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Chapter1
Introduction

In this chapter the motivations, the objectives and the contributions of this study are
discussed.

This chapter is structured as follows. Section 1.1 gives a brief background on soft-
ware architecture optimization and describes the contributions of this dissertation.
Section 1.2 introduces the research objectives of this study and the research ques-
tions which we are going to address through this dissertation. After that, Section 1.3
discusses the outline of the dissertation for the rest of chapters.

1.1 Problem Statement and Contribution

Software architecting is a people-intensive, non-trivial and demanding task for software
engineers to perform. At the same time, its architecting is a fundamental activity of
software development because it involves several questions such as balancing the
dependencies among components, maximization modularity, and fulfilling of quality
requirements.

The architecture is a key enabler for software systems. Besides being crucial for user
functionality, the software architecture 1 has deep impact on non-functional properties
such as performance, safety, energy consumption and cost. Moreover, software archi-
tecture addresses fundamental design choices that are often difficult or very expensive
to change in later stages of development. Hence, methods and techniques are needed

1It should be noted that we have approached the problem of architecture design coming from the area of
software architectures. However, for most practical cases (including all case studies in this dissertation) an
architecture comprises a hardware architecture and a software architecture. A more precise terminology
would be to talk about ’system architecture’ (as is common in system engineering).

In this dissertation, the term ’software architecture’ generally denotes the combination of hardware and
software architecture.
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for designing good software architectures which meet various quality constraints in
the the early phases of development. The complexity of systems has increased sharply
because of customers’ demand for more user functions. Fierce competition makes short
time-to-market important. To construct a system that optimizes all its requirements
simultaneously is difficult, if not impossible. Therefore, architects are faced with a
complex optimization problem. During optimization, a large design space needs to be
searched in an efficient manner.

In the recent years, researchers have proposed automated approaches for sup-
porting architects in creating architectural designs: (1) Rule-based approaches and (2)
Meta-heuristic-based approaches [MKBR10]. Rule-based approaches try to detect weak
points (e.g. bottlenecks) in the architectural model based on predefined rules and apply
predefined solutions (tactics, patterns) to alleviate these weak points. Meta-heuristic
approaches [BR03] frame the challenge of designing architectures as an optimization
problem and iteratively try to improve a candidate solution with regard to a given
measure of quality. In this way these algorithms explore very large design spaces
to find optimal architectural solutions. The component-based paradigm makes it
possible to easily and automatically create variation of architectural designs. Hence,
the component-based paradigm is key to meta-heuristic optimization approaches for
architecture design.

Evolutionary Algorithms (EA), as a recent meta-heuristic approach, are a common
optimization technique for solving software architectural problems. However, EA for
generating new solutions uses generic search operators, such as Crossover or Mutate,
which are blind to the problem and do not take into account the domain knowledge.
To overcome this issue, domain-specific search operators have been proposed by
the researchers. The downside of using domain-specific search operators, is that
the algorithm might find local optimal solutions. In addition, each domain-specific
operator is usually useful only for one specific objective, and this is a threat to the
optimality of results in multi-objective problems.

The Software Product Line (SPL) approach focuses on the development of specific
products within a well-defined domain by leveraging their commonalities and manag-
ing their variabilities in a systematic way in order to obtain large-scale reuse [vdLSR07].
The SPL development paradigm is an approach for developing variant-rich software
systems that has been widely adopted in recent years. A SPL is defined as a set of
software systems with common managed features [CN01]. Software product line
engineering aims to develop these systems by taking advantage of the massive reuse
of core assets in order to improve time to market and product quality. In the SPL
context, every product on the product lines has its own characteristics, and therefore it
has different quality attributes. However, the architectural design is a critical factor
SPLs because, ideally, the architecture forms a common basis on top of which different
products can be build. The architecture has deep impact on non-functional properties
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such as performance, safety, reliability, security, energy consumption and cost.
In the context of software product lines, architects need to design an architecture

that can work with different components that offer the same functionality, but differ
in their behaviour, performance and other quality characteristics, and hence lead to
different overall quality of the system.

In this dissertation, an automated approach for software architecture design is
proposed that supports analysis and optimization of multiple quality attributes both
for single products as well as for product lines.

The main contributions of this dissertation are:

• the demonstration of a meta-heuristic optimization approach for automated soft-
ware architecture design in a real industrial system. More specifically, it reports
the results of applying our architecture optimization framework to an automotive
sub-system that was conducted based on a large-scale real world industrial case
study. The framework supports multiple quality attributes including response
time, processor utilization, bus utilization, safety and cost.

• the introduction of two novel degrees of freedom for the optimization of software
architectures. It presents the usefulness of the topology degree of freedom as well
as replication-degree of freedom. It demonstrates how the number of processing
nodes and their interconnecting network can be codified to fit into a genetic
algorithm genotype and thus be subject to automated synthesis. Our studies show
that these extra degrees of freedom lead to better overall software architecture
optimization. Moreover, it analyses the effectiveness of these two new degrees of
freedom by running a very computationally-intensive experiment against our
industrial case study. The results of this case study show us additional evidence
for the usefulness of these two novel degrees of freedom.

• a comparison between various combinations of EA search operators (both domain-
specific and generic) for multi-objective optimization of software architecture.
The domain-specific operators we study are motivated by software architectural
anti-patterns. However, each heuristic-based search operator improves only
one quality attribute of the solution, which is challenging for multi-objective
problems. To address this issue, we develop strategies for mixing generic and
domain-specific search operators in evolutionary algorithms that speed up the
finding of good solutions.

• the introduction of a new search-based approach for generating a set of op-
timal software architectural solutions for use in software product lines. This
approach extends our architecture optimization framework in the direction of
features (which can be considered to exist in the requirement-domain). In our
new approach, we add feature models as input to the framework and take into
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account the relationship between the software components in the architecture
and features in the feature model. Our proposed optimizer addresses this by first
searching for architectures that are optimal for individual product. After that, it
analyses the commonality of the found optimal solutions and proposes a set of
solutions which are suitable for the range of products defined by various feature
combinations.

1.2 Research Objectives

We formalize the objectives of the current work via the following research questions:

• RQ1

Can meta-heuristic optimization improve the process of designing
efficient architectures for a set of given quality attributes in an industrial
domain?

• RQ2

Can enlargement of the optimization search space help the meta-
heuristic approach to find better architectural solutions?

• RQ3

In which ways can meta-heuristic optimization be improved in order
to make the process of reaching optimal architectural solutions faster?

• RQ4

In what aspects can search-based approaches improve the process of
designing a software architecture for a family of products in a software
product line?

1.3 Dissertation Outline

The rest of this dissertation is structured in these chapters: Chapter 2 introduces and
defines common terminologies, Chapter 3 discusses related work, Chapter 4 introduces
our proposed AQOSA framework, Chapter 5 presents three case studies, Chapter 6
introduces two novel degrees of freedom, Chapter 7 proposes problem-specific search
operators, Chapter 8 introduces a new search-based approach for integration of feature
models and architecture optimization together, Chapter 9 presents a parallel imple-
mentation of our framework, Chapter 10 concludes our findings. Brief summaries of
these chapters are given next:
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Chapter 2 defines the foundations on which this dissertation is built and introduces
the used terminology. This chapter discusses (i) optimization and more specifically
multi-objective optimization problems, (ii) software architecture, software component
and component-based software architecture, (iii) quality of software architectures, and
(iv) software product lines.

Chapter 3 discusses the state of the art of tools, methods, and approaches related to
our proposed framework. The related work in this chapter is categorized into four
categories: (i) the related optimization tools which tackle the software architecture
optimization problem, (ii) industrial case studies which use an optimization approach
in embedded systems, (iii) related heuristic-based approaches for software architecture
optimization, (iv) search-based approaches and techniques in the domain of software
product lines.

Chapter 4 introduces a new meta-heuristic optimization framework for automated
software architecture design. The framework has been developed as a new implementa-
tion from scratch and is named AQOSA for Automated Quality-driven Optimization
of Software Architectures. This chapter discusses the design of this framework.

Chapter 5 presents three software architecture design problems to which we apply
our AQOSA framework. These cases show the effectiveness and usefulness of an
automated quality-driven approach for the problem of software architecture design.
These case studies will be the basis for the experiments in the following chapters,
as well. To the best of our knowledge this is the largest case study on architecture
optimization of real industrial embedded software system.

Chapter 6 introduces two novel degrees of freedom for the optimization of software
architectures. We know that meta-heuristic approaches, such as genetic algorithms
(GA), use degrees of freedom to automatically generate new alternative solutions. The
two degrees of freedom are: (1) the topology of hardware platform, and (2) replication
of software components. They can improve the results of the optimization algorithms
by enlarging the design space. This chapter analyses the effectiveness of these two new
degrees of freedom by running a very computationally-intensive experiment against
an industrial case study.

Chapter 7 proposes an approach to make the optimization process faster by employ-
ing problem-specific search operators. The chapter discusses the use of architectural
patterns and anti-patterns as heuristic-based search operators to reach the optimal so-
lution faster. It also introduces different ways of combining the aforementioned search
operators. In this chapter, an experiment was set up to compare various combinations
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of heuristic-based search operators for an embedded system architecture problem with
multiple objectives based on a performance measurement called Averaged Hausdorff
distance.

Chapter 8 proposes a new search-based approach for generating an optimal software
architectural solution that supports a family of products that exist in the context of Soft-
ware Product Line (SPL). This novel search-based method produces a set of solutions
which are suitable for a range of products defined by various feature combinations.
In this SPL-aware method, AQOSA will also consider feature models as input to the
framework and take into account the relationship between the software components in
the architecture and features in the feature model. Hence, the approach applies opti-
mization techniques to each product of the SPL. After that, it analyses the commonality
of the optimal solutions and proposes a set of solutions which are suitable for the entire
range of products defined by various feature combinations.

Chapter 9 deals with making the optimization process faster by parallelising the exe-
cution. We know that meta-heuristic approaches in multi-objective problems especially
for high dimensions mostly take a very long time to be executed. One of the best solu-
tions to speed up this process is by parallelising execution of evolutionary algorithm
on multiple computing nodes. This chapter presents the results of parallel execution of
evolutionary algorithm for multi-objective optimization of software architecture. This
chapter studies two ways for parallelising the execution of evolutionary algorithm.

Chapter 10 closes with a conclusion and suggestions for future work.

Appendix Last, but not least, in Appendix A a sample of AQOSA IR is presented. It
shows the source of the AQOSA IR model of one of our case studies. It is encoded in
the Eclipse EMF format.



Chapter2
Definitions

This chapter defines the foundations on which this dissertation is built and introduces
the basic concepts used terminology.

This chapter is structured as follows. Section 2.1 defines the optimization problem
and more specifically multi-objective optimization problem. It also gives the definition
of Pareto dominance for ordering of solutions in multi-objective optimization solutions
and the Pareto front as the result of the optimization process. Section 2.2 defines
software architecture, software component and component-based software architecture.
These are very critical aspects of our approach and in our framework. The notion
of quality of software architecture is described in Section 2.3 which is a fundamental
concept in our optimization approach. Finally, Section 2.4 defines software product
line, feature and product which are used in Chapter 8.

2.1 Evolutionary Multi-objective Optimization (EMO)

According to Bäck [Bäc96], Evolutionary Algorithms are based on a model of natural,
biological evolution, which was formulated for the first time by Charles Darwin. The
"Darwinian theory of evolution" explains the adaptive change of species by the princi-
ple of natural selection, which favours those species for survival and further evolution
that are best adapted to their environmental conditions. In addition to selection, the
other important factor for evolution is the occurrence of small, apparently random
and undirected variations between the phenotypes. These mutations prevail through
selection, if they prove their worth in light of the current environment; otherwise, they
perish.
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2.1.1 Genotype and Phenotype

According to [Bäc96] and [Mit98], the Evolutionary Algorithms are based on genes as
transfer units of heredity. Genes are occasionally changed by mutations. The genotype
of an individual using bit strings is simply the configuration of bits in that individual’s
chromosome. Selection acts on the individual (the individual is the unit of selection),
which express in its phenotype the complex interaction within its genotype; i.e., its total
genetic information, as well as the interaction of the genotype with the environment
in determining the phenotype. The evolving unit is the population which consists of a
common gene pool included in the genotypes of the individuals.

One of the distinctive features of the Genetic Algorithm (GA) approach is to allow
the separation of the representation of the problem from the actual variables in which
it was originally formulated. In line with biological usage of the terms, it has become
customary to distinguish the ’genotype’ - the encoded representation of the variables,
from the ’phenotype’ - the set of variables themselves.

2.1.2 Optimization Problem

According to Kruisselbrink [Kru12], an optimization problem is a triple (X, F,G), where:

• X is the search space, which is the non-empty set of all possible solutions.

• F = {f1, . . . , fk} , k ∈ N, is a set of one or more objective functions that are to be
minimized. Each objective function is a function of the form f : X→ R that maps
elements of the search space to a score value.

• G = g1, . . . , gp, p ∈ N, is a set of constraint functions that need to be satisfied.
Each constraint function is of the form g : X→ Rmapping elements of the search
space to a constraint value. For a certain input x ∈ X a constraint g is said to be
satisfied if and only if g(x) ≥ 0. Otherwise, if g(x) < 0, then solution x violates
the constraint and is therefore infeasible.

2.1.3 Multi-objective Optimization Problem

A multi-objective optimization problem is an optimization problem with more than
one objective function. For instance, for the triple (X, F,G), the set F consists of at least
two objective functions [Kru12].

For multi-objective optimization problems, the definition of optimality is often
based on the notion of Pareto dominance on the objective space. Pareto dominance
introduces a partial order on the space of objective function values, being Rk for a
problem with k objectives. In the context of minimization, this order is defined as the
following section.
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2.1.4 Pareto Dominance

We follow the definition of Kruisselbrink [Kru12] who defines Pareto dominance as
follows. For any two vectors u and v:
u dominates v (notation u ≺Pareto v or just u ≺ v) iff:

∀i ∈ {1, . . . , k} : ui ≤ vi (2.1)

and ∃j ∈ {1, . . . , k} : uj < vj (2.2)

uweakly dominates v (notation u � v) iff:

u ≺Pareto v∨ u = v (2.3)

u strictly dominates v iff:

∀i ∈ {1, . . . , k} : ui < vi (2.4)

u and v are incomparable (notation u ‖ v) iff:

u � v∧ v � u (2.5)

The partial order introduced by using the notion of Pareto dominance on the
solution space can be used to define the goal of multi-objective optimization as to find
Pareto optimizers:

2.1.5 Pareto Optimium

For a multi-objective optimization problem (X, F,G), a point x in X is called "efficient", if
it is feasible with respect toG and there is no other point x ′ in Xwith F(x ′) ≺Pareto F(x).
The point F(x) in the objective space is then called a Pareto optimum.

2.1.6 Pareto Front

For a multi-objective optimization problem (X, F,G), the set of all Pareto optima is
called the "Pareto Front" and the set of all efficient points in X is called the "efficient
set".

With the definition for a multi-objective optimization problem, and the goal to find
either one, or multiple, Pareto optima, the basic notions of optimization have been
introduced.
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2.1.7 Hypervolume

A variety of quality indicators is used in order to measure the quality of Pareto front
approximations. Among them, the hypervolume indicator is of outstanding impor-
tance. It is a quality indicator that rewards the convergence towards the Pareto front
as well as the representative distribution of points along the front. The hypervolume
measure was originally proposed by Zitzler and Thiele [ZT98], who called it the size of
dominated space. Let Λ denote the Lebesgue measure, then the hypervolume measure
(φmetric) is defined as:

φ(B, yref) = Λ

( ⋃
y∈B

{y′ | y ≺ y′ ≺ yref}
)
, B ⊆ Rm (2.6)

Here, yref ∈ Rm denotes a reference point that should be dominated by all Pareto-
optimal solutions.

2.2 Software Architecture and Software Components

2.2.1 Software Architecture

Numerous definitions for software architecture have been formulated, and the research
community has not achieved final agreement on a common wording. In the following,
we give two commonly accepted definitions for software architecture.

Software Architecture (Definition 1) A general definition, that is used in this disser-
tation, emphasizes design decisions:

"A software system’s architecture is the set of principal design decisions
made about the system" [TMD10].

Interestingly, what is a principal design decision depends on the system goal. Exam-
ples names by Taylor et al. [TMD10] are the structure of the system, important decisions
on functional behaviour, the interaction of components, and non-functional properties.
This definition only mentions the core concept of design decision. It is independent of
the question how these design decisions are formulated, and thus includes intangible
software architectures that are not documented. Thus, this definition separates the
software architecture from its representation.

Software Architecture (Definition 2) A commonly accepted definition of software
architecture is given in ISO/IEC/IEEE standard 42010. A software system’s architecture
is:
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logical view development view

process view physical view

use-case view 
(scenarios)

Figure 2.1: The 4+1 view model of architecture

"[t]he fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the principles
guiding its design and evolution" [ISO11].

Because it concerns design at the software component level (as opposed to the design
of those components themselves), software architecture is a pivotal vehicle to address
and guarantee non-functional requirements. Since the interest in software architecture
research has increased, several important concepts were introduced [Hei12].

For example, the influential 4 + 1-view model [Kru95] (as can be seen in Figure 2.1)
expounded that, for representational clarity and the purpose of completeness, a soft-
ware architecture is to be described according to predefined views. These views are
defined so that they each accommodate the different issues that stakeholders have. The
feedback that these stakeholders are then able to give is thought to benefit the fitness
and other general design aspects of the software architecture.

2.2.2 Software Component

There term ’software component’ is used with a somewhat different meaning in differ-
ent fields of software engineering. In this section we first explain the view of compo-
nents as result from decomposing the system. Next, we discuss software components
as unit of composition.

An important subset of design decisions refer to the structure of the system, i.e., its
decomposition into building blocks. To manage the complexity of software systems,
architects apply the principles of encapsulation, abstraction and modularity to structure
the system [TMD10]. The resulting building blocks are called software component:
"A software component is an architectural entity that (1) encapsulates a subset of the
system’s functionality and/or data, (2) restricts access to that subset via an explicitly
defined interface, and (3) has explicitly defined dependencies on its required execution
context" [TMD10].
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Researchers have strived to define a notion of software component which has as
main objective to enable the composition of systems from independently developed
components. Szyperski et al. [Szy98] have identified the following characteristics of a
software component that can be independently developed and reused, stressing the
composability and reuse by third parties:

Software Component A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties [Szy98].

According to Szyperski extended definition, a software component is:

• A subject for multiple use. A software component should be designed and
implemented such that its functionality can be reused in many different systems.

• An externally stateless entity. A component should not expose its execution state
to a system and can be bound, started and stopped at any moment of a system
lifecycle.

• Composable with other components. A component provides well-specified
interfaces, by which it can be bound to other components.

• An encapsulated entity, i.e. a component internal implementation cannot be
explored through its interfaces.

• A unit of independent deployment. All component dependencies on external
resources are clearly specified and it can be substituted by some other component.

Because component’s aim to encapsulate their internal implementations from the
outside world, they expose their functionality and connectivity specification via inter-
faces. A component interface is a set of named operations with specified signatures,
through which it can interact with other components. As a special case, a component
offers access to its functionality via its interfaces.

A component may have two types of interface: provided and required interfaces.
Whereas a provided interface specifies the functionality that a component offers to the
environment, a required interface specifies a component’s requirements to the envi-
ronment that have to be satisfied for its proper operation. More specifically, required
interfaces are ports through which a component can invoke operations provided by
other component interfaces. At component deployment, a required interface can be
bound to a provided interface of another component.
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Component Model A component model determines what is and what is not a com-
ponent. Heineman and Councill [HC01] define a component model as follows:

"A component model defines a set of standards for component implemen-
tation, naming, interoperability, customization, composition, evolution and
deployment" [HC01].

This definition points out that a component model covers multiple facets of the de-
velopment process, dealing with (i) rules for the construction of individual components,
and (ii) rules for the assembly of these components into a system.

2.2.3 Component-Based Software Architecture

A software architecture that is structured based on software components and connec-
tors is called a component-based software architecture in the following.

Component-Based Software Architecture A component-based software architecture
is a software architecture whose principal design decisions regarding the structure of
the systems are made by structuring the system as a set of software components. The
system is thus described as a composition of components [Koz11].

To express (component-based) software architectures, architects have to describe
the architecture in some type of artefact. These artefacts can be ranging from natural
language descriptions over UML models [OMGa] to formal architectural description
languages such as the Palladio Component Model [BKR09].

Architecture Model An architecture model is an artefact that captures some or all of
the design decisions that compromise a system’s architecture [TMD10].

Component-Based Architecture Model A component-based architecture model is
a formal architecture model that uses software components as the main entity to
describe the design decisions: (1) software component are explicit model entities which
encapsulate internal decisions and provide information on interfaces and dependencies,
(2) the model of a component can be reused in any CBA model, (3) structural design
decisions are expressed as a composition and assembly of software components, only
making use of the provided interfaces and context dependencies of the component
models, and (4) other design decisions are described in relation to the composition or
to the components (e.g. by annotating components, connectors, or assemblies) [Koz11].
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2.3 Quality of Software Architecture

Developing high quality software products is a goal in many development projects.
However, quality is a highly subjective term and depends on the goals and perceptions
of stakeholders. The software architecture of a system is critical for a system to meet
its quality-objectives. Thus, quality should be considered when designing software
architecture.

To better reason about software product quality, software quality models have been
suggested to describe and measure software quality, e.g. ISO/IEC 9126-1:2001 [ISO01].
(See [BKLW95] for more information)

Software quality attributes (also called quality characteristics or quality properties)
are characteristics which provide the basis for evaluating quality of software systems.
Examples of software quality attributes of software systems are performance, safety,
reliability, maintainability, usability, and cost. Software quality attributes are one of the
influencing factors to take into account when designing a software architecture [BCK03].
For some software quality attributes, quantitative quality metrics are available to assess
the level of quality achieved by a software system.

Often, software quality objectives are found to be in conflict during the architectural
design activity: For example, security and reliability often negatively influence each
other: While a system is secure if it offers few places that keep sensitive data, such an
organization may lead to single points of failure and decreased reliability. Furthermore,
almost all software quality attributes conflict with performance [Koz11]. The art of
architecting is to find suitable trade-off’s between multiple mutually conflicting quality
objectives.

2.4 Software Product Line (SPL)

The Software Product Line (SPL) approach is aimed at the development of a set of prod-
ucts within a well-defined domain by leveraging their commonalities and managing
their variabilities in a systematic way in order to obtain large-scale reuse [vdLSR07].

2.4.1 Software Product Line

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way. Software
product lines engineering (SPLE) is a software engineering paradigm institutionalizing
reuse throughout the software life-cycle. Linden et al. [vdLSR07] define SPLE as a
systematic approach for software reuse applied to a family of specific products within
a well-defined domain.
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For example, a TV set, as a consumer electronic device, uses software. In the modern
TV production processes, SPL has been heavily employed. Various types of TV sets
have lots of commonality in core functionalities but they might be vary in terms of
internet connectivity, or capability of installing applications, or quality of display panel
(e.g. HD, Full HD or 4K).

2.4.2 Feature

According to FODA(Feature-Oriented Domain Analysis) [KCH+90], "A feature is a
prominent or distinctive and user-visible aspect, quality, or characteristic of a software
system or systems". Feature models allow visualization, reasoning, and configuration
of large and complex software product lines.

2.4.3 Product

Each product is formed by taking suitable features from the base of common assets,
tailoring them as necessary through variation mechanisms, and then assembling the
collection according to the rules of a common product line wide architecture [GH11].
Ideally, building a new product becomes more a matter of assembly or generation than
one of creation: the predominant activity is integration rather than programming.





Chapter3
State of the Art

In this chapter, the state of the art of tools, methods, and approaches are discussed
which are related to our proposed framework and its related approaches in the follow-
ing chapters. Besides the following related works from other research groups, the work
presented in this dissertation is built on the previous works [BCdW06] and [LCL10].

In this chapter, related work is categorized into four categories which are structured
as follows. Firstly, Section 3.1 details the related optimization tools which tackle the
software architecture optimization problem. It should be noted that because each tool
supports different objectives it is not practically feasible for us to directly compare the
achieved results of our proposed framework with others. Then, in Section 3.2 some
industrial case studies are listed which use an optimization approach in embedded
systems. Although they use different optimization approaches at different levels, it
is useful to compare our proposed approach with them. Section 3.3 discusses over
related heuristic-based approaches for software architecture optimization. After that, a
few approaches that use evolutionary algorithms to tackle software design problem are
listed in Section 3.4. And lastly, Section 3.5 discusses different search-based approaches
and techniques in the domain of software product lines.

3.1 Related Optimization Tools

3.1.1 PerOpteryx

Martens et al. [MKBR10] introduced an approach which can automatically improve
software architectures based on trade-off analysis of performance, reliability, and cost
by using a multi-objective genetic algorithm. The tool is a part of the Palladio project
and is dedicated to the Palladio Component Model (PCM) [BKR09] for modelling
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and quality prediction. More technically, Layered Queuing Networks (LQN) methods
are used for performance property prediction and Markov models are adopted for
analysis of reliability. The Palladio component model (PCM) specifies component-
based software architectures in a parametric way. Its simulation tool is capable of
making performance predictions. Hence, this approach is suitable for systems which
are modelled by PCM and focused on performance quality attributes. Instead, our
approach is independent from any specific component model or modelling language.

3.1.2 ArcheOpteryx

ArcheOpteryx [ABGM09] [MBAG10] is a generic framework which optimizes ar-
chitecture models by means of evolutionary algorithms. It works on the basis of
AADL [FGH06] (Architecture Analysis & Design Language) specifications. Two qual-
ity criteria (data transmission reliability and communication overhead) are defined
and the evaluation of architectures is based on analytical methods, rather than simula-
tion. It supports only one degree of freedom for exploration, which is allocation (or
deployment) of software components to hardware components. ArcheOpteryx spe-
cializes in probabilistic analysis of quality attributes and software architecture under
uncertainty. Therefore, their tool and their analysis techniques are very suitable for
situations with uncertainty. Their approach has different focus than ours, since they
focus on probabilistic analysis and uncertainty conditions.

3.1.3 Multicube Explorer

Multicube Explorer [PSZ05] [YCAM+11] proposes a design space exploration frame-
work for supporting platform-based design. It allows optimization of parametrized
system architectures. It presents a generic and structured framework for run-time
resource management of embedded multi-core platforms. Based on the results of
design-time multi-objective exploration, it defines a methodology to optimize the
run-time allocation and scheduling of different application tasks. The design explo-
ration flow results in a Pareto-optimal set of design alternatives in terms of power and
performance trade-offs. The set of operating points can then be used at run-time to
decide how the system resources should be distributed over different tasks running
on the multiprocessor system on chip. So, it focuses on the link between design-time
design space exploration and run-time configuration. However, our approach is not
targeted for run-time optimization of configurations. The degrees of freedom for Multi-
cube’s optimization process mostly can be characterized as related to the configuration
parameters (e.g. scheduling).
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3.1.4 Artemis

Pimentel presented an overview of the Artemis workbench in [Pim08]. This workbench
provides high-level modelling and simulation methods and tools for efficient perfor-
mance evaluation and exploration of heterogeneous embedded multimedia systems.
It consists of a set of methods and tools conceived and integrated in a framework to
allow designers to model applications and System-on-Chip-based (multi-processor)
architectures at a high level of abstraction, to map the former onto the latter, and to
estimate performance through co-simulation of application and architecture models. It
supports only one degree of freedom for exploration, which is allocation of software
components.

3.1.5 KlaperSuite

The KlaperSuite [CFD+11] is a family of tools that offers designers a means to analyse
performance and reliability at the architecture or design stage. The approach uses
model transformations to automatically generate analysis models (queuing networks)
out of an annotated UML design model. The approach focuses on validation of non-
functional properties during early stages of design and does not offer optimization.

3.1.6 MOSES

MOSES [CPSV08] is a methodology proposed by Cortellessa et.al. which aims at the
automated generation of feedback targeted at performance. It aims at systematically
evaluating performance prediction results using step-wise refinement. It is built on
top of UML-RT (UML for Real-Time) and presents a new implementation based on the
UML2 meta-model. A unique feature of this approach is that it tries to diagnose the
cause of performance problems in the system model level.

3.1.7 Other Related DSE Approaches

Hegedüs et al. [HHRV11] defined Design Space Exploration (DSE) as a process to
analyse several "functionally equivalent" implementation alternatives, which meets all
design constraints in order to identify the most suitable design choice (solution) based
on quality metrics such as cost or dependability. They stated that in model-driven
engineering, DSE is applied to find instance models that are (i) reachable from an
initial model by a sequence of transformation rules and (ii) satisy a set of structural
and numerical constraints. However, our approach using Genetic Algorithm (GA)
approach does not start from any specific initial state. The initial population in GA
can be spread out in the design space by means of randomized generation. Another
difference is that, those approaches use a sequence of transformations to evolve the
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solution. But in GA, it is possible that a revolutionary solution is proposed as a result
of some random mutation(s) in the genotype.

Räihä et al. in [RKM11] introduced a multi-objective genetic synthesis approach for
software architecture. However, they cover two different quality attributes of software
architectures; modifiability and efficiency. Therefore, although they use GA like our
approach, we target different quality attributes.

3.2 Related Industrial Case Studies

3.2.1 Reliability Optimization for Embedded Systems

Glaß et al. [GLHT10] presented an automatic reliability-aware system-level design
methodology to tolerate hardware defects. Real-life case studies from the automotive
domain have been used to validate the effectiveness of the proposed techniques. For
the reliability analysis and optimization at design time, a real-life specification for
an adaptive light control has been explored. For the performance of the proposed
online algorithm, a specification that combines six automotive applications including
an adaptive cruise control and brake-by-wire system has been used. Similar to our
case study, it studies real-life cases from the automotive domain. However, their
optimization process tries to optimize two objectives: reliability and cost. Instead, our
case study explores five objectives. Moreover, their approach does not use genetic
algorithms.

3.2.2 Symbolic Multi-objective Design Space Exploration

Lukasiewycz et al. [LGHT08] formalized the problem of design space exploration as
multi-objective 0−1 integer linear programming problem. They proposed a heuristic
approach based on Pseudo Boolean (PB) solvers and a complete multi-objective PB
solver based on a backtracking algorithm that incorporates the non-dominance relation
from multi-objective optimization, called Heuristic multi-objective PB Solver (HPB). To
emphasize the efficiency of the proposed algorithms, they applied the algorithms to a
real adaptive light control from the automotive area. So, similar to the previous work,
it comes from the automotive domain. However, their focus is on the proposed HPB
approach and comparison with other algorithms, instead of the industrial case study.
In contrast, our case study does not compare design space exploration algorithms.

3.2.3 Multiprocessor Systems-on-Chip Synthesis

In [CFL+10] Ceriani et al. compared three evolutionary approaches for real-time, em-
bedded, heterogeneous, multiprocessor systems (Multiprocessor Systems-on-Chip or
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MP-SoCs). They considered three approaches: a multi-objective genetic algorithm,
multi-objective Simulated Annealing, and multi-objective Tabu Search. In an exper-
imental evaluation, they applied their method to a realistic JPEG compressor on the
Xilinx FPGA toolchain. Again, similar to the previous work, although they worked on
a real-life case study, their focus is on comparing three exploration algorithms.

3.2.4 Exploring Embedded System Architectures

Pimentel et al. [PEP06] presented the Sesame framework, which provides high-level
modelling and simulation methods and tools for system-level performance evalua-
tion and exploration of heterogeneous embedded systems. They demonstrated the
framework by using a case study which traverses Sesame’s exploration trajectory for
a Motion-JPEG encoder application. They focused on multiple abstraction levels in
their method. So, their framework allows architectural exploration at different levels of
abstraction. A Motion-JPEG (M-JPEG) encoder application has been used as industrial
case study to illustrate Sesame’s modelling methodology and trajectory. Similar to our
approach, they used a genetic algorithm for design space exploration. However, they
focus on performance simulation. Instead, our approach aims to address other quality
attributes in addition to performance as well.

3.3 Related Heuristic-based Approaches

3.3.1 Architectural Tactics

Koziolek et al. [KKR11] introduced a hybrid approach that incorporates architectural
performance "tactics" into an evolutionary optimization process. They defined ar-
chitectural tactics to improve two quality attributes: Performance and Cost. They
implemented those tactics as part of the evolutionary optimization process. They
showed that by using tactics, optimization algorithms can achieve better solutions.
However, their experiment was conducted in an information systems context and
considered 2-objective optimization.

Martens at el. in [MAK+10] proposed another way of hybridization for optimiza-
tion of software architectures. They propose two-step optimization: first analytic
optimization and then a subsequent evolutionary optimization based on the Pareto
candidates from the first step. However, this way is totally different from our approach.
Because in our approach, we use the domain knowledge as the search operators and
therefore, we integrated that knowledge as part of the evolutionary optimization
process.
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3.3.2 Anti-patterns in Palladio

Turbiani et al. [TK11] discussed the advantages of using software performance anti-
patterns in an iterative manner. They introduced a couple of performance anti-patterns
and defined an automatic approach to detect and solve the bottlenecks in software
architectures. They demonstrated that, by applying this technique iteratively, the
system performance can be improved significantly. However, they did not discuss
quality attributes other than performance. They also did not integrate their approach
within an evolutionary optimization process. Thus, the downside of their approach
is that without having generic degrees of freedom and involving randomness in the
optimization iterations, the optimality of the results is highly dependent on the initial
architecture.

3.4 Software Design using Evolutionary Algorithms

3.4.1 Evolutionary Search in Object-Oriented Class Design

Simons et al. [SPG10] reported the findings of two experimental early life cycle design
episodes wherein a human designer and software agents interact and collaborate to
jointly steer an evolutionary, multi-objective search toward useful and interesting class
designs. Their interactive search-based design approach takes place during upstream
design before the design is realized in source code. It involves both a representation of
the design problem and a representation of the design solution which are inherently
traceable; and the representation of the solution space is a UML class model. Their
approach changes the software design through an evolutionary process. Objective
fitness functions available to the designer relate to the structural integrity of the solution
class designs and include cohesion of classes, coupling between classes, and number
of classes in a design. In their approach, they focus on interaction between human
designer and software agents during evolutionary process which is different from our
goals.

3.4.2 Class Responsibility with Genetic Algorithms

Bowman et al. in [BBL10] provided a decision-making approach to re-assign methods
and attributes to classes in a class diagram. Their solution is based on a multi-objective
genetic algorithm and uses class coupling and cohesion measurement for defining
fitness functions. Their approach takes as input a class diagram to be optimized and
suggests possible improvements to it. Their solution to the problem of class responsi-
bility assignment in the context of object-oriented analysis and domain class models,
suggests that the multi-objective genetic algorithm can help correct suboptimal class
responsibility assignment decisions and perform far better than simpler alternative



Related Software Product Lines (SPL) 23

heuristics such as hill climbing and a single objective GA. However, our approach does
not aim to optimize at the class diagram level. So, we have different focus from this
study.

3.5 Related Software Product Lines (SPL)

3.5.1 Variability-driven Quality Evaluation in SPL

Etxeberria et al. in [EM08] proposed a novel method for evaluation of a product line. It
is clear that the quality evaluation in software product lines is much more complicated
than in single-systems because different products within the same product line can
require different quality levels and the product line can have variabilities in its design
that affect the quality. However, we know that the evaluation of all the products of
a product family is very expensive. They presented a method for facilitating cost-
effective quality evaluation of a product line taking into consideration variability on
quality attributes.

They mentioned that the assessment of all the instances of the product line may
not be worthwhile due to the high cost. However, it is possible to shorten product
architecture evaluations because "The product architecture evaluation is a variation of the
product-line architecture evaluation as the product architecture is a variation of the product-line
architecture and the extent to which product evaluation is a separate, dedicated evaluation
depends on the extent to which the product architecture differs in quality-attribute-affecting
ways from the product line architecture" . Therefore, their approach is to create a generic
evaluation model with variability that helps to evaluate the product family, thus
reducing efforts, as several products can be evaluated together with that model.

3.5.2 Search-based Design of SPL

Colanzi in [Col12] proposed an approach for search-based design of the software prod-
uct line architectures (PLA). She introduced a multi-objective optimization approach to
the PLA design to ease the SPL development and to automate the PLA design. So, this
approach focuses on search-based design of product lines; however in our approach,
we assume that a product line is already designed and fixed. Then, we search to find
optimal architectural solutions for the products of that fixed product line. Hence, our
approach is not aimed at optimizing the features in a product line.

In another extended work, Colanzi et al. in [CV12] discussed the lessons they have
leaned from applying search-based optimization to software product line architectures.
They concluded that the results point out it is necessary to use SPL-specific measures
and evolutionary operators more sensitive to the SPL context.
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3.5.3 SPL Configuration

Sayyad et al. in [SIMA13] proposed an evolutionary algorithm, based on the Indicator-
Based Evolutionary Algorithm (IBEA), for the problem of software product lines
configuration. Specially, they targeted for large scale product lines. They mentioned
that software product lines are hard to configure and techniques which work for
medium sized product lines fail for much larger product lines such as the Linux kernel
with 6000+ features. They found 30 sound solutions for this very large product line;
however, we assume any arbitrary sound configuration as an input to our tool and
our approach is not aimed at searching for sound configurations in a product line.
In short, they showed an approach to automate the configuration of the very large
variability models available from LVAT (Linux Variability Analysis Tools) feature model
repository.

Moreover, Sayyad et al. in [SMA13] extended the aforementioned work to bring the
user preferences in to the perspective. In this work, they presented a high-dimensional
multi-objective search approach, which puts each user preference in focus without ag-
gregation, and then incorporates the user preferences in the Pareto dominance criteria,
using the Indicator-Based Evolutionary Algorithm (IBEA). They used 5 optimization
objectives, namely: to maximize logical (syntactic) correctness, maximize richness of
feature offering, minimize cost, maximize code reuse and minimize known defects. As
can be seen, they are completely different from our approach objectives.

3.5.4 Software Evolution in SPL

Abrahão et al. in [AGHIR12] presented a framework to support the development
and evolution of high-quality software product lines. The framework is based on
several interrelated models or system views (eg, functionality, variability, quality) and a
production plan defined by model transformations that generate a software system that
meets both functional and quality requirements. The variability management involves
the manipulation of features, represented as cardinality-based feature models, and
the support of such variability in the so-called product line core assets. Specifications
of the system variability, functionality, and quality can be dealt with models that are
independent from each other but where their inter-consistency is assured by means of
the relationships defined in this multi-model. The SPL production plan is parametrized
by means of the multi-model which specifies the corresponding model transformations
that are needed to obtain a specific product with the desired features, functions, and
quality. Therefore, they focus on software product lines evolution by using a multi-
model approach, which is completely different from our targets.
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3.5.5 Quality Engineering for SPL

Kolb et al. in [KM06] discussed the quality engineering for software product lines.
They provided an understanding on how to perform quality engineering and to system-
atically assure the quality of product lines and reusable artefacts. They discussed about
how quality engineering for software product lines and generic software components
needs to be different from traditional software systems and how quality engineering
can be performed in the context of product lines. In addition to that, they provided a
discussion of the difficulties and challenges of quality engineering for product lines
and investigates the implications of product lines and reusable components on quality
engineering. To summarize, their goal was to provide an understanding of existing
constructive and analytical quality engineering techniques and methods and how these
techniques and methods can be applied in a software product line context. The meth-
ods and techniques addressed include systematic architecture design and evaluation,
architecture conformance checking, inspections, testing, metrics and measurement
evaluation, and risk management. For each technique or method, it is discussed what
the problems and challenges in the context of software product lines are, which benefits
and limitations the technique or method has, and how it has to be extended to be
applicable for assuring the quality of software product lines and reusable artefacts.
Their approach can be considered as a the translation of classical manual software
quality assurance techniques to the domain of software product lines.





Chapter4
AQOSA Framework

To be able to investigate the research questions of this dissertation, a new meta-heuristic
optimization framework for automated software architecture design has been devel-
oped based on the previous work and knowledge (e.g. [BCdW06], [LCL10]). The
tool has been developed with new implementation from scratch. Our tool is named
AQOSA (Automated Quality-driven Optimization of Software Architectures). This
chapter discusses the details of this framework. The tool is open source and its source
codes are accessible via http://bitbucket.org/retemaadi/aqosa.

The AQOSA framework has aimed the following goals to enable us to answer the
research questions described in Section 1.2:

1. Be able to support multiple quality attributes (a must have), and also gives the
possibility to extend quality attributes with external evaluators (a could have).

2. Increase the software architecture exploration space by enabling support for
multiple degrees of freedom in varying architectural solutions (a should have).

3. Be independent from architectural modelling languages. So, it would be able to in-
teroperate with various architectural modelling languages (e.g. AADL [FGH06],
UML/MARTE [OMGb], PCM [BKR09], ROBOCOP [Inf03]) (a must have).

This chapter is structured as follows. First, Section 4.1 gives an overview about
the AQOSA framework. Section 4.2 details the structure and the composition of the
AQOSA tooling modules which are the next four sections. Hence, the modelling
part, the optimization part, the solution part and the evaluation part are described in
Sections 4.3, 4.4, 4.5, 4.6 respectively. Section 4.7 demonstrates two possibilities for
monitoring Pareto fronts within the optimization process. After that, the complexity of
the used algorithm in our approach is discussed in Section 4.8. And finally, Section 4.9
summarizes this chapter.

http://bitbucket.org/retemaadi/aqosa
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Figure 4.1: AQOSA high level architecture

4.1 Framework Overall Process

AQOSA is a framework which uses a Genetic Algorithm (GA) optimization approach
for automated software architecture design. The framework supports analysis and
optimization of multiple quality attributes of the system including response time,
processor utilization, bus utilization, safety and cost. Figure 4.1 shows the architecture
of the AQOSA framework. It uses an architectural Intermediate Representation (IR)
model for describing the architectural design. It takes the following as input:

• An initial functional part of the system (i.e. components that provide the needed
functionality and their interactions with other components),

• A set of typical usage scenarios (includes triggers to create workloads),

• A list of objective functions (determines which architecture properties should be
optimized),

• A repository of components which contains all specifications related to hardware
and software components instances.

Then, AQOSA iterates through the following steps:

1. Generate a new set of candidate architecture solutions: To this end, AQOSA
uses a representation of the architecture where it knows which are the degrees of
freedom in the design and how to generate alternative architecture candidates.
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2. Evaluate the new set of candidate architecture solutions for multiple quality
properties: This works by generating analysis models from the architecture
model using model transformations and then invokes up the property-specific
analysers to evaluate these models.

3. Select a set of (so far) Pareto-optimal solutions.

4. Iterate to step 1 until some stopping criterion holds. This can be a maximum
number of generations or a criterion on the objective functions.

4.2 AQOSA Tooling Design

The AQOSA tool, developed in Leiden University as part of this dissertation, helps
software architects to find optimal solutions for component-based software systems in
the early stages of software architecture design. Figure 4.2 depicts the decomposition
of the tool. It consists of the following major parts:

1. Modelling part: It includes two modules (Scenario and Repository modules),
which are regarded as input for the tool. They are described in Section 4.3.

Figure 4.2: AQOSA tooling parts
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2. Optimization part: Using evolutionary algorithms, this part tries to explore
the design space for finding optimal solutions. It employs the Solution module
to vary architectural solutions and the Evaluator module to measure them. More
details are given in Section 4.4.

3. Solution part: Using a state-of-the-art genotype for software architecture it can
generate architectural solutions in a broad range of degrees of freedom. More
details are discussed in Section 4.5.

4. Evaluation part: The responsibility of this part is analysing different quality
attributes for the candidate solutions. It uses external evaluators for this purpose.
For example, it uses the queuing network analysis to evaluate performance
attribute and the failure analysis to evaluate safety attribute. This part is described
in Section 4.6.

4.3 Modelling Part

Because AQOSA is designed to optimize architectures in a wide range of domains,
it aims to be independent from specific modelling languages. Hence, it uses its own
internal architecture representation, AQOSA intermediate representation (AQOSA IR).
AQOSA architecture modelling is defined by means of the Eclipse EMF [Ecl]. The
AQOSA IR model integrates multiple quality modelling perspectives (such as perfor-
mance, safety, etc.).

Figure 4.4 represents a simplified view of the AQOSA IR meta-model. It consists of
four major parts: Assembly, Scenarios, Repository and Objectives.

• Assembly: This part includes software components and their assembly for de-
livering system functionalities. Every component provides some services, and
interaction between different components are defined by flows and actions within
flows.

• Scenarios: This part defines expected scenarios for the system. Thereby, the
architect can define best-case, worse-case or normal-case for the system. It
stores real-time constraints of the system such as expected completion time and
deadline.

• Repository: This part stores various possible choices for software and hardware
components: such as processors, buses and component implementations. Based
on this repository, the AQOSA framework is able to change the topology of the
candidate solution, or assigned processor for each node, or assigned bus instance
for each bus line, etc. This part contains required specifications of each possible
hardware or software.
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Figure 4.3: AQOSA modelling tool screenshot

• Objectives: This part defines the objectives which the framework optimizes.

Figure 4.3 demonstrates a screenshot of the tool while modelling an architecture
optimization problem. It shows the tree structure of the AQOSA model, while the
architect is defining the scenarios and assigning the properties for various components
as well. A sample of an AQOSA IR model (consists of its details objects and attributes)
is presented in Appendix A. The sample is a model of the case study system that is
described in Section 5.3.

4.4 Optimization Part

In general, design of software architecture has to address multiple contradicting quality
attributes. Various global optimization techniques have been used in handling complex
engineering problems. Younis et al. [YD10] compared several optimization methods
and revealed the pros and cons of these global optimization methods. They classified
Global Optimization (GO) methods into two main categories: deterministic methods
and stochastic methods.

The problem of optimizing software architecture is a non-linear and discontinuous
problem, i.e. small changes in the architecture design can have a very large impact
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Figure 4.4: AQOSA Intermediate Representation (IR) simplified meta-model



Optimization Part 33

on the different quality attributes. So, the search space is combinatorial and discrete.
Moreover, a large number of alternative designs exists in the the search space. In this
context, deterministic approaches do not perform well. Instead, stochastic methods
are a better fit for solving this kind of problems. Within stochastic methods, Younis
describes the following strengths and weaknesses [YD10]: Simulated Annealing (SA)
algorithms emulate the annealing process on how liquid freezes or metal re-crystallizes
in cooling. Simulated annealing is easy to implement, although the method converges
slowly and it is difficult to find an appropriate stopping rule. Therefore, because of the
convergence speed the SA method is not an option for our method. Particle Swarm
Optimization (PSO) has also been applied to solve practical optimization problems
and proved to be one of the promising and successful methods. PSO shares many
similarities with evolutionary computation techniques, such as Genetic Algorithms
(GA). Genetic algorithms (GAs) are a class of search procedures based on the mechanics
of natural genetics and natural selection. However, PSO design paradigm is mainly
suited for continuous vector spaces and not for combinatorial optimization. Moreover,
unlike GAs, PSO has no evolution operators such as crossover and mutation. Because of
the need for using intelligent operators as one of the key features in AQOSA framework,
PSO is not an option for our method, as well. Hence, Genetic Algorithm (GA) is chosen
as optimization method for the AQOSA framework.

In the following, first evolutionary algorithms supported by the AQOSA framework
are mentioned. After that, the implemented degrees of freedom for our architecture
optimizer are discussed.

4.4.1 Evolutionary Algorithms

Due to the conflicts of quality attributes in the software architecture design, AQOSA
uses Evolutionary Multi-Objective Algorithms (EMOA) to evolve the architecture. It
has been implemented based on the Opt4J optimization framework [LGRT11][Depa].
The system designer can choose one of the following GA algorithms for his design
problem:

• NSGA-II (non-dominated sorting based multi-objective evolutionary algorithm):
It is one of the most widely used EMOA techniques and has been proposed by
Deb [DAPM02]. It has a selection operator which uses non-dominated sorting,
and crowding distance. The non-dominated sorting makes sure that the points
converge to the Pareto front. And the crowding distance sorting makes the points
spread out across the Pareto front.

• SPEA2 (an improved version of Strength Pareto Evolutionary Algorithm): It has
been suggested by Zitzler and Thiele [ZLT02], and it is also widely used. It uses
alternative ways for convergence and diversity compared to NSGA-II.
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• SMS-EMOA (S-Metric Selection Evolutionary Multi-Objective Algorithm): It
has been proposed by Emmerich, Beume and Naujoks [EBN05] [BNE07]. It is a
representative of the class of hypervolume-based EMOA, which recently gained
popularity in the EMOA field.

A comparison of EMOA algorithms for our specific domain, software architecture
domain, is discussed in Section 5.1.

4.4.2 Degrees of Freedom

When an architectural design is created, usually, there are still variation to the solution
without changing the functionality. We call them Degrees of Freedom (DoF). The
component-based paradigm that underlies our approach, allows us to recompose
components in different topologies and wrappers. However, the optimizer should
consider only the variations of architectural designs which do not modify the interfaces
used in the architecture in order to guarantee that the optimization process does not
change the functionality of the system.

In the following, the degrees of freedom which are implemented by the AQOSA
framework are listed:

Number of hardware nodes

If an architectural model contains n software components, then these can be deployed
on a number of hardware nodes, ranging between a minimum of 1 and a maximum of
K·n hardware nodes (for some natural number K > 0), because the number of nodes in
an architecture is finite. Adding more hardware nodes may provide more processing
capacity and therefore may yield better performance. On the other hand, removing
hardware nodes may reduce the total cost of the system.

Number of connections between hardware nodes

If n hardware nodes have been chosen for the deployment of components, then the
maximum number of possible connections between hardware nodes can be calculated

by: Maxc(n) =
n(n− 1)

2
.

This maximum represents the case that all of the nodes are connected 1-by-1 together
by a dedicated communication line. It is also possible to assume redundant connections
between nodes or more interconnections between the connections themselves. In these
cases this number could be even higher. But we assume Maxc(n) as the maximum
number of connections because redundancy of connections is rare in architecture
design. As a minimum, it is possible to consider a single central bus which connects all
of the nodes. This DoF has significant impact on performance and cost of the system.
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Network topology

By definition, network topology is the layout of interconnections between hardware
nodes. For example, Figure 4.5 shows some possible topologies for connecting a
network with 4 nodes. In the other words, Even with the same number of nodes and
the same number of connections, network topologies might be different. Even with the
same number of nodes and connections, different topologies can still represent different
architectures and the number of possibilities can be very large, which its number is
in O(2n

2

). The impact and importance of this DoF is discussed in Chapter 6. It is
important to consider that not all possible topologies are valid and therefore AQOSA
performs a validation process before doing evaluation. This process is described in
Section 4.5.2.

Node 1 Node 2

Node 3 Node 4

Node 1 Node 2

Node 3 Node 4

Node 1 Node 2

Node 3 Node 4

Figure 4.5: Three possible topologies for a 4-node network

Software on hardware allocation

Given a hardware network topology, the allocation of software components on hard-
ware nodes is another degree of freedom. This degree of freedom defines which
software component executes on which hardware component. It also has large effect
on the processors’ utilization and system’s performance.

Software components selection

Different components (e.g. developed by different vendors) that implement the same
functionality are considered as different architectural alternatives. Our assumption
is that one component can replace another, if and only if they implement the same
functionality. This assumption prevents the solution from the violation of the system’s
functionality.

Hardware components selection

This DoF entails that each hardware node can be replaced by another hardware node in
the repository. These nodes may be different in processing speed, energy consumption,
failure probability and cost. Hence, it has large effect on all quality aspects.
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Figure 4.6: Optimizer module class diagram
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Communication lines selection

This degree of freedom is similar to the hardware components selection, but is aimed
at selection of communication lines. They might be different in bandwidth, communi-
cation delay, failure probability, as well as cost.

4.4.3 Optimizer Module Implementation

Figure 4.6 depicts the class diagram of the Optimizer module and its relation with the
Solution module. ArchProblem is the main class which reads an AQOSA IR model
and optimization parameters as well. Then, it generates an initial population by calling
the ArchCreator class. The ArchCreator class creates the ArchGenotype class
which consists of four genomes. The ArchDecoder class decodes or translates an
ArchGenotype into an ArchSolution which is also described in Section 4.5.3. The
ultimate aim is to evolve genes to find optimal solutions, therefore, the ArchProblem
class repeatedly calls the ArchEvaluator to analyse quality attributes for each solu-
tion. With the help of evolutionary algorithms (described in Section 4.4.1), the AQOSA
framework keeps candidate optimal architectures and discards the others.

4.5 Solution Part

This section explains how the AQOSA framework encodes an architectural candidate
solution for the optimization process. Because AQOSA uses a genetic algorithm for its
optimization part, the architectural solutions need to be encoded in genetic form.

4.5.1 Architecture Genotype Structure

Table 4.1 shows the structure of the genotype which is used in the AQOSA framework.
This genotype consists of a set of four genomes: (1) the Deployment genome, (2) the
Nodes genome, (3) the Communication genome, and (4) the Connection genome.

1. The deployment genome (Table 4.1a) shows for each software component which
implementation is deployed on which hardware node. It encodes the ‘software
components selection’, ‘software on hardware allocation’, and the ‘number of
hardware nodes’ DoFs.

2. The nodes genome (Table 4.1b) represents which hardware variant is selected
for each node in the system. It encodes ‘hardware components selection’ DoF.
The specification for each hardware node includes processing clock rate, range of
failure probability, and cost.
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3. The communication genome (Table 4.1c), like the nodes genome, represents
which hardware variant is selected for each communication line. It encodes the
‘number of connections’ and the ‘communication lines selection’ DoFs. Their
specification includes bandwidth, transmit delay, and cost.

Table 4.1: AQOSA framework genotype

Component1 Component2 Component3 ... Componentc

Implmnt. < i1 >

deployed on Node ni1

Implmnt. < i2 >

deployed on Node ni2

Implmnt. < i3 >

deployed on Node ni3

... Implmnt. < ic >

deployed on Node nic

(a) Deploy Genome

n

(No. of Nodes)

Node1 Node2 Node3 ... Noden

HW Spec.
< h1 >

HW Spec.
< h2 >

HW Spec.
< h3 >

... HW Spec.
< hn >

(b) Nodes Genome

l

(No. of Lines)

Line1 Line2 Line3 ... Linel

Bus Spec.
< b1 >

Bus Spec.
< b2 >

Bus Spec.
< b3 >

... Bus Spec.
< bl >

(c) Communication Lines Genome

Node1 Node2 Node3 ... Noden

Line1 True/False True/False True/False ... True/False

Line2 True/False

Buses-to-Nodes Connection Matrix

True/False

Line3 True/False True/False

... True/False True/False

Linel True/False True/False True/False ... True/False

Line1 Line2 Line3 ... Linel

Line1 True/False True/False True/False ... True/False

Line2 True/False

Buses-to-Buses Connection Matrix

True/False

Line3 True/False True/False

... True/False True/False

Linel True/False True/False True/False ... True/False

(d) Connections Genome
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4. The connection genome (Table 4.1d) is the part of the genotype that represent
architectural topology by the means of two Boolean matrices. These matrices list
the connections between buses and nodes, and amongst buses themselves. Each
cell in the matrix can be True or False, where True means this particular bus
and particular node (or that particular bus) are connected; and False means
those are not connected. They encode the ‘network topology’ DoF.

4.5.2 Genotype Validation

Evolutionary algorithms in AQOSA can apply various genetic operators such as Copy,
Mutate or Crossover to the genotype for generating new architectural solutions as
offspring. However, the validity of these solutions is not guaranteed. Therefore, the
optimizer performs sanity checks for each genotype in order to validate it. In this
process, those solutions which can not satisfy the functionality of the system will
be omitted from being sent to the evaluation process. For example, if the model
defines that component3 should communicate with component5 and then the generated
offspring deploys component3 on node2 and component5 on node4, this process should
check whether there are any communication paths between node2 and node4.

4.5.3 Solution Module Implementation

Figure 4.7 depicts how the Solution module implements the architecture genotype.
ArchGenome is an interface which all the architectural genomes should implement.
As can be seen in the figure, DeployGenotype, NodesGenotype, EdgesGenotype,
and ConnectionGenotype implement that interface. They represent the deploy
genome (4.1a), the nodes genome (4.1b), the communication genome (4.1c), and the
connection genome (4.1d) respectively.

4.6 Evaluation Part

The AQOSA evaluation part takes as input an evaluation model (e.g. queuing network
or fault tree). An evaluation model is a transformation of the AQOSA IR and a
candidate genotype for a particular quality attribute (e.g. response time or safety). The
AQOSA framework feeds evaluation models to each evaluator and returns the results
to the optimization part.

The AQOSA framework uses analysis tools for particular quality attributes as plug-
ins. It is assumed that these analysis tools are developed and validated by domain
experts. However, to examine the accuracy of AQOSA evaluation implementation, the
results generated by AQOSA evaluation have been compared with results reported
in relevant publications. In case of performance attributes, the QN implementation
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Figure 4.7: Solution module class diagram
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Component A

Service X

Component B

Service Y

Start Trigger

Output

Port P Port RPort Q

Figure 4.8: Example scenario

can achieve the same results as the results published in [WTVL06]. In case of FTA, the
results have been compared with the results published in [FS10].

4.6.1 Evaluation Model Transformation

To explain how the transformation of an architectural solution to an evaluation model
works, in the following two examples are given: (1) for queuing network transforma-
tion, (2) for fault tree transformation. For the purpose of the example, a very simple
scenario is assumed which is depicted in Figure 4.8. The figure shows a software
architecture that consists of two components: Component A and Component B. The start
trigger calls Service X from Component A through Port P. Then, Service X passes data
through Port Q to Service Y from Component B which receives the data through Port R.
Subsequently, Service Y generates the required data as the output of the scenario.

Figure 4.9: Sample genotype

ComponentA ComponentB

Aimpl deployed on Node1 Bimpl deployed on Node2

2

(No. of Nodes)

Node1 Node2

HW Spec. < h1 > HW Spec. < h2 >

1

(No. of Lines)

Line1

Bus Spec. < b1 >

Node1 Node2

Line1 True True

Node1: <h1> spec

Node2: <h2> spec

Bus1: <b1> spec

A_impl

B_impl
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Output

Start Trigger

CPU1
executes

[Service X]

CPU2
executes

[Service Y]

Bus1
connects

[Port Q] to [Port R]

Figure 4.10: Generated queuing network for sample scenario

In addition to this scenario, for evaluating an architecture based on a queuing
network it is needed to know the hardware topology and the deployment of the
candidate solution as well. Assume, the solution is a simple architecture, which
contains two processing nodes and one bus which connects them together. Table 4.9
represent that architecture based on the AQOSA genotype structure. Component A has
been deployed on Node1 and Component B on Node2. In this case, Bus1 represents the
connection between Port Q and Port R.

Queuing Network Transformation

To generate a Queuing Network (QN), the AQOSA evaluation part will create a QN
as shown in Figure 4.10. Each processing node or communication line represents one
resource. Hence, each is mapped to its own queue. In this network, CPU1 can be taken
by Service X (because Component A has been deployed on Node1), CPU2 can be taken
by Service Y and Bus1 can be busy when Service X passes the data to Service Y.

Output failure

CPU2 failure

execution of Service X failure

signal on Port R failure

signal on Port P failure

execution of Service Y failure

depends on

CPU1 failure

Bus1 failure

AND

AND

AND

Figure 4.11: Generated fault tree for sample scenario
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Because the AQOSA QN analysis is based on JINQS [Fie10] library, it is purely
Java-based [Sun] implementation. Analysis of QN statistics after the simulation will
provide required data for response time, CPU utilization and bus utilization objectives.

Fault Tree Transformation

To generate a fault tree, the AQOSA evaluation part will create a fault tree for safety
analysis as shown in Figure 4.11. This figure represents that the system output failure
depends on Service Y failure. Furthermore, Service Y failure itself depends on two
nodes: failure of the signal on Port R, and CPU2 hardware failure. And repeatedly, the
tree can be parsed to the bottom. By running a Monte-Carlo simulation, the AQOSA
evaluator analyses the safety objective for the candidate solution.

4.6.2 Quality Attributes

In the following, the quality attributes supported in the AQOSA framework are de-
scribed.

Response Time

Response time refers to a time interval during which the response to an event must be
executed. The time interval defines a response window given by a starting time and an
ending time. These can either be specified as absolute times (time of day, for example)
or offsets from an event which occurred at some specified time [BKLW95]. The ending
time is also known as a deadline. AQOSA measures response time for each event in
the system as offsets from the time at which the event happened, and then scores all
events in the scenario based on predefined deadlines.

Processor Utilization

Processor utilization is the percentage of time during which a resource is busy. AQOSA
measures this percentage for each processor in the architecture individually. AQOSA
can be configured to return either average, minimum, or maximum processors utiliza-
tion for an candidate architecture.

Communication Line Utilization

Like processor utilization, communication line utilization is the percentage of band-
width that a communication line (or a bus) uses. Similar to above, AQOSA measures
this metric for each bus in the architecture individually. Again, this metric can be
configured to return either average, minimum, or maximum bus utilization.
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It could be argued that utilization (either processor or communication line) is more
an internal metric than a quality attribute. However, utilization can be considered as
an indicator for other architecture quality attributes, such as extensibility. Because by
choosing an architecture which reserves some free resources, the architect would be
able to extend the system with more load in the future. Hence, using utilization in this
way as a direct metric is more reasonable, first because the response time is calculated
anyway, and second because measuring an indirect metric like extensibility is more
challenging.

System Safety

Forster [FT09] claims: "Software does not fail randomly but will invariably fail again in the
same way under the same conditions. While for mass-produced hardware parts it is possible to
assign a failure probability, for software a similar assumption does not seem entirely realistic".
Accepting this hypothesis, AQOSA assumes for each component, the output fails
if either the input fails or the hosting hardware crashes. So, AQOSA analyses the
corresponding fault tree for each system output based on these assumptions. Using
Monte-Carlo sampling, AQOSA calculates the failure probability of each output based
on its fault tree dependability on various inputs and also related hardware nodes
probability of failures.

System Cost

The cost quality attribute is important from a market point of view. Fortunately, it is
easily calculated by adding the cost of used software components, hardware nodes,
and communication lines.

Extension of Quality Attributes

The architecture of the AQOSA framework facilitates the extension of AQOSA with
new quality attributes. To this purpose, the following steps should be followed:

• An evaluator for that new quality attribute should be provided,

• An implementation for the transformation of an architectural solution to the
proper evaluation model should be provided.

This evaluation model must be compatible with the input for the evaluator (provided in
the previous step). Hence, the transformer component should transform a combination
of the AQOSA IR and a candidate architecture model to the particular quality attribute
evaluation model.

For example, it is easily possible to extend AQOSA for power consumption quality
attribute. To this end, it is needed to implement a transformation component which:
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Figure 4.12: Evaluator module class diagram
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1. captures the processor types from AQOSA IR,

2. reads processor utilization values from queuing network simulation results, and
transform them into an evaluation model.

The power consumption evaluator should be able to calculate the power consumption
of that particular architectural solution based on those information.

4.6.3 Evaluator Module Implementation

Figure 4.12 depicts the class diagram of the Evaluator module. EvaluationThread
is an abstract class which is the core of the module. Extending this class enables
us to add evaluators for different quality properties. As can be seen in the figure,
PerformanceEvaluator, SafetyEvaluator and CostEvaluator inherit from
this class. Each quality evaluator is linked to a quality-specific analysis method.

4.7 Pareto front Monitoring

AQOSA tooling is implemented in a way which allows the architect to monitor the
process of optimization. To this end, AQOSA offers both an application-based interface
and a web-based interface. Hence, the architect is free to choose either execution of the
optimization process on a local machine or execution in the cloud.

Figure 4.13: AQOSA live Pareto front monitoring screenshot
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Application-based Interface

Figure 4.13 depicts a screenshot of AQOSA while Pareto front monitoring from the
Java-based [Sun] application interface. Because it is developed based on the Opt4J
framework [Depa], it uses the same visualization as the Opt4J framework. As can be
observed, by using this interface it is possible to monitor multiple Pareto fronts and
also convergence plots at the same time. In the progress bar it shows the progress of
the genetic algorithm in terms of number of generations.

For example, in Figure 4.13, the architect is looking at live Pareto front of cost vs.
CPU utilization. At the bottom of the window, he is monitoring two convergence plots:
safety and bus utilization.

Web-based Interface

In Figure 4.14 a screenshot of AQOSA’s web-based interface is depicted. For using
the web-based interface, it is required to first upload an AQOSA IR model to the
cloud. After that, the architect can configure the optimization settings and execute the
optimization process in the cloud. As can be seen in Figure 4.14, it is only possible
to monitor one Pareto front at a time. Live web-based Pareto front charts have been
implemented on top of using Google Chart [Goob].

For example, in the following screenshot, AQOSA’s web-based interface is deployed
on the CloudBees cloud platform [Clo]. AQOSA’s web-based has been designed and
implemented, so that it is also compatible with the Google App Engine platform [Gooa].

Figure 4.14: AQOSA web-based interface screenshot
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4.8 Framework Algorithm Complexity

The AQOSA framework algorithm consists of two major parts: evaluation algorithm
and optimization selection algorithm. The complexity of these parts cannot be directly
compared as it is governed by different parameters.

Table 4.2: Algorithm complexity parameters

Parameter Description

d the number of objectives (dimensions)

µ the number of parents

λ the number of offsprings

T the length of simulation

n the number of queues (number of nodes + number of
buses) in the queuing network

p the average number of events in the queue at times
before the computed event

In the evaluation part, the time complexity of simulating QN is in O(m · p), where
p is the average number of events in the queue at times before the computed event
andm is the number of events. If T be the length of simulation and n be the number
of queues (number of nodes + number of buses) in the network, then we know that
m < T · n. Therefore, the time complexity of simulating QN is in O(T · n · p).

In the optimization selection part, the complexity depends on the chosen algorithm.
The time complexity of NSGA-II is in O((µ+ λ) · log(d−1)(µ+ λ)) per iteration [BS14],
where d is the number of dimensions (objectives), µ is the number of parents, λ is the
number of offsprings. On the other hand, the complexity of SPEA2 is inO((µ+λ+A)2 ·
log(µ+λ+A)) per evaluation, whereA is archive size. And finally, the time complexity
of the selection step in SMS-EMOA in 2D and 3D is equal to Θ(µ · log(µ)) [EF11]
(although, incremental updates can be achieved faster if non-dominated sorting is
replaced by a queuing method [HE13]). For higher dimensions, AQOSA does not
support this algorithm due to efficiency problems. Note that SMS-EMOA performs a
selection step for each new individual, while for NSGA-II and SPEA2 selection step is
only done for any batch of λ individuals.

Thereby as a result, if the system designer chooses the NSGA-II algorithm, the
amortized complexity of running AQOSA per processed individual is in:

O(
µ

λ
· log(d−1)(µ+ λ) + T · n · p) (4.1)
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4.9 Summary

This chapter described the meta-heuristic optimization approach for automated soft-
ware architecture design and its tooling which is developed to enable us for answering
research questions in this dissertation. This approach offers a new tool for architects to
aid in finding good designs in complex design situations with potentially conflicting
multiple quality requirements. Furthermore, the tool reduces the development time
and improves the quality of the architecture design. AQOSA framework supports
multiple quality attributes for the optimization including response time, processor
utilization, bus utilization, safety, and cost.

Inspired by the model-driven approach, the framework uses an integrated model
(AQOSA IR) which helps performing multiple quality analysis based on a single core
architecture representation. Moreover, this framework can be extended with additional
quality attributes.

The approach has been applied on case studies which are described in next chapter.
AQOSA framework improves over the state of the art because:

• It is modelling language independent. It can interoperate with various architec-
tural modelling languages.

• It supports multiple degrees of freedom for automatically generating alternative
architectures.

• It optimizes multiple quality attributes at once. To the best of our knowledge it
is the first approach which supports evaluation and optimization of five quality
attributes at the same time.





Chapter5
Case Studies

In this chapter we validate the AQOSA framework, by applying it to three of software
architecture design problems. These cases show the effectiveness and usefulness of
automated quality-driven approach for the problem of software architecture design.
These case studies will be the basis for the experiments in the following chapters, as
well. By executing these experiments based on real-world industrial case studies, this
chapter tries to address RQ1 which is mentioned in Section 1.2:

Can meta-heuristic optimization improve the process of designing efficient
architectures for a set of given quality attributes in an industrial domain?

To the best of our knowledge this is the largest case study on architecture optimiza-
tion of real industrial embedded software system.

This chapter is structured as follows. First, Section 5.1 demonstrates the AQOSA
framework on a 3-objective optimization problem from the field of business information
systems. Through this optimization experiment we also compare the state-of-the-art
multi-objective optimization algorithms that are supported by AQOSA. Secondly, Sec-
tion 5.2 presents a simple embedded software system for cruise control. This case has
been used as a demonstration case in the field of multi-objective software architecture
design optimization. This case study has 6 software components and between 1 and 6
hardware components. In contrast to the first case, here we study the optimization of
5 design objectives. Thirdly, Section 5.3 presents a study of a real industrial system:
the instrument panel. This case was obtained from SAAB automotive. This case has
18 software components and between 1 and 18 hardware components. We study opti-
mization of 5 design objectives. To the best of our knowledge, this is the largest case
study on software architecture optimization – esp. of an industrial case. Together these
cases demonstrate the effectiveness of the AQOSA framework. Section 5.4 summarizes
and reflects on the findings of these experiments in this chapter.
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5.1 Case Study 1: Business Report System

The goals of this first case study are (i) to demonstrate the effectiveness of the multi-
objective optimization technique for the software architecture domain, and (ii) the
comparison between some popular existing evolutionary multi-objective optimization
algorithms. The algorithms that we compare are: NSGA-II [DAPM02], SPEA2 [ZLT02],
SMS-EMOA [BNE07] and random search (for the domain of software architecture
design).

The so-called business reporting system (BRS) is a system which lets users retrieve
reports and statistical data about running business processes from a data base. The
original case is described in [MKBR10]. It is loosely based on a real system [WW04].

5.1.1 Business Report System Components

From a component-based software development point of view, BRS is a 4-tier sys-
tem consisting of 8 software components. The WebServer component handles user

Node1WebServer

Dispatcher

ReportingServer1

ReportingServer2 ReportingServer3

ReportingServer4

Database1 Database2

- User Population: 50
- Think Time: 10sec

Figure 5.1: BRS 4-tier components
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requests for generating reports or viewing the plain data logged by the system. It
delegates these requests to a Dispatcher component, which in turn distributes the
requests to four replicated ReportingServers. The replication helps balancing
the load in the system, because the processing load for generating reports from the
database contents is considered significant. The ReportingServers access two
replicated Databases for the business data. Figure 5.1 depicts an overview of this
system.

5.1.2 Execution Scenarios

In addition to a static view of the system, a behavioural view is needed in order to
analyse dynamic quality properties of the architecture such as performance. Like the
original case in [MKBR10], in this case study we also assume that in the usage scenario,
50 users concurrently access the system. Each user requests a report from the system
and then looks at the results for 10 seconds before issuing the next request.

5.1.3 Experiment Setup

In the experiment for the BRS design problem, the following settings are chosen: initial
population size: 100, parent population size: 100, number of offspring is 100, for SMS-
EMOA (100+ 1), reference point: (1, 1, 1), archive size: 100, the number of generations:
500, crossover rate is set: 0.95, and constant mutation probability: 0.01. AQOSA
was run 15 times (≈ 3 hours per run) for each of the evolutionary multi-objective
algorithms (NSGA-II, SPEA2, and SMS-EMOA), and also for random search. It was
run on a computer with a 2-core processor (each core runs 3.16GHz and 6MB cache)
and 2GB memory, using Java platform version 6.

5.1.4 Experiment Results

The resulting set of optimal solutions is visualized in a 3D Pareto front with respect to
objectives response time, CPU utilization, and in Figure 5.3a. An interesting finding
is that the resulting Pareto front is partitioned into several segments (7 segments in
this typical run, in Figure 5.3a). By identifying (using different colors for different
topologies) and mapping each individual from the set of solutions to the corresponding
design architecture topology, it is observable that solutions from same segmentation
share the same architectural topology: Solutions from the same segmentation share
the same number of processor nodes. This could be the result of discontinuities in the
search space caused by structural transitions.

For comparison between random search and evolutionary algorithms, in Figure 5.3b
a 3D plot of random search is also presented. As can be seen, fewer segments (5 in this
typical run) have been found by random search. In Figures 5.2a and 5.2b two different
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Figure 5.2: 2D Pareto front comparison for Business Report system

(a) Cost vs. CPU utilization Pareto front (b) Cost vs. Response time Pareto front

Figure 5.3: 3D Pareto front comparison for Business Report system

(a) 3D Pareto front for SMS-EMOA algorithm (b) 3D Pareto front for random search

Pareto fronts of two quality attributes (cost vs. CPU utilization and cost vs. response
time) are depicted.

The boxplots of the hypervolume indicator with reference point (1, 1, 1)T for solu-
tion sets for NSGA-II, SPEA2, SMS-EMOA, and random search (for a set of 15 runs) are
presented in Figure 5.4. From the boxplot (Figure 5.4), it can be seen that SMS-EMOA
shows slightly better performance compared to the other algorithms. Random search
(even with unbounded archive size) shows the worst performance by far.
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Figure 5.4: The boxplots of the hypervolume indicator over 15 runs

5.2 Case Study 2: Cruise Control System

This section discusses a case study about a cruise control (CC) system. This is a safety
critical embedded systems from the automotive domain. Our case has been derived
from the Vehicle Control system described by Gonzalez-Huerta [GH11]. It is loosely
based on Control system described by Hudak et al. [HF07]. The goal of the cruise
control system is to maintain a constant speed which is set by the driver. Practically,
the system maintains a speed within some (small) interval around the set target speed.

5.2.1 Cruise Control Components

The cruise control system maintains the vehicle speed at the pre-determined value
(target value) by storing the speed of the wheel rotation when the speed value is set
and attempts to keep the throttle actuator at a position to maintain the vehicle speed
at the target value. As the road inclination changes, the vehicle speed changes, and
the throttle position should change to maintain the vehicle speed. The control system
observes the speed difference between the current speed and the target value and either
decreases or increases the throttle actuator position to counter act the speed differential.
The algorithm to accomplish this is based on control theory.
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Figure 5.5 depicts the flow of the data in CC system in Use Case Maps nota-
tion [ALBG99]. The system contains the following six components that aim to generate
four output signals:

• IN_CONTROL Component: This component controls the input signals. It receives
the brake pedal status and engine status which are its most important signals.
It also receives the driver speed panel signals, to enable him to control the car
speed. It calculates its output based on the values of input signals.

• DESIRE_SPEED Component: This component computes the desired speed based
on the current car speed and signals from controller. It reads the selected speed
and selected distance signals and generates the desired speed signal for the next
4 components by applying the control law.

• AIRBAG Component: This component generates airbag settings. It is responsible
for sending proper airbag signals in case of collision.

• SECURITY BELT Component: In case of hard braking this component should
send signals to the security belts. It receives data from two sensors (i) the obstacle
sensor which is responsible for detecting obstacles on the road, and (ii) the
distance sensor which is responsible for calculating distances to the next car.

• THROTTLE Component: This component is responsible for configuring the set-
tings of the car throttle. It converts the relative speed into a throttle setting for
the throttle actuator.

• BRAKE Component: This component should activate the car brakes when needed.
This component only works in case of decreasing speed. This component converts
the relative speed into a brake setting for the brake actuator.

5.2.2 Execution Scenarios

For this experimental study, we use the following scenario: a 2-second (2000ms)
scenario is defined. At t = 1900ms, the obstacle sensor recognizes an obstacle in
front of the car. Then, the cruise control system should react to this event within the
predefined deadlines. Prior to this major event, the following periodic events happen
continuously:

1. Every 50ms: a signal is sent for security belt settings,

2. Every 100ms: a signal is sent for airbag settings,

3. Every 150ms: a signal is sent for throttle and brake settings.
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Figure 5.5: Use Case Maps notation of Cruise Control system

The system should generate 4 signals on its outputs. Based on the system requirements,
these are the system deadlines:

• 50ms for security belt signal output,

• 80ms for airbag signal output,

• 30ms for brake signal output,

• 100ms for throttle signal output.

5.2.3 Experiment Setup

For solving the CC system design problem, a repository which consists of the following
hardware components, has been considered:
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Figure 5.6: 2D Pareto front comparison for cruise control system
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• 28 Processors types: ranging over 14 various processing speeds from 66MHz to
500MHz. Each of these has two levels of energy consumption. A processor is
more expensive if it has a smaller chance of failure.

• 15 Buses: ranging over five types of bandwidths (128, 160, 192, 224 and 256 kbps)
and each type has three variants with different latencies (1, 3 and 5 ms). Again, a
bus is more expensive if it supports higher bandwidth or smaller time delay.

The AQOSA optimization was run with the following parameter settings on a
computer with a 2-core processor (each core runs 3.16GHz and 6MB cache) and 2GB
memory: initial population size (α) = 100, parent population size (µ) = 50, number of
offspring (λ) = 50, archive size (with crowding type) = 50, number of generations =
10000, crossover rate is set to 0.95.

5.2.4 Experiment Results

The 2D Pareto fronts in Figure 5.6 show the trade-off between objectives. Improving
one dimension often implies a decrease of the other dimension. Different colors in the
plots correspond to different numbers of nodes in the architecture: black for 1-node,
orange for 2-node, magenta for 3-node, blue for 4-node, green for 5-node and red for
6-node architectures. As can be seen there is no black node which means AQOSA could
not find an optimal solution with a 1-node architecture. As can be seen, the results of
this case study is not clearly segmented like the previous case study, but still similar
architectures are close to each other.

In Figure 5.7 a 3D Pareto front of a set of optimal solutions is depicted. It shows the
trade-off between Cost vs. CPU utilization vs. Response time. The colors in the plot
are the same as the color in the 2D plots.
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Figure 5.7: 3D Pareto front for cruise control system

5.3 Case Study 3: SAAB Instrument Cluster Sub-System

The goal of this case study is to explore in what aspects meta-heuristic optimization
improves the process of designing architectures for a set of given quality attributes in an
industrial context. This real-world case study shows how an architecture optimization
framework helps system architects make better decisions by complementing their
domain knowledge and experience.

This study was conducted at Saab Automobile AB in order to evaluate and validate
the AQOSA framework in a large industrial design problem. To enable the validation
of the results, an existing realization for the Saab 9-5 Instrument Cluster Module
ECU (Electronic Control Unit, a node in a network) and the surrounding sub-system
have been selected. The aim of the optimization experiment is to find a solution
that is cheaper than the current realization while fulfilling the same requirements
and constraints. This constitutes a fair comparison between the solution proposed
by AQOSA and the current industrial realization. This problem is an ever-existing
problem in the automotive industry, because of high cost pressure and variation in
constraints during the lifetime of a system design.
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User function Description

Vehicle Speed
Indication

Shows the speed of the car on the speedometer gauge. The vehicle
speed information is based on the wheel speed sensors, filtered and
converted into the chosen metric (either km/h or miles/h).

Coolant
Temperature
Indication

Shows the temperature of the engine coolant on the coolant tem-
perature gauge. The coolant temperature information is based on a
temperature sensor, filtered and compensated to show the correct
temperature.

Selected Gear
Indication

Displays the current automatic gear position of the vehicle. (Possible
gear positions are P, R, N, D, and L.) The information is based on
position sensors in the Automatic Gearbox.

Engine Speed
Indication

Shows the engine revolutions per minute information on the
tachometer gauge. The engine speed information is based on the
crankshaft sensor, and filtered before it is shown.

Odometer
Indication

Shows the distance travelled by the car. The odometer is based on
the wheel speed sensors, filtered and converted into distance in the
chosen metric (either km or miles).

Ignition Switch
Power Moding

The global system power mode in the car. The system power mode
information is based on the ignition key switch, with the possible
positions OFF, ACCESSORY, RUN, and CRANK. This information is
transmitted to all parts of the system.

Outside Air
Temperature
Indication

Shows the outside temperature on the display. The outside tem-
perature information is based on a temperature sensor, filtered and
compensated to show the correct temperature.

Low Washer
Indication

Notifies the driver when the windshield wiper fluid level is low. The
notification is based on a fluid level switch.

Table 5.1: Description of user functions for the SAAB Instrument Cluster sub-system

5.3.1 Instrument Cluster Components

The purpose of the Instrument Cluster sub-system is to provide the driver with infor-
mation that is required when driving the car. The information is processed by user
functions based on sensor values, and presented on gauges or displays located in front
of the driver. The user functions (and their input/output devices) included in the study
are shown in Table 5.1.

User functions like the ones in Table 5.1 can be complex due to regulations, safety
properties, variation between different car models, or other quality constraints. In
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Figure 5.8: Component diagram of SAAB Instrument Cluster sub-system



62 Case Studies

general, user functions have to satisfy multiple requirements and quality constraints.
User functions are specified and implemented using one or more software components.
Figure 5.8 shows the component diagram of the Instrument Cluster sub-system. The di-
agram shows how the software components are connected to satisfy the user functions
in Table 5.1. Figure 5.8 also illustrates the size and complexity of this case.

5.3.2 Execution Scenarios

The user functions in Table 5.1 are typically triggered by events captured by their input
devices (sporadic tasks), or by an invocation from a scheduler within the sub-system
(periodic tasks). These tasks were defined by describing changes in switch/sensor
values. The sporadic tasks are defined in Table 5.2 and the periodic tasks are defined in
Table 5.3.

As an example of a stimulus and system response for a sporadic task we will look at
the first task in Table 5.2. The DriverDoorAjarSwitch detects that the driver door
is opened while the vehicle is parked and the engine is OFF. Then the Odometer value
shall be displayed within 500ms. The other tasks in Table 5.2 are of similar kind.

As an example of a stimulus and system response for a periodic task we will look
at the first task in Table 5.3. The first periodic task is executed when the engine is
running and the vehicle speed is changing. Then the VehicleSpeed signal shall
be transmitted periodically each 100ms, the VehicleSpeedDisplayValue shall be
calculated periodically each 100ms, and the Vehicle Speed pointer shall begin to move

Stimulus System response

IgnitionSwitch = 0 (OFF) ∧

DoorAjarSwitch : False→ True

Odometer shall be displayed within 500 ms

IgnitionSwitch = 0 (OFF) ∧

TripStemButton : False→ True

Odometer shall be displayed within 500 ms

IgnitionSwitch : 0 (OFF) → 2 (RUN) The Engine Speed pointer shall begin to move
to the correct position within 150 ms

IgnitionSwitch : 0 (OFF) → 2 (RUN) The Vehicle Speed pointer shall begin to move
to the correct position within 150 ms

IgnitionSwitch = 2 (RUN) ∧

WasherFluidSensor : False→ True

Low Washer Fluid Indicator shall be illumi-
nated within 250 ms

IgnitionSwitch = 2 (RUN) ∧

GearLeverPositionSwitch : 1 (P) → 4 (D)

Driving gear position shall be displayed
within 100 ms

Table 5.2: Sporadic tasks included in SAAB Instrument Cluster sub-system
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Stimulus System response

IgnitionSwitch = 2 (RUN) ∧

VehicleSpeedSensor :

0→ 100km/h

VehicleSpeed signal shall be transmitted periodically
each 100 ms. VehicleSpeedDisplayValue shall be
calculated periodically each 100 ms. The Vehicle Speed
pointer shall begin to move to the correct position within
150 ms.

IgnitionSwitch = 2 (RUN) ∧

CrankshaftSensor :

0→ 5000rpm

EngineSpeed signal shall be transmitted periodically
each 100 ms. EngineSpeedDisplayValue shall be
calculated periodically each 100 ms. The Engine Speed
pointer shall begin to move to the correct position within
150 ms.

IgnitionSwitch = 2 (RUN) ∧

OutsideTempSensor :

0→ 100%

The outside air temperature shall be calculated once
every second. The outside air temperature shall be dis-
played within 100 ms.

IgnitionSwitch = 2 (RUN) ∧

CoolantTempSensor :

0→ 100%

EngineCoolantTemp signal shall be transmitted pe-
riodically each 100 ms. CoolantDisplayValue shall
be calculated periodically each 100 ms. The Coolant
Temp pointer shall begin to move to the correct position
within 150 ms.

Table 5.3: Periodic tasks included in SAAB Instrument Cluster sub-system

to the correct position within 150ms. The other tasks in Table 5.3 are of similar kind.

As stated before, user functions like the ones in Table 5.1 are typically implemented
by one or more software components. We use sequence diagrams to model the collabo-
ration among these components. Sequence diagrams represent specific scenarios. The
use of sequence diagrams was a convenient way of capturing the information needed
for AQOSA. It required domain knowledge to create them, especially to understand
how the components interact and how to add the timing constraints. Ten sequence dia-
grams are made (as shown in Figures 5.9 to 5.18), and the sequence diagrams contain
between 3 and 6 software components with 4 components as the average.

These sequence diagrams need to be enhanced with information required for
AQOSA quality attributes evaluation process. As such, AQOSA requires the number
of cycles for executing each operation is needed. The number of execution cycles for
each operation was obtained by analyzing the source code of the component with the
SCoPE simulation framework [PHS+04]. Components for which the source code was
not accessible, were analyzed manually by reading the requirement specification and
comparing this to similar components, to estimate the number of execution cycles. This
information is added next to the activation on the sequence diagram. AQOSA also
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requires the number of bytes being sent in order to compute communication loads.
The number of bytes sent in each message was obtained by calculating the size of the
data that is sent. This information is added below the messages.

Here, the first sequence diagram is discussed in details. The other sequence dia-
grams are similar, and follow the same principles. For example, as described in the first
sequence diagram in Figure 5.9, the operation CalculateOAT() takes 2744 cycles to
execute. This number of execution cycles for the CalculateOAT() operation was
obtained by analyzing the source code of the ControlOutAirTemp component with
the SCoPE simulation framework. Also in the same diagram (Figure 5.9), we see that
the size of message CalculateOAT() is 1 byte.

In addition to the information above, AQOSA also needs the timing constraints
described in Table 5.2 and Table 5.3. This information was added to the sequence
diagram in a standard way to the left of the sequence diagram and with the help of
notes. Again, an example from the first diagram is that on the left side in Figure 5.9,
we see that the maximum delay for the whole scenario should be less than 100ms. The
note added to the message ObtainOAT() constrains it to be invoked each 1000ms.

As can be seen in Figure 5.9, there are three actors (User, OAT Sensor, and Dis-
play) and three software components (ReadOATSensor, ControlOutAirTemp, and
Display_Engine). After these sequence diagrams have been created, it is a simple
task to feed this information into AQOSA framework.

Constraint Description

1 Wheel Speed Sensor shall always be connected to the Brake Module
2 Crankshaft Sensor and Engine Coolant Temp Sensor shall always be

connected to the Engine Module
3 The Brake Module and the Engine Module shall always be connected to

a HS CAN bus

Table 5.4: Deployment constraints for SAAB Instrument Cluster sub-system

The user functions (see Table 5.1) and the timing constraints (see Table 5.2 and
Table 5.3) are needed to obtain the required input to AQOSA, but there is one more
important type of constraint for this domain. Deployment constraints state which
software components may or may not be mapped onto whith hardware components.
The deployment constraints used in our case study are stated in Table 5.4.

In the following, the sequence diagram for each user function of the system is
depicted. It contains the deadline and the required number of cycles for each operation.
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Outside Air Temperature Indication

Figure 5.9 depicts the sequence diagram of OutsideAirTemperatureIndication.
As already mentioned, it consists of three actors (User, OAT Sensor, and Display) and
three software components.

ReadOATSensor is being called every 100ms. ReadOATSensor itself gets data
from the sensor and calls ControlOutAirTemp. After that, ControlOutAirTemp
consequently calls Display_Engine to display proper information. The deadline for
this task is 100ms.

Figure 5.9: Sequence diagram of OutsideAirTemperatureIndication user function
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Vehicle Speed Indication

Figure 5.10 depicts the sequence diagram of VehicleSpeedIndication. It is also a
periodic task, in which ReadWheelSpeedSensors component is being called every
100ms. It gets needed data from the wheel sensors and calls the ControlWheelSpeed
component. Then, ControlWheelSpeed, calls EngineVehicleInterface, and it
calls ControlVehicleSpeedGauge, and it calls Gauge_Engine respectively. At the
end, Gauge_Engine sends data to physical or electronic vehicle speed gauge. The
deadline for this task is 50ms.

Figure 5.10: Sequence diagram of VehicleSpeedIndication user function
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Vehicle Speed on Start

Figure 5.11 depicts the sequence diagram of VehicleSpeed_onStart. It is more or
less similar to the previous one, but this task is a sporadic task, instead of a periodic
one. Hence, it only happens when the driver turns the ignition switch. As can be
seen from the diagram, the components interact with two sensors, Ignition Switch, and
Wheel Speed Sensors. The interactions between the components are quite similar to the
previous one. However, the deadline for this task is 150ms.

Figure 5.11: Sequence diagram of VehicleSpeed_onStart user function
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Engine Speed Indication

The sequence diagram for EngineSpeedIndication is depicted in Figure 5.12. It is
a periodic task. It consists of of three actors (User, Crankshaft Sensor, and Engine Speed
Gauge) and three software components. At the start, the EngineVehicleInterface
component is being called every 100ms. It gets needed data from the crankshaft
sensor and calls the ControlEngineSpeedGauge component. It also adjusts the
data and calls the Gauge_Engine component. After that, Gauge_Engine sends data
to physical or electronic engine speed gauge. The deadline for this task is 50ms.

Figure 5.12: Sequence diagram of EngineSpeedIndication user function
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Engine Speed on Start

The sequence diagram for EngineSpeed_onStart is depicted in Figure 5.13. Again,
it is quite similar to the previous one, but it is a sporadic task. Therefore, we can see
Ignition Switch sensor is involved in the sequence. The deadline for this task is 150ms.

Figure 5.13: Sequence diagram of EngineSpeed_onStart user function
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Coolant Temperature Indication

CoolantTemperatureIndication is another periodic task. Figure 5.14 shows the
sequence diagram for it. As shown in the diagram, the EngineVehicleInterface
component is being called every 100ms. It gets the required data for this task from the
Engine Coolant Temperature Sensor and calls the ControlCoolantTempGauge compo-
nent to adjust the data. Then, ControlCoolantTempGauge calls Gauge_Engine,
and finally, it sends data to the physical needle. The system has 150ms time to finish
this task.

Figure 5.14: Sequence diagram of CoolantTemperatureIndication user function
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Selected Gear Indication

The sequence diagram of SelectedGearIndication is shown in Figure 5.15. This
task is a sporadic task and it is being triggered by Lever Position Sensor. When this
event happens, TransmissionVehicleInterface will be called. It sends the data
for the ControlGearSelectedIndication component to interpret the data. After
that, it manipulates the data and sends it to Display_Engine to be displayed for the
User. The deadline for this task is 100ms.

Figure 5.15: Sequence diagram of SelectedGearIndication user function
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Odometer Indication on Trip Stem Button Activation

This is a sporadic task which will be run when the user pushes the Trip Stem Button.
Figure 5.16 depicts the sequence diagram of it. It interacts with an external system
named Control Odometer Storage which stores odometer data for the future retrieval
purposes. As can be observed from the diagram, after the trigger event happens,
the ReadTripStemButton component is called. It calls the ControlOdometer

component. This component interacts with an external system and then sends proper
data to Display_Engine to be displayed on the dashboard panel. The deadline for
this task is 500ms.

Figure 5.16: Sequence diagram of OdometerIndication user function on Trip Stem But-
ton Activation event
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Odometer Indication on Door Ajar Activation

This is a sporadic task is again quite similar to the previous one, however it will be
run when the driver opens the car’s door. Figure 5.17 depicts the sequence diagram of
this task. It also interacts with the external system of Control Odometer Storage and its
deadline is 500ms. The main sequence of data and components calling is the same as
previous one.

Figure 5.17: Sequence diagram of OdometerIndication user function on Door Ajar
Activation event
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Low Washer Indication

The sequence diagram for LowWasherIndication is depicted in Figure 5.18. Its
sequence is pretty straight forward. The ReadLowWasherLevel component is called
when the switch detects that the washer fluid is at a low level. ReadLowWasherLevel
gets data from the sensor and calls the ControlWasherLevelIndication compo-
nent. It adjusts the data and sends proper information to Display_Engine to be
displayed on the dashboard panel.

Figure 5.18: Sequence diagram of LowWasherIndication user function



Case Study 3: SAAB Instrument Cluster Sub-System 75
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Figure 5.19: Current realization of SAAB Instrument Cluster sub-system

5.3.3 Current Realization

The task for AQOSA is to propose candidate software architectures that are optimized
with regards to five quality attributes: bus utilization, cost, CPU utilization, response
time, and safety. From the proposed realizations, one solution shall be selected based
on the quality attribute values and deployment constraints. The current realization of
the Instrument Cluster sub-system is shown in Figure 5.19. This realization is used
as baseline when validating the results of the study. In Figure 5.19 each box is an
ECU-processor, and the lines between these boxes are communication buses. The
displays and gauges are part of the Instrument Cluster Module (To be consistent with
Saab terminology, the term ’module’ has been used for a hardware node in this case
study).

The hardware data and cost of the current realization will be used as a baseline
for evaluating the proposed solutions. The most important hardware data and the
hardware cost are shown in Table 5.5.

5.3.4 Experiment Setup

For generating new software architectures, a repository of hardware components
was assembled based on predictions of planned system performance and anticipated
market prices;

• 10 Processors: ranging over 5 various processing speeds from 10 MIPS to 100
MIPS. Each of these has two levels of failure rate. A processor is more expensive
if it has more processing power or a lower failure rate.



76 Case Studies

ECU Cost (USD) MIPS

Brake Module 100 80
Central Module 50 60
Door Switch Module 15 10
Engine Module 120 100
Instrument Cluster Module 50 1 60
Transmission Module 50 40

Piece of hardware Cost (USD) kbps

HS CAN (cost/module) 1 500
LS CAN (cost/module) 0,25 33
LIN (cost/module) 0,1 10

Table 5.5: Hardware data and cost

• 4 Buses: with bandwidths of 10, 33, 125, and 500 kbps, and latencies of 50, 16, 8,
and 2 ms. A bus is more expensive if it supports a higher bandwidth.

As an estimate of the size of the design space of this case study, consider the follow-
ing reasoning: Assume we fix that the architecture has six processors (like the current
realization, see Figure 5.19, and thus exclude many alternatives in hardware topology)
and three bus lines for their interconnections. For these constraints there are 106 · 43

different possibilities, which is equal to 64 · 106 architectures. When also considering
variations in the architecture topologies, this number would be considerably higher.
This design space needs to be searched in an efficient manner.

After defining the above hardware options, AQOSA was run 30 times using
the NSGA-II algorithm with the following parameter settings: initial population
size(α)=2000, parent population size (µ)=100, number of offspring(λ)=50, archive
size=50, number of generations=5000, crossover rate is set to 0.75, constant mutation
probability is 0.01 and all quality attributes are aimed to be minimized.

5.3.5 Experiment Results

Figure 5.20, Figure 5.21, and Figure 5.22 show the results produced by AQOSA for the
Instrument Cluster sub-system. Figure 5.20 contains a set of 2D plots for all pairs of
two out of the five quality attributes that are considered in this design problem. Hence
these depict 2-dimensional views on the resulting 5-dimensional Pareto front. Each
box shows a particular view of the 5D result and the relation between two attributes.

1The design cost driven by "look and feel" requirements for display panel have been excluded because
this is a cost that is common to all solutions.
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Some of the attributes are in conflict like CPU util and cost. Some of the attributes
are positively related, like response time and CPU util, and finally, some of them are
independent such as bus util and safety or response time and safety. Pareto fronts are
used as support for trade-offs between attributes by showing which solutions that are
the best, i.e. Pareto-optimal, and also showing which trade-offs are possible. Different
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Figure 5.21: Response time vs. cost Pareto front

shapes and shades of gray in the plot show solutions with different numbers of nodes
in the architecture: from black square for 1-node, dark gray square for 2-node, gray
square for 3-node, light gray square for 4-node, black circle for 5-node, dark gray circle
for 6-node, and continues up to light gray diamond for 18-node architectures. As can
be seen there are architecture solutions containing 1-, 2-, 3-, 4-, 5-, 6-nodes, and more
nodes up to 18. In Figure 5.20 the "∗" sign shows the current realization (see Figure 5.19).
Figure 5.21 shows a zoom-in on the Pareto front of Response time vs. Cost. The Pareto
fronts in Figure 5.20 illustrate that the current realization is not Pareto-optimal. For
example, Figure 5.21 shows that AQOSA found other solutions that are better both in
response time and cost.

Figure 5.22 shows the parallel coordinate plot of the optimized solutions. In this
plot each line (from left to right across the entire diagram) represents one architecture
solution: the (normalized) values for the different attributes of the solution are marked
by the crossing of this line and the vertical attribute axes. From this representation of
the data, it can be observed that no architecture solution is optimal in all attributes.

Next, we discuss some of the proposed solutions in more detail. The cheapest
candidate contains 1 node with a 60 MIPS processor, no communication bus, and
a total cost of 50 USD. The safest candidate contains 7 nodes connected by 8 buses
with a total cost of 459 USD. Table 5.6 shows the attribute values for these candidate
solutions. The current realization (see Figure 5.19) is included as for comparison.
In Table 5.6, bus utilization is shown as average value (1.0 represents maximum
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Candidate Bus Util Cost CPU Util Response time Safety

Cheapest 0 0.050 0.164 0.191 0.412

Safest 1.62E−4 0.459 0.018 0.077 0.409

Current Solution 9.80E−3 0.331 0.026 0.191 0.414

Selected Solution 1.62E−4 0.066 0.110 0.158 0.412

Table 5.6: Quality attribute values for a selection of candidate solutions

utilization), cost is shown in USD/1000, CPU utilization is shown as average value (1.0
represents maximum utilization), response time is shown as the average of response
time relative to deadline for each task, and safety is shown as failure probability rate.
When comparing the attribute values for the cheapest candidate, the safest candidate
and the current solution in Table 5.6, it shows that the cheapest candidate is lowest
in cost but worst in CPU utilization and response time, and that the safest candidate
is best in safety but high in cost and a little worse than the current solution in CPU
utilization.

Safety Response Time Processor Util. Bus Util.Cost

Figure 5.22: Parallel coordinate plot of optimized solutions
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Figure 5.23: Selected solution as proposed realization

The goal of the case study is to find a solution that is cheaper than the current
realization while fulfilling the requirements and constraints. The highlighted area in
Figure 5.22 delineates the area that the architect considers suitable solutions based
on quality attribute values, depicted in a parallel coordinate plot. After analysing
the results of applying AQOSA and considering all attributes and constraints, an
overall best solution was identified. In Figure 5.22, the bold line represents the selected
solution. It contains 2 nodes: one 60 MIPS processor and one 10 MIPS processor,
respectively. 12 components are deployed on the 60 MIPS node, and the remaining 6
components are deployed on the 10 MIPS node. The displays and gauges are part of
the 60 MIPS node. The nodes are connected to a 500 kbps HS CAN bus. The selected
solution is shown in Figure 5.23, and the attribute values are shown in Table 5.6. When
comparing the attribute values of the current solution and the selected solution, it
shows that the selected solution is significantly lower in cost, better in response time,
and slightly better in safety. On the other hand, the selected solution is higher in CPU
utilization than the current realization. This is not regarded as a problem, since the
CPU utilization is still on a low level and the response time is low. The bus utilization
is low in both solutions. So, it can be concluded that the selected solution is a cheaper
and better realization, given the user functions and the attributes in the case study.
This is also confirmed by the Pareto fronts in Figure 5.20 and Figure 5.21, which show
that the selected solution (denoted by a black square symbol) is Pareto-optimal.
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5.3.6 Validation and Discussion of Results

As mentioned earlier, the goal of this case study was to find a solution that is cheaper
than the current realization while fulfilling the requirements and constraints. This is
an ever-existing problem in the automotive industry, because of high cost pressure
and variation in constraints during the lifetime of a system design. The product cost is
important for every industrial sector producing embedded systems in large numbers,
such as the automotive sector. The expected lifetime of an automotive system design
is around 5 – 8 years. This lifetime is challenged by changes in constraints, such as
optional functions becoming standard functions, or hardware parts becoming obsolete.
Therefore, the problem studied in the case study is a real problem in the automotive
industry.

We used the same requirement specifications for AQOSA as was used by the
architects at Saab when designing the current realization. However, for practical
reasons the focus of our case study research was on the most important user functions,
and the most important constraints. Thus, the case study is based on requirement
specifications for an actual industrial design problem.

The candidate architectures produced by the AQOSA optimization framework
were presented to one of the main architects behind the current solution2. He agreed
that the suggested solution by AQOSA is a suitable starting architecture for the next
generation of cars at Saab.

A limiting factor for the accuracy of our results is the method to obtain the number of
execution cycles for an operation. Components for which the source code was available,
were analyzed with the SCoPE simulation framework [PHS+04], to compile the number
of execution cycles. Components for which the source code was not available, were
analyzed manually by reading the requirement specification and comparing this to
similar components, to estimate the number of execution cycles. This was an efficient
way of using the information that was available for each component. A quantitative
accuracy assessment of the results from the AQOSA optimization framework could be
obtained by measuring the quality attribute values of the real system and comparing
to the simulated quality attribute values. This is part of the future work.

Regarding threats to the validity of our results, the main threat is external validity
which concerns generalization of the results outside the context of the study [RHRR12].
The case study was conducted at one automotive company using specifications, soft-
ware, and data from that particular company. The results of the case study suggest that
the architecture optimization framework can be applied to other embedded systems,
but this needs to be assessed by conducting additional case studies in other contexts.

2The architect now works for a different company in the automotive sector.
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5.3.7 Interpretation of Results

The purpose of the AQOSA framework is to support the architect in the early phases
of architecture design, and especially with considering various quality constraints.
So, the underlying approach is to combine the domain knowledge and experience
of the architect with the optimization, simulation, and analysis skills of the AQOSA
framework. The case study illustrates how this combination can solve a practical
problem. The domain knowledge and experience of the architect is needed when
defining the problem to be solved, when creating the models used as input to AQOSA
and when evaluating the output from AQOSA. The optimization, simulation, and
analysis skills of AQOSA are needed when searching very large design spaces, when
analyzing a large number of potential solutions, and when considering various quality
attributes in the analysis.

The case study shows the importance of considering all attributes and constraints
when designing the architecture. If only a subset of the attributes are considered during
design, there is a risk to select a solution that is infeasible with respect to other equally
important attributes. Five quality attributes and three deployment constraints were
considered during design. The theoretical design space is 64 · 106 given the repository
of hardware components. Solving this design problem using the AQOSA framework
required two sources of effor: a manual effort of 113 man hours in for creating the
models of the components (this was largely done based on profiling of source code)
in the repository as well as the behaviour models. Also, some man-hours were spent
on analyzing the output of AQOSA. Additionally, 90 hours of continuous computer
execution time was used for running the AQOSA optimization software. For a next
design problem in the same domain the models of the components and behaviour can
be reused with could reduce the time needed for making an analysis.

We found that the AQOSA framework supports the architect by proposing revo-
lutionary [Axe09] [LH12] architectural solutions. A human architect normally uses
previous architectures as a starting point for new architectures, which might prevent
revolutionary ideas. However, the results from the case study show that AQOSA
proposes very different solutions ranging from 1 hardware node up to 18 hardware
nodes. Architects at Saab also confirmed that they considered AQOSA as a good
tool for generating completely new solution ideas. Nevertheless, it should be noted
that a human architect needs to assess and potentially modify the solutions proposed
by AQOSA. Moreover, the framework uses plug-ins for analyzing several quality
attributes simultaneously, which is important support because considering several
quality attributes simultaneously is a difficult task for a human architect. Hence, by
providing automatic and simultaneous analysis of quality attributes, AQOSA saves
manual effort and development cost.
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5.4 Summary

The studies in this chapter demonstrated the usefulness of software architecture op-
timization framework through 3 different case studies. These studies range from
business information systems to embedded systems in the automotive industry. These
case studies will be used as running case studies for next chapters as well.

The last case in this chapter reports on a real-world large-scale industrial case study
applying a meta-heuristic optimization approach for automated software architecture
design which supports multiple quality attributes. The case shows in an industrial
context how meta-heuristic optimization approaches can improve software architecture
design with respect to multiple quality attributes, and can suggest a wide range of
optimized architectural solutions. Comparing the solutions proposed by AQOSA to
the existing realization shows that AQOSA is able to synthesize efficient solutions
in all quality attributes while fulfilling given constraints. Also, in contrast to human
architects who tend to propose solutions based on previous architectures, AQOSA
proposes revolutionary solutions.

Although the case study shows the saving of manual effort which is beneficial for
time-to-market and development cost, it also shows that the proposed architecture
solutions needs to be assessed by human architects. So, this chapter demonstrates how
an architecture design framework like AQOSA complements the domain knowledge
and experience of the architect.

To summarize, the case studies in this chapter show that meta-heuristic optimization
can improve the process of designing efficient architectures for a set of given quality
attributes in the following aspects:

• efficient search of large solution space

• considers multiple system quality attributes in design and analysis

• proposes revolutionary solutions





Chapter6
New Degrees of Freedom for
Software Architecture Optimization

This chapter addresses RQ2 which is mentioned in Section 1.2:

Can enlargement of the optimization search space help the meta-heuristic
approach to find better architectural solutions?

We know the component-based paradigm makes it possible to easily and automati-
cally create variation of architectural designs. Hence, the component-based paradigm
is key to meta-heuristic optimization approaches, such as genetic algorithms (GA),
to automatically generate new alternative solutions. However, to guarantee that the
variation process does not change the functionality of the system, these approaches
should only consider variations of architectural designs that do not modify the in-
terfaces of components. The ways in which a candidate solution architecture can be
varied without changing the functionality are called Degrees of Freedom.

This chapter presents two novel degrees of freedom for the optimization of software
architectures. These two degrees of freedom are: (i) the topology of the hardware
platform, and (ii) the replication of software components. The results show us that they
can improve the results of the optimization algorithm by enlarging design space. This
chapter analyses these two new degrees of freedom by running a very computationally-
intensive experiment of an industrial case study.

This chapter is structured as follows. First, details of two new proposed degrees
of freedom (DoFs) are discussed in Sections 6.1 and 6.2. After that, with two experi-
ments based on two different systems, the effects of the proposed degrees of freedom
for finding better solutions and enlarging design space have been analysed. These
experiments and theirs results are presented in Sections 6.3, 6.4. Section 6.3 shows an
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experiment based on Cruise Control case study (see Section 5.2) which has been run
with only topology DoF. Section 6.4 demonstrates a larger experiment which is based
on SAAB Instrument Cluster case study (see Section 5.3) and has been conducted with
both of the new proposed DoFs. Lastly, Section 6.5 summarizes this chapter.

6.1 New Degree of Freedom 1: Topology

We start with an example in order to provide a better describe for the topology-DoF:
The case study of [MKBR10] demonstrates the state-of-the-art optimization based on an
initial architecture. Figure 6.1 represents the base topology used in their study. In their
approach, new alternative solutions can only be created by leaving out nodes and/or
buses from this base topology. Hence the manner in which nodes can be connected
is ’hard-wired’ into the initial base topology. Hence in this setting, the optimizer can
achieve architectures with topologies shown in Figures 6.2a, 6.2c and 6.2e. For example,
to achieve topology that depicted in Figure 6.2a the optimizer should keep Node1,
Node2, Node3, Node5, Node7 and Bus1, Bus2, Bus3 and should remove Node4, Node6,
Node8 and Bus4. Similar to this, to achieve Figure 6.2c the optimizer keeps Node2, Node3,
Node5, Node7, Node8 and Bus2, Bus3, Bus4 and removes Node1, Node4, Node6 and Bus1.

The topologies shown in figures 6.2b, 6.2d and 6.2f can not be created from the base
topology. For example, in Figure 6.2d if Bus2 is used, it must be connected to all of
predefined nodes – as is the case in the base topology. In the existing optimization
approaches a bus is either in or out of the architecture. Using our new DoF, we can
create new topologies that contain new nodes and new connections that were not yet
in the original base topology. In theory this makes the search space infinitely large.
However, we use use pragmatic bounds on the size of the solution. These bounds
still allow more variation of solutions that the state-of-the-art, yet limit number of
computations needed by the optimizer within practical scope.
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Figure 6.1: Base topology
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Figure 6.2: Samples of possible and impossible topologies
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6.2 New Degree of Freedom 2: Replication of software com-
ponents

We use an example in order to describe the replication-DoF: Assume an event in a
simple system is being called every 50ms and its deadline is 100ms. The execution
time of the related component on the most powerful processor from repository is
80ms. Because the execution time is larger than the trigger time, the requests miss
their deadlines. In this kind of situations, the replication-DoF opens the possibility to
solutions where the processing is distributed across multiple processor nodes running
in parallel. This allows for a common architectural solution called ’load balancing’.
By applying the load balancing technique, the system can handle multiple request in
parallel and thus increase the throughput of the system.
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(b) Architecture with load balancing DoF

Figure 6.3: Comparing the effect of load balancing DoF

These quality properties could be critical design objectives in business- or safety-
critical systems. Because without having such degree of freedom in generating new
solutions and its related mechanism in performance evaluation, the optimizer generates
solutions which possibly miss some deadlines depends on defined scenarios and load
of the system. For example, in the aforementioned system, if the architecture contains
two instances of one software component, then it can respond to all requests in a way
which meets all deadlines. Figure 6.3 shows the topology that corresponds with the
load balancing pattern in this example.

Because the load balancing technique distributes the load of the system, it affects
the architecture evaluation scores for performance, reliability and utilization. However,
it should be noted that the replication pattern is different from the Voting mechanism
as described in e.g. [LSBB03]. Hence, it can not improve the safety aspect. When a
node in the architecture fails, the system will miss all the assigned requests to that
specific node. So, the other duplicated components do not cover for that failed node.
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6.3 Experiment 1: Cruise Control System

The cruise control (CC) system is a safety critical system from the automotive industry.
Details of this system are described in Section 5.2. Our version of it has been derived
from the VehicleControl system from [GH11], which is based on a system in [HF07].
The main purpose of the cruise control is maintaining a predetermined constant speed
which is set by the driver. The software architecture of the CC system consists of
six software components: IN_CONTROL, DESIRE_SPEED, AIRBAG, SECURITY BELT,
THROTTLE, and BRAKE.

The goal of this experiment is to examine the usefulness of our new topology degree
of freedom. Hence, the experiment was defined in a way to generate a comparison
between optimization with and without the topology DoF. Moreover, since this system
is rather small, it is easy to depict the achieved optimal architectural solutions and
thereby see its coverage of various topologies in the design space.

Node 3 Node 5

Node 1

Node 4 Node 6

Node 2

AIRBAG

IN_CONTROL

DESIRE_SPEED

SECURITYBELT THROTTLE BRAKE

Bus 2

Bus 1

Figure 6.4: Baseline topology for CC system

6.3.1 Optimization Setup

For solving the CC system design problem, a repository which consists of the following
hardware components, has been considered:

• 28 Processors types: ranging over 14 various processing speeds from 66MHz to
500MHz. Each of these has two levels of energy consumption. A processor is
more expensive if it has a smaller chance of failure.
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• 15 Buses: ranging over five types of bandwidths (128, 160, 192, 224 and 256 kbps)
and each type has three variants with different latencies (1, 3 and 5 ms). Again, a
bus is more expensive if it supports higher bandwidth or smaller time delay.

The AQOSA optimization was run with the following parameter settings: initial
population size (α) = 100, parent population size (µ) = 50, number of offspring (λ) =
50, archive size (with crowding type) = 50, number of generations = 10000, crossover
rate is set to 0.95. We ran this experiment 50 times in total (25 times for both with- and
with-out topology DoF). In the optimization without the topology DoF we used the
baseline topology depicted in Figure 6.4. On the other hand, in the optimization with
the topology DoF, the approach generates new topologies by itself and no baseline was
used. This alleviates the architects from creating a based line architecture.
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Figure 6.5: Boxplot comparison of optimization results with and without topology DoF
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6.3.2 Experiment Results

Figure 6.5 shows the difference between optimization with and without the topology
DoF. It shows the boxplot chart of 25 runs with topology DoF and 25 runs without it,
for response time and processor utilization objectives. In both graphs, lower values for
objectives indicate better solutions. Figure 6.5a demonstrates that the with-topology
approach converges to solutions that are approximately 35% better for response time.
Also Figure 6.5b demonstrates that optimizing with topology DoF finds solutions with
on average a 12% better system processor utilization.
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Figure 6.6: Pareto front of Processor utilization vs. Cost

Because the optimization of this case study considers five objectives, there are
10 2D Pareto fronts for different pairs of objectives. Figure 6.6 shows one of these
fronts for the objectives Processor utilization and Cost. Each point in the plot depicts
an architectural solution. The 2D Pareto fronts show the trade-off between objectives.
Improving one dimension often implies a decrease of the other dimension. Different
colors in the plots correspond to different numbers of nodes in the architecture: black
for 1-node, orange for 2-node, magenta for 3-node, blue for 4-node, green for 5-node
and red for 6-node architectures. As can be seen there is no black node which means
AQOSA could not find an optimal solution with a 1-node architecture.
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Moreover, to demonstrate that the approach can generate various types of topolo-
gies, one 5-node architecture (Figure 6.7), one 4-node architecture (Figure 6.8), one
3-node architecture (Figure 6.9) and one 2-node architecture (Figure 6.10) out of 50
optimized solutions have been chosen. These are highlighted in Figure 6.6 with the
filled squares as well.
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Figure 6.7: Arch. A: Sample of 5-node topology
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Figure 6.8: Arch. B: Sample of 4-node topology
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Figure 6.9: Arch. C: Sample of 3-node topology
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Figure 6.10: Arch. D: Sample of 2-node topology

6.4 Experiment 2: The SAAB Instrument Cluster System

This experiment is conducted based on the real world industrial system of the SAAB
Instrument Cluster sub-system. The system is described in Section 5.3. It consists
of 18 components as depicted in Figure 5.8. The purpose of the Instrument Cluster
sub-system is to provide the driver with information that is required when driving
the car. The information is processed by user functions based on sensor values and
presented on gauges or displays located in front of the driver.

The goal of this computationally-intensive experiment is to examine the usefulness
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of both of the two new proposed degrees of freedom within the software architecture
optimization process. Therefore, for this reason two comparison were targeted for this
experiment: (i) comparing of best of achieved values for different objective functions,
(ii) comparing the hypervolume indicators of the entire sets of optimal solutions.

6.4.1 Optimization Setup

For solving the Instrument Cluster system design problem, a repository that can use
the following hardware components has been considered:

• 22 types of Processor nodes: ranging over 14 various processing speeds from
66MHz to 400MHz. Each of these has two levels of probability of failure. A
processor is more expensive if it has a smaller chance of failure. (See lines 368 to
389 in Listing A.1)

• 4 types of Bus nodes: ranging over bandwidth (10, 33, 125, and 500 kbps) and
each type has different latency. Again, a bus is more expensive if it supports
higher bandwidth and less time delay. (See lines 390 to 393 in Listing A.1)

After defining the above hardware options, AQOSA was run with the following
parameter settings: initial population size (α) = 1000, parent population size (µ) = 100,
number of offspring (λ) = 50, archive size = 50, number of generations = 5000, crossover
rate = 0.95, constant mutation probability = 0.01.

For comparing optimization with and without these new DoFs, three separate sets
of experiments set have been defined:

1. Experiment Set (1):
Optimization without topology- and replication- DoFs. AQOSA supports general
DoFs which are mentioned in Section 4.4.2, except topology DoF.

2. Experiment Set (2):
Optimization with topology degree of freedom. AQOSA support all DoFs which
are mentioned in Section 4.4.2 but not replication-DoF.

3. Experiment Set (3):
Optimization with topology- and replication- degrees of freedom. AQOSA sup-
port all DoFs which are mentioned in Section 4.4.2 plus replication-DoF.

Each experiment set was run 30 times (90 experiments in total). For running
experiment set (1), the baseline topology depicted in Figure 5.19 was used. On the other
hand, for experiments sets (2) and (3), the AQOSA framework generates topologies by
itself. In other words, they are not based on any baseline architecture.

Running on a powerful computer with a 12-core processor (each core runs 2.67GHz
and 12MB cache) and 48GB memory, each experiment took between 1 to 2 hours. In
total, the whole experiment took nearly 1 week of continuous computation.
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Figure 6.11: Boxplot comparison of three experiments sets
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6.4.2 Experiment Results

Figure 6.11 shows the differences between optimization with and without new DoFs.
It shows the boxplot chart of 30 runs for each experiment set. It demonstrates the
achievement of best solution in different objectives. In all of four graphs, lower values
for objectives indicate better solutions because the optimization process was set to
minimize all objectives values.

From these graphs, different effects for different objectives can be observed. For
example, it shows us that for the processor utilization and cost objectives, the two new
degrees of freedom significantly (approximately 65% and 75%, respectively) improve
the results found by the optimization process: there are quite big improvement in these
two objectives. For the objective safety, the two new DoFs slightly help in finding
better solutions. And finally, for the objective bus utilization no improvement can be
discovered as the results of using the two new degrees of freedom.

We expected that if the replication-DoF would have an effect, then this effect
would mostly likely be large for the CPU utilization objective. Hence, to analyse the
effectiveness of this DoF we compare the CPU utilization of experiment set (2) with
that of experiment set (3). However, in Figure 6.11b both are far better than the results
of experiment set (1). Figure 6.12 shows the boxplot chart of best CPU utilization in 30
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Figure 6.12: Best of Processor utilization for experiment sets (2) and (3)
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runs only for experiment sets (2) and (3). Again, a lower value indicates a better CPU
utilization. This means that running the algorithm with this DoF ended up with better
solutions regarding the CPU utilization objective. Hence, the graph demonstrates
notable improvement for the CPU utilization objective by using the replication-DoF.

To represent the coverage of all of five objectives, Figure 6.13 depicts a comparison
of hypervolume indicators for three experiment sets. In this graph, higher values mean
better coverage of the design space. We set reference points in hypervolume calculation
to 2 (all values are between 0 and 1), because fix topology optimization concentrate on
one region but optimization with new DoFs try to find solutions even in the boundary
regions. So, reference points were defined a little far from boundaries. As can be seen
in the graph, two experiment sets with the new DoFs perform considerably better
than experiment set (1). Also, since the boxplot of experiment set (1) shows a smaller
variance, it can be concluded that this approach finds solutions from a more limited
area of the design space. Of course, experiment sets (2) and (3) depend, like any genetic
algorithm, on sufficient randomness in the optimization process in order to achieve
good coverage of the design space and hence in finding optimal solutions.
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Figure 6.13: Boxplot comparison of the hypervolume of archive sets
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6.5 Summary

This chapter studied the improvements that can be obtained by introducing new de-
grees of freedom in the architecture representation (RQ2). In this chapter two novel
degrees of freedom were introduced: (1) a new method for varying the topology of
system architectures, (2) allowing architecture to replicate software component in-
stances. More degrees of freedom essentially enlarge the search space, and hence allow
evolutionary algorithms to find better solutions. By running a very computationally-
intensive experiment on an industrial case study, it was shown that optimization using
this approach indeed finds better system architectures. These experiments bring empir-
ical evidences that prove better solutions can be found by using these new degrees of
freedom. Moreover the approach was still computationally feasible.

This method also opens the doors for the next research question in the next chapter:
We would like to introduce knowledge-directed search. To this end, we envision that
we first diagnosing bottlenecks in an architecture design and then apply suitable archi-
tecture tactics as transformation of this bottleneck of the architecture which removes or
reduces this bottleneck. Topology variation is fundamental for this method because it
is not possible to apply many common tactics without having the topology DoF in the
software architecture. Moreover, using the DoF introduced in this chapter it is possible
to develop a load balancing search operator and apply it in a smarter targeted manner.
This approach could be very useful in design problems with hard deadline such as
embedded systems.



Chapter7
Heuristic-based Application of
Search Operators

To make the optimization process faster, we are going to introduce problem-specific
search operators. Such a search operator exploits knowledge about the problem domain
to change the candidate solutions into one that is expected to be an improvement. This
chapter proposes an answer to RQ3 defined in Section 1.2:

In which ways can meta-heuristic optimization be improved in order to
make the process of reaching optimal architectural solutions faster?

According to the literature, it is known that using problem-specific operators can
be beneficial for optimization approaches [ABG+14] [TK11]. However, because we are
considering multiple objectives for architecture optimization, new challenges rise. The
first challenge is that a heuristic technique usually improves only one specific quality
attribute and as a result it may deteriorate other objectives. The second challenge
is that in multi-objective optimization problems (more than 3 objectives) comparing
the results of two optimization processes is difficult because the solutions are mostly
non-dominated compared to each other. So, it is not trivial to figure out what is the best
way of combining the heuristic-based search operators for multiple objectives. In this
chapter, an experiment was set up to compare various combinations of heuristic-based
search operators for an embedded system architecture problem with four objectives
based on a optimality-measure called ‘Averaged Hausdorff distance‘.

This chapter is structured as follows. Section 7.1 introduces the idea of problem-
specific search operators in general and then some of their examples for the software
architecture optimization problem specifically. After that, in Section 7.2 we discuss the
use of architectural patterns and anti-patterns in heuristic-based search operators to try
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to reach the optimal solution faster. Section 7.3 introduces different ways of combining
the aforementioned search operators in the optimization algorithm. Section 7.4 shows
the results of an experiment based on a real-world case study and discusses the effects
of these combination of the evolutionary algorithm. Lastly, Section 7.5 summarizes the
chapter.

7.1 Problem-Specific Search Operators

Evolutionary algorithms are often the method of choice for solving optimization
problems with non-standard representations of the candidate solutions (e.g. special
types of graphs). When applying EA to such non-standard domains, in general two
approaches can be distinguished: (i) Introduce a genotype-phenotype mapping to
a canonical representation, e.g. bit-string or continuous vectors on which standard
operations, such as one-point crossover or bit mutation can be performed. (ii) Perform
the search directly on the phenotype space and formulate problem-specific mutation
and recombination operators as transformations of solutions in the phenotype space.
While for the first approach out-of-the-box implementations of EA can be used after the
genotype-phenotype mapping has been established, the second approach requires the
formulation of new initialization, mutation and recombination operators. Often this
effort is rewarded by a (much) higher performance of the EA as comparative studies in
various domains show, for instance in chemical process design [STT+08] and decision
diagram design [DW00].

In [EGS01] mutation and recombination operators on graphs that represent chemi-
cal engineering process flow sheets were introduced in the form of graph rewriting
rules. These rules define patterns in the flowsheet and how these patterns can be
replaced by alternative patterns with a similar function. As opposed to operators that
work with standard representations, this problem specific approach makes it easy to
define transitions that lead from feasible structures to new feasible structures. Such
problem-specific operators have a relatively high probability of finding improvements.
Similar graph-based EA were successfully applied in other domains such as analogue
circuit design [NHAH04]. In software architecture design such direct representations
with tailored operators have not yet been applied.

In the following, we explore some possible problem-specific search operators for
the problem of software architecture design:

7.1.1 Caching for improving performance

Basically, there are two main caching strategies that can be described as patterns
[Rot06]: Primed Cache and Demand Cache. If the data required for performing a
certain computation is known prior to the start of that computation, then the system
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Figure 7.1: Caching pattern

can store it before the computation starts, which is called Primed Cache. However, in
case the data required by a computation can vary for each run, the system can bring
the data into the memory whenever required and keep it for future use. This strategy
is called the Demand Cache pattern.

Figure 7.1 depicts a search operator that transformation an architecture fragment
by introducing a caching-pattern. In this pattern CompB is replaced by a combination
of Cache component and CompB. So, instead of directly calling of CompB by CompA,
CompA calls the Cache component and then, only if needed, it calls CompB.

7.1.2 Voter pattern for improving safety

Masking faults is one of the primary approaches to improve the behaviour of a system
in a faulty environment. N-modular redundancy and N-version programming are

Figure 7.2: Voter pattern
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Figure 7.3: Encryption/Decryption pattern

well-known fault masking methods. These approaches use redundant modules and a
voting unit to hide the occurrence of errors. The voter arbitrates between the achieved
results and produces a single output [LSBB03].

Figure 7.2 depicts the introduction of a voter by means of a transformation (which
can be implemented as a a search operator) with three software replicas. It shows
that CompB is replaced by a combination of three replicated CompB’s and one Voter
component. Now, instead of directly calling of CompB directly from CompA, Voter
collects the votes from each of the three CompB’s, and then forwards the majority
answer to CompA.

7.1.3 Encryption/Decryption for improving security

Encryption provides message confidentiality by transforming readable data (plain text)
into an unreadable format (cipher text). That unreadable cipher text can be understood
only by the intended receiver after a process called Decryption. Decryption makes the
encrypted information readable again.

Figure 7.3 shows this search operator’s transformation. In this CompA is replaced
by a combination of an Encryptor component and a CompA. Also CompB is replaced
by a combination of Decryptor component and CompB. So, CompA and CompB can
communicate securely.

7.2 Heuristic-based Search Operators by Anti-patterns

Architecture- and design-patterns capture expert knowledge about "best practices"
in software design by documenting general solutions that may be customized for a
particular context. They make it possible to reuse the knowledge of software design
and to focus on quality attributes such as performance. Software anti-patterns are
conceptually similar to patterns in that they document recurring solutions to common
design problems (i.e. the "bad practices") as well as their solutions: what to avoid and
how to solve the problems [CMT10].
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Software architecture design patterns look at the positive and constructive features
of a software system, and suggest common solutions. In contrast, anti-patterns look
at the negative and destructive features of a software system, and present common
solutions to the problems that make negative consequences. Bottlenecks affect quality
attributes negatively. Therefore we explore an approach that first detects anti-patterns
and used these as indicators of possible bottlenecks in architectural solutions. Next, a
suitable transformation needs to be applied to remove/reduce the suspected bottle-
neck. In our study we consider four architecture heuristics as problem-specific search
operators. The first two operators are derived from the Concurrent Processing Systems
anti-pattern. As it is stated in [Tru11], "[This anti-pattern] occurs when processing cannot
make use of available processors". In other words, the processes running on the system
cannot use the available resources effectively. This could happen when the processes
are assigned to the processors in a non-balanced way. The other operators address
other quality attributes: cost and reliability. We explain these in more detail in the
subsequent sections.

7.2.1 Search Operator: Component Movement

According to Concurrent Processing Systems anti-pattern, non-balanced assignment of
processes to processors can make the system slow and cause a performance bottleneck.
This operator moves the most resource-intensive component deployed on the highest
utilized processor to the least utilized processor in the architecture.

Figure 7.4 shows a example system with four nodes. “t” represents execution time
of each software component on the deployed node. As can be seen, there may be a
node (node 1) in a software system containing many components which cause a high
utilization. On the other hand, there is another node (node 4) with just one component
and low utilization. Therefore, as a whole, the collection of resources is not used
efficiently.

This anti-pattern suggests a rearrangement of allocating components to available
resources. A more balanced allocation of the components to the nodes, after applying
this anti-pattern, is illustrated in Figure 7.5.

7.2.2 Processor Change for Performance

When there is a processor with high utilization in the architecture, a solution to reduce
utilization is replacing it with a processor more processing power. In AQOSA, there is
a repository of available hardware resources. A processor with higher clock rate can
reduce the overall utilization of the system, so it can be selected for replacement.
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Figure 7.4: Non-balanced distribution of software components

Figure 7.5: Balanced distribution of software components

7.2.3 Processor Change for Cost

Cost is another quality attribute and often important optimization objective. Replacing
a processor with high clock rates are often more expensive. Hence using these to im-
prove utilization often deteriorates the cost objective. Conversely, this operator replaces
the less utilized processors with cheaper ones thereby reduces the cost dimension.
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7.2.4 Processor Change for Reliability

This operator is designed to decrease the probability of failure and consequently
increase reliability. There may be some processors in an architectural solution which
have a high probability of failure. They should be identified and replaced by the
processors with lower probability of failure.

7.3 Combining Search Operators in the Genetic Algorithm

The heuristic search operators we presented in the previous sections are targeted
for improving one particular quality attribute. However, the same operator might
have no effect or might even deteriorate other quality properties. For example, the
’Component Movement’ operator is beneficial for response time and the ’Processor
Change for Performance’ operator is beneficial for processor utilization while they
are not useful for cost and failure probability. The operators ’Processor Change for
Cost’ and ’Processor Change for Reliability’ act the same way in favour of different
objectives.

In order to use these directed search operators in genetic optimization, we must
find some way of using these operators such that a sufficiently broad area of the search
space is covered – so that not one dimension of the objective-function is favoured
over others. Moreover, in order to maintain the important random-aspect of genetic
algorithms, we should find a way in which to combine the directed search operators
with generic GA operators such as mutation and cross-over. In this chapter, the extent
to which heuristic-based search operators can improve multi-objective optimization of
software architecture is studied.

For the experiments in this study, the mating procedure of GA has been modified
as follows: Two parents are needed to be operated on by the search operators and they
generate two offsprings – that are transformed in different ways. Invoking the search
operators could be done in various orders which is called ’Combinations’. So, assume
we have this set of operators:

Operators’ set = { ′swMove ′, ′ pc4Perf ′, ′ pc4Cost ′, ′ pc4Rely ′} (7.1)

Then, we have one function which return generic operators, and two functions to
choose among these operators, which return one operator on each call:

GE() : return generic GA operator. (7.2)

RA(set) : return random operator out of the set. (7.3)

RR(set) : return an operator in round-robin order out of the set. (7.4)



106 Heuristic-based Application of Search Operators

Finally, for generating offspring we need to call two operators which are chosen by
one of aforementioned functions:

Offspring(Parents) = {Child1, Child2}, where:

Child1 = Operator1(Parent), Child2 = Operator2(Parent).
(7.5)

The following combinations of operators are considered for invoking search opera-
tors to act on a pair of parents and to generate two offsprings for the next generation:

7.3.1 Random

For both offsprings, the mating procedure completely randomly selects heuristic-based
operators. Figure 7.6 depicts this combination of anti-patterns. In other words:

Operator1 = RA(set), Operator2 = RA(set). (7.6)

Parents

Child 1 Child 2

Random choice
of operator

Random choice
of operator

Figure 7.6: Random combination of heuristic-based search operators

7.3.2 Sequential

For both offsprings, the mating procedure picks heuristic-based operators sequentially.
It means that it uses the round robin ordering for operators. It is depicted in Figure 7.7.
In other words:

Operator1 = RR(set), Operator2 = RR(set). (7.7)

Parents

Child 1 Child 2

Round-robin choice 
of operator

Round-robin choice 
of operator

Figure 7.7: Sequential combination of heuristic-based search operators



Combining Search Operators in the Genetic Algorithm 107

7.3.3 Random-Sequential

For one offspring, the mating procedure picks a heuristic-based operator in the random
order, and for the other one, it picks the operator sequentially (As depicted in Figure 7.8).
In other words:

Operator1 = RA(set), Operator2 = RR(set). (7.8)

Parents

Child 1 Child 2

Random choice
of operator

Round-robin choice 
of operator

Figure 7.8: Random-Sequential combination of heuristic-based search operators

7.3.4 Half-Random

For one offspring, the mating procedure picks a heuristic-based operator randomly, and
for the other one, it uses the generic operators (Crossover and/or Mutate). Figure 7.9
depicts this combination of operators. In other words:

Operator1 = GE(), Operator2 = RA(set). (7.9)

Parents

Child 1 Child 2

No anti-pattern!
Only generic 
operators

Random choice
of operator

Figure 7.9: Half-Random combination of heuristic-based search operators

7.3.5 Half-Sequential

For one offspring, the mating procedure picks a heuristic-based operator in round
robin order. For another one, it picks a generic operator (As depicted in Figure 7.10). In
other words:

Operator1 = GE(), Operator2 = RR(set). (7.10)
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Parents

Child 1 Child 2

No anti-pattern!
Only generic 
operators

Round-robin choice 
of operator

Figure 7.10: Half-Sequential combination of heuristic-based search operators

7.3.6 Half-Random-Sequential

For one offspring, the mating procedure picks the generic operators (Crossover and/or
Mutate), and for the other one, it switches between random and sequential ordering
from generation to generation. This combination is depicted in Figure 7.11. In other
words:

Operator1 = GE(), Operator2 =

{
RA(set) if generation is even
RR(set) if generation is odd

(7.11)

Parents

Child 1 Child 2

One generation Round-robin,
next generation Random 
choice of operator

No anti-pattern!
Only generic 
operators

Figure 7.11: Half-Random-Sequential combination of heuristic-based search operators

7.4 Experiment

To compare the aforementioned strategies for combining operators, an experiment
was performed using the SAAB Instrument Cluster case study (which was discussed
in Section 5.3). The system represents the Saab 9-5 Instrument Cluster Module ECU
(Electronic Control Unit, a node in a network) and the surrounding sub-systems.
The Instrument Cluster Module is responsible for 8 concurrent user functions. For
providing these functionalities, it should be able to handle 6 sporadic tasks and 4
periodic tasks concurrently.

The goal of the experiment is to compare the combinations of operators, in terms of
the speed by which they find optimal solutions. To this end, we defined an experiment
with the following steps:
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1. First we try to find out what would be the ideal Pareto front. Given that this may
take very long to computer, we use the following as an approximation of this: We
run the optimization process with only the generic search operators for a very
high number of generations. This gives the algorithm enough opportunity to
approximate the ideal Pareto front within a small margin. We used this set of
solutions as the reference Pareto front for comparison with other strategies for
combining search operators.

2. We run the optimization with generic operators (without heuristic-based search
operators) and also with the six strategies for combining the operators (as de-
scribed in Section 7.3, all of them with a fixed number of generations (each
optimization process 20 times). In this situation, better combinations of operators
are expected to achieve better results.

3. As a measure of the quality of the Pareto front that was found, we assess the
distance between the results from step1 and step2. A smaller distance between
the Pareto fronts, means that the combination of operators used in step2 achieve
better results.

7.4.1 Experiment Setup

For step1, we run the optimization with the following parameter settings: number
of generations=200, initial population size(α)=1000, parent population size (µ)=250,
number of offspring(λ)=500, archive size=50, crossover rate is set to 0.95.

For the step2, we run the optimization 20 times for each combination strategy
with the following settings: number of generations=15, initial population size(α)=100,
parent population size (µ)=25, number of offspring(λ)=50, archive size=20, heuristic
rate and crossover rate are both set to 0.95.

At the step3, to calculate the distance between two sets of Pareto fronts (that result
from step1 and step2) we used a measure called ‘Averaged Hausdorff distance‘. Schütze
et al. [SELC12] defined ‘Averaged Hausdorff distance‘ as:

max

( 1
N

N∑
i=1

dist(xi, Y)
p

)1/p

,

(
1

M

M∑
i=1

dist(yi, X)
p

)1/p
 (7.12)

Where X = x1, x2, ..., xn and Y = y1, y2, ..., ym are two Pareto fronts with sizes of N
andM respectively. We set p = 1 for this experiment.

For generating architectural solutions, the set of software components is given by
the SAAB instrumentation cluster software architecture. Note that these components
may be replicated in any actual architecture solution. In addition, the repository
contains the following hardware components that may be used:



110 Heuristic-based Application of Search Operators

• 28 Processors: ranging over 14 various processing speeds from 66MHz to 500MHz;
Each of them has two levels of failure rate. A processor is more expensive if it
has less chance of failure and vice versa.

• 4 Buses: with bandwidths of 10, 33, 125, and 500 kbps, and latencies of 50, 16, 8,
and 2 ms. A bus is more expensive if it supports higher bandwidth.

7.4.2 Experiment Results

Figure 7.12 depicts the differences between the results of optimizations without (gray
box) and with (white boxes) heuristic-based search operators. It shows the boxplot
chart of the distances for each combination of operators (runs of 20 iterations) as
described in Section 7.3 and the reference Pareto front obtained in step1. In the chart,
lower values indicate a better combination strategy because it is closer to the optimal
results. For calculating the distance between Pareto fronts, we normalized the values of
four dimensions and then we used Equation 7.12 to calculate the averaged Hausdorff
distance of two Pareto fronts. Therefore, the vertical axis in Figure 7.12 represents the
averaged Hausdorff distance.
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Figure 7.12: Averaged Hausdorff Distance of different operator combinations
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The plots in Figure 7.12 show that combinations with one generic operator gener-
ated offspring (Half-*) cause boxplots with a higher spread, or in other words, they
are more dependent on luck for finding optimal results. They are more similar to the
results of the optimization with only generic operators. Instead, combinations with
tighter boxplots represent better combinations: independent of the randomness in the
algorithm, they are more likely to find better solutions. Among these latter ones, the
Sequential and Random-Sequential combinations show lower median values and tight
boxes, hence perform the best.

7.5 Summary

In this chapter, (i) the usefulness of problem-specific operators in the software archi-
tecture domain was discussed, and (ii) a comparison between various approaches for
combinations of heuristic-based search operators was performed. To do so, knowledge
of architecture anti-patterns was implemented by means of problem-specific search
operators within an evolutionary algorithm. The case study experiment in this chapter
was defined based on a real world case study and was applied to a 4-objective software
architecture optimization problem. The results of the experiment showed that search
operators for improving one objective can be used in multi-objective optimization con-
text. The results indicated that proper combination strategies for heuristic-based search
operators can lead optimization algorithms to optimal solutions faster. However, for
preventing not getting trapped in suboptimal solutions, room for randomness should
always be accounted for in the optimization (esp. offspring/mating) process.

As future work, it will be interesting to study situations with unbalanced number of
operators in which each operator is forcing specific objective. For example, 3 operators
in favour of one objective and 2 operators in favour of conflicting objectives. Also,
another topic for future work can be studying effects of weighting heuristic-based
search operators on the results of the optimization process.





Chapter8
Software Architecture Optimization
for Software Product Lines

This chapter proposes a solution for RQ4 which is defined in Section 1.2:

In what aspects can search-based approaches improve the process of design-
ing a software architecture for a family of products in a software product
line?

In this chapter, a new search-based approach for generating a set of optimal software
architectural solutions in the context of Software Product Line (SPL) is proposed.
Obviously, this approach is based on our AQOSA framework (described in Chapter 4).
This novel search-based method produces a set of solutions which are suitable for the
range of products defined by various feature combinations. In this SPL-aware method,
AQOSA will also consider feature models as input to the framework and take into
account the relationship between the software components in the architecture and
features in the feature model. Hence, the approach applies the optimization techniques
to each product of the SPL. After that, it analyses the commonality of the optimal
solutions and proposes a set of solutions which are suitable for the range of products
defined by various feature combinations.

This chapter is structured as follows. Section 8.1 discusses the optimization process
for a software product line. It proposes a new process for the purpose of SPL-aware
architecture optimization. It also discusses about required tasks for modelling and
optimization. Then, Section 8.2 introduces an algorithm for obtaining common archi-
tectural solutions out of multiple Pareto fronts for multiple products within a product
line. As validation of the approach, an experiment and its results are presented in
Section 8.3. Finally, Section 8.4 summarizes this chapter.
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8.1 Optimization for SPL

As discussed in Chapter 4, AQOSA is a framework which uses genetic algorithm (GA)
optimization methods for automated software architecture design. The framework
supports analysis and optimization of multiple quality attributes including response
time, processor utilization, bus utilization, safety and cost. In order to extend the
framework, for optimization in the context of product lines, the following extensions
have been made:

• (i) the process of modelling has been upgraded to address the modelling of
features and their relationship to their underlying components,

• (ii) the optimization process has been extended to optimize for a set of different
products,

• (iii) the AQOSA intermediate representation (IR) model has been extended to be
able to store feature model information,

• (iv) a new analysis step has been added after the optimization process, in order
to determine commonality across the solutions for different products of the SPL
among multiple resulted Pareto fronts.

In the following, Section 8.1.1 describes the general process for architecture opti-
mization within the product line. The details of feature modelling and architecture
modelling are discussed in Section 8.1.2. Section 8.1.3 discusses briefly how the opti-
mization part works. Lastly, Section 8.2 describes the commonality analysis algorithm.

8.1.1 Process

Figure 8.1 depicts an overview of the process of our proposed method. It consists of the
following steps which we can categorize into modeling, optimization and commonality
analysis steps:

1. Feature modeling

2. Architecture modeling

3. Connecting features to their implementing software components

4. (Optionally) Defining target products in the product line

5. Evolutionary optimization of software architecture for every product

6. Commonality Analysis among the Pareto front solutions of all products
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Figure 8.1: Process of finding similar optimal architectural solutions from Pareto fronts
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Step 1 and Step 2 are for designing a feature model and an architecture model,
respectively. In Step 3, we define the relationship between each feature in the fea-
ture model and the software components in the architecture model, to specify which
components provide the required functionality of that feature.

In Step 4 which is optional, the architect defines for which predefined products
he would like to apply the optimization. These first four steps are described in Sec-
tion 8.1.2.

Step 5 which is the evolutionary optimization of software architecture will be
repeated for every product selected in Step 4. The results of this step is p sets of optimal
solutions (Assume, the number of predefined products in Step 4 is p). This step is
discussed in Section 8.1.3.

The final step (Step 6 ) is the analysis of commonality between all of solutions in all
Pareto fronts. The proposed approach for this analysis is presented in Section 8.2. The
output of this step is a final set of optimal solutions that are applicable for a range of
products in the SPL.

Listing 8.1: Clafer model
1 car

2 xor ignition_switch

3 key_ignition

4 button_ignition

5 interior_lights

6 xor dashboard

7 simple_dashboard

8 extended_dashboard

9 airbag_system ?
10 front_airbag

11 sides_airbag ?
12 passengers_airbag ?
13 antilock_braking_system ?
14 traction_control_system ?
15 xor stability_control_system ?
16 basic_skid_control

17 extended_skid_control

18 xor cruise_control ?
19 basic_cruise_control

20 adaptive_cruise_control

21 fullyAdaptive_cruise_control

22 theft_alarm ?
23 park_assist ?
24 [stability_control_system => traction_control_system ]
25 [traction_control_system => antilock_braking_system ]
26 [basic_cruise_control => basic_skid_control ]
27 [adaptive_cruise_control => extended_skid_control ]
28 [fullyAdaptive_cruise_control => extended_skid_control ]
29 [button_ignition => !simple_dashboard ]
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8.1.2 Modelling

Feature modelling

In order to define the various features in the product line, the architect should model
them in a product line modeling language. Clafer is one the best-known feature mod-
elling languages and it is used for our feature modelling step. Antkiewicz in [ABM+13]
defines Clafer as a lightweight yet expressive language for structural modelling. It
supports feature modelling and configuration, class and object modelling, and meta-
modelling.

Listing 8.1 shows an example of a Clafer model. It is the textual representation
of the feature model of our case study in Figure 8.2. In Section 8.3, the details of this
model has been described. As can be seen, there are some notations in this textual
representation:

• ? : Question mark notation means optional feature. For example, in Listing 8.1,
airbag_system is an optional feature for a car. However, if a car has airbag_system,
then it should have front_airbag as well.

• [] : Square brackets notation defines constraints in the feature model. These
constraints can be used to define compatible or incompatible features. They are
also used to define feature dependencies.

• => : This notation defines feature dependencies. For example, in Listing 8.1, stabil-
ity_control_system and traction_control_system are both optional features. However,
if a car has stability_control_system, then it should have traction_control_system as
well.

• ! : Exclamation mark means logical negation. For example, in Listing 8.1, if a car
has button_ignition, then it is not possible to have simple_dashboard at the same car.

Architecture modelling

The architecture modelling activities is similar to what is already discussed in Sec-
tion 4.3. The only difference here is that the architect should model features in
AQOSA IR model as well. We know from Chapter 4 that Features branch of
AQOSA IR model in Figure 4.4 is generally optional. However, it is needed to be de-
fined in optimization in SPL context. By using that branch (sub section) in AQOSA IR
model, the architect would be able to define what feature in Clafer model is related
to which component software architecture. This information will be stored by realize
meta-reference which connects Feature meta-class to Component meta-class. It is
not needed to model the relation between features themselves, the realization of each
feature by its implementing components is the focus of this step.
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Connecting features to their underlying software components

After defining the feature model (Step 1 ) and the architecture model (Step 2 ), in this
step (Step 3 ) the architect needs to define the connections of features with their imple-
menting components. These connections will also be stored as part of our AQOSA IR
model. As Figure 4.4 shows, the reference between Feature entities and Component

entities (which is called "realize") defines what are the underlying components for each
specific feature. For the consistency between Clafer model and Eclipse model, we use
the same feature identifier in both models.

Defining target products in the product line

This last step for the modelling is optional which enables the architect to define some
of predefined products among all possibilities within product line. In this way, the
architect can target for optimizing the exact products in the product line. These
predefined products should be modelled in Clafer language. The tool validate the
correctness of them and use them during the optimization process.

However, it is possible to skip this step. In this case, we use the Alloy Anal-
yser [Depb] to explore the features space. Alloy Analyser is a solver that takes model
constraints and finds structures that satisfy them. The architect only needs to configure
the number of products in the product line which he would like to have. The tool
by using the Alloy Analyser calculates all possible feature configurations. Then, it
sorts them based on their resource density. And finally, it picks the evenly distributed
products in a way that covers whole parts the product line.

8.1.3 Optimization

The optimization process for the SPL consists of exactly the same steps which are
described in Section 4.4. But, this process should be executed for each product in the
product line separately. For example, if p is the number of defined products by the
architect in Step 4, then the AQOSA optimizer should be applied p times once for each
product in the SPL. The result would be p Pareto fronts.

8.2 Commonality Analysis

Because the architecture optimization process target optimization of multiple objectives
at the same time, it produces solutions that vary from each other and it is very rare to
have two identical solutions. Therefore, we need an algorithm which allows us to pick
identical solutions, or at least, solutions with minimum distance from each other. We
call it "Commonality Analysis Algorithm". Hence, for analysing the commonality of
the solutions, we use a distance algorithm which is described in Section 8.2.1.
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Input: all Pareto fronts (frontSets)
Output: a list of architectural solutions

foreach Solution s1 in one Front from frontSets do
foreach Front f in remaining Fronts do

foreach Solution s2 in f do
calculate the distance between s1 and s2 ;
if distance < ∆ then

break and continue with next Front f;
end

end
break and continue with next Solution s1;

end
Store s1 in the list of common solutions;

end

Algorithm 1: Commonality analysis algorithm

The final goal is to find a set of optimal solutions which appeared in all Pareto
fronts or that differ with some maximum distance (Distance is defined as the number
of changes which are need for converting one architecture into another). We call this
maximum distance as ∆. It is needed to configure ∆ as a parameter of the method,
before running the optimization process. The commonality analysis algorithm works
as described in Algorithm 1 (Assume p is the number of products which we optimize
the architecture for).

8.2.1 Solutions Distance Calculation

The core part of the commonality analysis algorithm is the calculation of distance
between solutions. To do that, we use an algorithm inspired by the Levenshtein
distance algorithm [PB99]. Our algorithm calculates the number of changes needed
in a hardware platform, to change one solution into another. In other words, each
solution contains a list of processors and a list of buses. Two solutions are considered
equal when they do not require any hardware changes in order to change one solution
into another. However, two solutions are not equal when they require some changes in
order to match the hardware of the other solution.

A change can be one of the following: substitution, addition or removal of a hard-
ware node; a processor or a bus. The costs of these changes are not the same because
changing a processor with another is always easier than modifying (add/remove) an
existing topology, which can also lead to modification of the buses and their connec-
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Input: Two Solutions (s1 and s2)
Output: an integer number as their distance

store two solutions as list of resources;
find which list is longer (longer and shorter);
foreach Resource r in longer list do

if shorter list contains r then
remove r from both list;

end
end
substitution changes = the remaining number of resources in shorter list;
addition changes = (the remaining number of resources in longer list) -
substitution changes;
distance = (substitution changes) + (ω * addition changes);

Algorithm 2: Solutions distance calculation algorithm

tions. Therefore, the algorithm also considers weights for the changes. So, we set the
cost of substitution change such that it is always lower than the cost of an addition
and/or removal change. In particular, we definedω as the weight for this ratio. It is
required to configureω as a parameter of the algorithm. Algorithm 2 details pseudo
codes of this algorithm.

8.3 Experiment for SPL-aware Optimization

To explore the optimization problem addressed in this chapter and to evaluate our
proposed method, we extended a case study based on an existing sub-system from
the automotive industry (described in Section 5.3). We added new features like cruise
control system, airbag system, park assist system, etc., to increase the complexity of the
optimization problem. The goal of the case study is to find a set of optimal architectural
solutions that are applicable, with a minimum of changes, to all of our defined products
within the product line with a minimum of changes. This is a relevant problem in the
automotive industry, because of a large number of vehicle models with varying feature
content that must be supported by the software architecture [EG13].

Figure 8.2 depicts the feature model of the case study (Listing 8.1 shows its textual
representation). A car in our model should consist of at least an ignition switch,
interior lights, and dashboard. In addition, it may optionally have the following
systems: airbag system, anti-lock braking system, traction control system, stability
control system, cruise control system, theft alarm system and park assist system. The
ignition switch can be either key ignition or button ignition technology. Likewise,
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Figure 8.2: Case study feature model
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the dashboard can be either a simple dashboard system or an extended dashboard
system and also the stability control system can be either basic or extended. For the
cruise control system, there are three possibilities: basic cruise control system, adaptive
cruise control system and fully adaptive cruise control systems. For cars with an airbag
system, the front airbags are compulsory. However, it can optionally have side airbags
and/or passengers airbags. Green arrows in the figure demonstrate the dependencies
between the features. In addition, red arrows show mutually exclusive features in our
feature model (e.g. button ignition is not compatible with simple dashboard feature).

8.3.1 Products of SPL

By exploring the feature model, we figured out that, in total 480 various combinations
of feature sets are possible. However in this experiment, we defined the following five
imaginary cars as our products in the product line. They start from a very low-end
model to the high-end full feature product. We have defined them in a way that the
combination of features in each product are logical and feasible in real-world models.
More importantly, they cover the extremes of the design space. Figure 8.3 shows the
distribution of CPU resource claims among all 480 possible products.

To make sure that we cover the whole product line, we calculated the amount of
processing resources that the underlying components claim for each feature configu-
ration. Then, we sorted the list of configurations based on that measure. The result
shows that our defined products are positioned in rank 5, 104, 264, 389, and 480 of the
sorted list, respectively. Hence, we have covered important parts of the product line
spectrum with these five products.

Figure 8.3: Resource claims (CPU cycles) for all possible products in the feature model
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Car1

Figure 8.4 shows the feature configuration of the first car. Car1 is a low-end feature
product. It only consists of front airbags as optional feature, the rest are all mandatory
features that the car should support. Since it is a low-end product, it is designed with a
simple dashboard which means that it can not support button ignition and therefore it
comes with the key ignition feature.

Figure 8.4: Feature configuration for Car1
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Car2

Figure 8.5 shows the feature configuration of Car2. It has all features of Car1, plus the
basic skid control functionality. And because of that feature, it has to have traction
control and anti-lock breaking systems.

Figure 8.5: Feature configuration for Car2
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Car3

Car3, as depicted in Figure 8.6, has an extended dashboard with key ignition. It has
a basic cruise control system and therefore it should have basic stability control and
traction control and anti-lock breaking systems.

Figure 8.6: Feature configuration for Car3
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Car4

Figure 8.7 depicts the feature configuration of Car4. In addition to the features of Car3,
it has a button ignition and an adaptive cruise control system. It also provides the theft
alarm functionality.

Figure 8.7: Feature configuration for Car4
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Car5

Car5 (Figure 8.8) is the very high-end product in our product line. It has all the features
(with the best one selected in mutually exclusive cases).

Figure 8.8: Feature configuration for Car5
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8.3.2 Experiment Setup

To define the experiment context, first we need to determine which quality attributes
are our objectives for optimization. So, we set these five quality attributes as our
optimization objectives; bus utilization, cost, CPU utilization, response time, and
safety.

Second, we set the hardware repository. The following repository of hardware
gathered based on data from the industrial case study:

• 10 Processors: ranging over 5 various processing speeds from 10 MIPS to 100
MIPS. Each of these has two levels of failure rates. A processor is more expensive
if it has more processing power or a lower failure rate.

• 4 Buses: with bandwidths of 10, 33, 125, and 500 kbps, and latencies of 50, 16, 8,
and 2 ms. A bus is more expensive if it supports higher bandwidth.

Finally, we run AQOSA 60 times using the NSGA-II algorithm with these adopted
parameter settings: initial population size(α)=2000, parent population size (µ)=100,
number of offspring(λ)=50, archive size=25, number of generations=500, and all quality
attributes were aimed to be minimized. For commonality analysis, we configuredω
(the ratio for additional change distance to substitution change distance) to 3. Moreover,
we set ∆ = {2, 3, 4, 5, 6, 7} and compared the results of the algorithm for changing the ∆
parameter.

Node1: 100MHz, €15 Node2: 600MHz, €70

Node3: 100MHz, €15

Bus1: 512 kbps,
2ms delay, €1

Bus2: 128 kbps,
8ms delay, €0.5

Figure 8.9: Proposed common solution which is optimal for Car1
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(c) Similar solution which is optimal for Car4
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(d) Similar solution which is optimal for Car5

Figure 8.10: Similar solutions in other Pareto fronts
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# Solutions ∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5 ∆ = 6 ∆ = 7

Average 0.88 1.52 2.13 2.90 4.00 5.15

Table 8.1: Average number of common solutions over 60 runs among various Pareto fronts

8.3.3 Experiment Results

In this section, we discuss the results of the aforementioned experiment with 60 runs.
Table 8.1 shows the average number of found common solutions over 60 runs among
various Pareto fronts. As it shows, by increasing the ∆ parameter, our algorithm would
be able to find more common solutions. Figure 8.11 demonstrates the boxplot of the
data that Table 8.1 shows.

Figure 8.9 and Figure 8.10 represent one of the proposed solutions, from one
arbitrary run. In each run, five Pareto fronts were generated for all the five products.
Each front contained 25 architectural solutions, making a total search space of 125
solutions for commonality analysis. So, it explored five Pareto fronts to find common
solutions across all five configurations.

Figure 8.9 shows an optimal solution for Car1 that has acceptable (within ∆ range)
distance from solutions in other Pareto fronts. This means that these common solutions
require only few substitution and/or additional changes in order to become a solution
for other products. For example, Figure 8.10a shows the optimal solution for Car2
which has distance of 3 with the solution represented in Figure 8.9. And similarly,
Figure 8.10b depicts the similar solution for Car3, Figure 8.10c optimal solution for
Car4, and Figure 8.10d optimal solution for Car5.

8.3.4 Validation

As mentioned earlier, the goal of this case study was to find a set of optimal solutions
that are applicable, with a minimum of changes, to all of our defined products within
the product line. This is a relevant problem in the automotive industry, because of a
large number of vehicle models with varying feature content that must be supported
by the software architecture. The feature content of a specific car can be decided by
the customer to a high degree. On the other hand, due to fierce competition within
the automotive industry, development cost needs to be decreased by reusing as much
software as possible. Therefore, the problem studied in the case study is a real problem
in the automotive industry.

We applied our proposed method to an extended version of a case study based on
an existing sub-system from the automotive industry. In the original version of the
case study, we applied AQOSA to the same requirement specifications used by the
architects at the automotive company when designing the current realization. In this
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chapter, we added new features to the case study like cruise control system, airbag
system, park assist system, etc., to increase the complexity of the optimization problem.
By doing this we ended up investigating a rather complex sub-system of realistic scale.
Thus, the case study is partly based on real requirement specifications specifying a
realistic sub-system that is relevant in an automotive context, and at the same time
limited enough to explore and demonstrate how our search-based approach supports in
solving this optimization problem. The resulting set of architecture solutions proposed
by our method contains good candidates for manual assessment in later phases of the
architecture design process for a product line. This is confirmed by comparing the set
of architecture solutions to the existing sub-system architecture. However, the accuracy
and relevance of the proposed architecture solutions are not the primary goals of this
exploratory case study. Moreover, one of the advantages is that our approach can be
executed as a distributed search approach which increases the speed of reaching to the
results.

Regarding threats to the validity of our results, the main type is external validity
which concerns generalization of the results outside the context of the study [RHRR12].
The case study was conducted based on an existing sub-system from one automotive
company using specifications, software, and data from that particular company. The
results of the case study suggest that the architecture optimization framework can be
applied to other software product lines for embedded systems, but this needs to be
assessed by conducting additional case studies in other contexts.
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8.3.5 Interpretation of results

The objective of the case study is to answer the research question introduced in Sec-
tion 1.2: “In what aspects can search-based approaches improve the process of design-
ing a set of software architectures with a minimum of manufacturing changes for a
range of products in a software product line?”. This section will provide answers to
the research question.

The purpose of the AQOSA framework is to support the architect in early phases
of architecture design, and especially with searching large solution spaces while con-
sidering various quality constraints. So, the underlying approach is to combine the
domain knowledge and experience of the architect with the optimization, simulation,
and analysis skills of the AQOSA framework. The case study illustrates how this
combination can solve a practical problem. The domain knowledge and experience
of the architect is needed when defining the problem to be solved, when creating the
models used as input to AQOSA and when evaluating the output from AQOSA. The
optimization, simulation, and analysis skills of AQOSA are needed when searching a
large theoretical design space, when analysing a large number of potential solutions,
and when considering multiple quality attributes.

The case study in this chapter confirms that it is important to consider all attributes
and constraints when designing the architecture. If only a subset of the attributes are
considered during design, there is a risk to select a solution that is infeasible with
respect to other equally important attributes. The challenge then becomes to search a
large design space while meeting increasing time-to-market demands. This challenge
is even increased in the context of software product lines, since architectural solutions
must be found for several products in the product line. This challenge was explored in
the case study using the AQOSA framework which required a manual effort of 5 man
days in total, and around 250 minutes of execution time on a powerful computer with
a 12-core (each core runs 2.67GHz and 12MB cache) processor and 48GB memory. The
manual effort was needed for modelling activities and for analysing the results.

8.4 Summary

This chapter proposed a novel search-based method for finding optimal software
architectural solutions which are applicable for a range of products in a product line.
By introducing this approach, the AQOSA framework is extended to support multiple
products at the same time. Earlier chapters discussed the AQOSA framework in a
way that it aims at supporting architects in finding optimal architecture solutions in
complex design situations with many potentially conflicting quality attributes. This
chapter reported that AQOSA can be employed by architects in the context of software
product lines as well.
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We demonstrated the application of our proposed approach on an exploratory case
study based on an existing sub-system from the automotive industry. The case study
showed that while optimization techniques can find efficient solutions regarding all
quality attributes, our method identifies similar optimal solutions that are applicable
to the range of products in the software product line.

To summarize, we showed that our search-based approach can improve the process
of designing a set of software architectures for a range of products in a software product
line in the following aspects:

• modelling the relationship between feature model and component model,

• evolving architectural solutions for the range of products in the SPL at the same
time,

• find similar optimal architecture solutions that are applicable to the range of
products in the SPL.





Chapter9
Parallel Execution of Software
Architecture Optimization

This chapter addresses the efficiency of the optimization algorithm (related to RQ3
which is defined in Section 1.2):

In which ways can meta-heuristic optimization be improved in order to
make the process of reaching optimal architectural solutions faster?

In Chapter 7 we discussed efficiency improvements through using dedicated search
operators. However, in this chapter we addresses RQ3 from a complementary per-
spective: that of parallel execution. We know that meta-heuristic approaches in multi-
objective problems, especially for high dimensions, mostly take long to execute. One
of the best solutions to speed up this process is parallelising execution of evolutionary
algorithm on multiple nodes of a super computer or in the cloud.

This chapter presents the results of parallelising execution of evolutionary algo-
rithm for multi-objective optimization of software architecture. It reports on two
different approaches for parallel execution of evolutionary algorithm: (1) a MapReduce
approach [DG04], (2) an actor-based approach [HBS73].

This chapter is structured as follows. Firstly, Section 9.1 introduces the famous
model for concurrency which is called MapReduce. MapReduce is inspired by func-
tional programming constructs for processing (potentially large) lists of data. Then,
Section 9.2 introduces a model of concurrency which is based on actors and mes-
saging between them. These two sections also discuss two popular corresponding
frameworks which implement those models: the Apache Hadoop is the most famous
implementation of the MapReduce model; the Akka framework is an implementation
for actor-based distribution. After that, Section 9.3 represents the results of an experi-
ment where the parallel implementations of our proposed approach are studied (using
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our running case from the automotive industry). Finally, Section 9.4 summarizes this
chapter.

9.1 The MapReduce Paradigm (with the Hadoop Framework)

MapReduce was firstly introduced by Dean et al. in [DG04]. MapReduce is a program-
ming model designed for processing large volumes of data in parallel by dividing the
work into a set of independent tasks. MapReduce programs are written in a partic-
ular style influenced by functional programming constructs, specifically idioms for
processing lists of data. The processing of the list is distributed across a large number
of machines operating in parallel. This model would not scale to large clusters if the
components were allowed to share data arbitrarily. The communication overhead
required to keep the data on the nodes synchronized at all times would prevent the
system from performing reliably or efficiently at large scale. Users specify a map
function that processes a key-value pair to generate a set of intermediate key-value
pairs, and a reduce function that merges all intermediate values associated with the
same intermediate key. Programs written in this functional style are automatically
parallelised. The resulting code can be executed on a large cluster of (commodity)
machines.

The Apache Hadoop [Thea] software library is a framework that implements the
MapReduce programming model. This framework allows for the distributed process-
ing of large data sets across clusters of computers using the MapReduce paradigm.
Conceptually, MapReduce programs transform (in parallel) lists of input data elements
into lists of output data elements. Figure 9.1 shows a visualization of this process. A
MapReduce program typically acts along the following lines:

1. Input data, such as a long text file, is split into key-value pairs. These key-value
pairs are then fed to the mapper. (This is the job of Hadoop framework.)

2. The mapper processes each key-value pair individually and outputs one or more
intermediate key-value pairs.

3. All intermediate key-value pairs are collected, sorted, and grouped by key (again,
this step is automatically handled by the Hadoop framework).

4. For each unique key, the reducer receives the key with a list of all the values
associated with it. The reducer aggregates these values in some way (adding
them up, taking averages, finding the maximum, etc.) and outputs one or more
output key-value pairs.

5. Output pairs are collected and stored in an output file (by the framework).

In this setting, the mapper function and the reduce function are the parts that can be
programmed by the application developer.
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Figure 9.1: A visualization of Map and Reduce processes
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Mapping List The first phase of a MapReduce program is called mapping. A list of
data elements are provided, one at a time, to a function called the Mapper, which
transforms each element individually to an output data element. As an example of the
utility of map: Suppose you had a function toUpper(str) which returns an uppercase
version of the input string. You could use this function with map to turn a list of strings
into a list of uppercase strings. Note that we are not modifying the input string, we are
returning a new string that will form part of a new output list.

Reducing List Reducing lets you combine values together. A reducer function iterates
over the values of a list. It combines these values together, returning a single output
value. Reducing is often used to produce "summary" data, turning a large volume
of data into a smaller summary of itself. For example, "+" can be used as a reducing
function, to return the sum of a list of input values. Examples of alternatives are max,
length.

9.1.1 Case Study for the MapReduce Approach

We implemented MapReduce approach in the AQOSA framework and we run so many
experiments with various parameters and settings. However, unfortunately we could
not achieve parallelisation efficiency higher that 30% in none of these experiments
with the famous Hadoop approach. Therefore, we decided to move on and try another
approach which is described in the rest of this chapter.

9.2 Actor-based Distribution (with the Akka Framework)

The Actor Model provides a high level of abstraction for writing concurrent and
distributed software application. It alleviates the developer from having to deal with
explicit locking and thread management, making it easier to write correct concurrent
and parallel systems. Actors were defined by Carl Hewitt [HBS73] but have been
popularized by the Erlang language. Figure 9.2 depicts a simple model of actor-based
concurrency where actors are represented as communicating event loops. The dotted
lines represent the actor’s event loop threads which perpetually take messages from
their message queue and synchronously execute the corresponding methods on the
actor’s owned objects.

Actors give developers:

1. simple and high-level abstractions for concurrency and parallelism,

2. asynchronous, non-blocking and highly performant event-driven programming
model,

3. very lightweight event-driven processes.
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Figure 9.2: Concurrency with actors and asynchronous message sending

Akka [Akk] is an actor-based framework which helps developers in writing correct
concurrent, fault-tolerant and scalable applications. Actors provide abstractions for
transparent distribution and the basis for truly scalable and fault-tolerant applications.

9.3 Case Study for the Actor-based Approach

9.3.1 Implementation of the Actor-based Approach

Figure 9.3 depicts a schema of the actor-based Akka implementation of AQOSA.
Five nodes were used: 1 master node and 4 worker nodes. The Akka framework
was programmed to initialize 4 actors on each individual worker node. Hence, 16
actors were initialized in total. These worker-actors were responsible for evaluating
an individual candidate solution based on predefined software quality attributes,
such as response time, processor utilization, bus utilization, safety and cost. On
the master node, the Akka framework was programmed to start one actor called
’Evaluator Balancer’ (as depicted in Figure 9.3). This actor is responsible for distributing
evaluation jobs to each of the 16 worker actors. This Evaluator-Balancer used a round-
robin strategy for assigning jobs to workers. The AQOSA framework also ran on the
master node and it invoked the Balancer-actor whenever it wanted to evaluate an
individual candidate solution.

To examine the efficiency of the actor-based distributed implementation of our
software architecture optimization framework, a new experiment was run for the
SAAB Instrument Cluster case study again (see Section 5.3 for more details). This
experiment was run on the DAS-4 [Theb] super computer. In this supercomputer every
node is a powerful computer with a 8-core processor (each core runs at a speed of
2.67GHz and has 12MB cache) and 48GB memory.
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9.3.2 Experiment Setup

For generating new architectural solutions, the repository of hardware components
contained the following elements:

• 28 Processors: ranging over 14 various processing speeds from 66MHz to 500MHz;
Each has two levels of failure rate. A processor is more expensive if it has less
chance of failure.

• 4 Buses: with bandwidths of 10, 33, 125, and 500 kbps, and latencies of 50, 16, 8,
and 2 ms. A bus is more expensive if it supports higher bandwidth.

After defining the above hardware options, AQOSA was run 30 times based while
using the NSGA-II algorithm with the following parameter settings: initial population
size(α) = 256, parent population size (µ) = 64, number of offspring(λ) = 64, archive size
= 32, number of generations = 60, crossover rate set to 0.95, and all quality attributes
are aimed to be minimized.

WorkerNode1: 10.141.1.1

Worker
1

Worker
2

Worker
3

Worker
4

Master Node: 10.141.1.11

Evaluator
Balancer

EA individual selection

1:
 E

va
lu

at
e 

th
is

 in
di

vi
du

al

2: Do this W
ork 3:

 W
or

k 
Do

ne

WorkerNode2: 10.141.1.2

Worker
5

Worker
6

Worker
7

Worker
8

WorkerNode3: 10.141.1.3

Worker
9

Worker
10

Worker
11

Worker
12

WorkerNode4: 10.141.1.4

Worker
13

Worker
14

Worker
15

Worker
16

Figure 9.3: AQOSA implementation of actor-based distribution scheme
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Run #
Distributed

(1 Master-Node + 4
Worker-Nodes)

Single-Node

1 168,346 685,668
2 163,278 691,741
3 171,185 687,933
4 191,425 678,725
5 173,486 683,875
6 212,667 697,605
7 185,926 681,893
8 169,970 689,065
9 135,545 695,583

10 162,341 687,381
11 176,953 693,289
12 164,833 689,954
13 153,570 681,492
14 184,530 692,063
15 148,388 655,434
16 169,537 669,622
17 166,597 686,289
18 212,164 676,475
19 158,257 676,324
20 163,089 684,778
21 170,300 677,652
22 138,852 684,308
23 169,592 691,148
24 155,911 671,799
25 166,818 692,061
26 182,757 680,180
27 143,056 689,571
28 161,778 690,718
29 158,040 681,744
30 171,396 679,107

Average 168, 353 684, 116

Std. Deviation 17, 654 8, 766

Table 9.1: Execution time (in ms) of 30 runs of experiment
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9.3.3 Experiment Results

Table 9.1 shows the execution times (in milliseconds) of 30 runs of the experiment. The
first column is the execution number. The second column is the execution times of the
actor-based distributed implementation. As described in Section 9.3.1, the application
was distributed to 1 master node and 4 worker nodes. The third column shows the
execution times of running the same design problem on single node.

In parallel computing the speedup is used as a measure of the improvement ob-
tained by of parallelising a computation. For a system with p processors, speedup is
defined as:

Sp =
T1

Tp
. (9.1)

where T1 is the execution time of the sequential algorithm, and Tp is the execution time
of the parallel algorithm using p processors. Therefore, in our experiment the speedup
for the average over 30 runs is:

S5 =
684, 116

168, 353
= 4.0635 (9.2)

Additionally, efficiency of a parallel algorithm is defined by the following formula:

Ep =
Sp

p
=

T1

p× Tp
. (9.3)

To calculate the efficiency of our actor-based distributed implementation of the
optimization, the aforementioned formula is applied:

E5 =
S5

5
=
4.0635

5
= 0.8127 (9.4)

In other words, our actor-based distributed implementation in case of this experiment
on a real-world case study shows 81.27% efficiency. This number indicates a good
efficiency hence suggests that this is an acceptable approach for the parallelisation of
the optimization.

9.4 Summary

This chapter presented the results of different strategies for parallel execution of our
evolutionary optimization approach. The experiment was defined based on an in-
dustrial case study and was applied to a software architecture optimization problem
with five objectives. The achieved results showed that parallel execution of evolu-
tionary algorithm for software architecture optimization can improve execution time
significantly with acceptable efficiency in multi-objective optimization context.

The results show that for cases in which the evaluation calculation takes significantly
more time compared to the selection calculation (of new candidate solutions), the
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efficiency of parallelisation is considerable. However, for cases in which the evaluation
process is fast, parallelisation may not help considerably. When comparing the actor-
based approach and the MapReduce approach, at least in our case study, shows that
the actor-based approach shows better speedup.





Chapter10
Conclusion

In this work we have presented a meta-heuristic optimization approach for automated
software architecture design. We have studied 4 research questions in this dissertation.
This chapter summaries the findings of this study.

This chapter is structured as follows. Section 10.1 presents our findings with regards
to each research question of the dissertation. Section 10.2 proposes some directions for
future work in this research area.

10.1 Summary of Findings

In this dissertation we described a meta-heuristic optimization approach for automated
software architecture design and its associated tooling that we developed. This ap-
proach offers a new tool to aid architects in finding good designs in complex design
situations with potentially conflicting multiple quality requirements. Furthermore,
the tool reduces the development time and improves the quality of the architecture
design. The AQOSA framework supports multiple quality attributes for optimization
including response time, processor utilization, bus utilization, safety, and cost. As such
it supports more quality properties than any other automated software architecture
design tool.

Inspired by the model-driven approach, the framework uses a single integrated
representation of the software architecture (AQOSA IR) which is the basis for perform-
ing multiple quality analysis based. Moreover, this framework is designed so that it
can be easily extended with additional quality attributes.

The approach has been applied on industrial case studies with the aim of finding
better solutions than the current realization while fulfilling the same requirements and
constraints.
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The use of the AQOSA framework improves over the state of the art because:

• AQOSA is modelling language independent. It can interoperate with various
architectural modelling languages, in particular UML, AADL. Because AQOSA
is based on the component-based paradigm but makes only few assumptions on
the component model used.

• AQOSA supports multiple degrees of freedom for automatically generating
alternative architectures. In particular, we developed an approach to support
variation of the hardware topology as a new degree of freedom.

• AQOSA optimizes multiple quality attributes at once. To the best of our knowl-
edge AQOSA is the first approach which supports evaluation and optimization
of five quality attributes simultaneously.

In the following sections, the conclusions collected throughout this dissertation are
summarized and used to address the research questions central to this dissertation
(Section 1.2).

10.1.1 Research Question 1

RQ1 : Can meta-heuristic optimization improve the process of designing
efficient architectures for a given set of quality attributes in an industrial
domain?

The case studies in this dissertation demonstrated the usefulness of the AQOSA
software architecture optimization framework. These case studies range from business
information systems to embedded systems in the automotive industry.

The main case in the dissertation reported on a real-world large-scale industrial
case study applying a meta-heuristic optimization approach for automated software
architecture design which supports multiple quality attributes. The case showed in an
industrial context how meta-heuristic optimization approaches can improve software
architecture design with respect to multiple quality attributes, and could suggest a
wide range of optimized architectural solutions. Comparing the solutions proposed by
AQOSA to the existing realization showed that AQOSA is able to synthesize solutions
that are efficient in all quality attributes while fulfilling given constraints. Also, in
contrast to human architects who tend to propose solutions based on previous architec-
tures, AQOSA proposes revolutionary solutions. This revolutionary suggestions may
open new possibilities to architects.

Although the case study shows the saving of manual effort which is beneficial for
time-to-market and development cost, it also shows that the proposed architecture
solutions needs to be assessed by human architects. Hence, this dissertation demon-
strated how an architecture design framework like AQOSA complements the domain
knowledge and experience of the architect, rather than replaces the architect.
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The case studies showed that evolutionary multi-objective optimization (EMO)
can improve the process of designing efficient architectures for a set of given quality
attributes in the following aspects:

• EMO can efficient search through large solution spaces,

• EMO can consider multiple system quality attributes in design and analysis,

• EMO can proposes revolutionary solutions.

10.1.2 Research Question 2

RQ2 : Can enlargement of the optimization search space help the meta-
heuristic approach to find better architectural solutions?

To address the enlargement of the search space, in this dissertation two novel
degrees of freedom were introduced:

1. a new method for varying the topology of software architectures,

2. allowing architecture to replicate software component instances.

Introducing more degrees of freedom essentially enlarges the solution space, and
thus the search space. If this enlargement is ’in the right direction’, then it allows
evolutionary algorithms to find better solutions. We could show by running a very
computationally-intensive experiment on an industrial case study, that optimization
using this approach indeed finds better software architectures. These experiments
bring empirical evidences that show that better solutions can be found by using these
new degrees of freedom.

10.1.3 Research Question 3

RQ3 : In which ways can meta-heuristic optimization be improved in order
to make the process of reaching optimal architectural solutions faster?

To answer this research question, we consider two different points of view:
Firstly, in this dissertation: (i) the usefulness of problem-specific operators in the

software architecture domain was discussed, and (ii) a comparison between various
approaches for combing heuristic-based search operators was performed. To do so,
knowledge of architecture anti-patterns was implemented by means of problem-specific
search operators within an evolutionary algorithm. The results of the case study
experiment showed that search operators for improving one objective can be used in
multi-objective optimization context. The results indicated that proper combination
strategies for heuristic-based search operators can lead optimization algorithms to
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optimal solutions faster. However, in order to prevent getting trapped in suboptimal
solutions, randomness should always be included in the optimization, especially in the
offspring mating process.

Secondly, the dissertation presented the results of two different strategies for paral-
lel execution of our evolutionary optimization approach. The achieved results showed
that parallel execution of evolutionary algorithm for software architecture optimization
can improve execution time significantly with acceptable efficiency in multi-objective
optimization context. The results show that for cases in which the evaluation cal-
culation takes significantly more time compared to the selection calculation (of new
candidate solutions), the efficiency of parallelization is considerable. When performed
a comparison between an actor-based approach and a MapReduce approach to paral-
lelizing the AQOSA computations. In our case study, the actor-based approach shows
the better speedup of these two. This is probably due to the synchronization policy
of the MapReduce paradigm that does not match well with the concurrent evaluation
tasks that vary a lot in computation time.

10.1.4 Research Question 4

RQ4 : In what aspects can search-based approaches improve the process
of designing a software architecture for a family of products in a software
product line?

For this research question, this dissertation proposes a novel search-based method
for finding optimal software architectural solutions which are applicable for a range
of products in a product line. To achieve this, we extended the AQOSA framework
to support multiple products at the same time. Moreover, we introduced a notion of
"distance" between solutions that is an indicator for the number of changes that need to
be made to create one architecture out of another. We demonstrated the application of
our proposed approach on an exploratory case study based on an existing sub-system
from the automotive industry. The case study showed that our method identifies
similar optimal solutions that are applicable to the range of products in the software
product line.

To summarize, we showed that our search-based approach can improve the process
of designing a set of software architectures for a range of products in a software product
line in the following aspects:

• modelling the relationship between feature model and component model,

• evolving architectural solutions for the range of products in the SPL at the same
time,

• find similar optimal architecture solutions that are applicable to the range of
products in the SPL.
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10.2 Future Work

One interesting direction for the future work is interactive search-based approaches.
By the means of interactive search, the architect would be able to guide optimization
process interactively to a specific solution space area. In this way, search is steered
jointly by architect preferences and software optimization algorithm.

As future work regarding the heuristic-based search operators, it is interesting to
study situations with an unbalanced number of operators which each change different
objectives. For example, 3 operators in favour of one objective and 2 operators in favour
of some conflicting objectives. Also, another topic for future work can be studying
effects of adding weights to heuristic-based search operators on the results of the
optimization process.

For future work in the area of software architecture optimization for multiple prod-
ucts, we suggest the following two directions: Firstly, this approach can be improved
in the optimization process by using a co-evolving Pareto fronts technique [KCV02].
Hence, the algorithm can switch some of the archive solutions from one population
to the another one, every few generations. By doing that, it might be the case that
the optimization process gives us better results in terms of commonality with other
Pareto fronts. Secondly, it would be interesting to investigate the results of employing
a search-based approach for exploring feature combinations. We know large feature
models lead up to million of possibilities for feature combinations. For those situations,
going one by one through all of the configurations is not a feasible approach and a
search-based approach is needed for that exploration as well. In other words, it would
be a complex two-level optimization problem: both at the feature-level and at the
architecture-level.

Regarding the future work in the parallel execution, it is interesting to extend the
parallelization to include the selection step of the evolutionary algorithm as well. In
this way, in addition to the evaluation process, also the selection algorithm could
execute in parallel which helps efficiency of parallelization even more.





AppendixA
AQOSA IR Sample Model

In this appendix, a sample of AQOSA IR (described in Chapter 4.3) is presented.
Listing A.1 shows the source of the AQOSA IR model for the case study mentioned in
Section 5.3. It is encoded in the Eclipse EMF [Ecl] format. This model is also accessible
via this URL: http://goo.gl/nio8u8.

Listing A.1: AQOSA IR EMF model for Saab Instrument Cluster system
1 <?xml version="1.0" encoding="UTF-8"?>
2 <aqosa .ir:AQOSAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="

http://www.w3.org/2001/XMLSchema-instance" xmlns:aqosa .ir="http://se.liacs.
nl/aqosa/ir">

3 <assembly>
4 <component name="ReadWheelSpeedSensors">
5 <service name="ReadWheelSpeedSensors"/>
6 <inport name="ReadWheelSpeedSensors-in"/>
7 <outport name="ReadWheelSpeedSensors-out"/>
8 </component>
9 <component name="ControlWheelSpeed">

10 <service name="CalculateWheelRotation"/>
11 <inport name="ControlWheelSpeed-in"/>
12 <outport name="ControlWheelSpeed-out"/>
13 </component>
14 <component name="EngineVehicleInterface">
15 <service name="ObtainEngineSpeed"/>
16 <service name="ObtainVehicleSpeed"/>
17 <service name="ObtainCoolantTemp"/>
18 <inport name="EngineVehicleInterface-in_Engine"/>
19 <inport name="EngineVehicleInterface-in_Vehicle"/>
20 <inport name="EngineVehicleInterface-in_Coolant"/>
21 <outport name="EngineVehicleInterface-out_Engine"/>
22 <outport name="EngineVehicleInterface-out_Vehicle"/>
23 <outport name="EngineVehicleInterface-out_Coolant"/>
24 </component>
25 <component name="ProvidePowerModeInfo">
26 <service name="PowerModeInfo"/>
27 <outport name="PowerModeInfo-out"/>
28 </component>

http://goo.gl/nio8u8
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29 <component name="ControlEngineSpeedGauge">
30 <service name="DisplayEngineSpeed"/>
31 <inport name="ControlEngineSpeedGauge-in"/>
32 <outport name="ControlEngineSpeedGauge-out"/>
33 </component>
34 <component name="ControlVehicleSpeedGauge">
35 <service name="DisplayVehicleSpeed"/>
36 <inport name="ControlVehicleSpeedGauge-in"/>
37 <outport name="ControlVehicleSpeedGauge-out"/>
38 </component>
39 <component name="Gauge_Engine">
40 <service name="CalculateNeedlePosition"/>
41 <inport name="Gauge_Engine-in"/>
42 </component>
43 <component name="TransmissionVehicleInterface">
44 <service name="ReadLeverPstn"/>
45 <outport name="TransmissionVehicleInterface-out"/>
46 </component>
47 <component name="ControlGearSelectedIndication">
48 <service name="GearDisplayValue"/>
49 <inport name="ControlGearSelectedIndication-in"/>
50 <outport name="ControlGearSelectedIndication-out"/>
51 </component>
52 <component name="Display_Engine">
53 <service name="IndicateGearPstn"/>
54 <service name="DisplayOAT"/>
55 <service name="DisplayOdometer"/>
56 <service name="IndicateLowWasher"/>
57 <inport name="Display_Engine-in_Gear"/>
58 <inport name="Display_Engine-in_OAT"/>
59 <inport name="Display_Engine-in_Odometer"/>
60 <inport name="Display_Engine-in_Washer"/>
61 </component>
62 <component name="ReadOATSensor">
63 <service name="ObtaionOAT"/>
64 <outport name="ReadOATSensor-out"/>
65 </component>
66 <component name="ControlOutsideAirTemp">
67 <service name="CalculateOAT"/>
68 <inport name="ControlOutsideAirTemp-in"/>
69 <outport name="ControlOutsideAirTemp-out"/>
70 </component>
71 <component name="ControlCoolantTempGauge">
72 <service name="DisplayCoolantTemp"/>
73 <inport name="ControlCoolantTempGauge-in"/>
74 <outport name="ControlCoolantTempGauge-out"/>
75 </component>
76 <component name="ReadDriverDoorAjarSwitch">
77 <service name="ReadDriverDoorAjarSwitch"/>
78 <outport name="ReadDriverDoorAjarSwitch-out"/>
79 </component>
80 <component name="ControlOdometer">
81 <service name="OdometerValue"/>
82 <inport name="ControlOdometer-in"/>
83 <outport name="ControlOdometer-out"/>
84 </component>
85 <component name="ReadTripStemButton">
86 <service name="ReadTripStemButton"/>
87 <outport name="ReadTripStemButton-out"/>
88 </component>
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89 <component name="ReadLowWasherLevel">
90 <service name="ReadLowWasherLevel"/>
91 <outport name="ReadLowWasherLevel-out"/>
92 </component>
93 <component name="ControlWasherLevelIndication">
94 <service name="ControlWasherLevelIndication"/>
95 <inport name="ControlWasherLevelIndication-in"/>
96 <outport name="ControlWasherLevelIndication-out"/>
97 </component>
98 <flow name="Ignition_to_EngineSpeed">
99 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.3

/@service.0"/>
100 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.3

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.2/@inport.0"/>
101 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.2

/@service.0"/>
102 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.2

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.4/@inport.0"/>
103 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.4

/@service.0"/>
104 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.4

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.6/@inport.0"/>
105 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.6

/@service.0"/>
106 </flow>
107 <flow name="Ignition_to_VehicleSpeed">
108 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.3

/@service.0"/>
109 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.3

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.0/@inport.0"/>
110 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.0

/@service.0"/>
111 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.0

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.1/@inport.0"/>
112 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.1

/@service.0"/>
113 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.1

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.2/@inport.1"/>
114 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.2

/@service.1"/>
115 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.2

/@outport.1" d e s t i n a t i o n ="//@assembly/@component.5/@inport.0"/>
116 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.5

/@service.0"/>
117 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.5

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.6/@inport.0"/>
118 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.6

/@service.0"/>
119 </flow>
120 <flow name="GearIndication">
121 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.7

/@service.0"/>
122 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.7

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.8/@inport.0"/>
123 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.8

/@service.0"/>
124 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.8

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.9/@inport.0"/>
125 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.9

/@service.0"/>
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126 </flow>
127 <flow name="VehicleSpeedIndication">
128 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.0

/@service.0"/>
129 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.0

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.1/@inport.0"/>
130 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.1

/@service.0"/>
131 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.1

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.2/@inport.1"/>
132 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.2

/@service.1"/>
133 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.2

/@outport.1" d e s t i n a t i o n ="//@assembly/@component.5/@inport.0"/>
134 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.5

/@service.0"/>
135 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.5

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.6/@inport.0"/>
136 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.6

/@service.0"/>
137 </flow>
138 <flow name="EngineSpeedIndication">
139 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.2

/@service.0"/>
140 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.2

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.4/@inport.0"/>
141 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.4

/@service.0"/>
142 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.4

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.6/@inport.0"/>
143 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.6

/@service.0"/>
144 </flow>
145 <flow name="OATCalculation">
146 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.10

/@service.0"/>
147 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.10

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.11/@inport.0"/>
148 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.11

/@service.0"/>
149 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.11

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.9/@inport.1"/>
150 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.9

/@service.1"/>
151 </flow>
152 <flow name="EngineCoolantTemp">
153 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.2

/@service.2"/>
154 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.2

/@outport.2" d e s t i n a t i o n ="//@assembly/@component.12/@inport.0"/>
155 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.12

/@service.0"/>
156 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.12

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.6/@inport.0"/>
157 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.6

/@service.0"/>
158 </flow>
159 <flow name="DriverDoor_to_Odometer">
160 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.13

/@service.0"/>
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161 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.13
/@outport.0" d e s t i n a t i o n ="//@assembly/@component.14/@inport.0"/>

162 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.14
/@service.0"/>

163 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.14
/@outport.0" d e s t i n a t i o n ="//@assembly/@component.9/@inport.2"/>

164 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.9
/@service.2"/>

165 </flow>
166 <flow name="StemButton_to_Odometer">
167 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.15

/@service.0"/>
168 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.15

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.14/@inport.0"/>
169 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.14

/@service.0"/>
170 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.14

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.9/@inport.2"/>
171 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.9

/@service.2"/>
172 </flow>
173 <flow name="LowWasherIndication">
174 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.16

/@service.0"/>
175 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.16

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.17/@inport.0"/>
176 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.17

/@service.0"/>
177 <action xsi:type="aqosa.ir:CommunicateAction" source="//@assembly/@component.17

/@outport.0" d e s t i n a t i o n ="//@assembly/@component.9/@inport.3"/>
178 <action xsi:type="aqosa.ir:ComputeAction" s e r v i c e ="//@assembly/@component.9

/@service.3"/>
179 </flow>
180 </assembly>
181 <scenarios>
182 <flowset name="Average" completionTime="10000.0" missedPercentage="0.05">
183 <flowinstance i n s t a n c e ="//@assembly/@flow.0" s t a r t ="300.0" t r i g g e r ="5000.0"

deadline="75.0"/>
184 <flowinstance i n s t a n c e ="//@assembly/@flow.1" s t a r t ="400.0" t r i g g e r ="5000.0"

deadline="75.0"/>
185 <flowinstance i n s t a n c e ="//@assembly/@flow.2" s t a r t ="500.0" t r i g g e r ="5000.0"

deadline="50.0"/>
186 <flowinstance i n s t a n c e ="//@assembly/@flow.3" s t a r t ="1000.0" t r i g g e r ="100.0"

deadline="50.0"/>
187 <flowinstance i n s t a n c e ="//@assembly/@flow.4" s t a r t ="1030.0" t r i g g e r ="100.0"

deadline="35.0"/>
188 <flowinstance i n s t a n c e ="//@assembly/@flow.5" s t a r t ="100.0" t r i g g e r ="1000.0"

deadline="50.0"/>
189 <flowinstance i n s t a n c e ="//@assembly/@flow.6" s t a r t ="1070.0" t r i g g e r ="100.0"

deadline="30.0"/>
190 <flowinstance i n s t a n c e ="//@assembly/@flow.7" s t a r t ="2000.0" t r i g g e r ="5000.0"

deadline="250.0"/>
191 <flowinstance i n s t a n c e ="//@assembly/@flow.8" s t a r t ="2500.0" t r i g g e r ="5000.0"

deadline="250.0"/>
192 <flowinstance i n s t a n c e ="//@assembly/@flow.9" s t a r t ="3000.0" t r i g g e r ="5000.0"

deadline="125.0"/>
193 </flowset>
194 </scenarios>
195 <repository>
196 <componentinstance id="ReadWheelSpeedSensors_Instance" compatible="
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//@assembly/@component.0" var iancePercentage="0.05">
197 <service i n s t a n c e ="//@assembly/@component.0/@service.0" c y c l e s ="600" networkUsage="

4000.0">
198 <provide connects="//@assembly/@component.0/@outport.0"/>
199 <depend>
200 <require e x t e r n a l ="//@repository/@externalport.4"/>
201 <require i n t e r n a l ="//@assembly/@component.0/@inport.0"/>
202 </depend>
203 </service>
204 </componentinstance>
205 <componentinstance id="ControlWheelSpeed_Instance" compatible="//@assembly/@component

.1" var iancePercentage="0.05">
206 <service i n s t a n c e ="//@assembly/@component.1/@service.0" c y c l e s ="500" networkUsage="

4000.0">
207 <provide connects="//@assembly/@component.1/@outport.0"/>
208 <depend>
209 <require i n t e r n a l ="//@assembly/@component.1/@inport.0"/>
210 </depend>
211 </service>
212 </componentinstance>
213 <componentinstance id="EngineVehicleInterface_Instance" compatible="

//@assembly/@component.2" var iancePercentage="0.05">
214 <service i n s t a n c e ="//@assembly/@component.2/@service.0" c y c l e s ="500" networkUsage="

2000.0">
215 <provide connects="//@assembly/@component.2/@outport.0"/>
216 <depend>
217 <require e x t e r n a l ="//@repository/@externalport.3"/>
218 <require i n t e r n a l ="//@assembly/@component.2/@inport.0"/>
219 </depend>
220 </service>
221 <service i n s t a n c e ="//@assembly/@component.2/@service.1" c y c l e s ="500" networkUsage="

2000.0">
222 <provide connects="//@assembly/@component.2/@outport.1"/>
223 <depend>
224 <require i n t e r n a l ="//@assembly/@component.2/@inport.1"/>
225 </depend>
226 </service>
227 <service i n s t a n c e ="//@assembly/@component.2/@service.2" c y c l e s ="500" networkUsage="

1000.0">
228 <provide connects="//@assembly/@component.2/@outport.2"/>
229 <depend>
230 <require i n t e r n a l ="//@assembly/@component.2/@inport.2"/>
231 </depend>
232 </service>
233 </componentinstance>
234 <componentinstance id="ProvidePowerModeInfo_Instance" compatible="

//@assembly/@component.3" var iancePercentage="0.05">
235 <service i n s t a n c e ="//@assembly/@component.3/@service.0" c y c l e s ="400" networkUsage="

1000.0">
236 <provide connects="//@assembly/@component.3/@outport.0"/>
237 <depend>
238 <require e x t e r n a l ="//@repository/@externalport.2"/>
239 </depend>
240 </service>
241 </componentinstance>
242 <componentinstance id="ControlEngineSpeedGauge_Instance" compatible="

//@assembly/@component.4" var iancePercentage="0.05">
243 <service i n s t a n c e ="//@assembly/@component.4/@service.0" c y c l e s ="2850" networkUsage=

"2000.0">
244 <provide connects="//@assembly/@component.4/@outport.0"/>
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245 <depend>
246 <require i n t e r n a l ="//@assembly/@component.4/@inport.0"/>
247 </depend>
248 </service>
249 </componentinstance>
250 <componentinstance id="ControlVehicleSpeedGauge_Instance" compatible="

//@assembly/@component.5" var iancePercentage="0.05">
251 <service i n s t a n c e ="//@assembly/@component.5/@service.0" c y c l e s ="2950" networkUsage=

"2000.0">
252 <provide connects="//@assembly/@component.5/@outport.0"/>
253 <depend>
254 <require i n t e r n a l ="//@assembly/@component.5/@inport.0"/>
255 </depend>
256 </service>
257 </componentinstance>
258 <componentinstance id="Gauge_Engine_Instance" compatible="//@assembly/@component.6"

var iancePercentage="0.05">
259 <service i n s t a n c e ="//@assembly/@component.6/@service.0" c y c l e s ="500">
260 <depend>
261 <require i n t e r n a l ="//@assembly/@component.6/@inport.0"/>
262 </depend>
263 </service>
264 </componentinstance>
265 <componentinstance id="TransmissionVehicleInterface_Instance" compatible="

//@assembly/@component.7" var iancePercentage="0.05">
266 <service i n s t a n c e ="//@assembly/@component.7/@service.0" c y c l e s ="100" networkUsage="

1000.0">
267 <provide connects="//@assembly/@component.7/@outport.0"/>
268 <depend>
269 <require e x t e r n a l ="//@repository/@externalport.5"/>
270 </depend>
271 </service>
272 </componentinstance>
273 <componentinstance id="ControlGearSelectedIndication_Instance" compatible="

//@assembly/@component.8" var iancePercentage="0.05">
274 <service i n s t a n c e ="//@assembly/@component.8/@service.0" c y c l e s ="2500" networkUsage=

"1000.0">
275 <provide connects="//@assembly/@component.8/@outport.0"/>
276 <depend>
277 <require i n t e r n a l ="//@assembly/@component.8/@inport.0"/>
278 </depend>
279 </service>
280 </componentinstance>
281 <componentinstance id="Display_Engine_Instance" c o s t ="55.0" compatible="

//@assembly/@component.9" var iancePercentage="0.05">
282 <service i n s t a n c e ="//@assembly/@component.9/@service.0" c y c l e s ="500" networkUsage="

1000.0">
283 <depend>
284 <require i n t e r n a l ="//@assembly/@component.9/@inport.0"/>
285 </depend>
286 </service>
287 <service i n s t a n c e ="//@assembly/@component.9/@service.1" c y c l e s ="500" networkUsage="

1000.0">
288 <depend>
289 <require i n t e r n a l ="//@assembly/@component.9/@inport.1"/>
290 </depend>
291 </service>
292 <service i n s t a n c e ="//@assembly/@component.9/@service.2" c y c l e s ="500" networkUsage="

1000.0">
293 <depend>
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294 <require i n t e r n a l ="//@assembly/@component.9/@inport.2"/>
295 </depend>
296 </service>
297 <service i n s t a n c e ="//@assembly/@component.9/@service.3" c y c l e s ="500" networkUsage="

1000.0">
298 <depend>
299 <require i n t e r n a l ="//@assembly/@component.9/@inport.3"/>
300 </depend>
301 </service>
302 </componentinstance>
303 <componentinstance id="ReadOATSensor_Instance" compatible="//@assembly/@component.10"

var iancePercentage="0.05">
304 <service i n s t a n c e ="//@assembly/@component.10/@service.0" c y c l e s ="1000" networkUsage

="1000.0">
305 <provide connects="//@assembly/@component.10/@outport.0"/>
306 <depend>
307 <require e x t e r n a l ="//@repository/@externalport.6"/>
308 </depend>
309 </service>
310 </componentinstance>
311 <componentinstance id="ControlOutsideAirTemp_Instance" compatible="

//@assembly/@component.11" var iancePercentage="0.05">
312 <service i n s t a n c e ="//@assembly/@component.11/@service.0" c y c l e s ="2744" networkUsage

="1000.0">
313 <provide connects="//@assembly/@component.11/@outport.0"/>
314 <depend>
315 <require i n t e r n a l ="//@assembly/@component.11/@inport.0"/>
316 </depend>
317 </service>
318 </componentinstance>
319 <componentinstance id="ControlCoolantTempGauge_Instance" compatible="

//@assembly/@component.12" var iancePercentage="0.05">
320 <service i n s t a n c e ="//@assembly/@component.12/@service.0" c y c l e s ="1500" networkUsage

="1000.0">
321 <provide connects="//@assembly/@component.12/@outport.0"/>
322 <depend>
323 <require i n t e r n a l ="//@assembly/@component.12/@inport.0"/>
324 </depend>
325 </service>
326 </componentinstance>
327 <componentinstance id="ReadDriverDoorAjarSwitch_Instance" c o s t ="1.0" compatible="

//@assembly/@component.13" var iancePercentage="0.05">
328 <service i n s t a n c e ="//@assembly/@component.13/@service.0" c y c l e s ="100" networkUsage=

"1000.0">
329 <provide connects="//@assembly/@component.13/@outport.0"/>
330 <depend>
331 <require e x t e r n a l ="//@repository/@externalport.0"/>
332 </depend>
333 </service>
334 </componentinstance>
335 <componentinstance id="ControlOdometer_Instance" compatible="//@assembly/@component

.14" var iancePercentage="0.05">
336 <service i n s t a n c e ="//@assembly/@component.14/@service.0" c y c l e s ="2440" networkUsage

="4000.0">
337 <provide connects="//@assembly/@component.14/@outport.0"/>
338 <depend>
339 <require i n t e r n a l ="//@assembly/@component.14/@inport.0"/>
340 <require e x t e r n a l ="//@repository/@externalport.7"/>
341 </depend>
342 </service>
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343 </componentinstance>
344 <componentinstance id="ReadTripStemButton_Instance" compatible="

//@assembly/@component.15" var iancePercentage="0.05">
345 <service i n s t a n c e ="//@assembly/@component.15/@service.0" c y c l e s ="100" networkUsage=

"1000.0">
346 <provide connects="//@assembly/@component.15/@outport.0"/>
347 <depend>
348 <require e x t e r n a l ="//@repository/@externalport.1"/>
349 </depend>
350 </service>
351 </componentinstance>
352 <componentinstance id="ReadLowWasherLevel_Instance" compatible="

//@assembly/@component.16" var iancePercentage="0.05">
353 <service i n s t a n c e ="//@assembly/@component.16/@service.0" c y c l e s ="100" networkUsage=

"1000.0">
354 <provide connects="//@assembly/@component.16/@outport.0"/>
355 <depend>
356 <require e x t e r n a l ="//@repository/@externalport.8"/>
357 </depend>
358 </service>
359 </componentinstance>
360 <componentinstance id="ControlWasherLevelIndication_Instance" compatible="

//@assembly/@component.17" var iancePercentage="0.05">
361 <service i n s t a n c e ="//@assembly/@component.17/@service.0" c y c l e s ="300" networkUsage=

"1000.0">
362 <provide connects="//@assembly/@component.17/@outport.0"/>
363 <depend>
364 <require i n t e r n a l ="//@assembly/@component.17/@inport.0"/>
365 </depend>
366 </service>
367 </componentinstance>
368 <processor id="cpu066-h" c lock="66.0" c o s t ="100.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
369 <processor id="cpu066-l" c lock="66.0" c o s t ="140.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.01" upperFai l="0.025"/>
370 <processor id="cpu100-h" c lock="100.0" c o s t ="125.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
371 <processor id="cpu100-l" c lock="100.0" c o s t ="175.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.01" upperFai l="0.025"/>
372 <processor id="cpu133-h" c lock="133.0" c o s t ="150.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
373 <processor id="cpu133-l" c lock="133.0" c o s t ="210.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.01" upperFai l="0.025"/>
374 <processor id="cpu166-h" c lock="166.0" c o s t ="175.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
375 <processor id="cpu166-l" c lock="166.0" c o s t ="245.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.01" upperFai l="0.025"/>
376 <processor id="cpu200-h" c lock="200.0" c o s t ="200.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
377 <processor id="cpu200-l" c lock="200.0" c o s t ="280.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.01" upperFai l="0.025"/>
378 <processor id="cpu233-h" c lock="233.0" c o s t ="225.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
379 <processor id="cpu233-l" c lock="233.0" c o s t ="315.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.01" upperFai l="0.025"/>
380 <processor id="cpu266-h" c lock="266.0" c o s t ="250.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.02" upperFai l="0.035"/>
381 <processor id="cpu266-l" c lock="266.0" c o s t ="350.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
382 <processor id="cpu300-h" c lock="300.0" c o s t ="275.0" internalBusBandwidth="1024.0"
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internalBusDelay="0.1" lowerFa i l="0.02" upperFai l="0.035"/>
383 <processor id="cpu300-l" c lock="300.0" c o s t ="385.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
384 <processor id="cpu333-h" c lock="333.0" c o s t ="300.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.02" upperFai l="0.035"/>
385 <processor id="cpu333-l" c lock="333.0" c o s t ="420.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
386 <processor id="cpu366-h" c lock="366.0" c o s t ="325.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.02" upperFai l="0.035"/>
387 <processor id="cpu366-l" c lock="366.0" c o s t ="455.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
388 <processor id="cpu400-h" c lock="400.0" c o s t ="350.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.02" upperFai l="0.035"/>
389 <processor id="cpu400-l" c lock="400.0" c o s t ="490.0" internalBusBandwidth="1024.0"

internalBusDelay="0.1" lowerFa i l="0.015" upperFai l="0.03"/>
390 <bus id="CAN-HS" bandwidth="500.0" delay="0.002" c o s t ="100.0"/>
391 <bus id="CAN-MS" bandwidth="125.0" delay="0.008" c o s t ="50.0"/>
392 <bus id="CAN-LS" bandwidth="33.3" delay="0.016" c o s t ="25.0"/>
393 <bus id="LIN" bandwidth="10.0" delay="0.05" c o s t ="10.0"/>
394 <externalport id="ajar-switch" lowerFa i l="0.01" upperFai l="0.05"/>
395 <externalport id="stem-button" lowerFa i l="0.01" upperFai l="0.05"/>
396 <externalport id="ignition-switch" lowerFa i l="0.01" upperFai l="0.05"/>
397 <externalport id="crankshaft-sensor" lowerFa i l="0.01" upperFai l="0.05"/>
398 <externalport id="wheel-sensor" lowerFa i l="0.01" upperFai l="0.05"/>
399 <externalport id="gear-sensor" lowerFa i l="0.01" upperFai l="0.05"/>
400 <externalport id="oat-sensor" lowerFa i l="0.01" upperFai l="0.05"/>
401 <externalport id="odometer-storage" lowerFa i l="0.01" upperFai l="0.05"/>
402 <externalport id="lowwasher-switch" lowerFa i l="0.01" upperFai l="0.05"/>
403 </repository>
404 <objectives>
405 <settings noRun="3" noSampling="50" noDuplicate="1" minCost="200.0" maxCost="10000.0"

>
406 <evaluations>ResponseTime</evaluations>
407 <evaluations>CPUUtilization</evaluations>
408 <evaluations>BusUtilization</evaluations>
409 <evaluations>Safety</evaluations>
410 <evaluations>Cost</evaluations>
411 </settings>
412 </objectives>
413 </aqosa .ir:AQOSAModel>
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Summary

Software architecting is a people-intensive, non-trivial and demanding task for soft-
ware engineers to perform. At the same time, its architecting is a fundamental activity
of software development because it involves several questions such as balancing the
dependencies among components, maximization modularity, and fulfilling of quality
requirements. The architecture is a key enabler for software systems. Besides being cru-
cial for user functionality, the software architecture has deep impact on non-functional
properties such as performance, safety, energy consumption and cost. Moreover, soft-
ware architecture addresses fundamental design choices that are often difficult or very
expensive to change in later stages of development. Hence, methods and techniques
are needed for designing good software architectures which meet various quality
constraints in the the early phases of development.

In this dissertation, an automated approach for software architecture design, named
AQOSA (Automated Quality-driven Optimization of Software Architectures), is
proposed that supports analysis and optimization of multiple quality attributes both
for single products as well as for product lines:

First of all, we demonstrate of a meta-heuristic optimization approach for automated
software architecture design in a real industrial system. More specifically, it reports
the results of applying our architecture optimization framework to an automotive
sub-system that was conducted based on a large-scale real world industrial case study.
The framework supports multiple quality attributes including response time, processor
utilization, bus utilization, safety and cost.

Moreover, we introduce two novel degrees of freedom for the optimization of soft-
ware architectures. It presents the usefulness of the topology degree of freedom as
well as replication-degree of freedom. It demonstrates how the number of processing
nodes and their interconnecting network can be codified to fit into a genetic algorithm



genotype and thus be subject to automated synthesis. Our studies show that these extra
degrees of freedom lead to better overall software architecture optimization. Moreover,
it analyses the effectiveness of these two new degrees of freedom by running a very
computationally-intensive experiment against our industrial case study. The results
of this case study show us additional evidence for the usefulness of these two novel
degrees of freedom.

In addition to that, we compare between various combinations of evolutionary
algorithm search operators (both domain-specific and generic) for multi-objective
optimization of software architecture. The domain-specific operators we study are mo-
tivated by software architectural anti-patterns. However, each heuristic-based search
operator improves only one quality attribute of the solution, which is challenging
for multi-objective problems. To address this issue, we develop strategies for mixing
generic and domain-specific search operators in evolutionary algorithms that speed up
the finding of good solutions.

Finally, we propose a new search-based approach for generating a set of optimal
software architectural solutions for use in software product lines. This approach
extends our architecture optimization framework in the direction of features. In
our new approach, we add feature models as input to the framework and take into
account the relationship between the software components in the architecture and
features in the feature model. The AQOSA optimizer addresses this by first searching
for architectures that are optimal for individual product. After that, it analyses the
commonality of the found optimal solutions and proposes a set of solutions which are
suitable for the range of products defined by various feature combinations.



Samenvatting

Het ontwerpen van een software-architectuur is voor software engineers een arbeids-
intensieve, niet-geringe en veeleisende taak om uit te voeren. Tegelijkertijd is het ont-
werpen van een architectuur een fundamenteel onderdeel van softwareontwikkeling,
omdat het verscheidene kwesties aanroert zoals het uitbalanceren van de afhankelijk-
heden tussen componenten, het maximaliseren van de modulariteit en het voldoen
aan kwaliteitseisen. De architectuur vervult een sleutelrol in softwaresystemen. Naast
dat software-architectuur cruciaal is voor gebruikersfunctionaliteit, heeft het grote
invloed op niet-functionele eisen zoals goede prestaties, veiligheid, energieverbruik en
kosten. Bovendien richt software-architectuur zich op fundamentele ontwerpkeuzes
die in latere ontwikkelstadia vaak moeilijk of erg kostbaar zijn om te herzien. Van-
daar dat er methoden en technieken nodig zijn om in een vroeg ontwikkelstadium
software-architecturen te ontwerpen die aan diverse kwaliteitseisen voldoen.

In dit proefschrift wordt een geautomatiseerde aanpak voor het ontwerpen van een
software-architectuur voorgelegd, genaamd AQOSA (Automated Quality-driven Opti-
mization of Software Architectures), die het mogelijk maakt om meerdere kwaliteitsken-
merken te analyseren en te optimaliseren voor zowel afzonderlijke producten als
productlijnen:

Ten eerste tonen we een metaheuristische optimaliseringstechniek voor het geau-
tomatiseerd ontwerpen van een software-architectuur in een industrieel systeem. We
doen met name verslag van de resultaten die zijn verkregen door het toepassen van
ons architectuuroptimaliseringsraamwerk op een automobiel deelsysteem, gebaseerd
op een grootschalige, industriële casestudy. Het raamwerk biedt ondersteuning voor
meerdere kwaliteitskenmerken inclusief reactietijd, processorbezetting, busbezetting,
veiligheid en kosten.



Bovendien introduceren we twee nieuwe vrijheidsgraden voor het optimaliseren
van software-architecturen. Het laat het nut zien van de vrijheidsgraden betreffende
topologie en replicatie. Het legt uit hoe het aantal verwerkingsknooppunten en hun
onderlinge verbindingen kunnen worden gecodificeerd binnen een fenotype in een
genetisch algoritme en zo kunnen worden onderworpen aan automatische synthese.
Ons onderzoek wijst uit dat deze extra vrijheidsgraden leiden tot een betere opti-
malisering van software-architecturen. Bovendien analyseert het de effectiviteit van
deze twee nieuwe vrijheidsgraden door het vergelijken van een zeer rekenintensief
experiment met onze industriële casestudy. De resultaten van deze casestudy geven
ons aanvullende bewijzen voor het nut van deze twee nieuwe vrijheidsgraden.

Daarnaast vergelijken we verschillende combinaties van zoekbewerkingen voor evo-
lutionaire algoritmen (zowel domeinspecifieke als algemene) voor multi-objective
optimalisering van software-architectuur. Software-architectonische antipatronen
vormen de aanleiding voor de domeinspecifieke bewerkingen die we bestuderen.
Echter, elke heuristische zoekbewerking verbetert slechts één kwaliteitskenmerk van
de oplossing, hetgeen een uitdaging vormt voor multi-objective problemen. Om dit
punt te behandelen ontwikkelen we strategieën voor het combineren van algemene en
domeinspecifieke zoekbewerkingen in evolutiealgoritmen die het vinden van goede
oplossingen versnellen.

Ten slotte komen we met een nieuwe zoekgebaseerde benadering voor het genere-
ren van een verzameling optimale software-architectonische oplossingen die gebruikt
kunnen worden in softwareproductlijnen. Deze benadering breidt ons architectuur-
optimaliseringsraamwerk uit met productkenmerken. In onze nieuwe benadering
geven we modellen voor productkenmerken als invoer aan het raamwerk en houden
we rekening met het verband tussen softwarecomponenten in de architectuur en de
productkenmerken in het model. De AQOSA-optimaliseerder doet dit door eerst te
zoeken naar architecturen die optimaal zijn voor een individueel product. Daarna
analyseert hij de overeenkomsten in de gevonden optimale oplossingen, waarna hij
een verzameling oplossingen aanbiedt die geschikt zijn voor de reeks producten die
door de verschillende combinaties van productkenmerken zijn gedefinieerd.



List of Publications

The work described in this dissertation has resulted in the following publications:

Journal Articles

[ 1 ] Ramin Etemaadi, Kenneth Lind, Rogardt Heldal, and Michel R. V. Chaudron.
Quality-driven optimization of system architecture: Industrial case study on an automotive
sub-system. Journal of Systems and Software, 86(10):2559–2573, 2013.
doi: 10.1016/j.jss.2013.05.109

[ 2 ] Ramin Etemaadi and Michel R. V. Chaudron. New Degrees of Freedom in Meta-
heuristic Optimization of Component-Based Systems Architecture: Architecture Topology
and Load Balancing. Science of Computer Programming Journal - Special Issue of Best
Papers from Euromicro-SEAA 2012.
doi: 10.1016/j.scico.2014.06.012

Journal Articles [Draft version]

[ 3 ] Ramin Etemaadi, Kenneth Lind, and Michel R. V. Chaudron. Multiobjective
Quality-Driven Architecture Optimization for Software Product Lines. Draft version for
submission to Journal of Systems Architecture (JSA).

http://dx.doi.org/10.1016/j.jss.2013.05.109
http://dx.doi.org/10.1016/j.scico.2014.06.012


Peer-Reviewed Conference/Workshop Papers

[ 4 ] Ramin Etemaadi and Michel R. V. Chaudron. Varying Topology of Component-
based System Architectures using Metaheuristic Optimization. In Vittorio Cortellessa,
Henry Muccini, and Onur Demirors, editors. 38th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2012, Cesme, Izmir, Turkey, September
5-8, 2012, pages 63–70.
doi: 10.1109/SEAA.2012.38

[ 5 ] Ramin Etemaadi and Michel R.V. Chaudron. Combinations of Antipattern Heuristics
in Software Architecture Optimization for Embedded Systems. In Proceedings of the 6th
International Workshop on Model Based Architecting and Construction of Embedded
Systems (ACES-MB 2013), co-located with ACM/IEEE 16th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2013), Miami, Florida,
USA, September 29th, 2013, volume 1084 of CEUR Workshop Proceedings. CEUR-
WS.org, 2013.
CEUR link: http://ceur-ws.org/Vol-1084/

[ 6 ] Ramin Etemaadi and Michel R.V. Chaudron. Distributed Optimization on Super
Computers: Case Study on Software Architecture Optimization Framework. In Proceedings
of the 3rd International Workshop on Evolutionary Computation Software Systems
(EvoSoft 2014), GECCO Comp 2014 - the 2014 Conference Companion on Genetic and
Evolutionary Computation Companion, Vancouver, Canada, July 12th, 2014, pages
1125-1132.
doi: 10.1145/2598394.2605686

[ 7 ] Rui Li, Ramin Etemaadi, Michael T. M. Emmerich, and Michel R. V. Chaudron.
An Evolutionary Multiobjective Optimization Approach to Component-Based Software Ar-
chitecture Design. In Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2011, New Orleans, LA, USA, 5-8 June 2011, pages 432–439.
doi: 10.1109/CEC.2011.5949650

[ 8 ] Ramin Etemaadi, Michael T. M. Emmerich, and Michel R. V. Chaudron. Problem-
specific Search Operators for Metaheuristic Software Architecture Design. In Gordon Fraser
and Jerffeson Teixeira de Souza, editors. Search Based Software Engineering - 4th
International Symposium, SSBSE 2012, Riva del Garda, Italy, September 28-30, 2012.
Proceedings, volume 7515 of Lecture Notes in Computer Science. Springer, 2012, pages
267–272.
doi: 10.1007/978-3-642-33119-0_20

http://doi.ieeecomputersociety.org/10.1109/SEAA.2012.38
http://ceur-ws.org/Vol-1084/
http://doi.acm.org/10.1145/2598394.2605686
http://dx.doi.org/10.1109/CEC.2011.5949650
http://dx.doi.org/10.1007/978-3-642-33119-0_20


[ 9 ] Ramin Etamaadi and Michel R.V. Chaudron. A Model-based Tool for Automated
Quality-driven Design of System Architectures. In Joint Proceeedings of co-located events
as the ECMFA 2012: 8th European Conference on Modelling Foundations and Applica-
tions, 2012, Lyngby, Denmark, July 2-5, 2012, pages 324–327.





Acknowledgements

You are holding a book that results from four years of research work. During this
path, I owe thanks to many generous and supportive people. It is a great pleasure for
me to thank them for supporting me during my Ph.D. studies.

First and foremost, I would like to thank prof. dr. Michel R. V. Chaudron, who
accepted me as a Ph.D. student and opened up the gates to the scientific world. I
enjoyed his positive attitude to make a friendly working environment.

I really appreciated the opportunity to collaborate with LIACS institute, I have to
thank prof. dr. Thomas H. W. Bäck and prof. dr. Joost N. Kok for their support.

After that, I also would like to send great thanks to dr. Rui Li for his kindness and
helpfulness. Because of his great support I have been able to start this journey. I also
would like to express my sincere gratitude to dr. Michael T. M. Emmerich for his
welcoming attitude toward my questions.

My very special thanks go to dr. Kenneth Lind and dr. Rogardt Heldal for their
wonderful contribution to this study. I am greatly honoured and feel very fortunate to
meet you during this study.

I am also grateful to my colleagues and friends for being a constant source of
inspiration during this Ph.D. period. Especially, I am thankful to Ana, Ariadi, Behrooz,
Bilal, Dave, Edgar, Hafeez, Hossein, Javier, Johannes, Meghdad, Sahar, and Werner.

Mom and dad, my deepest gratitude goes to you. Thank you for your love and
support, and for encouraging me to pursue my education.



Most importantly, I would like to thank the love of my life, my wonderful wife,
NAFISEH for her endless support and understanding. Without her love, I would not
have been able to overcome the challenges during this period, and this dissertation
would not have been possible without her patience, and continuous support.



About the Author

Ramin Etemaadi was born in 1981 in Tehran, Iran. He graduated his B.Sc. with the
honours degree in computer science from Isfahan University of Technology, Iran, in
2002. He received his M.Sc. in 2005, and the master thesis was entitled “ Software
Creation: Automatic Design for Object-Oriented Software ”. From September 2010, he
worked as a Ph.D. candidate at the Leiden Institute of Advanced Computer Science
(LIACS) at the Leiden University Faculty of Science. He worked within the Software
Engineering Group under supervision of Prof. Dr. Michel R. V. Chaudron. His research
interests include software architecture, software design, component-based software
engineering, and automation of software development process.

Since 2002, Ramin has been involved as a software architect and technology lead
in various software development projects. He participated in the development of
the first e-commerce solution of Iran (named Pardakht), which won “ 2nd National
SheikhBahai Entrepreneurship Festival ”. As the managing director of a business unit,
he leaded a small start-up team to become a very successful business. The service
became largest mobile added-value-service in Iran, and the major service provider for
the mobile operators in the country.

Currently, he is working as a Senior Research Engineer in Exact research department
in Delft, Netherlands. Exact is a leading global supplier of complete ERP solutions for
small and medium-sized enterprises. Exact develops award-winning business software
for companies around the globe and supports over 100,000 small to medium-sized
enterprises in more than 125 countries with their daily management.


	1 Introduction
	1.1 Problem Statement and Contribution
	1.2 Research Objectives
	1.3 Dissertation Outline

	2 Definitions
	2.1 Evolutionary Multi-objective Optimization (EMO)
	2.1.1 Genotype and Phenotype
	2.1.2 Optimization Problem
	2.1.3 Multi-objective Optimization Problem
	2.1.4 Pareto Dominance
	2.1.5 Pareto Optimium
	2.1.6 Pareto Front
	2.1.7 Hypervolume

	2.2 Software Architecture and Software Components
	2.2.1 Software Architecture
	2.2.2 Software Component
	2.2.3 Component-Based Software Architecture

	2.3 Quality of Software Architecture
	2.4 Software Product Line (SPL)
	2.4.1 Software Product Line
	2.4.2 Feature
	2.4.3 Product


	3 State of the Art
	3.1 Related Optimization Tools
	3.1.1 PerOpteryx
	3.1.2 ArcheOpteryx
	3.1.3 Multicube Explorer
	3.1.4 Artemis
	3.1.5 KlaperSuite
	3.1.6 MOSES
	3.1.7 Other Related DSE Approaches

	3.2 Related Industrial Case Studies
	3.2.1 Reliability Optimization for Embedded Systems
	3.2.2 Symbolic Multi-objective Design Space Exploration
	3.2.3 Multiprocessor Systems-on-Chip Synthesis
	3.2.4 Exploring Embedded System Architectures

	3.3 Related Heuristic-based Approaches
	3.3.1 Architectural Tactics
	3.3.2 Anti-patterns in Palladio

	3.4 Software Design using Evolutionary Algorithms
	3.4.1 Evolutionary Search in Object-Oriented Class Design
	3.4.2 Class Responsibility with Genetic Algorithms

	3.5 Related Software Product Lines (SPL)
	3.5.1 Variability-driven Quality Evaluation in SPL
	3.5.2 Search-based Design of SPL
	3.5.3 SPL Configuration
	3.5.4 Software Evolution in SPL
	3.5.5 Quality Engineering for SPL


	4 AQOSA Framework
	4.1 Framework Overall Process
	4.2 AQOSA Tooling Design
	4.3 Modelling Part
	4.4 Optimization Part
	4.4.1 Evolutionary Algorithms
	4.4.2 Degrees of Freedom
	4.4.3 Optimizer Module Implementation

	4.5 Solution Part
	4.5.1 Architecture Genotype Structure
	4.5.2 Genotype Validation
	4.5.3 Solution Module Implementation

	4.6 Evaluation Part
	4.6.1 Evaluation Model Transformation
	4.6.2 Quality Attributes
	4.6.3 Evaluator Module Implementation

	4.7 Pareto front Monitoring
	4.8 Framework Algorithm Complexity
	4.9 Summary

	5 Case Studies
	5.1 Case Study 1: Business Report System
	5.1.1 Business Report System Components
	5.1.2 Execution Scenarios
	5.1.3 Experiment Setup
	5.1.4 Experiment Results

	5.2 Case Study 2: Cruise Control System
	5.2.1 Cruise Control Components
	5.2.2 Execution Scenarios
	5.2.3 Experiment Setup
	5.2.4 Experiment Results

	5.3 Case Study 3: SAAB Instrument Cluster Sub-System
	5.3.1 Instrument Cluster Components
	5.3.2 Execution Scenarios
	5.3.3 Current Realization
	5.3.4 Experiment Setup
	5.3.5 Experiment Results
	5.3.6 Validation and Discussion of Results
	5.3.7 Interpretation of Results

	5.4 Summary

	6 New Degrees of Freedom for Software Architecture Optimization
	6.1 New Degree of Freedom 1: Topology 
	6.2 New Degree of Freedom 2: Replication of software components
	6.3 Experiment 1: Cruise Control System
	6.3.1 Optimization Setup
	6.3.2 Experiment Results

	6.4 Experiment 2: The SAAB Instrument Cluster System
	6.4.1 Optimization Setup
	6.4.2 Experiment Results

	6.5 Summary

	7 Heuristic-based Application of Search Operators
	7.1 Problem-Specific Search Operators
	7.1.1 Caching for improving performance
	7.1.2 Voter pattern for improving safety
	7.1.3 Encryption/Decryption for improving security

	7.2 Heuristic-based Search Operators by Anti-patterns
	7.2.1 Search Operator: Component Movement
	7.2.2 Processor Change for Performance
	7.2.3 Processor Change for Cost
	7.2.4 Processor Change for Reliability

	7.3 Combining Search Operators in the Genetic Algorithm
	7.3.1 Random
	7.3.2 Sequential
	7.3.3 Random-Sequential
	7.3.4 Half-Random
	7.3.5 Half-Sequential
	7.3.6 Half-Random-Sequential

	7.4 Experiment
	7.4.1 Experiment Setup
	7.4.2 Experiment Results

	7.5 Summary

	8 Software Architecture Optimization for Software Product Lines
	8.1 Optimization for SPL
	8.1.1 Process
	8.1.2 Modelling
	8.1.3 Optimization

	8.2 Commonality Analysis
	8.2.1 Solutions Distance Calculation

	8.3 Experiment for SPL-aware Optimization
	8.3.1 Products of SPL
	8.3.2 Experiment Setup
	8.3.3 Experiment Results
	8.3.4 Validation
	8.3.5 Interpretation of results

	8.4 Summary

	9 Parallel Execution of Software Architecture Optimization
	9.1 The MapReduce Paradigm (with the Hadoop Framework)
	9.1.1 Case Study for the MapReduce Approach

	9.2 Actor-based Distribution (with the Akka Framework)
	9.3 Case Study for the Actor-based Approach
	9.3.1 Implementation of the Actor-based Approach
	9.3.2 Experiment Setup
	9.3.3 Experiment Results

	9.4 Summary

	10 Conclusion
	10.1 Summary of Findings
	10.1.1 Research Question 1
	10.1.2 Research Question 2
	10.1.3 Research Question 3
	10.1.4 Research Question 4

	10.2 Future Work

	Appendix A AQOSA IR Sample Model
	List of Figures
	List of Tables
	Bibliography
	Summary
	Samenvatting
	List of Publications
	Acknowledgements
	About the Author

