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ABSTRACT
We study the secular gravitational dynamics of quadruple systems consisting of a hierarchical
triple system orbited by a fourth body. These systems can be decomposed into three binary
systems with increasing semimajor axes, binaries A, B and C. The Hamiltonian of the system
is expanded in ratios of the three binary separations, and orbit averaged. Subsequently, we
numerically solve the equations of motion. We study highly hierarchical systems that are well
described by the lowest order terms in the Hamiltonian. We find that the qualitative behaviour
is determined by the ratio R0 of the initial Kozai–Lidov (KL) time-scales of the binary pairs
AB and BC. If R0 � 1, binaries AB remain coplanar if this is initially the case, and KL
eccentricity oscillations in binary B are efficiently quenched. If R0 � 1, binaries AB become
inclined, even if initially coplanar. However, there are no induced KL eccentricity oscillations
in binary A. Lastly, if R0 ∼ 1, complex KL eccentricity oscillations can occur in binary A that
are coupled with the KL eccentricity oscillations in B. Even if binaries A and B are initially
coplanar, the induced inclination can result in very high eccentricity oscillations in binary A.
These extreme eccentricities could have significant implications for strong interactions such
as tidal interactions, gravitational wave dissipation, and collisions and mergers of stars and
compact objects. As an example, we apply our results to a planet+moon system orbiting a
central star, which in turn is orbited by a distant and inclined stellar companion or planet, and
to observed stellar quadruples.

Key words: gravitation – celestial mechanics – planet–star interactions – stars: kinematics and
dynamics.

1 IN T RO D U C T I O N

Hierarchical triple systems are known to be common among stel-
lar systems. For example, a fraction of 0.076 of FG dwarfs sys-
tems in the catalogue of Tokovinin (2014a,b) are triple systems
(in the fractions cited here from Tokovinin 2014b, completeness
arguments have been taken into account; the observed number of
triple systems in the sample of Tokovinin 2014a is 290, with a to-
tal number of 4847 systems). The triple fraction is likely higher
for more massive stars. In such hierarchical systems, the torque
of the outer binary can induce high-amplitude oscillations in the
inner binary over time-scales that can vary from suborbital time-
scales, to time-scales exceeding Gyr. These oscillations, known
as Kozai–Lidov (KL) cycles (Lidov 1962; Kozai 1962), have im-
portant implications for a large range of astrophysical systems, in
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particular when the effects of tidal friction are also considered. The
implications include the production of short-period binaries and
hot Jupiters (Eggleton & Kiseleva-Eggleton 2001; Wu & Murray
2003; Eggleton & Kisseleva-Eggleton 2006; Fabrycky & Tremaine
2007; Wu, Murray & Ramsahai 2007; Correia et al. 2011; Naoz
et al. 2011; Naoz, Farr & Rasio 2012; Petrovich 2015), accelerat-
ing the merging of compact objects (Blaes, Lee & Socrates 2002;
Thompson 2011; Antonini & Perets 2012; Antonini, Murray &
Mikkola 2014), explaining some of the blue stragglers stars (Perets
& Fabrycky 2009; Naoz & Fabrycky 2014), affecting the formation
of binary minor planets (Perets & Naoz 2009), possibly producing
a special type of Type Ia supernovae through collisions of white
dwarfs (Katz & Dong 2012; Hamers et al. 2013; Prodan, Murray
& Thompson 2013), and modifying the evolution of stellar bina-
ries that would not interact in the absence of a third star (Hamers
et al. 2013).

Nature does not stop at N = 3, however. Although in the cata-
logue of Tokovinin (2014a,b) triple systems, with a fraction of 0.58
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Figure 1. A schematic depiction of the hierarchical configuration of the
quadruple systems considered in this paper.

(observed: 290 of 350), are most common among systems with hi-
erarchies (N ≥ 3), quadruple systems also constitute a considerable
fraction of hierarchical systems, i.e. a fraction of 0.32 (observed:
55 of 350). Unlike hierarchical triple systems, for which only one
dynamically stable configuration is known to exist in nature, there
are two different hierarchical configurations for which quadruples
are known to be dynamically stable. One of these consists of two
binary systems that orbit each other’s barycentre, and this type of
system constitutes a fraction of 0.74 (observed: 37 of 55) of the
quadruple systems in the catalogue of Tokovinin (2014a,b). The
long-term dynamical evolution of this configuration has been stud-
ied by Pejcha et al. (2013), who showed, by means of direct N-body
simulations, that eccentricity oscillations, in particular orbital flips,
can be enhanced in these systems relative to triples.

The other configuration consists of a hierarchical triple system
that is orbited by a fourth body (referred to as a 3+1 quadruple
system in Tokovinin 2014b), and is the focus of this paper. In this
case, three binary systems can be identified, and we will assume that
they are each sufficiently separated from each other such that the
quadruple system is dynamically stable. A stability analysis of these
systems is beyond the scope of this work. Here, we shall always
assume stability, although stability of some systems is borne out by
our direct N-body integrations. We will refer to the binaries with
the smallest, intermediate and largest semimajor axes, as ‘binary
A’, ‘binary B’ and ‘binary C’, respectively. A schematic depiction
of our configuration is shown in Fig. 1.

Our hierarchical configuration not only applies to stellar quadru-
ples, but also arises in other astrophysical systems. These include,
but are not limited to, multiplanet, planet–moon and binary aster-
oid systems in single and binary star systems. Here, we study the
case of a planet+moon system (binary A) that orbits a star (binary
B), which in turn is orbited by a more distant and inclined object
(binary C), e.g. another planet or star. We assume that the orbit of
the planet+moon system is initially coplanar with respect to that of
the primary star. Therefore, in the absence of a distant body, no ex-
citation of the eccentricity of the orbit of the planet+moon system
is expected. However, we will show that, in the presence of an in-
clined fourth body, high-amplitude eccentricity oscillations can be
induced in the planet+moon system through an intricate coupling
of KL cycles.

The structure of this paper is as follows. In Section 2, we de-
scribe our methods. We expand the four-body Hamiltonian in terms
of the separation ratios rA/rB, rB/rC and rA/rC. In order for our
method to be suitable for the study of the long-term evolution of a
large number of systems, we adopt the secular approximation, i.e.
we average the Hamiltonian over the three binary orbits assuming
unperturbed and bound orbits for time-scales shorter than the or-
bital periods. Subsequently, we numerically solve the equations of
motion derived from the orbit-averaged Hamiltonian. We test our
method by comparing to direct N-body integrations. In Section 3,
we consider the general dynamics of highly hierarchical systems,
i.e. systems that are well-described by the lowest-order terms in the
Hamiltonian. We discuss our results in Section 4 and apply them to
planetary and stellar systems. We give our conclusions in Section 5.

2 M E T H O D S

2.1 Expansion of the Hamiltonian

Our method to study the long-term evolution of quadruple sys-
tems is a natural extension to the orbit-averaged techniques that
have been used extensively in the past to study the evolution of
hierarchical triple systems, where an expansion was made in terms
of the semimajor axis ratio ain/aout, with ain and aout the semi-
major axes of the inner and outer orbit, respectively (Kozai 1962;
Lidov 1962; Harrington 1968, 1969; Ford, Kozinsky & Rasio 2000;
Eggleton & Kiseleva-Eggleton 2001; Laskar & Boué 2010; Naoz
et al. 2013a). We note that hierarchical systems with more com-
plex configurations have also been studied using secular methods
by Touma, Tremaine & Kazandjian (2009) and Boué & Fabrycky
(2014). We expand the Hamiltonian in terms of the separation ratios
rA/rB, rB/rC and rA/rC, where the separation vectors rA, rB and
rC are defined in terms of the position vectors of the four bodies
in equation (A2). By assumption, rC � rB � rA; therefore, these
ratios are small and such an expansion is appropriate. The expan-
sion is carried out to up and including fourth order in the separation
ratios, i.e. including terms proportional to (rA/rB)i(rB/rC)j(rA/rC)k,
where 0 ≤ i + j + k ≤ 4. The details are given in Appendix A1.
For completeness, in addition to the configuration of a triple system
orbited by a fourth body that is the focus of this paper, we have
included results for the configuration of two binaries orbiting each
other’s barycentre in Appendix A2.

As derived in Appendix A1, at the lowest order, i + j + k = 1,
the Hamiltonian consists of three terms that reduce to the binary
binding energies of the three binaries A, B and C, assuming Kepler
orbits. These terms therefore do not lead to secular orbital changes.
At the next order, the ‘quadrupole’ order (i + j + k = 2),1 we
find three terms, each of which is mathematically equivalent to the
quadrupole-order Hamiltonian in the three-body problem. These
three terms can also be obtained from the three-body quadrupole-
order Hamiltonian by appropriate substitutions of the masses and
separation vectors.

More specifically, the (non-averaged) three-body Hamiltonian at
the quadrupole order is given by

Hquad = −Gm1m2m3

m1 + m2

1

rout

(
rin

rout

)2 1

2

[
3 (r̂ in · r̂out)

2 − 1
]
, (1)

where r in and rout are the separation vectors of the inner and outer
binary, respectively. In our four-body system, the Hamiltonian, to

1 The term ‘quadrupole’ is not to be confused with ‘quadruple’.
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the corresponding level of approximation, is given by three terms.
These are each obtained from equation (1) by the following substi-
tutions of separation vectors,

(i) r in → rA and rout → rB (AB);
(ii) r in → rB and rout → rC (BC);
(iii) r in → rA and rout → rC (AC),

and masses

(i) (no substitutions) (AB);
(ii) m1 → m1 + m2, m2 → m3 and m3 → m4 (BC);
(iii) m3 → m4 (AC).

In the quadrupole-order approximation, there are no terms ap-
pearing in the Hamiltonian that depend on all three position vectors
rA, rB and rC. This is no longer the case for the next order, the
‘octupole’ order (i + j + k = 3). For the latter order, we find three
terms that correspond to the octupole-order terms in the three-body
problem, and that can be obtained directly from the substitutions
given above. In addition, we find a term that is a function of rA, rB

and rC. We will refer to such terms as ‘cross terms’. The cross term
at octupole order is given by

Hoct, cross = Gm1m2m3m4

(m1 + m2)(m1 + m2 + m3)

1

rC

(
rA

rC

)2 (
rB

rC

)

×1

2

[
15 (r̂B · r̂C) (r̂A · r̂C)2 − 3 (r̂B · r̂C)

− 6 (r̂A · r̂C) (r̂A · r̂B)] . (2)

In the systems of interest here, the three terms in the Hamiltonian
that can be obtained by the substitutions discussed above from the
corresponding terms in the three-body problem, are generally domi-
nated by the terms that apply to the binary combinations AB and BC.
This is because, by assumption, rA/rB � rA/rC and rB/rC � rA/rC.
For the same reason, the octupole-order cross term, which is pro-
portional to (rA/rC)2(rB/rC), is also typically small. However, in
the three-body problem, the octupole-order term vanishes for equal
masses in the inner binary (cf. equation A7c). This implies that the
octupole-order terms associated with the binary combinations AB
and BC vanish if m1 = m2 and m1 + m2 = m3, and suggests that the
octupole-order cross term could be important in that case.

To investigate this further, we have also derived the terms of
the next higher order, i + j + k = 4 (henceforth ‘hexadecupole’
order). Analogously to the lower orders, we find three terms that
depend only on quantities of two of the binaries and that satisfy the
substitutions given above. Their general form is given by

Hhd = −Gmm′m′′ (m2 − mm′ + m′2)
(m + m′)3

1

rout

(
rin

rout

)4

×1

8

[
35 (r̂ in · r̂out)

4 − 30 (r̂ in · r̂out)
2 + 3

]
. (3)

These terms do not cancel if the masses in the inner binary are equal;
in fact, they do not cancel for any non-trivial combination of masses
m and m′. In addition to these terms, we find two terms that depend
on quantities pertaining to all three binaries, i.e. two cross terms.
Expressions for the latter terms are given in equations (A7f) and
(A7g). Although in this work, we do not include the hexadecupole-
order terms in numerical integrations, we use our results of the
hexadecupole-order Hamiltonian to evaluate the relative importance
of the octupole-order cross term in Section 2.4.

2.2 Orbit averaging

We carried out an orbital averaging of the Hamiltonian expanded to
up and including the hexadecupole order. For the cross terms, this
entails averaging over three orbits. We assumed unperturbed Kepler
orbits.

A major advantage of the orbit-averaged approach compared to
direct N-body integration, is the strongly reduced computational
cost, in particular if the integration time is long compared to the
orbital periods, and if a large number of systems is to be integrated.
Furthermore, the orbit-averaged approach is a key instrument for
the (semi)analytic understanding of the long-term behaviour (i.e.
much longer than the orbital periods), as demonstrated e.g. below
in Section 3.4.2.

The main disadvantage is that the dynamics on suborbital time-
scales are averaged over, therefore potentially missing important
effects (Antonini & Perets 2012; Antonini et al. 2014; Antognini
et al. 2014). These effects can particularly be important in systems
that are close to the limit of dynamical stability. However, for highly
hierarchical systems, we do not expect these effects to be important,
and these systems are the main focus of this work. In our numerical
integrations, we check for the condition when the orbit-averaged
approach likely breaks down (cf. Section 2.3).

In the orbit-averaging procedure, we express the angular mo-
menta and orientations of each of the three binaries in terms of
the triad of perpendicular orbital state vectors ( j k, ek, qk), where
qk ≡ j k × ek and k ∈ {A, B, C}. Here, j k is a vector aligned with
the angular momentum vector of the orbit and which has magni-
tude jk =

√
1 − e2

k ; ek is the eccentricity, or Laplace–Runge–Lenz
vector, that is aligned with the major axis and which has magnitude
ek, the orbital eccentricity.

The orbit-averaged Hamiltonian is given in equation (A10). For
further details, we refer to Appendix A1.

2.3 Equations of motion and numerical algorithm

The equations of motion for the orbital vectors j k and ek of the three
binary orbits are obtained by taking gradients of the orbit-averaged
Hamiltonian H (Milankovitch 1939, see also e.g. Musen 1961;
Allan & Ward 1963; Allan & Cook 1964; Breiter & Ratajczak 2005;
Tremaine, Touma & Namouni 2009; see Rosengren & Scheeres
2014 for a recent overview),

d j k

dt
= − 1

�k

[
j k × ∇ jk H + ek × ∇ek

H
]

; (4a)

dek

dt
= − 1

�k

[
ek × ∇ jk H + j k × ∇ek

H
]
. (4b)

Here, �k = mm′√Gak/(m + m′), with (m, m′) = (m1, m2)
for k = A, (m, m′) = (m1 + m2, m3) for k = B and (m,
m′) = (m1 + m2 + m3, m4) for k = C.

To solve the equations of motion, we have developed a code writ-
ten in C++, SECULARQUADRUPLE, that numerically solves the system
of ordinary differential equations (ODEs) equations (4), to up and
including octupole order. Because the ODEs are generally highly
stiff, we used CVODE (Cohen, Hindmarsh & Dubois 1996), a library
specifically designed to solve stiff ODEs. Our code is interfaced
within the AMUSE framework (Pelupessy et al. 2013; Portegies Zwart
et al. 2013). This allows for convenient comparison with direct N-
body integration, i.e. without using the secular approximation, using
any of the many N-body codes available in AMUSE. In addition, this
facilitates the inclusion of effects modelled by other codes such as

MNRAS 449, 4221–4245 (2015)



4224 A. S. Hamers et al.

stellar and binary evolution. A test of the code for a hierarchical
triple system is given in Appendix B.

In the integrations with SECULARQUADRUPLE below, we included
terms up and including octupole order, but without the octupole-
order cross terms. Here, we consider highly hierarchical systems,
and it is shown in Section 2.4 that for these systems the octupole
cross term does not dominate. Furthermore, neglect of this term is
justified by the agreement with the N-body simulations, as shown
in Section 2.5.

As mentioned above, situations can arise in which the orbit-
averaged approximation breaks down. In particular, this can occur
when the time-scale for changes of the angular momentum jk is
smaller than the orbital time-scale (Antonini & Perets 2012; An-
tonini et al. 2014). In SECULARQUADRUPLE, it is checked whether, at
any time in the integration, any of the three binaries A, B or C sat-
isfy this condition. This is implemented by means of a root-finding
procedure: the integration is stopped whenever tj, k ≤ Porb, k, where
Porb, k is the orbital period of binary k and tj, k is the time-scale for
the angular momentum of binary k to change by order itself, i.e.

tj,k =
∣∣∣∣ 1

jk

djk

dt

∣∣∣∣
−1

=
∣∣∣∣ ek

1 − e2
k

dek

dt

∣∣∣∣
−1

. (5)

Although in SECULARQUADRUPLE the equations of motion are solved
in terms of orbital vectors for numerical reasons, below we present
our results in terms of the (generally easier to interpret) orbital el-
ements (ek, ik, ωk, �k), where ik is the orbital inclination, ωk is
the argument of pericentre and �k is the longitude of the ascend-
ing node. The latter quantities are defined with respect to a fixed
reference frame (x, y, z), and related to the orbital vectors (êk, ĵ k)
according to

êk = [cos(�k) cos(ωk) − sin(�k) sin(ωk) cos(ik)] x̂

+ [sin(�k) cos(ωk) + cos(�k) sin(ωk) cos(ik)] ŷ

+ sin(ωk) sin(ik) ẑ;

ĵ k = sin(�k) sin(ik) x̂ − cos(�k) sin(ik) ŷ + cos(ik) ẑ. (6)

In particular, ik is defined as the angle between ĵ k and the z-axis of
the fixed reference frame. It is often useful to consider mutual incli-
nations ikl between two orbits, rather than the individual inclinations
ik and il. They are related according to

cos(ikl) = ĵ k · ĵ l

= cos(ik) cos(il) + sin(ik) sin(il) cos(�k − �l). (7)

We note that in the hierarchical three-body problem, it is customary
to define the orbital elements with respect to the invariable plane,
i.e. a plane containing the total angular momentum vector (e.g.
Naoz et al. 2013a). This implies �k − �l = π , and therefore the
simple relation ikl = ik + il can be applied. This is not the case here,
where the z-axis of our frame of reference is not parallel to the total
angular momentum. Therefore, one must resort to the more general
equation (7).

Relativistic effects are also implemented in our algorithm. An
important effect is relativistic precession of the argument of peri-
centre, associated with the Schwarzschild metric (Schwarzschild
1916). The associated time-scale for precession by 2π in binary k
to the lowest post-Newtonian (PN) order is given by

t1PN,k = 1

3
Porb,k

(
1 − e2

k

) ak

rg,k

, (8)

where rg, k ≡ Gmtot, k, with mtot, A = m1 + m2, mtot, B = m1 + m2 + m3

and mtot, C = m1 + m2 + m3 + m4, is the gravitational radius. To

take into account relativistic precession, the terms

dek

dt

∣∣∣∣
1PN

= ek

2π

t1PN,k

q̂k (9)

are added to the right-hand sides in equation (4b). Here, we neglect
any possible additional ‘interaction terms’ between different bina-
ries in the PN expansion that have been derived previously in the
hierarchical three-body problem (Naoz et al. 2013b; Will 2014a,b),
and that could also apply, in some form, to the configuration con-
sidered here.

2.4 The importance of the octupole-order cross terms

In Section 2.1, we derived a cross term in the Hamiltonian at oc-
tupole order. Here, we investigate further the importance of this term
with respect to other terms at the octupole and the next higher or-
der, the hexadecupole order. Long-term effects of the cross term can
only be investigated by carrying out numerical integrations in time.
However, a proxy for the short-term importance of the cross term is
the ratio r of the absolute value of the orbit-averaged cross term, to
the absolute value of all other orbit-averaged terms at octupole and
hexadecupole order, i.e.

r ≡ abs
[
H oct, cross

(
H oct,AB + H oct,BC + H oct,AC + H oct, cross

+H hd,AB+H hd,BC+H hd,AC+H hd, cross,1 + H hd, cross,2

)−1
]
. (10)

Here, H oct,kl and H hd,kl denote the orbit-averaged octupole-order
and hexadecupole-order terms corresponding to pair kl, respec-
tively. They can be obtained directly from the general expressions
equations (A10c) and (A10e), and using the substitutions discussed
above in Section 2.1.

In principle, r can be maximized with respect to the parameters
defining the properties and state of the quadruple system, i.e. with
respect to the four mi and the three ak, ek, êk and ĵ k (with the
orthogonality constraint êk · ĵ k = 0). This would yield the largest
possible contribution of the cross term. However, the dimensionality
(25) of this problem is very large, and this makes it computationally
very difficult to find the absolute maximum. Here, we simplify the
problem by restricting the parameter space.

In particular, we set x ≡ aB/aA = aC/aB, thereby reducing the
dependence of the three semimajor axes to a single quantity. For
given masses and eccentricities, we randomly sample the six unit
vectors êk and ĵ k with the orthogonality constraint êk · ĵ k = 0. We
compute r for 20 of such realizations and each x, and subsequently,
we compute the mean and standard deviations.

In Fig. 2, we show the resulting mean values (solid lines) and
mean values offset by the standard deviations (dashed lines) of r as
a function of x. We include four different combinations of masses
and eccentricities, which are enumerated in Table 1. The minimum
value of x for dynamical stability of the system is estimated by com-
puting the critical semimajor axis ratio for stability of the AB and
BC systems separately using the criterion of Mardling & Aarseth
(2001). The latter two ratios are indicated for each combination of
parameters in Fig. 2 with vertical dashed lines.

Regardless of our choice of parameters, r is typically small, in
the sense that for values of x large enough for dynamical stability,
r � 10−2. For highly hierarchical systems, i.e. x � 100, r � 10−4.
This indicates that typically the cross terms do not dominate the
dynamics, at least for the short-term evolution. We note, however,
that the octupole-order cross terms could give rise to important
dynamical effects on long time-scales in less hierarchical systems.

MNRAS 449, 4221–4245 (2015)



Secular dynamics of quadruple systems 4225

Figure 2. The ratio r of the absolute value of the orbit-averaged octupole-
order cross term in the Hamiltonian to the absolute value of all other orbit-
averaged terms at octupole and hexadecupole order (cf. equation 10), plotted
as a function of x = aB/aA = aC/aB. An averaging over the orientations
of the three binaries has been carried out (assuming random orbital orien-
tations), and four different combinations of masses and eccentricities are
assumed, which are given in Table 1. Solid lines: mean values of r for the
different realizations of orbital orientations; (non-vertical) dashed lines: the
same mean values, offset by the standard deviations (here, the absolute val-
ues are taken). Estimates for the minimum value of x for dynamical stability
(based on the Mardling & Aarseth 2001 criterion applied to the AB and
BC binaries) for each combination of parameters are indicated with vertical
dashed lines. Note that for some of the ‘high m4’ and ‘high e’ combinations,
these values are >102, and are therefore beyond the range of the figure.

Table 1. Different combinations of the masses and eccentrici-
ties included in Fig. 2. Note that r depends on the masses only
through their ratios, hence the mass unit is arbitrary.

Description m1 m2 m3 m4 eA eB eC

Reference 2 1 1 1 0.1 0.1 0.1
High e 2 1 1 1 0.99 0.99 0.99
No oct 1 1 2 1 0.1 0.1 0.1
High m4 2 1 1 106 0.1 0.1 0.1

2.5 Comparisons to direct N-body integrations

As a first demonstration of our algorithm, we show in Fig. 3 a
comparison of a short-term integration with SECULARQUADRUPLE (red
lines) and MIKKOLA (Mikkola & Merritt 2008), a highly accurate
direct N-body code that uses chain regularization (green lines).2

The assumed initial parameters were semimajor axes aA = 1 au,
aB = 5 × 102 au, aC = 5 × 103 au, masses m1 = m3 = m4 = 1 M�
and m2 = 0.5 M�, eccentricities eA = eB = eC = 0.5, inclina-
tions iA = 45◦, iB = 0◦ and iC = 135◦, arguments of pericen-
tre ωA = ωB = ωC = 0◦ and longitudes of the ascending nodes
�A = �B = �C = 0◦. Initially, i.e. during the first few KL oscilla-
tions in the AB pair, the two methods show very good agreement.
However, as time progresses, noticeable deviations develop.

This poses a problem when comparing the two methods in longer
integrations, i.e. for time-scales �PKL, AB, where PKL, AB is the
KL time-scale for the AB binary pair (cf. equation 11 below). To

2 We remark that for this type of systems, it is essential to use a highly
accurate N-body code because a large number of orbits, in particular in
binary A, needs to be integrated very accurately.

illustrate this, we show in the top row in Fig. 4 another example,
where the integration time is ∼60 PKL, AB. In this case, we set aA =
1au, aB = 102 au and aC = 5 × 103 au, m1 = m3 = m4 = 1 M� and
m2 = 0.5 M�, eA = eB = eC = 0.01, iA = iC = 85◦ and iB = 0◦,
ωA = ωB = ωC = 0◦ and �A = �B = �C = 0◦ (note that this system
is the same as in panels 1–6 of Fig. 6). In the top row of Fig. 4, the
quantities ek, ik, ωk, �k and the relative energy errors, pertaining
to integrations with SECULARQUADRUPLE (MIKKOLA), are shown with
red (green) lines. The differences in ek, ik, ωk and �k between the
integrations with these codes are shown as a function of time in
the middle row in Fig. 4. In this case, there is clearly no longer a
one-to-one agreement between the two methods.

When comparing these results on long time-scales (i.e. long com-
pared to PKL, AB), it is important to take into account that for this
system, the phase of the KL cycle in binary A becomes inher-
ently chaotic on a time-scale that is shorter than PKL, AB. To estab-
lish this, we determined the Lyapunov time-scale by carrying out
pairs of integrations where in one realization, the initial value of
eA = 0.01, was increased by �eA(0) = 10−4. We found that the
difference �eA(t) between the two integrations initially shows an
exponential behaviour as a function of time. Subsequently, we fit-
ted log [�eA(t)/�eA(0)] with time assuming a linear relation, i.e.
log [�eA(t)/�eA(0)] = C + λt where C is a constant, and we deter-
mined the Lyapunov time-scale tLy from the inverse of the resulting
slope, i.e. tLy = λ−1.

We find a Lyapunov time-scale of tLy ≈ 0.11 Myr for this system,
and this value is the same for either the secular and direct codes.
Reducing the accuracy in the secular integrations does not affect the
result, unless the accuracy is reduced such that the relative energy
errors increase to >0.1. We also verified that tL ≈ 0.11 Myr for
integrations with another N-body code, SAKURA (Gonçalves Ferrari,
Boekholt & Portegies Zwart 2014).

This value of 0.11 Myr is shorter than PKL, AB ≈ 1 Myr, which
suggests that the system is chaotic on a short time-scale. However,
we find that this chaoticity arises from a slightly different phase of
the KL cycle between the integrations with �eA(0) = 10−4, whereas
the shape of the eA(t) remains essentially the same. This result
suggests that for long time-scales, it is not meaningful to compare
the secular and N-body integrations on a one-to-one basis. However,
given that the chaotic behaviour discussed above is associated with
the phase of the KL cycle, it should still be appropriate to compare
the two methods statistically.

We also note that when comparing the two methods, it is impor-
tant to take into account that in the N-body integrations, there is an
additional dependence on the three initial orbital phases. We have
also carried out N-body integrations with different initial orbital
phases, where the initial mean anomaly was sampled randomly. We
show the differences between two different N-body realizations as
a function of time in the bottom row in Fig. 4. These differences
are typically at least as large as the differences between the secular
code, and a single realization with the N-body code. Furthermore,
we have determined the Lyapunov time-scale as described above,
where now �eA(t) was determined from two short-term N-body
integrations with different random mean anomalies. Again, we find
that �eA increases exponentially with time, with a Lyapunov time-
scale of tLy ≈ 0.1 Myr. Therefore, the differences between the direct
N-body integrations with different initial orbital phases can be as-
cribed to the chaotic nature of the phase of the KL cycles.

In Table 2, we show results of two-sided Kolmogorov–Smirnov
(K–S) tests (Kolmogorov 1933; Smirnov 1948) between time series
in ek, ωk and �k obtained from the integration carried out with
the secular code, and the integration of five different realizations
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Figure 3. Comparison between the evolution of a quadruple system as computed with the orbit-averaged code SECULARQUADRUPLE developed in this work
(red lines) and the direct N-body code MIKKOLA (Mikkola & Merritt 2008; green lines). The assumed initial parameters were semimajor axes aA = 1 au,
aB = 5 × 102 au and aC = 5 × 103 au, masses m1 = m3 = m4 = 1 M� and m2 = 0.5 M�, eccentricities eA = eB = eC = 0.5, inclinations iA = 45◦, iB = 0◦,
iC = 135◦, arguments of pericentre ωA = ωB = ωC = 0◦ and longitudes of the ascending nodes �A = �B = �C = 0◦. When applicable to a single binary, solid,
dashed and dotted curves correspond binaries A, B and C, respectively. When applicable to a binary pair, solid, dashed and dotted curves correspond to the
binary pairs AB, BC and AC, respectively. The quantity |�Etot/Etot| is the absolute value of relative error in the total energy (the orbit-averaged Hamiltonian
in the case of SECULARQUADRUPLE), and fk is the true anomaly (applicable only to the N-body simulations). The inset in the top-left panel shows a magnification
between t = 0 and 0.02 Myr. Note that the orbital period of binary A, PA ≈ 0.8 yr, is too short compared to the output resolution (≈500 yr) for fA to be
resolved. Also note that in the orbit-averaged code, the semimajor axes are constant by assumption, whereas the KL time-scales PKL, kl in principle depend on
time through the time-dependence of el (cf. equation 11). However, in this case, the dependence is extremely weak and not visible in the top-right panel.

Figure 4. Top row: comparison between the evolution as computed with the orbit-averaged code SECULARQUADRUPLE (red lines) and the direct N-body code
MIKKOLA (Mikkola & Merritt 2008; green lines). The system parameters are aA = 1au, aB = 102 au and aC = 5 × 103 au, m1 = m3 = m4 = 1 M� and
m2 = 0.5 M�, eA = eB = eC = 0.01, iA = iC = 85◦ and iB = 0◦, ωA = ωB = ωC = 0◦ and �A = �B = �C = 0◦ (the same as in panels 1–6 of Fig. 6). Middle
row: the differences in ek, ik, ωk and �k between the secular code and one realization of the N-body code, as a function of time. Bottom row: the differences in
ek, ik, ωk and �k between two realizations with the N-body code with different initial orbital phases fk. Relative energy errors are shown in the last column.
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Table 2. Results of two-sided K–S tests (statistic D and the p-value) for time series in ek, ωk and �k for the integrations shown in Fig. 4. In the first row,
the secular code is compared to one realization of the N-body code, MIKKOLA (Mikkola & Merritt 2008). In the second row, the secular code is compared to
five realizations of the N-body code (i.e. with different initial mean anomalies), and given are the resulting values of D and p averaged over individual K–S
tests. In the third row, two realizations of the N-body code are compared, and in the fourth row, K–S tests are carried out for all combinations of the five
realizations of the N-body codes, and the quoted values of D and p are averaged over these combinations.

ek ωk �k

A B C A B C A B C
K–S pair D p D p D p D p D p D p D p D p D p

SN1 0.1 0.38 0.16 0.03 0.94 0.0 0.38 0.0 0.19 0.01 0.07 0.0 0.04 1.0 0.06 0.9 0.02 1.0
〈SN〉 0.08 0.65 0.18 0.02 0.73 0.0 0.34 0.11 0.17 0.02 0.09 0.58 0.05 0.95 0.07 0.85 0.02 1.0
NN1 0.09 0.46 0.11 0.31 0.1 0.38 0.45 0.0 0.04 1.0 0.08 0.38 0.04 1.0 0.06 0.96 0.01 1.0
〈NN〉 0.09 0.55 0.12 0.43 0.35 0.14 0.49 0.08 0.05 0.95 0.12 0.36 0.05 0.97 0.06 0.88 0.02 1.0

with the N-body code (i.e. with different initial mean anomalies).
For K–S tests between the secular and N-body integrations, and
K–S tests between N-body integrations with different realizations,
the D-values are generally low and the p-values are typically high.
This shows that the integrations between the secular and N-body
integrations are statistically consistent, and that the same applies to
the N-body integrations with different realizations.

We conclude that, for the highly hierarchical systems considered
here, the secular code gives results that are statistically consistent
with the direct N-body code. The much greater speed makes the
former highly suited for the long-term study of a large number
of systems. For example, the integration with SECULARQUADRUPLE

for one of the systems in Fig. 4 is ∼104 times faster compared to
MIKKOLA.

3 G L O BA L EVO L U T I O N O F H I G H LY
H I E R A R C H I C A L S Y S T E M S

In principle, the SECULARQUADRUPLE algorithm can be used to per-
form a systematic parameter space study. Instead, here we choose
to focus in detail on particular configurations to get insight into the
typically complex dynamics that can arise. We consider the follow-
ing two cases: (1) binaries A and B are initially coplanar (iAB, 0 = 0◦)
and highly inclined with respect to binary C (iBC, 0 = 85◦), and (2)
binaries A and B are initially highly inclined (iAB, 0 = 85◦) while bi-
nary B is also highly inclined with respect to binary C (iBC, 0 = 85◦).
In both cases, we assume that the quadruple system is highly hi-
erarchical at all times, i.e. rp, A � rp, B � rp, C, where rp, k is the
pericentre distance in binary k.

For both cases (1) and (2), we performed a sequence of in-
tegrations in which aA was varied between 10−3 and 1 au, and
all other initial parameters were kept fixed. The latter were as-
sumed to be semimajor axes aB = 102 au and aC = 5 × 103 au,
masses m1 = m3 = m4 = 1 M� and m2 = 0.5 M�, eccentricities
eA = eB = eC = 0.01, arguments of pericentre ωA = ωB = ωC = 0◦

and longitudes of the ascending nodes �A = �B = �C = 0◦.
The integration time for each system was set to 20 PKL, BC, 0, where
PKL, BC, 0 is the initial KL time-scale applied to binaries B and C,
which we approximate by (Innanen et al. 1997)

PKL,kl = P 2
l

Pk

mk,p + mk,s + ml,s

ml,s

(
1 − e2

l

)3/2
, (11)

where mk, p = m1, mk, s = m2 and ml, s = m3 in the case of PKL, AB,
and mk, p = m1 + m2, mk, s = m3 and ml, s = m4 in the case of
PKL, BC (cf. Section 2.1). Note that, contrary to triple systems and at
the quadrupole-order approximation, the ‘outer’ orbit eccentricity
el in equation (11) can change in time if this equation is applied to
binaries A and B. This is addressed in more detail below.

For hierarchical triple systems, the octupole parameter

εoct ≡ m1 − m2

m1 + m2

ain

aout

eout

1 − e2
out

(12)

is a useful proxy for the importance of octupole-order effects, in
particular, orbital flips. The latter can occur if εoct � 10−3, and are
typically associated with very high eccentricities (Katz, Dong &
Malhotra 2011; Lithwick & Naoz 2011; Teyssandier et al. 2013; Li
et al. 2014b). In the systems considered here, the initial octupole
parameters εoct range between ≈3.3 × 10−8 and ≈3.3 × 10−5 for
binary pair AB; for binary pair BC, εoct ≈ 4.0 × 10−5. This indi-
cates that octupole-order terms are not important. Furthermore, the
initial ratio r0 of the orbit-averaged octupole-order cross term to all
other orbit-averaged terms at octupole and hexadecupole order (cf.
Section 2.4) ranges between ≈2 × 10−12 and ≈3 × 10−7, indicat-
ing that the orbit-averaged octupole-order cross term can similarly
be neglected. The results presented below therefore demonstrate the
dynamics that are manifested at the lowest possible, i.e. quadrupole,
order.

3.1 Examples: A and B initially coplanar

In our first case, iAB, 0 = 0◦ and iBC, 0 = 85◦, which is achieved by
setting the initial iA = iB = 0◦ and iC = 85◦ (note that, initially,
�A = �B = �C). In the absence of the fourth body, there would not
be any excitation of the eccentricity in binaries A and B because
they are not mutually inclined and only the quadrupole-order terms
are important. We note that if the initial eB = 0.01 were much larger
(and therefore εoct would be much higher, cf. equation 12), owing to
the greater importance of the octupole-order terms, orbital flips and
very high eccentricity oscillations in binary A would be possible in
certain conditions, even if iAB, 0 is close to zero (Li et al. 2014a). We
show in Fig. 5 three examples of numerically integrated systems, in
which aA is either 1 (panels 1–6), 0.001 (panels 7–12) or 0.023 au
(panels 13–18).

For aA = 1 au, the mutual inclination between binaries A and B,
iAB, remains zero (cf. the solid line in panel 3 of Fig. 5). However,
the individual inclinations of binaries A and B, iA and iB, which are
initially zero, do change (cf. the solid and dashed lines in panel 4 of
Fig. 5; note that these curves overlap). This can be understood from
the large torque of binary B on binary A, compared to the torque of
binary C on binary B. More quantitatively, the KL time-scales can
be interpreted as proxies for the importance of these torques, and
the initial KL time-scale for binaries A and B, PKL, AB, 0 ≈ 1.2 Myr,
is much shorter (i.e. corresponding to a larger torque) than the ini-
tial KL time-scale for binaries B and C, PKL, BC, 0 ≈ 2 × 102 Myr.
The large torque of binary B on binary A enforces that zero mutual
inclination between these binaries is maintained, despite the torque
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Figure 5. Evolution of three quadruple systems as discussed in Section 3.1, computed with SECULARQUADRUPLE. Binaries A and B are initially coplanar (as
opposed to highly inclined in Fig. 6). Reference numbers are shown in the top left of each panel. Panels 1–6, 7–12 and 13–18 correspond to semimajor axes
of binary A of 1, 0.001 and 0.023 au, respectively. The other initial parameters are the same for these groups of panels, and are given by semimajor axes
aB = 102 au and aC = 5 × 103 au, masses m1 = m3 = m4 = 1 M� and m2 = 0.5 M�, eccentricities eA = eB = eC = 0.01, inclinations iA = iB = 0◦, iC = 85◦,
arguments of pericentre ωA = ωB = ωC = 0◦ and longitudes of the ascending nodes �A = �B = �C = 0◦. In panels 2 and 5, the abscissae in the inset range
between t = 0 and 200 Myr.
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from binary C on binary B. The latter torque changes the individual
inclination of binary B on the time-scale of PKL, BC � PKL, AB. Note
that the mutual inclination is determined by the individual inclina-
tions ik and longitudes of the ascending nodes �k (cf. equation 7).
Therefore, both these angles for binaries A and B follow each other
very closely (cf. panels 4 and 6 of Fig. 5).

If binary A were replaced by a point mass, the eccentricity in
binary B would oscillate as a result of the torque from binary C, with
maxima of 1 − eB,max ≈ 10−2. However, in the case of a quadruple
system, the short KL time-scale in binary A with binary B causes
rapid precession in both binaries A and B, on roughly the same
time-scale (cf. the black solid and blue dashed lines in panel 5 of
Fig. 5). Consequently, the rapid precession in binary B quenches
any KL oscillations induced by the torque of binary C. This effect is
analogous to the quenching of KL oscillations in triple systems due
to additional sources of periapse precession. Here, the additional
precession is due to the extended nature of one of the components
in the inner binary, rather than due to e.g. relativistic precession or
tidal bulges. This quenching effect is discussed more quantitatively
below, in Section 3.4.

In panels 7–12 of Fig. 5, we show the evolution of an example sys-
tem with aA = 10−3 au. The initial KL time-scale for binaries A and
B is PKL, AB, 0 ≈ 39 Gyr � PKL, BC, 0 ≈ 2 × 102 Myr. Therefore, there
is no induced precession of binary A on binary B, and KL eccentric-
ity oscillations occur in binary B with maxima of 1 − eB,max ≈ 10−2

(cf. the dashed lines in panel 8 of Fig. 5). Furthermore, the torque of
binary C on binary B dominates compared to the torque of binary
B on binary A. Consequently, the inclination of binary B changes
rapidly, whereas the inclination of binary A hardly changes (cf. the
solid and dashed lines in panel 10 of Fig. 5). However, this also
changes the mutual inclination iAB between binaries A and B. The
latter increases very rapidly (cf. the solid line in panel 9 of Fig. 5).
Nevertheless, binaries A and B are only highly mutually inclined
(iAB close to 90◦) for short periods of time, and therefore, no sig-
nificant eccentricity oscillations occur in binary A. In other words,
the latter oscillations are impeded by rapid changes of the mutual
inclination between binaries A and B, because of KL oscillations
induced by binary C.

Finally, in panels 13–18 of Fig. 5, aA ≈ 0.023 au. The initial KL
time-scales for the binary pairs AB and BC are comparable, i.e.
PKL, AB, 0 ≈ 3 × 102 Myr ∼ PKL, BC, 0 ≈ 2 × 102 Myr, and therefore
the torques of binary B on binary A and of binary C on binary B are
also comparable. Binaries A and B become mutually inclined, and
the KL time-scale for the AB pair is short enough for large excitation
of the eccentricity of binary A. The result is a complex evolution
in which the oscillations in eA are highly non-regular and strongly
coupled with the oscillations of eB. Interestingly, although binaries
A and B started out with a mutual inclination of iAB, 0 = 85◦ < 90◦,
the orientation between binaries A and B at t ∼ 400 Myr changes
from prograde to retrograde. Such orbital flips also occur at later
times, and are associated with high eccentricities in binary A. The
evolution of the eccentricity of binary B is also affected, although
the effect is much smaller and the oscillations can still be considered
as regular. In Section 3.4, we study the effect of the eccentricity of
binary B in more detail.

3.2 Examples: A and B initially highly inclined

In our second case, we assume that both binaries A and B and
binaries B and C are initially highly inclined, i.e. iAB, 0 = 85◦ and
iBC, 0 = 85◦, which is achieved by setting iA = iC = 85◦ and iB = 0◦.
The evolution of three example systems, with other parameters
identical to those in Section 3.1, is shown in Fig. 6. In the absence of

the fourth body, high-eccentricity KL oscillations would be induced
in binary A.

For aA = 1 au (panels 1–6 of Fig. 6), PKL, AB � PKL, BC, and for
time-scales comparable to PKL, AB, KL eccentricity oscillations in
binaries A and B are hardly affected by the torque of binary C. On
much longer time-scales comparable to PKL, BC, iB changes because
of the torque of binary C (cf. the blue dashed line in panel 4 of Fig. 6).
However, the KL eccentricity oscillations between binaries A and B
are not noticeably affected (note that in panels 2–6 of Fig. 6, the KL
oscillations associated with binaries A and B are undersampled).
Consequently, iA, iB, �A and �B are modulated on the PKL, BC time-
scale. We note that, as a consequence of KL oscillations in the AB
pair, there is still short-time-scale precession induced on binary B,
preventing any eccentricity excitation in binary B. This is similar to
the previous case when binaries A and B are initially coplanar.

For aA = 0.001 au (panels 7–12 of Fig. 6), the evolution is qual-
itatively very similar to the case when iAB, 0 = 0◦. This may be
surprising, given the high initial mutual inclination between bina-
ries A and B. However, the latter changes strongly on the much
shorter time-scale of PKL, BC, and this prevents any eccentricity ex-
citation in binary A. Note that in this case, the quenching of KL
eccentricity oscillations in binary A is not due to induced preces-
sion. As can be seen in panel 11 of Fig. 6, ωA is not much affected
on the PKL, BC time-scale, although there is also a trend on a much
longer time-scale of ∼4 × 103 Myr. The KL time-scale for the AB
pair changes periodically as eB oscillates (cf. panel 7 of Fig. 6).
Therefore, the time-scale of ∼4 × 103 Myr can, in this case, be
interpreted as an effective KL time-scale for the AB pair.

When the KL time-scales for the AB and BC pairs are similar
(cf. panels 13–18 of Fig. 6), the evolution of eA is complex and high
eccentricities are attained, similarly to the case when iAB, 0 = 0◦.
Again, an orbital flip occurs around t ∼ 400 Myr. Interestingly,
subsequently there are no orbital flips, and the amplitude of the
oscillations in eA and iAB gradually decreases.

3.3 Qualitative trends

The above examples suggest that the ratio of the (initial) KL time-
scales for the AB and BC pairs,

R0 ≡ PKL,AB,0

PKL,BC,0

=
(

a3
B

aAa2
C

)3/2(
m1+m2

m1+m2+m3

)1/2
m4

m3

(
1 − e2

B,0

1 − e2
C,0

)3/2

, (13)

is an indication of the global trend of the inclination and eccentricity
oscillations. We identify the following three regimes.

(i) R0 � 1: binaries A and B remain coplanar if this was initially
the case. If they are initially inclined, KL eccentricity oscillations
in binary A are not much affected by the presence of the fourth
body. In either case, KL eccentricity oscillations in binary B are
quenched.

(ii) R0 � 1: binaries A and B become inclined if they are initially
coplanar. However, there are no eccentricity oscillations in binary
A, even if binaries A and B are initially highly inclined. This is
because the mutual inclination between binaries A and B is large
only for a small fraction of the KL time-scale for the AB pair, i.e.
for a time of < PKL,BC,0 = PKL,AB,0/R0 � PKL,AB,0. Furthermore,
KL eccentricity oscillations are not quenched in binary B.

(iii) R0 ∼ 1: binaries A and B become inclined if they are ini-
tially coplanar; complex KL eccentricity oscillations arise in binary
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Figure 6. Evolution of three quadruple systems as discussed in Section 3.2, computed with SECULARQUADRUPLE. Binaries A and B are initially inclined by
85◦ (as opposed to 0◦ in Fig. 5). Panels 1–6, 7–12 and 13–18 correspond to semimajor axes of binary A of 1, 0.001 and 0.023 au, respectively. The other
parameters are the same for these groups of panels, and are given by semimajor axes aB = 102 au and aC = 5 × 103 au, masses m1 = m3 = m4 = 1 M� and
m2 = 0.5 M�, eccentricities eA = eB = eC = 0.01, inclinations iA = iC = 85◦, iB = 0◦, arguments of pericentre ωA = ωB = ωC = 0◦ and longitudes of the
ascending nodes �A = �B = �C = 0◦. In panels 2, 3, 5 and 6, the abscissae in the insets range between t = 0 and 300 Myr.
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Figure 7. The maximum eccentricities in binaries A and B (first and third panels from the top), the maximum inclination between binaries A and B (second
panels from the top), and the minimum inclination between binaries B and C (fourth panels from the top), as a function of the ratio R0 of the KL time-scales for
the AB and BC pairs (cf. equation 13). Here, R0 is varied by changing the initial aA and keeping the other initial semimajor axes, masses and eccentricities fixed.
In both left- and right-hand panels, the initial conditions are the same as in Section 3.1 and Section 3.2, i.e. semimajor axes aB = 102 au and aC = 5 × 103 au,
masses m1 = m3 = m4 = 1 M� and m2 = 0.5 M�, eccentricities eA = eB = eC = 0.01, arguments of pericentre ωA = ωB = ωC = 0◦ and longitudes of the
ascending nodes �A = �B = �C = 0◦. In the left (right) panels, binaries A and B are assumed to be initially coplanar (inclined by 85◦), i.e. in the left-hand
panel, iA = iB = 0◦ and iC = 85◦, whereas in the right-hand panel, iA = iC = 85◦ and iB = 0◦. Black dots: computed with SECULARQUADRUPLE (the integration
time was 20 PKL, BC); solid lines: computed using the semianalytic method discussed in Section 3.4.2.

A that are coupled with the – much less affected – KL eccentricity
oscillations in binary B.

These three regimes correspond to panels 1–6, 7–12 and 13–18
in Figs 5 and 6.

A complication in the above, is that PKL, AB can change periodi-
cally with time because of KL eccentricity oscillations in binary B
(cf. equation 11). Periodically higher values of eB reduce PKL, AB at
the same times, therefore potentially increasing the range of R for
which the eccentricity in binary A can be excited. Furthermore, for
large enough values of eB, higher order terms in the Hamiltonian
become more important, and in extreme cases, the orbit-averaged
approach could break down.

In principle, the time-dependence of eB could be taken into ac-
count by e.g. averaging PKL, AB over a KL cycle in binary B. How-
ever, except for a few simple cases, there are no analytic solutions
for eB(t). Therefore, this would require numerical integration and
hence not be of much practical use for predicting the behaviour
without resorting to such integration. Nevertheless, because of the
very peaked nature of eB(t) and the small width (in time) of the
peaks, we expect the averaged value of PKL, AB typically not to be
very different from the value computed from eB, 0, at least in systems
in which the lowest order (quadrupole-order) terms dominate.

3.4 Quantitative dependence on R0

3.4.1 Results from numerical integrations

Here, we describe the dynamics outlined in Section 3.3 more quan-
titatively, focusing in particular on the effect of the quenching of
KL eccentricity oscillations in binary B by the induced precession
of binary A, and on the excitation of the eccentricity in binary A in
the regime R0 ∼ 1.

In Fig. 7, we show with black dots the maximum eccentrici-
ties in binaries A and B, the maximum inclination between bina-
ries A and B, and the minimum inclination between binaries B
and C as a function of R0, as determined from numerical inte-
grations with SECULARQUADRUPLE. Here, R0 is varied by changing
aA (cf. equation 13) in the sequence of integrations described in
the beginning of Section 3. In the left (right) panels, results are
shown assuming that binaries A and B are initially coplaner (highly
inclined).

For iAB, 0 = 0◦, iAB, max is zero forR0 � 1 and rapidly increases for
R0 � 1; eA, max is equal to the initial value forR0 � 1 and forR0 �
20. This is consistent with the trend that was outlined in Section 3.3.
Furthermore, if R0 � 10−2, eB, max ≈ 0, demonstrating that the
induced precession of system A on B in this regime can completely
quench any KL oscillations in binary B. Consequently, the minimum
inclination between binaries B and C is constant and ≈85◦, the
initial value (note that for the regular KL oscillations in binary B,
a maximum eccentricity corresponds to minimum inclination with
respect to binary C). If 1 � R0 � 20, iAB, max is non-zero; eA, max is
also non-zero and reaches high values of up to ≈1–10−4. Although
the behaviour of these two quantities as a function of R0 is non-
regular, there is a general trend in which iAB, max asymptotes to
≈160◦. A general trend is also apparent in eA, max.

If binaries A and B are initially inclined by 85◦ (cf. the right-
hand panels in Fig. 7), the dependence of eA, max as a function of R0

is more complicated. For a large range in R0, 3 × 10−2 � R0 �
50, eA, max fluctuates strongly with R0, reaching high values of 1
− eA, max ∼ 10−4 for R0 already as low as R0 ≈ 3 × 10−2. For
R0 � 50, eA, max approaches eA, 0, as was observed previously in
Section 3.2. Furthermore, binary B is more affected compared to
the coplanar case, in the sense that iBC, min decreases more strongly
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in the regime 1 � R0 � 20. The maximum eccentricity in binary
B is similar to the coplanar case, however.

3.4.2 Semianalytic description

The maximum eccentricity (and hence minimum inclination)
reached in binary B can be computed approximately using a semi-
analytic method based on conservation of the total energy (i.e. the
Hamiltonian) and the total angular momentum. This method is sim-
ilar to that used by Miller & Hamilton (2002), Blaes et al. (2002),
Fabrycky & Tremaine (2007) and Naoz et al. (2013a). We neglect
any changes in binary A between the initial and final states, where
the final state corresponds to a maximum eccentricity in binary
B. To our knowledge, it is not possible to predict (i.e. without re-
sorting to ‘brute-force’ numerical integrations as in Section 3.4.1)
these changes in system A, and this is likely related to the gen-
erally chaotic nature of the evolution of binary A, in particular in
the regime 1 � R0 � 20 (cf. Section 3.5). Stated more mathemati-
cally, conservation of total energy and angular momentum and the
condition that eB is stationary, do not generally provide enough
constraints to solve both for eB, max and the corresponding eA.

In the Hamiltonian to quadrupole order and for the hierarchy
considered here, the term corresponding to binaries A and C in the
Hamiltonian can safely be neglected. This can readily be seen from
equation (A10b): the three terms at quadrupole-order scale with the
semimajor axes according to

H quad,AB ∝ 1

aB

(
aA

aB

)2

; H quad,BC ∝ 1

aC

(
aB

aC

)2

;

H quad,AC ∝ 1

aC

(
aA

aC

)2

. (14)

Because, by assumption, aC � aB � aA, this implies that H quad,AC

can be neglected compared to H quad,AB and H quad,BC. The Hamil-
tonian to quadrupole order is therefore well approximated by (cf.
equation A10b)

H 0 = CABj−5
B

[(
1 − 6e2

A

)
j 2

B + 15
(
eA · jB

)2 − 3
(

jA · jB

)2
]

+ CBCj−5
C

[(
1 − 6e2

B

)
j 2

C + 15
(
eB · jC

)2 − 3
(

jB · jC

)2
]
,

(15)

where

CAB = 1

8

Gm1m2m3

m1 + m2

1

aB

(
aA

aB

)2

;

CBC = 1

8

G(m1 + m2)m3m4

m1 + m2 + m3

1

aC

(
aB

aC

)2

. (16)

The equation of motion for eB that follows from equation (15) is
given by (cf. equation 4)

deB

dt
= 6

�B

× [CABj−5
B

{(
jA · jB

) (
eB× jA

)+5
(
eA · jB

)
(eA×eB)

}
+CBCj−5

C

{(
jB · jC

) (
eB× jC

)−5
(
eB · jC

) (
jB× jC

)}]
.

A stationary value of eB corresponds to

0 = deB

dt
= êB · deB

dt
. (17)

Neglecting the terms proportional to CAB in equation (17), this con-
dition implies eB · jC = 0, and/or ( jB × jC) · eB = 0. The former

cannot be generally true in the case of a maximum eccentricity,
therefore the second condition must apply. The latter can be rewrit-
ten using the vector identity equation (A11) as(

êB · ĵC

)2 = 1 − ( ĵB · ĵC

)2
. (18)

The mutual inclination between binaries B and C can be related to
eB using conservation of the total angular momentum vector,

Ltot = �A jA + �B jB + �C jC. (19)

At this level of approximation,

∇eCH 0 = 0, (20)

therefore

deC

dt
= êC · deC

dt
= − 1

�C

[
êC · (eC × ∇ jC

H 0

)] = 0, (21)

and eC is constant. Neglecting the term corresponding to binary A
and writing eC = eC, 0, equation (19) gives

ĵB · ĵC = 1

2
√

1 − e2
B

√
1 − e2

C,0

[
2
√

1 − e2
B,0

√
1 − e2

C,0

× (
ĵB · ĵC

)
0
+ �B

�C

(
e2

B − e2
B,0

)]
. (22)

Furthermore, if any changes in binary A between the initial and final
state are neglected, then the remaining unknown terms in equation
(15) are simply given by eA = eA, 0, jA · jB = ( jA · jB)0 and eA ·
jB = (eA · jB)0.

With these simplifications, equation (15) only contains the single
unknown quantity eB corresponding to stationary points. In general,
this equation cannot be solved analytically. A notable exception is
when the term proportional to CAB in equation (15) is neglected (i.e.
neglecting the contribution from binary A), as is the term propor-
tional to �B/�C in equation (22) (i.e. assuming a highly hierarchical
system). In that case, the solution corresponding to the maximum
eccentricity is

eB,max =
√

1 − 5

3

(
ĵB · ĵC

)2

0
, (23)

which is a well-known result for hierarchical triple systems applied
to binaries B and C, and where binary A is essentially replaced by a
point mass (note that ĵB · ĵC = cos[iBC]). More general numerical
solutions are shown in the bottom two panels of Fig. 7 with the solid
lines, where iBC, min is computed using equation (22). Although the
semianalytic curves do not capture the detailed behaviour of eB, max

and iBC, min in the regime 1 � R0 � 20, for other R0 they agree
well with the results obtained from the numerical integrations with
SECULARQUADRUPLE.

3.5 Behaviour near R0 = 1

It is apparent from Fig. 7 that near R0 = 1, the behaviour of the
maximum eccentricities of binaries A and B as a function of R0 is
complex and non-regular. Here, we briefly discuss in more detail
the behaviour in this regime based on numerical integrations with
SECULARQUADRUPLE.

In Fig. 8, we show the same quantities as in Fig. 7, now based
on 1000 numerical integrations within a smaller interval of R0 near
R0 = 1. In the coplanar case and for R0 � 1, there are distinct
peaks corresponding to enhanced eccentricities in both binaries A
and B at specific values of R0. For R0 � 1, individual peaks are
harder to distinguish. We speculate that the peaked behaviour is due
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Figure 8. Similar to Fig. 7, showing greater detail near R0 = 1.

to resonances in the arguments of pericentre of binaries A and B that
occur at specific integer ratios of the KL time-scales for the AB and
BC pairs. In addition, for R0 � 1 there may be an overlap of many
resonances, thereby producing a chaotic behaviour as a function of
R0 (Chirikov 1979). Interestingly, the peaks for R0 � 1 are much
less pronounced, if not completely absent, in the highly inclined
case.

These phenomena merit further study, but are beyond the scope
of this work.

3.6 General relativistic effects

In the results presented above, all four bodies were assumed to be
point masses and general relativistic effects were not included. In
Fig. 9, we show the results of integrations with SECULARQUADRUPLE

similar to those presented in Fig. 7, but now including 1PN preces-
sion in the equations of motion for all three binaries (cf. equation 9).
We note that in the sequence of integrations shown in the left- and
right-hand panels of Fig. 9, only aA is varied; consequently, both
t1PN, A (cf. equation 8) and PKL, AB (cf. equation 11) are affected.
For the smallest value of R0 in Fig. 9 (largest value of aA = 1 au,
cf. panels 1–6 in Figs 5 and 6), the initial t1PN, A ≈ 18.4 Myr and
PKL, AB ≈ 1.2 Myr. For the largest value of R0 in Fig. 9 (smallest
value of aA = 0.001 au, cf. panels 7–12 in Figs 5 and 6), the initial
t1PN, A ≈ 5.8 × 10−7 Myr and PKL, AB ≈ 3.9 × 104 Myr.

In the coplanar case, eccentricity oscillations in binary A are
quenched due to relativistic precession, even if R0 ∼ 1. We note,
however, that the purely Newtonian results can be rescaled to other
systems (in particular, with larger aA), in which case relativistic
precession in binary A becomes unimportant, whereas the purely
Newtonian secular dynamics remain unaffected modulo a rescaling
of the KL time-scales.

In the inclined case, the behaviour of the maximum eccentric-
ity in binary A is more complicated (cf. the right-hand panel of
Fig. 9). For the lowest R0, PKL, AB < t1PN, A as mentioned above.
As R0 is increased, the quantity eA, max decreases with increasing
R0, which is due to the increasing relative importance of 1PN pre-

cession compared to the torque of binary B. However, the decrease
of eA, max flattens around R0 ≈ 2 × 10−2. The latter value of R0

corresponds to a significant increase of eB, max. The flattening of
eA, max as a function of R0 can be explained by considering that as
eB, max increases, the KL time-scale for the AB pair decreases (cf.
equation 11). Consequently, the latter KL time-scale can become
comparable to the 1PN precession time-scale. Here, this is the case
for 2 × 10−2 � R0 � 10−1.

We show an example of this phenomenon in Fig. 10, where aA ≈
0.3 au and R0 ≈ 0.04 (full parameters are given in the caption). At
the maxima of eB, the KL time-scale for the AB binary pair (black
solid line in the top-left panel) decreases and becomes comparable
to the 1PN precession time-scale in binary A (red solid line in the
same panel). This gives rise to increased eccentricities in binary
A, to much higher values if eB were constant (cf. the top-middle
panel). This is a mechanism for – at least partially – overcoming the
well-known quenching of KL eccentricity cycles induced by 1PN
precession. Note, however, that in this case, there is only a narrow
region in R0 for which it is effective: as R0 increases, aA decreases,
therefore further decreasing t1PN, A.

We note that this phenomenon is general, in the sense that it
would also apply if precession in binary A is due to another effect,
e.g. tidal effects or mass transfer in stellar systems.

4 D I SCUSSI ON

4.1 Application: planetary systems

As mentioned in Section 1, the hierarchical configuration consid-
ered in this work can be applied to planetary systems consisting
of a planet+moon system (binary A) orbiting a central star (in bi-
nary B) that is orbited by a more distant and inclined planetary
or stellar companion (in binary C). Both binaries A and B are
assumed to be initially coplanar and circular. A pertinent ques-
tion is whether the torque exerted by the fourth body causes the
planet+moon system to become inclined with respect to the orbit
of the central star, or whether coplanarity is maintained. We note
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Figure 9. Similar to Fig. 7, but here with the inclusion of relativistic precession to 1PN order in all three binary systems.

Figure 10. Evolution for a system taken from Fig. 9, demonstrating the effect of ‘overcoming’ 1PN precession by the periodically enhanced eccentricity
of system B. The assumed initial parameters are semimajor axes aB = 0.305 au, aB = 102 au and aC = 5 × 103 au, masses m1 = m3 = m4 = 1 M� and
m2 = 0.5 M�, eccentricities eA = eB = eC = 0.01, inclinations iA = iC = 85◦ and iB = 0◦, arguments of pericentre ωA = ωB = ωC = 0◦ and longitudes of
the ascending nodes �A = �B = �C = 0◦. In the top-left panel, the solid red line shows the 1PN precession time-scale in binary A (cf. equation 8).

that this is different from the question that has been addressed in
the past in which case a different hierarchy was assumed, i.e. all
bodies within the stellar binary were assumed to orbit the central
star (Innanen et al. 1997; Takeda & Rasio 2005; Takeda, Kita &
Rasio 2008).

Based on the qualitative results presented in Section 3.3, we
expect that coplanarity between binaries A and B is maintained if
PKL, AB, 0 � PKL, BC, 0, i.e. if the binary companion is distant from the
planetary orbit. In addition, we expect KL eccentricity oscillations
in the orbit of the planet+moon system with respect to the central
star due to the torque of the binary companion to be quenched.
This effect could prevent the latter orbit from becoming highly
eccentric, i.e. the presence of the moon could ‘shield’ the planet

from disruption by the star as a consequence of KL oscillations
induced by the binary companion.

On the other hand, if PKL, AB, 0 � PKL, BC, 0, the binary compan-
ion is close to the planetary orbit, and the planet+moon system can
become inclined with respect to the orbit of the central star. How-
ever, in the latter case, the KL time-scale for the AB pair is long
compared to that of the BC pair, such that there is no eccentricity
excitation in the planet+moon system. In the intermediate regime
where PKL, AB, 0 ∼ PKL, BC, 0, we expect significant eccentricity os-
cillations in the planet+moon system. These oscillations could lead
to efficient tidal dissipation in cases where this would otherwise not
have been important, and, in extreme cases, even to planet+moon
collisions.
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Figure 11. Exploration of the parameter space where eccentricity oscillations could be induced in a planet+moon system orbiting a central star that is orbited
by an inclined binary companion (cf. Section 4.1). Blue, red and green lines correspond to semimajor axes aB of the planet+moon system with respect to
the central star of 1, 4 and 10 au, respectively. The ranges of aC for which 1 < R0 < 20 are indicated with vertical thick coloured solid lines. Values of aC

corresponding to dynamical stability of the BC pair (according to the criterion of Mardling & Aarseth 2001) are indicated with vertical thick coloured dashed
lines. The regions where we expect that the eccentricity of the planet+moon system is excited, are indicated with hatches. Near the hatches regions, the
horizontal solid lines show PKL, AB, 0, whereas the sloped solid lines show PKL, BC, 0. The black horizontal dotted lines indicate the time-scale for relativistic
precession in binary A. In addition to these time-scales, we show with non-vertical coloured dashed lines the maximum eccentricity in binary B, computed
using the method of Section 3.4.2, and assuming iBC, 0 = 85◦. The horizontal coloured solid lines show the value of 1 − eB for which the planet+moon system
is expected to be disrupted by the central star. In the top two panels, the black bullets correspond to the two example systems discussed in Section 4.1.2.

We explore in Section 4.1.1 some of the parameter space where
significant KL eccentricity oscillations in the planet+moon system
are expected, and give a number of examples in Section 4.1.2. A
comprehensive population synthesis study is beyond the scope of
this paper.

4.1.1 Expectations based on time-scale arguments

We assume a Jupiter-mass planet, m1 = MJ, a moon with mass
m2 = 10−4 m1 (the order of magnitude of the mass of Jupiter’s
heaviest moons), a central star with mass m3 = 1 M�, and a binary
companion with mass m4 = 0.5 M�. The radii (of interest when
considering collisions) are assumed to be R1 = RJ, R2 = 10−2 R1

and R3 = 1 R�.
The semimajor axis of the planet+moon system is assumed to

be either aA = 10−3 au or aA = 10−2 au; the semimajor axis aB

of the latter system with respect to the central star is either 1, 4
or 10 au. The eccentricities of binaries A and B are assumed to
be eA = eB = 0.001; the eccentricity of the orbit of the binary
companion is either eC = 0.05 or eC = 0.67.

In Fig. 11, we show various time-scales of importance as a func-
tion of aC, where in each panel different values are assumed for aA

and eC. Quantities pertaining to the three values of aB are indicated
with blue, red and green lines for values of aB of 1, 4 and 10 au,
respectively. The critical values of aC corresponding to dynamical
stability, computed using the three-body criterion of Mardling &
Aarseth (2001) and where binary A is treated as a point mass, are

indicated with vertical dashed lines for each value of aB. Systems
to the left of these lines are expected to be dynamically unstable.

Extrapolating our results from Section 3, we expect the region in
parameter space in which eA can be excited (in the absence of rel-
ativistic effects and other additional sources of absidal motion), to
be approximately 1 � R0 � 20. The limiting values of aC, for each
value of aB, are indicated with the vertical solid lines, and between
these vertical lines the coloured horizontal (sloped) solid lines indi-
cate the KL time-scales for pair AB (BC). We have indicated with
hatched regions the ranges in aC satisfying 1 < R0 < 20, and the
stability constraint.

In principle, the mechanism for producing high-amplitude os-
cillations in eA in the regime R0 ∼ 1 can be suppressed if KL
oscillations in system B are quenched by relativistic precession in
binary B. In all cases in Fig. 11, these time-scales are longer than
10 Myr, and therefore, precession in binary B is not important.
Relativistic precession in binary A is of greater importance given
the small values of aA; the associated time-scales are indicated in
Fig. 11 with black dotted horizontal lines.

Based on Fig. 11, we expect eccentricity excitation in the
planet+moon system for specific ranges in aC. These ranges
strongly depend on aA, aB and eC. For small semimajor axes of
the planet+moon system, i.e. aA = 10−2 au, the criterion of dy-
namical stability of the orbit of the binary companion does not
strongly reduce the parameter space. General relativistic precession
is, however, also more important for smaller aA. Nevertheless, for
values of aB of 4 and 10 au, the relativistic precession time-scale in
binary A is not much shorter than the KL time-scale for the AB pair.
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In those cases, there could still be high-eccentricity oscillations in
binary A because of the reduction of the KL time-scale for the AB
pair as a consequence of the eccentricity oscillations in binary B
(cf. Section 3.6). This is demonstrated below in the first example in
Section 4.1.2.

A larger eccentricity of the binary companion tends to reduce
the parameter space of interest. The reason for this decrease is the
larger range in aC for which the system is not dynamically stable.

As discussed in Section 3, for R0 � 1, KL eccentricity oscilla-
tions in binary B are quenched because of the induced precession
from binary A. We have plotted the maximum eccentricity in bi-
nary B as a function of aC in Fig. 11 with dashed lines, computed
using the semianalytic method described in Section 3.4.2. Here, we
assumed iBC, 0 = 85◦ to get a rough upper limit of the maximum
eccentricity. The quenching effect is very effective for aB = 1 au
and aC larger than a few 100 au. For large enough aC, eccentricity
oscillations in binary B are completely quenched.

To illustrate the implications of this, we have indicated in Fig. 11
with horizontal coloured lines the values of 1 − eB that satisfy 1
− eB = (aA + R3)/aB, i.e. the eccentricity for which the pericentre
distance of the orbit of binary B is equal to aA + R3. In the latter
case, we expect the planet, the moon, or both, to be disrupted by
the central star. For aA = 10−2 au and aB = 1 au, the maximum
eccentricity reached in binary B exceeds this value for aC � 100 au.
However, for aC � 100 au, a potentially catastrophic encounter of
the planet+moon system with the central star is avoided because
of quenching of the KL eccentricity oscillations in binary B. This
shows more quantitatively the ‘shielding’ effect mentioned above.

To conclude, we expect that there exist regions in parameter space
in which the eccentricity of the planet+moon system is excited, de-
spite initial coplanarity. The region in parameter space is limited,
however: the planet should be sufficiently far away from the central
star, yet the orbit of the binary companion should also be dynam-
ically stable. In addition, the latter orbit needs to be sufficiently
inclined. In contrast, if the orbit of the binary companion is wide,
the presence of the moon can prevent the orbit of the planet+moon
system around the star from becoming highly eccentric.

4.1.2 Examples

To further illustrate the planetary system discussed here, we show
in Fig. 12 two examples of integrations with SECULARQUADRUPLE. In
the first two rows, aA = 10−3 au, aB = 4 au and aC = 50 au (cf. the
black bullet in the top-left panel in Fig. 11); in the second two rows,
aA = 10−2 au, aB = 10 au and aC = 50 au (cf. the black bullet in
the top-right panel in Fig. 11). In both cases, we assume iBC, 0 = 70◦

and eC, 0 = 0.05. For the other parameters, we refer to Section 4.1.1.
In both examples, R0 ∼ 1, and high-eccentricity oscillations are
expected in the planet+moon system.

The values of 1 − eA corresponding to a collision between the
planet and its moon are indicated with horizontal red lines in the
corresponding panels in Fig. 12. Such collisions occur in both exam-
ples at ≈0.05 and 0.07 Myr, respectively, and the integrations were
subsequently stopped. Note that the eccentricity of binary B does
not become high enough for disruption of the planet+moon system
by the central star. Particularly in the second example, eA shows a
complicated behaviour as a function of time, changing rapidly each
time iAB passes 90◦.

We remark that tidal dissipation was not included in these exam-
ples. This effect is likely important for the small pericentre distances

reached during the evolution, therefore possibly not resulting in a
collision, but a shrinking of the planet+moon orbit.

4.2 Application: observed stellar quadruples

4.2.1 ADS 1652

The quadruple system ADS 1652 (Tokovinin, Gorynya & Morrell
2014, and references therein) is composed of four main-sequence
stars in the ‘3+1’ configuration. The system is likely old (age >Gyr)
considering the spectral types of its stellar components; the stars in
binary A are of spectral type G9V, the star in binary B is of type
K5V and the star in binary C is of type G8V. To date, ADS 1652
is one of few quadruple systems for which orbital fits have been
obtained for multiple orbits.

Here, we apply the SECULARQUADRUPLE algorithm to ADS 1652
to explore its long-term secular dynamical evolution. We adopt the
parameters that were obtained by Tokovinin et al. (2014), who fitted
radial velocity and speckle measurements to the orbits of binaries
A and B, and which are given in Table 3. Here, we adopted the
component masses obtained from the orbital fits (cf. the bottom row
of table 7 of Tokovinin et al. 2014), and computed the semimajor
axes of the A and B binaries from the orbital periods (cf. table 4
of Tokovinin et al. 2014) using Kepler’s law. For the semimajor
axis of the C binary, we adopt the observed projected distance of
2500 au from binary A. Owing to its long orbital period of ∼105 yr,
the eccentricities and orbital angles of binary C are not known.
Here, we proceed by sampling these quantities for 500 realizations
of the system, where eC is sampled from a thermal distribution,
iC from a distribution uniform in cos (iC), and ωC and �C from a
uniform distribution. In our integrations, we included terms up and
including octupole order (excluding the cross term), and the 1PN
relativistic precession terms in the three binaries. The integration
time is 20 PKL, BC, which is typically a few Gyr (depending on eC).

We show in Fig. 13 the evolution of an example system, where
eC = 0.05, iC = 0◦, ωC = 90◦ and �C = 130◦. For this value of
eC, R0 ≈ 6.7 × 10−4 � 1, therefore the system is in the regime in
which the torque of binary B on binary A dominates compared to
the torque of binary C on binary B. Indeed, binaries A and B, which
are initially nearly coplanar, remain nearly coplanar during the evo-
lution (cf. the top-right panel in Fig. 13). Consequently, the KL
eccentricity oscillations in binary A are of a very low amplitude, i.e.
eA, max ≈ 0.779, whereas eA, 0 = 0.769. Furthermore, KL eccentric-
ity oscillations in binary B, which is initially inclined with respect
to binary C with iBC, 0 ≈ 70◦, are completely quenched. This can be
attributed to the rapid precession induced in B binary by binary A,
on the time-scale of PKL, AB ≈ 4 × 10−2 Myr � PKL, BC ≈ 102 Myr
(cf. the bottom-middle panel of Fig. 13).

In Fig. 14, eC, 0 = 0.05 was assumed to be low. The quantity R0

increases with increasing eC, 0 (cf. equation 13). Therefore, for larger
eC, 0, the system could be in a very different regime in R0 in which
the evolution is very different. This is not the case in our Monte Carlo
realizations, however, for which the mean and standard deviations
of R0 are ≈1.4 × 10−3 and ≈1.0 × 10−3, respectively. In Fig. 14,
we show for the 500 integrations the maximum eccentricities in
the A and B binaries, and the minimum and maximum inclinations
between binaries A and B. There is very small spread in all of these
quantities, showing that their dependence on eC, as well as iC, ωC

and �C, is very weak.
We conclude that, based on the observed state of ADS 1652,

the eccentricities of its orbits will remain very nearly constant
for, at least, the remainder of the main-sequence time-scale of its
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Figure 12. Evolution of two quadruple systems in the context of planetary systems as discussed in Section 4.1.2, computed with SECULARQUADRUPLE. First two
rows: aA = 10−3 au, aB = 4 au and aC = 50 au; second two rows: aA = 10−2 au, aB = 10 au and aC = 50 au. Binaries A and B are initially coplanar, whereas
iBC, 0 = 70◦. In both examples, the other initial parameters were m1 = 1 MJ, m2 = 10−3 MJ, m3 = 1 M� and m4 = 0.5 M�, eA = eB = 0.001 and eC = 0.05,
iA = iB = 0◦ and iC = 70◦, ωA = 10◦, ωB = 40◦ and ωC = 90◦ and �A = �B = �C = 0◦. In the panels showing ek, the horizontal solid red line shows the
value of eA for which the moon collides with its planet. Here, we assumed a planet radius R1 = 1 RJ and lunar radius R2 = 10−2 RJ. The integrations were
stopped when eA reached this value.

Table 3. Parameters of the quadruple system ADS 1652 discussed in Section 4.2.1, adopted from Tokovinin et al. (2014), who fitted radial velocity and
speckle measurements to the orbits of binaries A and B. The masses are obtained from these orbital fits (cf. the bottom row of table 7 of Tokovinin et al.
2014), the semimajor axes of the A and B binaries are computed from the fitted orbital periods (cf. table 4 of Tokovinin et al. 2014) using Kepler’s law.
The eccentricity and orbital orientation of binary C are unknown (indicated with dashes), and are sampled with a Monte Carlo method in Section 4.2.1.
Masses are expressed in solar masses, semimajor axes in au, and angles in degrees.

m1 m2 m3 m4 aA aB aC eA eB eC iA iB iC ωA ωB ωC �A �B �C

0.74 0.72 0.57 0.78 2.135 45.2 2500 0.769 0.45 – 75.9 76.0 – 287.9 175.0 – 127.2 140.0 –

constituents. This conclusion is independent of the currently un-
known eccentricity and orientation of the outermost orbit. In par-
ticular, even if the latter orbit is highly inclined with respect to the
intermediate orbit, any potential KL eccentricity oscillations in the
intermediate orbit are efficiently quenched.

4.2.2 The Tokovinin sample of nearby FG dwarfs

As mentioned in Section 1, 55 of the 4847 observed systems of
FG dwarfs in the catalogue of Tokovinin (2014a,b) are quadruple
systems. From these, 18 are in the ‘3+1’ configuration, and for 13
of the latter, orbital periods and component masses are known for all
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Figure 13. Example evolution for the quadruple system ADS 1652 as discussed in Section 4.2.1, computed with SECULARQUADRUPLE. The parameters are given
in Table 3; the currently unconstrained parameters pertaining to the outermost orbit, binary C, are eC = 0.05, iC = 0◦, ωC = 90◦ and �C = 130◦. In the bottom
middle panel, the inset shows a magnification for t = 0 to 20 Myr; note that both ωA and ωB are undersampled.

Figure 14. The maximum eccentricities in the A and B binaries (left-
hand panel), and the minimum and maximum inclinations between binaries
A and B (right-hand panel), computed from numerical integrations with
SECULARQUADRUPLE of 500 realizations of ADS 1652, where the parameters
of the outermost orbit were varied (except aC). The dependence on the latter
parameters is very weak.

three binaries. Here, we briefly explore in which dynamical regimes
we expect these systems to be, by computing the associated value
of R0 (cf. Section 3.3).

For the 13 systems mentioned above, the orbital elements, apart
from the semimajor axes, are unknown. In order to compute R0, the
eccentricities eB and eC are required (cf. equation 13). Therefore, for
each of the 13 systems, we sample, in 1000 realizations, eB and eC

from a thermal distribution. Here, we reject sampled eccentricities
if either of the AB and BC pair would be unstable according to the
dynamical stability criterion of Mardling & Aarseth (2001).

The distribution of the values of R0 obtained in this approach is
shown in Fig. 15. The ratio R0 is typically small; ≈0.9 of the sam-
pled systems have R0 < 10−5. This is the regime in which the AB
pair is effectively an isolated triple, and where induced precession
of binary A on binary B quenches KL eccentricity oscillations in
binary B, as a consequence of the torque of binary C.

We note that one might expect currently observed quadruples not
to be in the regime R0 ∼ 1. If R0 ∼ 1, then the large eccentricities
in the innermost binary would likely already have strongly affected
the system, and possibly have resulted in a merger. Evidently, in

Figure 15. The distribution of the values of R0 for the ‘3+1’ quadruple
systems in the catalogue of Tokovinin (2014a,b), obtained by sampling, in
1000 realizations, eB and eC from a thermal distribution. The probability
(cumulative) density function is shown in the top (bottom) panel. For the
majority of systems (≈0.9), R0 < 10−5 is small.

this case, the system would not have been observed as a quadruple
system, but as a triple system. Conversely, some of the observed
quadruple systems may have been quintuple systems in the past, and,
triggered by secular dynamical evolution, evolved into quadruple
systems through the merging of the stars in (likely) the shortest-
period binary.

5 C O N C L U S I O N S

We have explored the global gravitational dynamics of hierarchical
quadruple systems consisting of a hierarchical triple system orbited
by a fourth body. Our main conclusions are as follows.

(1) The Hamiltonian for the system has been derived and ex-
panded to up and including fourth order in the ratios of the binary
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separations rA/rB, rB/rC and rA/rC (cf. Fig. 1). At each order, we
have found three terms that are each mathematically equivalent to
the corresponding terms that appear in the hierarchical three-body
problem, and that depend on the properties of only two binaries.
In addition to these terms, for octupole and higher orders, we have
found ‘cross terms’ that depend on properties of all three binaries.
Subsequently, we have derived expressions for the orbit-averaged
Hamiltonian. A preliminary analysis indicates that the cross terms
are typically not important in highly hierarchical systems on short
time-scales, i.e. not exceeding time-scales of order PKL, BC, where
PKL, BC is the KL time-scale of the BC pair. We have also derived
the Hamiltonian for the configuration of two binaries orbiting each
other’s barycentre (Appendix A2).

(2) For highly hierarchical systems, i.e. in which the three bina-
ries are widely separated, the global dynamics can be qualitatively
described in terms of the (initial) ratio of the KL time-scales of the
AB to the BC pairs, R0 ≡ PKL,AB,0/PKL,BC,0.
If R0 � 1, the torque of binary B on A dominates compared to

the torque of binary C on binary B, and therefore binaries A and
B remain coplanar if this was initially the case. If binaries A and
B are initially inclined, KL eccentricity oscillations in binary A are
not much affected by the presence of the fourth body. Eccentricity
oscillations in binary B are efficiently quenched due to short time-
scale precession induced on binary B by binary A.
IfR0 � 1, the torque of binary C on binary B dominates compared

to the torque of binary B on binary A. Initially, the inclination of
binary B changes, whereas this is not the case for binary A. This
induces a mutual inclination between binaries A and B, even if
they are initially not inclined. However, rapid precession of binary
B compared to the KL time-scale for the AB pair prevents any
significant eccentricity oscillations in binary A, and even quenches
KL oscillations if binaries A and B are initially inclined.
Lastly, if R0 ∼ 1, complex KL eccentricity oscillations occur in

binary A that are strongly coupled with the KL eccentricity os-
cillations in binary B. The latter are also affected compared to the
situation in which binary A were replaced by a point mass, although
this is typically a much smaller effect. Even if binaries A and B are
initially coplanar, the induced inclination can result in very high
eccentricity oscillations in binary A. These extreme eccentricities
could have significant implications for strong interactions such as
tidal interactions, gravitational wave dissipation, and collisions and
mergers of stars and compact objects.

(3) We also included the effects of general relativity, in particular
relativistic precession. We have found that the range in the parameter
space of the semimajor axis ratios aB/aA for which KL oscillations
are important in binary A can be extended compared to hierarchical
triple systems. This is due to a decrease of the KL time-scale of the
AB pair when the eccentricity of binary B is at a maximum.

(4) We have applied our results to a planetary configuration con-
sisting of a planet+moon system orbiting a central star that is orbited
by a more distant and inclined binary companion. We have found
that there are regions in parameter space where a planet+moon
system that is initially coplanar with respect to the central star, can
become inclined and the eccentricity in the planet+moon system
can be excited. This could result in significant tidal dissipation and
even a collision of the planet with its moon. Furthermore, when the
orbit of the binary companion is wide, KL eccentricity oscillations
in the orbit of the planet+moon system around the central star can
be quenched because of induced precession from the planet+moon
system. This effectively shields the planet from high-eccentricity
KL oscillations from a binary companion, and, therefore, potential
disruption by the central star could be avoided.

(5) Lastly, we applied our results to stellar quadruple systems. In
the case of ADS 1652, R0 ∼ 10−3 assuming a thermal distribution
of the unknown eC, and we find almost negligible KL eccentricity
oscillations in both the innermost and intermediate orbits, binaries
A and B. Even if the outer orbit, binary C, were highly inclined
with respect to binary B, any potential KL eccentricity oscillations
in binary B would be efficiently quenched.

For the ‘3+1’ FG stellar quadruples in the catalogue of Tokovinin
(2014a,b), we estimate ≈0.9 of the systems to have R0 < 10−5.
Therefore, we expect that in the majority of these systems, KL
eccentricity oscillations in the BC pair are quenched, and, from
a secular dynamical point of view, the innermost AB pair can be
considered as an isolated triple.
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A P P E N D I X A : TH E H A M I LTO N I A N FO R H I E R A R C H I C A L QUA D RU P L E S Y S T E M S

The general Newtonian four-body Hamiltonian is given by

H = T + U = 1

2

4∑
i=1

mi V 2
i − 1

2

∑
i,j ;i �=j

Gmimj

||Ri − Rj || , (A1)

where mi, Ri and V i denote the mass and position and velocity vectors of body i. Here, we consider dynamically stable hierarchical
configurations. For four bodies, these consist of (1) a hierarchical triple system orbited by a fourth body in an orbit around the triple (discussed
in detail in the main text), and (2) two binary systems orbiting each other’s centre of mass. Below we discuss both configurations separately.

A1 Hierarchical triple system orbited by a fourth body

In this configuration, we assume that bodies 1 and 2 are bound in binary A, body 3 is bound to the barycentre of bodies 1 and 2 in binary B,
and body 4 is bound to the barycentre of bodies 1, 2 and 3 in binary C. It is convenient to define the following separation vectors,

rA ≡ R1 − R2; (A2a)

rB ≡ m1 R1 + m2 R2

m1 + m2
− R3; (A2b)

rC ≡ m1 R1 + m2 R2 + m3 R3

m1 + m2 + m3
− R4. (A2c)

In addition, we define the centre of mass position of the four-body system,

rCM ≡
[

4∑
i=1

mi

]−1 4∑
i=1

mi Ri , (A3)

which satisfies ṙCM = 0. Equations (A2) and (A3) are easily inverted to give Ri in terms of rA, rB, rC and rCM. Differentiating the resulting
relations with respect to time, and assuming that the masses are constant, we find for the kinetic energy

T = 1

2

m1m2

m1 + m2
ṙ2

A + 1

2

(m1 + m2)m3

m1 + m2 + m3
ṙ2

B + 1

2

(m1 + m2 + m3)m4

m1 + m2 + m3 + m4
ṙ2

C. (A4)

To find the potential, we similarly invert equations (A2) to give the difference vectors ||Ri − Rj || in terms of rA, rB and rC. Substituting
the resulting relations into the potential U yields six terms each of the form

||rC + αrB + βrA||−1, ||rC + αrB||−1 and ||rB + βrA||−1,

where α and β, which can be negative, are various mass ratios. We will assume that rC � |α|rB � |β|rA (where r ≡ ||r||). In other words,
we will assume that the system is sufficiently hierarchical in the sense that it is appropriate to expand the potential in terms of the relative
distance ratios rA/rB, rB/rC and rA/rC, all of which are assumed to be small, and that the mass ratios are not too extreme.
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We expand the potential in terms of the relative distance ratios using the general expansion

||r + αr ′ + βr ′′||−1 = 1

r

[
1 − α

(
r ′

r

) (
r̂ · r̂ ′) − β

(
r ′′

r

) (
r̂ · r̂ ′′) + 1

2
α2

(
r ′

r

)2 {
3
(

r̂ · r̂ ′)2 − 1
}

+ 1

2
β2

(
r ′′

r

)2 {
3
(

r̂ · r̂ ′′)2 − 1
}

+αβ

(
r ′

r

)(
r ′′

r

){
3
(

r̂ · r̂ ′) ( r̂ · r̂ ′′) − (r̂ ′ · r̂ ′)} − 1

2
α3

(
r ′

r

)3 {
5
(

r̂ · r̂ ′)3 − 3
(

r̂ · r̂ ′)} − 1

2
β3

(
r ′′

r

)3 {
5
(

r̂ · r̂ ′′)3 − 3
(

r̂ · r̂ ′′)}

−1

2
α2β

(
r ′

r

)2 (
r ′′

r

){
15
(

r̂ · r̂ ′)2 (
r̂ · r̂ ′′) − 3

(
r̂ · r̂ ′′) − 6

(
r̂ · r̂ ′) ( r̂ ′ · r̂ ′′)}

−1

2
αβ2

(
r ′

r

)(
r ′′

r

)2 {
15
(

r̂ · r̂ ′′)2 (
r̂ · r̂ ′) − 3

(
r̂ · r̂ ′) − 6

(
r̂ · r̂ ′′) (r̂ ′ · r̂ ′′)}

+1

8
α4

(
r ′

r

)4 {
3 − 30

(
r̂ · r̂ ′)2 + 35

(
r̂ · r̂ ′)4

}
+ 1

8
β4

(
r ′′

r

)4 {
3 − 30

(
r̂ · r̂ ′′)2 + 35

(
r̂ · r̂ ′′)4

}]

+1

2
α3β

(
r ′

r

)3 (
r ′′

r

){
35
(

r̂ · r̂ ′)3 (
r̂ · r̂ ′′) − 15

(
r̂ · r̂ ′)2 (

r̂ ′ · r̂ ′′) − 15
(

r̂ · r̂ ′) ( r̂ · r̂ ′′) + 3
(

r̂ ′ · r̂ ′′)}

+1

2
αβ3

(
r ′

r

)(
r ′′

r

)3 {
35
(

r̂ · r̂ ′′)3 (
r̂ · r̂ ′) − 15

(
r̂ · r̂ ′′)2 (

r̂ ′ · r̂ ′′) − 15
(

r̂ · r̂ ′) ( r̂ · r̂ ′′) + 3
(

r̂ ′ · r̂ ′′)}

+1

4
α2β2

(
r ′

r

)2 (
r ′′

r

)2 {
105

(
r̂ · r̂ ′)2 (

r̂ · r̂ ′′)2 − 15
(

r̂ · r̂ ′)2 − 15
(

r̂ · r̂ ′′)2 − 15
(

r̂ · r̂ ′) ( r̂ · r̂ ′′) (r̂ ′ · r̂ ′′) + 3
(

r̂ ′ · r̂ ′′)2 + 3
}

+O
{(

r ′

r

)i (
r ′′

r

)j
}]

. (A5)

Here, i + j ≥ 5. Substituting this expansion into equation (A1), we find

Hts = Hbin(m1, m2, rA, ṙA) + Hbin(m1 + m2, m3, rB, ṙB) + Hbin(m1 + m2 + m3, m4, rC, ṙC)

+Hquad(m1, m2,m3, rA, rB) + Hquad(m1 + m2, m3,m4, rB, rC) + Hquad(m1, m2,m4, rA, rC)

+Hoct(m1, m2,m3, rA, rB) + Hoct(m1 + m2, m3, m4, rB, rC) + Hoct(m1, m2, m4, rA, rC)

+Hoct, cross(m1, m2, m3, m4, rA, rB, rC)

+Hhd(m1, m2, m3, rA, rB) + Hhd(m1 + m2,m3, m4, rB, rC) + Hhd(m1, m2,m4, rA, rC)

+Hhd, cross,1(m1, m2, m3, m4, rA, rB, rC) + Hhd, cross,2(m1, m2,m3, m4, rA, rB, rC)

+O
[

1

rC

(
rA

rB

)i (
rB

rC

)j (
rA

rC

)k
]

, (A6)

where ‘ts’ stands for ‘triple-star’, and i + j + k ≥ 5. Here, the various functions are given by

Hbin(m, m′, r, ṙ) = 1

2

mm′

m + m′ ṙ2 − Gmm′

r
; (A7a)

Hquad(m, m′, m′′, r, r ′) = −Gmm′m′′

m + m′
1

r ′

( r

r ′

)2 1

2

[
3
(

r̂ · r̂ ′)2 − 1
]

; (A7b)

Hoct(m,m′, m′′, r, r ′) = −Gmm′m′′(m − m′)
(m + m′)2

1

r ′

( r

r ′

)3 1

2

[
5
(

r̂ · r̂ ′)3 − 3
(

r̂ · r̂ ′)] ; (A7c)

Hoct, cross(m1, m2,m3, m4, rA, rB, rC) = Gm1m2m3m4

(m1 + m2)(m1 + m2 + m3)

1

rC

(
rA

rC

)2 (
rB

rC

)

×1

2

[
15 (r̂B · r̂C) (r̂A · r̂C)2 − 3 (r̂B · r̂C) − 6 (r̂A · r̂C) (r̂A · r̂B)

]
; (A7d)

Hhd(m,m′,m′′, r, r ′) = −Gmm′m′′(m2 − mm′ + m′2)

(m + m′)3

1

r ′

( r

r ′

)4 1

8

[
35
(

r̂ · r̂ ′)4 − 30
(

r̂ · r̂ ′)2 + 3
]

; (A7e)

Hhd, cross,1(m1, m2,m3, m4, rA, rB, rC) = − Gm1m2(m1 − m2)m3m4

(m1 + m2)2(m1 + m2 + m3)

1

rC

(
rA

rC

)3 (
rB

rC

)

×1

2

[
3 (r̂A · r̂B)

{
5 (r̂A · r̂C)2 − 1

} + 5 (r̂A · r̂C) (r̂B · r̂C)
{

3 − 7 (r̂A · r̂C)2
}]

; (A7f)
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Hhd, cross,2(m1, m2, m3, m4, rA, rB, rC) = − Gm1m2m
2
3m4

(m1 + m2)(m1 + m2 + m3)2

1

rC

(
rA

rC

)2 (
rB

rC

)2

×3

4

[
1 + 2 (r̂A · r̂B)2 − 20 (r̂A · r̂B) (r̂A · r̂C) (r̂B · r̂C) − 5 (r̂B · r̂C)2 + 5 (r̂A · r̂C)2

{
7 (r̂B · r̂C)2 − 1

}]
. (A7g)

The function Hbin(m, m′, r, ṙ) is the Hamiltonian for an isolated two-body system with reduced mass μ = mm′/(m + m′). It appears in
equation (A6) for the three binaries A, B and C, and reduces to the binding energy of each these binaries if Kepler orbits are assumed.
Therefore, it does not lead to orbital changes.

The other functions defined in equations (A7) do lead to orbital changes. We associate a term with the ‘quadrupole’ order if the combined
power of (rA/rB), (rB/rC) and (rA/rC) is equal to two, to ‘octupole’ order if the combined power is equal to three and ‘hexadecupole’ order
if the combined power is equal to 4. The functions Hquad(m, m′, m′′, r, r ′), Hoct(m, m′, m′′, r, r ′) and Hhd(m,m′, m′′, r, r ′) are precisely the
same functions that appear in the three-body problem. In this case, they each appear in the Hamiltonian three times by replacing the ‘inner’
and ‘outer’ binaries by the combinations AB, BC and AC.

At the quadrupole level, the three combinations of Hquad(m, m′, m′′, r, r ′) are the only terms that appear; the ‘cross terms’ that are present
in the expansion in equation (A5) cancel. Such a cancellation does not occur at higher orders. At octupole order, we find the ‘cross term’
Hoct, cross(m1, m2,m3, m4, rA, rB, rC) that is unique to the type of quadruple systems considered here. It depends on all four masses, all
three semimajor axes and all three relative orientations between the binary separation vectors, and it is proportional to (rA/rC)2(rB/rC). At
the hexadecupole order, we find two cross terms, Hhd, cross, 1 ∝ (rA/rC)3(rB/rC) and Hhd, cross, 2 ∝ (rA/rC)2(rB/rC)2. Equation (A6) is exact if
expanded to infinite order. Here, the expansion is truncated for i + j + k ≥ 5.

We average the truncated Hamiltonian over the three binary orbits A, B and C, assuming that the Kepler orbit is unperturbed during this
time-scale. For orbit k, the averaging is defined as

〈H 〉k ≡ 1

2π

∫ 2π

0
H dlk, (A8)

where lk is the mean anomaly of orbit k. Depending on the sign of the power of rk it is convenient to use either the true anomaly or eccentric
anomaly in equation (A8). If the power of rk is negative, we use the true anomaly; if it is positive, we use the eccentric anomaly. Formally,
averaging the Hamiltonian over the three orbits A, B and C according to equation (A8) is not a canonical transformation. However, applying the
Von Zeipel transformation technique to the unaveraged Hamiltonian (Brouwer 1959), a canonical transformation can be found that eliminates
the short-period terms lk from the Hamiltonian (cf. appendix A2 of Naoz et al. 2013a; the derivation presented there is straightforwardly
extended to three, rather than two short-period variables). This transformation leads to a transformed Hamiltonian that is equivalent to the
triply-averaged Hamiltonian 〈〈〈H〉C〉B〉A (cf. equation A8; note that the order of integration is arbitrary). Here, the transformed coordinates
e∗
k and q∗

k differ from the original ones ek and qk . However, as noted by Naoz et al. (2013a), the differences between the untransformed and
the transformed coordinates contribute to the Hamiltonian only at subleading order.

We express the angular momenta and orientations of each of the three binaries in terms of the triad of perpendicular orbital state vectors
( j k, ek, qk), where qk ≡ j k × ek . Here, j k is a vector aligned with the angular momentum vector of the orbit with magnitude jk =

√
1 − e2

k ;
ek is the eccentricity or Laplace–Runge–Lenz vector that is aligned with the major axis and with magnitude the orbital eccentricity ek (see
e.g. Goldstein 1975, 1976; Goldstein, Poole & Safko 2002 for historical overviews). In terms of these vectors and the true anomaly, the angle
between two instantaneous separation vectors rk and r l can be expressed as

r̂k · r̂ l = [
cos(fk) êk + sin(fk) q̂k

] · [cos(fl) êl + sin(fl) q̂ l

]
= cos(fk) cos(fl) (êk · êl) + cos(fk) sin(fl)

(
êk · q̂ l

) + sin(fk) cos(fl)
(
q̂k · êl

) + sin(fk) sin(fl)
(
q̂k · q̂ l

)
. (A9)

Our result of the orbit averaging H ts ≡ 〈〈〈Hts〉C〉B〉A is34

H bin(m,m′, a) = −Gmm′

2a
; (A10a)

H quad(m, m′, m′′, a, a′, j , e, j ′, e′) = Gmm′m′′

m + m′
1

a′

( a

a′

)2 1

8j ′3

[
1 − 6e2 + 15

(
e · ĵ

′)2
− 3

(
1 − e2

) (
ĵ · ĵ

′)2
]

; (A10b)

H oct(m, m′, m′′, a, a′, j , e, j ′, e′) = −Gmm′m′′(m − m′)
(m + m′)2

1

a′

( a

a′

)3 15

64j ′5

[(
e · e′) {2e2 − 9 + 10

(
1 − e2

) (
ê · ê′)2

+ (10 + 25e2
) (

ê · ĵ
′)2

+ 10
(
1 − e2

) (
ê′ · ĵ

)2
[

1 −
(

ê · ĵ
′)2
]

+ 5
(
1 − e2

) (
ĵ · ĵ

′)2 [
2
(
ê · ê′)2 − 1

]}

−10
(
1 − e2

) [
2
(
ê · ê′)2 − 1

] (
e · ĵ

′) (
e′ · ĵ

) (
ĵ · ĵ

′)]
= −Gmm′m′′(m − m′)

(m + m′)2

1

a′

( a

a′

)3 15

64j ′5

[(
e · e′){1 − 8e2 + 35

(
ê · ĵ

′)2

−5
(
1 − e2

) (
ĵ · ĵ

′)2
}

− 10
(
1 − e2

) (
e · ĵ

′) (
e′ · ĵ

) (
ĵ · ĵ

′)]
; (A10c)

3 The orbit averaging can be carried out in any order of A, B and C, e.g. C → B → A or C → A → B. Because the integration limits are constants, the result
is not affected by the order of integration.
4 We were unable to derive the simplification in H oct analytically, but we verified it by evaluating both sides numerically.
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H oct, cross(m1, m2, m3, m4, aA, aB, aC, jA, eA, jB, eB, jC, eC) = − Gm1m2m3m4

(m1 + m2)(m1 + m2 + m3)

1

aC

(
aA

aC

)2 (
aB

aC

)
9

32j 5
C

×
[
2
(
1 − e2

A

) (
eB · ĵA

) (
eC · ĵA

) {
4 − 5

(
êA · ĵC

)2
}

− 10 (êA · eC)
(
êA · ĵC

) {(
1 + 4e2

A

) (
eB · ĵC

)
− (1 − e2

A

) (
eB · ĵA

) (
ĵA · ĵC

)} + (eB · eC)
{

− (1 − 6e2
A

) − 10
(
1 − e2

A

) (
êC · ĵA

)2 − 5
(
êA · ĵC

)2

×
[
5e2

A − 2
(
1 − e2

A

) (
êC · ĵA

)2
]

− 20
(
1 − e2

A

)
(êA · êC)

(
êA · ĵC

) (
êC · ĵA

) (
ĵA · ĵC

) + 5
(
1 − e2

A

) (
ĵA · ĵC

)2

−10
(
1 − e2

A

)
(êA · êC)2

[
1 − ( ĵA · ĵC

)2
]}

+ 10 (êA · eB)
{(

1 − e2
A

) (
êA · ĵC

) (
eC · ĵA

) (
ĵA · ĵC

)
+ (êA · eC)

[
1 − (1 − e2

A

) (
ĵA · ĵC

)2
]}]

; (A10d)

H hd(m, m′, m′′, a, a′, j , e, j ′, e′) = Gmm′m′′(m2 − mm′ + m′2)

(m + m′)3

1

a′

( a

a′

)4 3

1024j ′7

×
[

262 + 423e′2 − 40e2
{−38 − 3e′2 + 6e2

(
9 + 2e′2)} − 280

{(
ê · ĵ

′)2
+ (ê′ · ĵ )2

}
+ 5

{
−441e4

(
2 + e′2) (e · ĵ

′)4

+8
{

7e2
(−5 + 6e2

) + 3
(−4 + e2 + 3e4

)
e′2} (ê′ · ĵ

)2 + 56
(−1 − 5e2 + 6e4

) (
2 + 3e′2) (ê · ê′) (ê · ĵ

′) (
ê′ · ĵ

) (
ĵ · ĵ

′)

−112
(−1 − 5e2 + 6e4

) (
2 + 3e′2) (ê · ê′)3

(
ê · ĵ

′) (
ê′ · ĵ

) (
ĵ · ĵ

′) − 2
(
1 − e2

) {
10 + 39e′2 + 6e2

(
38 + 11e′2)

−42
(
1 − e2

)
e′2 (ê′ · ĵ

)2
}(

ĵ · ĵ
′)2

− 21
(
1 − e2

)2 (
2 + e′2) ( ĵ · ĵ

′)4
− 56

(−1 − 5e2 + 6e4
) (

2 + 3e′2) (ê · ê′)4

×
{

1 −
(

ĵ · ĵ
′)2
}

+ 14
(

ê · ĵ
′)2 {−26e2 + 84e4 + 3

(−2 − e2 + 6e4
)
e′2 − (1 − e2

) [{−4 − 6e′2

+6e2
(−4 + e′2)} (ê′ · ĵ

)2 − 21e2
(
2 + e′2) ( ĵ · ĵ

′)2
]}

+ 28
(
ê · ê′)2

[
−2
(−1 − 5e2 + 6e4

) (
2 + 3e′2) (ê′ · ĵ

)2

+
(

ê · ĵ
′)2 {

4 + 20e2 − 24e4 + 3
(
2 + 10e2 + 9e4

)
e′2 + 2

(−1 − 5e2 + 6e4
) (

2 + 3e′2) (ê′ · ĵ
)2
}

+3

{
−2 − 3e′2 + 2e2

[−5 + 6e2 − 5
(
1 − e2

)
e′2]+ (1 − e2

) [
2 + 3e′2 + e2

(
12 + 11e′2)] ( ĵ · ĵ

′)2
}]}]

. (A10e)

In order to simplify the expressions in equation (A10), we repeatedly used a vector identity for the dot product of two vector products,
(a × b) · (c × d) = (a · c)(b · d) − (b · c)(a · d), and the scalar product of two scalar triple products,

[(a × b) · c] [(d × e) · f ] = det

∣∣∣∣∣∣
a · d a · e a · f
b · d b · e b · f
c · d c · e c · f

∣∣∣∣∣∣ . (A11)

Furthermore, we have omitted the explicit expressions for H hd,cross,1 and H hd,cross,2 because they are excessively long. The expressions for
H quad and H oct are identical to those of Boué & Fabrycky (2014), who also adopted a description in terms of vectorial vectors.

A2 Two binaries orbiting each other

In this configuration, we assume that bodies 1 and 2 are bound in binary A, bodies 3 and 4 are bound in binary B, and the barycentres of
binaries A and B are bound in binary C. Although not explored in the main text, here, we present the formalism that can be used to study this
hierarchy. The derivation closely parallels that of Section A1. We define the following instantaneous separations,

rA ≡ R1 − R2; (A12a)

rB ≡ R3 − R4; (A12b)

rC ≡ m1 R1 + m2 R2

m1 + m2
− m3 R3 + m4 R4

m3 + m4
. (A12c)

Again assuming that the centre of mass (cf. equation A3) is constant, the kinetic energy is given by

T = 1

2

m1m2

m1 + m2
ṙ2

A + 1

2

m3m4

m3 + m4
ṙ2

B + 1

2

(m1 + m2)(m3 + m4)

m1 + m2 + m3 + m4
ṙ2

C. (A13)
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In contrast to Section A1, we do not assume that rA � rB � rC. Instead, we assume that rA � rC and rB � rC, without making any (explicit)
assumptions on the relation between rA and rB. Using the general expansion equation (A5) we find for the Hamiltonian (cf. equation A1) in
terms of the variables in equation (A12)

Hbb = Hbin(m1, m2, rA, ṙA) + Hbin(m3, m4, rB, ṙB) + Hbin(m1 + m2,m3 + m4, rC, ṙC)

+Hquad(m1,m2, m3 + m4, rA, rC) + Hquad(m3,m4, m1 + m2, rB, rC)

+Hoct(m1, m2, m3 + m4, rA, rC) + Hoct(m4, m3,m1 + m2, rB, rC)

+Hhd(m1, m2,m3 + m4, rA, rC) + Hhd(m4, m3, m1 + m2, rB, rC) + Hhd, cross,bb(m1, m2, m3, m4, rA, rB, rC)

+O
[

1

rC

(
rA

rB

)i (
rB

rC

)j (
rA

rC

)k
]

, (A14)

where ‘bb’ stands for ‘binary–binary’, and i + j + k ≥ 5. Here, the various functions are the same as in equation (A7). The cross term
Hhd, cross, bb is unique to the binary–binary configuration, and is given by

Hhd, cross,bb(m1, m2, m3, m4, rA, rB, rC) = − Gm1m2m3m4

(m1 + m2)(m3 + m4)

1

rC

(
rA

rC

)2 (
rB

rC

)2

×3

4

[
1 − 5 (r̂A · r̂C)2 − 5 (r̂B · r̂C)2 + 35 (r̂A · r̂C)2 (r̂B · r̂C)2 + 2 (r̂A · r̂B)2 − 20 (r̂A · r̂B) (r̂A · r̂C) (r̂B · r̂C)

]
. (A15)

As might be expected, equation (A15) is invariant under interchange of the A and B binaries, i.e. (m1, m2, rA) ↔ (m3, m4, rB).
It is interesting to compare the (non-averaged) Hamiltonian between the ‘triple–single’ and ‘binary–binary’ configurations. For the latter,

the Hamiltonian is simpler, in the sense that at each order, there are only two, rather than three, terms that depend on the properties of two
binaries (Hquad, Hoct and Hhd – for each of these, the combinations AC and BC occur). In addition, ‘cross terms’ appear at octupole order
in the ‘triple–single’ configuration, whereas for the ‘binary–binary’ configuration, the lowest order at which these terms appear is the next
higher, hexadecupole, order.

The orbit-averaged Hamiltonian is obtained directly by appropriate substitutions in equation (A14), using the results of equations (A10a),
(A10b), (A10c) and (A10e). The orbit-average of the cross term equation (A15) is excessively long, and not included here.

APPENDIX B: TEST O F THE SECULARQUADRUPLE A L G O R I T H M F O R T H R E E - B O DY S Y S T E M S

We tested part of the SECULARQUADRUPLE algorithm by comparing to previously obtained integrations for three-body systems. We show an
example in Fig. B1, where we assumed the same hierarchical three-body system as in fig. 3 of Naoz et al. (2013a). Here, we have both
tested applying the triple parameters to the AB systems, choosing a very large value of aC (essentially making AB an isolated triple), and to
the BC systems, making aA very small (essentially reducing binary A to a point mass). The results from SECULARQUADRUPLE agree very well
with those of Naoz et al. (2013a), who performed both integrations based on the orbit-averaged equations, and direct-N body integrations.
The maximum relative error of the ODE variables between time-steps was set to 10−15. Consequently, the Hamiltonian is conserved to high
accuracy; |�E/E| < 2 × 10−9 for the integration shown in Fig. B1.

MNRAS 449, 4221–4245 (2015)



Secular dynamics of quadruple systems 4245

Figure B1. Test of the SECULARQUADRUPLE algorithm for a hierarchical three-body system; the parameters are set to mimic the system of fig. 3 of Naoz et al.
(2013a). The inner binary consists of a star of mass 1 M� and a planet of mass 1 MJ with semimajor axis ain = 6 au and initial eccentricity ein = 0.001. The
outer object is a brown dwarf with mass 40 MJ and the outer binary has semimajor axis aout = 100 au and initial eccentricity eout = 0.6. The binary orbits are
initially inclined by 65◦.
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