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Statistical translation invariance protects a topological insulator from interactions
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We investigate the effect of interactions on the stability of a disordered, two-dimensional topological insulator
realized as an array of nanowires or chains of magnetic atoms on a superconducting substrate. The Majorana
zero-energy modes present at the ends of the wires overlap, forming a dispersive edge mode with thermal
conductance determined by the central charge c of the low-energy effective field theory of the edge. We show
numerically that, in the presence of disorder, the c = 1/2 Majorana edge mode remains delocalized up to
extremely strong attractive interactions, while repulsive interactions drive a transition to a c = 3/2 edge phase
localized by disorder. The absence of localization for strong attractive interactions is explained by a self-duality
symmetry of the statistical ensemble of disorder configurations and of the edge interactions, originating from
translation invariance on the length scale of the underlying mesoscopic array.
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I. INTRODUCTION

In the very first topological insulator ever discovered, the
quantum Hall insulator [1], interactions have a dramatic effect
by changing the quantum of conductance from the value e2/h

to a rational fraction of it [2]. The quantum Hall insulator
is but one entry in a periodic table of topological states of
matter, including both insulators and superconductors (and
commonly referred to as topological insulators or TIs) [3–6].
These materials are all characterized by a gapped bulk with
gapless surface or edge excitations, protected from localization
by disorder due the existence of a topological invariant.

Because a topological invariant is a property of the single-
particle Hamiltonian, it is a challenge to classify TIs in the
presence of interactions [7–11], and in some cases it is even
possible to show explicitly that the topological classification
is unstable to interactions [12]. The key questions are whether
interactions may localize the surface states or lead to distinct
topological phases, as they do in the fractional quantum Hall
effect. Here we address these two questions for the super-
conducting counterpart of the quantum Hall insulator, a two-
dimensional (2D) superconductor with chiral p-wave pairing.

The superconducting analog of the electronic quantum
Hall effect, the thermal quantum Hall effect, refers to a heat
current carried by Majorana modes propagating along the
edge of a topological superconductor [13–15]. In the absence
of backscattering along the edge, the thermal conductance
equals Gthermal = c G0, with G0 = π2k2

BT/3h the thermal
conductance quantum for free electrons. The coefficient c,
called the central charge, characterizes the stress-energy tensor
of the conformal field theory associated with the low-energy
edge modes [14,16–19]. While c = 1 for the Luttinger edge
mode of the integer and fractional quantum Hall effects, a
Majorana edge mode has c = 1/2—at least in the absence
of interactions [14]. One of our discoveries is that moderate
repulsive interactions between the Majorana fermions drive a
transition to an extended c = 3/2 edge phase.

Chiral p-wave superconductors may exist naturally
(Sr2RuO4 is a candidate material [20,21]), but a major recent
development is the search for this particular exotic pairing
in semiconductor nanowires [22–25] and chains of magnetic
atoms [26] deposited on a superconductor with conventional
s-wave pairing. (Alternative proposals include chains of atoms
in optical lattices [27] and chains of magnetic vortices on
the surface of a three-dimensional (3D) TI [28]). A two-
dimensional (2D) array of parallel nanowires, see Fig. 1,
forms an anisotropic topological insulator, called a “weak”
TI [29–36] because the Majorana mode propagates only
along the edges perpendicular to the wires. Each nanowire
realizes a Kitaev chain [37], with two unpaired Majorana
zero-energy modes at the end points of the wire. These zero
modes overlap to form a dispersive one-dimensional (1D)
edge mode of Majorana fermions [38–40]. Backscattering by
disorder is not forbidden, yet this “Kitaev edge mode” does
not localize [41,42].

Because the effective boundary theory of the Kitaev
edge is one dimensional, it is possible to investigate its
behavior in great detail with modern numerical tools based on
matrix product state (MPS) methods [we use both variational
infinite MPS methods and the density-matrix renormalization
group (DMRG)]. The average translation symmetry of the
mesoscopic array causes a statistical translation symmetry of
the ensemble of disorder configurations and the exact self-dual
structure of the interacting edge Hamiltonian. This situation is
an example of a “statistical topological insulator,” protected by
a symmetry that is present only on average [41]. We find that
the exact self-dual structure of the interaction Hamiltonian
protects the gapless Majorana mode up to extremely strong
attractive interactions. A gapped phase does appear for
repulsive interactions, but first the Kitaev edge enters a gapless
phase with an unusually large central charge c = 3/2.

Our findings are consistent with two very recent and
independent investigations of the same model in the clean
limit by Rahmani et al. [43,44].
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FIG. 1. (Color online) Array of nanowires on a superconducting
substrate, with a delocalized Majorana edge mode composed out of
coupled zero modes localized at the end points.

The paper is organized as follows. In Sec. II we introduce
a minimal model of the Kitaev edge for generic interactions in
the host 2D superconductor, as a necessarily self-dual, interact-
ing Majorana chain. The Jordan-Wigner transformation maps
the model to a spin- 1

2 chain. In Sec. III we discuss the phase
diagram of this model as a function of the relative strength of
interactions to hopping, and extract the central charges of its
critical phases. In Sec. IV we consider the effect of disorder
on those critical phases to assess the stability of transport
measurements. We conclude in Sec. V.

II. INTERACTING KITAEV EDGE

The end points of each nanowire (labeled s = 1,2, . . .) in
the array of Fig. 1 form a 1D lattice of self-conjugate Majorana
operators (γs = γ

†
s ), governed by the Hamiltonian

H = −i
∑

s

αsγsγs+1 −
∑

s

κsγsγs+1γs+2γs+3. (1)

The αs terms describe hopping along the edge and the κs terms
describe interactions.

To interpret this Hamiltonian it is helpful to transform pairs
of Majorana operators into creation and annihilation operators
of effective edge fermions,

γ2j−1 = cj + c
†
j , iγ2j = cj − c

†
j . (2)

For odd s the four-Majorana terms have the interpretation of
density-density interactions [28], since

− γsγs+1γs+2γs+3 = (2nj − 1)(2nj+1 − 1) (3)

for s = 2j − 1. The appearance of an interaction term with
s = 2j even,

−γsγs+1γs+2γs+3

= −i(cj − c
†
j )(2nj+1 − 1)(cj+2 + c

†
j+2), (4)

is then dictated by translation symmetry. The presence of this
term is what distinguishes the Kitaev chain (a 1D array) from
the Kitaev edge (the 1D edge of a 2D array) [42].

The fact that all two- and four-Majorana terms appear
on equal footing, that is, there is no statistical distinction
between α2j−1,κ2j−1 and α2j ,κ2j determines that the edge
Hamiltonian is exactly self-dual in the sense of quantum
statistical mechanics [45]. The apparent “dimerization” of
the Kitaev edge introduced by the transformation to effective
fermions is fictitious: In contrast to the Kitaev chain, here
there is no physical distinction between even and odd sites.
This symmetry is enforced by the bulk origin of the edge
theory.

In what follows we analyze the model Hamiltonian (1)
because it is the simplest Hamiltonian compatible with
translation symmetry. It may be thought of as the leading
term in an expansion of the actual, microscopic in origin,
interaction. It is not possible to take Eqs. (3) and (4) as a direct
indication of what the microscopic interaction may be, since
the effective c fermions are complicated combinations of the
microscopic fermions.

We perform a Jordan-Wigner transformation to an equiva-
lent spin- 1

2 representation, by writing the Majorana operators
in terms of Pauli matrices:

γ2k = σ
y

k

k−1∏
j=1

σ z
j , γ2k−1 = σx

k

k−1∏
j=1

σ z
j . (5)

This transformation splits the coupling parameters into even,
αe

s ≡ α2s , κe
s ≡ κ2s , and odd, αo

s ≡ α2s+1, κo
s ≡ κ2s+1, sets.

Statistical translation invariance dictates that the even and odd
sets are indistinguishable in a clean system and have the same
probability distribution in a disordered ensemble.

The Hamiltonian (1) of the interacting Kitaev edge trans-
forms into

H = −
∑

s

αe
s σ x

s −
∑

s

αo
s σ z

s σ z
s+1

+
∑

s

κe
s σ x

s σ x
s+1 +

∑
s

κo
s σ z

s σ z
s+2. (6)

This spin model is the self-dual anisotropic next-nearest-
neighbor Ising (ANNNI) model. The standard (κe

s = 0)
ANNNI model [46,47] has generically a gapped spectrum,
except for a critical line with c = 0.5 and a floating phase with
c = 1. (See Refs. [48,49] for a recent study in the context of
Majorana zero modes).

The special feature of the Kitaev edge that protects
the gapless phase is the equivalence of the even and odd
coupling terms [41,42]. The ANNNI Hamiltonian (6) satisfies
a corresponding self-duality relation [45], which in the context
of a spin- 1

2 chain would require an artificial fine tuning
of parameters. Here the self-duality is inherited from the
realization of the Kitaev edge Hamiltonian (1), where it
expresses the natural requirement that the translation of the
Majorana operators by one site, γs �→ γs+1, should describe
the same physical system. Self-duality pins the Kitaev edge at a
gapless critical point between two gapped phases, protecting it
from localization by disorder or finite but potentially extremely
large interactions.

III. PHASE DIAGRAM OF THE CLEAN EDGE

In the absence of disorder we may set κe
s = κo

s ≡ κ and
αe

s = αo
s ≡ α (>0 for definiteness [50]). Then the edge is

controlled by only one dimensionless interaction-strength
parameter ζ = κ/α.

We examine the phase diagram of the clean Kitaev edge
using the evoMPS implementation [51–53] of the MPS time-
dependent variational principle and conjugate gradient solver
in the thermodynamic limit. To determine the central charge
of the gapless (critical) phases we divide the infinite chain
into half-chains A and B and calculate the entanglement
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FIG. 2. (Color online) Quantum phase diagram of the interacting
Kitaev edge as a function of the relative strength ζ of interactions
and hopping along the edge. The central charges associated with the
gapless phases are indicated.

entropy

S = −Tr ρA ln ρA (7)

from the reduced density matrix ρA. The scaling

S = 1
6c ln ξ + const. (8)

of S with the correlation length ξ of the slowest decaying
correlation function provides an estimate of the central
charge [54–56]. A saturation of S with ξ on the other hand
provides strong evidence for a gapped phase. In this way we
obtain the three phases indicated in Fig. 2. Representative
numerical data for the floating phase are shown in Fig. 3.

The noninteracting point ζ = 0 corresponds to the critical
phase of the Ising model, with central charge c = 1/2. We find
that this phase persists up to attractive interactions that are very
large compared to mesoscopic energy scales, but ultimately
it will break down. Our numerics extends up to ζ = −100.
Rahmani et al. [43] report a phase transition into a gapped
phase for ζ ≈ −250.

In order to analyze the effect of very strong interactions we
investigate the singular limit ζ → ±∞, when the Hamiltonian
contains only the interaction term,

lim
ζ→±∞

H = ±
∑

s

γs γs+1γs+2γs+3. (9)

The two signs are connected by a gauge transformation (but
only if α = 0), so we focus on the positive sign. To assess the
role of translation invariance, we have found it helpful to study

3.0 3.5 4.0 4.5

ln(ξ)

1.2

1.3

1.4

1.5

1.6

1.7

S

ζ = 0.5

ζ = 0.9

ζ = 1.1

c = 1.485 ± 0.021

c = 1.506 ± 0.021

c = 1.503 ± 0.005

FIG. 3. (Color online) Correlation length dependence of the en-
tanglement entropy for different control parameters ζ in the “floating”
phase. The straight line fits to S = (c/6) ln ξ + const. indicate a
central charge of c = 3/2. Bond dimensions used are in the range
18 � D � 102. All states were converged up to an effective energy
gradient norm � 10−8.

FIG. 4. (Color online) Ground state energy (top panel), as well as
its first and second derivatives (bottom panel, inset of bottom panel) as
a function of κe. We have used a constant κo = 1 and bond dimension
D = 128 throughout. The first derivative is discontinuous across the
phase transition (dashed line).

the Hamiltonian

H = κe

∑
s=2k

γs γs+1γs+2γs+3

+ κo

∑
s=2k−1

γs γs+1γs+2γs+3 (10)

as a function of κe around the self-dual point κe = κo ≡ 1.
Figure 4 shows the behavior of the ground state energy, as

well as its first and second derivatives, as κe is varied through
the self-dual point. The first derivative is discontinuous at the
phase transition. To further confirm that the transition at κe = 1
is of first order, we have performed scaling of the energy gap
as a function of bond dimension. The results of Fig. 5 show
that the gap remains finite in the thermodynamic limit, in
agreement with the entanglement entropy. The same behavior
was reported recently in Ref. [43].

Since the Kitaev edge is gapped in the limit ζ → ∞,
it is natural to ask whether this phase of infinitely strong
interactions is adiabatically connected to the gapped antiphase
that we find for ζ > 5. In order to address this question, we
investigated the Kitaev edge for ζ−1 � 0. We conclude that
the antiphase does indeed persist all the way to ζ → ∞, and
that there is no transition in the singular limit. This situation
should be contrasted with what happens for ζ → −∞.

For ζ > 0 a second-order phase transition takes place
at ζ ≈ 0.3, leading to a new gapless phase characterized
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FIG. 5. (Color online) Energy difference between the ground
state and the first excited level as a function of inverse bond dimension
1/D at the self-dual point κe = κo = 1. The system gap scales to
a value E1 − E0 � 0.092 as the bond dimension is extrapolated
to infinity, indicating that the self-dual point is gapped in the
thermodynamic limit.

by incommensurate charge-density waves. We examine the
dominant wave vector k corresponding to modulations in
the connected σx and σ z spin-spin correlation functions (see
Fig. 6). In the Ising phase (ζ � 0.3) these correlation functions
have diverging correlation length and no modulations, so
k = 0. At ζ ≈ 0.3 the system enters a “floating” phase in
which the wave vector varies continuously. Unlike the floating
phase of the standard ANNNI model, the floating phase of
the Kitaev edge has has an unusually large central charge of
c = 3/2, see Fig. 3. This transition into a phase with coexisting

FIG. 6. (Color online) Top panel: Locking of the wave vector cor-
responding to σ x modulations as a function of the control parameter
ζ for different bond dimensions D. Bottom panel: Extrapolation of
the locking point ζl to infinite bond dimension.

Luttinger (c = 1) and Majorana (c = 1/2) edge modes has
been confirmed by Rahmani et al. [44].

For sufficiently large ζ � 5, the wave vector locks to a
commensurate value: k = π/2 for σ z and k = π for σx . A
finite discontinuity in the second derivative of the energy
accompanies the locking of the wave vector. We interpret
the locking of the wave vector as a transition into a phase
characterized by a commensurate charge-density wave, akin
to the gapped antiphase of the standard ANNNI model. The
value of ζ where the locking takes place depends significantly
on the size of our numerical simulation (more precisely, on
the bond dimension D of the infinite MPS), and therefore the
transition point at ζ ≈ 5 is a D → ∞ extrapolation, as shown
in Fig. 6.

IV. EFFECT OF DISORDER

We model disorder in the Kitaev edge by shifting the
nearest-neighbor hopping terms αo

s and αe
s by a random amount

in the range [−δ,δ], drawn independently and uniformly for
each lattice site. Because αo

s and αe
s are statistically equivalent,

the translation invariance on long length scales is not broken
by disorder. The disorder-averaged entanglement entropy S of
a delocalized 1D system with open boundaries (divided into
segments of length x and L − x) is given by [57–59]

S(x) = 1
6 c̃ ln [(2L/π ) sin (πx/L)] + const. (11)

This formula generalizes the clean-system relation (8), with c̃

an effective central charge instead of the usual central charge
c associated with translation-invariant systems.

Previous work [57,59] has shown that the addition of
disorder to a critical Ising phase (c = 1/2) drives the spin
system to a gapless phase of random spin singlets, each
contributing ln 2 to the entanglement entropy. Characteristic
signatures of this phase are

(1) An effective central charge c̃ = 1
2 ln 2 ≈ 0.347.

(2) The appearance of a peak at ln 2 in the probability
distribution of S due to the singlet contribution.

In Fig. 7 we search for these signatures, both in the c = 1/2
Ising phase and in the c = 3/2 floating phase, using an MPS
implementation of the DMRG method [60,61].

For the Kitaev edge at ζ = 0 we find that the effective
central charge converges quickly to c̃ = 1

2 ln 2, as expected
[green data points in Fig. 7(a)]. For small values of ζ < 0, we
also observe the same behavior [blue data points in Fig. 7(a)]
very clearly. The fact that the Kitaev edge remains delocalized
for small ζ < 0, or equivalently, that the self-dual ANNNI
model remains in the random spin-singlet phase, is further
confirmed by the narrow peak developing at ln 2 in the half-
chain entropy distribution, see Fig. 7(b). Finite-size corrections
become more and more significant with increasing −ζ , making
it difficult to reach a good convergence for ζ = −1. The red
data points in Fig. 7(a) give a value of c̃ which we believe has
not yet fully converged for L = 300, but still seems consistent
with a delocalized edge.

Simulations in the floating phase (0.3 < ζ < 5.0) are com-
putationally more expensive since the entanglement entropy,
and therefore the required MPS bond dimension, is larger in
this phase (keeping L fixed) due to the unusually large central
charge c = 1.5. Moreover, in order to avoid incommensurate
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κ = −0.1κ = −0.1
κ = −1

c̃ = 0.35 ± 0.02

c̃ = 0.40 ± 0.03
c̃ = 0.35 ± 0.02

(a) (b)

κ = 0

ln 2

L = 200

L = 64

(c) (d)

L = 96

L = 32
L = 64 κ = 0.5

32

FIG. 7. (Color online) Top panels: Effect of disorder on the
Ising phase at α = 1 with δ = 0.5. (a) Scaling of the average
entanglement entropy for attractive interactions κ = 0, − 0.1,−1 at
L = 100,200,300, respectively, according to Eq. (11). The effective
central charge is obtained from the slope of linear fits (solid lines)
in the limit x → L/2 as c̃/6. Data has been shifted vertically for
clarity. (b) Normalized probability distribution of the half-chain
entanglement entropy for κ = −0.1, showing a developing narrow
singlet peak at ln 2. Bottom panels: Effect of disorder on the floating
phase at α = 1, δ = 0.5, and repulsive interactions κ = 0.5. (c) The
average entanglement entropy for L = 32,64,96 saturates for large
values of the scaling function. Lines are guides to the eye and the data
have been shifted vertically for clarity. (d) Normalized probability
distribution of the half-chain entanglement entropy for L = 64,
showing evidence for states with entanglement entropy S → 0. Up
to ∼8000 disorder realizations were employed for each simulation.

spin-spin correlations, it becomes necessary to select values
of κ which give a family of system sizes L commensurate
with the ground state wave vector. Figure 7(c) shows that
the disorder-averaged entanglement entropy saturates as the

middle of the chain is approached for the largest system sizes
available, indicating a gapped phase, albeit with a large value
of S. The probability distribution of Fig. 7(d) also shows a
finite weight of the distribution for vanishingly small values of
the average entropy, which is another indication of a gapped
phase. We conclude that the floating phase is localized by
disorder, most likely due to the pinning of incommensurate
charge-density waves by the random spatial fluctuations of the
disorder potential.

V. CONCLUSIONS

We have investigated the edge theory of an interacting
topological insulator stabilized at criticality by a symmetry
that is broken locally but restored on average. Such a 1D
statistical topological insulator may be realized at the edge of
an anisotropic p-wave superconductor. Of particular interest
is the possibility of realizing the interacting Majorana edge
mode studied here starting from a one-dimensional array of
vortex lines [28], since this could produce larger interaction
strengths than proposals involving semiconducting nanowires
or atomic chains proximity coupled to superconductors.

Unlike typical one-dimensional models, the effective edge
theory of the system remains critical, even for large attractive
interaction strength and/or disorder strength. This behavior
can be traced back to the average translation symmetry of the
two-dimensional bulk, which imposes an average self-duality
on the strongly interacting Kitaev edge.

We hope that our work will motivate the search for
other strongly interacting topological phases in which average
symmetries of the lattice lead to boundaries which remain
delocalized in the presence of disorder.
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