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ABSTRACT
Future spectroscopic and photometric surveys will measure accurate positions and shapes of
an increasing number of galaxies. In the previous paper of this series, we studied the effects of
redshift space distortions (RSD), baryon acoustic oscillations (BAO) and weak gravitational
lensing (WL) using angular cross-correlation. Here, we provide a new forecast that explores the
contribution of including different observables, physical effects (galaxy bias, WL, RSD, BAO)
and approximations (non-linearities, Limber approximation, covariance between probes). The
radial information is included by using the cross-correlation of separate narrow redshift bins.
For the auto-correlation the separation of galaxy pairs is mostly transverse, while the cross-
correlation also includes a radial component. We study how this information adds to our figure
of merit (FoM), which includes the dark energy equation of state w(z) and the growth history,
parametrized by γ . We show that the Limber approximation and galaxy bias are the most
critical ingredients to the modelling of correlations. Adding WL increases our FoM by 4.8,
RSD by 2.1 and BAO by 1.3. We also explore how overlapping surveys perform under the
different assumptions and for different FoMs. Our qualitative conclusions depend on the survey
choices and scales included, but we find some clear tendencies that highlight the importance
of combining different probes and can be used to guide and optimize survey strategies.

Key words: dark energy – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

The expansion of the Universe provides a challenge for cosmology
and fundamental physics. Understanding the recent accelerated ex-
pansion of the Universe is connected to dark matter and dark energy
(DE), either by determining their properties or by providing an alter-
native theory. There is no scarcity of models, but no model beyond
� cold dark matter (CDM) has emerged as a natural candidate to
explain the cosmic acceleration.

Galaxy surveys are designed to probe cosmology in different
manners. Weak gravitational lensing (WL) of foreground matter af-
fects the galaxy shapes. Observing the WL through galaxy shapes
(shear) (Massey et al. 2007; Schrabback et al. 2010) requires deep
imaging surveys like Dark Energy Survey (DES) and the upcom-
ing Euclid and Large Synoptic Survey Telescope (LSST). Further,
overdensities of dark matter attract nearby galaxies, which creates
an additional peculiar velocity. The radial component of the extra
velocity results in a shift in redshift, which is the effect of redshift
space distortions (RSD). Optimal measurement of RSD requires
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accurate redshift and the method is most suitable for spectroscopic
surveys.

The lensing efficiency has a broad kernel and the shear–shear
lensing signal can be analysed in 5–10 broad redshift bins. The
RSD signal is traditionally analysed using power spectrum analysis
in 3D comoving space, which includes a cosmology-dependent con-
version transformation of angles and redshift to the 3D comoving
distances. As shown in Eriksen & Gaztañaga (2015, Paper I, and
references therein), angular correlations can also be used to measure
RSD. A previous study by Asorey et al. (2012) found that angular
correlations in narrow redshift bins can recover most of the informa-
tion in the 3D power spectrum. In these papers, we use the angular
correlation for both the photometric (WL) and spectroscopic (RSD,
WL) survey.

Using a single set of observables for WL and RSD has sev-
eral advantages. For overlapping surveys, the galaxies trace the
same matter fluctuations, which introduce a covariance between the
surveys. Particular care is needed to not double counting informa-
tion when jointly observing shear–shear in the lensing survey, the
3D power spectrum for the spectroscopic survey and 2D correla-
tions for the counts–shear cross-correlations between the two. For
example, counting the modes is insufficient if including photo-z
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effects in the 3D sample since the photo-z affects the radial and
transverse modes differently.

Several groups have explored combining WL and spectroscopic
surveys (Bernstein & Cai 2011; Cai & Bernstein 2012; Gaztañaga
et al. 2012; de Putter, Doré & Takada 2013; Font-Ribera et al.
2013; Kirk et al. 2013). In overlapping surveys (same-sky), one
can cross-correlate the observables, e.g. galaxy counts from the
two surveys or galaxy counts from the spectroscopic sample with
background shear from the lensing survey. Overlapping samples
further reduce the sample variance (McDonald & Seljak 2009).
While non-overlapping surveys benefit from larger area, several
authors find stronger parameter constraints when combining WL
and spectroscopic surveys over the same area. In this paper, we
study the importance of different physical effects for overlapping
and non-overlapping surveys, while the paper Eriksen & Gaztañaga
(2014) elaborates on the benefit of overlapping surveys.

Galaxies are theoretically (Scoccimarro et al. 2001) and observa-
tionally expected to form in overdense regions. Unlike shear which
is affected by all foreground matter, the galaxy counts relate to the
underlying matter distribution at a given redshift. The negative side
of probing cosmology with the galaxy counts is requiring to un-
derstand and marginalize over uncertainties in the relation between
matter and galaxy overdensities, the galaxy bias (Gaztañaga et al.
2012). One can either approach the galaxy bias by using only the
BAO peak (Seo & Eisenstein 2003, 2007) or parametrize the bias
(Shoji, Jeong & Komatsu 2009). In this paper, we use the full galaxy
correlation and measure the bias parameters by combining Large-
scale structure (LSS) and lensing in a multiple tracer analysis.

Magnification changes the overdensities of number counts
through two WL effects. In a magnitude-limited sample, lensed
galaxies appear brighter and enter into the sample when magnified
over the magnitude cut. The magnification also magnifies the area
which reduces the number density. In the Sloan Digital Sky Survey
(SDSS) sample, magnification has been observed by correlating
foreground galaxies with background quasars (Scranton et al. 2005;
Ménard et al. 2010). While the shear–shear signal has less noise,
magnification provides an additional signal which is already present
in the galaxy catalogues. This paper, in a similar way to Gaztañaga
et al. (2012) and Duncan et al. (2014), will study the benefits of
magnification when combining the analysis of spectroscopic and
photometric surveys in angular correlations.

Photometric surveys conventionally use broad-band filters. Two
upcoming surveys, PAU1 and J-PAS,2 plan to measure photometry
for galaxies in 40–50 narrow (100–130 Å) bands. For PAU the re-
sulting photo-z precision is σ 68 ≈ 0.0035(1 + z) for iAB ≤ 22.5
(Martı́ et al. 2014). In addition, the PAUcam broad-bands (ugrizY)
has an anticipated photo-z accuracy of σ 68 = 0.05(1 + z) for
22.5 < iAB < 24.1. The PAU survey at the William Herschel Tele-
scope can cover about 200 sq. deg. to iAB < 22.5 in narrow bands
and iAB < 24 with broad-bands in 100 nights. This defines two
magnitude-limited populations of bright (B) galaxies (iAB < 22.5)
and faint (F) galaxies (22.5 < iAB < 24) similar to two overlapping
spectroscopic and photometric surveys.

This paper (Paper II) is part of a three-paper series. Paper I dealt
with modelling of the correlation function, focusing in particular on
the effect of RSD, BAO and the Limber approximation in narrow
bins. Here (Paper II) we forecast the relative impact of WL, RSD
and BAO in upcoming cosmological surveys. A third paper (Eriksen
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& Gaztanaga, in preparation, Paper III) studies the impact of galaxy
bias, while a separate paper (Eriksen & Gaztañaga 2014) focuses
on the benefit of overlapping surveys.

This paper is organized in the following manner. Section 2
presents the assumptions, which include Fisher matrix formalism,
forecast assumptions and nomenclature. In Section 3, we compare
the relative contribution of the different effects (including WL, RSD,
BAO, magnification) and the Limber approximation. Section 4 gives
the conclusion.

2 FORECAST A SSUMPTI ONS

This section first presents the assumptions of fiducial cosmology,
galaxy bias parametrization, galaxy samples, survey definitions,
cuts in non-linear scales and the Fisher forecast. Paper I included
the theoretical expressions for the Cl cross-correlations and they
are therefore not repeated here. In this section, we also define the
figures of merit (FoMs) and the nomenclature (e.g. F×B, F+B)
used throughout the paper.

2.1 Fiducial cosmological model

The cosmological model assumed is wCDM,3 which is General Rel-
ativity (GR) with CDM and a DE model with an equation of state
(EoS) w ≡ pDE

ρDE
. The main observables are Cl cross-correlations of

fluctuations δ(z, k), which depend on the initial power spectrum, dis-
tances and the growth of fluctuations. For a Friedmann–Lemaı̂tre–
Robertson–Walker metric (Dodelson 2003), the Hubble distance
is

H 2(z) = H 2
0 [�ma−3 + �ka

−2 + ρDE(z)] (1)

ρDE = �DEa−3(1+w0+wa ) exp (−3waz/(1 + z)), (2)

where the last equation expresses the dark energy density using the
parametrization

w(z) = w0 + wa(1 − a) (3)

from Chevallier & Polarski (2001) and Linder (2003, 2005) for
the DE EoS. Overdensities of matter grow because of gravitational
attraction and at large (linear) scales the equation determining the
growth has the solutions (Heath 1977; Peebles 1980)

δ(z) = D(z)δ(0), (4)

where D (z) is defined through

f ≡ d ln(D)

d ln(a)
= δ̇

δ
≡ �γ

m(a). (5)

Normalizing the growth to D(z = 0) = 1, we have

D(z) = exp

[
−

∫ 1

a

d ln af (a)

]
. (6)

In these papers [and previously in Gaztañaga et al. (2012)], the
growth is parametrized through the parameter γ in equation (5),
which is γ ≈ 3/11 ≈ 0.55 in GR with a cosmological constant. For

3 For the fiducial cosmology, we use the values �m = 0.25, �b = 0.044,
�DE = 0.75, h = 0.7, w0 = −1, wa = 0, ns = 0.95 and σ 8 = 0.8 , which cor-
respond to the cosmological model in the MICE (http://www.ice.cat/mice)
simulation.
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example, the DGP model (Dvali, Gabadadze & Porrati 2000) pro-
poses to explain the cosmological acceleration through embedding
the ordinary 3+1 dimensional Minkowski space in a 4+1 dimen-
sional Minkowski space. Alternatively modified gravity, which we
have left of future work, can be parametrized by the Bardeen poten-
tials (Bardeen 1980). Adjusting free parameters in modified gravity
can potentially fit the right expansion history (equation 2), but it is
more difficult to simultaneously fit the expansion and growth history
(equation 6). Constraining both the growth and expansion history
is therefore important to discriminate between different modified
gravity models.

2.2 Non-linear scales

On lager scales fluctuations are linear. In contrast, for high-density
regions the structures collapse in a non-linear manner. As a result,
predicting the non-linear power spectrum requires either simula-
tions (Springel 2005), perturbation theory (Crocce 2007) or fitting
functions to simulations (Heitmann et al. 2010, 2009; Lawrence
et al. 2010). Here the forecast uses the Eisenstein–Hu (Eisenstein &
Hu 1998) linear power spectrum. In Appendix A, we test the effect
of including the non-linear contribution.

Even when including non-linear power spectrum contributions,
one needs to limit the maximum kmax (or minimum rmin) scale.
The Halofit II model is calibrated to 5 per cent accuracy for
k ≤ 1 h Mpc−1 at 0 ≤ z ≤ 10. Further, we also want to limit observa-
tions to scales where the bias (see Section 2.3) is scale independent.
Here and in other papers of this series, the maximum scale is defined
through

σ (Rmin, z) = 1, (7)

where σ (R, z) is the fluctuation amplitude smoothed with a Gaussian
kernel on a scale R. From k = l/χ (z), we have

kmax(z) = R(0)min

R(z)min
kmax(0), (8)

where kmax(0) = 0.1 h−1Mpc is an overall normalization. In the
MICE cosmology and Eisenstein–Hu power spectrum, then

kmax(z) = exp(−2.29 + 0.88z) (9)

is a good fit for the kmax limit. The conversion to an lmax for which
correlations to include is done with

kmax = lmax + 0.5

r(zi)
(10)

which uses the scale contributing to LSS and counts–shear correla-
tions in the Limber equation (see Paper I). For cross-correlations,
we use the minimum kmax from the two redshift bins. The forecast
is restricted to 10 ≤ l ≤ 300 and in addition applies to the cut above,
including for the shear–shear correlations. To save time, the fore-
cast uses 
l = 10. We have tested that the discrete l-values have
minimal impact on the forecast.

2.3 Galaxy bias

Galaxy overdensities δ are in a local bias model (Fry & Gaztanaga
1993) related to matter overdensities δm through

δ(k, z) = b(z, k)δm(k, z), (11)

where the bias b(k, z) can in general depend on scale and redshift.
Each subset of galaxies, of galaxy population, can have different
bias since galaxy types (e.g. elliptical and spirals) cluster and evolve

differently. When defining populations by magnitude cuts, as we
do, the bias also differs because each population contains another
mixture of galaxies.

The two galaxy populations (see Section 2.6) use a different
bias and bias nuisance parameters. We use one bias parameter per
redshift bin and galaxy population, no scale dependence and no
additional bias priors. In addition, the bias can include a stochastic
component. A commonly used measure of non-linearity and the
stochasticity is

r ≡
√

Cδm

CδδCδm
, (12)

where Cδδ ≡ 〈δδ〉, Cδδm ≡ 〈δm〉 and Cmm ≡ 〈δmδm〉, respectively, are
the counts–counts, counts–matter and matter–matter correlations.
For a deterministic and linear bias, then r = 1. In Gaztañaga et al.
(2012), we showed by theoretical models and also simulations that
the stochasticity can be treated as a re-normalization of the bias.
Thus, we fix the stochasticity to r = 1 and explore the impact of r
in Paper III.

2.4 Fisher matrix forecast

The Fisher matrix is a simple and fast method to estimate parameter
uncertainties. Deriving the Fisher matrix follows from a Gaussian
approximation of the likelihood expanded around the fiducial value.
Sampling the likelihood with Markov Chain Monte Carlo (MCMC)
methods would be more precise, but would greatly increase the
computation time. Since the Fisher matrix is widely used in
the literature, including the results we compare with, we also use
the Fisher matrix formalism.

For the correlations Cij and corresponding covariance Cov, the
Fisher matrix is

Fμν =
∑
ij ,kl

∂Cij

∂μ
Cov−1 ∂Ckl

∂ν
, (13)

where μ and ν are parameters and the two sums are over differ-
ent correlations. If the observable does not enter the forecast, it is
not included neither in the sums nor the covariance. One exam-
ple of dropping observables is the removal of non-linear scales, as
explained in the last subsection. The Cramer–Rao bound states that

F−1
μμ ≤ σ 2

μ, (14)

where F−1 denotes the Fisher matrix inverse and σ 2
μ the expected

parameter variance for the parameter μ. The covariance matrix of
2D correlations when assuming Gaussian fluctuations (Dodelson
2003) is

Cov(CAB, CDE) = N−1(l)(CADCBE + CAECBD), (15)

where the number of modes is N(l) = 2fSky(2l + 1)/
l, fSky is the
survey fractional sky coverage and 
l is the band width (bin width
in l).

Adding constraints from uncorrelated observables requires sum-
ming up the Fisher matrices. For example, the constraint of LSS/WL
and cosmic microwave background (CMB) is

FCombined = FLSS/WL + FCMB (16)

when assuming that the CMB is sufficiently uncorrelated with the
LSS/WL experiment. This equation (16) can be proved using the
covariance for two uncorrelated set of parameters is block diagonal
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and equation (13) can be split in two parts. For the forecasts, all
results (unless explicitly stated) add Planck priors.4

2.5 Figures of merit (FoMs)

FoMs are a simplified representation of the parameter constraints.
A Fisher matrix of n parameters includes n(n + 1)/2 independent
entries. Instead of including all the information on the errors and
the covariance between parameters present in a covariance matrix,
the FoM is only a single number. Comparing probes, effects and
configurations are greatly simplified when using a single number.
The FoMs let us study the gradual change with a parameter given
on the x-axis, while adding different lines corresponding to various
configurations. Also, the FoM is useful for comparing information
along two dimensions in a table. While a single number does not
fully capture the utility of a galaxy survey, but is a good measure to
discuss trends.

The parameters included in the Fisher matrix forecast are

w0, wa, h, ns,�m, �b, �DE, σ8, γ, galaxy bias,

where the first nine parameters equal the ones included in the
dark energy task force (DETF) FoM (Albrecht et al. 2006). The
galaxy bias (see Section 2.3) is parametrized with one parame-
ter in each redshift bin for both galaxy populations. Fiducially,
this study ignores the bias stochasticity, shear intrinsic alignments
(Catelan, Kamionkowski & Blandford 2001; Hirata & Seljak 2004),
uncertainties in photo-z distributions (Newman 2008; Matthews &
Newman 2010) and other shear systematics (Bernstein 2009).

The DETF FoM is inversely proportional to the (w0, wa) 1σ con-
tour area. Analogously Gaztañaga et al. (2012) defined an extended
FoM,

FoMS ≡ 1√
det

[
F−1

S

] , (17)

where S is a parameter sub-space. Parameters not in S are marginal-
ized over. Since this concept is quite natural, other papers (e.g.
Asorey et al. 2012; Kirk et al. 2013) define similar FoMs. Identical
to Gaztañaga et al. (2012), we define three FoMs (in addition to
DETF FoM).

(i) FoMDETF. S = (w0, wa). Dark energy task force (DETF) figure
of merit. Inversely proportional to the error ellipse of (w0, wa).

(ii) FoMw . S = (w0, wa). Equivalent to FoMDETF, but instead of
γ = 0.55 from GR, the γ is considered a free parameter and is
marginalized over.

(iii) FoMγ . S = (γ ). Inverse error on the growth parameter γ ,
when marginalizing over the other cosmological parameters and the
galaxy bias. Therefore, e.g. FoMγ = 10, 100, respectively, corre-
sponds to 10 per cent, 1 per cent expected error on γ .

(iv) FoMwγ . S = (w0, wa, γ ). Combined figure of merit for w0,
wa and γ . The 3D determinant also includes the correlation between
the DE (w0, wa) and growth (γ ) constraints.

Note that different authors introduce numerical prefactors of 1/4
(or 1/4π) (Bridle & King 2007; Joachimi & Bridle 2010) in the
FoM. In these papers, results are often presented in FoMwγ , while
the other FoMs are used to disentangle gains in measuring expansion

4 We use the Planck Fisher matrix file ‘planckfish’ from
http://www.physics.ucdavis.edu/DETFast/.

and growth history. One should be aware that the FoMs scale with
area in the following way

FoMw ∝ A

FoMDETF ∝ A

FoMγ ∝ A1/2

FoMwγ ∝ A3/2 (18)

when not including priors and A is the survey area. Including prior
reduces the slope for small areas if the prior dominates. From nu-
merical tests (not shown), the scaling above works well for the
fiducial 14 000 sq. deg. survey.

2.6 Fiducial galaxy surveys

The two defined populations correspond to a spectroscopic (bright)
and photometric (faint) survey. Both populations are magnitude
limited, although a spectroscopic survey often would select specific
targets to optimize the science return. The fiducial area is 14 000
sq. deg., which is around the expected sky coverage of stage-IV
surveys.

Properties of the two populations are defined in the next two sub-
sections, with Table 1 summarizing the central values. The shape
of the galaxy distributions (not density) and also galaxy bias cor-
respond exactly to the values in Gaztañaga et al. (2012). There the
galaxy distributions were constructed by fitting a Smail type n(z)
(Efstathiou et al. 1991)

dNF

d�dz
∝ AF

(
z

z0

)α

exp

(
−

(
z

z0

)β
)

(19)

to the public COSMOS photo-z sample. In addition, the magni-
fication (see Paper I) adds the term δWL = αsδκ , where κ is the
convergence, to the galaxy counts overdensities. Fig. 1 specifies the
fiducial magnification slopes (αs).

Table 1. Parameters describing the two surveys/populations. The first
section gives the area, magnitude limit, redshift range used in the forecast,
redshift uncertainty modelled as a Gaussian, the redshift bin with and the
resulting number of bins. In the second section is the galaxy bias (δ = bδm)
and average galaxy shape uncertainty. The third section gives the galaxy
density and parameters for the n(z) shape.

Parameter Photometric (F) Spectroscopic (B)

Area (sq. deg.) 14 000 14 000
Magnitude limit iAB < 24.1 iAB < 22.5
Redshift range 0.1 < z < 1.5 0.1 < z < 1.25
Redshift uncertainty 0.05(1 + z) 0.001(1 + z)
z bin width 0.07(1 + z) 0.01(1 + z)
Number of bins 12 71

Bias: b(z) 1.2 + 0.4(z − 0.5) 2 + 2(z − 0.5)
Shape noise 0.2 No shapes

Density (galaxies arcmin−2) 6.5 0.4
nz − z0 0.702 0.467
nz − α 1.274 1.913
nz − β 2.628 1.083
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Figure 1. The number counts magnification slopes (αs) for a bright
(18 < iAB < =22.5) and faint (22.5 < iAB < 24.1) from the COSMOS
sample. Values are extrapolated outside of this redshift range.

2.6.1 Bright/spectroscopic population

The bright population is defined by the flux limit iAB < 22.5, has a
Gaussian spectroscopic redshift uncertainty of σ 68 = 0.001(1 + z)
and the galaxy density

dNB

d�dz
= AB

( z

0.702

)1.083
exp

(
−

( z

0.702

)2.628
)

(20)

over 0.1 < z < 1.2. Here AB is a normalization amplitude and
the fiducial density is 0.4 galaxies arcmin−2, which is dense for
a spectroscopic survey. The redshift evolution of the galaxy count
bias is defined by

bB(z) = 2 + 2(z − 0.5), (21)

where b(0) = 1. To recover the radial information in the
bright/spectroscopic sample, we use 
z = 0.01(1 + z) narrow
redshift bins.

2.6.2 Faint/photometric population

WL requires a dense and deep sample with imaging to measure
galaxy shapes. The faint population resembles a wide-field lensing
survey, magnitude limited to iAB < 24.1 and σ 68 = 0.05(1 + z)
Gaussian photo-z accuracy. This deeper magnitude selection gives
the galaxy distribution:

dNF

d�dz
= AF

( z

0.467

)1.913
exp

(
−

( z

0.467

)1.274
)

(22)

over 0.1 < z < 1.4. The complete faint density is 17.5 galax-
ies arcmin−2, and in addition we use only 50 per cent of the galaxies,
which can either come from photo-z quality or shear measurement
cuts. Similar to the spectroscopic sample, the bias model is linear
with

bF(z) = 1.2 + 0.4(z − 0.5) (23)

which also has b(0) = 1. The faint sample uses 
z = 0.07(1 + z)
thick redshift bins and contributes strongest to the WL constraints.
Decreasing the bin width would not improve the radial resolution or
the RSD signal, as the photo-z error introduces an effective binning
in redshift (Gaztañaga et al. 2012).

2.7 Observables

Table 2 defines the notation and also gives the observables in-
cluded for a list of different cases. In this series of papers, the
main topic is the combined constraints from photometric (F) and
spectroscopic (B) surveys, either alone (F or B) or for overlapping
(F×B) or non-overlapping (F+B) areas. The ‘All’ notation means
both shear and galaxy counts, while ‘Counts’ includes only counts.
Part of the benefit of overlapping surveys comes from additional
cross-correlations. To quantify their impact, the second part of the
table therefore presents the notation for removing selected cross-
correlations. Table 3 contains a list of cross-correlations which enter
both directly in the text and Table 2.

3 R ESULTS

In this section, we investigate the combined constraint from
galaxy counts and shear, treating each survey as a separate galaxy

Table 2. Summary of the probe combinations and the correlations included. The first column is the notation, the second column
gives the correlations included and the third column is a short description. Each row corresponds to a different probe combination.
The first block shows standard combinations, the second block shows combinations removing counts–shear correlations and the
third block includes probes without cross-correlations of the two samples. Here ‘Counts’ includes only galaxy counts, while ‘All’
also includes shear. The observables 〈γ Bγ F〉 and 〈δFγ B〉 are also included, but not listed as their contributions are minor.

Notation Observables Description

F:All 〈δFδF〉 + 〈δFγ F〉 + 〈γ Fγ F〉 Faint population
B:All 〈δBδB〉 + 〈δBγ B〉 + 〈γ Bγ B〉 Bright population
F×B:All F+B:All + 〈δFδB〉 + 〈δBγ F〉 Overlapping faint and bright
F+B:All F:All + B:All − 〈γ Bγ B〉 Non-overlapping faint and bright

F×B−〈δBγ B〉:All F:All + B:All + 〈δBδF〉 F×B-All removing 〈δBγ F〉
F×B−〈δFγ F〉:All B:All + 〈δFδF〉 + 〈γ Fγ F〉 + 〈δFδB〉 + 〈δBγ F〉 F×B-All removing 〈δFγ F〉
F×B−〈δ γ 〉:All B:Counts + F:Counts + 〈γ Bγ B〉 + 〈γ Fγ F〉 F×B-All, removing all cross-correlation of counts

and shear

F×B−〈FB〉:Counts 〈δBδB〉 + 〈δFδF〉 F×B-Counts, removing the bright–faint
cross-correlations of counts

F×B−〈FB〉:All F:All + B:All F×B-All, removing all the bright–faint
cross-correlations, i.e. 〈δFδB〉 and 〈δBγ F〉.
Equivalent to F+B:All with covariance between F and B.
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Table 3. Notation for different cross-correlations. First column gives
the cross-correlation and the second column is a short description.

Notation Description

〈δFδB〉 Counts–counts cross-correlations of the two galaxy
populations. Important for sample variance
cancellation.

〈δBγ F〉 Counts–shear cross-correlations of foreground
spectroscopic galaxy counts and shear.

〈γ Bγ B〉 Shear–shear for the bright galaxies. In
overlapping surveys, the bright galaxies are a subset of the
photometric survey. This term is of minor importance
since the bright sample is shallower and less dense.

population. The first five subsections compare how different effects
such as RSD, BAO, lensing and intrinsic correlations contribute to
the forecast. In the last subsection, we present the main forecast
table and discuss the relative contribution of each effect and the
impact with overlapping photometric and spectroscopic surveys.
Lastly, we look at the effect of magnification. Contour plots can be
found in Appendix B.

3.1 Auto- versus cross-correlations

This subsection studies how the galaxy clustering and lensing ob-
servables affect the forecast. The significant correlations for close
redshift bins are the shear–shear 〈γ γ 〉 and counts–counts 〈δδ〉 cor-
relations. Here the counts–counts correlation of the spectroscopic
sample includes a strong RSD signal and intrinsic cross-correlation
between nearby redshift bins. For large redshift bin separation, the
counts–shear 〈δγ 〉 cross-correlations are the strongest. To separate
the contribution from different cross-correlations, we introduce the
variable 
ZMax. All correlations Cij are required to satisfy

|zj − zi | ≤ 
ZMax, (24)

where zi, zj, respectively, are the mean of redshift bins i and j. This
requirement applies only when specified for the figures. Which
cross-correlations enter is discussed together with the forecast re-
sults in the next paragraphs.

The auto-correlations are always included from the 
ZMax def-
inition, which for probes with lensing includes the shear–shear
auto-correlations. In Fig. 2, this shows at 
ZMax = 0 as a gap
between lines which includes shear (All) or not (Counts). The
lensing with its broad kernel can be seen to better measure DE
(top panel, also includes γ ) than the growth of structure (bot-
tom panel). Overall, galaxy shear leads to four to five times im-
provement for the combined figure of merit (FoMwγ ). In the region
0.01 < 
ZMax < 0.1, the forecast also includes cross-correlations
between bright/spectroscopic redshift bins, with a significant jump
when including the cross-correlation with the adjacent bin. These
cross-correlations contribute significantly and are studied in later
subsections in the context of the Limber approximation (3.2), RSD
(3.4) and BAO (3.5).

The F×B−〈δ γ 〉 lines are the forecast of F×B:All without
counts–shear correlations. At larger 
ZMax, the counts–shear lens-
ing becomes important, which can be seen from F×B:All and
F+B:All having higher FoMwγ than F×B−〈δ γ 〉. Note that higher

ZMax also includes shear–shear tomography, which also enters
in F×B−〈δ γ 〉. Another lensing effect is the magnification of the
galaxy counts (Paper I). Intrinsic clustering dominates the counts–
counts signal at low redshift separation, while magnification only
becomes important at higher separations where the intrinsic correla-

Figure 2. The FoM dependence on the maximum redshift separation for
cross-correlations included in the forecast (
ZMax). Lines correspond to the
probes F×B:All, F+B:All, F×B−〈δγ 〉:All, F×B:Counts, F+B:Counts and
B:Counts. The top and bottom panels, respectively, correspond to FoMwγ

and FoMγ .

tion also vanishes. The separation of F×B:Counts and F+B:Counts
at high 
ZMax is due to magnification. Magnification is also included
in F and B, but the impact is strongest for the combined overlapping
samples. In Section 3.7, we study the effect of magnification when
the surveys include both galaxy counts and shear.

Fig. 3 shows the FoM normalized to FoM(
ZMax = 1) = 1, where
the gain has saturated. The same information is already presented
(Fig. 2), but these plots are better to discuss the relative contribution
of different correlations. In FoMwγ (top panel), there is large spread
between the lines. For B:Counts mostly close (
ZMax < 0.1) correla-
tions are important. When including magnification (F×B:Counts) or
the shear–shear tomography (F×B−〈δ γ 〉), there is some more ben-
efit from cross-correlations of widely separated redshift bins. The
bottom lines are F×B:All and F+B:All where counts–shear con-
tribute significantly and many different correlation types contribute
to the constraints. There is much less difference for FoMγ (bottom
panel), where the auto-correlations account for 40–50 per cent for
all probes. For B:Counts, the intrinsic counts–counts correlation
between bins provides the rest, while F×B:All has a 25 per cent
contribution from counts–shear lensing.
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Figure 3. Normalized cumulative FoM contributions for different probes.
The x-axis is 
ZMax and the FoMs are normalized by FoM(
ZMax = 1) = 1.
Each line is a probe and the two panels show the result for different FoMs.

Fig. 4 is similar to Fig. 3, but compares the normalized cu-
mulative constraints of F×B:All for the different FoMs: FoMγ ,
FoMDETF, FoMw and FoMwγ in the same plot. The FoMγ line
depends strongly on the auto-correlation. This is expected as the
galaxy clustering (counts–counts) is important for measuring the
growth. Interestingly, the next two lines are FoMDETF and FoMw,
while FoMwγ which includes both DE and the growth (γ ) benefits
the most from different correlations. Also, fixing the bias changes
the correlations that contribute (plot not shown), while keeping the
FoM/line order. How marginalizing over the bias changes the fore-
cast is an important part of this paper and is studied further in
Paper III.

3.2 Limber approximation

Paper I compared the correlations estimated using the exact calcula-
tions to the correlations when using the Limber approximation. For
narrow redshift bins of 
z = 0.01(1 + z), the Limber approximation
can overestimate the galaxy counts auto-correlations by a factor of
2–3 (Paper I, fig. 8). Further, in the Limber approximation there is no
counts–counts cross-correlations between non-overlapping redshift

Figure 4. Normalized cumulative FoM contributions for different probes.
The x-axis is 
ZMax and the FoMs are normalized by FoM(
ZMax = 1) = 1.
All results are for F×B:All and the lines correspond to FoMγ , FoMDETF,
FoMw and FoMwγ .

bins, which is not a good approximation for 
z = 0.01(1 + z)-wide
bins in the bright sample.

Fig. 5 compares the exact calculations with the Limber approxi-
mation. Included in the panels is one line showing the exact calcu-
lations with RSD, while the other two lines are the exact calculation
and Limber approximation in real space (No RSD). The RSD signal
in the correlation is powerful, especially in measuring γ . Compar-
ing the three lines shows how cross-correlations and RSD contribute
to measuring DE and the growth of structure. For γ including the
cross-correlations has little effect, while the RSD improves FoMγ

for F×B:All by 70 per cent. On the other hand, for FoMDETF the
cross-correlation of galaxy count in the radial direction is power-
ful, while the RSD signal contributes little. One can understand the
main traits from the amplitudes and shapes of the correlations. The
γ parameter changes the clustering amplitude, while DE parameter
ω more directly affects the shape.

For FoMDETF without RSD (real space), the exact calculations
and Limber approximation results cross around 
ZMax = 0.015. The
width of the spectroscopic redshift bins here is 
z = 0.01(1 + z)
and around the crossing the exact calculations begin to include
correlations with nearby redshift bins. These are important for DE
constraints (Section 3.5). Also, similar to FoMγ , when counts–shear
becomes important at large 
ZMax, the difference decreases because
of the smaller error in Limber approximation.

The higher galaxy counts auto-correlations in the Limber ap-
proximation reduce the impact of shot noise. One can see in Fig. 5
how the FoMγ line in the top panel of Fig. 5 is slightly lower
for the exact calculation than the Limber approximation. For larger

ZMax, the lines first diverge before converging when also including
counts–shear cross-correlations (high 
ZMax). While the Limber
approximation is accurate for the counts–shear signal, the higher
galaxy counts lead to an overestimated error (see equation 15). As
a result, the counts–shear correlations contribute less in the Limber
approximation.

MNRAS 452, 2168–2184 (2015)



Combining surveys – II. Parameter constraints from different physical effects 2175

Figure 5. Forecast for F×B:All using the exact calculations and the Limber
approximation. The first two lines, respectively, show the FoM in redshift
and real space, while the last uses the Limber approximation in real space.
The top and bottom panels, respectively, show FoMγ and FoMDETF.

3.3 Resolution in redshift

Increasing the number of spectroscopic bins results in better con-
straints. The redshift bin width in a 2D forecast corresponds approx-
imately to the maximum scale kmax = 2π/λmin, where λmin is the
comoving width of the redshift bins (Asorey et al. 2012). The gain
for small enough bins when increasing the number of bins therefore
mainly comes from probing smaller scales. Note that having such a
large number of bins can lead to including more non-linear modes
in the radial direction than in the angular direction. To be consistent,
we need to limit the number of radial bins to the corresponding lmax

scale (see Asorey et al. 2012; Asorey, Crocce & Gaztañaga 2014).
In our case, Nz 70 is the corresponding number and in this regime
PAUz is quite close to spec-z. In this section, we are not compar-
ing to a 3D forecast, but focusing on the effect of the covariance
between the observables.

Fig. 6 shows FoMwγ for an increasing number of bins, where the
bin width 
z = w(1 + z) is set by the number of redshift bins.5

Focusing first on the result for many redshift bins, one expects the

5 Let zi denote the edges between redshift bins and where z0 is
the start of the redshift range. A frequently used redshift binning is

Figure 6. Effect of the covariance and photo-z. The lines all show FoMwγ

for galaxy counts for the spectroscopic sample, with the number of bins
varying on the x-axis. Two lines (cov) include the full covariance, while the
other two (only diag) use only the variance. Each of these configurations is
run using either spectroscopic redshifts (spec-z) or narrow-band photometry
(PAUz, σ 68/(1 + z) = 0.0035). A vertical line marks the fiducial number of
spectroscopic redshift bins (71).

covariance to be important for increasingly thinner bins. The galaxy
density per bin also decreases, but the fiducial sample is dense (0.4
galaxies arcmin−2) and the effect of shot noise is less important (plot
not shown). Assume that the auto-correlations are close to equal in
two bins (CAA ≈ CBB) and define α ≡ CAB/CAA. The Pearson corre-
lations, R[A, B] = Cov(A, B)/

√
Var[A] ∗ Var[B]), for the covari-

ance matrix (equation 15) are then

R[Auto(AA), Auto(BB)] ≈ α2 (27)

R[Auto(AA), Cross(AB)] ≈ α
√

2/
√

1 + α (28)

when ignoring the shot noise. From these equations, the covariance
increases for thinner bins which have higher α (see Paper I). The
largest covariance is not between auto-correlations, but between the
auto- and cross-correlations. Previous studies expected the covari-
ance to saturate the result, but could not demonstrate this due to
technical difficulties with many bins6 (Asorey et al. 2012; Di Dio
et al. 2013). In Fig. 6, the covariance limits the results, with the lines
being even flatter (and numerical unstable) when approaching 300
bins. The forecast also saturates for FoMw , FoMγ and FoMDETF (not

zn = zn−1 + (1 + zn−1) ∗ w, where the constant w gives the bin width.
Provable by mathematical induction, then

zn = (1 + z0)(1 + w)n − 1 (25)

is the nth edge between the redshift bin. For a binning 
z = w(1 + z), then

w = N

√
1 + zMax

1 + z0
− 1 (26)

divides the interval [z0, zMax] in n bins into N redshift bins.
6 In this subsection, the forecast excludes all counts–counts cross-
correlations Cij with 0.1 < |zj − zi| for redshift bins i, j. These include
little cosmological information (for magnification, see Section 3.7), and
removing these helps to reduce the dimension of the covariance matrix.
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Figure 7. The gain from the covariance. This figure shows the forecast
ratio between including the full covariance and only the diagonal entries.
All lines show FoMwγ for the bright sample using galaxy counts (B:Counts)
as a function of redshift bins. Two lines use a spectroscopic sample (spec-z),
while the other two use narrow-band photo-z sample (PAUz). For two lines,
we marginalize over the bias (free bias), while for the other two the bias is
fixed (fixed bias). A vertical line marks the fiducial number of spectroscopic
redshift bins (71).

shown). For PAUz the forecast FoMs become flat earlier (less bins),
since the photo-z also correlates the fluctuations in the different
redshift bins.

For an intermediate low number of bins (50–100), the covari-
ance between observables increases FoMwγ . This result is counter-
intuitive, but is similar to the sample variance cancellations for
multiple galaxy tracers. When two observables depend differently
on nuisance parameters (e.g. bias), the covariance between the ob-
servables introduces a covariance between the nuisance parameters.
The additional covariance between the bias parameters reduces their
freedom, which increases cosmological constraints when marginal-
ized over. The covariance naturally also reduces the information,
since the observables are no longer independent. If the forecast im-
proves or degrades depends on the details of these competing effects
(see Eriksen & Gaztañaga 2014).

Fig. 7 shows the FoMwγ ratio between including the full covari-
ance and only the diagonal entries (variance). For spectroscopic
redshifts and marginalizing over the bias (free bias), the covariance
increases FoMwγ until about 160 spectroscopic bins. This shows
that the covariance between different redshift slices increases con-
straints through reducing the sample variance. When fixing the bias,
the gain is about three times lower, but it is still a 10 per cent effect.
We attribute this to a changed covariance between the cosmological
parameters, some of which we marginalize over. While the con-
straints can be higher for only the variance, the covariance should
be included in parameter fits to not bias the results. With narrow-
band photo-z (PAUz), the effect of the covariance changes. For a
free bias the gain is higher, while there is no benefit when fixing the
bias.

How does the same-sky (F×B/F+B) conclusions depend on the
number of spectroscopic bins? Fig. 8 shows the combined forecast
(F×B, F+B) for the fiducial case, which uses spectroscopic redshift
and includes the covariance. The bright sample (Fig. 8) benefits
from more redshift bins. This however also increases the number of
counts–counts cross-correlations with the photometric sample and
cross-correlations of spectroscopic galaxy counts with shear. For

Figure 8. The forecast for different probes and increasing number of bins.
On the x-axis is the number of spectroscopic redshift bins, while the lines
show FoMwγ for the probe combinations F×B:All, F+B:All, F×B:Counts
and F+B:Counts. A vertical line marks the fiducial number of spectroscopic
redshift bins (71).

both ‘All’ and ‘Counts’, the F×B/F+B ratio is nearly constant over
a large number of spectroscopic redshift bins. This shows that our
conclusions on the same-sky issue are quite robust with respect to
the number of redshift bins.

3.4 Redshift space distortions (RSD)

RSD affects the overdensities of galaxies. A matter overdensity at-
tracts galaxies, which change their velocities and introduce a change
in redshift. At linear level, the change in galaxy count overdensities
is the Kaiser effect. The redshift space galaxy spectrum P̃Gal(k) is
then

P̃Gal(k, μ) = (b + μ2f )
2
P (k), (29)

where P(k) is the real space matter power spectrum, b is the galaxy
bias, μ is the cosine of line of sight angle and f ≡ �m(z)γ . In the
forecast, the RSD effect enters in the 2D correlations. Overdense
regions attract nearby galaxies, which can move galaxies between
redshift bins. This effect often increases the amplitude of the 2D
correlations (see Paper I).

The RSD is a powerful effect for measuring γ . Fig. 9 shows
how including RSD in the correlations improves FoMγ by a fac-
tor of between 1.5 and a few. For the other FoMs (not shown),
RSD decreases the result with 0–5 per cent. Now we first focus on
the results for counts. Observing galaxy counts over separate skies
(F+B:Counts) is the combination which benefits most from RSD.
For only B:Counts (not shown), the RSD improves for the fidu-
cial binning the constraints with a factor of 3.9. The added RSD
component is independent of bias, and therefore reduces the degen-
eracies between γ and the bias. In F×B:Counts, the surveys are
overlapping and the samples (F and B) can be cross-correlated. The
cross-correlations and also sample variance cancellation directly
from overlapping volumes (Section 3.6) improve bias constraints,
and RSD is therefore less important for F×B:Counts.

One should note that comparing models with and without RSD
in the angular correlations is slightly misleading. The forecast in
redshift space or real space includes the same correlations and only
differ by including the RSD component in the correlations. One
can therefore not assume that RSD always improves the parameter
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Figure 9. The FoMγ ratio between a redshift and real space forecast when
varying the number of spectroscopic redshift bins. A vertical line marks the
fiducial number of spectroscopic redshift bins (71). The four lines corre-
spond to F×B:All, F+B:All, F×B:Counts and F+B:Counts.

constraint, but the benefit depends largely on the resulting corre-
lations between the parameters. As seen in the last paragraph, the
measurement of γ improves greatly from RSD. On the other hand,
in the theoretical real space angular correlations, there is radial in-
formation in the cross-correlations between redshift bins. Including
RSD will, as we will see, reduce the DE constraints from intrinsic
galaxy counts cross-correlations with nearby redshift bins.

When including shear, the importance of RSD naturally decreases
(Fig. 9, F×B:All and F+B:All). These probes also include the
shear–shear signal, which is unaffected by the RSD. Even if the
ratios are lower, the factor of 2 is still a good improvement. Since
F+B:Counts benefit more than F×B:Counts from RSD, the separa-
tion between F+B:All and F×B:All is smaller than expected. One
can understand this from looking at the counts–shear variance. The
variance for the cross-correlation of a foreground galaxy counts (δi)
density with background shear (γ ) is (see equation 15)

Var(〈δiγ 〉) = N−1(l)[〈δiδi〉 〈γ γ 〉 + 〈δiγ 〉2], (30)

where N(l) is the number of modes. The 〈δiγ 〉 signal and the second
term in the variance are approximately independent of RSD. On the
other hand, the 〈δiδi〉 auto-correlations increase strongly from RSD.
Since the error increases, including RSD in the forecast reduces the
importance of counts–shear.

The top panel of Fig. 10 shows how including RSD affects the
forecasts. Instead of studying the FoMs as a function of number of
redshift bins, this figure uses the fiducial binning and 
ZMax is var-
ied. Section 3.1 explained how 
ZMax can be used to distinguish be-
tween contributions from auto-correlations, cross-correlations with
nearby redshift and counts–shear WL. The largest RSD effect is for
FoMγ , and F+B:Counts increase by a factor of 3.6 with respect to
the real space forecast. When including cross-correlations between
nearby bins, the importance of RSD increases for all probe combi-
nations. In Paper I, we showed how RSD affects the auto- and cross-
correlations differently, which here improve the growth constraints.
For F×B:Counts, higher 
ZMax also includes WL magnifica-
tion. Magnification adds an additional bias measurement, therefore
decreasing the impact of RSD.

Lastly, the FoMDETF (Fig. 10, bottom panel) includes some in-
teresting trends. For the auto-correlation, the RSD improves the

Figure 10. FoM ratio between redshift and real space when varying the
largest redshift separations in the cross-correlations (
ZMax). In the two
plots corresponding to FoMγ and FoMDETF, the four lines are the probes
F×B:All, F+B:All, F×B:Counts and F+B:Counts.

DE constraints. Around 0.01 < 
ZMax < 0.02, the forecast also
includes galaxy counts cross-correlations between spectroscopic
redshift bins. Then the FoMDETF ratio suddenly drops because the
RSD suppresses the cross-correlation with nearby redshift bins,
which are important for DE constraints. Since F×B:Counts depend
strongly than F+B:Counts on magnification, the lines separate at
high 
ZMax. The magnification signal, which has similar covari-
ance to counts–shear and benefit from RSD reducing amplitude
of the auto-correlations. Since F×B:Counts depends strongly on
magnification than F+B:Counts, the lines separate at high 
ZMax.

3.5 Baryon acoustic oscillation (BAO)

In the observed galaxy distribution, BAO is a characteristic
scale (∼150 Mpc today), which is measurable both in the trans-
verse/angular and radial/redshift direction (Gaztañaga, Cabré & Hui
2009; Reid et al. 2012). Observing the BAO can therefore probe cos-
mology by measuring the comoving and angular diameter distance.
Accurate prediction of the power spectrum is done by solving the
Boltzmann equation. The Eisenstein–Hu analytical power spectrum
formula we use here is less accurate, but can be used to estimate

MNRAS 452, 2168–2184 (2015)



2178 M. Eriksen and E. Gaztañaga

Figure 11. Effect of including BAO wiggles. The ratio divides the fiducial
forecast on one removing the BAO wiggles in the Eisenstein–Hu power
spectrum. In the top and bottom panels, the FoMDETF is, respectively, shown
when varying the number of spectroscopic redshift bins and 
ZMax. The four
lines are for the probes F×B:All, F+B:All, F×B:Counts and F+B:Counts.
A vertical line in the upper panel corresponds to the fiducial number of
spectroscopic redshift bins (71).

the power spectrum both only with the continuum and including
the BAO wiggles. In this subsection, we compare the forecasts with
and without the BAO feature.

Fig. 11 shows in the top panel the ratio between including
and not the BAO (BAO/no-BAO) for different numbers of spec-
troscopic redshift bins. For the fiducial binning (71 bins), the
FoMDETF improves with 20–30 per cent, while FoMγ only changes
with ±2 per cent (not shown). This trend is opposite to RSD, dis-
cussed in Section 3.4, where RSD contributed strongly to γ con-
straints (FoMγ ), but only gave minor changes to the DE constraints
(FoMDETF). Measuring γ depends on measuring the amplitude,
while the DE constraints come more from the power spectrum
shape measurements (BAO position as opposed to amplitude). The
RSD breaks the degeneracy between the galaxy bias and the growth
parameter (γ ). On the other hand, the BAO introduces a known
distance scale, which is more suited to measure the shape and ex-
pansion history.

The BAO peak can in configuration space be modelled by a
30 Mpc h−1 wide Gaussian. For the fiducial binning (71 bins), the
bin width at z = 0.5 is 35 Mpc h−1. When increasing the number
of bins, one decreases the redshift bin width, which leads to a more
precise location of the BAO peak. Thinner bins can also, as we will
discuss, better measure the radial BAO in the cross-correlations
between nearby bins. As a result, we find the FoMDETF BAO/no-
BAO ratio to around double when using 100 instead of 71 bins in
the spectroscopic sample.

Fig. 11, bottom panel, shows the BAO/no-BAO ratio when in-
creasing 
ZMax. The forecast includes only auto-correlations when

ZMax = 0, while 0.01 ≤ 
ZMax also has the cross-correlations
between redshift bins. For only auto-correlations of galaxy counts,
the ratio is artificially high since the forecast uses one bias param-
eter per redshift bin and population. The ‘Counts’ ratio therefore
drops when including the cross-correlations between close redshift
bins. Previously, Paper I found a stronger BAO signal in the cross-
correlation between nearby bins than in the auto-correlation. This
was caused by the cross-correlation selecting galaxy pairs with a
given radial distance, therefore suppressing the small-scale infor-
mation. For both ‘All’ and ‘Counts’, the BAO/no-BAO ratio grows
from 1.1 to 1.3–1.35, showing that radial BAO is an important
contribution.

The shear–shear auto-correlations are in ‘All’ included for all

ZMax values. When including lensing, the BAO/no-BAO ratio in-
crease is higher with 
ZMax, since the BAO helps to break degenera-
cies. For higher 0.1 < 
ZMax, counts–shear becomes important and
the ratio again decreases. Since the ratio also decreases for a fixed
bias (not shown), the decrease does not result from count–shear pro-
viding an additional bias measurement, but from the counts–shear
signal depending more weakly on BAO. Because the galaxy counts
magnification is a weak effect (see Section 3.7), the lines for only
counts remain quite flat for 
ZMax > 0.1.

3.6 Combining WL, RSD and BAO

Previous subsections studied in detail the separate benefits of the
covariance, RSD, WL and BAO. This subsection builds on those
and compares the relative impact of each physical effect, including
knowledge of galaxy bias and sample variance cancellations. The
main results are presented in two Tables, corresponding to FoMwγ ,
FoMγ , FoMDETF and FoMw . For layout reasons, FoMwγ and FoMγ

are shown in Table 4, while FoMDETF and FoMw are included in
Table 5. Each row corresponds to a different probe and dashed lines
divide the rows into five sections. The first two sections quantify
the benefit of overlapping photometric and spectroscopic galaxy
surveys. In the third section, we study the single population, while
the fourth and fifth sections present special cases (see Table 2). In
the columns are the forecast for a free/fixed galaxy bias and when
removing different effects.

The first three rows of Table 4 show the forecast for F×B:All,
F+B:All and the same-sky benefit: F×B/F+B. For FoMwγ we find
a 50 per cent same-sky gain, which corresponds to 30 per cent in-
crease in area (equation 18). The origin of this benefit in FoMwγ

is explained in a companion paper (Eriksen & Gaztañaga 2014).
Here we focus on describing the different results in detail. In the
DE FoMs (FoMw and FoMDETF) the benefit is similar, while the
FoMγ ratio is 1.1, which corresponds to a 20 per cent larger area.
While the details differ, for galaxy counts and shear we find similar
benefits from overlapping photometric and spectroscopic surveys.
In general, the absolute numbers in the forecast presented depend
strongly on the parametrization of the galaxy bias. For example,
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Table 4. Comparison of different combinations of observables and effects. The two tabulars correspond to FoMwγ and FoMγ indicated in the upper-left corner.
The label column indicates the populations in the rows (B:bright/spectroscopic, F:faint/photometric) and using overlapping (×) or separate (−) skies. ‘Counts’
includes only overdensities of number counts, while ‘All’ also includes galaxy shear. The rows are divided through dashed lines into five sections. First two
sections study overlapping versus non-overlapping surveys, where the last line is the fraction gained using overlapping surveys. Third row section presents
the single population cases (F or B). The fourth section looks at special cases, defined in Section 2.7, designed to understand which correlations contribute
most. Fifth section is the forecast for overlapping surveys without any cross-correlations and the ratio to non-overlapping surveys. The column ‘Fiducial’ is
the fiducial forecast, while ‘xBias’ fixes the galaxy bias. In the next columns are forecasts corresponding to removing magnification (No Magn), weak lensing
(No WL), redshift space distortions (No RSD) and baryon acoustic oscillations (No BAO). The last three columns include fixed bias cases.

10−3 FoM γw Fiducial xBias No Magn No WL No RSD No BAO No WL-xBias No RSD-xBias No BAO-xBias

F×B:All 35.5 213 35.1 7.32 17.1 27.8 59.1 163 206
F+B:All 24.3 193 24.2 6.13 11.0 18.0 61.5 155 183
Improvement 1.5 1.1 1.4 1.2 1.6 1.6 0.96 1.1 1.1

F×B:Counts 8.29 61.9 7.32 7.32 3.31 6.00 59.1 50.2 48.0
F+B:Counts 6.24 62.0 6.13 6.13 1.72 4.41 61.5 53.2 44.6
Improvement 1.3 1.00 1.2 1.2 1.9 1.4 0.96 0.94 1.1

F:All 3.10 51.2 3.07 0.064 2.61 2.77 2.68 52.0 53.2
B:All 7.91 52.6 7.91 5530 2.76 5.42 45.4 42.6 43.1
F:Counts 0.077 2.85 0.064 0.064 0.036 0.050 2.68 2.93 2.34
B:Counts 5.53 45.4 5530 5.53 1.45 3.78 45.4 37.9 31.6

F×B−〈δFγ F〉:All 32.4 201 32.3 7.32 15.4 25.3 59.1 152 194
F×B−〈δBγ F〉:All 33.8 208 33.4 7.32 16.2 26.3 59.1 160 201
F×B−〈δ γ 〉:All 16.4 100 16.1 7.32 7.46 12.0 59.1 79.2 89.6

F×B−〈FB〉:All 30.7 199 30.4 6.05 14.1 23.3 55.4 154 191
F×B−〈FB〉:Counts 6.58 57.1 6.05 6.05 2.02 4.67 55.4 47.3 43.1
(F×B−〈FB〉/F+B):All 1.3 1.0 1.3 0.99 1.3 1.3 0.90 0.99 1.1
(F×B−〈FB〉/F+B):Counts 1.1 0.92 0.99 0.99 1.2 1.1 0.90 0.89 0.96

FoM γ Fiducial xBias No Magn No WL No RSD No BAO No WL-xBias No RSD-xBias No BAO-xBias

F×B:All 79 159 79 42 47 80 156 115 161
F+B:All 69 162 69 39 40 67 158 119 163
Improvement 1.1 0.99 1.1 1.1 1.2 1.2 0.98 0.97 0.99

F×B:Counts 46 156 42 42 16 47 156 109 150
F+B:Counts 39 158 39 39 11 39 158 112 149
Improvement 1.2 0.98 1.1 1.1 1.5 1.2 0.98 0.97 1.0

F:All 40 68 40 7.4 39 41 56 65 69
B:All 45 147 45 38 15 45 147 102 145
F:Counts 8.1 56 7.4 7.4 5.3 7.8 56 53 57
B:Counts 38 147 38 38 9.6 38 147 102 133

F×B−〈δFγ F〉:All 78 158 78 42 45 79 156 114 160
F×B−〈δBγ F〉:All 79 159 78 42 47 80 156 115 160
F×B−〈δ γ 〉:All 65 158 65 42 31 64 156 112 159

F×B−〈FB〉:All 76 157 76 39 46 77 153 113 158
F×B−〈FB〉:Counts 41 153 39 39 12 42 153 107 146
(F×B−〈FB〉/F+B):All 1.1 0.97 1.1 1.0 1.1 1.1 0.97 0.95 0.97
(F×B−〈FB〉/F+B):Counts 1.1 0.97 1.0 1.0 1.1 1.1 0.97 0.95 0.98

exact knowledge of bias would increase F×B:All and F+B:All by
a factor of 6.0 and 7.9, respectively. Details on the galaxy bias are
given in Paper III.

For the four defined FoMs, the survey overlap is more impor-
tant when marginalizing over the bias. One example is the fiducial
column, where the F×B:All/F+B:All ratio for FoMwγ decreases
from 1.5 to 1.1 when fixing the galaxy bias. Also, we see a lower
gain from overlapping surveys when including RSD or BAO. Those
effects break degeneracies between the galaxy bias and cosmology,
which increase the single population cases and therefore reduce the
importance of overlapping surveys. Without lensing and for a fixed
bias, we find that overlapping surveys contribute negatively. This is
because there are no additional counts–shear cross-correlations and

the reduced sampling variance only works with a free bias (Eriksen
& Gaztañaga 2014).

If we focus on the F×B:All case, we see that the galaxy bias is
the effect causing larger impact on the FoMs: fixing bias increases
FoMwγ by a factor of 6.0. For free bias, the most important probe is
WL (factor of 4.8), then RSD (factor of 2.1) and finally BAO (factor
of 1.3). If we look at FoMγ , the order is preserved for WL (factor of
1.9) and RSD (factor of 1.7), while BAO has no impact on FoMγ .
For FoMw or FoMDETF, we see that WL is still the most important
effect, but here BAO is more relevant than RSD, which makes
sense as the former measures distances, while the latter measures
growth, which is more relevant for FoMγ . When bias is known
(xBias), the FoMwγ in overlapping surveys (F×B) and the relative
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Table 5. Same as Table 4 for FoMw and FoMDETF.

FoM w Fiducial xBias No Magn No WL No RSD No BAO No WL-xBias No RSD-xBias No BAO-xBias

F×B:All 449 1340 445 172 363 347 379 1410 1290
F+B:All 355 1190 352 159 272 267 388 1310 1120
Improvement 1.3 1.1 1.3 1.1 1.3 1.3 0.98 1.1 1.1

F×B:Counts 180 397 172 172 202 129 379 462 320
F+B:Counts 159 391 159 159 161 112 388 473 300
Improvement 1.1 1.0 1.1 1.1 1.3 1.1 0.98 0.97 1.1

F:All 77 759 77 8.7 67 67 48 804 773
B:All 174 359 174 147 179 122 310 418 297
F:Counts 9.5 51 8.7 8.7 6.8 6.4 48 55 41
B:Counts 147 310 147 147 152 100 310 373 238

F×B−〈δFγ F〉:All 417 1270 416 172 343 320 379 1340 1220
F×B−〈δBγ F〉:All 429 1310 425 172 347 330 379 1390 1260
F×B−〈δ γ 〉:All 252 635 248 172 240 186 379 705 564

F×B−〈FB〉:All 404 1270 400 156 309 302 361 1360 1210
F×B−〈FB〉:Counts 160 372 156 156 168 112 361 443 296
(F×B−〈FB〉/F+B):All 1.1 1.1 1.1 0.98 1.1 1.1 0.93 1.0 1.1
(F×B−〈FB〉/F+B):Counts 1.0 0.95 0.98 0.98 1.1 1.0 0.93 0.94 0.99

FoM DETF Fiducial xBias No Magn No WL No RSD No BAO No WL-xBias No RSD-xBias No BAO-xBias

F×B:All 517 1750 512 210 535 422 981 1780 1670
F+B:All 399 1640 397 196 399 324 1050 1710 1540
Improvement 1.3 1.1 1.3 1.1 1.3 1.3 0.94 1.0 1.1

F×B:Counts 219 996 210 210 223 168 981 991 883
F+B:Counts 197 1050 196 196 208 153 1050 1050 922
Improvement 1.1 0.95 1.1 1.1 1.1 1.1 0.94 0.94 0.96

F:All 205 853 204 11 207 202 261 899 863
B:All 206 842 206 180 209 148 801 844 748
F:Counts 12 263 11 11 11 8.2 261 268 261
B:Counts 180 801 180 180 196 137 801 797 696

F×B−〈δFγ F〉:All 480 1700 480 210 499 389 981 1730 1620
F×B−〈δBγ F〉:All 495 1720 491 210 515 402 981 1750 1640
F×B−〈δ γ 〉:All 311 1140 309 210 313 236 981 1150 1030

F×B−〈FB〉:All 474 1670 471 191 497 382 949 1710 1580
F×B−〈FB〉:Counts 196 959 191 191 207 149 949 959 842
(F×B−〈FB〉/F+B):All 1.2 1.0 1.2 0.97 1.2 1.2 0.91 1.0 1.0
(F×B−〈FB〉/F+B):Counts 1.00 0.91 0.97 0.97 0.99 0.97 0.91 0.91 0.91

impact of other effects are smaller, but we have similar hierarchy
of tendencies: WL (factor of 3.6), RSD (factor of 1.3) and BAO
(factor of 1.04). For non-overlapping surveys (F+B) and free bias,
the gain is smaller and both RSD (factor of 2.2) and BAO (factor of
1.4) become more important relative to WL (factor of 4.0).

The second section of rows is the forecast and overlapping skies
ratio using only galaxy counts. The constraint without galaxy shear
is lower, with F×B-All/F+B-All being 1.4, 1.2, 1.2 and 1.2 for
FoMwγ , FoMγ , FoMw and FoMDETF. Fixing the bias of the fiducial
case (xBias), the table shows how the improvement ratio becomes
close to or slightly below unity, meaning all the benefit of cross-
correlating the galaxy counts comes from measuring the galaxy
bias. This is different from ‘All’ where FoMwγ and FoMw , which
depends both on the DE parameters and γ , improve also for a
fixed bias. With shear the overlapping surveys include an additional
counts–shear signal, while for counts the only benefit comes from
better bias measurements. Not including RSD degrades the galaxy
bias and growth determination, which is compensated for overlap-
ping surveys which include additional cross-correlations and sample
variance cancellations to better measure the galaxy bias.

The third section shows the single population constraints, with
F:All and B:All, respectively, being the optimal (both counts and
shear) constraints for the faint and bright population. Below are
the cases F:Counts and B:Counts, which only include galaxy
counts. WL is the main contribution to the faint sample, while
the bright sample constraints are driven by galaxy clustering and
RSD. This can be seen by comparing ‘All’ and ‘Counts’. The ra-
tios F:(All/Counts) and B:(All/Counts) are, respectively, 38 and 1.4
for FoMwγ . In our forecast, the photometric sample uses photo-z
redshifts, which drastically reduce the contribution from RSD and
intrinsic galaxy counts cross-correlations between redshift bins. The
low F:Counts constraints can suggest using less the current 12 faint
bias parameters (71 for the bright), but the constraints would still
be relatively low. Also a spectroscopic survey cannot measure shear
(in B:All), but the bright includes shear when being a subset of an
overlapping photometric survey.

The fourth section shows the forecast for F×B:All when not
including various counts–shear cross-correlations (see notation in
Table 2). The counts–shear signal is important for the combined
constraints. Comparing F×B:All to F×B−〈δ γ 〉:All, we see how
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FoMwγ almost doubles (2.2 times free bias) when including the
counts–shear correlations, while the FoMw and FoMDETF greatly
improve (86 and 69 per cent, free bias). For FoMγ , the change
is smaller and the increase is, respectively, 22 and 1 per cent
for a free and fixed bias. Including only either counts–shear
cross-correlations of spectroscopic (F×B−〈δFγ F〉:All) or photo-
metric (F×B−〈δBγ B〉:All) galaxy counts gives comparable con-
straints. Removing the counts–shear cross-correlations altogether
(F×B−〈δ γ 〉:All) leads to a drastic drop. We therefore conclude
that the counts–shear cross-correlations are important, but multiple
populations include redundant information.

The last row section studies the direct same-sky improvement
from overlapping volumes. In addition to the extra correlation,
the overlapping volumes increase the covariance between different
galaxy samples probing the same dark matter fluctuations. The ad-
ditional covariance results in a larger covariance between the bias
parameters. When marginalizing over the bias, this can improve
the constraints (Eriksen & Gaztañaga 2014). The volume effect is
quite small for only galaxy counts, since the constraints are mainly
from the bright/spectroscopic sample. When lensing is included, the
overlapping volumes measure the faint bias and therefore improve
constraints through the counts–shear cross-correlations.

3.7 Magnification

In Tables 4 and 5, the ‘No Magn’ column removes the effect of
magnification. WL increases galaxy fluxes, altering the galaxies
entering into a magnitude-limited sample. Foreground matter also
magnifies the area, which changes the observed galaxy densities.
These two effects together are the WL magnification with number
counts. Removal of magnification is done by setting the magnifica-
tion slope to zero (see Fig. 1). For F×B:All, the FoMwγ , FoMw and
FoMDETF improve 1 per cent from magnification, while the FoMγ is
close to zero (<0.1 per cent). The improvement is significant when
including only galaxy counts. For F×B:Counts, the magnification
contributes to FoMwγ , FoMγ , FoMw and FoMDETF with, respec-
tively, 13, 10, 5 and 4 per cent.

In the previous paper Gaztañaga et al. (2012), we studied the
impact of magnification and recently Duncan et al. (2014) con-
firmed those findings. One source of confusion was the notation
‘MAGN’, which denoted magnification combined with galaxy clus-
tering. While stating the galaxy clustering was the main source for
the constraints, the misleading labels and partly unclear text lead
some readers to believe that magnification had a more central role. In
this paper, the forecast of galaxy counts is simply labelled ‘Counts’
and includes galaxy clustering, RSD and magnification. Unlike the
previous paper, this paper also discusses the effect of magnification
also when including shear. We note that magnification is potentially
more effective in marginalizing additional systematics (like photo-z
outliers). A detailed study of constraining lensing systematics when
combining with magnification is left for future work.

4 C O N C L U S I O N

The effects of galaxy clustering, RSD, WL and BAO are presented
for 2D angular cross-correlations of galaxy counts and shear. Build-
ing on Paper I, which presented the modelling, this paper uses the
Fisher matrix formalism to estimate DE and growth rate (γ ) con-
straints for photometric and spectroscopic surveys. The forecast
uses two galaxy populations, one photometric (F) and one spec-
troscopic (B), and analyses the spectroscopic survey in 72 narrow

redshift bins to capture the radial information. All possible cross-
correlations between galaxy counts and shear are included. In this
paper, we focus on the relative benefit of different correlations and
effects as non-linear contributions, the Limber approximation, the
covariance, RSD, BAO and magnification. Details on the forecast
assumptions and nomenclature can be found in Section 2.

To prevent entering into the strong non-linear regime, Section 2.2
defined a criterion for which correlations to include. In Appendix A,
we study the non-linear effect, finding our kmax cut to be reasonable.
In Section 3.1, we compare the benefit of different correlations.
The effect of galaxy clustering, RSD and WL all enters in the 2D
correlations. To investigate their relative impact, we introduce the
variable 
ZMax, which limits the maximum distance between the
mean of the two redshift bins in a correlation. For 
ZMax = 0, only
the auto-correlations are included, then for 
ZMax ≈ 0.02 cross-
correlations between nearby bins in the spectroscopic sampling are
also included, while counts–shear and magnification only enter for
higher 
ZMax. From plotting the FoMs as a function of 
ZMax, we
show how the different correlations contribute. This includes the
cross-correlations between nearby bins in the spectroscopic sample.

The Limber approximation is widely used to simplify the cal-
culation of the galaxy clustering in 2D correlation. As shown in
Paper I, the Limber approximation only works in thick redshift
bins. For narrow bins, which we need for the spectroscopic sample,
the Limber approximation breaks down and incorrectly estimates
zero cross-correlation for close redshift bins. Section 3.2 shows the
effect on the forecast. The Limber approximation overestimates the
amplitude, therefore reducing the impact of shot noise. The exact
calculations give larger errors in γ than the Limber approxima-
tion. More importantly, the cross-correlations of galaxy counts in
nearby bins are effective in constraining DE. Since these are zero for
the Limber approximation, it leads to the exact calculation giving
stronger DE constraints.

Section 3.3 studies the effect of including more bins in the spec-
troscopic sample. For increasing number of bins, we find that the
forecast is saturating from a higher covariance. This result has pre-
viously been expected, but not shown due to technical issues with
a large number of bins (Asorey et al. 2012; Di Dio et al. 2013). In
the spectroscopic sample, for most bin configurations (less than 160
bins), the covariance improves the forecast. This effect comes from
the covariance between redshift slices, which reduce the sample
variance similar to a multi-tracer analysis (see Eriksen & Gaztañaga
2014). Lastly, we find our same-sky result to be stable over a larger
number of spectroscopic bins.

In Section 3.4, we show how RSD breaks the degeneracy between
the galaxy bias and f, which results in better γ constraints. Similar
to the Limber subsection, the RSD/no-RSD ratio is shown as a func-
tion of 
ZMax. The RSD effect suppresses the galaxy counts cross-
correlations of close redshift bins, which reduce their constraint.
For more spectroscopic redshift bins (100 instead of 72), the RSD
impact increases for the combined photometric and spectroscopic
surveys. This subsection also discusses how RSD minimally im-
pacts the signal, but decreases the counts–shear constraints through
increasing galaxy counts auto-correlation which enters in the error
estimate.

Opposite to RSD, the BAO contributes significantly to DE con-
straints, but only has a minor impact on γ constraints. Section 3.5
shows, similar to the previous subsection, the BAO/non-BAO ra-
tio when varying 
ZMax and the number of spectroscopic redshift
bins. The no-BAO forecast is estimated by using the Eisenstein–Hu
power spectrum without the BAO wiggles. In Paper I, we showed
that the cross-correlations between narrow and close redshift bins
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have a higher (radial) BAO contribution compared with the auto-
correlations. This is reflected in DE constraints depending strongly
on BAO when these (radial) cross-correlations are included.

Section 3.6 includes the four main forecast tabulars (Tables 4
and 5), each corresponding to a different FoM. The different rows
corresponds to which galaxy populations (photometric, spectro-
scopic) included, if the surveys overlap observable (counts, shear)
are used and if some cross-correlations are removed. Columns cor-
respond to modifying some effect, as removing WL, magnification,
RSD or BAO and if marginalizing or fixing the galaxy bias. For
the combined overlapping photometric and spectroscopic survey,
the bias is the physical effect with largest impact on the γ , w0,
wa combined figure of merit FoMwγ . When marginalizing over the
bias (free bias), the next effective in relative importance is WL (fac-
tor of 4.8), RSD (factor 2.1), BAO (factor 1.3) and magnification
(1 per cent). Magnification is discussed separately in Section 3.7,
comparing with the literature and clarifying the difference in nota-
tion with Gaztañaga et al. (2012).

Two photometric (F) and spectroscopic (B) surveys increase
FoMwγ equivalent to 30 per cent larger area when overlapping. The
benefit is smaller for a known galaxy bias. Overlapping surveys
(F×B) improve the constraints for two reasons. Additional cross-
correlations for overlapping surveys can explain part of the gain.
One can cross-correlate the F and B galaxy counts, and also fore-
ground spectroscopic counts with the shear from the photometric
survey. The second contribution is the additional covariance since
the overlapping surveys (F and B) trace the same matter fluctuation.
This advantage of two galaxy population has already been shown
in 3D P(k) (McDonald & Seljak 2009) and 2D correlations (Asorey
et al. 2014). Here we extend those findings to WL and RSD for the
combination of the F and B samples. Eriksen & Gaztañaga (2014)
explain these effects in more detail and compare our forecast to
other analysis in the literature.
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APPENDI X A : IMPAC T O F N ON-LI NEAR
SCALES

The fiducial forecast includes Halofit-II, uses 10 ≤ l ≤ 300 and re-
moves correlations entering into non-linear scales (Section 2.2). To
test the impact of non-linear scales, Fig. A1 shows the FoMwγ . ratio
between including non-linear P(k) (Halofit II) and only the corre-
sponding linear spectrum (from Eisenstein & Hu 1998, EH). On the
x-axis is the maximum multipole included, lmax, which fiducially
is lmax = 300. The top panel shows this ratio using all correlations
until the lmax cut. As expected, the ratio increases with lmax and it is
largest when including only galaxy counts.
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Figure A1. Forecast ratio between including the Halofit contributions and
only the linear (Eisenstein & Hu 1998, EH) power spectrum. The figure of
merit is FoMwγ and the lines correspond to F×B:All, F+B:All, F×B:Counts
and F+B:Counts. In the top/bottom panel, the ratios include/exclude correla-
tions entering into non-linear scales (k > kmax). A vertical line at lmax = 300
marks the fiducial value.

The bottom panel illustrates the effect of an additional cut to re-
move correlations entering into non-linear scales k > kmax. For
lmax = 300, the FoMwγ including Halofit is for F×B:Counts,
respectively, 30 and 80 per cent higher than EH only when
removing or using all correlations. With the increase in lmax, the
ratio with ‘All’ correlations grows quite linearly, while for the
‘selected correlations’ the ratio flattens. The FoMDETF and FoMγ

(not shown) follow the same pattern, but with smaller ratios. For
FoMw (not shown), the ratios are even flatter at high lmax and none of
the probes cross the line 1.2. The fiducial forecast includes Halofit,
but we limit the correlations included to not become too sensitive
to assumptions on the non-linear scales. In addition to the non-
linear matter power spectrum, these scales could require a scale-
dependent galaxy bias. Note that these results are on the forecast
accuracy, which mainly depends on the observable derivative with
respect to cosmology. The cut in non-linear scales for not biasing
a parameter fit (precision) can be different and is not considered
here.

Figure B1. Contour plots of w0, wa and γ . The three sub-plots show the
Fisher matrix 1σ contours, marginalizing over the DETF parameters and
galaxy bias. The top panel shows contours for F×B:All, F+B:All, B:All
and F:All, while the bottom panel only includes galaxy counts.

A P P E N D I X B : C O N TO U R S

Fig. B1 shows the 1σ contours for w0, wa and γ . The top panel
shows for ‘All’ and the combination F×B, F+B, F and B. One can
see that some trends are also present in the tables. The combination
F+B:All, combining shear and galaxy counts from separate surveys,
is more powerful than analysing the survey separately. The factor
of 1.5 improvement of F×B:All over F+B:All corresponds to the
difference between the two inner ellipses. On the bottom is a similar
plot for the galaxy counts. Using equal scales allows us to directly
compare the constraints, but at the expense of the F:Counts contours
being plotted beyond the borders. For the galaxy counts, the bright
population completely dominates, even if the bright sample includes
more bias parameters.

Fig. B2 looks at the effect of removing WL and RSD. The equiv-
alent magnification and BAO plots are not included since those
effects are weaker, which results in less difference between the
ellipses. The top panel shows F×B:All and F+B:All in a tricon-
tour plot, with and without WL (fiducial and ‘No Lens’). The WL
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Figure B2. Contour plots of w0, wa and γ . The three sub-plots show the
Fisher matrix 1σ contours, marginalizing over the DETF parameters and
galaxy bias. In the upper plot, two ellipses are the fiducial F×B:All and
F+B:All, while two remove WL observables. The bottom plot similarly
shows the fiducial F×B:All and F+B:All, and then two contours in real
space.

improves the constraints on all three parameters included in the
contour plots. Comparing the FoMs in Tables 4 and 5, one can see
that same-sky benefit of F×B:All is actually higher when including
lensing.

In the lower panel is a similar plot, instead with two contours
calculated with and without RSD (fiducial and ‘No RSD’). While
the RSD impact the parameter constraints different, the margins are
exactly equal so one can visually compare the effects. The RSD
is contributing strongly to measuring γ and less to w0 and wa.
One can also see the same trend in Tables 4 and 5. There the RSD
improves FoMwγ , FoMγ and FoMw which depends on γ , while not
FoMDETF where γ is fixed. The difference between the contours in
bottom panel shows that RSD increases or decreases the importance
of overlapping surveys. Including RSD, looking at the numerical
values in the table, slightly reduces the benefit of overlapping galaxy
surveys.
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