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Planck-2015 data seem to favor a large value of the lensing amplitude parameter, AL ¼ 1.22� 0.10, in

CMB spectra. This result is in 2σ tension with the lensing reconstruction result, Aϕϕ
L ¼ 0.95� 0.04. In this

paper, we simulate several CMB anisotropy and CMB lensing spectra based on Planck-2015 best-fit
cosmological parameter values and Planck bluebook beam and noise specifications. We analyze several
modified gravity models within the effective field theory framework against these simulations and find that
models whose effective Newton constant is enhanced can modulate the CMB anisotropy spectra in a way
similar to that of the AL parameter. However, in order to lens the CMB anisotropies sufficiently, like in the
Planck-2015 results, the growth of matter perturbations is substantially enhanced and gives a high σ8 value.
This in turn proves to be problematic when combining CMB anisotropy data from Planck with other data,
such as weak lensing from CFHTLenS which favor a smaller amplitude of matter fluctuations.
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I. INTRODUCTION

Based on the full-mission Planck observations of temper-
ature and polarization anisotropies of the cosmic microwave
background (CMB) radiation, Planck-2015 results show
that the temperature and polarization power spectra are
consistent with the standard spatially flat six-parameter
vanilla ΛCDM cosmology with a primordial power-law
spectrumof adiabatic scalar perturbations. Hereafter, we call
this the base-ΛCDM model. On the other hand, the same
data, especially the temperature-temperature (TT) spectrum,
reveals some tension with the CMB lensing deflection
angle (d) spectrum reconstructed from the same maps.
Specifically, the lensing amplitude in CMB temperature
and polarization spectra, AL ¼ 1.22� 0.10, is in 2σ tension
with the amplitude of the CMB trispectrum reconstructed
lensing deflection angle spectrum, Aϕϕ

L ¼ 0.95� 0.04,
while it is expected that in the base-ΛCDM model, both
of these quantities should be equal to unity.
The Planck Collaboration found that, compared with

the base-ΛCDM model, the base-ΛCDMþ AL model can
reduce the logarithmic likelihood (Δχ2 ¼ −6.1) and pro-
vide a better fit to the data sets with [1] AL ¼ 1.28 or a
marginalized constraint AL ¼ 1.22� 0.10 [2]. More impor-
tantly, they found that there is roughly equal preference
for high AL from intermediate and high multipoles (i.e., the
PLIK likelihood;Δχ2 ¼ −2.6) and from the low-l likelihood
(Δχ2 ¼ −3.1) with a further small change coming from the
priors. This means that the base-ΛCDMþ AL model can
provide a better fit than the base-ΛCDM model against both
TT and lowP data sets. However, the increase in AL induces
changes on the full sets of cosmological parameters as
mentioned in Ref. [2]. For example, compared with the

base-ΛCDM fit, the scalar index ns is increased by 1%, the
primordial scalar spectrum amplitude As is reduced by 4%,
and the effective amplitude of the TT spectrum Ase−2τ is
reduced by 1%. Through the complicated relationship
between parameters and their degeneracy, the reionization
optical depth parameter τ falls to 0.060, which is roughly in
2σ tension with Planck-2013 temperatureþWMAP low-l
polarization data results of τ ¼ 0.089þ0.012

−0.014 .
Inspired by these observations, in this paper, we inves-

tigate whether some modifications of gravity can relieve the
tension between Planck CMB anisotropy spectra and CMB
lensing results. To do so, we simulate a tension CMB data
set that resembles the tension present in the Planck-2015
results, and we try to fit the resulting power spectra with
different models to have a glimpse of the changes in the
parameter that arise because of this tension.

II. MOCK DATA AND FIDUCIAL
PARAMETERS

We analyze several modified gravity models against two
sets of simulations of CMB spectra (TT, TE, EE) and CMB
lensing spectra (dd and Td) with the fiducial cosmological
parameter equal to the Planck-2015 data release best-fit
values and Planck bluebook beam and noise specifications.
The motivation for doing these simulations is mainly
twofold. First, the Planck-2015 likelihood code and the
corresponding spectrum data are not yet publicly available.
Second, because the cosmological parameters are degen-
erate with each other in a complicated way, by using
simulations, we can efficiently isolate and study the effects
coming from different parameters and their combinations.
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To construct our simulations, we use the cosmological
parameters listed in Table I along with the CAMB code [3,4]
to produce the fiducial CMB temperature and E-mode
polarization power spectra. We feed these to the
FUTURCMB [5] package to compute the noise power
spectra for T, E-mode, and the lensing deflection angle
based on the Hu-Okamoto [6] quadratic estimator. For
further details about the FUTURCMB code, we refer the
reader to [5] while for the construction of the spectrum
likelihood, we refer to [5,7,8]. In this paper, we adopt the
Planck bluebook [9] beam and noise parameters listed in
Table II.
After the above operations, we build two mock data sets

(CTT
l , CTE

l , CEE
l , Cdd

l , and CTd
l ), which we call mock-A and

mock-B, whose fiducial cosmological parameter values
(see Table I) are, respectively, the best-fit values of
base-ΛCDMþ AL to Planck-2015 TTþ lowP and
Planck-2015 TTþ lowPþ lensing data sets [10]. Since
the mock-A data set, which mimics Planck-2015
TTþ lowP, is generated from AL ∼ 1.3, we can treat it
as a realization of a non-ΛCDM universe; mock-B
data, which mimic Planck-2015 TTþ lowPþ lensing,
AL ∼ 1.0, are closer to a realization of a ΛCDM universe.
Based on mock-A and mock-B data sets, we build a

“tension” data set, called mock-C, by combining (CTT
l ,

CTE
l , CEE

l ) from mock-A and (Cdd
l and CTd

l ) from mock-B.
The resulting data set should mimic the tension present in
Planck data while being free of additional complications

that arise in the real situation. Before the end of this section,
we would like to emphasize that the strategy of simulating
data has both strong and weak points. On one hand, this
procedure allows us to single out specific effects that in the
real data could be shaded by systematics or by noise, and
this allows us to target precisely the physical phenomena
under scrutiny. On the other hand, the simulated data set is
not expected to reproduce precisely the results of the real
one because there are a number of details about the
likelihood construction that cannot possibly be mimicked.
Our likelihood is built analytically at all multipoles without
binning and assuming the same sky coverage in all
frequency bands in temperature and polarization. In addi-
tion, we adopt all the polarization data into our numerical
analysis, unlike in the lowP likelihood in which only the
low-l polarization data are used. The simulated lensing
data are then reconstructed based on these power spectra,
and the relative balance between the lensing and the Tand E
likelihoods results in assigning more weight to the T and E
likelihood (because we include high-l TE and EE data)
with respect to real Planck (TTþ lowPþ lensing) results.
This procedure for building the likelihood is not the same
as those adopted by the Planck Collaboration, and the
results on specific parameters reflect this point. We revisit
this point in Sec. IV.
In the rest of the paper, we study several modified gravity

models against mock-A and mock-C data sets to see whether
the modified gravity models can or cannot reconcile the
tension between CMB anisotropy data and CMB lens-
ing data.

III. MODIFIED GRAVITY IN THE EFFECTIVE
FIELD THEORY FRAMEWORK

In the one extra parameter extension of the base-ΛCDM
model in the Planck-2013 [11] and Planck-2015 [2] results,
the Planck Collaboration studied the case of varying the
lensing amplitude parameter AL in the CMB anisotropies,
which was originally introduced in [12]. This phenomeno-
logical parameter is defined by Cϕϕ

l → ALC
ϕϕ
l , which

simply rescales the lensing amplitude contribution to the
CMB anisotropies. This parameter, however, only modu-
lates the CMB anisotropy spectra, CTT

l , CTE
l , and CEE

l , and
rescales the lensing potential spectrum Cϕϕ

l but does not
rescale the estimator of the lensing spectrum Âϕϕ

L which is
computed from the CMB anisotropy trispectra [13,14]. For
a review of CMB temperature and polarization lensing, we
refer the reader to [15].
In the following, we elaborate on the relationship

between this phenomenological parameter and modifica-
tions of gravity. We consider two models that are enclosed
in the background part of the EFT formalism for cosmic
acceleration [16,17]. Both can be derived from this action
written in the unitary gauge and Jordan frame

TABLE I. Fiducial parameters of the mock data sets.

CP Mock-A Mock-B

109As 2.10745 2.14338
ns 0.97468 0.97156
τ 0.0611 0.0664
Ωbh2 0.022674 0.022379
Ωch2 0.11639 0.11748
H0 69.02 68.39
AL 1.28 1.02P

mν=eV 0.06 0.06
aFiducial parameter values in Mock A data sets are

the best-fit values of base-ΛCDMþ AL to Planck-2015 TTþ
lowP data sets.

bFiducial parameter values in Mock B data sets are the
best-fit values of base-ΛCDMþ AL to Planck-2015 TTþ lowPþ
lensing data sets.

TABLE II. Planck bluebook instrumental specifications.

Experiment Frequency θbeam σT σP

Planck: 217 5.02 13.1 26.7
143 7.30 6.0 11.4
100 9.68 6.8 10.9

Frequencies in GHz. Beam size θbeam is the FWHM in
arcminutes. Sensitivities σT and σP are in μK per FWHM beam.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
½1þΩðτÞ�Rþ ΛðτÞ

−a2cðτÞδg00 þ…

�
þ Sm½gμν�; ð1Þ

where we have used conformal time, and Ω, Λ, and c are
free functions of time which multiply all the operators that
are consistent with time-dependent spatial diffeomorphism
invariance and contribute to the background evolution. The
ellipsis indicates operators which would affect only linear
and nonlinear cosmological perturbations, while Sm indi-
cates the action for all matter fields: cold dark matter,
baryons, massive and massless neutrinos, and photons.
The first modified gravity model that we use is fðRÞ; its

mapping to the EFT framework was presented in [16], and
we refer the reader to [18–21] for detailed discussions on
the cosmology of these models.
The second model consists of taking a constant value for

the conformal coupling ΩðaÞ ¼ ΩEFT
0 and requiring the

expansion history to be exactly that of the ΛCDM model.
This requirement fixes, through the Friedmann equations,
the time dependence of the operators c and Λ.
We highlight here that the constant Ω model is not a

simple redefinition of the gravitational constant. In fact, the
requirement of having a ΛCDM background with a non-
vanishing Ω, which would change the expansion history,
means that a scalar field is sourced in order to compensate
this change. This scalar field interacts with the other matter
fields and modify the behavior of cosmological perturba-
tions and, consequently, the CMB power spectra and the
growth of structure. For instance, it is easy to show that in
the constant Ω model, cðτÞ, which is vanishing in general
relativity, is nonzero and reads

c ¼ Ω
2
ðρm þ PmÞ: ð2Þ

Another general remark we would like to make on the
models that we consider here is that they display a radically
different cosmology, as they correspond to two different
behaviors of the perturbation’s effective gravitational con-
stant. Viable models, in the fðRÞ case [19], correspond to
an enhancement of the gravitational constant which in turn
results in the amplification of the growth of structure that
substantially enhances the lensing of the CMB.
In the second case, we consider two possibilities. If the

constant Ω is positive, the model is characterized by a
smaller effective gravitational constant resulting in a
suppression of the growth and, consequently, a suppression
of the CMB lensing. We call this case the Ωþ model. If the
constant Ω is negative, on the other hand, the model has an
enhanced effective gravitational constant with a phenom-
enology similar to that of fðRÞ models. In contrast to what
happens to the Ωþ case, which respects all the usual
requirements of physical viability [22], this model is only
classically stable. This means that perturbations around

the Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground are stable and well behaved but, for example, the
sign of the scalar field kinetic term is wrong. We call the
case in which the constant Ω can be greater and smaller
than zero the Ω� model.
To study the phenomenology of these three models, we

use the EFTCAMB code [22–24] that allows us to compute
cosmological observables for all the theories enclosed in
the EFT formalism once a precise mapping or parametri-
zation is given. The implementation details of the code
and the equations that are solved can be seen in [25] with
further comments on the models that we are considering.

IV. RESULTS AND DISCUSSIONS

We first check the reliability of our simulations. As
reported in the Table I, we use the fiducial AL ¼ 1.28 for
the generation of the mock-A data set. After going through
the Markov chain Monte-Carlo analysis [26], we get the
marginalized constraint from the mock-A data set as

AL ¼ 1.31� 0.06ð68% C:L:Þ: ð3Þ
The consistency between the input and output values of
our simulations can also be seen in the panels of Fig. 1. In
addition, from Fig. 1(a) we can see that there is a relatively
large positive correlation between ns and AL. This happens
because a large value of ns enhances the high-l multipoles,
while an increase in AL smears the peaks in the same
multipole range. On the other hand, Fig. 1(b) shows that σ8
and AL are anticorrelated. An increase of AL suppresses the
growth inferred from the TT power spectrum; hence, we
end up with a lower σ8 value. Figure 1(c), at last, shows that
no significant degeneracy arises between AL and the
reionization optical depth parameter τ.
From all the panels of Fig. 1, we can see how different

cosmological parameters react to the use of a tension data
set. The shift of blue and red contours from mock-A
and mock-C data sets shows the tension between them. In
particular, in Fig. 1(a), we can see that the mock-C data
set gives a value of AL ∼ 1.15 that is in the middle of the
mock-A (AL ∼ 1.3) and mock-B (AL ∼ 1.0) data sets. This
happens because the mock-C likelihood is constructed from
the equally weighted combination of the mock-A and
mock-B ones, while in the real Planck results [2], the
CMB lensing data dominate the constraint on AL.
From Figs. 1(b) and 1(c), we can instead see that the

marginal probability distribution of σ8 and τ does not
change significantly as the tension in the data set is
introduced. This happens because the constraint on these
two quantities is dominated by the TT and EE power
spectra. From the same panels, we notice that there is a
slight bias in parameter estimation with respect to the real
Planck data. This is due to differences in the construction of
the likelihood that result in different weights being assigned
to the temperature and polarization likelihood with respect
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to the lensing one. As stressed at the beginning of this
paper, this simulation procedure is targeted at mimicking
the tension between the data sets rather than the data sets
themselves and their specific constraints on cosmological
parameters; therefore, this effect does not affect the
following analysis of the results and conclusions.
After checking the consistency of our simulations, we

move to their interpretation within the modified gravity
models considered here.
First, we check whether these models can reproduce the

input amplitude of lensing. To do so, we define an effective
lensing amplitude as Aeff

L ðlÞ≡ Cϕϕ
l ðMGÞ=Cϕϕ

l ðGRÞ, and
we plot it for several choices of the parameters defining our
modified gravity models in Fig. 2. From both panels, we
can see that the effective lensing amplitude is generally a
function of scale so that the accuracy of using a scale-
independent approximation is limited by the accuracy of
observations. That is, if observations are not precise
enough, then the scale-independent approximation can
work, while if the observations have enough sensitivity,
we would bias parameter estimation by considering it to
be scale independent. This point is more relevant as the
experimental accuracy improves.
The fðRÞ case, shown in Fig. 2(a), in particular, displays

an Aeff
L that is monotonically increasing as a function of

scale. At low multipoles, the agreement with a scale-
independent model is as good as a few percent, while in
the high-l range it is off by 40% depending on the present
value of the Compton wavelength of the scalaron. The
constant Ωþ and Ω� models are shown in Fig. 2(b). Unlike
the fðRÞ case, Aeff

L ðlÞ has a wide bump or dip around
multipoles of a few tenths, while the scale dependence is
somewhat weaker than the previous case. As expected, in
the Ωþ model the amplitude of lensing is decreased as a

consequence of the suppression of growth, while the
opposite behavior shows when ΩEFT

0 is smaller than zero.
We fit these models to our mock-A and mock-C data

sets, and we show the marginalized bound on parameters of
interest in Fig. 3. From Fig. 3(a), we can see that there is a
strong positive correlation between the present scalaron
Compton wavelength parameter B0 and σ8. This effect is
well known and corresponds to the fact that as the effective
Newton constant is increased, the growth of matter per-
turbations is increased as well. When considering just
mock-A, our results show that in order to mimic AL ∼ 1.3,
the marginalized constraint on B0 has to point significantly
toward large values of the scalaron Compton wavelength.
The marginal bound is then −1.15 < Log10B0 < −0.04
at 95% C.L.
Due to the significant degeneracy between B0 and σ8,

such values of B0 leads to strong enhancement of the
growth rate at relatively small scales making the σ8 value
too large so that the tension between Planck and LSS
surveys, such as CFHTLenS [27,28], would become even
worse. For this reason, when lensing is added in mock-C,
the tension in AL, which for the lensing data set is smaller,
pushes the posterior of B0 toward smaller values, making it
closer to GR. A similar effect was also observed for
the Planck-2015 data set [29] and in the Planck-2013
data [30–33].
As expected, a similar result is found also in the Ω�

model, as shown in Fig. 3(b). Here, the correlation between
ΩEFT

0 and σ8 is negative due to the fact that negative values
of Ω correspond to significant deviations from GR, and
consequently, to stronger enhancement of CMB lensing.
All the conclusions, previously discussed in the fðRÞ case,
apply also to this model with the relevant exception that the
enhancement of the growth is not so dramatic as in fðRÞ.

(a) (b) (c)
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FIG. 1 (color online). (a) The marginalized joint likelihood for the lensing amplitude AL and the scalar spectral index ns, (b) the
amplitude of the (linear) power spectrum on the scale of 8h−1Mpc, σ8, and (c) the reionization optical depth τ. In all three panels,
different colors correspond to different combinations of mock data sets as shown in the legend. The darker and lighter shades
correspond, respectively, to the 68% C.L. and the 95% C.L.
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The bound on σ8 from the AL fit, shown in Fig. 3 as a gray
band, is in fact almost compatible with the one in the Ω�
case. This is due to the fact that deviations from scale
independence of Aeff

L , in this model, are weaker and a
constant Ω is more efficient at mimicking a scale-
independent AL than fðRÞ models. Since a weaker
effective Newton constant is disfavored by the Planck-
2015 CMB anisotropy data, the best-fit parameter in the
Ωþ model mimics those in the base-ΛCDMmodel and the
model result is compatible with GR. This conclusion is
similar to the one found in [24,29,30].
Finally, in Table III, we list the best-fit χ2 for the

one-parameter extensions of the base-ΛCDM model that

we investigated in this paper. From there, we can see that
the best-fit χ2 values in the base-ΛCDMþ AL, fðRÞ, Ω�
models are similar and are noticeably smaller than those
from base-ΛCDM or Ωþ models with Δχ2 ≃ −16 from the
mock-A and Δχ2 ≃ −11 from the mock-C data sets. The
best-fit χ2 in the Ω� case is slightly better than the fðRÞ
case and closer to the AL one because of the weaker scale
dependence of Aeff

L .
In conclusion, Planck-2015 results revealed some inter-

esting tensions between CMB temperature and polarization
anisotropies and CMB lensing. These tensions add to the
one reported by LSS surveys, like CFHTLenS, that seem to
favor a smaller σ8. If this is not due to some unaccounted
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FIG. 2 (color online). The effective lensing amplitude Aeff
L ðlÞ≡ Cϕϕ

l ðMGÞ=Cϕϕ
l ðGRÞ as a function of scale in the modified gravity

models considered in this paper. Different colors correspond to different values of the model parameters as shown in the legend.
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FIG. 3 (color online). The marginalized joint likelihood for the amplitude of the (linear) power spectrum on the scale of 8h−1Mpc, σ8,
and the present value of Log10B0 panel (a), the present value of the conformal coupling ΩEFT

0 in the case in which it is allowed to have
positive and negative values panel (b) and in the case in which it is restricted to positive values panel (c). In all three panels, different
colors correspond to different combination of mock data sets as shown in legend and the gray band is the marginalized 1σ bound on σ8
from the base-ΛCDMþ AL model. The darker and lighter shades correspond, respectively, to the 68% C.L. and the 95% C.L.
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for systematic effects, this might be an indication of
exotic physics beyond the base-ΛCDM model and, as
such, should be investigated in detail.
In this paper, using a simulation of the Planck-2015 data

set, we tried to reconcile this tension with some modified
gravity models. In particular, we studied whether this
tension can be mitigated by fðRÞ models or models
characterized by a constant conformal coupling between
gravitational and matter perturbations. We found that the
fðRÞ and the Ω� models can mimic the role of AL even if,
generally, the amplitude of lensing, with respect to the GR
case, is scale dependent. In order to provide a good fit to
the Planck-like CMB anisotropy spectra, however, these

models predict an enhancement of the growth on smaller
scales that make the tension in σ8 even worse. From these
results, we can conclude that the tension between the
growth of matter perturbations assessed from CMB power
spectra, CMB lensing, and LSS surveys can be mimicked
by modified gravity models but is hardly relieved by simple
models beyond the standard ΛCDM one. This in turn
suggests that one should investigate more complicated
models, possibly with different time dependencies, to allow
for different regimes of growth at the times at which each of
these observations is more sensitive.
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