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ABSTRACT
Masses of clusters of galaxies from weak gravitational lensing analyses of ever larger samples
are increasingly used as the reference to which baryonic scaling relations are compared. In this
paper we revisit the analysis of a sample of 50 clusters studied as part of the Canadian Cluster
Comparison Project. We examine the key sources of systematic error in cluster masses. We
quantify the robustness of our shape measurements and calibrate our algorithm empirically
using extensive image simulations. The source redshift distribution is revised using the latest
state-of-the-art photometric redshift catalogues that include new deep near-infrared observa-
tions. None the less we find that the uncertainty in the determination of photometric redshifts
is the largest source of systematic error for our mass estimates. We use our updated masses to
determine b, the bias in the hydrostatic mass, for the clusters detected by Planck. Our results
suggest 1 − b = 0.76 ± 0.05 (stat) ± 0.06 (syst), which does not resolve the tension with the
measurements from the primary cosmic microwave background.
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1 IN T RO D U C T I O N

The observed number density of clusters of galaxies as a function of
mass and redshift depends sensitively on the expansion history of the
Universe and the initial conditions of the density fluctuations. Com-
parison with predictions from a model of structure formation can
thus constrain cosmological parameters, such as the mean density
�m and the normalization of the matter power spectrum σ 8 (e.g.
Bahcall & Fan 1998; Henry 2000; Reiprich & Böhringer 2002;
Henry et al. 2009), or the dark energy equation-of-state w (e.g.
Vikhlinin et al. 2009; Mantz et al. 2010, 2015). For a recent review
see Allen, Evrard & Mantz (2011).

The fact that the observations do not provide actual cluster counts
as a function of mass, but rather the number density of objects with
certain observational properties, such as the number of red galaxies
or the X-ray flux within a given aperture, complicates a direct com-
parison with predictions: the cosmological interpretation requires
knowledge of the selection function and the scaling relation be-
tween the observable and the underlying mass. Furthermore, scaling
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relations typically have intrinsic scatter that also needs to be mea-
sured, or at least accounted for.

One way forward is to simulate the observable properties of
clusters, but the complex non-linear physics involved limits the
fidelity of such approaches, at least for the moment. Therefore
direct estimates of the clusters masses are needed. This can be
achieved through dynamical analyses, such as the measurement of
the motion of cluster members, or by measuring the temperature
of the hot intracluster medium (ICM). However, in both cases the
cluster is assumed to be in equilibrium, which is generally not a
valid assumption. For instance, simulations suggest that hydrostatic
X-ray masses are biased low (e.g. Rasia et al. 2006; Nagai, Vikhlinin
& Kravtsov 2007; Lau, Kravtsov & Nagai 2009).

A more direct probe of the (dark) matter distribution would be
preferable, which is provided by the gravitational lensing distor-
tion of background galaxies: the gravitational potential of the clus-
ter perturbs the paths of photons emitted by these distant galax-
ies, resulting in a slight, but measurable, coherent distortion. This
in turn provides a direct measurement of the gravitational tidal
field, which can be used to directly infer the projected mass dis-
tribution. Note, however, that the comparison to baryonic trac-
ers does typically depend on the assumed geometry of the clus-
ter. For a recent review of the use of gravitational lensing to
study cluster masses and density profiles, we refer the reader to
Hoekstra et al. (2013).
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The sizes of cluster samples are increasing rapidly thanks to
wide-angle surveys at various wavelengths, especially at millimetre
wavelengths thanks to the inverse-Compton scattering of cosmic
microwave background (CMB) photons off hot electrons in the
ICM, the Sunyaev–Zel’dovich effect (SZE; Sunyaev & Zeldovich
1972). In fact, the lack of calibrated scaling relations is currently
the dominant limitation of blind searches that exploit this effect,
such as those carried out using the South Pole Telescope (Reichardt
et al. 2013) or the Atacama Cosmology Telescope (Hasselfield et al.
2013). The importance of accurate mass calibration is furthermore
highlighted by the tension between the cosmological parameters
determined from the primary CMB measured by Planck (Planck
Collaboration XVI 2014b) and those inferred from the cluster counts
(Planck Collaboration XX 2014c).

Fortunately it is not necessary to determine masses for all clusters,
but instead it is sufficient to calibrate the appropriate scaling relation
and its scatter. However, doing so still requires substantial samples
of clusters for which weak lensing masses need to be determined.
Even for the most massive clusters the uncertainty in the projected
mass is ∼10 per cent. The triaxial nature of cluster haloes, how-
ever, leads to an additional intrinsic scatter of ∼15–20 per cent (e.g.
Corless & King 2007; Meneghetti et al. 2010; Becker & Kravtsov
2011). Hence to calibrate the normalization of a scaling relation to
a few per cent requires a sample of 50 or more clusters.

To examine the relation between the baryonic properties of clus-
ters and the underlying matter distribution the Canadian Cluster
Comparison Project (CCCP) started with the study of archival ob-
servations of 20 clusters of galaxies, described in Hoekstra (2007)
and Mahdavi et al. (2008). This sample was augmented by obser-
vations of an additional 30 clusters with 0.15 < z < 0.55 with the
Canada–France–Hawaii Telescope (CFHT). A detailed description
of the sample can be found in Hoekstra et al. (2012, hereafter H12)
and Mahdavi et al. (2013). The comparison to the X-ray proper-
ties, presented in Mahdavi et al. (2008) and Mahdavi et al. (2013)
confirmed the predictions from numerical simulations that the hy-
drostatic mass estimates are biased low.

Other groups have carried out similar studies. The Local Cluster
Substructure Survey (LoCuSS) used the Subaru telescope to carry
out a weak lensing study of 50 clusters, with the most recent results
presented in Okabe et al. (2013). A thorough analysis of a sample of
51 clusters was presented by Weighing the Giants (WtG; Applegate
et al. 2014; von der Linden et al. 2014a). For a large fraction of
the clusters the latter study also obtained photometric redshifts for
the sources (Kelly et al. 2014). Most recently Umetsu et al. (2014)
presented results for a sample of 20 massive clusters, 17 of which
were observed by WtG. In general there is significant overlap as
these studies all target massive well-known clusters of galaxies.
This was exploited by Applegate et al. (2014) who compared the
masses from the various studies. Although they find an excellent
correlation with the results from H12, the CCCP masses are on
average ∼20 per cent lower than their estimates. This is much larger
than the statistical uncertainties and warrants further investigation.
This is the aim of this paper.

A correct interpretation of the inferred weak lensing signal relies
on accurate shape measurements and knowledge of the redshifts of
the sources used in the analysis. The former has been examined quite
extensively over the past decade, for instance in several blind studies
using simulated images (Heymans et al. 2006; Massey et al. 2007;
Bridle et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2014a).
The results of such simulations have been used to quantify the biases
in shape measurements, but the sensitivity of the calibration to the
input of the simulations has not been investigated in much detail.

However, thanks to an improved understanding of the sources of
bias, and how they propagate (e.g. Massey et al. 2013; Miller et al.
2013; Semboloni et al. 2013; Viola, Kitching & Joachimi 2014), it
has become evident that a correct interpretation of these simulations
depends critically on how well they match the specific observations
under consideration. In Section 2, we examine the importance of the
fidelity of the image simulations. To calibrate our method, we create
an extensive set of images, varying a number of input parameters.

Another important source of uncertainty is the redshift distribu-
tion of the sources. In Section 3, we present our photometric red-
shift estimates based on measurements in 29 bands in the Cosmic
Evolution Survey (COSMOS) field (Capak et al. 2007; Scoville et al.
2007) including new deep observations in five near-infrared (NIR)
bands from UltraVISTA (McCracken et al. 2012). We also revisit the
issue of contamination by cluster members. We present new weak
lensing mass estimates in Section 4 and use these in Section 5 to
calibrate the hydrostatic masses used by Planck Collaboration XX
(2014c) to infer cosmological parameters. Throughout the paper we
assume a cosmology with �m = 0.3, �� = 0.7 and H0 = 70 h70

km s−1 Mpc−1.

2 C A L I B R AT I O N O F S H A P E M E A S U R E M E N T S

The measurement of the shapes of small, faint galaxies is one of
two critical steps in order to derive accurate cluster masses from
weak gravitational lensing, the other step involving knowledge of
the source redshift distribution. We discuss the latter in Section 3
and focus first on the algorithms used to measure galaxy shapes.
Most studies to date have focused on the correction for the blurring
by the point spread function (PSF), which leads to rounder images
(due to the size of the PSF) and preferred orientations (if the PSF
is anisotropic). An incomplete correction for the former leads to a
multiplicative bias μ and a residual in the latter to an additive bias c;
the observed shear and true shear are thus related by (e.g. Heymans
et al. 2006)

γ obs
i = (1 + μ)γ true

i + c, (1)

where we implicitly assumed that the biases are the same for both
shear components. For cosmic shear studies the additive bias is
a major source of concern because the (residual) PSF introduces
power on relevant scales (e.g. Hoekstra 2004). For cluster lensing
the additive bias is less important because the measurement of
cluster masses involves the azimuthally averaged tangential shear
and PSF patterns largely average out for our data. We study the
residual additive bias in Appendix A and find that we can indeed
ignore the residuals arising from PSF anisotropy in our analysis.

One approach to recover the true galaxy shape is to assume a suit-
able model for the galaxy light distribution, which is subsequently
sheared, convolved with the PSF and pixellated. The model param-
eters are varied until a best fit to the data is obtained. This has the
advantage that the detrimental effects of the PSF (and other instru-
mental biases) can be incorporated into a Bayesian framework (e.g.
Miller et al. 2013; Bernstein & Armstrong 2014). The challenge,
however, is to use a model that provides a good description of the
galaxies, while having a limited number of parameters in order to
avoid overfitting. A model that is too rigid will lead to model bias
(e.g. Bernstein 2010), whereas a model that is too flexible tends to
fit noise in the images (e.g. Kacprzak et al. 2012). Furthermore, ac-
curate priors for the size and ellipticity distributions (and any other
parameter entering the model) are required to obtain an unbiased
estimate for the shear.
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An alternative approach, which we use here, involves measuring
the moments of the galaxy images, which are subsequently corrected
for the PSF. The shapes can be quantified by the polarization

e1 = I11 − I22

I11 + I22
, and e2 = 2I12

I11 + I22
, (2)

where the quadrupole moments Iij are given by

Iij = 1

I0

∫
d2xxixjW (x)f (x), (3)

where f (x) is the observed galaxy image, W (x) a suitable weight
function to suppress the noise and I0 the weighted monopole mo-
ment. In the case of unweighted moments, I0 corresponds to the
flux and the correction for the PSF is straightforward as the PSF
corrected moments are given by1

I true
ij = I obs

ij − I PSF
ij , (4)

i.e. one only needs to subtract the moments of the PSF from the
observed moments. The result provides an unbiased estimate of
the polarization. However, the change in polarization δei due to a
shear δγ i depends on the unsheared shape eint: it is more difficult
to change the shape of an object that is already elongated. This
response is quantified by the polarizability Pγ , defined such that
δei = Pγ δγ i. As the shear is obtained from an ensemble of galax-
ies, an unbiased estimate thus requires knowledge of the intrinsic
ellipticity distribution (e.g. Viola et al. 2014).

Unfortunately real data contain noise and thus unweighted mo-
ments are not practical. To suppress the effects of noise a weight
function needs to be chosen, ideally matched to the size and shape
of the galaxy image. However, as discussed in e.g. Massey et al.
(2013) and Semboloni et al. (2013), this complicates matters as
the correction for the PSF now involves higher order moments,
which themselves are affected by noise. Limiting the expansion in
moments is similar to the model bias in fitting methods.

Recent studies using simulated data have shown that multiplica-
tive biases depend strongly on the signal-to-noise ratio (SNR; Bri-
dle et al. 2010; Kitching et al. 2012; Miller et al. 2013) with some
hints already present in the dependence of the bias on magnitude
in Massey et al. (2007). As the origin of this bias is now better
understood, it has also become clear that the performance of a par-
ticular algorithm will depend on the data it is applied to. Hence the
performance evaluation, such as the determination of the bias that
one wishes to correct for, depends on the input of the simulations:
if the input does not match the actual data, the inferred bias may
be different from the actual value. Although SNR is the most crit-
ical parameter, the bias may also depend on the galaxy profile, or
the size and ellipticity distributions (e.g. Kacprzak et al. 2012; Mel-
chior & Viola 2012; Miller et al. 2013; Viola et al. 2014). Unless the
fidelity of the simulation can be somehow guaranteed, the sensitiv-
ity of a method to the input parameters needs to be quantified and
the uncertainties propagated.

In this paper we focus on the commonly used KSB method de-
veloped by Kaiser, Squires & Broadhurst (1995) and Luppino &
Kaiser (1997) with corrections provided in Hoekstra et al. (1998)
and Hoekstra, Franx & Kuijken (2000). It was used to determine
masses for the CCCP sample in Hoekstra (2007) and H12; we
refer the interested reader to these papers for more details. The
object detection is done using the hierarchical peak finder de-
scribed in Kaiser et al. (1995), which gives an estimate for rg, the

1 We assume that the measurement is centred on the location where the
dipoles vanish.

Gaussian scale radius of the object. This value is used to compute
the weighted moments, which are corrected following Hoekstra
et al. (1998). In addition we also compute σ e, the uncertainty in the
polarization, which is approximately ∝ 1/ν, where ν is the SNR of
the detection (Hoekstra et al. 2000). This allows us to down-weight
the noisy galaxies and we therefore estimate the average shear for
an ensemble of galaxies as

〈γi〉 =
∑

wiei/P̃
γ∑

wi

, with wi = 1

〈ε2〉 + (
σe

P̃ γ

)2 , (5)

where 〈ε2〉 is the intrinsic variance of the galaxy ellipticity compo-
nents. This is the dominant source of uncertainty for the shear for
bright objects, and we adopt a value of 〈ε2〉1/2 = 0.25 (Hoekstra
et al. 2000). In our image simulations we vary the input elliptic-
ity distribution (see Section 2.1), which in principle would require
adjusting the value for 〈ε2〉1/2 accordingly to optimally weight ob-
jects. However, for simplicity we keep it fixed when we quantify
the multiplicative bias.

2.1 Input galaxy properties

To populate our image simulations, we use a sample of galaxies
for which morphological parameters were measured from resolved
F606W images from the GEMS survey (Rix et al. 2004). These
galaxies were modelled as single Sérsic models with GALFIT (Peng
et al. 2002) and for our study we use the half-light radius, mag-
nitude and Sérsic index n. We only consider galaxies fainter than
mr = 20 because bright objects might cause unrealistic features in
the simulated images. Excluding these does not impact our results
as we do not use them in our source sample anyway: to measure the
lensing signal we use galaxies with 22 < mr < 25.

The resulting number density of galaxies as a function of apparent
magnitude mr is presented in Fig. 1 (solid black histogram). The
results suggest a power law for the counts, where the flattening for

Figure 1. Number counts as a function of r-band magnitude for our im-
age simulations (solid black histogram), STEP1 (dotted red histogram) and
STEP2 (dashed blue histogram). The counts were normalized in the range
20 < mr < 22 and we adjusted the magnitudes of the STEP simulations for
the use of different filters.
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mr > 25.5 is caused by incompleteness of the input catalogue. In
principle, faint unresolved galaxies can affect shape measurements
of brighter galaxies through modulation of the background noise
and blending. In Section 2.3 we therefore examine the need to
include fainter galaxies in the simulations.

H12 based their assessment of the accuracy of the shape measure-
ments on the results from the Shear TEsting Programmes (STEP;
Heymans et al. 2006; Massey et al. 2007). These were blind chal-
lenges with the aim to benchmark the performance of shape mea-
surement algorithms, especially for cosmic shear studies. In both
cases the implementation used by H12 performed well, with an
average multiplicative bias of ∼2 per cent. As a consequence, H12
ignored the multiplicative bias in their mass estimates.

STEP1 (Heymans et al. 2006) simulated CFHT observations in
the I band with an integration time of 3600 s, which should be quite
comparable to our data (a total integration time of 1 h in the r′ band
using CFHT). The red dotted histogram in Fig. 1 shows the galaxy
number counts that were used as input for STEP1 (converted to r
band assuming a mean galaxy colour of r − i = 1). The counts are
normalized such that the sum is the same for all three examples in the
range 20 < mr < 22. Comparison to the GEMS catalogue shows that
STEP1 lacks the faint galaxies that are present in real observations,
even if they are unresolved. As we will show in Section 2.3, this
leads to a significant underestimate of the multiplicative bias for the
actual CCCP data.

STEP2 (Massey et al. 2007) simulated images that would be
obtained with an exposure time of 40 min in good conditions with
SuprimeCam on Subaru. Given the larger aperture and throughput of
Subaru compared to CFHT, this corresponds to a total exposure time
that is ∼4 times longer than the CCCP data. The input galaxy im-
ages were based on a shapelet decomposition of resolved galaxy
images from the Hubble Space Telescope (HST) COSMOS survey
(Scoville et al. 2007), as described in Massey et al. (2004). As a
result the simulations should better capture the complex morpholo-
gies of real galaxies. The number counts, shown by the blue dashed
histogram in Fig. 1, match the GEMS input counts much better than
STEP1, although incompleteness occurs at mr ∼ 24.5.

In addition to the magnitudes, the GEMS catalogue provides
values for the Sérsic index of the galaxies, as well as their half-
light radii and ellipticities. The use of Sérsic profiles to describe
the galaxies may limit the fidelity of the simulations (see Kacprzak
et al. 2014, for a study of the biases that may arise). We examine
the bias as a function of Sérsic index in Section 2.3 and find that
our shape measurement algorithm is not particularly sensitive to
the profile, especially when compared to other sources of bias.
We therefore expect that the difference with using realistic galaxy
morphologies is small. One of the aims of the third gravitational
lensing accuracy testing challenge2 (GREAT3; Mandelbaum et al.
2014b) is to compare the results of shape measurement methods on
postage stamps of actual (PSF corrected) HST observations and the
corresponding Sérsic fits.

The different parameters describing the galaxies are jointly sam-
pled from the GEMS catalogue to account for their intrinsic cor-
relations (e.g. brighter galaxies are on average larger). However,
we do not use the ellipticities provided by Rix et al. (2004), be-
cause of concerns that these do not match our data, as discussed in
Section 2.2. Instead we use a parametric description, which allows

2 http://www.great3challenge.info

Figure 2. Input ellipticity distributions, described by a Rayleigh distribu-
tion truncated at ε = 0.9, for ε0 = 0.35 (thick black curve), ε0 = 0.1 (red
dotted curve) and ε0 = 0.5 (blue dashed curve). For reference we also show
a histogram of ellipticities from one of the STEP1 simulations.

us to investigate the role of the ellipticity distribution. We assign
ellipticities3 ε that are drawn from a Rayleigh distribution given by

P (ε, ε0) = ε

ε2
0

e−ε2/2ε2
0 , (6)

where the value of ε0 determines the width of the distribution, as
well as the average 〈ε〉 = ε0

√
π/2. We need to truncate the distri-

bution because the ellipticity cannot exceed unity, and also because
galaxy discs have a finite thickness. We therefore set P(ε, ε0) =
0 if ε > 0.9. We assume that the ellipticity distribution is indepen-
dent of other galaxy properties, whereas e.g. van Uitert et al. (2011)
did observe different distributions for early- and late-type galaxies.
Given the accuracy we require here, we find that this assumption
does not impact our results. The ellipticity distribution of the GEMS
catalogue matches that of ε0 = 0.35 for moderate ellipticities (Mel-
chior & Viola 2012) which is indicated by the black curve in Fig. 2.
We also show input ellipticity distributions for ε0 = 0.1 (red dotted
curve), and ε0 = 0.5 (blue dashed curve). For comparison we also
show the input ellipticity distribution used by STEP1 (Heymans
et al. 2006), which peaks at very low ellipticities.

2.2 Description of the simulations

To create the images we use GALSIM (Rowe et al. 2014), a publicly
available code that was developed for GREAT3 (Mandelbaum et al.
2014b). The main input is a list of galaxies with a position, flux, half-
light radius, Sercic index and ellipticity, from which sheared images
are computed. We limit the sample to objects with 0.5 < n < 4.2
because of limitations of the version of GALSIM we used. To create
the simulated images we draw objects from the GEMS catalogue.
Given the limited number of galaxies observed by GEMS, objects
typically appear multiple times in the simulation, but with a different
ellipticity and orientation.

3 The ellipticity is defined as (a − b)/(a + b), with a and b the major
and minor axes, respectively. The polarization for such a galaxy would be
∼(a2 − b2)/(a2 + b2)
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The weak lensing analysis of CCCP Megacam data is done on
stacks with a total integration time of 1 h each. For each cluster
two such stacks are observed, which are merged at the catalogue
stage (see H12 for details). Our image simulations therefore as-
sume the same noise level as observed in these data. To simulate
the observed data we also need to provide a realistic PSF, for which
we use a circular Moffat profile with a full width at half-maximum
(FWHM) = 0.67 arcsec and β = 3.5. This resembles our observa-
tions of Abell 1835, which are typical for the CCCP sample, and we
also adopt the noise level observed in these data. We include a low
number of stars to measure the PSF in the images. In Appendix B,
we quantify the impact of realistic star densities. We find that the
observed star densities in the CCCP data are sufficiently low that
they do not impact the results.

We create pairs of images where the galaxies are rotated by 90
degrees in the second image to reduce the noise due to the intrinsic
ellipticity distribution (see e.g. Massey et al. 2007): by construction
the mean intrinsic ellipticity when both are combined is zero. We
analyse the images separately and thus, due to noise in the images,
this is no longer exactly true, especially for faint galaxies. The
input shears typically range from −0.06 to 0.06 in steps of 0.01
(for both components), yielding 169 image pairs for each ellipticity
distribution. Each image has a size of 10 000 by 10 000 pixels,
with a pixel scale of 0.185 arcsec, the same as our MegaCam data.
This results in a sample of ∼107 galaxies with 20 < mr < 25 for
each value of ε0. To examine the dependence on seeing and PSF
anisotropy we create somewhat smaller sets, consisting of 49 pairs
of images.

We analyse these images in the same way as the CCCP
data. Fig. 3 shows the distribution of observed polarizations and

Figure 3. Comparison of the simulations and the actual CCCP data for
Abell 1835 (black lines) for bright and faint sources. The left-hand pan-
els show the observed polarizations, i.e. uncorrected for the PSF. We find
that the ellipticity distribution for bright galaxies (20 < mr < 22) is best
approximated if we take ε0 = 0.15, whereas the ellipticity distribution for
fainter galaxies (22 < mr < 25) requires a higher value of ε0 = 0.25. For
reference we show ε0 = 0.35 which is ruled out by the data. As shown in
the right-hand panels, the simulations match the observed distribution of
half-light radii fairly well.

half-light radii from the actual data (solid histograms) and simulated
data (dotted and dashed histograms). We reproduce the magnitude
distribution (not shown) and the size distribution for galaxies fainter
than mr = 22. As shown in the top-right panel of Fig. 3, there are
many simulated bright galaxies that have half-light radii that are
large compared to our CCCP data. For these galaxies the polariza-
tions are significantly smaller than the distribution with ε0 = 0.35
found by Melchior & Viola (2012). Although the input catalogue is
based on HST data, we suspect that the use of GALFIT may give too
much weight to the outer regions of the galaxies, which are down-
weighted in moment-based methods. This highlights the difficulty in
establishing the input ellipticity distribution, which remains rather
uncertain. For the main sample of sources, with 22 < mr < 25,
we find a good match if we adopt ε0 = 0.25. We take this value
as our reference in the remainder of this paper. We will conserva-
tively assume that 0.15 < ε0 < 0.3 when we estimate systematic
uncertainties in the empirical bias correction.

2.3 Multiplicative bias as a function input parameters

As the underlying ellipticity distribution remains uncertain, we start
by examining the average bias of KSB as a function of ε0 for
galaxies with 20 < mr < 25, i.e. the range in magnitude of the
sources used in the CCCP analysis by H12. To detect objects we
use the hierarchical peak finder described in Kaiser et al. (1995),
which is the default algorithm in our analysis. The main difference
between the various implementations of the KSB algorithm is the
way the shear polarizability Pγ is estimated. As the observed values
are noisy, H12 used a parametric fit to average values as a function of
size for different magnitude bins (also see Heymans et al. 2006, for
a concise description). The red squares in Fig. 4 show the bias as a
function of ε0 for this implementation of KSB. The bias changes by
0.04, which corresponds to a relative change of ∼40 per cent, over

Figure 4. Multiplicative bias for sources with 20 < mr < 25 as a function
of ε0 (see text). The red squares show the results for the implementation
of KSB used in H12. The black points show the results when we use the
observed estimate for Pγ for individual galaxies. Although the bias is larger
in the latter case, it depends only weakly on ε0, especially in the relevant
range of 0.15–0.3. The open circles indicate the bias if SEXTRACTOR is used
instead of HFINDPEAKS.

MNRAS 449, 685–714 (2015)
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Figure 5. Multiplicative bias as a function of apparent magnitude for the
simulated CCCP data. The measurements are averages for bins with a width
of 0.5 mag. The black points correspond to an ellipticity distribution with
ε0 = 0.25. The red and blue lines are for ε0 = 0.15 and 0.3, respectively.
The red squares indicate the bias if we follow the procedure to evaluate Pγ

used in H12. For comparison, the hatched region indicates the 68 per cent
confidence interval for the average bias for galaxies with 20 < mr < 25 (for
ε0 = 0.25).

the rather extreme range in ellipticity distribution. For ε0 = 0.25
we find a bias of μ ∼ −0.115, which is much larger than the
value reported in Heymans et al. (2006) and Massey et al. (2007).
Consequently we cannot ignore the multiplicative bias, as was done
in H12.

The black points show the results if we use the measured value
of Pγ for each galaxy. In this case the bias is larger (μ ∼ −0.165
for ε0 = 0.25), but also less sensitive to the ellipticity distribution.
For this reason, as well as simplicity, we adopt this implementation
as our reference. We note that the full chain of detection and shape
analysis needs to be simulated. This is highlighted by the open black
points, which indicate the bias if we use SEXTRACTOR (Bertin &
Arnouts 1996) to detect objects and use the value for FLUX_RADIUS
to compute the corresponding value for rg: the observed bias is
affected at the per cent level.4

Fig. 5 shows that the bias increases quickly for fainter galax-
ies, irrespective of the ellipticity distribution. This is also the case
when we consider the implementation used by H12 (red squares).
A strong dependence of the bias on the SNR was already observed
in Bridle et al. (2010) and Kitching et al. (2012). The lack of faint
galaxies in STEP1 is the main reason that a small bias was observed
in Heymans et al. (2006). When we restrict the analysis to the mag-
nitude range simulated by STEP1 we reproduce the small bias for
the implementation used for that paper. Note that STEP2 simulated
data that are deeper than our CCCP data. The implementation used
by H12 gives smaller biases when considering the full range in

4 In the process of making this comparison we discovered that SEXTRACTOR

(we used version 2.5.0) incorrectly assigns objects FLAG=16 if they are
elongated horizontally. This problem can be avoided by adopting a value for
MEMORY_BUFSIZE larger than the image dimensions. We note that Gruen
et al. (2014) discovered the same problem and reported on this.

Figure 6. Multiplicative bias as a function of seeing for galaxies with
20 < mr < 25 for an ellipticity distribution with ε0 = 0 (red line), the
reference case with ε0 = 0.25 (black points) and an extreme case with
ε0 = 0.5 (blue line). The histogram shows the distribution of PSF sizes of
the CCCP data measured for each chip. The image quality is typically best
in the inner regions of the field of view, which are most relevant for the mass
estimates.

magnitude, but overcorrects bright galaxies (i.e. μ > 0). It appears
that the choice of the fitting function partly compensated for the
bias due to noise.

The SNR is also affected by the PSF size: the larger the PSF, the
lower the SNR as the flux is spread over more pixels. The seeing
also determines how well galaxies are resolved, which impacts the
bias as well (see Appendix C). Fig. 6 shows the value of μ for
galaxies with 20 < mr < 25 as a function of seeing for ε0 = 0 (red
line), ε0 = 0.25 (black points) and an extreme case with ε0 = 0.5
(blue line). Note that we keep the range in apparent magnitude
the same. The results demonstrate the importance of good image
quality: the bias more than doubles from −0.11 to −0.25 as the
seeing deteriorates from 0.5 to 1arcsec.

The number of faint galaxies increases rapidly (cf. Fig. 1), which
results in source galaxies blending with fainter ones. Even if a faint
galaxy is not detectable, it will impact the noise level, effectively
introducing correlated noise that affects the local background de-
termination. Both of these will modify the multiplicative bias in a
way that that can only be quantified through simulations. In Bridle
et al. (2010), Kitching et al. (2012) and Mandelbaum et al. (2014a)
only postage stamps of isolated galaxies were analysed, and thus
the effects of blending and faint galaxies were not included. Fig. 7
shows that this is an important effect, and cannot be neglected. To
obtain these results we create images where we include galaxies
down to a limiting magnitude mlim. The input GEMS catalogue is
incomplete for mr > 25.5 (see Fig. 1) and we augment the catalogue
by duplicating the fainter galaxies such that the input counts follow
the power-law relation seen at brighter magnitudes. At the faintest
magnitudes these galaxies are unresolved in the simulated ground-
based data, and hence the details of their structural properties are
not critical.

The black points in Fig. 7 show that the bias for galaxies with
20 < mr < 25 increases until mlim > 26.5; in general we find that
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Figure 7. Multiplicative bias for an ellipticity distribution with ε0 = 0.25
where only galaxies with magnitudes brighter than mlim are included in the
simulation. The black points show the bias for 20 < mr < 25. For compari-
son, the hatched region indicates the 68 per cent confidence interval for the
average bias for galaxies using the GEMS input catalogue. Irrespective of
the magnitude range, the bias converges when mlim is 1.5 mag fainter than
the magnitude limit of the source sample.

the bias converges if we include sources that are 1.5 mag fainter
than the magnitude limit of the sample of sources used to measure
the weak lensing signal. This also appears to be true if we consider
narrow bins in magnitude, such as the bin with 24 < mr < 25 for
which the bias is large, but converges for mr > 26.5. The dominant
contribution of these faint galaxies is to act as a source of correlated
noise, affecting the shape measurements of brighter galaxies. These
results demonstrate that it is important to ensure that the input
catalogue used for image simulations contains a sufficient number
of galaxies fainter than the magnitude limit one is interested in.

For comparison the hatched area in Fig. 7 indicates the 68 per cent
confidence region for the bias we obtain when we use the GEMS
input catalogue, without introducing additional faint galaxies to
account for incompleteness (for mr > 25.5). Comparison with
the black points suggests that the input catalogue is sufficient for
the interpretation of the CCCP data, and we use it to compute the
corrections in Section 2.4.

Finally we examine whether the bias depends on the assumed
distribution of Sérsic indices. To do so, we create images where
all galaxies have the same Sérsic index n, while keeping the other
parameters the same. The results are presented in Fig. 8 for different
values of ε0. The bias depends on the value of n, although the
range is small (∼0.02 for ε0 = 0.3), with the results for n = 1
(corresponding to exponential profiles) most discrepant. We note,
however, that the half-light radii were kept to the values listed in
the GEMS catalogue, which can lead to small changes in the SNR,
complicating a direct comparison. Given the small variation in μ,
and the fact that the observed distribution of Sérsic indices is well-
constrained, we assume that the uncertainty in this distribution can
be ignored. Hence, the dominant uncertainty in our bias estimate
arises from the uncertainty in the ellipticity distribution.

Figure 8. Multiplicative bias as a function of input ellipticity distribution for
four different Sérsic indices (as indicated) for galaxies with 20 < mr < 25.
The hatched region indicates the 68 per cent confidence region when the
distribution of Sérsic indices from GEMS is used. The bias depends on
the value of the Sérsic index, although we note that the results cannot be
compared directly, as explained in the text.

2.4 Empirical correction

If the simulated data resemble the actual observations sufficiently
well, the average bias for the source sample could be used to adjust
the cluster masses accordingly. Note that one would still have to
determine the bias as a function of seeing. An additional compli-
cation arises, however, because we lack redshifts for the sources:
the bias depends on the fluxes and sizes of the sources. As a result
the bias may be redshift dependent, which is not captured by the
image simulations as the same shear is applied to all sources. In
reality the amplitude of the shear signal depends on the geometry
of the lens–source configuration, quantified by the critical surface
density(e.g. Bartelmann & Schneider 2001)

�crit = c2

4πG

Ds

DlDls
, (7)

where Ds, Dl and Dls are the angular diameter distances between
the observer and the source, the observer and the lens and the lens
and source, respectively. The sensitivity to the source redshift dis-
tribution is quantified by the ratio β = Dls/Ds. The average shear
for an ensemble of galaxies is proportional to 〈(1 + μ)β〉. If photo-
metric redshifts for the individual sources are available, the redshift
dependence of the lensing signal can be accounted for on an object-
by-object basis and an average correction for the multiplicative bias
is possible. An alternative route, which we take here, is to compute
the multiplicative bias using the observed properties of individual
galaxies. The correction, however, will still depend on the intrinsic
ellipticity distribution of the sources.

We assume that the bias is only a function of SNR (e.g. Kacprzak
et al. 2012; Melchior & Viola 2012) and the size relative to that
of the PSF (e.g. Massey et al. 2013). We quantify the latter by the
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parameter R, defined as

R2 = r2
h,∗

r2
h,gal − r2

h,∗
, (8)

where rh,∗ denotes the half-light radius of the PSF and rh, gal that of
the observed galaxy. Despite being a simple prescription, we show
in Section 2.5 that this captures the dependence on PSF size quite
well. As a proxy for the SNR we take ν = 1/σ e, the reciprocal
of the uncertainty in the polarization (Hoekstra et al. 2000). We
refer the interested reader to Appendix C for more details about our
empirical correction, which is given by

μ(ν) = b(ν)

1 + α(ε0)R . (9)

The dependence on the resolution parameter R is described by a
single parameter α that is a function of ε0 only. We require three free
parameters to describe dependence of the bias on ν: b(ν) = b0 +
b1/

√
(ν) + b2/ν, with fit parameters that vary smoothly with ε0. The

best-fitting parameters as a function of ε0 are listed in Table C1.
Although this parametrization does not describe the simulated data
perfectly, and obvious improvements can be suggested, we prefer
our choice as it provides a sufficiently accurate correction, with a
relatively small number of parameters. Including more parameters
did not improve the robustness of the correction.

We find that our parametrization of the bias does not perform
well for galaxies with large observed sizes (rh > 5 pixels; see
e.g. Fig. C1). As discussed in more detail in Section 4 we find
that the recovered lensing signal for these galaxies is biased low
(see Fig. 14). Closer investigation of the simulated data shows that
most of these galaxies are intrinsically small and faint. In some
of the cases the sizes are increased by noise in the images, but a
large fraction is blended with other galaxies. The large increase
in galaxy density in clusters of galaxies is expected to exacerbate
this problem, which is not captured by our simulations (which are
representative of the field). To minimize the impact of blending, we
include only galaxies with rh < 5 pixels in the lensing analysis. This
size cut is applied to the tests presented below, as well as our actual
measurements.

2.5 Testing the empirical correction

To quantify how well the correction works when we apply it to the
simulated data, we first examine the residual bias μcor as a function
of ε0. As explained in more detail in Section 3.1, we restrict the
source sample to galaxies with 22 < mr < 25 to allow for a better
correction for the contamination by cluster members. In addition we
apply a size cut, requiring that rh < 5 pixels. This is motivated by
our image simulations where we found that the correction for large
galaxies is biased, because they are blended or too faint to have their
shapes measured reliably. We therefore limit the discussion of the
performance of the empirical correction to this range in apparent
magnitude and galaxy size. The results are presented in Fig. 9,
which shows that for the range of interest for ε0 (indicated by the
hatched region) |μcor| < 0.005.

As the intrinsic ellipticity distribution remains uncertain, it is
useful to examine the bias that is introduced when an incorrect value
for ε0 is used for the empirical correction. If we use the parameters
corresponding to ε0 = 0.25 to correct the measurements from other
input distributions we find that μcor is still small, as indicated by
the black line in Fig. 9. Our empirical correction is quite robust
against the uncertainty in the input ellipticity distribution (if we
take ε0 = 0.25). As discussed in Appendix C the parametrization

Figure 9. Residual multiplicative bias as a function of input ellipticity
distribution for galaxies with 22 < mr < 25 and rh < 5 pixels. The black
points indicate the results when the correct value for ε0 is used in the
correction. The line indicates the residual bias if we assume ε0 = 0.25 in
the correction, instead of the correct value for the simulated distribution.
Adopting a value ε0 = 0.25 for the correction results in |μcor| < 0.015 over
the expected range in actual ε0 values (indicated by the hatched region).

for the size dependence of the bias is not accurate for large galaxies,
which are typically bright. This is indeed reflected in the residual
bias as a function of apparent magnitude: we observe μcor ∼ 0.02
for mr < 22, with a bias ∼0 for galaxies with mr > 22.

The empirical correction was determined for a particular PSF and
integration time. Although it is in principle possible to create simu-
lated data sets for each set of observing conditions, a useful correc-
tion scheme should be more generally applicable. As discussed in
Appendix D, we also simulated data from the second Red-sequence
Cluster Survey (RCS2). These data are shallower, but the results
presented in Fig. D1 indicate that the correction works fairly well
for these shallower data. This suggests that the modelling of the
SNR-dependence is adequate.

More interesting is whether our approach to quantify how well
galaxies are resolved, i.e. the choice of R, can be used for a range
of seeing values. To this end we correct the set of images used to
study the seeing dependence of the bias (see Fig. 6). The results for
galaxies with 22 < mr < 25 are presented in Fig. 10, which shows
μcor as a function of the FHWM of the PSF. Even for a FWHM of
1 arcsec the bias is reduced significantly. None the less the residual
bias can still be substantial. However, as is shown by the seeing his-
togram, the CCCP data span a relatively narrow range, and the mean
bias for the full sample is 〈μcor〉 = −0.001. Furthermore, the largest
FWHM values occur on chips far away from the cluster location.
We therefore ignore the seeing dependence, as the residual bias is
still much smaller than the statistical uncertainties for individual
clusters, and the ensemble average bias very small.

We conclude that our empirical correction is adequate to deter-
mine cluster masses for the CCCP sample. Based on the residuals
we assign a systematic uncertainty of 2 per cent in the cluster masses
due to the uncertainty in the input ellipticity distribution, the limited

MNRAS 449, 685–714 (2015)



Updated CCCP weak lensing masses 693

Figure 10. Residual multiplicative bias as a function of seeing for sources
with 22 < mr < 25. The black points show the results for ε0 = 0.25. The red
(blue) hatched regions indicate the 68 per cent confidence region for the bias
if we use the parameters for ε0 = 0.25 to correct the simulations with input
distribution with ε0 = 0.15 (ε0 = 0.3) instead. The bottom histogram shows
the seeing distribution for each chip in CCCP, the side histogram shows the
corresponding distribution of residual bias, with 〈μcor〉 = −0.001.

exploration of the role of morphology, and the variation in image
quality.

3 SO U R C E R E D S H I F T D I S T R I BU T I O N

We lack the colour information to derive photometric redshifts for
the individual sources, as opposed to e.g. Applegate et al. (2014)
and Umetsu et al. (2014). Fortunately it is sufficient to know the av-
erage source redshift distribution, which we discuss in more detail
in Section 3.2. We note, however, that photometric redshifts enable
an optimal weighting of the sources. In particular photometric red-
shifts allow for a separation of source galaxies and cluster members.
The latter are unlensed, as are foreground galaxies, and thus dilute
the observed lensing signal by a factor fcontam(r) = 1 + ncl(r)/nfld,
where ncl(r) is the number density of cluster galaxies and nfld the
number density of field galaxies. This correction is especially im-
portant at small distances from the cluster centre. As we describe in
Section 3.1, we can correct for the reduction in signal by quantifying
the level of contamination. This assumes that the orientations of the
cluster members are random, which is supported by observations
(Sifón et al. 2015).

In doing so, we assume that the change in counts is solely caused
by contamination by cluster members. However, gravitational lens-
ing not only changes the galaxy shapes, but also magnifies sources.
As a result the background sources appear brighter, leading to an
increase in the observed counts. On the other hand, the actual vol-
ume is reduced, because the observed solid angle corresponds to a
smaller solid angle behind the cluster. Consequently, the net change
depends on the number density of background galaxies as a function
of apparent magnitude (see e.g. Section 3.4 in Mellier 1999). In our
case we observe a slope dlog Ngal/dM ∼ 0.38–0.4 for galaxies with
22 < mr < 24. This is somewhat steeper than the slope of ∼0.33
observed by Hogg et al. (1997) in the R band. In either case, the net

effect is minimal: even for κ = 0.1 the change in observed counts
is 1–3 per cent. Hence, it is safe to assume that the excess counts
are solely caused by contamination by cluster members. Note, how-
ever, that the source redshift distribution is somewhat changed, as
we do see intrinsically fainter galaxies. We verified that the resulting
change in mean redshift can be safely neglected.

3.1 Contamination by cluster members

To reduce contamination by cluster members, H12 used their lim-
ited colour information to identify and remove galaxies on the red
sequence. As shown in Hoekstra (2007), this does lower the contam-
ination, but only by ∼30 per cent as many faint cluster members are
blue. Furthermore H12 assumed that the excess number density of
galaxies can be described as fcontam ∝ r−1, with the amplitude deter-
mined for each cluster. The analysis presented here differs from H12
in several ways. Rather than applying a colour cut, we restrict the
magnitude range of the sources. Furthermore we use a more flexible
model to quantify the radial dependence of the excess counts. We
also correct the excess source counts for the obscuration by cluster
members (Simet & Mandelbaum 2014). Finally, as described be-
low, rather than considering the excess counts, we account for the
weight provided by the uncertainty in the shape measurement.

H12 used sources as bright as mr ∼ 20, for which the level
of contamination is high. This is demonstrated by Fig. 11, which
shows the corresponding correction factor as a function of distance
from the cluster for different bins of apparent magnitude. For the
Megacam data the counts are normalized to the average number
density at radii larger than rmax = 4 h−1

70 Mpc, i.e. we assume that
the level of contamination can be ignored at those large radii. This
is supported by comparison of the observed counts to those in
blank fields. In addition, we used predictions based on the halo
model described in Cacciato et al. (2013) to estimate the expected
level of contamination due to neighbouring structures. In line with
our comparison of the blank field galaxy counts, we find that the
contribution from local structures can indeed be ignored. The field of
view of the CFH12k data is smaller and we estimate the background
level using the number density at radii larger than rmax = 3 h−1

70 Mpc.
The contamination is much higher for bright galaxies: such galax-

ies are rare in the field, but much more common in clusters. For
the brightest bin (20 < mr < 21) the cluster members outnumber
source galaxies 3 to 1 in the inner ∼1 h−1

70 Mpc. Such a large level of
contamination is difficult to model reliably and for this reason we
decided to increase the bright limit of the source sample to mr = 22
from the typical value of mr = 20 used in H12. This leads to a reduc-
tion in excess counts that is comparable to excluding the galaxies
on the red sequence. Conveniently, the empirical correction for the
multiplicative bias in the shape measurement also performs better
for galaxies with 22 < mr < 25. Furthermore, the lensing signal is
higher for the fainter galaxies. The shapes of brighter galaxies are
measured better and consequently given more weight in the lens-
ing analysis (see equation 5). Rather than correcting for the excess
counts, which effectively assumes that the weight is uniform, we
compute the excess weight as a function of radius. This is a minor
correction, which increases the masses of the parametric Navarro–
Frenk–White (NFW) fits by ∼2–3 per cent (see Section 4.1).

The other important change we make is that we allow the ra-
dial profile of the excess weight to vary from cluster to cluster by
introducing a core. The simple 1/r profile used by H12 is not a
good description for all clusters or magnitude bins. Investigation
of the ensemble averaged residuals suggest that it leads to an over-
estimation of the contamination in the inner ∼500 h−1

70 kpc and an
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Figure 11. The ensemble averaged correction factor for contamination by cluster members as a function of distance for different bins of apparent magnitude.
Panel (a) shows the results for clusters observed with Megacam, whereas panel (b) is for the CFH12k observations.

underestimation by 4–5 per cent at larger radii because the model
attempts to compensate for the poor fit in the cluster cores. To
describe the excess counts we now fit

fcontam(r) = 1 + n0

(
1

r + rc
− 1

rmax + rc

)
, (10)

to each cluster, where we take rmax = 4 h−1
70 Mpc for the Megacam

data and rmax = 3 h−1
70 Mpc for the CFH12k data. The core radius

rc is a free parameter that we fit for each cluster separately. Fig. 12
shows the ensemble averaged residual contamination for sources
with 22 < mr/RC

< 25 as a function of radius, suggesting that the
systematic uncertainty for the ensemble of clusters is at most a
few per cent. Note that the residuals may be larger for individual
clusters, resulting in increased scatter. However, the results pre-
sented in Fig. 12 suggest that residual contamination will have a
minimal impact on the normalization of scaling relations derived
from CCCP measurements and we adopt a systematic uncertainty
in the mass of 2 per cent as a result of the imperfect correction for
contamination by cluster members.

The observed counts are biased low in the inner regions because
the presence of bright cluster members affects our ability to de-
tect and analyse sources. Although Simet & Mandelbaum (2014)
showed that this is an important source of bias for the measurement
of magnification, it may also lead to a small bias in our estimate of
the dilution of the lensing signal. We simulated the impact of this
and as described in more detail in Appendix E we find that the im-
pact is indeed small, boosting the masses from the parametric NFW
fits by 1–2 per cent (see Section 4.1). The aperture masses, which
are discussed in Section 4.2 are not affected, because they rely on
estimates of the lensing signal at large radii where the density of
cluster members is low.

3.2 Photometric redshift catalogue

The weak lensing analysis of the initial sample of 20 clusters
observed with the CFH12k camera in Hoekstra (2007) used the
photometric redshift distributions derived for the HDF North and
South using the available deep multiwavelength data (Fernández-
Soto, Lanzetta & Yahil 1999). However, the area covered is small,

Figure 12. Plot of the ensemble averaged residual contamination as a func-
tion of distance to the cluster centre. The top panel shows the results for
sources with 22 < mr < 25 based on the Megacam data. The hatched regions
indicate the 68 per cent confidence intervals for the residuals for clusters with
z < 0.25 (blue) and z > 0.25 (red). The bottom panel shows the same, but
now for CFH12k data and sources with 22 < mRC

< 25. For both data sets
the residual contamination on the scales of interest (> 0.5 h−1

70 Mpc) is at
most 2 per cent.

leading to concerns whether the redshift distributions are represen-
tative. For this reason H12 used the photometric redshift distribution
from Ilbert et al. (2006), which is based on the four CFHT Legacy
Survey (CFHTLS) Deep fields (each field covers 1 deg2). However,
Ilbert et al. (2006) derived photometric redshifts using observations
in five optical filters (ugriz). Although these data are very deep,
the lack of NIR data is a concern for high-redshift galaxies. Good
quality NIR data are essential for this purpose because at z > 1.5
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the Balmer and 4000 Åbreak features in galaxy spectral energy
distributions, which are the strongest features for determining a
photometric redshift, are redshifted into the NIR.

For our analysis we use data from the COSMOS (Scoville et al.
2007) which observed a single field covering 2 deg2 with HST,
and for which extensive multiwavelength and spectroscopic data
are available. Ilbert et al. (2009) present photometric redshifts for
these data based on measurements in 30 bands (hereafter referred to
as COSMOS-30). This redshift distribution was used in Applegate
et al. (2014) to determine their ‘colour-cut’ masses. At the time of the
analysis by Ilbert et al. (2009), deep NIR data were not available.
This situation has changed thanks to the UltraVISTA survey, an
ESO public survey performing deep imaging of the COSMOS field
in five NIR filters (see McCracken et al. 2012, for details). The
UltraVISTA data are a significant upgrade to the available NIR
imaging in the COSMOS field, and therefore allow for a marked
improvement in the quality of photometric redshifts for galaxies at
z > 1.5. Two public NIR-selected catalogues have been produced
using the UltraVISTA data; one where galaxies were selected in the
Ks band (Muzzin et al. 2013), and one where objects were selected
using a co-added χ2 image of the NIR bands (Ilbert et al. 2013).
Both of these catalogues provide photometric redshifts and stellar
masses for the galaxies.

Galaxies have a wide range of optical–NIR colours, and there-
fore NIR-selected samples of galaxies are typically quite different
from r-selected samples, particularly for the high-redshift end of
the distribution. Consequently we cannot simply use the available
photometric redshift catalogues, because our source galaxies are
selected from the deep CCCP r-band imaging. Furthermore, many
of the sources that are of interest for the lensing analysis may be
missing because the UltraVISTA data (Ks = 23.9 AB) are 1.5 mag
shallower than the CCCP optical imaging.

In order to construct a representative photometric redshift dis-
tribution for the sources, we created a new r+-selected catalogue
of the COSMOS/UltraVISTA field using the Subaru imaging of
the field from Capak et al. (2007). The Subaru r+ imaging has
good image quality (FWHM ∼ 0.8 arcsec) and reaches a 5σ depth
of ∼ 26.5 AB. This is approximately a full magnitude deeper than
the CCCP imaging, and therefore provides a complete sample of
galaxies to mr ∼ 25.5 with well-measured spectral energy distri-
butions, a prerequisite for calculating photometric redshifts. The
r+-selected catalogue was constructed in the identical manner as
the Ks-selected catalogue described in Muzzin et al. (2013) and we
refer the reader to that paper for complete details of the catalogue
construction. In brief, the catalogue consists of photometry in 29
photometric bands ranging from 0.15-24 μm and incorporates the
available GALEX (Martin et al. 2005), Subaru (Capak et al. 2007),
UltraVISTA (McCracken et al. 2012) and Spitzer data (Sanders et al.
2007). Images were PSF-matched and photometry was performed
in fixed 2.1 arcsec diameter apertures.

Photometric redshifts for all galaxies were calculated using the
EAZY photometric redshift code (Brammer, van Dokkum & Coppi
2008), which determines photometric redshifts using linear combi-
nations of multiple templates as well as a template error function
to account for data/template mismatch. EAZY is well-tested and per-
forms well amongst the best of publicly-available photometric red-
shift codes (e.g. Hildebrandt et al. 2010). The photometric redshifts
were further refined by determining small offsets to the photometric
zero-points using the ∼ 5000 spectroscopic redshifts available in
the COSMOS field from the zCOSMOS-10k sample (Lilly et al.
2009). The process is iterative, and the final photometric catalogue

contains photometric redshifts accurate to �z/(1 + z) = 0.01, with
a catastrophic outlier fraction of ∼1 per cent. This estimate of the
accuracy is based on the zCOSMOS spectroscopic redshifts, which
are primarily bright galaxies at z < 1.5. At z > 1.5, it is more
difficult to assess how accurate the photometric redshifts are, due
to the lack of a spectroscopic calibration sample. Small numbers
of spectroscopic redshifts are available from various NIR spectro-
scopic surveys, and those suggest that the accuracy at z > 1.5 for
bright galaxies is only slightly worse, of order a few per cent. We
have made the full r+-selected catalogue publicly available on the
Ks-selected catalogue website.5 Also included is a simplified ver-
sion of that catalogue that can be used for a quick calculation of
photometric redshift distributions for future lensing analyses.

The left-hand panel in Fig. 13 shows the resulting redshift dis-
tribution for galaxies with 20 < mr < 25 using our r-band se-
lected photometric redshift catalogue. The red dashed histogram
shows the redshift distribution of the galaxies matched to the NIR-
selected catalogue from Ilbert et al. (2013), which makes use of
the ∼ 3000 unpublished zCOSMOS-deep spectroscopic redshifts.
For reference, the blue histogram shows the corresponding redshift
distribution for the CFHTLS Deep fields from Ilbert et al. (2006),
which was used by H12. The inset panel shows a direct comparison
of the photometric redshifts derived here and those from Ilbert et al.
(2013) who used a different algorithm and measured the photom-
etry independently. The overall agreement is remarkably good for
the galaxies in common; only for mr > 24 are some of the galaxies
assigned a high redshift in the catalogue from Ilbert et al. (2013)
and a low redshift by EAZY. These represent 2 per cent of the total
sample of sources and about 20 per cent of the galaxies for which
Ilbert et al. (2013) find z > 2. The excellent agreement for most of
the galaxies is a demonstration of the quality of the data, both in
terms of depth and wavelength coverage.

The impact of the differences in source redshift distributions on
the cluster-mass estimates is quantified in the right-hand panel of
Fig. 13, which shows the lensing efficiency 〈β〉 as a function of
apparent magnitude. Our results are indicated by the black points,
whereas the red dashed curve corresponds to the redshift distribution
from Ilbert et al. (2013). For mr < 23 the agreement is very good,
whereas the higher number of z > 2.5 galaxies in the Ilbert et al.
(2013) catalogue results in a higher value for 〈β〉, and thus a lower
mass. We list 〈β〉 for the sources in Table 1; column 7 lists the
values for our analysis of the COSMOS and UltraVISTA data, and
column 8 lists the results using the results from Ilbert et al. (2013).
To determine cluster masses we use 〈β〉used provided in column 9,
which is the average of the values obtained for the two redshift
distributions. The value for 〈β2〉used, which is a measure of the
width of the distribution (see Hoekstra et al. 2000; Hoekstra 2007,
for details) is also an average of the two estimates.6 These numbers
include a size cut similar to the one applied to our lensing data. The
red line in Fig. 14 shows how 〈β〉 depends on the observed half-light
radius; we find that the dependence on size is very small, and we
therefore conclude that the size cuts do not introduce a significant
bias.

The significant differences in redshift distribution demonstrate
that the lack of reliable photometric redshift estimates remains a
key source of error. The unique range in wavelength and quality

5 http://www.strw.leidenuniv.nl/galaxyevolution/ULTRAVISTA/
6 The values listed here are corrected for an error in the calculation of 〈β2〉
that reduced the sensitivity to the convergence in our previous work.
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Figure 13. Left-hand panel: the redshift distribution of galaxies with 20 < mr < 25 based on the COSMOS + UltraVISTA photometric redshift analysis. The
solid black histogram indicates the results from our analysis, whereas the red dashed histogram corresponds to the results from Ilbert et al. (2013). The inset
shows the comparison of the photometric redshifts for the galaxies in common. The blue histogram shows the redshift distribution used in H12. Right-hand
panel: value of 〈β〉 as a function of mr for a cluster at z = 0.2. The points with error bars are our measurements, which agree well with the red dashed line
(Ilbert et al. 2013) for mr < 23. The four blue lines are the results for the CFHTLS Deep fields studied by Ilbert et al. (2006) and used in H12.

of the COSMOS+UltraVISTA data are a major step forward, but
without complete spectroscopic coverage, the uncertainty at the
highest redshifts remains. Furthermore, cosmic variance can still
be important for a single field (see e.g. Hoekstra et al. 2011, for
estimates). Assigning a systematic uncertainty remains difficult,
but we use the difference between our photometric redshifts and
those from Ilbert et al. (2013, indicated as I13 in Table 1) as an
estimate for the systematic uncertainty.

The blue lines in the right-hand panel of Fig. 13 show 〈β〉 for the
four CFHTLS Deep fields (Ilbert et al. 2006). The main difference
occurs at mr ∼ 21.5, although the average is also lower than the
new estimates for faint galaxies. We use the variation between the
fields to estimate the contribution of cosmic variance for our redshift
distribution. This is conservative, because the COSMOS field itself
is larger than each of the CFHTLS Deep fields. The systematic
uncertainty δβ listed in Table 1 is the sum of the dispersion measured
from the four fields and |β I13 − β|/2. These amount to ∼3 per cent
for clusters at z = 0.2, increasing to ∼8 per cent for z = 0.55.

Variation in the actual source redshift distribution behind a clus-
ter leads to an increase in the statistical uncertainty. The impact of
this was studied by Hoekstra et al. (2011) using simulations. Their
findings suggest that the lack of redshift information for the indi-
vidual sources increases the statistical uncertainty in the mass by
∼3 per cent for a cluster at z = 0.2 and by ∼10 per cent at z = 0.6.

4 U PDATED MASS ESTIMATES

We use our new insights in the shape measurement bias and the
source redshift distribution to update the mass estimates provided by
H12. The only change we made to the original shape measurements
is a corrected estimate for σ e, the uncertainty in the polarization7

because we use this quantity in our estimate of the multiplicative

7 The older version of the code included an incorrect treatment of the Poisson
noise.

bias. This correction also affects the weight defined by equation (5),
although the impact is very minor. The star–galaxy separation is
somewhat more conservative: previously we included faint galaxies
with sizes comparable to the PSF in the lensing analysis, although
they were severely down-weighted in practice. As the correction
scheme requires sizes larger than the PSF, and the fact that these
objects do not contribute much to the average signal, we now only
select objects larger than the PSF in the object catalogue. The star
selection itself was not changed, and consequently we use the same
PSF model parameters.

We apply our empirical correction given by equation (9) to the
object catalogues using the observed values of rh and ν and recom-
pute the tangential shear profile as a function of radius, taking the
cluster centres used in H12 (table 1 of that paper). Based on our
image simulations we also apply a size cut rh < 5 pixels. The solid
points in Fig. 14 show the lensing signal, averaged over the full
ensemble of clusters, as a function of the observed half-light radius
of the sources. The signal is quantified by the Einstein radius rE

obtained from a fit to the measurements between 0.5−4 h−1
70 Mpc.

We correct each bin for the mean β, which does not vary signifi-
cantly with source size (indicated by the red line), suggesting that
our results are not sensitive to the size cuts. The resulting value of
rE/β should not depend on the source size.

The observations support our finding from the image simulations
that the signal is biased low for galaxies with rh > 5 pixels. For
reference we also show the results if we do not apply our empiri-
cal correction for multiplicative bias (open points). The corrected
results are consistent with a constant signal, but the uncorrected
measurements are bias low for the smallest sources.

We update the correction for Galactic extinction using the
Schlafly & Finkbeiner (2011) recalibration of the Schlegel,
Finkbeiner & Davis (1998) infrared-based dust map. This reduces
the correction for clusters in highly extinguished regions. To ensure
a more robust correction for the contamination by cluster members
we do not apply a colour cut, but instead limit the source sample
to galaxies with 22 < mr/RC

< 25. In the case of the CFH12k data,
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Table 1. Basic information for the CCCP clusters.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Name z RA Dec. mag 〈β〉 〈β〉I13 〈β〉used δβ 〈β2〉used

(J2000.0) (J2000.0) (h−1
70 kpc)

1 Abell 68 0.255 00h37m06.s9 +09◦09′24′ ′ 22–25 0.553 0.579 0.566 0.021 0.375
2 Abell 209 0.206 01h31m52.s5 −13◦36′40′ ′ 22–25 0.625 0.649 0.637 0.019 0.453
3 Abell 267 0.230 01h52m42.s0 +01◦00′26′ ′ 22–25 0.586 0.610 0.598 0.019 0.409
4 Abell 370 0.375 02h39m52.s7 −01◦34′18′ ′ 22–25 0.414 0.442 0.428 0.026 0.244
5 Abell 383 0.187 02h48m03.s4 −03◦31′44′ ′ 22–24.5 0.636 0.654 0.645 0.014 0.462
6 Abell 963 0.206 10h17m03.s8 +39◦02′51′ ′ 22–25 0.621 0.644 0.632 0.018 0.448
7 Abell 1689 0.183 13h11m30.s0 −01◦20′30′ ′ 22–24.5 0.647 0.666 0.656 0.015 0.475
8 Abell 1763 0.223 13h35m20.s1 +41◦00′04′ ′ 22–25 0.590 0.613 0.601 0.018 0.412
9 Abell 2218 0.176 16h35m48.s8 +66◦12′51′ ′ 22–24.5 0.646 0.662 0.654 0.012 0.471
10 Abell 2219 0.226 16h40m19.s9 +46◦42′41′ ′ 22–25 0.596 0.621 0.609 0.020 0.421
11 Abell 2390 0.228 21h53m36.s8 +17◦41′44′ ′ 22–25 0.597 0.624 0.611 0.021 0.423
12 MS 0015.9+1609 0.547 00h18m33.s5 +16◦26′16′ ′ 22–25 0.277 0.304 0.291 0.025 0.138
13 MS 0906.5+1110 0.170 09h09m12.s6 +10◦58′28′ ′ 22–25 0.678 0.700 0.689 0.016 0.515
14 MS 1224.7+2007 0.326 12h27m13.s5 +19◦50′56′ ′ 22–25 0.465 0.492 0.479 0.024 0.289
15 MS 1231.3+1542 0.235 12h33m55.s4 +15◦25′58′ ′ 22–25 0.587 0.614 0.600 0.021 0.412
16 MS 1358.4+6245 0.329 13h59m50.s6 +62◦31′05′ ′ 22–25 0.466 0.494 0.480 0.025 0.290
17 MS 1455.0+2232 0.257 14h57m15.s1 +22◦20′35′ ′ 22–25 0.564 0.594 0.579 0.024 0.388
18 MS 1512.4+3647 0.373 15h14m22.s5 +36◦36′21′ ′ 22–25 0.427 0.458 0.442 0.027 0.256
19 MS 1621.5+2640 0.428 16h23m35.s5 +26◦34′14′ ′ 22–25 0.373 0.404 0.389 0.027 0.211
20 CL0024.0+1652 0.390 00h26m35.s6 +17◦09′44′ ′ 22–25 0.393 0.420 0.407 0.025 0.226

21 Abell 115N 0.197 00h55m50.s6 +26◦24′38′ ′ 22–25 0.645 0.670 0.658 0.019 0.478
Abell 115S 0.197 00h56m00.s3 +26◦20′33′ ′ 22–25 0.645 0.670 0.658 0.019 0.478

22 Abell 222 0.213 01h37m34.s0 −12◦59′29′ ′ 22–25 0.620 0.645 0.633 0.020 0.449
23 Abell 223N 0.207 01h38m02.s3 −12◦45′20′ ′ 22–25 0.629 0.653 0.641 0.019 0.459

Abell 223S 0.207 01h37m56.s0 −12◦49′10′ ′ 22–25 0.629 0.653 0.641 0.019 0.459
24 Abell 520 0.199 04h54m10.s1 +02◦55′18′ ′ 22–25 0.642 0.667 0.655 0.019 0.475
25 Abell 521 0.253 04h54m06.s9 −10◦13′25′ ′ 22–25 0.559 0.583 0.571 0.021 0.381
26 Abell 586 0.171 07h32m20.s3 +31◦38′01′ ′ 22–25 0.668 0.687 0.678 0.014 0.501
27 Abell 611 0.288 08h00m56.s8 +36◦03′24′ ′ 22–25 0.512 0.536 0.524 0.022 0.332
28 Abell 697 0.282 08h42m57.s6 +36◦21′59′ ′ 22–25 0.532 0.559 0.545 0.023 0.354
29 Abell 851 0.407 09h42m57.s5 +46◦58′50′ ′ 22–25 0.391 0.418 0.405 0.026 0.224
30 Abell 959 0.286 10h17m36.s0 +59◦34′02′ ′ 22–25 0.528 0.556 0.542 0.024 0.350
31 Abell 1234 0.166 11h22m30.s0 +21◦24′22′ ′ 22–25 0.693 0.714 0.703 0.015 0.534
32 Abell 1246 0.190 11h23m58.s8 +21◦28′50′ ′ 22–25 0.651 0.673 0.662 0.017 0.483
33 Abell 1758 0.279 13h32m43.s5 +50◦32′38′ ′ 22–25 0.539 0.567 0.553 0.024 0.361
34 Abell 1835 0.253 14h01m02.s1 +02◦52′43′ ′ 22–25 0.562 0.588 0.575 0.021 0.385
35 Abell 1914 0.171 14h26m02.s8 +37◦49′28′ ′ 22–25 0.685 0.708 0.697 0.017 0.525
36 Abell 1942 0.224 14h38m21.s9 +03◦40′13′ ′ 22–25 0.607 0.633 0.620 0.021 0.434
37 Abell 2104 0.153 15h40m07.s9 −03◦18′16′ ′ 22–25 0.707 0.727 0.717 0.014 0.552
38 Abell 2111 0.229 15h39m40.s5 +34◦25′27′ ′ 22–25 0.599 0.625 0.612 0.021 0.425
39 Abell 2163 0.203 16h15m49.s0 −06◦08′41′ ′ 22–25 0.619 0.639 0.629 0.016 0.445
40 Abell 2204 0.152 16h32m47.s0 +05◦34′33′ ′ 22–25 0.708 0.728 0.718 0.014 0.554
41 Abell 2259 0.164 17h20m09.s7 +27◦40′08′ ′ 22–25 0.690 0.711 0.700 0.015 0.530
42 Abell 2261 0.224 17h22m27.s2 +32◦07′58′ ′ 22–25 0.606 0.632 0.619 0.020 0.433
43 Abell 2537 0.295 23h08m22.s2 −02◦11′32′ ′ 22–25 0.511 0.537 0.524 0.023 0.332
44 MS0440.5+0204 0.190 04h43m09.s9 +02◦10′19′ ′ 22–25 0.646 0.667 0.656 0.017 0.476
45 MS0451.6−0305 0.550 04h54m10.s8 −03◦00′51′ ′ 22–25 0.283 0.307 0.295 0.024 0.140
46 MS1008.1−1224 0.301 10h10m32.s3 −12◦39′53′ ′ 22–25 0.504 0.531 0.517 0.024 0.326
47 RXJ1347.5−1145 0.451 13h47m30.s1 −11◦45′09′ ′ 22–25 0.346 0.371 0.358 0.024 0.187
48 RXJ1524.6+0957 0.516 15h24m38.s3 +09◦57′43′ ′ 22–25 0.297 0.321 0.309 0.024 0.150
49 MACS J0717.5+3745 0.548 07h17m30.s4 +37◦45′38′ ′ 22–25 0.269 0.291 0.280 0.022 0.131
50 MACS J0913.7+4056 0.442 09h13m45.s5 +40◦56′29′ ′ 22–25 0.366 0.393 0.380 0.026 0.203
51 CIZA J1938+54 0.260 19h38m18.s1 +54◦09′40′ ′ 22–25 0.550 0.574 0.562 0.021 0.371
52 3C295 0.460 14h11m20.s6 +52◦12′10′ ′ 22–25 0.343 0.368 0.356 0.025 0.185

Column 2: cluster name; column 3: cluster redshift; column 4,5: right ascension and declination (J2000.0) of the adopted cluster centre.
In all but four cases (Abell 520, Abell 851, Abell 1758 and Abell 1914) we take this to be the position of the brightest cluster galaxy
(BCG). Column 6: magnitude range used for the source galaxies. For clusters 1–20 this is the RC filter and r′ for the remaining clusters.
Column 7: the average value of β = Dls/Ds based on the photo-z analysis presented here; column 8: the values for β measured as
described in Ilbert et al. (2013); column 9: the value for β we use to estimate masses, which is the average of the two measurements;
column 10: estimate for the systematic uncertainty in β as described in the text; column 11: average value for 〈β2〉.
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Figure 14. The ensemble averaged lensing signal 〈rE/β〉 as a function of
observed source half-light radius rh. The value for the Einstein radius rE was
obtained by fitting an SIS model to the lensing signal at radii 0.75-4 h−1

70 Mpc.
The solid points, which should not depend on source size, indicate the
results when we apply our correction for the multiplicative bias, whereas
the open points are the uncorrected values. The lensing signal is biased low
for galaxies with rh > 5, similar to what we observed in our simulated
data. The red line indicates the estimate of 〈β〉 as a function of source
size (the values are indicated on the rightmost vertical axis), which does
not vary significantly with object size, suggesting that the adopted redshift
distribution is not very sensitive to the size cuts applied.

H12 used galaxies fainter than RC = 25, for which the redshift
distribution is not well-constrained. We now limit the analysis to
galaxies brighter than RC = 25.

4.1 Parametric mass models

One approach to infer masses is to fit parametrized models to the
lensing signal. The most commonly used profile is the NFW fitting
function proposed by Navarro, Frenk & White (1997), which is a
good description of the average density profiles of haloes in numeri-
cal simulations of structure formation in cold dark matter dominated
universes. It also describes the stacked lensing signal for ensembles
of clusters well (e.g. Okabe et al. 2013; Umetsu et al. 2014). The
NFW profile is characterized by two parameters. We use the mass
of the halo and the concentration c, although we do not fit for these
parameters simultaneously: we use the fact that simulations show
that the mass and concentration are correlated. However, as the
concentration depends on the formation redshift of the halo, this
relation depends on cosmology. H12 used the results from Duffy
et al. (2008), which are based on the cosmological parameters from
the five-year Wilkinson Microwave Anisotropy Probe observations
(WMAP5; Komatsu et al. 2009). These have since been superseded
by the measurements of the Planck satellite (Planck Collaboration
XVI 2014b). Dutton & Macciò (2014) present fitting functions for
the mass–concentration relation for this cosmology, which we use
when we estimate cluster masses (cf. Table 2).

Becker & Kravtsov (2011) have shown that fitting an NFW model
to the observed lensing signal can lead to mass estimates that are
biased low when measurements at large radii are included. For this

reason we restrict the fit to 0.5-2 h−1
70 Mpc from the cluster, where

biases should be negligible. The resulting masses,8 for different
overdensities � are presented in columns 9–11 in Table 2. The
statistical uncertainties on the measurements are estimated as de-
scribed in Hoekstra (2007) and H12. The uncertainties in the mass
estimates include the contribution from distant large-scale structure
(Hoekstra 2001, 2003; Hoekstra et al. 2011). For reference with
other studies we also present the velocity dispersion corresponding
to the best-fitting singular isothermal sphere (SIS).

For reference we note that if we had used the mass–concentration
relation from Duffy et al. (2008), which yields concentrations that
are ∼20 per cent lower compared to the values used here, our masses
would change as follows: M2500 decreases on average by 7 per cent,
while M500 and M200 increase by 5 and 9 per cent, respectively.
The relative change in mass does not depend significantly on the
cluster redshift. However, for a direct comparison with the existing
literature, we present mass measurements using the Duffy et al.
(2008) mass–concentration relation for the WMAP5 cosmology in
Appendix F.

4.1.1 Comparison to other weak lensing studies

Several studies have determined weak lensing masses for large sam-
ples of clusters using observations with the Subaru telescope. The
most relevant for the comparison with CCCP is the WtG project, de-
scribed in von der Linden et al. (2014a), which targeted 51 massive
clusters. For a subset of the clusters WtG determined photometric
redshifts for the sources (see Kelly et al. 2014, for details). How-
ever, these are predominantly the high-redshift systems where the
overlap with CCCP is limited. For this reason we compare with the
‘colour-cut’ masses, which are presented in Applegate et al. (2014).

A closer inspection of the sample studied by von der Linden
et al. (2014a) and Applegate et al. (2014) shows that they associated
MS0906.5+1110 with the cluster Abell 750 which is located only
3 arcmin away in projection. However, as discussed by Rines et al.
(2013) the latter is a different cluster, which is clearly separated
in redshift. The location of A750 provided in von der Linden et al.
(2014a) is in fact that of MS0906.5+1110, and we therefore include
this cluster in the comparison. Abell 1758 is a merging cluster
and therefore H12 considered the Eastern and Western component
separately (also see Ragozzine et al. 2012). However, other studies
consider this a single cluster and we therefore decided to provide
results for the location listed by von der Linden et al. (2014a), who
refer to this cluster as Abell 1758N. As a result we have 18 clusters
in common with WtG.

To compare the results for these clusters, we follow Applegate
et al. (2014) and fit an NFW model with a concentration c200 = 4
to the tangential distortion within 0.75−3 h−1

70 Mpc and compute
the mass within a sphere of radius 1.5 h−1

70 Mpc. The results are
presented in Fig. 15. We find that the WtG masses are some-
what larger: the dashed line indicates the best-fitting linear rela-
tion MWtG = (1.082 ± 0.038)MCCCP. Repeating the comparison
using the results from H12 yields MWtG = (1.263 ± 0.048)MH12.
Hence the analysis presented here reduces the discrepancy consid-
erably. We note that differences in the fitting procedure can lead
to additional uncertainty, and it is therefore not clear whether the

8 M� is the mass enclosed within a radius where the mean density of the
halo is � times the critical density at the redshift of the cluster; the virial
mass is defined relative to the background density. See Hoekstra (2007) for
more details about our choice of definition.
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Table 2. Weak lensing mass estimates for the CCCP sample.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Name σ M
proj
0.5 M

proj
1.0 r2500 M

ap
2500 r500 M

ap
500 MNFW

vir MNFW
2500 MNFW

500

Abell 68 1117+67
−71 4.5 ± 0.5 8.3 ± 1.3 552 3.1+0.4

−0.4 1380 9.7+1.9
−2.0 12.9+2.7

−2.7 3.0+0.6
−0.6 7.5+1.6

−1.6

Abell 209 970+78
−84 3.2 ± 0.5 7.3 ± 1.2 490 2.1+0.4

−0.4 1230 6.5+1.4
−1.3 8.4+2.2

−2.4 2.0+0.5
−0.6 4.9+1.3

−1.4

Abell 267 1006+85
−92 3.9 ± 0.5 7.2 ± 1.4 525 2.6+0.4

−0.4 1203 6.3+1.8
−1.6 7.9+2.4

−2.3 1.9+0.6
−0.6 4.7+1.4

−1.3

Abell 370 1489+75
−79 6.9 ± 0.7 15.3 ± 1.6 638 5.5+0.8

−0.8 1637 18.5+2.3
−2.3 30.4+5.5

−5.3 6.5+1.2
−1.1 17.5+3.2

−3.1

Abell 383 821+117
−135 2.5 ± 0.6 6.1 ± 1.3 430 1.4+0.6

−0.5 1217 6.2+2.2
−2.2 5.8+2.6

−2.4 1.4+0.6
−0.6 3.4+1.5

−1.4

Abell 963 1106+76
−82 3.4 ± 0.5 6.6 ± 1.4 506 2.3+0.5

−0.4 1185 5.8+1.5
−1.5 12.3+3.0

−3.0 2.9+0.7
−0.7 7.1+1.7

−1.7

Abell 1689 1429+59
−62 7.0 ± 0.5 13.2 ± 1.4 702 5.9+0.7

−0.7 1571 13.3+2.4
−2.2 30.9+5.0

−4.8 6.6+1.1
−1.0 17.3+2.8

−2.7

Abell 1763 1229+70
−75 4.9 ± 0.6 10.0 ± 1.4 604 3.9+0.6

−0.6 1511 12.3+3.2
−2.9 16.9+3.5

−3.5 3.8+0.8
−0.8 9.7+2.0

−2.0

Abell 2218 1181+77
−82 5.0 ± 0.6 8.7 ± 1.4 630 4.2+0.7

−0.7 1379 8.9+2.2
−2.1 16.4+3.8

−3.6 3.7+0.9
−0.8 9.4+2.2

−2.1

Abell 2219 1041+75
−80 4.1 ± 0.5 9.5 ± 1.4 552 3.0+0.5

−0.5 1408 10.0+2.0
−1.8 11.3+2.5

−2.5 2.7+0.6
−0.6 6.6+1.5

−1.5

Abell 2390 1331+61
−64 4.9 ± 0.5 9.9 ± 1.3 602 3.9+0.5

−0.5 1351 8.8+1.5
−1.5 23.1+3.8

−3.6 5.1+0.8
−0.8 13.2+2.1

−2.1

MS 0015.9+1609 1456+117
−127 6.8 ± 0.6 17.9 ± 1.9 601 5.6+0.7

−0.8 1617 21.8+3.2
−3.2 28.9+7.0

−6.8 6.2+1.5
−1.5 16.9+4.1

−4.0

MS 0906.5+1110 1077+70
−74 3.8 ± 0.5 8.7 ± 1.2 549 2.8+0.5

−0.5 1423 9.7+1.4
−1.6 12.6+2.9

−2.8 2.9+0.7
−0.6 7.3+1.7

−1.6

MS 1224.7+2007 860+118
−136 1.8 ± 0.6 2.4 ± 1.8 345 0.8+0.4

−0.7 782 1.9+1.0
−0.9 4.9+2.3

−2.1 1.2+0.6
−0.5 3.0+1.4

−1.3

MS 1231.3+1542 590+115
−141 1.0 ± 0.5 0.4 ± 1.3 344 0.7+0.2

−0.2 565 0.6+0.5
−0.4 1.9+1.3

−1.1 0.5+0.3
−0.3 1.1+0.8

−0.7

MS 1358.4+6245 1167+74
−79 4.3 ± 0.5 8.7 ± 1.5 529 3.0+0.5

−0.5 1291 8.6+2.0
−2.0 13.4+3.2

−3.1 3.1+0.7
−0.7 7.8+1.9

−1.8

MS 1455.0+2232 1131+63
−66 3.7 ± 0.4 7.2 ± 1.2 510 2.5+0.4

−0.4 1158 5.7+1.2
−1.1 13.2+2.4

−2.6 3.1+0.6
−0.6 7.7+1.4

−1.5

MS 1512.4+3647 733+111
−130 1.5 ± 0.6 4.5 ± 1.4 282 0.5+0.3

−0.3 853 2.6+1.5
−1.6 3.9+1.7

−1.7 1.0+0.4
−0.4 2.4+1.1

−1.1

MS 1621.5+2640 1300+83
−89 4.9 ± 0.6 11.4 ± 1.7 543 3.6+0.8

−0.8 1286 9.5+2.0
−1.9 19.1+4.2

−4.1 4.3+0.9
−0.9 11.2+2.5

−2.4

CL 0024.0+1652 1311+94
−101 5.6 ± 0.6 11.4 ± 1.7 571 4.0+0.6

−0.6 1333 10.2+2.4
−2.2 24.4+5.7

−5.4 5.3+1.3
−1.2 14.1+3.3

−3.1

Abell 115N 833+89
−99 1.4 ± 0.4 5.3 ± 1.1 283 0.4+0.3

−0.4 1098 4.6+1.0
−1.1 5.9+2.0

−2.0 1.5+0.5
−0.5 3.5+1.2

−1.2

Abell 115S 859+82
−91 2.6 ± 0.4 5.9 ± 1.2 416 1.2+0.4

−0.5 1127 5.0+1.3
−1.2 7.0+2.0

−2.0 1.7+0.5
−0.5 4.1+1.2

−1.2

Abell 222 916+85
−93 2.9 ± 0.5 6.9 ± 1.4 450 1.6+0.6

−0.8 1174 5.7+1.5
−1.3 6.4+2.1

−2.1 1.6+0.5
−0.5 3.8+1.3

−1.3

Abell 223N 989+80
−86 3.0 ± 0.5 7.5 ± 1.3 463 1.7+0.5

−0.6 1236 6.6+1.3
−1.3 8.9+2.5

−2.5 2.1+0.6
−0.6 5.2+1.5

−1.5

Abell 223S 923+90
−99 3.0 ± 0.5 8.3 ± 1.1 466 1.8+0.5

−0.5 1370 9.0+1.5
−1.5 7.8+2.6

−2.4 1.9+0.6
−0.6 4.6+1.5

−1.4

Abell 520 1144+64
−67 3.6 ± 0.4 7.3 ± 1.1 526 2.5+0.5

−0.4 1208 6.1+1.2
−1.1 15.3+3.0

−3.0 3.5+0.7
−0.7 8.8+1.7

−1.7

Abell 521 944+94
−103 3.1 ± 0.5 9.0 ± 1.4 448 1.7+0.7

−0.8 1335 8.8+2.0
−1.9 10.7+3.0

−3.0 2.5+0.7
−0.7 6.3+1.7

−1.7

Abell 586 804+107
−122 2.5 ± 0.6 6.1 ± 1.6 441 1.4+0.5

−0.4 1221 6.1+2.6
−2.6 4.6+2.1

−2.0 1.2+0.5
−0.5 2.8+1.3

−1.2

Abell 611 995+94
−103 3.7 ± 0.5 9.0 ± 1.4 502 2.4+0.5

−0.5 1236 7.2+1.5
−1.4 9.4+2.8

−2.8 2.2+0.7
−0.7 5.5+1.6

−1.6

Abell 697 1146+74
−79 4.6 ± 0.5 10.5 ± 1.4 565 3.4+0.6

−0.6 1431 11.2+1.5
−1.7 14.1+3.1

−3.1 3.3+0.7
−0.7 8.2+1.8

−1.8

Abell 851 1328+91
−98 5.4 ± 0.6 12.2 ± 1.6 553 3.7+0.5

−0.5 1362 11.1+2.2
−2.1 21.4+5.3

−4.9 4.7+1.2
−1.1 12.5+3.1

−2.8

Abell 959 1257+70
−74 5.0 ± 0.5 10.8 ± 1.4 596 4.0+0.6

−0.6 1343 9.2+1.6
−1.6 19.7+3.8

−3.6 4.4+0.8
−0.8 11.4+2.2

−2.1

Abell 1234 969+77
−84 2.5 ± 0.5 4.4 ± 1.3 447 1.5+0.3

−0.3 989 3.2+1.2
−1.0 7.6+2.3

−2.1 1.9+0.6
−0.5 4.5+1.3

−1.2

Abell 1246 921+78
−85 2.7 ± 0.4 5.6 ± 1.1 440 1.5+0.3

−0.4 1089 4.4+1.0
−1.0 8.7+2.4

−2.2 2.1+0.6
−0.5 5.1+1.4

−1.3

Abell 1758 1278+60
−62 5.5 ± 0.5 12.1 ± 1.4 651 5.2+0.7

−0.7 1507 12.9+1.9
−1.9 19.4+3.2

−3.2 4.3+0.7
−0.7 11.2+1.9

−1.9

Abell 1835 1295+65
−68 5.3 ± 0.5 10.7 ± 1.3 618 4.3+0.5

−0.5 1398 10.0+1.6
−1.6 19.9+3.7

−3.5 4.4+0.8
−0.8 11.4+2.1

−2.0

Abell 1914 1098+57
−60 3.7 ± 0.5 7.8 ± 1.2 531 2.5+0.4

−0.4 1293 7.3+1.3
−1.3 13.5+2.4

−2.4 3.1+0.6
−0.6 7.8+1.4

−1.4

Abell 1942 1080+70
−74 3.8 ± 0.6 7.5 ± 1.3 531 2.7+0.6

−0.5 1212 6.4+1.4
−1.3 13.5+2.8

−2.6 3.1+0.6
−0.6 7.8+1.6

−1.5

Abell 2104 1135+71
−76 4.2 ± 0.5 10.2 ± 1.2 596 3.5+0.6

−0.6 1426 9.6+1.7
−1.4 15.7+3.5

−3.3 3.6+0.8
−0.8 9.0+2.0

−1.9

Abell 2111 996+77
−83 3.9 ± 0.5 6.6 ± 1.5 528 2.6+0.5

−0.5 1170 5.7+1.9
−1.8 9.4+2.4

−2.2 2.3+0.6
−0.5 5.5+1.4

−1.3

Abell 2163 1188+74
−79 4.4 ± 0.4 9.4 ± 1.2 574 3.3+0.4

−0.4 1466 11.0+2.0
−2.0 17.4+3.8

−3.6 3.9+0.9
−0.8 10.0+2.2

−2.1

Abell 2204 1229+56
−58 4.8 ± 0.5 10.8 ± 1.2 631 4.2+0.5

−0.6 1491 11.0+1.6
−1.5 19.9+3.2

−3.1 4.4+0.7
−0.7 11.3+1.8

−1.7

Abell 2259 932+89
−98 2.4 ± 0.6 5.6 ± 1.2 427 1.3+0.5

−0.4 1113 4.6+1.2
−1.1 7.9+2.6

−2.4 1.9+0.6
−0.6 4.6+1.5

−1.4

Abell 2261 1307+65
−68 6.0 ± 0.5 14.1 ± 1.4 682 5.7+0.6

−0.6 1663 16.4+1.9
−1.9 24.4+4.1

−3.9 5.3+0.9
−0.9 13.9+2.3

−2.2

Abell 2537 1285+71
−75 5.4 ± 0.6 10.0 ± 1.4 599 4.1+0.6

−0.6 1312 8.7+1.6
−1.5 20.9+4.0

−3.8 4.6+0.9
−0.9 12.1+2.3

−2.2

MS 0440.5+0204 780+112
−130 2.9 ± 0.6 2.8 ± 1.3 468 1.8+0.6

−0.5 896 2.5+0.7
−0.7 3.5+1.8

−1.8 0.9+0.5
−0.5 2.1+1.1

−1.1
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Table 2 – continued.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Name σ M
proj
0.5 M

proj
1.0 r2500 M

ap
2500 r500 M

ap
500 MNFW

vir MNFW
2500 MNFW

500

MS 0451.6−0305 1302+129
−142 4.4 ± 0.6 8.4 ± 2.1 466 2.6+0.6

−0.5 1082 6.5+1.7
−1.9 17.4+5.7

−5.3 3.9+1.3
−1.2 10.3+3.4

−3.1

MS 1008.1−1224 1218+74
−79 4.1 ± 0.4 8.2 ± 1.4 520 2.7+0.4

−0.4 1176 6.3+1.2
−1.2 16.3+3.5

−3.3 3.7+0.8
−0.8 9.5+2.0

−1.9

RX J1347.5−1145 1358+95
−102 5.2 ± 0.7 10.1 ± 2.2 547 3.8+0.9

−0.9 1323 10.7+3.5
−3.7 19.9+5.2

−5.0 4.4+1.2
−1.1 11.7+3.0

−3.0

RX J1524.6+0957 839+199
−258 2.1 ± 0.7 6.5 ± 2.1 249 0.4+0.3

−12.2 977 4.6+2.2
−2.0 6.2+4.2

−3.7 1.5+1.0
−0.9 3.8+2.5

−2.2

MACS J0717.5+3745 1617+119
−128 6.4 ± 0.8 19.3 ± 2.3 612 5.9+1.2

−1.4 1489 17.1+3.2
−3.1 38.4+8.9

−8.6 8.0+1.8
−1.8 22.3+5.2

−5.0

MACS J0913.7+4056 919+143
−168 3.1 ± 0.8 5.3 ± 1.8 397 1.4+0.9

−0.7 945 3.9+1.3
−1.2 6.5+3.4

−2.9 1.6+0.8
−0.7 3.9+2.0

−1.8

CIZA J1938+54 1186+84
−90 5.3 ± 0.6 11.3 ± 1.5 601 4.0+0.6

−0.6 1573 14.4+2.4
−2.4 17.2+4.2

−4.0 3.9+0.9
−0.9 9.9+2.4

−2.3

3C295 1076+113
−125 4.6 ± 0.7 8.1 ± 1.9 501 2.9+0.7

−0.6 1101 6.2+1.6
−1.7 12.0+3.9

−3.8 2.8+0.9
−0.9 7.1+2.3

−2.2

Column 1: cluster name; column 2: line-of-sight velocity dispersion (in units of km s−1) of the best-fitting SIS model; columns 3 and 4:
projected mass within an aperture of radius 0.5 and 1 h−1

70 Mpc, respectively; columns 5 and 7: r� (in units of h−1
70 kpc) determined using

aperture masses; columns 6 and 8: deprojected aperture masses within r�; columns 9–11: masses from best-fitting NFW model. All masses
are listed in units of (1014 h−1

70 M�).

Figure 15. Comparison with the mass estimates from Applegate et al.
(2014). The CCCP masses are computed from the best-fitting NFW model to
the lensing measurements within 0.75−3 h−1

70 Mpc, adopting a concentration
c200 = 4. This matches the procedure described in Applegate et al. (2014),
although our source redshift distribution is somewhat different, as explained
in the text. The dotted line indicates the line of equality, whereas the dashed
line is the best fit, which has a slope 1.08.

difference is significant. Furthermore, the ‘colour-cut’ masses from
Applegate et al. (2014) are derived using the photometric redshift
catalogue from Ilbert et al. (2009), which are based on the orig-
inal COSMOS-30 data. Using this redshift distribution we find
MWtG = (1.063 ± 0.038)MCCCP. Interestingly, when we compute
deprojected aperture masses within a radius of 1 h−1

70 Mpc (in this
case adopting c200 = 4; see Section 4.2 for details), the agreement
with the corresponding masses from Applegate et al. (2014) is ex-
cellent: MWtG = (1.018 ± 0.036)Map

CCCP.
The NFW model is fit to relatively small radii, where the

contamination by cluster members is large (although the inner
750 h−1

70 kpc are not used): if we omit the correction for the con-
tamination of cluster members our masses decrease, as expected,

and MWtG ∼ 1.28 × MCCCP. Although the correction is substantial,
Fig. 12 suggests that the bias after correction should be <2 per cent.

We investigated this further by restricting the fit to small (rin =
0.75−1.5 h−1

70 Mpc) and large (rout = 1.5−3 h−1
70 Mpc) radii. If the

contamination correction is adequate, the resulting average masses
should agree, whereas a ratio Mout/Min > 1 would imply residual
contamination by cluster members. For the 18 clusters in com-
mon with WtG we find Mout/Min = 1.05 ± 0.05, suggesting that
the correction has worked well (the ratio is 1.16 ± 0.05 if we do
not correct for contamination). For the full CCCP sample we find
Mout/Min = 1.00 ± 0.03.

Umetsu et al. (2014) present results for 20 clusters studied as
part of the Cluster Lensing and Supernova survey with Hubble
(CLASH). Of these 17 clusters overlap with WtG, but only 6 overlap
with CCCP. For the six clusters we have in common, the CLASH
masses are 12 ± 5 per cent higher than the CCCP results. However,
we note that Umetsu et al. (2014) use a different fit range, while
leaving the concentration a free parameter. Although they find a
best-fitting concentration of ∼4 when they stack the clusters in
their sample, cluster-to-cluster variation complicates a more direct
comparison. As discussed below, we analysed the CLASH data
using our pipeline and find better agreement with our masses derived
from CFHT observations.

Another large study that does overlap considerably with CCCP
is the LoCuSS. Results for 30 clusters, of which 13 overlap with
CCCP are presented in Okabe et al. (2010). Okabe et al. (2013)
suggest that a revised analysis leads to higher masses, but only
present results for an ensemble stacked lensing signal and do not
provide updated masses for the individual clusters.

4.1.2 Direct comparison with Subaru data

The processed Subaru imaging data used by CLASH have been
publicly released9 for 9 of the 20 clusters. We retrieved the data for
the four clusters that overlap with CCCP. To extend the compari-
son sample, Keiichi Umetsu kindly provided us with the data for
Abell 209 and Abell 611. Observation of Abell 1758 were provided
by James Jee. We analysed these data using our CCCP weak lensing

9 http://archive.stsci.edu/prepds/clash/
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Figure 16. Left-hand panel: black points indicate the mass based on our analysis of CFHT data as a function of the mass obtained from the Subaru data. As
opposed to the results presented in the right-hand panel, the object catalogues were not matched. We find that the Subaru-based masses are 4 ± 6 per cent higher
than the CFHT-based results we report in this paper. The open points indicate the comparison of our Subaru-based masses with those from Applegate et al.
(2014), which are 7 ± 6 per cent higher. The dotted line indicates the line of equality. Right-hand panel: ratio of the ensemble averaged tangential distortion as
a function of radius measured from CFHT and Subaru data. The ratio is computed by combining the measurements for the sample of seven clusters, where
the catalogues are matched, such that they contain essentially the same objects. The hatched region indicates the 68 per cent confidence region for the average
ratio 〈gCFHT

T /gSubaru
T 〉 = 0.99 ± 0.02. For reference we also indicate the fitting range used in the comparison with Applegate et al. (2014).

pipeline. We made no modifications and thus assume that our em-
pirical correction for noise bias also applies to the typically deeper
Subaru data (note that we also apply the size cut of rh < 5 pixels
in this case). The results presented in Appendix D suggest that our
approach, which is a function of SNR and galaxy size, is sufficiently
flexible.

The data that were provided are stacks of dithered exposures. As
a consequence multiple chips can contribute to a given location,
which can lead to a more complex PSF. Our observing strategy
with Megacam allowed us to avoid this, but we note that the same
problem occurs for our CFH12k data. However, we did not measure
noticeable differences in the scaling relations based on CFH12k or
Megacam data. As we did for the CFH12k data, we use the weight
images to split the data into regions that more or less correspond
to the chips of the camera, and analyse the resulting images using
the pipeline described earlier. This analysis is done completely
independently from the analysis based on the CFHT data. Hence
we redo the object detection and masking, identify the stars which
are used to model the PSF, etc.

The results are presented in Fig. 16. The left-hand panel shows a
comparison of the weak lensing masses when the source catalogue
is determined independently from the CFHT analysis. Following
Applegate et al. (2014), these masses are based on the best-fitting
NFW model to the lensing measurements within 0.75−3 h−1

70 Mpc,
adopting a concentration c200 = 4. For most clusters the Subaru
data are deeper, resulting in a different effective source redshift
distribution, which we account for. Consequently the correction
for contamination by cluster members also differs somewhat. It is
important to stress this correction works well on average (as shown
in Fig. 12), but the statistical uncertainty is larger when comparing
a small sample of clusters.

The filled points in the left-hand panel of Fig. 16 compare the
masses based on the CFHT data (Mliterature) to those determined
from our analysis of the Subaru data (MSubaru). We find excellent

agreement with a best-fitting MCFHT = (0.97 ± 0.06)MSubaru. We
can use this result as a measure of the systematic uncertainty when
cluster masses are determined independently using different in-
struments, albeit with the same shape measurement pipeline. This
comparison is made by fitting a parametric model to the lensing
signal at relatively small radii, where our correction for contam-
ination by cluster members is largest. As discussed in more de-
tail in Section 4.3, we expect our aperture masses to be more
reliable. We find that the masses from Applegate et al. (2014),
indicated by the open points, are somewhat higher. We obtain
MWtG = (1.07 ± 0.06)MSubaru. A similar result is obtained if we
compare with the six clusters in common with Umetsu et al. (2014),
where we note that our Subaru-based masses are in excellent agree-
ment (they are ∼2.4 per cent lower on average).

To examine the performance of the shape measurement algo-
rithm further, we created a source catalogue where the objects were
matched by position (note that we do apply the size cut before
matching). Although blending in the inner regions may cause some
misidentification, such a comparison should eliminate differences
in the source redshift distribution and the contamination by cluster
members. The shape measurements for individual galaxies are too
noisy, and we therefore compare the tangential shear profiles from
the two telescopes. To improve the SNR even further, we combine
the signals from the seven clusters. This allowed us to measure the
ratio of the lensing signal as a function of distance from the cluster
centre. The results are presented in the right-hand panel of Fig. 16.
We find an average ratio 〈gCFHT

T /gSubaru
T 〉 = 0.99 ± 0.02, indicated

by the hatched region. This result suggests that our pipeline is able
to recover the shapes to within 1 ± 2 per cent for different data sets.

In addition we have matched our CFHT-based measurements
to catalogues provided by the WtG team (Von der Linden, pri-
vate communication). This direct comparison for the overlap-
ping sample of clusters showed a remarkable agreement with
〈gCCCP

T /gWtG
T 〉 = 0.991 ± 0.018. These direct comparisons of shear
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catalogues obtained from observations using different telescopes
and teams suggest that the pipelines are robust. The differences we
observe are consistent with the statistical uncertainties associated
with comparing such a small sample of clusters.

4.1.3 Comparison to Hectospec Cluster Survey

The infall regions of galaxy clusters provide an interesting alter-
native way to estimate cluster masses at relatively large radii. The
Hectospec Cluster Survey targeted a sample of 58 clusters, 14 of
which overlap with our study. This survey is described in Rines
et al. (2013), who measured cluster-mass profiles using the caus-
tic technique (e.g. Diaferio 1999). We compare the estimates for
M200 from the best-fitting NFW models to those obtained by Rines
et al. (2013). The results are presented in Fig. 17. We note that a
comparison to the velocity dispersions yields similar results.

The lensing masses are higher than the dynamical masses; the
average ratio is 1.22 ± 0.07. If we adopt the mass–concentration
relation from Duffy et al. (2008) the agreement is worse with an
average ratio of 1.33 ± 0.08. Although the comparison sample is
small, we observe substantial scatter. The most significant outliers
in Fig. 17 are MS0906.5+1110, Abell 1758 and Abell 2261. In
section 3.6 of their paper, Rines et al. (2013) comment on individual
clusters, including these outliers. The first is part of a pair of clusters,
but the infall patterns can be separated. Rines et al. (2013) find the
higher mass for the other component, Abell 750, but comment that
MS0906.5+1110 has the higher X-ray luminosity. Okabe et al.
(2010) also find a higher lensing mass for this cluster, suggesting
that the dynamical mass is too low. Coe et al. (2012) present a
detailed study of Abell 2261, suggesting that the dynamical mass
estimate for Abell 2261 is low compared to the lensing and X-ray
estimates. We note the large range in hydrostatic mass estimates for
this cluster, including the measurement from Mahdavi et al. (2013);
although lower than the lensing mass, the X-ray mass is still larger
than the dynamical mass from Rines et al. (2013). Finally Abell 1758

Figure 17. Comparison of the dynamical estimates for M200 from the
Hectospec Cluster Survey from Rines et al. (2013) with the best-fitting NFW
model to the lensing data. The dotted line indicates the line of equality.

is a merging system, at the high-redshift end of the sample studied
by Rines et al. (2013). As a result the dynamical mass is not that
well-constrained.

4.2 Aperture masses

Although the NFW profile is a good description for an ensemble
of clusters, as is suggested by stacked weak lensing studies (Okabe
et al. 2013; Umetsu et al. 2014), it may not be a good model to fit to
individual systems. In particular the presence of substructure may
lead to incorrect masses (see e.g. Hoekstra et al. 2000, for a clear
example). The CCCP sample contains several complex, or merging
clusters, of which Abell 520 has been studied in particular detail
(Mahdavi et al. 2007; Jee et al. 2012, 2014). In these cases a more
direct estimate of the projected mass, without having to rely on a
particular profile, would be preferable.

It is possible to estimate the projected mass within an aperture
with minimal assumptions about the actual mass distribution. How-
ever, comparison to other proxies typically still relies on deprojected
masses, which do depend on the assumed density profile. Various
estimators are available, but we prefer to use the one proposed by
Clowe et al. (1998):

ζc(r1) = 2
∫ r2

r1

d ln r〈γt 〉 + 2r2
max

r2
max − r2

2

∫ rmax

r2

d ln r〈γt 〉, (11)

which can be expressed in terms of the mean dimensionless surface
density interior to r1 relative to the mean surface density in an
annulus from r2 to rmax

ζc(r1) = κ̄(r ′ < r1) − κ̄(r2 < r ′ < rmax). (12)

Hence we can determine the mass up to constant, which is deter-
mined by the mean convergence in the annulus r2 < r′ < rmax.
Assumptions about the mass distribution enter in two ways. First
of all, we do not measure the tangential shear γ T, but the reduced
shear gT = γ T/(1 − κ). For this conversion we use the best-fitting
NFW model. However, the estimate of ζ c(r) depends on the lens-
ing measurements at large radii and consequently this correction is
small.

The more important dependence on the density profile is through
the need to estimate the average convergence in the annulus. Al-
though the contribution is relatively small if we consider large radii,
it cannot be ignored for our analysis. H12 used an outer radius
rmax = 1000 arcsec for the CFH12k data. However, for these data
the azimuthal coverage is incomplete. We therefore keep the inner
radius of 600 arcsec, but reduce the outer radius to 800 arcsec. The
annuli are unchanged for the Megacam data, i.e. we use r2 = 900 arc-
sec and rmax = 1500 arcsec.

As was done by H12, we use the best-fitting NFW model to
estimate the mean convergence in the annulus. We quantify the
sensitivity to the profile by varying the normalization of the c(M)
relation by 20 per cent. This should capture the variation in results
for different cosmologies (e.g. Bhattacharya et al. 2013). The re-
sulting change in projected mass within an aperture of 1 h−1

70 Mpc
depends on redshift, with a reduction (increase) of <1 per cent for
clusters with z > 0.3 if the normalization is increased (decreased).
The changes are somewhat larger at lower redshifts but at most only
∼2 per cent. Hence the systematic uncertainty in the estimate of the
projected mass at this radius is remarkably small.

We do make one small change with respect to H12: we include
a contribution from neighbouring haloes. Oguri & Hamana (2011)
show that such a two-halo term dominates over the NFW profile
on large scales. A convenient way to describe such contributions
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is provided by the so-called halo model (see e.g. Cooray & Sheth
2002, for a review). The implementation we use here is described
in Cacciato et al. (2013). It was used in Cacciato, van Uitert &
Hoekstra (2014) to model the lensing signal around galaxies. In this
context, the cluster lensing signal is simply the lensing signal around
the brightest cluster galaxy of a very massive halo. The contribution
from the clustering of haloes, the two-halo term, is in its most basic
implementation proportional to the linear matter power spectrum
(but see e.g. van den Bosch et al. 2013, for a more sophisticated
implementation). The constant of proportionality is determined by
the product of the bias of the halo of interest and an average of the
halo bias over all halo masses in the range of interest weighted by
the halo mass function (see e.g. Cacciato et al. 2009).

To compute the contribution to the average convergence in the
annulus, we use the functions for the halo mass and bias provided
by Tinker et al. (2010). We find that the correction is small, less
than 1 per cent for the radii we are interested in. This also depends
somewhat on the assumed density profile, but the main source of
theoretical uncertainty is the halo bias function, especially at the
high-mass end considered here. We gauge the systematic uncer-
tainty in the correction by considering different fitting functions
from the literature, namely those from Sheth & Tormen (1999),
Sheth, Mo & Tormen (2001) and Seljak & Warren (2004). Al-
though these may differ by up to a factor of a few at the highest
masses of interest, the corresponding cluster bias varies by at most
∼20 per cent because of the exponential drop-off of the halo mass
function. We find that the resulting systematic uncertainty in the
correction itself is ∼10 per cent, which can be safely ignored.

The resulting projected masses within fixed apertures of 0.5 and
1 h−1

70 Mpc are listed in Table 2. The uncertainties include the contri-
butions from cosmic noise and shape noise. Although the variation
in the source redshift distribution is in principle an additional source
of noise (Hoekstra et al. 2011), the impact is smaller for the larger
angular scales used to compute the aperture masses. Furthermore,
Hoekstra et al. (2011) find that the combination of cosmic noise and
the variation in the redshift distribution leads to a slight reduction in
the uncertainty, compared to the situation where only cosmic noise
is considered.

In Fig. 18 we compare the projected mass to the results
from H12 as a function of cluster redshift. We find no signif-
icant trend with redshift and obtain a weighted average ratio
〈M/MH12〉 = 1.093 ± 0.016. The increase in the amplitude of the
lensing signal because of the correction for the effects of noise in the
images is partly offset by the increase in the mean source redshift
and the change in the mass–concentration relation.

4.2.1 Deprojected masses

Although the projected masses can be determined robustly within
an aperture of fixed radius, comparison with other observations
requires the deprojection of the mass estimates. To do so we follow
the procedure described in Hoekstra (2007), which was also used
in H12: at each radius we find the NFW model that yields the same
projected mass. We take the mass of this model, which depends on
the adopted mass–concentration relation, to be the estimate for the
deprojected mass. The results for M

ap
2500 and M

ap
500, using the relation

between concentration and mass from Dutton & Macciò (2014), are
listed in columns 6 and 8 of Table 2 (for reference we also list the
corresponding radius r�). We present results for the c(M) relation
from Duffy et al. (2008) in Appendix F.

Figure 18. Ratio of the projected aperture mass within an aperture of radius
1 h−1

70 Mpc and the mass obtained by H12. The hatched region indicates the
weighted average ratio 〈M/MH12〉 = 1.093 ± 0.016. Note that the error bars
indicate only the uncertainty in the updated mass estimates.

Figure 19. Comparison of MNFW
500 from the best-fitting NFW model and the

value for M
ap
500 using the deprojected aperture mass. The former is based on

measurements of the lensing signal at radii 0.5-2 h−1
70 Mpc, whereas the latter

uses data from radii larger than r500 which is typically larger than 1 h−1
70 Mpc.

As a consequence the measurements are almost independent. The red dashed
line indicates the line of equality. The open points indicate clusters for which
Mahdavi et al. (2013) measured a central entropy K0 < 70 keV cm2.

In Fig. 19, we compare M
ap
500 to the estimate obtained from the

best-fitting NFW model to the lensing signal at radii 0.5-2 h−1
70 Mpc.

The two measurements are nearly independent, because the aperture
mass is based on the lensing signal at radii larger than r500 which is
larger than 1 h−1

70 Mpc for most of the clusters. From a linear fit to the
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masses we find that MNFW
500 /M

ap
500 = 0.97 ± 0.03, i.e. the estimates

from the NFW model are in good agreement on average.
It is interesting to compare the results for clusters with a low and

high central entropy K0, the value of the deprojected entropy profile
at a radius of 20 h−1

70 kpc, as measured by Mahdavi et al. (2013). The
open points in Fig. 19 indicate the clusters with K0 < 70 keV cm2,
for which we find a ratio 1.04 ± 0.06; for the remaining clusters
MNFW

500 is on average 0.95 ± 0.04 times smaller than the aperture
mass estimate. In neither case do we observe a significant difference
between the two mass estimates.

As discussed in H12, the deprojection depends on the mass–
concentration relation. The results listed in Table 2 are based on the
mass–concentration relation from Dutton & Macciò (2014). If we
instead consider the concentrations from Duffy et al. (2008), which
are ∼20 per cent lower, we find that the resulting M

ap
2500 is 8 per cent

lower, and M
ap
500 is 3 per cent lower. Hence, the value for M

ap
500 is

fairly robust against changes in the concentration.
If we compare to the deprojected masses from H12 we find that

M
ap
500 has increased by 19 per cent on average, whereas the increase

in M2500 is 28 per cent. The larger change in M2500 is due to the
higher concentrations from Dutton & Macciò (2014), which affect
the deprojection. As discussed in H12 (see fig. 4 in their paper),
lowering the concentration increases the ratio MNFW

500 /M
ap
500.

4.3 Error budget

Fig. 20 shows the distribution of the relative change in the pro-
jected mass within an aperture of radius 1 h−1

70 Mpc when one of
the corrections is not included. The red histogram shows that the
average mass would be on average reduced by a factor 0.84 if we
do not include the correction for the multiplicative bias in the shape
measurement. Ignoring the correction for contamination by cluster

Figure 20. Ratio of the projected aperture mass within an aperture of ra-
dius 1 h−1

70 Mpc when one of the corrections is not included, and the final
mass estimate. The red histogram shows the distribution if we ignore the
correction for the multiplicative bias in the shape measurement. The black
histogram shows the decrease in mass if we ignore the contamination by
cluster members. The blue histogram shows the change in mass if we use
the source redshift distribution used by H12.

members reduces the mass by a factor 0.90. As indicated by the
black histogram, this correction varies more from cluster to cluster.
This is expected, as the correction depends on the cluster redshift,
the spatial distribution of cluster galaxies and the richness of the
cluster. If we use the source redshift distribution used by H12 the
masses would increase by 4 per cent, as indicated by the blue his-
togram.

Although each of these corrections is substantial and cannot be
ignored, they are well-determined. The associated remaining sys-
tematic errors are much smaller than the statistical uncertainties for
individual clusters. However, the precision that is afforded by the
full CCCP sample is much higher, and we therefore summarize the
systematic error budget in this section. These are relevant for the
discussion in Section 5 where we examine the scaling relation be-
tween the lensing mass and the SZ measurements from Planck.

We assume a 2 per cent systematic uncertainty in the calibration of
the multiplicative bias. Although Fig. 9 suggests that the empirical
correction results in biases <1 per cent if we adopt ε0 = 0.25, the
variation in seeing and the dependence of the bias on morphology
are expected to lead to additional error. The latter will need to be
investigated in more detail, but the observed variation in bias as a
function of Sérsic index (see Fig. 8) suggests that the contribution
from morphology is ∼1 per cent.

As shown by the black points in Fig. 12 the mean residual con-
tamination by cluster members is at most ∼2 per cent, except for the
innermost regions. Although the contamination exceeds this value
at some radii for clusters with z > 0.25 (red hatched region), the
contamination is still smaller than 2 per cent when averaged over
the radii of interest. For the projected masses, the uncertainty in
the extrapolated density profile changes the masses by less than
1 per cent.

The largest contribution comes from the uncertainty in the source
redshift distribution, despite the wavelength coverage and depth of
the COSMOS data: for clusters at z = 0.2 the systematic uncertainty
in 〈β〉 is ∼3 per cent, increasing to ∼8 per cent for the highest red-
shift clusters in our sample (z = 0.55). These estimates include the
difference in 〈β〉 between our photometric redshift distribution and
that of Ilbert et al. (2013), and the field-to-field variation in the four
CFHTLS Deep fields. These systematic errors are independent from
one another and thus can be added in quadrature, resulting in a total
systematic uncertainty of 4.2 per cent at z = 0.2 and 8.5 per cent at
z = 0.55 for the projected masses in a fixed aperture.

The deprojected masses are more sensitive to the assumed mass–
concentration relation. For instance, M

ap
500 decreases by ∼3 per cent

if we lower the concentration by 20 per cent (i.e. by switching to the
Duffy et al. 2008 values). This shift in concentration is caused by
the change in the cosmological parameters determined by WMAP5,
used by Duffy et al. (2008), and the more precise Planck values
used by Dutton & Macciò (2014). However, these estimates are
based on simulations that only include dark matter and thus ignore
the additional effects of baryon physics. The impact of this has
been studied by Duffy et al. (2010) using hydrodynamic simula-
tions. Duffy et al. (2010) found that the change in concentration
is <10 per cent for cluster-mass haloes. We therefore adopt a sim-
ilar uncertainty in the concentrations, which implies a systematic
contribution of ∼2 per cent for M

ap
500.

Importantly the systematic errors for the deprojected masses are
increased because a change in the lensing signal also affects the
radius corresponding to a particular overdensity. This increases the
uncertainty compared to a fixed aperture because the enclosed mass
increases with radius. As a result we estimate a total systematic
uncertainty in M

ap
500 of 6 per cent for clusters at z = 0.2, which
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increases to 12 per cent at z = 0.55. Given the observational cost
of calibrating scaling relations, it makes sense to avoid introduc-
ing such unnecessary sources of uncertainty: numerical simulations
should instead be used to make predictions for the observed lensing
measurements.

In Section 4.1.2, we determined masses for Abell 1758 and the six
clusters in common with Umetsu et al. (2014) using available Subaru
observations. We found that these masses were 4 ± 6 per cent higher
than our estimates based on the CFHT data. Given the differences
between the data from the two telescopes (e.g. depth, masked areas),
the results agree very well. Moreover, when we match the object
catalogues, we find that we recover the average tangential distortion
within 1 ± 2 per cent, suggesting our shape measurement pipeline
is robust.

5 Planck S Z E SC A L I N G R E L AT I O N

Planck Collaboration XX (2014c) present constraints on cosmolog-
ical parameters using the cluster number counts as a function of
redshift for a sample of 189 clusters of galaxies detected through
the SZE by Planck. The estimates for the masses from Planck are
based on the scaling relation between the X-ray hydrostatic mass
and YX, the product of the X-ray temperature and the gas mass. This
relation is calibrated using measurements from Arnaud et al. (2010),
who studied a sample of 20 nearby relaxed clusters. Consequently
a measurement of YX can be converted into a hydrostatic mass es-
timate M

YX
500. These results are then used to establish the relation

between the SZ signal Y500 and M
YX
500 (see appendix A.2.2 of Planck

Collaboration XX 2014c, for details). We denote this hydrodynamic
mass estimate as MPlanck

500 .
Numerical simulations (e.g. Rasia et al. 2006; Nagai et al. 2007;

Lau et al. 2009) suggest that such mass estimates are biased low.
Similarly, Mahdavi et al. (2013) studied the scaling relations be-
tween X-ray observations and the weak lensing masses from H12
and found that hydrostatic masses underestimate the weak lensing

masses by 10–15 per cent at r500. Our updated masses do not change
this conclusion, and in fact strengthen it. In their analysis Planck
Collaboration XX (2014c) assume that the hydrostatic masses are
biased low by a factor (1 − b) = 0.8 based on a comparison with
numerical simulations. They find that their best-fitting parameters
for σ 8 and �m are in tension with the measurements obtained from
the analysis of the primary CMB by Planck Collaboration XVI
(2014b). The results can be reconciled by considering a low value
of (1 − b) ∼ 0.6.

Recently, von der Linden et al. (2014b) estimated the bias using
the lensing masses for the 38 clusters in common between Planck
and WtG. They compared their estimates for M500 based on the NFW
fits with c200 = 4 from Applegate et al. (2014) to the hydrostatic
mass estimates from Planck Collaboration XXIX (2014a). They
obtained an average ratio (1 − b) = 0.69 ± 0.07, which alleviates
the tension. As our comparison in Section 4.1.1 and Fig. 15 shows,
the WtG masses are slightly higher than our estimates when we
follow the same approach, but when we compare the masses from
WtG to our deprojected aperture masses, which are more robust and
therefore used here, we find that the agreement is excellent.

There are 38 clusters in common between CCCP and the cata-
logue provided by Planck Collaboration XXIX (2014a), although
we omit Abell 115 from the comparison as we determine masses for
the two separate components of this merging cluster. The left-hand
panel in Fig. 21 shows the deprojected aperture mass MWL

500 as a
function of the hydrostatic mass MPlanck

500 from Planck Collaboration
XXIX (2014a). Note that the observed value for YX was used to
estimate the radius r500 used to determine MPlanck

500 , whereas MWL
500 is

based on the value for r500 listed in Table 2. For the cosmological
analysis, Planck Collaboration XX (2014c) restricted the sample
to clusters above a SNR threshold of 7 in unmasked areas. In our
case, the mask only impacts the merging cluster Abell 2163, which
corresponds to the rightmost point in Fig. 21. There are 20 SNR>7
clusters in common with CCCP and these are indicated as filled
points in Fig. 21, whereas the remaining clusters are indicated by

Figure 21. Left-hand panel: the deprojected aperture mass M500 from weak lensing as a function of the hydrostatic mass from Planck Collaboration XXIX
(2014a). Note that MPlanck

500 is measured using r500 from the estimate of YX, and MWL
500 is determined using the lensing derived value for r500. The black points

show our CCCP measurements, with the filled symbols indicating the clusters detected by Planck with a signal-to-noise ratio SNR > 7 and the open points
the remainder of the sample. The dashed line shows the best-fitting power-law model. The WtG results are shown as rosy brown coloured points. Right-hand
panel: ratio of the hydrostatic and the weak lensing mass as a function of mass. The dark hatched area indicates the average value of 0.76 ± 0.05 for the CCCP
sample, whereas the rosy brown coloured hatched region is the average for the published WtG measurements, for which we find 0.62 ± 0.04.
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the open points. We find that the SNR threshold is essentially a
selection by mass. For reference, the measurements from von der
Linden et al. (2014b) are indicated by the rosy brown coloured
points.

The right-hand panel shows the ratio of the hydrostatic masses
from Planck and our weak lensing estimates for all 37 clus-
ters in common. The hatched region indicates our estimate for
(1 − b) = 0.76 ± 0.05(stat) ± 0.06(syst), which was obtained
from a linear fit to MPlanck

500 as a function of MWL
500 that accounts for

intrinsic scatter (Hogg, Bovy & Lang 2010). The systematic error is
based on the estimates presented in Section 4.3. We measure an in-
trinsic scatter of (28 ± 6) per cent, most of which can be attributed to
the triaxial nature of dark matter haloes (e.g. Corless & King 2007;
Meneghetti et al. 2010). If we restrict the comparison to the clusters
with SNR > 7 (black points) we obtain (1 − b) = 0.78 ± 0.07,
whereas (1 − b) = 0.69 ± 0.05 for the remaining clusters. For
reference, the rosy brown coloured points and hatched region in-
dicate the results for WtG, used in von der Linden et al. (2014b).
We refit these measurements, which yields (1 − b) = 0.62 ± 0.04
and an intrinsic scatter of (26 ± 5) per cent. Our measurement of
the bias is in agreement with the nominal value adopted by Planck
Collaboration XX (2014c) and we conclude that a large bias in the
hydrostatic mass estimate is unlikely to be the explanation of the
tension of the cluster counts and the primary CMB.

von der Linden et al. (2014b) find modest evidence for a mass
dependence of the bias, with MPlanck ∝ M0.68

WtG. It is therefore in-
teresting to repeat this for our measurements. If we restrict the fit
to the clusters with a SNR>7, the range is too small to obtain a
useful constraint on the slope. We therefore fit a power law to the
CCCP measurements of the 37 clusters that overlap with Planck
Collaboration XXIX (2014a), which yields

MPlanck

1015 h−1
70 M�

= (0.76 ± 0.04) ×
(

MCCCP

1015 h−1
70 M�

)0.64±0.17

,

and an intrinsic scatter of (21 ± 4) per cent. The slope is similar to
that found by von der Linden et al. (2014b) and our results therefore
support their conclusion that the bias in the hydrostatic masses used
by Planck depends on the cluster mass, but our normalization is
9 per cent higher.

As noted above, Planck Collaboration XX (2014c) use X-ray
data to relate the observed SZ-signal to cluster mass. It is, however,
more convenient to directly constrain the scaling relation between
the lensing mass and the observed SZ signal. H12 presented results
for the early data release from Planck Collaboration VIII (2011), but
here we expand the sample to the 37 clusters in common with CCCP
and use the measurements for Y500 provided by Planck Collaboration
XXIX (2014a).

Assuming a constant gas fraction and self-similarity, the SZ signal
Y scales with mass as M

5/3
500 ∝ D2

angE(z)−2/3Y500 (e.g. McCarthy
et al. 2003), where Dang is the angular diameter distance to the cluster
and E(z) = H(z)/H0 is the normalized Hubble parameter. The results
are presented in Fig. 22, where the open points indicate the clusters
that Planck detected with an SNR<7. The dashed line indicates the
best-fitting power-law relation to all clusters in common, for which
we find

MWL
500

1015 h−1
70 M�

= (1.01 ± 0.06) ×
(

104D2
angY500

E(z)2/3 Mpc2

)0.53±0.13

,

and an intrinsic scatter of (27 ± 6) per cent. For this comparison
we used measurements of the SZ signal and the lensing mass in
apertures that were determined independently. Although this is what

Figure 22. Plot of M500, the aperture mass estimate within an aperture
rWL

500 , as a function of the SZ signal measured within an aperture r
YX
500 from

Planck Collaboration XXIX (2014a). The dashed line indicates the best-
fitting power law, which has a slope of 0.53 ± 0.13. We measure an intrinsic
scatter of (27 ± 6) per cent. The open circles indicate clusters which Planck
detected with an SNR < 7.

one needs for the cosmological interpretation of the Planck cluster
sample, the use of different apertures introduces additional noise as
well as an offset because the lensing aperture is larger on average.

In the case of hydrodynamic simulations of clusters the compari-
son can be made at a common radius, as r500 is known. It is therefore
useful to consider also the scaling relation for the SZ signal within
rWL

500 . The SZ measurements within rWL
500 were estimated (Arnaud &

Pratt, private communication) using the two-dimensional marginal
probability distribution between the SZ signal and size available
from the 2013 Planck SZ catalogue (Planck Collaboration XXIX
2014a). They correlate very well with Y500. The best-fitting power-
law scaling relation is given by

MWL
500

1015 h−1
70 M�

= (0.98 ± 0.05) ×
(

104D2
angY (rWL

500 )

E(z)2/3 Mpc2

)0.64±0.12

,

and the intrinsic scatter is reduced to (22 ± 7) per cent. Note that
for both scaling relations, the slopes are consistent with the value
of 0.6 expected for a self-similar model.

As a caveat, we note that the combination of relatively low sig-
nificance of the SZ detections and large intrinsic scatter leads to
Malmquist bias. As a result, the average SZ signal of the observed
sample is biased high compared to the average of the parent popula-
tion the clusters are drawn from. Consequently, the best-fitting pa-
rameters for the scaling relations are expected to be slightly biased.
If the CCCP sample were a well-defined sample one could account
for this, which was done by Planck Collaboration XX (2014c).
Although Mahdavi et al. (2013) show that the CCCP sample is rep-
resentative of more carefully selected samples of X-ray luminous
clusters, the selection may impact the scaling relation. We therefore
do not attempt to correct our results, but note that, based on the
findings of Planck Collaboration XX (2014c) and Mahdavi et al.
(2013), we expect the bias to be small.
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6 C O N C L U S I O N S

Accurate cluster masses are necessary to interpret the cluster counts
from wide-area surveys. In particular the scaling relations and their
scatter need to be determined observationally. Weak lensing masses
are particularly well-suited as they provide a direct estimate of the
projected mass and do not depend on the dynamical state of the
cluster. In this paper we revisited the analysis of a sample of 50
massive clusters by H12, with a particular focus on improving the
corrections for various sources of systematic error in the cluster
masses.

We use extensive image simulations to quantify the bias in our
shape measurement algorithm. The bias is a strong function of
SNR and size, but depends relatively weakly on surface brightness
profile and ellipticity distribution. We demonstrate that the inferred
bias depends on the input parameters used to create the simulated
data. For instance we find that the bias is underestimated if faint
galaxies are lacking from the simulations: the bias converges if
the simulation includes galaxies that are at least 1.5 mag fainter
than the limiting magnitude of the sample of sources used for the
lensing analysis. The large number of simulated galaxies enables us
to determine an empirical correction, which is found to be accurate
and robust to the main uncertainties. We estimate that the systematic
uncertainty due to the shape measurements is at most 2 per cent.

The dominant source of systematic error is the source redshift
distribution, which is needed to convert the lensing signal into an
estimate of the mass. We use the latest state-of-the-art photometric
redshift catalogues that are based on measurements in 29 bands in
the COSMOS field (Capak et al. 2007; Scoville et al. 2007), in-
cluding new deep NIR observations from UltraVISTA (McCracken
et al. 2012). Compared to our previous analysis, this leads to a
small increase in mean source redshift, or a modest (∼4 per cent)
reduction in the cluster mass. Despite the unprecedented quality of
the data, different analyses show variations in the source redshift
distributions that result in systematic uncertainties that are substan-
tial compared to the statistical uncertainties for the full sample of
clusters.

We find that the projected aperture masses within apertures of
fixed radius provide the most robust measurements. The depen-
dence on the assumed density profile is minimal and the systematic
error is dominated by the uncertainty in the source redshift dis-
tribution. We estimate a total systematic error of 4.2 per cent for
clusters at z = 0.2, which increases to 8.5 per cent at z = 0.55. To
compare with measurements at other wavelengths, we deproject the
masses. This leads to an increased sensitivity to the assumed density
profile, although this is modest in the case of M500: we estimate a
systematic uncertainty of 2 per cent. Compared to the masses within
a fixed aperture, the additional uncertainty in determining r500 in-
creases both the statistical and systematic errors. Comparison of
the deprojected aperture masses within r500 and the corresponding
mass for the best-fitting NFW profile shows good agreement, even
though the two estimates are nearly independent from each other.

We compare masses for the 18 clusters in common with Apple-
gate et al. (2014). To do so we fit an NFW model with c = 4 to our
lensing signal within 0.75−3 h−1

70 Mpc. We find that the resulting
CCCP masses are on average 8 ± 4 per cent lower, which reduces
to 6 per cent if we use the same source redshift distribution as Ap-
plegate et al. (2014). Given the limitations of the comparison, it is
not clear whether this difference is a sign of residual systematics or
merely statistical in nature.

We did examine the robustness of our analysis. To this end we
determined masses for Abell 1758 and the six clusters in common

with Umetsu et al. (2014) using available Subaru observations. We
found good agreement with our mass estimates based on the CFHT
data, suggesting our pipeline yields robust results when data from
different telescopes are analysed. Interestingly, a direct comparison
of our CFHT measurements to catalogues provided by the WtG team
(Von der Linden, private communication) also showed remarkable
agreement with 〈gCCCP

T /gWtG
T 〉 = 0.991 ± 0.018.

The overlap of 37 clusters with the sample of clusters for which
Planck detected the SZ signal (Planck Collaboration XXIX 2014a)
enables us to calibrate the bias in the hydrostatic masses used by
Planck Collaboration XX (2014c) to infer cosmological parame-
ters. The resulting estimates for σ 8 and �m are in tension with
the measurements from the primary CMB Planck Collaboration
XVI (2014b). Our measurements for the overlapping clusters yield
1 − b = 0.76 ± 0.05(stat) ± 0.06(syst), in good agreement with
the nominal value used by Planck Collaboration XX (2014c). Our
results do not support a large bias in the hydrostatic masses, which
could alleviate the tension. We also directly calibrate the scaling
relation between the SZ signal Y500 and the weak lensing mass.
When we compare the lensing mass to the SZ signal measured in
the same aperture, we find a best-fitting slope of 0.64 ± 0.12 which
is in good agreement with the expectation of a self-similar model
(e.g. McCarthy et al. 2003).

The constraints from the current CCCP sample are already limited
by systematic uncertainties. The most dominant of these is our
limited knowledge of the source redshift distribution. Although this
can be alleviated by measuring photometric redshifts for the sources
in the cluster fields (e.g. Applegate et al. 2014; Umetsu et al. 2014),
biases may remain due to limited wavelength coverage. Improving
this situation is critical to calibrate cluster scaling relations to the
level of accuracy afforded by the next generation of cluster surveys.
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APPENDIX A : EFFECTS O F PSF ANISOTROPY

To quantify the multiplicative bias in the shear measurement result-
ing from noise in the images and limitations in the correction for
the size of the PSF and the weight function, we created simulated
images with a circular PSF. In real data, however, the PSF is gen-
erally anisotropic, albeit to varying degree. PSF anisotropy leads to
additive biases by introducing coherent alignments in the observed
shapes. In the case of cosmic shear this is a dominant source of
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Figure A1. Top panel: multiplicative bias as a function of the ellipticity of
the PSF for galaxies with 22 < mr < 25. The red hatched region indicates the
results obtained for a circular PSF. The histogram indicates the distribution
of PSF ellipticities observed in the CFHT data used in this paper. Bottom
panel: the average shear γ 1 measured after PSF correction as a function of
PSF ellipticity. The average should vanish if the correction is perfect. These
results suggest that the residual is ∼4 per cent of the original PSF ellipticity.

systematic, but in our case the signal is averaged azimuthally around
the clusters, which also averages out most of the PSF anisotropy.10

None the less it is important to examine whether the results ob-
tained using circular PSFs can be applied to our CFHT data. We
therefore created a set of simulations in which the PSF is ellip-
tical (along the x-axis) using our fiducial ellipticity distribution
(ε0 = 0.25). These images were analysed as usual, and the resulting
multiplicative bias as a function of PSF ellipticity is presented in the
top panel of Fig. A1. Even for rather elongated PSFs (ε > 0.1), the
increase in bias is at the per cent level at most. For comparison, the
histogram shows the observed distribution of PSF ellipticity in the
CCCP data. These results suggest that we do not need to account for
the PSF anisotropy explicitly in order to quantify the multiplicative
bias in our data.

We do not expect the correction to work perfectly, either due to
limitation of the correction method itself, or due to the fact that
the noise in the images biases the polarizabilities. The bottom panel
shows how well the correction for PSF anisotropy performs. We ob-
serve a linear trend of the recovered average shear as a function of
PSF ellipticity. For the galaxies with 22 < mr < 25, this results in a
residual bias of ∼4 per cent of the original PSF ellipticity. Although
the bias is smaller for bright galaxies it does not vanish, suggest-
ing that a large part of the observed bias is due to a fundamental
limitation of the KSB method.11

10 We note that this is not always the case, as some images show strong
radial patterns, which can bias the azimuthally averaged lensing signal if the
cluster is located at the centre of the field of view.
11 The KSB algorithm assumes that the PSF is described as the convolution
of a circular kernel with a compact anisotropic one.

Figure B1. Multiplicative bias for galaxies with 22 < mr < 25 as a function
of the density of stars with 18 < mr < 20, based on the Besançon model
of stellar population synthesis of the Galaxy (Robin et al. 2003). The red
hatched region indicates the results for the simulations without stars. The
arrows indicate the corresponding Galactic latitudes (for the longitude of
Abell 1835, l = 340◦). The histogram shows the distribution of star densities
of the CCCP data.

A P P E N D I X B : C O N TA M I NAT I O N B Y S TA R S

The simulated data that were used to study the multiplicative bias
contained a small number of bright stars, which were only included
to keep track of the PSF properties. In real data, however, stars may
blend with galaxies or other stars. As a consequence they might be
misidentified and be included in the galaxy catalogue, contributing
to multiplicative bias (as they are not sheared).

In this section, we study how the multiplicative bias depends on
star density by including stars in the images with a realistic number
density and magnitude distribution. We use the Besançon model
of stellar population synthesis of the Galaxy for the stars (Robin
et al. 2003). As a reference we consider again Abell 1835, with
(l, b) = (340, 60), where we change the Galactic latitude b to change
the star number density. We place the stars at random locations in
the images, with ε0 = 0.25, and proceed as before with the shape
analysis.

The results for galaxies with 22 < mr < 25 are presented in
Fig. B1, which shows the multiplicative bias as a function of the
density of stars with 18 < mr < 20. For densities nstar < 1.5 arcmin−2

the bias is consistent with the results without stars (indicated by the
red hatched region). For the adopted longitude of l = 340◦ this cor-
responds to b > 35◦. For lower Galactic latitudes, the higher number
density of stars can lead to appreciable levels of bias. The histogram
in Fig. B1 shows the distribution of star density in the CCCP data,
which suggests that we can safely ignore the contribution from stars.

A P P E N D I X C : D E T E R M I N I N G T H E
E M P I R I C A L C O R R E C T I O N

In this appendix, we describe the empirical correction used in the
analysis of the CCCP data. We assume that the bias is a function
of the SNR (e.g. Kacprzak et al. 2012; Melchior & Viola 2012)
and depends on how well a galaxy is resolved (e.g. Massey et al.

MNRAS 449, 685–714 (2015)



710 H. Hoekstra et al.

2013; Miller et al. 2013). That these parameters are important is
also suggested by Figs 5 and 6, which show a larger bias for fainter
galaxies and larger PSFs.

Our implementation of KSB provides an estimate for σ e, the
uncertainty in the polarization (see Hoekstra et al. 2000, for details).
The reciprocal of this quantity is a useful proxy for the SNR ν, hence
we use ν = 1/σ e. To quantify how well a galaxy is resolved we use

R2 = r2
h,∗

r2
h,gal − r2

h,∗
, (C1)

where rh,∗ denotes the half-light radius of the PSF and rh, gal that
of the observed galaxy. The denominator corresponds to the un-
convolved size of a source if galaxies were Gaussians. Importantly,
these are quantities that can be measured for individual sources.

We consider values of ε0 between 0 and 0.5 with steps of 0.05
and create 169 pairs of images, each 10 000 by 10 000 pixels, with
constant shears of −0.06 ≤ γ i ≤ 0.06 applied. As a result, for each
ε0 we analyse ∼107 galaxies with 20 < mr < 25 (note that the input
catalogue does contain fainter galaxies). For a given ε0 we bin the
measurements in fine bins of ν and rh and determine the bias.

We considered various fitting functions, with the aim to find an
adequate correction that is also robust against the uncertainty in the
true value of ε0. We consider a conservative range of ε0 ∈ [0.15,
0.3], where we note that a stronger prior on the input ellipticity
distribution would allow the uncertainties to be reduced, and the
fitting functions to be optimized.

Although further optimization is possible by introducing addi-
tional parameters, we opted for a correction with four free parame-
ters: one to describe the size dependence of the bias for a given ν,
and three to capture the dependence on ν. The correction takes the
form

1 + μ(ν,R) = b(ν)

1 + α(ε0)R . (C2)

The first step is to determine α(ε0), which is done by examining μ

as a function of size for narrow bins in ν. The left-hand panel of
Fig. C1 shows the measurements as a function of half-light radius

Table C1. Parameters for the empirical correction for multiplicative bias.

ε0 α b0 b1 b2

0 0.056 ± 0.0015 0.952 ± 0.0143 0.84 ± 0.15 −5.50 ± 0.32
0.05 0.067 ± 0.0017 0.957 ± 0.0145 0.86 ± 0.15 −5.47 ± 0.33
0.10 0.107 ± 0.0022 0.958 ± 0.0164 1.20 ± 0.17 −6.15 ± 0.37
0.15 0.164 ± 0.0029 0.959 ± 0.0233 1.61 ± 0.24 −6.81 ± 0.53
0.20 0.247 ± 0.0038 0.970 ± 0.0235 2.01 ± 0.24 −7.34 ± 0.53
0.25 0.348 ± 0.0051 0.988 ± 0.0217 2.29 ± 0.22 −7.40 ± 0.49
0.30 0.473 ± 0.0067 0.993 ± 0.0220 2.73 ± 0.22 −7.72 ± 0.50
0.35 0.616 ± 0.0087 1.017 ± 0.0298 3.04 ± 0.30 −7.70 ± 0.68
0.40 0.729 ± 0.0104 0.997 ± 0.0260 3.57 ± 0.26 −8.32 ± 0.59
0.45 0.864 ± 0.0120 1.018 ± 0.0289 3.85 ± 0.29 −8.43 ± 0.65
0.50 0.921 ± 0.0121 1.002 ± 0.0265 3.95 ± 0.27 −8.18 ± 0.60

for galaxies with 20 < ν < 30 for three ellipticity distributions. The
number of objects as a function of observed half-light radii is shown
in the bottom panel; most sources are small (the value for the PSF
is rh,∗ = 2.056 pixels).

For each ellipticity distribution we determine the best-fitting
value for α, under the assumption it only depends on ε0. The re-
sults are presented in the right-hand panel of Fig. C1 and listed in
Table C1. The right-hand panel in Fig. C1 shows that α(ε0) increases
smoothly with increasing ε0. The lines in the left-hand panel indi-
cate the predicted bias, with the amplitude a free parameter (which
is used to determine b(ν), see below). Our parametrization for the
size dependence does fairly well for the bulk of the sources, but
it does not capture the results for rh > 4 pixels. Better agreement
is obtained if we include an additional term ∝R2, but we found
that this did not improve the robustness of the correction. Similarly,
we found that we could have included a dependence on 1/ν, again
with limited effect. Note there is covariance between some of the
parameters. For instance, for small values for ν we do expect b(ν)
and α(ε0) to be correlated because those galaxies have on average
larger values for R.

Closer inspection of the objects with large observed sizes revealed
that most of these are faint objects for which the input sizes were

Figure C1. Left-hand panel: bias 1 + μ as a function of half-light radius for galaxies with 20 < ν < 30. The black points indicate the results for our adopted
value of ε0 = 0.25; the red (blue) points are for the extreme values of ε0 = 0 (ε0 = 0.5). The lines indicate the fits using our best-fitting value for α(ε0). The
bottom panel shows the distribution of half-light radii for these sources. Right-hand panel: resulting best-fitting value for α(ε0) for our simulated CCCP data.
The values are listed in Table C1.
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Figure C2. Left-hand panel: b(ν) for the three ellipticity distributions, as well as the best-fitting models. The bottom panel shows the distribution of SNRs
for galaxies with 20 < mr < 25. Right-hand panel: the model parameters bi as a function of ε0, which show a smooth dependence. The values are listed in
Table C1. Note that b0 is fairly close to unity.

much smaller or blends with other galaxies. As the latter might be
particularly relevant for the study of galaxy clusters, we decided to
only use galaxies with rh < 5 pixels for the actual lensing analysis.
The ensemble averaged lensing signal as a function of source size
presented in Fig. 14 indicates that the results for large sources are
indeed biased low. Note that we do not apply this cut when fitting
for α(ε0), because we found that the correction performed a bit
better when we considered the full range in sizes.

The next step is to quantify how μ depends on the SNR. The
results for ε0 = 0, 0.25 and 0.5 are presented in the left-hand panel
of Fig. C2. For low ε0 the bias increases monotonically, asymptoting
to a value ∼0.95 for large ν, whereas for ε0 = 0.5, b(ν) increases
first before declining. To capture the variation in b(ν) we adopt

b(ν) = b0(ε0) + b1(ε0)√
ν

+ b2((ε0)

ν
. (C3)

We note that fixing b0 ∼ 0.95 also gave reasonable results. Fur-
thermore b1 and b2 are highly (anti-) correlated, and it thus might
be possible to reduce the number of free parameters in principle.
Interestingly the value for b0, which corresponds to the bias for
bright, large sources, is fairly close to unity. We list the best-fitting
parameters in Table C1 and the right-hand panel in Fig. C2 shows
that the parameters vary smoothly with ε0.

In Section 2.4, we discuss how well the correction performs as
a function of ellipticity distribution and seeing. We also examined
μcor as a function of apparent magnitude and found that residuals are
<1 per cent for galaxies fainter than mr = 22, whereas μcor ∼ 0.02
for galaxies with 20 < mr < 22. This overcorrection is probably
caused by the fact that our parametrization tends to underestimate
the bias for large objects.

The bias depends on Sérsic index (see Fig. 8), and therefore the
performance of the empirical correction may differ. Fig. C3 shows
the residual bias as a function of ellipticity distribution for four
different Sérsic indices. The black points with error bars indicate
the results for the ensemble of galaxies, with half-light radii and
Sérsic indices drawn from the observed distribution of values. The
lines indicate the results for the simulations where the Sérsic indices
were fixed to the indicated values. The range in bias is similar to what

Figure C3. Bottom panel: residual multiplicative bias for galaxies with dif-
ferent values for the Sérsic index as a function of ε0. The simulated galaxies
have the same distribution in half-light radii as the regular simulations (in-
dicated by the black points with error bars) and 22 < mr < 25. As in the real
data we only include galaxies with an observed size rh < 5 pixels. The full
range spans about 0.03, but the uncertainty for the ensemble of sources is
much less as the distribution of Sérsic profiles has been obtained from HST
observations.

was observed in Fig. 8, with a positive bias in the expected range
of ε0 for n = 4 and a negative bias for n = 1. Given the relatively
weak dependence of Sérsic index and the fact that the distribution of
Sérsic values is well-determined from HST observations (Rix et al.
2004), we conclude that our correction for the ensemble is robust.
Hence, we ignore the dependence of the bias on Sérsic index.
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Figure D1. Bottom panel: multiplicative bias for galaxies with
20 < mr < 24 as a function of ε0 for a simulation of RCS2 data, which
are shallower than the CCCP data. Top panel: residual bias after we apply
our correction, using parameters optimized for CCCP data, to the simulated
RCS2 data. The solid line indicates μcor if we use ε0 = 0.25 to correct
the simulations for other ellipticity distributions, suggesting our approach is
adequate for these data as well.

APPENDIX D : A PPL I C ATIO N TO SIMUL AT ED
RCS2 DATA

Our KSB implementation has also been used by van Uitert et al.
(2011) to measure the lensing signal around galaxies using data
from the RCS2. It is therefore interesting to examine the impact of
our findings on those results. Compared to our CCCP data (with
a total integration time of 3600 s per position), the RCS2 data are
much shallower, consisting of a single 480 s exposure in the r′

band. We create a separate set of simulations where the noise level
matches that of the RCS2 data. The resulting bias for galaxies with
22 < mr < 24 (the range used by van Uitert et al. 2011 for the
RCS2 analysis) as a function of ε0 is presented in the lower panel of
Fig. D1. The actual bias is smaller because van Uitert et al. (2011)
used the STEP1 implementation, also used in the CCCP analysis of
H12. We also note that van Uitert et al. (2011) used SEXTRACTOR to
detect objects, and used the resulting half-light radius for the weight
function in the subsequent shape analysis.

Here we are interested whether our correction scheme can be
used to data with different noise properties. We therefore apply the
correction to the simulated RCS2 results and present the residual
bias in the top panel of Fig. D1. The black line indicates μcor if we
use our reference value of ε0 = 0.25 to correct the measurements
for the various ellipticity distributions. The results suggest that the
parameters that were optimized to correct CCCP can be used for
the shallower RCS2 data as well.

APPENDIX E: O B SCURAT I ON BY C LUS TER
MEMBERS

As described in Section 3.1, we account for the dilution of the
lensing signal due to cluster galaxies in the source galaxy sample
using the excess galaxy counts as a function of cluster-centric radius.
Fig. 11 shows that the number density of bright cluster galaxies is

Figure E1. Plot of the correction of the counts of galaxies with 22 < mr < 25
for the obscuration by cluster galaxies as a function of radius in units of r500.
The black points indicate the average from a representative subset of clusters,
whereas the light grey points show the individual measurements. The red
line is the best-fitting model as described in the text.

substantial at small radii, which may affect the detection of sources.
As shown in Simet & Mandelbaum (2014), this is an important
source of bias for the measurement of the magnification signal,
but also is relevant here as it leads to biases in the correction for
contamination by cluster galaxies.

To quantify the impact of the obscuration by cluster galaxies on
the source galaxy counts, we use our image simulations: we add
the cluster observations to the simulated image and perform the
object detection and analysis on the images with and without the
cluster added.12 We identify the objects detected in both catalogues
and measure their number density as a function of cluster-centric
radius. As expected, at small radii we observe a decrease in the
recovered number density.

Fig. E1 shows the corresponding correction for the source counts
as a function of radius in units of r500. The black points correspond to
the average from a representative sample of clusters that we used in
this study. The individual measurements are indicated by the light-
grey points. For radii larger than r500 the observed excess counts are
biased low by a few per cent. Hence, our aperture mass estimates
for M500 are unaffected. On the smallest scales considered for the
NFW fits, the observed counts are biased low by ∼10 per cent. Even
in this case the impact is small, as this is a 10 per cent correction to a
correction that itself is 30 per cent; the resulting change in the best-
fitting mass is an ∼1–2 per cent increase. We find that the correction
can be described by

1

fobscured
= 1 + 0.021

0.14 + (r/r500)2
, (E1)

12 We ignore magnification which increases the fluxes of sources and thus
reduces the effects of obscuration somewhat. Note that the number density
of sources is not affected significantly by magnification because the power-
law slope of the number counts dlog Ngal/dM ∼ 0.38–0.4, as discussed in
Section 3.
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which is the red line shown in Fig. E1. We use this model
to correct the measurements of the contamination by cluster
members.

APPENDIX F: MASS ESTIMATES USING
DUFFY ET AL. (2 0 0 8 ) C(M) -RELATION

Previous cluster weak lensing studies, including H12, presented
mass measurements using the relation between mass and concen-
tration from Duffy et al. (2008), which is based on numerical sim-
ulations assuming a WMAP5 cosmology (Komatsu et al. 2009).
The first results from Planck presented by Planck Collaboration
XVI (2014b) suggest higher values for both the normalization of
the matter power spectrum σ 8 and the mean density �m. For this

reason we adopted the relation from Dutton & Macciò (2014), which
yields a concentration that is ∼20 per cent higher than Duffy et al.
(2008) for a given mass.

This affects the masses inferred from parametric NFW fits and
the deprojected aperture masses, but not necessarily in the same
sense. For instance, if we switch to the Duffy et al. (2008) relation,
the estimate for M2500 decreases by ∼7 per cent, no matter whether
we consider the aperture mass or the best-fitting NFW model. On
the other hand, the estimate for M500 increases by 5 per cent for the
NFW model fit, whereas the deprojected aperture mass decreases
by ∼3 per cent (also see section 4.3 in H12). Hence, to allow for a
straightforward comparison with previous mass measurements, we
present in Table F1 the results if we use the mass–concentration
relation from Duffy et al. (2008).

Table F1. Weak lensing mass estimates for the CCCP sample using the mass–concentration from Duffy et al. (2008).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Name M
proj
0.5 M

proj
1.0 r2500 M

ap
2500 r500 M

ap
500 MNFW

vir MNFW
2500 MNFW

500

Abell 68 5.0 ± 0.4 8.7 ± 1.2 560 3.2+0.3
−0.3 1391 9.9+1.5

−1.6 14.2+3.1
−3.1 2.8+0.6

−0.6 7.8+1.7
−1.7

Abell 209 3.7 ± 0.5 7.8 ± 1.5 508 2.3+0.4
−0.4 1249 6.8+1.6

−1.5 9.3+2.7
−2.5 1.9+0.5

−0.5 5.1+1.5
−1.4

Abell 267 4.6 ± 0.5 7.8 ± 1.5 546 2.9+0.4
−0.4 1222 6.6+1.6

−1.6 8.6+2.8
−2.6 1.8+0.6

−0.5 4.8+1.5
−1.4

Abell 370 8.1 ± 0.6 16.9 ± 1.7 661 6.1+0.6
−0.6 1659 19.3+2.5

−2.5 34.6+6.6
−6.3 6.2+1.2

−1.1 18.7+3.6
−3.4

Abell 383 2.8 ± 0.6 6.4 ± 1.4 445 1.5+0.5
−0.6 1232 6.4+2.2

−2.4 6.2+2.9
−2.6 1.3+0.6

−0.6 3.5+1.6
−1.5

Abell 963 4.5 ± 0.5 7.9 ± 1.4 555 3.0+0.5
−0.5 1274 7.2+1.7

−1.7 13.6+3.5
−3.4 2.7+0.7

−0.7 7.5+1.9
−1.8

Abell 1689 8.6 ± 0.5 15.0 ± 1.4 734 6.7+0.6
−0.6 1616 14.4+2.4

−2.2 35.0+6.0
−5.7 6.4+1.1

−1.0 18.5+3.2
−3.0

Abell 1763 5.4 ± 0.5 10.5 ± 1.4 615 4.1+0.6
−0.5 1529 12.7+3.3

−2.9 19.0+4.1
−3.9 3.6+0.8

−0.8 10.3+2.2
−2.1

Abell 2218 5.7 ± 0.5 9.3 ± 1.4 646 4.6+0.7
−0.6 1403 9.4+2.2

−2.2 18.3+4.4
−4.2 3.5+0.8

−0.8 9.9+2.4
−2.3

Abell 2219 4.5 ± 0.6 10.1 ± 1.4 562 3.2+0.6
−0.6 1418 10.2+1.9

−1.7 12.5+2.9
−2.9 2.5+0.6

−0.6 6.9+1.6
−1.6

Abell 2390 6.1 ± 0.5 11.6 ± 1.3 648 4.9+0.6
−0.6 1407 10.0+1.7

−1.5 26.4+4.5
−4.3 4.9+0.8

−0.8 14.2+2.4
−2.3

MS 0015.9+1609 8.5 ± 0.6 20.8 ± 2.0 644 6.9+0.7
−0.7 1654 23.4+3.1

−3.0 33.4+8.5
−8.0 5.9+1.5

−1.4 18.4+4.7
−4.4

MS 0906.5+1110 4.5 ± 0.5 9.6 ± 1.3 574 3.2+0.5
−0.5 1457 10.4+1.7

−1.8 14.2+3.2
−3.2 2.8+0.6

−0.6 7.7+1.8
−1.8

MS 1224.7+2007 2.0 ± 0.6 2.6 ± 1.6 359 0.9+0.4
−0.4 794 2.0+0.8

−0.7 5.2+2.6
−2.3 1.1+0.6

−0.5 3.0+1.5
−1.3

MS 1231.3+1542 1.2 ± 0.4 0.5 ± 1.2 359 0.8+0.2
−0.2 584 0.7+0.4

−0.4 1.9+1.3
−1.2 0.5+0.3

−0.3 1.1+0.8
−0.7

MS 1358.4+6245 4.8 ± 0.7 9.4 ± 1.7 542 3.2+0.7
−0.7 1316 9.1+2.2

−2.2 15.0+3.8
−3.6 2.9+0.7

−0.7 8.3+2.1
−2.0

MS 1455.0+2232 4.3 ± 0.4 8.1 ± 1.3 538 2.9+0.4
−0.4 1191 6.2+1.3

−1.2 14.6+2.8
−2.8 2.9+0.6

−0.6 8.0+1.6
−1.6

MS 1512.4+3647 1.5 ± 0.6 4.5 ± 1.6 274 0.4+0.3
−0.3 829 2.4+1.8

−1.4 4.1+2.0
−1.7 0.9+0.4

−0.4 2.4+1.2
−1.0

MS 1621.5+2640 5.4 ± 0.6 12.3 ± 1.6 565 4.0+0.7
−0.7 1301 9.9+2.0

−1.8 21.8+5.0
−4.8 4.0+0.9

−0.9 12.0+2.7
−2.6

CL 0024.0+1652 6.7 ± 0.6 12.5 ± 1.8 597 4.6+0.6
−0.6 1357 10.7+1.9

−1.9 27.7+6.8
−6.4 5.1+1.2

−1.2 15.1+3.7
−3.5

Abell 115N 1.4 ± 0.5 5.3 ± 1.3 283 0.4+0.3
−0.4 1087 4.4+1.3

−1.9 6.6+2.2
−2.2 1.4+0.5

−0.5 3.7+1.2
−1.2

Abell 115S 2.6 ± 0.5 6.0 ± 1.3 399 1.1+0.5
−0.5 1116 4.8+1.3

−1.2 7.9+2.4
−2.4 1.6+0.5

−0.5 4.4+1.3
−1.3

Abell 222 2.9 ± 0.4 6.9 ± 1.2 433 1.4+0.5
−0.7 1165 5.6+1.2

−1.1 7.1+2.4
−2.3 1.5+0.5

−0.5 4.0+1.4
−1.3

Abell 223N 3.0 ± 0.5 7.6 ± 1.2 448 1.6+0.5
−0.7 1226 6.5+1.3

−1.2 10.0+3.0
−2.8 2.0+0.6

−0.6 5.5+1.7
−1.6

Abell 223S 3.0 ± 0.4 8.4 ± 1.2 451 1.6+0.5
−0.6 1355 8.7+1.6

−1.5 8.8+2.9
−2.7 1.8+0.6

−0.6 4.9+1.6
−1.5

Abell 520 3.6 ± 0.5 7.4 ± 1.4 513 2.3+0.5
−0.5 1201 6.0+1.5

−1.3 16.9+3.5
−3.4 3.3+0.7

−0.7 9.2+1.9
−1.8

Abell 521 3.1 ± 0.5 9.0 ± 1.4 401 1.2+1.0
−0.5 1321 8.5+1.7

−1.6 12.2+3.5
−3.4 2.4+0.7

−0.7 6.7+2.0
−1.9

Abell 586 2.5 ± 0.6 6.1 ± 1.4 430 1.3+0.5
−0.4 1203 5.9+2.4

−2.2 5.0+2.4
−2.2 1.1+0.5

−0.5 2.8+1.3
−1.2

Abell 611 3.7 ± 0.5 9.0 ± 1.3 489 2.2+0.6
−0.5 1226 7.1+1.2

−1.2 10.1+3.4
−3.1 2.0+0.7

−0.6 5.6+1.9
−1.7

Abell 697 4.6 ± 0.5 10.5 ± 1.4 551 3.2+0.5
−0.5 1417 10.8+1.7

−2.0 15.7+3.8
−3.6 3.1+0.7

−0.7 8.6+2.1
−2.0

Abell 851 5.4 ± 0.5 12.2 ± 1.4 540 3.4+0.4
−0.4 1348 10.7+1.8

−1.7 24.1+6.2
−5.7 4.4+1.1

−1.1 13.2+3.4
−3.2

Abell 959 5.0 ± 0.5 10.9 ± 1.4 580 3.7+0.6
−0.6 1333 9.0+1.5

−1.5 22.3+4.4
−4.4 4.2+0.8

−0.8 12.1+2.4
−2.4

Abell 1234 2.5 ± 0.5 4.4 ± 1.4 439 1.4+0.3
−0.3 982 3.2+1.3

−1.1 8.2+2.6
−2.4 1.7+0.5

−0.5 4.5+1.4
−1.3

Abell 1246 2.7 ± 0.5 5.7 ± 1.1 426 1.3+0.4
−0.5 1082 4.4+0.9

−0.9 9.7+2.7
−2.5 2.0+0.5

−0.5 5.4+1.5
−1.4
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Table F1 – continued.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Name M
proj
0.5 M

proj
1.0 r2500 M

ap
2500 r500 M

ap
500 MNFW

vir MNFW
2500 MNFW

500

Abell 1758 5.5 ± 0.5 12.2 ± 1.4 633 4.8+0.6
−0.6 1491 12.6+1.9

−1.9 21.6+3.6
−3.6 4.1+0.7

−0.7 11.7+2.0
−2.0

Abell 1835 5.3 ± 0.4 10.7 ± 1.2 603 4.0+0.4
−0.4 1387 9.8+1.5

−1.5 22.4+4.2
−4.2 4.2+0.8

−0.8 12.1+2.3
−2.3

Abell 1914 3.7 ± 0.5 7.9 ± 1.2 522 2.4+0.4
−0.4 1287 7.2+1.4

−1.3 15.1+2.8
−2.7 3.0+0.5

−0.5 8.2+1.5
−1.5

Abell 1942 3.8 ± 0.5 7.6 ± 1.2 519 2.5+0.4
−0.4 1204 6.2+1.3

−1.2 15.1+3.2
−3.1 3.0+0.6

−0.6 8.2+1.8
−1.7

Abell 2104 4.2 ± 0.5 10.3 ± 1.2 583 3.3+0.6
−0.6 1422 9.5+1.9

−1.6 17.8+4.0
−3.8 3.4+0.8

−0.7 9.6+2.2
−2.1

Abell 2111 3.9 ± 0.5 6.6 ± 1.3 517 2.5+0.4
−0.4 1156 5.5+1.6

−1.5 10.1+2.5
−2.5 2.1+0.5

−0.5 5.6+1.4
−1.4

Abell 2163 4.4 ± 0.5 9.5 ± 1.4 562 3.1+0.6
−0.5 1456 10.8+2.2

−2.1 19.6+4.4
−4.2 3.7+0.8

−0.8 10.6+2.4
−2.3

Abell 2204 4.8 ± 0.5 11.0 ± 1.0 619 3.9+0.5
−0.5 1490 10.9+1.4

−1.3 22.4+3.8
−3.6 4.2+0.7

−0.7 12.0+2.0
−1.9

Abell 2259 2.4 ± 0.5 5.6 ± 1.3 417 1.2+0.4
−0.4 1106 4.5+1.2

−1.3 8.8+3.1
−2.7 1.8+0.6

−0.6 4.8+1.7
−1.5

Abell 2261 6.0 ± 0.4 14.2 ± 1.3 666 5.3+0.5
−0.5 1654 16.1+1.6

−1.6 28.1+4.9
−4.7 5.2+0.9

−0.9 15.1+2.6
−2.5

Abell 2537 5.4 ± 0.6 10.1 ± 1.4 585 3.9+0.6
−0.6 1302 8.5+1.6

−1.5 23.6+4.6
−4.6 4.4+0.9

−0.9 12.9+2.5
−2.5

MS 0440.5+0204 2.9 ± 0.5 2.8 ± 1.3 457 1.6+0.4
−0.4 890 2.4+0.7

−0.7 3.5+2.0
−1.8 0.8+0.4

−0.4 2.0+1.1
−1.0

MS 0451.6−0305 4.4 ± 0.7 8.4 ± 2.1 453 2.4+0.6
−0.6 1071 6.3+1.7

−1.9 19.4+6.7
−6.2 3.6+1.2

−1.1 10.8+3.7
−3.5

MS 1008.1−1224 4.1 ± 0.4 8.2 ± 1.4 507 2.5+0.4
−0.3 1168 6.2+1.3

−1.2 18.2+4.0
−3.8 3.5+0.8

−0.7 10.0+2.2
−2.1

RX J1347.5−1145 5.2 ± 0.8 10.1 ± 1.9 530 3.4+0.9
−0.8 1301 10.1+3.2

−3.0 22.0+6.0
−5.7 4.1+1.1

−1.0 12.2+3.3
−3.1

RX J1524.6+0957 2.1 ± 0.9 6.5 ± 2.1 245 0.4+0.4
−1003.0 961 4.4+2.2

−1.9 7.1+4.8
−4.2 1.4+1.0

−0.9 4.1+2.8
−2.4

MACS J0717.5+3745 6.4 ± 0.9 19.3 ± 2.3 586 5.2+1.1
−3.1 1470 16.4+3.4

−3.0 44.8+10.8
−10.3 7.6+1.8

−1.8 24.4+5.9
−5.6

MACS J0913.7+4056 3.1 ± 0.5 5.3 ± 1.5 380 1.2+0.5
−0.5 935 3.7+1.0

−0.9 6.9+3.7
−3.2 1.4+0.8

−0.7 4.0+2.1
−1.8

CIZA J1938+54 5.3 ± 0.5 11.3 ± 1.3 588 3.8+0.4
−0.4 1557 14.0+2.2

−2.2 19.4+5.0
−4.7 3.7+1.0

−0.9 10.6+2.7
−2.6

3C295 4.6 ± 0.6 8.1 ± 1.9 488 2.7+0.5
−0.5 1090 6.0+1.5

−1.6 13.4+4.6
−4.2 2.6+0.9

−0.8 7.5+2.6
−2.4

Column 1: cluster name; columns 2 and 3: projected mass within an aperture of 0.5 and 1 h−1
70 Mpc, respectively; columns 4 and

6: r� (in units of h−1
70 kpc) determined using aperture masses; columns 5 and 7: deprojected aperture masses within r�; columns

8–10: masses from best-fitting NFW model. All masses are listed in units of (1014 h−1
70 M�).
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