-

age dataset are discussed. These image datasets can be two dimensional (x,y) or

three dimensional (x,y,z; x,y,t). We have used different feature sets and feature

extraction methods. We focus on finding patterns for analysis in multi-dimensions

both with spacial and temporal series. The images are captured in sufficient qual-

ities to be able to find patterns in a population. This can be a high-throughput

screening but also three dimensional modeling approaches are probed. In each

chapter, the ground truth is used for validation of phenotype analysis and method

evaluation. In temporal two dimensions, i.e. time series, we focus on a biolog-

ical study on epidermal growth factor receptor (EGFR) signalling and receptor

degradation. The defect in the receptor mechanism is considered to be closely

related to the breast cancer progression. We have provided a solution to analyse

high-throughput image datasets on the level of protein location in Chapter 2.

Moreover in Chapter 3, in a EGFR endocytosis study, we have introduced a Hi-

erarchical classification strategy to improve the categorization of three dynamic

phenotypes in the EGFR endocytosis process. In Chapter 4 we have changed our

working field to spacial 3D datasets and use the extracted features for reconstruc-

tion method evaluation. In Chapter 4 we have presented error estimation for four

representative 3D surface reconstruction methods by comparing analytical fea-

tures derived from a surface model, thereby evaluating the quality of the surface

model. In Chapter 5, we are making use of the conclusions drawn in Chapter

4 and build a system for 3D surface representation and analysis from stack of
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images; basically this consists of an optimization of the geometrical model. In

Chapter 6, we further use the surface representation workflow derived in Chapter

5 for complex 3D model reconstruction and analysis. In addition, we introduce

the L-system as a model for ground truth construction.

7.1 Image analysis and Pattern Recognition in

High-throughput Screens

The concept of high-throughput screening is used to visualize various cell struc-

tures. One HTS experiment may produce up to half million images which is a

quality for which it is not possible to be analysed without a clearly formulated

plan of automation. Therefore, an automated analysis solution for HTS experi-

ments is required by combining image analysis and pattern recognition. Chapter

2 uses a 1D episode to represent the biological model. These categorized episodes

are described by features extracted from 2D images and further confirmed through

classification using a ground truth model. As a result, an automated system is

constructed to extract phenotype measurements for each object and characterize

the objects into three characteristic episodes in the EGFR endocytosis process.

We illustrate that the phenotype measurements from segmented images and cate-

gorization of phenotypic episodes can be done successfully using feature selection

and classification. The best trained classifier has been used to classify three

EGFR phenotypic episodes. Two case studies show the capability of our solution

in identifying characteristic episodes and analysing a large scale siRNA screening.

7.2 Hierarchical classification strategy for EGFR

phenotype extraction

From the good results accomplished in Chapter 2, we continued to improve the

phenotype identification process so as to get an even higher classification score.
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We had noticed that the way to quantify the prominent features from a segmented

image is a crucial step in the identification process. In the data analysis part, the

classification strategy is evenly important to make full use of all measurements.

Our improvements are reported in Chapter 3. We have designed a scheme by

employing a hierarchical classification strategy and adding wavelet-based tex-

ture measurements to further improve the recognition of phenotypic episodes of

EGFR endocytosis. The hierarchical classification strategy is very capable in

dealing with complex classification problems. For the case study in Chpater 3,

we construct the classification process in a hierarchical way by separating three

classes classification into two steps. Meanwhile, we can select prominent fea-

tures for each step. As a result, this strategy makes full use of related features

and improves the performance of the classifier. The motivation for us to use

the wavelet-based texture measurements is to include extra prominent features

in our set of observations and to lessen the impact of fluorescent intensity vari-

ation. After integrating all merits, the phenotype identification process shows a

remarkable improvement and has been successfully used to find new regulators

in the EGFR endocytosis process.

7.3 Analytical evaluation of point cloud surface

reconstruction methods

Feature quantification can not only be used for classifier training, but can also

be used for analytical evaluation. For 3D feature analysis we are interested in

surface description for geometrical models derived from images. As far as we

have concluded from the literature, the straightforward way to evaluate surface

reconstruction methods is by convincing through visual inspection. Analytical

evaluation seems to be missing for this purpose. In Chapter 4, we utilize 3D

surface descriptors including surface distance, surface area and surface curvature

to evaluate four representative surface reconstruction methods from a point cloud.

Meanwhile, we validate 3D model through ground truth models. To that end we

have introduced three analytical shapes: the unit sphere, the ellipsoid and the
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ovoid to provide the ground truth values. From the results we have concluded

that Poisson reconstruction method has the most stable performance in shape

preservation and noise repression. We intend to utilize the results on biological

3D models to improve the quality of surface representation; because the former

representation was not considered sufficiently for analysis.

7.4 3D model representation for phenotype

analysis

For a 3D stack of images, model is represented in a geometrical model. We have

optimized the 3D reconstruction method based on the knowledge derived from

Chapter 4. First, we have reconstructed a 3D model from the stack of 2D contour

images. Subsequently, we have been able to extract important features from the

surface model. In Chapter 5, we have introduced such a system for 3D represen-

tation and analysis from a stack of images. We have augmented the model by

resampling using a contour interpolation method. Our workflow has been vali-

dated with real image stack data. In this manner a stack of images is successfully

converted into a uniformly distributed point cloud. We have applied the con-

clusion derived from Chapter 4 and have utilized the Poisson reconstruction to

construct the surface model from the point cloud. We have chosen different shape

features to adapt to different biology studies. We have used the sphericity shape

factor in a study on development of zebrafish. This feature is a relative and com-

pact descriptor. This case study validated the capability of our 3D representation

and analysis system.

7.5 Nature inspired phenotype analysis with 3D

model representation

In Chapter 6, we have intentionally been dealing with a much more complex

3D shape: the developing rodent mammary gland. The mammary gland is a

branched structure and we have used centerline extraction method to establish the
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topology of the branch structure and calculate the corresponding measurements

from this simplified topological structure. Further we have introduced a ground

truth model by using the L-system formation. We construct an L-system model

for mouse mammary gland by which we can simulate the different results under

different conditions. In this Chapter, we have validated the robustness of the

3D representation method and have demonstrated the potential of L-system as a

ground truth model where no other is available but a good formalism can provide

the necessary insight. The L-system resulted to show the effect of endocrine

disruption.

7.6 Conclusion and future work

Figure 7.1. General workflow.

This thesis presents a number of studies in biological image dataset analysis both

in 2D and 3D space. The general workflow is shown in Figure 7.1. In this the-

sis the recurring themes are pivotal to image analysis of large volumes of data.

The studies are grouped on the themes of feature selection and ground truth in

datasets. These studies enlighten us the general routing in coping with different

datasets in N-Dimensional space and extracting related and interesting informa-

tion from the original image dataset. They also have lead us to explore the specific

ways for each image dataset how to pass this route. With all these experiences,

we summarize the important points. First is the phenotype measurement. The

measurements should meet the biological description and should be prominent

to distinguish between different categories. We do not focus on the quality of
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features but the quality of a few features. Therefore, the feature sets and feature

extraction methods differ with different biological dataset. We should always

be conscious to find the measureable and objective features during our future

work. Ground truth data (training data) preparation is crucial for supervised

classifier training and method evaluation. The amount of the ground truth data

(training data) should be big enough and it should be relative to the complexity

of the ”true” function. According to our experience, for each category or each

parameter, 50 ground truth samples is the lower bound for the classification val-

idation and method evaluation. The reality is that ground truth data are always

sparse. Therefore the question to set a proper proportion from limited training

data should be a part of future work. 3D image stack representation and analysis

system could also be improved in many aspects such as reconstruction method,

contour interpolation method as well as centerline extraction method. Here we

have presented a good start but this can be further elaborated in our future work.
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Summary

Bioinformatics is an interdisciplinary field in which knowledge is derived through

computational analysis of biological data. These biological data is acquired from

a range of sources, such as genetic data, patient statistics and scientific literature.

The goal of the research presented in this thesis is to develop methods for the

analysis of microscopy images and extract useful knowledge from these images for

biology. This thesis particularly focuses on the analysis of differences in the phe-

notype of biological specimens visualized in both 2D and 3D images and captured

with different microscopes. Our results intend to support biology in analysing

pathways and to generate a better representation of biological models for such

phenotype analysis.

Chapter 2 focuses on the understanding of pathway development of epidermal

growth factor receptor (EGFR) endocytosis. A model representation is provided

so that a solution can be elaborated analysing the high-content cytomics screen-

ing for target discovery. The system can automatically extract the interesting

objects (proteins) for the phenotype measurement and use pattern recognition

methods to characterize the objects into characteristic developmental episodes of

EGFR endocytosis.

Chapter 3 further elaborates on EGFR endocytosis research. In order to im-

prove the phenotype identification process we devised and applied a hierarchical

classification strategy. In addition, we introduced the wavelet-based texture mea-

surements to generate extra prominent features for the classification. With these

two refinements, the phenotype identification process significantly improved and

can be employed for the discovery of regulators of the EGFR endocytosis process.

In support of advanced representation of models that are derived from 3D images,
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in Chapter 4 we introduce an analytical evaluation for the point based 3D surface

reconstruction methods. In our study we used three analytical shapes, i.e. the

sphere, the ellipsoid and the oval, so that a ground truth measurement is avail-

able. We studied these three shapes with the same volume size under different

levels of noise and we evaluated three major surface descriptors: surface area,

surface distance and curvature. The results revealed that within from the point

cloud reconstruction methods, the Poisson reconstruction method performs best

in surface preservation and noise suppression.

In Chapter 5 we have used the conclusions of Chapter 4 and further extend a

system for 3D model representation and analysis from a stack of images. We

developed a contour interpolation strategy to convert a 3D contour model to a

uniformly distributed 3D point cloud. With this point cloud, subsequently, the

Poisson reconstruction method is used to reconstruct an accurate surface model.

Our representation is tested with two typical 3D models; in a study of zebrafish

development using the proper 3D shape descriptors we have verified that the pre-

processing and 3D representation works.

In Chapter 6 we have used more complex 3D models to investigate if these can

be successfully analysed. The mammary gland in new-born mouse is a branched

structure and this requires different strategies for analysis. Therefore we have

employed centerline of the optimized 3D model in order to extract a good rep-

resentation of the topological information. Features from the topology are used

to analyse 3D models from mammary glands that developed under exposure of

different potential endocrine disruptors. We presented that we are able to differ-

entiate the different conditions and characterize the effect of the exposures. In

addition, we modelled the branched structure using an L-system so as to obtain

further evidence of the correct characterization of the different conditions using

our measurement system.

In our studies, we have intended to find multiple ways to deal with image datasets

in both 2D and 3D space. These image datasets are from high-throughput screen-

ing or from image stacks. All of the datasets have a relatively large volume. How

to extract meaningful and crucial information from large quantities of biologi-

cal images has been the major question that we intended to address. We have

applied different methods for the extraction of objects of interest from the im-
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ages; we have used different shape descriptors to analyze the objects and we have

utilized a range of pattern recognition strategies to categorize patterns that we

suspected in the data. We have used these techniques in support of the further

understanding of biology, i.e. pathways and development. Our work contributes

to the field of bioinformatics, has shown to be meaningful and will show to be

sustainable.
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Samenvatting

Bioinformatica is een interdisciplinair onderzoeksveld dat zich richt op het aflei-

den van kennis door computationele analyse van data verkregen experimenten

uit de levenswetenschappen. Deze biologische data kunnen komen van een reeks

van verschillende bronnen, zoals bijvoorbeeld genetische sequenties, statistische

patient gegevens en wetenschappelijke literatuur. Het doel van het onderzoek

dat wordt beschreven in dit proefschrift is om methoden te ontwikkelen voor de

analyse van microscoopbeelden en het verkrijgen van, voor de biologie, bruikbare

kennis uit deze analyses. Dit proefschrift richt zich in het bijzonder op de analyse

van verschillen in phenotype binnen biologische experimenten zoals deze worden

gevisualiseerd in zowel 2D als 3D beelden die zijn verkregen met verschillende mi-

croscopen. Onze resultaten beogen biologie te ondersteunen met het analyseren

van pathways and het maken van betere representaties van biologische modellen

voor het analyseren van phenotypes.

In Hoofdstuk 2 van dit proefschrift ligt de nadruk op het begrijpen van path-

ways voor de rol van de Epidermale Groei Factor Receptor (EGFR) in het pro-

ces van endocytose. Een model representatie is gemaakt waarmee een oplossing

kan worden uitgewerkt voor de analyse van high-content cytomics screens waar-

door nieuwe componenten kunnen worden gedentificeerd voor het ontwikkelen

van therapie tegen kankercellen. Het meetsysteem kan automatisch de objecten

(eiwitten) herkennen en deze karakteriseren in de verschillende ontwikkelingsfasen

van EGFR endocytose.

In Hoofdstuk 3 wordt het onderzoek het meten van EGFR endocytose verder

uitgewerkt. Teneinde de het identificeren van het phenotype verder te verbeteren

hebben we een hierarchische classificatie strategy ontworpen en gemplementeerd.
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Daarenboven, hebben we z.g. wavelet textuur metingen gentroduceerd zodat we

nog betere kenmerken hebben voor de classificatie in de model representatie van

karakteristieke episodes. Deze twee toevoeginen leveren een significate verbeter-

ing aan het meetsysteem en kunnen worden gebruikt voor de ontdekking van

regulatoire componenten in het proces van EGFR endocytose.

Voor geavanceerde representatie van modellen die worden verkregen uit 3D beelden

introduceren we in Hoofdstuk 4 we een analytische evaluatie voor de reconstructie

van een 3D oppervlak uit 3D puntenwolken. In onze studie maken we gebruik van

drie vormen waarvan ook een pure analytische beschrijving beschikbaar is, i.e. de

bol, de ellipsoide en de ovoide, waardoor een goede referentie waarde ten opzichte

van onze meting beschikbaar is. We hebben deze drie vormen in dezelfde volumeg-

rootte maar door toevoeging van verschillende ruis-niveaus, bestudeerd en daarbij

gevalueerd met veschillende kenmerkende maten zoals oppervlak, afstand tot op-

pervlak en curvatuur. De resultaten laten zien dat uit de verschillende methoden

voor 3D reconstructie uit puntenworken, de Poisson reconstructie methode het

best presteert in termen van oppervlakte-integriteit en het gevoeligeid vooor ruis.

In Hoofdstuk 5 hebben we de conclusies uit Hoofdstuk 4 gebruikt om een sys-

teem voor het representeren van 3D modellen en analyse uit 3D beelden verder

uit te breiden. We hebben een strategie ontwikkeld om contouren te interpoleren

om zo uit een 3D contour model een uniform gedistribueerde 3D puntenwolk te

converteren. Op deze puntenwolk wordt vervolgens de 3D Poisson reconstructie

methode toegepast om zo een accuraat 3D oppervlakte model te genereren. Onze

representatie is getest me twee typische toepassingen in 3D modelleren; voor een

studie in zebravis ontwikkeling met de juiste vormbeschrijving hebben we kunnen

verifiren dat het systeem representatie optimalisatie en meting goed werkt.

In Hoofdstuk 6 maken we gebruik van complexere modellen om te onderzoeken

of ook dergelijke modellen met ons systeem (uit hoofdstuk 4&5) succesvol kun-

nen worden geanalyseerd. De borstklier van de pas-geboren muis is een vertakte

structuur en dit vereist een speciale aanpak voor analyse. We hebben daartoe

gebruik gemaakt van de middellijn van deze 3D structuur om een goede repre-

sentatie van de topologische informatie te kunnen verkrijgen. Kenmerken van

de topologie worden gebruikt om 3D modellen van de borstklier te analyseren

die in de ontwikkeling zijn blootgesteld aan verschillende potentieele endocriene
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verstorings-stoffen. We laten zien dat we in staat zijn de verschillende condities

te onderscheiden in onze metingen en het effect van de blootstelling te karakteris-

eren. Daarnaast hebben we het systeem van de vertakkende structuur gemod-

elleerd met een zg. L-systeem teneinde verder bevestiging te krijgen van de

correcte karakterisering van de verschillende condities door ons meetsysteem.

In onze studies, hebben we de intentie gehad verschillende manieren te vinden

om sets van beelden zowel 2D als 3D onder handen te kunnen nemen. Deze sets

van beelden zijn relatief groot van omvang. De centrale vraag was daarin hoe

betekenisvolle en cruciale informatie uit deze grote hoeveelheden data gehaald

kunnen worden. We hebben gebruik gemaakt van een scala van matematische

vormbeschrijvingen om de beelden te analyseren en diverse patroonherkenning-

stechnieken om patronen die we vermoeden in de data te catagoriseren. Deze

technieken hebben we gebruikt om dieper begrip in de biologie te kunnen on-

dersteunen, i.e. pathways en ontwikkeling. Ons werk draagt daarbij bij aan het

onderzoeksveld van de bioinformatica, het heeft zijn nut reeds bewezen en zal dat

blijven doen in de toekomst.
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