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We note an implication of the chiral Luttinger liquid based edge state description of the fractional quantum
Hall effect. By considering several examples that involve backward moving neutral modes, arising from either
composite fermions with reverse flux attached or edge reconstruction, we show that nonuniversality of the edge
exponent implies nonuniversality of the Hall conductance, as measured in the two-terminal conductance.
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The most remarkable aspect of the quantum Hall effect,
both integer and fractional, is the fact that the Hall conductance
is quantized, taking only a discrete set of values. This
quantization is universal, in the sense that it does not depend
on the details of electron interactions and edge potentials. In
the case of a four-terminal setup, such universality has been
confirmed to the accuracy of one part per million for the integer
quantum Hall effect. Even though the terms “quantized” and
“universal” are not synonymous, in the quantum Hall effect
they are deeply interconnected. Therefore, for brevity, in what
follows we will occasionally use only one of these terms while
implying both.

The universal behavior of the quantized Hall conductance
in the quantum Hall effect is understood to be connected to
the topological properties of the quantum states [1,2], and
this ushered in the study of topologically nontrivial insulating
phases whose bulk excitations are gapped but the edge or
boundary states are gapless. The existence of gapless edge
excitations in quantum Hall states can be understood by
using the gauge argument [3–5], and Wen proposed the chiral
Luttinger liquid as the building block for the description of
these edge states [6].

One interesting implication of chiral Luttinger liquid
based edge theory is that, for simple edges, such as ν = 1
and ν = 1/3, the current-voltage relation of the (electron)
tunneling between a Fermi liquid and the quantum Hall
edge exhibits a power law behavior with a quantized and
universal scaling exponent [6] which, just as the universal
behavior of the Hall conductance, is dictated solely by bulk
topological properties [7,8]. This is remarkable because of the
one-to-one correspondence between the tunneling exponent
and the scaling dimension of the electron, where the latter
generally depends strongly on the details of the interaction.

Unlike the case of the Hall conductance, however, the ex-
perimental measurements for fractional quantum Hall (FQH)
states at ν = n/(2n ± 1) [9] and at ν = 5/2 [10] have not yet
yielded a quantized tunneling exponent, and the results seem
to suggest a strong sample dependence. This motivated several
theoretical proposals for explaining this discrepancy [11–21].
In particular, it is found that the interplay between the electron-
electron interaction and confining potential at shorter distances
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can cause an instability that drives edge reconstruction, and in
the edge reconstructed phase, the quantum Hall state might
lose some of its universal features, in particular, the tunneling
exponent is nonquantized and nonuniversal [20,21]. Compared
to the original state, the edge reconstructed state has at least
additional antiparallel edge modes and, as we shall see, the
interaction between counterpropagating modes is a necessary
condition for a nonuniversal tunneling exponent.

The tunneling exponent, however, is not the only observable
that might lose universality due to the interaction between
counterpropagating modes. As noted in Ref. [22], the inter-
action between counterpropagating modes renders the Hall
conductance nonquantized and nonuniversal. Even though the
loss of universality in both the Hall conductance and tunneling
exponent have been known and studied for a while, as far
as we know, a direct relationship between them has yet to
be discussed in the literature. In this Rapid Communication,
by considering several examples of quantum Hall states
with counterpropagating modes, such as those arising from
composite fermions with reverse flux attachment and edge
reconstructed states, we show that a quantization of the Hall
conductance, as measured in the two-terminal setup, implies
a quantization of the edge exponent. In other words, within
the context of a chiral Luttinger liquid, nonuniversality of
the edge exponent implies nonuniversality of the two-terminal
conductance.

Let us start by first summarizing some formulas that will be
used in what follows. For their derivation, see Ref. [23]. Let
us consider an edge theory whose bosonic sector is described
by

Sb = 1

4π

∫
dτ dx(Kij ∂τφi ∂xφj + Vij ∂xφi ∂xφj ), (1)

where i,j = 1, . . . ,n, n is the number of edge modes, K is
a symmetric integer matrix, and V is a symmetric positive
matrix. The filling factor is given by ν = tT K−1t , where
the vector t specifies the charges of the quasiparticles. As
such, K and t are determined (modulo basis transformation)
by the bulk topological properties, while V parametrizes the
interaction and edge potential (here, we only consider a contact
interaction). We say that an observable is not quantized if one
can continuously tune its value by tuning V and, furthermore,
a strong dependence on V renders an observable nonuniversal.
We note that Ref. [23] also included disorder induced tunneling

1098-0121/2015/91(8)/081113(4) 081113-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.081113


RAPID COMMUNICATIONS

JIMMY A. HUTASOIT PHYSICAL REVIEW B 91, 081113(R) (2015)

terms in the action. Such terms cause a regime of parameter
space to be a renormalization group (RG) attractor. It turns out
that this regime is only a subspace of the parameter regime we
are interested in, and therefore our result holds not only when
the edge is clean but also when it is disordered.

Continuing with our formalism, for an operator that is
expressed by O� = ei�iφi , the charge is given by q� = tT K−1�

and its exchange statistics with respect to another operator Ok

(which can be itself) is given by θk� = πkT K−1�. For electron
operators, the charge must be equal to unity while the exchange
statistics must be that of a fermion.

In order to determine the Hall conductivity and the tunnel-
ing exponent, we need to diagonalize the action in Eq. (1).
First, let us consider a basis transformation φ′ = M−1

1 φ, under
which

K ′ = MT
1 KM1 =

(
−1n− 0

0 1n+

)
, (2)

where 1n± is an n± × n± identity matrix and n− + n+ = n.
Next, we can diagonalize V ′ = MT

1 V M1 by

V ′′ = MT
2 MT

1 V M1M2, (3)

where V ′′ is a diagonal matrix and M2 ∈ SO(n−,n+) such that
K ′′ = K ′. We can express the second basis transformation as
M2 = BR, where R is an orthogonal matrix, i.e., the rotation,
and B is a positive matrix, i.e., the pure boost of the Lorentz
group. It turns out that the scaling dimension of an operator
O�′′ is given by

	�′′ = �′′T 	�′′, (4)

where

	 = B2

2
. (5)

We are particularly interested in the smallest scaling dimension
of the electron operators 	el due to the fact that, under the
assumption that the outside electron couples to all the edge
modes with equal strength, the scaling exponent of electron
tunneling into the edge at a long time scale will be given
by 2	el. Furthermore, the two-terminal Hall conductance is
given by

σH = 2 t ′′T 	t ′′. (6)

Here, the two-terminal conductance is defined following
Refs. [24,25], where one applies an electric field along the
edge and evaluates the current response.

We would like to note that the parameters of the boost B

describe the mixing between counterpropagating modes, while
the parameters of the rotation R describe the mixing between
modes propagating along the same direction. Since Eq. (5)
shows that the nontrivial part of 	 only depends on B (but not
R), the renormalization, and thus the nonuniversality, of the
Hall conductance and scaling dimensions of operators depend
on the mixing between counterpropagating modes.

Now we are ready to consider some examples of FQH states
that features backward moving neutral modes. First, let us treat
the case of FQH states arising from composite fermions with
reverse flux attachment. The state with filling factor ν = n

2pn−1

is described by

K = −1n + 2pCn, t = (1, . . . ,1)T , (7)

where Cn is an n × n matrix whose entries are all equal to 1.
In a basis where the K matrix is diagonal, we have

K = diag(2pn − 1, − 1, . . . , − 1), t = (√
n,0, . . . ,0

)T
.

(8)

In this basis, we have a forward moving charge mode and n − 1
backward moving neutral modes. In general, these modes are
not the eigenmodes as we expect interactions to mix them.

Parametrizing the boost such that

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ β1γ β2γ · · · βn−1γ

β1γ 1 + β2
1 γ 2

γ+1
β1β2γ

2

γ+1 · · · β1βn−1γ
2

γ+1

β2γ
β1β2γ

2

γ+1 1 + β2
2 γ 2

γ+1 · · · β2βn−1γ
2

γ+1

...
...

...
...

βn−1γ
βn−1β1γ

2

γ+1
βn−1β2γ

2

γ+1 · · · 1 + β2
n−1γ

2

γ+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)

where γ = 1/
√

1 − β2, β2 = ∑n−1
i=1 β2

i , and |β| � 1, yields

σH = ν√
1 − β2

. (10)

This means that in order for the two-terminal conductance
to be quantized and taking the “correct” value, all of the
boost parameters βi’s must vanish. In other words, since
βi’s describe the mixing between the charged mode and
the counterpropagating neutral modes, Hall conductance is
quantized if and only if the charged mode is decoupled from all
the backward moving neutral modes. In this case, however, B2

is just an identity matrix, and therefore the scaling dimension
of the electron operator will also be quantized and universal.

For the next case, let us consider edge reconstructed
Laughlin states and edge reconstructed Pfaffian states. For
the Laughlin state and the bosonic sector of the Pfaffian state,
the edge reconstructed state is described by

K =
⎛
⎝−m 0 0

0 m 0
0 0 m

⎞
⎠, t =

⎛
⎝1

1
1

⎞
⎠, (11)

where m is an odd integer for the Laughlin state and m = 2
for the Pfaffian state. Doing a basis transformation such that
K → WKWT , with

W =

⎛
⎜⎜⎝

√
2√
m

− 1√
2m

− 1√
2m

0 1√
2m

− 1√
2m

− 1√
m

1√
m

1√
m

⎞
⎟⎟⎠, (12)

we obtain

K =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, t =

⎛
⎝ 0

0
1√
m

⎞
⎠. (13)

In this basis, we have a forward moving charge mode and a
couple of antiparallel neutral modes. As before, these modes
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are generally not the eigenmodes as we expect interactions to
mix them.

Parametrizing the boost exactly as in Eq. (9) but with n = 3
yields

σH = 1

m

(
1 + β2

2

1 − β2 +
√

1 − β2

)
. (14)

This means that in order for the Hall conductance to be
quantized at the correct value, β2 must vanish. Even though
the quantization of the Hall conductance requires the charged
mode to be decoupled from the backward moving neutral
move, the two antiparallel neutral modes can still interact.
Nevertheless, as we shall see, this interaction does not render
the smallest scaling dimension of the electron operators to be
nonuniversal.

The electron operators can be written as

Oel = exp[i(xφn1 + yφn2 + √
mφc)], (15)

where φc is the charged mode, φn1,n2 are the backward and
forward moving neutral modes, respectively, and y2 − x2 =
2p, where p is an integer. This condition needs to be satisfied
in order for the electron operators to have fermionic statistics.
If the Hall conductance is quantized, the scaling dimension of
the electron operator is then given by

	el = x2 + 2β1xy + y2

2
√

1 − β2
1

+ m

2
. (16)

(For Pfaffian, this is only the bosonic part of the electron
operator and the full operator is obtained by multiplying
this expression with the Majorana fermion.) It is then
easy to see that the long time behavior of electron tun-
neling will be dominated by the electron operator with a
scaling dimension 	el = m/2. To see that, we note that
1 � β1 � −1 and thus x2 + 2β1xy + y2 � |x|2 − 2|x||y| +
|y|2 = (|x| − |y|)2 � 0, where the minimum can always be
reached by setting x = y = 0, regardless of the value of β1.

Therefore, when the Hall conductance is quantized, then
the scaling dimension of the most dominant electron operator
is also quantized to be 	el = m/2 for the edge reconstructed
Laughlin state (cf. Ref. [26]) and 	el = 3/2 for the Pfaffian
state (cf. Ref. [27]). In light of tunneling experiments such as
those of Refs. [9,10], where the edge exponent is found to be
nonuniversal (while the Hall conductance is quantized), edge
reconstruction has been proposed as a mechanism that results
in the nonuniversal behavior of the edge [20,21]. However,
our result clearly shows that edge reconstruction as described
by Eq. (11) cannot be the explanation for the nonuniversal
behavior found in tunneling experiments.

As the last examples, let us consider other FQH states with
dim[K] = 3 and antiparallel neutral modes, such as ν = 1 ±

2
4p−1 . As before, we can do a basis transformation such that

K =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, t =

⎛
⎝ 0

0√
ν

⎞
⎠. (17)

Using the same parametrization for the boost as above, we see
that in order for the two-terminal conductance to be quantized,
β2 must vanish. Furthermore, the scaling dimension of the

electron operator is

	el = x2 + 2β1xy + y2

2
√

1 − β2
1

+ 1

2ν
, (18)

but with the condition

y2 − x2 = 2p + 1 − 1

ν
, (19)

where, again, p is an integer. In this case, the first term of
Eq. (18) is positive definite because x = y = 0 is not a solution
to Eq. (19). Solving Eq. (19) for y, substituting the solution
into Eq. (18), and then minimizing it with respect to x, we
obtain

	min
el =

∣∣∣∣pmin + 1

2
− 1

2ν

∣∣∣∣ + 1

2ν
, (20)

where pmin is an integer chosen to minimize the first term.
Since all dependence on β1 has dropped off the smallest scaling
dimension of the electron operators, we again conclude that if
the two-terminal conductance is quantized, then the electron
tunneling exponent will also be quantized.

Some discussions are in order. In this Rapid Communi-
cation, we have considered three classes of FQH states, ν =
n/(2n ± 1), edge reconstructed ν = 1/m, and ν = 1 ± 2

4p−1 ,
all of which contain counterpropagating modes. We started
by showing that the decoupling between the forward moving
charged mode and the backward moving neutral modes is
the sufficient and necessary condition for quantized Hall
conductance, as measured in a two-terminal setup. Since
the parameter space in which such decoupling occurs is a
lot smaller than the whole parameter space, this begs the
question of what mechanism confines us to the subspace of
parameter space in which the forward moving charged mode
and the backward moving neutral modes are decoupled. One
such mechanism was introduced in Ref. [22], where it was
shown that edge disorder can restore the quantization of Hall
conductance because in the presence of disorder, there is an
RG fixed point, the so-called Kane-Fisher-Polchinski (KFP)
fixed point, at which the Hall conductance takes the correct
quantized value. This KFP fixed point is obviously a subspace
of the parameter subspace in which the forward moving
charged mode and the backward moving neutral modes are
decoupled.

Anticipating the possibility of other mechanisms that can
restore the quantization of Hall conductance, here we did not
make any assumptions about what such mechanisms should be.
Instead of limiting ourselves to a subspace of the parameter
subspace in which the decoupling between the forward moving
charged mode and the backward moving neutral modes occurs,
we simply observed that as long as the forward moving charged
mode and the backward moving neutral modes are decoupled,
the tunneling exponent is universal. Providing a mechanism
that will confine us to a subspace of the parameter subspace we
considered above, such as by introducing disorder, obviously
will not change the result. For the particular case of a
disordered edge, in a sense, what we did can be thought of as
a generalization of Refs. [23,26,27], where the authors studied
the tunneling exponents at the KFP fixed points of the three
classes of FQH states we considered here.
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Taking into account the two statements, (1) the decoupling
between the forward moving charged mode and the backward
moving neutral modes is the sufficient condition for a universal
tunneling exponent, and (2) this mode decoupling is the
sufficient and necessary condition for universal Hall conduc-
tance, we concluded that quantization of the Hall conductance,
as measured in two-terminal setup, implies the quantization
of the tunneling exponent. Equivalently, at least within the
framework of chiral Luttinger liquid theory, a nonuniversal
tunneling exponent implies a nonuniversal Hall conductance.

Lastly, let us comment shortly on the case of four-terminal
conductance. In this case, even though we do not have
a somewhat general formula akin to Eq. (6), at least for

ν = 2/3, the decoupling between the charged mode and the
backward moving neutral mode is also the sufficient and
necessary condition for quantized and universal four-terminal
conductance [22]. Therefore, in that case, a nonuniversal
tunneling exponent also implies a nonuniversal four-terminal
conductance.
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