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ABSTRACT

To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation
rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission.
The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective
SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end,
here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N II] at
205 μm([N II]205μm). For local (U)LIRGs, the ratios of the CO(7–6) luminosity (LCO(7–6)) to the total infrared
luminosity (LIR; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C
(60/100). This makes LCO(7–6) a good SFR tracer, which is less contaminated by active galactic nuclei than LIR
and may also be much less sensitive to metallicity than LCO(1–0). Furthermore, the logarithmic [N II]205μm/CO(7–6)
luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex).
This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or 4 K in the dust
temperature (Tdust) in the case of a graybody emission with Tdust 30 K and a dust emissivity index β⩾ 1). Our
locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs
of z up to ∼6.5.
Key words: galaxies: active – galaxies: ISM – galaxies: star formation – infrared: galaxies – ISM: molecules –
submillimeter: galaxies

1. INTRODUCTION

Luminous infrared galaxies (LIRGs: with an 8–1000 μm
> ☉L L10IR

11 ; Sanders & Mirabel 1996), including ultra-
luminous ones (ULIRGs, > ☉L L10IR

12 ), dominate the cosmic
star formation (SF) at z 1 (e.g., Le Flóch et al. 2005). For z
∼ 1 to 3, these galaxies are mixtures of two populations based
on their prevalent “SF mode”: (a) mergers dominated by
nuclear starburst with warm far-infrared (FIR) colors and a
high SF efficiency (SFE) similar to that in local ULIRGs, and
(b) gas-rich disk galaxies with disk SF and SFE comparable to
local spirals (e.g., Daddi et al. 2010); more ULIRGs belong to
the latter “main-sequence” (MS) population (e.g., Elbaz
et al. 2011). However, the current perception that the typical
spectral energy distribution (SED) of the dust emission in the
high-z, MS galaxy population is merely a “scaled-up” SED of
local normal galaxies remains unproven: if the size of the
effective SF region in a galaxy is fixed, an increasing LIR

implies a higher effective star formation rate (SFR) surface
density (ΣSFR), which is known to lead to a warmer FIR color
or the 60-to-100μm flux density ratio, C (60/100) (thus, the
SED shape) for both normal galaxies and (U)LIRGs (Chanial
et al. 2007; Liu et al. 2015). As demonstrated by Rujopakarn
et al. (2011), the high-z (U)LIRGs from the MS population are
comparable in size to the local star-forming galaxies, but with a
much higher ΣSFR. In general, C(60/100) probes the average
intensity of the dust heating radiation field (e.g., Draine &
Li 2007), and both SFR and C(60/100) should be measured in
order to more fully characterize the SF activity in galaxies.
The conventional way to do so is to obtain a full dust SED

from which both the SFR (from LIR) and C(60/100) can be
deduced. For high-z galaxies, this usually requires multiple
photometric measurements covering a wide wavelength range,
as illustrated in the recent studies on 3 galaxies at z ∼ 5–6
(Riechers et al. 2013; Gilli et al. 2014; Rawle et al. 2014).
Furthermore, as z increases, accurate continuum photometry
becomes tougher due to relatively bright background. A
promising alternative is to measure SFR and C(60/100) using
spectral lines in the FIR/sub-millimeter. A recent spectroscopic
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survey with the Herschel Space Observatory (Herschel) on a
large sample of LIRGs from the Great Observatories All-Sky
LIRG Survey (GOALS; Armus et al. 2009) revealed a
remarkable one-to-one relation between the luminosity
summed over the CO rotational transitions in the mid-J regime
(5 ⩽ J  10) and LIR (Lu et al. 2014, hereafter Paper I). Here
we exploit the method of using only the CO(7–6) line
luminosity, LCO(7–6), as an SFR tracer. Furthermore, we show
that, for the local (U)LIRGs, the [N II] 205 μm line (hereafter
referred to as [N II]) to CO(7–6) flux ratio is fairly steeply
correlated with C(60/100) with a modest scatter. As a result, it
can serve as a useful estimator of C(60/100).

In the remainder of this Letter, we describe the galaxy
samples and data used in Section 2, present our analysis and
results in Section 3, and compare our results to the existing
observations of distant galaxies in Section 4.

2. DATA SAMPLES

2.1. Local LIRGs

Paper I described a Herschel spectroscopic survey of a flux-
limited set of 125 LIRGs from GOALS using the Spectral and
Photometric Imaging REceiver (SPIRE; Griffin et al. 2010).
While the detailed data will be presented elsewhere (Lu et al.,
in preparation), the measured CO and [N II] fluxes based on the
point-source flux calibration, as described in Paper I and Zhao
et al. (2013), are used here. The fluxes of the [C II] line at
158 μm (hereafter as [C II]) for our galaxies were taken from
Díaz-Santos et al. (2013), obtained with the Herschel
Photodetector Array Camera and Spectrometer (PACS;
Poglitsch et al. 2010). These are also point-source calibrated
fluxes, approaching the total flux for sources with a [C II] extent
not too extended relative to the PACS beam of ∼12″ (FWHM).

For each GOALS galaxy, the [Ne V] 14.3 μm to [Ne II]
12.8 μm line ratio (hereafter [Ne V]/[Ne II]) or its upper limit is
available in Inami et al. (2013). Five galaxies in our GOALS/
SPIRE sample have [Ne V]/[Ne II] > 0.65, for which the active
galactic nucleus (AGNs) contribution to the total bolometric
luminosity is likely greater than 50% (Farrah et al. 2007).

2.2. Local ULIRGs

Containing only seven ULIRGs, our GOALS/SPIRE sample
covers mainly LIRGs, particularly lower luminosity ones. We
also obtained from the Herschel archive and reduced in the
same way the SPIRE spectroscopic observations of 28 ULIRGs
(i.e., the local ULIRG sample), which extend our LIR coverage
to ∼10 L13 . These observations were performed in the
program “OT1_dfarrah_1” (PI: D. Farrah). For many of
these galaxies, the [C II] fluxes are available from Farrah et al.
(2013). Only one galaxy in this sample has [Ne V]/[Ne II]
> 0.65 (Farrah et al. 2007).

2.3. Local Dwarf Galaxies

Our GOALS/SPIRE sample also includes one blue compact
dwarf, Haro 11, with a metallicity » Z Z0.45 , where

= + =Z (12 log O H) 8.7solar (Asplund et al. 2009). We
obtained archival SPIRE spectra on three additional dwarfs:
NGC 4214 (Z ∼ 0.36 Z ; obsid = 1342256082; Madden
et al. 2013), IC 10 (∼0.29 Z ; 1342246982) and He 2–10
(∼0.54 Z ; 1342245083) (PI: V. Lebouteiller). The metallicity
values were taken from Rémy-Ruyer et al. (2013). Both IC 10

and NGC 4214are extended and their SPIRE observations were
pointed at the brightest H II region. We extracted a CO(7–6)
flux from the point-source calibrated spectrum of the central
detector. The corresponding fν(70 μm) and fν(100 μm) were
derived by convolving the SPIRE beam of CO(7–6) with the
corresponding PACS images (Rémy-Ruyer et al. 2013) and
used to calculate the FIR luminosity (LFIR; Helou et al. 1985)
after inferring fν(60 μm) from a matching FIR model SED from
Dale et al. (2001). He 2–10 is infrared compact (Bendo
et al. 2012). Its SPIRE observation is a map. We therefore
extracted from the map a point-source spectrum at the location
of the peak brightness using the task “specPointSourceEx-
tractor” in the Herschel Interactive Processing Environment
software (HIPE). The extracted spectrum was further corrected
for an optimized source extent of 18″ (Gaussian FWHM) using
the HIPE semi-extended source correction tool (Wu
et al. 2013) before extracting our CO(7–6) and [N II] fluxes.
Finally, the total [C II] flux of He 2–10 was taken from Cormier
et al. (2015).

3. ANALYSIS

3.1. CO(7–6) as an SFR Tracer

We used the PACS 70 μm continuum images of J. Chu
et al. (2015, in preparation) to select only those GOALS
galaxies that are not too extended with respect to the SPIRE
beam, which measures (FWHM) 35″ and 17″ for CO(7–6)
and [N II], respectively, in order to use the point-source
calibrated fluxes. For each galaxy, we calculated qf ( )μ70 m , the
fractional 70 μm flux within a Gaussian beam of FWHM θ.
The CO(7–6) and [N II] analyses here are further limited to
those GOALS galaxies satisfying  >f (30 ) 85%μ70 m (102
galaxies; the average value of  =f (30 ) 97%μ70 m ) and

 >f (17 ) 70%μ70 m (98 galaxies; the average value = 89%),
respectively. These were chosen so that at least 75% of the
GOALS galaxies in the coldest FIR color
( ⩽ C0.45 (60 100) 0.6) or smallest LIR

 ⩽ L L(11 log 11.3)IR bin meet the criterion, and that
any systematic effect from the possible aperture flux loss is
significantly smaller than the sample scatter in the flux ratios
dealt with here.
In Figure 1 we plot both LCO(7–6)/LIR and LCO(7–6)/LFIR as a

function of C(60/100) for the local galaxies. The AGNs with
[Ne V]/[Ne II] > 0.65 are further circled. For IC 10 and
NGC 4214, we could only obtain their LFIR. As a result, they
are only shown in Figure 1(b).
NGC 6240 is a rare outlier with additional gas heating

likely from shocks unrelated to the ongoing SF (see Paper I).
The AGNs in Figure 1 have a lower CO/IR ratio on average.
This is more apparent in CO(7–6)/IR than in CO(7–6)/FIR,
consistent with that the lower CO/IR ratio in an AGN is
mostly due to the AGN “contamination” to LIR (see Paper I).
In this sense, CO(7–6) is a “cleaner” SFR tracer than LIR.
A galactic CO spectral line energy distribution (SLED)

generally consists of up to three distinct gas components,
which dominate the SLED at the low (i.e., J 4), mid (∼5 to
∼10) and high J (>10) regimes, respectively; the mid-J
component is directly related to the ongoing SF (see Paper I;
Xu et al. 2015). On either side (in J) of this SF-driven
component, the “contamination” from one of the other gas
components increases. We found that CO(7–6) traces LIR
better than any other mid-J CO line. For example, the CO
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(6–5)/IR ratios from our sample show a small anti-correlation
with C(60/100), implying a systematic ratio variation of
∼0.29 dex over 0.4 < C(60/100) < 1.3.

The average CO(7–6)/IR ratio in Figure 1 (i.e., the solid
line) can be used to derive an SFR from LCO(7–6) using the
SFR-LIR calibration from Kennicutt (1998). Equation (1) gives
the results, with the quoted uncertainty being the sample
standard deviation (σs ≈ 0.12 dex). Since σs ≈ 0.10 dex
when the total flux of all the mid-J CO lines was used (see
Paper I), it is ∼5% less accurate when using the CO(7–6) line
alone to predict LIR:

= ´

= ´

- -

- 
-

 



( )
( )

( )M L L

L L

SFR yr 1.73 10

1.31 10 . (1)

1 10
IR

5.00 0.12
CO(7 6)

Many local dwarf galaxies with Z Z0.5 are relatively
faint in CO(1–0), with a CO(1–0)/IR ratio being 1–2 orders
of magnitude less than that for normal spirals (e.g., Schruba
et al. 2012). This is usually attributed to a more severe CO
dissociation by UV photons because of a lower dust opacity.
Nevertheless, the mid-J CO line emission arises from dense
molecular clouds; possible UV self-shielding (Lee
et al. 1996) implies that CO(7–6)/IR should not be as
severely dependent on metallicity as CO(1–0)/IR. In
Figure 1, both Haro 11 and He 2–10 appear to have
somewhat lower flux ratios of CO(7–6) to IR or FIR. On
the other hand, the bright H II regions in IC 10 and NGC 4214
are not much different from the (U)LIRGs in terms of the CO
(7–6)/FIR ratio. Therefore, the low-metallicity dwarf
galaxies examined here show only a moderately lower CO
(7–6)/FIR ratio on average, but still within ∼2 σs of the
average ratio for the (U)LIRGs.

3.2. [C II]/CO(7–6), [N II]/CO(7–6), and C(60/100)

In Figure 2 we plot the [C II]/CO(7–6), [N II]/CO(7–6) and
[N II]/[C II] luminosity ratios as a function of C(60/100) for the
local (U)LIRGs. All the plots span 2.3 dex vertically for direct
comparison. The dust temperature, Tdust, and ΣSFR marks at the
top of the plots were derived respectively from C(60/100)
assuming a dust emissivity index of β = 1.5 and from
Equation (2), which represents a least-squares bisector (Isobe
et al. 1990) result on a sample of 175 local star-forming
galaxies (including 66 (U)LIRGs) in Liu et al. (2015) with
LIR-based ΣSFR and ⩽ C0.25 (60 100) 1.1. As in Chanial
et al. (2007), both the normal galaxies and (U)LIRGs in this
sample follow a single trend continuously. However, the rms
scatter at a given C(60/100) is still significant, up to ∼0.9 dex.
Moreover, Equation (2) is calibrated up to C(60/100) ∼ 1.1:

S

=  + 

- -
( )M

C

log yr kpc

(10.09 0.46) log (60 100) (2.68 0.17). (2)

SFR
1 2

The data trends in Figures 2(a) and (b) remain unchanged
if LIR or LFIR replaces LCO(7–6). All the three line ratios are
anti-correlated with C(60/100). Equations (3)–(5)give the
results from a vertical linear regression (i.e., the thin solid
lines in Figure 2) using the local (U)LIRG detections in each
plot (after excluding the AGNs, but including NGC 6240 that

Figure 1. Plots of the logarithmic ratio of LCO(7–6) to LIR in (a) and to LFIR in
(b) against C (60 100), for the 102 selected (see the text) GOALS/SPIRE
galaxies (red squares) and the local ULIRGs (blue triangles). The error bars
shown are at 1σ. The non-detections are shown with their 3σ upper limit. The
six powerful AGNs are further enclosed by a circle. A few dwarf galaxies
(large black crosses) are individually labeled. The solid line marks the average
(=− 4.88 ± 0.01 in (a) or −4.61 ± 0.01 in (b)), which also agrees well with
the median, for the combined (U)LIRG samples and the two dashed lines the
corresponding sample standard deviation, both determined from the detections
only (but excluding NGC 6240 and the six AGNs).

Figure 2. Plots of various line luminosity ratios against C(60/100): (a) [C II] to
CO(7–6), (b) [N II] to CO(7–6), and (c) [N II]/[C II], using the same symbols
and color schemes as in Figure 1. Only 98 GOALS galaxies are plotted (see the
text). The error bars were omitted here as they are smaller than the scatter. The
thin solid line indicates a vertical least-squares fit to all the detections of the
local (U)LIRGs. The thick solid line in (b) shows the result from a least-
squares bisector fit. The AGNs were excluded from these fits. Also shown in
cyan and labeled individually are a few high-z galaxies from Table 1, with C
(60/100) estimated from the published SEDs. The Tdust and ΣSFR marks at the
top of the plots are explained in the text.
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behaves “normally” here). The resulting σs with respect to the
fit are 0.30, 0.23, and 0.15 dex, respectively. If we had further
limited the GOALS galaxies to a subset of 69 galaxies with

 >f (17 ) 85%μ70 m , the resulting fit would be similar. As
demonstrated in Zhao et al. (2013), at a given C(60/100), the
scatter in the [N II]/FIR (thus, [N II]/CO(7–6)) flux ratios for
SF-dominated galaxies is largely driven by the hardness of the
underlying radiation field. The reduced scatter in the [N II]/
[C II] ratios suggests that a major part of the scatter in the
[C II]/CO(7–6) ratios should also be driven by the radiation
hardness:

- = - 
+ 

Clog [C ] CO(7 6) ( 0.98 0.14) (60 100)
(2.47 0.11). (3)

II

- = - 
+ 

Clog [N ] CO(7 6) ( 1.43 0.12) (60 100)
(1.69 0.09). (4)

II

= - 
- 

Clog [N ] [C ] ( 0.65 0.08) (60 100)
(0.66 0.06). (5)

II II

A useful application of Figure 2 at high z is to infer C(60/100)
by measuring two of the three lines. Given its stronger
dependence upon C(60/100) and modest sample scatter
(∼0.23 dex), the [N II]/CO(7–6) ratio is the preferred one. While
Equation (4) is suitable for inferring the [N II]/CO(7–6) ratio
from a measured C(60/100), the reverse inference normally
requires a regression of C(60/100) on [N II]/CO(7–6), of which
the slope might be biased somewhat due to the selection effect
that, at the low C(60/100) end, our LIRG luminosity cutoff may
have left out some FIR-colder galaxies at a fixed [N II]/CO(7–6)

Table 1
High-redshift Galaxies

Galaxy z Type CO(7–6)/FIRa,b [C II]/CO(7–6)a [N II]/CO(7–6)a [N II]/[C II]a C(60/100)c Referencesd

(1) (2) (3) (4) (5) (6) (7) (8) (9)

IRAS F10214+4724 2.286 QSO −5.00(0.10) L L L L (1, 1, −, −, −)
SMM J213511–0102 2.32 SMG −4.81(0.02) 2.20(0.08) L L 0.6 (2, 2, 3, −, 3)
SMM J16365+4057 2.383 SMG −4.19(0.04) L L L L (2, 2, −, −, −)
SMM J16358+4105 2.452 SMG −4.36(0.06) L L L L (2, 2, −, −, −)
SMM J04431+0210 2.509 SMG −5.10(0.11) L L L L (2, 2, −, −, −)
Cloverleaf 2.558 QSO −4.20(0.07) L L L L (1, 1, −, −, −)
SMM J14011+0252 2.565 SMG −4.77(0.06) L L L L (1, 1, −, −, −)
VCV J1409+5628 2.583 QSO −4.95(0.08) L L L L (1, 1, −, −, −)
AMS12 2.767 QSO −4.99(0.05) L L L L (2, 2, −, −, −)
RX J0911+0551 2.796 QSO −4.68(0.03) L L L L (2, 2, −, −, −)
HLSW-01 2.957 SMG −4.52(0.05) 1.56(0.09) L L 1.3 (2, 2, 4, −, 4)
MM18423+5938 3.930 SMG −4.87(0.05) L 0.53(0.02) L L (2, 2, −, 2, −)
SMM J123711+6222 4.055 SMG −4.71(0.05) L L L 0.9 (2, 5, −, −, 6)
ID 141 4.243 SMG −4.73(0.04) 1.59(0.10) L L 0.9 (2, 2, 7, −, 7)
BR 1202−0725 (N) 4.69 SMG −4.12(0.05) 1.05(0.08) <0.50(n/a) <−0.44(n/a) L (2, 8, 9, 10, −)
BR 1202−0725 (S) 4.69 QSO −4.60(0.04) 1.00(0.07) <0.04(n/a) <−0.79(n/a) L (2, 8, 9, 10, −)
LESS J033229−2756 4.755 SMG L L L −1.18(0.05) 0.9 (−, −, 11, 2, 12)
HDF850.1 5.183 SMG −4.74(0.06) 1.99(0.06) L L 1.0 (2, 13, 14, −, 14)
HLS J091828+5142 5.243 SMG −4.46(0.02) 1.38(0.02) 0.10(0.05) −1.28(0.05) 1.0 (15, 15, 15, 15, 15)
HFLS3 6.34 SMG −4.34(0.10) 1.07(0.15) <0.59(n/a) <−0.48(n/a) 1.2 (16, 16, 16, 16, 16)
SDSS J1148+5251 6.419 QSO −4.61(0.05) 1.16(0.06) <0.13(n/a) <−1.03(n/a) L (2, 2, 17, 17, −)

a Logarithmic luminosity ratios with the 1σ uncertainty in parentheses.
b The quoted uncertainty does not include the (likely significant) error in LFIR.
c C(60/100) estimated from the literature SED fit of a moderate to good quality.
d Reference indices for the FIR, CO(7–6), [C II] and [N II] fluxes, and C(60/100), respectively, where the indices refer to the following: (1) see Solomon & Vanden
Bout (2005) for the original reference, (2) see Carilli & Walter (2013) for the original reference, (3) Ivison et al. (2010), (4) Magdis et al. (2014), (5) Carilli et al.
(2010), (6) Tan et al. (2014), (7) Cox et al. (2011), (8) Salomé et al. (2012), (9) Carilli et al. (2013), (10) Decarli et al. (2014a), (11) De Breuck et al. (2014), (12)
Gilli et al. (2014), (13) Decarli et al. (2014b), (14) Walter et al. (2012), (15) Rawle et al. (2014), (16) Riechers et al. (2013), and (17) Walter et al. (2009).

Figure 3. Histograms of -Llog CO(7 6) /LFIR, separately for (a) the high-z sample
and (b) our local (U)LIRG galaxies from Figure 1(b). In panel (a), the shaded
part represents the QSOs; in (b), the six powerful AGNs are further shaded.
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ratio. As a compromise, the thick solid line in Figure 2(b) or
Equation (6) gives the least-squares bisector result as our
favored estimator for C(60/100):

= -  -
+ 

C (60 100) ( 0.55 0.04) log [N ] CO(7 6)
(1.09 0.03). (6)

II

The resulting scatter in C(60/100) relative to the fit is ∼0.15,
equivalent to an accuracy of 4 K in Tdust in the case of a
graybody emission with Tdust  30 K and a dust emissivity
index β ⩾ 1. However, it should be noted that Equations (3)–
(5) are applicable only for C(60/100)  0.4, below which the
[N II]/IR trend flattens out (Zhao et al. 2013). Figure 2 also
hints that either a strong AGN or a low metallicity might
enhance [N II]/CO(7–6) and/or [C II]/CO(7–6). While more data
are needed to confirm these possible systematics, it has been
known that a low metallicity tends to increase [C II]/FIR (e.g.,
Madden et al. 1997).

4. APPLICATION TO HIGH-z GALAXIES

Table 1 lists the high-z galaxies with either a CO(7–6) flux
or both [C II] and [N II] observations in the literature. They
consist of 14 sub-millimeter selected galaxies (SMGs) and 7
quasars (QSOs). The line luminosities in solar units were
derived using the formulae in Solomon & Vanden Bout (2005).

There is a considerable uncertainty as to whether an IR
luminosity given in the literature for a high-z galaxy is LIR or
LFIR. When this distinction is not clear, the IR luminosity was
usually either derived from a FIR-radio correlation or scaled
from a sub-millimeter flux density (see Carilli & Walter 2013),
and is therefore closer to LFIR than LIR. We therefore compare
in Figure 3 the CO(7–6)/FIR ratios between the local (U)
LIRGs from Figure 1 and the high-z sample. Considering the
small sample size and the fact that the high-z galaxies likely
have a much larger error in their LFIR, we focus on the sample
average. The --Llog CO(7 6) /LFIR averages are (−4.76± 0.11),
(−4.59± 0.08), and (−4.61± 0.01) for the high-z QSOs,
SMGs and the local (U)LIRGs (excluding NGC 6240),
respectively. A Student’s t-test, allowing for unequal variances
(Press et al. 1992, p. 617), showed an 80% (23%) confidence
for the local (U)LIRGs and the high-z SMGs (QSOs) to share
the same average CO(7–6)/FIR ratio. The high-z QSOs as a
class have a lower average ratio than either the high-z SMGs or
the local (U)LIRGs. This is consistent with the sample
selections, i.e., the QSOs should have stronger AGNs on
average than the SMGs. On the other hand, six out of the seven
high-z QSOs possess the LCO(7–6)/LFIR ratios comparable to
those of the six local AGNs. This also suggests that the high-z
galaxies with the lowest CO/FIR ratios are likely caused by the
AGN rather than by a low metallicity.

In Figure 2 we also plotted those high-z galaxies with
available C (60 100) in Table 1. They all appear to be
consistent with the trends defined by the local (U)LIRGs, with
an overall agreement within ∼1σs when only the detections are
considered. There are three galaxies in Table 1 with at least two
of the three line ratios measured, but not C(60/100). In every
case, the line ratios are consistent with each other within the
context of Figure 2.

Hodge et al. (2015) measured ΣSFR≈ 119 M yr−1 kpc−2 in
J 123711+6222, comparable to the predicted ∼165 M yr−1

kpc−2 from our Equation (2). For HFLS3 [C(60/100) ∼ 1.2],
the measured ΣSFR ≈ 0.73–1.15 × 103 M yr−1 kpc−2 (Riechers

et al. 2013). Equation (2) is calibrated only up to C(60/100)
∼ 1.1, at which it predicts a mean ΣSFR ≈ 103 M yr−1 kpc−2.
Our work here offers a simple, empirical method of using

just two spectral lines, CO(7–6) and [N II]205μm, to measure
both SFR and C(60/100) in (U)LIRGs. Both lines suffer little
dust extinction and are among the brightest FIR/sub-millimeter
cooling lines, making this method particularly suited for
probing the SF activity in high-z galaxies. With a modern
interferometric facility such as the Atacama Large Millimeter
Array, both lines become observable at z  0.5. Thus, this
technique enables the simultaneous study of the physical
conditions (e.g., size) of the ionized and dense molecular gas
(e.g., Xu et al. 2015) as well as the SF activity across a wide
redshift range.
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