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Abstract. We produce a variety of odd bounded Fredholm modules
and odd spectral triples on Cuntz-Krieger algebras by means of realiz-
ing these algebras as “the algebra of functions on a non-commutative
space”coming from a sub shift of finite type. We show that any odd K-
homology class can be represented by such an odd bounded Fredholm
module or odd spectral triple. The odd bounded Fredholm modules
that are constructed are finitely summable. The spectral triples are θ -
summable, although their phases will already on the level of analytic
K-cycles be finitely summable bounded Fredholm modules. Using the
unbounded Kasparov product, we exhibit a family of generalized spec-
tral triples, related to work of Bellissard-Pearson, possessing mildly
unbounded commutators, whilst still giving well defined K-homology
classes.
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Introduction

This paper is a study of how odd K-homology classes on Cuntz-Krieger algebras
can be realized by explicit cycles; both by means of bounded Fredholm modules
(also known as analytic K-cycles) and as unbounded Fredholm modules, e.g.
spectral triples. We will use the Poincaré duality for Cuntz-Krieger algebras
constructed by Kaminker-Putnam [39] to find explicit finitely summable Fred-
holm modules representing any odd K-homology class. This allows us to realize
odd K-homology classes by means of abstract Toeplitz operators and the finite
summability of the cycles is proved using the work of the first named author
[33].
The construction of unbounded representatives of these K-homology classes is
more elaborate. We discuss the possibility of using Kasparov products of un-
bounded Fredholm modules for the fixed point algebra of the gauge action with
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a well studied unbounded bivariant cycle. Related constructions can be found
in [32]. In many cases it is difficult to understand cohomological properties
of unbounded Fredholm modules on the fixed point algebra, they nevertheless
exist in abundance due to [13]. However, in interesting cases such as the Cuntz
algebra ON this will produce K-homologically trivial unbounded Fredholm mod-
ules.
A more fruitful viewpoint comes from describing the Cuntz-Krieger algebra as
the noncommutative quotient of the underlying subshift of finite type, via its
groupoid model. This viewpoint is common to noncommutative geometry. The
maximal abelian subalgebra corresponding to the unit space in the groupoid
plays the rôle of the base space in a fibration. The unbounded Fredholm mod-
ules are then obtained by restricting an unbounded bivariant cycle to a “fiber”
over the unit space. The bivariant cycle is inspired both by the dynamics of the
underlying subshift of finite type and the structures appearing in Kaminker-
Putnam’s Poincaré duality class. This uses the idea of multiplication by real
valued functions defined on the groupoid to obtain regular operators as in [51].
Localizations of this bivariant cycle to the commutative base exhausts the odd
K-homology of the Cuntz-Krieger algebra.
An explicit construction of the unbounded Kasparov product of this cycle with
canonically defined spectral triples on the commutative base from [5] yields
a generalization of the notion of unbounded Fredholm module, allowing for
unbounded commutators. This generalization is compatible with K-homology.
The Kasparov products are constructed using the operator space approach
to connections initiated by the second named author in [52] and developed
further in [9, 38].

The problem that this work originates from can be formulated as follows.
Whenever B is a C∗-algebra and x ∈ K∗(B) is a K-homology class, is it possible
to find an explicit analytic K-cycle or unbounded Fredholm module represent-
ing x with favourable analytic properties? Here we are mainly concerned with
finite- and θ -summability. We return to discuss this problem setting more pre-
cisely below. The Cuntz-Krieger algebras are interesting in this aspect because
results of Connes [15], combined with the fact that (under weak assumptions)
Cuntz-Krieger algebras admit no traces, imply that it is (under these weak
assumptions) not possible to have a finitely summable unbounded Fredholm
module on a Cuntz-Krieger algebra1. In this paper we show that any odd K-
homology class is represented by a finitely summable K-cycle. It should be
mentioned that this interesting structure has been shown to appear also on the
crossed product of boundary actions of a hyperbolic group [28]. We believe
that our constructions illuminate the differences between finite summability in
the bounded and the unbounded models for K-homology.

1Not even for the generalized notion of unbounded Fredholm modules alluded to above.
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In contrast to the obstructions to finite summability of unbounded Fredholm
modules from [15], there is to our knowledge no analog for bounded Fred-
holm modules. Nor were we able to find an example in the literature of a
K-homology class that can not be represented by an analytic K-cycle which is
finitely summable on some dense sub-algebra. We provide such an example on
a commutative C∗-algebra.

Preliminaries. Before entering into finite summability issues and the precise
formulation of the results in this paper, we recall some concepts of noncommu-
tative geometry. This paper discusses the noncommutative geometry of Cuntz-
Krieger algebras from the point of view of Kasparov’s KK-theory [40, 41], and
the unbounded formulation thereof due to Connes [14] and Baaj-Julg [4]. The
central objects in Kasparov’s approach to KK-theory are Fredholm modules.
Fredholm modules come in two flavors, bounded and unbounded. The bounded
Fredholm modules are sometimes referred to as analytic K-cycles.

Definition 1. Let A be a C∗-algebra. A bounded even Fredholm module over
A is a triple (π, H , F) consisting of

(1) a Z/2-graded Hilbert space H carrying an even ∗-representation π :

A→ B(H );
(2) an odd operator F ∈ B(H ) with the property that, for all a ∈ A,

π(a)(F2 − 1),π(a)(F − F∗) and [F,π(a)] are all compact operators.

A triple (π, H , F) with the above properties save for the fact that the Hilbert
space H is graded, defines a bounded odd Fredholm module. If in the above
H is replaced with a Hilbert C∗-module E over a second C∗-algebra B,2 then
(π, E , F) defines an (A, B)-Kasparov module.

By defining a suitable notion of homotopy, the set of homotopy classes of even
Fredholm modules forms an abelian group K0(A), and the odd Fredholm mod-
ules are used to build an abelian group K1(A). The groups K0(A) and K1(A)

are called the K-homology groups of A combining into the Z/2Z-graded abelian
group K∗(A) = K0(A)⊕K1(A). The K-homology groups are homotopy invariants
of A and encode index theoretic information. See [36] for an excellent exposition
of this theory. Historically, the Fredholm picture of K-homology was conceived
by Atiyah [2] who introduced it to make the Atiyah-Singer index theorem into
a functorial statement. It reached full maturity in the work of Kasparov [40],
where the groups KK∗(A, B) = KK0(A, B) ⊕ KK1(A, B) are defined similarly, as
an abelian group of homotopy classes of (A, B)-Kasparov modules. This culmi-
nated in his proof of the Novikov conjecture for a large class of groups [41]. For
computational purposes, it is sometimes convenient to work with unbounded
Fredholm modules.

Definition 2. An unbounded even Fredholm module over a C∗-algebra A con-
sists of a triple (π, H , D) containing the data:

2In which case B(H ) is replaced with End∗B(E) – the C∗-algebra of adjointable B-linear
operators on E , and the C∗-algebra of compact operators by the C∗-algebra of B-compact
operators KB(E).
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(1) a Z/2-graded Hilbert space H carrying an even ∗-representation π :

A→ B(H ).
(2) a selfadjoint odd operator D with locally compact resolvents π(a)(D ±

i)−1 ∈ K(H ) for all a ∈ A, such that the ∗-algebra

Lip(π, H , D) :=

§

a ∈ A :
π(a)Dom (D) ⊆Dom (D) and

[D,π(a)] extends to a bounded operator

ª

,

is norm dense in A.

A triple (π, H , D) with the above properties save for the fact that the Hilbert
space H is graded, defines an unbounded odd Fredholm module. If π is faithful
and A ⊆ π(Lip(π, H , D)) is dense in π(A) the triple (A , H , D) is called an even
(odd) spectral triple.
If in the above H is replaced with a Hilbert C∗-module E over a second C∗-
algebra B, B(H ) with End∗

B
(E) – the C∗-algebra of adjointable operators on E ,

and on the operator D the further assumption that D is regular is added (for
details see [4]), then (π, E , D) defines an unbounded KK-cycle for (A, B).

An unbounded KK-cycle defines a Kasparovmodule by setting F := D(1+D2)−
1
2 ,

the bounded transform of D. It should be noted that with any choice of bounded
continuous function χ ∈ Cb(R,R), such that χ2−1 ∈ C0(R), we can associate a
Kasparovmodule by setting Fχ := χ(D), producing a Kasparovmodule differing
from that defined by F only by a compact perturbation.
For the special case of unbounded Fredholm modules, another way of doing
this, which features prominently in the present work, is through the phase of
D; the phase is defined as D|D|−1. Here |D|−1 is defined to be 0 on the kernel
of D. The construction of the phase hinges on the fact that for unbounded
Fredholm modules, the spectrum of D is discrete, and there is a χ ∈ C∞(R,R)

as above with χ ′ ∈ C∞
c
(R,R) such that Fχ = D|D|−1. In the special case of

unbounded Fredholm modules, a modification of χ on a compact subset of R
affects the bounded Fredholm module by a mere finite rank perturbation. In
particular, the associated KK-class does not depend on χ . We will in this pa-
per see several examples of how finer analytic properties depend on the choice χ .

The foundation of noncommutative geometry is built on the idea that the ge-
ometry of a “noncommutative space” is encoded by a spectral triple on the
“algebra of functions”, i.e. a C∗-algebra. Conformal geometry is encoded by
a choice of a bounded Fredholm module. Homological algebra corresponds to
K-theory and K-homology. These ideas were pioneered by Connes and many
examples are to be found in [14]. In the classical case of manifolds, this circle
of ideas is supported by facts such as

(1) The geodesic distance on a manifold can be reconstructed from any
spectral triple defined from a Dirac type operator, see [14, Chapter
VI].
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(2) The conformal class of a metric is uniquely determined by the bounded
transform of a spectral triple defined from a Dirac type operator modulo
compact perturbations, see [10].

(3) A Riemannian spinc-manifold can be reconstructed from the spectral
triple3 associated with the spinc-Dirac operator, see [16].

We have made a choice of a distinguishing in terminology between spectral
triples and unbounded Fredholm modules as the former corresponds to prescrib-
ing a “non-commutative geometry” while the latter is a cocycle for a cohomol-
ogy theory for C∗-algebras. Despite this, we abuse the notation by sometimes
identifying an unbounded Fredholm module (π, H , D) with the spectral triple
(π(Lip(π, H , D)), H , D) for A/kerπ.

Obstructions to finite summability. Summability of Fredholm modules
is based on the idea of refining the compactness properties in its definition by
requiring that the compact operators appearing in Definition 1 and 2 belong
to a finer symmetrically normed operator ideals. For details on symmetrically
normed operator ideals, the reader is referred to [14, 50, 64]. We will mainly
use finite summability and θ -summability; they are respectively defined using
Schatten ideals and the Li-ideals. Throughout the paper, we let H denote a
separable Hilbert space. For a compact operator T on H we let (µk(T ))k∈N ⊆
R+ denote a decreasing enumeration of the singular values of T . Recall that
the Schatten ideals are defined as

L p(H ) := {T ∈K(H ) : (µk(T ))k∈N ∈ ℓ
p(N)} ,

for p > 0. These spaces are not closed in operator norm and form ideals of
compact operators in B(H ). The homogeneous function

‖T‖L p :=
p
q

Tr((T ∗T )
p

2 ) = ‖(µk(T ))k∈N‖ℓp(N),

makes L p(H ) into a symmetrically normed operator ideal (in particular a
Banach ∗-algebra) for p ∈ [1,∞) and for p ∈ (0,1) into a quasi-normed space.
For p ∈ [1,∞), the spaces

L p,∞(H ) :=
�

T ∈K(H ) : µk(T ) = O(k−1/p)
	

and

Li
1
p (H ) :=

�

T ∈K(H ) : µk(T ) = O(log(k)−1/p)
	

,

form symmetrically normed operator ideals as well. We use the notation
Li(H ) := Li1(H ).

Definition 3. Let (π, H , F) be an analytic K-cycle for a C∗-algebra A. Then
(π, H , F) is said to be p-summable if the ∗-algebra

Hölp(π, H , F)

:= {a ∈ A : [F,π(a)] ∈ L p(H ), π(a)(F∗ − F), π(a)(F2 − 1) ∈ L p/2(H )},

is norm dense in A. If L p(H ) andL p/2(H ) is replaced with Li
1
2 (H ) respectively

Li(H ), (π, H , F) is θ -summable. An unbounded Fredholm module (π, H , D) is

3Once it is decorated with some further manifold-like structures.
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p-summable if π(a)(D ± i)−1 ∈ L p(H ), for a in a subalgebra of Lip(π, H , D)

dense in A, and θ -summable if L p(H ) is replaced with Li
1
2 (H ).

More generally, one can speak of summability relative to any ideal of operators.
Whenever I ,J ⊆ K(H ) are ∗-ideals such that J = {a : a∗a ∈ I }, we will say
that (π, H , F) is J -summable if the ∗-algebra

HölJ (π, H , F) :=
�

a ∈ A : [F,π(a)] ∈ J , π(a)(F∗ − F), π(a)(F2 − 1) ∈ I
	

,

is norm dense in A. The ∗-algebra HölJ (π, H , F) forms a Banach ∗-algebra
closed under holomorphic functional calculus once the ∗-ideals I and J are
Banach ∗-ideals in B(H ) such that ‖a‖2

J = ‖a
∗a‖I , see more in [7, Proposition

3.12]. Yet another instance is if I (H ) = L p/2,∞(H ) and J (H ) = L p,∞(H ),
in this case we refer to summability as p+-summability.

The motivation for the terminology of the Hölder subalgebra comes from the
prototypical example of a bounded Fredholm module on a manifold. Let M be
a smooth closed n-dimensional manifold and F a self-adjoint pseudo-differential
operator of order 0 acting on a hermitean vector bundle E→ M such that F2 =

1. Letting π denote the representation of C(M) on L2(M , E) given by pointwise
multiplication, we obtain an odd bounded Fredholm module (π, L2(M , E), F).
If E is graded and F odd in this grading this Fredholm module can be viewed
as an even Fredholm module. It follows from combining the results reviewed in
[70, Section 3.6] with [62, Proposition 1], the Weyl law for elliptic operators and
standard results of real interpolation theory that there is a continuous inclusion
of the Hölder continuous functions into the Hölder algebra:

(0.1) Cα(M) ⊆ Höl
n
α
+

(π, L2(M , E), F).

If (π, H , F) is p-summable, p is referred to as the degree of summability of
(π, H , F). In geometric situations, we saw in Equation (0.1) that the degree
of summability often is related to the dimension of the underlying space via
some type of Weyl law. The notion of θ -summability is robust in the sense
that θ -summable K-cycles can be lifted to unbounded θ -summable Fredholm
modules (cf. [14, Chapter IV.8.α, Theorem 4]). Particular instances of this
phenomenon are known for finite summability as well; notably, in the paper
[62] a lifting result for the group algebra of a group of polynomial growth
was established. The general situation is quite different in the case of finite
summability.
The paper [15] shows that the existence of a finitely summable unbounded
Fredholm module over a C∗-algebra A implies the existence of a tracial state
on A. In particular, purely infinite C∗-algebras do not admit finitely summable
unbounded Fredholm modules. Recent results by Emerson-Nica [28] show that
certain purely infinite C∗-algebras arising as boundary crossed product C∗-
algebras associated to hyperbolic groups are “uniformly summable”; that is,
they admit finitely summable bounded Fredholm modules in a strong sense
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made precise below in Definition 5. Thus, a general lifting construction for
Fredholm modules, preserving finite summability, is impossible.
We show, among other results in this paper, that a result similar to that of
[28] holds for Cuntz-Krieger algebras, which also are purely infinite in many
cases. We furthermore provide a class of examples of θ -summable unbounded
Fredholm modules on Cuntz-Krieger algebras such that their phases are finitely
summable. This difference in finite summability for bounded and unbounded
Fredholm modules indicates not only that lifting is a delicate matter but that
the same holds for finer analytic properties of bounded transforms and the
choice of χ .

Definition 4. Let A be a C∗-algebra. We say that the class x ∈ K∗(A) is sum-
mable of degree p if there exists a p-summable Fredholm module representing x .
We define the degree of summability of x to be the infimum of the set of num-
bers p > 0 for which x is p-summable. The odd (even) degree of summability of
A is the supremum of the degree of summability of all odd (even) K-homology
classes.

When taking the infimum of a set, we always apply the convention that the
infimum of the empty set if infinite. We say that the C∗-algebra A has finitely
summable odd respectively even K-homology if it has a finite odd respectively
even degree of summability. We say that a K-homology class is finitely sum-
mable if it has a finite degree of summability. The summability degree of a
C∗-algebra is clearly an isomorphism invariant. An interesting question is if
it is a homotopy invariant. A related open problem hinted above is to find
obstructions for finite summability of K-homology classes similar to the tracial
obstructions for finitely summable unbounded Fredholm modules from [15]. We
also note the terminology uniformly summable from [28].

Definition 5 ([28]). A C∗-algebra A is said to be uniformly summable if there
is a p > 0 and a dense ∗-subalgebra A ⊆ A such that any x ∈ K∗(A) admits a
representative that is p-summable on A .

Example. We have one example of a K-homology class that is not finitely sum-
mable. This result is not to be confused with the interesting results of [57, 58]
where a subalgebra of A, on which K-homology classes are required to be finitely
summable, is fixed.

Lemma 6. Let A :=
⊕∞

j=1
C(S2 j−1) – the C0-direct sum of odd-dimensional

spheres. There is a K-homology class x ∈ K1(A) with infinite degree of summa-
bility.

Proof. Consider the sum of fundamental classes x =
∑∞

j=1
[S2 j−1], that is, x is

represented by (π,
⊕∞

j=1
L2(S2 j−1), F) where π is action by pointwise multipli-

cation and F = ⊕F j where F j = 2Pj − 1 and Pj is the Szegö projection on S2 j−1.
This is a well defined Fredholm module since a 7→ [F,π(a)] is a norm-continuous
mapping A→ B(

⊕∞
j=1

L2(S2 j−1)) of norm at most 2 and for a in the dense sub-

algebra Cc(
∐∞

j=1
S2 j−1) ⊆ A it holds that [F,π(a)] ∈ L p(

⊕∞
j=1

L2(S2 j−1)) for any
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p > dim(supp (a))+1. It holds that K1 (A) ∼=
∏∞

j=1
Z and it is a well known fact

that x |C(S2 j−1) ∈ K1(C(S2 j−1)) ∼= Z is a generator for any j, see for instance [71].

Suppose that x admits a p-summable representative (π̃,H , F̃ ). By [7, Propo-
sition 3.12] it follows that A := Hölp(π̃, H , F̃) is not only dense but also
holomorphically closed in

⊕∞
j=1

C(S2 j−1). By a standard approximation ar-

gument, using that A is holomorphically closed, the characteristic function pk

for S2k−1 ⊆
∐∞

j=1
S2 j−1 belongs to A . In particular pkA ⊆ C(S2k−1) is a holo-

morphically closed dense subalgebra. It follows that the degree of summability
of x is bounded from below by that of x |S2k−1 . By [25, Proposition 3] we have
a lower estimate for the degree of summability of any z ∈ K1(C(S2k−1)) \ {0}
given by 2k − 2. Hence we have a contradiction since our assumptions imply
that p ≥ 2k− 2 for all k. �

Content and organization of the paper. The content of the paper can
be summarized in the following Theorem. We use the letter A for an N × N -
matrix only containing the numbers 0 and 1. It will be clear from its context
when A is a matrix and when it is a C∗-algebra as above.
The notation ΩA is for the space of characters of the standard maximal abelian
subalgebra in the Cuntz-Krieger algebra OA associated with the N×N -matrix A,
see more in Section 1 below. There is a C(ΩA)-valued conditional expectation
on OA. We let EΩ

A
denote the C(ΩA)-Hilbert C∗-module closure of OA and πΩ

A
:

OA→ End∗
C(ΩA)

(EΩ
A
) the left OA-action.

Theorem 7. The odd degree of summability of a Cuntz Krieger algebra OA

is 0. Moreover, there exists an unbounded bivariant (OA, C(ΩA))-cycle (E
Ω

A
, D)

with the following property. For each class x ∈ K1(OA) one can find a finite
collection (ω j,x )

mx

j=1
⊆ ΩA and localize D at each of these characters to construct

the self-adjoint operator Dj,x on EΩ
A
⊗ω j,x

C such that the unbounded Fredholm

module
�

mx⊕

j=1

(πΩ
A
⊗ω j,x

id
C

),

mx⊕

j=1

(EΩ
A
⊗ω j,x

C),

mx⊕

j=1

Dj,x

�

,

is a θ -summable representative for x ∈ K1(OA). Moreover, each of the triples
�

πΩ
A
⊗ω j,x

id
C

, EΩ
A
⊗ω j,x

C, Dj,x |Dj,x |
−1
�

form p-summable analytic K-cycles for any p > 0 .

Remark 8. The first statement of this Theorem should be compared to the
results of [28]. The intersection of applications for this paper with [28] lies in
the examples of discrete hyperbolic groups Γ such that C(∂ Γ )⋊ Γ is a Cuntz-
Krieger algebra. E.g. when Γ is a free group (see below in Subsubsection
3.4.3).
In these cases, the results of [28] are stronger in regards to finite summability
of bounded Fredholm modules as they consider also the even K-homology. We
compare the two approaches in a special case in Subsubsection 4.2.1.
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Remark 9. Whittaker [73, 74], has carried out constructions similar to those in
this paper. The computational approaches differs, but the spirit prevails. It is
an interesting question if the results of this paper carry over to general Smale
spaces relating to the work of Whittaker.

Remark 10. In regards to the discussions above, we can use the same ∗-algebra
for all of the Fredholm modules constructed in this paper. Namely, the ∗-
algebra generated by the C∗-generators of the Cuntz-Krieger algebra.

The paper is organized as follows. In Section 1 we recall some well known
facts about Cuntz-Krieger algebras, focusing on their origin in the dynamics of
sub shifts of finite type. This is encoded by means of a groupoid, first studied
by Renault [59, 60]. The possibility to interchange the groupoid picture of
Cuntz-Krieger algebras and the standard generator picture, used in the original
definition of Cuntz-Krieger [22], is crucial to identifying the K-homology classes
of the Fredholm modules and spectral triples constructed in this paper.
Section 2 contains the proof of the fact that the odd degree of summability of
OA is 0, this is stated in Theorem 2.0.1. To be precise, we recall the construction
from [39] of Poincaré duality K∗(OA)

∼= K∗+1(OAT ). Using this construction, we
identify exactly which odd K-homology cycles we need to prove finite summa-
bility for. The results of Section 2 implies that any odd K-homology class
can be represented by a Fredholm module on the GNS-space L2(OA) associated
with the KMS-state on OA. It would be desirable to prove that the duality class
∆ ∈ K1(OA⊗̄OAT ) in fact is finitely summable, in which case it would follow that
the even degree of summability of OA is finite. We can in general only prove
θ -summability of ∆ (see Theorem 2.3.2). In certain cases, for instance SUq(2),
we obtain finite summability of a K-cycle representing ∆.
For the construction of unbounded Fredholm modules on OA in a given odd
K-homology class, we consider two approaches. One using the subalgebra of
fixed points for the gauge action, an AF-algebra, in Section 3 and one using
the standard maximal abelian subalgebra in Section 5. The approach of using
the fixed point algebra is explored first as there is an unbounded KK-cycle
naturally associated with the gauge action, the gauge cycle. We prove that the
gauge cycle plays the role of a boundary mapping in the Pimsner-Voiculescu six
term exact sequence associated with the gauge action. As such, the possible K-
homology classes of the unbounded Fredholm modules that can be constructed
from the fixed point algebra by means of a Kasparov product with the gauge
cycle can be computed. We carry out these computations in some special cases
in Subsection 3.4. In some cases any K-homology class is of this form (see
Remark 3.4.9), only the odd ones are (e.g. for SUq(2), see Remark 3.4.5) and
in other cases only the trivial class is (e.g. the Cuntz algebra ON , see Remark
3.4.3).
Before considering the approach of constructing unbounded Fredholm modules
from the maximal abelian subalgebra in Section 5, we recall some spectral
triples in Section 4 considered by Bellissard-Pearson [5]. These spectral triples
are interesting since there is an obstruction to extending them to the ambient
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Cuntz-Krieger algebra coming from the class of the unit [1OAT
] ∈ K0(OAT ) under

Poincaré duality K0(OAT ) ∼= K1(OA). They also provide a natural candidate for
constructing spectral triples on OA with geometric content. In Section 5, we
construct an unbounded bivariant (OA, C(ΩA))-cycle. The restrictions of this
bivariant cycle to suitable fibres over ΩA generate the odd K-homology group
of OA. We may even identify the phases of these unbounded Fredholm modules
with finitely summable analytic K-cycles very similar to those constructed in
Section 2. In particular, this shows that the Kasparov product

KK1(OA, C(ΩA))⊗ K0(C(ΩA))→ K1(OA),

is surjective. This stands in sharp contrast with the situation where C(ΩA) is
replaced with the fixed point algebra FA. E.g. for the Cuntz algebra where
K0(FN ) = 0 but K1(ON )

∼= Z/(N − 1)Z (cf. computations in Subsubsection
3.4.1).
In view of this, we end this paper with a construction of an unbounded Kasparov
product between the unbounded bivariant (OA, C(ΩA))-cycle with the Bellissard-
Pearson spectral triples – a certain infinite direct sum of point evaluations with
dynamical content.
We compute the class of this Kasparov product in rational K-homology. The
construction uses and extends the techniques of [9, 38, 52] to account for nat-
urally ocurring unbounded commutators. This is achieved in the context of
ǫ-unbounded Fredholm modules, a slight weakening of the notion of unbounded
Fredholm modules. This weakening has been hinted at in the literature. We
describe the main properties of ǫ-unbounded Fredholm modules in the Appen-
dix.

Remark 11. In the Ph.D. thesis of Senior [63], an unbounded Fredholm opera-
tor for the quantum group SUq(2) is constructed through the same connection
techniques employed here. Although the algebra C(SUq(2)) is a Cuntz-Krieger
algebra (see Subsection 1.4.1), the base space taken in [63] is the noncom-
mutative Podlés sphere, and thus the constructions differ fundamentally. In
particular, the ǫ-unbounded Fredholm module techniques we employ to prove
that our operators represent Kasparov products do not apply there.

1. Groupoids, C∗-algebras and dynamics

In this section we will recall some well known facts about the dynamics of sub
shifts of finite type, Cuntz-Krieger algebras and the interplay in between them
arising from a certain groupoid. The purpose of this section is to set notations
and to introduce the underlying classical geometry before describing its non-
commutative geometry. Relevant references are provided in each subsection.

1.1. Subshifts of finite type on the boundary of a tree. In this sec-
tion we recall basic facts and introduce notation regarding subshifts of finite
type. We let A= (Ai j)

N
i, j=1

denote an N × N matrix with coefficients being 0 or

1. Sometimes we write A(i, j) = Ai j . The matrix A can be thought of as defining
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the admissible paths in a Markov chain, where a jump from i to j is admissible
if and only if A(i, j) = 1. We always assume that no row nor column of A is
zero to guarantee that there is always an allowed jump into as well as out of a
letter j ∈ {1, . . . , N}.
There are several well studied geometric objects associated with this Markov
chain. The first is the compact space of infinite admissible words:

ΩA := {(xk)k∈N+ ∈ {1, . . . , N}N : ∀k : A(xk, xk+1) = 1},

equipped with the topology induced from the compact product topology on
{1, . . . , N}N. The space ΩA is totally disconnected. There is a natural shift
operator

ΩA→ ΩA

(xk)k∈N 7→ (xk+1)k∈N.

The pair (ΩA,σ) is called a subshift of finite type and is amongst the most well
studied systems in dynamics, see for example [42, 49, 55].
We call a sequence of numbers µ = (µ j)

M
j=1

with µ j ∈ {1, . . . , N} a finite word of

length M . The length M of µ is denoted by |µ|. A finite word µ = (µ j)
M
j=1

is

said to be admissible for A if A(µ j ,µ j+1) = 1 for j = 1, . . . , M − 1. To simplify

notation we often write µ1µ2 · · ·µM for a finite word µ = (µ j)
M
j=1

. The empty

word is defined to be an admissible finite word that we denote by ◦A. The
length of the empty word is defined to be 0. The set of all admissible finite
words will be denoted by VA. For k ∈N, we use the notation

(1.2) ϕ(k) := #{µ ∈ VA : |µ|= k}.

The space ΩA splits into cylinder sets Cµ associated with finite words µ:

Cµ := {(xk)k∈N : x1 · · · x|µ| = µ} and C◦ = ΩA.

A finite word µ is admissible if and and only if Cµ 6= ;. The sets Cµ are clopen
subsets of ΩA and generate the topology. The shift σ is injective on each
Cµ if |µ| > 0. We will abuse the notation by denoting the with σ associated
endomorphism of the C∗-algebra C(ΩA) also by σ. Whenever X ⊆ ΩA is a clopen
subset, the characteristic function χX of X defines a locally constant continuous
function. These observations imply the following Proposition.

Proposition 1.1.1. The C∗-algebra of continuous functions C(ΩA) forms an
AF-algebra. The AF-filtration is given by

Ck :=
⊕

|µ|=k

CχCµ
∼=Cϕ(k).

The inclusions Ck ,→Ck+1 are induced from the partition Cµ = ∪
N
j=1

Cµ j.

The space ΩA can be viewed as the boundary at infinity of the tree VA of finite
A-admissible words. The countable set VA becomes a tree by allowing an edge
between µ and ν whenever ν= µi for some i. By choosing the empty word ◦A as
the base point, VA becomes a rooted tree. The space ΩA is naturally identified
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with the space of infinite paths starting at ◦A. As such, ΩA carries a natural
metric, defined for x 6= y by

(1.3) dΩA
(x , y) := e−min{n:xn 6=yn}.

Informally speaking, two paths are close when they stay on the same track for
a long time. In this metric, the cylinder sets satisfy

diam(Cµ) = e−|µ|.

The tree VA is in particular a Gromov hyperbolic space, and VA := VA ∪ ΩA is
a compactification of VA when given the topology generated by that of VA and
the sets

Cǫ
µ

:= Cµ ∪ {ν ∈ VA : ν ∈ CV
µ

, dΩA
(◦A,ν) ≥ ǫ−1}.

Here CVµ denotes the finite analogue of the cylinder set Cµ;

CV
µ

:= {ν ∈ VA : ν= µλ for some λ ∈ VA} ⊂ VA.

Definition 1.1.2. A function t : VA→ ΩA is said to satisfy the cylinder condi-
tion if

t(µ) ∈ Cµ ∀µ ∈ VA.

The next proposition shows that functions satisfying the cylinder condition
provides a natural candidate for a ∗-homomorphism splitting the following short
exact sequence of C∗-algebras:

0→ C0(VA)→ C
�

VA

�

→ C(ΩA)→ 0.

Proposition 1.1.3. If t : VA → ΩA satisfies the cylinder condition, see Def-
inition 1.1.2, then pullback along t∗ : C(ΩA) → Cb(VA) factors over a ∗-
homomorphism

t∗ : C(ΩA)→ C
�

VA

�

such that (t∗ f )|ΩA
= f .

Proof. The Proposition follows once proving that the mapping t̄ : VA → ΩA

given by t̄|VA
:= t and t̄|ΩA

:= idΩA
is continuous. This follows from the fact that

t̄−1(Cµ) ⊆ Cǫ
µ
for some ǫ > 0, so t̄ is continuous. �

The set of finite words comes with a shift mapping defined as

σV : VA \ ◦ → VA, µ= µ1µ2 · · ·µN 7→ µ2 · · ·µN .

The endomorphism σ : C(ΩA)→ C(ΩA) has an associated transfer operator

(1.4) Lσ( f )(x) :=
∑

y∈σ−1(x)

f (y).

This operator extends to an operator L̄σ : C
�

VA

�

→ C
�

VA

�

by setting

L̄σ( f )|VA
(µ) :=

∑

ν∈σ−1
V (µ)

f (ν) for µ ∈ VA. Via the Riesz Representation Theo-

rem, the induced operator L̄∗
σ

: C
�

VA

�∗
→ C

�

VA

�∗
can be viewed as an operator

on the Borel measures on VA.
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Definition 1.1.4. A Borel measure µ on ΩA is called conformal of dimension
δA if L̄∗σ(µ) = eδAµ.

There is a canonical σ-conformal measure on the space ΩA, which can be con-
structed explicitly. Denote by δA the upper Minkowski dimension (sometimes
called the upper box dimension, see e.g. [31]) of ΩA.

Theorem 1.1.5 (cf. [5], Theorem 2). Let s > 0. The series
∑

ν∈VA
e−s|ν| is

convergent for all s > δA and divergent for 0 < s ≤ δA. Consequently δA :=

inf{s :
∑

ν∈VA
e−s|ν| <∞}.

A direct corollary of Theorem 1.1.5 is the following (recall the definition of ϕ
from Equation (1.2)).

Corollary 1.1.6. There is a positive sequence Cs ∈ ℓ
1(N) such that ϕ(k) ≤

Cs(k)e
sk whenever s > δA.

Consider the measures

µs :=

∑

e−s|ν|δν
∑

e−s|ν|
,

viewed as an element of C(VA)
∗. Subsequently define µA = w∗- lims↓δA

µs, which is

to be interpreted as a weak∗ limit in C(VA)
∗. This is the well-known Patterson-

Sullivan construction [56, 69]. Since the series of Theorem 1.1.5 diverges at
δA, the measure µA is supported only on the boundary ΩA. For f ∈ C(ΩA),∫

ΩA
f dµA can be computed by choosing an extension f̃ to VA, since any two

such extensions differ by a function supported in VA.

Theorem 1.1.7 (cf. [17, 24, 56, 69]). The measure µA is σ-conformal of di-
mension δA.

Proof. First we compute,

∫

ΩA

f d L∗
σ
µs =

∑

ν∈VA
e−s|ν|Lσ f (ν)

∑

ν∈VA
e−s|ν|

=

∑

ν∈VA
e−s|ν|

∑

λ∈σ−1
V (ν)

f (λ)
∑

ν∈VA
e−s|ν|

=

∑

ν∈VA\◦
e−s(|ν|−1) f (ν)

∑

ν∈VA
e−s|ν|

= es

∑

ν∈VA\◦
e−s|ν| f (ν)

∑

ν∈VA
e−s|ν|

,

and then, using that
∑

ν∈VA
e−sν diverges at s = δA, we take the limit

lim
s↓δA

∫

ΩA

f d L∗
σ
µs = lim

s↓δA

es

∑

ν∈VA\◦
e−s|ν| f (ν)

∑

ν∈VA
e−s|ν|

= lim
s↓δA

es

∑

ν∈VA
e−s|ν| f (ν)

∑

ν∈VA
e−s|ν|

= eδA

∫

ΩA

f dµ.

�

Documenta Mathematica 20 (2015) 89–170



102 M. Goffeng and B. Mesland

1.2. Groupoids, C∗-algebras and modules. Groupoids are an intermedi-
ate structure between spaces and groups. The C∗-algebras constructed from
groupoids form a rich source of noncommutative C∗-algebras, and the groupoid
origin provides a geometric description of those.

Definition 1.2.1. A groupoid is a small category G in which all morphisms
are invertible.

The requirement of being small is of a set-theoretical nature; the objects in G
form a set. We denote the set of objects by G (0) and the set of morphisms by
G (1). There is an inclusion G (0)→G (1) as identity morphisms. We often write
G for G (1). The domain and range maps are denoted d, r : G (1)→G (0) and the
set of composable pairs is

G (2) := {(ξ,η) ∈ G ×G : d(ξ) = r(η)}.

This is itself a groupoid with domain and range maps the coordinate projec-
tions, and composition

(ξ1,η1) ◦ (η1,ξ2) := (ξ1,ξ2).

If G carries a locally compact Hausdorff topology for which the maps r, d and
composition G (2) → G are continuous, then G is said to be a locally compact
Hausdorff groupoid.

Definition 1.2.2. A locally compact Hausdorff groupoid G is étale if the fibers
of the range map r : G → G (0) are discrete.

An étale groupoid G carries a canonical Haar system (see [59]), consisting
of counting measure in each fibre of r. This allows for the definition of the
convolution product on Cc(G ), defined by

(1.5) f ∗ g(η) =
∑

ξ∈r−1(η)

f (ξ)g(ξ−1η),

which is a finite sum because f is compactly supported and r−1(η) is discrete.

There is a locally compact Hausdorff étale groupoid GA encoding the dynamics
of the totally disconnected compact space ΩA and the self mapping σ. The unit

space of GA is defined as G (0)A := ΩA and the morphism space by

G (1)A := {(x , n, y) ∈ ΩA×Z×ΩA : ∃k ∈N s.t. σn+k(x) = σk(y)}.

The range and source mappings are defined by

r(x , n, y) = x respectively d(x , n, y) = y.

The composition is given by

(x , n, y)(y, m, z) = (x , m+ n, z).

The groupoid GA can be given a locally compact étale topology in the following
way (see [59, 60]). Let m and n be natural numbers, U ⊆ ΩA an open set on
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which σm is injective, and V ⊆ ΩA an open set on which σn is injective. The
basic open sets for the topology are given by

(1.6) (U , m, n, V ) := {(x , m− n, y) : σm(x) = σn(y)}.

Since this groupoid is étale, it admits a natural Haar system νx given by count-
ing measure in the fibers.
Recall that a measure µ on G (0) is called quasi-invariant if the induced measure
dµ(ξ) = dνx(ξ)dµ(x) is equivalent to its inverse dµ(ξ−1). The Radon-Nikodym

derivative∆ :=
dµ−1

dµ is a measurable 1-cocycle on G called the modular function.

If G is an étale groupoid and U ⊂ G an open set on which both r and d are
injective, define T : r(U)→ d(U) by x 7→ d(r−1(x) ∩ U). A measure µ on G (0)

is quasi-invariant with modular function ∆ if for every such U we have

dT ∗µ

dµ
(x) =∆(r−1(x)∩ U).

See more in [59, Remark 3.22].

Proposition 1.2.3. The measure µA is a quasi-invariant measure on ΩA with
modular function ∆(x , n, y) = e−δAn.

Proof. The maps r and d are injective on the basic open sets (U , m, n, V ). For
n−m ≥ 0 and supp f ⊂ V we have

T ∗ f (x) =
∑

y∈σm−n(x)

f (y) = Ln−m
σ

f (x).

We conclude that
∫

V
f dT ∗µA =

∫

V
f d L(n−m)∗µA = e(n−m)δA

∫

V
f dµA. For n−m <

0
∫

V

f dµA =

∫

U

f dT−1∗µA =

∫

U

f d L(m−n)∗
σ µA

= e(m−n)δA

∫

U

f dµA = e(m−n)δA

∫

V

f dT ∗µA,

so in this case
∫

V
f dT ∗µA = e(n−m)δA

∫

V
f dµA as well. �

The reduced C∗-algebra of an étale groupoid G is a certain C∗-algebra com-
pletion of the algebra that Cc(G ) forms under the convolution product (1.5).

There is a conditional expectation ρ : Cc(G )→ C0(G
(0)) given by restriction of

functions to G (0). To construct C∗
r
(G ), define the C0(G

(0))-valued inner product

(1.7) 〈 f , g〉(x) :=
∑

ξ∈r−1(x)

f (ξ−1)g(ξ−1) = ρ( f ∗ ∗ g),

which is C0(G
(0))-linear for multiplication from the right. The completion of

Cc(G ) in the norm induced from (1.7) is a Hilbert C∗-module EG , the Haar
module, on which Cc(G ) acts, via convolution, by adjointable operators. Its
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completion in the operator norm is C∗
r
(G ). The map ρ above extends to a

conditional expectation

(1.8) ρ : C∗
r
(G )→ C0(G

(0)).

This intrinsic construction of C∗
r
(G ) was first considered in [44].

For a closed subgroupoid H ⊂ G , we can do a similar construction. Denote
by ρH : Cc(G ) → Cc(H ) the restriction map. This extends to a conditional
expectation ρH : C∗

r
(G )→ C∗

r
(H ), see [59]. Relative to the closed subgroupoid

G (0) ⊂ G , the inner product (1.7) can be expressed as 〈 f , g〉 = ρG (0)( f
∗ ∗ g). We

distinguish the domain and range mappings of G respectively H by an index,
e.g. rG : G (1)→G (0). There is a right Cc(H )-module structure on Cc(G ) given
by

g · h(η) :=
∑

ξ∈r−1
H (dG (η))

g(ηξ)h(ξ−1), η ∈ G ,

and the formula for the inner product is similar to (1.7):

〈 f , g〉(η) := ρH ( f
∗ ∗ g)(η) =

∑

ξ∈r−1
G (rH (η))

f (ξ−1η)g(ξ−1) for η ∈H ,

The completion of Cc(G ) with respect to this inner product is a Hilbert C∗-
module EGH over C∗

r
(H ); there is also a left action of C∗

r
(G ), which is defined

by convolution. The C∗-algebra of C∗
r
(H )-compact operators on such modules

can be easily described. We now turn to a brief review of this description.
Consider the right action of H on G and its associated quotient space

(1.9) G/H = {[ξ] : ξ ∈ G , [ξ1] = [ξ2]⇔∃η ∈ H ξ1η= ξ2}.

The space

G ⋉G/H := {(ξ, [η]) : d(ξ) = r(η)},

can be made into a groupoid with (G ⋉G/H )(0) = G/H by defining

range map: r(ξ, [η]) := [ξη],

domain map: d(ξ, [η]) := [η],

composition: (ξ1, [η]) ◦ (ξ2, [ξ−1
2
η]) := (ξ1ξ2, [ξ−1

2
η]),

and inversion: (ξ, [η])−1 := (ξ−1, [ξη]).

This groupoid is étale because both G and H are. The above construction is
a special case of an action of the groupoid G on a space, which in this case is
G/H . In that context, the map [η] → r(η), viewed as a map G/H → G (0)

is called the moment map of the action. For the general theory of groupoid
actions, its relation to C∗-algebras and modules, and further references see
[47, 51, 68].

Theorem 1.2.4 (cf. [54, 65]). Let G be an étale groupoid and H ⊂G a closed
subgroupoid. The mapping

πGH : C∗
r
(G ⋉G/H )→KC∗r (H )

(EGH )
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defined on a ∈ Cc(G ⋉G/H ) ⊆ C∗
r
(G ⋉G/H ) and f ∈ im (Cc(G )→ EGH ) by

πGH (a) f (η) :=
∑

ξ∈r−1(r(η))

a(ξ, [ξ−1η]) f (ξ−1η) for η ∈ G ,

is an isomorphism.

The fact that C∗
r
(G⋉G/H )

∼
−→KC∗

r
(H )(E

G
H ) follows from the Morita equivalence

H ∼ G ⋉ G/H of groupoids and the results in [54, 65]. The explicit formula
for the isomorphism can also be found in [51, Equation (11)].

1.3. Cuntz-Krieger algebras. Let OA be the Cuntz-Krieger algebra asso-
ciated with the N × N matrix A = (Ai j). Recall our assumption on A; no row
nor column in A is 0. The C∗-algebra OA was defined in [22] as the universal
C∗-algebra generated by elements Si satisfying the relations

S∗
i
Si =

N
∑

j=1

Ai jS jS
∗
j
,(1.10)

N
∑

i=1

SiS
∗
i
= 1,(1.11)

SiS
∗
i
S jS

∗
j
= S jS

∗
j
SiS

∗
i
= δi jSiS

∗
i
.(1.12)

Following the notation [22], for the source projections we write Qi := S∗
i
Si and

for the range projections Pi := SiS
∗
i
. The relations (1.10)-(1.12) become

(1.13) Pi Pj = δi j Pi and Qi =

N
∑

j=1

Ai j Pj .

For any finite word µ = µ1µ2 · · ·µM , we let Sµ ∈ OA denote the element
Sµ1

Sµ2
· · ·SµM

. The relation (1.13) guarantees that the element Sµ is non-zero if
and only if µ is an admissible word.

Proposition 1.3.1 (Lemma 1.1 of [46]). The following computation holds:

S∗
ν
Sγ =













Sβ , if γ= νβ , for some β ,

Qνk
, if ν= γ = ν1 · · ·νk

S∗
β
, if ν= βγ, for some β ,

0, otherwise.

Every non-zero word in Si and S∗
j
can be written as a finite sum of terms of

the form SµS∗ν where the admissible µ = µ1 · · ·µk and ν = ν1 · · ·νl satisfy that
µk = νl .

The following fundamental result is due to Renault.

Theorem 1.3.2 ([59, 60]). There is a canonical isomorphism between the
groupoid C∗-algebra C∗

r
(GA) and the universal C∗-algebra OA.
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The isomorphism is implemented by mapping Si to the characteristic function
of the set

(1.14) X i := {(x , 1,σ(x)) : x ∈ Ci} .

As the images of the Si :s satisfy the Cuntz Krieger relations, we obtain a
∗-homomorphism OA→ C∗

r
(GA). For more details on the proof see [60].

Recall the following condition, usually referred to as condition (I), on the N×N -
matrix A. A finite admissible word ν = ν1 · · ·νR is a loop based in j ∈ {1, . . . , N}
if ν1 = νR = j and νk 6= j for k = 2, . . . ,R− 1. If any j = 1, . . . , N satisfies that
there is an admissible finite word µ = µ1 · · ·µM with µ1 = j and there are two
different loops based in µM , we say that A satisfies condition (I). The matrix A

satisfies condition (I) if and only if ΩA has no isolated points. An example when
condition (I) is satisfied is if A is irreducible but not a permutation matrix.

Theorem 1.3.3 (Theorem 2.14 of [22], Proposition 4.3 of [1]). The Cuntz-
Krieger algebra OA satisfies the following:

(1) If A is irreducible, OA is simple.
(2) If A satisfies (I), then OA is purely infinite4.

The quasi-invariant measure µA induces a functional

ϕA : Cc(GA)→C, f 7→

∫

ΩA

f |ΩA
dµA,(1.15)

which extends to a state on C∗
r
(G ). The GNS-representation of OA on L2(OA,ϕA)

is canonically isomorphic to the convolution representation of C∗
r
(GA) on

L2(GA,µA). We will refer to this as the fundamental representation.

1.3.1. The algebra ON . Also known as the Cuntz algebra, was first introduced
in [18]. The algebra ON is the universal C∗-algebra generated by N orthogonal
isometries. The algebra ON is the Cuntz-Krieger algebra associated with the
symmetric N × N -matrix giving by Ai j = 1 for all i, j. The geometry of ΩON

takes a very simple form; since any word is admissible, it holds that VON
=

∪k∈N{1, . . . , N}k and ϕ(k) = N k. In this special case, the KMS-state ϕON
can

be computed as

ϕON
(SµS∗

ν
) = δµ,νN

−|µ|.

1.4. The fixed point algebra of the circle action. The Cuntz-Krieger
groupoid comes with a natural circle action. We describe the action in both
pictures of OA. First of all, the map

cA : GA→ Z

(x , n, y) 7→ n,
(1.16)

4Hence OA is also simple.
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is a continuous homomorphism, or a 1-cocycle. Note that ln∆ = −δAcA, with
∆ as in Proposition 1.2.3. This induces a disjoint union decomposition

GA =
⋃

n∈Z

Gn,

where Gn = c−1
A
(n). Its kernel

HA := ker cA = c−1
A
(0) = {(x , 0, y) : ∃k,σk(x) = σk(y)},

is a closed subgroupoid. We denote FA := C∗
r
(HA) ⊂ C∗

r
(GA). We remark that,

by the remark on the end of page 3 of [22], the algebra FA is simple if A is
aperiodic. There is a U(1)-action on C∗

r
(GA) (see [59]) constructed from the

cocycle cA via

αt ( f )(ξ) := ei t cA(ξ) f (ξ).

We refer to this action as the gauge action. The fixed point algebra for this
action is exactly FA. It is well known that the state ϕA (1.15) satisfies the
KMS-condition at inverse temperature δA with respect to the gauge action (cf.
Definition 3.15 and Proposition 5.4 of [59]).
A third way of describing FA comes from the generators Si . Observe that, in
terms of the linearly spanning elements SµS∗ν coming from Proposition 1.3.1,

αt(SµS∗
ν
) = e(|µ|−|ν|)i tSµS∗

ν
.

Hence FA is the C∗-algebra generated by SµS∗
ν
for |µ| = |ν|. We define F l

A
to

be the span of all non-zero SµS∗ν where |µ| = |ν| = l + 1. As was computed
in the proof of [22, Proposition 2.3]; for a fixed j, the elements SµS∗ν where
|µ| = |ν| = l + 1 and µl+1 = νl+1 = j form a set of matrix units; whenever
l + 1= |µ|= |ν| = |µ′|= |ν′|,

(1.17) SµS∗νSµ′S
∗
ν′ = δν,µ′SµS∗νl+1

Sνl+1
S∗ν′ = δν,µ′SµS∗ν′ .

These identities follows from Proposition 1.3.1. We can conclude the following
Proposition.

Proposition 1.4.1 (Proposition 2.3 of [22]). The space F l
A
is closed under

multiplication and adjoint. In particular,

FA = ∪l∈NF l
A

is an AF-algebra.

The stabilization FA⊗̄K admits yet another description in terms of groupoids.
It follows from [51, Lemma 3.4] that GA/HA

∼= ΩA × Z. The moment map-
ping GA/HA → ΩA is the projection onto the first coordinate under the above
homeomorphism. Hence we can identify GA⋉GA/HA = GA×Z. We will denote
elements of GA⋉GA/HA by (x , k, y, l). The range and domain mappings

r, d : GA⋉GA/HA = GA×Z→GA/HA = ΩA×Z

are given by

r(x , k, y, l) = (x , l) and d(x , k, y, l) = (x , k+ l)

Documenta Mathematica 20 (2015) 89–170



108 M. Goffeng and B. Mesland

The groupoid multiplication in GA⋉GA/HA is given by

(x , k, y, l)(y, m, z, k + l) = (x , k+m, z, l)

The next Proposition follows by a standard argument, which is left to the
reader.

Proposition 1.4.2. The mapping

β : GA⋉GA/HA→GA⋉GA/HA, (x , k, y, l) 7→ (x , k, y, l − 1),

is a groupoid automorphism. There is an isomorphism C∗
r
(GA⋉GA/HA)

∼= OA⋊

U(1) under which β corresponds to the dual Z-action. In particular,

C∗
r
(GA⋉GA/HA)⋊β Z ∼M OA.

Remark 1.4.3. A consequence of Theorem 1.2.4 and Proposition 1.4.2 is the well
known fact that there is a Z-action on FA⊗̄K such that OA⊗̄K

∼= (FA⊗̄K)⋊Z.

The restriction map ρ : C∗
r
(GA) → C∗

r
(Hc) is a conditional expectation. The

associated Hilbert C∗-module is denoted E c . Under the isomorphism OA
∼=

C∗
r
(GA), ρ corresponds to the map E : OA→ FA defined by

E(a) :=
1

2π

∫

U(1)

αt (a)dt.

The mapping E defines an FA-valued inner product on OA. The completion
Eα of OA in the norm associated to this inner product is a Z-graded Hilbert
C∗-module over FA.

Proposition 1.4.4. The isomorphism C∗
r
(GA)

∼= OA is U(1)-equivariant and

induces a Z-graded isomorphism E c ∼−→ Eα.

1.4.1. The quantum group SUq(2). Consider the matrix A=

�

1 1

0 1

�

. The par-

tial isometries S1 and S2 generating OA satisfies the relations

S∗
1
S2 = 0, S2S∗

2
= S∗

2
S2, S1S∗

1
+ S2S∗

2
= 1 and S∗

2
S2 = 1.

This condition guarantees that OA
∼= C(SUq(2)) for any q ∈ [0,1), see more

in [37]. The compact quantum group SUq(2) is well studied and we merely
describe it here as an interesting example. We do not derive anything new.
Any admissible sequence µ ∈ VA has the form

µ= 11 · · ·122 · · ·2,

that is, if the letter 2 appears in a word, all subsequent letters will be 2:s. We
will identify a point (k, l) ∈N2 with the finite word consisting of k occurrences
of 1 followed by l occurrences of 2. It holds that

(1.18) ϕ(l) = #{µ ∈ VA : |µ| = l}= l + 1.

Proposition 1.4.5. There is an isomorphism C(SUq(2))
U(1) ∼= K̃ – the uni-

talization of the compact operators on a separable infinite dimensional Hilbert
space.
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Proof. We use the notation A=

�

1 1

0 1

�

and FA = C(SUq(2))
U(1). In light of the

identification VA =N
2, it holds that

F k
A
∼=C⊕Mk(C).

The first summand is spanned by S(k+1,0)S
∗
(k+1,0)

and the second summand

spanned by SµS∗ν where µ and ν are of length k+ 1 and not ending in 1. Since

S(k,0)S
∗
(k,0)
= S(k+1,0)S

∗
(k+1,0)

+ S(k,1)S
∗
(k,1)

and S(k,l)S
∗
(k′ ,l′)

= S(k,l+1)S
∗
(k′ ,l′+1)

, for l, l ′ > 0,

the embedding of the second factors Ml(C)→ Ml+1(C) is a corner embedding.
Hence the mappings C ⊕ Ml(C) ,→ C ⊕ Ml+1(C) are unital. It follows that
lim
−→
C⊕Ml(C)

∼= K̃. �

2. Finite summability of Fredholm modules

In this section we investigate the finite summability of odd K-homology classes
on Cuntz-Krieger algebras. The central idea when treating the K-homology
of Cuntz-Krieger algebras is the usage of Kaminker-Putnam’s Poincaré duality
class for Cuntz-Krieger algebras. After recalling its construction we will prove
the following Theorem:

Theorem 2.0.1. Any class in K1(OA) admits a p-summable representative for
any p > 0.

To be precise, we prove that any class in K1(OA) can be represented by a K-cycle
that is finite rank summable on the ∗-algebra generated by the generators of
OA. We return to the proof of this theorem in the end of Subsection 2.2. In
the proof, we need to make use of KK-theory. The reader unfamiliar with KK-
theory is referred to the textbook [43] or Kasparov’s original papers [40, 41].
We use the notation ⊗̄ for the minimal tensor product of C∗-algebras.

2.1. Kaminker-Putnam’s Poincaré duality class. Whenever µ ∈
∪k∈N{1, . . . , N}k, we let δµ ∈ ℓ

2(VA) denote the delta function in µ if µ ∈ VA and

δµ = 0 if µ /∈ VA. We obtain an ON-basis {δµ|µ ∈ VA} for ℓ
2(VA). We use the no-

tation e1, . . . , eN for the standard ON-basis of CN . If µ= µ1 · · ·µk ∈ {1, . . . , N}k,
we use the notation eµ := eµ1

⊗ · · · ⊗ eµk
∈ (CN )⊗k. Let F denote the Hilbert

space completion of ⊕∞
k=0
(CN )⊗k, with (CN )⊗0 =C, in the scalar product

〈eµ, eν〉F = δµ,ν.

There is a natural isometric embedding ℓ2(VA)→F whose range is the closed
linear span of the set {eµ|µ ∈ VA}. We often identify ℓ2(VA) with its image
under this embedding; that is, we identify eµ with δµ if µ ∈ VA. We also let
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PA : F → ℓ2(VA) denote the orthogonal projection; in particular PAeµ = δµ for
any finite word µ. Define the bounded operators

LA
i

: ℓ2(VA)→ ℓ
2(VA), δµ = eµ 7→ PA(eiµ) = δiµ.

There is a bijection of sets VA→VAT given by

µ= µ1µ2 · · ·µk−1µk 7→ µ̄ := µkµk−1 · · ·µ2µ1,

i.e. the word µ ordered in the opposite way. We define the unitary isomorphism

JV : ℓ2(VA)→ ℓ
2(VAT ), δµ 7→ δµ̄.

Consider the operators RA
i

:= J∗V LAT

i
JV , which act as RA

i
δµ = δµi .

We let {Si |i = 1, . . . , N} and {Ti |i = 1, . . . , N} denote the generators of OA and
respectively OAT . We define the ∗-homomorphisms

βA := OA→C (ℓ
2(VA)), Si 7→ LA

i
mod K(ℓ2(VA)) and

β T
A

:= Ad(q(JV ))(βAT ) : OAT →C (ℓ2(VA)), Ti 7→ RA
i

mod K(ℓ2(VA)).

Here q : B(ℓ2(VA),ℓ
2(VAT )) → B(ℓ2(VA),ℓ

2(VAT ))/K(ℓ2(VA),ℓ
2(VAT )) denotes the

quotient mapping. The fact that βA is a ∗-homomorphism for any A is shown
in [39]; it also follows from Lemma 4.2.1 and Proposition 4.2.3 below. A short
computation shows that

(2.19) [LA
i
,RA

j
] = 0 and [(LA

i
)∗,RA

j
] = δi, j P◦A

,

where P◦A
denotes the orthogonal projection onto Cδ◦A

. See more in [39,

Proposition 4.2]. It follows that the algebra βA(OA) commutes with β T
A
(OAT )

in C (ℓ2(VA)). Since OA and OAT are nuclear we obtain a ∗-homomorphism

βK P := βA⊗̄β
T
A

: OA⊗̄OAT →C (ℓ2(VA)).

By standard constructions, see [43], the ∗-homomorphism βK P induces a class

[βK P] ∈ Ext(OA⊗̄OAT ,K(ℓ2(VA)))

represented by the extension

(2.20) 0→K(ℓ2(VA))→ EK P → OA⊗̄OAT → 0,

where

EK P := {a⊕ T ∈ OA⊗OAT ⊕B(ℓ2(VA)) : βK P(a) = T mod K(ℓ2(VA)) ∈ imβK P}.

If βK P is injective, for instance if OA ⊗ OAT is simple, EK P is the C∗-algebra
generated by LA

i
and RA

i
and the exactness of (2.20) was in this case verified in

the paragraph proceeding [39, Definition 4.3]. The C∗-algebras OA and OAT are
nuclear, so any element in the semi group Ext(OA⊗̄OAT ,K(ℓ2(VA))) is invertible,
and

Ext(OA⊗̄OAT ,K(ℓ2(VA)))
∼= K1(OA⊗̄OAT ).

This isomorphism can be found in [43, Chapter 3.3]. The construction of
this isomorphism relies on the Choi-Effros Theorem and on the Stinespring
Theorem. The two theorems combined guarantee the existence of a completely
positive splitting of the short exact sequence (2.20) that has the following form.
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There is a Hilbert space H , a representation π : OA⊗̄OAT → B(H ) and an
isometry W : ℓ2(VA)→ H such that

(2.21) βK P(a) = q(W ∗π(a)W ) for any a ∈ OA⊗̄OAT .

It follows from the fact that βK P is a ∗-homomorphism that [WW ∗,π(a)] ∈
K(H ) for all a ∈ OA⊗̄OAT . The identity (2.21) guarantees that the image of [βK P]

under Ext(OA⊗̄OAT ,K(ℓ2(VA)))→ K1(OA⊗̄OAT ) is represented by the odd analytic
K-cycle (π, H , 2WW ∗ − 1). The data π, H and W is difficult to construct in
general. Further, the problem of finite summability on a dense subalgebra is not
made easier by the abstract construction from the Stinespring Theorem. We
will return to this problem in the next section. First we recall the construction
of Poincaré duality from the image∆ ∈ K1(OA⊗̄OAT ) of the extension class [βK P].

Theorem 2.1.1 (Consequence of [39]). The mapping

K∗(OAT ) 7→ K∗+1(OA), [e] 7→ (1OA
⊗ [e])⊗OA⊗̄OAT

∆

is an isomorphism.

Remark 2.1.2. Recall that KK-theory comes with a product; for separable C∗-
algebras A, B and C, there is a Z/2Z-graded operation

⊗B : KK∗(A, B)⊗ KK∗(B, C)→ KK∗(A, C),

called the Kasparov product. This product is associative. As such, one often
considers KK-theory from the perspective of defining an additive category5

whose objects are the separable C∗-algebras and the group of morphisms from
A to B is KK0(A, B) with the composition of morphisms given by the Kasparov
product. Further, it coincides with the index pairing

K∗(B)⊗ K∗(B)→ Z

when A = C = C, once identifying KK∗(C, B) ∼= K∗(B), KK∗(B,C) = K∗(B) and
KK∗(C,C) ∼= Z. The particular Kasparov product (1OA

⊗ [e]) ⊗OA⊗OAT
∆ used

in Theorem 2.1.1 is that between the class 1OA
⊗ [e] ∈ KK∗(OA,OA⊗̄OAT ) and

∆ ∈ KK1(OA⊗̄OAT ,C). See more in [27, 39].

In order to use Theorem 2.1.1, we will need to compute Kasparov products
in the case described in Remark 2.1.2. Computations of this type are well
known to experts in the field, we include them for the sake of completeness.
Throughout this subsection, A and B denote unital C∗-algebras and (π, H , F)

an odd analytic K-cycle for A⊗̄B.

Proposition 2.1.3. Let e ∈ B⊗̄Mm(C) = Mm(B) be a projection and set

He := [π⊗ idMm(C)
](1A⊗ e)(H ⊗Cm).

There is an odd analytic K-cycle (πe, He, Fe) on A defined by

πe : A→ B(He), a 7→ [π⊗ idMm(C)
](a ⊗ e),

and Fe := [π⊗ idMm(C)
](1A⊗ e) · [F ⊗ id

C

m] · [π⊗ idMm(C)
](1A⊗ e).

5It even carries a triangulated structure, see [53].
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Proof. We assume m= 1 to shorten notation. Since F commutes with π(1A⊗e)

up to compacts,
F2

e
−π(1A⊗ e)F2π(1A⊗ e) ∈K(He).

Since F2−1 is compact, so is F2
e
−1. Furthermore F∗

e
= π(1A⊗ e)F ∗π(1A⊗ e) so

F∗
e
− Fe ∈K(He). Finally, we have for any a ∈ A that

[Fe,πe(a)] = [π(1A⊗ e)Fπ(1A⊗ e),π(a⊗ e)] =

= π(1A⊗ e)[F,π(a⊗ 1B)]π(1A⊗ e) ∈K(He).

�

Lemma 2.1.4. If e ∈ B ⊗ Mm(C) is a projection, the Kasparov product (1A ⊗
[e])⊗A⊗̄B [π, H , F] can be represented by the Fredholm module (πe, He, Fe) (see
notation in Proposition 2.1.3).

Proof. The K-theory class 1A⊗[e] can be represented by the A−A⊗̄B Kasparov
module (A⊗̄eBm, 0) with its obvious A-action on the left and the structure of an
A⊗̄B-Hilbert C∗-module comes from the inclusion A⊗̄eBm ⊆ A⊗̄Bm. It is clear
that as A−C-Hilbert C∗-modules

He = (A⊗̄eBm)⊗A⊗̄B H .

Since (πe, He, Fe) is a Fredholm module on the right Hilbert space, to verify that
it is a Kasparov product between [π, H , F] and (A⊗̄eBm, 0) it suffices to prove
that Fe is an F -connection, see [43, Definition 2.2.4]. The other conditions on a
Kasparov product automatically hold as the Kasparov operator in (A⊗̄eBm, 0) is
0, see [43, Definition 2.2.7]. Recall that Fe is an F -connection if for x ∈ A⊗̄eBm,
the linear mapping

ξ 7→ x ⊗A⊗̄B (Fξ)− Fe(x ⊗A⊗̄B ξ)

is compact. However, since (1A⊗ e)x = x this fact follows from the identity

x ⊗A⊗̄B (Fξ)− Fe(x ⊗A⊗̄B ξ) = π(x)Fξ−π(1A⊗ e)Fπ(1A⊗ e)π(x)ξ

= π(1A⊗ e)[π(x), F]ξ.

�

Remark 2.1.5. The natural mapping K1(A)→ Ext(A,K) is defined by mapping
a cycle x := (π, H , F) to the extension associated with the Busby invariant

βF : A→C (H ), βF (a) := q(PFπ(x)PF ) where PF := (F + 1)/2

and q : B(H ) → C (H ) denotes the quotient mapping. If F2 = 1, the Hilbert
space can be reduced to PF H = ker(F − 1). The Busby invariant βF is degen-
erately equivalent to β̃F : A→ C (PF H ), βF (a) := q(PFπ(x)PF ). In particular,
the Busby invariant of the K-cycle (πe, He, Fe) constructed in Lemma 2.1.4 is
βe(a) := βF (a⊗ e).

We end this subsection with a proposition on finite summability concerning
Poincaré dualities whose proof is carried out mutatis mutandis to that of Propo-
sition 2.1.3. We let I denote a symmetrically normed operator ideal, see [64,
Chapter 1.7]. Assume that A ⊆ A and B ⊆ B are unital dense ∗-subalgebras.
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Proposition 2.1.6. Let e ∈ B ⊗ Mm(C) be a projection and assume that
(π, H , F) is I -summable on the ∗-subalgebra A ⊗ (C1B + Ce) ⊆ A⊗̄B, then
(πe, He, Fe) is I -summable on A .

Remark 2.1.7. We note the following important consequence of Proposition
2.1.6. Assume that (π, H , F) is I -summable on A ⊗al g B . Then any element
in the image of the mapping

K0(B) 7→ K1(A), x 7→ (1A⊗ x)⊗A⊗̄B [π, H , F],

is I -summable on A . A slight modification of the argument above implies
that the same holds true for elements in the image of the analogously defined
mapping K1(B) → K0(A). This fact follows from [7, Proposition 3.12] which
allows us to assume B ⊆ B to be holomorphically closed, and the mapping
K∗(B)→ K∗(B) induced from the inclusion B ,→ B to be an isomorphism.

2.2. Finite summability in K1(OA). To deal with finite summability prob-
lems for OA we note an important relation between linear splittings and finite
summability based on [33]. The observation will reduce the problem of finite
summability for an odd K-homology class to finding such π, H and W described
above, in the paragraph preceding Theorem 2.1.1, that behaves well on gener-
ators. Whenever {x i}i∈I is a set of elements in a ∗-algebra, we let C∗[x i |i ∈ i]

denote the ∗-algebra generated by {x i}i∈I .

Theorem 2.2.1. Let I ,J ⊆ B be symmetrically normed operator ideals such
that a∗a ∈ I implies a ∈ J . Suppose that

0→K(H0)→ E→ A→ 0

is a short exact sequence of C∗-algebras with Busby invariant βE. Assume the
following:

(1) The C∗-algebra A contains a dense ∗-subalgebra generated by a set
{x i}i∈I ⊆ A, where I is an index set, and that there is a set {X i}i∈I ⊆
B(H0) of pre images of {βE(x i)}i∈I under the quotient mapping q :

B(H0)→C (H0) such that the mapping

C

∗[x i |i ∈ I]→ B(H0)/I (H0), x i 7→ X i mod I (H0),

is a well defined ∗-homomorphism.
(2) There is a Hilbert space H , a ∗-representation π : A→ B(H ) and an

isometry W : H0→ H such that

X i −W ∗π(x i)W ∈ I (H0).

Then [βE] defines an invertible class in Ext(A,K(H0)) whose image in K1(A) is
represented by the K-cycle (π, H , 2WW ∗−1) which is J -summable on the dense
∗-subalgebra C∗[x i |i ∈ I] ⊆ A.

The proof is closely modeled on the structure in the refined extension invariant
of [33] that is adapted for extensions of Schatten class ideals. Compare to for
instance [33, Theorem 3.2]. The examples of ideals to keep in mind is the
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finitely summable case I = L p and J = L 2p or the θ -summable case I = Li

and J = Li1/2.

Proof. It follows by the construction of the isomorphism Ext(A,K)−1 ∼= K1(A)

that [βE] is represented by the K-cycle (π, H , 2WW ∗ − 1), see the discussion
before Theorem 2.1.1. The J -summability statement requires a more subtle
algebraic analysis.
To simplify notation, we set A :=C∗[x i |i ∈ I]. We can define a linear mapping
τ : A → B(H0), a 7→ W ∗π(a)W . The assumptions of the Lemma guarantees
that we can define the ∗-algebra

E := {(a, T ) ∈A ⊕B(H0) : τ(a)− T ∈ I (H0)}.

There is a natural mapping σE : E → A given by (a, T ) 7→ a which admits a
linear splitting τ̃(a) := (a,τ(a)).
The mapping τ induces a ∗-homomorphism βE :A → B(H0)/I (H0). The pull-
back of the universal I -summable extension along βE places E in a commuting
diagram of ∗-algebras with exact rows:

0 −−−−→ I (H0) −−−−→ E
σE

−−−−→ A −−−−→ 0










y





yβE

0 −−−−→ I (H0) −−−−→ B(H0) −−−−→ B(H0)/I (H0) −−−−→ 0

,

where E → B(H0) is defined by (a, T ) 7→ T .
We set P := WW ∗. The operator U := W ∗|PH : PH → H0 is a unitary isomor-
phism. We now turn to the ∗-algebra Ê defined from the diagram

0 −−−−→ I (H0) −−−−→ E
σE

−−−−→ A −−−−→ 0

Ad(U)





y





yAd(U)







0 −−−−→ I (PH ) −−−−→ Ê −−−−→ A −−−−→ 0

By construction, the linear mapping τ̂(a) := Pπ(a)P = U∗τ(a)U ∈ Ê defines a
splitting of the lower row. In particular, for any a, b ∈A it holds that

τ̂(ab)− τ̂(a)τ̂(b) ∈ I (PH ).

It follows that [P,π(a)] ∈ J (H ) for all a ∈ A by an algebraic manipulation,
see [33, Lemma 3.7]. �

Remark 2.2.2. If the mapping βE : A → B(H0)/I (H0) in the proof of Theo-
rem 2.2.1 is injective, the mapping E → B(H0) is injective. Hence there is an
isomorphism of ∗-algebras

E ∼= {T ∈ B(H ) : T mod I (H0) ∈ imβE }.

Let us return to the C∗-algebra OA. Recall the definition of the KMS-state ϕA

on OA from (1.15), the associated GNS-space L2(OA,ϕA) and the fundamental
representation πA. By the results of Subsection 1.3, there is an isomorphism
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L2(OA,ϕA)
∼= L2(GA) intertwining the OA-action with the C∗(GA)-action under

the isomorphism OA
∼= C∗(GA) from Theorem 1.3.2.

Fix a finite admissible word λ ∈ VA. Define Hλ as the closed linear span of all
elements Sµλ ∈ L2(OA,ϕA). For any two finite words µ,ν ∈ VA, Proposition 1.3.1
implies that

〈Sµ,Sν〉L2(OA,ϕA)
= ϕA(S

∗
µSν) = δµ,νϕA(S

∗
µk

Sµk
) = δµ,ν

N
∑

j=1

Aµk , jvol(C j),

where k := |µ|. For any finite word µ = µ1 · · ·µk, admissible or not, we set

cµ :=

 

N
∑

j=1

Aµk , jvol(C j)

!−1/2

.

In particular, it holds that cµ only depends on the last letter of µ. It follows
from the computation above that the non-zero elements of {cµλSµλ|µ ∈ VA} form

an ON-basis for Hλ. Let ℓ2(Vλ) ⊂ ℓ
2(VA) be the closed subspace spanned by

the basis vectors associated with the words

Vλ := {µλ ∈ VA|µ ∈ VA}.

The operator Pλ := RA

λ̄
(RA

λ̄
)∗ ∈ B(ℓ2(VA)) is the orthogonal projection onto

ℓ2(Vλ). We define the unitary isomorphism U : ℓ2(VA)→ H◦ by δµ 7→ cµSµ. It
follows from the above discussion that the map

Wλ := UPλ : ℓ2(VA)→ L2(OA,ϕA),

is a partial isometry. We recapitulate by noting that the partial isometry Wλ

maps δµ to cµSµ if µ ∈ Vλ and it maps δµ to 0 if µ /∈ Vλ. Hence, the image of

Wλ is Hλ and the image of W ∗
λ
is ℓ2(Vλ).

Proposition 2.2.3. The partial isometry Wλ satisfies the equation:

W ∗
λ
πA(Si)Wλ = LA

i
W ∗
λ

Wλ ≡ LA
i
RA

λ̄
(RA

λ̄
)∗, i = 1, . . . , N .

Proof. It suffices to prove that W ∗
λ
πA(Si)Wλδµλ = LA

i
δµλ since the vectors δµλ

spans the range of W ∗
λ
. A direct computation goes as follows:

W ∗
λπA(Si)Wλδµλ = cµλW ∗

λπA(Si)Sµλ = cµλW ∗
λSiµλ = δiµλ = LA

i
δµλ,

since cµλ = ciµλ. �

Remark 2.2.4. The orthogonal projection WλW ∗
λ
∈ B(L2(OA,ϕA)) onto Hλ cor-

respond to a projection constructed in the groupoid picture as follows. For any
finite word µ, Sµ corresponds to the characteristic function of the set

{(x , |µ|,σ|µ|(x)) ∈ GA|x ∈ Cµ}.

It holds that

(2.22) Qλ f :=
∑

µ∈VA

c2
µλSµλ

∫

ΩA

ρ(S∗µλ ∗ f )dµA,
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with ρ as in (1.8), defines a projection in L2(GA,µA) corresponding to WλW ∗
λ

under the isomorphism L2(OA,ϕ) ∼= L2(GA,µA). This is akin to the constructions
in [28].

Proposition 2.2.5. The extension defined from the Busby invariant

βi : OA→C (ℓ
2(VA)), a 7→ βK P(a⊗ Ti T

∗
i
)

can be represented by the odd analytic K-cycle (πA, L2(OA,ϕA), 2WiW
∗
i
−1) which

is p-summable for any p > 0 on the dense ∗-subalgebra C∗[S1,S2, . . . ,SN ] ⊆ OA.

Proof. For j = 1, . . . , n, the operators X j := LA
j
RA

i
(RA

i
)∗ lifts βi(S j). The op-

erators X j satisfy the Cuntz-Krieger relations modulo finite rank operators,

so S j 7→ X j mod L p(ℓ2(VA)) defines a ∗-homomorphism C

∗[S1,S2, . . . ,SN ] →

B(ℓ2(VA))/L
p(ℓ2(VA)) for any p > 0, even modulo finite rank operators. It

also holds that W ∗
i

Wi = RA
i
(RA

i
)∗. In particular, X j = W ∗

i
πA(S j)Wi . Hence, the

Proposition follows from Theorem 2.2.1. �

We recall the following description of K0(OAT ) from [19, Proposition 3.1].

Proposition 2.2.6 (Proposition 3.1 of [19]). The mapping

Z

N → K0(OAT ), (k j)
N
j=1
7→

N
∑

j=1

k j[T j T
∗
j
]

is surjective with kernel being (1− A)ZN

Proof of Theorem 2.0.1. By Theorem 2.1.1, Remark 2.1.5 and Proposition
2.2.6 any K-homology class on OA can be represented by an extension class

of the form
∑N

j=1
k j[β j]. The Theorem follows from Proposition 2.2.5. �

2.3. A representative for ∆. As previously indicated (see Proposition
2.1.6), any summability property of a K-cycle representative for ∆ would carry
over to any K-homology class for OA. The problem is to represent ∆ in a rea-
sonable way. We will in this subsection construct a θ -summable representative
for ∆.
We will use the notation H T

0
for the closed linear span of {Tµ̄|µ ∈ VA} in

L2(OAT ,ϕAT ). Just as for OA, there are constants cT
µ > 0 only depending on

the first word of µ such that {cT
µ

Tµ̄|µ ∈ VA} forms an ON-basis for H T
0
. Define

the linear mapping W0 by

W0 : ℓ2(VA)→ H0 ⊗H T
0

, δλ 7→
∑

µν=λ

(|λ|+ 1)−
1
2 cµSµ ⊗ cT

ν
Tν,

whose adjoint equals

W ∗
0

: H0 ⊗H T
0
→ ℓ2(VA), cµcT

ν Sµ ⊗ Tν̄ 7→ (|µν|+ 1)−1/2δµν

The operator W0 is an isometry since

W ∗
0
W0δλ =

∑

µν=λ

(|µν|+ 1)−1δλ = δλ.
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We will make use of the isometry

W : ℓ2(VA)→ L2(OA,ϕA)⊗ L2(OAT ,ϕAT )

that is defined as the composition of W0 and with the isometric inclusion H0 ⊗
H T

0
,→ L2(OA,ϕA)⊗ L2(OAT ,ϕAT ).

Lemma 2.3.1. For any A it holds that

LA
i
−W ∗[πA(Si)⊗ 1OAT

]W , RA
i
−W ∗[1OA

⊗πAT (Ti)]W ∈ Li(ℓ2(VA)).

If there is a p > 0 such that ϕ(l)® l p, it holds that

LA
i
−W ∗[πA(Si)⊗ 1OAT

]W , RA
i
−W ∗[1OA

⊗πAT (Ti)]W ∈L
p+1,∞(ℓ2(VA)).

Proof. This is yet another proof by computation. Choose a finite word λ ∈ VA.
It holds that

W ∗[πA(Si)⊗ 1OAT
]Wδλ =W

∗

 

∑

µν=λ

cµcT
ν (|µν|+ 1)−1/2Siµ ⊗ Tν̄

!

=

=
(|λ|+ 1)−1/2

(|iλ|+ 1)−1/2
δiλ = LA

i
δλ +

�√

√ |λ|+ 2

|λ|+ 1
− 1

�

LA
i
δλ,

W ∗[1OA
⊗πAT (Ti)]Wδλ =W

∗

 

∑

µν=λ

cµcT
ν
(|µν|+ 1)−1/2Sµ ⊗ Tiν̄

!

=

=
(|λ|+ 1)−1/2

(|iλ|+ 1)−1/2
δλi = RA

i
δλ +

�√

√ |λ|+ 2

|λ|+ 1
− 1

�

RA
i
δλ,

since cµ only depend on the last letter of µ and cT
ν

only depend on the first

letter of ν. We define Γ ∈ B(ℓ2(VA)) by

Γδλ :=

�√

√ |λ|+ 2

|λ|+ 1
− 1

�

δλ

and reformulate the above identities as

W ∗[πA(Si)⊗ 1OAT
]W − LA

i
= LA

i
Γ and W ∗[1OA

⊗πAT (Ti)]W − RA
i
= RA

i
Γ .

We recall the elementary asymptotics
√

√ |λ|+ 2

|λ|+ 1
− 1=

1

2|λ|
+O

�

1

|λ|2

�

, as |λ| →∞.

It holds in general that ϕ(l) ® e sl for s > δA by Corollary 1.1.6, so Γ ∈ Li(ℓ2(VA)).
On the other hand ϕ(l) ® l p implies Γ ∈ L p+1,∞(ℓ2(VA)). �

From Theorem 2.2.1 and Lemma 2.3.1 we may conclude a summability result
for the duality class ∆. This result is by no means a surprise. There is to the
authors’ knowledge no known counter examples to the θ -summability problem
for unbounded Fredholm modules, so in effect there are no counter examples
to representing K-homology classes by θ -summable Fredholm modules, cf. [14,
Chapter IV.8.α, Theorem 4]. We nevertheless state it as a Theorem.
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Theorem 2.3.2. The class ∆ ∈ K1(OA⊗̄OAT ) is represented by the analytic K-
cycle

(πA⊗πAT , L2(OA,ϕA)⊗ L2(OAT ,ϕAT ), 2WW ∗ − 1),

which is θ -summable on the dense ∗-subalgebra of OA⊗̄OAT generated by Si ⊗ 1

and 1 ⊗ Ti for i = 1, . . . , n. If there is a p > 0 such that ϕ(l) ® l p, this is a
L p+1,∞-summable K-cycle.

Theorem 2.3.2 and Equation (1.18) imply that any K-homology class on SUq(2)

is finitely summable.

3. Unbounded (OA, FA)-cycles

We will in this section start approaching the problem of constructing un-
bounded Fredholm modules on OA. It is natural to try and construct unbounded
Fredholm modules as Kasparov products of bivariant cycles with unbounded
Fredholm modules on one of the subalgebras C(ΩA) ⊆ FA ⊆ OA. In this sec-
tion, we will consider classes in KK1(OA, FA). In Section 5 we construct classes
in KK1(OA, C(ΩA)). Both constructions provide cycles that behave analogously
to those studied in Section 2 apart from the difficulties of being bivariant. A
problem with using the fixed point algebra is that, despite there being a well
studied bivariant (OA, FA)-cycle that is naturally constructed, the unbounded
Fredholm modules on FA are more difficult to construct and understand topo-
logically than those on C(ΩA). E.g. for the Cuntz algebra ON , it holds that the
even K-homology of the fixed point algebra vanishes but its odd K-homology is
an uncountable group (cf. Proposition 3.4.2).
We will in the remaining parts of the paper use a great deal of unbounded
KK-theory. The reader unfamiliar with this material is referred to [4, 9, 36, 38,
45, 52].

3.1. The homogeneous components. In this subsection, we describe the
structure of the module E c – the completion of OA as the pre-FA-Hilbert C∗-
module associated with the conditional expectation ρc : OA→ FA coming from
the restriction mapping Cc(GA)→ Cc(HA). It is clear that E c decomposes as a
direct sum of F -modules:

E c =
⊕

n∈Z

E c
n
,

corresponding to the disjoint union decomposition G =
⋃

n∈ZGn, where Gn =

c−1
A
(n). We show below that each E c

n
is a finitely generated projective FA-

module, and consequently E c is isomorphic to a direct sum of finitely generated
projective FA-modules. Since E c

0
= FA it suffices to consider n 6= 0.

Lemma 3.1.1. Let n> 0. The column vectors vn := (S∗
µ
)|µ|=n ∈ Hom∗

FA
(E c

n
, F
ϕ(n)
A )

have the property that v∗
n
vn = 1. In particular, E c

n
is a finitely generated projec-

tive FA-module for n> 0.
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Proof. We have

v∗
n
vn =

∑

|µ|=n

SµS∗
µ
= 1,

which follows from successively applying the relation (1.11).
For an element a ∈ OA of degree n, the vector vna, constructed by coordinatewise

multiplication by a, is an element of F
ϕ(n)
A . Therefore, for positive n, the map

E c
n
→ F

ϕ(n)
A

a 7→ vna,

is an isometry onto its image; its image is equal to pnF
ϕ(n)
A , with pn := vnv∗

n
.

Hence, E c
n
is a finitely generated projective FA-module. �

Recall the notation Pj for the projections S jS
∗
j
. The projections Pj are of degree

0, and Si Pj is of degree 1 for any i, j. Recall that we assume that neither row
nor column of A is composed of only zeroes. Hence the numbers

N j :=

N
∑

i=1

Ai j ,

satisfy 0< N j ≤ N . For two finite words µ and ν, not necessarily admissible, of
the same length n> 0 we set

Rµ,ν :=
1

Æ

Nν1
· · ·Nνn

Sµ1
Pν1
· · ·Sµn

Pνn

We use the notation ϕ̃(n) := #{(µ,ν) : |µ| = |ν| = n, Rµ,ν 6= 0}. It is clear that

ϕ̃(n) ≤ ϕ(n)2.

Lemma 3.1.2. Let n > 0. The column vectors wn := (Rµ,ν)µ=|ν|=n ∈

Hom∗
FA
(E c
−n

, F
ϕ̃(n)
A ) have the property that w∗

n
wn = 1. In particular, E c

−n
is a

finitely generated projective FA-module for n> 0.

Proof. We have

w∗
n
wn =

∑

|µ|=|ν|=n

1

Nν1
· · ·Nνn

Pνn
S∗
µn
· · · Pν1

S∗
µ1

Sµ1
Pν1
· · ·Sµn

Pνn

=

N
∑

µn,νn=1

1

Nνn

Pνn
S∗
µn

 

∑

|µ′|=|ν′|=n−1

1

Nν′1 · · ·Nν′n−1

· · · Pν1
S∗
µ1

Sµ1
Pν1
· · ·

!

Sµn
Pνn

=

N
∑

µn,νn=1

1

Nνn

Pνn
S∗
µn

w∗
n−1

wn−1Sµn
Pνn

.
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Hence, the result follows by induction once proven for n= 1. In that case, the
equation becomes

w∗
1
w1 =

N
∑

i, j=1

1

N j

PjS
∗
i
Si Pj =

N
∑

i, j=1

�
N
∑

ℓ=1

1

N j

AiℓPjSℓS
∗
ℓ
Pj

�

by (1.10)

=

N
∑

i, j=1

1

N j

Ai jS jS
∗
j

by (1.12)

=
∑

j

S jS
∗
j
= 1 by (1.11).

�

3.2. The gauge cycle. By [51], pointwise multiplication by the cocycle cA

induces a selfadjoint regular operator Dc on the Hilbert C∗-module E c , giving
(E c , Dc) the structure of an odd unbounded KK-cycle for KK1(OA, FA). We will
refer to this cycle as the gauge cycle. The construction of the gauge cycle
was considered in a more general setup in [11] that we make use of in the
next subsection. We assume that A is a C∗-algebra with a strongly continuous
U(1)-action satisfying the spectral subspace assumption [11, Definition 2.2].
The gauge action on OA satisfies the spectral subspace condition because, as
we saw above, the graded components of OA form finitely generated projective
FA-modules.
We let F ⊆ A denote the fixed point algebra for the U(1)-action. There is

a positive expectation value E : A → F given by a 7→ 1
2π

∫ 2π

0
eiθ (a)dθ , this

expectation coincides with ρc for OA. After completion of A with respect to the
associated F -valued scalar product we obtain an A− F -Hilbert C∗-module that
we denote by ER. We can also define the operator

DR y = i
d

dθ

�

e−iθ .y
�

|θ=0,

which is a densely defined F -linear operator on ER. Since U(1) is abelian, DR

commutes with the circle action on ER giving a U(1)-equivariant operator.

Proposition 3.2.1. Whenever the U(1)-action on A satisfies the spectral sub-
space assumption, the pair (DR, ER) forms a U(1)-equivariant unbounded (A, F)-
Kasparov module.

For a proof, see [11, Proposition 2.9]. We can construct KK-cycles as in Section
2. A difference here is that one has to work with partial isometries in Hilbert
C∗-modules.

Proposition 3.2.2. The FA-linear adjointable mapping

v : ℓ2(VA)⊗ FA→ E c , defined by v : δµ ⊗ a 7→ Sµa,

is a partial isometry and the projection vv∗ ∈ End∗
FA
(E c) has compact commu-

tators with OA. It consequently defines a U(1)-equivariant (OA, FA)-Kasparov
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module (E c , 2vv∗ − 1) whose class in KK
U(1)

1
(OA, FA) coincides with the class

[E c , Dc] of the gauge cycle (E c , Dc).

Proof. Observe that v is adjointable by Lemma 3.1.1 and 3.1.2. It is clear that
v is a partial isometry because the elements Sµ are mutually orthogonal in the
module E c and v∗(Sµa) = δµ⊗S∗

µ
Sµa, so both v∗v and vv∗ are projections. The

statement that the partial isometry defines a Kasparov module is proved as in
the previous section. To see that vv∗ defines the gauge cycle, one only needs
to observe that it is exactly the projection onto the positively graded part of
the module E c . �

Remark 3.2.3. In a similar way as in Proposition 3.2.2, we can define a partial
isometry

w : ℓ2(VA)⊗ FA⊗ FAT → E c
A
⊗E c

AT ,

δµ ⊗ a⊗ b 7→
∑

λν=µ

1
p

|µ|+ 1
Sµa⊗ Tνb.

It can be proven, in the same way as in Proposition 3.2.2, that the projec-
tion ww∗ has compact commutators with OA⊗̄OAT . Consequently we obtain
an odd U(1)-equivariant (OA⊗̄OAT , FA⊗̄FAT )-Kasparov module. Compare to the
construction of Subsection 2.3.

3.3. The Pimsner-Voiculescu sequence for the Cuntz-Krieger al-

gebra. What we wish to do in this section is to relate the cohomological
properties of the Cuntz-Krieger algebra with the fixed point algebra. The stan-
dard procedure, found in [19] for instance, is to apply the Pimsner-Voiculescu
sequence. In this section we briefly recall the proof of the Pimsner-Voiculescu
sequence in KK following [23] and prove that the gauge cycle appears as the
boundary mapping. We summarize the results of this subsection in the follow-
ing Theorem:

Theorem 3.3.1. The gauge element [E c , Dc] ∈ KK1(OA, FA), the Z-action β on
K⊗̄FA of Proposition 1.4.2 and the inclusion ι : FA→ OA fits into a distinguished
triangle in KK:

FA

1−β
// FA

ι

��☞☞
☞☞
☞☞
☞

OA.

◦✷✷✷[E c ,Dc]

YY✷✷✷

The triangulated structure of KK is explained in [53]; a distinguished triangle
is a triangle isomorphic in KK to a semi split short exact sequence of C∗-
algebras. In practice, it ensures that for any separable C∗-algebra D there are
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the following six term exact sequences:

KK0(D, FA)
1−β∗
−−−−→ KK0(D, FA)

ι∗
−−−−→ KK0(D,OA)

−⊗[E c,Dc]

x









y−⊗[E
c ,Dc]

KK1(D,OA)
ι∗

←−−−− KK1(D, FA)
1−β∗
←−−−− KK1(D, FA)

KK0(OA, D)
ι∗

−−−−→ KK0(FA, D)
1−β∗

−−−−→ KK0(FA, D)

[E c ,Dc]⊗−

x









y[E
c ,Dc]⊗−

KK1(FA, D)
1−β∗

←−−−− KK1(FA, D)
ι∗

←−−−− KK1(OA, D)

The Pimsner-Voiculescu sequence can be derived in many ways. We will here
consider the Toeplitz extension approach due to Cuntz. Assume that B is a
unital C∗-algebra and that β is an automorphism of B. The restriction that B

is unital makes the semantics easier, but can be lifted. Let T (B) denote the
C∗-algebra generated by B and an isometry vB satisfying the relation

vB bv∗
B
= β(b).

One can represent T (B) in End∗
B
(⊕∞

k=0
B) by extending the mappings

B ∋ b 7→ ⊕kβ
k(b) ∈ End∗

B
(⊕∞

k=0
B) and vB(xk)k∈N := (xk−1)k∈N.

There is a U(1)-action on T (B) induced from the grading on ⊕∞
k=0

B, i.e. the
U(1)-action is defined from z(vB) := zvB .
Let us realize B ⋊Z as the universal C∗-algebra generated by B and a unitary
uB satisfying

uB bu∗
B
= β(b).

There is a ∗-homomorphism σB : T (B) → B ⋊Z given by extending vB 7→ uB .
Since σB respects the grading it is clear that σB is U(1)-equivariant with respect
to the dual U(1)-action on B ⋊Z. There is an isomorphism of right B-Hilbert
C∗-modules ⊕∞

k=0
B ∼= ℓ2(N)⊗ B.

Lemma 3.3.2. The morphism σB is well defined and fits into a U(1)-equivariant
semisplit short exact sequence

(3.23) 0→ KB(ℓ
2(N)⊗ B)→T (B)

σB

−→ B ⋊Z→ 0.

Proof. We can identify B⋊Z with the C∗-subalgebra of End∗
B
(ℓ2(Z)⊗B) gener-

ated by the image of

B ∋ b 7→ ⊕kβ
k(b) ∈ End∗

B
(⊕k∈ZB) and the unitary uB(xk)k∈Z := (xk−1)k∈Z.

Let P : ℓ2(Z)⊗B→ ℓ2(N)⊗B denote the orthogonal projection. The adjointable
operator P is U(1)-equivariant. It is clear that the B-linear mapping

T : B⋊Z→T (B), b 7→ P bP

is a U(1)-equivariant completely positive splitting of σB . Let

q : End∗
B
(ℓ2(N)⊗ B)→QB(ℓ

2(N)⊗ B) := End∗
B
(ℓ2(N)⊗ B)/KB(ℓ

2(N)⊗ B)

Documenta Mathematica 20 (2015) 89–170



Summability and CK-algebras 123

denote the quotient mapping. Once we prove that q◦T is a ∗-homomorphism,
the Lemma follows. The operator P commutes with the B-action on ℓ2(Z)⊗ B.
Furthermore, if we let ek denote the standard basis for ℓ2(Z), then

[P,uB](ek ⊗ x) =

¨

0, k 6= −1

e0 ⊗ x , k = −1.

In particular, [P,uB] ∈ K(ℓ
2(Z)) ⊗ 1B ⊆ KB(ℓ

2(Z) ⊗ B). It follows that [P, b] ∈
KB(ℓ

2(Z)⊗ B) for any b ∈ B ⋊Z. Hence q ◦ T is a ∗-homomorphism. �

Lemma 3.3.3. There is a U(1)-equivariant homotopy T (B) ∼h B with trivial
U(1)-action on B.

For a proof, see [20]. Let ιB : B→ B ⋊Z denote the embedding.

Corollary 3.3.4. The morphism [T ] ∈ KK
U(1)

1 (B ⋊ Z, B) defined from the

invertible extension class (3.23) fits into a distinguished triangle in KKU(1):

B
1−β

// B

ιB
��✞✞
✞✞
✞✞
✞✞

B ⋊Z,

◦✼✼✼✼[T ]

[[✼✼✼✼

using the homotopy of Proposition 3.3.3 and the Morita equivalence KB(ℓ
2(N)⊗

B) ∼M B.

As a consequence of the Corollary, after setting B = FA⊗̄K and equipping it
with its dual Z-action coming from FA⊗̄K

∼= OA ⋊ U(1)⊗̄K, what remains to
prove of Theorem 3.3.1 is to show that [T ] coincides with the gauge element
in KK1(OA, FA) after Takesaki-Takai duality OA⊗̄K

∼= (FA⊗̄K) ⋊ Z. We first
construct an unbounded representative for the Pimsner-Voiculescu element

[T ] ∈ KK
U(1)

1
(B ⋊Z, B).

Before constructing this, let us make a series of minor remarks placing the
algebra above in a more analytic framework. The Fourier transform induces an
isomorphism L2(S1) ∼= ℓ2(Z) which in turn produces an isomorphism C(S1) ∼=
C∗(Z) intertwining the pointwise action of the former with the left regular
representation of the latter. The image of ℓ2(N) under the Fourier transform is
H2(S1) – the Hardy space consisting of functions in L2(S1) with a holomorphic
extension to the interior of S1 ⊆ C. The analogy of the projection P in this
picture is the projection of L2(S1)⊗B onto those B-valued functions on S1 with
a holomorphic extension to the interior. We note that

L2(S1)⊗ B ∼=

¨

(bk)k∈Z ∈
∏

k∈Z

B

�

�

�

�

∑

k∈Z

b∗
k
bk <∞

«

.
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Proposition 3.3.5. There is a natural unitary U(1)-equivariant isomorphism
of B ⋊Z− B-Hilbert C∗-modules

L2(S1)⊗ B ∼= B ⋊Z,

where the closure is taken in B-valued scalar product 〈a, b〉 := E(a∗b).

We define

W 1,2(S1, B) :=

¨

(bk)k∈Z ∈
∏

k∈Z

B :
∑

k

k2 b∗
k
bk <∞

«

,

and the U(1)-equivariant B-linear unbounded operator DB⋊Z on L2(S1)⊗ B on
an elementary tensor by

DB⋊Z(ek ⊗ x) := kek ⊗ x

and extending it to the domain W 1,2(S1, B) by continuity. If y ∈ W 1,2(S1, B)

then

DB⋊Z y = i
d

dθ

�

e−iθ .y
�

|θ=0.

Proposition 3.3.6. The operator DB⋊Z with domain W 1,2(S1, B) gives a U(1)-
equivariant unbounded (B ⋊Z, B)-cycle .

For a proof, see [11, Section 2].

Lemma 3.3.7. The bounded transform of DB⋊Z is a compact perturbation of the
(B ⋊ Z, B)-Kasparov module (L2(S1) ⊗ B, 2P − 1). Especially; [DB⋊Z] = [T ] ∈

KK
U(1)

1
(B ⋊Z, B).

Proof. We have that

DB⋊Z(1+ D2
B⋊Z
)−1/2(ek ⊗ x) := k(1+ k2)−1/2ek ⊗ x .

Since k(1 + k2)−1/2 − sign(k) ∼ −(2k)−1 as |k| → ∞ and B ⋊ Z satisfies the
spectral subspace condition (see [11, Definition 2.2]), the Proposition follows
from [11, Lemma 2.4]. �

We again turn our attention to the gauge cycle. It is possible to, in the Pimsner-
Voiculescu sequence of the Cuntz-Krieger algebra, replace the Toeplitz element
[T ] of FA⊗̄K by the gauge cycle for OA. Recall its definition from above. We
denote the class associated with the gauge cycle (ER, DR) of a U(1)−C∗-algebra

A satisfying the spectral subspace condition by [ER, DR] ∈ KK
U(1)

1
(A, F). We

note the following Proposition whose proof is left to the reader.

Proposition 3.3.8. The image of [ER, DR] under the isomorphism

jK(L2(S1)) : KK
U(1)

1 (A, F)→ KK
U(1)

1 (K(L2(S1))⊗̄A, F)

associated with the U(1)-equivariant Morita equivalence A ∼M K(L
2(S1))⊗̄A,

where the right hand side is equipped with the diagonal U(1)-action, coincides
with the class of

(L2(S1)⊗ER, idL2(S1) ⊗ DR)
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where the (K(L2(S1))⊗̄A, F)-Hilbert C∗-module L2(S1)⊗ER is equipped with the
diagonal U(1)-action.

The A-action on ER is by construction equivariant, hence there is an action
of A⋊ U(1) on ER. By [11, Lemma 2.4.ii], the spectral subspace assumption
guarantees that this action induces a ∗-homomorphism A⋊ U(1) → KF (E

R).
We let G denote the associated (A⋊U(1), F)-Hilbert C∗-module. We denote the

associated class in KK-theory by [G] ∈ KK
U(1)

0
(A⋊U(1), F). Let us remark that

G = ER as Banach spaces and as (A, F)-bimodules we have the equality

(3.24) A⊗A G = ER.

Lemma 3.3.9. If A is a U(1) − C∗-algebra satisfying the spectral subspace as-
sumption, and F := AU(1), then

jK(L2(S1))[E
R, DR] = [DA⋊U(1)⋊Z]⊗A⋊U(1) [G] in KK

U(1)

1 (K(L2(S1))⊗̄A, F),

where [DA⋊U(1)⋊Z] ∈ KK
U(1)

1
(K(L2(S1))⊗̄A,A⋊ U(1)) is the element constructed

for the Z− C∗-algebra A⋊ U(1) as in Proposition 3.3.6.

Proof. To simplify notation, we set B := A⋊U(1) which is a Z−C∗-algebra in its
dual action. Using that

�

L2(S1)⊗ B
�

⊗B G ∼= L2(S1)⊗G , the class [DB⋊Z]⊗B[G] ∈
KK1(B ⋊Z, F) can be represented by the U(1)-equivariant (B ⋊Z, F)-Kasparov
cycle

�

L2(S1)⊗ G , DB⋊Z ⊗B idG

�

.

Define the unitary U ∈ End∗
F
(L2(S1) ⊗ G) by representing the unitary U0 ∈

M (C∗(U(1))⊗̄C(U(1))) which is defined as an operator on L2(U(1))⊗ L2(U(1))

via

U0 f (g,h) = f (gh,h).

The unitary U implements Takesaki-Takai duality giving an isomorphism of
(B ⋊Z, F)-Hilbert C∗-modules

L2(S1)⊗G ∼= L2(S1)⊗ ER

where the left hand carries the structure of a (B⋊Z, F)-Hilbert C∗-module under
Takesaki-Takai duality B ⋊ Z ∼= K(L2(S1))⊗̄A and the U(1)-action is diagonal.
The Lemma now follows from Proposition 3.3.8. �

Corollary 3.3.10. Under the mapping KK1(OA, FA)→ KK1((K⊗̄FA)⋊Z,K⊗̄FA)

induced from the Morita equivalence OA ∼M (K⊗̄FA)⋊Z, the gauge element [DR]

is mapped to the Toeplitz element [D(K⊗̄FA)⋊Z
].

This Corollary follows directly from that G is an imprimitivity bimodule im-
plementing the Morita equivalence OA⋊ U(1) ∼M FA, see Proposition 1.4.2. In
general, we can conclude the following Corollary which implies Theorem 3.3.1.
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Corollary 3.3.11. If A is a U(1)− C∗-algebra satisfying the spectral subspace
assumption and G is a Morita equivalence, the following triangle is distin-

guished in KKU(1)

F
1−β

// F

ιF

��✍✍
✍✍
✍✍
✍

A,

◦✵✵✵[E R,DR]

WW✵✵✵

where ιF : F → B denotes the inclusion and β ∈ KK0(F, F) is Morita equivalent
to the Z-action dual to the U(1)-action on A.

3.4. Computations and problems with the approach using the fixed

point algebra. In this subsection we will compute K-groups of some exam-
ples of Cuntz-Krieger algebras and their fixed point algebras. These compu-
tations are known, and are provided only as a basis for discussion regarding
possibilities of constructing unbounded Fredholm modules with prescribed K-
homology classes. In order to do so, we require a Proposition giving a general
formula for the K-theory and K-homology of the fixed point algebra.

Proposition 3.4.1. The K-theory groups of FA are given by

K0(FA)
∼= lim
−→
(ZN ,AT ) and K1(FA)

∼= 0.

The K-homology groups of FA are given by

K0(FA)
∼= lim
←−

Ai
Z

N and K1(FA)
∼= ẐN

A
/(ZN/ lim

←−
Ai
Z

N ).

Here ẐN
A

:= lim
←−
Z

N/Ai
Z

N denotes the A-adic completion of ZN .

The computation of the K-homology groups of the fixed point algebra might
not be as well known as the corresponding result in K-theory so we will sketch
the proof. For a detailed proof in a special case, we refer to the notes [35]. The
proof relies on a result of Schochet-Rosenberg (see [61, Theorem 1.14]) stating
that if B = lim

−→
Bi there is a graded short exact sequence

(3.25) 0→ lim
←−

1 K∗+1(Bi)→ K∗(B)→ lim
←−

K∗(Bi)→ 0.

We can directly conclude from Equation (3.25) and the AF -structure of FA that

K0(FA)
∼= lim
←−
(ZN ,A) and K1(FA)

∼= lim
←−

1 (ZN ,A).

These isomorphisms are simplified further using the explicit construction of
derived projective limits in the category of abelian groups, see for instance [72,
Chapter 3.5].

3.4.1. The algebra ON . The algebra ON (i.e. the Cuntz algebra), was recalled
above in Subsubsection 1.3.1. We let FN denote the fixed point algebra in ON .

Proposition 3.4.2. It holds that

K0(FN )
∼= Z

�

1

N

�

, K1(FN )
∼= ZN/Z and K1(FN )

∼= K0(FN )
∼= 0.
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Here we use the notation Z
�

1
N

�

for the ring generated by 1
N

and ZN for the
N -adic completion of Z.

Proof. We let w := (1,1, . . . , 1)T ∈ ZN and ℓ := (1,1, . . . , 1) ∈ Hom (ZN ,Z). It
holds that A = w⊗ ℓ. For any k ∈ N+ and x ∈ ZN , Ak x = N k−1ℓ(x)w. Hence
K0(FN )

∼= lim
−→
(Z, N) = Z[N−1]. Similarly, K0(FN )

∼= lim
←−
(Z, N) = 0. It also follows

that ZN/Ak
Z

N = ZN−1 ⊕Z/N k−1
Z. Hence

Ẑ

N
A
= lim
←−
Z

N/Ak
Z

N = ZN−1 ⊕ZN , so K1(FN ) = (Z
N−1 ⊕ZN )/Z

N = ZN/Z.

�

The isomorphism K0(FN )
∼= Z

�
1
N

�

is implemented by the tracial state ϕN : FN →
C given by restricting the KMS-state on ON to FN .

Remark 3.4.3. The well known computations

K0(ON )
∼= K1(ON )

∼= Z/(N − 1)Z and K1(ON )
∼= K0(ON )

∼= 0,

follow from Proposition 3.4.2 and the Pimsner-Voiculescu sequence (Theorem
3.3.1). In particular, we arrive at the short exact sequence for the only non-
vanishing K-homology group K1(ON ):

0→ K1(ON )→ ZN/Z→ ZN/Z→ 0.

It follows that the Kasparov product with the gauge class of ON on K-homology
vanishes.

3.4.2. The quantum group SUq(2). Recall that C(SUq(2)) is isomorphic to the

Cuntz-Krieger algebra constructed from the matrix A=

�

1 1

0 1

�

, as in Subsub-

section 1.4.1.

Proposition 3.4.4. When A=

�

1 1

0 1

�

, it holds that

K0(FA)
∼= K0(FA)

∼= Z2 and K1(FA)
∼= K1(FA)

∼= 0.

This Proposition follows directly from Proposition 1.4.5 or the computation
of the K-groups, in Proposition 3.4.1, since A is invertible. The K-theory and
K-homology for OA is in this case given by

(3.26) K0(OA)
∼= K1(OA)

∼= K0(OA)
∼= K1(OA)

∼= Z,

as can be seen from the Pimsner-Voiculescu sequences

0→ K1(OA)
⊗[Dc]
−−−→ Z2

 

0 0

1 0

!

−−−−−→ Z2→ K0(OA)→ 0,

0→ K0(OA)→ Z
2

 

0 1

0 0

!

−−−−−→ Z2
[Dc]⊗
−−−→ K1(OA)→ 0.
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Remark 3.4.5. We conclude that the Kasparov product with the gauge class
surjects onto the odd K-homology group of SUq(2). As the fixed point algebra
is the unitalization of the C∗-algebra of compact operators, see Proposition
1.4.5, it admits unbounded Fredholm modules with both good analytic and
topological properties.

3.4.3. The crossed product C(∂ Fd) ⋉ Fd . Let Fd denote the free group on d

generators that we denote by {γ1, . . . ,γd}. The boundary of Fd consists of
infinite words in the alphabet given by the generators {γ1, . . . ,γd ,γ−1

1
, . . . ,γ−1

d
}

subject to the condition that for any i, the letters γi and γ
−1
i

cannot succeed
each other. It is well known that the group Fd act amenably on its boundary
∂ Fd . Hence C(∂ Fd)⋉ Fd

∼= C(∂ Fd)⋉r Fd .

Proposition 3.4.6. The crossed product C(∂ Fd)⋉Fd is a Cuntz-Krieger algebra
OA such that Fd = VA and ∂ Fd = ΩA where A is the symmetric 2d × 2d-matrix
consisting of 1’s except for 2× 2-identity matrices on the 2× 2-diagonal,

AFd
:=





























1 0 1 1 · · · 1 1

0 1 1 1 · · ·
...

...

1 1 1 0 · · ·
...

...

1 1 0 1 · · ·
...

...
...

...
...

1 1 · · · 1 0

1 1 1 · · · 0 1





























.

This result can be found in [67, Section 2]. We just indicate how to prove
it using groupoids. It suffices to provide an isomorphism of groupoids ϕ :

∂ Fd ⋊ Fd

∼
−→ GA for this specific choice of matrix A. Such an isomorphism is

given by ϕ(x ,γ) := (x , n(x ,γ), xγ) where

n(x ,γ) = |γ| − 2ℓ(x ,γ),

here |γ| is the word length of γ and ℓ(x ,γ) is the number of reductions necessary
in xγ to write it in reduced form. It is well defined because A guarantees that
any word x ∈ ΩA corresponds to a reduced word in ∂ Fd .

Proposition 3.4.7. It holds that

K∗
�

(C(∂ Fd)⋉ Fd)
U(1)

�

∼=

¨

Z

2d−1, ∗ = 0,

Z2d−1, ∗ = 1
and

K∗ (C(∂ Fd)⋉ Fd)
∼=

¨

Z

d , ∗ = 0,

Z

d ⊕Z/(d − 1)Z, ∗ = 1.

The K-homology groups of (C(∂ Fd)⋉Fd)
U(1) are computed via Proposition 3.4.1.

The expression for K∗(C(∂ Fd) ⋊ Fd) can either be derived from the Pimsner-
Voiculescu sequence of Theorem 3.3.1 or found in [26, Example 33]. The role of
the gauge cycle in the Pimsner-Voiculescu sequence in this case is non-trivial.
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3.4.4. A Cuntz-Krieger algebra such that the gauge cycle surjects. To construct
a Cuntz-Krieger algebra such that the Kasparov product with the gauge cycle
[E c , Dc]⊗− : K∗(FA)→ K∗(OA) surjects, we consider the 2d × 2d-matrix:

Ad :=





























0 1 1 1 · · · 1 1

1 0 1 1 · · ·
...

...

1 1 0 1 · · ·
...

...

1 1 1 0 · · ·
...

...
...

...
. . .

1 1 · · · 0 1

1 1 1 · · · 1 0





























.

Proposition 3.4.8. It holds that

K∗
�

FAd

�

∼=

¨

Z

2d−1, ∗ = 0,

Z2d−1, ∗ = 1
and

K∗
�

OAd

�

∼=

¨

0, ∗ = 0,

(Z/2Z)2(d−1) ⊕Z/4(d − 1)Z, ∗ = 1.

The proof of Proposition 3.4.8 follows from Proposition 3.4.1 and Theorem
3.3.1 after a lengthier exercise in linear algebra.

Remark 3.4.9. Writing out the Pimsner-Voiculescu sequence of Theorem 3.3.1
using the computations of Proposition 3.4.8 we arrive at a commuting diagram
whose rows are exact:

0 −−−−−→ K0(FAd
) −−−−−→ K0(FAd

)
[Ec ,Dc ]⊗
−−−−−→ K1(FAd

) −−−−−→


















0 −−−−−→ Z

2d−1 −−−−−→ Z

2d−1 −−−−−→ (Z/2Z)2(d−1) ⊕Z/4(d − 1)Z −−−−−→

−−−−−→ K1(FAd
) −−−−−→ K1(FAd

) −−−−−→ 0












−−−−−→ Z2d−1 −−−−−→ Z2d−1 −−−−−→ 0

.

Since the 2d−1-adic numbers Z2d−1 is a torsion-free group, it follows that the
mapping K1(OAd

)→ K1(FAd
) vanishes. We conclude that the Kasparov product

with the gauge class in fact surjects onto the K-homology of the Cuntz-Krieger
algebra OAd

.

4. An even spectral triple on the algebra C(ΩA)

In [5], a family of even spectral triples were defined for boundaries of trees.
While the space of finite words VA is a tree and ΩA is its boundary, even spectral
triples for C(ΩA) can be obtained in this way. We will in this section recall
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the construction of [5] and prove that the spectral triples obtained in this
way pair non-degenerately with many elements in K0(C(ΩA)). They encode
geometric, measure-theoretic and dynamical data (see [5, 66]), and have the
interesting property that the class 2[1OAT

] ∈ K0(OAT ) obstructs the extension

of these spectral triples to OA (see Proposition 4.2.7). We also interpret these
spectral triples as secondary invariants for the triviality of the restriction of
the extension class dual to 2[1OAT

] ∈ K0(OAT ) to C(ΩA) (see Remark 4.2.10). In
the next section we will consider generalized unbounded Fredholm modules for
OA constructed through the unbounded Kasparov product, using the present
spectral triples as the base.

4.1. The Bellissard-Pearson spectral triples. The considerations in
[5] allows one to define a spectral triple on the boundary of a tree by means of
interior properties of the tree. In our situation the tree is VA and its boundary
is ΩA. The key geometric idea, that transfers geometry on the interior to that
on the boundary, is that of a choice function.

Definition 4.1.1 (Choice functions on finite words). Let t, t′ : VA→ ΩA denote
functions. We say that the pair τ = (t, t′) is comparable if there is a constant
C > 0 such that τ satisfies that

dΩA
(t(µ), t′(µ)) ≤ Cdiam(Cµ).

If the inequality is an equality with C = 1 for all µ, we say that τ is strictly
comparable. A comparable pair of functions satisfying the cylinder condition,
see Definition 1.1.2, is called a weak choice function. If the comparison is strict
we say τ is a choice function.

If t and t′ satisfy the cylinder condition, then τ = (t, t′) is comparable with
C = 1. For a function t : VA → ΩA, we let πt : C(ΩA) → B(ℓ

2(VA)) denote
the composition of the pullback homomorphism t∗ : C(ΩA)→ Cb(VA) with the
representation given by pointwise multiplication Cb(VA)→ B(ℓ

2(VA)). Compare
to Proposition 1.1.3 if t satisfies the cylinder condition.

Definition 4.1.2 (The Bellissard-Pearson spectral triple [5]). Let τ =
(τ+,τ−) : VA→ ΩA×ΩA be a comparable pair. The associated even Bellissard-
Pearson spectral triple BPexp(τ) := (πτ,ℓ2(VA,C2), DBP

V ) consists of

(1) The Hilbert space ℓ2(VA,C2) graded by the decomposition

ℓ2(VA,C2) = ℓ2(VA)⊕ ℓ
2(VA).

(2) The even representation πτ : C(ΩA)→ B(ℓ
2(VA,C2)) given by

πτ := πτ+ ⊕πτ− .

(3) The self-adjoint operator DBP
V defined on its core Cc(VA,C2) by

DBP
V

�

ϕ+
ϕ−

�

(µ) := diam(Cµ)
−1 ·

�

ϕ−(µ)

ϕ+(µ)

�

= e|µ|
�

ϕ−(µ)

ϕ+(µ)

�

.
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For s ∈ (0,1], we also define the logarithmic family of Bellissard-Pearson spec-
tral triples

BPs(τ) := (πτ,ℓ
2(V ,C2), DV ,s),

where the operator DV ,s is defined on its core Cc(VA,C2) by the expression

DV ,s

�

ϕ+
ϕ−

�

(µ) :=
�

− log diam(Cµ)
�s
·

�

ϕ−(µ)

ϕ+(µ)

�

= |µ|s
�

ϕ−(µ)

ϕ+(µ)

�

.

Remark 4.1.3. The construction of spectral triples in [5] was only carried out
for choice functions and the logarithmic version was not considered. The results
in [5] regarding these spectral triples were concerned with metric and measure-
theoretic properties. The motivation to lax the conditions on τ stems from the
wish to obtain a larger variety of K-homology classes that pair non-degenerately
with “many” K-theory elements. The introduction of the logarithmic version
of the spectral triple is a matter we return to throughout the section and
Subsection 6.2.

Proposition 4.1.4. The logarithmic and the ordinary even Bellissard-Pearson
spectral triples of a comparable pair τ = (τ+,τ−) form even unbounded Fred-
holm modules. For s ≥ 1

2 , BPs(τ) is θ -summable, whereas BPexp(τ) is finitely

summable. If the image of τ is dense6 the Bellissard-Pearson spectral triples
indeed form spectral triples.

Proof. It was proven in [5, Proposition 8] that (πτ,ℓ2(VA,C2), DBP
V ) is a well

defined unbounded Fredholm module. The operator DBP
V admits bounded

commutators with elements of the algebra Lip(ΩA, dΩA
) consisting of functions

f : ΩA → C that are Lipschitz in the metric on ΩA defined in (1.3). From the
estimate

‖[DV ,s ,πτ( f )]‖B(ℓ2(VA,C2)) = sup
µ∈VA

|µ|s








��

0 1

1 0

�

,

�

f (τ+(µ)) 0

0 f (τ−(µ))

��








M2(C)

≤ sup
µ∈VA

e|µ|








��

0 1

1 0

�

,

�

f (τ+(µ)) 0

0 f (τ−(µ))

��








M2(C)

= ‖[DBP
VA

,πτ( f )]‖B(ℓ2(VA,C2)),

it follows that the same holds for BPs(τ). Since diam(Cµ) = e−|µ|, it follows that

(4.27) Tr(e−t D2
V ,s) = 2

∑

µ∈VA

e−t |µ|2s

= 2

∞
∑

k=0

∑

|µ|=k

e−tk2s

= 2

∞
∑

k=0

ϕ(k)e−tk2s

.

By Corollary 1.1.6, the operator e−t D2
V ,s is trace class if s ≥ 1

2
and t > δA. �

Remark 4.1.5. For s = 1
2
the trace (4.27) equals the Poincaré series from The-

orem 1.1.5. After introducing a power in the metric defined in Equation (1.3)
and in the expression defining DBP

V , one can obtain arbitrarily low degree of fi-
nite summability. Further, if there are constants C , p > 0 such that ϕ(k) ≤ Ckp

for all k, then BPs(τ) is also finitely summable. This holds for instance for

6E.g. when τ satisfies the cylinder condition.
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SUq(2) by (1.18). This is possible only when there is an isolated point in ΩA as
the following proposition shows.

Proposition 4.1.6. If the matrix A satisfies condition (I), there are C ,ǫ > 0

such that

ϕ(k)≥ Ceǫk.

Remark 4.1.7. For any point x ∈ ΩA, let ωx : C(ΩA)→ C denote point evalu-
ation in x . Let [x] ∈ K0(C(ΩA)) denote the K-homology class associated with
ωx . Formally, we may realize the K-homology class that the Bellissard-Pearson
spectral triple defines as the formal difference of the sum of all [x], where x

ranges over τ+(VA), and the sum of all [x], where x ranges over τ−(VA).
This observation can be made sense of in a more rigorous way. For µ ∈ VA,
the difference [τ+(µ)] − [τ−(µ)] ∈ K0(C(ΩA)) can be represented by the even
unbounded Fredholm module

Sµ,s =

�

ωτ+(µ) ⊕ωτ−(µ),C
2,

�

0 |µ|s

|µ|s 0

��

.

The direct sum

⊕

µ∈VA

Sµ,s =

�

⊕

µ∈VA

ωτ+(µ) ⊕ωτ−(µ),
⊕

µ∈VA

C

2,
⊕

µ∈VA

�

0 |µ|s

|µ|s 0

�
�

= BPs(τ)

is well defined once making suitable closures and choices of domains.

4.2. Obstructions to extending to Cuntz-Krieger algebras. Our
motivation for introducing the logarithmic version of the Bellissard-Pearson
spectral triple is that it extends to a slightly larger algebra related to the
Cuntz-Krieger algebra, but not equal to it. The deficiency between that alge-
bra and the Cuntz-Krieger algebra comes from an obstruction in K0(OAT ) (see
Proposition 4.2.6 and 4.2.7).
We let Vσ ∈ B(ℓ

2(VA)) be defined by

Vσ f (v) =

¨

f (σV (v)) if v 6= ◦A

0, if v = ◦A.
.

A direct computation gives the identity

V ∗
σ

Vσ = S,

where S f (x) = |σ−1
V {x}| f (x). We will henceforth apply the convention that

σ−1
V (σV (◦A)) = ;.

Assume that t : VA → ΩA is function satisfying the cylinder condition (see
Definition 1.1.2). We define the operators si,t ∈ B(ℓ

2(VA)) for i = 1, . . . , n by

(4.28) si,t := πt(χCi
)Vσ.

We also let P◦A
: ℓ2(VA) → ℓ2(VA) denote the orthogonal projection onto the

space spanned by δ◦A
.
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Lemma 4.2.1. Let t : VA → ΩA be a function satisfying the cylinder condition.
The operators si,t are partial isometries satisfying the relations

(4.29) s∗
i,t
sk,t = δi,k

N
∑

j=1

Ai js j,ts
∗
j,t
+ P◦A

,

for any i and k.

Proof. If i 6= j, χCi
χC j
= 0 and it follows that

s∗
i,t
s j,t = V ∗

σ
πt(χCi

χC j
)Vσ = 0.

Given f ∈ ℓ2(VA), we have that

s js
∗
j
f (µ) = πt(χC j

)VσV ∗σπt(χC j
) f (µ) =

=
∑

ν∈σ−1
V (σV (µ))

χC j
(t(µ))χC j

(t(ν)) f (ν) =

¨

χC j
(t(µ)) f (µ), if µ 6= ◦A,

0 if µ= ◦A.

We conclude that (si,t)
N
i=1

forms a collection of partial isometries with orthog-
onal ranges. On the other hand,

s∗
i,t
si,t f (µ) = V ∗σπt(χCi

) f (σV (µ)) =
∑

ν∈σ−1
V (µ)

χCi
(t(ν)) f (σV (ν)) =

=
∑

ν∈σ−1
V (µ),t(ν)∈Ci

f (µ) =

N
∑

j=1

Ai jχC j
(t(µ)) f (µ),

since the word ν = iµ ∈ σ−1(µ) is admissible only when Aiµ1
6= 0. Rewriting

this, we obtain the identity

(4.30) si,ts
∗
i,t
=

¨

πt(χCi
)− P◦A

, if t(◦A) ∈ Ci ,

πt(χCi
), if t(◦A) /∈ Ci .

Since there is only one i for which t(◦A) ∈ Ci , Equation (4.29) holds true. �

Remark 4.2.2. There is a geometric consequence of Lemma 4.2.1 for GA. Later
we will prove that for any function t satisfying the cylinder condition, the linear
mapping Si 7→ si,t can not be compactly perturbed to a ∗-homomorphism OA→
B(ℓ2(VA)) if [1] 6= 0 in the K-theory group K0(OAT ), this is related to Kaminker-
Putnam’s Poincaré duality K∗(OA)

∼= K∗+1(OAT ). See more in Remark 2.1.5,
Proposition 4.2.6 and Proposition 4.2.7. In particular, it proves it impossible
for a function t : VA→ ΩA satisfying the cylinder condition to be viewed as the
moment map of a GA-action on the finite words VA since if that was the case,
it would extend to a ∗-homomorphism OA

∼= C∗(GA)→ B(ℓ
2(VA)) extending the

C(ΩA)-representation coming from t.

In order to understand the role of the operators (si,t)
N
i=1

, we need to relate them
to a similar set of operators appearing above in Subsection 2.1, cf. [39].

Proposition 4.2.3. If t satisfies the cylinder condition, it holds that LA
i
= si,t.
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Proof. For any finite word µ ∈ VA,

si,tδµ =
∑

ν∈σ−1
V (µ)

χCi
(t(ν))δν = δiµ,

since the cylinder condition (see Definition 1.1.2) guarantees that ν = iµ is the
unique word in σ−1

V (µ) such that χCi
(t(ν)) 6= 0. �

The computations of Lemma 4.2.1 can also be seen from Proposition 4.2.3 and
[39, Proposition 4.2].

Remark 4.2.4. A consequence of Proposition 4.2.3 is that the operators si,t do
not depend on the choice of t. This does not contradict computations such as
that in Equation (4.30) since this computation merely expresses a cancellation
occurring in ◦A. We conclude the following Proposition.

Proposition 4.2.5. The C∗-algebra

EBP := C∗(si,t|i = 1, . . . , n)) ⊆ B(ℓ2(VA)),

contains K(ℓ2(VA)) and t∗C(ΩA) for any function t : VA → ΩA satisfying the
cylinder condition.

We note that if ẼBP is the C∗-subalgebra ẼBP ⊆ EK P generated by the LA
i
, then

EBP is the image of ẼBP in B(ℓ2(VA)). If OA is simple, EBP
∼= ẼBP . By arguments

similar to those in Subsection 2.1, ẼBP/K(ℓ
2(VA))

∼= OA. We can conclude the
following Proposition from Remark 2.1.5.

Proposition 4.2.6. The extension ẼBP represents the image of [1OAT
] ∈ K0(OAT )

under the isomorphism K0(OAT )→ K1(OA) of Theorem 2.1.1.

For any pair of functions τ = (τ+,τ−) satisfying the cylinder condition, we set
si := si,τ+

⊕ si,τ−
. It follows from Proposition 4.2.6 that if the element [1OAT

] ∈
K0(OAT ) is 2-torsion, the K-homological obstruction to lifting the mapping

Si 7→ si mod K ∈ C (ℓ2(VA,C2))

to a ∗-homomorphism OA → B(ℓ
2(VA,C2)), vanishes. In a similar fashion, we

conclude the following.

Proposition 4.2.7. Assume that k is such that k[1OAT
] 6= 0. For functions

t1, . . . , tk : VA→ ΩA satisfying the cylinder condition,

⊕k
j=1
πt j

: C(ΩA)→ B(ℓ
2(VA,Ck)),

does not extend to a representation of OA and neither does any compact pertur-
bation of it.

Remark 4.2.8. If K0(FA) = 0, it follows from Theorem 3.3.1 that K1(OA) →
K1(FA) is injective. This happens for instance for the algebra ON as we saw
above in Remark 3.4.3. In this particular case, the obstruction mentioned in
Proposition 4.2.7 to lifting the representation of C(ΩA) in the Bellissard-Pearson
spectral triples remains for FA.
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Proposition 4.2.9. If t : VA→ ΩA is a function satisfying the cylinder condi-
tion, the representation πt of C(ΩA) satisfies that

q ◦πt = βA|C(ΩA)
,

and hence [βA]|C(ΩA)
= 0 in K1(C(ΩA)).

Remark 4.2.10. An interesting interpretation of this Proposition is that the
Bellissard-Pearson spectral triples should be thought of as an invariant for the
choice of two multiplicative liftings of βA|C(ΩA)

, i.e. a secondary invariant for
the homological triviality of the Toeplitz extension EBP restricted to C(ΩA).

Proposition 4.2.11. For i = 1, . . . , N , the operator si := si,τ+
⊕ si,τ−

and its
adjoint

(1) preserve Cc(VA,C2);
(2) admit bounded commutators with DV ,s;

(3) there is a sequence ( fk) ⊆ Cc(VA,C2) such that ‖ fk‖ = 1 but
‖[DBP

V , si] fk‖ →∞.

Proof. Property (1) is clear from the definition si := si,τ+
⊕ si,τ−

and Equation
(4.28). To prove (2), we note that Proposition 4.2.3 implies that

[DV ,s, si]

�

δµ
δν

�

=

�

(|iν|s − |ν|s)δiν

(|iµ|s − |µ|s)δiµ

�

.

Since µ 7→ − log diam(Cµ) = |µ| grows linearly in |µ|, µ 7→ |iµ|s−|µ|s is a bounded
function for 0< s ≤ 1. Hence [DV ,s, si] is bounded.
Concerning (3), it follows from Proposition 4.2.3 that

[DBP
V , si]

�

δµ
δν

�

=

��

diam(Ciν)
−1 − diam(Cν)

−1
�

δiν
�

diam(Ciµ)
−1 − diam(Cµ)

−1
�

δiµ

�

.

Take a sequence (µk)
∞
k=1
⊆ VA such that |µk| = k and iµk is admissible for all

k. Set fk := (δµk
, 0)T . It trivially holds that fk ∈ Cc(VA,C2) and that ‖ fk‖ = 1.

Since diam(Cµ) = e−|µ|, there is an ǫ > 0 for which

diam(Cµ)

diam(Ciµ)
> 1+ ǫ

We conclude that ‖[DBP
V , si] fk‖ ≥ ǫe

k →∞, as k→∞. �

As a consequence of Proposition 4.2.11, the operator DV ,s defines a spectral
triple on EBP (see Proposition 4.2.5) which is θ -summable for s ≥ 1/2. Yet an-
other consequence is that DBP

V does not define a spectral triple on EBP such that
si,t is in the Lipschitz algebra. In the light of Theorem 1.3.3 and Proposition
4.1.4 this result does not come as a surprise as in that case we would obtain
a finitely summable spectral triple on EBP . We do however note that there is
no obvious obstruction to finitely summable spectral triples on EBP since it is
not purely infinite. This fact follows from [6, Proposition V.2.2.23] and the
existence of the inclusion K(ℓ2(VA)) ⊆ EBP of Proposition 4.2.5.
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4.2.1. Dual of the unit for a free group. We end this subsection by a comparison
of various descriptions of the extension dual to [1OAT

] ∈ K0(OAT ) in the special
case of a free group. This example, described above in Subsection 3.4.3, falls
into the category of extensions studied by Emerson-Nica [28]. The extension
constructed in [28] is defined from the short exact sequence

0→ C0(Fd)⋊ Fd → C(Fd)⋊ Fd → C(∂ Fd)⋊ Fd → 0.

Using the isomorphism C0(Fd) ⋊ Fd
∼= K(ℓ2(Fd)) we obtain an extension EEN

whose class was proven in [28] to be dual to [1OA
] ∈ K0(OA). In [28] an ex-

plicit finitely summable analytic K-cycle representing this extension class was
prescribed. Recall the measure µA on ∂ Fd constructed as in Subsection 1.1.
Let PEN be the orthogonal projection onto the image of the isometric embed-
ding ℓ2(Fd)→ ℓ

2(Fd , L2(∂ Fd ,µA)) as constant functions on ∂ Fd . By [28, Theo-
rem 1.1] the class [EEN ] is represented by the finitely summable analytic cycle
(πFd

,ℓ2(Fd , L2(∂ Fd ,µA)), 2PEN −1), where πFd
is the crossed product representa-

tion associated with the covariant C(∂ Fd)-representation on ℓ2(Fd , L2(∂ Fd ,µA)).
One can check that this construction of PEN corresponds to the construction of
Q◦ in Remark 2.2.4 thus concluding the following Proposition.

Proposition 4.2.12. If A is the 2d × 2d-matrix from Subsection 3.4.3, the
following diagram with exact rows commute:

0 −−−−→ K(ℓ2(Fd)) −−−−→ EBP −−−−→ OA −−−−→ 0


















0 −−−−→ K(ℓ2(Fd)) −−−−→ EEN −−−−→ OA −−−−→ 0

Furthermore, under the unitary equivalence L2(OA,ϕA)
∼= ℓ2(Fd , L2(∂ Fd ,µA)) in-

duced by the isomorphism of groupoids GA
∼= ∂ Fd ⋊ Fd it holds that

(πA, L2(OA,ϕA), 2W◦W
∗
◦ − 1) = (πFd

,ℓ2(Fd , L2(∂ Fd ,µA)), 2PEN − 1)

Remark 4.2.13. For a general N×N -matrix A, there are several other equivalent
ways of constructing extensions equivalent to EBP in a geometric way from the
short exact sequence

0→ C0(VA)→ C
�

VA

�

→ C(ΩA)→ 0.

For instance, using crossed products by partial actions of the free group FN on
ΩA (see [29]) or a crossed product by the shift endomorphism (see [30]).

4.3. K-homology classes. We now turn to the study of the index theory of
the Bellissard-Pearson spectral triples. Whenever (π, H , D) is an unbounded
Fredholm module on a C∗-algebra A, we let [π, H , D] ∈ K∗(A) denote its K-
homology class, obtained via the bounded transform. Throughout this subsec-
tion, τ = (τ+,τ−) denotes a comparable pair of functions VA → ΩA. For most
of the section, τ will be a weak choice function.
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Lemma 4.3.1. For 0 < s ≤ 1, the bounded transforms of the logarithmic and
the ordinary even Bellissard-Pearson spectral triples coincide in K-homology:

[BPexp(τ)] = [BPs(τ)] ∈ K0(C(ΩA)).

Further, the class [BPs(τ)] ∈ K0(C(ΩA)) of a comparable pair τ can be repre-
sented by the analytic K-cycle

(4.31)
�

πτ,ℓ
2(VA,C2), F

�

, where F :=

�

0 1

1 0

�

.

For any p > 0 and weak choice function τ, this K-cycle is p-summable on the
dense ∗-subalgebra generated by cylinder functions inside C(ΩA).

Proof. It is clear that [BPexp(τ)] = [BPs(τ)]. That [BPs(τ)] ∈ K0(C(ΩA)) is
represented by the K-cycle (4.31) follows from that F = DBP

V |D
BP
V |
−1. To verify

the p-summability claim, take a finite word µ ∈ VA and consider the locally
constant function χCµ

∈ C(ΩA). For any ν,ν′ ∈ VA,

[F,πτ(χCµ
)]

�

δν
δν′

�

=





�

χCµ
(τ−(ν

′))−χCµ
(τ+(ν

′))
�

δν′

�

χCµ
(τ+(ν))−χCµ

(τ−(ν))
�

δν



 .

If both τ+ and τ− satisfies the cylinder condition, then

χCµ
(τ+(ν))−χCµ

(τ−(ν)) = 0 if |ν| ≥ |µ|.

The latter statement holds, because χCµ
(τ±(ν)) is non-zero if and only if τ±(ν) ∈

Cµ and whenever |ν| ≥ |µ| the cylinder condition and τ±(ν) ∈ Cµ implies that
there is a finite word λ with ν= µλ, hence τ+(ν) ∈ Cµ if and only if τ−(ν) ∈ Cµ.

It follows that [F,πτ(χCµ
)] is an operator of rank at most 2

∑

k<|µ|ϕ(k) and

hence p-summable for any p > 0. The linear span of the cylinder functions
{χCµ
|µ ∈ VA} forms a dense subalgebra of C(ΩA) and the Lemma follows. �

Lemma 4.3.1 gives us a description of the class [BP(τ)] by means of the quasi-
homomorphism (πτ+ ,πτ−), cf. [21]. To understand the index pairing of the
Bellissard-Pearson spectral triples with K-theory, we first recall a well known
computation of the K-theory of C(ΩA).

Lemma 4.3.2. The K-theory group K∗(C(ΩA)) is given by

K∗(C(ΩA)) =

¨

C(ΩA,Z), if ∗= 0,

0, if ∗ = 1.

Proof. We write C(ΩA) = lim
−→
Ck as in Proposition 1.1.1. Continuity of K-theory

under direct limits implies that

K∗(C(ΩA)) = lim
−→

K∗(Ck) =

¨

lim
−→

K0(Ck), if ∗ = 0,

0, if ∗ = 1.

=

¨

C(ΩA,Z), if ∗= 0,

0, if ∗ = 1.
.
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�

We say that a word µ ∈ VA is minimal if the following condition holds:
(4.32)

For any ν0,λ0 ∈ VA such that µ= ν0λ0, we have that Cµ 6= Cν0
.

Lemma 4.3.3. Let µ ∈ VA and let ν0 be the longest minimal word such that
µ = ν0λ0 for some λ0. Then there is a weak choice function τ= (τ+,τ−) such
that whenever ν,λ ∈ VA \ {◦A} are such that µ= νλ then

(1) τ+(ν) ∈ Cµ if and only if τ−(ν) ∈ Cµ for |λ| 6= |λ0|+ 1

(2) τ−(ν) /∈ Cµ and τ+(ν) ∈ Cµ if |λ|= |λ0|+ 1.

Proof. Let τ0 be any weak choice function. We will redefine τ0 on the set of
ν:s such that there exists a λ ∈ VA \ {◦A} with µ = νλ. Since Cµ = Cν0

we can
equally well assume µ= ν0 and |λ0|= 0.
Whenever µ= νλ, we divide into the four cases

A) |λ|> 1 and τ0
+
(ν) = τ0

−(ν).

B) |λ|= 1 and τ0
+
(ν) 6= τ0

−(ν).

C) |λ|> 1 and τ0
+
(ν) 6= τ0

−(ν).

D) |λ|= 1 and τ0
+
(ν) = τ0

−(ν).

If ν satisfies A), we do not alter τ0(v). If ν satisfies B), and τ+(ν) ∈ Cµ we do

not alter τ0(ν). If ν satisfies B), and τ−(ν) ∈ Cµ we redefine τ±(ν) := τ0
∓(ν). If

ν satisfies B) and τ0
+
(ν),τ0

−(ν) /∈ Cµ we do not alter τ0
−(ν) but define τ+(ν) :=

τ0
+
(µ) ∈ Cµ. If C) holds, then we set τ±(ν) := τ0

−(ν). If D) holds, then the

minimality assumption (4.32) guarantees that there is a finite word λ′ such
that |λ′| = |λ|, λ′ 6= λ and νλ′ is admissible. Define τ+(ν) := τ0

+
(µ) ∈ Cµ and

τ−(ν) := τ0
−(νλ

′) /∈ Cµ. The constructed τ satisfy the cylinder condition, hence
τ is a comparable pair. �

Our main result of this subsection indicates the topological importance of the
Bellissard-Pearson spectral triples.

Lemma 4.3.4. For any non-empty word µ ∈ VA \ {◦A} there is a weak choice
function τµ such that

〈[χCµ
], [BPs(τµ)]〉 = 1.

Proof. It suffices to prove the Lemma for finite words µ satisfying the min-
imality assumption (4.32). A straight forward index manipulation gives the
identities

〈[χCµ
], [BPs(τµ)]〉 = ind (τ∗

+
(χCµ
) : τ∗−(χCµ

)ℓ2(VA)→ τ
∗
+
(χCµ
)ℓ2(VA))

= ind (τ∗
+
(χCµ
),τ∗−(χCµ

)),
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where the last index denotes the relative index of the Fredholm pair of projec-
tions given by (τ∗

+
(χCµ
),τ∗−(χCµ

)). Using [3, Proposition 2.2], it follows that

〈[χCµ
], [BPs(τµ)]〉 = Trℓ2(VA)

�

τ∗
+
(χCµ
)−τ∗−(χCµ

)
�

=
∑

|ν|<|µ|

[χCµ
(τ+(ν))−χCµ

(τ−(ν))]

= #
�

ν
�

� τ+(ν) ∈ Cµ, τ−(ν) /∈ Cµ
	

(4.33)

−#
�

ν
�

� τ−(ν) ∈ Cµ, τ+(ν) /∈ Cµ
	

.

The Lemma follows from Equation (4.33) and Lemma 4.3.3. �

5. Unbounded (OA, C(ΩA))-cycles and the associated spectral

triples

In this section we will construct classes over the commutative base by combin-
ing the philosophies of Section 2 and Section 3. The advantage of using C(ΩA)

is that there are several well behaved K-homology classes, e.g. point evalua-
tions and Bellissard-Pearson spectral triples. We will use these to construct
unbounded Fredholm modules on Cuntz-Krieger algebras OA and prove that
such unbounded Fredholm modules exhaust K1(OA). For this purpose, point
evaluations suffices. We consider the products with Bellissard-Pearson spectral
triples in the next section. The reader unfamiliar with unbounded KK-theory
is referred to the references listed in the beginning of Section 3.

5.1. An unbounded (OA, C(ΩA))-cycle. We start this subsection with a
structure analysis for the Haar module EΩ

A
over the commutative algebra C(ΩA).

Consider the filtration of GA given by

(5.34) G k
A

:= {(x , n, y) ∈ GA : σk+n(x) = σk(y)},

which forms a filtration by subsets such that:

(1) Each set G k
A
is closed under under composition.

(2) Inversion is a filtered operation in the sense that if ξ = (x , n, y) ∈ G k
A
,

then ξ−1 ∈ G n+k
A

.

(3) The filtering respects the cocycle grading; G k
A
= ∪n∈ZG

k
n
where G k

n
:=

G k
A
∩ c−1

A
(n).

We can further decompose this filtration into a grading.

Lemma 5.1.1. The function

κ : GA→N

(x , n, y) 7→min{k : σk+n(x) = σk(y)},
(5.35)

is locally constant and hence continuous.
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Proof. Recall the definition of the basic open sets from (1.6). Let κ(x , n, y) = k

and take (U , n+ k, k, V ) with U := Cx1···xn+k
and V = Cy1···yk

. Since k is minimal,

it follows that xn+k 6= yk. Therefore it is clear that for any (x ′, n, y ′) ∈ (U , n+

k, k, V ), κ(x ′, n, y ′) = k. So κ is locally constant. �

Because κ is continuous, the sets κ−1(k) are clopen in GA. Therefore each G k
A

decomposes as a disjoint union

G k
A
=

k
⋃

i=0

κ−1(i),

compatible with the cocycle grading. Writing

X k
n

:= {(x , n, y) ∈ GA : κ(x , n, y) = k},

this gives decompositions

GA =
⋃

n∈Z

⋃

k∈N

X k
n

and Cc(GA) =
⊕

n∈Z

⊕

k∈N

Cc(X
k
n
),

where the former is a disjoint union and the latter is a decomposition into
C(ΩA)-submodules. For if f ∈ Cc(GA) and g ∈ C(ΩA), then

f ∗ g(x , n, y) = f (x , n, y)g(y),

so supp ( f ∗ g) ⊂ supp f . For n + k < 0, X k
n
= ; hence we use the convention

Cc(X
k
n
) = 0 if n + k < 0. After completion this gives a decomposition of the

Hilbert C∗-module EΩ
A
as

EΩ
A
=
⊕

n∈Z

⊕

k∈N

E k
n
.

We will now proceed to show that each E k
n
is a finitely generated projective

C(ΩA)-module. Define the sets

X (k)
n,µ

:= {(x , n, y) : κ(x , n, y) = k, x ∈ Cµ, |µ|= k+ n},

whose characteristic function we denote by χk
n,µ
∈ Cc(X

k
n
). We set

ϕλ(l) := #{µ ∈ VA : µλ ∈ VA, |µ|= l − |λ|}.

Recall the conditional expectation ρ : OA→ C(ΩA) defined in (1.8).

Lemma 5.1.2. For any finite word λ ∈ VA and n+ k ≥ |λ|, the column vectors

vn,k,λ :=
��

χk
n,µλ

�∗�

|µ|=n+k−|λ|
∈
�

Cc(X
k
n
)ϕλ(n+k)

�∗
⊆ Cc(X

n+k
−n
)ϕλ(n+k),

satisfy

v∗
n,k,λ

ρ(vn,k,λ ∗ f ) = χ(σn+k−|λ|)−1(Cλ)
∗ f ∀ f ∈ Cc(X

k
n
).

In particular, under the inclusion
�

Cc(X
k
n
)ϕ(n+k)

�∗
⊆ Hom∗

C(ΩA)
(E k

n
, C(ΩA)

ϕ(n+k)),

the following C(ΩA)-linear operators define isometries

vn,k := vn,k,◦ ∈ Hom∗
C(ΩA)

(E k
n
, C(ΩA)

ϕ(n+k)).
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Proof. We must show that for f ∈ Cc(X
k
n
)

∑

|µ|=k+n−|λ|

χk
n,µλ
∗ρ

��

χk
n,µλ

�∗
∗ f
�

= χ(σn+k−|λ|)−1(Cλ)
∗ f .

First, for arbitrary µ, we compute

ρ
��

χk
n,µ

�∗
∗ f
�

(x , 0, x) =
∑�

χk
n,µ

�∗
(x ,ℓ, z) f (z,−ℓ, x)

= Aµn+k ,xk+1
δk,κ(µσk(x),n,x) f (µσ

k(x), n, x),

and subsequently

χk
n,µ
∗ρ

��

χk
n,µ

�∗
∗ f
�

(x , m, y) =
∑

χk
n,µ
(x ,ℓ, z)ρ

��

χk
n,µ

�∗
∗ f
�

(z, m− ℓ, y)

=
∑

χk
n,µ
(x , m, y)

��

χk
n,µ

�∗
∗ f
�

(y, 0, y)

= χk
n,µ
(x , m, y)Aµn+k ,yk+1

δk,κ(µσk(y),n,y) f (µσ
k(y), n, y)

= χk
n,µ
(x , m, y) f (x , m, y).

Therefore, we have

∑

|µ|=n+k−|λ|

χk
n,µλ
∗ρ

��

χk
n,µλ

�∗
∗ f
�

(x , m, y) =
∑

|µ|=n+k−|λ|

χk
n,µλ
(x , m, y) f (x , m, y)

= χ(σn+k−|λ|)−1(Cλ)
(x) f (x , m, y)

= (χ(σn+k−|λ|)−1(Cλ)
∗ f )(x , m, y).

�

Proposition 5.1.3. The Haar module EΩ
A

is the direct sum of the finitely

generated projective C(ΩA)-modules E k
n
.

Proof. It is clear from Lemma 5.1.2 that the image of the isometries vn,k equals

the range of the projections pn,k = vn,kv∗
n,k
. Hence, E k

n
∼= pn,kC(ΩA)

ϕ(k+n) are

finitely generated projective C(ΩA)-modules. The Proposition follows from the
fact that EΩ

A
=
⊕

n∈Z

⊕

k∈NE k
n
. �

Define an operator Dκ : Cc(GA)→ Cc(GA) via pointwise multiplication Dκ f (ξ) :=

κ(ξ) f (ξ).

Proposition 5.1.4. The operator Dκ is essentially selfadjoint and regular in
EΩ

A
. Moreover, it commutes up to bounded operators with the generators Si .

Proof. The operator Dκ is obviously symmetric. Moreover Dκ ± i maps the
submodule Cc(G

k
A
) surjectively onto itself, and the union

⋃

k Cc(G
k
A
) is dense in

EΩ
A
. Therefore Dκ± i have dense range, and the closure of Dκ is selfadjoint and

regular in EΩ
A
. That Dκ commutes up to bounded operators with the operators
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Si follows by direct computation:

[Dκ,Si]g(x , n, y)

=
∑

κ(x , n, y)Si(x ,ℓ, z)g(z, n − ℓ, y)− Si(x ,ℓ, z)(κg)(z, n − ℓ, y)

=
∑

(κ(x , n, y)− κ(z, n− ℓ, y))Si(x ,ℓ, z)g(z, n − ℓ, y)

= (κ(x , n, y)− κ(σ(x), n− 1, y))χCi
(x)g(σ(x), n − 1, y)

= Si p−g(x , n, y),

where p− denotes the projection onto ⊕k∈NE k
−k
, because

κ(x , n, y) =

¨

κ(σ(x), n− 1, y), when n+ κ(x , n, y) > 0,

κ(σ(x), n− 1, y)− 1, when n+ κ(x , n, y) = 0.

�

The generator of the gauge action Dc , extends to a selfadjoint regular operator
on EΩ

A
. However, instead of a naive combination of the operators Dc and Dκ, we

need to assemble the two with a little more care in order to construct unbounded
Kasparov modules that will eventually allow us to obtain nontrivial unbounded
Fredholm modules on OA. We define the subset

Yλ := {(x , n, y) ∈ G 0
A

: |λ| ≤ n and σn−|λ|(x) = λy}.

We note that Y◦A
= G 0

A
and cA|Yλ ≥ |λ|. We let pλ ∈ End∗

C(ΩA)
(EΩ

A
) denote the

projection given by pointwise multiplication by the characteristic function of
Yλ. We write E0

n,λ
for the completion of the submodule Cc(Yλ∩ c−1

A
(n)), and E⊥0

n,λ

for the completion of Cc(G
0
A
\ Yλ ∩ c−1

A
(n)). Recall the notation Vλ = {µλ ∈ VA}.

Proposition 5.1.5. The projection pλ projects onto the closed C(ΩA)-
submodule of EΩ

A
generated by {Sµ|µ ∈ Vλ}, and can be written as pλ f =

∑∞
n=0

v∗
n,0,λ

ρ(vn,0,λ ∗ f ). In particular, for any finite word λ, the Haar module

EΩ
A
decomposes as a direct sum of finitely generated projective C(ΩA)-modules

(5.36) EΩ
A
=

∞
⊕

n=0

E0
n,λ
⊕
∞
⊕

n=0

E⊥0
n,λ
⊕
∞
⊕

k=1

⊕

n≥−k

E k
n
.

Proof. It suffices to prove that pλSµλ = Sµλ and that pλSµS∗
ν
= 0 if and only if

µ 6= µ0ν for all µ0 ∈ Vλ. Since Sµλ is defined from the characteristic function of
the set

{(x , |µ|+ |λ|, y) ∈ GA|x ∈ Cµλ, σ|µ|+|λ|(x) = y},

it follows that pλSµλ = Sµλ. The element SµS∗ν is defined from the characteristic
function of the set

{(x , |µ| − |ν|, y) ∈ GA : x ∈ Cµ, y ∈ Cν, σ
|µ|(x) = σ|ν|(y)}.
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The proposition follows from the fact that pλSµS∗
ν
is the characteristic function

of the set
�

(x ,|µ| − |ν|, y) ∈ GA : x ∈ Cµ, y ∈ Cν, |λ|+ |ν| ≤ |µ|,

σ|µ|(x) = σ|ν|(y),σ|µ|−|ν|−|λ|(x) = λy
	

=











;, if µ 6= µ0ν ∀µ0 ∈ Vλ

{(x , |µ| − |ν|, y) ∈ GA|x ∈ Cµ, y ∈ Cν, σ
|µ|(x) = σ|ν|(y)},

if for some µ0 ∈ Vλ, µ= µ0ν.

The factorization and decomposition statements now follow directly from
Lemma 5.1.2. �

Recall that κ|G k
A
= k ∈ {0,1,2, . . .} and that cA|G k

A
+ k ≥ 0. Now consider the

function ψλ : GA→ Z given by

(5.37) ψλ(x , n, y) =







n when (x , n, y) ∈ Yλ

−n when (x , n, y) ∈ G 0
A
\ Yλ

−|n| − κ(x , n, y) when (x , n, y) ∈ GA \ G
0
A

,

.

The function ψλ is clearly locally constant and continuous. Define an operator
Dλ : Cc(GA) → Cc(GA) by pointwise multiplication by ψλ, i.e. Dλ f (x , n, y) =

ψλ(x , n, y) f (x , n, y). We wish to show that Dλ has bounded commutators with
the generators Si . We compute

[Dλ,Si] f (x , n, y) = (ψλ(x , n, y)−ψλ(σ(x), n − 1, y))χCi
(x) f (σ(x), n − 1, y)

= (ψλ(x , n, y)−ψλ(σ(x), n − 1, y))(Si f )(x , n, y).(5.38)

Lemma 5.1.6. The function aλ(x , n, y) :=ψλ(x , n, y)−ψλ(σ(x), n−1, y) satis-
fies the estimate |aλ(x , n, y)| ≤max(2,2|λ|−1) for any (x , n, y) ∈ GA and belongs
to Cb(GA). More precisely,

aλ(x , n, y) =












(2|λ| − 1) χYλ∩{cA=|λ|}
+χYλ∩{cA>|λ|}

−χG 0
>0\Yλ

+2χG≤0∩{cA+κ=0} −χG>0\G 0 +χG≤0∩{cA+κ>0}, |λ|> 0,

χG 0 +2χG<0∩{cA+κ=0} −χG>0\G 0 +χG≤0∩{cA+κ>0}, λ= ◦A.

Proof. We prove the Lemma by dividing into cases. Assume first that λ is
non-empty. Consider the following statements involving (x , n, y) ∈ GA:

a. (x , n, y) ∈ Yλ;
b. (x , n, y) ∈ G 0 \ Yλ;
c. (x , n, y) ∈ G \ G 0;
α. (σ(x), n− 1, y) ∈ Yλ;
β . (σ(x), n− 1, y) ∈ G 0 \ Yλ;
γ. (σ(x), n− 1, y) ∈ G \G 0.
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We start by excluding the cases that do not occur:

(a and γ) cannot hold simultaneously, for this would be the case if and only if
n= 0 and (x , n, y) ∈ Yλ which is not possible for n≥ |λ|> 0.

(b and α) can not hold simultaneously, because b implies n > 0 in which case
α implies a.

(c and α or β) can not hold simultaneously, because c. implies n < 0 or n ≥ 0

and σn(x) 6= y while α. or β . implies n> 0 and σn(x) = y .

We thus have five cases to consider:

(a and α) This holds if and only if n > |λ| and (x , n, y) ∈ Yλ. In this case,
aλ(x , n, y) = 1. The contribution from a. and α. is therefore χYλ∩{cA>|λ|}

.

(a and β) This holds if and only if n = |λ| > 0 and (x , n, y) ∈ Yλ. In this case,
aλ(x , n, y) = 2|λ| − 1, and this contributes (2|λ| − 1)χYλ∩{cA=|λ|}

if |λ|> 0.

(b and β) This holds if and only if (x , n, y) ∈ G 0 \ Yλ and n > 0 in which case
aλ(x , n, y) = −1. As such, the contribution to aλ is −χG 0

>0\Yλ
.

(b and γ) This holds if and only if n = 0 and (x , n, y) ∈ G 0 \ Yλ and if this is
the case, aλ(x , n, y) = 2. Thus, b. and γ contribute 2χG 0

0 \Yλ
= 2χG 0

0
to aλ.

(c and γ) This case can be divided into four sub cases:

(1) n> 0 and σn(x) 6= y ;
(2) n= 0 and x 6= y ;
(3) n< 0 and n+ κ(x , n, y) = 0;
(4) n< 0 and n+ κ(x , n, y) > 0.

In the first case aλ(x , n, y) = −1, contributing −χG>0\G 0 to aλ. In the second
case, aλ(x , n, y) = 1, contributing χG0\G

0
0
to aλ. In the third case aλ(x , n, y) = 2,

contributing 2χG<0∩{cA+κ=0} to aλ. In the fourth case aλ(x , n, y) = 1, contribut-
ing χG<0∩{cA+κ>0} to aλ. The total contribution from the case c. is therefore
−χG>0\G 0 + χG≤0∩{cA+κ>0} + 2χG<0∩{cA+κ=0}.

We only sketch the case when λ is the empty word. If λ is the empty word, the
case-by-case analysis is similar but without the cases b. and β . The conditions
a. and α hold if and only if a. holds and n > 0, contributing χG 0

>0
. Further,

a. and γ hold if and only if a. holds and n = 0, contributing χG 0
0
. So the

contributions from the case a. is exactly χG 0 . If c. holds, then γ follows
contributing in the same fashion as above the terms −χG>0\G 0 +χG≤0∩{cA+κ>0} +

2χG<0∩{cA+κ=0}. �
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Theorem 5.1.7. The operator (EΩ
A

, Dλ) is an odd unbounded KK-cycle for
(OA, C(ΩA)), which defines the same class as the (OA, C(ΩA))-Kasparov module
(EΩ

A
, 2pλ − 1) does.

Proof. The operator Dλ is C(ΩA)-linear by construction. The operators Dλ± i :

Cc(GA) → Cc(GA) are bijective since Dλ is defined via multiplication by a real
valued function. Thus, Dλ extends to a selfadjoint regular operator in the
module EΩ

A
. To prove that Dλ has compact resolvent, we observe that the

restriction of D2
λ
to E k

n
acts as multiplication by (|n|+k)2 , so since E k

n
is finitely

generated and projective, the resolvent (1+ D2
λ
)−1 is compact.

It remains to show that Dλ has bounded commutators with the generators Si .
This fact follows from Equation (5.38) and Lemma 5.1.6. Since ψλ is positive
exactly on Yλ, the class of this unbounded cycle coincides with that of pλ using
Proposition 5.1.5. �

Remark 5.1.8. It is also possible to construct even classes over C(ΩA) from cA

and κ. On the direct sum EΩ
A
⊕EΩ

A
, consider the OA representation determined

by Si 7→ Si ⊕ Si and the unbounded symmetric operator

Dev :=

�

0 Dc + iDκ
Dc − iDκ 0

�

.

The pair (EΩ
A
⊕EΩ

A
, Dev) defines a cycle for KK0(OA, C(ΩA)).

5.1.1. The operator D◦A
on the free group. Let us consider the construction of

Theorem 5.1.7 in the example of the free group, recalled above in Subsection
3.4.3. The reader can verify that the function ϕ∗κ : ∂ Fd ⋊ Fd →N, where ϕ de-
notes the groupoid isomorphism implementing the isomorphism of Proposition
3.4.6, is given by

ϕ∗κ(x ,γ) = ℓ(x ,γ).

In particular, for the empty word λ = ◦A, it holds that

ϕ∗ψ(x ,γ) =







|γ| when ℓ(x ,γ) = 0

−||γ| − 2ℓ(x ,γ)| − ℓ(x ,γ) when ℓ(x ,γ) > 0.

5.1.2. Quick computation for SUq(2). Recall the construction from Subsubsec-
tion 1.4.1.

Proposition 5.1.9. If τ = (τ+,τ−) : VSUq(2)
→ ΩSUq(2)

× ΩSUq(2)
is a weak

choice function such that τ+(◦A) ∈ C2 and τ−(◦A) ∈ C1, then the class
[EΩ

SUq(2)
, D2]⊗C(ΩSUq (2)

) [BP(τ)] generates K1(C(SUq(2))).

We use the identification VSUq(2)
∼=N×N given by the mapping that maps (k, l)

to the word 1 · · ·12 · · ·2 of k 1:s and l 2:s.

Proof. It is well-known (see more in Equation (3.26)), that K1(C(SUq(2)))
∼=

Z

∼= K1(C(SUq(2))). Hence, the Universal Coefficient Theorem for KK-theory
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implies that the index pairing

K1(C(SUq(2)))⊗ K1(C(SUq(2)))→ Z

is non-degenerate and in fact an isomorphism. Thus, it suffices to construct
a unitary u ∈ C(SUq(2)) such that the class x := [u] ⊗C(SUq(2))

[EΩ
SUq(2)

, D2] ∈

K0(C(ΩSUq (2)
)) satisfies that x ⊗C(ΩSUq (2)

) [BP(τ)] = −1.

Consider the unitary u := S2 + 1 − S2S∗
2
= S2 + S1S∗

1
. We set T := p2up2 ∈

End∗
C(ΩSUq (2)

)
(p2EΩ

SUq(2)
), so x = ind C(ΩSUq (2)

)(T ). It holds that p2EΩ
SUq(2)

is gener-

ated over C(ΩSUq (2)
) by the elements {S(k,l) : l > 0}. A direct computation gives

that

TS(k,l) =

¨

S(k,l), k > 0,

S(0,l+1), k = 0,
and T ∗S(k,l) =







S(k,l), k > 0,

S(0,l−1), k = 0, l > 1,

0, k = l − 1= 0.

It follows that ker T = 0 and ker T ∗ = S2C(ΩSUq (2)
) ∼= χC2

C(ΩSUq (2)
). Hence

x = ind C(ΩSUq (2)
)(T ) = −[χC2

]. It follows that x ⊗C(ΩSUq (2)
) [BP(τ)] = −1 from the

computation (4.33).
�

5.2. Restricting to a fiber. In this subsection we will exhaust all the odd
K-homology classes of OA by the unbounded Fredholm modules that are restric-
tions of the unbounded (OA, C(ΩA))-cycles (E

Ω

A
, Dλ) of Theorem 5.1.7 to “fibers”

over points in ΩA. Whenever ω is a character on C(ΩA), we say that ω starts
in j if the word that ω corresponds to starts in j, i.e. ω(χCkµ

) = δk, jω(χCkµ
)

for any µ ∈ VA. Before formulating the precise result on these unbounded Fred-
holm modules, we need a lemma whose notation will come in handy. Recall
the notation Vλ = {µλ ∈ VA}.

Lemma 5.2.1. For any character ω starting in j, there is a partial isometry ιω :

ℓ2(VA)→ EΩ
A
⊗ω C such that the source projection is the orthogonal projection

onto Cδ◦A
⊕
⊕

A(k, j) 6=0 ℓ
2(Vk) and

ιω(δµ) =

¨

1OA
⊗ω 1

C

, if µ= ◦A,

Sµ ⊗ω 1
C

, if µ ∈ VA \ {◦A}.

Proof. The identity ιω(δµ) = Sµ ⊗ω 1 and ιω(δ◦A
) = 1OA

⊗ω 1
C

determines a

linear mapping Cc(VA) → EΩ
A
⊗ω C. Let Pk := RA

k
(RA

k
)∗ denote the orthogonal

projection onto ℓ2(Vk). Since 1OA
⊗ω 1

C

is a unit vector in EΩ
A
⊗ωC, it suffices

to prove that for arbitrary µ,ν ∈ VA, with µ= µ0k, it holds that

(5.39) 〈ιωδµ, ιωδν〉EΩA ⊗ωC = 〈
∑

A( j,k) 6=0

Pkδµ,δν〉 =

¨

δµ,ν, if A(k, j) 6= 0,

0, otherwise.
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Let µ= µ0k. A direct computation shows that

〈ιωδµ, ιωδν〉EΩA ⊗ωC =ω(S
∗
µ
Sν) = δµ,νω(S

∗
k
Sk)

= δµ,ν

N
∑

i=1

Akiω(SiS
∗
i
) =

¨

δµ,ν, if A(k, j) 6= 0,

0, otherwise.

�

Remark 5.2.2. Already on an algebraic level,

ιω(δµk) = Sµk ⊗ω 1= SµkS∗
k
Sk ⊗ω 1=

N
∑

l=1

Akl SµkSlS
∗
l
⊗ω 1

=

N
∑

l=1

Akl Sµk ⊗ω ω(χCl
) = Ak jSµk ⊗ω 1.

Let λ ∈ VA be a finite word, if λ is non-empty we let λℓ denote the last letter
of λ. We define the partial isometry Wλ,ω : ℓ2(Vλ)→ EΩ

A
⊗ωC by

Wλ,ω := ιω|ℓ2(Vλ)
.

By Lemma 5.2.1 it holds that Wλ,ω is an isometry if λ is non-empty and
A(λℓ, j) = 1. If λ is non-empty and A(λℓ, j) = 0, then Wλ,ω is a partial isome-
try of rank 1 with source projection being the one-dimensional space Cδ◦A

. If
λ = ◦A, the partial isometry Wλ,ω is precisely ιω.

We let πΩ
A

: OA→ End∗
C(ΩA)

(EΩ
A
) denote the left OA-action. Let Pω ∈K(E

Ω

A
⊗ωC)

denote the orthogonal projection onto the one-dimensional space

ker Dλ ⊗ω 1=Cιω(δ◦A
) =C1OA

⊗ω 1
C

.

These identities follow from the definition of ψλ, see Definition 5.37.

Theorem 5.2.3. Let ω : C(ΩA)→ C be a character starting in j. For a finite
word λ ∈ VA, the unbounded Fredholm module

(5.40) ω∗(E
Ω

A
, Dλ) = (π

Ω

A
⊗ω id

C

, EΩ
A
⊗ωC, Dλ ⊗ω 1),

is θ -summable. If ϕ(l) ≤ Cl p for some C , p > 0, then ω∗(E
Ω

A
, Dλ) is L

p+1,∞-
summable. Furthermore, it holds that the phase of the unbounded Fredholm
module (5.40) coincides with the finitely summable analytic K-cycle:

(πΩ
A
⊗ω id

C

, EΩ
A
⊗ωC, 2Wλ,ωW ∗

λ,ω
± Pω − 1),

where the sign is + is λ 6= ◦A and the sign is − if λ = ◦A. On the level of
K-homology, it holds that
(5.41)

ω∗[E
Ω

A
, Dλ] =

(

[β j], λ= ◦A,

A(λℓ, j)[βλ1
], λ= λ1 · · ·λℓ ∈ VA \ {◦A}

in K1(OA).

Documenta Mathematica 20 (2015) 89–170



148 M. Goffeng and B. Mesland

Remark 5.2.4. In fact, it follows from Lemma 5.2.1 that if λ is non-empty and
A(λℓ, j) = 0 then 2Wλ,ωW ∗

λ,ω
+ Pω − 1 = Pω − 1. Hence, the computations of

Theorem 5.2.3 imply that the phase of the unbounded Fredholm module (5.40)
is modulo Pω a degenerate cycle, as such it is K-homologically trivial in a very
strong sense.

Recall the notation βk from Proposition 2.2.5. We wish to remark7 that since
(EΩ

A
, Dλ) is an unbounded KK-cycle, functoriality of unbounded KK-cycles guar-

antees that ω∗(E
Ω

A
, Dλ) is an unbounded Fredholm module. As such, the proof

consists of proving θ -summability and identifying its bounded transform. We
structure the proof of the later in a Proposition.

Proposition 5.2.5. Let ω be a character on C(ΩA), λ ∈ VA and define K λ
ω
as

the closed linear span of {Sµ⊗ω1|µ = µ0λ} ⊆ EΩ
A
⊗ωC. It holds that the positive

spectral projection of Dλ ⊗ω 1 is the orthogonal projection onto (1 − Pω)K
λ
ω
⊆

EΩ
A
⊗ω C. In particular, if ω starts in j and A(λℓ, j) = 0, where λℓ is the last

letter of λ, then K λ
ω
= 0.

The proof of the first part of Proposition 5.2.5 is clear from Proposition 5.1.5
and the proof of Theorem 5.1.7. The second part follows from the first part
and Lemma 5.2.1 (cf. Remark 5.2.2).

Proof of Theorem 5.2.3. It follows from Proposition 5.2.5 and Lemma 5.2.1
that if λ is non-empty, the projection onto the positive spectrum of Dλ ⊗ω 1

coincides with Wλ,ωW ∗
λ,ω

. If λ is empty, the projection onto the non-negative

spectrum of D◦ ⊗ω 1 coincides with W◦,ωW ∗
◦,ω. In our convention, declaring

|Dλ ⊗ω 1|−1 to be 0 on ker Dλ ⊗ω 1, it holds that

Dλ ⊗ω 1

|Dλ ⊗ω 1|
=







2Wλ,ωW ∗
λ,ω
+ Pω − 1, if λ 6= ◦A

2W◦,ωW ∗
◦,ω − Pω − 1, if λ = ◦A

.

Hence, if λ is non-empty and A(λℓ, j) = 0, Equation (5.41) follows. To prove
Equation (5.41) for a non-empty λ with A(λℓ, j) = 1, we apply the ideas of
Subsection 2.2 after computing

W ∗
λ,ω
[(πA⊗ω id

C

)(Si)]Wλ,ω = LA
i
|ℓ2(Vλ)

, i = 1, . . . , N .

The identity (5.41) and finite summability follows mutatis mutandis to the
proof of Proposition 2.2.5 using the fact that ℓ2(Vλ) = RA

λ̄
(RA

λ̄
)∗ℓ2(VA) and in

the K-theory of OAT it holds that

Tλ̄T ∗
λ̄
∼ T ∗

λ̄
Tλ̄ = T ∗λ1

Tλ1
∼ Tλ1

T ∗λ1
.

If λ = ◦A, it follows from Proposition 5.2.1 that

W ∗
◦,ω [(πA⊗ω id

C

)(Si)]W◦,ω =W ∗
◦,ωW◦,ωLA

i
|
Cδ◦A⊕

⊕

A(k, j) 6=0 ℓ
2(Vk)

, i = 1, . . . , N .

7For the sake of mental peace of the reader.
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Hence W ∗
◦,ω [(πA⊗ω id

C

)(Si)]W◦,ω − LA
i
|⊕

A(k, j) 6=0 ℓ
2(Vk)

is of finite rank. An argu-

ment similar to that in Subsection 2.2 shows that

�

πΩ
A
⊗ω id

C

, EΩ
A
⊗ωC, 2W◦,ωW ∗

◦,ω − Pω − 1
�

=

N
∑

l=1

A(l, j)[βl ] = [β j]

It remains to prove θ -summability, i.e. that e−(Dλ⊗ω1)2 is trace class. Applying
the computations of Proposition 5.1.3 and the definition of Dλ, we have that

EΩ
A
⊗ωC =

⊕

n∈Z

⊕

l∈N
l+n≥0

ω(pn,l)C
ϕ(l+n)

and in this decomposition

(Dλ ⊗ω 1)2 =
⊕

n∈Z

⊕

l∈N
l+n≥0

(|n|+ l)2ω(pn,l ).

It follows from Corollary 1.1.6 that e−(Dλ⊗ω1)2 is trace class. Assuming that
ϕ(l) ≤ Cl p for some p implies that |Dλ⊗ω1|−1 ∈ L p+1,∞(EΩ

A
⊗ωC); in this case,

ω∗(E
Ω

A
, Dλ) is a L

p+1,∞-summable unbounded Fredholm module. �

Remark 5.2.6. In particular, Theorem 5.2.3 implies that for a choice of char-
acters ω1,ω2, . . . ,ωN such that each ωk starts in a letter k, the mapping

Z

N → K1(OA), (l1, l2, . . . , lN ) 7→
N
∑

k=1

lk

�

(ωk)∗(E
Ω

A
, D◦)

�

is surjective.

This gives an explicit proof of the fact that the Kasparov product

KK1(OA, C(ΩA))⊗ K0(C(ΩA))→ K1(OA) is surjective.

Remark 5.2.7. If the matrix A is irreducible or has property (I), Theorem 1.3.3
implies that the unbounded Fredholm modules ω∗(E

Ω

A
, Dλ) in fact are spectral

triples on OA.

6. Kasparov products with the Bellissard-Pearson spectral triples

The point localizations of the previous section form a simple case of the Kas-
parov product in KK-theory. We will describe the Kasparov products of the
(OA, C(ΩA))-cycles with the Bellissard-Pearson spectral triples, via the operator
space approach to connections [9, 38, 52]. It turns out that, by naively applying
these techniques, we obtain a 1−s-unbounded Fredholm module (see the appen-
dix) from any cycle (EΩ

A
, Dλ), with λ a finite word, and any Bellissard-Pearson

spectral triple (πτ,ℓ2(VA,C2), DV ,s) for s ∈ (0,1). The case s = 1 is excluded as
the theory of ǫ-unbounded Fredholm modules breaks down at ǫ = 0. First, we
will briefly recall the techniques developed in [9].

Definition 6.0.1. Let (π, H , D) be a unbounded Fredholm module. Its Lips-
chitz algebra is as in Definition 2 (see page 91) defined to be the ∗-algebra

(6.42) AD = Lip(π, H , D) := {a ∈ A : [D, a] ∈ B(H )}.
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This algebra is the maximal subalgebra of A such that [D, a] is bounded for
any a. The algebra AD can be topologized by the representation

π̃D := id⊕πD :AD→ A⊕B(H ⊕H )

where πD : a 7→

�

π(a) 0

[D,π(a)] π(a)

�

,

realizing AD as a closed subalgebra of A⊕B(H ⊕H ). As such it is an operator
algebra. The reader can consult [8] for an exposition of the general theory of
nonselfadjoint operator algebras. The involution in A induces an involution in
AD, which is well behaved with respect to the representation πD. Indeed,

πD(a
∗) = v∗πD(a)

∗v, where v =

�

0 −1

1 0

�

,

which implies that the involution is completely isometric for the norm induced
by π̃D. Operator algebras equipped with a completely bounded involution are
called involutive operator algebras [9, 52] and operator ∗-algebras in [38]. The
main feature of involutive operator algebras is that there is a class of modules
over them, which in many ways behave like Hilbert C∗-modules. We recall the
theory for Lipschitz algebras.

Definition 6.0.2 ([38, 52]). Let AD be a unital Lipschitz algebra. The stan-
dard free module over AD is the module

HA :=

¨

(ai)i∈Z ∈
∏

i∈Z

AD :
∑

i∈Z

π̃D(ai)
∗π̃D(ai) <∞

«

.

The module HA carries an AD-valued inner product, but this inner product
does not define the norm. The algebra of adjointable operators End∗A (HA )
consists of those completely bounded operators T : HA → HA that admit
an adjoint with respect to the inner product. The existence of unbounded
projections in HA is due to the fact that norm and inner product are not
related in the same way as they are in Hilbert C∗-modules. A projection is a
closed densely defined operator satisfying p2 = p∗ = p. In [9, Definition 2.27], a
Lipschitz module over AD is defined to be a closed submodule E ⊂ HA which is
the range of a densely defined (possibly unbounded) projection p : Dom p→ HA
that decomposes as a direct sum p =

⊕

i∈I pi of projections pi ∈ End∗A (HA ) for
some countable set I . The algebra K(E ) is defined to be the cb-norm closure
of the AD-linear finite rank operators on E .

Proposition 6.0.3 ([9]). For each i ∈ Z, let pi ∈ Mni
(AD) be a projection and

Ei := pni
A

ni

D ⊂A
ni

D . Then the direct sum
⊕

i∈Z Ei is a Lipschitz module.

The main feature of Lipschitz modules is the existence of connections on them.
Recall that the space of 1-forms associated to (π, H , D) is

Ω
1
D

:=

¨

∑

i

π(ai)[D,π(bi)] : ai ∈ A, bi ∈AD

«

⊂ B(H ),
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where the sums converges in operator norm. The operator space Ω1
D
is a left

A-module and a rightAD-module. The map a 7→ [D, a] is a completely bounded
derivation AD→ Ω

1
D
. A D-connection on a Lipschitz module E is a completely

bounded map

∇ : E → E⊗̃AΩ
1
D
,

where ⊗̃ denotes the Haagerup module tensor product (see [8] for the general
construction and [52, Section 3.2] and the papers [9, 38] for its use in the
context of KK-theory), satisfying the Leibniz rule

∇(ea) =∇(e)a+ e⊗ [D, a],

for e ∈ E and a ∈ AD. By [9], connections on Lipschitz modules always exist,
since the Grassmann connection p[D, p] is completely bounded by construction.

6.1. A connection on the Haar module. We now employ the machinery
described above to construct a Lipschitz submodule EΩ

A
⊂ EΩ

A
for any given

logarithmic Bellissard-Pearson spectral triple BP(τ). By Proposition 6.0.3 it
suffices to show that the Haar module EΩ

A
is a direct sum of finitely generated

projective modules over C(ΩA), which is the content of Proposition 5.1.3. The
following lemma serves in making the associated Lipschitz structure explicit.

Lemma 6.1.1. Let (πτ,ℓ
2(VA,C2), DV ,s) be a logarithmic Bellissard-Pearson

spectral triple. The projections pn,k,λ := vn,k,λv∗
n,k,λ
∈ Mϕ(n+k)(C(ΩA)) are in fact

elements of Mϕ(n+k)(Lip(ΩA, dΩA
)), and therefore [DV ,s, pn,k,λ] ∈ B(ℓ

2(VA,C2)).

Proof. The projection vn,k,λv∗
n,k,λ
∈ Mϕ(n+k)(C(ΩA)) has entries

�

vn,k,λv∗
n,k,λ

�

µ,ν
= ρ

��

χk
n,µλ

�∗
χk

n,νλ

�

which equal 0 if µ 6= ν. For µ ∈ VA of length n+k the convolution product gives

�

χk
n,µ

�∗
χk

n,µ
(x) =

∑

χk
n,µ
(z, n, x) =

§

1 if Aµn+k ,xk+1
= 1 and µn+k 6= xk

0 otherwise

Thus, for k = 0, this function equals the projection

N
∑

i=1

Aµn,iχCi
,

whereas, for k > 0, we get

N
∑

j=1

∑

i 6=µn+k

Aµn+k ,i(σ
k−1)∗χCi j

.

Since these are sums of shifted cylinder functions, it is Lipschitz in the metric
dΩA

. It follows that the projection vn,k,λv∗
n,k,λ

is a matrix of functions that are

Lipschitz in the metric dΩA
. The proposition follows from Proposition 4.1.4. �
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In view of this fact, Proposition 5.1.3 and Lemma 6.1.1 imply that the module
E k

k
admits a submodule E n

k
with the structure of a projective operator module

over the involutive operator algebra

Lipτ,s(ΩA) := Lip(πτ,ℓ
2(VA,C2), DV ,s)

=

§

f ∈ C(ΩA) :

�

πτ( f ) 0

[DV ,s,πτ( f )] πτ( f )

�

∈ B(ℓ2(VA,C2)⊕ ℓ2(VA,C2))

ª

.

This uses the fact that Proposition 4.1.4 implies that there is a continuous
inclusion Lip(ΩA, dΩA

) ,→ Lipτ,s(ΩA) for any s ∈ (0,1]. Denote by EΩ
A
⊂ EΩ

A
the

submodule

EΩ
A

:=









f ∈ EΩ
A

:
∑

n,k,µ
|µ|=n+k

π̃D(ρ(χ
k∗
n,µ

f ))∗π̃D(ρ(χ
k∗
n,µ

f )) <∞









,

which is complete in the norm

(6.43) ‖ f ‖2
E :=











∑

n,k,µ

π̃D(ρ(χ
k∗
n,µ

f ))∗π̃D(ρ(χ
k∗
n,µ

f ))











C(ΩA)⊕B(ℓ2(V ,C4))

.

To reduce notation, we suppress the dependence on s in EΩ
A
in our notation. We

reduce notation further by setting Ω1
τ := Ω1

DV ,s
, which depends on τ through the

representation of C(ΩA). The norm in (6.43) is compatible with the projective
module decomposition (5.36). There is a connection

∇k
n

: E k
n
→ E k

n
⊗̃C(ΩA)

Ω
1
τ

f 7→ v∗
n,k
⊗ [DV ,s,ρ(vn,k ∗ f )],

whose direct sum extends to a connection

∇ : EΩ
A
→ EΩ

A
⊗̃C(ΩA)

Ω
1
τ.

Lemma 6.1.2. The module EΩ
A
is dense EΩ

A
and EΩ

A
is a Lipschitz module in the

norm (6.43). The operator Dλ restricts to a selfadjoint regular operator in EΩ
A
,

and (Dλ ± i)−1 ∈K(EΩ
A
). Moreover, [Dλ,∇] = 0.

Proof. To see that EΩ
A

is dense in EΩ
A
, observe that the finitely generated pro-

jective Lipτ,s(ΩA)-module

E k
n

:=
�

f ∈ E n
k

: vn,k f ∈ Lipτ,s(ΩA)
ϕ(n+k)

	

⊂ EΩ
A

,

is dense in E k
n
. The Lipτ,s(ΩA)-module EΩ

A
contains the algebraic direct sum of

the E k
n
as a dense submodule. Since the norm (6.43) comes from the embedding

v : EΩ
A
→
⊕

n,k,µ

Lipτ,s(ΩA)
ϕ(n+k) ∼=HLips

τ
(ΩA)

f 7→ (ρ(χk∗
n,µ f ))n,k,µ,
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EΩ
A

is a Lipschitz module. We now prove that the resolvents (Dλ ± i)−1 are
completely bounded for the Lipschitz norm. The Lipschitz norm is given by
(6.43), for f ∈ EΩ

A
we have

‖(Dλ ± i)−1 f ‖2
E =











∑

n,k,µ

π̃D(ρ(χ
k∗
n,µ
(Dλ ± i)−1 f ))∗π̃D(ρ(χ

k∗
n,µ
(Dλ ± i)−1 f ))











C(ΩA)⊕B(ℓ2(V ,C4))

,

and this norm identity is compatible with the projective module decomposition
(5.36). Thus (although Dλ depends on whether k = 0 or k > 0 and µ ∈ Vλ or
not) for fixed n, k, µ, we have

π̃D(ρ(χ
k∗
n,µ(Dλ ± i)−1 f ))∗π̃D(ρ(χ

k∗
n,µ(Dλ ± i)−1 f ))

≤ (1+ n2 + k2)−1π̃D(ρ(χ
k∗
n,µ f ))∗π̃D(ρ(χ

k∗
n,µ f )),

by definition of ψλ, see Equation (5.37). This shows that ‖(Dλ ± i)−1 f ‖2
E ≤

‖ f ‖2
E . The same computation shows that the resolvent (Dλ± i)−1 is completely

contractive. Moreover, they also show that the resolvents are cb-norm limits
of finite rank operators (see Proposition 5.1.5 and Lemma 6.1.1), and hence
(Dλ ± i)−1 ∈K(EΩ

A
). By construction, the connection satisfies [∇, Dλ] = 0. �

The operator 1⊗∇ DV ,s acts on elementary tensors e⊗ (ϕ+,ϕ−)
T ∈ EΩ

A
⊗

al g

Lipτ,s(ΩA)

Cc(VA,C2) as

(1⊗∇ DV ,s)

�

e⊗

�

ϕ+
ϕ−

��

(v) =

∞
∑

k=0

∞
∑

n=−k

∑

|µ|=n+k

χk
n,µ
⊗

�

|v|sπ−(ρ(χ
k∗
n,µ

e))ϕ−
|v|sπ+(ρ(χ

k∗
n,µ

e))ϕ+

�

(v).

Theorem 6.1.3. For any logarithmic Bellissard-Pearson spectral triple with
grading operator γ and any finite word λ, the operator

Dλ,τ,s := Dλ ⊗ γ+ 1⊗∇ DV ,s,

is selfadjoint and has compact resolvent in H (τ) := EΩ
A
⊗C(ΩA)

ℓ2(VA,C2).

Proof. The unbounded KK-cycle (EΩ
A

, Dλ) admits the compatible Lipschitz

structure (EΩ
A

, Dλ,∇) (described above) associated with a Bellissard-Pearson

spectral triple (πτ,ℓ2(VA,C2), DV ,s). Therefore, the operator 1⊗∇ DV ,s is essen-

tially selfadjoint by [9, Theorem 2.30]. Since (Dλ ± i)−1 ∈K(EΩ
A
),

im(Dλ ⊗ γ± i)−1(1⊗∇ DV ,s ± i)−1 = im(1⊗∇ DV ,s ± i)−1(Dλ ⊗ γ± i)−1,

and Dλ ⊗ γ and 1 ⊗∇ DV ,s anticommute on this subspace by the proof of [9,
Theorem 2.35]. From [9, Theorem 2.33], and the discussion in [9, Example
2.39], it follows that Dλ,τ,s is selfadjoint on the intersection of the domains of

Dλ ⊗ γ and 1 ⊗∇ DV ,s. The products of the resolvents (1 ⊗∇ DV ,s ± i)−1 and

(Dλ ⊗ γ ± i)−1 are compact by construction; hence by [52, Lemma 6.3.2], the
resolvent of the sum is compact as well. �

Remark 6.1.4. In this section and Theorem 6.1.3, contrary to the constructions
in [9, 38, 52], we have not discussed any left module structure for a dense sub-
algebra of OA on EΩ

A
. The existence of a left module structure as in [9, 38, 52]
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would imply that the product operator has bounded commutators with the
dense subalgebra of OA, and thus represents the Kasparov product of the un-
bounded modules involved. In view of not having a well behaved left module
structure, we cannot conclude bounded commutators with the left action of the
dense subalgebra of OA from Theorem 6.1.3. Due to the lack of bounded com-
mutators, we are required to use the broader setting of ǫ-unbounded Fredholm
modules in order to identify this operator as the Kasparov product.

6.2. A family of ǫ-unbounded Fredholm modules. We now proceed to
show that (H (τ), Dλ,τ,s) constitutes an ǫ-unbounded Fredholm module repre-
senting the Kasparov product

KK1(OA, C(ΩA))× K0(C(ΩA))→ K1(OA)

[Dλ]× [BPs(τ)] 7→ [Dλ]⊗C(ΩA)
[BPs(τ)].

The classes [Dλ] ∈ KK1(OA, C(ΩA)) are described in Subsection 5.1, and
[BPs(τ)] ∈ K0(C(ΩA)) = KK0(C(ΩA),C) are the classes associated with the log-
arithmic Bellissard-Pearson spectral triples, with s < 1, from Section 4. The
reader is referred to the appendix for the notion of ǫ-unbounded Fredholm
modules.

Lemma 6.2.1. Let k+ n> 0 and µ be a nonempty word starting in µ1. Then

(1) Siχ
k
n,µ
= Ai,µ1

χk
n+1,iµ

;

(2)
�

χk
n,µ

�∗
Si = δi,µ1

�

χk
n−1,σV (µ)

�∗
.

Proof. We compute

Siχ
k
n,µ(x , m, y) =

∑

Si(x ,ℓ, z)χk
n,µ(z, m− ℓ, y)

= χCi
(x)χk

n,µ
(σ(x), m− 1, y),

which is nonzero only if m = n + 1, x1 = i, σ(x) ∈ Cµ and κ(σ(x), n, y) = k.
This holds if and only if x ∈ Ciµ and κ(x , n+ 1, y) = k, proving 1.). For 2.) we
compute again

�

χk
n,µ

�∗
Si(x , m, y) =

∑�

χk
n,µ

�∗
(x ,ℓ, z)Si(z, m− ℓ, y)

=
∑

χk
n,µ
(z,−ℓ, x)Si (z, m− ℓ, y)

= Ai,y1
χk

n,µ
(i y, 1−m, x),

and this is nonzero only if m = −(n− 1), µ1 = i, y ∈ CσV (µ) and κ(i y, n, x) = k.
This holds only if κ(y, n− 1, x) = k, proving 2.) �

Lemma 6.2.2. Let k ≥ 0 and i = 1, . . . , N . Then

(1)
�

χk
−k,◦

�∗
Si = (χCi

◦σk) ∗
�

χk+1
−k−1,◦

�∗
;

(2) Siχ
k
−k,◦ = χ

k
−k+1,i

+χCi
∗χk−1
−k+1,◦;

(3) χCi
∗χk
−k,◦ = χ

k
−k,◦ ∗

�

χCi
◦σk

�

.
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Proof. For 1.) compute

�

χk
−k,◦

�∗
Si(x , m, y) =

∑�

χk
−k,◦

�∗
(x ,ℓ, z)Si(z, m− ℓ, y)

=
∑

χk
−k,◦(z,−ℓ, x)Si (z, m− ℓ, y)

= Ai y1
χk
−k,◦(i y, 1−m, x)

=

§

1 when m= k+ 1, Ai y1
= 1, κ(i y,−k, x) = k

0 otherwise

=

§

1 when m= k+ 1, Ai y1
= 1, κ(y,−(k + 1), x) = k+ 1, σk(x) ∈ Ci

0 otherwise

= χCi
(σk(x))χk+1

−k−1,◦(y,−m, x) = χCi
(σk(x))

�

χk+1
−k−1,◦

�∗
(x , m, y).

For 2.)

Siχ
k
−k,◦(x , m, y) =

∑

Si(x ,ℓ, z)χk
−k,◦(z, m− ℓ, y)

= δi,x1
χk
−k,◦(σ(x), m− 1, y)

=

§

1 when x ∈ Ci , m= −(k − 1), κ(σ(x),−k, y) = k

0 otherwise

=

§

1 when x ∈ Ci , m= −(k − 1), κ(x ,−(k − 1), y) ∈ {k, k− 1}
0 otherwise

= (χk
−(k−1),i

+χCi
∗ χk−1
−(k−1),◦)(x , m, y).

Also 3.) is verified by direct computation.

χCi
∗χk
−k,◦(x , m, y) = χCi

(x)χk
−k,◦(x , m, y)

=

§

1 when x ∈ Ci , m= −k, κ(x ,−k, y) = k

0 otherwise

=

§

1 when x ∈ Ci , m= −k, x = σk(y)

0 otherwise

=

§

1 when σk(y) ∈ Ci , m= −k, κ(x ,−k, y) = k

0 otherwise

= χk
−k,◦ ∗ (χCi

◦σk)(x , m, y).

�
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Proposition 6.2.3. Let (πτ,ℓ2(VA,C2), DV ,s) be a logarithmic Bellissard-
Pearson spectral triple. The operators Si preserve the algebraic tensor product

�

al g
⊕

n,k

E k
n

�

⊗
al g

C(ΩA)
Cc(VA,C2),

which is a core for Dλ⊗γ+1⊗∇DV ,s and [1⊗∇DV ,s,Si] is given on an elementary

tensor e⊗ (ϕ+ ϕ−)
T by the sum

�

1⊗∇ DV ,s,Si

�

e⊗

�

ϕ+
ϕ−

�

(6.44)

= −
∞
∑

k=0

χk
−k,◦ ⊗

�

DV ,s,πτ
�

χCi
◦σk

��

πτ

�

ρ(χ
(k+1)∗
−k−1,◦e)

�
�

ϕ+
ϕ−

�

.

The operator [DV ,s,πτ(χCi
◦σk)] on ℓ2(VA,C2) is given by multiplication by a

compactly supported matrix valued function on VA satisfying the estimate

(6.45)


[DV ,s,πτ(χCi
◦σk)]





B(ℓ2(VA,C2))
≤ ks.

Proof. Since Si(E
k
n
) ⊆ E k−1

n+1
⊕ E k

n+1
, the operator Si preserves the algebraic di-

rect sum of the E n
k
and hence a common core for Dλ ⊗ 1 and 1 ⊗∇ DV ,s. The

commutator [Si , 1⊗∇ DV ,s] is computed as

[Si , 1⊗∇ DV ,s]

�

e⊗

�

ϕ+

ϕ−

��

(v)(6.46)

=
∑

n,k,µ

Siχ
k
n,µ
⊗





|v|sπ−
�

ρ(χk∗
n,µe)

�

ϕ−

|v|sπ+
�

ρ(χk∗
n,µ

e)
�

ϕ+



 (v)

−χk
n,µ ⊗





|v|sπ−
�

ρ(χk∗
n,µ

Sie)
�

ϕ−

|v|sπ+
�

ρ(χk∗
n,µ

Sie)
�

ϕ+



 (v).
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This expression can by Lemma 6.2.1 (for n+ k > 0) and by Lemma 6.2.2 (for
n+ k = 0) be written as:

=
∑

n+k>0

Ai,µ1
χk

n+1,iµ ⊗





|v|sπ−
�

ρ(χk∗
n,µ

e)
�

ϕ−

|v|sπ+
�

ρ(χk∗
n,µ

e)
�

ϕ+



 (v)

−χk
n,µ
⊗





|v|sπ−
�

ρ(δi,µ1
χk∗

n−1,σ(µ)
e)
�

ϕ−

|v|sπ+
�

ρ(δi,µ1
χk∗

n−1,σ(µ)
)e)
�

ϕ+



 (v)

+

∞
∑

k=0

�

χk
−k+1,i

+χCi
∗χk−1
−k+1,◦)

�

⊗





|v|sπ−
�

ρ(χk∗
−k,◦e)

�

ϕ−

|v|sπ+
�

ρ(χk∗
−k,◦e)

�

ϕ+



 (v)

−
∞
∑

k=0

χk
−k,◦ ⊗





|v|sπ−
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦

e)
�

ϕ−

|v|sπ+
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ+



 (v)

We regroup these expressions as follows.

(6.47)
∑

n+k>0

Ai,µ1
χk

n+1,iµ ⊗





|v|sπ−
�

ρ(χk∗
n,µe)

�

ϕ−

|v|sπ+
�

ρ(χk∗
n,µ

e)
�

ϕ+



 (v)

(6.48) −χk
n,µ
⊗





|v|sπ−
�

ρ(δi,µ1
χk∗

n−1,σ(µ)
e)
�

ϕ−

|v|sπ+
�

ρ(δi,µ1
χk∗

n−1,σ(µ)
e)
�

ϕ+



 (v)

(6.49) +

∞
∑

k=0

χk
−k+1,i

⊗





|v|sπ−
�

ρ(χk∗
−k,◦e)

�

ϕ−

|v|sπ+
�

ρ(χk∗
−k,◦e)

�

ϕ+



 (v)

+

∞
∑

k=0

χCi
∗χk
−k,◦⊗





|v|sπ−
�

ρ(χ
(k+1)∗
−k−1,◦e)

�

ϕ−

|v|sπ+
�

ρ(χ
(k+1)∗
−k−1,◦e)

�

ϕ+



 (v)(6.50)

−χk
−k,◦ ⊗





|v|sπ−
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ−

|v|sπ+
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦

e)
�

ϕ+



 (v).

We claim that (6.47), (6.48) and (6.49) add up to 0. To see this, consider a
nonempty word µ with Aiµ1

= 1. Each nonzero term in (6.47) is cancelled by a
nonzero term in (6.48). All of (6.47) is cancelled in this way. What remains in
(6.48) are the terms with n+ k = |µ| = 1 and δi,µ1

= 1. The remaining terms
in (6.48) correspond to µ = i and n = −k + 1. These are exactly the terms
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occuring in (6.49), with the opposite sign. As such, the remainder of (6.48)
is cancelled by (6.49), as claimed, and the entire commutator in (6.46) equals
(6.50).
Subsequently, we handle (6.50) by exchanging π+ and π− at the expense of a
commutator to obtain

[Si , 1⊗∇ DV ,s]

�

e⊗

�

ϕ+

ϕ−

��

(v)

=

∞
∑

k=0

χCi
∗ χk
−k,◦ ⊗





|v|sπ+
�

ρ(χ
(k+1)∗
−k−1,◦e)

�

ϕ−

|v|sπ−
�

ρ(χ
(k+1)∗
−k−1,◦

e)
�

ϕ+



 (v)(6.51)

−
∞
∑

k=0

χk
−k,◦ ⊗





|v|sπ+
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ−

|v|sπ−
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ+



 (v)

+

∞
∑

k=0

χCi
∗ χk
−k,◦⊗

�

DV ,s,πτ

�

ρ(χ
(k+1)∗
−k−1,◦e)

��

�

ϕ+

ϕ−

�

(v)

(6.52)

−
∞
∑

k=0

χk
−k,◦ ⊗

�

DV ,s,πτ

�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

��

�

ϕ+

ϕ−

�

(v),

and to the term (6.51) we apply Lemma 6.2.2 3.) to obtain

∞
∑

k=0

χk
−k,◦(χCi

◦σk)⊗





|v|sπ+
�

ρ(χ
(k+1)∗
−k−1,◦

e)
�

ϕ−

|v|sπ−
�

ρ(χ
(k+1)∗
−k−1,◦e)

�

ϕ+



 (v)

−
∞
∑

k=0

χk
−k,◦ ⊗





|v|sπ+
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ−

|v|sπ−
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ+



 (v)

=

∞
∑

k=0

χk
−k,◦⊗





|v|sπ+
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦

e)
�

ϕ−

|v|sπ−
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ+



 (v)

−
∞
∑

k=0

χk
−k,◦ ⊗





|v|sπ+
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ−

|v|sπ−
�

ρ((χCi
◦σk)χ

(k+1)∗
−k−1,◦e)

�

ϕ+



 (v) = 0.

The remaining term (6.52) further simplifies to (6.44) using Lemma 6.2.2 3.)
once more.
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The commutator [DV ,s,πτ(χCi
◦ σk)] appearing in (6.44) vanishes whenever

|v| > k because in that case τ+(v)k+1 = vk+1 = τ−(v)k+1 hence χCi
(τ+(v)) =

χCi
(τ−(v)). Here the subscript k+1 indicates the (k+1)-st letter. The estimate

(6.45) follows readily from the same observation. �

Recall the notation H (τ) and Dλ,τ,s from Theorem 6.1.3.

Theorem 6.2.4. For s ∈ (0,1) the pair (H (τ), Dλ,τ,s) is a well defined
(1− s)-unbounded Fredholm module on OA that represents the Kasparov product
[E , Dλ]⊗C(ΩA)

[BPs(τ)].

Proof. The operator Dλ,τ,s = Dλ ⊗ γ + 1 ⊗∇ DV ,s is selfadjoint with compact
resolvent by Theorem 6.1.3. We will show that the operators

[1⊗∇ DV ,s,Si](1+ D2
λ,τ,s
)−

s
2 , (1+ D2

λ,τ,s
)−

s
2 [1⊗∇ DV ,s,Si]

are bounded. By Proposition 6.2.3, Si preserves a core for Dλ ⊗ γ+ 1⊗∇ DV ,s.

The operator 1 + D2
λ,τ,s

= 1+ D2
λ
⊗ 1 + (1 ⊗∇ DV ,s)

2 preserves subspaces of the

form E k
n
⊗Lipτ(ΩA)

Cc(VA,C2). From the form of (6.44), it follows that
(6.53)

(1+D2
λ,τ,s
)−

s
2 [1⊗∇ DV ,s,Si] : E k+1

−k−1
⊗Lipτ(ΩA)

Cc(VA,C2)→ E k
−k
⊗Lipτ(ΩA)

Cc(VA,C2).

We denote the restricted operator of Equation (6.53) by Ti,k. By Equation
(6.44) and the orthogonality of the decomposition of Proposition 5.1.5, it holds
that





(1+ D2
λ,τ,s
)−

s
2 [1⊗∇ DV ,s,Si]







B(H (τ))
≤ sup

k

‖Ti,k‖B(H (τ))

As such, it suffices to show that for any k and any finite sum
(6.54)

x =
∑

j

e j ⊗

�

ϕ
j
+

ϕ
j
−

�

=
∑

j

χk+1
−k−1,◦ ⊗πτ

�

ρ
�

(χk+1
−k−1,◦)

∗e j

��

�

ϕ
j
+

ϕ
j
−

�

∈ E k+1
−k−1
⊗Lipτ(ΩA)

Cc(VA,C2)

it holds that

‖Ti,k x‖H (τ) =





(1+ D2
λ,τ,s
)−

s
2 [1⊗∇ DV ,s,Si]x







H (τ)

=











∑

j

(1+ D2
λ,τ,s
)−

s
2χk
−k,◦ ⊗ [DV ,s,πτ(χCi

◦σk)]πτ(ρ(χ
(k+1)∗
−k−1,◦e j)

�

ϕ
j
+

ϕ
j
−

�










H (τ)

≤











∑

j

χk+1
−k−1,◦ ⊗πτ

�

ρ(χ
(k+1)∗
−k−1,◦e j)

�

�

ϕ
j
+

ϕ
j
−

�










H (τ)

= ‖x‖H (τ).

(6.55)

It is of computational importance to note that when writing

x = χk+1
−k−1,◦ ⊗ v, where v =

∑

j

πτ

�

ρ
�

(χk+1
−k−1,◦)

∗e j

��

�

ϕ
j
+

ϕ
j
−

�

,
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as in Equation (6.54), we have that

(6.56) ‖x‖2
H (τ)

=
¬

v,πτ

�

ρ((χk+1
−k−1,◦)

∗χk+1
−k−1,◦)

�

v
¶

ℓ2(VA,C2)
= ‖v‖2

ℓ2(VA,C2)
,

because ρ((χk+1
−k−1,◦)

∗χk+1
−k−1,◦) = 1 by Lemma 5.1.2. It follows from the construc-

tion of Dλ that Dλ⊗1 acts as multiplication by −2k on E k
−k
⊗Lipτ(ΩA)

Cc(VA,C2).
With this fact at hand, the verification of this estimate is a straightforward
computation using the inequality (6.45):

‖Ti,k x‖H (τ) =


(1+ D2
λ,τ,s)

− s
2 [1⊗∇ DV ,s, Si]x





H (τ)

=











∑

j

(1+ 4k2 + (1⊗∇ DV ,s)
2)−

s
2 χk
−k,◦ ⊗ [DV ,s ,πτ(χCi

◦σk)]πτ

�

ρ(χ
(k+1)∗
−k−1,◦

e j)
�

�

ϕ
j
+

ϕ
j
−

�










H (τ)

= ‖ (1+ 4k2 + (1⊗∇ DV ,s)
2)−

s
2

∑

j

χk
−k,◦ ⊗ [DV ,s,πτ(χCi

◦σk)]πτ

�

ρ(χ
(k+1)∗
−k−1,◦

e j)
�

�

ϕ
j
+

ϕ
j
−

�










H (τ)

≤ (1+ k2)−
s
2











∑

j

χk
−k,◦ ⊗ [DV ,s,πτ(χCi

◦σk)]πτ

�

ρ(χ
(k+1)∗
−k−1

e j

�

�

ϕ
j
+

ϕ
j
−

�










H (τ)

= (1+ k2)−
s
2











χk
−k,◦ ⊗ [DV ,s,πτ(χCi

◦σk)]
∑

j

πτ

�

ρ(χ
(k+1)∗
−k−1

e j

�

�

ϕ
j
+

ϕ
j
−

�










H (τ)

.

(6.57)

Using the identity (6.56), we arrive at

‖Ti,k x‖H (τ) ≤ (1+ k2)−
s
2











[DV ,s,πτ(χCi
◦σk)]

∑

j

�

ρ(χ
(k+1)∗
−k−1

e j

�

�

ϕ
j
+

ϕ
j
−

�










ℓ2(VA,C2)

≤ (1+ k2)−
s
2 ks











∑

j

πτ

�

ρ(χ
(k+1)∗
−k−1

e j

�

�

ϕ
j
+

ϕ
j
−

�










ℓ2(VA,C2)

≤











∑

j

πτ

�

ρ(χ
(k+1)∗
−k−1

e j

�

�

ϕ
j
+

ϕ
j
−

�










ℓ2(VA,C2)

=











∑

j

χk+1
−k−1,◦ ⊗πτ

�

ρ(χ
(k+1)∗
−k−1

e j

�

�

ϕ
j
+

ϕ
j
−

�










H (τ)

= ‖x‖H (τ).(6.58)

Hence (6.55) holds proving that
�

1+ (Dλ,τ,s)
2
�− s

2 [1 ⊗∇ DV ,s,Si] is bounded.
Boundedness of the reverse product follows from a similar computation, re-
versing the order in which the estimates (6.57) and (6.58) respectively, are
applied. Now Lemma A.8 implies that the commutators [D,Si] are ǫ-bounded.
Thus, by Proposition A.5, D has ǫ-bounded commutators with the ∗-subalgebra
of OA generated by the operators Si , which is dense in OA. Thus we have an
ǫ-unbounded Fredholm module with ǫ = 1− s. To see that this ǫ-unbounded
Fredholm module represents the Kasparov product one uses Theorem A.7 which
applies because the connection condition 1.), the domain condition 2.) and the
semiboundedness condition 3.) are satisfied by construction. �
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Remark 6.2.5. We remark once more that s = 1 is excluded from Theorem 6.2.4
because the theory of ǫ-unbounded Fredholm modules breaks down at ǫ = 0.

As the proof of Theorem 6.2.4 shows, the operators [1⊗∇ DV ,1,Si](1+D2
λ,τ,1
)−

1
2

and (1+ D2
λ,τ,1
)−

1
2 [1⊗∇ DV ,1,Si] are bounded, but it is unclear if the bounded

transform is well defined and represents the Kasparov product [E , Dλ] ⊗C(ΩA)

[BP1(τ)].

6.3. The rational K-homology class of the product. Lastly, we iden-
tify the rational K-homology class of the Kasparov products constructed in the
previous subsection. The identification is done via an index theoretic argument,
therefore it needs only to hold rationally.

Theorem 6.3.1. In K1(OA)⊗Q we have

[E , Dλ]⊗C(ΩA)
[BPs(τ)]⊗Q

=

¨

[β j+
]⊗Q− [β j−

]⊗Q, if λ= ◦A,

(A(λℓ, j+)− A(λℓ, j−))[βλ1
]⊗Q, if λ= λ1 · · ·λℓ ∈ VA \ {◦A},

where j± is the first letter of τ±(◦A).

Proof. The computation of the class [EΩ
A

, Dλ]⊗C(ΩA)
[BPs(τ)] in K1(OA)⊗Q relies

on the fact that OA is in the bootstrap class with finitely generated K-theory
and K-homology, so K1(OA) ⊗Q

∼= Hom
Z

(K1(OA),Q) and rational classes are
determined by their index pairing. Furthermore, using Remark 4.1.7, we write

H (τ) =
⊕

µ∈VA

EΩ
A
⊗ωτ+(µ)⊕ωτ−(µ) C

2 and Dλ,τ,s|Dλ,τ,s|
−1 =

⊕

µ∈VA

Fµ.

Since in each fixed summand EΩ
A
⊗ωτ+(µ)⊕ωτ− (µ) C

2 ⊆ H (τ), Dλ,τ,s is a bounded

perturbation of the operator Dλ ⊗ωτ+(µ)⊕ωτ−(µ) (1⊕−1), it follows from [12, Ap-

pendix A, Theorem 8], and an argument similar to the proof of Proposition
5.2.5, that for any µ

Fµ−(2pλ − 1)⊗ωτ+(µ)⊕ωτ− (µ) (1⊕−1) ∈K
�

EΩ
A
⊗ωτ+(µ)⊕ωτ− (µ) C

2
�

(6.59)

and ‖Fµ − (2pλ − 1)⊗ωτ+(µ)⊕ωτ−(µ) (1⊕−1)‖K(EΩA ⊗ωτ+(µ)⊕ωτ− (µ)C
2) ≤ 2+ |µ|s.

For any x ∈ K1(OA), represented by a unitary u, there is a finite set Fu ⊆ VA

such that

x ⊗OA
[EΩ

A
, Dλ]⊗C(ΩA)

[BPs(τ)] =
∑

µ∈Fu

x ⊗OA
[EΩ

A
, Dλ]⊗C(ΩA)

[Sµ]

=
∑

µ∈Fu

x ⊗ (ωτ+(µ) −ωτ−(µ))∗[E
Ω

A
, Dλ]

If such a finite set Fu does not exist, the index pairing x ⊗OA
[EΩ

A
, Dλ] ⊗C(ΩA)

[BPs(τ)] can not be well defined. The cylinder condition implies that for any
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nonempty word µ it holds that the first letter of τ+(µ) is the same as that of
τ−(µ). Hence

x ⊗OA
[EΩ

A
, Dλ]⊗C(ΩA)

[BPs(τ)] = x ⊗ (ωτ+(◦A)
−ωτ−(◦A)

)∗[E
Ω

A
, Dλ].

The theorem now follows from Theorem 5.2.3. �

Remark 6.3.2. It would be interesting to compute the integral class
[EΩ

A
, Dλ] ⊗C(ΩA)

[BPs(τ)] ∈ K1(OA) explicitly. It is to the authors unclear if
there is a deeper homological obstruction for Theorem 6.3.1 to hold over Z.
A direct K-homological proof, e.g. using partial isometries, would require a
deeper understanding of the Hilbert space H (τ). One might speculate that the
analytic difficulties arising in this problem are analogous to the limiting be-
haviour in the construction of the measure µA = w∗- lims↓δA

µs from Subsection
1.1.

Appendix A. ǫ-unbounded KK-cycles and the Kasparov product

We describe a weakening of the definition of an unbounded KK-cycle [4]. This
notion, and in particular Theorem A.6 below, originated from discussions of
the second author with A. Rennie. One of the key observations in the proof
of this theorem appears in [34, Lemma 51]. Related notions are anticipated in
the literature, (eg. [12, 48]) but to the authors’ knowledge, a concise exposition
as in this appendix has not appeared before. The main idea here is to relax
the requirement on the commutators [D, a] to be bounded by only asking for
ǫ-boundedness of these operators.

Definition A.1. Let B be a C∗-algebra and E be a B-Hilbert C∗-module. An
operator a ∈ End∗

B
(E) has ǫ-bounded commutators with the selfadjoint regular

operator D if

(1) aDomD ⊂DomD;

(2) [D, a](1+ D2)−
1−ǫ

2 and (1+ D2)−
1−ǫ

2 [D, a] extend to End∗
B
(E).

In short we say that [D, a] is ǫ-bounded. We write δ := ǫ
2 throughout this

section.

Remark A.0.1. Let us give a geometric example of ǫ-bounded commutators
to explain the appearance of the parameter ǫ > 0. Let D be a self-adjoint
elliptic pseudodifferential operator of order m > 0 acting on a vector bundle
E → M on a closed manifold M . The Hilbert space is H = L2(M , E). The
domain of D is the Sobolev space W m,2(M , E). If a ∈ C∞(M), then [D, a]

is a pseudodifferential operator of order m − 1. Hence (1 + D2)
1−m
2m [D, a] and

[D, a](1 + D2)
1−m
2m are pseudodifferential operators of order 0, thus bounded on

L2(M , E). We conclude that any a ∈ C∞(M) has 1/m-bounded commutators
with D. As such, one can consider the reciprocal ǫ−1 as an “order” of the
operator D appearing in an ǫ-bounded commutator.
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Definition A.2. Let A and B be C∗-algebras and ǫ > 0. An odd ǫ-KK-cycle
is a pair (E , D) where E is a C∗ − (A, B)−bimodule and D a selfadjoint regular
operator such that

(1) a(1+ D2)−
1
2 ∈K(E);

(2) the space

Lipǫ(E , D) := {a ∈ A : [D, a] is ǫ-bounded}

is dense in A.

If E is a Z/2Z-graded C∗ − (A, B)−bimodule8, and (E , D) is as above with D

anticommuting with the grading operator on E , we say that (E , D) is an even ǫ-
KK-cycle. If B =C, we call an odd/even ǫ-KK-cycle an odd/even ǫ-unbounded
Fredholm module and if the B-action is faithful, we call it an ǫ-spectral triple.

We remind the reader that in the context of graded C∗-algebras, it suffices to
consider even unbounded KK-cycles, because the odd group KK1(A, B) can be
naturally identified with the even group KK0(A, B ⊗C1), where C1 denotes the
first complex Clifford algebra. This is known as formal Bott periodicity (cf.
[36, 40, 41]). For this reason we will in this appendix formulate things mostly
for even KK-cycles.

Remark A.3. Although the definition of ǫ-boundedness allows for larger classes
of unbounded Fredholm modules, obstructions to finite summability remains.
The reader can check that the proof of [15, Theorem 8] implies the following
statement: if A is a C∗-algebra and (π, H , D) is an ǫ-unbounded Fredholm
module with (1+ D2)−1 ∈ L p(H ), for some p ∈ [1,∞), then there is a tracial
state on A.

An ǫ-cycle is an ǫ′-cycle for any ǫ′ ≤ ǫ. All of the proofs below rely on the
integral representation formula and the estimates in the following lemma.

Lemma A.4. Let D be a regular self-adjoint operator on a B-Hilbert C∗-module
E . For any 0< r < 1

(A.60) (1+ D2)−r =
sin(rπ)

π

∫ ∞

0

λ−r(1+ D2 + λ)−1dλ,

is a norm convergent integral. Moreover we have the estimates

‖(1+ D2 +λ)−s‖End∗B(E)
≤ (1+ λ)−s;

‖D(1+ D2 +λ)−
1
2 ‖End∗

B
(E) ≤ 1 and ‖D2(1+ D2 +λ)−1‖End∗

B
(E) ≤ 1.

The integral formula has been used in the Hilbert C∗-module context since the
work of Baaj-Julg [4]. A detailed treatment can be found in [12, Appendix A,
Remark 3]. The estimates can be found in [12, Appendix A, Remark 5].

Proposition A.5. If a, b ∈ Lipǫ(E , D) then a∗, ab ∈ Lipǫ(E , D). In particular
Lipǫ(E , D) is a ∗-algebra.

8In this appendix, ungraded C∗-algebras A and B will be equipped with the trivial gradings
whenever a grading on them is required.
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Proof. The statement a∗ ∈ Lipǫ(E , D) follows directly from the definition. For
the product of a and b, we write

[D, ab](1 + D2)−
1
2+δ = a[D, b](1+ D2)−

1
2+δ + [D, a]b(1+ D2)−

1
2+δ,

and observe that the first summand admits a bounded extension. For the
second summand we use the integral expression

[b, (1+ D2)−
1
2+δ]

=
sin ( 1

2
−δ)π

π

∫ ∞

0

λ−
1
2+δ(1+ D2 +λ)−1([b, D]D + D[D, b])(1 + D2 +λ)−1dλ.

Multiplying with [D, a] and estimating the relevant parts of the integral gives

‖[D, a]λ−
1
2+δ(1+ D2+λ)−1[b, D]D(1 + D2 +λ)−1‖

≤
Ca,δCb,ǫ

λ
1
2−δ

‖(1+ D2 +λ)−ǫ‖‖(1+ D2 +λ)−
1
2 ‖ ≤

Ca,ǫCb,ǫ

λ1+δ
,

and similarly

‖[D, a]λ−
1
2+δ(1+ D2 +λ)−1D[D, b](1+ D2 +λ)−1‖ ≤

Ca,ǫCb,ǫ

λ1+δ
.

Therefore, the integral converges in norm and [D, ab](1 + D2)−
1
2+δ admits a

bounded extension. The proof that (1 + D2)−
1
2+δ[D, ab] admits a bounded

extension is carried out analogously. �

We now come to the main result about ǫ-KK-cycles, concerning the bounded
transform and the relation to KK-theory.

Theorem A.6 (cf. [4]). The bounded transform (E , D(1+ D2)−
1
2 ) of an ǫ-KK-

cycle is an (A, B) Kasparov module and hence defines a class in KK∗(A, B).

We note that the proof of this Theorem is carried out analogously to the proof
of [34, Lemma 51].

Proof. The proof of the theorem relies on the integral formula (A.60) to show
that the commutators [F, a] are compact. The properties a(F − F∗), a(1− F2) ∈
K(E) hold trivially. Recall that δ := ǫ/2.
We have

[D(1+ D2)−
1
2 , a] = [D, a](1+ D2)−

1
2 + D[(1+ D2)−

1
2 , a].

The first term is compact because (1+D2)−δ is compact and [D, a](1+D2)−
1
2+δ

is bounded. For the second term, we expand

D[(1+ D2)−
1
2 , a] =

1

π

∫ ∞

0

λ−
1
2 D(1+ D2 +λ)−1[a, D]D(1+ D2 +λ)−1dλ

+
1

π

∫ ∞

0

λ−
1
2 D2(1+ D2 +λ)−1[a, D](1+ D2 +λ)−1dλ.

(A.61)
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Using the estimates from Lemma A.4 we find that

‖λ−
1
2 D(1+ D2 +λ)−1[a, D]D(1+ D2 +λ)−1‖ ≤

Ca,ǫ

2λ1+δ
,

and

‖λ−
1
2 D2(1+ D2 +λ)−1[a, D](1+ D2 +λ)−1‖ ≤

Ca,ǫ

λ1+δ
,

where Ca,ǫ := ‖[D, a](1 + D2)−
1
2+δ‖. We conclude that the integral formula

(A.61) converges in norm and the commutators are compact. �

Kucerovsky [45] gives sufficient conditions for a triple of even cycles to represent
a Kasparov product. As in the bounded case, to formulate this result, we need
the mappings

Tx ∈ End∗
C
(F , E ⊗B F ), Tx : f 7→ x ⊗B f ,

defined for x ∈ E . The adjoint of the operator Tx is given by

T ∗
x
∈ End∗

C
(E ⊗B F , F ), T ∗

x
: e⊗ f 7→ 〈x , e〉 f ,

Theorem A.7 (cf. [45]). Let (E ,S) be an even ǫ-unbounded (A, B)− KK-cycle,
(F , T ) an even ǫ-unbounded (B, C) − KK-cycle and (E ⊗B F , D) an even ǫ-
unbounded (A, C)− KK-cycle such that:

(1) for all x in a dense subspace of AE , the operator

��

D 0

0 T

�

,

�

0 Tx

T ∗
x

0

��
�

(1+ D2)−
1
2+δ 0

0 (1+ T 2)−
1
2+δ

�

,

defined on DomD ⊕Dom T , extends to an operator in End∗
B
(E⊗̃BF );

(2) DomD ⊂DomS ⊗ 1;
(3) there is λ ∈R such that 〈Dx ,S ⊗ 1x〉+ 〈S ⊗ 1x , Dx〉 ≥ −λ〈x , x〉.

Then (E ⊗B F , D) represents the Kasparov product of (E ,S) and (F , T ).

Proof. As in [45], conditions 2.) and 3.) imply the positivity condition for
the bounded transforms. The proof that condition 1.) implies the bounded
connection condition is the same as the proof that an ǫ-unbounded KK-cycle
gives a Fredholm module. �

Sufficient conditions for products in which one of the factors is an odd ǫ-
unbounded Fredholm module can be derived by formal Bott periodicity. We
refer to the relevant discussions in [9, 36, 38].
The following lemma describes a weakening of the domain preservation condi-
tion, and is useful in practice for proving ǫ-boundedness.

Lemma A.8. Suppose a maps a core for D into DomD and [D, a](1+ D2)−
1
2+δ

and (1+ D2)−
1
2+δ[D, a] extend to operators in End∗

B
(E). Then the commutator

[(1 + D2)−
1
2 , a] maps E into DomD. Consequently a preserves DomD and

[D, a](1+ D2)−
1
2+δand (1+ D2)−

1
2+δ[D, a] are bounded on DomD.
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Proof. Denote the core respected by a by X . By (A.60) and [12, Lemma 2.3]
and the discussion succeeding it, we can write

[a, (1+ D2)−
1
2 ] =

1

π

∫ ∞

0

λ−
1
2 (1+ D2 +λ)−1D[D, a](1+ D2 + λ)−1dλ

+
1

π

∫ ∞

0

λ−
1
2 (1+ D2 +λ)−1[D, a]D(1 + D2)−1dλ,

(A.62)

as a norm convergent integral on X . The integral expression (A.61) for D[(1+

D2)−
1
2 , a] converges in norm on X . Since X is a core, it is of the form (1 +

D2)−
1
2 Y for some dense Y ⊂ E . For a Cauchy sequence yn ∈ Y , with limit

e ∈ E , the integrals (A.60) and (A.62) converge in norm at yn − ym. Thus

[(1 + D2)−
1
2 , a]yn ∈ DomD is Cauchy for the graph norm and therefore [(1 +

D2)−
1
2 , a]e ∈DomD. From this it follows that for a sequence yn→ e we have

a(1+ D2)−
1
2 yn = [a, (1+ D2)−

1
2 ]yn + (1+ D2)−

1
2 a yn,

and thus a(1+ D2)−
1
2 e ∈DomD. �
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