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ABSTRACT
There is mounting observational evidence that most galactic nuclei host both supermassive
black holes (SMBHs) and young populations of stars. With an abundance of massive stars,
core-collapse supernovae are expected in SMBH spheres of influence. We develop a novel
numerical method, based on the Kompaneets approximation, to trace supernova remnant
(SNR) evolution in these hostile environments, where radial gas gradients and SMBH tides
are present. We trace the adiabatic evolution of the SNR shock until 50 per cent of the remnant
is either in the radiative phase or is slowed down below the SMBH Keplerian velocity and is
sheared apart. In this way, we obtain shapes and lifetimes of SNRs as a function of the explosion
distance from the SMBH, the gas density profile and the SMBH mass. As an application, we
focus here exclusively on quiescent SMBHs, because their light may not hamper detections
of SNRs and because we can take advantage of the unsurpassed detailed observations of our
Galactic Centre. Assuming that properties such as gas and stellar content scale appropriately
with the SMBH mass, we study SNR evolution around other quiescent SMBHs. We find that,
for SMBH masses over ∼107 M�, tidal disruption of SNRs can occur at less than 104 yr,
leading to a shortened X-ray emitting adiabatic phase, and to no radiative phase. On the other
hand, only modest disruption is expected in our Galactic Centre for SNRs in their X-ray stage.
This is in accordance with estimates of the lifetime of the Sgr A East SNR, which leads us to
expect one supernova per 104 yr in the sphere of influence of Sgr A∗.

Key words: accretion, accretion discs – black hole physics – hydrodynamics – shock waves –
ISM: supernova remnants – galaxies: nuclei.

1 IN T RO D U C T I O N

There is compelling evidence for a supermassive black hole
(SMBH) with a mass of 4.3 × 106 M� in the nucleus of the Milky
Way, associated with the Sgr A∗ radio source. The strongest ev-
idence comes from the analysis of orbits of the so-called S-stars
very near this compact object, such as that of the star S2 with a
period of only 16 yr and pericentre of ∼102 au (Schödel et al. 2002,
2003; Ghez et al. 2003, 2008; Eisenhauer et al. 2005; Gillessen et al.
2009).

Most other massive galaxies contain SMBHs (Marleau, Clancy &
Bianconi 2013), some with masses as high as 1010 M� (McConnell
et al. 2011). The observed fraction of active nuclei is no more
than a few per cent at low redshifts (Schawinski et al. 2010), and
most galactic nuclei house very sub-Eddington SMBHs, like Sgr
A∗ (Melia & Falcke 2001; Alexander 2005; Genzel, Eisenhauer
& Gillessen 2010). These SMBHs are believed to be surrounded
by radiatively inefficient accretion flows (RIAFs), where only a
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small fraction of the accretion energy is carried away by radiation
(Ichimaru 1977; Rees et al. 1982; Narayan & Yi 1994).

In addition to the ubiquity of SMBHs, young stellar populations
and appreciable star formation rates are common in many quiescent
galactic nuclei (Sarzi et al. 2005; Walcher et al. 2006; Schruba et al.
2011; Kennicutt & Evans 2012; Neumayer & Walcher 2012).1 This
is seen most clearly in the abundance of early-type stars in the central
parsec of the Milky Way (see Do et al. 2013a,b; Lu et al. 2013, for
some recent reviews). Moreover, it appears that star formation in
the Galactic Centre region has been a persistent process that has
increased over the past 108 yr (Figer et al. 2004; Figer 2009; Pfuhl
et al. 2011). Over that time, an estimated �3 × 105M� of stars
have formed within 2.5 pc of the SMBH (Blum et al. 2003; Pfuhl
et al. 2011).

Continuous star formation in galactic nuclei will regularly re-
plenish the supply of massive stars in these regions. This naturally

1 Evidence for recent star formation has also been seen around active galactic
nuclei (AGN; for example, Davies et al. 2007). However, active nuclei are
not the subject of this study.
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leads to the expectation of frequent core-collapse supernovae in
such environments. As an example, Zubovas, Wynn & Gualandris
(2013) show that per 106M� of stellar mass formed in the Galactic
Centre approximately one supernova per 104 yr is expected for the
past 108 yr.

Only one supernova remnant (SNR) candidate has been identified
close to the SMBH sphere of influence (SOI): an elongated shell
known as Sgr A East, at the end of its adiabatic phase. It has an es-
timated age of about 104 yr and appears to be engulfing Sgr A∗ with
a mean radius of approximately 5 pc (Maeda et al. 2002; Herrnstein
& Ho 2005; Lee et al. 2006; Tsuboi, Miyazaki & Okumura 2009).
In addition, there are a couple of observations that indirectly point
towards supernovae in the SOI. The first is CXOGC J174545.5–
285829 (‘The Cannonball’), suspected to be a runaway neutron star
associated with the same supernova explosion as Sgr A East (Park
et al. 2005; Nynka et al. 2013; Zhao, Morris & Goss 2013). The
second is the recently discovered magnetar SGR J1745–2900, es-
timated to be within 2 pc of Sgr A∗ (Degenaar et al. 2013; Kennea
et al. 2013; Rea et al. 2013).

Any supernova exploding in the SOI of a quiescent SMBH will
expand into a gaseous environment constituted mainly by the SMBH
accretion flow, whose gas is supplied by the winds from massive
stars. The density distribution within the flow is therefore set by
both the number and distribution of young stars and the hydrody-
namical properties of a radiatively inefficient accretion regime. This
interplay gives an overall density distribution that is a broken power
law, for which the break occurs where the number density of stellar
wind sources drops off. For the Galactic Centre, this corresponds
to ∼0.4 pc (for example, Quataert 2004).

In such environments, we expect SNRs to evolve differently from
those in the typically flat interstellar medium, away from the SMBH.
The density gradients have the potential to distort SNRs and decel-
erate them significantly. Once the expansion velocity falls below
the SMBH velocity field, the remnant will be tidally sheared and
eventually torn apart. This can substantially shorten an SNR lifetime
compared to that in a constant-density interstellar environment. In
turn, this can reduce the expected number of observed SNRs in
galactic nuclei.

Since quiescent accretion flows are fed by stellar winds, which
can be also partially recycled to form new stars together with the gas
released by supernova explosions, the scenario we consider is of a
self-regulating environment, where young stars and gas (or, in other
words, star formation and accretion on to the SMBH) are intimately
related. This holds until a violent event – for example, a merger
– drives abundant stars and gas from larger scales to the galactic
nucleus. Observations and modelling of our Galactic Centre support
this picture. In particular, winds from massive stars are sufficient
to account for the observed accretion luminosity and external gas
feeding is not required (e.g. Quataert 2004; Cuadra et al. 2006) or
observed. Furthermore, there is strong evidence for the recent star
formation occurring in situ (Paumard et al. 2006).

In this paper, we determine the morphology and X-ray lifetimes
of SNRs, which, in turn, can be used to constrain the environment
of SMBHs. We develop a numerical method to trace SNR evolution
and determine their X-ray lifetime. The influence of the SMBH on
SNRs will be considered first indirectly, through its influence on
the gaseous environment, and then directly, through its tidal shear
of the ejecta.

The paper is organized as follows. Section 2 introduces the
gaseous environments found around quiescent SMBHs. Section 3
uses analytic methods to qualitatively trace SNR evolution. Sec-
tion 4 describes our numerical method, which allows us to follow

the evolution of an SNR in an arbitrary axially symmetric gas dis-
tribution. We then specialize it to a quiescent SMBH environment.
Section 5 outlines the galactic models used for the environments
of the supernova simulations. Section 6 presents our results for
SNR shapes and lifetimes. Our concluding remarks are found in
Section 7.

2 G A S E O U S E N V I RO N M E N T S O F QU I E S C E N T
G A L AC T I C N U C L E I

In this section, we outline the expected gas distributions near the
SMBH in quiescent galactic nuclei. These gas distributions will
be used as the environment for the SNR model exposited in Sec-
tions 3 and 4. We will then proceed to scale the general environment
discussed here for the Galactic Centre to other SMBHs in Section 5.

Quiescent SMBHs are surrounded by RIAFs, which are the envi-
ronments in which the SNR will evolve. RIAFs are relatively thick,
for which the scaleheight, H, is comparable to the radial distance,
R, from the SMBH (H/R ≈ 1). The mechanisms of energy transport
within the flow vary depending on the model, and these variations
affect the power-law gradient in density near the SMBH. Advection-
dominated accretion flow (ADAF) models assume that much of the
energy is contained in the ionic component of a two-temperature
plasma. As the ions are much less efficient radiators than electrons,
energy is advected into the SMBH by the ions before it can be lost
via radiation (Narayan & Yi 1995; Narayan, Yi & Mahadevan 1995).
Additionally, convection-dominated accretion flow (CDAF) mod-
els rely on the transport of energy outwards via convective motions
in the gas (Quataert & Gruzinov 2000; Ball, Narayan & Quataert
2001). Finally, the adiabatic inflow–outflow model (ADIOS; Bland-
ford & Begelman 1999, 2004; Begelman 2012) accounts for winds
from the flow that expel hot gas before it is accreted.

For the region near the SMBH, predicted exponents, ωin, of the
power law in gas density, ρ, lie in the range of ωin = 1/2 to 3/2.
The lower and upper limits of ωin are derived from the predictions
of the CDAF/ADIOS and ADAF models, respectively. A drop-off
in stellar number density at a radius R = Rb from the SMBH would
cause a break in the mass density, ρ, at the same radius, since it is
the winds from these stars that feed the accretion flow.

The best example of an RIAF is that surrounding Sgr A∗. It
has been extensively studied theoretically and observationally and
will constitute our prototype. A density distribution from the one-
dimensional analytic model of wind sources has approximately a
broken power-law shape with ωin = 1 inside the density break
and ωout = 3 outside (Quataert 2004). Simulations of stellar wind
accretion show comparable density profiles (Cuadra et al. 2006).
Furthermore, the value of ωin = 1 is consistent with GRMHD
accretion simulations (for example, McKinney, Tchekhovskoy &
Blandford 2012). Recent observations using long integrations in
X-ray suggest that a gradient of ωin ≈ 1/2 may provide a better fit
to the inner accretion flow of Sgr A∗ (Wang et al. 2013).

We can therefore, generally describe the ambient medium of a
quiescent SOI with a broken power law for the density of the form:

ρ(R) =

⎧⎪⎨
⎪⎩

ρ0

(
R
R0

)−ωin

R ≤ Rb

ρb

(
R
Rb

)−ωout

R > Rb,

(1)

for ωin ∈ {1/2, 1, 3/2}, ωout = 3, using a reference point for the
density at R = R0 away from the SMBH.

The strongest observational constraint on the density around
Sgr A∗ is given by Chandra X-ray measurements at the
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scale of the Bondi radius (R0 ≈ 0.04 pc) of n0 ≈ 130 cm−3

(ρ0 ≈ 2.2 × 10−22 g cm−3; Baganoff et al. 2003). The accretion
rate closer to the SMBH can be further constrained by Faraday
rotation measurements, though the relative error is large (Marrone
et al. 2007). Indeed, we find that fixing the density at 0.04 pc and
varying ωin between 1/2 and 3/2 produces a range of densities at
small radii that fall within the uncertainty in the density inferred
from Faraday rotation. The radius for the break in stellar number
density and gas density in the Milky Way is taken to be Rb = 0.4 pc.

3 EVO L U T I O N O F R E M NA N T S A RO U N D
QU IESCENT BLACK HOLES: A NA LY TIC
F O U N DATI O N S

Here, we outline the physics describing the early stages of SNR
evolution that are of interest in this work. The theory described in
this section will be used as the foundation of a general numerical
method to solve the problem, outlined in Section 4. At this point,
we do not directly take into account the gravitational force of the
SMBH, but instead just the gaseous environment. The gravity of
the SMBH can be ignored when the expansion velocity of the SNR
is much larger than the Keplerian velocity around the SMBH. For
example, around Sgr A∗, at a velocity of 104 km s−1 gravity can
be ignored for radii larger than ∼10−4 pc. The gravitational field
of the SMBH will be accounted for later, when we consider tidal
effects on the expanding remnant, which are important only once
the remnant has slowed down significantly.

A supernova explosion drives a strong shock into the surround-
ing gas at approximately the radial velocity of the ejected debris.
Typically, it is assumed that a significant amount of the ejecta is
contained within a shell just behind the shock front (for example,
Koo & McKee 1990). As it expands, the shock sweeps up further
mass from the surrounding medium. By momentum conservation,
the combined mass of the fraction of ejecta behind the shock front
(Mej) plus the swept-up gas (Ms) must decelerate. The deceleration
is considered to be appreciable when the swept-up mass becomes
comparable to that of the debris, and therefore this ejecta-dominated
phase holds for Ms 	 Mej.

The subsequent adiabatic expansion of the shock front is
modelled with the assumption that losses of energy internal to the
remnant are negligible. For this decelerating regime, the Rankine–
Hugoniot strong-shock jump conditions can yield exact similarity
(length-scale-independent) solutions for the kinematics of the shock
front. The evolution is determined by its energy, E, and the ambient
density, ρ (McKee & Truelove 1995). In all of this work, we use a
canonical value of 1051 erg for the explosion energy. In a uniform
ambient medium, the adiabatic stage is classically modelled us-
ing the spherically symmetric Sedov–Taylor solution (Taylor 1950;
Sedov 1959). This has self-similar forms for the spherical radius
and speed of the SNR of R′ ∝ (E/ρ)1/5t2/5 and v ∝ (E/ρ)1/5t−3/5,
respectively, where R′ is measured from the explosion site.

Following the initial work by Sedov and Taylor, Kompa-
neets (1960) developed a non-linear equation from the jump
conditions that allows self-similar solutions for the shock front
evolution in certain density stratifications. The original work by
Kompaneets considered an atmosphere with exponential stratifica-
tion, but many other solutions have since been obtained (see the
review by Bisnovatyi-Kogan & Silich 1995, as well as Bannikova
et al. 2012 and the references therein). Of particular relevance to the
gas distributions in galactic nuclei, Korycansky (1992) – hereafter,
K92 – showed that, with a specific coordinate transformation, a

Figure 1. Basic geometry of the problem. The supernova occurs at a point
S, a distance R = a away from the SMBH, which is located at the origin, O.
The shock front extends to distances measured radially from the explosion
point S by the coordinate R′. The angle made by a point on the shock,
measured from the θ = 0 axis about the explosion point, is denoted ψ . Each
point on the shock has an initial angle ψ(t → 0) ≡ ψ0. The entire density
distribution ρ(R) can be characterized by: the choice of the inner gradient
ωin (defining the density within the shaded circle), the outer gradient ωout,
the reference density ρ0 (at a reference radius R0), and a break at Rb between
the gradients ωin and ωout.

circular solution to the Kompaneets equation can be obtained for
explosions offset from the origin of a power-law density profile,
R−ω (for ω �= 2).

The early ejecta-dominated and late adiabatic stages are well
characterized by the purely analytic solutions for each stage. In
between, the solution asymptotically transitions between these two
limits (this is known as ‘intermediate-asymptotic’ behaviour; Tru-
elove & McKee 1999).2 The late evolution of the remnant, the ra-
diative stage, occurs when the temperature behind the shock drops
to the point at which there is an appreciable number of bound elec-
trons. Consequently, line cooling becomes effective, the radiative
loss of energy is no longer negligible, and the speed of the shock will
drop at a faster rate. For SNRs in a constant density of n ≈ 1 cm−3,
the radiative phase begins at approximately 3 × 104 yr (Blondin
et al. 1998). We do not model the remnant during this phase, but we
will estimate the onset of the transition to the radiative stage.

In this work, we model SNRs over the first two (ejecta-dominated
and adiabatically expanding) stages of evolution in a range of galac-
tic nuclear environments. The evolution begins with a spherically
expanding shock, and therefore we do not consider any intrinsic
asymmetries in the supernova explosion itself. Collectively, any
possible intrinsic asymmetries in SNRs are not expected to be in a
preferential direction, and so they should not bias the generalized
results presented here.

The overall geometry of this analysis is laid out in Fig. 1, which
indicates the main coordinates, distance scales and density distri-
butions. The explosion point is at a distance R = a, measured from
the SMBH (the origin of our coordinate system). The shock front
extends to radial distances R′, measured from the explosion point.
Each point along the shock is at an angle ψ , measured from the
axis of symmetry about the explosion point. The initial angle made
with the axis of symmetry of each point on the shock, at t → 0, is
denoted ψ0.

2 For an illustration of this transition, see fig. 2 of Truelove & McKee (1999).
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3.1 End of the ejecta-dominated stage

In order to estimate where the shock front kinematics appreciably
deviate from the ejecta-dominated solution, we integrate the back-
ground density field along spherical volume elements swept out
by the expanding remnant. This provides an estimate of the mass
swept up from the environment, Ms. The ejecta-dominated solution
is taken to end when Ms is equal to some specified portion of the
ejecta mass, Mej. We use a canonical value of 1M� for this frac-
tion of ejecta mass. The distance from the explosion point (along
the coordinate R′) at which this occurs is denoted the ‘deceleration
length’, L, here (it also known as the ‘Sedov Length’ in the standard
treatment of SNRs in a uniform ρ).

Since our density profiles are not uniform, different directions of
expanding ejecta will sweep up mass at different rates. In general,
we must consider a solution for L that depends on ψ0, the initial
angle of each surface element of the shock with respect to the axis
of symmetry (see Fig. 1). We therefore determine the value of L(ψ0)
corresponding to small surface elements of the shock front. When
the explosion occurs close to the SMBH, the solution is expected
to converge to that of an integral over a sphere, due to the spherical
symmetry of the background density.3 Therefore, as a reference,
we also find the radius L of the sphere whose volume encloses
Ms ≈ Mej.

The explosion occurs at a distance R = a from the origin. For a
single power-law stratification, we use the explosion point for the
reference density, ρ0 = ρ(a) ≡ ρa, such that

ρ(R) = ρa

(
R

a

)−ω

. (2)

We consider a small surface element of the SNR at an angle ψ0 over
an infinitesimal solid angle. In a single power-law stratification with
the form of equation (2), the length L(ψ0) can be estimated from
the mass integrated through R′ at a given angle ψ0:

ρaa
ω

∫ L(ψ0)

0
R−ωR′ 2 dR′ = Mej. (3)

Note that we are integrating over the coordinate R′ that extends ra-
dially from the explosion point, but that the density varies radially
with the coordinate R as measured from the SMBH. For integrals
over a broken power-law density, the density break adds complica-
tions to the integrals analogous to equation (3). The solutions are
discussed further in Appendix A.

These methods for estimating the deceleration length provide a
means for testing the level of asymmetry and distance scales in the
ejecta-dominated stage of evolution, and will be further discussed
in Section 6.1, where we show results.

3.2 Deceleration in the adiabatic stage

We use the Kompaneets (1960) approximation alongside the co-
ordinate transformation identified by K92 to follow the adiabatic
deceleration of the shock front in a single power-law density pro-
file. The assumptions and main equations of this prescription will
also be used in our full numerical treatment for arbitrary density
profiles (Section 4). We shall give here the analytic solutions for
ω = 1 and 3. These solutions will be used to validate our numerical
treatment (Section 4). They also give an indication of the shock

3 The three-dimensional volume integrals (of an offset sphere) over a singu-
lar density converge for the shallow power laws used here: 1/2 ≤ ωin ≤ 3/2
for ρ ∝ R−ωin .

behaviour in a broken power-law density profile, when it expands
fully interior or fully exterior to the density break.

The Kompaneets approximation involves setting the post-shock4

pressure, P′, to be uniform throughout the shock volume and equal
to (some fraction, λ, of) the mean interior energy density. For an
arbitrary volume V,

P ′ = (γ − 1)λE

V
, (4)

wherein the Kompaneets approximation proper is to take λ to be
constant. The ratio of specific heats is taken to be γ = 5/3 both
internal and external to the shock.

Two additional assumptions in the treatment are that the direc-
tions of the local velocity vectors along the shock front are normal
to the shock front, and that the magnitude of the velocity is deter-
mined by taking the post-shock pressure to be equal to that of the
ram pressure of the environment (ρv2

s , where ρ is the density of the
unshocked gas) at that point (K92):

vs(R, t) =
√(

γ 2 − 1
)
λE

2 ρ(R) V (t)
. (5)

Following the coordinate transformation of K92, the ‘time’ is
parametrized by y (which actually has a dimension of length) via

dy =
√(

γ 2 − 1
)
λE

2ρ0 V (y)
dt, (6)

as well as the dimensionless parameter x = |2 − ω|y/(2a) ≡ y/yc.
The parameter x is, therefore, equal to y scaled with respect to a
critical value yc, which is when the shock either reaches the origin
(ω = 1) or ‘blows out’ to infinity (ω = 3). Therefore, x (like y) can
be considered to represent the ‘time’ in this transformation. The
constant λ ≈ 1 is given by the difference in pressure behind the
shock front relative to the average pressure internal to the remnant,
and in a power-law profile is (Shapiro 1979)

λ = (17 − 4ω) /9

1 − (9 − 2ω)−(17−4ω)/12−3ω
. (7)

In an ambient density with a single power-law form of equation
(2), the K92 transformation gives a self-similar solution to the Kom-
paneets equation (see equations5 10 and 11 of K92) for an explosion
at R = a (see Fig. 1):(

R

a

)2α

− 2

(
R

a

)α

cos (αθ ) − x2 + 1 = 0, (8)

for the polar coordinates R and θ , where α ≡ (2 − ω)/2. This can
be identified as a circular solution for a given x in the two variables
(R/a)α and αθ . Analytic solutions for the volume, time and velocity
in ω = 1 and 3 densities are presented in Appendix B.

The equations describing the shock front can alternatively be
parametrized by ψ0, the initial angle of a point on the shock with
respect to the axis of symmetry. The subsequent equations of motion
for a given ψ0 describe the paths of flowlines in the shock in terms
of the polar coordinates measured from the SMBH (K92):

R = a(1 + 2x cos ψ0 + x2)1/(2α), (9)

θ = 1

|α| arctan

(
x sin ψ0

1 + x cos ψ0

)
. (10)

4 For thermodynamic variables, we use primes (′) to indicate the post-shock
values (the values behind the shock front).
5 Note that there are two sign errors in the exponents of equation 11 in K92.
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This flowline-based treatment is a useful context for the numerical
approach to the shock evolution presented in Section 4.1, and these
equations will be used to compare with the numerical results.

3.3 Intermediate-asymptotic transition

The Kompaneets solution for the velocity diverges for x → 0, given
that the volume V(x) → 0. In this limit, the energy density and,
therefore, also the velocity, tend to infinity. The solution is, however,
not intended to describe the initial evolutionary stage of the remnant.
In order for the numerical treatment to correctly follow the SNR
evolution, we must account for the initial coasting stage. A full
analytic joining of the intermediate-asymptotic solutions between
the ejecta-dominated and adiabatic stages is complex, even for an
ω = 0 ambient medium (see, for example, Truelove & McKee
1999).

As a model for this intermediate behaviour, we employ an ef-
fective density (mass) term to the solution that gives a transition
between the expected solutions. The density of the medium is mod-
ified to

ρeff ≡ ρ(R) + Mej

V
, (11)

where the additional effective term counters the divergent behaviour
of the velocity at small volumes. This has the desired property that
when the volume is large ρ → ρ(R) in the standard Kompaneets
approximation, while at small volumes the second term dominates
to provide the initial coasting phase of the remnant. With this effec-
tive mass term, the SNR leaves the ejecta-dominated phase around
the point at which the mass swept up from the environment is com-
parable to the initial mass behind the shock.

3.4 Transition to the radiative stage

As the shock slows, the late evolution of a typical SNR is marked
by an increase in radiative losses. Although we will not model
this stage, we intend to check the time-scales over which SNRs
will reach this stage in quiescent nuclei (if they survive sufficiently
long).

Typically, cooling functions show a marked increase in thermal
radiation once the gas temperature drops to ∼106 K (for example,
Schure et al. 2009). This occurs due to the formation of a sufficient
number of electrons bound to ions to allow for effective line cooling.
Once regions of gas behind the shock drop to this temperature, the
deceleration of the SNR becomes more pronounced. By calculating
the temperature behind the shock, we can determine the time at
which parts of the remnant begin to cool more effectively.

It is possible to determine the temperature of the shocked gas via
the ideal gas law,

P ′ = kBρ ′T ′

muμ
(12)

(where, again, we denote post-shock values with primes, kB is Boltz-
mann’s constant, mu is the atomic mass unit and μ is the mean
molecular mass), as well as the jump conditions for the (post-shock)
density and pressure,

ρ ′ = ρ
γ + 1

γ − 1
and P ′ = 2ρv2

s

γ + 1
. (13)

For γ = 5/3,

T ′ = 2 (γ − 1) muμ

(γ + 1)2 kB
v2

s = 3 muμ

16 kB
v2

s , (14)

and the post-shock temperature is found to be T′ ≈ 106 K for vs

≈ 300 km s−1. Therefore, if we monitor each point along the shock
for the time at which the velocity drops below this value, we may
estimate the time at which radiative processes become significant.

As the cooling function is also dependent on ρ, for a given tem-
perature the rate of cooling is also expected to be amplified in
regions of post-shock material with higher density. However, by the
time that SNRs are radiative, they have survived the expansion past
the SMBH and entered into the more uniform density beyond the
SOI, such that the ambient density is similar across all points of the
shock. At this stage, the SNRs are reasonably symmetric around the
SMBH and the velocity is similar across all of the shock front, so
that most of the SNR reaches the radiative stage at similar times.
If the SNR survives expansion past the SMBH, this late evolution
is largely uninfluenced by the details of any early interactions near
the SMBH.6

4 EVO L U T I O N O F R E M NA N T S A RO U N D
QU I E S C E N T B L AC K H O L E S : N U M E R I C A L
T R E AT M E N T

Purely analytic solutions for the shock front evolution via the Kom-
paneets equation are not feasible for many density configurations.
Therefore, we developed a numerical method that solves for the
evolution of a shock front using the physical assumptions of the
Kompaneets approximation described in Section 3.

The primary assumptions that must be encompassed by the
method culminate in constraints on the velocity. Namely, the di-
rection of the velocity of any point must be perpendicular to the
shock front, and the magnitude of the velocity must be determined
by the energy density behind the shock and local ambient density
as prescribed in equation (5).

4.1 General prescription

The numerical treatment follows an approach by which the shock is
described by the evolution of flowlines through the background gas.
The flowlines are the paths followed by tracer ‘particles’ (points)
distributed along the shock front, analogous to the analytic treatment
with the ψ0 parameter of equations (9) and (10).

Fig. 2 shows a schematic of the approach. The initial (spherical)
state of the shock is broken down into flowlines characterized by
their angle ψ0. During the evolution, the number of flowlines is
dynamic. To keep a reasonable resolution of the shock front, new
flowlines can be inserted, with mean properties of adjacent flow-
lines, if the distance between two points on the shock is over a
defined threshold. For our simulations, a threshold of the order of
0.05 pc has proven sufficient to describe a smooth shock front evo-
lution on Milky Way-like scales. Flowlines may also be deleted in
regions where parts of the shock front are colliding. The background
gas prescribes the evolution of the shock, but the behaviour of the
post-shock gas is not tracked, and thus the background gas can be
treated as being independent of the shock.

The kinematics of the shock front are determined by the velocity
vectors at each flowline. To determine the magnitude of the velocity,
we use the jump conditions across the shock, and for those we need
the energy density within the shocked volume (which is assumed
to be a constant within this volume) as well as the local mass

6 For a detailed consideration of the radiative transition in power-law media,
see Petruk (2005).
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Figure 2. The basic numerical scheme, as described in Section 4.1. Shaded
boxes show the basic types of objects in the numerical construction. The
choice of the number of flowlines determines the resolution, and only a few
are shown here schematically. The flowlines track local physical properties
of the shock (velocity and ejecta mass fraction). Collectively, they define
the location of the shock front, with global physical properties such as
its energy density, determined by the volume. Along with the environment
(most importantly, the background mass density), the global shock properties
determine the evolution of all the individual flowlines in the subsequent time
step.

density in the environment (see equations 5 and 11).7 This stage
of evolution is adiabatic, and so given an initial explosion energy
we therefore calculate the energy density using the instantaneous
volume enveloped by the shock front.

In an axisymmetric arrangement of gas density and explosion
point, calculation of the volume is simplified by the geometrical
symmetry; it is determined by a solid of rotation of the area of a
two-dimensional slice about this axis. Any arbitrary ordered set of
points (xi, yi) can specify the location of the shock front. Given these
two-dimensional coordinates, the volume, by the second theorem
of Pappus, is equal to the product of the area of the non-intersecting
polygon defined by these coordinates and the distance travelled
by its centroid under rotation about the symmetry axis (Kern &
Bland 1948). Using the fact that the components of the centroid,
C = (Cx, Cy), of a polygon are given by

Cξ = 1

6A

n−1∑
i=1

(ξi + ξi+1) (xiyi+1 − xi+1yi) (15)

for ξ ∈ {x, y}, the volume of the SNR can be determined from

V = π

3

n−1∑
i=1

(yi + yi+1) (xiyi+1 − xi+1yi). (16)

With the magnitude of the velocity known, each point on the
shock evolves by determining the unit vector for the velocity that
is perpendicular to its neighbouring points. The position is then
linearly translated over a small time step using the velocity vector.

We assign an ejecta mass element to each flowline. Fig. 3 shows
a schematic of this implementation. Due to rotational symmetry,

7 For simplicity, the ratio λ ≈ 1 of the post-shock pressure to mean interior
energy density is set to be exactly unity in equation (5). As the shock velocity
is proportional to

√
λ, the effect of this is small compared to other limitations

inherent in the Kompaneets approximation discussed in Section 4.3.

Figure 3. A schematic of the initial, spherical state of the SNR, with initial
positions for the flowlines (filled circles) around the point of explosion
(open circle labelled ‘SN’). Flowlines in the positive-y portion of the x–y
plane define a three-dimensional shock front by rotation about the axis of
symmetry. Rotating each flowline about this axis produces a ring (shown
for the ith flowline as a thick line). The mid-points between the ith flowline
and its neighbours define the limits of the zone of the sphere assigned to
that flowline (thin lines). For a sphere of radius R′, the area of this zone is
proportional to the height of the zone, h, since its surface area is 2πR′h. The
fraction of total ejecta mass assigned to the flowline is then the ratio of this
area to the total area of the sphere.

each point on the shock at t → 0 represents a ring segment of the
SNR in three dimensions. We assign a thickness to each of these
ring segments based on the spacing between the flowlines in the
initial spherical state. The fraction of ejecta mass represented by
the flowline is then the ratio of the area of this zone of the sphere to
the total surface area of the sphere.

Due to asymmetry in the background density and the presence
of a strong density contrast near the origin, segments of the shock
may collide with one another. This shock front self-interaction can
lead to collisions in which kinetic energy is converted into inter-
nal energy. Since it cannot be easily radiated away, we expect a
transient acceleration outward of the heated gas, after which the
fluid will return to the dynamics imposed by the global expansion.
The numerical treatment of these self-interactions is outlined in
Appendix C. This treatment results in the deletion of some flow-
lines, accounting for the modification of the flow in this region.

4.2 Comparison with analytic solutions for single power-law
profiles

Fig. 4 shows the morphology of an SNR, running into a circum-
SMBH environment with density power-law gradient ω = 1
(left-hand panel) and ω = 3 (right-hand panel). There, we compare
the analytic prescription described in Section 3.2 and Appendix B
with our numerical method. The numerical solutions are found to
match the analytic form very well. There is very slight deviation be-
tween the two methods, more noticeably in the ω = 3 case, which is
due to the fact that the numerical method requires a small spherical
initial step. The analytic solution is closer to a sphere at small times
in the ω = 1 solution so there is almost no discernible discrepancy.

Fig. 5 shows a comparison between our numerical (solid lines)
and the analytic (dashed lines, arbitrary scaling) results in a broken
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Figure 4. Numerical results (blue) compared with analytic solutions (red, dashed) for the locations of the shock front in density profiles with ω = 1 (left-hand
panel) and ω = 3 (right-hand panel). The initial (spherical) state for the numerical solutions is shown in green. Units are given as ratios of distance (Rx, Ry) to
explosion distance a from the density singularity at (0,0) (the SMBH in our model). The results can be written in parametric form in terms of x, which increases
with time t up to a critical value of x = 1; see Section 3.2 as well as the expressions for t(x) in Appendix B. The solutions for ω = 1 are found up to x = 1,
while for ω = 3 they are given up to x = 0.8 due to the divergence of solutions as x → 1 in this latter case. The trailing part of the shock (the part directly
towards the SMBH) for ω = 1 solution reaches Rx/a = 0 at x = 1, while leading point (directly away from the SMBH) reaches Rx/a = 4. The trailing part of
the ω = 3 solution asymptotically approaches a distance of Rx/a = 1/4 as x → 1, while in the same limit the leading part of the shock follows Rx/a → ∞.

Figure 5. Example of radius and velocity evolution for a remnant in a broken power-law medium (solid lines). The explosion occurs at 3 pc (near the density
break between ωin = 1 and ωout = 3) around a 5 × 108M� SMBH using the scaling described in Section 5. Solid lines are plotted from snapshots of the
evolution of the remnant in the numerical treatment, where blue (lowermost) curves are for the trailing flowline (towards the SMBH) and red (uppermost)
curves are for the leading one (away from the SMBH). The green curve shows the behaviour of a flowline in the numerical treatment that emerges at 90◦ from
the θ = 0 axis (ψ0 = π/2). Some analytic results (with arbitrary scaling) are given as dashed lines for comparison. Black is the form of the Sedov–Taylor
(uniform medium, ω = 0) solutions. The red dashed curve shows the solution for the point on the shock travelling directly away from the SMBH for a shock in
a purely ω = 3 medium. The blue dashed curve shows the solution for the point on the shock travelling directly towards the SMBH in a purely ω = 1 medium.

power-law medium with ωin = 1 and ωout = 3. This figure shows
the distance and velocity evolution of selected sample points on
the shock front. We follow the portion of the shock that propagates
towards the SMBH (blue lines), away from the SMBH (red lines)
and at an initial angle of ψ0 = π/2 (green line). The numerical
radius and velocity are seen to transition from the coasting (radius
R′ ∝ t, velocity v = const.) phase to forms similar to those seen in
the pure Kompaneets solutions.

As expected, the evolution of the trailing part of the shock, as
it gets closer to the SMBH, approaches the analytic solution for
a pure ω = 1 medium. Likewise, the leading part of the shock
asymptotes to the pure ω = 3 analytic solution, as it expands away
from the SMBH. The green line shows how the evolution of a

flowline that emerges at 90◦ from the θ = 0 axis has, instead, an
intermediate behaviour, which is influenced by the overall broken
power-law density. The figure also shows for reference the Sedov–
Taylor solution (black dashed line, Taylor 1950; Sedov 1959) for an
explosion in a uniform ambient medium (R′ ∝ t2/5 and v ∝ t−3/5).

4.3 Caveats and limitations of the model

For more complex background density configurations, such as one
with many large density contrasts that trigger self-interactions and
turbulence, one may consider a treatment of self-interacting shocks
that is more in-depth and sophisticated than that presented in
Appendix C. The increase in velocity of any small self-intersecting
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region is expected to be a brief transient phenomenon; therefore,
we do not presently apply any boost in velocity when merging
flowlines, instead only accounting for the net direction of the flow
that results from two colliding parts of the shock. The reason is
that, in all our simulations, the portion of the shock front which
undertakes self-interaction is limited, and therefore the treatment of
these regions have a small effect on the overall volume evolution.
Obviously, if one considers a more complex geometry where self-
interaction dominates the evolving volume, full hydrodynamical
simulations are the only reliable tool of investigation.

The Kompaneets approximation itself has some drawbacks, in
that it generally predicts too large a velocity, and therefore size,
for the shock once it accelerates (Koo & McKee 1990; Matzner &
McKee 1999). In the context of the present problem, this is more
pronounced in the outer density region with a steeper, R−3, gradient.
If much of the shock is in the R−3 region, the overestimation of
velocities and sizes will therefore be greater.

5 G A L AC T I C N U C L E I M O D E L

In our quiescent SOIs, with no appreciable inflow of gaseous mate-
rial from further out, the gas density distribution is that of an RIAF.
The distribution of early-type stars (the only population of interest
here) is dictated only by local and current conditions, not bearing
imprints of the long term history of the assembly of the nucleus.
These facts will allow us to rescale features of our Galactic Centre
(observationally constrained because of its proximity) to quiescent
nuclei with different SMBH masses.

5.1 Characteristic radii

We consider supernovae explosions within the SOI of an SMBH.
Their fate can be influenced by both the SMBH gravity and its
gaseous environment. Correspondingly, there are characteristic radii
in the nucleus associated with these properties. The first is that of
the SOI: the range out to which the gravity of the SMBH dominates
over that of the gravitational potential of the bulge. Following the
definition of Peebles (1972), we use

RSOI ≡ GM•
σ 2

, (17)

for a black hole of mass M•, where σ is the velocity dispersion of
stars about the SMBH. We use this parameter not only to define the
outer edge for the range of explosion distances considered, but also
to rescale Milky Way properties to galactic nuclei with different
M•. To obtain an expression for the SOI which depends only on M•,
we use the well-known (‘M•–σ ’) relation between black hole mass
and velocity dispersion (Ferrarese & Merritt 2000; Gebhardt et al.
2000). Using the observationally determined Gebhardt et al. (2000)
result,8 M• = 1.2 × 108(σ/(200 km s−1))15/4M�, we obtain

RSOI ≈ 3

(
M•

4.3 × 106M�

)7/15

pc, (18)

8 Recent studies imply that the M•–σ relation is steeper than this, and σ may
have an exponent closer to 5 (for example, Morabito & Dai 2012). Although
there is still some ambiguity in the value of this exponent, we tested the
effect of a very steep relationship M• = 1.2 × 108(σ/(200 km s−1))5.3M�
motivated by Morabito & Dai (2012). Even with this large exponent, we
find that our main results, the time-scales in Section 6.3, are generally
only increased by a factor of 2 (while the scaling of radii by the spheres of
influence also increases by at most a factor of 2). As the overall consequence
is small, we do not present additional results for a steeper M•–σ relation in
this work.

where here, and hereafter, we rescale equations for the Galactic
Centre black hole mass. For what follows, a useful parameter to
rescale the Milky Way properties is the ratio ζ ∝ M7/15

• , between
the RSOI of a generic M• and that of Sgr A∗.

The closer a supernova explodes to the SMBH, the stronger the
tidal forces, which may become high enough to disturb and even-
tually disrupt the remnant in a dynamical time. This happens when
the velocity of the shock front becomes comparable to the Keple-
rian velocity, vK, associated with the SMBH gravity field. We do
not model distortions due to tidal effects but we account for the
tidal disruption of the remnant when we quantify its ‘lifetime’ (see
Section 6.3). To this end, we test for whether vs < vK to detect
parts of the shock that have decelerated enough to be sheared by the
SMBH. We therefore introduce another characteristic radius – the
innermost radius for the existence of SNRs, Rsh, which is limited by
SMBH shearing. This minimal shearing radius is the point at which
vK is comparable to the initial SNR ejecta velocity, vinit:

Rsh ≡ GM•
v2

init

= 1.9 × 10−4

(
M•

4.3 × 106M�

)(
vinit

104 km s−1

)−2

pc

= 900

(
vinit

104 km s−1

)−2

Rg, (19)

where Rg is the gravitational radius of the SMBH.
Supernovae that occur within Rsh are completely sheared, as the

velocity of the ejecta in all directions is less than the Keplerian ve-
locity around the SMBH. Note, however, that SNRs can be sheared
also at larger radii as the ejecta slows down, and may reach the
local Keplerian velocity at a radius larger than Rsh. Comparing the
shock velocity to the Keplerian velocity is effectively equivalent to
comparing the ram pressure with the ambient baryonic pressure,
Pgas, since vK ≈ cs ∝√Pgas/ρ (where cs is the sound speed in the
external medium). Additionally, we note that for the same reason
we can ignore the shearing of remnants during the initial explosion
for a > Rsh, we can also neglect the (Keplerian) orbital motion of
the progenitor stars.

Finally, for the gas models, the reference radius for the density,
R0, and the location of the break in the gas density power law Rb (as
explained in Fig. 1) are scaled in our model by the SOI, such that
R0 ≡ ζR0, MW and Rb ≡ ζRb, MW.

5.2 Gas models

As mentioned previously, we expect that quiescent SMBHs are
surrounded by RIAFs, similar to that which is suggested in the
Galactic Centre. This implies that all flows have similar density
gradients, which is set by the physical processes which characterize
this accretion regime. Additionally, their accretion rate must be
modest and, in particular, lower than the critical value for advection-
dominated accretion of Ṁcrit = α2ṀEdd, or

Ṁcrit = 9 × 10−3

(
M•

4.3 × 106M�

)
M� yr−1, (20)

where ṀEdd is the Eddington rate, α = 0.3 (Narayan & Yi 1995) and
we assume a 10 per cent radiation efficiency for ṀEdd. At a reference
distance of R0, MW ≈ 0.04 pc, the accretion rate is estimated from
observations and simulations to be around Ṁ ≈ 10−5 M� yr−1

(Cuadra et al. 2006; Yuan 2007). Therefore, Sgr A∗ is accreting
at ∼10−3 of its critical rate.

MNRAS 447, 3096–3114 (2015)

 at L
eiden U

niversity on N
ovem

ber 28, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3104 A. Rimoldi et al.

We extend properties of the Sgr A∗ accretion flow to other qui-
escent nuclei as follows. The primary material for accretion in qui-
escent nuclei originates from the winds from massive stars in the
SOI. Since the total mass of stars in the SOI scales with M•, then
so too will the number of massive stars and, therefore, the accreted
mass: Ṁ ∝ M•. As above, Ṁcrit ∝ M•, as well, and therefore the
ratio Ṁ/Ṁcrit is constant over M•. In other words, for our physically
motivated picture of quiescent nuclei, the SMBH is accreting at the
same fraction of Eddington as Sgr A∗ (Ṁ ≈ 10−5ṀEdd).9

Given this accretion rate of Ṁ/Ṁcrit ≈ 10−3, we can estimate the
density at R0 for nuclei with a different M•. To do so, we use the
continuity equation for the flow,

Ṁ ≈ 4πR2
0 ρ(R0) vK(R0), (21)

where the scaleheight H ≈ R and the radial velocity vR ≈ vK.
The reference density for our general galactic nuclei models is

therefore

n0 = n(R0) ≈ 130

(
M•

4.3 × 106M�

)1/2

ζ−3/2 cm−3. (22)

An example of our density model for M• = 107M� and three
different inner gradients is given in Fig. 6, where the effect on the
density profiles of fixing the scaling reference point at R0 is evident.

5.3 Massive star distributions

Given a physical number density n∗(R) of stars at a distance R
from the centre of mass, the projection on to the celestial sphere
gives, as a function of the projected radius Rpr, a surface density of
stars �∗(Rpr). Observationally, the latter quantity is typically given.
Assuming a spherically symmetric spatial distribution, it is possible
to reverse the projection to infer the spherical number density,

n∗(R) = −1

π

∫ ∞

R

d�∗
(
Rpr

)
dRpr

dRpr√
R2

pr − R2
, (23)

provided that the physical number density n∗(R) falls off at large R
at a rate greater than R−1. For power-law distributions, this gives
a correspondence of the observed radial dependence, R−�

pr , to the
physical dependence, R−γ , via the relationship γ ∼ � + 1.

For the Milky Way, there is evidence for two different power-law
distributions in the old and young stellar populations of the Galactic
Centre. A particular curiosity is an apparent depletion of late-type
(K, M) giants in the inner 0.5 pc (Do et al. 2009). This leads to a
much shallower (possibly inverted) inner power-law for the late-
type distribution compared to that of the early-type (O, B) stars.
Recent analyses estimate the radial dependence of the early-type
stars in the Milky Way nuclear star cluster to be approximately R−1

pr

inside the power-law break and R−3.5
pr outside (Buchholz, Schödel

& Eckart 2009; Do et al. 2013b), corresponding to values of γ of 2
and 4.5, respectively.

In the nuclei of different galaxy types, variations in the stellar
distributions for longer lived stars are possible due to differing nu-
clear assembly histories. However, in our picture of a self-regulating
SOI, the young star distributions are taken to be the same across the

9 It is possible for SMBHs to be accreting at different fractions Ṁ/Ṁcrit < 1
and still be termed ‘quiescent’ in the conventional sense. However, the
accretion rate given here is the most physically motivated value based on
scaling of quantities by M•, and deviations from this value are beyond the
scope of this work.

Figure 6. Example of a gas density model used for a galaxy with a 107M�
SMBH, showing the number density, n, as a function of radius R from the
SMBH. The red (shallowest) line corresponds to an inner gradient with
ωin = 1/2, the green to ωin = 1 and the blue (steepest) to ωin = 3/2.
All models have a gradient outside the break of ωout = 3. The density is
scaled using a reference point R0, seen as the point of convergence of all the
inner density gradients (in this case, R0 = 0.06 pc). A break in the density
distribution is located at a constant R = Rb for all choices of the density
gradient (in this case, Rb = 0.6 pc). The left-hand and right-hand limits of
the horizontal axis are determined by the shearing radius (equation 19) and
SOI (equation 17), respectively.

range of M•, where the most recent star formation in this region is
indifferent to the history of the nucleus. Therefore, for our galactic
nuclei model, we use the same values for γ as those given above for
the early-type stars around Sgr A∗. As before, we scale the break
in the stellar number density by the SOI of the SMBH, which defines
the transition radius between the two values of γ .

6 R ESULTS

We proceed to describe our main results, based on the method out-
lined in the previous sections. In Section 6.1, we examine the effect
of black hole mass and gas density profile on the deceleration length
using the prescriptions of Section 3.1. Then, using the numerical
method of Section 4, the overall SNR morphology is presented in
Section 6.2. Finally, in Section 6.3, we investigate the X-ray emit-
ting lifetimes based on shearing of the SNR ejecta by the SMBH. We
then use this last result to predict the mean SNR lifetimes expected
within the SMBH spheres of influence for different M•.

6.1 Deceleration lengths

The SNR begins to appreciably decelerate once the swept up mass
becomes comparable to the ejecta mass. This end of the ejecta-
dominated stage can be characterized by a deceleration length
from the explosion point, L, determined by the density integrals of
Section 3.1, which varies with direction. This deceleration length
depends on the gas density and on the radial density profile.
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Fate of SNRs near SMBHs 3105

Figure 7. Deceleration lengths, L, as a function of explosion distance from the SMBH, a, for a Milky Way model (M• = 4.3 × 106M�) with density scalings
of the canonical density 130 cm−3 of 1, 3 and 30 times (left to right). Red lines show the ωin = 1/2 model and green lines show the ωin = 1 model. The
solid curves are the average deceleration lengths derived by integrating the mass over a sphere, as discussed in Section 3.1. The dotted and dashed curves are
integrals away from and towards the origin, respectively. The shearing radius (2 × 10−4 pc) and the SOI for Sgr A∗ are marked by Rsh and RSOI, respectively.
The vertical dotted black line is the location of the break in density, outside of which ωout = 3. The diagonal dashed black line shows L = a, which represents
the distance to the SMBH. The blue dot–dashed line shows the pericentre distance of the star S2. The curves for ωin = 1 are not plotted in the left-hand panel
since most of the points lie outside of the SOI axis bounds.

These depend respectively on the SMBH accretion rate and ac-
cretion mode (for example, CDAF versus ADAF).

Considering the values of L in various environments, we obtain an
indication of the length- and time-scales over which SNRs will end
their ejecta-dominated stage and start decelerating. As a reference
for the crossing time-scale of a nucleus, recall that an SNR that
does not appreciably decelerate from its initial ∼104 km s−1 would
reach a radius of 1 pc in approximately 100 yr. An investigation of L
in different directions indicates which SNRs will decelerate within
this time-scale. It also provides a test for the level of asymmetry
of the SNR during this stage of evolution. We will later proceed to
model SNRs through the decelerating stage.

Figs 7 and 8 depict two curves describing the deceleration length,
L, approximately towards and away from the SMBH. The angle
ψ0 approximately towards the SMBH is taken to be 10−3π, such
that the integrated path through the density runs very close to the
SMBH, but does not pass though the singularity at the origin. The
difference between these two curves provides a measure of the
asymmetry of the remnant at the end of the ejecta-dominated stage.
For comparison, in Fig. 7, a third curve (solid line) is shown that
describes an average deceleration length derived by an integral over
a sphere.

We first consider a model of the background gas in the Milky Way.
Fig. 7 shows L for three different density values: the observationally
motivated ‘canonical’ density ρ0 = ρc (in number density, nc ≈
130 cm−3, left-hand panel), and 3 (central panel) and 30 (right-hand
panel) times that value. We consider values other than the canonical
density, as, even in quiescent nuclei such as the Galactic Centre,
there is the possibility for variation in the overall density of the
accretion flow. For example, denser accretion flows can result from
sudden accretion episodes from tidally disrupted stars or clouds,10

10 A recent example around Sgr A∗ is the object G2 (for example, Burkert
et al. 2012); though, if a cloud, its mass is too small to have a significant
impact on the overall density.

or they can be associated with more intense star formation activity
in the nucleus. Scaling the density also shows the effect of under-
or misestimating the gas density from the X-ray emission.

As expected with increasing density, there is an overall trend
towards lower values of L/a. There is also a trend towards more
symmetric remnants with increasing density, since in general the
ratio L/a is reduced for higher densities.

The investigation of different density profiles (see Fig. 6) leads
us to conclude that CDAF/ADIOS model, preferred by Galactic
Centre observations (Wang et al. 2013), gives, quite generally,
shorter deceleration lengths (red lines in Figs 6 and 7). The flat-
ter CDAF/ADIOS profile (smaller ωin) is denser in most of the SOI
of the black hole, therefore reducing L/a.

For the canonical value of density in the Milky Way (left-hand
panel of Fig. 7), the deceleration lengths are L � 1 pc. Considering
the CDAF model, we remark that, for the canonical density, the
majority of the SNRs would decelerate beyond the SMBH location.
Ejecta from a star such as S2 (marked with a blue dot–dashed line
in Fig. 7) is expected to evolve more symmetrically than that from
a star further out, in the stellar disc(s) (∼Rb). Already with a factor
of few enhancement in density, SNRs in and beyond the stellar disc
would decelerate appreciably before they reach Sgr A∗ (see central
panel).

Fig. 8 shows deceleration lengths for each of ωin ∈ {1/2, 1, 3/2}
for galactic nuclei with SMBH masses of 107 M� (red), 108 M�
(green) and 109 M� (blue). Hereafter, we scale the explosion dis-
tance by the location of the break in gas density, Rb, as it is the value
of a at which a change in behaviour of SNRs is expected. Accretion
rates (and thus gas density normalization) and characteristic radii
are rescaled as explained in Section 5, and all increase with black
hole mass.

For M• � 108 M�, the density is low enough and Rsh is small
enough that for small values of a the SNR can expand over the
SMBH before appreciably decelerating. The centre of such a shock
front is close to being aligned with the centre of symmetry of
the gas distribution, which leads to a more symmetric evolution.
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Figure 8. Deceleration lengths, L, as a function of the ratio of the explosion distance, a, to the break in gas density, Rb. Each set of axes is to the same scale,
and corresponds to a different gradient near the SMBH: ωin = 1/2 (top left), ωin = 1 (top right) and ωin = 3/2 (bottom). As indicated in the top-left panel, red
corresponds to the gaseous environment of an SMBH of 107 M�, green to 108 M� and blue to 109 M�. Two curves are shown for each M• (each colour);
the higher curve shows L for the direction away from the SMBH, and the lower curve shows L towards the SMBH. The dashed coloured lines correspond
to Rsh for each value of M•. The dotted black line shows the break in gas density at Rb, while the solid black line shows the extent of the SOI (which is the
same multiple of Rb for all M•). Unlike in Fig. 7, we also show results for a standard ADAF model (ωin = 3/2; bottom panel), since these density profiles can
produce L values that fall within RSOI.

This is seen in the fact that all L values converge at small a. However,
by M• � 109 M�, the gas density is high enough and Rsh extends far
enough from the SMBH that explosions near the SMBH cannot pass
over the singularity before being sheared, and this more symmetric
expansion regime beyond the SMBH at small a is no longer present.

In general, with increasing overall density (around more massive
black holes), we find the same trend observed for the Milky Way

with denser gaseous environments: the ratio of L/a decreases, as
does the maximum possible asymmetry (differences between upper
and lower curves). On the other hand, increasing ωin also tends to
create greater asymmetries in the SNRs, as can be appreciated by
comparing the three panels of Fig. 8. For higher ωin, the ratio L/a
is higher in the direction away from the SMBH as a result of the
density being lower at any point further than R0, but it is lower
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Figure 9. Morphological evolution for two explosion distances for the Milky Way, inside (left) and outside (right) Rb. The explosion distance in the left-hand
panel is a = 0.24 pc, and in the right-hand panel, a = 1.0 pc. The black hole is marked with a black point at the origin and the supernova occurs at the green
star. The break in density at Rb is shown as a thick blue circle. Snapshots of the shock front at different times are in solid black, and dashed lines show sample
flowline paths. Flowlines flagged as having reached the shearing condition discussed in Section 6.3 (vSNR < vK) are shown as red points. Some example
snapshot times are indicated next to corresponding dot–dashed magenta lines. In the left-hand panel, the initial snapshot shown is at 13 yr and the final at
620 yr; in the right-hand panel, the initial snapshot is at 13 yr and the final at 1100 yr. The spacing between snapshots is an equal multiple of the (variable)
time step used. In the left-hand panel, the initial snapshot spacing is 16 yr, and the final spacing is 84 yr; in the right-hand panel, the initial snapshot spacing
is 16 yr, and the final spacing is 120 yr. In both cases, the remnants expand well beyond the window shown, until they reach the radiative stage as discussed in
Section 6.3.1.

towards the SMBH as the SNR sweeps through a steeper density
gradient near the origin.

6.2 Morphological evolution

We turn now, using the numerical treatment of Section 4, to the
subsequent adiabatically decelerating evolution of the remnant. We
consider explosions both inside and outside the density break, Rb.
The explosion distances are chosen such that, across all M•, the same
a/Rb ratio is maintained for the examples inside Rb (a/Rb = 0.6)
and outside Rb (a/Rb = 2.5); this will also be useful for comparison
with the time-scale plots of Fig. 11.

Fig. 9 depicts the morphology for two explosion distances in the
Milky Way environment. The explosion inside the density break
does not decelerate before reaching the SMBH (as expected from
Fig. 7, where L > a). Therefore, it passes over the SMBH without
any significant distortion. The SNR subsequently expands into the
lower density region almost spherically, with the centre of the SNR
being very near the SMBH. For the explosion outside the break in
density, the trailing part of the shock decelerates before reaching
the SMBH, while at the same time the parts expanding through the
ω = 3 region wrap around the SMBH and eventually self-interact.
SNRs such as this, which explode far enough from the SMBH
that L < a, show significant asymmetries during their evolution.
Fig. 10 shows examples of the variation in morphology of the rem-
nant arising from differences in the black hole mass (and therefore
the gas density). The values of M• are the same as those used in
Fig. 8 for the deceleration lengths; the black hole mass increases
from top to bottom. The data shown in Fig. 10 are summarized in
Table 1.

It is evident that, in many cases, much of the mass of the remnant
remains near the SMBH due to the focusing effect of the density
gradient on the flowlines. Therefore, unlike expansion away from
the SMBH, where the mass behind the shock is more tenuous due
to the rapid shock expansion, the ejecta material near the SMBH is
expected to be more concentrated.

In addition to the symmetries in L found in Section 6.1, explosions
closer to a lower mass SMBH (M• � 108 M�) are also found to be
more symmetric during their adiabatic evolution compared to those
further from the SMBH (compare panel ‘a’ of Fig. 10 to panel ‘b’).
SNRs near lower M• expand over the SMBH largely unimpeded,
and their centres are closely aligned with the centre of symmetry of
the gas distribution when they enter the adiabatic phase.

Remnants around higher mass SMBHs (M• � 109 M�) are more
symmetric for the whole duration of their adiabatic lifetimes. The
overall increase in density causes the scale of the remnant to be
small (relative to the scale of the background gas distribution), and
so, within the lifetime of the remnant, significant asymmetries have
not yet developed. Indeed, by looking at the overall remnant size
with respect to M•, there is a clear trend towards decreasing remnant
size with increasing M• during this phase of evolution.

6.3 Adiabatic SNR lifetimes

During the adiabatic phase, the SNR can be observed as a hot, X-ray
emitting object. The hard X-rays can penetrate the obscuring matter
in galactic nuclei and allow us to detect the SNR. In particular, in
quiescent nuclei, the SMBH light may not prevent the SNR detection
in X-rays. We will refer to this temporal window during which the
SNR can be observed in X-rays as the ejecta ‘adiabatic lifetime’
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3108 A. Rimoldi et al.

Figure 10. Example remnant morphologies for three black hole masses in an ωin = 1/2 density for explosions at two a/Rb ratios (also indicated as dotted
lines on Fig. 11). All axes are in units of parsecs. The top row (panels ‘a’ and ‘b’) shows M• of 107M�, the middle (‘c’ and ‘d’) 108M� and the bottom (‘e’
and ‘f’) 109M�. Specific details of the parameters in each panel are given in Table 1. All markers, line styles and colours are as for Fig. 9. Snapshots are
plotted up until the end of the life of the remnant discussed in Section 6.3 (if found).
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Fate of SNRs near SMBHs 3109

Table 1. Parameters used for the plots of Fig. 10, where M• is the mass of
the SMBH and a is the distance of the explosion point from the SMBH. The
snapshots that are plotted are at fixed multiples of the time step, although
the time step is dynamic and increases with the size of the remnant. The
first curve that is plotted is at a time tinit, and the difference between the
first two snapshots is given in �tinit. The difference between the final two
snapshots is given in �tfinal, and the last curve that is plotted is at a time
tfinal. Additional examples of snapshot times are shown on Fig. 10 with
corresponding magenta dot–dashed curves. Note that the values of �t are
not the time step used by the numerical treatment, which is much smaller.
†: simulation ran until 104 yr, stopping due to the radiative onset threshold
discussed in Section 6.3, but the last curve shown within these axis limits is
at the stated time.

Panel M• (M�) a (pc) tinit (yr) �tinit (yr) �tfinal (yr) tfinal (yr)

a 1 × 107 0.28 14 23 160 1200 †
b 1 × 107 1.2 28 32 1000 3300 †
c 1 × 108 0.83 19 91 760 4300
d 1 × 108 3.5 24 58 580 5100
e 1 × 109 2.4 16 40 210 1000
f 1 × 109 10 70 170 900 4300

or simply its ‘lifetime’, because once the ejecta become radiative it
cools rapidly and its X-ray emission ceases.

As previously mentioned, in a general environment, the adiabatic
phase ends when the expansion has caused the internal temperature
to decrease enough for radiative losses to become dynamically im-
portant. In the SOI, however, the tidal field can tear apart the ejecta
well before the end of its radiative phase. In this case, the ejecta
is dispersed and may not be immediately identified as such, at any
wavelengths.

So far, we have been evolving the shock expansion without di-
rectly considering the gravitational field of the SMBH, but only
considering its indirect influence in shaping the gas density pro-
files. This is a very good approximation as long as the internal
pressure forces are significantly larger than the SMBH tidal forces.
From momentum conservation, this means that we can ignore the
SMBH gravitational field whenever the shock front is faster than the
local Keplerian velocity, vK. When, however, vs < vK, the dynamics
of the shock front is dictated by gravity. As different adjacent parts
move at different speeds ∼vK ∝ R−1/2, the SNR is sheared in a
dynamical time.

If the overall density is large enough, the swept up mass causes
the shock front to decelerate before being sheared. As shown in
Sections 6.1 and 6.2, most of the ejected mass is focused close to
the SMBH (see Fig. 10), in regions of high Keplerian velocities,
where this is more likely to occur. This effect is more prominent in
the surrounding of more massive black holes.

Practically, we consider that the SNR has ended its life when
half of the original ejecta mass satisfies the condition vs < vK.
A fraction of the ejecta mass is assigned to each flowline (as
per Section 4.1), and we monitor the total proportion of sheared
mass Msh to determine this time. The sheared portions of the rem-
nants are marked with red points over the flowlines in Fig. 10.
Fig. 11 describes the variation in lifetime for different explosion
distances and M•. For models with M• � 107M�, no SNR within
the SOI ends its lifetime by shearing within the 104 yr shown on
the plot.

There is a clear trend in the behaviour of the remnant lifetimes as
a increases. The lifetimes for SNRs exploding within Rsh vanish, by
the definition of the shearing radius. Just outside Rsh the lifetimes

are short but they increase rapidly with a. This is because, at small
a, the SNR expands at vinit ≈ 104 km s−1 for the time that it is
near the SMBH. Therefore, the amount of sheared ejecta is directly
proportional to the fraction of the surface area of the SNR that enters
the sphere of radius Rsh around the SMBH. This quickly decreases
as a increases, causing the rapid increase in lifetime.

For M• � 108 M�, there is a sudden jump to very long lifetimes
at distances slightly larger than Rsh (in fact, within a range of small
a, the Msh ≥ Mej/2 condition is never met before the radiative stage
sets in). Explosions at small a expand over the SMBH without any
significant disruption due to their high initial velocity. They then
almost entirely travel ‘downhill’ in density, and so ≥50 per cent
of the remnant is never sufficiently decelerated by travelling into a
sufficiently high density.11

Further increasing a, the lifetime then drops significantly. This
can be attributed to the aforementioned focusing of ejecta towards
the SMBH (as seen in Fig. 10). Since the shock decelerates sig-
nificantly in these same regions, a drop in the lifetime is seen,
particularly near the break in gas density, Rb, in Fig. 11. For lower
mass SMBHs like Sgr A∗ (M• � 107 M�), although 50 per cent of
the SNR is not found to be sheared, parts of SNRs at this region of a
may be decelerated enough before reaching the SMBH that at least
a small fraction (� 20 per cent) of the remnant is sheared. At large
a values, much of the SNR spreads out to distances further from
the SMBH before appreciably decelerating. Here, a combination of
lower vK and less deceleration of the shock conspire to lengthen the
time taken to reach the shearing condition.

Inspection of the left-middle panel of Fig. 10 shows an interme-
diate behaviour around M• ≈ 108 M�. In this case, for explosions
near the SMBH, the SNR can first pass beyond the SMBH and then
become significantly sheared. However, once the SMBH mass is
high enough (M• � 5 × 108 M�), the higher densities and larger
vK mean that it is impossible to have large lifetimes for small a,
as remnants are always significantly sheared before they expand
far from the SMBH. As seen in Sections 6.1 and 6.2, they there-
fore never enter the more symmetric, ‘downhill’ expansion regime
seen for lower values of M•. Therefore, around these higher mass
SMBHs, the lifetime is generally ∼103 yr or less in the entire inner
density region.

We note that the most likely distances for core-collapse super-
novae to occur are at or within Rb, as the density of massive stars
falls much more steeply beyond this radius (see Section 6.3.2). The
SNR lifetimes are shortest in this region (see Fig. 11). For more
massive SMBHs, the lifetime is also reduced significantly over the
whole inner region.

Before concluding this section, we note that the tidal shearing
of an SNR might have a significant observational signature. One
can expect that the sheared ejecta will be largely accreted by the
SMBH. This will temporarily enhance the accretion rate, leading to
a period of about 100 years in which a few solar masses are accreted
by the black hole. This is a very large accretion rate that may lead
to a flaring of the SMBH, reaching luminosities comparable to the
Eddington luminosity over this period.

6.3.1 The radiative transition

As we are interested in the hot, X-ray stage of evolution, we test
for the onset of increased radiative losses in the remnant. This

11 The amount of deceleration in such cases may be underpredicted by the
Kompaneets approximation, as discussed in Section 4.

MNRAS 447, 3096–3114 (2015)

 at L
eiden U

niversity on N
ovem

ber 28, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3110 A. Rimoldi et al.

Figure 11. Time taken to shear a total ejecta mass Msh ≥ Mej/2 for a range of M• and ωin, for explosion distances a scaled to the break in gas density,
Rb. Decreasing tad curves correspond to increasing M•, and the black hole masses shown are as follows; magenta: 5 × 107M�, yellow: 1 × 108M�, cyan:
5 × 108M�, red: 1 × 109M�, green: 5 × 109M�, blue: 1 × 1010M�. The curve for each M• represents data from simulations covering between 30 and
40 values of a. Dashed, vertical coloured lines show the corresponding Rsh. The dashed black line shows the location of Rb. The dotted black lines show the
two regions of explosion distances investigated in Fig. 10. The right-hand limit of the horizontal axis is set at the SOI. By 104 yr, radiative losses become
significant in all cases; if the shearing condition vsh < vK has not yet been met by this time, the adiabatic stage ends due to the radiative transition discussed in
Section 6.3.1. Note that the Galactic Centre SMBH is not shown on this plot, as we do not find Msh ≥ Mej/2 at any value of a before the radiative stage sets in.

was estimated by comparing the shock velocity to the threshold of
300 km s−1 outlined in Section 3.4. As with the shearing condition,
we consider the adiabatic lifetime to have ended when more than
half of the remnant is below this velocity.

For SNRs that are not destroyed by shearing, we find that this
criterion is not satisfied before the SNR grows larger than the SOI.
However, the density gradient will not continue to have a R−3 form
indefinitely. Beyond the SOI, the SMBH no longer has any sub-
stantial influence on the environment and the density is expected to
level off.

Therefore, to determine the onset of the radiative stage, we find
the time when more than half of the shock reaches 300 km s−1 by
extending the density uniformly beyond the SOI. If the SNR sur-
vives to these large radii, we find that they eventually expand nearly
spherically, and that the shape in this late stage is largely indiffer-
ent to the processes that occurred near the SMBH. With a uniform
density and approximately spherical evolution, the late-time kine-
matics closely follow the Sedov–Taylor solution. For densities that
flatten outside the SOI to about n ≈ 1 cm−3, we find that the SNRs
transition to the radiative stage at ∼104 yr, independently of M•.
All adiabatic lifetimes therefore end at this age if the SNR has not
already been destroyed by shearing from the SMBH.

6.3.2 Mean lifetimes

Deriving properties over the whole SOI is useful in the cases where,
for more distant galaxies, individual SNRs may not be observa-
tionally resolved. Young SNRs will contribute to the total X-ray
emission from these regions, which can be more easily observed.

To summarize the effect of the SMBH environment on SNRs,
we calculate the lifetime for core-collapse SNRs averaged over the
entire SOI:

〈tad〉 =
∫ RSOI

Rsh
tad(R) ncc(R) R2 dR∫ RSOI

Rsh
ncc(R) R2 dR

, (24)

where

ncc(R) ∝

⎧⎪⎨
⎪⎩
(

R
Rb

)−2
R ≤ Rb(

R
Rb

)−4.5
R > Rb

(25)

is the volume number density of stars with mass over 8M� (see
Section 5.3).

The average lifetime, 〈tad〉 is shown in Fig. 12, as a function of
M•. Examining Fig. 11 and equation (25), we see that much of the
reduction in 〈tad〉 is determined by the value of tad for explosions
near and inside the break in gas density (a � Rb). The weighted
contribution of tad to the mean lifetime is higher inside the break
due to the higher density12 of massive stars; additionally, much
of the reduction in tad occurs near the break for lower values of
M•, while tad is low throughout the inner region for higher M•.
For M• > 107M�, the mean adiabatic lifetime of the SNR gets
increasingly shorter, well below the canonical value of ∼104 yr. By
M• � 108M�, the lifetime of most SNRs in the SOI is ended by
disruption by the SMBH while the SNR is in the adiabatic stage.
Shallower inner gas density profiles (green and red lines) amplify
these trends.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we presented a novel numerical method based on the
Kompaneets approximation for calculating the evolution of a shock
in an arbitrary axisymmetric configuration of density. Our approach
has the benefit of being more flexible than analytic solutions (which
only exist for some simple density stratifications) while being much
faster than full hydrodynamical simulations.

We apply this numerical method to trace the evolution of SNRs
in quiescent galactic nuclei, with properties similar to those of our
Galactic Centre. We describe these nuclei as self-regulating and

12 Note that dN(M > 8) = ncc(R)R2 dR is constant for R ≤ Rb.
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Figure 12. Estimated mean adiabatic lifetimes as a function of black hole
mass in the present models, using equation (24) with the results for t(R) in
Fig. 11 and the stellar number density distributions n(R) in Section 5.3. The
red (lowermost) line is for ωin = 1/2, green for ωin = 1 and blue (uppermost)
for ωin = 3/2. For lower M• (� 107M�), remnants throughout the SOI are
not destroyed by the shearing condition by the time radiative losses start to
become significant. The adiabatic lifetime therefore ends at 104 yr due to
the radiative stage, which is indicated by the dotted black line.

steady-state systems, where gas inflow from outside this region has
been limited and unimportant during at least the last 100 Myr. In
this scenario, most of the star formation occurs in situ, recycling the
gas ejected in supernovae, and winds from massive stars feed the
accretion flow, which forms most of the interstellar gas. We predict
the morphological evolution of SNRs in these nuclei, and relevant
time-scales such as their X-ray lifetimes.

We find that the SNRs that explode very near low-mass SMBHs
(� 108M�, such as Sgr A∗) will pass over the SMBH before
appreciably decelerating and will continue expanding almost spher-
ically. Although there can be prominent distortion during the early
evolution of SNRs that explode further away from these SMBHs,
SNRs at all explosion distances appear reasonably spherical by the
onset of the radiative regime, much like SNRs in a typical inter-
stellar medium. Notably, in the Galactic Centre, this implies that an
SNR should be observable in X-ray for ∼104 yr. The presence of a
suspected SNR enveloping Sgr A∗, known as Sgr A East (Maeda
et al. 2002), fits with our prediction of SNRs being able to survive
their adiabatic expansion through the Galactic Centre region.

If the SMBH mass is large enough (�108M�), we instead expect
a wide range of SNR morphologies, depending on the explosion
distance from the SMBH. There, SNRs typically end their life due
to tidal shearing and disruption. The observable lifetime is therefore
suppressed (102 ∼ 103 yr) with respect to SNRs evolving around
lower mass SMBHs. The reductions in SNR lifetime depend on
the inner gradients of gas density as predicted by accretion theory.
Conversely, therefore, observations of SNRs can be used to infer and
constrain properties of their environment. For example, variations
in the density gradients can produce different global quantities such
as the mean lifetime of SNRs (Fig. 12) or their overall sizes in their
early evolution (Figs 7 and 8).

The disruption of the SNR, or fraction of it, by the central SMBH,
that takes place when this material slows down below the Keplerian
velocity would lead to a period of enhanced accretion on to the
central black hole. If a significant fraction of the sheared material
is trapped by the SMBH we expect accretion of a few solar masses
on to the SMBH over a period of ∼100 years, yielding (assuming
efficiency of 0.1) a luminosity of the order of 0.7 × 1044 erg s−1. This
enhanced accretion would be at the sub-Eddington rate for the higher
mass black holes (above 0.5 × 106M�) but still very significant
and at a level comparable to a powerful AGN. This may lead to a
period of flaring of the otherwise quiescent black hole. Such events
would happen even around the Galactic Center and other small-
mass SMBHs. While SNRs are not completely disrupted around
such black holes we still expect events in which up to 20 per cent
of the SNR material is accreted on to the central black hole over a
period of about a hundred years leading to significant flaring.

Beyond the Milky Way, an excellent example of an SNR that is
resolved in a galactic nucleus is S Andromedae (SN 1885A), which
has an angular diameter of about 0.7 arcsec and has a morphology
resolvable by the Hubble Space Telescope (Chevalier & Plait 1988;
Fesen et al. 1999, 2007). The SNR is only 60 parsecs from the centre
of the bulge of the Andromeda galaxy, though not quite within the
SMBH SOI. Although SNRs such as S Andromedae are resolvable
in other galactic nuclei with the current generation of instruments,
individual SNRs may not be distinguished in more distant galaxies.

For those distant galaxies, it is possible to use our formalism to
predict global quantities that can be observed, such as the number of
SNRs expected at a given time and therefore their total X-ray lumi-
nosity (Rimoldi et al., in preparation). Exploiting the link between
SNRs and young massive stars, it is also possible to estimate the ex-
pected SFR in the spheres of influence of quiescent SMBHs. These
studies, which will be presented in follow-up work, and their com-
parison with observation, can inform theory of nuclear assembly
and galaxy formation in general.
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APPENDI X A : INTEGRALS O F D ENSI TY IN
THE EJECTA-DOMI NATED STAG E

Here, we elaborate on the treatment of the integrals over the density
discussed in Section 3.1. The general angle-dependent approach is
given, as well as the integrations over a sphere for reference.

A1 Angle-dependent integrals

Beginning with equation (3), we consider explosions either outside
or inside the break in density. In general, the integrals along R′ can
be partitioned into segments between some radii R′

lower and R′
upper,

Mpart = ρaa
ω

∫ R′
upper

R′
lower

R−ωR′2 dR′, (A1)

which, when summed to compose the full integral from R′ = 0 to
R′ = L, give the full mass swept out over the path. The integrals are
split in such a way to calculate sections that are entirely within one
of the two possible density gradients ω.

For explosions outside the break in density, if a shock segment
has an initial angle ψ0 > sin −1(Rb/a), the segment will not cross
into the region interior to the break, and the integral is fully through
the ω = 3 region. However, if ψ0 ≤ sin −1(Rb/a), the element of the
shock crosses the break. In such cases, the radius R′ extending from
R = a has either one or two13 solutions for the intersection with the
sphere of radius (measured from the SMBH) equal to Rb:

R′
b± = 1

2

(
s ±

√
s2 − 4

(
a2 − R2

b

))
, (A2)

where s ≡ 2a cos ψ0. For explosions outside the break, the inte-
gral can be split into three possible regions (with R′

b± provided by
equation A2): R′ < R′

b−, or R′
b− < R′ < R′

b+, or R′ > R′
b+. These

ranges define the integral limits, where each integral has the general
form

Mpart ∝ aω

∫
r2(

a2 + R′2 − sR′)ω/2 dR′. (A3)

The same holds for explosions inside the break, except that there
is only one solution, R′

b for the intersection with the surface at

13 For ψ0 = sin −1(Rb/a) and ψ0 < sin −1(Rb/a), respectively
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R = Rb and equation (A3) has only two sets of limits: R′ < R′
b, and

R′ > R′
b. The general solutions to the angle-dependent integrals

using these limits are lengthy and are not reproduced here.

A2 Integrals over a sphere

Due to the introduction of an axis of symmetry by the offset position
of the sphere, the mass integral may be simplified using cylindrical
coordinates with this symmetry axis (the cylindrical z) aligned on
the explosion point. A spherically symmetric density field (having
an origin coincident with that of this cylindrical coordinate system)
remains constant over the cylindrical polar angle ϕ, for a given
cylindrical14 r and z, since the spherical R (= √

r2 + z2) is constant.
Thus, the expression for mass is reduced to a double integral.

In such a coordinate system, for a single power-law density of
exponent −ω, the mass swept up (Ms) by a spherical shock front
that has expanded through a radial distance L (measured from the
explosion point, a)

Ms = 2πρaa
ω

∫ a+L

a−L

∫ √
L2−(z−a)2

0
r(r2 + z2)−ω/2 dr dz. (A4)

For the single density distributions of ω = 1 and 3, this evaluates
to

Ms =
{ 2πρa

3 [(a + L)3 − |a − L|3 − 6a2L], ω = 1

2πρaa
3
[
ln
(

a+L
a−L

) − 2L
a

]
, a > L, ω = 3

. (A5)

In the case a > L for the ω = 1 solution, the term in brackets
reduces to 2L3 such that Ms = 4πρ0L

3/3, which is the trivial ω = 0
solution.

For a model density in which there is a broken power-law distri-
bution, the integral over a sphere centred at z = a is less straightfor-
ward. To avoid introducing complicated integral limits to equation
(A4), one approach is to determine the overall quantity by summing
integrals over two density distributions, where the integrand for
each is restricted using Heaviside step functions, H, that break the
distribution at specified (spherical) radii, R. Using the cylindrical
integral of equation (A4), and taking a density distribution that is
non-zero between two spherical radii from the origin, R = P and
R = Q, this effectively constrains the density as

ρ → ρ ×
[
H
(√

r2 + z2 − P
)

− H
(√

r2 + z2 − Q
)]

. (A6)

For a two-section broken power-law density with ωin and ωout, the
total swept-up mass will be Ms = Min + Mout. The solutions for
ω = 1 and 3 are given below.

As an alternative method, solutions for ω = 1/2 and 3/2 were
obtained using integrals of the unconstrained density by instead
splitting the integrated regions into spherical caps, and adjusting
the integral limits appropriately. These curves match the behaviour
of those for ω = 1 and 3, showing agreement between the two
methods of integration.

A2.1 Solution for ω = 1

For an explosion at R = a and an outer break at R = c:

M1 = πρ0

3

[
H (a + L)

{
(a + L)2 [2 (a + L) − 3a]

}

14 Note that we use R to designate the spherical radial coordinate, and r to
designate the cylindrical one.

− H (a + L − c)
{

(a + L − c)2 [2 (a + L) + c − 3a]
}

− H (|a − L|){(a − L)2 [2|a − L| − 3a]
}

+ H (|a − L| − c)
{

(|a − L| − c)2 [2|a − L| + c − 3a]
}]

.

(A7)

A2.2 Solution for ω = 3

In this case, an inner density break at R = c needs to be applied:

M3 = 2πρ0a
3

[
H (a + L − c)

{
(c − a − L)2

2ac

− ln

(
c

a + L

)
− a + L

c
+ 1

}

+ H (a − L − c)

{
ln

(
c

a − L

)
+ a − L

c
− 1

}

+ H (|a − L| − c)

{
(c − |a − L|)2

2ac

}]
. (A8)

APPENDI X B: A NA LY TI C VOLUME, TI ME
A N D V E L O C I T Y E X P R E S S I O N S IN T H E
KO MPANEETS APPROX I MATI ON

Solutions for the volume, time and velocity are given in K92, with
the given coordinate transformation, for power laws of ω = 0 and
4. Instead, ω = 1 and 3 are relevant for the presently considered
density profiles, and we outline here the corresponding solutions.

In a general radial power-law profile, the solution for the volume
is (see equation 8, as well as equation 16 in K92)

V = 2π

∫ R+

R−
(1 − cos θ) R2 dR

= 2π

∫ R+

R−

{
1 − cos

(
1

α
cos−1

[
1 − x2 + ( R

a

)2α

2
(

R
a

)α
])}

R2 dR,

(B1)

recalling that α ≡ (2 − ω)/2. For ω = 1 and 3,

R± =
{

a (1 ± x)2 , ω = 1
a

(1∓x)2 , ω = 3 (B2)

are the leading (R+) and trailing (R−) points of the shock (along
θ = 0, using equation 8). When comparing the equations for ω = 1
and 3 with the ψ0 parametrization, it is important to note that a
phase shift of π in ψ0 is required to obtain correspondence (of the
definition of R− and R+, for example) between the two cases. In
terms of x, this gives the following solutions:15

V (x) = κV ×
{

x3
(
1 + x2

)
, ω = 1

x3 (1+x2)
(x2−1)6 , ω = 3 (B3)

for

κV ≡ 32πa3

3
. (B4)

15 The identity cos [2cos −1z] = 2z2 − 1 is useful for the solution to these
integrals.
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Therefore, the time can be found from the following integrals of
equation (6):

t(x) = κt ×
⎧⎨
⎩
∫ x

0

√
u3(1 + u2) du, ω = 1∫ x

0

√
u3(1+u2)
(u2−1)6 du, ω = 3

(B5)

for

κt ≡
√

256πa5ρ0

3λE(γ 2 − 1)
. (B6)

The ω = 1 result may be written via a power-series expansion about
x = 0,

t1(x) = κt

[
2x5/2

5
+ x9/2

9
− x13/2

52
+ . . .

]
. (B7)

The integral for ω = 3 is divergent for x → 1, and is represented by
the power series about x = 0

t3(x) = κt

[
2x5/2

5
+ x9/2

9
+ 59x13/2

52
+ . . .

]
. (B8)

For ω = 1, the value of x = 1↔y = yc signifies the moment at
which the trailing point of the shock reaches the density singularity
(R− = 0). This is, therefore, also the onset of shock self-interactions
as other parts of the shock wrap around this point. This occurs in
a finite time t, and, unlike in the ω = 3 case, solutions still exist
beyond x = 1 (there is no blow-out of the shock front, as in the case
of ω = 3 where the leading point R+ → ∞).

In terms of x, we therefore have

vn(x) = κv ×

⎧⎪⎪⎨
⎪⎪⎩

√
1

x3(1+x2) , ω = 1√
(x2−1)6

x3(1+x2) , ω = 3
(B9)

for

κv ≡
√

3λE
(
γ 2 − 1

)
64π a3 ρ(R)

. (B10)

Together, these expressions allow a transformation of the solution in
terms of x into physical units. We are now in a position to compare
the numerical solutions with analytic ones, as is done in Section 4.2.

A P P E N D I X C : N U M E R I C A L T R E AT M E N T O F
S H O C K SE L F - I N T E R AC T I O N S

Here, we outline the treatments of self-interacting segments of the
shock front in our numerical scheme. In an axisymmetric arrange-
ment, self-interactions can happen in two ways. In the first case, any
parts of the shock that pass over the axis of symmetry (the x-axis
in our coordinates) will collide with the complementary part of the
shock travelling over the axis in the opposite direction. This can
happen as the shock wraps around the SMBH, where the density is
at its highest. Other shock self-interactions can be caused by varia-
tions in the density profile that force flowlines to converge, such as
near a break in power-law densities (see Fig. C1 for an example).

We therefore need a routine that can detect self-interactions in a
general way. A simple implementation would be to examine the lo-
cation histories of the flowlines to determine if any have intersected.
In our experience, storing these histories puts too high a demand on

Figure C1. Example of flowline intersection and merging due to the pres-
ence of a boundary (thick blue line) between two power-law densities.
Dashed lines show flowline paths, which lie perpendicular to the shock
front (sample shock snapshots are given as solid grey lines). In this exam-
ple, the break is between power laws of ωin = 1/2 and ωout = 3, for an
explosion around a 107 M� SMBH at Rx = 0.6 pc, Ry = 0.

memory. Instead, two methods for detecting interacting regions in
the shock front were investigated.

The first approach is an anticipatory one, which tests the spatial
divergence of the velocity of the shock front at each time step. This
quantity gives an indication of whether portions of the shock front
are converging. However, care is required in choosing the threshold
of divergence used to define merging regions of the shock, which
results in this divergence method being difficult to tune.

In practice, it is more straightforward to use a reactive detection
of self-interactions. The shock front, defined by the positions of the
flowlines at one point in time, is constrained algorithmically to be
a simple piecewise linear curve. Any intersections along the curve
can be detected, as we monitor the ordering of the points. Loops
arising from intersections of the shock front are removed, which
is equivalent to an effective merger of all flowlines involved in the
intersecting loop into a single resultant flowline.

In all cases of self-interactions, the merged flowlines are replaced
by a single flowline with an average of their positions. The ejecta
mass represented by the new flowline is taken to be the sum of the
masses assigned to the previously merging flowlines.

Fig. C1 shows an example of regions along a sample shock so-
lution in which flowlines are converging and being merged. This
specific example models fluid elements (flowlines; dashed curves)
at the shock front (solid lines) colliding due to the change in gradient
of the background density (solid blue line).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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