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For water-limited arid ecosystems, where water distribution and infiltration play a vital role, vari-

ous models have been set up to explain vegetation patterning. On sloped terrains, vegetation

aligned in bands has been observed ubiquitously. In this paper, we consider the appearance, stabil-

ity, and bifurcations of 2D striped or banded patterns in an arid ecosystem model. We numerically

show that the resilience of the vegetation bands is larger on steeper slopes by computing the stabil-

ity regions (Busse balloons) of striped patterns with respect to 1D and transverse 2D perturbations.

This is corroborated by numerical simulations with a slowly decreasing water input parameter.

Here, long wavelength striped patterns are unstable against transverse perturbations, which we also

rigorously prove on flat ground through an Evans function approach. In addition, we prove a

“Squire theorem” for a class of two-component reaction-advection-diffusion systems that includes

our model, showing that the onset of pattern formation in 2D is due to 1D instabilities in the direc-

tion of advection, which naturally leads to striped patterns. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914450]

This paper has been motivated by studies in one space

dimension of a scaled phenomenological model for vege-

tation on possibly sloped planes in arid ecosystems.53,60

One-dimensional patterns ideally represent striped pat-

terns in two space dimensions by trivially extending them

into a transversal direction. Such patterns are referred to

as banded vegetation and have received considerable

attention after reports of widespread observations.
8,58

Understanding the appearance and disappearance of veg-

etation bands may ultimately help prevent land degrada-

tion. The restriction to one space dimension may

overestimate stability: patterns that are stable against 1D

perturbations are not necessarily stable against all 2D

perturbations. Natural questions to pose are:

• Which of the 1D stable patterns extend to 2D stable

striped patterns?
• In case of destabilization by 2D perturbations, which

mechanisms are responsible?

In this paper, we answer these questions for the arid eco-

system model and determine the impact of slope induced

advection of water. The influence of advection on striped

pattern formation is studied in a more general setting.

This approach provides a clear argumentation that is

unobscured by model-specific details. Equally important,

the results will be applicable to a wide range of models.

Applicability to the arid ecosystem model is carefully

checked though, assuring that the abstract requirements

can in fact be met in practice.

I. INTRODUCTION

The original Klausmeier model31 is an ecohydrological

model for modeling vegetation patterns on sloped terrain in

arid ecosystems, with a (surface) water component w and a

plant biomass or vegetation component n. The flow of water

is modeled by downhill advection only. By adding a water

diffusion term to the model, we arrive at the extended
Klausmeier model53 studied in this article. In dimensionless

form, it is given by

wt ¼ dDwþ 2cwx þ a� w� wn2;

nt ¼ Dn� mnþ wn2; (1)

where D ¼ @2

@x2 þ @2

@y2, posed on the plane. Generally the diffu-

sion coefficient d� 1, since water diffuses much faster than

vegetation. The parameter c measures the advection of water

down a hillslope, a� 0 models precipitation and m> 0 an

effective death rate. The terms 6wn2 model water uptake by

vegetation and �w evaporation.

The model (1) with c¼ 0 and a � w replaced by the

term a(1�w) is called the Gray–Scott model.26 The general-

ized form of (1) with the term a(1�w) has been referred to

as the generalized Klausmeier–Gray–Scott model; here also,

the impact of nonlinear diffusion of the water component has

been studied.39,60

Both the Klausmeier model and the Gray–Scott model

exhibit patterns.31,40 We will study the influence of the

advection parameter c on striped patterns. For fixed c, we

view the rainfall parameter a as the primary parameter to

vary, as done in previous studies.53,60a)Electronic mail: esiero@math.leidenuniv.nl
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The choice of parameter values in (1) will correspond to

choices in Ref. 53, which are themselves based on Ref. 31.

Since we are considering a scaled model, some of the param-

eters are a mix of parameters from the original Klausmeier

model.31 For instance, what we refer to as slope driven

advection c in (1) is influenced by the evaporation rate from

the original model, which has been scaled to 1 in (1).53 So,

determining which values of c are realistic is non-trivial.

This is resolved by choosing c over a wide range, giving an

overview of the different possibilities. Unless stated other-

wise, m¼ 0.45 and d¼ 500.

The Busse balloon4 is a representation of spatially peri-

odic stable patterns that exist in a system; each pattern is rep-

resented by its wavenumber j :¼ 2p=wavelength. Uniting

the stable patterns for a range of parameter values creates a

planar region. For (1) on flat ground (no advection, c¼ 0),

the Busse balloon of 1D stable patterns is illustrated by the

union of the two colored regions in Figure 1.53 The exten-

sions of these 1D patterns to 2D striped patterns, which are

represented by the same single wavenumber, are only 2D sta-

ble in the dark-green (teal) region near the Turing bifurcation

T. In Sec. III C, the nature and construction of these two

types of Busse balloons will be considered. Moreover, we

will study the influence of slope induced advection of water

c and compare the stability results with simulations with a

slowly decreasing rainfall parameter a.

In 1D, in simulations with decreasing rainfall a, the dy-

namics (after pattern formation) is essentially restricted to

transitions from one pattern to another, before reaching the

bare desert state.53 In 2D, these transitions correspond to

stripe-to-stripe pattern transitions. Regarding striped patterns

in 2D, the additional instabilities we find always induce an

amplitude modulation in the transverse direction along the

stripes so that the bifurcating solutions decompose into spots,

in analogy to findings focussing on a single (homoclinic)

stripe.19,32,35 We find that destabilizing modes relate neigh-

boring stripes either synchronously, leading to a stripe-to-

rectangle pattern transition, or phase shifted by half a period,

leading to a stripe-to-rhomb pattern transition. For this

reason, and as a convenient terminology, we refer to these as

(transverse) stripe-rectangle and stripe-rhomb breakup,

respectively. Details are given in Sec. III A, where we will

moreover trace the 2D patterns that bifurcate from the striped

patterns numerically.20,57

The main numerical result for (1), framed in the termi-

nology that is appropriate in this context, concerns the influ-

ence of the slope (advection, c) on banded (or striped)

vegetation resilience. Ecological resilience is measured by

the magnitude of disturbance that can be absorbed before the

system redefines its structure.27,28 For (1), it holds that

(1) Increased resilience: the ecological resilience of banded

vegetation is larger on steep slopes than on gentle slopes

(Sec. III C).

Figure 1 shows numerically that for c¼ 0 and small

wavenumbers j, none of the 1D patterns extend to 2D stable

striped patterns. In accordance, we prove through the use of

geometric singular perturbation theory and an Evans function

approach that

(2) Transverse instability: in absence of advection (no slope,

c¼ 0) long wavelength striped patterns of (1) are unsta-

ble with respect to (w.r.t.) transverse instabilities

(Corollary 2, Sec. III B).

Next to striped pattern (in)stability, it is also relevant

to study the onset of striped pattern formation, and the influ-

ence of the advection c. The analytical results of Secs. II A

and II B are obtained in the setting of general two-

component reaction-advection-diffusion systems.

Specifically, we study systems posed on the plane

ut ¼ d1Duþ c1ux þ f ðp; u; vÞ;
vt ¼ d2Dvþ c2vx þ gðp; u; vÞ; (2)

where p is an abstract parameter and uðt; x; yÞ; vðt; x; yÞ 2 R.

The advection coefficients c1; c2 2 R are arbitrary, and we

assume that d1 � 0 and d2 > 0; compare Lemma 4

(Appendix A). We refer to the difference between the coeffi-

cients of the advection terms, jc1 � c2j, as differential flow.45

We consider the linear stability of a homogeneous

steady state ðu�; v�Þ of inhibitor-activator type that is stable

against homogeneous perturbations. We define

a1 :¼ @f

@u
u�; v�ð Þ; a2 :¼ @f

@v
u�; v�ð Þ;

a3 :¼ @g

@u
u�; v�ð Þ; a4 ¼

@g

@v
u�; v�ð Þ

(3)

and A :¼ a1 a2

a3 a4

� �
, then these assumptions are abbrevi-

ated by

A1 : trðAÞ < 0 and detðAÞ > 0;

A2 : a1 < 0 and a4 > 0; (4)

the latter meaning that u acts as inhibitor (or depleted sub-

strate) and v acts as activator.

In Sec. II, we perform a thorough linear stability analy-

sis near criticality. In case of no differential flow, c1¼ c2,

destabilization of the homogeneous steady state occurs

through a Turing instability leading to the emergence of

FIG. 1. Busse balloon representation of striped patterns on flat ground

(c¼ 0) for the extended Klausmeier model (1) (with d¼ 500, m¼ 0.45).

Here, each pattern is represented by a point in ða;jÞ-space, where j
¼ 2p=wavelength is the wavenumber. A Turing bifurcation occurs at T. The

union of the two colored regions consists of one-dimensional (spatially peri-

odic) patterns that are 1D stable.53 The dark-green (teal) colored region con-

sists of those patterns that extend to 2D stable striped patterns, patterns in

grey extend to 2D unstable patterns.
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stationary periodic patterns. In case of nonzero differential

flow, c1 6¼ c2, the instability is referred to as Turing–Hopf (or

oscillatory Turing) since the patterns that emerge are mov-

ing. The initial steps are as in Ref. 42, which starts out from

the same setting. We derive the following novel results:

(3) Direction of motion: if c1> c2 and c2� 0, then patterns

emerging from the Turing–Hopf bifurcation move in the

positive x-direction (Sec. II A 1).

(4) Locus monotonicity: the parameter location of the insta-

bility monotonically changes if the differential flow

increases, assuming sign conditions on @A=@p (Theorem

1, Sec. II A 2).

(5) Range monotonicity: the range of destabilizing perturba-

tions of the homogeneous steady state monotically

increases as the differential flow increases (Lemma 3,

Sec. II B).

(6) Stripe formation dominance: for nonzero differential

flow, perturbations independent of y are responsible for

the primary destabilization: at the Turing–Hopf bifurca-

tion, striped patterns perpendicular to the direction of the

advection appear (Sec. II B).

These general results are applicable to the arid ecosystem

model (1), where the parameter a takes on the role of the

abstract parameter p. Interpreting the results in this context,

we conclude that (within the model) small amplitude

vegetation patterns move uphill. Second, under decreasing

rainfall a pattern formation first occurs on steeper slopes

(Corollary 1, Sec. II C). As soon as the homogeneously vege-

tated state has become unstable against a specific perturba-

tion, this will remain the case if the rainfall a decreases

more. And finally, banded vegetation perpendicular to the

slope naturally forms on slopes. The paper ends with a dis-

cussion on ecological implications of the results regarding

(1) and links to observations and comparison with other

model studies in Sec. IV.

Remark 1. In Ref. 2, a listing of ecohydrological models
with and without differential flow is given. The general
results can be applied to various other disciplines, in partic-
ular, to differential flow models where the reactants have dif-
ferent advection coefficients. In chemical reactions between
differently charged particle species, differential flow can be
created by applying an exterior electric field.5,37,56,61

Similarly, a differential flow induced chemical instability
(“DIFICI”) may be produced within a differential flow reac-
tor with one particle species immobilized.38,45,46,49 Finally,
also mussels that feed on algae, where (only) the algae flow
with tidal currents,63 fit the abstract framework (2).

Remark 2. The present insights induce (novel) connec-
tions with fluid mechanics. The representation of stable pat-
terns by Busse balloons originates from this field.4 Although
fundamentally different, similar patterns exist, e.g., context
striped patterns are commonly called roll-waves and the
transverse instabilities of striped patterns we find correspond
to certain “oblique-roll” instabilities.29 In both fields, the
onset of pattern formation can be studied by weakly nonlin-
ear stability theory, for instance, on pre-imposed latti-
ces.24,25 The transformation presented in the proof of Lemma
3 that lifts the 1D results from Sec. II A to 2D, has a

counterpart in fluid mechanics: the “Squire’s trans-
formation.” It leads to the “Squire’s theorem,”21,54 which is
still an active topic of research.30 Originally, it refers to the
fact that for shear flow instability of the Orr–Sommerfeld
equation, the critical Rayleigh number for a three-
dimensional parallel flow is determined by two-dimensional
perturbations, which links to the restriction to y-independent
perturbations in our striped pattern formation dominance
result in Sec. II B.

II. STRIPED PATTERN FORMATION

We choose to first avoid model specific considerations

and study pattern formation in the setting of the general sys-

tem (2). We present a comprehensive linear analysis about a

homogeneous steady state of inhibitor-activator type near

onset of pattern formation. We start our analysis in one spa-

tial dimension in Sec. II A but lift the results to two spatial

dimensions in Sec. II B.

In Sec. II A 1, we establish the direction of motion of

emerging patterns of (2) depending on the advection coeffi-

cients c1, c2. In Sec. II A 2, we prove a result on the mono-

tonic change of the parameter locus of the Turing–Hopf

instability as the differential flow 2c ¼ jc1 � c2j increases,

Theorem 1. One of the results leading up to this monotonic-

ity result, Lemma 1 on the destabilizing impact of increasing

c, plays an important role in carrying over the results from

1D to 2D.

In Sec. II B, we show that for c> 0, destabilization in

2D can be reduced to destabilization in 1D in the advection

direction. We prove that the destabilization locus in 2D coin-

cides with the locus in 1D, and we show that the set of desta-

bilizing perturbations is strictly monotonically increasing

with the advection c. It is shown that striped patterns natu-

rally arise from a Turing–Hopf instability in 2D.

We subsequently apply the general insights to the

extended Klausmeier model (1) in Sec. II C. The abstract

results in this context imply that on slopes, vegetation bands

form that migrate uphill.

A. Linear analysis of pattern formation for the general
system in 1D

The reduction of (2) to one dimension in the direction of

the advection is

ut ¼ d1uxx þ c1ux þ f ðp; u; vÞ;
vt ¼ d2vxx þ c2vx þ gðp; u; vÞ: (5)

The linear stability of a homogeneous steady state of (5) can

be determined by computing the linearization. Subsequently

applying a Fourier transform yields the matrix

M ¼ �d1k2 þ ic1k þ a1 a2

a3 �d2k2 þ ic2k þ a4

� �
;

where k is the wavenumber of the perturbation and aj are the

derivatives relevant for determining stability against homo-

geneous perturbations (see (3)). The linear dispersion rela-
tion is given by

dðk; k; p; cÞ :¼ detðM � kIÞ ¼ k2 þ a1k1 þ a0 ¼ 0; (6)

036411-3 Siero et al. Chaos 25, 036411 (2015)



where a1 ¼ �trðMÞ and a0 ¼ detðMÞ. The eigenvalues k of

M, which are solutions to (6), determine (in)stability.

We are free to choose a suitable frame of reference, as

the (in)stability of the homogeneous steady state does not

depend on it. By changing the reference frame, we can

manipulate the coefficients a1 and a0 in the dispersion rela-

tion. When changing to a moving reference frame with speed

~c, i.e., by the substitution x 7! x� ~ct, only the time deriva-

tive in (5) transforms, e.g., ut 7! ut � ~cux. When reflecting

space x 7! � x, only the single derivatives to space are

affected, e.g., ux 7! � ux. So the equations can be trans-

formed into the equivalent

ut ¼ d1uxx6ðc1 þ ~cÞux þ f ðp; u; vÞ;
vt ¼ d2vxx6ðc2 þ ~cÞvx þ gðp; u; vÞ;

(7)

where the negative sign applies in case of reflection.

A reference frame that will show to be suitable for sta-

bility analysis is obtained by choosing ~c ¼ �ðc1 þ c2Þ=2, so

that both advection coefficients have equal absolute value

c ¼ jc1 � c2j=2 but opposite sign. By means of spatial reflec-

tion, we can arrange that the first component (inhibitor)

advection coefficient has positive sign. So we arrive at the

form

ut ¼ d1Duþ cux þ f ðp; u; vÞ;
vt ¼ d2Dv� cvx þ gðp; u; vÞ; (8)

with a larger c meaning a larger differential flow.

In this reference, frame a1 and a0 are given by

a1 ¼ ðd1 þ d2Þk2 � a1 � a4;

a0 ¼ ð�d1k2 þ ick þ a1Þð�d2k2 � ick þ a4Þ � a2a3: (9)

Under assumption A1, trðAÞ < 0, which implies a1> 0. The

real and imaginary parts of a0 are given by

Reða0Þ ¼ ð�d1k2 þ a1Þð�d2k2 þ a4Þ þ c2k2 � a2a3;

¼ d1d2k4 � Ck2 þ c2k2 þ detðAÞ;
Imða0Þ ¼ ckððd1 � d2Þk2 þ a4 � a1Þ; (10)

where we introduced C :¼ d1a4 þ d2a1.

For the purpose of self-containment, we briefly treat the

well-known Turing instability (c¼ 0) first. In this case, the

dispersion relation (6) reduces to

k2 þ ððd1 þ d2Þk2 � trðAÞÞkþ d1d2k4 � Ck2 þ detðAÞ ¼ 0;

and implicit differentiation with respect to k yields

2k
@k
@k
þ d1 þ d2ð Þk

� �
þ d1 þ d2ð Þk2 � tr Að Þ
� � @k

@k

þ 4d1d2k3 � 2Ck ¼ 0:

Imposing stationary criticality (k¼ 0) and that the spec-

trum is tangential @k
@k ¼ 0
� �

gives

d1d2k4 � Ck2 þ detðAÞ ¼ 0;

4d1d2k3 � 2Ck ¼ 0:

It follows from the last equation that C ¼ 2d1d2k2 > 0

and insertion into the former equation gives C2

¼ 4d1d2detðAÞ, thus a Turing instability occurs if and only

if

C ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1d2detðAÞ

p
: (11)

Concerning general c, we now develop some useful ref-

erence material for critical cases where ReðkÞ ¼ 0. Here, the

dispersion relation (6) reduces to an expression that will

prove to be insightful.

Isolating the imaginary part of (6) and imposing

ReðkÞ ¼ 0 yields

Reða1ÞImðkÞ þ Imða0Þ ¼ 0: (12)

In the reference frame of (8), it holds that Imða1Þ ¼ 0, so

that ImðkÞ ¼ � Imða0Þ
a1

. If we now combine this with the real

part of (6), we obtain

a2
1Reða0Þ � Imða0Þ2 ¼ 0: (13)

Upon substituting equalities from (9) and (10) into (13)

and some rewriting, we obtain the following polynomial

equation in k2:

½ðd1 þ d2Þk2 � trðAÞ�2½ðd1d2k2 � CÞk2 þ detðAÞ�
þ4c2½ðd1d2k2 � CÞk2 þ a1a4�k2 ¼ 0: (14)

First note that all terms in (14) are positive except

a1a4< 0 on the second line and possibly d1d2k2 � C,

which appears on both lines. For c¼ 0, this confirms

the well-known fact that C> 0 is a necessary condition

for a Turing instability, see (11). On the other hand, this

shows that the instability can also be purely driven by

ramping up the advection c since the only c-dependent

term 4c2ððd1d2k2 � CÞk2 þ a1a4Þ is negative for k2 small,

relating to differential flow instabilities mentioned in the

introduction.

We continue with some useful estimates that can be

derived from (14). We first note an upper bound for the

wavenumbers that can become critical given by

k2 <
a4

d2

: (15)

Suppose on the contrary that k2 � a4

d2
, then d1d2k2 � C

� �d2a1 > 0. Thus, also

ðd1d2k2 � CÞk2 þ a1a4 � �d2a1k2 þ a1a4 � 0:

Now, all terms of (14) are positive for k2 2 a4

d2
;1	 �

, so

these wavenumbers cannot be critical.

Hence, there exists an upper bound on the wave-

number of destabilizing perturbations, independent of

c,42 determined by the activator only. For future refer-

ence, we note that as a consequence of (15), it holds

that

036411-4 Siero et al. Chaos 25, 036411 (2015)



Im a0ð Þ
ck

6a1 �
Im a0ð Þ

ck
� a1 ¼ d1 � d2ð Þk2 þ a4 � a1

� d1 þ d2ð Þk2 � a1 � a4

� �
¼ 2 a4 � d2k2
� �

> 0:

(16)

1. Motion of emerging patterns

Here, we determine the direction of motion of patterns

emerging from a destabilized homogeneous state, for advec-

tion coefficients c1> c2 and c2� 0, by applying the reference

frame independent result (15). We first do this for the limit-

ing case c2¼ 0< c1, as in (1). In this reference frame, the

coefficients of the dispersion relation (6) are

a01 ¼ ðd1 þ d2Þk2 � a1 � a4 � ic1k;

a00 ¼ ð�d1k2 þ ic1k þ a1Þð�d2k2 þ a4Þ � a2a3:

The real part of a01 and the imaginary part of a00 are given by

Reða01Þ ¼ a1 > 0;

Imða00Þ ¼ c1kð�d2k2 þ a4Þ:

Now, the speed s0 at onset is given by

s0 ¼ Im kð Þ
k
¼

Im a00
� �

kRe a01
� � ¼ c1 �d2k2 þ a4ð Þ

a1

> 0;

by (12), (15), and since c1> 0. The positive speed means

that the direction of movement at criticality is in the positive

x-direction; we further note that the speed increases linearly

with c1.

Let s denote the speed of emerging patterns in a system

with c2< 0 but still c2< c1. This system can be brought into

the form of the limiting case c2¼ 0 by substituting

x 7! xþ c2t, so that s ¼ s0 � c2 > 0, since s0 > 0 and c2< 0.

So, movement is again in the positive x-direction. By reflec-

tion symmetry, it is clear that if c1< c2 and c2� 0, then

emerging patterns move in the negative x-direction.

Additionally, if we fix c and p, we can determine the

influence of an incremental change of the wavenumber k on

the speed at criticality. This influence is independent of the

reference frame; we compute

@s0

@k2
¼ �2c d2a1 þ �d2k2 þ a4ð Þ d1 þ d2ð Þ

� �
a2

1

< 0; (17)

(see (9)) so that at criticality, an increase in k leads to a

decrease in the speed.

Both the positivity of the speed s0 and the influence of

the wavenumber k are in accordance with what was found

previously in the context of (1), where water advection is

downslope but vegetation bands move uphill.53

2. Destabilization by c and monotonicity of the
destabilization locus

The following lemma shows that for critical eigenvalues,

an increase of differential flow, c, will make the corresponding

perturbation destabilizing. We recall the assumption (4) on sta-

bility against homogeneous perturbations A1 of a homogene-

ous steady state of inhibitor-activator type A2.

Lemma 1. Suppose that we have a solution to the
dispersion relation (6) with ReðkÞ ¼ 0, c> 0, k 6¼ 0, A1 and

A2 hold, then sgn Re @k
@c

� �
> 0.

Proof. We implicitly differentiate (6) to c while keeping

k and p fixed:

2k
@k
@c
þ @a1

@c
kþ a1

@k
@c
þ @a0

@c
¼ 0; (18)

which leads to

@k
@c
¼ �

@a1

@c
kþ @a0

@c
2kþ a1

¼ � 2kþ a1

j2kþ a1j2
@a0

@c
; (19)

since by (9) a1 is independent of c (the bar denotes complex

conjugation). Now by (12)

j2kþ a1j2Re
@k
@c

� �
¼ �a1Re

@a0

@c

� �
þ 2

Im a0ð Þ
a1

Im
@a0

@c

� �

¼ �2a1ck2 þ 2
Im a0ð Þ2

a1c
:

Thus, it follows that

a1

2ck2
j2kþ a1j2Re

@k
@c

� �
¼

Im a0ð Þ2

c2k2
� a2

1

¼
Im a0ð Þ

ck
þ a1

� �
Im a0ð Þ

ck
� a1

� �
> 0

by (16). Since a1,c> 0, it holds that Re @k
@c

� �
> 0. �

We now include the parameter dependence of (8) in our

treatment and assume that the homogeneous steady state per-

sists as a function of the parameter p. Thus, the linearization

A ¼ a1 a2

a3 a4

� �
also becomes a function of p. We will now

show that given sign conditions on @A=@p, an increase of p
will be either stabilizing or destabilizing.

Lemma 2. Suppose that we have a solution to the dis-
persion relation (6) with ReðkÞ ¼ 0, A1 and A2 hold and

sgn
@a1

@p
¼ sgn

@a4

@p
¼ sgn

@C
@p
¼ sgn � @det Að Þ

@p

 !
; (20)

then Re @k
@p

� �
carries the same sign.

Proof. Now implicit differentiation of (6) to p while

keeping k and c fixed gives

2k
@k
@p
þ @a1

@p
kþ a1

@k
@p
þ @a0

@p
¼ 0; (21)

which leads to

@k
@p
¼ �

@a1

@p
kþ @a0

@p

2kþ a1

¼ �

@a1

@p
kþ @a0

@p

� �
2kþ a1

j2kþ a1j2
: (22)
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Since 0 < a1 2 R, it holds that

j2kþ a1j2Re
@k
@p

� �

¼ �2k2Re
@a1

@p

� �
� Re

@a0

@p

� �
a1 � 2kIm

@a0

@p

� �

¼ 2
Im a0ð Þ

a1

� �2
@a1

@p
þ @a4

@p

� �
� � @C

@p
k2 þ @det Að Þ

@p

 !
a1

�2
Im a0ð Þ

a1

ck
@a4

@p
� @a1

@p

� �
:

Thus, a2
1j2kþ a1j2Re @k

@p

� �
equals

2 Im a0ð Þ2
@a1

@p
þ @a4

@p

� �
� � @C

@p
k2 þ @det Að Þ

@p

 !
a3

1

þ 2cka1Im a0ð Þ
@a1

@p
� @a4

@p

� �

¼ c2k2
Im a0ð Þ

ck
þ a1 þ

Im a0ð Þ
ck

� a1

� �

�
Im a0ð Þ

ck
þ a1

� �
@a1

@p
þ

Im a0ð Þ
ck

� a1

� �
@a4

@p

 !

þ @C
@p

k2 � @det Að Þ
@p

 !
a3

1:

The factors in front of @a1

@p and @a4

@p are all positive by (16).

Therefore, the signs of the terms in the final expression are

determined by the signs in (20). �

We now combine the results at criticality of Lemmas 1

and 2 together with some insights on the global influence of

both the advection c and the parameter p on the stability of

the homogeneous steady state. In the result below, “const”

denotes a positive constant that may be different at any

instance.

Theorem 1. We make a distinction between two cases.
Case 1. Let I¼ [p1, 1) and assume that for p � I

assumptions A1, A2 hold and Eq. (20) holds with sign �1.

Assume that at p¼ p1, the homogeneous steady state is line-
arly stable for some value of c. Then on I, the location of the
instability pT is a strictly monotonically increasing function
of c. If, moreover, there exists a q � I such that p� q implies
both C(p)� 0 and

�2
@a1

@p
det Að Þ d1 þ d2ð Þ � 2c2a4

� �
� const; (23)

then limc!1pT ¼ 1.

Case 2. Let I¼ (0, p2] and assume that for p � I
assumptions A1, A2 hold and Eq. (20) holds with sign þ1.

Assume that at p¼ p2, the homogeneous steady state is line-
arly stable for some value of c. Then on I, the location of the
instability pT is a strictly monotonically decreasing function
of c. If, moreover, there exists a q � I such that p� q implies
both C(p)� 0 and

�2
@a1

@p
det Að Þ d1 þ d2ð Þ � 2c2a4

� �
� �const

p
; (24)

then limc!1pT ¼ 0.

Proof. Before making a case distinction, we do some

preparatory work. As noted before, from expression (14), it

can be seen that the stability of the homogeneous steady state

can be manipulated by increasing c. Namely, there is only

one term that depends on c, and for k2 small, this term is

approximated by 4c2a1a4< 0. By choosing the right value of

c, it can be inferred that ReðkÞ ¼ 0 for some k2 but nowhere

ReðkÞ > 0. Starting at this criticality, the following approxi-

mation can be made:

DRe kð Þ 	 @Re kð Þ
@c

Dcþ @Re kð Þ
@p

Dp; (25)

where D indicates an incremental change in the succeeding

quantity. Thus, if we locally wish to trace criticality, then we

should prescribe that

@p

@c
¼ �

@Re kð Þ
@c

@Re kð Þ
@p

: (26)

How fast pT moves is now determined by the maximum/

minimum of (26) over all critical k, a maximum/minimum

that certainly exists since the dispersion relation is continu-

ous and the evaluation is on a compact set (k2 < a4

d2
by (15)).

On the other hand, we want to incorporate that a sufficient

change in the parameter value may stabilize the homogeneous

steady state. We pick the term �2trðAÞdetðAÞðd1 þ d2Þk2

from (14) to counteract the negative term 4c2a1a4k
2; thus, we

are interested in the sign of

4c2a1a4 � 2trðAÞdetðAÞðd1 þ d2Þ: (27)

As a final preparatory step, we compute its derivative

@

@p
4c2a1a4 � 2tr Að Þdet Að Þ d1 þ d2ð Þ
� �
¼ �2

@a1

@p
det Að Þ d1 þ d2ð Þ � 2c2a4

� �
þ4c2a1

@a4

@p
� 2

@a4

@p
det Að Þ d1 þ d2ð Þ

�2tr Að Þ @det Að Þ
@p

d1 þ d2ð Þ: (28)

We start making a distinction between the two cases.

Case 1. From Lemmas 1 and 2 and Eq. (26), it follows

that pT is a monotonically increasing function. The only

thing left to prove is that limc!1pT is unbounded. For this, it

is sufficient to show that for any fixed c, the homogeneous

steady state can always be stabilized by a sufficient increase

of p. By choosing p� q, the only negative coefficient in (14)

is c2a1a4k2. In this case, the last three terms of (28) are posi-

tive so

@

@p
4c2a1a4 � 2tr Að Þdet Að Þ d1 þ d2ð Þ
� �
� �2

@a1

@p
det Að Þ d1 þ d2ð Þ � 2c2a4

� �
� const;
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for p� q by assumption. So for p large enough, the sign of

(27) will be positive and (14) will have no solutions.

Together with Lemma 4 (Appendix A), this implies stability

of the homogeneous steady state.

Case 2. From Lemmas 1 and 2 and Eq. (26), it follows

that pT is a monotonically decreasing function. The only

thing left to prove is that limc!1pT ¼ 0. For this, it is suffi-

cient to show that for any fixed c, the homogeneous steady

state can always be stabilized by a sufficient decrease of p.

By choosing p� q, the only negative coefficient in (14) is

c2a1a4k2. In this case, the last three terms of (28) are nega-

tive, so

@

@p
4c2a1a4 � 2tr Að Þdet Að Þ d1 þ d2ð Þ
� �
� �2

@a1

@p
det Að Þ d1 þ d2ð Þ � 2c2a4

� �
� �const

p
;

for p� q by assumption. Because
Ð p0

0
1
p dp diverges, for p

small enough, the sign of (27) will again be positive and Eq.

(14) has no solutions, again implying stability by Lemma 4

(Appendix A). �

Uniqueness of the destabilization locus on I for fixed p
or fixed c is an immediate consequence of the strict monoto-

nicity. We further note that in Theorem 1, case 2 can be

reduced to case 1 by taking the parameter 1/p, so a more con-

cise version without case distinction is possible. We refrain

from implementing this because the present treatise fits bet-

ter with the application to (1) that comes next.

B. Linear analysis of pattern formation for the general
system in 2D

In this section, we study the destabilization of a homo-

geneous steady state of the general system (2) in two space

dimensions, under assumption A1 that the homogeneous

steady state is stable against homogeneous perturbations and

A2 that the steady state is of the type inhibitor-activator (4).

We use the same reference frame (8) with advection

coefficients c1¼ c and c2¼�c as employed in deriving

Theorem 1 in Sec. II A 2, where c is a measure of differential

flow, but we recall that (in)stability does not depend on the

reference frame and results hold for general c1, c2. The dis-

persion relation (6) introduced in Sec. II A, whose solutions

determine (in)stability, in 2D depends on two wavenumbers.

The wavenumber in the direction of advection x is again

denoted k, the additional wavenumber for the y-direction is

denoted ‘. Here, the dispersion relation is given by

dðk; k; ‘; cÞ :¼ detðM � kIÞ ¼ 0; (29)

with M given by

M ¼ �d1ðk2 þ ‘2Þ þ ickþ a1 a2

a3 �d2ðk2 þ ‘2Þ � ickþ a4

� �
:

(30)

We can conveniently connect the results developed in

Sec. II A to the stability in 2D through the following lemma.

Lemma 3. In the presence of differential flow, c> 0, the
primary destabilization of a homogeneous steady state of (2)

satisfying A1 and A2 at criticality occurs through perturba-
tions with ‘¼ 0. The range of wavenumber pairs (k, ‘)
corresponding to destabilizing perturbations is strictly
monotonically increasing with c, but bounded above by

k2 þ ‘2 <
a4

d2

: (31)

Proof. We start with the important equivalence

k; k; ‘; cð Þ solves 29ð Þ

() k;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2

p
; 0;

kcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2

p
 !

solves 29ð Þ; (32)

which follows directly from the equality of the matrices M,

see (30). Now suppose that the homogeneous steady state is

marginally stable for some value of c. By the identity (32),

the instability with respect to a perturbation with ‘ 6¼ 0 is the

same as the instability with respect to a perturbation with

‘¼ 0 and smaller c since k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2

p
< 1. Due to the desta-

bilizing impact of c at criticality (see Lemma 1), 1D pertur-

bations with smaller c have ReðkÞ < 0. Hence, the primary

destabilization occurs through perturbations with ‘¼ 0.

Strict monotonicity for pairs (k, 0) is already due to

Lemma 1. Because (in)stability against (k, ‘) is linked to

(in)stability against ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2

p
; 0Þ through (32), this auto-

matically extends to monotonicity for all (k, ‘). The bound

(15) extends likewise to (31). �

Note that for c¼ 0, symmetry implies that instability in

any direction occurs simultaneously. As mentioned in the

introduction, the transformation in (32) is known in fluid

mechanics as “Squire’s transformation.” For a supercritical
Turing(–Hopf) bifurcation, (stable) small amplitude patterns

emerge for parameter values just beyond the bifurcation. In

the subcritical case, the small amplitude patterns exist for

parameter values just before the bifurcation. Lemma 3 im-

mediately leads to the following result.

Theorem 2. The 2D destabilization locus coincides with
the 1D destabilization locus, so the monotonicity result
Theorem 1 also holds in 2D. In case of a supercritical
Turing–Hopf bifurcation, the primary patterns to form are
striped patterns perpendicular to the advection.

C. Application to the extended Klausmeier model

In this section, we check applicability of the general

results to the extended Klausmeier model (1). The spatially

homogeneous steady states of (1) are given by

wbare ¼ a; nbare ¼ 0, and

w6 ¼
2m2

a6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p ;

n6 ¼
a6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p

2m
;

(33)

for a� 2m.53 Since ðw�; n�Þ is unstable against spatially ho-

mogeneous perturbations,53 we focus on the other vegetated

state ðwþ; nþÞ.
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We provide some more elementary facts about (1),

details can be found in Ref. 53. The linearization about

ðwþ; nþÞ is given by the Jacobian matrix

A ¼ a1 a2

a3 a4

� �
¼ �1� n2

þ �2m
n2
þ m

� �
:

Thus, clearly, a1< 0 and a4> 0, so (wþ, nþ) is of inhibitor-

activator type (assumption A2, see (4)). It holds that

detðAÞ ¼ mðn2
þ � 1Þ > 0 for a> 2m, but trðAÞ < 0 if and

only if

m � 2 or a >
m2ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1
p : (34)

For these choices of parameters, (wþ, nþ) is stable against

homogeneous perturbations (assumption A1, see (4)). So, for

a nonzero slope c> 0, the uphill motion of patterns consid-

ered in Sec. II A 1 indeed applies. Moreover, Lemma 3 holds,

so destabilization occurs through perturbations that are con-

stant in the y-direction perpendicular to the direction of

advection. After destabilization, the set of destabilizing per-

turbations becomes larger and larger.

For (1), the bound (31) on destabilizing perturbations

reduces to k2þ ‘2<m. In this paper, we work with the esti-

mate m¼ 0.45 for grass, for trees m¼ 0.045 holds,31 and

the bound is more restrictive. If k¼ 0, then c does not play

a role and destabilization in the y-direction thus occurs in-

dependent of c, at a	 2.883. We will refer to this point as

the anchor point Ty. The results from Lemma 3 are illus-

trated in Figure 2.

Checking the supercriticality condition of Theorem 2

analytically requires the computation of Landau coefficients,

which is beyond the scope of this paper. Supercriticality has

been proven in an asymptotic scaling of (1) in one space

dimension,60 and numerically, it is found that this holds in a

broad range of parameter space. Through Theorem 2, for

advection c> 0, the Turing–Hopf bifurcation is a natural

mechanism for the formation of striped or banded vegetation

patterns. We will see this formation of banded vegetation in

simulations in Sec. III C.

To apply the monotonicity result Theorem 1, we

need to check some more conditions. In the corollary

below, it will be shown that, when the parameter a
assumes the role of the abstract parameter p, the parame-

ter locus of its destabilization aT is a strictly monotoni-

cally increasing function of c and limc!1aT ¼ 1.

Although within the scope of this paper the parameters c
and a are most important, the theory developed here is

also utilized to show that (when m assumes the role of p)

mT is a monotonically decreasing function of c and

limc!1mT ¼ 0.

In preparation, we make note of some rough estimates

for nþ

nþ �
a

m
;
@nþ
@m
� @

@m

a

2m
¼� a

m2
;
@n2
þ

@a
� @

@a

a2

4m2
¼ a

2m2
;

@n2
þ

@m
� @

@m

a2

4m2
¼�a2

2m3
: (35)

We recall that (1) is not precisely of the form (8) but can be

brought into this form by changing the frame of reference, as

detailed at the start of Sec. II A, and we apply Theorem 1 as

if we have done so.

Corollary 1. Assume that (34) holds for a¼ p1 and
m¼ p2 and that here the homogeneous steady state (wþ, nþ)

is linearly stable for some value of c.

Then for a on [p1, 1) (with m¼ p2), the location of the
instability aT is a strictly monotonically increasing function
of c. Moreover, limc!1aT ¼ 1.

For m on (0, p2] (with a¼ p1), the location of the insta-
bility mT is a strictly monotonically decreasing function of c.
Moreover, limc!1mT ¼ 0.

Proof. The assumptions (4) of stability against homoge-

neous perturbations A1 and being of inhibitor-activator type

A2 must now be checked for an interval of parameter values.

The shape of the set of points (a, m) satisfying A1 given by

(34) implies that if we pick a¼ p1 and m¼ p2 for which (wþ,

nþ) is stable against homogeneous perturbations, then this

remains true if a is increased or m is decreased, see Figure 4.

The inhibitor-activator assumption was already found to

FIG. 2. The extended Klausmeier model (1) for m¼ 0.45 (d¼ 500) at a	 2.883 (onset of the Turing instability for c¼ 0). (a) Real part of kðk; ‘; cÞ solving the

homogeneous steady state dispersion relation (29) for 2c¼ 182.5. Notably, ReðkÞ is maximal for ‘ ¼ 0. (b) Contour plots of Reðkðk; ‘; cÞÞ ¼ 0 for c¼ 0 (red,

continuous), 2c¼ 182.5 (red, dashed), and 2c¼ 1000 (red, dotted). For c¼ 0, destabilization occurs in any direction simultaneously. For c> 0, the range

between the curves corresponding to destabilizing perturbations is increasing, but not beyond the black curve k2 þ ‘2 < m. The anchor point Ty appears at

k¼ 0, ‘ 	 0:430.
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hold everywhere. So, assumptions A1 and A2 hold for all

a 2 ½p1;1Þ and m 2 ð0; p2�.
For the parameter a, we apply (35) and readily compute

that @a1

@a ¼ �
@n2
þ

@a � �a
2m2 � �p1

2m2 ;
@a4

@a ¼ 0; @C@a ¼
@a1

@a and
@detðAÞ
@a

¼ @a1

@a mþ 2m @a3

@a ¼ m
@n2
þ

@a � a
2m �

p1

2m. This shows that (20)

holds with sign �1, except that @a4

@a ¼ 0, which is no problem

as can be seen from the proof of Lemma 2. Since @C
@a �

�p1

2m2,

C is negative for a large enough. With the help of the previ-

ous computations, we can make the following estimate to

check (23):

�2
@a1

@a
det Að Þ d1 þ d2ð Þ � 2c2a4

� �
� p1

m2
det A p1ð Þ
� �þ a� p1ð Þ

p1

2m

� �
d1 þ d2ð Þ � 2c2m

� �
;

and the term on the right will become bigger then any con-

stant if a is taken large enough. So, case 1 of Theorem 1

applies to the parameter a.

For the parameter m, using (35), we compute that @a1

@m

¼ � @n2
þ

@m � a2

2m3 ;
@a4

@m ¼ 1; @C@m ¼ d þ @a1

@m and

@det Að Þ
@m

¼ @a1

@m
mþ a1 þ 2a3 þ 2m

@a3

@m

¼ m
@n2
þ

@m
� 1þ n2

þ � 2m
@nþ
@m
þ nþ

� �
nþ

� 2m
�a

m2
þ a

m

� �
a

m
¼ �a

m2
; (36)

so (20) holds with sign þ 1. Clearly, C ¼ dm� 1� n2

is negative for sufficiently small m. By solving (36), we

obtain

�2
@a1

@m
det Að Þ d1 þ d2ð Þ � 2c2a4

� �
� � a2

m3
det A p2ð Þ
� �� a

2p2

þ a

2m

� �
d1 þ d2ð Þ � 2c2

� �
:

The sign of the term on the right will become negative

for m small enough, also 1
m3 >

1
m for m< 1. Hence, case 2 of

Theorem 1 applies to the parameter m. �

Within the model (1), any choice of parameters that

allows for a stable uniform vegetated state will behave as

described by Corollary 1. Thus, the locus of destabilization

aT of the homogeneous steady state moves to higher a as c
increases. This is consistent with what we find numerically.

In Figure 3, we plot the values of aT for 2c¼ 0, 182.5, 365,

500, and 1000, together with a square root function since aT

grows as
ffiffiffi
c
p

for large c, in a certain scaling regime.60

Now that we understand the influence of both parame-

ters a and m, we can also fix c and infer the dependence

aT¼ aT(m) for free. The following approximation comple-

mentary to (25) can be made:

DRe kð Þ 	 @Re kð Þ
@a

Daþ @Re kð Þ
@m

Dm;

with D again indicating an incremental change. Now, if we

locally wish to trace criticality, we should prescribe that

@a

@m
¼ �

@Re kð Þ
@m

@Re kð Þ
@a

> 0; (37)

since we have already seen that
@ReðkÞ
@m > 0 and

@ReðkÞ
@a < 0 at

criticality. To trace criticality a and m should be simultane-

ously increased or simultaneously decreased.

Figure 4 illustrates the different (in)stability regions of

(wþ, nþ) for c¼ 0. From Corollary 1, we know that, by

increasing the advection c, a homogeneous steady state in

the purple region (d¼ 500) can be made unstable. But, for

any finite c, (wþ, nþ) is stable for a large or m small

enough.

FIG. 3. The dots represent the location of the instability aT of (1) (with

d¼ 500, m¼ 0.45) for several values of 2c. The result from Ref. 60 is illus-

trated by the graph of 0:231
ffiffiffiffiffi
2c
p

, with the factor chosen to fit the value at

2c¼ 1000.

FIG. 4. Regions of stability of (wþ, nþ) for the extended Klausmeier model

(1) for c¼ 0. In the white region, a< 2m and (wþ, nþ) do not exist. In the

dark grey region where 2m < a < m2ffiffiffiffiffiffiffi
m�1
p ; trðAÞ > 0. Elsewhere, (wþ, nþ) is

stable against homogeneous perturbations. The red curves depict the solution

set of C ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddetðAÞ

p
for d¼ 50, 500, 5000, see (11). At each of these

curves (wþ, nþ) undergoes a Turing instability for the corresponding value

of d. The relative placement of the curves as a function of d is a consequence

of C=
ffiffiffi
d
p

being an increasing function of d. By (37), aT¼ aT(m) is a strictly

monotonically increasing function of m, for every value of d. For d¼ 500, in

the light grey area, the homogeneous steady state is Turing unstable and in

the purple area it is Turing stable. For m¼ 0.45, the Turing instability occurs

at a	 2.883, this point is labeled T in the figure.
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III. STRIPED PATTERN STABILITY IN 2D

In this section, we restrict our attention to the extended

Klausmeier model (1), where the differential flow equals the

water advection.

Perturbations of the homogeneous state in 2D were

represented by two wavenumbers k; ‘ 2 R for the x,

y-directions, respectively, in Sec. II B. In Sec. III A, we

will first explain that perturbations of a pattern of stripes

perpendicular to the direction of advection x can be repre-

sented by ‘ 2 R and c on the unit circle S1 
 C, so that

logðcÞ 2 ð�pi; pi�. The restriction to perturbations with

‘¼ 0 corresponds to perturbations that were already con-

sidered in 1D.53 Perturbations with ‘ 6¼ 0 are not constant

in the transverse y-direction along the stripes and may

cause them to break up.

In Sec. III B, we analytically derive an instability result

for localized striped patterns on flat ground (c¼ 0, no advec-

tion) through an Evans function approach, proving that in

this case, a range of 1D stable patterns extends to 2D unsta-

ble striped patterns. These patterns will be unstable against

perturbations for a range of values ‘> 0, independent of c.

We continue by numerically determining the collection

of striped patterns that withstand the additional transverse

destabilization mechanisms in Sec. III C. Here, perturbations

with c¼61 play a special role, as stability against transverse

perturbations for c¼61 seems to imply stability against all

transverse perturbations. We show that the fraction of 2D

stable striped patterns within the enveloping 1D Busse bal-

loon increases as the advection c increases, which is relevant

for determining ecological resilience.

These results are complemented by simulations of (1)

with the rainfall a as a slowly decreasing parameter. As in

Ref. 53, we trace the wavenumber of the solution if it is in a

striped pattern state. The simulations show that the continua-

tion method employed to determine striped pattern stability

successfully predicts the occurrence of stripe breakup;

depending on the advection c, the initial stages in the pattern

selection process are determined by 1D effects (‘¼ 0).

A. Transverse instabilities: Breakup of stripes into
rectangles or rhombs

In Sec. II, we computed the linearization about a con-

stant homogeneous state by representing perturbations by

complex exponentials using the Fourier transform.

Analogously, linearization about a periodic state with wave-

length 2p=j is possible through a so-called Floquet–Bloch

transform (see Appendix B). Now, perturbations are repre-

sented by functions ~nc satisfying a “c-twisted”3 periodicity

property

~nc xþ 2p
j

� �
¼ c~nc xð Þ; (38)

where c is on the unit circle (and similarly for the water com-

ponent w). Note that c¼ 1 implies that the perturbation has

exactly the same wavelength as the underlying pattern. The

striped patterns we study are periodic in the x-direction and

constant in the y-direction. Perturbations are thus represented

by the combination ~nðx; yÞ ¼ ncðxÞei‘y.

As already noted, transverse perturbations with c¼61

turn out to be primary destabilization mechanisms, in

Sec. III C. In this section, we will use numerical continuation

in two spatial dimensions20,57 to visualize the destabilizing

perturbations and the bifurcating 2D patterns for the cases

c¼61, for the extended Klausmeier model (1). With these

techniques, it becomes possible to map existence and stability

of patterns periodic in 2D, as we will illustrate, but an exten-

sive search is outside the scope of this paper.

At the Turing–Hopf point where a¼ aT, the homogeneous

steady state is marginally stable against a perturbation with a

distinct wavenumber kT. Beyond the instability, a set of stable

striped patterns exists (in the supercritical case), whose wave-

numbers form an interval including j ¼ kT . In Table I, we

show at which value of arect; arhomb this striped pattern

becomes unstable against transverse breakup for c¼ 1, respec-

tively, c¼�1 and at what distinct value of ‘rect; ‘rhomb of the

transverse wavenumber, for several values of 2c (with d¼ 500,

m¼ 0.45). The table is obtained by continuation methods for

one spatial dimension, as will be used in Sec. III C.

Table I can be used as input to study striped pattern

breakup, e.g., for c¼ 0 in Figure 5. In order to find the

2D pattern that bifurcates from the striped pattern with

j ¼ kT for c¼ 1, we start out from the homogeneous steady

state (wþ, nþ) and choose ½0; 4p=kT � � ½0; 2p=‘rect� as a do-

main. At the Turing(–Hopf) point, a two-stripe pattern

(Figure 5(b)) bifurcates from (wþ, nþ) as the domain size in

x was prepared like this. If by continuation a is decreased to

arect, the two-stripe pattern becomes unstable against a trans-

verse perturbation (Figure 5(c)) and a pattern periodic in

both dimensions (Figure 5(d)) bifurcates. By (38), for c¼ 1,

perturbations are in phase at neighboring stripes (at distance

2p=j) since ~n xþ2p
j ;y

� �
� ~n1 xþ2p

j

� �
ei‘y¼ ~n1ðxÞei‘y ¼ ~nðx;yÞ.

Periodically extending the pattern in Figure 5(d) in both

dimensions gives a rectangular pattern on the plane.

Likewise, for c¼�1, if we choose ½0; 4p=kT �
�½0; 2p=‘rhomb�, the two-stripe pattern emerging at aT

becomes unstable against a different transverse perturbation

(Figure 6(c), where 2c¼ 182.5) when a is decreased to

arhomb and again a pattern periodic in both dimensions

(Figure 6(d)) bifurcates. For c¼�1, perturbations are in op-

posite phase at neighboring stripes (2p=j apart) since by

(38) it holds that ~n xþ 2p
j ; y

� �
� ~n�1 xþ 2p

j

� �
ei‘y ¼

�~n�1ðxÞ ei‘y � �~nðx; yÞ. Periodic extension of the pattern in

TABLE I. Table of Turing–Hopf loci (aT) of (1) (for d¼ 500, m¼ 0.45), the

critical wavenumber at its onset (kT) and for the striped patterns with j ¼ kT

the critical a-values and wavenumbers ‘ of perturbation along the striped

pattern at breakup for c¼ 1 (arect and ‘rect) and c¼�1 (arhomb and ‘rhomb).

2c aT kT arect ‘rect arhomb ‘rhomb

0 2.883 0.430 2.232 0.433 2.297 0.410

182.5 3.456 0.398 2.107 0.417 2.197 0.394

365 4.460 0.384 2.011 0.418 2.197 0.365

500 5.161 0.385 2.037 0.422 2.349 0.348

1000 7.301 0.398 2.206 0.443 3.074 0.343
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Figure 6(d) yields a rhombic pattern. In this case, the bifur-

cating rhombic pattern deviates only little from a regular

hexagonal pattern.

We note that the inset of Figure 5(a) shows that the

branch of striped patterns becomes unstable before the

stripe-rectangle bifurcation point is reached. This is because

the stripe-rhomb bifurcation precedes the stripe-rectangle

bifurcation, indeed arhomb > arect and ‘rhomb 	 ‘rect for c¼ 0,

so the stripe-rhomb bifurcation is only slightly delayed

because it does not immediately satisfy the boundary condi-

tions. In Figure 6, the striped pattern does remain stable up

to the bifurcation shown.

The stripe-rectangle and stripe-rhomb bifurcations are

found to be always subcritical, but relatively quickly the

branch folds back, so that it appears supercritical on the

larger parameter scale. The methods are not restricted to

j ¼ kT; the computations presented in Figure 7 show a

rhombic pattern with both acute and obtuse angles for long

x-wavelengths, which occur for larger c-values.

B. No advection: Transverse instability of long
wavelength striped patterns

In this mathematically more technical section, we con-

sider long wavelength striped patterns of the extended

Klausmeier model (1) in absence of advection (c¼ 0) and es-

tablish instability with respect to perturbations along the

stripes (‘> 0) in the spirit of results on solitary homoclinic

stripes.19,32,35

By scaling (1) into the form of the Gray–Scott model,

we may use results that have already been derived for this

model. Without advection and in a single space dimension,

(1) is given by

wt ¼ dwxx þ a� w� wn2;

nt ¼ nxx � mnþ wn2;

and can be scaled into the standard form of the Gray–Scott

equation,

uT ¼ uXX þ Að1� uÞ � uv2;

nT ¼ DvXX � Bvþ uv2; (39)

by setting

u X; Tð Þ ¼ 1

a
w x; tð Þ; v X; Tð Þ ¼ 1

a
n x; tð Þ;

with

FIG. 5. (a) Stripe-rectangle bifurcation diagram of (1) for c¼ 0 (d¼ 500,

m¼ 0.45) with branch of homogeneous equilibrium (red), bifurcating striped

patterns with wavenumber j ¼ kT (blue), subcritically bifurcating rectangu-

lar pattern with ‘ ¼ ‘rect (black) and inset magnifying this subcritical bifur-

cation. For efficiency, the computations were done under zero flux Neumann

boundary conditions, and thick lines indicate stability with respect to pertur-

bations that fit the domain. Other panels show striped pattern (b) and desta-

bilizing perturbation (c) at stripe-rectangle bifurcation point, rectangular

pattern (d) at a	 1. Note that the solution plots extend periodically in both

space directions.

FIG. 6. Analogue of Figure 5 for stripe-rhomb bifurcation for 2c¼ 182.5

under cylinder geometry. Periodic extension in both dimensions of (c) and

(d) yields a rhombic pattern. Here, (d) is the solution on the black branch in

(a) at the instability a	 1.2.

FIG. 7. (a) Stripe-rhomb bifurcation diagram of (1) for 2c¼ 365 (d¼ 500,

m¼ 0.45) on a domain with periodic boundary conditions: striped patterns

with wavenumber j ¼ 0:1 (blue), stripe-rhomb patterns (black). Note that

most of the solutions on the rhomb branch are unstable (even on this small

domain), as their locus is plotted with a thin line. (b) Rhomb patterns (when

periodically extended in both directions); upper panel: at the stability change

for a	 0.8 on the lower part of the black branch, lower panel: in the unstable

regime for a	 0.65.
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T ¼ a2t; X ¼ affiffiffi
d
p x;

so that

A ¼ 1

a2
; B ¼ m

a2
; D ¼ 1

d
: (40)

The dynamics of the Gray-Scott model are largely deter-

mined by the interplay between two small parame-

ters.11,12,33,34 Following Refs. 11 and 12, we therefore

introduce

U n; sð Þ ¼
ffiffiffi
A
p

B
ffiffiffiffiffiffiffi
BD
p u X; Tð Þ; V n; sð Þ ¼

ffiffiffiffiffiffiffi
BD
p ffiffiffi

A
p v X; Tð Þ; (41)

with

s ¼ BT; n ¼
ffiffiffi
B
pffiffiffiffi

D
p X; (42)

which transforms (39) into

DUs ¼ Unn � �2 UV2 � �d 1� d
�

U

� �
 �
;

Vs ¼ Vnn þ UV2 � V;

(43)

with

� ¼
ffiffiffi
A
p

B
; d ¼

ffiffiffiffiffiffiffi
BD
p

: (44)

An existence result on patterns ðUlðnÞ;VlðnÞÞ with a

long wavelength T ðlÞ, with l> 1 an amplitude parameter

chosen for the parametrization, based on literature on

the Gray–Scott model, is presented in Appendix C (Theorem

4). Here, geometric singular perturbation theory is used; the

small parameter exploited is given by � ¼ a=m. Note that in

the long wavelength limit considered here, the VlðnÞ-

component associated to plant biomass is strongly localized,

while WlðnÞ varies on a larger scale. The existence of 1D

patterns is equivalent to the existence of striped patterns in

2D. Below, g is a scaled version of the second spatial dimen-

sion y the same way as n relates to x, see (42).

To investigate the spectral stability of the striped

pattern ðUlðnÞ;VlðnÞÞ on the full plane, so ðn; gÞ 2 R2, we

set

ðUðn; g; sÞ;Vðn; g; sÞÞ
¼ ðUlðnÞ þ uðnÞei‘gþks;VlðnÞ þ vðnÞei‘gþksÞ;

with ‘ 2 R and k ¼ kðl; ‘Þ 2 C. The linearized stability

problem for (43) reads

Dku ¼ unn � ‘2u� e2½V2
luþ 2UlVlv� d2u�;

kv ¼ vnn � ‘2vþ V2
luþ 2UlVlv� v: (45)

We introduce ‘̂ by

‘ ¼
ffiffiffiffi
D
p

‘̂; (46)

and write (45) as a coupled system of Sturm–Liouville-type

equations

unn � D ‘̂
2 þ k� e2d2

D


 �
u ¼ e2 V2

luþ 2UlVlv
h i

;

vnn þ ½2UlVl � ð1þ kþ D‘̂
2Þ�v ¼ �V2

lu:

(47)

This system can equivalently be written as a four-

dimensional linear system for /ðnÞ ¼ ðuðnÞ; pðnÞ; vðnÞ; qðnÞÞ
with p ¼ 1

e _u and q ¼ _v,

_/ ¼ Alðn; k; ‘̂Þ/; (48)

where the dot denotes differentiation with respect to n and

Alðn; k; ‘̂Þ is a n-periodic matrix,

Al n; k; ‘̂
� �

¼

0 e 0 0

e V2
l nð Þ þ D

e2
‘̂

2 þ k

� �
� d2


 �
0 2eUl nð ÞVl nð Þ 0

0 0 0 1

�V2
l nð Þ 0 �2Ul nð ÞVl nð Þ þ 1þ kþ D‘̂

2
� �

0

0
BBBBBB@

1
CCCCCCA
; (49)

with period T ðlÞ (see Theorem 4, Appendix C). For any

l> 1 and ‘̂ 2 R, system (48) determines a spectral problem

for k ¼ klð‘̂Þ 2 C (e.g., in the space of complex-valued

bounded uniformly continuous functions BUCðR2;C4Þ).
Following Ref. 23, and in the approach of Ref. 59, simi-

lar to (38), the eigenvalue problem (48) is considered on the

fundamental interval ½� 1
2
T ðlÞ; 1

2
T ðlÞ� with c-twisted peri-

odic boundary condition,

/
1

2
T lð Þ

� �
¼ c/ � 1

2
T lð Þ

� �
; (50)

for c 2 S1 
 C on the unit circle.

The stability problem (47) that is equivalent to (48) has

a structure that is very similar to that of the existence prob-

lem. In fact, it can be shown by directly applying the

approach of Refs. 14 and 59 that the v-component of / is

strongly localized and exponentially small outside a fast

interval I f , completely similar to VlðnÞ (Theorem 4). As a

consequence, the slow reduced limit problem for the u com-

ponent of /, that is defined in the regions

½� 1
2
T ðlÞ; 1

2
T ðlÞ� I f , is given by

unn � D ‘̂
2 þ k� �

2d2

D


 �
u ¼ 0; (51)
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up to exponentially small corrections. Hence, outside

I f ; uðnÞ is given by a combination of exponential functions

in the spatial variable
ffiffiffiffi
D
p

n, under the assumption that e2d2

D is

small enough, or more formally that ed�
ffiffiffiffi
D
p

. However,

the length of the fundamental interval ½� 1
2
T ðlÞ; 1

2
T ðlÞ� is

of order 1
ed (see (C1)): if ed�

ffiffiffiffi
D
p

, then an asymptotically

bounded solution of (51) will be exponentially small at the

boundaries of ½� 1
2
T ðlÞ; 1

2
T ðlÞ�. As a consequence, the entire

family kðcÞ; c 2 S1 of c-eigenvalues will be asymptotically

close to the positive eigenvalue k that one can obtain (at lead-

ing order) by just considering solutions of (51) that decay

exponentially as n� 1ffiffiffi
D
p . Since the rigorous validation of this

statement requires an extensive analysis along the lines of Ref.

59, we refrain from going further into the details here.

Theorem 3. Assume that the assumptions formulated in
Theorem 4 hold and consider a spatially periodic striped
pattern ðUlðnÞ;VlðnÞÞ as given by Theorem 4. There are
constants D0,1, D0,2> 0, and 0 < ‘̂1 < ‘̂2, such that for all
0 < D < D0;1; 0 < ed < D0;2

ffiffiffiffi
D
p

, and l� 1, eigenvalue
problem (48) has a family of c-eigenvalues, c � S1, exponen-
tially close to a critical eigenvalue kpoleðl; ‘̂Þ that is at lead-
ing order given by

kpole l; ‘̂
� �

¼ 5

4
for all ‘̂ 2 ‘̂1; ‘̂2

� �
:

The lengthy proof of Theorem 3 is given in Appendix D.

Note that the extension of ðUlðnÞ;VlðnÞÞ in the g-direction is

crucial for this instability result: for certain parameter combina-

tions, one-dimensional spatially periodic patterns ðUlðnÞ;
VlðnÞÞ can certainly be stable.13 In these cases, kpoleðl; ‘̂Þ typi-

cally merges with another eigenvalue as ‘̂ > 0 decreases and

forms a pair of complex conjugate eigenvalues that cross through

the imaginary axis as ‘̂ decreases further, see Ref. 35 for a much

more detailed analysis of the spectral curves kð1; ‘Þ associated to

the stability of a homoclinic stripe, i.e., the limit l # 1.

The instability result Theorem 3 establishes that all spa-

tially periodic striped patterns in a certain region of the 1D

Busse balloon near j¼ 0 are unstable with respect to trans-

verse perturbations that are spatially periodic in the y-direc-

tion (and provides an asymptotic approximation of the

destabilizing wavenumbers). This is presented in Corollary 2.

Corollary 2. There are constants D0;1;D0;2 > 0 such
that for all 0 < D < D0;1; 0 < �d < D0;2

ffiffiffiffi
D
p

striped patterns
ðUlðnÞ;VlðnÞÞ as established by Theorem 4, either as solu-
tions of (39) or (1), are spectrally unstable.

This result holds for c¼ 0, but by continuity of the spec-

trum, the same holds for c close to 0. In the case c 6¼ 0 with-

out reflection symmetry, the existence of spatially periodic

stripes does not directly follow from the literature and

requires a new approach. Both this issue and the associated

stability question are considered in Ref. 50. The instability

result Theorem 3 will be influenced by the advection term c:

we will see in Sec. III C that for large c, 2D stable long

wavelength striped patterns for (1) are found numerically.

C. Stability of striped patterns

We first briefly explain how numerical continuation is

implemented to trace marginal stability of striped patterns of

the extended Klausmeier model (1) against the various

destabilization mechanisms. We recall that in 1D, perturba-

tions about a periodic solution are represented by functions

with a c-twisted periodicity property, where c 2 S1 
 C is

on the unit circle.

By translation invariance of (1), for c¼ 1, there is

always a neutrally stable eigenvalue kð1Þ ¼ 0. Since

ReðkðcÞÞ is invariant with respect to complex conjugation of

c, this leads to genericity of an instability where the curve of

ReðkÞ at k¼ 0 changes from concave to convex. This desta-

bilization mechanism is known as the Eckhaus or sideband
instability, which is known to be the primary destabilization

mechanism near supercritical Turing(–Hopf) bifurcations.

The sideband instability can be traced numerically using

numerical continuation10 by implementing the constraint
@2

@c2 ReðkðcÞÞ ¼ 0 at c¼ 1.43,60 It has been found that the side-

band instability forms the stability boundary far beyond

onset of the Turing(–Hopf) instability.53,60

The continuation of breakup instabilities of striped pat-

terns against perturbations with c 2 S1 and ‘ 2 R can be

similarly implemented by imposing constraints on kðc; ‘Þ.
That is, Reðkðc; ‘ÞÞ ¼ 0 and @

@‘Reðkðc; ‘ÞÞ ¼ 0, where ‘ is

variable and c¼ 1 (stripe-rectangle breakup) or c¼�1

(stripe-rhomb breakup). Here, this is done for 2c¼ 0, 182.5,

365, 500, and 1000 (with d¼ 500, m¼ 0.45) to study the de-

pendence of striped pattern stability on the advection c.

In addition, simulations with a slowly decreasing a are

done for 2c¼ 0, 182.5, 365, 500 (again with d¼ 500,

m¼ 0.45) and a comparison is made. The small growth rates

associated with the sideband instability can cause a signifi-

cant delay in its onset.53 Unpredictability in the outcome of

the sideband instability stems from the fact that the growth

rate of the perturbations that are among the first to destabi-

lize remain small after destabilization compared to perturba-

tions that destabilize later. In Ref. 53, it has been shown via

simulations that for (1) in 1D with a slowly changing param-

eter, pattern adaptation depends on the rate of change and

the application of noise. In this article, we fix the rate of

change to da=dt ¼ �10�5 and apply no noise. The simula-

tions are done on a 250� 250 square domain with periodic

boundary conditions.

In Figure 8, the Busse balloon of stable striped patterns

of (1) is plotted together with the sideband and transverse

(breakup) instability curves, for c¼ 0 and 2c¼ 182.5. Frame

(a) is a more detailed version of Figure 1. The representation

of a pattern by a wavenumber is not guaranteed to be 1:1. On

the contrary, for 2c¼ 182.5, a brown fold curve emerges

from the lower red small amplitude curve, so that between

this red curve and the fold curve, a wavenumber corresponds

to two patterns. But the solutions beyond the fold are all

unstable, so that on the level of the Busse balloon of stable

patterns, the representation is 1:1. As soon as a curve crosses

the fold, the plotting style in Figures 8, 12, and 13 changes

to dashed to indicate that it has become less relevant.

For the case 2c¼ 182.5, the primary destabilization

mode for breakup changes from stripe-rhomb (c¼ –1) to

stripe-rectangle (c¼ 1) at a	 1.96 (and back again near

a¼ 2.9). A detailed study at a	 1.96 shows that c 6¼61 does

not become the primary destabilization mechanism, see
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Figure 8(d). Checks elsewhere led to the same conclusion,

which is the basis for tracing breakup only for c¼61.

For c¼ 0, striped patterns are seen in the simulation, but

a single orientation is not always attained. In Figure 9, we

show a simulation where this eventually is the case, because

only then the breakup curves give a prediction for destabili-

zation. In this case, the stripes are expected to break up

before hitting the sideband curve, see Figure 8(a).

When sideband and breakup curves get close, as is the

case for the transition shown in Figure 10, interaction

between the destabilization mechanisms is possible. As

mentioned above, the transition from one striped pattern to

another through the sideband mechanism may suffer a signif-

icant delay. The modulations that arise from the sideband

instability may trigger breakup before the stripe-to-stripe

pattern transition has occurred.41 On the other hand, even af-

ter the breakup of a striped pattern, the system may still

return to striped patterns later on, as illustrated by Figure 10.

We note that the apparent instability of the rhombic pattern

of spots in Figure 10(b) does not contradict the stability that

was indicated in Figure 6, since there only perturbations that

fit the small domain are included.

FIG. 8. Stability of striped patterns of (1) with transverse destabilization mechanisms for d¼ 500, m¼ 0.45, and (a) c¼ 0 and (b) 2c¼ 182.5, with Turing(–Hopf)

bifurcation indicated by T(H). The union of all colored regions bounded by the black sideband curve represents striped patterns that are 1D stable. The blue and green

curves indicate marginal stability against stripe-rectangle and stripe-rhomb breakup, respectively. Points that represent 1D stable patterns that are stable w.r.t. stripe-

rectangle or stripe-rhomb breakup are colored blue resp. green. Full 2D stability is indicated by the dark-green (teal) combination of these colorings. Both ends of the

blue curve connect to the anchor point Ty (T¼Ty for c¼ 0), see Sec. II B. (c) Part of the Busse balloon for 2c¼ 182.5 showing that at a	 1.96 the stripe-rectangle

and the stripe-rhomb instabilities interchange roles as primary destabilization mechanism. (d) Upper panel: magnification of region in (c) marked by the black rectan-

gle. For selected values of j, line segments show range of values of a at marginal stability for logðcÞ 2 ½0; pi�. Lower panel: c-dependence of the line segments in

the upper panel; values of c other then c¼61 do not act as primary destabilization mechanism.

FIG. 9. Frames from the simulation of (1) with slowly decreasing parameter a, da=dt ¼ �10�5, for c¼ 0 (with d¼ 500 and m¼ 0.45), gradient ranging from

n¼ 0 (sandy-brown) to n¼ 9.4 (dark-green). (a) Initial condition, before Turing. (b) Pattern of gaps. (c) and (d) Gaps connect to form bare stripes, but orienta-

tion is space dependent. (e) Globally oriented striped pattern.
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For 2c> 0, striped patterns aligning perpendicular to the

advection start to form just below the Turing–Hopf instabil-

ity. During the decrease of a, the system may encounter a

sideband a few times first, before transverse instabilities take

hold (Figure 11).

When, during a simulation, the system resides in a

striped pattern, it can be represented by a single wavenum-

ber. The plots of the wavenumbers are compared with

knowledge of striped pattern stability for each of the values

2c¼ 0, 182.5, 365, and 500 in Figure 12. The striped pattern

destabilizations as observed in the simulations are in good

agreement with the continuation results.

We see that in 2D, Hopf-type destabilization mecha-

nisms that become primary destabilization mechanism18

in 1D for j! 0 are not relevant as long as c becomes

not too large. Figure 12(d) shows that around 2c¼ 500,

the first long wavelength (small j) striped patterns

become 2D stable. By increasing c more and more, the

transverse instabilities can be suppressed and the stability

of striped patterns seems to reduce to the 1D stability of

patterns, see Figure 13 for the case 2c¼ 1000.

Simulations for such large values of c seem to require

more sophisticated numerical techniques such as an oper-

ator splitting approach.65

FIG. 10. Frames from the simulation of (1) with slowly decreasing parameter a, da=dt ¼ �10�5, for 2c¼ 182.5 (with d¼ 500 and m¼ 0.45), gradient ranging

from n¼ 0 (sandy-brown) to n¼ 17.8 (dark-green). Striped pattern (a) breaks up into rhombs (b), but the spots reconnect (c) and form a striped pattern with

defects (d) that disappear (e).

FIG. 11. Frames from the simulation of (1) with slowly decreasing parameter a, da=dt ¼ �10�5, for 2c¼ 365 (with d¼ 500 and m¼ 0.45), gradient ranging

from n¼ 0 (sandy-brown) to n¼ 21.45 (dark-green). Initial condition just before the Turing–Hopf bifurcation (a) and striped pattern right after (b). (c) and (f)

Consecutive striped patterns after destabilization by sideband. (g)–(i) Breakup, transient dynamics and return to striped pattern. (j)–(m) Breakup, dynamics in

2D, return to dashed stripe. (n) Transverse spatial period doubling. (o) Bare desert state.

036411-15 Siero et al. Chaos 25, 036411 (2015)



The above results show that by increasing the advection

c, a larger portion of the 1D Busse balloon becomes 2D stable.

We thus observe that for fixed j, as c increases, the range in a
where striped patterns are stable generally increases. So, the

magnitude of disturbance, measured in the amount of variance

in a, that is allowed before a striped pattern wavenumber

becomes unstable, increases as c increases. This confirms the

result mentioned in the introduction that the ecological resil-

ience of banded vegetation is larger on steeper slopes.

Within the choices of c made in this paper, the case studied

in Figures 8(c) and 8(d) is the only instance where, within the

1D Busse balloon, stripe-rectangle destabilization occurs before

stripe-rhomb destabilization. For larger values of c, represented

by Figures 12(c), 12(d), and 13, the distance between the

stripe-rectangle breakup and stripe-rhomb breakup curves

becomes so small that they can (almost) no longer be distin-

guished. This can be formally understood by the observation

that for large c, the destabilization occurs for relatively small

values of the wavenumber j. This implies that the spatially per-

iodic patterns can be interpreted as being built from interacting

localized patterns, which we expect to be of semi-strong type16

by the singularly perturbed nature of the governing equations:

here, the interaction is to leading order restricted to the fastly

diffusive water component. By arguments similar to those in

Sec. III B, it can be expected that each family of c-eigenvalues

contracts to an asymptotically small region, so that, indeed, the

c¼ 1 stripe-rectangle destabilization and the c¼ –1 stripe-

rhomb destabilization curves become almost indistinguishable.

Nevertheless, since pulses and spots in semi-strong interaction

typically are repulsing,6,16,55 one also expects the rhombic pat-

terns to be eventually the most favorable, which suggests that

stripe-rhomb breakup should precede stripe-rectangle breakup,

even if both curves are very close to each other.

IV. ECOLOGICAL IMPLICATIONS

The extended Klausmeier model (1) studied in this paper

is a relatively simple scaled phenomenological model; we now

FIG. 12. Stability of striped patterns of (1), see Figures 8(a) and 8(b) for the meaning of the various colored curves and regions. Connection of the blue breakup

curve to the upper anchor point Ty occurs outside the plotting range of j. Simulations with slowly decreasing parameter a included, da=dt ¼ �10�5, the initial

condition is a perturbation of the homogeneous state (wþ, nþ) at values of a just before the Turing(–Hopf) bifurcation. During the simulation, the wavenumber

is indicated with pink if the system resides in a striped pattern state, purple arrows in between indicate transient dynamics or residence in 2D states before

returning to a striped pattern (or the bare desert state j¼ 0).

FIG. 13. Analogue of Figures 8(a) and 8(b) for 2c¼ 1000.
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turn abstract results into qualitative predictions for arid ecosys-

tems that could be tested empirically. The results may also

help in the understanding of more complex models. In this sec-

tion, we refer to striped patterns as banded vegetation. We

refer to spots aligned in stripes, such as the rectangular and

rhombic patterns, as dashed vegetation patterns.58,62

We recall from the introduction (result (1)) and the previ-

ous section the main numerical result: the ecological resilience

of banded vegetation is larger on steep slopes, with large advec-

tion rates, than on gentle slopes. We supplement this by discus-

sing some other implications for arid ecosystem dynamics.

Positive feedback in water-limited systems, as generated

by the uptake mechanism of (1), is a key ingredient for self-

organized vegetation pattern formation.31,44,62 Here, the state

with uniform vegetation cover becomes unstable, because

competition for water and a positive feedback between vege-

tation density and water harvesting capacity will create

densely vegetated and more sparsely vegetated patches.

Under influence of the slope, the resulting patterns are vege-

tation bands aligned to contours8,58 as the Turing–Hopf

instability is a natural mechanism for the formation of

banded vegetation perpendicular to the slope (Theorem 2).

The competition for water and the uptake mechanism

continue to play an important role in pattern adaptation as

environmental stress due to decreasing rainfall a increases

further. Competition for water between vegetation bands

leads to stripe-to-stripe pattern transitions where some vege-

tation bands disappear and the wavenumber decreases, due

to the sideband instability.53

Competition for water within each vegetation band leads

to breakup by transverse instabilities. Thus, in some sense,

the same mechanisms that give rise to banded vegetation pat-

terns are eventually responsible for their breakup. The selec-

tion of a rectangular or rhombic structure at breakup depends

on the interaction between vegetation bands, as sketched at

the end of Sec. III C.

In Sec. II A 1, it was shown for models like (1) that veg-

etation bands move in uphill direction at onset. This move-

ment is hard to establish or refute from observations, due to

the small speeds that are involved. In Ref. 8, at three sites,

unequivocal photographical evidence of upslope migration

has been presented, but in other cases, it remains unclear.

Soil characteristics not contained in (1), may be pivotal for

the migration capability of vegetation patterns.22,47

In (1), we do not take into account possible mechanical

action of (fast) flowing water on the strength and structure of

the soil either. Particularly, in case of dashed vegetation

patterns, when downslope flowpaths become long, this could

be an important factor, by creating erosion (e.g., gully

formation) but also possibly deposition of soil. The validity

of (1) may decrease if the slope parameter c increases,

because these processes undermine the sheet flow of water

that underpins (1). The problem of finding the correct value

of c can be rather complicated, as mentioned in the

introduction.

From Corollary 1, we know that the Turing–Hopf bifur-

cation locus moves to higher rainfall a as the slope c
increases. Since at the Turing–Hopf bifurcation banded veg-

etation patterns form, it would be interesting to see if

observations of banded vegetation under high rainfall

regimes are linked to topographies that consist of relatively

steep slopes. Observations reported in Refs. 1 and 58 suggest

that this may be the case.

We now turn to the numerics done in Sec. III C. In the

simulations in the case of no slope (c¼ 0), vegetation bands

still form although the orientation may (initially) be space-

dependent, as in labyrinths. For gentle slopes, labyrinths are

observed instead of banded vegetation.1,9 For still relatively

gentle slopes c, i.e., 2c� 182.5 (original estimate by Ref. 31

for (1)), only a small portion of the 1D Busse balloon is 2D

stable. In this case, no banded vegetation is expected for ei-

ther small wavenumber j or small rainfall a, see Figure 8.

This is in accordance with what is reported in Ref. 9. Here at

low rainfall, vegetation is mostly found not to be organized

in a periodic pattern, or organized in a periodic pattern of

spots. The kernel density that links to how frequent a banded

vegetation pattern is observed as a function of the wavenum-

ber j, converges to zero well before j¼ 0.

In the extended Klausmeier model (1) for d> 0, when

decreasing the rainfall a, banded vegetation eventually

breaks up into dashed patterns. This was suggested by Ref.

58 and was also found in Ref. 62. The numerics we per-

formed show that only on very steep slopes the breakup of

vegetation bands is avoided. The original Klausmeier model,

where d¼ 0, has been extensively studied in Ref. 52 and the

references therein. Here, breakup does not occur.51 This is

due to the fact that competition is now restricted within

upslope segments of constant y, as no water is flowing in the

direction of the contour. Observations of dashed patterns

support incorporating a more realistic mechanism for water

flow, as is done in (1). Banded vegetation breakup was not

reported in Ref. 64 either.

We showed that the shape of the Busse balloon strongly

depends on landscape topography. Hence, linking real vege-

tation patterns to desertification thresholds requires inclusion

of the particular landscape setting (i.e., the slope) in which

the patterns are observed.

In this paper, we refer to vegetation stripes as banded

vegetation and separately identify dashed patterns. Dashed

patterns are currently not treated as a separate class of pat-

terns in observational studies and may be classified as

banded vegetation instead.1,7,58 We have shown that dashed

vegetation patterns naturally arise from the breakup of vege-

tation stripes and signify a next step in the desertification

process. Therefore, a distinction between vegetation stripes

and dashed patterns in the classification of vegetation pat-

terns in observations could be considered valuable. Through

observations, it may be possible to see if dashed vegetation

patterns are generally found at smaller rainfall a than banded

vegetation. If this is the case, a restoration strategy based on

dashed patterns instead of banded vegetation could in some

cases be more successful, or equally successful but more

economic.36 These predictions could be tested empirically.
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APPENDIX A: STABILITY AGAINST LARGE
WAVENUMBER PERTURBATIONS

Lemma 4. For large k, solutions to the dispersion rela-
tion (6) of (8) have ReðkÞ < 0.

Proof. In the introduction, we prescribed after (2) that

d1� 0 and d2> 0. If d1, d2> 0, then the system (8) is charac-

terized as being parabolic, which is well-known to imply sta-

bility against perturbations with large wavenumbers. Thus,

we only need to check for the case d1¼ 0. We first only use

that either d1¼ 0 or d2¼ 0, so that d1d2¼ 0.

The dispersion relation (6) reads dðk; k; p; cÞ
¼ k2 þ a1kþ a0 ¼ 0, where still a1 ¼ ðd1 þ d2Þk2 þ Oð1Þ
but a0 ¼ icðd1 � d2Þk3 þ ðc2 � d1a4 � d2a1Þk2 þ OðkÞ since

d1d2¼ 0, see (9). In order to find the solution branches for

large k, we substitute an expansion k ¼ k2k2 þ kk1 þ k0

þOð1=kÞ with kj ¼ Oð1Þ.
In case k2 6¼ 0, we find, by comparing terms of order k4,

that k2 ¼ �ðd1 þ d2Þ < 0, which yields a parabolic asymp-

totically stable branch.

In case k2 ¼ 0, we find the second branch (hence all so-

lution branches of the quadratic equation). By comparing

terms of order k3, we obtain

k1 ¼ c
d2 � d1

d1 þ d2

i;

which is purely imaginary. Stability is thus determined by

k0, and comparing terms of order k2 gives

k0 ¼
d1a4 þ d2a1ð Þ � c2 � k2

1

d1 þ d2

:

Now we use that d1¼ 0 so that k2
1 ¼ �c2 and k0 ¼ a1

< 0 by the inhibitor assumption from A2 in (4). So, the ho-

mogeneous steady state is stable against large wavenumber

perturbations. �

Note that assuming d2¼ 0 instead of d1¼ 0 in the final

step of the proof would lead to k0¼ a4> 0 under assumption

A2 in (4). Hence, the homogeneous steady state would be

unstable against “half” of the large wavenumber perturba-

tions, and we therefore assume d2> 0.

APPENDIX B: DISPERSION RELATIONS FOR STRIPED
PATTERNS

In this Appendix, we briefly outline the characteriza-

tion of the spectrum of striped patterns via

Floquet–Bloch decomposition. This theory may be

viewed as a substitute for the Fourier transform when

dealing with periodic structures. Here, it is equivalent to

an Evans-function formulation using spatial dynamics,

which we exploit in Sec. III B.

Let ðu�; v�Þðt; x; yÞ denote a striped pattern of (2) that is

L-periodic in x, so wavenumber j ¼ 2p=L, constant in y and

travels with constant speed s. Its spectral stability is deter-

mined by the spectrum of the linear operator arising from the

linearization of (2) in a comoving frame n ¼ x� st evaluated

in ðu�; v�Þ. Applying a Fourier transform in the y-direction

with wavenumber ‘, we obtain the differential operator with

periodic coefficients

Mð@n; nÞ ¼
d1ð@2

n � ‘2Þ þ ðc1 þ sÞ@n þ a1ðnÞ a2ðnÞ
a3ðnÞ d2ð@2

n � ‘2Þ þ ðc2 þ sÞ@n þ a4ðnÞ

 !
;

whose spectrum is the union of spectra of the Bloch-

operators Mperðc; nÞ :¼ Mð@n � logðcÞ=L; nÞ, with c on the

unit circle so logðcÞ 2 ð�pi; pi�, posed on [0,1] with periodic

boundary conditions.43,48 Hence, the spectrum is determined

by the family of eigenvalue problems Mperðc; nÞ � kId ¼ 0.

The solutions kðcÞ are referred to as c-eigenvalues, see Sec.

III B. Abstractly written, in terms of the period-map Uðk; ‘Þ
of the evolution of this ordinary differential equation for

c¼ 1, the expression

dðk; c; ‘Þ ¼ detðUðk; ‘Þ � cÞ (B1)

is the dispersion relation analogous to the case of homogene-

ous steady states, which is holomorphic in k, c, and ‘.43

The cases that are traced by numerical continuation in

Sec. III C are c¼61, the corresponding eigenfunctions (per-

turbations) have distinct periodicity properties. We first

restrict to ‘¼ 0, so perturbations ð~u;~vÞ that are constant in

the y-direction. Suppose that ð~u;~vÞðnÞ solves (B1), then

~u nþ2p
j

� �
¼c~u nð Þ; (B2)

and similarly for ~v.

From this, it is clear that for c¼ 1, the wavenumber of

the perturbation is ~j ¼ j. One of the perturbations corre-

sponding to a solution of (B1) for c¼ 1 is the translation

mode with eigenvalue k¼ 0. The solutions to (B1) consist

of curves of spectrum, where ReðkÞ is invariant with

respect to complex conjugation of c, which leads to

genericity of the aforementioned sideband instability

where the curve of ReðkÞ locally changes from concave to

convex at k¼ 0.

For c¼�1, it holds that ~j ¼ j=2, so the perturbation

has twice the wavelength of the underlying striped pattern.

This links to spatial period doubling relevant in Ref. 53.

Perturbations of striped patterns with non-trivial y-de-

pendence are represented by products of a perturbation in x
and a perturbation in y, as treated in Sec. III A.
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APPENDIX C: NO ADVECTION: EXISTENCE OF LONG
WAVELENGTH PATTERNS

The existence of stationary spatially periodic patterns

for the scaled Gray-Scott model (43) in 1D follows directly

from Ref. 13, Theorem 2.2 (which is itself based on Ref. 17,

Theorem 4.2).

Theorem 4. There exist �0; d0 > 0 such that for every
0 < � < �0 and 0 < d < �d0, (43) has a family of stationary
spatially periodic solutions ðUlðnÞ;VlðnÞÞ, parameterized
by l> 1. Each periodic solution has a well-defined wave-
length T ðlÞ in the n-direction, at leading order given by

T lð Þ ¼
2

�d
log

lþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 1

p : (C1)

A periodic solution ðUlðnÞ;VlðnÞÞ can be translated (in
the n-direction) in such a way that it is symmetric w.r.t.

n¼ 0 on a fundamental n-interval ½� 1
2
T ðlÞ; 1

2
T ðlÞ�. For

such a solution, on a fast subinterval I f ¼ ½� 1ffiffi
e
p ; 1ffiffi

e
p �


 ½� 1
2
T ðlÞ; 1

2
T ðlÞ�; UlðnÞ � 3l is constant while VlðnÞ

¼ 1
2l sech2 1

2
n

� �
is the homoclinic solution of the fast reduced

limit problem

Vnn � V þ 3lV2 ¼ 0;

both up to corrections of OðeÞ. On the slow subintervals
½� 1

2
T ðlÞ; 1

2
T ðlÞ� I f ; VlðnÞ � 0 up to exponentially small

corrections, and UlðnÞ is at leading order given by a hyper-
bolic cosine solution of the slow reduced limit problem

Unn � e2d2U þ e3d ¼ 0:

Note that the earlier versions of this theorem concern

special cases of the present theorem, since the choices of pa-

rameters A, B, D in (39) are less general than here.13,17 This

does, however, not influence the proof of the result that can

be directly copied from Ref. 17. Note also that the limit

l # 1, i.e., T ðlÞ ! 1, reproduces the existence of the well-

known solitary homoclinic pulse solution of the Gray–Scott

model, see Refs. 13, 17, and 33–35 and the references

therein. Of course, the present result can be “translated”

directly into an existence result for periodic patterns in the

original model (1), under the assumption on the parameters

(a, m, d) of (1) that

e ¼ a

m
< e0 and

d
e
¼ m

ffiffiffiffi
m
p

a2d
< d0 (C2)

and (40), (44) hold for certain e0; d0 > 0. We refrain from

giving a fully detailed rewritten version of Theorem 4 in

terms of (1).

Since existence result Theorem 4 only establishes the

existence of long wave length spatially periodic patterns, the

results obtained in this section are only valid for wave num-

ber j small enough, i.e., in regions of the Busse balloon suf-

ficiently close to the homoclinic limit j! 0.

The quantitative aspects of Theorem 4 may be used to

analytically derive asymptotically accurate approximations

of the right boundary of the Busse balloon near j¼ 0, see

Figure 1. This boundary has the character of a saddle-node

bifurcation, and it is associated to the case in which e
becomes so large that the pulse self-replication mechanism

is triggered, see Refs. 13 and 60 and references therein. It is,

in fact, quite surprising that the present theory appears to be

valid in Figure 1, where a	 0.68 at this boundary, which

implies that e ¼ a
m 	 1:5 for m¼ 0.45. Note that this agrees

completely with the critical saddle-node/self-replication

value of e as can be deduced from Ref. 13, that was obtained

by careful numerical experiments on the critical magnitude

of e for which the methods developed there, and used here,

are valid.

APPENDIX D: PROOF OF THEOREM 3

We do not intend to present the proof of Theorem 3

(Sec. III B) in its full analytical detail: we will sketch

the main ideas following the Evans function approach as

developed in Refs. 14 and 15. To facilitate the exposi-

tion, we also impose another (formal) conditions on the

relative magnitude of parameter D compared to the

asymptotically small parameters e and d introduced in

(44): D� �2. Thus, we assume throughout this proof

that

�2d2 � D� �2 � 1: (D1)

This additional condition is not essential to the validity

of the instability result.

Since VlðnÞ is exponentially small outside the fast

region I f (Theorem 4), it immediately follows that the ma-

trix Alðn; k; ‘̂Þ is exponentially close to the constant coeffi-

cient limit

A1l k; ‘̂
� �

¼ lim
n!61

Al n; k; ‘̂
� �

¼

0 e 0 0
D

e
‘̂

2 þ k

� �
� ed2 0 0 0

0 0 0 1

0 0 1þ kþ D‘̂
2

0

0
BBBBB@

1
CCCCCA

(D2)

outside I f . Note that in a rigorous framework, the limit n
! 61 should be replaced by n! 6 1

2
T ðlÞ, which will not

have a leading order effect on the outcome of the analysis (as

discussed briefly in Sec. III B). This matrix has eigenvalues

ReðKl;1ðk;̂‘ÞÞ>ReðKl;2ðk;̂‘ÞÞ>ReðKl;3ðk;̂‘ÞÞ>ReðKl;4ðk;̂‘ÞÞ,

Kl;1;4 k; ‘̂
� �

¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kþ D‘̂

2
q

¼ 6
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

þO Dð Þ;

Kl;2;3 k; ‘̂
� �

¼ 6
ffiffiffiffi
D
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ ‘̂2 � e2d2

D

s

¼ 6
ffiffiffiffi
D
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ ‘̂2
q

þO e2d2

D

� �
; (D3)

under the assumptions in (D1) and for ‘̂; jkj ¼ Oð1Þ, and

associated eigenvectors
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El;1;4 k; ‘̂
� �

¼ 0; 0; 1;6
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

þO Dð Þ
� �

;

El;2;3 k; ‘̂
� �

¼ 1;6
ffiffiffiffi
D
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ ‘̂2
q

þO e2d2

D

� �
; 0; 0

� �
:

(D4)

By the theory developed in Refs. 14 and 15, linear sys-

tem (48) has four independent solutions /l;jðn; k; ‘̂Þ, such

that

limn!�1/l;jðn; k; ‘̂Þe�Kl;jðk;̂‘Þn ¼ El;jðk; ‘̂Þ; j ¼ 1; 2;

limn!1/l;jðn; k; ‘̂Þe�Kl;jðk;̂‘Þn ¼ El;jðk; ‘̂Þ; j ¼ 3; 4:

(D5)

This especially implies limn!�1/l;1;2ðn; k; ‘̂Þ ¼ ð0; 0;
0; 0Þ and limn!1/l;3;4ðn; k; ‘̂Þ ¼ ð0; 0; 0; 0Þ; (D5) deter-

mines /l;1;2ðn; k; ‘̂Þ ¼ 0 uniquely, and since Alðn; k; ‘̂Þ is

exponentially close to A1l ðk; ‘̂Þ, the fast transmission func-

tion tl;f ðk; ‘̂Þ : C�R! C can be defined by

lim
n!1

/l;1ðn; k; ‘̂Þe�Kl;1ðk;̂‘Þn ¼ tl;f ðk; ‘̂ÞEl;1ðk; ‘̂Þ; (D6)

where for any given l> 1 and ‘̂ 2 R; tl;f ðk; ‘̂Þ is analytic as

a function of k.14,15

As a direct application of the methods of Refs. 14 and

15, it can also be shown that for k; ‘̂ such that tl;f ðk; ‘̂Þ 6¼ 0,

there is a uniquely determined function /l;2ðn; k; ‘̂Þ for

which

lim
n!1

/l;2ðn; k; ‘̂Þe�Kl;1ðk;̂‘Þn ¼ ð0; 0; 0; 0Þ; (D7)

i.e., there is a unique /l;2ðn; k; ‘̂Þ that does not grow with the

fast rate Kl;1ðk; ‘̂Þ beyond the fast interval I f . As a conse-

quence, the slow transmission function tl;sðk; ‘̂Þ can be

defined by

lim
n!1

/l;2ðn; k; ‘̂Þe�Kl;2ðk;̂‘Þn ¼ tl;sðk; ‘̂ÞEl;2ðk; ‘̂Þ; (D8)

under the assumption that tl;f ðk; ‘̂Þ 6¼ 0.

For this choice of solutions /l;jðn; k; ‘̂Þ of (48), we once

again follow Refs. 14 and 15 and define the Evans function

Dlðk; ‘̂Þ by

Dlðk; ‘̂Þ ¼ det½/l;1ðn; k; ‘̂Þ;/l;2ðn; k; ‘̂Þ;
/l;3ðn; k; ‘̂Þ;/l;4ðn; k; ‘̂Þ�: (D9)

Note that this definition is only valid for k not in the

essential spectrum associated to (48), again seen as being

defined on all of R (instead of on ½� 1
2
T ðlÞ; 1

2
T ðlÞ�), so that

the essential spectrum coincides with all k ¼ kð‘̂Þ 2 C for

which A1l ðk; ‘̂Þ has an eigenvalue Kl;jðk; ‘̂Þ 2 iR. Since the

trace trðAlðn; k; ‘̂ÞÞ ¼ 0 (see (49)), Dlðk; ‘̂Þ does not depend

on n and
P4

i¼j Kl;jðk; ‘̂Þ � 0, therefore

Dlðk; ‘̂Þ ¼ limn!1det½/l;1ðn; k; ‘̂Þ;/l;2ðn; k; ‘̂Þ;

/l;3ðn; k; ‘̂Þ;/l;4ðn; k; ‘̂Þ�

¼ limn!1det½/l;1ðnÞe�Kl;1n;/l;2ðnÞe�Kl;2n;

/l;3ðnÞe�Kl;3n;/l;4ðnÞe�Kl;4n�

¼ det½tl;f ðk; eÞEl;1ðk; eÞ; tl;sðk; eÞEl;2ðk; eÞ;

El;3ðk; eÞ;El;4ðk; eÞ�

¼ 4
ffiffiffiffi
D
p

tl;f ðk; ‘̂Þtl;sðk; ‘̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kÞðkþ ‘̂2Þ

q
;

(D10)

at leading order by (D3), (D4), (D5), (D6), and (D8).

For any given l> 1 and ‘̂ 2 R, the zeroes of Dlðk; ‘̂Þ
coincide (at leading order) with the eigenvalues of (48),

counting multiplicities.14,15 Moreover, under the assump-

tions in (D1) and for ‘̂ ¼ Oð1Þ, it follows by Refs. 14 and 15

that the zeroes kl;f ;j of the fast component tl;f ðk; ‘̂Þ of the

decomposition of the Evans function Dlðk; ‘̂Þ (see (D10))

are at leading order given by the eigenvalues

kl;f ;0 ¼
5

4
; kl;f ;1 ¼ 0; kl;f ;2 ¼ �

3

4
; (D11)

of the fast reduced stability problem

Lf � k
� �

v ¼ vnn þ 3sech2 1

2
n� 1þ kð Þ


 �
v ¼ 0 (D12)

that can be obtained from the v-equation in (47) by using the

leading order approximations of UlðxÞ and VlðnÞ in I f

(Theorem 4), and setting u � 0, which is natural by (D6),

(D4), and the fact that /l;1ðn; k; ‘̂Þ does not have any leading

order slow components for n < 0.

Since tl;sðk; ‘̂Þ is meromorphic and has a pole at kl;f ;0,

as we will show below, this result does not establish the

instability of ðUlðnÞ;VlðnÞÞ. In fact, this zero-pole cancella-

tion mechanism is called “the resolution of the NLEP

paradox.”14,15

Beyond the fast interval I f ; /l;2ðn; k; ‘̂Þ is, up to expo-

nentially small corrections, a solution of the constant coeffi-

cient problem _/ ¼ A1l ðk; ‘̂Þ/ that does not have a fast

growing component associated to Kl;1ðk; ‘̂Þ and El;1ðk; ‘̂Þ,
see (D7). Therefore, /l;2ðn; k; ‘̂Þ is for n > 0 approximated

by

/l;2ðn; k; ‘̂Þ ¼ tl;sðk; ‘̂ÞeKl;2ðk;̂‘ÞnEl;2ðk; ‘̂Þ

þ ~tl;sðk; ‘̂ÞeKl;3ðk;̂‘ÞnEl;3ðk; ‘̂Þ; (D13)

where ~tl;sðk; ‘̂Þ is a second slow transmission function that

measures the slow decay of /l;2ðn; k; ‘̂Þ beyond I f , see also

(D8). By construction, /l;2ðn; k; ‘̂Þ is for n < 0 outside I f

approximated by

/l;2ðn; k; ‘̂Þ ¼ eKl;2ðk;̂‘ÞnEl;2ðk; ‘̂Þ (D14)

by (D5).
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Under the assumptions (D1), it follows by (47) that the

u-component of a solution /ðnÞ of (48) remains constant at

leading order in the fast region I f , which implies by combin-

ing (D13), (D14), and (D4) that

tl;sðk; ‘̂Þ þ ~tl;sðk; ‘̂Þ ¼ 1 (D15)

at leading order. On the other hand, a similar comparison between

(D14) for n < 0 and (D13) for n > 0 implies that the passage of

/l;2ðn; k; ‘̂Þ over I f must have a net effect on the p-component

pl;2ðn; k; ‘̂Þ of /l;2ðn; k; ‘̂Þ at leading order given by

Dspl;2 ¼ lim
n#

1ffiffi
e
p

pl;2 n; k; ‘̂
� �

� lim
n"

1ffiffi
e
p

pl;2 n; k; ‘̂
� �

¼
ffiffiffiffi
D
p

e

��
tl;s k; ‘̂
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ ‘̂2
q

� ~tl;s k; ‘̂
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ ‘̂2
q �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ ‘̂2

q �

¼ �2

ffiffiffiffi
D
p

e
ð1� tl;s k; ‘̂

� �
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ ‘̂2

q
(D16)

by (D15).

The net effect originates from the total change over

pl;2ðn; k; ‘̂Þ in I f , which is by (48) and the explicit approxi-

mations of Theorem 4 given by

Df pl;2 ¼
ð� 1ffiffi

e
p

�
1ffiffi
e
p

p nð Þ dn

¼ e
ð1
�1

V2
l nð Þuþ 2Ul nð ÞVl nð Þv

� �
dn

¼ e
ð1
�1

1

4l2
sech4 1

2
nþ 3vin;l n; kð Þ sech2 1

2
n

� �
dn;

(D17)

at leading order, by (D1). Here, we have used that the u-com-

ponent of /l;2ðn; k; ‘̂Þ is at leading order constant and equal

to 1 in I f and vin;lðn; kÞ is defined as the unique, bounded

(even) solution of

vnn þ 3sech2 1

2
n� 1þ kð Þ


 �
v ¼ � 1

4l2
sech4 1

2
n; (D18)

i.e.,
vin;l n; kð Þ ¼ Lf � k

� ��1 � 1

4l2
sech4 1

2
n

� �
(D19)

by (D12), the leading order approximation of the fast v-equa-

tion of (47), that at leading order decouples from the system.

Combining (D16) and (D17) yields an explicit expres-

sion for the slow component of the decomposition of the

Evans function Dlðk; ‘̂Þ (see (D10))

tl;s k; ‘̂
� �

¼ 1þ e2

2
ffiffiffiffi
D
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ ‘̂2
q

� 2

3l2
þ 3

ð1
�1

vin;l n; kð Þ sech2 1

2
n dn


 �
(D20)

at leading order. Note that it immediately follows from the defi-

nition (D19) of vin;lðn; kÞ that tl;sðk; ‘̂Þ has (simple) poles at the

zeroes kl;f ;0 and kl;f ;2 of tl;f ðk; ‘̂Þ, i.e., at the even eigenvalues

(D11) of Lf . Hence, these eigenvalues do not correspond to

zeroes ofDlðk; ‘̂Þ and thus not to spectrum associated to the sta-

bility of UlðnÞ;VlðnÞ. (Since the eigenfunction of (D12) associ-

ated to kl;f ;1 ¼ 0 is odd and the right-hand side of (D18) even as

function of n, kl;f ;1 ¼ 0 does persist as eigenvalue of (48).)14,15

An (eigenvalue, eigenfunction) pair of (48) is obtained

by setting tl;sðk; ‘̂Þ ¼ 0, in which case /l;2ðn; k; ‘̂Þ decays in

both limits n! 61 (see (D13) and (D14)), i.e., by solving

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ ‘̂2

q
¼ e2

2
ffiffiffiffi
D
p 2

3l2
þ 3

ð1
�1

vin;l n; kð Þ sech2 1

2
n dn


 �
:

(D21)

Since the right-hand side has a simple pole near

kl;f ;0 ¼ 5
4
, it immediately follows that there must be a solution

of (D21) near k ¼ 5
4

if e2ffiffiffi
D
p is small enough compared to the left-

hand side of (D21). Note that this expands and confirms the

arguments in Ref. 13 about the instability of spatially periodic

patterns by setting ‘̂ ¼ 0 (in the more special scaling there).

In the one-dimensional ‘̂ ¼ 0 setting, the patterns

ðUlðnÞ;VlðnÞÞ may become stable as e2ffiffiffi
D
p grows in magni-

tude, i.e., becomes Oð1Þ, as is shown in Ref. 13. This mecha-

nism is counteracted in the present two-dimensional setting

by the appearance of ‘̂
2

in the left-hand side of (D21): if ‘̂ is

such that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ ‘̂2

q
is large enough compared to e2ffiffiffi

D
p , the

above argument can still be applied, leading to the zeroes

kpoleðl; ‘̂Þ as in Theorem 3 for ‘̂ large enough and not too

close to 0, as in the statement of Theorem 3.

In the above derivation procedure, it is assumed that

D‘̂
2

is small enough: it has been neglected as a higher order

effect in the reduction of the fast v-equation of (47) to (D18).

This implies that the left-hand side of (D21) may grow to

size Lffiffiffi
D
p for L small enough (but a priori not beyond that).

Comparing this to the magnitude of the right-hand side, that

is of order e2ffiffiffi
D
p , implies that the instability argument can be

applied as long as e is small enough, which also is the

assumption under which the existence of the spatially peri-

odic stripes has been established in Theorem 4. �
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