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Background 

Skeletal and cardiac muscle disorders are associated with substantial morbidity and 

mortality. Collectively, these diseases affect millions of people worldwide and 

enormous amount of time, effort and money have been spent to identify and improve 

recuperative strategies for prevention and treatment of such disorders. Although 

many striated muscle diseases manifest themselves only in the heart or skeletal 

musculature, others affect both tissues although the moment of onset, progression, 

severity of disease and specific disease symptoms may differ between skeletal and 

cardiac muscle tissue.1 The existence of a large number of disorders with both 

skeletal and cardiac muscle involvement is a direct consequence of the large overlap 

in gene expression profile between skeletal and cardiac myocytes, which relates to 

commonalities in their contractile systems. In many striated muscle diseases loss of 

functional myocytes eventually exceeds the tissue’s regenerative capacity. This 

causes gradual replacement of these parenchymal cells by adipocytes and/or 

(myo)fibroblasts leading to progressive wasting and pathological remodelling of 

skeletal and cardiac muscle tissue, respectively.  

 

Skeletal muscle wasting 

A common feature of many skeletal muscle disorders is gradual muscle 

degeneration leading to impairment or loss of mobility. In healthy individuals, skeletal 

muscle damage triggers the activation of a population of muscle-resident stem cells 

called satellite cells. Following their activation, satellite cells start to proliferate giving 

rise to myoblasts, which are responsible for skeletal muscle repair and regeneration 

by fusion with injured myofibers or formation of new myofibers. Hence, fusion plays a 

key role in the regeneration process.2-4 In muscular dystrophies, because of the 

repetitive cycles of degeneration and regeneration the myoregenerative potential of 

skeletal muscle tissue becomes progressively exhausted. As a consequence, 

damaged myofibers are gradually replaced by fibroblasts and adipocytes. One of the 

therapeutic options to overcome this problem is cell transplantation. The success 

rate of transplantation is highly dependent on the ability of the donor cells to fuse 

with each other and/or with the recipient’s skeletal myocytes in order to produce new 

myofibers and repair existing ones, respectively.5 Mechanistic studies on (myogenic) 



Chapter 1 | 9 
 

 
 

cell fusion may thus be of great help to further optimize cell-based therapies for 

degenerative skeletal muscle diseases. 

 

 
Pathological cardiac remodelling 

Cardiac diseases are usually associated with distinct alterations of the expression 

and function of ion channels, Ca2+-handling proteins, metabolic enzymes and 

structural proteins including sarcomeric components, and intercellular adhesion 

molecules. These changes are often accompanied by pathological cardiac 

hypertrophy (PCH) and fibrosis leading to electrophysiological and structural 

remodelling, which have been identified to increase pro-arrhythmic risk.6-8  

An increase in cardiac demand due to physiological or pathological changes in 

hemodynamics makes the heart respond in several ways, including by the 

enlargement of cardiomyocytes. Such cardiac hypertrophy is essentially a beneficial 

compensatory process as it decreases wall stress, while increasing cardiac output.9 

This adaption by growth occurs under physiological conditions like exercise and 

pregnancy, but also in response to myocardial infarction and other cardiac 

pathologies (e.g. hypertension, aortic stenosis, aortic coarctation, valvular 

regurgitation, septal defects and arteriovenous fistulae).10 Physiological hypertrophy 

typically is a reversible process to fulfill a temporary need for additional cardiac 

output. Pathological hypertrophy, on the other hand, is essentially an irreversible 

process involving permanent changes in cardiac structure and function that initially 

secure but subsequently reduce cardiac output. Besides an increase in 

cardiomyocyte size, diseased hearts usually also display a decrease in 

cardiomyocyte number together with a (compensatory) fibrotic response. The 

changes in cardiac geometry, myocardial tissue composition and cardiomyocyte 

biology increase the risk of cardiac arrhythmias and thus both directly and indirectly 

contribute to a reduction in the pumping capacity of the heart, which may ultimately 

lead to heart failure.11,12 The exact pro-arrhythmic mechanisms of PCH are not well 

understood, partly because of the concurrent presence of fibrosis which is a pro-

arrhythmic feature by itself. 

Adult heart displays limited regenerative capacity.13 In case of cardiac injury, 

fibroblasts get activated, proliferate and form myofibroblasts, which secrete large 
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amounts of extracellular matrix.14 This process, which is called fibrosis, helps to 

maintain the heart’s integrity; but negatively affects heart function due to the 

replacement of contractile by non-contractile tissue, an increase in myocardial 

stiffness and disturbed impulse generation and propagation. The disturbances in the 

heart’s electrical activity are caused by the (electrical) isolation of cardiomyocytes by 

newly deposited extracellular matrix resulting in slowing or even block of conduction. 

Coupling of cardiomyocytes with (myo)fibroblasts may also add to disturbed impulse 

generation and propagation in fibrotic hearts. Taken together, structural and 

electrical remodelling in the heart could provide both the substrates and triggers for 

cardiac arrhythmias.15,16 

 

Cardiac arrhythmias 

Proper electrical cardiac function relies on coordinated and well-timed generation of 

electrical impulses (i.e. action potentials) by cardiomyocytes and propagation of 

these impulses from cell to cell through gap junctions. Disturbances in electrical 

impulse generation and propagation could contribute to cardiac arrhythmias.17 Such 

heart rhythm disturbances concern any type of condition in which the atrial and/or 

ventricular rhythm is irregular, slower than normal (bradycardia) or faster than normal 

(tachycardia). In general, tachyarrhythmias are maintained by reentrant electrical 

activity or high-frequency electrical signals originating from focal sources. The most 

dangerous types of cardiac arrhythmias are those which are maintained by fibrillatory 

conduction (i.e. by chaotic activation patterns) especially when this happens in 

ventricular myocardium. Although our understanding of heart rhythm disturbances 

has surely improved over time, more insight, especially related to the underlying 

molecular and cellular mechanisms, is needed in order to improve the diagnosis and 

treatment of these disorders.  

 

Focal tachyarrhythmias  

Disturbances in repolarization can lead to prolongation of action potential duration 

(APD) and, when occurring at the earlier phases of repolarization (between -40 and 

0 mV), may favor formation of aberrant electrical signals, referred to as early 

afterdepolarizations (EADs). These EADs, in combination with other pro-arrhythmic 
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conditions could give rise to focal or reentrant tachyarrhythmias. EADs are mainly 

Ca2+-dependent and can be induced by anachronistic reactivation of the L-type Ca2+ 

channel, sarcoplasmic Ca2+ release and inward Na+/Ca2+ exchanger activity.18-20 

EADs can occur during phase 2 (i.e. the plateau phase) or phase 3 of the cardiac 

action potential. The mechanisms involved in the generation of phase-2 and phase-3 

EADs are not the same as reflected by their different responsiveness to 

pharmacological inhibitors of ion channels. Since at the depolarized membrane 

voltages of phase 2, most Na+ channels are inactivated, the L-type Ca2+ current (ICaL) 

and the Na+/Ca2+ exchanger current (INCX) are the main currents responsible for 

phase-2 EADs. During the plateau phase of the action potential, L-type Ca2+ 

channels can undergo transitions between closed and open states. An increase in 

ICaL in this phase can provide enough depolarizing force for EAD formation. At the 

same time, the cardiac Na+/Ca2+ exchanger generates a net inward current by 

coupling the export of a single Ca2+ ion to the import of three Na+ ions, thereby 

resisting repolarization. The increase in the ICaL further increases the inward current 

of the Na+/Ca2+ exchanger, and thereby may increase the probability of an EAD-

triggered action potential.21 Forward mode of Na+/Ca2+ exchanger activity and 

possibly INa can promote phase-3 EAD generation. Finally, recent evidences suggest 

that electrotonic current flow in response to large voltage gradients resulting from 

heterogeneous repolarization are an important cause of phase-3 EADs.21,22  

 

Reentrant arrhythmias 

Reentrant arrhythmias are those electrical impulses which are propagated in self-

sustaining circuits that do not follow the normal cardiac conduction pattern, in which 

action potentials generated in the sinoatrial node move through the atrial 

myocardium and to the atrioventricular node and, after some delay, via the bundle of 

His and Purkinje fibers through the ventricular myocardium. Under normal 

conditions, impulses disappear automatically after the entire heart has been 

activated because the duration of the refractory period exceeds that of the excitation 

wave. However, if the heart contains an area of inexcitable tissue causing local 

conduction block and at the same time the tissue around this area shows large 

heterogeneity in repolarization or conduction, unidirectional block may develop 

forcing the wavefront of excitation to move in one direction which based on the 

timing may reenter the original site of excitation, establishing a reentrant circuit. 
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Reentry can occur in the presence (anatomical reentry),23 or absence (functional 

reentry)24 of an anatomical obstruction (e.g. myocardial scar tissue) or can be the 

result of both structural and functional disturbances in electrical impulse 

propagation.25,26 While anatomical reentry in many cases leads to reentrant circuits 

of constant wavelength and position, rotors caused by functional reentry often 

meander throughout the tissue.27,28  

 

Challenges in skeletal and cardiac muscle research 

Research in the field of skeletal and cardiac muscle diseases mainly focuses on 

unravelling the underlying pathogenic mechanisms and on developing (better) 

therapeutic interventions. Despite many improvements in the medical and surgical 

management of skeletal and cardiac muscle disorders, development of effective and 

durable treatments has proven to be challenging. In cardiac muscle disorders, device 

therapies and interventional procedures such as catheter ablation have multiple 

limitations and are associated with a risk of complications.29,30 Pharmacological 

therapies for skeletal and cardiac muscle diseases are largely directed toward 

palliation of the symptoms of the disease rather than targeting the underlying 

causes.31-33 Improvement in therapeutic modalities requires better understanding of 

molecular pathways involved in the initiation and progression of these diseases. 

Much of the available information about the underlying mechanisms of skeletal and 

cardiac muscles disorders is obtained from in vivo studies. These studies are, 

however, complicated by the complexity of three-dimensional (3D) tissues, the 

occurrence of disease symptoms secondary to the primary condition, primary causes 

directly affecting other organs besides the heart and skeletal muscles and the 

interplay between different organ systems. For example, Duchenne muscular 

dystrophy (DMD), the most common inherited myopathy affects different skeletal 

muscles to a different extent but may also impair cardiac and brain function to 

various degrees depending on the specific mutation involved.34-37 Also, the 

coincident presence of e.g. inflammation, hypoxia and fibrosis in PCH makes it very 

hard to determine its specific/mechanistic contribution to the occurrence of 

arrhythmias.38,39  

The development and use of dedicated cellular experimental models to study the 

mechanisms underlying skeletal and cardiac muscle diseases in combination with 
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genetic interventions to investigate the role of specific factors, may resolve these 

limitations and lay the basis for the development of novel treatment options. 

 

Cellular models 

Cultures of skeletal myoblasts or cardiomyocytes offer the possibility to analyse 

cellular functions and molecular pathways in a highly specific and controllable 

manner, which is difficult to accomplish in vivo. Given the ease with which in vitro 

models can be established and manipulated to mimic physiological or pathological 

conditions, they are ideally suited for proof-of-concept studies and testing new 

therapeutic interventions targeting specific aspects of disease. Indeed, cellular 

models have greatly contributed to our current understanding of skeletal and cardiac 

muscle diseases.40,41 Although their relative simplicity facilitates data interpretation, 

cells in culture are not subjected to the complex regulatory systems controlling organ 

function in vivo. Accordingly, results obtained in in vitro experiments will always need 

to be validated in clinical studies. In spite of their shortcomings, in vitro models keep 

on being highly useful for mechanistic and therapy-directed skeletal and cardiac 

muscle research. This is particularly true when cell culture models are combined with 

genetic interventions to investigate the involvement of specific genes in physiological 

and pathophysiological processes. 

 

Genetic interventions 

Recently, there has been considerable interest in the application of gene therapy in 

the field of skeletal and cardiac muscle diseases. Many of these genetic 

interventions have focussed on counteracting the pathological processes in failing 

myocytes either directly by correction of the underlying genetic defect if applicable or 

indirectly by inhibition of pathogenic mechanisms or stimulation of physiological 

processes. Gene therapy has, for example, been used to complement gene 

mutations causing various types of muscular dystrophy including DMD as well as 

defects in several sarcomeric protein genes linked to PCH.42,43  Genetic intervention 

can be also employed for overexpression of a protein like sarcoplasmic reticulum 

Ca2+-ATPase pump (Serca2a) to improve cardiac function44 or downregulation of a 

protein like the acetylcholine-acticated K+ channel Kir3.4 to terminate atrial fibrillation 

(AF).45 Clinical and preclinical studies have shown beneficial effects of myocardial 
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gene transfer in neovascularization of ischemic myocardium, increasing myocardial 

contractility, induction of cardiac repair and reduction of AF and ventricular 

tachycardia vulnerability. 46-51 Gene therapy has also demonstrated improvements in 

skeletal muscle disorders.52-54 The safe and successful delivery of a gene is very 

important in order to gain high therapeutic efficacy. A large number of gene delivery 

methods have been developed using both viral and non-viral vectors, each of which 

have their own pros and cons. Non-viral methods include using naked DNA alone or 

in combination with cationic liposomes or polymers.55,56 Non-viral vectors are 

typically easy to synthesize and can be used for the transfer of genetic material of all 

kind of different sizes. Additional advantages of non-viral vectors are their safety and 

the ease with which they can be modified e.g. to alter their cell tropism. By applying 

non-viral gene delivery one can avoid disadvantages intrinsic to the use of viral 

vectors such as limited genetic payloads and expensive/laborious production 

methods. Also, nonviral vectors are generally less immunogenic and have a lower 

risk of insertional oncogenesis than viral vectors.57 Major limitations of non-viral 

vectors are their very low in vivo gene transfer activity and their difficulty to efficiently 

transduce differentiated cells both in vitro and in vivo. Viral vectors are much better 

suited for this purpose especially when high transduction rates and transgene 

expression levels are required.58  

 

 

Viral vectors 

Viral vectors are commonly used for the genetic modification of skeletal and cardiac 

muscle cells and tissues because they transfer genes much more efficiently than any 

of the non-viral vectors. The most commonly used viral vectors are derived from 

retroviruses (including lentiviruses), adenoviruses and adeno-associated virus, which 

belongs to the parvoviruses. These potentially harmful viruses are converted into 

innocuous viral vectors by the replacement of one or more essential viral genes by 

heterologous gene expression units, which renders the viral vectors replication-

deficient but still allows introduction and expression of their genetic cargo into target 

cells. The production of these vectors requires the missing viral genes to be provided 

in trans through packaging plasmids, complementing cell lines or helper viruses.  
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Retroviral vectors 

The first retroviral vectors were derived in the 1980s from gammaretroviruses. Since 

these vectors require cell division for efficient transduction, they are not suitable for 

the genetic modification of differentiated cell types like skeletal and cardiac 

myocytes. Unlike gammaretroviral vectors, lentivirus vectors (LVs) do not depend on 

cell division for efficient transduction of target cells. Following target cell entry, the LV 

genome, which consists of a positive-sense, single-stranded linear RNA molecule, is 

reverse transcripted into cDNA and subsequently integrated into the host cell 

genome. LV vectors can accommodate a fair amount of foreign DNA due to the 

absence of a strict upper packaging limit. There is, however, an inverse relationship 

between LV yields and genome lengths59 which practically restricts insert sizes to ± 5 

kb. LVs are generally produced in human embryonic kidney (HEK) 293T cells by a 

simple transfection procedure involved a LV shuttle plasmid and two or three so-

called helper or packaging plasmids. These features and the ease with which LVs 

can be generated may explain why LVs have become such popular gene delivery 

vehicles for the permanent ex vivo genetic modification of both differentiated and 

proliferating cell populations.60,61 LVs are much less suitable for in vivo gene 

therapies due to their large diameter, which hampers their spreading through tissues, 

and the preferential integration of LV genomes into transcriptionally active 

chromosome loci imposing a certain risk of insertional oncogenesis.62,63 Currently, 

much effort is put in the improvement of lentiviral vector design to reduce as much as 

possible the risk of insertional oncogenesis.64,65  

 

Adenoviral vectors 

Adenoviral vectors (AdVs) have the capacity to carry large DNA molecules (± 37 kb 

for human adenovirus type 5), can be produced in very large quantities and very 

efficiently transduce all kinds of cells, irrespective of their cell cycle status. AdV 

genomes are linear double-stranded DNA molecules covalently linked at their 5’ 

ends to the so-called terminal protein.66 These genomes normally do not integrated 

to the host chromosomal DNA but reside in the nucleus of the target cells as 

nonreplicating episomes, which causes transient expression especially in dividing 

cell populations but simultaneously limits concerns related to oncogene activation. 

The main disadvantages of AdVs are their large size limiting their dissemination 

through tissue and their relatively high immunogenicity, which may result in the in 
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vivo elimination of transduced cells by cell-mediated immune responses. This latter 

problem especially applies to first- and second-generation AdVs, which in contrast to 

their third-generation counterparts still contain adenoviral genes that are express at 

low levels in target cells. As a consequence, severe inflammation leading to toxicity 

and even, in very rare cases, organ failure has been reported following in vivo 

administration of early-generation AdVs.67 In recent year, AdV vector development 

has mainly focussed on lowering the immunogenicity of the adenovirus particle, 

reducing unintended interactions with host proteins and increasing target cell 

specificity by chemical or genetic modification of the adenoviral capsid/coat 

proteins.
68,69  

 

Adeno-associated virus vectors 

Adeno-associated virus vectors (AAVs) carry a single-stranded DNA genome with a 

T-shaped hairpin at both termini. Following their delivery in the target cell nucleus 

most AAV DNA is converted into highly stable double-strand circular monomers and 

concatemers. Moreover, AAVs are significantly less immunogenic than AdVs, which 

is partially explained by the absence in the vector genome of parvoviral genes. 

Because of these property AAVs can mediate long-term albeit not permanent gene 

expression.70 Another advantage of AAVs is their small diameter, which allows them 

to easily penetrate tissues. The downside of their small size is their limited packaging 

capacity, which does not allow incorporation of transgene > 4.7 kb. Other 

disadvantages of AAVs include the time-consuming and expensive procedures 

needed for their production and purification and their relatively low gene transfer 

activity requiring high amount of AAV particles to achieve efficient transduction.71 In 

addition, due to the slow onset of transgene expression AAVs cannot be used for 

studies with a short time course. Still, at present AAVs are the only viral vectors that 

can tranduce entire organs, including the heart.72 Therefore, currently, much effort is 

put in improving AAV production methods and in modifying the vector genome and 

capsid to increase the specific gene transfer activity of AAVs and to overcome their 

limited packaging capacity.73  
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Aim an outline of the thesis 

The limited suitability of existing experimental models for acquiring a thorough 

understanding of the mechanisms underlying skeletal and cardiac muscle diseases 

and the lack of efficiency and specificity of many of the currently available 

therapeutic interventions have made efficient treatment of these diseases 

challenging. Therefore, the aim of this thesis is to establish dedicated cellular models 

and use viral vector systems to study the biology of skeletal and cardiac muscles in 

healthy and diseased states and thereby identify potential targets for future 

therapeutic interventions. 

Chapter I of this thesis explains the common pathological features of skeletal and 

cardiac muscle diseases, the limitations of current therapies and advantages of 

cellular models and genetic interventions in improved treatment of these diseases. 

The successful deployment of cell transplantation in skeletal muscle disorders 

depends on the potential of the donor cells to engage in myotube formation 

(myogenesis), which is amongst others determined by the ability of the transplanted 

cells to fuse with cells present in the host tissue.5,74 Cell fusion also plays an 

important role in fertilization, syncytiotrophoblast production, bone remodelling, eye 

lens development and certain forms of tissue repair.75 Different methods can be used 

for monitoring cell fusion activity. These methods and a newly developed non-

destructive quantitative cell fusion assay are described in chapter II.  

Efficient engraftment of transplanted cells is another factor which determines the 

success rate of transplantation. Scaffolds provide a framework for cells to attach, 

proliferate, and form extracellular matrix in vivo. The scaffolds may also serve as 

carriers for cells, growth factors, and/or other biomolecular signals. Ideally, scaffolds 

should be degraded in vivo at an appropriate rate to allow its gradual replacement by 

regenerated host tissue. Therefore, the in vivo biodegradability of 

Gelatin/Siloxane/Hydroxyapatite scaffolds and their ability to support adhesion and 

proliferation of rat bone marrow mesenchymal stem cells have been studied in 

chapter III.  

Employment of 2D cell culture models makes it possible to study the contribution of 

PCH per se to arrhythmogenicity, which cannot be easily done in vivo due to the 

simultaneous presence of other pro-arrhythmic features. Induction of hypertrophy-

related pathological changes in cardiomyocyte cultures can be achieved by exposing 



18 
 

the cells to a variety of different peptide and non-peptide hormones and growth 

factors. It has been shown that phorbol 12-myristate 13-acetate (PMA), which 

activates protein kinases C and D, induces a gene expression program in cardiac 

muscle cells resembling that of cardiomyocytes in pathologically hypertrophied 

hearts.76-78 In chapter IV, the use of the PMA to establish an in vitro model of PCH 

based on ventricular neonatal rat cardiomyocytes is described and its pro-arrhythmic 

features are studied. 

Early- and no-reperfusion after myocardial infarction (MI) leads to formation of 

patchy and compact scars, respectively. These post MI scars facilitate circular 

conduction of the impulses in the heart. How scar composition affects 

arrhythmogenicity and arrhythmic phenotype has been investigated in an in vitro 

model in chapter V. 

Atrium-selective drugs and interventions with higher efficacy in AF rhythm control but 

fewer side effects such as ventricular pro-arrhythmia are paramount needs in AF 

treatment. In chapter VI, the role of acetylcholine-activated K+ channels, whose 

expression in mammalian hearts is largely restricted to the atria, has been studied in 

AF initiation, dynamics and termination in a cell culture and whole-heart model of AF.  

Finally, chapter VII summarizes the findings of this thesis and provides future 

perspectives based on the conclusions drawn from each study.  

  



Chapter 1 | 19 
 

 
 

References 

 

1. Limongelli G, D'Alessandro R, Maddaloni V, Rea A, Sarkozy A, McKenna WJ. 

Skeletal muscle involvement in cardiomyopathies. J Cardiovasc Med 

(Hagerstown). 2013;14:837-861. 

2. Morgan JE, Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol. 

2003;35:1151-1156. 

3. Horsley V, Pavlath GK. Forming a multinucleated cell: Molecules that regulate 

myoblast fusion. Cells Tissues Organs. 2004;176:67-78. 

4. Wagers AJ, Conboy IM. Cellular and molecular signatures of muscle 

regeneration: Current concepts and controversies in adult myogenesis. Cell. 

2005;122:659-667. 

5. Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R, Dugre FJ, 

Lachance JG, Deschenes L, Helene S, Sylvain M, Tremblay JP. Dystrophin 

expression in myofibers of Duchenne muscular dystrophy patients following 

intramuscular injections of normal myogenic cells. Mol Ther. 2004;9:475-482. 

6. Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O. 

Electrophysiological changes in heart failure and their implications for 

arrhythmogenesis. Biochim Biophys Acta. 2013;1832:2432-2441. 

7. Lou Q, Fedorov VV, Glukhov AV, Moazami N, Fast VG, Efimov IR. 

Transmural heterogeneity and remodelling of ventricular excitation-contraction 

coupling in human heart failure. Circulation. 2011;123:1881-1890. 

8. Tomaselli GF, Marban E. Electrophysiological remodelling in hypertrophy and 

heart failure. Cardiovasc Res. 1999;42:270-283. 

9. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy 

in the human left ventricle. J Clin Invest. 1975;56:56-64. 

10. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction 

between physiological and pathological cardiac hypertrophy: experimental 

findings and therapeutic strategies. Pharmacol Ther. 2010;128:191-227. 

11. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. 

Fibrosis and renin-angiotensin-aldosterone system. Circulation. 

1991;83:1849-1865. 

12. Burchfield JS, Xie M, Hill JA. 013 Pathological ventricular remodelling: 

mechanisms: part 1 of 2. Circulation. 2;128:388-400. 



20 
 

13. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, 

Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-

existing cardiomyocytes. Nature. 2013;493:433-436. 

14. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. 

Cell Mol Life Sci. 2014;71:549-574. 

15. de Bakker JM, van Capelle FJ, Janse MJ, Tasseron S, Vermeulen JT, de 

Jonge N, Lahpor JR. Slow conduction in the infarcted human heart. 'Zigzag' 

course of activation. Circulation. 1993;88:915-926. 

16. Gomez JF, Cardona K, Martinez L, Saiz J, Trenor B. Electrophysiological and 

structural remodelling in heart failure modulate arrhythmogenesis. 2d 

simulation study. PLoS One. 2014;9:e103273. 

17. Gaztanaga L, Marchlinski FE, Betensky BP. Mechanisms of cardiac 

arrhythmias. Rev Esp Cardiol (Engl Ed). 2012;65:174-185. 

18. Qi M, Shannon TR, Euler DE, Bers DM, Samarel AM. Downregulation of 

sarcoplasmic reticulum Ca(2+)-ATPase during progression of left ventricular 

hypertrophy. Am J Physiol. 1997;272:H2416-2424. 

19. Qu Z, Xie LH, Olcese R, Karagueuzian HS, Chen PS, Garfinkel A, Weiss JN. 

Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization 

reserve. Cardiovasc Res. 2013;99:6-15. 

20. Peters NS, Cabo C, Wit AL: Arrhythmogenic mechanisms: automaticity, 

triggered activity, and reentry. In Zipes DP, Jalife J, editors: Cardiac 

electrophysiology: from cell to bedside, ed 3, Philadelphia, 2000, Saunders, 

pp 345–355.. 

21. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z. Early 

afterdepolarizations and cardiac arrhythmias. Heart Rhythm. 2010;7:1891-

1899. 

22. Maruyama M, Lin SF, Xie Y, Chua SK, Joung B, Han S, Shinohara T, Shen 

MJ, Qu Z, Weiss JN, Chen PS. Genesis of phase 3 early afterdepolarizations 

and triggered activity in acquired long-QT syndrome. Circ Arrhythm 

Electrophysiol. 2011;4:103-111. 

23. Mehra R, Zeiler RH, Gough WB, El-Sherif N. Reentrant ventricular 

arrhythmias in the late myocardial infarction period. 9. Electrophysiologic-

anatomic correlation of reentrant circuits. Circulation. 1983;67:11-24. 



Chapter 1 | 21 
 

 
 

24. Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit atrial muscle 

as a mechanism of tachycardia. Circ Res. 1973;33:54-62. 

25. Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and 

associated arrhythmias. Physiol Rev. 2004;84:431-488. 

26. Lim ZY, Maskara B, Aguel F, Emokpae R, Jr., Tung L. Spiral wave attachment 

to millimeter-sized obstacles. Circulation. 2006;114:2113-2121. 

27. Otani NF. A primary mechanism for spiral wave meandering. Chaos. 

2002;12:829-842. 

28. Comtois P, Kneller J, Nattel S. Of circles and spirals: bridging the gap 

between the leading circle and spiral wave concepts of cardiac reentry. 

Europace. 2005;7 Suppl 2:10-20. 

29. Daubert JP, Zareba W, Cannom DS, McNitt S, Rosero SZ, Wang P, Schuger 

C, Steinberg JS, Higgins SL, Wilber DJ, Klein H, Andrews ML, Hall WJ, Moss 

AJ. Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: 

frequency, mechanisms, predictors, and survival impact. J Am Coll Cardiol. 

2008;51:1357-1365. 

30. Tokuda M, Kojodjojo P, Epstein LM, Koplan BA, Michaud GF, Tedrow UB, 

Stevenson WG, John RM. Outcomes of cardiac perforation complicating 

catheter ablation of ventricular arrhythmias. Circ Arrhythm Electrophysiol. 

2011;4:660-666. 

31. Leung DG, Wagner KR. Therapeutic advances in muscular dystrophy. Ann 

Neurol. 2013;74:404-411. 

32. Epstein SE, Rosing DR. Verapamil: its potential for causing serious 

complications in patients with hypertrophic cardiomyopathy. Circulation. 

1981;64:437-441. 

33. Arshad A, Mandava A, Kamath G, Musat D. Sudden cardiac death and the 

role of medical therapy. Prog Cardiovasc Dis. 2008;50:420-438. 

34. Mosqueira M, Zeiger U, Forderer M, Brinkmeier H, Fink RH. Cardiac and 

respiratory dysfunction in Duchenne muscular dystrophy and the role of 

second messengers. Med Res Rev. 2013;33:1174-1213. 

35. Mercuri E, Muntoni F. Muscular dystrophy: new challenges and review of the 

current clinical trials. Curr Opin Pediatr. 2013;25:701-707. 

36. Sekiguchi M. The role of dystrophin in the central nervous system: a mini 

review. Acta Myol. 2005;24:93-97. 



22 
 

37. Anderson JL, Head SI, Rae C, Morley JW. Brain function in Duchenne 

muscular dystrophy. Brain. 2002;125:4-13. 

38. McLenachan JM, Dargie HJ. Determinants of ventricular arrhythmias in 

cardiac hypertrophy. J Cardiovasc Pharmacol. 1991;17 Suppl 2:S46-49. 

39. Amano Y, Kitamura M, Tachi M, Takeda M, Mizuno K, Kumita S. Delayed 

enhancement magnetic resonance imaging in hypertrophic cardiomyopathy 

with Basal septal hypertrophy and preserved ejection fraction: relationship 

with ventricular tachyarrhythmia. J Comput Assist Tomogr. 2014;38:67-71. 

40. Goetsch KP, Myburgh KH, Niesler CU. In vitro myoblast motility models: 

investigating migration dynamics for the study of skeletal muscle repair. J 

Muscle Res Cell Motil. 2013;34:333-347. 

41. Parameswaran S, Kumar S, Verma RS, Sharma RK. Cardiomyocyte culture - 

an update on the in vitro cardiovascular model and future challenges. Can J 

Physiol Pharmacol. 2013;91:985-998. 

42. Mendell JR, Rodino-Klapac L, Sahenk Z, Malik V, Kaspar BK, Walker CM, 

Clark KR. Gene therapy for muscular dystrophy: lessons learned and path 

forward. Neurosci Lett. 2012;527:90-99. 

43. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from 

mutation identification to mechanistic paradigms. Cell. 2001;104:557-567. 

44. Kawase Y, Ladage D, Hajjar RJ. Rescuing the failing heart by targeted gene 

transfer. J Am Coll Cardiol. 2011;57:1169-1180. 

45. Bingen BO, Neshati Z, Askar SF, Kazbanov IV, Ypey DL, Panfilov AV, Schalij 

MJ, de Vries AA, Pijnappels DA. Atrium-specific Kir3.x determines inducibility, 

dynamics, and termination of fibrillation by regulating restitution-driven 

alternans. Circulation. 2013;128:2732-2744. 

46. Rubanyi GM. Mechanistic, technical, and clinical perspectives in therapeutic 

stimulation of coronary collateral development by angiogenic growth factors. 

Mol Ther. 2013;21:725-738. 

47. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, Dec 

GW, Semigran MJ, Rosenzweig A. Modulation of ventricular function through 

gene transfer in vivo. Proc Natl Acad Sci U S A. 1998;95:5251-5256. 

48. Donahue JK, Heldman AW, Fraser H, McDonald AD, Miller JM, Rade JJ, 

Eschenhagen T, Marban E. Focal modification of electrical conduction in the 

heart by viral gene transfer. Nat Med. 2000;6:1395-1398. 



Chapter 1 | 23 
 

 
 

49. Lau DH, Clausen C, Sosunov EA, Shlapakova IN, Anyukhovsky EP, Danilo P, 

Jr., Rosen TS, Kelly C, Duffy HS, Szabolcs MJ, Chen M, Robinson RB, Lu J, 

Kumari S, Cohen IS, Rosen MR. Epicardial border zone overexpression of 

skeletal muscle sodium channel SkM1 normalizes activation, preserves 

conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro 

study. Circulation. 2009;119:19-27. 

50. Sasano T, McDonald AD, Kikuchi K, Donahue JK. Molecular ablation of 

ventricular tachycardia after myocardial infarction. Nat Med. 2006;12:1256-

1258. 

51. Igarashi T, Finet JE, Takeuchi A, Fujino Y, Strom M, Greener ID, Rosenbaum 

DS, Donahue JK. Connexin gene transfer preserves conduction velocity and 

prevents atrial fibrillation. Circulation. 2012;125:216-225. 

52. Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human 

minidystrophin genes effectively ameliorates muscular dystrophy in mdx 

mouse model. Proc Natl Acad Sci U S A. 2000;97:13714-13719. 

53. Romero NB, Braun S, Benveniste O, Leturcq F, Hogrel JY, Morris GE, Barois 

A, Eymard B, Payan C, Ortega V, Boch AL, Lejean L, Thioudellet C, Mourot 

B, Escot C, Choquel A, Recan D, Kaplan JC, Dickson G, Klatzmann D, 

Molinier-Frenckel V, Guillet JG, Squiban P, Herson S, Fardeau M. Phase I 

study of dystrophin plasmid-based gene therapy in Duchenne/Becker 

muscular dystrophy. Hum Gene Ther. 2004;15:1065-1076. 

54. Glascock JJ, Shababi M, Wetz MJ, Krogman MM, Lorson CL. Direct central 

nervous system delivery provides enhanced protection following vector 

mediated gene replacement in a severe model of spinal muscular atrophy. 

Biochem Biophys Res Commun. 2012;417:376-381. 

55. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of 

recombinant genes in myocardium in vivo after direct injection of DNA. 

Circulation. 1990;82:2217-2221. 

56. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct 

gene transfer into the arterial wall. Science. 1990;249:1285-1288. 

57. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-

viral vectors for gene-based therapy. Nat Rev Genet. 2014;15:541-555. 



24 
 

58. Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery 

systems for enhancing viral and nonviral vectors for cardiac diseases: current 

concepts and future applications. Hum Gene Ther. 2013;24:914-927 

59. Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of the 

packaging limit of lentiviral vectors. Hum Gene Ther. 2001;12:1893-1905 

60. Giry-Laterriere M, Verhoeyen E, Salmon P. Lentiviral vectors. Methods Mol 

Biol. 2011;737:183-209 

61. Lewis PF, Emerman M. Passage through mitosis is required for 

oncoretroviruses but not for the human immunodeficiency virus. J Virol. 

1994;68:510-516 

62. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, 

Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, Leiva L, Sorensen 

R, Debre M, Casanova JL, Blanche S, Durandy A, Bushman FD, Fischer A, 

Cavazzana-Calvo M. Efficacy of gene therapy for X-linked severe combined 

immunodeficiency. N Engl J Med. 2010;363:355-364 

63. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, 

Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster 

A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, 

Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross 

F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, 

Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M. 

LMO2-associated clonal T cell proliferation in two patients after gene therapy 

for SCID-X1. Science. 2003;302:415-419 

64. Pluta K, Kacprzak MM. Use of HIV as a gene transfer vector. Acta Biochim 

Pol. 2009;56:531-595 

65. Pauwels K, Gijsbers R, Toelen J, Schambach A, Willard-Gallo K, Verheust C, 

Debyser Z, Herman P. State-of-the-art lentiviral vectors for research use: risk 

assessment and biosafety recommendations. Curr Gene Ther. 2009;9:459-

474 

66. Goncalves MA, de Vries AA. Adenovirus: from foe to friend. Rev Med Virol. 

2006;16:167-186 

67. Muruve DA. The innate immune response to adenovirus vectors. Hum Gene 

Ther. 2004;15:1157-1166 



Chapter 1 | 25 
 

 
 

68. Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity 

to adenovirus vectors in vaccine development. Expert Rev Vaccines. 

2009;8:761-777. 

69. Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: its implications 

and circumvention strategies. Curr Gene Ther. 2011;11:307-320. 

70. Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, Oka H, Zeitlin PL, 

Guggino WB, Carter BJ. Stable in vivo expression of the cystic fibrosis 

transmembrane conductance regulator with an adeno-associated virus vector. 

Proc Natl Acad Sci U S A. 1993;90:10613-10617. 

71. Dong JY, Fan PD, Frizzell RA. Quantitative analysis of the packaging capacity 

of recombinant adeno-associated virus. Hum Gene Ther. 1996;7:2101-2112. 

72. Prasad KM, Xu Y, Yang Z, Acton ST, French BARobust cardiomyocyte-

specific gene expression following systemic injection of AAV: in vivo gene 

delivery follows a Poisson distribution. Gene Ther. 2011;18:43-52. 

73. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical 

gene therapy. Nat Rev Genet. 2014;15:445-451. 

74. Cossu G, Sampaolesi M. New therapies for muscular dystrophy: cautious 

optimism. Trends Mol Med. 2004;10:516-520. 

75. Shinn-Thomas JH, Mohler WA. New insights into the mechanisms and roles 

of cell-cell fusion. Int Rev Cell Mol Biol. 2011;289:149-209. 

76. Dunnmon PM, Iwaki K, Henderson SA, Sen A, Chien KR. Phorbol esters 

induce immediate-early genes and activate cardiac gene transcription in 

neonatal rat myocardial cells. J Mol Cell Cardiol. 1990;22:901-910. 

77. Shubeita HE, Martinson EA, Van Bilsen M, Chien KR, Brown JH. 

Transcriptional activation of the cardiac myosin light chain 2 and atrial 

natriuretic factor genes by protein kinase c in neonatal rat ventricular 

myocytes. Proc Natl Acad Sci U S A. 1992;89:1305-1309. 

78. Prasad AM, Inesi G. Regulation and rate limiting mechanisms of Ca2+ ATPase 

(SERCA2) expression in cardiac myocytes. Mol Cell Biochem. 2012;361:85-

96. 

 

 

  



26 
 

 

  



 
 

 
 

 

Chapter 2 

Development of a Lentivirus Vector-Based Assay for 
Non-Destructive Monitoring of Cell Fusion Activity 
 
 
 

 
Zeinab Neshati, Jia Liu, Guangqian Zhou, Martin J. Schalij, Antoine A. 
F. de Vries 
 
 
 
PLoS One. 2014;9:e102433. 
  



28 
 

Abstract 

 

Cell-to-cell fusion can be quantified by endowing acceptor and donor cells with latent 

reporter genes/proteins and activators of these genes/proteins, respectively. One 

way to accomplish this goal is by using a bipartite lentivirus vector (LV)-based cell 

fusion assay system in which the cellular fusion partners are transduced with a 

flippase-activatable Photinus pyralis luciferase (PpLuc) expression unit (acceptor 

cells) or with a recombinant gene encoding FLPeNLS+, a nuclear-targeted and 

molecularly evolved version of flippase (donor cells). Fusion of both cell populations 

will lead to the FLPe-dependent generation of a functional PpLuc gene. PpLuc 

activity is typically measured in cell lysates, precluding consecutive analysis of one 

cell culture. Therefore, in this study the PpLuc-coding sequence was replaced by 

that of Gaussia princeps luciferase (GpLuc), a secretory protein allowing repeated 

analysis of the same cell culture. In myotubes the spread of FLPeNLS+ may be limited 

due to its nuclear localization signal (NLS) causing low signal outputs. To test this 

hypothesis, myoblasts were transduced with LVs encoding either FLPeNLS+ or an 

NLS-less version of FLPe (FLPeNLS-) and subsequently co-cultured in different ratios 

with myoblasts containing the FLPe-activatable GpLuc expression cassette. At 

different times after induction of cell-to-cell fusion the GpLuc activity in the culture 

medium was determined. FLPeNLS+ and FLPeNLS- both activated the latent GpLuc 

gene but when the percentage of FLPe-expressing myoblasts was limiting, FLPeNLS+ 

generally yielded slightly higher signals than FLPeNLS- while at low acceptor-to-donor 

cell ratios FLPeNLS- was usually superior. The ability of FLPeNLS+ to spread through 

myofibers and to induce reporter gene expression is thus not limited by its NLS. 

However, at high FLPe concentrations the presence of the NLS negatively affected 

reporter gene expression. In summary, a rapid and simple chemiluminescence assay 

for quantifying cell-to-cell fusion progression based on GpLuc has been developed. 
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Introduction 

 

During cell-to-cell fusion, plasma membranes of individual cells merge to form a 

multinucleated structure called a syncytium. Plasma membrane fusion is a crucial 

event during, for example, fertilization, syncytiotrophoblast production, skeletal 

muscle formation, bone remodeling, eye lens development and certain forms of 

tissue repair.1 In general, cell fusion is a tightly regulated and highly selective 

process involving specific cell types. Inappropriate cell fusion has been implicated in 

tumor development and progression.2 

Cell fusion can be easily observed using microscopic techniques and in many 

studies the extent of cell fusion is expressed as fusion index, which either stands for 

the percentage of cells with two or more nuclei or the percentage of nuclei present in 

syncytia.3 However, without continuous monitoring, it is impossible to decide by 

microscopy alone whether multinucleation is caused by cell fusion or the result of 

karyokinesis without cytokinesis. In addition, cells growing on top of each other can 

be mistaken for syncytia. Furthermore, as fusion index determinations are generally 

carried out manually, they are laborious, error-prone and often inaccurate. This has 

led to the development of methods for quantifying cell fusion independent of 

microscopic inspection. Nearly all these methods are based on systems of two 

components that interact to create a novel detectable signal only after cell fusion.3 

Mohler and Blau, for example, developed a quantitative cell fusion assay based on 

functional complementation between two biologically inactive β-galactosidase 

deletion mutants.4 Another possibility to produce fusion-dependent signals is by 

applying site-specific recombination systems such as Cre-loxP and FLP-FRT. In 

these systems, a latent reporter gene is activated by the action of the site-specific 

DNA recombinase Cre from bacteriophage P1 or flippase/FLP from Saccharomyces 

cerevisiae, which catalyze the excision and inversion of DNA flanked by 34-base pair 

(bp) recognition sequences (loxP for Cre and FRT for FLP) in a direct or inverted 

repeat configuration, respectively.5,6 

Gonçalves et al. previously developed a bipartite lentivirus vector (LV)-based cell 

fusion assay system in which the cellular fusion partners are endowed with a FLP-

activatable Photinus pyralis luciferase (PpLuc) expression unit/”gene switch” 

(acceptor cells) or with a recombinant gene encoding a molecularly evolved version 

of FLP (FLPe) with a nuclear localization signal (NLS) derived from the simian virus 
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40 large T antigen (donor cells).7 Fusion between acceptor and donor cells led to the 

FLPe-dependent generation of a functional episomal PpLuc expression module. This 

cell fusion monitoring system was successfully used to study the role of the p38 

MAPK signaling pathway in myoblast fusion/myotube formation. However, since 

PpLuc is a cytoplasmic protein and its substrate D-luciferin is poorly membrane-

permeable, this assay requires lysis of the cells prior to luminometry and does not 

allow repeated analysis of the same cell culture. This prompted us to develop a 

nondestructive method to quantify cell fusion using the bipartite LV-based cell fusion 

assay system described by Gonçalves and colleagues as starting point. 

The key difference between the new and “old” version of the LV-based cell fusion 

assay system is the replacement of the PpLuc open reading frame (ORF) in the 

“original” gene switch construct by the humanized coding sequence of Gaussia 

princeps luciferase (GpLuc), which is a secretory protein converting the substrate 

coelenterazine into coelenteramide plus light. GpLuc also displays a much higher 

specific luciferase activity than PpLuc and is exceptionally resistant to exposure to 

heat and strongly acidic and basic conditions.8 In addition, we hypothesized that in 

myotubes the spread of nuclear-targeted FLPe (FLPeNLS+) beyond the direct 

surroundings of donor nuclei may be limited due to the presence of the NLS. This 

would result in the activation of only a fraction of the reporter genes especially in 

hybrid myotubes containing a relatively low percentage of FLPe gene-positive donor 

nuclei compared to GpLuc-encoding acceptor nuclei. To test this hypothesis, we 

generated an LV encoding an NLS-less version of FLPe (FLPeNLS-) and compared, in 

myogenic fusion assays, its ability to activate latent GpLuc genes with that of 

FLPeNLS+. 

 

Materials and Methods 

 

Plasmids 

DNA constructions were carried out with enzymes from Fermentas (Fisher Scientific, 

Landsmeer, the Netherlands) or from New England Biolabs (Bioké, Leiden, the 

Netherlands) by using established procedures9 or following the instructions provided 

with specific reagents. 

To generate a bicistronic self-inactivating (SIN) human immunodeficiency virus 

type 1 (HIV1) vector shuttle plasmid coding for Streptomyces alboniger puromycin N-
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acetyl transferase (PurR) and FLPeNLS-, pLV.FLPe.PurR (7; GenBank accession 

number: GU253314; hereinafter referred to as pLV.hCMV-

IE.FLPeNLS+.IRES.PurR.hHBVPRE; Figure 1A) was digested with BshT1 and Eco81I 

and the 9.6-kb DNA fragment containing the vector backbone was purified from 

agarose gel. The hybridization product of oligodeoxyribonucleotides 5’ 

CCGGTACCATGAGTCAATTTGATATATTATGTAAAAC-ACCACC 3’ and 5’ 

TTAGGTGGTGTTTTACATAATATATCAAATTGACTCATGGTA 3’ (both from 

Eurofins MWG Operon, Ebersberg, Germany) was combined with the 9.6-kb 

BshT1×Eco81I fragment of pLV.hCMV-IE.FLPeNLS+.IRES.PurR.hHBVPRE by ligation 

with bacteriophage T4 DNA ligase producing pLV.hCMV-IE.FLPeNLS-

.IRES.PurR.hHBVPRE (Figure 1B). 
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Figure 1. Structure of the LV DNA in the LV shuttle plasmids. (A): pLV.hCMV-

IE.FLPeNLS+.IRES.PurR.hHBVPRE (B): pLV.hCMV-IE.FLPeNLS-.IRES.PurR.hHBVPRE (C): 

pLV.hCMV-IE.IRES.PurR.hHBVPRE and (D): pLV.GS.GpLuc.v1. The start codons of the 

FLPeNLS+ and FLPeNLS- ORFs are shown in boldface. 5’ LTR, chimeric 5’ long terminal repeat 

containing the Rous sarcoma virus U3 region and the HIV1 R and U5 regions; Ψ, HIV1 

packaging signal; RRE, HIV1 Rev-responsive element; cPPT, HIV1 central polypurine tract 

and termination site; hCMV-IE, human cytomegalovirus immediate early gene promoter; 

FLPeNLS+, molecularly evolved flippase with simian virus 40 (SV40) nuclear localization 

signal (NLS; black bar); FLPeNLS-, molecularly evolved flippase without NLS; EMCV IRES, 

encephalomyocarditis virus internal ribosomal entry site; PurR; Streptomyces alboniger 

puromycin N-acetyl transferase-coding sequence; hHBVPRE, human hepatitis B virus 

posttranscriptional regulatory element; black triangle/FRT, flippase recognition target 

sequence; hGAPDH, human glyceraldehyde 3-phosphate dehydrogenase gene promoter; 

rHBB2 pA, rabbit β-hemoglobin gene polyadenylation signal; GpLuc, Gaussia princeps 

luciferase-coding sequence; mMT1 pA, mouse metallothionein 1 gene polyadenylation 

signal; 3’ LTR, 3’ HIV1 long terminal repeat containing a deletion in the U3 region to render 

the LV self-inactivating. 
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To generate a SIN-LV shuttle plasmid carrying a silent GpLuc gene that can be 

activated by FLP, cloning vector pR6K.MCS was digested with XmaJI and NotI, the 

2.2-kb DNA fragment containing the vector backbone was purified from agarose gel 

and combined with the 0.6-kb GpLuc-encoding XmaJI×NotI fragment of 

phGluc.dBamHI yielding construct pR6K.GpLuc. The cloning vector pR6K.MCS was 

derived from construct pA1.GFP.A2 (10; GenBank accession number: GQ380658) by 

combining its 2.0-kb SalI×Aflll fragment with the 0.3-kb SalI×Aflll fragment of 

pMOLUC (11; Addgene, Cambridge, MA; plasmid number: 12514). Plasmid 

phGluc.dBamHI was made from the mammalian expression vector phGluc (12; 

Addgene; plasmid number: 22522) by self-ligation of its 2.9-kb BamHI fragment. The 

GpLuc ORF was excised from pR6K.GpLuc by digestion with XmaJI and MluI and 

combined with the 7.2-kb BcuI×MluI fragment of pLV.GS.DsRed.dKpnI to generate 

pLV.GS.GpLuc.v1 (Figure 1D). The LV shuttle plasmid pLV.GS.DsRed.dKpnI was 

derived from pLV.pA+.GS.DsRed (7; GenBank accession number: GU253312) by 

self-ligation of its 7.9-kb KpnI fragment. The SIN-LV shuttle plasmid 

pLV.GS.GpLuc.v6 is a derivative of construct pLV.pA+.GS.Luc (7, hereinafter 

referred to as pLV.GS.PpLuc), in which the sequences interspersed between the 

rabbit β-hemoglobin gene polyadenylation signal (rHBB pA) and the mouse 

metallothionein 1 gene (mMT1) pA (i.e. the PpLuc ORF and an FRT sequence) are 

replaced by a synthetic DNA fragment comprising the GpLuc ORF and an FRT 

sequence. More details about the genetic makeup of pLV.GS.GpLuc.v1, 

pLV.GS.GpLuc.v6 and pLV.GS.PpLuc and about the nucleotide sequences located 

in between the mMT1 pA and Luc ORFs of these three SIN-LV plasmids are 

provided in Figures 2 and 3. 
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Figure 2. Improved design of the GpLuc gene switch cassette. (A-C): Detailed structure of 

the areas upstream of the Luc ORFs in pLV.GS.GpLuc.v1 (A), pLV.GS.GpLuc.v6 (B) and 

pLV.GS.PpLuc (C) starting at the HIV1 3’ LTR. U5, HIV1 LTR unique 5’ region; R, HIV1 LTR 

repeat region; ΔU3, enhancer- and promoterless HIV1 LTR unique 3’ region; blue arrow, 

mouse metallothionein 1 gene polyadenylation signal (mMT1 pA); small black triangle, 

AATAAA motif in mMT1 pA; red diamonds, stop codons in frame with Luc ORFs; large black 

triangle, minimal FRT sequence; light yellow arrow, GpLuc ORF; green box, 5’ in-frame 

extension of the GpLuc ORF; white arrows, out-of-frame ORFs preceding Luc ORFs; red 

arrows, in-frame ORFs preceding Luc ORFs; dark yellow arrow, PpLuc ORF. 
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Figure 3. Alignment of the nucleotide sequences immediately upstream of the Luc ORFs in 

pLV.GS.GpLuc.v1, pLV.GS.PpLuc and pLV.GS.GpLuc.v6. Blue box, 3’ end of the mMT1 pA; 

underlined sequences, out-of-frame ORFs preceding Luc ORFs; boxed TAA sequences, in-

frame stop codons preceding Luc ORFs; red letters, in-frame ORFs preceding Luc ORFs; 

green letters, 5’ in-frame extension of the GpLuc ORF in pLV.GS.GpLuc.v1; black box, 

minimal FRT sequence; boxed ATG sequences, Luc initiation codons; light yellow box, 5’ 

end GpLuc ORF; dark yellow box, 5’ end PpLuc ORF. 

 
The ligation mixtures were introduced in chemocompetent cells of Escherichia coli 

strain GeneHogs (Life Technologies Europe, Bleiswijk, the Netherlands) or GT115 

(InvivoGen, San Diego, CA). Large-scale plasmid purifications were performed using 

JETSTAR 2.0 Plasmid Maxiprep kits (Genomed, Löhne, Germany) according to the 

manufacturer’s instructions. 

 

Cells 

The culture and differentiation conditions of the murine Bmi1- and human TERT-

immortalized human myoblasts (iDMD myoblasts) have been described previously.13 

 

Viral vectors 

The vesicular stomatitis virus G protein-pseudotyped SIN-LVs LV.FLPeNLS+.PurR, 

LV.FLPeNLS-.PurR, LV.PurR (negative control vector), LV.GS.GpLuc.v1, 

LV.GS.PpLuc and LV.GS.GpLuc.v6 were generated in 293T cells with the aid of the 

LV shuttle plasmids pLV.hCMV-IE.FLPeNLS+.IRES.PurR.hHBVPRE, pLV.hCMV-
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IE.FLPeNLS-.IRES.PurR.hHBVPRE, pLV.CMV.IRES.PURO (14, hereinafter referred to 

as pLV.hCMV-IE.IRES.PurR.hHBVPRE; Figure 1C), pLV.GS.GpLuc.v1, 

pLV.GS.PpLuc and pLV.GS.GpLuc.v6, respectively. The 293T cells were transfected 

with one of the LV shuttle constructs and the packaging plasmids psPAX2 (Addgene; 

plasmid number: 12260) and pLP/VSVG (Life Technologies Europe) at a molar ratio 

of 2:1:1. To concentrate and purify the LV particles, producer cell supernatants were 

layered onto 5-ml cushions of 20% (wt/vol) sucrose in phosphate-buffered saline 

(PBS) and centrifuged at 15,000 rotations per minute for 2 h at 4°C in an SW32 rotor 

(Beckman Coulter Nederland, Woerden, the Netherlands). Prior to ultracentifugation, 

producer cell supernatants were clarified by low speed centrifugation and filtration 

through 0.45-µm pore-sized cellulose acetate filters (Pall Netherlands, Mijdrecht, the 

Netherlands). For more details about the SIN-LV production method, see 15. The 

titers of the resulting LV stocks were determined using the RETROTEK HIV-1 p24 

Antigen ELISA kit (ZeptoMetrix, Franklin, MA) following the instructions provided by 

the manufacturer. To derive functional titers from these measurements a conversion 

factor of 2.5 transducing units (TUs) per pg of HIV-1 p24 protein was used. 

 

Cell transductions 

Cryopreserved LV.FLPeNLS+.PurR-transduced iDMD myoblasts (7; hereinafter 

referred to as myoblasts-FLPeNLS+) were thawed and cultured in the presence of 

puromycin (Life Technologies Europe) at a final concentration of 0.4 µg/ml to prevent 

transgene silencing. FLPeNLS--expressing iDMD myoblasts were generated by 

overnight (± 20 h) exposure of 105 cells in a well of a 24-well cell culture plate 

(Greiner Bio-One, Alphen aan den Rijn, the Netherlands) to 30 TUs of LV.FLPeNLS-

.PurR per cell in 500 µl of growth medium in a humidified atmosphere of 5% 

CO2/95% air at 37°C. The next day, the cell monolayer was rinsed three times with 1 

ml of PBS after which fresh culture medium was added. At 3 days post transduction, 

the culture of LV.FLPeNLS-.PurR-treated cells (hereinafter referred to as myoblasts-

FLPeNLS-) as well as a control culture of untransduced iDMD myoblasts were given 

medium containing 0.8 µg/ml of puromycin. Within a week, all cells in the culture of 

untransduced iDMD myoblasts had died while the cells in the LV.FLPeNLS-.PurR-

treated culture were nicely expanding. The myoblasts-FLPeNLS- were passaged once 

a week (split ratio 1:3) in growth medium containing 0.4 µg/ml of puromycin. 

MyoblastsGS.GLuc, myoblastsGS.PLuc and myoblastsGS.GLuc+ were generated likewise by 
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exposure of iDMD myoblasts to LV.GS.GpLuc.v1, LV.GS.PpLuc and 

LV.GS.GpLuc.v6, respectively. Before being used for co-culture experiments, the 

cells were passaged at least three times to rule out secondary transduction of the 

FLPe-expressing myoblasts in the co-cultures with luciferase-encoding SIN-LVs.16 

 

Co-culture establishment and maintenance 

Co-cultures containing a total number of 2×105 cells were established in wells of 24-

well culture plates by mixing myoblasts-FLPeNLS+ or myoblasts-FLPeNLS- with 

myoblastsGS.GLuc at the indicated ratios. Following an incubation period of about 72 h 

when the cell monolayers had reached 90-100% confluency, the growth medium was 

substituted by 400 µl of either differentiation medium or fresh growth medium. At 

specified time points thereafter, the culture medium (400 µl) was collected and 

stored at -80°C for luciferase assay. The co-cultures were then either terminated or 

further incubated at 37°C in a water-saturated atmosphere of 5% CO2/95% air. 

To compare the performance of the newly developed LV.GS.GpLuc.v1-based cell 

fusion assay system with that of the previously described LV.GS.PpLuc-based cell 

fusion quantification method7, myoblastsGS.GLuc or myoblastsGS.PLuc were co-cultured 

with myoblasts-FLPeNLS+ in different ratios in 24-well culture plates containing 2×105 

cells per well. Samples (culture fluid for cultures containing myoblastsGS.GLuc and cell 

lysates for cultures containing myoblastsGS.PLuc) were harvested 96 h and 120 h after 

induction of myogenic differentiation. Exactly the same approach was used to 

compare the LV.GS.GpLuc.v1- and LV.GS.GpLuc.v6-based cell fusion assays. 

 

Immunocytology 

At different time points after the initiation of differentiation, 1:1 co-cultures of 

myoblasts-FLPeNLS- and myoblastsGS.GLuc were fixed by incubation for 30 minutes at 

room temperature (RT) in PBS containing 4% formaldehyde. To permeabilize the 

cells, they were exposed for 10 minutes at RT to 0.1% Triton X-100 in PBS. Next, 

cells were incubated overnight at 4°C with mouse anti-skeletal muscle troponin I 

(skTnI) primary antibody (HyTest, Turku, Finland; clone 12F10) diluted 1:100 in PBS 

+ 0.1% donkey serum (Santa Cruz Biotechnology, Santa Cruz, CA) followed by a 2-h 

incubation at RT with Alexa Fluor 568-conjugated donkey anti-mouse IgG (H+L) 

secondary antibody (Life Technologies Europe) diluted 1:400 in PBS + 0.1% donkey 

serum. Counterstaining of nuclei was performed with 10 µg/ml Hoechst 33342 (Life 
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Technologies Europe) in PBS. Cells were washed three times with PBS after 

fixation, permeabilization and incubation with primary antibody, secondary antibody 

and DNA-binding fluorochrome. To minimize photobleaching, coverslips were 

mounted in Vectashield mounting medium (Vector Laboratories, Burlingame, CA). 

Pictures were taken with a fluorescence microscope equipped with a digital color 

camera (Nikon Eclipse 80i; Nikon Instruments Europe, Amstelveen, the Netherlands) 

using NIS Elements software (Nikon Instruments Europe). 

 

Subcellular fractionation and western blotting 

Myoblasts-FLPeNLS+ and myoblasts-FLPeNLS- were cultured separately in 24-well cell 

culture plates at a density of 2×105 cells per well. Following an incubation period of 

72 h when the cell monolayers had reached 90-100% confluency, the growth 

medium was substituted by 400 µl of either differentiation medium or fresh growth 

medium. Ninety-six h later, cell fractionation was carried out as described by Suzuki 

et al.17 with the following modifications. Cell pellets were suspended in 97.5 μl of ice-

cold 0.1% NP40 in PBS. One-third of the lysate was removed as “whole cell lysate” 

and mixed with 5 μl of 10× NuPAGE Sample Reducing Agent and 12.5 μl of 4× 

NuPAGE LDS Sample Buffer (both from Life Technologies Europe). The rest of the 

lysate was briefly centrifuged at 4°C after which 32.5 μl of the supernatant was 

removed as “cytosolic fraction” and supplemented with 5 μl of 10× NuPAGE Sample 

Reducing Agent and 12.5 μl of 4× NuPAGE LDS Sample Buffer. The remaining 

supernatant was removed and the pellet was washed with and suspended in 30 μl 

PBS, after which 5 μl of 10× NuPAGE Sample Reducing Agent and 12.5 μl of 4× 

NuPAGE LDS Sample Buffer were added to produce the “nuclear fraction”. Nuclear 

fractions and whole cell lysates were sonicated for 2 times 10 seconds at 200 Hz 

using a Soniprep 150 ultrasonic disintegrator (Measuring and Scientific Equipment, 

London, United Kingdom). After incubating the samples for 1 minute at 100°C, 10 μl 

of whole cell lysate, 10 μl of cytosolic fraction and 5 μl of nuclear fraction were 

applied to a NuPAGE Novex 12% Bis-Tris gel (Life Technologies Europe). Following 

electrophoretic separation, the proteins were transferred to a polyvinylidene 

difluoride membrane (Amersham Hybond P; GE Healthcare Europe, Diegem, 

Belgium) by wet electroblotting. Next, the membrane was incubated with 2% ECL 

AdvanceTM blocking agent (GE Healthcare Europe) in PBS-0.1% Tween 20 (PBST) 

for 1 h at RT and probed with rabbit anti-FLP (1:200; Diagenode, Seraing, Belgium; 
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CS-169-100), mouse anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 

1:10,000; Merck Millipore, Billerica, MA; clone 6C5) or rabbit anti-lamin A/C 

(1:10,000; Santa Cruz Biotechnology; sc-20681) primary antibodies overnight at 4°C, 

followed by a 1-h incubation with appropriate horseradish peroxidase-conjugated 

secondary antibodies (Santa Cruz Biotechnology). GAPDH served as cytoplasmic 

marker protein and lamin A/C antibody was used as nuclear marker protein. Target 

protein signals were visualized using the SuperSignal West Femto Maximum 

Sensitivity Substrate Kit (Thermo Scientific, Rockford, IL) and chemiluminescence 

was measured with the ChemiDoc XRS imaging system (Bio-Rad Laboratories, 

Veenendaal, the Netherlands). 

 

FLPe functionality test 

To test the functionality of the FLPe molecules encoded by LV.FLPeNLS+.PurR and 

LV.FLPeNLS-.PurR, myoblastsGS.GLuc were transduced with LV.FLPeNLS+.PurR, 

LV.FLPeNLS-.PurR or LV.PurR. MyoblastsGS.GLuc were seeded in a 24-well cell culture 

plate at a density of 105 cells per well and exposed for 20 h to 75 μl per well of 

concentrated vector stock diluted in growth medium to a final volume of 500 µl. Next, 

the cell monolayers were rinsed three times with 1 ml of PBS after which 400 µl fresh 

growth medium was added. At 24 h after the removal of the inoculum, the culture 

medium was collected and transiently stored at -80°C for subsequent analysis of 

luciferase activity. The cells were overlaid with 400 µl of fresh growth medium, which 

was harvested 24 h later for storage at -80°C until luciferase activity measurement. 

 

Luciferase assay 

After thawing the GpLuc-containing samples on ice, 50 µl of each sample was 

transferred to a well of a white opaque 96-well flat-bottom microtiter plate (OptiPlate-

96; PerkinElmer, Groningen, the Netherlands) for chemiluminescence 

measurements. The native coelenterazine (Promega Benelux, Leiden, the 

Netherlands) stock solution (5 mg/ml in acidified methanol) was diluted 1,000 times 

in phenol red-free Dulbecco’s modified Eagle’s medium (Life Technologies Europe) 

and equilibrated for 1 h in the dark at RT before starting the measurements. The 

luciferase activity was measured at RT with the aid of a Wallace 1420 VICTOR 3 

multilabel plate reader with automatic injection system (PerkinElmer). Immediately 

after automated addition of 20 µl of substrate to a well, substrate and sample were 
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mixed by shaking for 1 second (double orbital, 0.1 mm, normal speed). PpLuc 

activity was measured in cell lysates as previously described.7 For each condition, 

three independent samples were measured in three series of measurements. 

 

Statistical analysis 

Different experimental groups were compared using the independent samples t-test. 

Differences among means were considered significant at P≤0.05. Graphs were 

prepared in GraphPad Prism version 5 (GraphPad Software, La Jolla, CA). 

 

Results 

 

Microscopic analysis of cell fusion kinetics 

Cultured myoblasts can be prompted to fuse with each other by withdrawing 

mitogens from the culture medium. This causes a time-dependent accumulation of 

nuclei in syncytial structures called myotubes or myosacs depending on whether 

these structures are elongated or rounded. To get a first impression of the cell-to-cell 

fusion kinetics of the genetically modified iDMD myoblasts, 1:1 co-cultures of 

myoblasts-FLPeNLS- and myoblastsGS.GLuc were exposed to myogenic differentiation 

conditions. As shown in the upper panel of Figure  4, the myoblasts started to fuse 

48 h after serum withdrawal resulting in the formation of myotubes/sacs. Both the 

percentage of nuclei present in myotubes/sacs as well as the size of the syncytia 

increased with time until 120 h following serum removal, after which the cells started 

to detach from the surface of the culture plates. The fusion process was 

accompanied by the accumulation of sarcomeric proteins as evinced by the results 

of the skTnI-specific immunostaining depicted in the lower panel of Figure 4. 
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Figure 4. Microscopic analysis of cell fusion kinetics in 1:1 co-cultures of myoblasts-FLPeNLS- 

and myoblastsGS.GLuc after maintenance for 72 h in growth medium and subsequent exposure 

to differentiation medium. At 24, 48, 72, 96 or 120 h after initiation of differentiation the cells 

were fixed and immunostained for skTnI (red fluorescence). The blue fluorescence 

corresponds to nuclei labeled with the karyophilic dye Hoechst 33342. The upper and lower 

row of pictures show phase-contrast images and fluoromicrographs, respectively. The first 

syncytia appeared at ± 48 h after serum removal. The cell cultures displayed a time-

dependent increase in frequency and size of myotubes/sacs until the cells started to detach 

from the surface of the culture plates. In parallel cultures of myoblasts kept in normal growth 

medium the cells remained firmly attached to their support and only few small syncytia were 

observed at late times after culture initiation (data no shown). 

 

Immunodetection of FLPe in LV.FLPeNLS+/-.PurR-transduced iDMD myoblasts 

To compare FLPe protein level and intracellular distribution between myoblasts-

FLPeNLS+ and myoblasts-FLPeNLS-, western blot analysis was performed on whole 

cell lysates as well as on nuclear and cytosolic cell fractions (Figure 5A). As 

expected from the presence at its amino terminus of the SV40 NLS, FLPeNLS+ 

(predicted molecular weight: 49.7 kilodaltons) had a slightly lower gel mobility than 

FLPeNLS- (predicted molecular weight: 48.6 kilodaltons). Both under growth and 

differentiation conditions, the steady-state level of FLPeNLS+ was considerably higher 

than that of FLPeNLS- even though the nucleotide sequences upstream of the FLPe 

start codon are very similar and both proteins contain a “destabilizing” amino acid 

residue (serine in FLPeNLS- versus alanine in FLPeNLS+;18) immediately downstream 

of the initiator methionine. Figure 5A also reveals that a larger fraction of FLPeNLS+ 

molecules than of FLPeNLS- molecules resides in the nucleus (nuclear-to-cytosolic 

ratios under differentiation conditions of 8.4 and 3.1, respectively) consistent with the 

presence in FLPeNLS+ of an SV40 NLS. 
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Figure 5. Analysis of FLPeNLS+/- level, intracellular localization and enzymatic activity. (A): 

Western blotting analysis of whole protein lysates, nuclear cell fractions and cytosolic cell 

fractions of myoblasts-FLPeNLS+ (+) and of myoblasts-FLPeNLS- (-) maintained in growth 

medium (no differentiation) or exposed to differentiation conditions for 96 h (differentiation). 

(B): Luciferase activity measurements in culture media of myoblastsGS.GLuc transduced with 

LV.FLPeNLS+.PurR, LV.FLPeNLS-.PurR or LV.PurR (negative control vector) representing 

different intervals (i.e. 0-24 h and 24-48 h) post transduction. Bars show mean ± standard 

error of the mean (n=3). (C): Fold change in luciferase activity calculated on the basis of the 

data presented in (B). The average light production by samples of LV.PurR-transduced 

myoblastsGS.GLuc was the denominator and the mean of the RLUs produced by 

LV.FLPeNLS+.PurR-transduced myoblastsGS.GLuc (NLS+) or by LV.FLPeNLS-.PurR-transduced 

myoblastsGS.GLuc (NLS-) was the numerator. NLS, nuclear localization signal; FLPe, 

molecularly evolved flippase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; RLUs, 

relative light units. 
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Assessment of FLPeNLS+/- functionality 

To investigate the functionality of the FLPe molecules encoded by LV.FLPeNLS+.PurR 

and LV.FLPeNLS-.PurR, myoblastsGS.GLuc were transduced with either of these FLPe-

encoding SIN-LVs or with LV.PurR (negative control vector). Production of functional 

recombinases by the FLPe-encoding SIN-LVs should result in activation of the 

GpLuc gene switch cassettes incorporated into the genomes of the myoblastsGS.GLuc 

and the secretion of active GpLuc molecules in their culture medium (Figure 6). 

Analysis of the culture media harvested at 24 h after vector removal showed strong 

luciferase activity in the samples derived from the LV.FLPeNLS+.PurR- and 

LV.FLPeNLS-.PurR-transduced myoblastsGS.GLuc, while hardly any luciferase activity 

was detected in the culture medium of LV.PurR-transduced myoblastsGS.GLuc (Figure 

5B). During the next 24-h interval the luciferase activity in the culture media of 

LV.FLPeNLS+.PurR- and LV.FLPeNLS-.PurR-transduced myoblastsGS.GLuc further 

increased whereas the luciferase activity in the negative control samples remained 

very low. As a result, luciferase activity was 94/154- and 156/162-fold higher in 0-24 

h and 24-48 h culture medium of LV.FLPeNLS+.PurR- and LV.FLPeNLS-.PurR-

transduced myoblastsGS.GLuc, respectively, than in the corresponding culture media of 

LV.PurR-infected cells (Figure 5C). These findings confirm the presence of FLP 

recombinase-activatable GpLuc expression units in myoblastsGS.GLuc and 

demonstrate that LV.FLPeNLS+.PurR and LV.FLPeNLS-.PurR both code for functional 

FLPe molecules. 
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Figure 6. Schematic overview of the activation of the GpLuc gene switch cassette. 

Recognition of the FRT sites in chromosomally integrated copies of the LV.GS.GpLuc 

genome by FLPe leads to the activation of the latent GpLuc gene through the formation of 

circular episomes positioning the hGAPDH gene promoter upstream of the GpLuc ORF. 

Black triangle/FRT, flippase recognition target sequence; hGAPDH, human glyceraldehyde 

3-phosphate dehydrogenase gene promoter; rHBB2 pA, rabbit β-hemoglobin gene 

polyadenylation signal; GpLuc, Gaussia princeps luciferase-coding sequence; FLPe, 

molecularly evolved flippase. 
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Validation of the LV.FLPeNLS+/-.PurR/LV.GS.GpLuc-based cell fusion assay system 

To compare the ability of FLPeNLS+ and FLPeNLS- to activate the GpLuc gene switch 

upon cell fusion, myoblastsGS.GLuc were co-cultured with myoblasts-FLPeNLS+ or 

myoblasts-FLPeNLS- at different ratios (i.e. 95:5, 90:10, 75:25, 50:50, 25:75, 10:90 

and 5:95). Monocultures of myoblasts-FLPeNLS+, myoblasts-FLPeNLS- or 

myoblastsGS.GLuc exposed to growth or differentiation medium and co-cultures of 

FLPe-expressing myoblasts and myoblastsGS.GLuc maintained in growth medium 

served as negative controls. Based on the results of the microscopic analysis of cell 

fusion activity (Figure 4), the culture medium was harvested 96 h after induction of 

myogenic differentiation. It should be noted, however, that the kinetics of cell fusion 

progression slightly differed between individual experiments probably reflecting small 

differences in the myoblast populations used for different experiments. Luciferase 

activity in the medium of the fusogenic cell cultures depended on the ratio of 

myoblastsGS.GLuc and myoblasts-FLPe, showed a similar trend for myoblasts-

FLPeNLS+- and myoblasts-FLPeNLS--containing co-cultures and was highest when co-

cultures contained 50-95% myoblastsGS.GLuc (Figure 7A). The peak of GpLuc activity 

was reached at myoblastGS.GLuc:myoblast-FLPe ratios of 90:10 and 75:25 for 

myoblasts-FLPeNLS+ and myoblasts-FLPeNLS-, respectively (Figure 7A). Interestingly, 

at low myoblastGS.GLuc:myoblast-FLPe ratios (i.e. 10:90 and 5:95) the luciferase 

activity was significantly higher for myoblasts-FLPeNLS- than for myoblasts-FLPeNLS+ 

(Figure 7A). Myoblast cultures kept under growth conditions and myoblast-FLPe 

monocultures maintained in differentiation medium yielded luminescence signals 

close to or at background levels. The monocultures of myoblastsGS.GLuc did, however, 

secrete detectable amounts of GpLuc under differentiation conditions although the 

signal intensity was much lower than that produced by serum-deprived co-cultures 

containing 50-90% myoblastsGS.GLuc. For the co-cultures containing 50-90% 

myoblastsGS.GLuc shifting from growth to differentiation medium resulted in a >100-

fold increase in luciferase activity (Figure 7B). 
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Figure 7. Validation of the LV.FLPeNLS+/-.PurR/LV.GS.GpLuc.v1-based cell fusion assay 

system. (A): Luminometric analysis of culture medium of myoblastsGS.GLuc co-cultured with 

myoblasts-FLPeNLS+ (+) or with myoblasts-FLPeNLS- (-) at the indicated ratios. At 72 h after 

cell seeding, the culture fluid in each well was replaced by fresh culture medium with (growth 

conditions, no differentiation) or without (differentiation conditions) serum. Nighty-six h later 

the culture media were collected and subjected to luciferase activity measurements. Bars 

represent mean ± standard error of the mean (n=3). (B): Fold change in luciferase activity 

calculated on the basis of the data presented in (A). For each culture composition the 

average light production under growth conditions was the denominator and the mean of the 

RLUs produced under differentiation conditions was the numerator. RLUs, relative light units; 

MBsGS.GLuc, myoblastsGS.GLuc; MBs-FLPe, myoblasts-FLPe; NLS, nuclear localization signal. 
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Use of the LV.FLPeNLS+/-.PurR/LV.GS.GpLuc-based cell fusion assay system to 

analyse cell fusion progression 

To investigate the utility of the LV.FLPeNLS+/-.PurR/LV.GS.GpLuc-based cell fusion 

assay system to follow cell fusion progression, myoblastsGS.GLuc were mixed with 

myoblasts-FLPeNLS+ or with myoblasts-FLPeNLS- at a ratio of 50:50. After the cell 

cultures had become nearly confluent, they were either given fresh growth medium 

or exposed to differentiation medium. This was followed by the periodic collection of 

culture fluid for luciferase measurements using two different approaches. In one 

experiment, the culture medium was left on the cells for different time periods (i.e. 

from 0-24, 0-36, 0-48, 0-60, 0-72, 0-84, 0-96, 0-108 and 0-120 h) before being 

harvested for luminometry (“cumulative assay”; Figure 8). In the other experiment, 

the culture fluid was refreshed every 24 h and the amount of biologically active 

luciferase that had been secreted between 0-24, 24-48, 48-72, 72-96 and 96-120 h 

after the start of the differentiation process was determined (“kinetics assay”; Figure 

9). As shown in Figure 8A, following an initial slow increase, the luciferase activity in 

the culture medium of the serum-deprived co-cultures rose sharply at late times (>72 

h) after initiation of differentiation. Co-cultures of myoblastsGS.GLuc and myoblasts-

FLPeNLS- produced better results than the combination of myoblastsGS.GLuc and 

myoblasts-FLPeNLS+ (Figure 8A,B) in spite of the much higher FLPe concentration in 

myoblasts-FLPeNLS+ than in myoblasts-FLPeNLS- (Figure 5A). These findings were 

corroborated by the data derived from the “kinetics assay” (Figure 9). 
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Figure 8. Analysis of GpLuc accumulation in proliferating and differentiating 1:1 co-cultures 

of myoblastsGS.GLuc and either myoblasts-FLPeNLS+ or myoblasts-FLPeNLS-. (A): Luminometric 

analysis of culture medium of co-cultures of 50% myoblastsGS.GLuc and 50% myoblasts-

FLPeNLS+ (+) or 50% myoblasts-FLPeNLS- (-). At 72 h after cell seeding, the culture fluid was 

replaced by fresh culture medium with (growth conditions, no differentiation) or without 

(differentiation conditions) serum, which was left on the cells for the indicated periods of 

time. Bars represent mean ± standard error of the mean (n=3). (B): Fold change in 

luciferase activity calculated on the basis of the data presented in (A). For each sampling 

time the average light production under growth conditions was the denominator and the 

mean of the RLUs produced under differentiation conditions was the numerator. RLUs, 

relative light units; NLS, nuclear localization signal. 
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Figure 9. Analysis of GpLuc secretion in proliferating and differentiating 1:1 co-cultures of 

myoblastsGS.GLuc and either myoblasts-FLPeNLS+ or myoblasts-FLPeNLS-. (A): Luminometric 

analysis of culture medium of co-cultures of 50% myoblastsGS.GLuc and 50% myoblasts-

FLPeNLS+ (+) or 50% myoblasts-FLPeNLS- (-). At 72 h after cell seeding, the culture fluid was 

replaced by fresh culture medium with (growth conditions, no differentiation) or without 

(differentiation conditions) serum, which was left on the cells for the indicated 24-h time 

intervals. Bars represent mean ± standard error of the mean (n=3). (B): Fold change in 

luciferase activity calculated on the basis of the data presented in (A). For each sampling 

time the average light production under growth conditions was the denominator and the 

mean of the RLUs produced under differentiation conditions was the numerator. RLUs, 

relative light units; NLS, nuclear localization signal. 
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On the basis of the previous results, another experiment was carried out in which 

we directly compared the performance of FLPeNLS+ and FLPeNLS- at different 

myoblastGS.GLuc:myoblast-FLPe ratios (i.e. 95:5, 75:25, 25:75 and 5:95) and different 

time points (i.e. 72, 96 and 120 h after serum withdrawal). The culture medium was 

refreshed just before the start of the first sampling interval (i.e. at 48 h after serum 

removal) and after each round of sample collection. This experiment confirmed that 

at high myoblastGS.GLuc:myoblast-FLPe ratios FLPeNLS- was nearly as efficient as 

FLPeNLS+ at inducing reporter gene expression while at low myoblastGS.GLuc:myoblast-

FLPe ratios FLPeNLS- gave rise to more RLUs (Figure 10A) and to higher signal-to-

noise ratios (Figure 10B). In accordance with the experiment presented in Figure 7, 

the co-cultures consisting of 75% myoblastsGS.GLuc and 25% myoblasts-FLPe yielded 

the highest signals both in absolute (Figure 10A) and relative (Figure 10B) terms. 

Also in line with the previous experiments was the finding that most GpLuc 

accumulation takes place between 96 and 120 h after serum removal. 
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Figure 10. Performance of FLPeNLS+ and FLPeNLS- at different acceptor-to-donor cell ratios 

and time points. (A): GpLuc release by proliferating or differentiating co-cultures of 

myoblastsGS.GLuc and myoblasts-FLPeNLS+ (+) or myoblasts-FLPeNLS- (-) at different time 

intervals after culture initiation. MyoblastsGS.GLuc and myoblasts-FLPe were seeded in 

different ratios (i.e. 95:5%, 75:25%, 25:75% and 5:95%). At 72 h after cell seeding, the 

culture fluid was replaced by fresh culture medium with (growth conditions, no differentiation) 

or without (differentiation conditions) serum. Fourthy-eight h later the culture medium was 

refreshed once again. Twenty-four h later the culture fluid was harvested for luciferase 

activity measurement and replaced by the same volume of fresh culture medium. This 

procedure was repeated every 24 h until 120 h after the first medium change. Bars represent 

mean ± standard error of the mean (n=3). (B): Fold change in luciferase activity calculated 

on the basis of the data presented in (A). For each experimental condition the average light 

production under growth conditions was the denominator and the mean of the RLUs 

produced under differentiation conditions was the numerator. RLUs, relative light units; 

MBsGS.GLuc, myoblastsGS.GLuc; MBs-FLPe, myoblasts-FLPe; NLS, nuclear localization signal. 
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Comparison of LV.GS.GpLuc.v1- and LV.GS.PpLuc-based cell fusion assay systems 

In the next experiment, a direct comparison was made between the previously 

described LV.GS.PpLuc-based quantitative cell fusion assay system7 and the new 

LV.GS.GpLuc-based method to quantify cell-to-cell fusion. Consistent with the much 

higher light output of GpLuc than of PpLuc8, LV.GS.GpLuc yielded up to 23-fold 

higher signals than LV.GS.PpLuc (Figure 11A). However, the LV.GS.PpLuc-based 

cell fusion assay system appeared to be approximately twice as sensitive as its 

LV.GS.GpLuc-based counterpart at detecting myoblast-to-myoblast fusion at 120 h 

after initiation of differentiation (Figure 11B). The difference in sensitivity between the 

GS.GpLuc.v1- and LV.GS.PpLuc-based cell fusion assay systems was even bigger 

for the samples collected at 96 h after serum removal especially at the lowest two 

myoblastGS.Luc:myoblast-FLPeNLS+ ratios (i.e. when FLPe levels are highest). 
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Figure 11. Comparison of LV.GS.GpLuc.v1- and LV.GS.PpLuc-based cell fusion assay 

systems. (A): GpLuc and PpLuc production by proliferating or differentiating co-cultures of 

myoblastsGS.GLuc or myoblastsGS.PLuc with myoblasts-FLPeNLS+ at different times after culture 

initiation. Cells were seeded in different ratios (i.e. 100:0%, 90:10%, 75:25% and 50:50%). 

At 72 h after cell seeding the culture fluid was replaced by fresh culture medium with (growth 

conditions, no differentiation) or without (differentiation conditions) serum. Ninety-six h and 

120 h later samples (culture fluid for cultures containing myoblastsGS.GLuc and cell lysates for 

cultures containing myoblastsGS.PLuc) were harvested for luciferase activity measurements. 

Bars represent mean ± standard error of the mean (n=3). (B): Fold change in luciferase 

activity calculated on the basis of the data presented in (A). For each experimental condition 

the average light production under growth conditions was the denominator and the mean of 

the RLUs produced under differentiation conditions was the numerator. RLUs, relative light 

units; G, LV.GS.GpLuc.v1-based cell fusion assay; P, LV.GS.PpLuc-based cell fusion assay; 

MBsGS.Luc, myoblastsGS.GLuc or myoblastsGS.PLuc; MBs-FLPeNLS+, myoblasts-FLPeNLS+. 
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Improvement of the GS.GpLuc-based cell fusion assay system 

The results presented in Figures 7 and 11 identify the FLP-independent increase in 

GpLuc production when shifting from growth to differentiation medium as the main 

contributor to the reduced signal-to-noise ratio of the LV.GS.GpLuc-based cell fusion 

assay system as compared to its LV.GS.PpLuc-based counterpart. In search for a 

possible explanation for the high background signal produced by LV.GS.GpLuc.v1 in 

comparison to LV.GS.PpLuc, we compared their genetic organization upstream of 

the Luc start codon. As shown in Figures 2 A,B and 3 the PpLuc ORF in 

LV.GS.PpLuc is preceded by an out-of-frame ORF (uORF) starting with 2 ATG 

codons in a favourable context for translational initiation19 and ending with a highly 

efficient stop codon20 separated by only 7 nucleotides from the PpLuc initiation 

codon. This specific genetic makeup will be effective in supressing any PpLuc 

expression directed by mRNAs with 5’ ends located upstream of the second ATG 

codon in the uORF. Oppositely, in LV.GS.GpLuc.v1 the previously mentioned 

tandem of ATG codons are in-frame with the GpLuc initiation codon allowing the 

synthesis of an N-terminally extended GpLuc fusion protein. Located further 

upstream of the GpLuc ORF in LV.GS.GpLuc.v1 is an out-of-frame ORF with 

suboptimal start and stop codons. LV.GS.GpLuc.v1 thus offers much more 

possibilities for “leaky” Luc expression than LV.GS.PpLuc. To solve this problem, we 

designed LV.GS.GpLuc.v6. In this construct, the distance between the mMT1 pA 

and GpLuc ORF is kept very short to minimize the chance of creating transcriptional 

start sites in the intervening region. As an additional measure to limit leaky GpLuc 

expression, LV.GS.GpLuc.v6 contains a 21-bp uORF starting immediately upstream 

of the FRT sequence and ending with an efficient stop codon provided by the FRT 

sequence. Between the stop codon of the uORF and the PpLuc initiation codon only 

20 nucleotides are present comprising the remainder of the FRT sequence and an 

optimal start site for GpLuc translation. 

LV.GS.GpLuc.v6 was used to generate myoblastsGS.GLuc+ carrying the optimized 

GpLuc gene switch cassette. Next, the performance of the LV.GS.GpLuc.v1- and 

LV.GS.GpLuc.v6-based cell fusion assay systems was compared in an experiment 

with the same setup as used for the comparison of LV.GS.GpLuc.v1 with 

LV.GS.PpLuc except for the omission of the 1:1 myoblastGS.GLuc(+):myoblast-

FLPeNLS+ ratio. Luciferase activity in 0-96 h and 0-120 h culture medium of serum-
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deprived myoblastGS.GLuc+ monocultures was ± 3-fold lower than in culture medium of 

differentiating myoblastGS.GLuc monocultures (Figure 12), demonstrating the 

effectiveness of the new gene switch design to inhibit leaky GpLuc expression. 

However, since the improved gene switch design also reduced FLPe-dependent 

signal output the fold increase in GpLuc activity during myogenic differentiation of 

myoblastGS.GLuc(+):myoblast-FLPeNLS+ co-cultures was quite similar for 

LV.GS.GpLuc.v1 and LV.GS.GpLuc.v6 (Figure 12B). Still, in comparison to 

LV.GS.GpLuc.v1 for LV.GS.GpLuc.v6 a much larger part of the increase in GpLuc 

activity observed in differentiating myoblastGS.GLuc(+):myoblast-FLPeNLS+ co-cultures is 

attributable to cell fusion. 
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Figure 12. Comparison of LV.GS.GpLuc.v1- and LV.GS.GpLuc.v6-based cell fusion assay 

systems. (A): GpLuc production by proliferating or differentiating co-cultures of 

myoblastsGS.GLuc or myoblastsGS.GLuc+ with myoblasts-FLPeNLS+ at different times after culture 

initiation. Cells were seeded in different ratios (i.e. 100:0%, 90:10% and 75:25%). At 72 h 

after cell seeding the culture fluid was replaced by fresh culture medium with (growth 

conditions, no differentiation) or without (differentiation conditions) serum. Ninety-six h and 

120 h later culture medium collected for luciferase activity measurement. Bars represent 

mean ± standard error of the mean (n=3). (B): Fold change in luciferase activity calculated 

on the basis of the data presented in (A). For each experimental condition the average light 

production under growth conditions was the denominator and the mean of the RLUs 

produced under differentiation conditions was the numerator. RLUs, relative light units; G1, 

LV.GS.GpLuc.v1-based cell fusion assay; G6, LV.GS.GpLuc.v6-based cell fusion assay; 

MBsGS.GLuc(+), myoblastsGS.GLuc or myoblastsGS.GLuc+; MBs-FLPeNLS+, myoblasts-FLPeNLS+. 
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Discussion 

 

Apart from being involved in the formation and maintenance of skeletal muscles, 

bones and the placenta, cell-to-cell fusion plays an important role in numerous other 

biological processes like fertilization. It has also been implicated in the initiation and 

progression of cancer2 and as a driving force in evolution.21 Moreover, cell-to-cell 

fusion has been of great value to establish the chromosomal location of specific 

genes,22 can be used to induce cellular reprogramming23,24 and is indispensable for 

generating hybridomas.25 The involvement of cell-to-cell fusion in a large variety of 

biological processes and its diverse biotechnological applications have prompted 

investigations into the mechanisms of cell fusion and the contribution of specific 

factors to this process. Instrumental to this research is the availability of robust 

assays to determine cell fusion kinetics and extent. However, most of the existing 

quantitative cell fusion assays do not allow consecutive analysis of the same 

cells/tissue. Accordingly, in this paper a new quantitative assay is presented to 

monitor cell-to-cell fusion. This assay is based on the activation of a latent GpLuc 

gene after fusion of cells containing this latent reporter gene with cells encoding a 

recombinase that activates the dormant GpLuc gene. The extent of cell-to-cell fusion 

is subsequently quantified by simply measuring the enzymatic activity of the 

luciferase molecules secreted by the cellular fusion products. To the best of our 

knowledge this is the first assay that allows quantification of cell fusion activity by 

medium sampling. 

To validate the new cell fusion assay it was used to monitor the formation of 

myotubes/sacs in cultures of serum-deprived human myoblasts. In these 

experiments, several parameters were varied including the acceptor-to-donor cell 

ratio and the sample regimen(s) of the cell culture medium. In general, transgene 

expression increased with increasing fractions of myoblastsGS.GLuc up to the point at 

which the number of active/nuclear FLPe molecules became limiting (i.e. at 

myoblastGS.GLuc:myoblast-FLPe ratios of 90:10 for FLPeNLS- and of 95:5 for FLPeNLS+; 

Figure 7). 

At high myoblastGS.GLuc:myoblast-FLPe ratios LV.FLPeNLS+ was slightly more 

effective than LV.FLPeNLS- in activating the latent GpLuc gene most likely due to fact 

that under differentiation conditions myoblasts-FLPeNLS+ contain ± 5-fold more 
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nuclear FLPe molecules than myoblasts-FLPeNLS- (Figure 5A). In contrast, at low 

myoblastGS.GLuc:myoblast-FLPe ratios (i.e. when FLPe is no longer limiting) 

LV.FLPeNLS- consistently outperformed LV.FLPeNLS+ (Figures 7 and 10). Collectively, 

these findings suggest that its NLS does not noticeably hamper the spreading of 

FLPeNLS+ through myofibers/sacs but that high nuclear FLPe levels may somehow 

limit reporter gene expression. A possible explanation for the higher GpLuc 

expression in differentiating co-cultures containing large percentages of myoblasts-

FLPeNLS- in comparison to those with large fractions of myoblasts-FLPeNLS+ may be 

the more frequent occurrence of secondary recombination events in the latter co-

cultures leading to the deactivation of functional GpLuc expression modules. 

While monocultures of myoblastsGS.GLuc maintained in growth medium displayed 

very little if any leaky GpLuc expression, considerable amounts of GpLuc were 

produced by myoblastGS.GLuc monocultures exposed to differentiation medium. There 

are several possible explanations for this finding. Firstly, growth and differentiation 

medium may differently affect light output e.g. by (i) causing different levels of 

coelenterazine “auto-oxidation”, (ii) containing different concentrations of 

chemiluminescence inhibitors or (iii) absorbing blue light to a different extent. 

Possibilities (i) and (iii) can be ruled out since mixing of coelenterazine substrate 

solution with fresh or myoblasts-FLPeNLS+-conditioned growth or differentiation 

medium produced very similar signals (data not shown). This leaves us with the 

possibility that transcription termination by the mMT1 pA incorporated into the gene 

switch constructs is not very efficient or that differentiation conditions somehow 

stimulate transcription initiation in the region located in between the mMT1 pA and 

the Luc ORFs. For LV.GS.PpLuc and LV.GS.GpLuc.v6 the resulting transcripts may 

not lead to substantial luciferase production due to the presence of “decoy” ORFs 

immediately upstream of the Luc initiation codons (Figures 2 and 3). A similar 

favorable situation does not exist for LV.GS.GpLuc.v1, which may explain the high 

background signals produced by this construct under differentiation conditions. Even 

though the luciferase activity in culture medium of differentiating myoblastGS.GLuc+ 

monocultures is ± 3-fold lower than in culture medium of differentiating 

myoblastGS.GLuc monocultures LV.GS.GpLuc.v6 still gives rise to a higher background 

signal under differentiation conditions than LV.GS.PpLuc (compare Figure 11 with 

12). Considering that the sequences in between the mMT1 pA and the Luc start 

codon in LV.GS.PpLuc and LV.GS.GpLuc.v1 are nearly identical this may suggest 
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that the GpLuc-coding sequence itself is the source of the relatively high luciferase 

activity detected in medium of differentiating LV.GS.GpLuc monocultures. If so, the 

problem could be overcome by switching to another secretory luciferase (e.g. 

Vargula hilgendorfii luciferase26, Lucia luciferase (InvivoGen Europe, Toulouse, 

France) or secretory NanoLuc27). Also the fact that GpLuc is a secretory protein with 

a long half-life (± 6 days in culture medium)28 while Ppluc has a relatively short half-

life (± 2 hours in cells)29 may contribute to the higher background signals associated 

with LV.GS.GpLuc.v1 and LV.GS.GpLuc.v6 than with LV.GS.PpLuc.   

Taken together, in this paper a new assay to quantify (the progression of) cell-to-

cell fusion activity is described. Due to its nondestructive nature allowing repeated 

sampling of the same specimen, this assay will be an attractive alternative to existing 

quantitative cell fusion assays based on (i) light microscopic assessment of 

multinucleation, (ii) fluorescence dequenching, (iii) fluorescence resonance energy 

transfer, (iv) biochemical complementation or (v) activation of reporter genes 

different from GpLuc including LacZ and PpLuc.3 Other advantages of the 

LV.FLPeNLS+/-.PurR/LV.GS.GpLuc-based cell fusion assay include the simplicity and 

speed of the analytical procedures and the ability to combine it with 

(immuno)cytology, real-time microscopy, cell function assays and other methods to 

study cell behavior. 

The sensitivity of the current assay could be improved by changing the human 

glyceraldehyde 3-phosphate dehydrogenase (hGAPDH) gene promoter driving 

GpLuc expression for a promoter with higher activity in the cell type(s) under 

investigation. In addition, the sequences interspersed between the 3’ long terminal 

repeat (LTR) and the GpLuc initiation codon of LV.GS.GpLuc.v6 may be further 

optimized to minimize leaky GpLuc expression. 
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Abstract  

 

Recent studies have shown that the use of biomaterials and new biodegradable 

scaffolds for repair or regeneration of damaged tissues is of vital importance. 

Scaffolds used in tissue engineering should be biodegradable materials with three-

dimensional structures, which can guide the growth and differentiation of the cells. 

They also should possess physical, chemical and biological properties that allow 

efficient supply of the cells to target tissues and have proper porosity along with 

minimal toxic effects. In this study, Gelatin/Siloxane/Hydroxyapatite (GS-Hyd) 

scaffold was synthesized and its morphology, in vivo biodegradability, cytotoxic 

effects and ability for cell adhesion were investigated using mesenchymal stem cells 

(MSCs). The cells were treated with different volumes of the scaffold suspension to 

evaluate its cytotoxic effects. The MSCs were also seeded on scaffolds and cultured 

for 2 weeks for assessing the scaffold’s ability to promote cell adhesion and 

proliferation. To check the biodegradability of the GS-Hyd complex in vivo, scaffolds 

were implanted into the thigh muscle, testicle, and liver of rats and analyzed at 3, 7, 

16 and 21 days after implantation by scanning electron microscopy (SEM) and 

weighing. The viability studies showed that the GS-Hyd scaffold exerted no cytotoxic 

effects on the cells and that the MSCs readily adhered to the scaffold with the 

expansion of their elongations and the formation of colonies. The rate of scaffold 

degradation as assessed by weighing was significant within each group at some time 

points along with significant differences between different tissues at the same time 

point. SEM micrographs indicated obvious changes at the surface of the scaffold 

particles and in the diameter of their pores through different stages of implantation. 

At 21 days after implantation the loss of scaffold was highest in the muscle and 

lowest in the liver. 

 

Keywords  

Tissue engineering, Gelatin/Siloxane/Hydroxyapatite scaffold, Biodegradability, 

Mesenchymal stem cells, Tissue regeneration  
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Introduction 

 

Several strategies are employed to compensate for the loss of functional tissue in 

incurable diseases including cell, tissue and organ transplantation, surgical 

reconstruction, synthetic prostheses, and medical devices. However, each of these 

treatments, suffers from some problems or limitations. For example, organ 

transplantation is limited by donor shortage and usually requires lifelong 

consumption of immunosuppressive drugs, which may cause severe complications.1 

Although the other therapies are not limited by supply, they also have limitations. For 

example, synthetic prostheses and medical devices are generally not able to replace 

all the functions of damaged, diseased or lost tissue.  

Tissue engineering has emerged as an expanding approach to address these 

problems and is now a major component of regenerative medicine.2-4 By combining 

engineering principles with material science and molecular biology, investigators 

seek to create novel constructs that will fully integrate into the host system and 

restore function of the lost tissues.5 The general principle of cell-based tissue 

engineering involves combining living cells with a natural/synthetic support or 

scaffold.6 The main roles of the porous three-dimensional (3D) scaffolds are to give 

structural support and to provide an optimal environment for the cells contained 

inside. Following their isolation from healthy tissue and in vitro expansion, the cells 

should adhere to the scaffold in all three dimensions, proliferate, differentiate and 

secrete their own extracellular matrices (ECMs), gradually replacing the scaffold.4,7 

Therefore, in addition to permitting cell adhesion, promoting cell growth, and allowing 

retention of differentiated cell functions, the scaffold should be biocompatible, 

biodegradable, highly porous with a large surface to volume ratio, able to facilitate 

the necessary crosstalk with surrounding cells, mechanically strong, and capable of 

being formed into desired shapes with considerable stability.8-11  

A variety of hydrolytically degradable polymers have been developed for scaffold 

applications in tissue engineering. The majority of these polymers are composed of 

linear aliphatic polyesters with a high molecular weight and their copolymers. These 

materials often possess mechanical properties best suited for engineering of hard 

tissues.12-17 However, for engineering of soft tissues, flexible scaffolds are 

desirable.18 The biomaterials used to construct these porous scaffolds include 

synthetic biodegradable polymers such as polyglycolic acid (PGA), polylactic acid 
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(PLA), and their copolymer poly DL-lactic-co-glycolic acid (PLGA), and also polymers 

derived from natural materials such as collagen and inorganic hydroxyapatite.17,19,20 

In this study, the GS-Hyd complex was synthesized by combining Gelatin, Siloxane 

and hydroxyapatite as will be explained below. Hydroxyapatite, mainly in a 

carbonated form, is the major inorganic constituent of natural bone.21,22 Synthetically 

made hydroxyapatite (Ca5(PO4)3(OH)) has long been used in medicine and dentistry 

due to its ability to chemically attach to bone. It has been used as a hard tissue 

replacement, usually in the form of fillers (pastes, powders), or as a bioactive agent 

in polymer composites.21 Pure, stochiometrical hydroxyapatite is the least 

degradable form of calcium phosphate.23 Often, other more soluble mineral phases 

of apatite are preferred as bone-substitute materials in order to combine calcium-ion 

release properties with chemical stability of the support.24-26 Amongst those are non-

stochiometrical hydroxyapatite (calcium-deficient hydroxyapatite (CDHA)), β-

tricalcium phosphate (β-TCP), octacalcium phosphate (OCP), or biphasic 

hydroxyapatite (BCP, various hydroxyapatite/β-TCP ratios).24-27 A number of 

synthetic routes towards the preparation of biologically active calcium phosphates, 

including different templating approaches, have been reported.28-32 The presence of 

silica in many biocompatible and bioactive materials has generally been shown to 

improve their bioactivity.33,34 Studies show that introduced or already present silanol 

groups provide good nucleation sites for hydroxyapatite.35 Silica is also one of the 

vital components in bioglass, but is also used in polymer composites and thin 

films.36-40 In addition, natural polymers like collagen, gelatin and chitosan are 

osteoconductive and biodegradable components that have been used in fabrication 

of scaffold materials for tissue engineering.41,42 Thus, combining these natural 

polymers with the inorganic species mentioned above may yield biodegradable and 

bioactive scaffolds for tissue engineering.43 Scaffolds are normally analyzed by 

scanning electron microscopy (SEM) for their pore sizes, internal connections, and 

physical appearances. In the scaffold biodegradability process, both in vitro and in 

vivo, the pore diameters and volume of the scaffolds can be determined by SEM.44  

Development of a viable construct also requires a suitable supply of cells that are 

ideally non-immunogenic, highly proliferative, easy to harvest and have the ability to 

differentiate into a variety of cell types with specialized functions.45-47 Possible 

candidates for such purpose are bone marrow-derived mesenchymal stem cells 

(BM-MSCs), which have the potential to differentiate into various types of 
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mesenchymal tissues, including osteoblasts, chondroblasts, myoblasts and 

fibroblasts.48 They are present in large quantities in animal and human bodies, can 

be easily obtained, and greatly expanded in vitro.49,50 Moreover, BM-MSCs are 

hypoimmunogenic cells that do not induce immune system response51 and have 

been successfully used to promote repair of different connective tissues, such as 

bone,52 cartilage,53 tendon,54 and ligament.55 We have also shown in our previous 

studies, the capacity of MSCs to differentiate into insulin-producing and neural cells 

in animal models of diabetes and Huntington’s disease, respectively.56,57  

In this study, the GS-Hyd complex was synthesized and the three main questions 

relevant for its use as scaffold were studied, i.e. (a) whether it affects cell viability, (b) 

whether it supports the cell adhesion and proliferation, and (c) whether it is 

biodegradable in vivo. 

 

Materials and Methods 

 

Scaffold preparation 

Starting materials used in this investigation for synthesis of the scaffold, including 

analytical grade calcium nitrate tetrahydrate (Ca(NO3)2·4H2O), phosphoric pentoxide 

(P2O5) and tetraethoxyorthosilicate (TEOS) were purchased from Aldrich, Germany. 

All materials were used as received, without further purification.  

Solutions of P2O5 (0.5 mol/L (absolute ethanol)) and solution of Ca(NO3)2·4H2O 

(1.67 mol/L (absolute ethanol)) were prepared. They were mixed together in a Ca/P molar 

ratio of 1.67 to generate a calcium phosphate precursor solution. The mixture was 

then continuously stirred about 10 min at ambient temperature, followed by heating 

in a water bath at 60 °C for 1 h. A 12.5% solution of gelatin was prepared by 

dissolution in 0.1 M HCL. Addition of appropriate amount of calcium phosphate 

precursor solution to the gelatin solution resulted in the hybrid solution. After this 

ripening process, 5 ml TEOS was added to the mixture under continuous stirring, 

corresponding to 60% SiO2 in the final SiO2/calcium phosphate material. The 

obtained gel was aged at room temperature for 20 h before calcination at 550 °C for 

8 h (heating rate 1 K min−1), to remove all organics from the material. 
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Animals 

In all experiments, male Wistar rats with an average weight of 250 g were used. Rats 

were kept at standard conditions and subjected to 12-hour cycles of light and 

darkness. 

 

BM-MSCs extraction and culture 

Bone marrow (BM) was obtained from the femurs and tibias of rats. BM was flushed 

into Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, Scotland) supplemented 

with 15% fetal bovine serum (FBS, Gibco, Scotland), 100 units/ml penicillin, and 100 

μg/ml streptomycin (Biosera, UK) and incubated in a humidified incubator at 37 °C 

with 5% CO2. When cultures reached about 80% confluency, they were washed with 

phosphate-buffered saline (PBS) followed by a 5 min incubation with 0.05% trypsin 

solution at 37 °C. Cells were split weekly at a ratio of 1:3. 

 

Cytotoxicity assay of GS-Hyd 

5 × 103 of MSCs at passage 3 were seeded in each well of 96-well microplates and 

incubated for 48 h at 37 °C. Then, 80 mg of powdered scaffold was dissolved in 2 ml 

DMEM supplemented with 15% FBS, and cells were exposed to various volumes of 

the resulting GS-Hyd suspension (2, 4, 8, 16, 32, 64, 128 and 200 μl), with three 

repeats for each volume. Cells cultured in DMEM supplemented with 15% FBS 

without GS-Hyd were used as controls. Total volume in each well was 200 μl. The 

effect of GS-Hyd on cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyl tetrazolium bromide (MTT, Merck, Germany) staining. MTT assay was 

performed after 48 h of treatment. Cells in each well were incubated in 20 μl MTT 

solution (5 mg/ml MTT in PBS) for 4 h at 37 °C. The intense purple-colored formazan 

derivative formed via cell metabolism was then dissolved in 200 μl/well 

dimethylsulfoxide (DMSO, Merck, Germany) and the absorbance was measured at 

570 nm by ELISA plate reader (Awareness Technology, USA). The cell viability in 

the presence of different volumes of GS-Hyd was calculated using the following 

formula: absorbance of each treated well/mean absorbance of control wells × 100. 

The average cell viability for each volume of GS-Hyd was then calculated and 

presented in a graph using Microsoft Excel. 
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Seeding of MSCs on GS-Hyd scaffold 

MSCs at passage 3 were trypsinized and suspended in DMEM followed by counting 

with a hemocytometer. The cell suspension was then centrifuged at 67.2 x g for 

5 min and the pellet was resuspended in DMEM, supplemented with 15% FBS, 100 

units/ml penicillin and 100 μg/ml streptomycin at a concentration of 107 cells/ml. After 

the scaffold had been cut into small pieces (5 mm × 3 mm) and sterilized by 

autoclaving, the GS-Hyd pieces were placed on agarose-coated (1% agarose in 

sterile H2O) 6-well culture plates (3 scaffolds/well), and divided into two test and 

control groups. The scaffolds received 100 µl medium without cells served as 

controls, while each scaffold in the test group was seeded with 106 cells in 100 µl 

medium. The scaffolds were incubated for 4 h in a humidified atmosphere at 37 °C 

and 5% CO2 to allow cell attachment. Then 3 ml of the medium was added to each 

well and the scaffolds were incubated for 2 weeks. The medium was replaced every 

2–3 days. On days 1, 7 and 14 the scaffolds were collected to be evaluated for cell 

attachment by SEM. 

 

Preparation of the cell-seeded scaffolds for SEM 

Scaffolds were fixed in 3% buffered glutaraldehyde for 24 h, dehydrated with a 

graded ethanol series, and dried. The dried samples were mounted on aluminum 

stubs and sputter-coated (SC7620 sputter coater) with gold for 2 min. SEM was used 

to take micrographs of the samples. The GS-Hyd scaffold was characterized mainly 

by Fourier transform infrared spectroscopy (FTIR), differential thermal analysis 

(DTA), and transmission electron microscopy (TEM). Simultaneous DTAs were 

carried out in the range of 20–1,000 °C in a Netzsch STA 409 °C instrument under 

air and at the rate of 10 °C/ min. 

 

Preparation of scaffold for in vivo implantation 

Another series of scaffolds were cut in small segments (5 mm × 3 mm), submerged 

in 70% ethanol for 30 min, and washed with PBS. The scaffolds were then kept in 

PBS until the start of the surgery. Scaffolds were polished on the edges to ensure 

that they were not sharp. The weight of the scaffolds was recorded before the 

ethanol wash and placement in the PBS. 
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Preparation of animals for implantation surgery 

All tests and experimental protocols were approved by the Ethics Committee of 

Ferdowsi University of Mashhad. Animals were anesthetized by a mixture of 

ketamine hydrochloride (100 mg/kg) and xylazine (5 mg/kg). The regions for the 

surgery (thigh muscle, testicles and liver) were sterilized with 70% ethanol after 

shaving. 

For implantation of the scaffold in thigh muscle, a deep incision of 1 cm along the 

length of the muscle was made with a scalpel. Next, tampons were used to stop 

bleeding. If bleeding persisted, the site of incision was cauterized. The scaffold was 

then gently lowered in between the muscle fibers. After this step, the muscle was 

stitched layer by layer towards the surface. To implant the scaffold in a testicle, an 

incision was made in the scrotum. One of the testicles was exposed, and without 

applying too much pressure to the testicle, a hole with the exact size of the scaffold 

was made by scalpel. The scaffold was subsequently placed in the testicle and the 

testis and scrotum were stitched. For implantation of the scaffold in the liver, a deep 

incision of about 1 cm was made below the right side of the rib cage, until the 

visceral peritoneum of the liver appeared. Then, a small hole was made in the liver 

and the scaffold was placed inside and the peritoneum layers and skin were stitched 

separately. 

At the end of each surgical procedure, the stitched tissues were sterilized with 

betadine and Lidocaine gel was applied to numb them. As extra measure against 

possible infections, every rat was injected intraperitoneally with 5,000 unit/kg 

penicillin. After surgery, the animals were moved to a recovery cage to regain their 

consciousness in a warm blanket. The conditions of the rats was monitored by 

checking their breathing, taking their pulse and measuring their body temperature. 

When the rats showed normal vital signs and movements, they were returned to their 

original cage.  

 

Degradation assay of GS-Hyd 

To analyze the degradability of the scaffold by weight changes, 3 rats per scaffold 

implantation site were anaesthetized at 3, 7, 16, and 21 days after implantation, and 

the scaffolds were removed from their bodies. On these days, the anatomical 

condition and histology of the surgery site were carefully studied. When each 

scaffold was removed from the body, it was immediately washed with normal saline 
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to remove blood and extra tissues. Each scaffold was placed into a separate test 

tube with specific identification number. The test tubes were then placed in oven at 

50 °C for 30 min. After the scaffolds were completely dried, they were weighed with a 

sensitive electronic scale. The weight of the scaffolds after explantation were 

compared to their weight prior to surgery and the percentile weight loss was 

recorded. To check the rate of degradation using SEM, scaffold samples from each 

part of the body (thigh muscle, testicle and liver) were prepared using the same 

procedure. The number of connections between the pores of the scaffolds and the 

diameter and dispersion of the pores were assessed as indicators of scaffold 

degradation. 

 

Statistical analysis 

Data were analyzed using one way ANOVA. All group comparisons were analyzed 

using Tukey’s post hoc test to determine which groups were significantly different 

from each other. P values ≤ 0.05 were considered to indicate statistical significance. 

 

Results 

 

Chemical and structural characteristics of GS-Hyd scaffold  

GS-Hyd scaffold showed sharp absorption bands in FTIR that were attributed to 

hydroxyapatite: 3th vibration of PO4
3− (υ3PO4

3−) at 1,045–1,092 cm−1 and υ2PO4
3− at 

474 cm−1, υ1PO4
3− symmetric stretch at 963 cm−1, υ4PO4

3− bending at 602 and 

572 cm−1. The broad absorption bands at 3,100–3,600 cm−1 belonged to OH 

stretching absorption bands. Extensive absorption around 630 cm−1 (structural OH 

stretching) was attributed to hydroxyapatite’s crystalline structure. The silica layer 

showed weak absorption bands around 800 cm−1 corresponding to the Si–O–Si 

bonds. Some of the silica absorption bands were hard to identify due to stronger, 

overlapping absorption bands from hydroxyapatite. That is especially true in the area 

around 1,185 and at 1,000–1,085 cm−1 where the Si–O–Si vibration bands usually 

are the strongest, but also around 960 cm−1 where the Si–OH silanol groups absorb 

(data not shown). 

Figure 1 shows the thermogram corresponding to simultaneous DTA at 70 

°C/24 h. In the DTA curve of the precursor GS-Hyd scaffold (Figure 1), after dried in 

70 °C, exothermic peaks assignable to organic combustion are visible. In order to 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig1/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig1/?report=objectonly
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discard the presence of water occluded in the exhaustively dried sample after 150 

°C, a simultaneous DTA was carried out due to its considerably higher sensibility. 

DTA showed the combustion peak of residual gelatin at 320 °C, and a very low peak 

at 590 °C. It can thus be concluded that the microporosity observed after calcination 

is originated by the elimination of gelatin macromolecules forming microdomains in 

the silica matrix. 

 

 

 

Figure 1. DTA thermogram of GS-Hyd. 

 

The simple one-pot synthesis method resulted in a fairly homogeneous distribution 

of the mesoporous silica throughout the apatite crystal surface as demonstrated by 

the TEM micrograph (Figure 2). The crystalline size of the GS-Hyd scaffold is about 

50 nm. This could be the reason for even distribution of hydroxyapatite over the 

surface of silica matrix. On the other hand, the material lacks a well-pronounced 

mesoporous long-range order in the silica layer. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig2/?report=objectonly
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Figure 2. TEM image of GS-Hyd showing the great growth of hydroxyapatite (arrows) and 

the deposition of silica among its pores (asterisks). 

 

Homing of MSCs in GS-Hyd scaffolds 

As mentioned previously, to investigate the biocompatibility of the GS-Hyd complex, 

scaffolds were seeded with106 BM-MSCs and scaffolds without cells served as 

negative controls (Figure 3). On days 1, 7 and 14 after cell seeding, scaffolds were 

collected to be evaluated for cell attachment and proliferation by SEM. Cells were 

round shaped at the time of seeding (not shown) but adhered to the scaffold, 

expanded their elongations and obtained a fibroblast-like appearance within 24 h 

(Figure 4). Moreover, during their cultivation on scaffolds, the BM-MSCs proliferated 

resulting in the formation of colonies (Figure 5). 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig3/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig4/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig5/?report=objectonly
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Figure 3. SEM micrograph showing the morphology of the GS-Hyd scaffold without cells. 
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Figure 4. SEM micrograph showing scattered distribution of MSCs on the surface of the 

scaffold 24 h after cell seeding. 
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Figure 5. SEM micrograph showing MSC proliferation and colony formation on the scaffold, 

7 days after cell seeding. 

 

Cytotoxicity of GS-Hyd scaffold 

The MTT assay is a colorimetric method for measuring the activity of enzymes that 

reduce the colorless MTT to purple colored formazan dyes. Its main application is 

assessment of the viability and the proliferation of cells. It can also be used to 

determine cytotoxicity of potential medicinal agents and toxic materials, since those 

agents would stimulate or inhibit cell viability and growth. 

The MTT assay showed that GS-Hyd has no detectable cytotoxic effects on the 

cells up to concentration of 25.6 mg/ml (128 µl). Cell viability decreased only at the 

highest amount of GS-Hyd (200 μl) as shown in Figure 6. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig6/?report=objectonly
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Figure 6. Effects of different volumes of GS-Hyd suspension on the viability of MSCs as 

measured by MTT assay. 

 

In vivo degradability of GS-Hyd scaffold 

The degradation rate of scaffolds implanted at different sites was determined by 

weighing them following their explantation at 3, 7, 16 and 21 days after 

transplantation. The weight reduction at day 3 significantly differed from those at day 

16 and 21 for scaffolds in all three anatomical sites, but the differences between 

other days were not significant. At day 7, the differences between thigh muscle and 

liver (P < 0.0001) and between liver and testis were significant (P < 0.001), but there 

was no significant difference between thigh muscle and testicle. The differences 

between different tissues at other time points were significant (Figure 7). 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig7/?report=objectonly
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Figure 7. Comparison of the rate of scaffold degradation in various anatomical positions on 

different days after implantation. There are significant differences in each group during the 

time period and between groups at the same time point. Vertical bars indicate means±SEM 

in rats of each group at each measurement (n = 3, P ≤ 0.05).  

 

Structural changes of GS-Hyd scaffolds following in vivo implantation 

Transplanted GS-Hyd particles underwent clear time-dependent morphological 

changes on their surface as evinced by SEM micrographs of scaffolds explanted at 

different times after implantation (Figure 8). These changes in surface structure were 

accompanied by an increase in diameter of the pores. Consistent with the results 

presented in Figure 7, degradation of the GS-Hyd scaffold at 21 days post 

implantation was highest in the thigh and lowest in the liver (Figure 8, B–D). 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig8/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig8/?report=objectonly
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Figure 8. SEM micrographs of the scaffold before (A) and after (B–D) implantation in the 

liver (B), testicle (C) and thigh muscle (D). 

 

Discussion 

 

One of the main problems in cell therapy is homing of the cells and their 

maintenance in desired areas, which may be overcome by growing the cells on 

scaffolds followed by their transplantation at the target sites. The major concerns in 

applying external scaffolds in tissue engineering are severe immune responses, 

persistence to degradation, and unexpected side effects. As mentioned before (1) 

the specific material composition of the scaffold and (2) the cell source are two 

important elements, which can substantially affect the outcome of tissue 

engineering.5 Application of biodegradable materials is a vital factor in tissue 

engineering.58 Scaffolds should also be mechanically strong, capable of being 

formed into desired shapes, non-cytotoxic and highly porous for permitting cell 

adhesion and growth.8,9 Development of such an efficient scaffold also involves a 
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suitable supply of cells such as MSCs, which, due to their specific properties, are 

attractive candidates for clinical applications. For example, Liu and colleagues 

cultured anterior cruciate ligament fibroblasts (ACLFs) and BM-MSCs on combined 

silk scaffolds to determine which of these two cell types would be best suited for 

ligament tissue engineering applications. Their preliminary results demonstrated that 

BM-MSCs are superior to ACLFs, with respect to cell proliferation and in vivo 

survival.59 Moreover, the safety of MSCs for in vivo applications has been shown by 

numerous studies in animals and humans and the clinical use of MSCs is not 

associated with major ethical concerns unlike the therapeutic use of embryonic stem 

cells (ESCs). Although some studies have shown a promotion of tumor growth and 

metastasis after implantation of MSCs, tumor induction is mostly described for 

embryonic stem cells (ESCs).60,61  

Cell adhesion to substrate is known to affect cell behavior and function in both 

natural and engineered tissues and plays a key role in morphogenesis and 

organogenesis.62,63 In this study, we used MSCs as candidate stem cells and GS-

Hyd scaffold as a cell carrier for adhesion and proliferation of the cells in vitro. GS-

Hyd is a 3D scaffold which did not show any cytotoxic effects and preserved the cell 

viability in vitro. GS-Hyd also promoted cell adhesion and proliferation. Considering 

the fact that cells were round shaped at the day of seeding (not shown) but could 

expand their elongations and obtained a fibroblast-like appearance within 24 h 

(Figure 4), we conclude that MSCs very well adhere to the GS-Hyd scaffold. 

Moreover, the fact that more cells were visible on the scaffolds at day 7 than day 2 

post seeding and the observation that the MSCs had formed colonies after 7 days of 

cell seeding indicate that the GS-Hyd complex supports cell proliferation (Figures 3, 

4 and 5). The interconnected pores of the scaffold may further promote cellular 

adherence. Additionally, the pore size (1–2 μm) of the scaffolds seems to be large 

enough to allow medium flow which would provide ideal conditions for cell 

proliferation on the scaffolds. 

The composition of the scaffold and the speed of scaffold degradation in its 

biological environment, are important factors for their applicability in vivo. However, 

this is not the case for GS-Hyd scaffold, because its rate of degradation can be 

manipulated during the synthesis. In previous studies on similar scaffolds, they were 

kept in the body of rats for 30–90 days after surgery.64,65 In our study, we implanted 

and kept the scaffolds for 21 days. During this period, the speed of scaffold 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig4/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig3/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig4/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig4/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig4/?report=objectonly
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432534/figure/Fig5/?report=objectonly
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degradation was much higher shortly after implantation than at later times. This 

could be explained by the fact that gelatin, the main component of the scaffold, is 

easily degraded and could hence account for the major weight lost observed in the 

beginning. However, additional experiments are required to identify the cause(s) for 

the large loss in scaffold weight early after in vivo implantation. At 21 days after 

implantation about 30% of the initial weight of the scaffolds remained. The SEM 

analyses revealed that the loss of scaffold weight is accompanied by the 

disappearance of the interconnections between pores inside the scaffold which 

suggests a direct link between compound degradation and inter-junction loss. 

Structural degradation rates at the three examined anatomical sites proved that the 

degradative capacities are tissue-specific and according to our SEM micrographs the 

thigh muscle has the highest capacity for the scaffold degradation. During the whole 

in vivo study, the rats did not display any signs of scaffold-related toxicity, other than 

a mild inflammation. 

In conclusion, this study showed that GS-Hyd scaffolds are degraded in vivo at 

rates compatible with their application in tissue engineering. It was also shown that 

GS-Hyd did not have any cytotoxic effects and also could promote cell adhesion and 

proliferation in vitro, but to reach to a definite conclusion about the toxic effects of the 

scaffold in vivo, further experiments are needed. Therefore, we suggest that GS-Hyd 

scaffolds can be used for tissue engineering, but still more assays and in vivo 

studies are required to investigate other characteristics of this scaffold which are 

important for its clinical use. 
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Abstract 

Background: Different factors may trigger arrhythmias in diseased hearts including 

fibrosis, cardiomyocyte hypertrophy, hypoxia and inflammation. This makes it difficult 

to establish the relative contribution of each of them to the occurrence of 

arrhythmias. Accordingly, in this study, we used an in vitro model of pathological 

cardiac hypertrophy (PCH) to investigate its pro-arrhythmic features and the 

underlying mechanisms independent of fibrosis or other PCH-related processes. 

Methods and Results: Neonatal rat ventricular cardiomyocyte (nr-vCMC) 

monolayers were treated with phorbol 12-myristate 13-acetate (PMA) to create an in 

vitro model of PCH. Electrophysiological properties of PMA-treated and control 

monolayers were analyzed by optical mapping at day 9 of culture. PMA treatment led 

to a significant increase in cell size and total protein content. It also caused a 

reduction in sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 level (32%) and an 

increase in natriuretic peptide A (42%) and α1-skeletal muscle actin (34%) levels 

indicating that the hypertrophic response induced by PMA was indeed pathological in 

nature. PMA-treated monolayers showed increases in action potential duration 

(APD) and APD dispersion, and a decrease in conduction velocity (CV; APD30 of 

306±39 vs 148±18 ms, APD30 dispersion of 85±19 vs 22±7 and CV of 10±4 vs 21±2 

cm/s in controls). Upon local 1-Hz stimulation, 53.6% of the PMA-treated cultures 

showed focal tachyarrhythmias based on triggered activity (n=82), while control 

group showed 4.3% tachyarrhythmias (n=70). 

Conclusion: Following PMA treatment, nr-vCMC cultures acquire features of 

pathologically hypertrophied hearts and show a high incidence of focal 

tachyarrhythmias associated with APD prolongation and an increase in APD 

dispersion. PMA-treated nr-vCMC cultures may thus represent a well-controllable in 

vitro model for testing new therapeutic interventions targeting specific aspects of 

hypertrophy-associated arrhythmias. 

Key words: phorbol 12-myristate 13-acetate, pathological cardiac hypertrophy, 

triggered activity, cell culture  
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Introduction 

An increase in cardiac demand triggers the heart to respond in several ways, 

including by the enlargement of cardiomyocytes. Such cardiac hypertrophy is 

essentially a beneficial compensatory process as it decreases wall stress, while 

increasing cardiac output.1 This adaption by growth occurs under physiological 

conditions like exercise and pregnancy, but also in response to myocardial infarction 

and other cardiac pathologies. Whereas physiological cardiac hypertrophy is usually 

reversible and contributes to optimal heart function, hypertrophy due to cardiac 

disease (i.e. pathological cardiac hypertrophy [PCH]) is typically associated with 

several irreversible time-dependent detrimental changes, including maladaptive 

remodeling of cardiac structure, metabolism, electrophysiology and ion homeostasis, 

which may ultimately culminate in heart failure.2,3 Electrophysiological remodeling, 

especially if sustained, imposes an increased risk of developing cardiac arrhythmias.  

The relationship of PCH with ventricular tachyarrhythmias has been investigated in 

whole heart mapping studies.4-7 However, the complexity of three-dimensional (3D) 

myocardial tissue and the presence in pathologically hypertrophied hearts of various 

other changes in cardiac structure and function including fibrosis, inflammation and 

metabolic remodeling,7,8 complicates assessment of the specific contribution of PCH 

to the development of heart rhythm disturbances. This problem can be overcome by 

using two-dimensional (2D) cell culture models of defined composition to study PCH-

related pro-arrhythmic changes. Induction of hypertrophy-related pathological 

changes in cardiomyocyte cultures can be accomplished by exposure of the cells to 

a variety of different peptide and non-peptide hormones and growth factors including 

angiotensin II (AngII), endothelin 1 (ET-1) and certain natural and synthetic 

catecholamines.9 Many of these molecules exert their pro-hypertrophic effects 

through the activation of phospholipase C leading to the production of inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG). Binding of IP3 to specific receptors 

located in the membranes of the sarcoplasmic reticulum and in the nuclear envelope 

causes Ca2+ release into the cytosol and nucleus and activation of several pro-

hypertrophic factors including calcineurin, nuclear factor of activated T cells (NFAT) 

and Ca2+/calmodulin-dependent protein kinase II (CaMKII).10 DAG, on the other 

hand, stimulates cardiac hypertrophy mainly by acting as stimulatory cofactor of 

protein kinase C (PKC) and protein kinase D (PKD).11,12 The pro-hypertrophic effects 

of DAG can be mimicked by phorbol 12-myristate 13-acetate (PMA). Indeed, 
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treatment of neonatal rat ventricular cardiomyocytes (nr-vCMCs) with PMA has been 

shown to induce a gene expression program in these cells sharing many features 

with that of pathologically hypertrophied hearts.13-15 Prominent among the PMA-

induced changes are those involving the expression level, cellular localization and 

specific activity of ion channels and transporters,16,17 connexins,18,19 and Ca2+-

handling proteins20-22 similar to what happens in pathologically hypertrophied hearts. 

Still, relatively little is known about the possible pro-arrhythmic consequences of 

these changes, which are commonly referred to as electrical remodeling. Therefore, 

the purpose of the present study was to investigate in PMA-treated nr-vCMC cultures 

the contribution of PCH to the development of cardiac arrhythmias independent of 

fibrosis, inflammation and hypoxia. 

 

Materials and Methods 

 

All animal experiments had the approval of the Animal Experiments Committee of 

the Leiden University Medical Center and complied with the Guide for the Care and 

Use of Laboratory Animals as stated by the US National Institutes of Health.  

 

Cardiomyocyte isolation 

nr-vCMCs were isolated and cultured essentially as described previously.23 In brief, 

2-day-old Wistar rats were anaesthetized with 4–5% isoflurane. After confirmation of 

anesthesia, the chest was opened, the heart was excised and the ventricles were 

separated from the remainder of the cardiac tissue. Next, the ventricular myocardium 

was cut into small pieces (~1 mm) and further dissociated by incubation at 37°C with 

a buffer solution containing 0.01 mM CaCl2, 5 mM MgCl2, 450 units/ml of 

collagenase 1 (Worthington, Lakewood, NJ, USA) and 18.75 Kunitz units/ml DNAse I 

(Sigma-Aldrich, St. Louis, MO, USA). Cells and remaining tissue fragments were 

pelleted by centrifugation at 161 × g and room temperature (RT) for 10 min and 

resuspended in growth medium (Ham’s F10 medium supplemented with 10% fetal 

bovine serum [FBS] and 10% horse serum [HS; all from Life Technologies, Bleiswijk, 

the Netherlands]). The cell suspension was then applied to Primaria culture dishes 

(Corning Life Sciences, Amsterdam, the Netherlands) and incubated for 75 min in a 

humidified incubator at 37ºC and 5% CO2 to allow preferential attachment of non-
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myocytes. The unattached cells (mainly cardiomyocytes) were collected, passed 

through a cell strainer (70-μm mesh pore size; BD Biosciences, Breda, the 

Netherlands) to obtain a single cell suspension and applied at a density of 6×105 

cells/well of a 24-well cell culture plate (Corning Life Sciences) to fibronectin (Sigma-

Aldrich)-coated, round glass coverslips (15-mm diameter). One day later (i.e. at 

culture day 1), the cells were treated in growth medium with mitomycin C (10 μg/ml; 

Sigma-Aldrich) for 2 h to inhibit proliferation of remaining non-myocytes. The growth 

medium was subsequently replaced by a 1:1 mixture of Dulbecco’s modified Eagle’s 

medium [DMEM; Life Technologies] and Ham’s F10 medium supplemented with 5% 

HS, 2% bovine serum albumin (BSA) and sodium ascorbate to a final concentration 

of 0.4 mM. This so-called maintenance medium was refreshed daily. To induce 

pathological hypertrophy cultures were exposed to 1 µM PMA (BioVision, Milpitas, 

CA, USA) for 24 h at day 3 and 8 of culture.  

 

Optical mapping  

Optical mapping was done at day 9 of culture. Prior to optical mapping, the cells 

were incubated for 10 min in maintenance medium containing 8 µM of the voltage-

sensitive dye di-4-ANEPPS (Life Technologies) and given fresh medium consisting 

of DMEM/HAM’s F12 (Life Technologies) without phenol red and serum. Immediately 

afterwards, cultures were optically mapped at 37°C using a MiCAM ULTIMA-L 

imaging system (SciMedia, Costa Mesa, CA, USA). To allow for a fair comparison of 

action potential duration (APD) and conduction velocity (CV), all cultures were locally 

stimulated at 1 Hz using an epoxy-coated bipolar platinum electrode with square 

suprathreshold (i.e. 8 V) electrical stimuli of 10 ms. Parameters of interest were 

calculated using Brain Vision Analyzer 1208 software (Brainvision, Tokyo, Japan). 

Optical signals of 9 pixels were averaged to minimize noise artifacts. To calculate 

CV, two 3 by 3 pixel grids located 2-8 mm apart on a line perpendicular to the 

activation wavefront were used. APD was calculated at 30% (APD30) and 80% 

(APD80) of repolarization. CV and APD values were averages of values obtained 

from 6 different positions equally distributed across the cell cultures. APD30 and 

APD80 dispersion were expressed as the standard deviation (SD) of the mean of the 

APDs. For determining CV, APD and APD dispersion only nr-vCMC cultures with 

uniform activation patterns were used. Occurrence of pro-arrhythmic features was 
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also evaluated after 1-Hz local stimulation. An early afterdepolarization (EAD) was 

defined as a reversal of repolarization during phase 2 or 3 of the AP of more than 

10% of the maximum optical signal amplitude. A focal tachyarrhythmia was defined 

as an activation pattern in which an EAD was followed by 2 or more uninterrupted 

oscillations in membrane potential without giving rise to a reentrant circuit. 

 

Immunocytology 

For immunostaining, 8×104 cells were seeded on fibronectin-coated, round glass 

coverslips (15-mm diameter) in wells of 12-well cell culture plates (Corning Life 

Sciences). At day 9 of culture, cells were fixed by incubation for 30 min in 

phosphate-buffered 4% formaldehyde (Klinipath, Duiven, the Netherlands) and 

permeabilized by a 20-min treatment with 0.1% Triton X-100 in phosphate-buffered 

saline (PBS) both at RT. Next, cells were incubated overnight at 4°C with mouse 

anti-sarcomeric α-actinin (clone: EA-53; Sigma-Aldrich), mouse anti-

sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (Serca2; clone: 2A7-A1; 

Thermo Fisher Scientific, Waltham, MA, USA), rabbit anti-natriuretic peptide 

precursor type A (Nppa; Merck Millipore, order number: AB5490) and rabbit anti-α1-

skeletal muscle actin (Acta1; Abcam, Cambridge, United Kingdom, order number: 

ab52218) primary antibodies diluted 1:200 in PBS + 0.1% donkey serum (Santa Cruz 

Biotechnology, Dallas, TX, USA) followed by a 2-h incubation at RT with appropriate 

Alexa Fluor 488- or 568-conjugated donkey IgG (H+L) secondary antibodies (Life 

Technologies) diluted 1:400 in PBS + 0.1% donkey serum. Nuclei were 

counterstained with 10 µg/ml Hoechst 33342 (Life Technologies) in PBS. Cells were 

washed three times with PBS after fixation, permeabilization and incubation with 

primary antibody, secondary antibody and DNA-binding fluorochrome. To minimize 

photobleaching, coverslips were mounted in VECTASHIELD mounting medium 

(Vector Laboratories, Burlingame, CA, USA). Pictures were taken with a 

fluorescence microscope equipped with a digital color camera (Nikon Eclipse 80i; 

Nikon Instruments Europe, Amstelveen, the Netherlands) using NIS Elements 

software (Nikon Instruments Europe). Cell surface area (CSA) and fluorescent 

intensity were measured using dedicated software (ImageJ, version 4.1 National 

Institutes of Health, USA). 
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Statistical analysis 

Different experimental groups were compared using the unpaired samples t-test. 

Data represented as mean±SD. Differences among means were considered 

significant at P≤0.05. Graphs were prepared in GraphPad Prism version 6 

(GraphPad Software, La Jolla, CA, USA). 

 

Results 

 

PMA induces a hypertrophic response in nr-vCMCs  

Immunostaining of control and PMA-treated nr-vCMC cultures for sarcomeric α-

actinin showed the presence of ~13% non-myocytes in the cultures (Figure 1A). 

PMA treatment of nr-vCMC cultures increased mean CSA by 30% (3.5±1.5 [n=81] vs 

2.6±1.0 pixels in control cultures [n=54], P<0.0005) (Figure 1B) and total protein 

content by 80% (1.3±0.1 vs 0.7±0.1 mg/107 cells in control cultures [n=9 for both 

experimental groups], P<0.0001) (Figure 1C), confirming that PMA is a hypertrophy 

inducer. 
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Figure 1. Characterization of PMA-treated nr-vCMC cultures. (A) α-actinin staining showing 

the presence of 13% non-myocytes in the nr-vCMCs cultures. Quantification of (B) CSA and 

(C) protein content of control and PMA-treated nr-vCMCs. CSA and protein level were 

increased in cultures treated with PMA indicative of a hypertrophic response. * P<0.0005 

and ** P<0.0001. 

PMA-treated nr-vCMCs acquire a pathological hypertrophy-related phenotype 

To investigate the nature of the hypertrophic response induced by PMA, control and 

drug-treated nr-vCMC cultures were immunostained for markers distinguishing 

physiological from pathological hypertrophy. The PMA-treated nr-vCMC cultures 

displayed a 42% increase in Nppa level (17.8±2.0 vs 12.5±4.4 arbitrary units, 

P<0.005) (Figure 2A), a 34% increase in Acta1 expression (22.0±4.1 vs 16.4±2.6 

arbitrary units, P<0.0005) (Figure 2B) and a 32% decrease in Serca2a level 

(15.9±2.5 vs 21.1±3.5 arbitrary units, P<0.0001) (Figure 2C) as compared to those in 
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control cultures. This indicates that PMA-treated nr-vCMCs obtain properties of 

pathologically hypertrophic cardiac muscle cells. 

 

 

Figure 2. PMA treatment endows nr-vCMCs with features of pathological hypertrophied 

ventricular myocardium including an increase in (A) Nppa (42%) and (B) Acta1 levels (34%) 

and a decrease in (C) Serca2a expression (32%). * P<0.005 and ** P<0.0005. AUs, arbitrary 

units. 

Conduction and repolarization are slowed by PMA treatment of nr-vCMCs cultures  

Optical mapping recordings in 1 Hz-paced, uniformly propagating nr-vCMC cultures 

showed that PMA treatment causes a strong reduction in CV (10±4 vs 21±2 cm/s in 

control cultures, P<0.0001) (Figure 3A). Moreover, the PMA-treated nr-vCMC 
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cultures displayed a large increase in APD30 (306±39 vs 148±18 ms in control 

cultures, P<0.0001) and APD80 (516±53 vs 225±34 ms in control cultures, P<0.0001) 

(Figure 3B,C and Figure 4A). Spatial APD dispersion was also increased in PMA-

treated cultures (APD30 dispersion of 85±19 vs 22±7 ms in control cultures, P<0.0001 

and APD80 dispersion of 50±9 vs 25±2 ms in control cultures, P<0.0001) implying 

increased heterogeneity of repolarization (Figure 3B,C).  
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Figure 3. PMA treatment of nr-vCMC cultures causes conduction slowing and 

heterogeneous APD prolongation. (A) Typical activation maps with 6-ms isochronal spacing 

and corresponding quantitative assessment of control and PMA-treated nr-vCMC cultures 

showing slowing of conduction upon PMA treatment. Typical APD30 (B) and APD80 (C) map 

of control and PMA-treated nr-vCMC cultures and corresponding quantitative assessments 

of APD and APD dispersion showing PMA-induced increases in APD and APD dispersion. 

Cultures were subjected to electrical point stimulation at a frequency of 1-Hz. * P<0.0001. 



100 
 

Focal triggered activity is a prominent pro-arrhythmic feature of PMA-treated nr-

vCMC cultures 

The PMA-induced APD prolongation and increase in APD dispersion provided 

enough time and depolarizing force, respectively, for formation of EADs in the drug-

treated cultures, which could oscillate repetitively resulting in focal tachyarrhythmias. 

The incidence of this type of arrhythmias following local 1-Hz stimulation was 53.6% 

in the PMA-treated nr-vCMC cultures (n=82) while control nr-vCMC cultures showed 

4.3% arrhythmias (n=70) (Figure 4A, B). During focal tachyarrhythmias, 

repolarization halted at the initiation site of the EAD (Figure 4C, point 1) followed by 

slow repolarization in areas in the vicinity of the region of sustained depolarization, 

which favored EAD formation (Figure 4,C point 2). 
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Figure 4. PMA-treated nr-vCMC cultures show a high incidence of focal tachyarrhythmias. 

(A) Typical optical signals from control (red) and PMA-treated cultures showing APD 

prolongation (black) and onset of tachyarrhythmia (green). (B) Quantification of arrhythmia 

incidence (i.e. incidence of focal tachyarrhythmias) in control and PMA-treated nr-vCMC 

cultures. (C) Activation map of a PMA-treated nr-vCMC culture displaying triggered activity. 

Corresponding optical signals showing ceased repolarization (point 1), EAD initiation (point 

2) and EAD propagation (point 3). AUs, arbitrary units. 
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Discussion 

 

The major findings of this study are: (i) Exposure of nr-vCMC cultures for 2 times 24 

hours to PMA induces a hypertrophic response in the cardiac myocytes with 

hallmarks of pathological hypertrophied ventricular myocardium; (ii) Following 

prolonged PMA treatment nr-vCMC cultures undergo electrical remodeling as 

evinced by a decrease in CV and an increase in APD and APD dispersion; (iii) PMA-

treated nr-vCMC cultures display a high incidence of triggered activity causing focal 

tachyarrhythmias; (iv) Mechanistically, the arrhythmias observed in nr-vCMC cultures 

rendered pathologically hypertrophic by prolonged PMA treatment are probably a 

direct consequence of the electrical remodeling process.  

 

In vitro models of PCH 

In recent years much has been learned about the signaling pathways orchestrating 

both physiological and pathological heart growth.24 Through extensive molecular, 

genetic and pharmacological studies, G protein-coupled receptors (GPCRs) and 

their ligands (e.g. AngII, ET-1, noradrenaline [NE]) have been identified as key 

regulators of PCH.25 This has led researchers to use these ligands or synthetic 

analogs hereof (e.g. isoproterenol, phenylephrine [PE]) to develop in vitro and in vivo 

models of PCH and heart failure.9,26-28 In the in vitro models of pathological 

ventricular hypertrophy, an increase in CSA, mRNA and protein content, cell 

capacitance and/or protein synthesis rate was taken as proof of cell growth while 

increases in the expression of Nppa, natriuretic peptide precursor B (Nppb), Acta1, 

β-myosin heavy chain (Myh7) and/or decreases in α-myosin heavy chain (Myh6) and 

Serca2a levels were considered indicative of a pathological rather than a 

physiological hypertrophic response. 

The pro-hypertrophic effects of AngII-, ET-1- and cathecholamine-binding GPCRs 

in the heart are for a large part attributable to the activation of phospholipase C, 

which converts phosphatidylinositol 4,5-bisphosphate (PIP2) into the second 

messengers IP3 and DAG. In this study, PCH was induced by using PMA as a 

synthetic analogue of the second messenger DAG instead of by agonist-induced 

GPCR activation. Possible pro-hypertrophic effects caused by direct ligand-induced 
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IP3 receptor (IP3R) activation and subsequent Ca2+ release are therefore expected to 

be absent in our nr-vCMC-based PCH model. The PMA-treated nr-vCMC cultures 

nevertheless show a very robust hypertrophic response with hallmarks of PCH 

(Figures 1 and 2), which is consistent with the results of previous studies that 

employed (prolonged) PMA treatment to render cardiomyocyte cultures 

hypertrophic.17,20,29,30 This suggests that either IP3R signaling is not necessary for 

inducing PCH-related phenotypic changes in cultured nr-vCMCs or that IP3Rs get 

activated by DAG-dependent signaling. Indeed, several studies have identified the 

DAG receptors PKC and PKD as important mediators of (pathological) cardiac 

hypertrophy and fetal cardiac gene reactivation.14,21,31-34 Consequently, 

overexpression of PKCα35 or PKD336 in nr-vCMCs induced pathological hypertrophic 

growth with increased fetal cardiac gene expression in these cells. 

 

Pro-arrhythmic mechanisms of PCH 

Despite the rapidly increasing knowledge about the molecular pathways involved in 

the development of PCH and heart failure, the mechanisms underlying electrical 

remodeling of the diseased heart are still poorly understood. This is partially due to 

the disparate results obtained in different in vivo studies focusing on PCH-related 

changes in cardiac electrophysiology.37-39 A confounding factor in these studies has 

been the use of different experimental conditions, animal models and/or patient 

groups with distinct contributions of other factors besides PCH to the 

electrophysiological remodeling process. In this study, using a well-defined in vitro 

model system, heterogeneous APD prolongation and EAD-triggered activity were 

identified as likely key players in the development of PCH-associated arrhythmias. 

These findings are consistent with the results of animal and clinical studies 

attributing a prominent role of EADs to the development of ventricular 

tachyarrhythmias.40-43 In our study, we did not investigate the ionic basis of the 

EADs. However, given the pronounced elongation of phase 2 of the AP in the PMA-

treated nr-vCMCs, L-type Ca2+ channels and delayed rectifier K+ channels43 are 

probably involved. In support of this idea, Puglisi et al. recently showed that chronic 

exposure (i.e. for 48-72 hours) of nr-vCMCs to PMA caused a strong decrease in 

normalized IKs.
17 The same researchers also reported a significant decrease in Ito 

and a substantial increase in INa+/Ca2+ while the normalized ICa,L did not change 



104 
 

significantly. A decrease in Ito following overnight exposure of nr-vCMCs to PMA has 

also been documented by Walsh et al.44 Another important result was the PMA-

induced 32% decrease in Serca2a protein level. Similar findings were made by 

Porter et al. and Qi et al. following prolonged treatment of nr-vCMCs with PMA.20,21 

In their study, Qi and co-workers found that the reduction in Serca2a expression led 

to a slowing of diastolic Ca2+ uptake into the sarcoplasmic reticulum with possible 

pro-arrhythmic consequences. Besides the reduced repolarization reserve at the 

earlier phases of repolarization (i.e. between -40 and 0 mV) and the increased APD 

dispersion, also the conduction slowing observed in our PMA-treated nr-vCMC 

cultures is a major risk factor for the development of ventricular tachyarrhythmias.45 

The most likely explanation for this conduction slowing is gap junctional remodeling 

in combination with a downregulation of connexin 43 protein level as has been 

observed in patients with PCH or heart failure.46,47  

 

PCH versus heart failure model 

In response to hemodynamic stress and/or myocardial injury (i.e. when cardiac load 

exceeds cardiac output) the heart engages in a process called compensatory 

hypertrophy through the enlargement of cardiomyocytes by the parallel (concentric 

hypertrophy) or serial (eccentric hypertrophy) addition of sarcomeres. This process is 

under neurohormonal control of the adrenergic nervous system and renin-

angiotensin system. At the molecular level, the changes in cardiomyocyte phenotype 

are accompanied by reinduction of the so-called fetal gene program, because 

patterns of gene expression mimic those observed during cardiac development. In 

the continued presence of pathologically stimuli, excessive cardiomyocyte death will 

provoke transition to dilated cardiomyopathy leading to heart failure. The latter 

process is associated with functional perturbations of cellular Ca2+ homeostasis and 

ionic currents resulting in impaired force generation and the development of 

malignant arrhythmias.38,48 The PMA-treated nr-vCMC cultures display many of the 

same electrophysiological changes found in failing ventricular myocardium including 

a reduction in CV, heterogeneous APD prolongation and a high incidence of 

triggered electrical impulses.3 This may suggest that the PMA-treated nr-vCMC 

cultures represent a relatively late stage in the transition from PCH to heart failure. 

Further evidence for this presupposition should come from a comparison of the 
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contractile force-generating capacity of control and PMA-treated nr-vCMC cultures 

and from comparative transcriptome analyses. 

 

Conclusion 

In the present study, treatment of nr-vCMCs for 2 times 24 hours with PMA not only 

promoted cardiomyocyte hypertrophy but also led to the reactivation of fetal cardiac 

genes as evinced by PMA-dependent increases in Nppa and Acta1 levels and a 

decrease in Serca2a expression. PMA-treated nr-vCMCs showed a high incidence of 

triggered tachyarrhythmias associated with increases in APD and APD dispersion 

caused by electrical remodeling. To the best of our knowledge, this is the first study 

in which the pro-arrhythmic features of PCH per se have been investigated. Since 

this in vitro model of PCH is highly controllable and provides reproducible results, it 

is ideally suited for testing, in proof-of-concept studies, new therapeutic interventions 

(genetic modifications or pharmacological treatments) targeting specific aspects of 

hypertrophy/heart failure-associated arrhythmias.  

 

Study limitations 

In this study, PCH-related arrhythmias were investigated in 2D cultures of nr-vCMCs. 

Although this in vitro model system has greatly contributed to our current 

understanding of heart structure and function and lends itself very well to 

pharmacological and genetic manipulation, the electrophysiological properties of 

PMA-treated nr-vCMCs will only partially resemble those of cardiomyocytes in the 

pathologically hypertrophied human heart. Also, in isolation, pathological hypertrophy 

may have a different impact on cardiomyocytes’ behaviour than in combination with 

other cardiac pathologies like inflammation, hypoxia and fibrosis. Accordingly, 

discoveries made in PMA-treated nr-vCMC cultures will always have to be verified in 

more clinically relevant settings. Even so, due to the relative ease with which nr-

vCMCs can be obtained, cultured and manipulated they represent a highly useful 

model system for mechanistic and therapy-directed cardiac research. 
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Abstract 

Purpose: Early-reperfusion during acute myocardial infarction causes scars with a 

patchy aspect, whereas no reperfusion causes compact scars. Patchy scars show a 

lower inducibility and shorter cycle length of arrhythmias compared to compact 

scars. Despite increasing numbers of early-reperfused patients, little data on 

arrhythmic mechanisms is available. We therefore developed an in vitro model of 

patchy and compact scar patterns to gain a mechanistic understanding of associated 

arrhythmia characteristics and how these affect the efficacy of anti-arrhythmic 

interventions. 

Methods: Neonatal rat Ventricular monolayers were locally ablated at day 6-7 of 

culture by a laser-cut plexiglass stamp that produced an anatomical obstruction to 

mimic a compact scar or a stamp that produced multiple smaller anatomical 

obstructions with an equal total outer obstruction diameter to mimic patchy scars. 

One day later, optical mapping was performed.  

Results: Inducibility of reentry was slightly lower in patchy cultures compared to 

compact cultures (41%, n=34 vs 52%, n=23, P<0.05) and cycle length of reentry was 

shorter (234±52 vs 288±38 ms, P<0.05). Reentry was less frequently sustained in 

patchy cultures (40% vs 88% in compact cultures) while the percentage of complex 

arrhythmias was higher (31% vs 11%). Meandering was only found in patchy 

cultures and could result in local polymorphic pseudo-electrograms. A gradient of 

excitability during reentrant arrhythmias was only detectable in patchy cultures. 

Termination of reentry by electrical stimulation was more easily achieved in compact 

cultures (82% vs 20% in patchy cultures) while Nav1.5 blockade by tetrodotoxin only 

induced meandering in patchy cultures (67% of arrhythmic cultures). In smaller 

cultures, this resulted in more frequent termination of reentry in patchy cultures.  

Conclusions: An in vitro model of patchy and compact obstructions reproduces 

arrhythmic characteristics observed after early- and non-reperfused myocardial 

infarctions. Furthermore, it may provide mechanistic insights into the efficacy of anti-

arrhythmic interventions in different anatomical substrates. 
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Introduction 

Over the past decades, treatment of acute myocardial infarction (AMI) has become 

increasingly effective by focusing on restoring cardiac blood supply as early as 

possible.  During AMI, time-to-reperfusion is not only a critical determinant of 

survival, but also ultimately affects scar composition and size.1-3 By early 

reperfusion, cardiomyocyte (CMC) survival is improved and as a result, post-

infarction scars are smaller and contain surviving myocardial fibers that gives the 

scars a patchy aspect.2 This is opposed to the compact, fibrous scars that are rich in 

fibroblasts and extracellular matrix that do not contain large amounts of CMCs. As 

early reperfusion is becoming increasingly widespread due to adherence to 

constantly improving guidelines that focus on early treatment of AMI, the patient 

population with patchy scars is vastly growing.4-6 Nevertheless, how scar 

composition affects arrhythmogenicity and arrhythmic phenotype is not completely 

clear. Recent clinical evidence suggests that inducibility of arrhythmias in early-

reperfused patients was lower compared to non-reperfused patients.7 Moreover, 

reentrant cycle length (CL) is shorter in early-reperfused patients. However, the 

electrophysiological mechanisms for these observations have not been fully 

elucidated. More importantly, it is there unknown whether these different scar 

compositions can influence the efficacy of pharmacological or electrical defibrillatory 

treatment modalities. Therefore, the current study set out to 1) develop a simplified in 

vitro model to reproduce clinical findings of these different scar compositions and 2) 

utilize this model to investigate the mechanisms behind the different clinical findings 

to subsequently 3) investigate how these mechanisms influence therapeutic efficacy 

of electrical or pharmacological defibrillation as this is more difficult to investigate in a 

clinical setting. 

 

Methods 

 

All animal experiments were approved by the Animal Experiments Committee of the 

Leiden University Medical Center and conformed to the Guide for the Care and Use 

of Laboratory Animals as stated by the US National Institutes of Health. 

 

Cell isolation and culture 
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Neonatal cardiomyocytes were isolated from 2-day old wistar rats as described 

previously.8,9 Animals were anesthesized by inhalation of 4-5% isoflurane. After pain 

reflexes were assured to be absent, hearts were rapidly excised and the ventricular 

tissue was minced and digested with collagenase I (450 units/ml; Worthington, NJ, 

USA) under gentle agitation. After a pre-plating step to minimize fibroblast 

contamination of cardiac cultures, cells were plated out on fibronectin-coated, round 

glass coverslips (22 mm) at a cell density of 1x106 cells/well in 12-well plates 

(Corning Life Sciences, Amsterdam, the Netherlands). In another subset of 

experiments, 15 mm coverslips were used in 24-wells plates (Corning Life Sciences) 

and cell density was 5x105 cells/well. Proliferation of endogenously present 

myofibroblasts was inhibited by administration of 10 µg/mL Mitomycin-C (Sigma-

Aldrich, St. Louis, MO, USA) at day 1 for 2 hours.8 

 

Preparation of anatomical obstructions 

To produce pre-defined configurations of cardiac tissue, a method of inducing local 

cell death using specialized stamps was utilized to mimic scar compositions from 

early or non-reperfused myocardium. Stamps were designed using CAD-software 

(Solidworks, Dassault Systèmes, Velizy-Villacoublay, France). Designs were laser-

cut into plexiglass using a PLS3.60 Laser (Universal Lasersystems, Scottsdale, AZ, 

USA). Bottom surfaces were gently polished with 9 µm polishing paper to equalize 

surfaces. By carefully pressing these stamps onto cardiac cultures at day 6-7 of 

culture, these stamps formed the desired pattern in the cardiac cultures. Cultures 

were allowed to adjust for ≥6h after ablation before optical mapping was performed. 

Stamps that mimicked the compact scar composition had an outer diameter of 11.5 

mm and lacked any clefts in order to ablate cells over the entire surface area of the 

stamp. In contrast, stamps to mimic patchy composition had the same outer 

diameter of 11.5 mm, but were comprised of smaller circles with a diameter of 1 mm 

and interpositioned clefts that allowed for the survival of myocardial cells throughout 

the ablated area. 

 

Optical mapping 

Arrhythmogenicity of cultures was evaluated using optical mapping as described 

previously.8,9 At day 7-8, cultures were loaded with 6 µmol/L of the voltage-sensitive 

dye Di-4-ANEPPS (Invitrogen, Breda, the Netherlands) diluted in DMEM/Hams’ F12 
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(Invitrogen) for 10 minutes at 37oC. Next, cultures were refreshed with warm (37oC) 

DMEM/HAMS F12 and immediately mapped. Cultures were never exposed to 

mapping conditions for >30 minutes, and cumulative exposure time to excitation light 

never exceeded 1 minute. Electrical stimulation was delivered for 10 ms at ≥1.5x 

diastolic threshold using custom-made platinum electrodes spaced either 1 mm 

(narrow bipolar) or 20 mm (wide bipolar) apart. Narrow bipolar stimulation was used 

to investigate conduction velocity (CV) and action potential duration (APD), while 

wide bipolar stimulation was used to induce or terminate reentry. To investigate the 

inducibility of reentry, burst stimulation was performed by wide bipolar 14 Hz 10 ms 

pulses. Reentry was defined as at least 3 consecutive circular activations. Reentry 

was considered not inducible after 6 unsuccessful attempts at induction with burst 

stimulation. Electrical termination of reentry was performed by wide bipolar burst 

stimulation. Optical signals were recorded using a 100 by 100 pixels CMOS camera 

(MiCAM Ultima-L, Scimedia ltd, Costa Mesa, CA, USA) and several parameters 

were analyzed offline with Brainvision Analyze 1201 (Brainvision, Scimedia, Tokyo, 

Japan). CV was determined at least 3 times, directly perpendicular to the activational 

wavefront. Pharmacological interventions (tetrodotoxin (TTX), Alomone Labs, 

Jerusalem, Israel) were pipetted directly into the middle of the well, after which wells 

were gently agitated for 5 seconds to enhance distribution of the pharmacological 

agent. Excitability gradients were determined as the difference between CV at the 

spiral tip during an arrhythmia and the CV at the periphery. 

 

Statistical analysis 

Student t-tests were performed where appropriate. Statistical analyses were 

performed using SPSS 11.0 for Windows (SPSS, Inc., Chicago, IL, USA). 

Differences were considered statistically significant if P<0.05. 

 

Results 

 

Partial or complete conduction block in cultures with patchy or compact obstructions 

Neonatal rat ventricular monolayers were confluent and spontaneously beating by 

day 2 of culture and contained roughly 15% of non-myocytes as described 

previously.8 At day 5, cultures were ablated with custom-made probes to form either 

patchy or compact obstructions (Figure 1A). These ablations produced local areas of 
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cell death with smooth, circular edges and often removed the ablated cells altogether 

(Figure 1B). Cultures are referred to as “patchy” or “compact” cultures depending on 

the obstruction pattern produced by the ablations. Optical mapping at day 8 of 

culture showed that APD80 did not significantly differ between any of the groups 

(233±76 ms and 249±31 ms for patchy and compact cultures, respectively, P>0.05, 

Figure 1D). In addition, CV was similar for patchy and compact cultures (21.5±2.1 

cm/s and 21.1±1.7 cm/s, respectively, P>0.05, Figure 1E). Therefore, the basic 

electrophysiology of these cultures was considered to be equal. However, the 

structural differences as produced by the ablations did cause different degrees of 

dyssynchrony across the ablated areas, as conduction was possible across the 

ablated area in patchy cultures but not in compact cultures. This resulted in a 

conduction delay of 70±8 ms in patchy cultures vs 89±6 ms in compact cultures 

across equal distances (P<0.05, Figure 1F). Thereby, partial or complete local 

conduction block was established in this culture model to mimic scar compositions 

after early- or no reperfusion of myocardial infarctions, respectively. 
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Figure 1. Local ablations in neonatal rat monolayers cause anatomical obstructions of 

conduction that do not affect basic electrophysiological parameters. (A) Pictures of the laser-

cut plexiglass stamp that are used to perform (B) ablations of neonatal rat ventricular 

cardiomyocyte monolayers that produce surviving strands of cardiomyocytes and (C) non-

conducting local anatomical obstructions as visualized by optical mapping. The (*) marks the 

site of electrical stimulation. Green, yellow and red signify activating tissue while gray marks 

inactive tissue. (D) APD80 and (E) CV do not significantly differ between cultures treated with 

the compact probe and cultures treated with the patchy probe. (F) Conduction delay 

between edges across the ablated area is significantly higher in the cultures treated with the 

compact probe. *: P<0.05 vs patchy cultures. 

 

Patchy or compact obstructions reproduce clinical findings of differing inducibility, 

reentrant cycle length and complexity 

In vivo, reentry in early reperfused hearts with patchy scars is less frequently 

inducible but has a shorter cycle. To investigate reproducibility of these findings in 

the current in vitro model, we performed burst stimulation during optical mapping 

experiments to induce reentrant tachyarrhythmias (Figure 2A, B). Inducibility of 

reentry was 41% in patchy (n=34) and 52% in compact scar cultures (n=23, Figure 

2C). Moreover, while most of the reentry episodes in compact scar cultures were 

sustained (7 out of 8 reentry induction episodes), reentry in patchy scars was less 

frequently sustained (6 out of 15 episodes). Reentrant CL was shorter in patchy scar 
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cultures compared to compact scar cultures (234±52 ms vs 288±38 ms, P<0.05, 

Figure 2D). Of these CLs, 62% of reentry in patchy cultures was <250 ms, whereas 

in compact cultures, 24% was faster than 250 ms. Furthermore, CL adaptation was 

most pronounced in patchy cultures (decrease in CL within 1 minute of 50±29 ms 

versus 24±17 ms in compact scar cultures, P<0.05).  

 

 

Figure 2. Reentrant tachyarrhythmias in cultures with patchy or compact obstructions. (A) 

Typical activation map of induced reentry in a culture with patchy obstructions. Isochronal 

spacing = 6 ms. The (*) marks the positions of the electrodes used to induce reentry by burst 

stimulation. (B) Typical activation map of induced reentry in a culture with a compact 

obstruction. Isochronal spacing = 6 ms. (C) Inducibility of reentry was slightly lower in patchy 

cultures. (D) Reentrant cycle length is shorter during reentry in cultures with patchy 

obstructions. *: P<0.05. 
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Excitability gradient from core to periphery is only present during arrhythmias in 

patchy cultures  

Next, to utilize the model and investigate electrophysiological parameters that are 

difficult to measure in vivo, more in-depth analyses of arrhythmias were performed. 

Complexity of arrhythmias was assessed within the first minute of induction. 

Interestingly, complexity of observed reentry in compact cultures rarely consisted of 

more than one activating wavefront (1 out of 9 reentry episodes, Figure 3A). In 

contrast, reentrant arrhythmias in patchy cultures could consist of multiple 

wavefronts (5 out of 16 reentry episodes, Figure 3B, C). Moreover, reentrant 

arrhythmias within patchy cultures were shown to meander following induction (15 

reentry induction episodes with meandering found in 11 episodes, Figure 4A) while 

none out of 8 reentry induction episodes in compact cultures revealed any 

meandering as reentrant arrhythmias immediately stabilized. During meandering in 

patchy cultures, local pseudo-electrograms had a polymorphic appearance (Figure 

4B). In contrast, all observed reentrant arrhythmias in compact cultures showed a 

monomorphic pseudo-electrogram (Figure 4C). Out of 9 non-sustained episodes of 

reentry induction in patchy cultures, 7 showed meandering which implied a role of 

meandering in the termination of these arrhythmias. 
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Figure 3. Complexity of reentrant arrhythmias. (A) Typical example of a complex reentrant 

arrhythmia in a culture with a compact obstruction showing multiple activational fronts. The 

(*) marks the locations of the electrodes that were used to induced reentry. (B) Typical 

activation map of a complex reentrant arrhythmia in a culture with patchy obstructions. 

Isochronal spacing = 6 ms. (C) Incidence of complex forms of reentrant arrhythmias was 

higher in cultures with patchy obstructions. 

 

Figure 4. Rotor meandering in cultures with patchy obstructions gives rise to polymorphic 

pseudo-electrograms. (A) High-pass filtered pseudo-voltage map sequence showing 

meandering of a reentrant arrhythmia through the culture. The (O) marks the pivot point of 

reentry. Green, yellow and red signify activating tissue while gray signifies inactive tissue. 

Blue marks depolarizing tissue. (B) High-pass filtered pseudo-electrogram during 

meandering reentry in a culture with patchy obstructions shows a polymorphic appearance. 

(C) High-pass filtered pseudo-electrogram during non-meandering reentry, the only type of 

sustained reentry in compact cultures. These pseudo-electrograms were typically 

monomorphic. 
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During reentrant arrhythmias in patchy cultures, it was observed that the 

amplitude of the optical pseudo-voltage differed throughout the culture (Figure 5A). 

As changes in fluorescence of the used voltage-sensitive dye are an indication of 

changes in membrane potential, it appeared there was an excitability gradient during 

reentry in patchy cultures that was absent during reentry in compact cultures (Figure 

5B).10 To substantiate this claim, CV was determined at locations nearest to the pivot 

point of reentry and peripheral to the pivot point in reentry, as CV is highly dependent 

on the excitability of cardiac tissue. A significant difference between these values 

was only detected for reentrant arrhythmias in patchy cultures. Moreover, values of 

these differences were (5.8±0.3 cm/s) in patchy cultures vs (0.8±1.1 cm/s) in 

compact cultures (P<0.05, Figure 5C). 
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Figure 5. An excitability gradient during reentrant arrhythmias is only found in cultures with 

patchy obstructions. (A) Typical example of a high-pass filtered pseudo-voltage map with 

corresponding optical signals shows that optical signal amplitude increases from core to 

periphery during reentry in a patchy culture. Green, yellow and red signify activating tissue 

while gray marks inactive tissue. (B) Typical example of a high-pass filtered pseudo-voltage 

map with corresponding pseudo-voltage signals show that optical signal amplitude does not 

differ between the tissue nearest to the core of reentry or outer ring of tissue during reentry 

in a compact culture. Green, yellow and red signify activating tissue while gray marks 

inactive tissue. (C) During reentry, only patchy cultures showed a significant difference 

between the CV at the tissue nearest to the core of reentry and CV at the periphery. *P: 

<0.05. 

 

Anti-arrhythmic efficacy of fast-sodium channel blockade and electrical stimulation 

depends on the anatomical configuration 

To investigate the efficacy of fast sodium channel blockade, 20 µM TTX was 

administered during arrhythmias. After arrhythmias were confirmed to be stable and 

sustained for at least 30 seconds, TTX was directly pipetted in the middle of the 

culture. After such an intervention in patchy cultures, reentry started to wander 
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throughout the culture in 67% of 12 cultures, whereas 14 compact cultures did not 

show  such an activity (Figure 6A). Interestingly, only 1 out of 12 arrhythmias 

terminated in patchy cultures despite strong meandering. Moreover, 2 out of 14 

arrhythmias terminated in compact cultures after TTX administration. To investigate 

whether this may have been due to the size of the culture and multitude of small 

obstructions in these cultures that provide re-anchoring points for these arrhythmias, 

we performed the same intervention in smaller cultures (15 mm in diameter) with 

smaller and less obstructions (6 mm outer diameter). In these smaller patchy 

cultures, TTX administration often resulted in termination (88%, n=8 arrhythmias, 

Figure 6B). In contrast, TTX was less effective in compact cultures (25% terminated 

arrhythmias, n=8 arrhythmias). 
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Figure 6. Effect of obstruction pattern on termination of reentry by sodium channel blockade 

or electrical stimulation. (A) Quantification of the percentage of arrhythmias that meander 

after TTX administration. (B) Quantification of the percentage of arrhythmias that terminate 

after administration of TTX in smaller cultures (total diameter of 15 mm and 6 mm outer 

diameter of the area of ablation) which shows that the induced meandering by TTX can be 

important for terminating arrhythmias. (C) Quantification of the percentage of reentrant 

arrhythmias that could be terminated by application of a bipolar 14 Hz electrical stimulation 

protocol. (D) Quantification of the number of attempts necessary to terminate reentry. *: 

P<0.05. 
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Alternatively, electrical stimulation was investigated for its anti-arrhythmic efficacy. 

In compact cultures, reentry was terminated by burst stimulation in 9 out of 11 

cultures (Figure 6C). In patchy cultures, 1 out of 5 reentrant arrhythmias terminated 

by a single attempt at burst stimulation. Overall, 2.2±1 attempts of reentry 

termination by burst stimulation were necessary for successful reentry termination in 

patchy cultures, whereas 1.1±0.3 attempts were necessary in compact cultures 

(P<0.05, Figure 6D).  

 

Discussion 

 

Key findings of this study are 1) patchy or compact obstructions in a 2D cardiac 

model can reproduce clinical arrhythmic findings of early or non-reperfused 

myocardial scars and 2) reveal an excitability gradient that is only present during 

reentrant arrhythmias in patchy scar cultures and 3) the absence or presence of this 

excitability gradient is responsible for differences in anti-arrhythmic outcome of 

electrical and pharmacological defibrillation. 

 

Reproducibility of clinical findings in a simplified in vitro model 

Over the past decades, timely reperfusion during AMI has been proven to be crucial 

in improving acute but also chronic survival.1,3 Duration of coronary artery occlusion 

is directly related to myocardial cell death, the transmural extent and size of the 

myocardial scar that develops.11,12 As early reperfusion strongly limits myocardial 

damage, the subsequent myocardial scar contains a lower collagen density than 

non-reperfused scars. Importantly, early reperfusion also increases the amount of 

surviving cardiomyocytes within the infarction area which results in a patchy aspect 

of the scar.2 Moreover, the pro-arrhythmic substrate that is formed by post-MI scars 

is altered in such a way that different arrhythmic characteristics are present in early- 

or non-reperfused patients.7 However, it is unknown how early reperfusion affects 

the efficacy of electrical and pharmacological anti-arrhythmic interventions, despite a 

growing patient population due to better care and management of AMI. In the current 

study, an in vitro model of these patchy or compact scar compositions was 

developed to gain more insight into the mechanisms of differing arrhythmogenicity. 

By locally inducing cell death, anatomical obstructions were prepared in 2D neonatal 

rat cultures that allowed for surviving myocardial strands capable of conduction 
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through the scar in the patchy group but formed a solid, compact obstruction that 

blocked conduction in the compact scar group. As a result, dyssynchrony across the 

scar was higher in the compact group than in the patchy group. In the clinical setting, 

dyssynchrony also corresponds to obstruction size.13 Moreover, this model 

reproduced the difference in reentrant CL and due to the use of optical mapping, 

showed that this difference in CL can be explained by differing path lengths.7 While 

non-reperfused and early-reperfused patients without prior arrhythmias do not show 

a difference in the inducibility of reentry, inducibility is lower for early-reperfused 

patients that had prior arrhythmic episodes compared to non-reperfused patients 

with prior arrhythmic episodes.7 Remarkably, the inducibility of reentry in the current 

study can be positioned in between these findings as the inducibility of reentry in 

patchy cultures was slightly lower than in compact cultures. However, the 

electrophysiological equality of both groups in our model regarding APD and CV at 

1Hz activation rate, and the observation that arrhythmic episodes can modify the 

electrical behavior of myocardial tissue to favor arrhythmias14 are arguments that 

suggest our model may be most relevant to patients without prior arrhythmias. 

Though the current model is based on neonatal rat cardiomyocytes and any direct 

comparison of parameters may appear arbitrary, it is peculiar that the clinically 

established criterion of “fast VT” with a CL below 250 ms can be applied to our 

model with similar outcomes.7 Besides the high degree of reproducibility of clinical 

findings in this in vitro model, the most promising implications of such a model lie in 

the potential for in-depth investigation of arrhythmic mechanisms. 

 

Anatomical versus functional reentry and the relevance of an excitability gradient 

Using the optical mapping technique, arrhythmic dynamics can be studied in detail 

with a high spatial and temporal resolution.15,16 Therefore, this technique was 

perfectly suited to further investigate arrhythmic mechanisms of reentry in cultures 

with patchy or compact obstructions in a manner that is currently difficult to realize in 

vivo. By visualizing conduction, it was found that reentry in patchy cultures exhibited 

features of a functional type of reentry, as wandering of the arrhythmia throughout 

the culture was observed in a relatively large portion of the cultures.17,18 In contrast, 

reentry in compact cultures did not show meandering and adhered more to the 

specifications of anatomical reentry.19 These differences can be explained by the 

differences in minimal obstacle size to which these arrhythmias pin to in patchy or in 
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compact cultures.20 Therefore, the distinction between functional and anatomical 

reentry is based on a gradient rather than strictly separate phenomena.21 The 

smaller the object, the higher the degree of head-to-tail wave interaction and the 

more the arrhythmia resembles functional reentry. Moreover, the degree of head-to-

tail wave interaction determines the excitability of the affected tissue by interfering 

with recovering ion channel dynamics. This also explains the presence of the 

excitability gradient in patchy cultures and its absence in compact cultures, as during 

functional reentry, the head-to-tail wave interaction is maximal at the pivot point of 

reentry and decreases towards the periphery. The relevance of such a gradient was 

demonstrated in the current study, as Nav1.5 blockade using TTX altered culture 

excitability and increased the probability of meandering in patchy cultures, but did 

not strongly affect arrhythmias in compact cultures apart from increasing the CL. The 

mechanism behind this destabilization depends on the altered source-sink 

relationships due to decreased excitability of the tissue by Nav1.5 blockade, which 

forces an increase in the minimal pivoting radius of the reentrant arrhythmia and 

detachment of the anatomical obstruction.22-25 By inducing meandering, reentry may 

be terminated as the core encounters inexcitable boundaries.20,26 Indeed, this was 

confirmed in the current study by repeating the same experiment in smaller cultures 

that made it more likely for the arrhythmia to encounter inexcitable boundaries. In 

addition, the excitability gradient also determines the excitable state of a culture. Due 

to the absence of a fully excitable gap during functional reentry, electrical stimulation 

during reentry in patchy cultures was less successful at termination than in compact 

cultures.19 This electrical stimulation was delivered with bipolar electrodes at a high 

frequency, so that it bears resemblance to anti-tachycardia pacing and defibrillation 

protocols. Taken together, this model may provide a useful tool to improve our 

current understanding of reentrant arrhythmia dynamics and to know how they 

influence therapeutic efficacy in early or non-reperfused patients.  

 

Future perspectives and limitations 

Despite the high reproducibility of clinical findings with the currently presented in vitro 

model, the authors recognize that its relevance to clinical situations needs to be 

substantially increased. While the current study made a clear distinction between the 

patchy anatomical composition after early reperfusion or the clear-cut compact scar 

composition without reperfusion for standardization purposes, the in vivo setting is 
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more complex, with for example borderzones that may exhibit features of both 

patchy and compact fibrosis. By gradually increasing the complexity of the 

anatomical configurations in this model, the model can be more tailored to such 

specific clinical situations in the future. Currently, ventricular cardiomyocytes from 

neonatal rats have been used to create a 2D monolayer of cells in which arrhythmic 

dynamics can be more easily interpreted than in 3D tissue preparations. These cells 

were utilized due to their ability to stay in culture for extended periods of time, to form 

confluent beating monolayers and their availability, as human adult CMCs cannot, 

despite their superior clinical relevance. However, with the recent discovery of 

induced pluripotent stem cells (iPS cells) that allow for the genetic reprogramming of 

somatic cells into cell types of different lineages such as cardiomyocytes, future 

studies will benefit from utilizing iPS-derived CMCs for their confluent monolayers.27 

Despite reported impurities and inefficiencies of cardiac differentiation of such 

reprogrammed cells,28 very recent technological advancements29 make it likely that 

purified human cardiac monolayers can be utilized to increase the relevance of in 

vitro models for the clinical setting in the near future. As these iPS-derived human 

cardiomyocytes may more accurately represent the patient-specific ion channel 

expression profile, such cells have already been used to demonstrate the feasibility 

of patient-specific drug-screening techniques.30 The combination of human 

cardiomyocytes in monolayers with the anatomical compositions of their respective 

pro-arrhythmic substrate may therefore not only elucidate pro-arrhythmic 

mechanisms, but also provide a very powerful patient-specific anti-arrhythmic drug-

screening tool in the near future. 

 

Conclusions 

An in vitro model of early- or non-reperfused post-myocardial infarction scars 

reproduces clinical arrhythmic findings. Importantly, this model allows for the 

investigation of arrhythmic mechanisms such as meandering and complexity of 

arrhythmias that is more difficult to realize in a clinical setting. Finally, this model may 

provide mechanistic insight in how these arrhythmic mechanisms influence the 

therapeutic efficacy of anti-arrhythmic interventions. 
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Abstract 

Background—Atrial fibrillation is the most common cardiac arrhythmia. Ventricular 

proarrhythmia hinders pharmacological atrial fibrillation treatment. Modulation of 

atrium-specific Kir3.x channels, which generate a constitutively active current (IK,ACh-

c) after atrial remodeling, might circumvent this problem. However, it is unknown 

whether and how IK,ACh-c contributes to atrial fibrillation induction, dynamics, and 

termination. Therefore, we investigated the effects of IK,ACh-c blockade and Kir3.x 

downregulation on atrial fibrillation. 

Methods and Results—Neonatal rat atrial cardiomyocyte cultures and intact atria 

were burst paced to induce reentry. To study the effects of Kir3.x on action potential 

characteristics and propagation patterns, cultures were treated with tertiapin or 

transduced with lentiviral vectors encoding Kcnj3- or Kcnj5-specific shRNAs. Kir3.1 

and Kir3.4 were expressed in atrial but not in ventricular cardiomyocyte cultures. 

Tertiapin prolonged action potential duration (APD; 54.7±24.0 to 128.8±16.9 

milliseconds; P<0.0001) in atrial cultures during reentry, indicating the presence 

of IK,ACh-c. Furthermore, tertiapin decreased rotor frequency (14.4±7.4 to 6.6±2.0 

Hz; P<0.05) and complexity (6.6±7.7 to 0.6±0.8 phase singularities; P<0.0001). 

Knockdown of Kcnj3 or Kcnj5 gave similar results. Blockade of IK,ACh-

c prevented/terminated reentry by prolonging APD and changing APD and 

conduction velocity restitution slopes, thereby altering the probability of APD 

alternans and rotor destabilization. Whole-heart mapping experiments confirmed key 

findings (eg, >50% reduction in atrial fibrillation inducibility after IK,ACh-c blockade). 

Conclusions—Atrium-specific Kir3.x controls the induction, dynamics, and 

termination of fibrillation by modulating APD and APD/conduction velocity restitution 

slopes in atrial tissue with IK,ACh-c. This study provides new molecular and 

mechanistic insights into atrial tachyarrhythmias and identifies Kir3.x as a promising 

atrium-specific target for antiarrhythmic strategies.   

 

Keywords: action potentials, arrhythmia, atrial fibrillation, cardiomyocyte, G protein-

coupled inwardly rectifying potassium channels, RNA interference, voltage-sensitive 

dye imaging 
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Introduction 

Atrial fibrillation (AF), the most common cardiac rhythm disorder in humans, 

contributes substantially to morbidity, mortality, and healthcare costs.1-3 Ablation 

techniques, breaking up AF circuits or triggers, have improved the outcome of AF in 

the past decades.4 Although the success rate of AF ablation is relatively high in 

paroxysmal AF, in permanent AF, ablation restores sinus rhythm in only a fraction of 

patients by altering the underlying mechanisms and structural changes of the atrial 

myocardium. Importantly, there is a lack of consensus on the optimal ablation 

strategy in these patients, and this population is vastly growing.5,6 In addition, 

ablation procedures are associated with a risk of complications because of their 

invasive nature.7 Furthermore, long-term maintenance of sinus rhythm requires 

repeated procedures or continuation of antiarrhythmic drugs in a significant 

proportion of chronic AF patients.8 Hence, the first-line treatment of AF is still 

pharmacological.4 However, the use of antiarrhythmic agents is hampered by 

potentially lethal ventricular proarrhythmia, lack of efficacy, and serious side effects.9-

13 Thus, research on AF treatment has focused on finding atrium-selective drugs with 

higher efficacy in AF rhythm control but fewer side effects such as ventricular 

proarrhythmia. 

In the heart of most mammals, including humans, the acetylcholine-activated 

potassium current (IK,ACh) is found exclusively in the atrium.14 Hence, IK,ACh is one of 

the novel candidates for atrium-specific drug treatment. Activation ofIK,ACh by 

acetylcholine has been shown to shorten action potential (AP) duration (APD) in the 

atria.15 In patients suffering from persistent AF and atrial remodeling,IK,ACh can 

become constitutively active.16,17 Whether this constitutively active acetylcholine-

inducible current (IK,ACh-c) affects AF induction, dynamics, or termination, the 

mechanisms by which it could do so, and the channels involved in this process 

remain to be elucidated. 

To test whether and how IK,ACh-c affects fibrillation, a 2-dimensional in vitro model 

of atrial tissue and a whole-heart model of AF were developed using atrial neonatal 

rat cardiomyocytes (nrCMCs) and hearts with endogenous IK,ACh-c. With these 

models, fibrillation could be systematically and reproducibly studied. Inhibition of 

Kir3.1 or Kir3.4 activity by the highly specific drug tertiapin or lentiviral vector (LV)–

mediated RNA interference (RNAi) was used to study the role of IK,ACh-c in AF 

initiation, dynamics, and termination. 

http://circ.ahajournals.org/content/128/25/2732.long#ref-1
http://circ.ahajournals.org/content/128/25/2732.long#ref-1
http://circ.ahajournals.org/content/128/25/2732.long#ref-3
http://circ.ahajournals.org/content/128/25/2732.long#ref-4
http://circ.ahajournals.org/content/128/25/2732.long#ref-5
http://circ.ahajournals.org/content/128/25/2732.long#ref-6
http://circ.ahajournals.org/content/128/25/2732.long#ref-7
http://circ.ahajournals.org/content/128/25/2732.long#ref-8
http://circ.ahajournals.org/content/128/25/2732.long#ref-4
http://circ.ahajournals.org/content/128/25/2732.long#ref-9
http://circ.ahajournals.org/content/128/25/2732.long#ref-9
http://circ.ahajournals.org/content/128/25/2732.long#ref-13
http://circ.ahajournals.org/content/128/25/2732.long#ref-14
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http://circ.ahajournals.org/content/128/25/2732.long#ref-16
http://circ.ahajournals.org/content/128/25/2732.long#ref-17
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Clinical Perspective 

Noninvasive atrial fibrillation (AF) therapies are based on 2 separate strategies: rate 

or rhythm control aiming to slow ventricular rate to normal or to restore sinus rhythm, 

respectively. Hence, in rate control, AF itself is not resolved, whereas the curtailment 

of ventricular frequency reduces exercise tolerance. Rhythm control, on the other 

hand, is hampered by adverse effects such as ventricular proarrhythmia. Therefore, 

better insight into the contribution of ion channels, present in the atria but not the 

ventricles, to AF and the concordant exploration of possible atrium-specific therapies 

are essential if we are to diminish the burden of adverse effects in AF treatment. 

Previous studies showed that the acetylcholine-dependent potassium current (IK,ACh), 

governed by the atrium-specific Kir3.x channels, can become constitutively active 

(IK,ACh-C) in patients with AF. In the present study, we demonstrate the contribution 

of IK,ACh-Cand Kir3.x to the initiation, maintenance, and termination of AF. We show 

for the first time that IK,ACh-C increases the chance of AF initiation through its 

steepening effects on the action potential duration and conduction velocity restitution 

curves, causing action potential duration and amplitude alternans. In addition, IK,ACh-

C is shown to facilitate AF maintenance by stabilizing rotor dynamics, whereas AF 

termination can be elicited by blockade of IK,ACh-C, causing alternans-mediated rotor 

destabilization. Our findings provide evidence for a causal relationship 

between IK,ACh-C, alternans, and the initiation, maintenance, and termination of AF. 

Thus, not only IK,ACh-C or Kir3.x but also its consequent alternans might be an 

interesting atrium-specific target for future AF rhythm control or pharmacological 

cardioversion. 

 

Methods 

 

A detailed description of materials and methods can be found in the online-only Data 

Supplement. 

All animal experiments were approved by the Animal Experiments Committee of 

the Leiden University Medical Center and conformed to the Guide for the Care and 

Use of Laboratory Animals as stated by the US National Institutes of Health. 
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Cell Isolation and Culture 

After careful separation of the atria and ventricles of neonatal Wistar rat hearts, 

cardiomyocytes were isolated by collagenase digestion and plated on fibronectin-

coated, round glass coverslips (15-mm diameter) at a density of 2 to 8×105 cells per 

well in 24-well cell culture plates, as described previously.18 To restrict unwanted 

expansion of the remaining nonmyocytes, cell proliferation was inhibited by 

incubation with mitomycin-C (10 µg/mL; Sigma-Aldrich, St. Louis, MO) for 2 hour at 

day 1 of culture.19 

 

Western Blotting 

Cardiomyocytes were lysed in 50 mmol/L Tris-HCl (pH 8.0), 150 mmol/L NaCl, 1% 

Triton X-100, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate. Three 

15-mm wells, each seeded with 8×105 cells, were used for each sample, and each 

experiment consisted of at least 4 samples. The proteins in the lysate were size 

fractionated in NuPage Novex 12% Bis-Tris gels (Life Technologies, Bleiswijk, the 

Netherlands) and transferred to Hybond polyvinylidene difluoride membranes (GE 

Healthcare, Diegem, Belgium). Membranes were blocked in Tris-based saline, 0.1% 

Tween-20, and 5% BSA (Sigma-Aldrich) for 1 hour. Next, membranes were 

incubated with antibodies directed against Kir3.1 (Alomone Labs, Jerusalem, Israel), 

Kir3.4 (Santa Cruz Biotechnology, Dallas, TX), or GAPDH (loading control; Merck 

Millipore, Billerica, MA) and corresponding horseradish peroxidase–conjugated 

secondary antibodies (Santa Cruz Biotechnology) for 1 hour. Chemiluminescence 

was detected with the ECL Prime Western Blotting Detection Reagent (GE 

Healthcare).  

 

Optical Mapping  

At day 9 of culture, investigation of AP propagation on a whole- culture scale by 

optical mapping (with di-4-ANEPPS [Life Technologies] as a voltage-sensitive dye) 

and subsequent data analyses were performed as described previously.18 During 

optical mapping, cells were stimulated electrically with a custom-made, epoxy-coated 

unipolar platinum electrode with square suprathreshold electric stimuli at 1 and 2 to 

20 Hz (2-Hz increments). Burst pacing with a cycle length of 20 to 100 milliseconds 

was used to induce reentry. Complexity was defined as the number of phase 

singularities (PSs) per 1 cm2, determined by using the phase space method, as 

http://circ.ahajournals.org/content/128/25/2732.long#ref-18
http://circ.ahajournals.org/content/128/25/2732.long#ref-19
http://circ.ahajournals.org/content/128/25/2732.long#ref-18
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described previously.18 The effect of several drugs (100 nmol/L tertiapin [Alomone 

Labs], 200 nmol/L atropine [Sigma-Aldrich], and 2 µmol/L carbachol [Sigma-

Aldrich])16 was studied by pipetting them directly into the medium and dispersing 

them by gentle agitation, followed immediately by optical mapping. 

Whole-heart mapping was performed by incubating neonatal rat hearts with 2 µmol/L 

di-4-ANEPPS in a tissue bath containing oxygenated Tyrode solution (comprising [in 

mmol/L] NaCl 130, CaCl2 1.8, KCl 4.0, MgCl2 1.0, NaH2PO4 1.2, NaHCO3 24, and 

glucose 5.5, pH 7.4). Before excision of the heart, the left ventricle was injected with 

Tyrode solution supplemented with 20 mmol/L 2,3-butanedione monoxime (Sigma-

Aldrich) to minimize motion artifacts with or without 200 nmol/L tertiapin to block the 

Kir3.x channels. During whole-heart mapping, AF was induced by burst pacing at a 

cycle length of 20 to 100 milliseconds with a custom-made bipolar platinum 

electrode. 

 

RNA Interference 

Kir3.1 and Kir3.4 expression in neonatal rat atrial cell cultures was selectively 

inhibited with self-inactivating LVs encoding shRNAs specific for rat Kcnj3 (LV-

Kir3.1↓) and Kcnj5 (LV-Kir3.4↓), respectively. The shuttle constructs to generate 

these LVs are derivatives of plasmid SHC007 from the Mission shRNA library 

(Sigma-Aldrich) in which the Photinus pyralis luciferase (PpLuc)–specific shRNA-

coding sequence was replaced by a rat Kcnj3- or Kcnj5-specific shRNA-coding 

sequence, and the marker gene cassette consisting of the humanphosphoglycerate 

kinase 1 gene promoter and the puromycin-N-acetyltransferase-coding sequence 

was substituted by the human eukaryotic translation elongation factor 1 alpha 1 gene 

promoter and the Aequorea victoriaenhanced green fluorescent protein-coding 

sequence. The negative control vector (LV-PpLuc↓) had the same genetic makeup 

except that it contained the aforementioned PpLuc-specific shRNA-coding sequence. 

 

Statistical Analysis 

Statistical analyses were performed with SPSS11.0 for Windows (SPSS, Chicago, 

IL). Comparison between 2 groups was performed with the Mann-Whitney U test, the 

Wilcoxon signed-rank test, or the Fisher exact test as appropriate. Kruskal-Wallis 

testing with Bonferroni post hoc correction was used for multiple groups and 

comparisons. Data were expressed as mean±SD for a number of observations. 

http://circ.ahajournals.org/content/128/25/2732.long#ref-18
http://circ.ahajournals.org/content/128/25/2732.long#ref-16
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Differences were considered statistically significant at P<0.05. Nonlinear regression 

curves were constructed by using a robust exponential 1-phase decay curve fit. 

Accuracy of these curves was expressed as the coefficient of determination 

(R2). R2 was calculated by the formula R2= 1−(SSreg/SStot), where SSreg is the 

regression sum of squares (the sum of the square vertical distances of individual 

points to the regression curve) and SStot is the total sum of squares (the sum of the 

square vertical distances to the mean of all Y values). 

 

Results 

 

Cell Culture Characteristics 

A detailed characterization of atrial and ventricular nrCMC cultures by 

immunocytology and Western blotting can be found in Supplemental Figure I in the 

online-only Data Supplement. 

  



144 
 

 

Supplemental Figure I. Typical examples of immunocytological double staining of (A) 

MLC2a (green) and α-actinin (red) and (B) NPPA (green) and α-actinin (red) in atrial (upper 

panels) and ventricular (lower panels) neonatal rat CMC cultures. (C) Quantification of 

MLC2a and α-actinin double-positive cells in atrial and ventricular neonatal rat CMC 

cultures. (D) Western blot analysis (left) and quantification (right) of NPPA, MLC2v, MLC2a, 

Cx43 and Cx40 levels in atrial and ventricular neonatal rat CMC cultures using GAPDH as 

loading control. (E) Immunocytological double staining of Cx40 (green) and α-actinin (red) 

and of Cx43 (green) and α-actinin (red) in atrial (1st and 3rd panel from the left, respectively) 

and ventricular (2nd and 4th panel from the left, respectively) neonatal rat CMC cultures. (F) 

Immunocytological double staining of collagen type I (green, left) and PECAM-1 (green, 

middle) with α-actinin (red) and of MLC2a (green, right) with smMHC (red, right). The 

corresponding quantification of fibroblasts (FB), endothelial cells (EC) and smooth muscle 

cells (SMC) is depicted on the far right. #: p<0.05 vs ventricular cultures, ND: not detected. 
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Activation Pattern Characteristics in Atrial nrCMC Cultures 

During optical mapping, atrial cultures showed uniform, convex, and fast activation 

originating from the electrode on 1-Hz stimulation (Figure 1A). After burst pacing, 

reentry was induced in the vast majority of atrial cultures. In 46 of 49 of these 

arrhythmic cultures, the activation patterns remained stable during each cycle of 

reentry, and the number and spatial dispersion of PSs did not change during 6 

seconds of mapping (Figure 1B and Movie 1 in the online-only Data Supplement). 

Return mapping (plotting a peak-to-peak interval against the subsequent peak-to-

peak interval) and time series of the peak-to-peak intervals showed that through 

such a fixed activation pattern and PS position, these arrhythmias had period-1 (P-1) 

oscillatory dynamics (ie, all rotor periods had approximately the same length; Figure 

IIA, IIC, and IIE in the online-only Data Supplement). Interestingly, the remaining 6% 

of cultures showed changes in activation pattern, PS number, and PS position for 

each reentrant cycle (Figure 1C and Movie 2 in the online-only Data Supplement). 

Return mapping and time series of the peak-to-peak intervals in these cultures 

showed period >1 or aperiodical oscillatory dynamics (ie, the wave front rotation 

alternated between >1 different periods or showed a different period during each 

cycle; Supplemental Figure IIB, IID, and IIF in the online-only Data Supplement). 

 

 

 

 

 

http://circ.ahajournals.org/content/128/25/2732.long#F1
http://circ.ahajournals.org/content/128/25/2732.long#F1
http://circ.ahajournals.org/content/128/25/2732.long#F1
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Figure 1. Activation maps (top; 6-millisecond isochrone spacing) and corresponding phase 

maps (bottom) of atrial neonatal rat cardiomyocyte cultures during (A) 1-Hz activation 

showing uniform propagation, (B) 3 subsequent reentrant cycles after burst pacing showing 

a stable activation pattern and phase singularity (PS) density and localization during each 

cycle, and (C) 5 subsequent reentrant cycles after burst pacing showing changes in 

activation pattern and PS density and localization during each cycle. The direction of 

activation is indicated by the white arrows; PSs are depicted as white circles. Relationship 

etween rotor frequency and (D) APD80, (E) conduction velocity (CV), and (F) wavelength 

and between complexity of reentry and (G) APD80, (H) CV, and (I) wavelength. 
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Supplemental Figure II. Typical examples of the optical signal in neonatal rat atrial CMC 

cultures with (A) period-1 and (B) aperiodical reentry after burst pacing. Return maps of the 

peak-to-peak interval (PPI) sequences in an atrial CMC culture after burst pacing with (C) 

period-1 reentry, characterized by monofocal clustering in the return map and (D) aperiodical 

reentry, characterized by the absence of clustering in the return map. Time series of the 

PPIs in an atrial CMC culture with (E) period-1 (corresponding with Supplemental Figure 

IIA,C and Figure 1B in the main manuscript) and (F) aperiodical reentry (corresponding with 

Supplemental Figure IIB,D and Figure 1C in the main manuscript). The red dotted lines 

indicate clustering of PPI sequences and PPIs in the return maps and time series, 

respectively. 
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During burst pacing–induced reentry (including both the stable and unstable cases of 

reentry, n=49), rotor frequency showed a hyperbolic-like relationship with both 

APD80 (R
2=0.91) and wavelength (R2=0.63). No apparent relation was found 

between rotor frequency and conduction velocity (CV; Figure 1D–1F). Moreover, the 

number of rotors negatively correlated with wavelength (R2=0.73) and 

APD80(R
2=0.70). Again, CV, other than its effects on wavelength, did not show a 

strong individual correlation with the number of PSs during reentry (Figure 1G–1I). 

These results show that fibrillatory activation in this model can be maintained by P-1 

or period >1/aperiodical reentry. Furthermore, the correlation analyses suggest that 

prolongation of atrial APD and wavelength during AF could decrease rotor frequency 

and complexity, possibly leading to the prevention or termination of AF. 

 

Blockade of Atrium-Specific IK,ACh Decreases Rotor Frequency, Complexity, and 

Inducibility of Reentry 

Atrial nrCMCs abundantly expressed Kir3.1 and Kir3.4 compared with ventricular 

nrCMCs (100.0±6.3% versus 18.3±0.7% and 100±2.8% versus 7.8±2.0%, 

respectively; P<0.05; n=4 per group) as judged by Western blot analyses (Figure 

2A). Therefore, Kir3.x could be a target for blockade in an attempt to selectively 

prolong atrial APD, thereby preventing or terminating AF. To test this hypothesis, 

both atrial and ventricular nrCMC cultures were treated with 100 nmol/L tertiapin, a 

specific blocker of IK,ACh.
16 Tertiapin significantly increased APD80 in atrial nrCMCs 

during 1-Hz pacing (from 56.5±12.5 to 145.5±20.6 milliseconds;P<0.0001; 

n=33; Figure 2B) in the absence of exogenous acetylcholine, showing the presence 

of IK,ACh-c in these cells (see also Results and Supplemetal Figure III in the online-

only Data Supplement). Tertiapin had no significant effect on APD in ventricular 

nrCMCs (n=12; Figure 2C). Hence, the increase in APD80 induced by tertiapin was 

significantly larger in atrial nrCMCs (86.7±19.6 versus 9.5±9.9 milliseconds in 

ventricular nrCMCs; Figure 2D). 

http://circ.ahajournals.org/content/128/25/2732.long#F1
http://circ.ahajournals.org/content/128/25/2732.long#F1
http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#ref-16
http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#F2
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Figure 2. A, Western blot analysis of Kir3.1 and Kir3.4 levels in atrial and ventricular 

neonatal rat cardiomyocyte (nrCMC) cultures using GAPDH as a loading control. B and C, 

Typical optical action potential (AP) records of untreated (red) and tertiapin-treated (blue) 

atrial and ventricular nrCMC cultures, respectively. D, Quantification of ΔAPD80 after tertiapin 

treatment in atrial vs ventricular nrCMC cultures. E, Typical optical signal records of 

untreated (red) and tertiapin-treated (blue) atrial nrCMC cultures after induction of atrial 

fibrillation by burst pacing. F, Typical phase maps of untreated (left) and tertiapin-treated 

(right) cultures after burst pacing. White circles indicate phase singularities. Quantification of 

(G) APD80 during reentry, (H) rotor frequency, (I) complexity of reentry, (J) inducibility of 

reentry, and (K) complete rotor termination in control and tertiapin-treated atrial nrCMC 

cultures. a.u. indicates arbitrary units. #P<0.05 vs atrial cultures; *P<0.05 vs control. 
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Supplemental Figure III. (A) Typical examples of optical signal traces in a neonatal rat 

atrial CMC culture before (control) and after the cumulative treatment with 200 nmol/L 

atropine and 100 nmol/L tertiapin during 1-Hz pacing. (B) Typical examples of optical signal 

traces in a neonatal rat atrial CMC culture before (control) and after the cumulative treatment 

with 2 μmol/L carbachol, 200 nmol/L atropine and 100 nmol/L tertiapin during 1-Hz pacing. 

(C) Quantification of APD80 at a 1-Hz pacing frequency in untreated atrial CMC cultures and 

in atrial CMC cultures treated with atropine and tertiapin, respectively. (D) Quantification of 

APD80 at a 1-Hz pacing frequency in untreated atrial CMC cultures and in atrial CMC 

cultures treated with carbachol, atropine and tertiapin, respectively. *: p<0.05 vs control, #: 

p<0.05 vs atropine, ǂ: p<0.05 vs carbachol. 

Blockade of IK,ACh-c by tertiapin increased APD80 during reentry (from 54.7±24.0 to 

128.8±16.9 milliseconds; n=42; Figure 2E–2G), which significantly decreased rotor 

frequency (from 14.1±7.4 to 5.9±1.7 Hz) and complexity (from 6.7±7.7 to 0.58±0.83 

PSs; Figure 2H and 2I). Interestingly, the inducibility of reentry also decreased (from 

89.2% to 27.2%) after tertiapin treatment (Figure 2J). Concomitantly, tertiapin led to 

complete termination of all rotors in 67.4% of cultures, whereas rotor termination 

occurred in only 7.0% of control cultures (Figure 2K).  

http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#F2
http://circ.ahajournals.org/content/128/25/2732.long#F2
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Kcnj3/5 Knockdown in Atrial nrCMC Cultures 

To investigate the individual contribution of the molecular determinants of IK,ACh-

c (Kir3.1 and Kir3.4) to the induction and dynamics of AF, expression 

of Kcnj3 andKcnj5 was specifically downregulated in atrial nrCMC cultures by means 

of lentiviral, shRNA-mediated RNAi. Kir3.1 and Kir3.4 protein levels were 

significantly lowered in cultures transduced with LV-Kir3.1↓ and LV-Kir3.4↓, 

respectively, compared with those in LV-PpLuc↓-treated control cultures (20.2±1.7% 

versus 100.0±2.4% and 34.6±3.5% versus 100.0±34.6%, respectively; n=4 per 

group;Figure 3A–3C). As expected, transduction with LV-Kir3.1↓ (n=11) and LV-

Kir3.4↓ (n=20) resulted in significant APD prolongation compared with LV-PpLuc↓-

treated control cultures (n=11; Figure 3D). APD80 was significantly increased 

throughout all pacing cycle lengths (PCLs; Figure 3E). In addition, CV was lowered 

significantly by both Kcnj3 and Kcnj5 knockdown (Figure 3F), possibly caused by a 

depolarizing effect of long-term IK,ACh downregulation on the resting membrane 

potential. 

  

http://circ.ahajournals.org/content/128/25/2732.long#F3
http://circ.ahajournals.org/content/128/25/2732.long#F3
http://circ.ahajournals.org/content/128/25/2732.long#F3
http://circ.ahajournals.org/content/128/25/2732.long#F3
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Figure 3. Western blot of (A) Kir3.1 levels in LV-PpLuc↓ (ie, control lentiviral vector)-and LV-

Kir3.1↓–transduced atrial neonatal rat cardiomyocyte (nrCMC) cultures and (B) Kir3.4 levels 

in LV-PpLuc↓– and LV-Kir3.4↓–transduced atrial nrCMC cultures with GAPDH used as a 

loading control and (C) their quantification. D, Typical optical signal in atrial nrCMC cultures 

transduced with the control vector LV-PpLuc↓ or with LV-Kir3.1↓ or LV-Kir3.4↓. 

Quantification of (E) action potential duration and (F) conduction velocity restitution in atrial 

nrCMC cultures transduced with the control vector LV-PpLuc↓ or with LV-Kir3.1↓ or LV-

Kir3.4↓. a.u. indicates arbitrary units. *P<0.05 vs LV-PpLuc↓. 

Effect of Kcnj3/5 Knockdown on Reentry in Atrial nrCMC Cultures 

Next, reentry was induced in cultures transduced with LV-Kir3.1↓ (n=14), LV-Kir3.4↓ 

(n=12), or the control LV (n=19) to investigate the effect of Kir3.x-dependent APD 

prolongation on spiral waves. As expected, reentrant cycle length was significantly 

increased after knockdown of either Kcnj3 or Kcnj5 (Figure 4A–4D and 4F), 

consistent with prolongation of APD80 during reentry (Figure 4E). Similarly, activation 

frequency and complexity were significantly decreased (Figure 4G and 4I and Movie 

3 in the online-only Data Supplement). In addition, inducibility of reentry was clearly 

reduced by Kcnj3 or Kcnj5 knockdown (Figure 4H). Together, these results show 

that the effect of tertiapin on reentry induction and dynamics can be reproduced by 

RNAi-mediated reduction of Kir3.1 or Kir3.4 protein levels. 

http://circ.ahajournals.org/content/128/25/2732.long#F4
http://circ.ahajournals.org/content/128/25/2732.long#F4
http://circ.ahajournals.org/content/128/25/2732.long#F4
http://circ.ahajournals.org/content/128/25/2732.long#F4
http://circ.ahajournals.org/content/128/25/2732.long#F4
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Figure 4. A, Activation maps and corresponding phase maps during reentry in atrial 

neonatal rat cardiomyocyte (nrCMC) cultures transduced with LV-PpLuc↓ (ie, control 

lentiviral vector), LV-Kir3.1↓, or LV-Kir3.4↓. White arrows indicate the direction of action 

potential (AP) propagation; white circles depict phase singularity position. Optical signal 

traces during reentry in atrial nrCMC cultures transduced with (B) LV-PpLuc↓, (C) LV-

Kir3.1↓, or (D) LV-Kir3.4↓. Quantification of (E) AP duration (APD), (F) cycle length, (G) 

activation frequency, (H) inducibility of reentry, and (I) complexity of reentry after burst 

pacing in control (red), LV-Kir3.1↓–transduced (blue), and LV-Kir3.4↓–treated (black) atrial 

nrCMC cultures. a.u. indicates arbitrary units. *P<0.05 vs LV-PpLuc↓. 
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IK,ACh-c Blockade Prevents APD Alternans by Decreasing APD and CV Restitution 

Slope 

To investigate how IK,ACh-c blockade or downregulation prevents reentry induction, we 

studied the effect of tertiapin on APD and CV restitution. During pacing at 1 to 20 Hz, 

Kir3.x blockade by tertiapin increased APD80 throughout all PCLs compared with 

control cultures (n=8 per group; Figure 5A). CV was unaltered after 1- to 2-Hz pacing 

after tertiapin treatment. However, at higher pacing frequencies, CV was significantly 

lower in cultures treated with tertiapin (Figure 5B). This was possibly attributable to a 

change in the maximal diastolic potential, which gets more depolarized at higher 

pacing frequencies if the APD is prolonged by IK,ACh-c blockade.20 Furthermore, 

wavelength was significantly increased by tertiapin at all activation frequencies 

(Figure 5C). Interestingly, the slopes of the APD and CV restitution curves were 

strongly flattened by tertiapin treatment as a consequence of significantly increased 

minimal APD80 and decreased maximal activation frequency (Figure 5D and 5E). 

Because the restitution curves naturally become steeper at shorter diastolic intervals 

(Figure 5A–5C), prolonging minimal APD (and thereby decreasing maximal 

activation frequency) prevents steepening in APD and CV restitution. Tertiapin 

treatment decreased the maximal APD restitution slope from 1.0±0.4 to 0.3±0.2 

(Supplemental Figure IVA and IVB in the online-only Data Supplement), whereas the 

percentage of cultures with a maximal APD restitution slope above the critical 

value21 of 1 decreased from 71.4% to 0% (Supplemental Figure IVC in the online-

only Data Supplement). 

 

http://circ.ahajournals.org/content/128/25/2732.long#F5
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Figure 5. Restitution of (A) APD80, (B) conduction velocity, and (C) wavelength during 1- to 

20-Hz pacing in control (red) and tertiapin-treated (blue) atrial neonatal rat cardiomyocyte 

(nrCMC) cultures. Red and blue dotted lines indicate the maximal slopes in the restitution 

curves; solid black line indicates slope=1. Quantification of (D) minimal action potential 

duration (APD) and (E) maximal activation frequency in control and tertiapin-treated atrial 

nrCMC cultures. F, APD80 maps of untreated (left) and tertiapin-treated (right) atrial nrCMC 

cultures. G, Typical optical signal traces during pacing at maximal activation frequency in 

control cultures (left) showing alternating APDs (red double arrows) on equal pacing cycle 

lengths (PCLs; green double arrows) and tertiapin-treated cultures showing stable APDs 

(red double arrows) on equal PCLs (green double arrows). Quantification of (H) temporal 

APD80 dispersion, (I) spatial APD80dispersion, and (J) temporal amplitude dispersion. a.u. 

indicates arbitrary units. *P<0.05 vs control. 
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Supplemental Figure IV. (A) Typical examples of APD restitution curves of a single control 

(left) and a single tertiapin-treated (right) culture of neonatal rat atrial CMCs, showing that 

the maximal slope of the curve in the control culture exceeds 1, while the slope in the 

tertiapin-treated culture remains well below 1. Black dotted lines indicate slope=1. Colored 

dotted lines indicate the maximal slope in control (red) and tertiapin-treated (blue) cultures. 

(B) Quantification of the maximal slope in the APD restitution curve of control and tertiapin-

treated cultures. (C) Quantification of the percentage of cultures with a maximal slope in the 

APD restitution curve ≥1.  

As a consequence of restitution moderation, spatial dispersion (21.7±8.0% versus 

56.5±4.4% in control cultures) and temporal dispersion (7.8±6.5% versus 38.1±8.0% 

in control cultures) in APD were significantly decreased by Kir3.x blockade (Figure 

5F–5I). Because steepening in APD and CV restitution causes small PCL changes to 

result in large APD and CV changes, APD alternans occurred in control but not in 

tertiapin-treated cultures. During APD alternans at stable PCL in a control culture, as 

a consequence of the relationship between APD and diastolic interval (see 

also Figure 5A), a long APD was repeatedly followed by a short APD because the 

diastolic interval is shortened after the long APD (Figure 5G). Since the short APD 

http://circ.ahajournals.org/content/128/25/2732.long#F5
http://circ.ahajournals.org/content/128/25/2732.long#F5
http://circ.ahajournals.org/content/128/25/2732.long#F5
http://circ.ahajournals.org/content/128/25/2732.long#F5
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follows after incomplete repolarization during the long AP, amplitude alternans was 

observed (likely because of inactivation of Na+ channels as a result of incomplete 

repolarization). Therefore, blockade of IK,ACh-c leads to a significant decrease in 

temporal amplitude dispersion (Figure 5G and 5J). Together, these findings suggest 

that IK,ACh-c-dependent alternans is linked to restitution kinetics (see also Results and 

Supplemental Figure V in the online-only Data Supplement). 

 

 

Supplemental Figure V. (A) Typical examples of optical signal traces of control (left) and 

BAPTA-AM-treated (right) neonatal rat atrial CMC cultures at maximal activation frequency 

in areas showing APD alternans (B) Quantification of reentry inducibility in control cultures 

and in cultures treated with 10 μmol/L, 50 μmol/L or 100 μmol/L BAPTA-AM showing no 

difference in the induction of reentry by burst pacing during buffering of intracellular Ca2+. 

Role of APD Alternans in Reentry 

In control atrial cultures, reentry initiation after burst pacing was found to be a 

consequence of highly incident APD alternans, during which a long AP was 

repeatedly followed by a short AP (Figure 6, left). Typically, the long AP was 

uniformly propagated throughout the culture (Figure 6, right, long AP). However, 

because of the spatial heterogeneity in APD, the short AP frequently underwent 

conduction block when propagated from an area with short-long APD to an area with 

long-long APD. This caused PSs to arise adjacent to the area of conduction block 

(Figure 6, left and right, short AP). The AP was subsequently propagated around the 

PS. This could lead to reentry if the area in which the conduction block occurred 

repolarized before return of the wave front, which then circled the PS in a retrograde 

fashion (Figure 6, right, short AP). These results show that APD alternans, which can 

be prevented by blockade of IK,ACh-c, is a major factor in reentry initiation. 

 

http://circ.ahajournals.org/content/128/25/2732.long#F5
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Figure 6. Typical optical signal traces (graph, left) in a 9-mm2 square in a control atrial 

neonatal rat cardiomyocyte culture during action potential (AP) duration (APD) alternans 

leading to reentry. Green and red dotted lines indicate pacing cycle length and alternating 

APD, respectively. Corresponding phase maps (right) during uniform propagation of the 

long AP (top) and conduction block, followed by circular propagation of the short AP 

(bottom). Arrows, double lines (blue in the optical signal traces and black in the phase 

maps), and white circles indicate the direction of AP propagation, conduction block, and the 

phase singularity position, respectively. The positions of points I and II in the culture are 

indicated in the top left phase map. 

Mechanism of Rotor Termination After IK,ACh Blockade 

In addition to preventing reentry induction, blockade of IK,ACh terminated a large 

portion of rotors initiated by burst pacing. Atrial cultures were mapped during the 

addition of tertiapin to study how IK,ACh blockade led to rotor termination. 

Interestingly, during tertiapin incubation, rotors with P-1 oscillatory dynamics 

destabilized into period-2 (P-2) and aperiodical reentry before termination (Figure 

7 and Supplemental Figure VI in the online-only Data Supplement). As shown 

in Figure 5A, incubation of atrial cultures with tertiapin led to an increase in minimal 

APD and a decrease in the maximal slope of the APD restitution curve. The 

increased steepness of the restitution slope at long PCLs in the tertiapin-treated 

http://circ.ahajournals.org/content/128/25/2732.long#F7
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cultures suggests that this slope becomes critically steep before tertiapin has 

completely increased minimal APD. This caused APD alternans in vulnerable spots 

during reentry, leading to P-2 oscillatory dynamics (Figure 7, middle, and 

Supplemental Figure VIB and VID in the online-only Data Supplement). 

Subsequently, APD prolonged further and refractory periods around the PSs 

increased. Consequently, if the refractory period got critically long, the reentrant 

wave had to alter its path from the previous cycle to be sustained. Therefore, PSs 

tended to shift position after incubation with tertiapin, leading to aperiodical reentry 

dynamics (Figure 7, bottom, and Supplemental Figure VIC and VID in the online-only 

Data Supplement), which simultaneously increased the chance for these PSs to 

meet a boundary, followed by rotor termination (Figure 7, bottom, and Supplemental 

Figure VIC and VID in the online-only Data Supplement). Because tertiapin 

increased wavelength and decreased the incidence of APD alternans after full 

incubation, new rotors were not formed, resulting in a net decrease in complexity of 

conduction patterns after tertiapin treatment, ultimately leading to termination of AF 

(Movie 4 in the online-only Data Supplement). These results show that in addition to 

affecting reentry initiation and global reentry characteristics, IK,ACh-c determines the 

period dynamics and propensity toward rotor termination by controlling the onset of 

APD alternans and PS drift during reentry. 

 

http://circ.ahajournals.org/content/128/25/2732.long#F7
http://circ.ahajournals.org/content/128/25/2732.long#F7
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Figure 7. Phase map sequence of an atrial neonatal rat cardiomyocyte culture during 

tertiapin incubation. The top row shows the initial period (P)-1 reentrant arrhythmia rotating 

around a single stable phase singularity (PS) and its corresponding optical signals. The 

second row shows the change into a P-2 reentry (≈4 seconds after tertiapin addition) with 

meandering, disappearing, and reappearing PSs and its corresponding optical signals 

showing action potential (AP) duration (APD) alternans in critical areas. The bottom 2 rows 

show the shift to aperiodical reentry (≈9 seconds after tertiapin addition) followed by the 

termination of rotors as a consequence of PS drift toward the edge of the culture as the 

wave front increasingly meets refractory tissue. The white circles indicate PSs; translucent 

white circles, the PS position in the previous frame. Bottom right, The corresponding AP 

between points I and II in the culture. The blue arrow indicates the propagation of the final 

AP leading to conduction block. a.u. indicates arbitrary units. 
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Supplemental Figure VI. Return maps of the PPI sequences in an atrial CMC culture during 

(A) typical period-1 reentry showing a single cluster in the return map, (B) the early phase of 

tertiapin incubation leading to a change into period-2 reentry showing two clusters (red) as a 

result of APD alternans (See Figure 7 in the main manuscript, second row) and a third 

cluster (blue) corresponding to the subsequent prolonged reentrant cycle length (temporary 

2:1 conduction) starting at the arrow in both subfigures B and D, (C) the late phase of 

tertiapin incubation leading to aperiodical reentry lacking any clustering in the return map. 

Dotted red circles indicate clustering of PPI sequences. (D) Time series of the PPIs during 

the incubation with tertiapin, showing the progression of period-1, to period>1, to aperiodical 

reentry and eventually termination. The return maps in A-C are each based on a part of the 

time series separated by the gray rectangles. 

Kir3.x Blockade in Whole-Heart Mapping  

Our novel 2-dimensional model of atrial tissue appeared to be crucial for a 

mechanistic understanding of the role of IK,ACh-c in rotor formation, dynamics, and 

termination because these events are likely to occur subepicardially in the intact 

atria, which precludes their direct readout and interpretation. However, whole-heart 

data are needed to show the effects of IK,ACh-c on actual AF in a more complex and 
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relevant setting. We thus studied the effects of tertiapin in a whole-heart model of AF 

using neonatal rat hearts. In these hearts, immunocytological analyses confirmed the 

expression of myosin light chain 2a in the atria only (Supplemental Figure VIIA in the 

online-only Data Supplement). The atria consisted of 37.9±12.1% nonmyocytes, 

which were predominantly fibroblasts as judged by α-actinin/collagen-I double 

staining (Supplemental Figure VIIB and VIIC in the online-only Data Supplement). 

Consistent with the in vitro results, Western blot analyses showed a significantly 

higher expression of Kir3.1 and Kir3.4 in the atrium compared with the ventricle 

(100.0±21.3% versus 13.7±6.0% [P<0.05] and 100.0±24.2% versus 22.4±5.2% 

[P<0.05], respectively; Supplemental Figure VIID in the online-only Data 

Supplement).  

 

 

Supplemental Figure VII. Immunohistological double staining of whole neonatal rat hearts 

for (A) MLC2a (green) and α-actinin (red) and (B) collagen type I (green) and α-actinin (red). 

(C) Quantification of the number of α-actinin-positive (i.e. CMCs) and -negative cells (i.e. 

non-myocytes) as judged by immunohistology. (D) Western blot analysis and quantification 

of Kir3.1 and Kir3.4 levels in the neonatal rat atrium and ventricle using GAPDH as loading 

control. LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle, *: p<0.05 vs 

control.  
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During optical mapping of whole neonatal rat hearts, blockade of Kir3.x channels 

by tertiapin significantly increased atrial APD (62.8±20.9 versus 111.0±32.9 

milliseconds; P<0.05) in sinus rhythm, whereas the APD in the ventricles was not 

significantly altered (219.7±57.6 versus 211.8±42.7 milliseconds; P<0.05; n=10 per 

group; Figure 8A–8C). Atropine treatment had no significant effect on atrial APD 

(54.7±13.9 versus 62.8±20.9 milliseconds in control hearts; Supplemental Figure 

VIIIA–VIIIC in the online-only Data Supplement), confirming the M2 receptor–

independent, constitutive activation of IK,ACh in neonatal rat atria. After burst pacing, 

AF was maintained by P-1 oscillatory dynamics in both control and tertiapin-treated 

hearts. In hearts treated with tertiapin, APD during AF was significantly longer 

compared with control hearts (54.8±14.2 versus 38.8±7.9 

milliseconds; P<0.05; Figure 8D and 8E). As a consequence, AF cycle length was 

significantly increased (106.5±10.3 versus 81.3±11.3 milliseconds; P<0.05; Figure 

8F), whereas the inducibility of AF showed a significant decrease after tertiapin 

incubation (90% versus 40%; P<0.05; Figure 8G). Together, these results support 

the notion that Kir3.x determines the initiation and maintenance of AF in the whole 

heart.  

  

http://circ.ahajournals.org/content/128/25/2732.long#F8
http://circ.ahajournals.org/content/128/25/2732.long#F8
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http://circ.ahajournals.org/content/128/25/2732.long#F8
http://circ.ahajournals.org/content/128/25/2732.long#F8


164 
 

 

Figure 8. A, Typical examples of a control neonatal rat heart during optical mapping 

showing its orientation (left), a map of the atrial activation sequence during sinus rhythm 

(middle; 6-millisecond isochrone spacing), and a map of the atrial activation sequence 

during atrial fibrillation (AF) induced by burst pacing (right; 6-millisecond isochrone spacing) 

showing circular activation in the atrial epicardium (white arrow). The white squares indicate 

the areas from which typical optical signals were derived. LA indicates left atrial; RA, right 

atrial, and V, ventricle. B, Examples of the optical signal traces in the atrium (red) and 

ventricle (black) in control hearts (left) and tertiapin-treated hearts (right). Quantification of 

(C) APD80 in atria and ventricles of control and tertiapin-treated hearts during sinus rhythm 

and (D) the atrial APD80 during AF. E, Examples of the optical signal traces during AF after 

burst pacing in the atrium (red) and ventricle (black) in control and tertiapin-treated hearts. 

Irregularly appearing ventricular traces are indicative of AF. Quantification of (F) AF cycle 

length and (G) inducibility of AF by burst pacing in control and tertiapin-treated neonatal rat 

hearts. *P<0.05 vs control. 
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Supplemental Figure VIII. Typical optical signal traces in the atria (red trace) and ventricles 

(black trace) of (A) control and (B) atropine-treated neonatal rat hearts. (C) Quantification of 

APD80 in the atria of control and atropine-treated neonatal rat hearts. NS: non-significant vs 

control,. a.u.: arbitrary units. 

 

Discussion 

 

The key findings of this study are the following. First, the acetylcholine-inducible 

potassium current (IK,ACh), mediated by Kir3.x, is highly atrium specific and 

constitutively active in neonatal rat atrial cell monolayers and intact atria. Second, in 

the presence of this current, sustained reentry can be easily induced electrically 

(≈90% incidence), whereas the incidence decreases strongly after IK,ACh blockade. 

Third, after induction, tachyarrhythmias in atrial cultures are maintained by stable P-1 

and shifting period >1 or aperiodical rotors and result from restitution-driven 

alternans, whereas they are terminated by alternans-mediated PS drift. Fourth, 

mechanistically, it is shown by pharmacological and genetic interventions that Kir3.x 

is a key regulator of rotor induction, dynamics, and termination by controlling APD 

and APD alternans through APD restitution steepening. Finally, Kir3.x represents a 

promising atrium-specific target for antiarrhythmic strategies. 

 

Kir3.x in Models of AF  

Previous studies showed that IK,ACh may play an important role in the onset of AF 

because acetylcholine activates IK,ACh during parasympathetic stimulation and 

thereby shortens APD.15 However, after atrial remodeling, which occurs, for instance, 

http://circ.ahajournals.org/content/128/25/2732.long#ref-15
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during permanent AF, APD is shortened independently of parasympathetic 

activation, partly because IK,ACh has become constitutively active.16 Although 

alteration of atrial electrophysiology after atrial remodeling has been established, 

most of the insights into the electrophysiological mechanisms and complex dynamics 

of wave propagation in AF have come from detailed investigations in computer and 

animal models of AF, which did not take into account the molecular consequences of 

atrial remodeling.22 Hence, these results may be applicable to paroxysmal AF, but 

translation to persistent AF and AF after atrial remodeling remains difficult. In the 

present study, models have been used that include 1 of these molecular 

consequences, which is constitutive activation ofIK,ACh. Therefore, the present 

models might provide a novel means to link the molecular biology of (persistent) AF 

to its basic electrophysiological mechanisms.22 

We found that the detrimental effects of IK,ACh-c are strongly dependent on Kir3.x 

expression, as is the case when IK,ACh is activated by increased parasympathetic 

tone.14,15 Because Kir3.1 homomers do not to form a functional channel,23,24 the 

preventive effect of Kcnj3 knockdown is likely attributable to diminished density of 

Kir3.1/Kir3.4 heteromers at the sarcolemma, whereas Kir3.4 downregulation affects 

both Kir3.4 homomers and Kir3.1/Kir3.4 heteromers. This might explain why a 3-fold 

reduction in Kir3.4 level produced results similar to the results of a 5-fold decrease in 

Kir3.1 abundance. Although earlier studies show that there is very little contribution 

of Kir3.4 homomers to IK,ACh,
25 our results suggest that after Kcnj3 knockdown there 

is still residual IK,ACh-c, most likely provided by Kir3.4 homomers, the formation of 

which is inhibited after Kcnj5 knockdown. This could imply that the contribution of 

Kir3.x subunits to IK,ACh and to its constitutively active counterpart differs. 

Nevertheless, the effects of tertiapin on APD, rotor frequency, arrhythmia 

complexity, and inducibility were found to be larger than those of Kir3.1 and Kir3.4 

downregulation. Because the atrial nrCMCs have a higher tolerability for short-

term IK,ACh-c blockade by tertiapin as opposed to long-term IK,ACh-c blockade by LV-

mediated RNAi, tertiapin treatment could provide a somewhat more efficient 

blockade of IK,ACh-c at the moment of electrophysiological analysis. Furthermore, 

long-term downregulation of Kir3.1 or Kir3.4 seemed to induce a depolarization of 

the cardiomyocyte’s membrane potential, decreasing CV even at long PCLs. The 

conduction-slowing effect of Kcnj3/5 knockdown by shRNAs strongly diminishes its 

wavelength-prolonging effect. Therefore, we used tertiapin as an alternative means 

http://circ.ahajournals.org/content/128/25/2732.long#ref-16
http://circ.ahajournals.org/content/128/25/2732.long#ref-22
http://circ.ahajournals.org/content/128/25/2732.long#ref-22
http://circ.ahajournals.org/content/128/25/2732.long#ref-14
http://circ.ahajournals.org/content/128/25/2732.long#ref-15
http://circ.ahajournals.org/content/128/25/2732.long#ref-23
http://circ.ahajournals.org/content/128/25/2732.long#ref-24
http://circ.ahajournals.org/content/128/25/2732.long#ref-25
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to study the role of IK,ACh-c in AF in whole hearts. The fact that Kir3.1 and Kir3.4 

downregulation still strongly decreased the inducibility of reentry in atrial cell cultures 

shows that the effects of IK,ACh-c inhibition on the slopes in the restitution curves 

prevails over its effects on wavelength. 

 

Mechanisms of AF Maintenance 

For years, there has been ongoing discussion of whether AF is the consequence 

of single or multiple ectopic focal discharges or the result of reentrant waves or 

randomly appearing and disappearing wavelets.22 Isolating the pulmonary veins can 

be successful in preventing paroxysmal AF, which could be interpreted as evidence 

for the focal discharge theory.26 Nevertheless, reentrant sources generating 

fibrillatory conduction as a consequence of a dominant frequency gradient have 

been demonstrated in chronic AF.27 Importantly, in patients with a long history of AF, 

pulmonary vein isolation has a low success rate.5,6 Therefore, at least in permanent 

AF, reentry seems to play an important role. The presence of a dominant frequency 

gradient also makes the multiple wavelet hypothesis less plausible because a 

hierarchy in frequencies defies randomness as postulated in this theory.28 

As demonstrated in our models, constitutive activation of IK,ACh may be one of the 

determinants of the seemingly increasing role of reentry in the maintenance of AF 

over time. We show that the constitutively active IK,ACh causes APD alternans, 

making the atrial tissue prone to wave break and reentry initiation. In most cases, 

after reentry is initiated, multiple stable rotors maintain fibrillation. Without ongoing 

electric remodeling, the emergence of such rotors in the left atrium would lead to 

fibrillatory conduction to the right atrium. However, in several cultures, AF was 

maintained by shifting aperiodical rotors. Because the APD and CV restitution can 

become critically steep if the IK,ACh is constitutively active, causing both spatial and 

temporal heterogeneity in repolarization, rotors can meander and break up. 

Therefore, in the remodeled atrium (ie, with constitutively active IK,ACh), random 

wavelets (ie, random rotors of which the propagated wave front appears as wavelets 

at the atrial surface) could maintain AF. This could also explain the possibility of AF 

originating from a rotor in the right atrium with fibrillatory conduction to the left atrium 

(eg, after left atrium ablation and permanent AF),28 even though the refractory period 

is shorter in the left atrium. The fibrillatory aspect of conduction here could be 

http://circ.ahajournals.org/content/128/25/2732.long#ref-22
http://circ.ahajournals.org/content/128/25/2732.long#ref-26
http://circ.ahajournals.org/content/128/25/2732.long#ref-27
http://circ.ahajournals.org/content/128/25/2732.long#ref-5
http://circ.ahajournals.org/content/128/25/2732.long#ref-6
http://circ.ahajournals.org/content/128/25/2732.long#ref-28
http://circ.ahajournals.org/content/128/25/2732.long#ref-28
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provided by the seemingly random breakup, appearance, and disappearance of 

rotors in the right atrium as opposed to an APD gradient. 

 

APD Alternans and AF 

Disturbed repolarization is thought to play an important role in producing spatial 

heterogeneity and causing fibrillation in the ventricles. In theory, if fast ectopic firing 

occurs, for instance, from the pulmonary veins, spatial heterogeneity in repolarization 

would also favor reentry initiation in the atria. Hence, it has recently been proposed 

that repolarization alternans could also play an important role in AF. Indeed, it has 

been shown that atrial repolarization alternans occurs frequently before the initiation 

of AF.29-31 In the diseased atrium, changes in calcium handling have been shown to 

cause the APD to alternate as a consequence of calcium instabilities.32 During 

calcium- dependent APD alternans, APD restitution is not necessarily altered. We 

show here for the first time that APD alternans underlying reentry can be caused by 

constitutive activation of IK,ACh, which steepens APD restitution. Hence, we confirm 

that disturbed atrial repolarization is associated with the onset of AF. In addition to 

this association, we show experimentally that wave break and resultant reentry are 

the direct consequence of APD alternans. Earlier in silico work predicted that 

discordant APD alternans leads to wave break if the short AP in a long-short 

sequence reaches the refractory tail of a long AP in a short-long sequence. In 

accordance with these predictions, we found that propagation of a short AP of an 

alternating long-short sequence halts when it meets the refractory tail of a long AP. 

However, in our model, the long AP was usually not the consequence of discordant 

APD alternans, for example, a short-long sequence. Instead, it was the result of a 

large APD dispersion causing areas with APD alternans to border areas with solely 

long APDs. Thus, in our model, we provide an extension to the aforementioned 

theory by showing that spatial APD dispersion in combination with APD alternans 

(while not being classically discordant) can cause AF in cells with constitutively 

active IK,ACh.  

 

Atrial Fibrosis in AF 

Atrial fibrosis is thought to be an important component of AF substrates.33 In this 

study, atrial cell cultures consisted of ≈17% cardiac fibroblasts, as deduced by 

collagen type I immunostaining. Previous studies showed that atrial conduction 

http://circ.ahajournals.org/content/128/25/2732.long#ref-29
http://circ.ahajournals.org/content/128/25/2732.long#ref-29
http://circ.ahajournals.org/content/128/25/2732.long#ref-31
http://circ.ahajournals.org/content/128/25/2732.long#ref-32
http://circ.ahajournals.org/content/128/25/2732.long#ref-33
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abnormalities as a consequence of fibrosis depend strongly on the pattern of 

fibrosis.34 It was found that long fibrotic strands of tissue could cause significant 

conduction abnormalities and thereby contribute to AF, whereas diffuse fibrosis only 

marginally affected conduction. In our in vitro model, fibroblasts are diffusely spread. 

In addition, the percentage of fibroblasts in this model is lower than in intact neonatal 

rat atria (see also Figures IF, VIIB, and VIIC in the online-only Data Supplement). 

Despite this difference in fibroblast content, the atrial cell culture and whole-heart 

models yielded very similar results in terms of the inducibility of AF and the ability to 

suppress AF by IK,ACh-c blockade. Furthermore, in both our in vitro and whole-heart 

models, pathological conditions that promote fibrosis are absent. It thus appears that 

in our models a possible contribution of fibroblast to AF induction is overshadowed 

by the strong proarrhythmic effects of IK,ACh-c.  

 

Study Limitations 

The present study made use of nrCMCs and neonatal rat hearts, which differ 

electrophysiologically from the more clinically relevant adult human cardiomyocytes 

and hearts. Use of cardiomyocytes from human adults is hampered by the difficulties 

in obtaining human cardiac tissue of sufficient quality for the isolation of 

cardiomyocytes and maintaining human cardiomyocytes in a differentiated state 

during culture. In addition, healthy atrial nrCMCs were used to facilitate the study of 

Kir3.x and IK,ACh-c. It should be noted, however, that constitutive activation of IK,ACh in 

human atrial myocytes is usually preceded by significant atrial remodeling and hence 

may have a different origin than in our model. Therefore, our study focused on a 

proof of principle, investigating the role of IK,ACh on APD alternans, AF prevention, 

and AF termination regardless of its onset. Thus, the results may not be directly 

extrapolatable to the clinical setting. 

  

Conclusions 

In neonatal rat atrial cell monolayers and intact atria, the acetylcholine-inducible 

potassium current is constitutively active and plays a crucial role in the initiation of 

sustained tachyarrhythmias. Mechanistically, it is shown in atrial cell monolayers 

that IK,ACh-c is mediated by Kir3.x and regulates not only the initiation but also the 

maintenance and termination of these arrhythmias by controlling APD and APD 

alternans through APD restitution steepening. Accordingly, this study provides 

http://circ.ahajournals.org/content/128/25/2732.long#ref-34
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insights into the molecular basis of atrium-specific IK,ACh-c and reveals the crucial role 

it could play in proarrhythmic and antiarrhythmic mechanisms in atrial tissue. These 

novel insights could contribute to the development of mechanistically driven and 

atrium-specific, antiarrhythmic strategies. 
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Supplemental Material 

 

Methods  

 

All animal experiments were approved by the Animal Experiments Committee of the 

Leiden University Medical Center and conformed to the Guide for the Care and Use 

of Laboratory Animals as stated by the US National Institutes of Health.  

 

Cell isolation and culture  

Ventricular and atrial cardiomyocytes (CMCs) were isolated from 2-3 old neonatal 

Wistar rats by collagenase digestion as described previously.1 Isoflurane inhalation 

(4-5%) was used to anaesthetize animals. After adequate anesthesia had been 

confirmed by the absence of pain reflexes, hearts were excised. Subsequently, large 

vessels were removed and atria were separated from ventricles. Atrial and 

ventricular tissue was gently minced and digested using collagenase type 1 (450 

U/ml; Worthington, Lakewood, NJ) and DNase I (18,75 Kunitz/ml; Sigma-Aldrich, St. 

Louis, MO) during 2 subsequent 30-min digestion steps with agitation in a water bath 

at 37ºC. Cell suspensions were pre-plated on Primaria-coated culture dishes (Becton 

Dickinson, Breda, the Netherlands) for 120 min to allow for preferential attachment of 

non-myocytes. Next, the unattached cells (mainly CMCs) were passed through a 

nylon cell strainer with a mesh pore size of 70 μm (Becton Dickinson) to remove cell 

aggregates and, after counting, the cells were plated isotropically on fibronectin 

(Sigma-Aldrich)-coated, round glass coverslips (15-mm diameter) in 24-well plates 

(Corning Life Sciences, Amsterdam, the Netherlands). Cell densities of 2-8×105 

cells/well were used depending on the experiment. To restrict unwanted expansion 

of the remaining non-myocytes, cell proliferation was inhibited by incubation with 

Mitomycin-C (10 μg/ml; Sigma-Aldrich) for 2 h at day 1 of culture as described 

previously.1,2 All cultures were refreshed daily with Dulbecco’s modified Eagle’s 

medium (DMEM)/HAM’s F10 (1:1, v/v; both from Life Technologies, Bleiswijk, the 

Netherlands) supplemented with 5% horse serum (Life Technologies) and cultured in 

a humidified incubator at 37ºC and 5% CO2.  

 

Immunocytology  
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Cells were stained for the markers of interest after several rinses with ice-cold Error! 

Not a valid link.to wash out the culture medium, fixation with 1% formaldehyde in 

PBS and permeabilization with 0.1% Triton X-100 in PBS. Primary antibodies (1:200 

dilution in PBS+5% fetal bovine serum [FBS; Life Technologies]) and corresponding 

Alexa Fluor 488/568-conjugated secondary antibodies (1:400 dilution in PBS+5% 

FBS; Life Technologies) were left on the cells for 16 and 2 h, respectively, at 4ºC. 

Cultures were stained using antibodies directed against α-actinin (Sigma-Aldrich) as 

CMC marker, myosin light chain 2a (MLC2a; a gift from Dr. S.W. Kubalak, 

Charleston, SC) and natriuretic peptide precursor A (NPPA, Merck Millipore, 

Billerica, MA) as markers for atrial CMCs and myosin light chain 2v (MLC2v; 

Synaptic Systems, Goettingen, Germany) to identify ventricular CMCs. Non-

myocytes were characterized immunostaining using antibodies specific for collagen 

type I (fibroblasts; Abcam, Cambridge, MA), platelet endothelial cell adhesion 

molecule-1 (PECAM-1; endothelial cells; Abcam) and smooth muscle myosin heavy 

chain (smMHC; smooth muscle cells; Abcam). Primary antibodies specific for 

connexin40 (Cx40; Santa Cruz Biotechnology, Dallas, TX) and connexin43 (Cx43; 

Sigma-Aldrich) were used to determine expression of gap junction proteins. 

Counterstaining of the nuclei was performed by a 5-min incubation at room 

temperature with 10 μg/ml Hoechst 33342 (Life Technologies) in PBS+5% FBS. 

Cells were rinsed twice with PBS+5% FBS after incubation with primary antibodies, 

secondary antibodies and Hoechst 33342. Coverslips were mounted in Vectashield 

mounting medium (Vector Laboratories, Burlingame, CA) to minimize 

photobleaching. Images were taken at equal exposure times between compared 

groups using a fluorescence microscope equipped with a digital color camera (Nikon 

Eclipse 80i; Nikon Instruments Europe, Amstelveen, the Netherlands). Dedicated 

software (NIS Elements [Nikon Instruments Europe] and ImageJ [version 1.43; 

National Institutes of Health, Bethesda, MD]) were used to store and quantify 

immunofluorescence signals, respectively. All proteins of interest were studied in at 

least 3 different cultures per experimental group, from which at least 15 

representative images were taken.  

 

Immunohistology  

Neonatal rat hearts were rinsed with PBS, fixed overnight using 4% formaldehyde in 

PBS and dehydrated by immersion in 70% ethanol (3 h), 96% ethanol (3 h), 100% 
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ethanol (3 h) and 1-butanol (overnight), respectively. Hearts were embedded in 

paraffin, cut in 5-μm-thick sections and mounted on StarFrost adhesive microscope 

slides (Knittel Glass, Braunschweig, Germany). Next, sections were deparaffinized in 

xylene and rehydrated by the subsequent immersion in 100% ethanol, 96% ethanol, 

70% ethanol and PBS for 5 min each. Antigen retrieval was performed by incubating 

the slides with 0.05% trypsin and 0.1% CaCl2 in dimineralized water at pH 7.8 for 15 

min at 37°C and 15 min at 20°C, respectively. Sections were immunostained 

overnight with the aforementioned primary antibodies directed against MLC2a, α-

actinin and collagen type I diluted 1:100 in PBS with 1% bovine serum albumin 

(BSA; Sigma-Aldrich) and 1% Tween-20 (PBSBT). Corresponding secondary 

antibodies (Alexa Fluor 488/568-conjugated antibodies, Life Technologies) diluted in 

PBSBT were incubated for 2 hours, after which the nuclei were counterstained with 

10 μg/ml Hoechst 33342 in PBSBT. Image acquisition, processing and analysis were 

done using the fluorescence microscope and software described above.  

 

Western blotting  

CMC cultures were rinsed twice with ice-cold PBS to wash out the culture medium. 

Next, the cells were lysed in RIPA buffer (50 mM Tris–HCl [pH 8.0], 150 mM NaCl, 

1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate 

supplemented with protease inhibitors [cOmplete, Mini Protease Inhibitor Cocktail 

Tablet; Roche Applied Science, Penzberg, Germany]). Lysates were subsequently 

flash frozen in liquid nitrogen, thawed and centrifuged at 4ºC and 21,130×g for 15 

min to get rid of undissolved material. The protein concentration in the supernatant 

was determined using BCA Protein Assay Reagent (Thermo Fisher Scientific, Etten-

Leur, the Netherlands). Proteins (10 μg per sample; ≥3 samples per group) were 

then size-fractionated in NuPage Novex 12% Bis-Tris gels (Life Technologies) and 

transferred to Hybond polyvinylidene difluoride membranes (GE Healthcare, Diegem, 

Belgium) by wet electroblotting. Membranes were blocked in Tris-based saline, 0.1% 

Tween-20 (TBST) supplemented with 5% BSA for 1 h at room temperature. Next, the 

blots were incubated with primary antibodies directed against Cx40 (1:1,000), Cx43 

(1:100,000), Kir3.1 (1;1,000; Alomone Labs, Jerusalem, Israel), Kir3.4 (1; 1,000; 

Santa Cruz Biotechnology), MLC2a (1:200,000), MLC2v (1:5,000), NPPA (1:5,000) 

and glyceraldehyde 3-phosphate dehydrogenase (1:120,000; loading control; Merck 

Millipore) for 1 h at room temperature in TBST+5% BSA. Following 3 rinses with 
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TBST, the blots were incubated with appropriate horseradish peroxidase-conjugated 

secondary antibodies (Santa Cruz Biotechnology) diluted 1:1,000 in TBST+5% BSA 

for 1 h at room temperature. After another 3 rinses with TBST, membranes were 

immersed in ECL Prime Western blot detection reagent (GE Healthcare) and 

chemiluminescence was captured using the ChemiDoc XRS imaging system (Bio-

Rad Laboratories, Veenendaal, the Netherlands).  

For Western blotting of whole hearts, hearts were excised, atria and ventricles 

were carefully separated and rinsed in ice-cold PBS before lysis in RIPA buffer using 

a TissueLyser LT (QIAGEN, Benelux, Venlo, the Netherlands). The whole heart 

lysates were subsequently processed in the same manner as the lysates of cultured 

cells.  

 

Construction of self-inactivating lentivirus (SIN-LV) shuttle plasmids  

To repress rat Kcnj3 expression, a SIN-LV shuttle construct encoding a short hairpin 

(sh) RNA targeting mouse Kcnj3, and matching perfectly with the coding sequence 

of the rat Kcnj3 gene, was obtained from the MISSION shRNA library (Sigma-

Aldrich; clone TRCN0000069736). To knock down rat Kcnj5 expression, the 

hybridization product of oligodeoxyribonucleotides  

5’ 

CCGGGACCACAAGAAGATCCCCAAACTCGAGTTTGGGGATCTTCTTGTGGTCTT

TTTG 3’ and  

5’ 

AATTCAAAAAGACCACAAGAAGATCCCCAAACTCGAGTTTGGGGATCTTCTTGT

GGTC 3’ was inserted in between the unique SgrAI and EcoRI recognition sites of 

SHC007 (MISSION shRNA library; Sigma-Aldrich) to replace its Photinus pyralis 

luciferase (PpLuc)-specific shRNA-coding sequence. Next, the marker gene cassette 

in these constructs and in SHC007, which consisted of the human phosphoglycerate 

kinase 1 gene promoter and the puromycin-N-acetyltransferase-coding sequence 

was replaced by the human eukaryotic translation elongation factor 1 alpha 1 gene 

promoter and the Aequorea victoria enhanced green fluorescent protein (eGFP)-

coding sequence. This yielded the SIN-LV shuttle plasmids pLKO.1-mKcnj3-

shRNA.hEEF1a1.eGFP, pLKO.1-rKcnj5-shRNA.hEEF1a1.eGFP and pLKO.1-PpLuc-

shRNA.hEEF1a1.eGFP, which were used to generate LV-Kir3.1↓, LV-Kir3.4↓ and 

LV-PpLuc↓ particles, respectively.  
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SIN-LV production  

Vesicular stomatitis virus G protein-pseudotyped SIN-LV particles were generated by 

transfecting subconfluent monolayers of 293T cells with the packaging plasmids 

psPAX2 (Addgene, Cambridge, MA; plasmid number: 12260) and pLP/VSVG (Life 

Technologies) and one of the 3 aforementioned SIN-LV shuttle constructs at a molar 

ratio of 2:1:1. The 293T cells were cultured in high-glucose DMEMcontaining 10% 

FBS. The transfection mixture, which consisted of 40 μg of plasmid DNA and 120 μg 

of polyethyleneimine (Polysciences Europe, Eppelheim, Germany) in 2 ml of 150 mM 

NaCl per 175-cm2 cell culture flask (Greiner Bio-One, Alphen aan den Rijn, the 

Netherlands) was directly added to the culture medium. Sixteen hours later, the 

transfection medium in each flask was replaced by 15 ml of DMEM supplemented 

with 5% FBS and 25 mM HEPES-NaOH (pH 7.4). At 40-48 h after the start of the 

transfection procedure, the culture medium was harvested and cleared from cellular 

debris by centrifugation for 10 min at 3,000×g and filtration through a 33-mm 

diameter, 0.45-μm pore size polyethersulfone syringe filter (Millex Express; Merck 

Millipore). To concentrate and purify the SIN-LV particles, 30 ml of vector suspension 

were layered onto a 5-ml cushion of 20% (wt/vol) sucrose in PBS and centrifuged at 

15,000 rotations per min for 2 h at 4ºC in an SW32 rotor (Beckman Coulter, 

Fullerton, CA). Next, the supernatant was discarded and the pellet containing the 

SIN-LV particles was suspended in 500 μl of PBS-1% BSA by gentle rocking 

overnight at 4ºC. The concentrated vector suspension was divided in 50-100 μl 

aliquots and stored at -80ºC until use. The 3 SIN-LVs were applied to the atrial CMC 

cultures at doses that resulted in transduction of essentially all cells in the cultures. 

The transduction level was assessed using a Zeiss Axiovert 200M inverse 

fluorescence microscopy to visualize eGFP fluorescence.  

 

In vitro optical mapping  

At day 9 of culture, action potential (AP) propagation was investigated on a whole-

culture scale by optical mapping using the voltage-sensitive dye di-4-ANEPPS (Life 

Technologies) as described previously.1,2 During optical mapping cells were 

stimulated electrically using a custom-made, epoxy-coated unipolar platinum 

electrode with square suprathreshold electrical stimuli at 1 and 2-20 Hz (2-Hz 

increments). Fibrillation was induced by burst pacing with a cycle length of 20-100 
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ms. A specialized electrical stimulus module with corresponding software 

(Multichannel Systems, Reutlingen, Germany) was used to perform electrical 

stimulation. Data analysis and construction of activation maps were performed with 

specialized software (BrainVision Analyzer 1101; Brainvision, Tokyo, Japan) after 

pixel signals were averaged with 8 of its nearest neighbors, to minimize noise 

artifacts. Conduction velocity (CV) in cultures with uniform or reentrant activation 

patterns was calculated perpendicular to the activation wavefront, between two 3 by 

3 pixel grids typically spaced 2-8 mm apart. CV, activation frequency, APD during 

maximal paced activation frequency (i.e. minimal APD) and APD during 1 Hz pacing 

were determined at 6 different locations equally distributed throughout the culture 

and averaged before further analysis. APD was determined at 80% of repolarization 

(APD80) because of the rat AP shape. Wavelength was calculated by multiplying 

average CV with APD80 (for uniform propagation) or reentrant cycle length.1 

Complexity was defined as the number of phase singularities (PSs) per culture, 

determined by using the phase space method as described previously.1  

The effect of several drugs (100 nmol/L tertiapin [Alomone Labs], 200 nmol/L 

atropine (Sigma-Aldrich) and 2 μmol/L carbachol (Sigma-Aldrich)3 was studied by 

pipetting them directly into the medium, dispersing them by gentle agitation, 

immediately followed by optical mapping.  

 

Whole heart mapping  

Neonatal (2-3 days old) Wistar rats were anesthetized by isoflurane inhalation (4-

5%) and adequate anesthesia was confirmed by the absence of pain reflexes. 

Subsequently, the thoracic wall was cut and lifted to expose the heart. Oxygenated 

Tyrode’s solution (comprising [in mM] NaCl 130, CaCl2 1.8, KCl 4.0, MgCl2 1.0, 

NaH2PO4 1.2, NaHCO3 24 and glucose 5.5 at pH 7.4) supplemented with 20 mM 

2,3-butanedione monoxime (Sigma-Aldrich, BDM) with or without 200 nM tertiapin to 

minimize motion artifacts and to block Kir3.x channels, respectively, was carefully 

injected in a 200 uL bolus into the left ventricle using a 30-G needle. The heart was 

excised just prior to absence of visible contractions, and submersed in Tyrode’s 

solution with BDM and tertiapin to remove remaining blood. Next, hearts were 

incubated in Tyrode’s solution with BDM and tertiapin containing 2 μM di-4-ANEPPS 

for 2 min at 37°C, after which the heart was rinsed and submersed in Tyrode’s 

solution with BDM and tertiapin and placed on top of a 37°C heating plate under the 
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optical mapping camera. AF was induced by burst pacing at a cycle length of 20-100 

ms using a custom-made bipolar platinum electrode. Control hearts were treated in 

an identical manner except that tertiapin was left out during the entire procedure. 

Typical optical mapping experiments were performed within 6 min after excision of 

the heart.  

 

Results  

 

Cell culture characterization  

Immunocytological analysis at day 9 of culture showed that 100% of the CMCs (i.e. 

α-actinin-positive cells) in the atrial cell cultures were MLC2a-positive (i.e. of atrial 

origin) while in the ventricular cell cultures no MLC2a-positive CMCs were detected 

(Supplemental Figure IA,C). In addition, NPPA levels were much higher in the atrial 

than in the ventricular CMC cultures (Supplemental Figure IB). Western blot 

analyses confirmed these results and showed that MLC2v was exclusively present in 

the ventricular cell cultures (Supplemental Figure ID). Atrial CMC cultures contained 

more Cx40 than the ventricular CMC cultures, while Cx43 levels were higher in 

ventricular CMCs as judged by both Western blotting (Supplemental Figure ID) and 

immunocytology (Supplemental Figure IE). Atrial cell cultures were also analyzed by 

collagen type I, PECAM-1 and smMHC staining. While none of the cells contained 

detectable amounts of PECAM-1 or smMHC, 17.0±2.5% of the cells stained positive 

for collagen-I (Supplemental Figure IF) suggesting that the non-myocytes in atrial 

cell cultures consisted mainly, if not exclusively, of fibroblasts.  

 

Constitutive activation of IKACh in neonatal rat atrial CMC cultures  

During constitutive activation IKACh becomes activated independently of acetylcholine 

or the acetylcholine receptor. Therefore, to confirm constitutive IKACh (IKACh-c) activity 

in our neonatal rat atrial CMC cultures, atropine (a non-selective muscarinergic 

receptor antagonist) was used to block the acetylcholine receptor during optical 

mapping to study the dependence of APD on acetylcholine receptor activation. 

Atropine had no significant effect on the APD80 (38.5±3.9 vs 38.6±3.9 ms in control 

cultures, p=ns), whereas subsequent treatment with tertiapin significantly increased 

APD80 (to 110.9±13.1 ms, p<0.0001) (Supplemental Figure IIIA,C). This illustrates 

that after blockade of the acetylcholine receptor there is still current flowing through 
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Kir3.x channels shortening APD. Thus, our cultures of neonatal rat atrial CMCs 

indeed possess IKACh-c activity. Nonetheless, treatment of neonatal rat atrial CMCs 

with carbachol (a non-selective muscarinergic receptor agonist) induced a significant 

shortening of APD80 (from 39.6±4.2 to 29.3±3.9 ms, p<0.0001). After subsequent 

atropine treatment APD80 rose to 45.6±6.9 ms, (p<0.0001 vs carbachol-treated 

cells) abolishing the carbachol-induced APD shortening, while addition of tertiapin to 

the carbachol- and atropine-treated CMCs again greatly increased APD80 (to 

119.8±18.5, p<0.0001 vs [carbachol- and] atropine-treated cells) (Supplemental 

Figure IIIB,D). Together, these results show that the short AP in neonatal rat atrial 

CMC cultures is caused by a tertiapin-sensitive current which is independent of 

ligand-induced muscarinergic receptor activation and therefore constitutively active. 

The cells, however, also still possess muscarinergic receptor stimulation-dependent 

Kir3.x activity given the APD shortening-effect of carbachol treatment and its 

inhibition by atropine.  

 

APD alternans in neonatal rat atrial CMCs is independent of intracellular [Ca2+]  

To confirm the restitution-based nature of APD alternans, neonatal rat atrial CMC 

cultures were treated with the cell-permeable Ca2+ chelator BAPTA-AM (10-100 

μmol/L; Life Technologies) to rule out the contribution of intracellular Ca2+ to APD 

alternans and reentry induction. Successful buffering of intracellular Ca2+ was 

confirmed by phase contrast microscopy, showing absence of visible contractions 

after incubation with 10 μmol/L BAPTA-AM during 1-Hz pacing (data not shown). 

Treatment with BAPTA-AM did not prevent APD alternans (Supplemental Figure 

VA), while the frequency of reentry induction after burst pacing remained equal for all 

tested concentrations of BAPTA-AM (84.6% in controls vs 91.7%, 83.3% and 83.3% 

after treatment of the cells with 10, 50 or 100 μmol/L BAPTA-AM, respectively) 

(Supplemental Figure VB). This suggests that APD alternans and consequential 

reentry induction in our model are driven by the IKACh-c-induced steepness in the 

APD/CV restitution curve. 
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Movie 1:  

Typical example from an optical mapping experiment in a neonatal rat atrial CMC 

culture after burst pacing showing period-1 reentry dynamics. The first part shows 

the high-pass-filtered optical signal exemplifying the repeating activation pattern 

during period-1 reentry. The second part displays the phase map progression of the 

same optical mapping experiment, showing the wave propagation around multiple 

PSs with fixed positioning throughout the experiment.  

Movie 2:  

Typical example from an optical mapping experiment in a neonatal rat atrial CMC 

culture after burst pacing showing aperiodical reentry dynamics. The first part shows 

the high-pass-filtered optical signal exemplifying the transient activation pattern 

during aperiodical reentry. The second part displays the phase map progression of 

the same optical mapping experiment, showing multiple instances of PS formation 

and disappearance leading to aperiodical dynamics.  

Movie 3:  

Typical example from an optical mapping experiment in neonatal rat atrial cultures 

investigating the effect of treatment with LV-Kir3.1↓, LV-Kir3.4↓ or the control vector 

LV-PpLuc↓ after reentry induction by burst pacing. The high-pass-filtered optical 

signal shows less complex conduction patternsand a lower activation frequency in 

cell cultures that had been transduced with the Kcnj3- or Kcnj5-specific shRNA-

coding SIN-LV than in those exposed to the control vector.  

Movie 4:  

Typical movie from optical mapping experiment investigating the effect of tertiapin on 

reentry dynamics and termination. Part 1 shows the high-pass-filtered optical signal 

in an atrial culture after burst pacing during the first 500 ms after tertiapin incubation, 

which is characterized by persisting rotors and period-1 dynamics. The second part 

shows the high-pass-filtered optical signal in an atrial culture after a few seconds of 

tertiapin incubation, characterized by drifting rotors and aperiodical dynamics, which 

is followed by termination (part 3) when the last rotor collides with the culture 

boundary.  
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Summary 

The general introduction of this thesis, chapter I, starts with a brief comparison of 

the pathological features of skeletal muscle disorders and cardiac diseases. 

Furthermore, the lack of (effective) therapies for many cardiac and skeletal muscle 

diseases is discussed. This paucity in adequate treatment options for 

(cardio)myopathies is partially explained by the limited knowledge about the precise 

mechanisms underlying skeletal and cardiac muscle diseases and, related to this, by 

the non-specific action of many therapeutic interventions. Therefore, the aim of this 

thesis was to establish cellular models and employ viral vector technology to identify 

potential targets for future therapeutic interventions in skeletal and cardiac muscle 

diseases. 

Chapter II describes the development of a bipartite lentivirus vector (LV)-based 

assay to quantify cell fusion in which the cellular fusion partners are transduced with 

a Gaussia princeps luciferase (GpLuc) expression unit (acceptor cells) or with a 

recombinant gene encoding FLPe, a nuclear-targeted and molecularly evolved 

version of flippase (donor cells). GpLuc is a secretory protein allowing repeated 

analysis of the same study object, a great advantage over cell fusion assays using 

Photinus pyralis luciferase (PpLuc), which is not a secretory protein precluding 

consecutive analysis of the same study object. To investigate whether the spread of 

FLPeNLS+ in myotubes is limited due to its nuclear localization signal (NLS), 

myoblasts were transduced with LVs encoding either FLPeNLS+ or an NLS-less 

version of FLPe (FLPeNLS-) and subsequently co-cultured in different ratios with 

myoblasts containing the FLPe-activatable GpLuc expression cassette. At different 

times after induction of cell-to-cell fusion the GpLuc activity in the culture medium 

was determined. In general, GpLuc expression increased with increasing fractions of 

GpLuc-transduced myoblasts and both FLPeNLS+ and FLPeNLS- activated the latent 

GpLuc gene but when the percentage of FLPe-expressing myoblasts was limiting, 

FLPeNLS+ generally yielded slightly higher signals than FLPeNLS- while at low 

acceptor-to-donor cell ratios FLPeNLS- was usually superior. Thus, it was shown that 

NLS does not limit the ability of FLPeNLS+ to spread through myofibers and to induce 

reporter gene expression. However, at high fraction of FLPe-expressing myoblasts 

the presence of the NLS negatively affected reporter gene expression. These results 
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show that a rapid and simple chemiluminescence assay for quantifying cell-to-cell 

fusion progression based on GpLuc has been developed.  

In chapter III different properties of Gelatin/Siloxane/Hydroxyapatite (GS-Hyd) 

scaffolds are investigated such as in vivo biodegradability, cytotoxic effects and 

ability to support cell adhesion. Mesenchymal stem cells (MSCs) were treated with 

different volumes of the scaffold suspension for evaluation of its cytotoxic effects. 

MSCs were also cultured on the scaffold for 2 weeks to evaluate the ability of the 

scaffold to promote cell adhesion and growth. The GS-Hyd scaffold did not exert 

noticeable cytotoxic effects on the MSCs and these cells could adhere to the 

scaffold, expand their elongations and form colonies. To study its biodegradability 

the GS-Hyd scaffolds were implanted in thigh muscle, testicle and liver of Wistar 

rats. At different times after implantation, scaffolds were excised and their dry weight 

was measured. The largest reduction in scaffold weight occurred during the first days 

after implantation and varied from 53% in liver to 71% in thigh muscle at 3 days post 

implantation. Subsequently, scaffold degradation slowed down with 30%, 25% and 

18% of the initial scaffold remaining at 3 weeks after implantation in liver, testis and 

thigh muscle, respectively. Scanning electron microscopy (SEM) indicated obvious 

morphological changes on the surface of the scaffold and in the diameter of the 

pores after 21 days of implantation. In conclusion, the GS-Hyd scaffold seems to be 

a promising tool for cell-based therapeutic interventions, but additional research is 

needed to assess its clinical utility. 

Chapter IV is dedicated to the development of an in vitro model for studying the 

contribution of pathological cardiac hypertrophy (PCH) per se to arrhythmia 

independent of fibrosis or other PCH-related processes. Treatment of neonatal rat 

ventricular cardiomyocyte (nr-vCMC) monolayers with phorbol 12-myristate 13-

acetate (PMA) for two times 24 hours, led to increases in cell surface area (CSA) 

and protein content of the cardiomyocytes. Assessment of the electrophysiological 

properties of PMA-treated and control nr-vCMC monolayers by optical mapping at 

day 9 of culture, showed a decrease in conduction velocity (CV) and increases in 

action potential duration (APD) and APD dispersion upon PMA treatment. It also 

caused a 32% reduction in sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 level 

and an increase in natriuretic peptide A (42%) and α1-skeletal muscle actin (34%) 

levels indicating that the hypertrophic response induced by PMA was pathological in 

nature. Upon local 1-Hz stimulation, 54% of the PMA-treated cultures showed focal 
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tachyarrhythmias based on triggered activity, while the rate of tachyarrhythmias was 

only 4% in control nr-vCMC cultures. PMA-treated nr-vCMC cultures may thus 

represent a well-controllable in vitro model for testing new therapeutic interventions 

targeting specific aspects of hypertrophy-associated arrhythmias.  

Chapter V describes the development of in vitro models of post-myocardial 

infarction (MI) compact and patchy fibrosis and the assessment of their pro-

arrhythmic features by optical mapping. To this end, either a single large circular 

anatomical obstruction or multiple smaller circular anatomical obstructions were 

made in the center of confluent nr-vCMC monolayers by forcefully pressing tailor-

made plexiglass stamps onto the cells. To gain mechanistic insight into arrhythmias 

associated with post-MI scars several parameters such as rate of inducibility, cycle 

length and maintenance of reentry were compared between these two types of 

anatomical obstructions. In patchy cultures, reentry was slightly less easily inducible 

(41% vs 52%) and, when it occurred, had a shorter cycle length (234±52 vs 288±38 

ms) than in compact cultures. Sustained reentry was less often observed in patchy 

cultures (40% vs 88% in compact cultures) while the percentage of complex 

arrhythmias was higher (31% vs 11%). Meandering of phase singularities and 

gradients of excitability during reentrant arrhythmias were only detectable in patchy 

cultures. Reentry could be terminated more easily in compact cultures (82% vs 20% 

in patchy cultures). Taken together, this in vitro model of patchy and compact 

obstructions reproduced arrhythmic features similar to those observed after early- 

and non-reperfused MIs, respectively, and may hence provide mechanistic insights 

into the efficacy of anti-arrhythmic interventions in infarcted hearts with different 

anatomical substrates.  

In chapter VI the effects of constitutive acetylcholine-regulated K+ current (IK,Ach-c), 

which flows through Kir3.1 and Kir3.4 channels, on atrial fibrillation is investigated. 

Neonatal rat atrial CMC cultures and intact atria were burst paced to induce reentry. 

Treatment of these cultures with tertiapin prolonged APD, indicating the presence of 

IK,ACh-c. Furthermore, tertiapin decreased rotor frequency and complexity. Reduction 

of Kir3.1 or 3.4 expression through transduction of cells with LVs encoding Kcnj3- or 

Kcnj5-specific shRNAs gave similar results. Tertiapin prevented/terminated reentry 

by prolonging APD and changing APD and CV restitution slopes, thereby lowering 

the probability of APD alternans and inducing rotor destabilization. Whole-heart 

mapping experiments confirmed key findings (e.g. >50% reduction in atrial fibrillation 
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inducibility after IK,ACh-c blockade). This study provided new molecular and 

mechanistic insights into atrial tachyarrhythmias and identified Kir3.1 and Kir3.4 as 

promising atrium-specific targets for anti-arrhythmic strategies. 

In conclusion, the experiments described in this thesis emphasize the importance 

of cellular models for (i) elucidating the mechanisms underlying skeletal and cardiac 

muscle diseases and (ii) identification of novel therapeutic targets. This thesis also 

underlines the usefulness of viral vector-mediated gene transfer technology for the 

development of biological assays and the evaluation of therapeutic targets.  

 

Future perspectives 

Without a thorough understanding of the mechanisms underlying cardiac and 

skeletal muscle diseases, their treatment by pharmacological or genetic interventions 

involve a lot of trial and error. Cellular models are important tools to gain mechanistic 

insights into skeletal muscle degeneration and cardiac arrhythmias mechanisms 

allowing the rational design of new treatments. This relates at least in part to their 

relative simplicity, providing the possibility to investigate a specific pathological 

feature independent of other complications. Despite of having this and some other 

advantages, in vitro cellular models often do not mimic well enough the in vivo 

situation, which may lead to poor in vitro-in vivo correlations. Accordingly, future 

research should focus on the further improvement of these cellular models in such a 

way that they better resemble/represent in vivo pathological states reducing the need 

for preclinical and clinical studies. For example, in the case of in vitro models of 

cardiac hypertrophy it is essential to determine which stage in the transition from 

PCH to heart failure the hypertrophy model represents as this will affect the 

therapeutic approach. Besides by checking the extent of electrophysiological 

changes and incidence and nature of arrhythmias, measuring of the contractile force-

generating capacity and comparative transcriptome analyses will provide useful 

information on this issue. 

An important hurdle in the development of in vitro cellular models arises from the 

low expansion capability of differentiated cells. For example, postnatal CMCs display 

very limited proliferation capacity which demands for repetitive isolation and culture 

of these cells for in vitro studies. Therefore, immortalization of atrial or ventricular 

CMCs from animal or human would circumvent this obstacle. This could be achieved 

through viral vector-mediated transfer, into these cells, of genes such as those 
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encoding simian virus 40 large T antigen, B cell-specific Moloney murine leukemia 

virus integration site 1 (BMI1) or telomerase (TERT) reverse transcriptase. 

Genetic manipulations through viral vectors (e.g. overexpression of certain genes 

or RNA interference) may also help to gain better mechanistic insights into skeletal 

and cardiac muscle disorders and to further optimize current therapies for these 

diseases.  

Regarding to skeletal muscle wasting, optimization of cell-based therapies may be 

achieved through enhancement of the fusion of donor cells which each other and 

with recipient myocytes and by promoting their myogenic differentiation. For 

instance, forced and controlled expression of fusion-enhancing proteins through 

transduction of (non-muscle) stem cells with viral vectors encoding these proteins 

may be beneficial as could be the regulated expression in these cells of myogenic 

transcription factor genes.  

Genetic intervention may also be employed for therapeutic purposes in cardiac 

arrhythmias. For example, the forced expression of connexins like connexin43 in 

(myo)fibroblasts present in infarct scars may improve conduction and reduce 

arrhythmia incidence. This approach could, however, also be deleterious as coupling 

of CMCs with (myo)fibroblasts would depolarize CMCs and make the tissue 

susceptible to reentrant tachycardias. The latter problem may be overcome by 

simultaneously endowing (myo)fibroblasts with a gene like KCNJ2 whose product is 

involved in setting the resting membrane potential. 

Genetic interventions (overexpression or knockdown) affecting the expression of 

the genes encoding for ion channels involved in the repolarization phase of the 

action potential (AP) may also have anti-arrhythmic effects. For example, 

manipulation of the expression of genes encoding for those ion channels that exert 

their effect on repolarization in the AP phases at which early afterdepolarizations 

occur (e.g. adenosine triphosphate (ATP)-sensitive K+ channels [KATP channels]) 

could provide novel insights into pro- and anti-arrhythmic mechanisms but could also 

have therapeutic potential. 

Effective therapeutic application of viral vectors in vivo often requires uniform and 

near-quantitative transduction of the target tissue and transgene expression at a 

specific level. This is of particular importance when developing gene therapy for 

arrhythmias as heterogeneous transduction and inappropriate transgene expression 

levels may be pro-arrhythmic. 

http://en.wikipedia.org/wiki/B_cell
http://en.wikipedia.org/wiki/Murine_leukemia_virus
http://en.wikipedia.org/wiki/Murine_leukemia_virus
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Hence, efficient delivery and high target cell specificity of viral vectors and precise 

control of transgene expression are of vital importance and deserve further study. 

Other important topics of future gene therapy research are the further improvement 

of the safety and reduction of immunogenicity of viral vectors. 
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Samenvatting 

De algemene introductie van dit proefschrift, hoofdstuk I, begint met een korte 

vergelijking van de pathologische kenmerken van skeletspier- en hartspierziekten. 

Voorts wordt het gebrek aan (effectieve) therapieën voor veel hartspier- en 

skeletspierziekten bediscussieerd. Deze schaarste aan adequate 

behandelingsmogelijkheden voor (cardio)myopathieën kan deels worden verklaard 

door de geringe kennis van de precieze mechanismen die aan skeletspier- en 

hartspierziekten ten grondslag liggen en, hieraan gerelateerd, door de niet-specifieke 

werking van veel therapeutische interventies. Het hoofddoel van dit proefschrift was 

daarom het opzetten van cellulaire modellen en toepassing van virale 

vectortechnologie ter identificatie van potentiële aangrijpingspunten voor 

toekomstige behandelmethoden voor skeletspier- en hartspierziekten.  

In hoofdstuk II wordt de ontwikkeling van een tweedelige lentivirus vector (LV)-

gebaseerde analysemethode beschreven voor het kwantificeren van cel fusie waarin 

de cel fusie-componenten zijn getransduceerd met een Gaussia princeps luciferase 

(GpLuc) expressie eenheid (ontvangende cellen) of met een recombinant gen dat 

codeert voor FLPe, een kerngerichte en moleculair geëvolueerde versie van flippase 

(donorcellen). GpLuc is een secretoir eiwit, waardoor het mogelijk is om herhaalde 

analyses te verrichten van hetzelfde studieobject, een groot voordeel ten opzichte 

van cel fusie analyses die gebruik maken van Photinus pyralis luciferase (PpLuc), 

wat niet een secretoir eiwit is en daardoor achtereenvolgende analyses van 

hetzelfde studieobject uitsluit. Om te onderzoeken of de spreiding van FLPeNLS+ in 

gedifferentieërde skeletspiercellen wordt beperkt door het kernlokalisatiesignaal 

(NLS), werden gedifferentieërde skeletspiercellen getransduceerd met LVs die 

coderen voor FLPeNLS+ of een FLPe versie zonder NLS (FLPeNLS-) en vervolgens in 

verschillende ratio’s in co-cultuur gebracht met myoblasten met een door FLPe 

activeerbare GpLuc expressie cassette. Op verschillende tijdstippen na inductie van 

fusie tussen cellen werd de GpLuc activiteit in het kweekmedium bepaald. In het 

algemeen nam de GpLuc expressie toe met toenemende fracties of GpLuc-

getransduceerde myoblasten, en zowel FLPeNLS+ als FLPeNLS- was in staat om het 

latente GpLuc gen te activeren. Echter, wanneer het percentage myoblasten dat 

FLPe tot expressie bracht beperkend was, gaf FLPeNLS+ over het algemeen iets 

hogere signalen dan FLPeNLS-; maar bij lage ontvanger:donor celratio’s was FLPeNLS- 
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meestal superieur. Er werd daarmee aangetoond dat het NLS niet beperkend was 

ten aanzien van het vermogen van FLPeNLS+ om zich door gedifferentieërde 

skeletspiercellen te verspreiden of voor het induceren van reportergenexpressie. Bij 

een hoge fractie FLPe-expresserende myoblasten heeft de aanwezigheid van het 

NLS echter een negatief effect reportergenexpressie. Deze resultaten tonen aan dat 

het is gelukt om een snelle en simpele analysemethode op basis van GpLuc te 

ontwikkelen voor de kwantificatie van de progressie van fusie tussen cellen door 

middel van chemiluminescentie. 

 In hoofdstuk III worden verschillende eigenschappen van 

Gelatine/Siloxane/Hydroxyapatiet (GS-Hyd) matrices onderzocht zoals in vivo 

biologische afbreekbaarheid, cytotoxische effecten en het vermogen celadhesie te 

ondersteunen. Mesenchymale stamcellen (MSCs) werden behandeld met 

verschillende volumes matrixsuspensie voor de evaluatie van de cytotoxische 

effecten. MSCs werden tevens gedurende 2 weken op de matrix gekweekt ter 

evaluatie van het vermogen van de matrix om celadhesie en celgroei te 

bevorderden. De GS-Hyd matrix had geen merkbaar cytotoxisch effect op de MSCs 

en deze cellen waren in staat om zich te hechten aan de matrix, hun uitlopers uit te 

breiden en kolonies te vormen. Om de biologische afbreekbaarheid te bestuderen, 

werden GS-Hyd matrices geïmplanteerd in dijbeenspier, testikel en lever van Wistar 

ratten. Op verschillende tijdstippen na implantatie werd matrices uitgenomen en 

werd hun drooggewicht bepaald. De grootste reductie in matrix gewicht vond plaats 

gedurende de eerste dagen na implantatie en varieerde van 53% in de lever tot 71% 

in dijbeenspier op dag 3 na implantatie. Vervolgens vertraagde de matrixdegradatie 

waardoor er 3 weken na implantatie nog 30%, 25% en 18% van de uitgangsmatrix in 

respectievelijk lever, testis en dijbeenspier resteerde. Scanning elektronmicroscopie 

liet duidelijke morfologische veranderingen aan het oppervlak van de matrix en in de 

poriediameter zien 21 dagen na implantatie. Concluderend lijkt de GS-Hyd matrix 

een veelbelovend hulpmiddel voor celtherapie, maar additioneel onderzoek is nodig 

om de klinische toepasbaarheid vast te stellen.  

Hoofdstuk IV is gewijd aan de ontwikkeling van een in vitro model voor het 

onderzoeken van de specifieke bijdrage van pathologische cardiale hypertrofie 

(PCH) aan ritmestoornissen, onafhankelijk van fibrose of andere PCH-gerelateerde 

processen. Behandeling van monolagen van ventriculaire cardiomyocyten 

geïsoleerd uit neonatale ratten (nr-vCMC) met phorbol 12-myristate 13-acetate 
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(PMA) gedurende 2 ker 24 uur, leidde tot toenames in celoppervlakte en eiwitinhoud 

van de cardiomyocyten. Bepaling van de electrofysiologische eigenschappen van 

PMA-behandelde en controle nr-vCMC monolagen middels optisch mappen op 

kweekdag 9, lieten een afname van de geleidingssnelheid (CV) en toenames van de 

actiepotentiaalduur (APD) en APD dispersie zien na PMA behandeling. Verder 

veroorzaakte de PMA behandeling een 32% afname van het 

sarcoplasmatisch/endoplasmatisch reticulum Ca2+ ATPase 2 gehalte en een 

toename van de natriuretisch peptide A (42%) en α1-skeletspier actine (34%) 

gehaltes, wat aantoonde dat de door PMA-geïnduceerde hypertrofe respons een 

pathologisch karakter had. Na lokale 1-Hz stimulatie, vertoonden 54% van de PMA-

behandelde cultures focale tachyaritmieën op basis van getriggerde activiteit, terwijl 

de controle nr-vCMCs slechts in 4% van de gevallen tachyaritmieën lieten zien. 

PMA-behandelde nr-vCMC kweken kunnen derhalve een goed controleerbaar in 

vitro model zijn voor het testen van nieuwe therapeutische interventies voor het 

bestuderen van specifieke aspecten van hypertrofie-geassocieerde aritmieën.  

In hoofdstuk V wordt de ontwikkeling van in vitro modellen van compacte en 

fragmentarische fibrose als gevolg van een myocardiaal infarct (MI) beschreven, 

alsmede de bepaling van hun pro-aritmische eigenschappen door middel van optisch 

mappen. Hiertoe werd een enkel groot circulair anatomisch obstakel, dan wel 

multipele kleinere circulaire anatomische obstakels gecreëerd in het midden van 

confluente nr-vCMC monolagen door middel van krachtige druk op de cellen met op 

maat gemaakte plexiglas stempels. Voor het verkrijgen van mechanistisch inzicht in 

aritmieën die geassocieerd zijn met post-MI littekens werden verschillende 

parameters vergeleken bij de twee types van anatomische obstakels, zoals de mate 

van induceerbaarheid, cycluslengte en handhaving van “reentry”. In kweken met 

fragmentarische fibrose was “reentry” iets minder gemakkelijk induceerbaar (41% vs. 

52%) en, als het optrad had het een kortere cycluslengte (234±52 vs. 288±38 ms) 

dan in cultures met compacte fibrose. 

Aanhoudende “reentry” werd minder vaak geobserveerd in fragmentarische 

culturen (40% vs. 88% in compacte culturen), terwijl het percentage complexe 

aritmieën hoger was (31% vs. 11%). Meanderende fasesingulariteiten en 

exciteerbaarheidsgradiënten tijdens aritmieën op basis van “reentry” waren alleen 

detecteerbaar in fragmentarische culturen. “Reentry” kon gemakkelijker 

getermineerd worden in compacte cultures (82% vs. 20% in fragmentarische 
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culturen). Samenvattend konden met de in vitro modellen van fragmentarische en 

compacte obstakels soortgelijke aritmische eigenschappen worden nagebootst als 

worden gevonden na respectievelijk vroege- en niet-gereperfundeerde MIs. Deze 

modellen kunnen daarom leiden tot mechanistisch inzicht in de werkzaamheid van 

anti-aritmische interventies in geïnfarceerde harten met verschillen anatomische 

substraten. 

In hoofdstuk VI worden de effecten op atriumfibrilleren onderzocht van 

constitutief-actieve acetylcholine-gereguleerde K+ stroom (IK,Ach-c), die via Kir3.1 en 

Kir3.4 kanalen loopt. Culturen van atriale CMCs geïsoleerd uit neonatale ratten en 

intacte atria werden met hoge frequentie gestimuleerd voor inductie van “reentry”. 

Behandeling met tertiapin verlengde de APD in atriale culturen tijdens “reentry”, wat 

duidde op de aanwezigheid van IK,Ach-c. Voorts verlaagde tertiapin de frequentie en 

complexiteit van rotors. Een afname van Kir3.1 of 3.4 expressie door middel van 

transductie van de cellen met LVs die codeerden voor Kcnj3- of Kcnj5-specifieke 

shRNAs gaf vergelijkbare resultaten. Tertiapin voorkwam of termineerde “reentry” 

door verlenging van de APD en door veranderingen van de APD en CV restitutie 

curves, waardoor de kans op APD alternans verminderde en de kans op 

rotordestabilisatie toenam. Mapping experimenten van hele harten bevestigden deze 

bevindingen (b.v. >50% reductie in induceerbaarheid van atriumfibrillatie na IK,Ach-c 

blokkade). Deze studie heeft nieuwe moleculaire en mechanistische inzichten in 

atriale tachyaritmieën opgeleverd en heeft geleid tot de identificatie van Kir3.1 en 

Kir3.4 als veelbelovende atrium-specifieke doelwitten voor anti-aritmische 

strategieën. 

Concluderend benadrukken de experimenten zoals beschreven in dit proefschrift 

het belang van cellulaire modellen voor (i) het ophelderen van de mechanismen die 

ten grondslag liggen aan skelet- en hartspierziekten en (ii) het identificeren van 

nieuwe therapeutische doelwitten. Dit proefschrift onderstreept ook de bruikbaarheid 

van op virale vectoren gebaseerde genoverdrachttechnologieën voor de ontwikkeling 

van biologische analysemethodes en de evaluatie van therapeutische doelwitten.  

 

Toekomstperspectieven 

Zonder een grondig begrip van de onderliggende mechanismen van hart- en 

skeletspierziekten, gaan hun behandeling met farmacologische of genetische 

interventies gepaard met veel praktijkfouten. Cellulaire modellen zijn belangrijke 
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hulpmiddelen voor het verkrijgen van mechanistische inzichten in 

skeletspierdegeneratie en cardiale ritmestoornismechanismen als voorwaarde voor 

het rationele ontwerp van nieuwe behandelingmethoden. Dit is tenminste deels 

gerelateerd aan hun relatieve eenvoud, wat de mogelijkheid biedt om een specifieke 

pathologische eigenschap te onderzoeken, onafhankelijk van andere complicaties. 

Ondanks deze en andere voordelen van in vitro cellulaire modellen bootsen zij de in 

vivo situatie vaak onvoldoende na, wat kan leiden tot slechte in vitro-in vivo 

correlaties. Hierdoor dient toekomstig onderzoek zich te richten op de verdere 

verbetering van deze cellulaire modellen zodat zij een betere weergave vormen van 

de pathologische status in vivo, waardoor de noodzaak voor preklinische en 

klinische studies kan worden verminderd. Bijvoorbeeld, in het geval van in vitro 

modellen van cardiale hypertrofie is het essentieel om te bepalen welk stadium 

tijdens de transitie van PCH tot hartfalen door het hypertrofie model wordt 

weergegeven, aangezien dit de therapeutische aanpak kan beïnvloeden. Naast het 

bepalen van de mate van electrofysiologische veranderingen en de incidentie en het 

karakter van aritmieën, kunnen de bepaling van het contractievermogen en 

transcriptoomanalyses een waardevolle bijdrage leveren.  

Een belangrijke hindernis die genomen moet worden voor de verdere ontwikkeling 

van in vitro cellulaire modellen is het overkomen van de lage expansiecapaciteit van 

gedifferentieerde cellen. Postnatale CMCs vertonen bijvoorbeeld een zeer beperkte 

proliferatiecapaciteit, wat herhaaldelijke isolatie en kweek van deze cellen 

noodzakelijk maakt voor in vitro studies. Immortalisatie van atriale of ventriculaire 

CMCs van dierlijk of menselijk weefsel zou dit probleem kunnen omzeilen. Dit kan 

worden bewerkstelligd door middel van virale overdracht van genen coderend voor 

eiwitten zoals simian virus 40 large T antigen, B cell-specific Moloney murine 

leukemia virus integration site 1 (BMI1) of telomerase (TERT) reverse transcriptase.  

Genetische manipulaties middels virale vectoren (b.v. overexpressie van bepaalde 

genen of RNA interferentie) kunnen voorts leiden tot betere mechanistische inzichten 

in skelet- en hartspierziekten en tot verdere optimalisatie van huidige therapieën 

voor deze aandoeningen.  

Met betrekking tot skeletspieratrofie kan optimalisatie van cellulaire therapieën 

bereikt worden door verbeterde fusie van donorcellen onderling en met spiercellen 

van de ontvanger en door verbetering van hun myogene differentiatie. Bijvoorbeeld, 

geforceerde expressie van fusie-bevorderende eiwitten door transductie van (niet-
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myogene) stamcellen met virale vectoren coderend voor deze eiwitten kan 

bevorderlijk zijn, evenals de gereguleerde expressie van myogene 

transcriptiefactoren in deze cellen.  

Genetische interventie kan ook worden ingezet voor de behandeling van 

hartritmestoornissen. Bijvoorbeeld, gedwongen expressie van connexines zoals 

connexine43 in (myo)fibroblasten in infarctlittekenweefsel kan geleiding bevorderen 

en de incidentie van aritmieën doen afnemen. Deze aanpak zou echter ook negatief 

kunnen uitpakken aangezien koppeling van CMCs met (myo)fibroblasten kan leiden 

tot depolarisatie van CMCs, waardoor het weefsel vatbaar wordt voor tachycardieën 

op basis van “reentry”. Dit probleem kan worden aangepakt door gelijktijdige 

uitrusting van (myo)fibroblasten met een gen zoals KCNJ2, waarvan het product is 

betrokken bij het instellen van het rustmembraanpotentiaal.  

Genetische interventies (overexpressie of knockdown) die invloed uitoefenen op 

de expressie van genen die coderen voor ionkanalen die betrokken zijn bij de 

repolarisatiefase van het actiepotentiaal (AP), kunnen ook anti-aritmische effecten 

hebben. Bijvoorbeeld, manipulatie van de expressie van genen die coderen voor de 

ionkanalen die betrokken zijn bij de repolarisatie van de AP fases gedurende welke 

vroege na-depolarisaties optreden (b.v. adenosine trifosfaat (ATP)-gevoelige K+ 

kanalen [KATP kanalen]) zou tot nieuwe inzichten kunnen leiden in pro- en anti-

aritmische mechanismen, maar zou ook therapeutische waarde kunnen hebben. 

Effectieve therapeutische toepassing van virale vectoren in vivo vereist uniforme en 

bijna-kwantitatieve transductie van het doelweefsel en het juiste 

transgenexpressieniveau. Dit zijn belangrijk punten in de context van 

aritmiebehandeling, aangezien heterogene transductie of een inadequaat 

transgenexpressieniveau pro-aritmisch kan zijn.  

Daarom zijn efficiënte toediening en een hoge doelcelspecificiteit van virale 

vectoren, alsmede de precieze beheersing van transgenexpressie van vitaal belang 

en verdienen verder onderzoek. Andere belangrijke onderwerpen van toekomstig 

gentherapeutisch onderzoek zijn de verdere verbetering van de veiligheid en de 

reductie van immunogeniciteit van virale vectoren.  
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