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ABSTRACT
Flares in X-ray and near-infrared are observed above the quiescent emission of the super-
massive black hole (SBH) in the Galactic Centre (GC) at a rate of approximately once per
day. One proposed energy source for these flares is the tidal disruption of planetesimals with
radius �10 km passing within ∼1 au of the SBH. Very little is known about the formation and
evolution of planetesimals in galactic nuclei such as the GC, making predictions for flaring
event rates uncertain. We explore two scenarios for the formation of planetesimals in the GC:
(1) in a large-scale cloud bound to the SBH, and (2) in debris discs around stars. We model
their orbital evolution around the SBH using the Fokker–Planck equation and investigate the
effect of gravitational interactions with various relevant perturbers. Our predicted flaring rate,
≈0.6 d−1, is nearly independent of the distribution of perturbers. Moreover, it is insensitive to
scenarios (1) or (2). The assumed number of planetesimals per star is consistent with debris
discs around stars in the solar neighbourhood. In scenario (1), this implies that the number
of planetesimals formed in the large-scale cloud is strongly correlated with the number of
stars, and this requires finetuning for our results to be consistent with the observed flaring rate.
We favour the alternative explanation that planetesimals in the GC are formed in debris discs
around stars, similar to the solar neighbourhood.
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1 IN T RO D U C T I O N

The Galactic Centre (GC) contains a supermassive black hole (SBH)
of mass M• ≈ 4 × 106 M� (Ghez et al. 2008; Gillessen et al. 2009).
For the last decade, observations in the near-infrared and X-ray of
the central region of the GC have revealed the existence of flares,
occurring approximately once per day (Baganoff et al. 2001, 2003;
Genzel et al. 2003a; Dodds-Eden et al. 2011; Barrière et al. 2014).
These flares are 3–100 times more luminous than the quiescent
emission of the central radio source Sgr A*, which is known to be
very dim: its bolometric luminosity is only ∼10−8.5LEdd (Genzel,
Eisenhauer & Gillessen 2010). Observations indicate that the region
from which the flares originate is very compact, extending no more
than a few tens of gravitational radii rg = GM•/c2 from the SBH
(Baganoff et al. 2001; Genzel et al. 2003a; Porquet et al. 2003; Shen
et al. 2005).

Several explanations for the energy source and emission mech-
anism of the flares have been proposed. One of these is the tidal
disruption of planetesimals with radius �10 km (Kostić et al. 2009;
Zubovas, Nayakshin & Markoff 2012, hereafter ZNM12). ZNM12
showed that if the latter passes within ∼1 au of the SBH, it is bro-
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ken up into smaller fragments by tidal forces; the fragments subse-
quently vapourize because of friction with the ambient gas. When
the vapourized material is mixed with the accretion flow on to Sgr
A*, enough energy could be released to produce an observable flare
with X-ray luminosity ∼1034–1035 erg s−1. In ZNM, it was assumed
that the planetesimals were formed in debris discs around stars and
were subsequently stripped by the tidal force of the SBH and by
gravitational encounters with other stars. The resulting event rate of
the flares was estimated using loss cone refilling arguments and a
rate was found that is consistent with the observed rate of approxi-
mately once per day. The method employed by ZNM12 to calculate
the flaring rate was very approximate; details about the distribution
of stars in the GC and the spatial and temporal dependence of the
stripping of planetesimals were not taken into account.

Very little is known about the formation and evolution of such
planetesimals in galactic nuclei like the GC. One possibility is that
they are formed in a large-scale spherical cloud orbiting the SBH.
Another possibility is that they are born in debris discs around stars
(see e.g. Wyatt 2008 for a review), and are stripped by the tidal
force of the SBH or gravitational encounters with other stars (e.g.
Nayakshin, Sazonov & Sunyaev 2012). In this paper, we investigate
both scenarios by means of numerical integrations of the Fokker–
Planck equation. We model the orbital energy evolution around the
SBH, taking into account the effects of gravitational perturbations
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from late-type stars, a possible cusp of stellar black holes close to
the SBH and giant molecular clouds further away, as well as the
effects of physical collisions.

We will show that the predicted present-day disruption rates in
the GC differ very little between the two scenarios and that this
conclusion depends weakly on the details of the perturbers. In both
scenarios, we find a disruption rate of ∼1 d−1 assuming that the
number of planetesimals per (late-type) star is Na/� = 2 × 107.
The number Na/� = 2 × 107 is consistent with debris discs ob-
served around stars in the solar neighbourhood. In the first scenario,
in which the planetesimals are formed in a large cloud, this im-
plies that the number of bodies formed is strongly correlated with
the number of stars, and this requires finetuning of the quantity
Na/�. We favour the more natural explanation that planetesimals in
galactic nuclei similar to the GC are formed in debris discs around
stars, no differently than planetesimals around stars in the solar
neighbourhood.

The structure of this paper is as follows. In Section 2, we describe
our models of the GC and of debris discs around stars, in Section 3
we describe the stripping process and in Section 4 we present our
integrations of the Fokker–Planck equation and the implied disrup-
tion rates. We extrapolate our results to different galactic nuclei in
Section 5 and briefly discuss a special case that would lead to a
burst of flares. We conclude in Section 6.

2 SE T T I N G T H E STAG E

Before describing the effects of the stripping of planetesimals from
stars (Section 3) and presenting our main results of their orbital
evolution around the SBH (Section 4), we discuss our models of
the GC (Section 2.1) and of the adopted initial debris discs around
stars (Section 2.2).

2.1 Models of the GC

Here, we describe and motivate the models of the GC on which
the calculations in Section 4 are based. For further details on the
implementation of these models in the integrations of the Fokker–
Planck equation (Section 4) we refer to Appendix B.

2.1.1 Late-type stars

The majority (96 per cent) of the observed stars in the GC are old
(> Gyr) late-type stars (Genzel et al. 2010). Number counts indicate
that the 3D number density n(r) of these stars approximately scales
with the distance to the SBH as n(r) ∝ r−1.8 for r � 0.3 pc, whereas
there is a much flatter, possibly even declining density profile inside
∼0.3 pc (Eckart et al. 1993; Genzel et al. 1996; Schödel et al. 2007;
Trippe et al. 2008; Buchholz, Schödel & Eckart 2009; Oh, Kim &
Figer 2009; Schödel, Merritt & Eckart 2009; Do et al. 2013). There
is evidence that at large radii the density drops more steeply than
n(r) ∝ r−1.8, i.e. n(r) ∝ r−3 for r � 5 pc (Schödel et al. 2014).

Most of the late-type stars likely formed ∼10 Gyr ago, possi-
bly coincident with the Galactic bulge (Blum et al. 2003; Maness
et al. 2007; Pfuhl et al. 2011). From theoretical arguments these
stars are expected to be distributed in a cusp, with number density
n(r) ∝ r−7/4, after approximately a relaxation time-scale (Bahcall
& Wolf 1976). This is consistent with the observed distribution of
late-type stars at radii 0.3 pc � r � 5 pc. At smaller radii, however, a
core is observed. The nature of this core is not fully understood, but
a possible explanation is that the relaxation time-scale in the GC at

the radius of influence is likely >10 Gyr, therefore the core could re-
flect the primordial population of the late-type stars (Merritt 2010).
Merritt (2010) showed that if there initially was a core of late-type
stars of size ∼1 pc, this would have evolved to the observed size of
∼0.3 pc today.

It is conceivable that the observed core of late-type stars arises
from observational bias: within 0.3 pc the stellar light is dominated
by bright early-type stars (see below), which complicates obser-
vations of late-type stars. To accommodate both possibilities (i.e.
a core versus a cusp), we consider the following two (spherically
symmetric) models of the present-day number density nLT(r) of
late-type stars in the GC (‘LT1’ and ‘LT2’),

nLT(r) =⎧⎪⎨
⎪⎩
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Here, the fixed parameters are γ i = 0.7, γ = 1.8, γ o = 1.2, α = 4,
rb = 0.3 pc and ro = 5 pc. The values of the parameters γ i, γ , α

are adopted from Merritt (2010), who fitted the surface density as
a function of the projected radius to the number counts of late-type
stars in the sample of Buchholz et al. (2009, we adopt γ i = 0.7
rather than γ i = 0.5 for computational reasons). For LT1, and at
small radii the number density has a slope of −γ i, which turns over
to a slope of −γ at intermediate radii; the parameter α determines
the smoothness of this transition. For both LT1 and LT2 and at larger
radii r � ro, the slope ≈ −(γ + γ o) = −3, which is consistent with
the observed slope at these larger radii (Schödel et al. 2014).

As shown by Merritt (2010) the break radius rb may have been
larger in the past. In particular, the present-day core can be explained
by assuming an initial core of size rb ∼ 1 pc. We will show in
Section 4 that our results of the disruption rates at 10 Gyr vary
little between models LT1 (with a core) and LT2 (without a core),
indicating that the details of the core are not important for the
purposes of this work.

We model the late-type stars as a single-mass stellar population
with mLT = 1 M�. The normalization nb in equation (1) is deter-
mined by equating the enclosed late-type stellar mass implied by
this equation at a reference radius of r0 ≡ 1 pc, to the inferred dis-
tributed mass within r0 of M0 ≈ 1.5 × 106 M� as determined by
Schödel et al. (2009). Here, we neglect the contribution of early-type
stars and stellar black holes (discussed below). The latter popula-
tions have a total mass of ∼104 M�, which can safely be neglected
compared to the total mass of the ∼106 late-type stars within r0. We
subsequently find nb ≈ 1.7 × 106 pc−3 and nb ≈ 1.4 × 106 pc−3 for
LT1 and LT2, respectively.

The (negative of the) gravitational potential ψ(r) is required for
the calculations presented below. It is computed from equation (1)
using the inverted Poisson equation (e.g. Cohn 1979; Merritt 2013,
3.2)

ψ(r) = GM•
r

+ 4πGmLT

r

∫ r

0
dr ′ r ′2nLT(r ′)

− 4πGmLT

∫ r

0
dr ′ r ′nLT(r ′). (2)

Here, the contributions of early-type stars, stellar black holes and
massive perturbers (see below) to the potential are neglected. In
addition, we define the arbitrary constant in the potential such that
ψ(r) → GM•/r as r → 0 assuming a power-law dependence of
nLT(r) with γ < 2 for small r, which is consistent with equation (1).
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2.1.2 Early-type stars

In addition to the late-type stars, ∼102 young massive stars are
observed within the central parsec of the GC, of which a fraction of
∼0.2 is distributed within at least one disc structure with an inner
edge at projected radius ≈0.8 arcsec or ≈32 mpc (Paumard et al.
2006; Bartko et al. 2009; Lu et al. 2009). The age of these stars is
∼2–6 Myr, and evidence exists for multiple formation events in the
past, with an interval of ∼100 Myr (Blum et al. 2003). Within the
central arcsecond (�0.04 pc), ∼20 less massive (3 � m/M� � 15)
stars have been observed (Genzel et al. 2003b; Eisenhauer et al.
2005; Ghez et al. 2008; Gillessen et al. 2009). These stars, the S-
stars, are likely older than 2–6 Myr, and their formation process so
close to the SBH is unclear, although disruption of a stellar binary
through the Hills mechanism (Hills 1988) is currently favoured (see
Alexander 2005; Genzel et al. 2010, for reviews).

Their short lifetime, relatively low total mass (∼104 M�) and
limited radial extent make it unlikely that early-type stars are dy-
namically important for most planetesimals in the GC. Nevertheless,
debris discs around early-type stars could be an important source
of planetesimals on much longer time-scales (>Gyr) considering
that planetesimals, once stripped by the tidal force of the SBH
(cf. Section 3.1), would accumulate over time while early-type stars
are formed episodically.

We estimate the latter contribution by the following source term
(cf. equation 9)

Fstrip,ET(E) = Na/�NET(E)/τSF. (3)

Here, NET(E) is the number of early-type stars with orbital energies
between E and E + dE , where the orbital energy E = −v2 + ψ(r)
is defined with respect to the SBH (note that the early-type stellar
mass is not included in ψ(r)). The quantity τ SF = 100 Myr is an
estimate of the time-scale at which the early-type stars are formed. In
equation (3), it is assumed that all planetesimals are stripped within
the lifetime of the early-type stars, which is justified considering
the narrow radial extent of the early-type stars. Because likely not
all planetesimals can be stripped within the lifetime of the early-
type stars, equation (3) provides an upper limit for the stripping
flux. Furthermore, it is assumed in equation (3) that over longer
time-scales 
τ SF, the source term can be considered constant.

To compute NET(E), we assume that the surface density of the
early-type stars is �ET(r) ∝ r−n with n = 2 (e.g. Bartko et al. 2009),
which implies NET ∝ En−3. Subsequently, NET(E) is normalized by
setting the total number of early-type stars formed in each forma-
tion event equal to 100 (roughly the current observed number) and
assuming a distribution in energy bounded by E1 < E < E2, where
Ei = GM•/(2ai), and a1 = 0.4 pc and a2 = 0.04 pc.

2.1.3 Stellar black holes

A population of stellar black holes distributed in a cusp close
to the SBH could be dynamically important for planetesimals in
the GC. Although so far not directly supported by observations,
there are various theoretical motivations for the existence of such a
population.

(1) Theoretical models of the GC based on the Fokker–Planck
equation predict a dense population of stellar black holes close to
the SBH arising from mass seggregation (Hopman & Alexander
2006).

(2) In the case of formation of the S-stars through the Hills mech-
anism, the predicted eccentricities are on average higher than the

observed eccentrities of the S-stars. Dynamical evolution by field
stars through resonant relaxation (RR) can modify the high eccen-
tricities to a distribution that is consistent with observations. When
assuming a core of late-type stars the time-scale of this relaxation
process is much longer than the age of the S-stars, however. This
problem can be remedied when assuming a cusp of stellar black
holes; in this case the relaxation time-scale is consistent with the
age of the S-stars (Perets et al. 2009), in particular if relativistic
effects are taken into account (Antonini & Merritt 2013; Antonini
2014; Hamers, Portegies Zwart & Merritt 2014).

(3) If ∼10–100 early-type stars in the GC are produced every
∼100 Myr and each produce a stellar black hole ∼10 M�, then a
black hole population with a total mass of ∼104–105 M� could be
produced over a time span of 10 Gyr (e.g. Merritt 2010).

We model a cusp of stellar black holes by assuming a total of 4800
stellar black holes, each 10 M�, distributed with an approximate
number density n(r) ∝ r−7/4 within rd ≡ 0.2 pc of the SBH, similar
to what was assumed in Antonini & Merritt (2013). We assume
that the stellar black hole distribution function vanishes for E <

Ed, where Ed ≡ GM•/(2rd), and neglect the effect of the black
holes on the potential ψ(r). We also include the possibility of a
time dependence of the black hole density as implied by argument
(3) above by assuming, for simplicity, that the black hole density
increases linearly with time from 0 at t = 0 to the maximum density
corresponding to NBH = 4800 at t = 10 Gyr.

2.1.4 Massive perturbers

Massive perturbers such as giant molecular clouds can strongly
enhance the rate of relaxation in galactic nuclei (Perets, Hopman &
Alexander 2007, hereafter PHA07). They may therefore be relevant
for the supply of planetesimals to the loss cone of the SBH. To
evaluate the potential effect on the relaxation rate, we adopt the
model GMC1 from PHA07 in which the effect on the relaxation
rate is the largest, therefore giving an upper limit for this effect. We
take into account the effect of the massive perturbers by multiplying
the inverse relaxation time-scale by μ2, the ratio of the second
moments of the mass distributions of massive perturbers and stars,
at the two radial bins included in table 2 of PHA07. Here, we neglect
the smaller Coulomb factor in the case of massive perturbers.

2.2 Disc models

In our second formation scenario for planetesimals in galactic nu-
clei, it is assumed that they are born in debris discs around stars (cf.
Section 1). We assume a thin disc with surface density �(d) ∝ d−β ,
where d is the distance from the star, and adopt β = 1.5 (Hayashi
1981). The initial radial extent of the disc is d1 < d < d2, where
two radial distributions are adopted for the disc as in Lestrade et al.
(2011): (1) d1 = 40 au and d2 = 100 au (disc model 1; ‘DM1’) and
(2) the more tightly bound distribution d1 = 10 au and d2 = 40 au
(disc model 2; ‘DM2’). These two choices reflect uncertainties in
the dependence of the radial extent of the disc on the mass of the
parent star.

Based on the bulk energy and assuming a spherical shape, ZNM12
estimated that a planetesimal of radius � Ra ≈ 10 km could pro-
duce an observable flare (LX ∼ 1034 erg s−1) when tidally dis-
rupted by the SBH. Assuming a distribution of radii dNa/dRa ∝
Rq

a with q ≈ −3.5 (Wyatt 2008) and density ρa = 1 g cm−3,
the number of planetesimals per star with radius ≥Ra is
Na/� ∼ 2 × 107[ma, tot/(10−5 M�)], where ma, tot is the total mass in
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planetesimals per star (ZNM12). Note that ma, tot is the most uncer-
tain parameter in Na/�. Below, we use the term ‘planetesimals’ to
refer to planetesimals with radius ≥Ra.

We define the stripping radius dstrip as the maximum distance
from a star for which a planetesimal, treated as a massless particle,
is still bound to this star. The fraction fstrip of planetesimals that is
stripped from a single star for a given dstrip and disc model (i.e. d1,
d2 and β) is given by

fstrip(dstrip) =

⎧⎪⎪⎨
⎪⎪⎩

1, dstrip < d1;
d

2−β
2 − d

2−β
strip

d
2−β
2 − d

2−β
1

, d1 ≤ dstrip ≤ d2;

0, dstrip > d2,

(4)

and the number of stripped planetesimals per star is fstripNa/�. In
Section 3, we consider two causes for stripping: the tidal force of
the SBH (Section 3.1) and gravitational encounters with other stars
(Section 3.2).

3 STRIPPING PLANETESIMALS FRO M STARS
I N T H E G C

3.1 Stripping by the SBH

We determine dstrip (cf. Section 2.2) for planetesimals that are ini-
tially bound to a star with mass m�, that in turn is bound to the SBH
in an orbit with pericentre distance rp. A simple estimate of dstrip by
the tidal force of the SBH is given by the radius of the Hill sphere
(e.g. Hamilton & Burns 1992);

dstrip ≈ rp

(
m�

3M•

)1/3

. (5)

In the top panel of Fig. 1, the stripping radii according to equation
(5) are plotted as a function of rp. Two masses are adopted for the
parent star: 1 M� (thin line) and 50 M� (thick line). The radial
extents of the disc models DM1 and DM2 are indicated with the
blue and red regions, respectively; these extents are used to com-
pute the stripping fractions fstrip(rp) (cf. equation 4), and are shown
as a function of rp in the middle panel of Fig. 1. For both stellar
masses and disc models, the SBH is ineffective at stripping plan-
etesimals from stars with pericentre distances �0.1 pc. There is a
strong dependence of fstrip(rp) on both the disc models and the mass
of the parent star. For instance, the pericentre distance for which
fstrip = 0 is ≈2.5 times larger for DM1 compared to DM2 (assuming
m� = 1 M�). The qualitative behaviour is intuitively easy to un-
derstand: in DM2 the planetesimals are more tightly bound to the
parent star, therefore the parent star needs to be closer to the SBH
for the planetesimals to be stripped. Similarly, more massive parent
stars also need to be closer to the SBH for effective stripping of
planetesimals by the tidal force of the SBH.

As a verification of equation (5), we carried out a series of N-
body simulations of a star with mass 1 M� orbiting the SBH. The
star is orbited by a debris disc consisting of 100 particles of mass
2.0 × 10−15 M� in circular, coplanar orbits and with semimajor
axes ranging between 10 and 1000 au. The pericentre distance of
the stellar orbit rp is varied between 0.01 and 1 pc. The eccentricity
e of the latter orbit is assumed to be either 0.01 or 0.9 and the
semimajor axis is computed from a = rp/(1 − e). The system is
integrated for the duration of an orbit of the star around the SBH
with the HERMITE0 code (Hut, Makino & McMillan 1995) in the
AMUSE framework (Pelupessy et al. 2013; Portegies Zwart et al.
2013).

Figure 1. Top panel: the distance dstrip for which planetesimals are stripped
from their parent star by the tidal force of the SBH as a function of rp, the
pericentre distance of the orbit of the star around the SBH, according to
equation (5). Thin black line: assuming m� = 1 M� (i.e. late-type stars);
thick black line: assuming m� = 50 M� (i.e. early-type stars). The hori-
zontal regions indicate the two radial extents of planetesimals around stars
considered in this paper (cf. Section 2.2): DM1 (blue) and DM2 (red). The
green dashed vertical lines indicate the approximate region of the young
massive stars in the GC. Black bullets (crosses): stripping radii determined
from N-body simulations assuming e = 0.01 (e = 0.9), see the text. Mid-
dle panel: the stripping fraction as a function of rp, computed from dstrip

using equation (4). Blue (red) lines apply to DM1 (DM2). Thin lines: as-
suming m� = 1 M�; thick lines: assuming m� = 50 M�. Bottom panel:
the angular-momentum-averaged stripping fraction (assuming an isotropic
velocity distribution) as a function of r = ψ−1(E), assuming LT1. Solid
lines: including the stellar potential; dashed lines: excluding the stellar po-
tential (cf. Appendix A1). In all panels, the black solid vertical line indi-
cates the radius of influence rh assuming LT1, defined as MLT(rh) = 2M•
(cf. equation 7).

From each N-body simulation, we determined the orbital ele-
ments of the debris disc particles with respect to the star, and
recorded which particles become unbound from the star at some
point in the integration. For the latter particles, the minimum of the
initial pericentre distances with respect to the star was adopted as
the stripping radius dstrip.

In the top panel of Fig. 1, the stripping radii inferred from the
N-body simulations are shown with the black bullets (crosses) as-
suming the stellar orbit has e = 0.01 (e = 0.9). The stripping radii
determined from the N-body simulations are slightly lower com-
pared to those implied by equation (5); the discrepancy is largest
for the nearly circular orbit (black bullets). Nevertheless, the dis-
crepancy, averaging the stripping radii from the N-body simulations
for the two cases e = 0.01 and e = 0.9, is no larger than a factor
of ≈1.9. Therefore, we believe equation (5) is adequate for the
purposes of this paper.

In equation (5), the stripping fraction fstrip is expressed in terms
of the pericentre distance of the star. For the purposes of Section 4,
we also compute fstrip in terms of the orbital energy E assuming an
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isotropic velocity distribution, and taking into account the stellar
potential. The details are included in Appendix A1.

In the bottom panel of Fig. 1, the quantity fstrip(E) is plotted as
a function of radius by setting E = ψ(r), i.e. r = ψ−1(E), where
ψ−1(E) is the inverse function of ψ(r), and assuming late-type
model LT1. Here, we include two cases: with (solid lines) and with-
out (dotted lines) the stellar potential; in the latter case, analytic
expressions can be derived for fstrip(E) (cf. Appendix A1). As ex-
pected, at small r it is a good approximation to neglect the stellar
potential; at larger r, however, neglect of the stellar potential causes
the stripping fraction to be slightly overestimated.

Compared to the case, if fstrip is expressed in terms of the peri-
centre distance rp (cf. the middle panel of Fig. 1), if expressed in
terms of orbital energy (cf. the third panel of Fig. 1), it is non-zero
for a much larger radial range. This is because for a given rp there
exist many (eccentric) orbits with typical radius r 
 rp.

3.2 Stripping by gravitational encounters with other stars

A planetesimal bound to a star orbiting the SBH can be treated as a
binary system orbiting the SBH. Because of gravitational encoun-
ters with other stars, the intrinsic binary parameters, in particular
the semimajor axis abin, change over time. A quantity that describes
whether abin on average increases or decreases is the hardness pa-
rameter h, the ratio of the (negative) specific binding energy of the
binary, Ebin = Gmbin/(2abin), to the squared stellar velocity disper-
sion, σ 2(r) (Heggie 1975). Here, mbin ≡ m� + ma ≈ m�. If h  1, the
binary is soft and gravitational encounters on average cause such
binaries to become softer (i.e. to decrease h), until they dissolve
as h → 0 (e.g. Heggie 1975; Hut 1983; Hut & Bahcall 1983). On
the other hand, if h 
 1, the binary is hard and encounters tend to
make it even harder (e.g. Heggie 1975; Hut 1993; Heggie, Hut &
McMillan 1996).

To investigate which of these regimes applies to planetesimals
in the GC, we compute σ (r) from the isotropic Jeans equation, and
assume that the number density and mass are dominated by late-type
stars,

nLT(r)σ 2(r) =
∫ ∞

r

dr ′ GM(r ′)nLT(r ′)
r ′2 , (6)

where M(r) = M• + MLT(r) and

MLT(r) = 4πmLT

∫ r

0
nLT(r ′)r ′2 dr ′. (7)

Adopting the semimajor axes from the disc models DM1 and DM2
and assuming mbin = mLT = 1 M�, the hardness parameters that
follow from equation (6) are plotted in Fig. 2 for LT1 (solid lines)
and LT2 (dashed lines). For all combinations of disc models and
distributions of late-type stars, h < 10−2 for r < rh, which shows
that in our models the planetesimal+star binary is initially always
soft. Therefore, gravitational encounters on average soften these
binaries even further, to the point that eventually the planetesimals
are no longer bound to their parent star.

For soft binaries, the stripping time-scale, i.e. the time-scale for
the orbital energy of the binary to change by order itself because of
gravitational encounters, can be estimated by (Binney & Tremaine
2008; Perets 2009; Alexander & Pfuhl 2014)

tstrip ≡ |Ebin|
〈D(�Ebin)〉 = 1

8

√
1 + qσ

2πqσ

mbinσ (r)

Gn(r)〈m2
�〉abin log(�bin)

. (8)

Here, 〈D(�Ebin)〉 is a diffusion coefficient for the binary binding
energy, qσ ≡ mbin/m� ≈ 1, 〈m2

�〉 is the second moment of the stellar

Figure 2. The hardness parameter h as a function of the distance r to
the SBH for planetesimals distributed around the star according to DM1
(blue regions) and DM2 (red regions). The velocity dispersion is given by
equation (6) and mbin = 1 M� is assumed. Solid (dashed) lines apply to
LT1 (LT2). Vertical lines: radius of influence in the models LT1 (solid) and
LT2 (dashed).

mass function, and �bin is the Coulomb factor for evaporation in
the soft limit, which can be estimated by �bin ∼ 3(1 + 1/qσ )/(1 +
2/qσ )[σ 2(r)/v2

bin], where v2
bin ≡ Gmbin/abin (Alexander & Pfuhl

2014).
We assume that the parent star has mass mbin ≈ mLT = 1 M�

and we consider encounters with late-type stars only, such that
〈m2

�〉 = m2
LT, n(r) = nLT(r) and σ is given by equation (6). Evidently,

encounters with early-type stars also lead to evaporation. However,
at the radial positions of the majority of the early-type stars in the
GC, the SBH is already effective at stripping most planetesimals
(cf. Fig. 1). Furthermore, because massive perturbers are extended
objects they do not contribute to stripping (PHA07). Therefore, we
expect, in the case of the GC, that stripping by encounters at larger
radii is dominated by encounters with late-type stars.

Using equation (8), we estimate the stripping semimajor axis dstrip

because of gravitational encounters with late-type stars as follows
(here, we assume that the orbits of the planetesimals around the
star are circular). For a given distance r to the SBH and age t of
the star+planetesimal binary system, the stripping time-scale tstrip

is equated to t. The resulting equation is solved numerically for
abin = dstrip (note that the logarithmic term log (�bin) depends on
abin).

In the top panel of Fig. 3, we show the resulting dstrip as a function
of the distance r of the centre of mass of the binary system, for the
models LT1 (black solid lines) and LT2 (black dashed lines) and
assuming different ages t. At small radii, the stripping radius is
larger for LT1 than for LT2. This can be attributed to the lower
number density at small radii in the case of LT1, implying less
efficient stripping.

We show in the middle panel of Fig. 3 the stripping fraction as a
function of r at various ages, indicated with numbers, for LT1 and
assuming DM1 (blue lines) and DM2 (red lines). There is a strong
dependence of fstrip(r) on time. For instance, after 1 Myr and for
DM1 the fraction at 0.4 pc, ≈0.5, is comparable to the fraction in
the case of stripping by the tidal force of the SBH alone (cf. the
bottom panel of Fig. 1), whereas after ∼100 Myr stripping has crept
up all the way to the radius of influence.
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Figure 3. Top panel: the distance dstrip for which planetesimals are stripped
from their parent star by gravitational encounters with other stars as a func-
tion of the distance r to the SBH, computed from equation (8) for different
ages. Age increases with line thickness and is indicated (in Myr) with num-
bers. Black solid line: assuming LT1; black dashed line: assuming LT2; in
both cases mbin = 1 M�. Middle panel: the stripping fraction as a function
of r at various ages indicated in Myr with numbers, computed from dstrip

using equation (4) and assuming LT1. Blue (red) lines apply to DM1 (DM2).
Bottom panel: the angular-momentum- and orbit-averaged stripping fraction
as a function of r = ψ−1(E) at various ages, assuming LT1. In all panels,
the black solid vertical line indicates the radius of influence rh for LT1.

In the above, the stripping fraction fstrip was computed as a func-
tion of r. However, for a typical orbit around the SBH, r is not
constant, and the star will pass through environments with different
densities and velocity dispersions. To take this into account, we per-
formed an orbital average of fstrip(r) weighted according to the time
spent at each point in the orbit, and assuming an isotropic velocity
distribution. See Appendix A2 for details.

In the bottom panel of Fig. 3, the orbit-averaged stripping fraction,
fstrip(E), is plotted as a function of r = ψ−1(E) for various ages and
assuming LT1. Compared to the non-averaged fstrip(r) (cf. the second
panel of Fig. 3), the orbit-averaged stripping fractions are somewhat
‘smeared out’ to larger radii. In other words, allowing the orbital
radius to vary during the orbit results in stripping by encounters to
larger distances from the SBH.

4 DYNAMICS O F PLANE TE SIMAL S O RB I TI NG
T H E SB H

4.1 Fokker–Planck equation

Planetesimals orbiting the SBH are susceptible to gravitational en-
counters with stars and other massive objects. The end result of this
process is a steady-state in orbital angular momentum and energy.
Previous studies (e.g. Bahcall & Wolf 1977; Merritt 2004, 2010,
2013, section 7.1.2.2; Merritt, Harfst & Bertone 2007) have shown
that in the case of scattering of a light population (i.e. planetesi-
mals) by a massive population, the steady-state corresponds to a
number density n(r) ∝ r−3/2. This is achieved on a time-scale ∼tE ,

the time-scale for non-resonant relaxation (NRR) to change the
orbital energy by order itself.

Here, we explore specifically the case of scattering of planetes-
imals by various perturbers in the GC. In addition, we take into
account other potentially important effects such as the time- and
energy-dependent influx of planetesimals from stars in our second
scenario of planetesimal formation (cf. Section 1), as well as colli-
sions and RR. Our main focus is the disruption rate of planetesimals
by the SBH as a function of time, and in particular at t = 10 Gyr,
which is approximately the age of the majority of the late-type stars
in the GC (cf. Section 2.1).

To model the orbital evolution of planetesimals bound to the SBH,
we solve the time-dependent Fokker–Planck equation in energy
space for gravitational scattering of (nearly) massless particles (i.e.
planetesimals) by massive particles with a central SBH (e.g. Merritt
2013, section 7.1.2.2), including several additional terms,

4π2p(E)
∂fa(E, t)

∂t
= ∂FE (E, t)

∂E + Fstrip(E, t) − Flc(E, t)

− Fcol(E, t) − FRR(E, t). (9)

Here, E = − 1
2 v2 + ψ(r) is the binding energy per unit mass of the

planetesimals with respect to the SBH, fa(E, t) is the planetesimal
distribution function and p(E) is the phase space volume per unit
energy (cf. equation A3). The number of planetesimals with energies
between E and E + dE at time t is Na(E, t) dE , where Na is related
to the distribution function via Na(E, t) = 4π2p(E)fa(E, t).

Equation (9) is derived under the assumption that the distribu-
tion function is (nearly) isotropic in velocity space and therefore
independent of angular momentum (near the loss cone a logarith-
mic dependence on angular momentum is implicitly assumed, cf.
Appendix B2). On time-scales  tE , the evolution is expected to
be dominated by changes in angular momentum, resulting in a
steady-state with respect to that quantity (Frank & Rees 1976). The
latter steady-state is subsequently expected to be maintained while
the distribution in energies changes, because relaxation in energy
occurs on the longer time-scale of ∼tE . In particular, for the GC
it was shown by Merritt (2010) that an initially anisotropic dis-
tribution of late-type stars with a core in the GC evolves to near
isotropy on a time-scale of 1 Gyr, which is much shorter than the
relaxation time-scale at the radius of influence derived by Merritt
(2010), tE ∼ 20−30 Gyr. Here, we are interested in the long-term
(> Gyr) evolution of the planetesimals. For this purpose, it is there-
fore justified to assume isotropy in equation (9).

The term ∂FE/∂E in equation (9) describes the effect of grav-
itational scattering of planetesimals by more massive objects. In
all our models, we consider scattering by late-type stars (cf. Sec-
tion 2.1.1). In a number of models, we also consider scattering by
a (hypothesized) cusp of stellar black holes (cf. Section 2.1.3) and
massive perturbers (cf. Section 2.1.4). In each case, we assume that
the distribution of scatterers is constant with time.

The terms Fi(E, t) in equation (9), which are all positive, repre-
sent sinks (negative sign preceding Fi) and sources (positive sign
preceding Fi) of planetesimals. We consider the following effects.
The source term Fstrip describes the stripping of planetesimals from
their parent stars. For late-type stars it is computed from

Fstrip,LT(E, t) = Na/�NLT(E)
∂fstrip,LT(E, t)

∂t
. (10)

Here, Na/� is the number of planetesimals per star, NLT(E) dE is the
number of late-type stars with energies between E and E + dE , and
fstrip,LT(E, t) was computed in Section 3.2. In the case of stripping
from early-type stars, equation (3) is adopted.
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Table 1. Disruption rates of planetesimals with radius ≥10 km
passing the SBH in the GC at distances closer than 1 au, possi-
bly resulting in an observable NIR/X-ray flare (ZNM12), based
on time-integrations of equation (9). The initial number of these
planetesimals per star is assumed to be Na/� = 2 × 107, con-
sistent with observations of debris discs of stars in the solar
neighbourhood. Rates at the end of our integrations, t = 10 Gyr,
are listed for various models, given in the first column, and for
different combinations of the assumed distribution of late-type
stars (LT1 or LT2, cf. Section 2.1.1). The planetesimals are
assumed to be initially either distributed in a large-scale cloud
around the SBH (‘cloud’) or in discs around stars (‘disc’; the
two disc models DM1 and DM2 are defined in Section 2.2).
Descriptions of the various models are included in Table 2.

Model Fdis(t = 10 Gyr)/d−1

LT1 LT2
Cloud Disc Cloud Disc

DM1 DM2 DM1 DM2
1 0.55 0.54 0.53 0.61 0.59 0.57
2 0.55 0.54 0.53 0.61 0.59 0.57
3 0.38 0.37 0.36 0.51 0.49 0.47
4 0.38 0.37 0.36 0.51 0.49 0.47
5 0.55 0.54 0.53 0.59 0.57 0.54
6 0.54 0.53 0.52 0.59 0.57 0.55
7 0.55 0.54 0.53 0.61 0.59 0.56
8 0.58 0.57 0.56 0.63 0.61 0.58
9 0.55 0.54 0.53 0.61 0.59 0.57
10 0.71 0.70 0.69 0.72 0.69 0.67
11 0.58 0.57 0.56 0.63 0.60 0.58
12 0.71 0.70 0.69 0.72 0.69 0.67
13 0.58 0.57 0.56 0.63 0.60 0.58
14 0.24 0.18 0.14 0.42 0.31 0.23

We note that our approach of including a source term in the
Fokker-Planck equation in energy space to model inflow of plan-
etesimals bound to the SBH is similar to the approach of Aharon &
Perets (2014), who include a source term to model the formation of
stars in nuclear star clusters. The sink term Flc describes the effects
of gravitational encounters into the loss cone of the SBH in angular-
momentum space. In addition, physical collisions are described by
the sink term Fcol; we consider collisions of planetesimals with late-
type stars and with other planetesimals. Lastly, the sink term FRR

describes the effects of RR.
More details on the terms that appear on the right-hand side

of equation (9) are included in Appendix B. To investigate the
relative importance of the effects described by these terms, we solve
equation (9) for each effect separately. Our models are described in
Table 2.

In each integration of equation (9), we evaluate the (energy-
integrated) disruption rate of planetesimals by the SBH, Fdis(t),
defined by

Fdis(t) =
∫

dE [Flc(E, t) + FRR(E, t)] + FE (Elc). (11)

Here, Elc = GM•/(2rlc) is the energy of an orbit with semimajor
axis rlc. The term FE (Elc) represents the loss cone flux arising from
scattering in energy space. Although included in the calculations
for completeness, we find that FE (Elc) is invariably negligible com-
pared to the flux in angular-momentum space, which is represented
by the first two terms on the right-hand side of equation (11). The
largest fractional contribution of the energy flux to the total rate for
the rates given in Table 1 ≈2 × 10−5.

4.2 Boundary and initial conditions

Equation (9) is integrated in time using the PYTHON FIPY library
(Guyer, Wheeler & Warren 2009). For each model integration,
200 steps are taken in which the term Fstrip(E, t), which explic-
itly depends on time, is updated. We have verified that increasing
this number of steps does not change the results. The orbital en-
ergies are discretized on to a grid that is constructed using the
relation E = ψ(r), where r is sampled from a logarithmic grid in
the range 2 rlc ≤ r ≤ 100 pc, and rlc = 1 au. The largest value of
E , Elc = ψ(2rlc), corresponds to a semimajor axis of a = rlc under
the assumption that ψ(rlc) = GM•/rlc. At this energy planetesimals
are considered disrupted by the SBH, and we impose the boundary
condition fa(Elc, t) = 0.

The initial distribution in the case of planetesimals initially in
discs around stars is

Na(E, 0) = Na/�fstrip;SBH(E)NLT(E). (12)

Here, fstrip;SBH(E) is the stripping fraction due to the tidal force
of the SBH only (cf. Section 3.1), and NLT(E) = 4π2p(E)fLT(E)
is number of late-type stars with energies between E and E + dE .
In equation (12), we assume that any stripping by the SBH acts
instantaneously. We justify this by noting that most of the stripping
by the SBH occurs at radii �1 pc (cf. the bottom panel of Fig. 1),
for which the radial orbital period �7 × 104 yr. We expect stripping
by the SBH to occur on the latter time-scale, therefore stripping acts
essentially instantaneously compared to our integration time.

In the case of planetesimals formed in a large-scale cloud around
the SBH, the initial distribution is unclear. Here, we assume that
the distribution is similar to the (late-type) stellar distribution,
i.e. Na(E, 0) ∝ NLT(E). The constant of proportionality is uncon-
strained, but here we assume it is given by the number of plan-
etesimals per star, Na/� = 2 × 107, i.e. we assume that the initial
distribution is

Na(E, 0) = Na/�NLT(E). (13)

4.3 Results: distributions and disruption rates

The disruption rates at t = 10 Gyr are listed for various models in
Table 1, assuming Na/� = 2 × 107. In the first column the model
number is listed; a succinct description of the models is given in
Table 2. In model 1, the effect of scattering in energy and angular-

Table 2. Brief descriptions of the various models included in Ta-
ble 1. Refer to the text in Section 4.3 and Appendix B for more
details.

Model Description

1 LT scattering
2 Model 1 + source term: planetesimals from ET stars
3 Model 1 + BH cusp (no RR)
4 Model 1 + BH cusp (no RR); t-dependence
5 Model 1 + LT-planetesimal collisions (mLT, init = 1 M�)
6 Model 1 + LT-planetesimal collisions (mLT, init = 2 M�)
7 Model 1 + planetesimal–planetesimal collisions
8 Model 1 + RR; LT (χRR = 1)
9 Model 1 + RR; LT (χRR = 0.1)
10 Model 1 + RR; BH cusp (χRR = 1)
11 Model 1 + RR; BH cusp (χRR = 0.1)
12 Model 1 + RR; BH cusp (χRR = 1; t-dependence)
13 Model 1 + RR; BH cusp (χRR = 0.1; t-dependence)
14 Model 1 + massive perturbers (PHA07: GMC1)
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momentum space by late-type stars is included; in other models
late-type scattering is included, as well as other effects. For each
of the models in Table 1, rates are quoted assuming the planetesi-
mals were either formed in a large-scale cloud (‘cloud’) or in discs
around stars (‘disc’). In the latter case, the stripping term, equation
(10), is included assuming either DM1 or DM2 (cf. Section 2.2).
Furthermore, rates are included for LT1 and LT2 (cf. Section 2.1.1).
Below, we discuss in more detail the results for the various models
given in Table 1.

4.3.1 Scattering by late-type stars only

In the top four panels of Fig. 4, we show the differential number
of planetesimals, Na(r, t), as a function of r = ψ−1(E) at various
times. Here, Na(r, t) is defined as the number of planetesimals

Figure 4. Top four panels: the quantity Na(r, t), defined such that Na(r, t) dr
is the number of planetesimals between radii r and r + dr, as a function
of r at various times, according to numerical integrations of equation (9)
and assuming model 1 (cf. Table 2). The line thickness increases with time;
the times shown are 0 (blue dashed line), 2.5, 6.4, 16.3, 41.3, 104.8, 265.6,
673.4, 1707.4, 4328.8 and 10 000.0 Myr. The first (second) column applies
to LT1 (LT2); the first (second) row applies to formation in a cloud (disc;
DM1). The radii of influence rh for LT1 and LT2 are indicated with the black
vertical solid lines. Bottom four panels: the disruption flux of planetesimals
by the SBH, Fdis(r, t) (cf. Section 4.3.1), as a function of r at various times
(the meaning of the line thicknesses and colours is the same as in the top
four panels). The black vertical dotted line shows the boundary between the
empty and full loss cone regimes, here defined as q̃ = 1 (cf. Section B2).

Figure 5. Similar to Fig. 4, here showing the planetesimal number density
na(r, t) as a function of r at the various times in the top four panels and the
logarithmic number density derivative in the bottom four panels.

between radii r and r + dr, i.e. Na(ψ(r), t) dψ(r) = Na(r, t) dr. The
assumed model is model 1 (cf. Table 1). In the first (second) column
results are shown for LT1 (LT2); the first row applies to formation
in a cloud, whereas the second row applies to formation in discs
(DM1). The radii of influence, defined via MLT(rh) = 2M•, where
MLT(r) is the distributed mass in late-type stars (cf. equation 7), are
indicated with the vertical black solid lines.

In the top four panels of Fig. 5, the planetesimal number density
na(r, t) is plotted at various times. It is computed from fa(E, t) using
(e.g. Merritt 2013, 3.2.1)

na(r, t) =
∫

d3v fa(v, t) = 4π
√

2
∫ ψ(r)

−∞
dE fa(E, t)

√
ψ(r) − E .

(14)

In Fig. 5, we also show in the bottom four panels the logarithmic
derivative dlog (na)/dlog (r).

We show the initial distributions in Figs 4 and 5 with blue dashed
lines. In the case of formation in a cloud, the planetesimal number
density na is proportional to the assumed number density of late-
type stars at all radii. In the case of formation in discs this is the case
at small radii because stripping is assumed to have occurred due to
the tidal force of the SBH, whereas at larger radii planetesimals
have not yet been stripped (cf. Section 3.1). Therefore, the number
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Figure 6. The stripping flux Fstrip(r, t) (cf. Section 4.1) at the same times
as in Fig. 4 assuming model 1 (cf. 2) and DM1. Solid lines: LT1; dashed
lines: LT2.

density drops rapidly for radii r � 0.3 pc (cf. the middle panel of
Fig. 1).

We show in Fig. 6 the stripping flux Fstrip(r, t) in the case of forma-
tion in discs at various times, for LT1 (solid lines) and LT2 (dashed
lines). Here, we define Fstrip(r, t) dr as the number of stripped plan-
etesimals per unit time between radii r and r + dr. Initially, the
stripping flux peaks at r ≈ 1 pc. As time progresses, planetesimals
are stripped at progressively increasing radii. After 100 Myr, the
peak has shifted to outside the radius of influence, and the mag-
nitude of the peak has decreased as well. There are no substantial
differences in Fstrip(r, t) between the distributions of late-type stars.
This can be explained by the lack of influx of stripping by encoun-
ters at small radii � rb = 0.3 pc, at which the SBH is responsible
for stripping, therefore the core in the case of LT1 does not affect
the stripping process.

In the bottom panels of Fig. 4, the disruption flux Fdis(r, t) is
shown, where Fdis(r, t) is the number of disrupted planetesimals per
unit time between radii r and r + dr. For model LT1, this flux peaks
at radii somewhat smaller than rh, whereas for LT2 it is much less
peaked. This difference can be attributed to the core in LT1. The flux
at radii >rh is initially more than two orders of magnitude larger for
formation in a cloud compared to formation in discs. However, as
time progresses and planetesimals are stripped at increasing radii,
this difference decreases. Despite this influx at large radii, the peak
in the disruption flux does not shift to larger radii, but rather it
becomes wider.

In Fig. 7, we show the energy-integrated disruption rates Fdis(t)
(cf. equation 11) for LT1 and LT2, and for both formation scenarios.
Initially, the rates for model LT2 are nearly an order of magnitude
larger compared to model LT1. This can be attributed to the initially
higher planetesimal density at small radii r � 0.3 pc in the case of
LT2 because the late-type stars are assumed to be distributed in a
cusp as opposed to a core (cf. the top four panels of Fig. 4). While
planetesimals are depleted at these radii the density drops, and as
a consequence the loss cone flux decreases as well (cf. the bottom
four panels of Fig. 4).

The stripping from stars causes the disruption rate to increase
initially, whereas for formation in a cloud the rate only decreases
with time. The differences are small, however. Initially, the rates
in the former case are a factor of ∼2 higher, and as time pro-
gresses the rates in the two cases gradually approach each other.
After ∼100 Myr, the rates become effectively indistinguishable,

Figure 7. The energy-integrated disruption rate Fdis(t) (cf. equation 11) as
a function of time assuming model 1 (cf. Table 2). Results are included for
LT1 and LT2 and formation in a cloud and disc (DM1).

because stripping has progressed to beyond the radius of influence
(cf. Fig. 6), where the disruption flux peaks (cf. the bottom four
panels of Fig. 4). By t = 10 Gyr, the rates in all cases are nearly the
same at Fdis(t = 10 Gyr) ≈ 0.6 d−1 (cf. Table 1).

As mentioned in Section 4.1, the planetesimal steady-state distri-
bution is expected to correspond to a number density n(r) ∝ r−3/2.
The logarithmic slopes, shown in the bottom four panels of Fig. 5,
can be used to assess this. In the case of LT1 and by t = 10 Gyr, the
slopes are only consistent with −3/2 at a few radii rh, indepen-
dent on the initial conditions. In particular, the slope is still close
to the initial value of −0.7 (cf. Section 2.1.1) at radii �10−3 pc.
Evidently, the core of late-type stars in the case of LT1 is unable to
smoothen out the distribution at these radii, whereas this is the case
in LT2 (note that the flattening in the later case for r � 10−4 pc arises
from the boundary condition fa(Elc, t) = 0). For both LT1 and LT2,
there is a flattening in the number density near radii of ∼1 pc, caus-
ing a ‘bump’ in the logarithmic slope. This can be attributed to the
disruption flux, which peaks near this radius (cf. Fig. 4).

4.3.2 Stripping from early-type stars

As mentioned in Section 2.1.2, planetesimals in the GC could also
form in debris discs around early-type stars. This source of plan-
etesimals has been included in model 2 (cf. Table 1) by adding the
term Fstrip;ET(E) (cf. equation 3) to the right-hand side of equation
(9). We find that the inclusion of this term has virtually no effect
on the planetesimal distribution at all times. This is also reflected
by the disruption rates, which change by less than 1 per cent (cf.
Table 1). Considering that equation (3) is likely an upper limit for
the supply of planetesimals from early-type stars, we conclude that
stripping from early-type stars can be safely neglected compared to
stripping from the much more numerous late-type stars.

4.3.3 Scattering by a cusp of stellar black holes

In models 3 and 4, scattering in energy and angular momentum is
taken into account assuming a (hypothesized) cusp of stellar black
holes close to the SBH. In the case of model 4, the black hole number
density is time-dependent and is assumed to increase linearly with
time, reaching the number density that we assume at all times in
model 3 (cf. Section 2.1.3), at t = 10 Gyr.
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Figure 8. The quantity Na(r, t) for four models (models 4, 5, 14 and 15, cf.
Table 2) as a function of r at various times. In all panels LT1 and formation
in a disc (DM1) are assumed.

Figure 9. The total disruption rate Fdis(t) as a function of time (cf. equa-
tion 11) for model 1 and the models included in Fig. 8. In all cases LT1 and
DM1 are assumed.

We show in the top-left panel of Fig. 8, the quantity Na(r, t) for
the case of a time-dependent black hole cusp and for LT1 and DM1.
The effect of a cusp of stellar black holes is initially to increase the
density of planetesimals at small radii, r � 0.1 pc. At later times
this density decreases again. This is reflected in the disruption rate,
which is shown as a function of time in Fig. 9 (black dashed line).
Initially the rate is slightly higher compared to the model 1 (blue
solid line), but after ≈200 Myr it drops slightly below the latter rate.

4.3.4 Collisions

We consider three different models in which the effects of physical
collisions are taken into account. In model 5, collisions between
late-type stars and planetesimals are considered; the initial stellar
mass is assumed to be 1 M�, and the mass and radius at subsequent
times are adopted from a stellar evolution model with metallicity
Z = 0.02 (the SSE code; Hurley, Pols & Tout 2000, is used as
implemented in AMUSE, Pelupessy et al. 2013; Portegies Zwart et al.
2013). In the latter model, the radius changes only little during
10 Gyr; we have also included a model, model 6, in which the

stellar mass is assumed to be 2 M� (resulting in faster evolution).
In the third model, model 7, planetesimal–planetesimal collisions
are taken into account with a number of simplifying assumptions
(cf. Section B3).

The quantity Na(r, t) for model 5 is plotted in the top-right panel
of Fig. 8 (results for models 6 and 7 are similar). It is reduced
substantially compared to model 1 only at radii � 10−2 pc (cf. the
top-right panel of Fig. 8). The disruption flux peaks at much larger
radii (cf. Fig. 4). Therefore, the effect of collisions on the disruption
rates is very small. This is illustrated in Fig. 9, in which the rates
according to model 5 (black solid line) are indistinguishable, from
an observational perspective, from the rates in the model 1 (blue
solid line).

4.3.5 RR

In six models, models 8–13, the effects of RR are included (cf.
Section B3.1). In models 8 and 9, RR is assumed to arise from
the late-type stars; in models 10–13, RR is assumed to arise from
a cusp of stellar black holes, with and without a time dependence
(cf. Section 2.1.3). Two values of the efficiency of RR, χRR (cf.
Section B3.1), are assumed: χRR = 1 and χRR = 0.1.

In the case of RR arising from late-type stars, Na(r, t) is not
affected noticeably compared to the case without RR. The disruption
rates are enhanced only a few per cent, even if χRR = 1 (cf. Table 1).
A cusp of stellar black holes affects Na(r, t) more strongly, but this
is sensitive to the RR efficiency χRR and whether or not the cusp is
assumed to be time-dependent.

In the bottom-left panel of Fig. 8, Na(r, t) is shown as a function of
r for various times assuming a time-dependent cusp of stellar black
holes with χRR = 0.1 (model 13). This model can be considered as
the most realistic model of RR with a black hole cusp. Only at late
times, t ∼ 10 Gyr, and at small radii, r � 10−2 pc, is RR effective
at reducing Na(r, t). Nevertheless, the energy-integrated disruption
rates at t = 10 Gyr are increased by at most 3 per cent compared to
model 1 (cf. Table 1).

4.3.6 Massive perturbers

In model 14, the effect of massive perturbers is taken into account
(cf. Section 2.1.4). Contrary to what might be expected, the disrup-
tion rates at t = 10 Gyr are a factor of ∼2 lower compared to those of
model 1. The massive perturbers considered here are located at radii
>1.5 pc (cf. table 2 of PHA07), which corresponds to the full loss
cone regime in the case of relaxation by late-type stars only (cf. the
black vertical dotted lines in the bottom four panels of Fig. 4). The
full loss cone rate corresponds to the maximum loss rate, and this
explains why the disruption rates are initially only modestly larger,
by a factor of ∼2, as shown in Fig. 9 (dotted lines). Relaxation in
energy is also assumed to be much faster, however, therefore at the
radial range of the massive perturbers, 1.5 pc < r < 100 pc, planetes-
imals are efficiently transported from radii r ∼ 1 pc to r 
 1 pc, as
illustrated in the bottom-right panel of Fig. 8. Because the loss cone
flux still peaks near 1 pc (cf. Fig. 4), this implies that the disruption
rate must drop rapidly, which is reflected in Fig. 9. Nevertheless,
after 10 Gyr the disruption rate is still ≈0.2 d−1, which is only a
factor of ≈3 lower compared to model 1.

4.3.7 Semi-analytic solutions

Equation (9) was solved numerically. We also obtained approximate
semi-analytic solutions to this equation for model 1. In order to solve
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Figure 10. The energy-integrated disruption rate Fdis(t) as a function of
time as in Fig. 7, here according to approximate semi-analytic solutions to
equation (9), for which it is assumed that a steady-state in energy applies at
all times (cf. Section 4.3.7). Rates are shown for LT2 and the two formation
scenarios.

the equation, we assume that a steady-state in energy applies at all
times. With this assumption, and setting the terms Fcol and FRR to
zero in accordance with model 1, we find semi-analytical solutions
of the disruption flux as a function of time (refer to Appendix C for
details).

These solutions are shown in Fig. 10 for LT2 and the two forma-
tion scenarios. The time-scale of the decrease of the disruption rate
after ∼100 Myr, 
104 Myr, is too long compared to the numeri-
cal solutions (cf. Fig. 7). Nevertheless, the semi-analytic solutions
yield disruption rates of the same order of magnitude, therefore they
should be adequate for the purposes of scaling the rates to different
galactic nuclei (cf. Section 5.3).

5 D ISCUSSION

5.1 Comparison to observations: constraints on Na/�

The disruption rates at t = 10 Gyr as shown in Table 1 are gener-
ally ≈0.6 d−1 for models 1–13; in the case of model 14 (massive
perturbers) the rate is slightly lower, ≈0.2 d−1. These rates are ro-
bust in the sense that there is no strong dependence on the assumed
distribution of late-type stars (LT1 versus LT2), nor on the forma-
tion scenario (cloud versus disc). In particular, we note that our
rates vary only a few per cent between the two disc models DM1
and DM2. This is because stripping by gravitational encounters oc-
curs early in the evolution, and it is very effective at stripping all
planetesimals at radii � rh for both DM1 and DM2, even though
in DM2 planetesimals are more tightly bound to the star (cf. the
bottom panel of Fig. 3).

Based on 3 Ms Chandra observations in 2012, the observed X-ray
flaring rate is 1.1+0.2

−0.1 d−1 (Neilsen et al. 2013). Strictly speaking, this
would seem inconsistent with our rate of ≈0.6 d−1 (5σ deviation).

We emphasize, however, that in Section 4 we assumed
Na/� = 2 × 107 and that this quantity is poorly constrained (the
main uncertainty in Na/� is the total mass of planetesimals per star).
Our result can therefore be used to constrain Na/� within the frame-
work of our other assumptions. Using that the disruption rate is
linearly proportional to Na/� (cf. Section 5.3), it directly follows

that according to models 1–13, Na/� ≈ 3.7 × 107, and according to
model 14, Na/� ≈ 1.1 × 108.

5.2 Internal scattering of planetesimals by planets

In Section 4, internal processes in the debris discs were not consid-
ered. Likely the most important of these processes is scattering of
planetesimals by planets bound to the star, which could lead to the
ejection of a significant fraction of planetesimals from the star, anal-
ogously to the Nice model (Gomes et al. 2005). The precise fraction
of ejected planetesimals likely depends strongly on the distribution
of planets around stars in the GC, which is currently completely
unconstrained.

The scenarios considered in Section 4 can be interpreted as two
extreme cases of internal scattering. In our cloud scenario, the num-
ber of planetesimals was chosen to be consistent with the number
of stars and the number of planetesimals per star, and the plan-
etesimals were assumed to be formed with an orbital distribution
around the SBH similar to that of the stars. Modulo a likely delay
between formation and ejection, this is consistent with an extreme
case of internal scattering where all planetesimals are ejected from
the debris disc. In contrast, in our disc scenario ejection was only
assumed to occur due to encounters with other stars, i.e. no internal
processes are taken into account.

The above implies that our cloud and disc scenarios can be used
to evaluate the effect of internal processes on the flaring rate. The
weak dependence of the latter rate on the assumed scenario, in
particular at late times (cf. Fig. 7), suggests that this effect is very
weak.

5.3 Scaling of the disruption rate: tidal disruption of planets

In Section 4, the number of planetesimals per star was assumed
to be Na/� = 2 × 107, consistent with observations of debris discs
around stars in the solar neighbourhood (ZNM12; Wyatt 2008).
Other important parameters that were assumed are the masses
M• = 4 × 106 M� and mLT = 1 M�, and the distributed mass
in late-type stars within r0 = 1 pc, M0 = 1.5 × 106 M� (cf. Sec-
tion 2.1.1), or, equivalently, the number of late-type stars within r0,
N0 = M0/mLT = 1.5 × 106.

The SBHs with masses ∼106 M� in several nearby spiral galax-
ies have quiescent X-ray luminosities of ∼1037–1039 erg s−1

(Baganoff et al. 2003 and references therein). These luminosities
are several orders of magnitude larger than the typical X-ray flare
luminosity associated with the tidal disruption of planetesimals,
∼1034–1035 erg s−1, making it unlikely that such flares could be
observed in galactic nuclei other than the GC.

This conclusion could be different for the tidal disruption of plan-
ets by the SBH, which would produce a much more luminous flare.
For example, ZNM12 estimated that the tidal disruption of a Jupiter-
mass gas giant would produce a flare with an X-ray luminosity of
∼2 × 1041 erg s−1, and this would therefore dominate the quiescent
luminosity. Such a flare could be observed with e.g. the INTEGRAL
space telescope up to a distance of ∼50 Mpc; the number of galaxies
within this distance is ∼5000 (Nikołajuk & Walter 2013).

For this purpose, we obtain an approximate scaling of the disrup-
tion rate based on the semi-analytic solutions to equation (9) that
were discussed in Section 4.3.7, with the inclusion of the stripping
term (i.e. assuming formation in discs) and the angular-momentum
loss cone term arising from scattering with late-type stars. As in
Section 4.3.7, we assume that at all times a steady-state in the plan-
etesimal distribution function has been reached with respect to the
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orbital energies. Furthermore, in order to find an analytic scaling
we approximate the effect of stripping by gravitational encounters
as an instantaneous process, we assume a single power-law number
density of the perturbing stars, n� ∝ r−γ , and we neglect the stellar
potential.

With these assumptions and approximations. we find the fol-
lowing order-of-magnitude estimate of the disruption rate (refer to
Appendix D for more details)

Fdis(t) ∼ Na/�N0

τ
exp(−t/τ )

[
1 + exp(tc/τ )

]
, (15)

where τ is given by

τ−1 ≡
[∫

dE Slc(E)

] [
4π2
∫

dE p(E)

]−1

∼ N0(Gm�)2(GM•r0)−3/2 log(�)

(
2M•
m�

N−1
0

) γ−3/2
γ−3

. (16)

Here, we neglected factors of order unity. The quantity tc is the
time-scale for which most planetesimals are assumed to have been
stripped by gravitational encounters; tc ∼ 100 Myr for the GC (cf.
Section 3.2). Equations (15) and (16) give for the GC parameters
and γ = 2 at t = 10 Gyr,

Flc(t = 10 Gyr) ≈ 6 d−1

(
Na/�

2 × 107

)(
m�

M�

)5/2

×
(

N0

1.5 × 106

)5/2 (
r0

1.0 pc

)−3/2 (
M•

4 × 106 M�

)−2

× log

(
M•

4 × 106 M�
1 M�
2m�

)
. (17)

This estimate is correct within an order of magnitude (cf. Table 1).
The scaling is linear with Na/�, which is intuitively easy to under-
stand. The scaling with N0 is Flc ∝ N

5/2
0 . The latter can be under-

stood as follows: increasing the number of stars increases the total
supply of planetesimals but also accelerates the rate of scattering
into the loss cone, hence the dependence is stronger than linear.

We use the above scaling relation to estimate the frequency at
which INTEGRAL could detect planet disruptions. In equation (16),
we set r0 = rh and N0 = 2M•/m� with m� = 1 M�, i.e. corresponding
to the sphere of influence (with this choice there is no dependence
of τ on γ ). The radius of influence rh is subsequently calculated
from rh = GM•/σ 2, where the velocity dispersion σ is computed
from the M•–σ -relation (Ferrarese & Merritt 2000). With these
assumptions, the resulting expression for the disruption rate is a
function of SBH mass, Fdis = Fdis(M•). Here, we set Fdis(M•) = 0
for M• � 107 M� because for the latter masses the relaxation time-
scale is longer than a Hubble time, and steady-state in energy can
no longer be assumed (e.g. Merritt 2013, equation 3.6). (In addition,
for M• � 108 M� the tidal disruption radius of the planet, similar
to that of a 1 M� star, is smaller than the Schwarzschild radius
(e.g. fig. 6.1 of Merritt 2013), implying that the planet would not be
disrupted and eventually produce a potentially observable flare, but
captured whole.)

Subsequently, we average Fdis over the observed mass function
of SBHs in the centres of local galaxies,

F dis =
∫ M•,up

M•,low
dM• Fdis(M•) dN/dM•∫ M•,up

M•,low
dM• dN/dM•

, (18)

where dN/dM• is given by equation (3) and Table 2 (first row) of
Vika et al. (2009) and M•, low = 106 M� and M•, up = 1010 M�.

Multiplying the average rate implied by equation (18) by the
number of galaxies within 50 Mpc, ∼5000, we find the following
estimate for the rate of planet disruptions that are observable by
INTEGRAL,

Fdis,planet ∼ 0.05Np/� yr−1, (19)

where Np/� is the number of planets per star. We therefore expect
an observable planet disruption roughly every decade.

5.4 Changes of the stellar orbit prior to stripping

The debris disc of a star that was formed with pericentre distance
rp 
 rH ≡ d2(3M•/m�)1/3 from the SBH is not tidally stripped by the
SBH, where d2 is the outer radius of the debris disc (cf. Section 3.1).
Gravitational encounters will gradually strip the debris disc over
time at a time-scale of the order of tstrip ∼ 100 Myr in the GC (cf.
Section 3.2). In some cases, however, the time-scale for gravitational
encounters with other stars to change the orbital properties of the
parent star can be shorter than tstrip.

The time-scale for the orbital energy to change by order itself
due to NRR, tE (E) ≡ [〈(�E)2〉/E2]−1, where 〈(�E)2〉 is the second-
order energy diffusion coefficient, is typically longer than the strip-
ping time-scale. To illustrate this, we show the ratio tstrip(E)/tE (E) as
a function of r = ψ−1(E) in the top panel of Fig. 12. Here, tstrip is the
orbit-averaged stripping time-scale where abin = d2 (cf. Section 3.2).
Furthermore, tE (E) is computed from the late-type distribution func-
tion using the expression for 〈(�E)2〉 in equation (21) of Cohn &
Kulsrud (1978), without neglect of the stellar potential. At most
radii tstrip(E)/tE (E)  1, demonstrating that stripping occurs faster
than energy relaxation. However, the time-scale tL ∼ (L/Lc)2 tE for
encounters to change the orbital angular momentum by order itself,
where Lc is the angular momentum of a circular orbit, can be much
shorter if the orbit is highly eccentric.

Nevertheless, even if tL  tstrip we do not expect our results in
Section 4 to be much affected because NRR does not affect the
statistical properties of the orbits of the parent stars in angular
momentum. This is because the steady-state angular-momentum
distribution due to NRR is an isotropic distribution (i.e. f (E, L) =
f (E)), which is the same distribution that was assumed in equation
(9) (an exception is that f (E, L) ∝ log(L) for orbits very close to
the SBH, Cohn & Kulsrud 1978).

5.5 Special case: a burst of flares?

In Sections 3 and 4, it was assumed that the planetesimals resulting
in flares are bound to the SBH prior to their disruption, either
because they were formed in a large-scale cloud bound to the SBH,
or they were born in discs and stripped from their parent star. Here,
we consider a special case in which the planetesimals are bound to
a star prior to being disrupted by the SBH, possibly resulting in a
burst of flares.

This special case could arise if the orbit of the star is highly eccen-
tric with pericentre distance close to but slightly larger than the Hill
radius rH (cf. Section 5.4), and relaxation into an even more eccen-
tric orbit subsequently drives the pericentre distance to r ′

p < rH. The
tidal disruption radius of the star, rTD, � ≈ R� (M•/m�)1/3 ≈ 0.7 au
(assuming m� = 1 M�, R� = 1 R� and M• = 4 × 106 M�), is
approximately equal to that of the planetesimals. Therefore, if the
new pericentre distance is r ′

p ≈ rlc = 1 au then we expect the star to
be tidally disrupted by the SBH; the resulting flare would outshine
the flares resulting from tidally disrupted planetesimals by many
orders of magnitude.
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Figure 11. Fractions of the various outcomes as a function of the pericentre
distance r ′

p in the N-body simulations of a star with a disc approaching the
SBH on a highly eccentric orbit, discussed in Section 5.5. Blue solid line:
planetesimals that are disrupted by the SBH (i.e. pass the SBH within 1 au);
green dashed line: planetesimals that remain bound to the star; red dotted
line: planetesimals that become bound to the SBH; black dot–dashed line:
planetesimals that formally become unbound from the SBH (with low escape
velocities, cf. Section 5.5); solid yellow line: planetesimals that collide with
the star (the stellar radius is assumed to be 1 R�). The left (right) black
vertical dashed lines indicate rlc (rH).

However, if r ′
p is slightly larger than the tidal disruption radius of

the star then, owing to the extended size of the debris disc, some or
all of the planetesimals might be stripped from the star, pass within
1 au of the SBH and ultimately produce a flare, whereas the star is
not tidally disrupted. To investigate this case, we performed a se-
ries of N-body simulations of a star with mass 1 M� with a debris
disc approaching the SBH (M• = 4 × 106 M�) on a highly eccen-
tric orbit. These simulations, similar to those of Section 3.1, were
carried out with the HERMITE0 code (Hut et al. 1995) in the AMUSE

framework (Pelupessy et al. 2013; Portegies Zwart et al. 2013). The
orbit of the star has a semimajor of 1 pc, and the pericentre distance
r ′

p is varied between 0.1 rlc and 2 rH, where rlc = 1 au and rH ≡
d2(3M•/m�)1/3 ≈ 9.2 × 103 au. The debris disc is sampled consis-
tently with DM1 (cf. Section 2.2) and the initial distance of the star
to the SBH is 4 rH.

In Fig. 11, the fractions of the various outcomes in these sim-
ulations are shown as a function of r ′

p. As expected, for r ′
p � rH

(indicated with the right black vertical dashed line) all planetesimals
remain bound to the star. For rlc < r ′

p < rH most (∼0.8) planetesi-
mals are stripped and become bound to the SBH. A smaller fraction
(∼0.2) becomes formally unbound from the SBH. We note that the
escape speeds of these unbound planetesimals are low; the typical
speed is 50 km s−1. Therefore, it is likely that subsequent gravita-
tional perturbations from stars could cause these planetesimals to
be again bound to the SBH.

For r ′
p � rlc (indicated with the left black vertical dashed line)

most planetesimals are disrupted by the SBH. Disruption of plan-
etesimals by the SBH also occurs for rp > rlc, but only for r ′

p � 2 au.
Because the latter pericentre distance is close to rTD, �, we expect
that in this case the star would be either partially or fully disrupted,
and therefore the resulting flare would be completely dominated by
the star.

A burst of flares originating from multiple planetesimals can
also be excluded based on an examination of the likelihood that

a star with a debris disc would receive the perturbation necessary
to change the pericentre from rp ≥ rH to r ′

p  rH. The following
conditions need to be satisfied1.

(i) The initial pericentre distance rp = θ rH with θ ≥ 1, whereas
the final pericentre distance r ′

p = ε rH with rlc/rH < ε  1. If
rp < rH, then the star would have been stripped by the SBH at
an earlier time. If ε is smaller than unity but not small enough,
then most planetesimals will be stripped by the SBH but not pass
within rlc = 1 au of the SBH (cf. Fig. 11). This also implies that the
gravitational perturbation causing the pericentre change must act
over a (radial) orbital time-scale Pr(E).

(ii) The gravitational perturbations must be strong enough to
produce the required decrease of the pericentre distance, but may
not be too strong to disrupt the debris disc.

We assume that the pericentre changing encounters occur at apoc-
entre and instantaneously change the apocentre velocity, whereas
the apocentre distance and orbital energy remain unaffected. The
change of the pericentre distance is therefore given by

�rp ≈ ∂rp(E,R)

∂R �R, (20)

where R ≡ [L/Lc(E)]2 is a normalized angular-momentum vari-
able. Furthermore, during Pr(E) the change of angular momentum
due to NRR is assumed to occur through a random walk,

�L = Lc(E)

(
Pr(E)

tE (E)

)1/2

. (21)

Combining equations (20) and (21) and writing the pericentre
change as �rp/rp = ε/θ − 1 ≈−1, we find the following relation for
the angular momentum satisfying the requirement of the pericentre
change,

RNRR(E) ≈ 4Pr(E)

tE (E)

( ε

θ
− 1
)−2
(

∂ log rp(E,R)

∂ logR
)2

. (22)

The logarithmic derivative factor in equation (22) is a function ofR,
implying that equation (22) cannot in general be solved analytically
for RNRR. However, this factor is a weak function of R for R  1
and close to unity in this limit (in the case when the stellar potential
is neglected, it is exactly equal to unity); for the computations below
we set it equal to unity.

The quantity RNRR(E) is shown as a function of r = ψ−1(E)
with black solid (dotted) lines in the middle panel of Fig. 12 for
late-type distribution LT1 (LT2), assuming ε/θ = 10−3. There is
a peak where the energy relaxation time-scale tE (E) is shortest. In
addition, we show in the second panel of Fig. 12 with the blue (red)
lines the quantity RH, defined as the value of R corresponding to
rp = rH assuming DM1 (DM2) and for both LT1 and LT2.

According to requirement (i) above R = RNRR > RH must be
the case; however, this is not satisfied at any radii. In other words,
in order for the encounter to be sufficiently strong the orbit must be
highly eccentric, but in this case the tidal force of the SBH would
have stripped the star at an earlier epoch. For completeness, we
discuss the other requirement below.

The debris disc can survive the encounters if d2 < ds, where ds

is the stripping distance, which can be estimated from requiring
that the relative velocity vrel between the star and planetesimal
exceeds the escape velocity vesc from the star. The former can be

1 The basic problem discussed here is similar to that of Murray-Clay & Loeb
(2012).
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Figure 12. Various quantities as a function of r = ψ−1(E) discussed in
Section 5.5. Two distributions of late-type stars are assumed: LT1 and LT2
(cf. Section 2.1.1). Blue (red) lines apply to DM1 (DM2) (cf. Section 2.2).
Top panel: the ratio of the orbit-averaged stripping time-scale to the energy
time-scale. Middle panel: the value of R, RNRR, required for a gravitational
encounter to sufficiently decrease the pericentre distance to produce a burst
of flares, compared to RH, the value of R for which the SBH strips the disc
and a burst would not occur. Bottom panel: the stripping distance ds at which
the strong encounter would strip part or all of the disc.

estimated as vrel ∼ (Gmp/b2)(2d/b)(2b/venc) (Murray-Clay & Loeb
2012), where b is the impact parameter, mp is the perturber mass,
assumed to be mp = m� = 1 M�, and venc is the encounter velocity,
which we approximate with the stellar velocity dispersion σ (cf.
equation 6); the latter is given by vesc = (2Gm�/d)1/2. In terms
of the change of the stellar speed, the impact parameter can be
estimated by b ∼ 2Gmp/(venc�va), where �va is the change of the
apocentre speed (assuming that the encounters occur at apocentre).
Setting vrel = vesc subsequently gives the following relation for the
stripping distance,

d3
s ∼ 2(Gm�)3

v2
enc�v4

a

. (23)

From the assumptions �ra = 0 and �E = 0, the definition of R
and the relation L = rava, it follows that

�va(E,R) = Lc(E)

2ra(E,R)

�R√R . (24)

Substituting R = RNRR (cf. equation 22) and using equation (20)
we find

�va(E) = Lc(E)

ra(E,RNRR)

(
P (E)

tE (E)

)1/2

. (25)

Combining equations (23) and (25) then gives the stripping dis-
tance ds as a function of E , which is plotted in the bottom panel of
Fig. 12 for LT1 and LT2. The outer disc radii in DM1 and DM2

are shown with horizontal lines. Destructive stripping, i.e. ds < d2,
only occurs at a narrow radial range near r ∼ 1 pc, therefore this
does not pose a major problem in the scenario.

6 C O N C L U S I O N S

We have studied the dynamics of planetesimals in galactic nuclei
focusing on the GC, and in the context of the tidal disruption of
planetesimals by the SBH, possibly producing observable near-
infrared/X-ray flares. We assumed that the planetesimals were either
formed in a large-scale cloud bound to the SBH, or in debris discs
around stars. Our main conclusions are as follows.

(1) Assuming that planetesimals in the GC were initially formed
in debris discs around stars, the tidal force of the SBH is effective
at stripping the planetesimals from their parent stars at distances
r � 0.5 pc from the SBH. Stripping by gravitational encounters
with other stars is effective at stripping nearly all planetesimals
within the radius of influence, ≈4 pc, after ∼100 Myr.

(2) We studied the orbital evolution of planetesimals bound to
the SBH in response to gravitational scattering from late-type stars,
a hypothesized cusp of stellar black holes close to the SBH, and
massive perturbers. We also included other effects such as physical
collisions and RR. We found that the disruption rate of planetes-
imals by the SBH at t = 10 Gyr is ≈0.6 d−1, which is roughly
consistent with the observed rate of the flares of once per day and
the previous, less detailed, estimate by ZNM12, ∼1 d−1. Moreover,
the rate is insensitive to model assumptions, in particular the initial
distribution of planetesimals, i.e. whether the planetesimals were
formed in a large-scale cloud or in debris discs around stars, and
details of the gravitational perturbers. By comparing our rates in
the case of formation in discs to the observed rates of Neilsen et al.
(2013), we have constrained the number of planetesimals per star
to Na/� ≈ 3.7 × 107; taking into account the effect of massive
perturbers, we find Na/� ≈ 1.1 × 108.

(3) The result that both formation in a large-scale cloud and for-
mation in debris discs around stars are consistent with the observed
flaring rate suggests that it is not possible to distinguish between
these two cases on the basis of the latter observation alone. How-
ever, the assumed number of planetesimals per star, Na/� = 2 × 107,
is inferred from observations of debris discs around stars in the solar
neighbourhood. In the case of formation in a large-scale cloud, this
implies that the number of planetesimals formed is strongly corre-
lated with the number of stars, and this requires finetuning of the
quantity Na/�. We favour the more natural explanation that planetes-
imals in galactic nuclei similar to the GC are formed no differently
than planetesimals around stars in the solar neighbourhood.

(4) We have extrapolated our results to different galactic nu-
clei and we have estimated the event rate of the tidal disruption
of planets by SBHs. Assuming one planet per star, we expect an
observable planet disruption originating within the local Universe
(D < 50 Mpc) roughly every decade.
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APPENDIX A : PLANETESIMAL STRIPPING

A1 Stripping by the SBH

In the middle panel of Fig. (1), the stripping fraction fstrip is expressed in terms of the pericentre distance rp of the orbit of the star around the
SBH. Here, we discuss our method to express fstrip in terms of the orbital energy, assuming an isotropic velocity distribution.

First, we express rp in terms of energy E and R, where angular momentum L is expressed in terms of R ≡ (L/Lc)2 ∈ [0, 1]; here,
Lc(E) is the angular momentum of a circular orbit with energy E . The latter is given in terms of the potential by L2

c = −r3
c dψ/dr|r=rc ,

with rc = rc(E) the radius of a circular orbit with energy E , which is the solution of the equation 2[ψ(rc) − E] + rc dψ/dr|r=rc = 0 (e.g.
Cohn 1979; Merritt 2013, section 5.5.1). We determine the pericentre distance rp by finding the smallest solution r = r(E,R) for which the
radial velocity vr = vr(r, E,R) = {2[ψ(r) − E] − RL2

c(E)/r2}1/2 vanishes. From rp(E,R), we compute the stripping fraction fstrip(E,R).

Subsequently, we average this quantity over R assuming an isotropic velocity distribution, fstrip(E) ≡ ∫ 1
Rlc(E) dR fstrip(E,R). Here, Rlc(E) is

the value of R that corresponds to the loss cone rlc of the star; we adopt rlc = 1 au, approximately the tidal disruption radius of a solar-type
star. An orbit with energy E and R = Rlc just grazing the loss cone rlc at pericentre has vr (rlc, E,Rlc) = vr(rp, E, Rlc) = 0, which implies
Rlc = [2r2

lc/L
2
c(E)][ψ(rlc) − E].

The resulting stripping fractions fstrip(E) are plotted in the bottom panel of Fig. 1 with solid lines. Analytic expressions for fstrip(E)
can be derived if the stellar potential is neglected. In that case, the pericentre distance rp(E,R) = [GM•/(2E)][1 − √

1 − R] = a(1 − e)
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and dstrip = afH(1 − e), where fH ≡ [m�/(3M•)]1/3 (cf. equation 5). Using equation 4 and assuming that Rlc = 0, we find for the angular-

momentum-averaged stripping fraction fstrip(a) ≈ ∫ 1
0 dR fstrip(E,R) = ∫ 1

0 de 2efstrip(a, e), for afH > d2,

fstrip(a) = 1

d
2−β
2 − d

2−β
1

{
d

2−β
2

[(
1 − d1

afH

)2

−
(

1 − d2

afH

)2
]

− 2
[
(afH)2+β (β − 4)(β − 3)

]−1

×
[
d3

1

(
d1

afH

)−β

(afH(β − 4) − d1(β − 3)) − d3
2

(
d2

afH

)−β

(afH(β − 4) − d2(β − 3))

]}
+ 1 −

(
1 − d1

afH

)2

;

for d1 ≤ afH ≤ d2,

fstrip(a) = 1

d
2−β
2 − d

2−β
1

⎧⎪⎨
⎪⎩d

2−β
2

(
1 − d1

afH

)2

− 2(afH)2−β

⎡
⎢⎣ d3

1

(
d1
afH

)−β

(afH(β − 4) − d1(β − 3))

(afH)4(β − 4)(β − 3)
+ 1

12 − 7β + β2

⎤
⎥⎦
⎫⎪⎬
⎪⎭

+ 1 −
(

1 − d1

afH

)2

(A1)

and fstrip(a) = 1 for afH < d1. The stripping fractions according to this approximation are shown with dashed lines in the bottom panel of
Fig. 1.

A2 Stripping by gravitational encounters

We compute the orbital average of the local stripping fraction arising from gravitational encounters using the relation (e.g. Merritt 2013,
section 5.5.2)

fstrip(E) = 4

p(E)

∫ ψ−1(E)

0
dr r2v(r, E) fstrip(r), (A2)

where p(E) is the phase space volume per unit energy and is given by

p(E) = 4
∫ ψ−1(E)

0
dr r2v(r, E), (A3)

with ψ−1(E) the inverse function of ψ(r) and v(r, E) = √
2[ψ(r) − E] the orbital speed at radius r for an orbit with energy E . In equation

(A2), an isotropic velocity distribution is assumed; it was derived from the more general expression for the orbital average of a local function
f(r) (e.g. Cohn & Kulsrud 1978),

f (E,R) = 2

P (E,R)

∫ r+(E,R)

r−(E,R)

dr

vr(r, E,R)
f (r), (A4)

where P (E,R) = 2
∫ r+

r− dr/vr is the orbital period and r±(E,R) are the turning points of the orbit, i.e. the solutions to vrmr (r±, E, R) = 0.
In this derivation, several approximations have been made. To verify the validity of the simplified orbit average, equation (A2), we have
computed fstrip(E) numerically using both equations (A2) and (A4), in the latter case averaging over R after calculating f (E, R). We find that
there is no discernable difference in the resulting averaged function fstrip(E) between the two cases.

A P P E N D I X B: T E R M S A P P E A R I N G I N T H E FO K K E R – P L A N C K E QUAT I O N

B1 Gravitational scattering flux

The quantity FE represents a flux in E-space because of gravitational scattering by massive scatterers and is given by (e.g. Merritt 2013,
section 7.1.2.2)

FE (E, t) = DEE (E)
∂fa(E, t)

∂E , (B1)

where DEE (E) is an energy diffusion coefficient that depends on the distribution function of the scatterers. Assuming a discrete mass spectrum
of scatterers, DEE is given by

DEE (E) =∑j m2
j ln(�j )DEE;j = 64π5G2

∑
j m2

j ln(�j )

×
[
q(E)

∫ E
−∞ dE ′ fj (E ′) + ∫ ∞

E dE ′ fj (E ′)q(E ′)
]
, (B2)

where ln (�j) is the Coulomb logarithm, fj (E) is the distribution function of massive scatterer j with mass mj and

q(E) = 4

3

∫ ψ−1(E)

0
dr r2v3(r, E). (B3)
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Here, we adopt ln (�j) = ln [M•/(2mj)]. The distribution functions fj (E) are computed from the number density nj(r) and potential ψ(r)
using Eddington’s formula (Eddington 1916),

fj (E) =
√

2

4π2

∂

∂E
∫ ψ−1(E)

−∞

dr√E − ψ(r)

dnj (r)

dr
. (B4)

B1.1 Black hole cusp

In the case of a cusp of stellar black holes (cf. Section 2.1.3), we derive and adopt semi-analytic expressions for DEE;BH(E). We assume that
the distribution function fBH(E) has the form of a truncated power law,

fBH(E) =
{

f0Eγ−3/2, E > Ed;
0, E ≤ Ed.

(B5)

Here, Ed ≡ GM•/(2rd) and rd = 0.2 pc is assumed; furthermore we adopt γ = 1.8. The quantity f0 can be expressed in terms of the number
density of stellar black holes at r = rd, nd = NBH(3 − γ )/(4πr3

d ), where NBH = 4800 is the total number of black holes within rd, via

f0 =
√

2

4
π−3/2 �(γ + 1)

�(γ − 1
2 )

(
rd

GM•

)γ

nd, (B6)

where �(x) is the Gamma function. For r ≤ rd, it is well justified to neglect the stellar potential in ψ(r). With this approximation equation
(B2) yields

DEE;BH(E) = 32

3

√
2π6G2(GM•)3f0

1

(2 − γ )(2γ − 1)
×
{

3Eγ−2 − 2(2 − γ )Eγ−1/2
d E−3/2, E > Ed;

(2γ − 1)Eγ−2
d , E ≤ Ed.

(B7)

B2 Flux into the loss cone

As discussed in Section 4.1, relaxation through gravitational encounters typically occurs much faster in angular-momentum space than in
energy space. Scattering into the loss cone of the SBH is therefore dominated by diffusion in angular momentum rather than diffusion in
energy. The former is described in equation (9) by the term Flc(E, t), the flux in angular-momentum space into the loss cone. We adopt
the formalism of the Cohn–Kulsrud boundary layer, which is based on the Fokker–Planck equation in angular-momentum space (Cohn &
Kulsrud 1978; Merritt 2013, section 6.1.2). By solving this equation both in local and orbit-averaged form and matching the two solutions,
the following expression can be derived for the flux into the loss cone:

Flc(E, t) ≈ 4π2Pr(E)L2
c(E)μ̄(E)

{
ln
[R0(E)−1

]}−1
fa(E, t). (B8)

Here, Pr(E) = ∫ ψ−1(E)
0 dr/vr(r, E, 0) is the radial orbital period and μ̄(E) is an orbit-averaged angular-momentum diffusion coefficient in the

limit R → 0, defined by

μ̄(E) = 2

Pr(E)

∫ ψ−1(E)

0

dr

vr(r, E, 0)
lim
R→0

〈(�R)2〉
(2R)

, (B9)

where 〈(�R)2〉 is the second-order diffusion coefficient in R arising from NRR. Using standard expressions for 〈(�R)2〉 (e.g. Cohn &
Kulsrud 1978), μ̄(E) can be expressed in terms of fj as

μ̄(E) = 32π2G2

3Pr(E)L2
c (E)

∑
j m2

j ln(�j )
[
3Ī1/2;j (E) + 2Ī0;j (E) − Ī3/2;j (E)

]
, (B10)

where

Ī0;j (E) =
∫ ψ−1(E)

0

dr r2

√
2[ψ(r) − E)]

∫ E

−∞
dE ′ fj (E ′);

Īn/2;j (E) =
∫ ψ−1(E)

0

dr r2

√
2[ψ(r) − E]

∫ ψ(r)

E
dE ′
(

ψ(r) − E ′

ψ(r) − E
)n/2

fj (E ′). (B11)

In equation (B8), it is assumed that the distribution function fa decreases logarithmically with R as R → 0. The value of R for which fa

vanishes is not the capture boundary Rlc(E): far away from the SBH, where the orbital period is relatively long compared to the angular-
momentum relaxation time-scale (the ‘full loss cone’ regime), a planetesimal can be scattered into and out of the loss cone without being
immediately disrupted, i.e. it may be that fa(E,Rlc) > 0. The value of R for which the distribution function does vanish is given by the
function R0(E) = Rlc(E) exp[−q̃/ξ (q̃)] < Rlc, where q̃ = q̃(E) = Pr (E)μ̄(E)/Rlc(E) and ξ (q̃) is given by

ξ (q̃) ≡ 1 −
∞∑

m=1

exp
(−α2

mq̃/4
)

α2
m

,

where αm is the mth zero of the Bessel function J0(α) of the first kind. We compute the quantity Rlc from Rlc = 2
[
r2

lc/L
2
c(E)
]

[ψ(rlc) − E]
with rlc = 1 au.
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B2.1 Black hole cusp

Similarly as in Section B1.1, we derive and adopt semi-analytic expressions for μ(E) for the case of a cusp of stellar black holes. With the
same assumptions as in Section B1.1, the loss cone integrals Ī0;BH and Īn/2;BH (cf. equation B11) can be expressed as

Ī0;BH(E) = 5
√

2π

16

f0

2γ − 1
(GM•)3 ×

{
Eγ−4 − Eγ−1/2

d E−7/2, E > Ed;

0, E ≤ Ed;

Īn/2;BH(E) =
√

2

2n + 1
f0(GM•)3 ×

{
gn(E, E, γ ), E > Ed;

gn(E, Ed, γ ), E ≤ Ed,
(B12)

(B13)

where

g1(E, E ′, γ ) = E ′γ−4
∫ 1

0
dx x3−γ

(
1 − E

E ′ x
)−1

(1 − x)3/2
2F1

(
3

2
,

3

2
− γ,

5

2
; 1 − x

)
;

g3(E, E ′, γ ) = E ′γ−4
∫ 1

0
dx x3−γ

(
1 − E

E ′ x
)−2

(1 − x)5/2
2F1

(
5

2
,

3

2
− γ,

7

2
; 1 − x

)
.

Here, 2F1(a, b, c; x) is the Gauss hypergeometric function.

B3 Collision flux

The term Fcol in equation (9) describes losses of planetesimals because of physical collisions with other objects. We consider collisions of
planetesimals with late-type stars and with other planetesimals of the same size. The collision cross-section including gravitational focusing
is σcol;j = πR2

j (1 + v2
esc;j /v

2
rel), where Rj ≈ RLT in the case of collisions with late-type stars and Rj = 2Ra in the case of collisions with

other planetesimals; we adopt Ra = 10 km (cf. Section 2.2). The escape speed vesc; j = (2Gmj/Rj)1/2, where we assume mj = mLT and
mj = 2 × 10−15 M� for collisions with late-type stars and planetesimals, respectively, and vrel = ||v − v′|| is the relative speed at infinity.
The collision rate νcol; j is subsequently found by replacing n in njσ col; jvrel with the impactor distribution function fj(v′) and integrating over
all impactor velocities v′ (e.g. Cohn & Kulsrud 1978),

νcol;j (v) =
∫

d3v′ fj (v′)σcol;j (||v − v′||)||v − v′||

= 2πR2
j gj (v) + 2πGmjRjhj (v). (B14)

Here, gj(v) and hj(v) are the ‘Rosenbluth potentials’ hj (v) = ∫ d3v′ fj (v′)||v − v′|| and hj (v) = 2
∫

d3v′ fj (v′)||v − v′||−1(Rosenbluth,
MacDonald & Judd 1957). We subsequently average νcol; j(v) over a planetesimal orbit using an equation similar to equation (A2) with
v = √

2[ψ(r) − E] and obtain νcol;t ;j (E) = 2πR2
j gt ;j (E) + 2πGmjRjht ;j (E), where

gt ;j (E) = 4π

3

4

p(E)

∫ ψ−1(E)

0
dr r2v(r, E)

∫ ψ(r)

E
dE ′ fj (E ′)

[(
ψ(r) − E ′

ψ(r) − E
)1/2 [

8ψ(r) − 6E − 2E ′]+ 8ψ(r) − 2E − 6E ′
]

;

ht ;j (E) = 8π
4

p(E)

∫ ψ−1(E)

0
dr r2v(r, E)

∫ ψ(r)

E
dE ′ fj (E ′)

(
ψ(r) − E ′

ψ(r) − E
)1/2

+ 8π

∫ E

−∞
dE ′ fj (E ′)

(note that in the orbit-averaged expressions for the collision rate in equation (43) of Cohn & Kulsrud 1978 the stellar potential was neglected).
The collision rate νcol;t ;j (E) gives the rate of collisions with impactor j for a single planetesimal at energy E ; the flux for all planetesimals

at energy E , Fcol; j, is given by Fcol;j (E, t) = νcol;t ;j (E)Na(E, t). The combined collision flux for both types of collisions is Fcol(E, t) =∑
j Fcol;j (E, t).
In the case of planetesimal–planetesimal collisions, there is a non-linear dependence of Fcol;a(E, t) on the planetesimal distribution function

fa. To simplify the computations, we use the time-independent (and therefore strictly incorrect) distribution function fa(E) = Na/� × fLT(E)
to compute νcol; t; a instead of the actual fa(E, t), the function for which equation (9) is to be solved. The former distribution function is
appropriate for complete stripping of all planetesimals from the late-type stars, and without further change of the distribution function. This
gives an upper limit for the importance of planetesimal–planetesimal collisions. It turns out that planetesimal–planetesimal collisions, even
assuming this upper limit, are negligible compared to planetesimal-late-type star collisions; e.g., the rates for planetesimal–planetesimal
collisions are unaffected compared to the main model, model 1, whereas this is not the case for late-type star–planetesimal collisions, cf.
Table 1. This justifies our simplified treatment of planetesimal–planetesimal collisions.

B3.1 Flux into the loss cone from RR

Close to the SBH, the stellar potential is not perfectly spherically symmetric because the number of stars is finite. This asymmetry gives rise to
RR and results in periodic changes of the orbital angular momenta on time-scales that can be much shorter than NRR time-scale if sufficiently
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close to the SBH (Rauch & Tremaine 1996). The process of RR can potentially increase the rate of captures by the SBH arising from NRR
in angular-momentum space alone (cf. Section B2). An approximate method to model (incoherent) RR arising from a given distribution of
stars in equation (9) is to include the sink term FRR(E, t), which is essentially the number of planetesimals with energies between E and
E + dE , divided by the time-scale for RR to decrease the angular momentum to the value corresponding to disruption by the SBH (Hopman
& Alexander 2006; Merritt et al. 2011),

FRR(E, t) = χRR
Na(E, t)∣∣ln [Rlc(E)1/2

]∣∣ TRR
;

TRR = β−2
s

(
M•
m�

)2

N (E)−1 P (E)2

tcoh(E)
. (B15)

Here, βs describes the efficiency of RR; numerical investigations indicate that βs ≈ 1.6e in the Newtonian regime (Gürkan & Hopman 2007;
Eilon, Kupi & Alexander 2009; Hamers, Portegies Zwart & Merritt 2014). Averaging this quantity over a thermal distribution yields βs ≈ 1.1;
here we adopt βs = 1. The factor | ln[R1/2

lc (E)]| is approximately the typical number of relaxation time-scales for the angular momentum to
decrease from the maximal value corresponding to a circular orbit, to the value corresponding to capture by the SBH.

The quantity tcoh(E) in equation (B15) is the coherence time-scale, i.e. the typical time-scale for field stars to change their orientation
with respect to a test orbit with energy E . Here, we adopt t−1

coh(E) = t−1
MP(E) + t−1

GR(E), where tMP(E) = [M•/M�(E)]P (E) is an estimate of the
(angular-momentum-averaged) Newtonian mass precession time-scale and tGR(E) = (1/24)(c2/E)P (E) is the (angular-momentum-averaged)
relativistic precession time-scale, assuming a thermal eccentricity distribution.

At low angular momenta, the efficiency of RR is strongly reduced because in-plane relativistic precession tends to reduce the efficiency of
the torques arising from the

√
N -asymmetry. This effect, known as the Schwarzschild barrier, can reduce the flux implied by equation (B15)

by at least an order of magnitude (Merritt et al. 2011). It remains unclear, however, how the details of equation (B15) are affected by the SB.
To take into account this uncertainty we include in equation (B15) the dimensionless (and poorly constrained) ad hoc factor χ , and adopt two
values of χRR: χRR = 0.1 and χRR = 1.

APPENDIX C : A PPROX IMATE SEMI-ANA LY TI C SOLUTI ONS TO THE TI ME-DEPENDENT
F O K K E R – P L A N C K E QUAT I O N

We solve equation (9) with Fcol = FRR = 0 and assume that a steady-state is present in energy at all times, i.e. fa(E, t) = f0g(t), where f0 is
a constant and g(t) a time-dependent function with g(0) = 1 (cf. Section 4.3.7). In this case ∂FE/∂E = 0; integrating both sides of equation
(9) with respect to energy, the latter equation can be written as

C1
∂g

∂t
= Na/�

∂h

∂t
− C2g(t), (C1)

with

C1 ≡ f04π2
∫

dE p(E); C2 ≡ C1

∫
dE Slc

4π2
∫

dE p(E)
; h(t) ≡

∫
dE NLT(E)fstrip(E, t),

and Slc(E) is defined via Flc(E, t) = Slc(E)fa(E, t) (cf. equation B8). In the case of formation in a cloud C1, and thereby f0, can be estimated
from C1 ∼ Na/�

∫
dENLT(E); in the case of formation in discs, C1 ∼ Na/�

∫
dENLT(E)fstrip;SBH(E). Equation (C1) can be solved for g(t) by

separation of variables; writing g(t) = gH(t)gI(t), the homogenous solution is

gH (t) = gH (0) exp

(−t

τ

)
, (C2)

where τ ≡ C1/C2. Substituting the latter solution into equation (C1) and solving for gI(t), we find

gI (t) = Na/�

C1gH (0)

∫ t

0
dt ′ ∂h

∂t ′ exp

(
t ′

τ

)
+ C, (C3)

where C is an integration constant. Setting g(0) = 1, the complete solution is

g(t) = exp

(−t

τ

)[
1 + Na/�

C1

∫ t

0
dt ′ ∂h

∂t ′ exp

(
t ′

τ

)]
. (C4)

The implied disruption flux is Fdis(t) ∼ f0g(t)
∫

dE Slc(E) (cf. equation B8) and is shown in Fig. 10, where in case formation in a cloud we
set h(t) = 0.

A P P E N D I X D : SC A L I N G O F TH E D I S RU P T I O N R AT E

To obtain the scaling of the disruption rate with Na/�, m�, M• and N0 (cf. Section 5.3), we adopt the approximate semi-analytic solution to
equation (9) as described in Appendix C. We approximate the effect of stripping by gravitational encounters as an instantaneous process at
all energies, i.e.

h(t) ∼
{

0, t < tc;∫
dE N�(E), t ≥ tc,

(D1)
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where N�(E) is the number of stars with energies between E and E + dE and tc is the stripping time-scale; in the GC, tc ∼ 100 Myr
(cf. Section 3.2). Integrating by parts, we subsequently obtain∫ t

0
dt ′ ∂h

∂t ′ exp

(
t ′

τ

)
∼
{

0, t < tc;
exp (tc/τ )

∫
dE N�(E), t ≥ tc.

(D2)

Neglecting the initial stripping by the SBH, C1 ∼ Na/�

∫
dEN�(E) (cf. Appendix C), and equation (C4) yields, for t ≥ tc,

g(t) ∼ exp

(−t

τ

)[
1 + exp

(
tc

τ

)]
. (D3)

Note that τ ≡ C1/C2 ≡ 4π2
∫

dE p(E)/
∫

dESlc(E) is independent of Na/�, therefore g(t) in equation (D3) is also independent of Na/�. From
fa(E, t) = f0g(t) and f0 ∝ Na/�, it subsequently follows that the disruption flux (cf. equation B8) scales linearly with Na/�, as might be
intuitively expected.

We assume a power-law stellar number density distribution, n� = n0(r/r0)−γ , where n0 = N0(3 − γ )/(4πr3
0 ). The distribution function

is then given by f�(E) = f0Eγ−3/2, where f0 is related to n0 via an equation similar to equation (B6). Neglecting, for simplicity, the
integrals Ī1/2(E) and Ī3/2(E) in equation (B10), and setting the integration limits in the energy integral to Eh < E < ∞, where Eh =
[GM•/r0][(2M•/m�)(1/N0)]1/(γ−3) is the energy at the radius of influence neglecting the stellar potential, the energy integral of Slc (cf.
equation B8) is approximately given by∫ ∞

Eh

dE Slc(E) ∼ 4π2 32

3
π2 5π

16

1√
2

1

3 − γ
(Gm�)2(GM•)3 ln(�)Eγ−3

h f0, (D4)

where we neglected the factor log(R−1
0 )−1, the integrals Īn/2(E) and assumed γ ≤ 2. With neglect of the stellar potential the function p(E) is

given by p(E) = (
√

2π/4)(GM•)3E−5/2 (e.g. Merritt 2013, equation 5.182a). The time-scale τ is therefore approximately given by

τ−1 ∼ 5

4
√

2π

�(γ + 1)

�
(
γ − 1

2

) log(�)(Gm�)2 (GM•r0)−3/2

(
2M•
m�

1

N0

) γ−3/2
γ−3

N0. (D5)

Setting
∫ ∞
Eh

dE N�(E) ∼ N0, we find for the disruption flux

Fdis(t) ∼ f0g(t)
∫

dE Slc(E) ∼ C1g(t)

τ
∼ Na/�N0

τ
exp(−t/τ )

[
1 + exp(tc/τ )

]
. (D6)
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