
Analyzing the BBOB Results by Means
of Benchmarking Concepts

O. Mersmann olafm@statistik.tu-dortmund.de
Chair of Computational Statistics, TU Dortmund University, Germany

M. Preuss mike.preuss@uni-muenster.de
Chair of Information Systems and Statistics, University of Muenster, Germany

H. Trautmann trautmann@wi.uni-muenster.de
Chair of Information Systems and Statistics, University of Muenster, Germany

B. Bischl bischl@statistik.tu-dortmund.de
Chair of Computational Statistics, TU Dortmund University, Germany

C. Weihs weihs@statistik.tu-dortmund.de
Chair of Computational Statistics, TU Dortmund University, Germany

doi:10.1162/EVCO_a_00134

Abstract
We present methods to answer two basic questions that arise when benchmarking opti-
mization algorithms. The first one is: which algorithm is the “best” one? and the second
one is: which algorithm should I use for my real-world problem? Both are connected
and neither is easy to answer. We present a theoretical framework for designing and
analyzing the raw data of such benchmark experiments. This represents a first step in
answering the aforementioned questions. The 2009 and 2010 BBOB benchmark results
are analyzed by means of this framework and we derive insight regarding the answers
to the two questions. Furthermore, we discuss how to properly aggregate rankings
from algorithm evaluations on individual problems into a consensus, its theoretical
background and which common pitfalls should be avoided. Finally, we address the
grouping of test problems into sets with similar optimizer rankings and investigate
whether these are reflected by already proposed test problem characteristics, finding
that this is not always the case.

Keywords
Evolutionary optimization, benchmarking, exploratory landscape analysis, BBOB test
set, multidimensional scaling, consensus ranking.

1 Introduction

In the domain of stochastic optimization, the available theory is still too limited to pre-
dict the performance of different algorithms on more than the most simple objective
functions. Therefore, benchmarking plays a vital role in developing and comparing
these types of algorithms. The BBOB 2009 and 2010 (Hansen et al., 2009a, 2009b, and
follow-ups for Hansen et al. 2010) results provide the most sophisticated benchmark-
ing data currently available, and their specific strength lies in the inclusion of many
classic and modern optimization algorithms from fields outside of evolutionary com-
putation. Although a result summary has already been published by the organizers
(Auger et al., 2010), much more can be learned from the available data when inspected
Manuscript received: October 15, 2010; revised: October 10, 2012, September 1, 2013, and May 18, 2014;
accepted: June 10, 2014.
C© 2015 by the Massachusetts Institute of Technology Evolutionary Computation 23(1): 161–185

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388666759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

from a slightly different angle, namely through benchmarking theory (see Section 2), a
long-since existing branch of statistics. A first attempt in this direction has been made
by Mersmann et al. (2010a), solely considering the BBOB 2009 data. In the present work,
we aggregate the data from 2009 and 2010 and expand the portfolio of applied statistical
techniques. Due to the large number of algorithms from both conferences (64) it also
became inevitable to group the algorithms according to their main idea, choosing only
one representative of each group for comparison as documented in Section 3.3. Such
grouping is of course subjective, however we have tried to be as fair as possible, so
as to obtain a good overview of the capabilities of the different classes of algorithms
currently available on the BBOB test problems.

Who is the winner of an optimization competition and does this question make any
sense? Without clearly qualifying one method as the overall winner, Hansen et al. (2010)
suggest looking at such measures as the number of problems solved satisfactorily over
the number of evaluations. This perspective implies that the most successful algorithms
can solve the largest possible fraction of problems in the shortest time, thereby suggest-
ing a default method to be employed if no problem knowledge is available. There may,
however, be algorithms which are especially well suited for problems that cannot be
solved well by the winning method. One may further argue that some problem prop-
erties are available even for a black box problem of unknown structure, for example,
its dimensionality. Or preliminary runs with standard (gradient based) methods might
have hinted at a unimodal or multimodal structure of the function landscape.

Thus, we can state that: (1) looking at different classes of problems makes sense,
and (2) choosing a best algorithm (possibly for only a subgroup), requires finding a
ranking for the aggregation of the data of the respective test functions. The latter is
made possible by using consensus ranking methods which we introduce in Section 2.2.
Unfortunately, there cannot be a consensus ranking method that satisfies a complete
set of reasonable, intuitive prerequisites simultaneously. Instead, we will have to make
a subjective choice which will influence our interpretation of the resulting consensus.
These methods, while not particularly well known in the EC community, are often used
in other disciplines and should not be dismissed as exotic. Examples of the applications
of consensus methods in everyday life are sporting events where several rankings are
produced by a panel of judges, races, and so on, and then averaged to find the winner
of the competition.

The ultimate goal of a comparison of methods on a benchmark suite should be to
detect which optimization algorithm to use for a given practical problem, but clearly,
not every imaginable problem can be represented by a benchmark. Additionally, bench-
marking also suits the purpose of algorithm development as one may try to enhance
a method that does not work too well on some problems. Therefore, it is essential that
we are able to determine the difficulty that a problem poses for an algorithm. In any
case, some generalization from single problems to problem groups is necessary. The
BBOB test set is partitioned into five groups according to very general properties. But
do these problem groups match the abilities of the optimization algorithms under test
well? Or shall they be restructured according to other criteria? We treat this question in
Section 3.5, coming to the conclusion that the groups are largely well chosen, but with
some exceptions.

The assignment of problems to groups is also interesting from another perspective:
If one is confronted with a new problem of which not much is known, it would be
desirable to automatically detect some of its properties and then sort it into an existing
group for which good optimization algorithms are available. This is our long term goal,

162 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Figure 1: Flowchart describing the steps involved in a benchmark experiment.

and we have coined the term exploratory landscape analysis (ELA) to describe this
methodology. First approaches are presented in Mersmann et al. (2010a) and further
work in this direction can be found in Mersmann et al. (2011). In this work however,
we concentrate on the manual analysis of the BBOB workshop data to obtain a ground
truth, to which future ELA approaches can be compared to (Section 3). Finally, we
provide a summary and some conclusions in Section 5.

2 Benchmarking

Benchmarking experiments and comparisons are set up in order to evaluate the perfor-
mance of different algorithms on given problem classes. To derive an overall ranking of
all the algorithms in a benchmark experiment is one of the common goals. This has sev-
eral uses, the most prominent one being the identification of an overall best algorithm.
Without loss of generality we will focus on optimization algorithms in the following
description. A specific position in an overall ranking will in general be dependent on
the rank aggregation method employed and there is no consensus method which can
be considered optimal as has been known in econometrics for several decades (Arrow,
1950). So all methods presented here will have to be a trade-off between three basic
properties which any optimal consensus method should satisfy.

Figure 1 schematically visualizes the general setup of what we call a benchmark
experiment. We will see that its outcome strongly depends on the chosen performance
measures and ranking procedures (Hornik and Meyer, 2007; Mersmann, 2009; Mers-
mann et al., 2010b). The definition of a problem domain together with a set of t test
functions is a key step. Benchmarking results can only be generalized to the considered
domain, and even this is not admissible if the functions are not chosen systematically
and therefore represent the problem domain properly. Ideally, this would be guar-
anteed by applying the design of experiments methodology to the most important
features which characterize the function types, but this is a nontrivial task for several
reasons. First of all, the relationship between these features and the measured perfor-
mance of an algorithm is generally not linear. Secondly and more importantly, this
would require that we have a method to randomly sample from the set of all functions
which satisfy some constraints on their characteristics. This is currently an unsolved
issue.

To do this performance assessment, q (ideally stochastically independent) quality
indicators or performance measures are chosen to judge different aspects of algorithm
performance and optimization quality. Then, a set of k algorithms is chosen for the

Evolutionary Computation Volume 23, Number 1 163

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

benchmark. This set should be diverse and care should be taken not to over-represent a
certain class of algorithms since this may bias the consensus rankings derived later on.

Since the outcome of the algorithms under test is usually stochastic, they are com-
pared by aggregating r independent runs. Appropriate choices of r depend on the
expected difference in quality compared to the variance of the observed quality indica-
tor values. A good rule of thumb would be a value between 10 and 25 repetitions, but
during the analysis it may become apparent that more runs are required to adequately
differentiate between the algorithms (Mersmann, 2009). Here the trade-off is between
the speed of running such an experiment and the accuracy of the results.

Our k algorithms will now be run r times for each of the t test functions resulting
in r × t values of the q quality indicators for each algorithm. Using these values we
can derive individual rankings of the algorithms for each combination of a quality
indicator and a test function (see Section 2.1). An overall (consensus) ranking can then
be generated from the individual rankings or from subsets of these. Different methods
for this are introduced and discussed in Section 2.2.

2.1 Individual Ranking

Benchmarking theory is often based on the theoretical framework of relations and
orders (Hunter, 2008) from which a formal definition of a ranking R of a set of items
A = {a1, a2, . . . , ak} can be derived as a weak order over the set A. For ai, aj ∈ A we
say ai is better than or equal to aj and denote this by ai � aj iff aj R ai . If ai R aj and
aj R ai , then we say ai and aj are tied and denote this by ai ∼ aj . If R is a linear order,
we refer to the corresponding ranking as a strict ranking.

Initially, without loss of generality, we will consider the case of a fixed test function
f and quality criterion I to be maximized. For example, I could be the dominated
hypervolume indicator (HV; Zitzler and Thiele, 1998) in multiobjective evolutionary
optimization or the accuracy that a single-objective evolutionary algorithm has reached
after a fixed number of function evaluations. If we only had two algorithms, a1 and a2,
then we could define � by saying a1 � a2 (a1 is better than or equal to a2) if I (a1(f)) ≥
I (a2(f)). Generalizing this result to a higher number of algorithms is straightforward in
that we use the order induced by I on the algorithms as our ranking. However, due to the
inherent stochastic nature of the algorithms, I (ai(f)) becomes a random variable with
unknown distribution. We will therefore estimate some properties of this distribution,
usually the expected value or some quantile, from the r repetitions we performed.
Choosing good summary statistics requires an initial study of the distribution of the
quality indicator. An example of such an analysis is given in Mersmann et al. (2010c)
where the distribution of the HV is studied for different evolutionary multiobjective
algorithms. Among other characteristics it is shown to be unimodal in most cases.

The usage of a summary statistic of the indicator distribution together with the
classic “greater than or equal” (≥) or “less than or equal” (≤) relation is a straight-
forward approach to generate a linear order on the algorithms under test. Table 1
lists suitable summary statistics assuming fixed samples of r quality indicator values
Ii = (Ii,1, . . . , Ii,r). However, any uncertainty in these statistics is neglected which could
lead to perturbed ranking results where the extent of the error depends on the variance
of the indicator distribution. Another possibility is to use statistical hypothesis tests
(Mood et al., 1974) to decide if the locations of two quality indicator distributions are
different in some sense. Caution is in order here because this approach can lead to a
relation � that is not transitive and antisymmetric. More details are given in Mersmann
(2009) and Mersmann et al. (2010b).

164 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Table 1: List of summary statistics and order relations R.

Scenario Summary statistic (si) R

Best case quality max{Ii,1, . . . , Ii,r} ≥
Average case quality r−1 ∑r

j=1 Ii,j ≥
Median quality median(Ii,1, . . . , Ii,r) ≥
Worst case quality min{Ii,1, . . . , Ii,r} ≥
Consistent quality (r − 1)−1 ∑r

j=1(Ii,j − Īi)2 ≤

2.2 Consensus Ranking

If we want to find the best algorithm out of a given set by using the individual rankings
obtained using the methodology described above, we need to aggregate these into a
single ranking. This is called finding a consensus among the individual rankings and
the result is a consensus ranking. As mentioned earlier, there is no single best consensus
method for rankings and we will elaborate on this here.

One can postulate several criteria that a “best” consensus method cm should fulfill
(Arrow, 1950):

1. A consensus method cm that takes into account all rankings instead of mimicking
one predetermined ranking is said to be nondictatorial.

2. A cm that, given a fixed set of rankings, deterministically returns a complete
ranking is called a universal consensus method or is said to have a universal
domain.

3. A cm fulfills the independence of irrelevant alternatives criterion, or in short form an
IIA criterion, if given two sets of rankings R = {r1, . . . , rn} and T = {t1, . . . , tn} in
which for every i ∈ {1, . . . , n} the order of two algorithms a1 and a2 in ri and ti

is the same, the resulting consensus rankings rank a1 and a2 in the same order.
IIA means that introducing a further algorithm does not lead to a rank reversal
between any of the already ranked algorithms which is a very strict requirement.

4. A cm which ranks an algorithm higher than another algorithm if it is ranked
higher in a majority of the individual rankings for which the consensus ranking
is sought, fulfills the majority criterion.

5. A cm is called Pareto efficient if given a set of rankings in which for every ranking
an algorithm ai is ranked higher than an algorithm aj, the consensus also ranks
ai higher than aj.

Unfortunately, all criteria cannot be met simultaneously because the IIA criterion
and the majority criterion are incompatible if we assume a nondictatorial consensus
method. Thus, consensus approaches will yield different results with respect to the
criteria chosen to be fulfilled. At this point one might ask why we even bother to find
a consensus if it will always be a trade-off between the above criteria. The reason is,
that while it may not be optimal in some sense, it still gives us insight into which
algorithms might be worth further investigation and which algorithms perform rather
poorly. However, we will have to take care that no (accidental or even intentional)
manipulation of the consensus takes place. This might easily happen if the IIA is not
fulfilled—which it usually is not. Therefore simply adding similar algorithms to the
benchmark can increase the chance of a rank reversal.

Evolutionary Computation Volume 23, Number 1 165

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Generally, we can differentiate between positional and optimization based methods.
Positional methods calculate sums of scores s for each algorithm ai over all rankings and
result in an ordering as follows: for t test functions and q quality indicators considered
where ri,j denotes the ranking induced by the ith function and the jth comparison or
quality indicator:

ai � aj ⇐⇒ si > sj , ai ∼ aj ⇐⇒ si = sj , with si =
t∑

k=1

q∑

�=1

s(ai, rk,�). (1)

The simplest score function assigns a value of one to the best algorithm in each ranking
while all other algorithms get a value of zero. Although this is somewhat intuitive,
undesirable consensus rankings can occur. Consider the situation with two different
rankings of three algorithms, that is, R1 : a1 � a2 � a3 as well as R2 : a3 � a2 � a1. After
calculating the scores the consensus would be [a1 ∼ a3] � a2 although the rankings are
directly opposed and we would intuitively expect to have [a1 ∼ a2 ∼ a3].

The Borda count method (de Borda, 1781) accounts for this drawback and assigns an
algorithm one point for each algorithm that is not better than the algorithm considered,
that is, sBC(ai, r) = ∑

i
=j I(ai � aj) which in the case of no ties reduces to the ranks of the
data. Unfortunately, the Borda method does not fulfill the majority or the IIA criterion.
It is still a popular consensus method because it can be easily implemented and under-
stood. The main criticism voiced in the literature is that it implicitly, like all positional
consensus methods, assumes a distance between the positions of a ranking—which is
equally spaced in case of the Borda method.

Optimization-based methods on the other hand require a distance function (see
Cook and Kress, 1992, for an overview) between different rankings which quantifies how
much two rankings deviate from each other. Central to this is a notion of betweenness,
expressed by pairwise comparisons. That is, a ranking r2 lies between r1 and r3 if for all
pairs of algorithms either r2 agrees with r1 or r3 on the relative order of the pair, or r1
and r3 have conflicting orderings for the pair and r2 declares the pair to be tied. From
this, we obtain a geometry on the set of all possible rankings and can ask for something
like a mean (minimizing squared loss) or median (minimizing absolute loss) consensus
ranking.

If we add the requirement of non-negativity, symmetry, and the triangle inequality
to the list of properties our distance function should fulfill, we can formalize the above
notion of a mean or median consensus by taking the distance measure as our loss
function and then minimizing over all admissible consensus rankings C:

arg min
c∈C

L(c) =
t∑

i=1

q∑

j=1

d(ri,j , c)� � ≥ 1. (2)

The consensus ranking is then given by the ranking whose loss L is minimal. Setting
� = 1 results in what is called a median consensus ranking and � = 2 results in a mean
consensus ranking.

Kemeny and Snell (1972) postulated meaningful axioms for distance functions
which can be proven to uniquely lead to the symmetric difference (SD) which counts
the cases where ai � aj is contained in one of the relations but not the other:

dSD(r1, r2) := �1′|�I r1 − �I r2 |�1 (3)

where �1 is the k dimensional one vector, �I ri the incidence matrix belonging to the
relation that corresponds to the ranking ri and | · | denotes the elementwise absolute

166 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

value. SD/L denotes the SD approach for the set of all linear and SD/O for the set of
all partial orders.

Unfortunately, we cannot give a general recommendation regarding the introduced
consensus methods (Saari and Merlin, 2000) as each method offers a different trade-off
of the consensus criteria. The SD/L and SD/O methods meet the majority criterion and
thus cannot meet the IIA criterion simultaneously. However, on real data they rarely
result in rank reversals if algorithms are added or dropped. The Borda count (BC)
method does not fulfill either of these criteria. Saari and Merlin (2000) show that the
SD method always ranks the Borda winner above the Borda loser and that the Borda
method always ranks the SD winner above the SD loser.

It is important to note that consensus rankings generally do not admit nesting in
a hierarchical structure. For example, separate consensus rankings could be of interest
for test functions with specific features, for example, high multimodality or convexity.
While this certainly is a valid and meaningful approach, one has to keep in mind that
an overall consensus of these separate consensus rankings does not necessarily have to
equal the consensus ranking directly generated based on all individual rankings.

3 BBOB Analysis

In the following sections we will apply the benchmarking framework which was pre-
sented in the previous section to the joint results of the 2009 (Hansen et al., 2010)
and 2010 BBOB open benchmark (Auger et al., 2010). Our aim will not be to identify
the “best” algorithm but to try to characterize the performance of different algorithm
classes. This will allow us to deduce a small subset of algorithms in Section 3.3 which
together might form the basis of a practitioner’s black box optimization toolbox.

3.1 Benchmark Setup

In this section we will give a short overview of the BBOB 2009 and 2010 open bench-
marks. For a detailed description of the experimental setup see Hansen, Auger, et al.
(2009). The general setup used by the BBOB team follows the methodology depicted
in Figure 1 but instead of choosing the k algorithms themselves, since this is an open
benchmark, researchers are invited to submit results for their algorithms. It uses a bal-
anced and unbiased sample of the published set of test functions from the field of black
box optimization. Their characteristics have been studied by the BBOB team to ensure
that different aspects and difficulties are covered.

To assess the performance of an algorithm, the BBOB team proposes the use of
the so-called expected running time. This measure estimates the expected number of
function evaluations required to achieve an accuracy of ε > 0. For a given ε the ERT is
defined as

E {RT (ε)} := E
{
N succ

eval (ε)
} + 1 − π succ(ε)

π succ(ε)
E
{
N fail

eval(ε)
}
, (4)

where N succ
eval (ε) denotes the number of function evaluations until the algorithm reaches

the desired accuracy of ε, N fail
eval(ε) denotes the number of function evaluations until

the algorithm terminates without reaching the desired accuracy level (unsuccessful
run), and π succ(ε) is the probability of a successful run. We will estimate the ERT from
the r runs performed by every algorithm on each test function by plugging in the
empirical equivalents of the unknown parameters. For a thorough motivation of the
ERT see Hansen et al. (2005). There are certainly other measures and ways to characterize
algorithm performance. One could for example ask for the accuracy attained after a fixed

Evolutionary Computation Volume 23, Number 1 167

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Table 2: Algorithms for which there are deviations from the 15 runs per test func-
tion/dimension rule. The second column shows the minimal and maximal number of
runs performed per test function/dimension combination.

Algorithm Number of runs

ALPS 15–45
BFGS 15–30
(1+1)-CMA-ES 15–30
DIRECT 5–5
AVGNEWUOA 15–30
MA-LS-CHAIN 15–29
MCS 15–30
(1+1) ES 15–26
Artificial bee colony 15–33

budget of function evaluations. In this analysis we will however focus on the ERT and
restrict ourselves to the performance metric originally suggested by the BBOB team.

In order to estimate the ERT, each contestant is required to submit 15 runs of his
or her algorithm for each of the 24 test functions. It was required to submit results for
2, 3, 5, 10, and 20 dimensional parameter spaces. Results for 40 dimensional parameter
spaces were optional. The experimenter may therefore have to perform up to 15 × 24 ×
6 = 2160 runs. The results of each run are automatically stored in a file by the BBOB
framework. From this file it is possible to infer the number of function evaluations used
for almost any accuracy level ε. There is one small difference in the way the 15 runs are
composed between the 2009 and 2010 BBOB instance. In 2009, the 15 runs were divided
among five different test function instances1 for each of which three runs had to be
performed. In 2010, instead of five instances, 15 instances with just one run per instance
were required.

The way the BBOB team analyzes the results turned in by the contestants is different
from what we propose in Section 2. We will therefore refer the reader to Hansen et al.
(2010) for a description of their methodology and the results they obtain. Instead we
will use the raw data, graciously provided by BBOB team on their website2, to conduct
an analysis based on the methods proposed in Mersmann et al. (2010b).

Before we begin with the analysis we would like to mention a few discrepancies
between the actual data available and what should be included in a contestant’s sub-
mission. Not all contestants have turned in results for each dimension or test function.
This is legitimate but hinders some analysis. For example, very few algorithm runs
in 40D are available. We can only speculate if the other contestants did not turn in
results because their algorithms did not perform well in this dimension or because they
did not have enough time/resources to perform the additional runs. Another problem
is that some results do not contain the required 15 runs per test function/dimension
combination. In fact, some authors turned in more runs than required! These findings
are summarized in Table 2. One should note that DIRECT is a deterministic method

1Slight reparameterizations of the test function obtained by rescaling, rotating, or otherwise trans-
forming the parameter vector before applying the function.

2http://coco.gforge.inria.fr/doku.php

168 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

which was submitted in 2009 when three replications for each function were required
by the BBOB rules. It therefore does abide by the rules since each repetition would have
produced the same result. To avoid any biasing of the results we have opted to use a
form of stratified sampling that either chose 15 unique instances (2010 submission) or
three runs from five instances (2009 submission) for those submissions with more than
15 runs. Other issues encountered include backup files in the submitted archives and
differing directory structures between contestants. In the future it would be desirable
to standardize the layout of the submitted data to ease external analysis.

3.2 Individual Rankings

Initially, algorithm rankings for each test problem and dimension combination are
generated for all accuracy levels 10-i for i = 3, 4, 5, 6, 7, 8. An exemplary visualization
of rankings obtained for the maximum accuracy level of 10-8 is shown in Figure 2. All
rankings are obtained by ranking based on the ERT using the ≤ (i.e., smaller is better)
relation.

From the plot, we can see that it is not advisable to simultaneously analyze all
competing algorithms. Obviously, figures are not very meaningful for 55 algorithms
due to information overload. Due to this limitation and the inherent risk of including
multiple variants of one algorithm in an analysis, as described in the previous section,
algorithm groups are defined which consist of a number of very similar algorithms,
better denoted algorithm variants. For instance, there are 17 variants of the CMA-ES
which differ only in population size and restart strategy. In Section 3.3 we discuss
why an inclusion of all such algorithm variants can extremely bias resulting consensus
rankings. Therefore we will choose a best variant from each algorithm group and use
this algorithm as a representative for further analysis and especially the final consensus
rankings.

An aggregation on the test problem level would be possible as well. In Hansen,
Finck, et al.(2009) the BBOB test problems are grouped into predefined problem classes
with specific properties as (1) unimodal separable problems (UM-Sep., f1–f5), (2) uni-
modal low or moderate conditioned problems (UM-Low C, f6–f9), (3) high conditioned
and unimodal problems (UM-High C, f10–f14), (4) multimodal problems with adequate
global structure (MM-adeq. GS, f15–f19), and (5) multimodal problems with weak global
structure (MM-weak GS, f20–f24). As already shown in Mersmann et al. (2010a) and
obvious from Figure 2, the algorithm performance is not consistent enough within the
specified function groups to justify the selection of a reduced set of representative test
problems.

Some general statements about the algorithms’ performance can however be ex-
tracted from Figure 2. It is evident 3 that there is a change in the general performance
of the algorithms as the dimension rises, for example, not surprisingly the performance
of gradient-based methods like BFGS in most cases deteriorates with increasing dimen-
sion. On the other hand, there is an opposite tendency for the CMA-ES variants. Only
rarely is the set of the best-ranked algorithms quite stable across all dimensions, as for
the sphere problem f1 and the rotated Rosenbrock problem f9, for instance. Interestingly,
a few algorithms, for example, harmony search, perform even worse than Monte Carlo
search for some combinations of dimension and test problem.

3Note that because of the difficulty of visualizing the results at this stage on just one page, we have
made larger individual plots available at http://ptr.p-value.net/ecj13

Evolutionary Computation Volume 23, Number 1 169

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Figure 2: Parallel coordinate plot for each function, showing the rank of each algorithm
as the number of dimensions rise for the accuracy level of 10-8.

Specifically, the differences within dimensions 5–20 and within 2 and 3 are much
smaller than the differences between these two groups. This has already been pointed
out by Mersmann et al. (2010a). Therefore, detailed performance analysis of a carefully
selected set of best performing algorithms should be conducted separately for these two
dimension classes. In Section 3.5 we perform such an analysis for the higher dimensional
class as this is the most interesting one in our view.

3.3 Algorithm Groups and Representatives

The high number of more than 50 algorithms (including variants) present in the com-
bined BBOB data set of 2009 and 2010 overstrains the capacities of tables and figures, as

170 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

can easily be seen in Figure 2. We therefore need to group the algorithms and continue
only with the ones ranked best in each category. This requires a grouping criterion,
for which we chose algorithmic similarity, so that all optimizers relying on the same
base mechanism will be put into the same group. While this appears straightforward,
for example, for the different variants of the CMA-ES, it is much less self-evident for
the group of so-called hybrid optimization methods. In this case, the use of multiple
search paradigms itself is the underlying principle. Another problem is the different
size of the obtained groups. For this reason, and also because there is a difference in
the use of nontrivial restart heuristics, we have cut the largest group (CMA-ES) in two:
the simple CMA-ES variants and the more complex ones (dubbed CMA-hybrid). Even
so, the former group still has 11 members. In stark contrast to that, the gradient and
random search groups contain only one. This may seem a bit unfair, but it is a necessary
step in the analysis to mitigate the possibility of inadvertently changing the ranking of
two algorithms by just adding another variant of one of them. This risk was previously
pointed out in the section on benchmarking. Moreover, we finally strive for a small
number of best algorithms which is sufficient to, in some sense, cover all test problems.
We expect that on very different problems, very different algorithms perform best, and
not variants of the same algorithm. If this were the case, we would not call these algo-
rithms variants but assume that the effect we see stems from tuning. Finally, we think
that answers to more general questions such as: “Shall I use an estimation of distribu-
tion algorithm (EDA) or a gradient method on problem x?” are of higher interest than
the choice of the exact variant, which may also be seen as a different parameterization
in many cases. By selecting a representative out of each class we would like to support
this view. This position should however not be misunderstood as discouragement of
algorithm variant development. We would merely like to point out that a new vari-
ant should initially be benchmarked against the other available ones before competing
against an algorithm from a different class.

In the following, we list the chosen groups and their algorithms, together with a
short explanation concerning the conjunctive concept. Figure 3 and Figure 4 display
consensus rankings within the algorithm groups over the required target precision
and BBOB function groups as described in Section 3.2. Note that for selecting the
representative, we rely on the Borda count consensus as the most intuitive approach. In
case the rankings over precisions and function groups lead to different results, we allow
for two representatives. Table 3 summarizes the Borda and SD/L consensus results for
the algorithm groups for the lowest and highest precision value considered.

CMA-ES. (1,2_m) CMA-ES, (1,2_mˆs) CMA-ES, (1,2) CMA-ES, (1,2ˆs) CMA-ES,
(1,4_m) CMA-ES, (1,4_mˆs) CMA-ES, (1,4) CMA-ES, (1,4ˆs) CMA-ES, (1+1) CMA-
ES, (1+2_mˆs) CMA-ES, (μ + λ) CMA-ES. This group contains all simple variants
of the CMA-ES that do not employ a specific restart heuristic (other than randomly
placed restarts). They can be seen as reparameterizations of the original CMA-ES
(which is not in the test set). The representative of this group is the (1,2_mˆs)
CMA-ES that strongly dominates the other CMA-ES versions on the unimodal
function groups.

CMA-Hybrid. BIPOP-CMA-ES, CMA-EGS, IPOP-ACTCMA-ES, IPOP-CMA-ES,
IPOP-SEP-CMA-ES, NBC-CMA. In contrary to the group above, these CMA vari-
ants all employ nontrivial restart heuristics that change the population size or
determine the search space positions for restarts. The group is represented by the
IPOP-ACTCMA-ES.

Evolutionary Computation Volume 23, Number 1 171

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Figure 3: Consensus rankings within the chosen algorithm groups, according to target
value precision.

172 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Figure 4: Consensus rankings within the chosen algorithm groups, according to function
group.

Evolutionary Computation Volume 23, Number 1 173

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Table 3: Consensus ranking results for each algorithm group at the lowest/highest
studied precision. Only the best algorithm is shown for each consensus method and as
can be seen there are both groups in which the two consensus methods are in agreement
and those where they do not agree.

Best algorithm

Group Consensus method # Alg. Precision 10-3 Precision 10-8

CMA-ES SD/L 11 (1+2_mˆs) CMA-ES (1+2_mˆs) CMA-ES
CMA-ES Borda 11 (1+2_mˆs) CMA-ES (1+2_mˆs) CMA-ES
CMA-hybrid SD/L 6 IPOP-ACTCMA-ES IPOP-ACTCMA-ES
CMA-hybrid Borda 6 IPOP-ACTCMA-ES IPOP-ACTCMA-ES
DE SD/L 4 DE-F-AUC DE-F-AUC
DE Borda 4 DE-F-AUC DE-F-AUC
EDA SD/L 4 iAMALGAM iAMALGAM
EDA Borda 4 iAMALGAM iAMALGAM
GA/ES SD/L 7 G3PCX G3PCX
GA/ES Borda 7 G3PCX G3PCX
Global search SD/L 6 AVGNEWUOA AVGNEWUOA
Global search Borda 6 FULLNEWUOA FULLNEWUOA
Gradient SD/L 1 BFGS BFGS
Gradient Borda 1 BFGS BFGS
Hybrid SD/L 7 MOS VNS
Hybrid Borda 7 MOS MOS
Local search SD/L 5 Nelder-Doerr Nelder-Doerr
Local search Borda 5 Nelder-Doerr Nelder-Doerr
PSO SD/L 3 PSO PSO
PSO Borda 3 PSO PSO
Random SD/L 1 RANDOMSEARCH RANDOMSEARCH
Random Borda 1 RANDOMSEARCH RANDOMSEARCH

DE. DE-F-AUC, DE-PSO, DEuniform, PM-AdapSS-DE. Here we find all methods
that may largely be considered as differential evolution (DE) algorithms. It is
represented by DE-F-AUC which clearly dominates over most precision values.

EDA. AMALGAM, BAYEDA, Cauchy-EDA, iAMALGAM. This group is composed
of the estimation of distribution (EDA) methods, and its representative is the
iAMALGAM, which ranks best over four of the five function groups.

GA/ES. ALPS, DASA, G3PCX, One-Fifth Variant3, RCGA, Simple GA, SPSA. Al-
gorithms which largely follow the design principles of a genetic algorithm or an
evolution strategy and do not use the covariance matrix adaptation are collected
here. This group is represented by G3PCX as it ranks best over three of the five
problem groups.

Global Search. AVGNEWUOA, DIRECT, FULLNEWUOA, GLOBAL, MCS,
NEWUOA. These algorithms take explicit measures to aim for a good cover-
ing of the search space. Its representative is FULLNEWUOA because it is a good
average performer.

Gradient. BFGS. This group contains the only pure gradient method of all compet-
ing algorithms, BFGS, which also represents it.

174 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Hybrid. EDA-PSO, MA-LS-CHAIN, MOS, nPOEMS, oPOEMS, POEMS, VNS. This
group consists of methods that rely on multiple different search paradigms and
can therefore be considered hybrid. We also put memetic algorithms here. The
group is represented by the MOS algorithm which achieved the top rank for two
of five cases.

Local Search. fminsearch, Line Search—fminbnd, Line Search—STEP, Local
Search—Rosenbrock, Local Search: Nelder-Doerr. Here, the direct search and re-
lated methods are collected that explicitly aim for best possible local optimization
and do not possess an explicit global search mechanism. However, Nelder-Doerr
employs an evolutionary component by selecting the best of a population of lo-
cal search instances. Nevertheless, it appears more similar to a (repeated) local
search algorithm than to a hybrid or global optimization algorithm. It is also the
representative of this group as it ranks best over three of the five problem groups.

PSO. Artificial bee colony, PSO, PSO Bounds (2010). This group consists of nature-
inspired swarm algorithms, namely different particle swarm optimization meth-
ods (PSO) and the artificial bee colony (ABC) method. It is represented by the PSO
method which ranks best for most precisions and problem groups.

Random. RANDOMSEARCH. Only one random search algorithm has entered the
BBOB instances, and its search paradigm is different enough from all others to
justify its own group. It also represents the group.

3.4 Representative Algorithms for Groups

As motivated in the previous section, we need to choose a few representatives from each
algorithm group. This was done by calculating the Borda consensus over all algorithms
in each group for the accuracy levels 10-3 and 10-8 and choosing the best algorithm in
each consensus as one of the representatives. All further analysis will also restrict itself
to the two aforementioned precisions. Why do we use the Borda and not the SD/L
consensus for this decision? The Borda consensus method captures our intent to find an
algorithm that performs above average over all functions when compared to the other
algorithms in the group. The SD/L method would prefer an algorithm that performs
well on the majority of the test functions but may fail catastrophically on a minority.
The chosen 11 algorithms for the further analysis are therefore (1+2_mˆs) CMA-ES,
IPOP-ACTCMA-ES, DE-F-AUC, iAMALGAM, G3PCX, FULLNEWUOA, BFGS, MOS,
Nelder-Doerr, PSO, and RANDOMSEARCH. We will call this group of algorithms the
best algorithms in the following sections. Do not confuse this with the mythical best
algorithm mentioned in Section 2.

To get an initial idea of how these best algorithms compare to each other we can
look at the distribution of their ranks. For each test function and dimension we obtain
two rankings of the best algorithms: one for an accuracy level of 10-3, and one for an
accuracy level of 10-8. We can now extract the rank (i.e., the position) of each algorithm
in each of these rankings and then look at this distribution. Two things we would want
to see in a good algorithm are a low mean rank which means it is often one of the
better algorithms and, as a secondary goal, a low variance of the ranks implying that
its performance does not vary much with the test function. Since we cannot expect the
algorithms to perform equally well in 2D and 3D when compared to higher dimensions,
we will look at these distributions separately. The results can be seen as box plots in
Figure 5. We can instantly assess that there are differences between the 2D–3D and the

Evolutionary Computation Volume 23, Number 1 175

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Figure 5: Box plots showing the distribution of the rank of each of best algorithms for
all 2D and 3D (left) and 5D to 20D (right) rankings. The red dot marks the mean of the
ranks which coincides with the Borda score of the algorithm if a consensus was formed.
The algorithms are therefore ordered by the Borda consensus. The vertical lines mark
the median of the ranks.

5D–20D distributions, as expected. In fact, in low dimensions it appears that a different
set of algorithms performs well when compared to the high dimensional set.

Finally we can also look at an overall (Borda) consensus of the algorithms over all
test functions, dimensions, and the two precision levels. This gives us

IPOP-ACTCMA-ES � Nelder-Doerr � (1+2_mˆs) CMA-ES � iAMALGAM �
FULLNEWUOA � BFGS � MOS � DE-F-AUC � G3PCX � PSO �
RANDOMSEARCH

More interesting are the Borda consensus rankings for the same scenario as above but
not over all test functions. Instead, for each function group as defined in Hansen, Finck,
et al. (2009), a consensus is calculated over all dimensions and accuracy levels. This
gives the following consensus rankings:

Unimodal—Separable. Nelder-Doerr � BFGS � (1+2_mˆs) CMA-ES �
FULLNEWUOA � IPOP-ACTCMA-ES � iAMALGAM � MOS � DE-F-AUC �
PSO � G3PCX � RANDOMSEARCH

Unimodal—Low Contrast. FULLNEWUOA � IPOP-ACTCMA-ES � BFGS �
(1+2_mˆs) CMA-ES � Nelder-Doerr � iAMALGAM � G3PCX � DE-F-AUC �
MOS � PSO � RANDOMSEARCH

Unimodal—High Contrast. iAMALGAM � IPOP-ACTCMA-ES � (1+2_mˆs) CMA-
ES �Nelder-Doerr � BFGS � DE-F-AUC � FULLNEWUOA � MOS � G3PCX �
PSO � RANDOMSEARCH

176 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Multimodal—Weak Global Structure. Nelder-Doerr � FULLNEWUOA � BFGS
� (1+2_mˆs) CMA-ES � G3PCX � MOS � iAMALGAM � IPOP-ACTCMA-ES �
DE-F-AUC � PSO � RANDOMSEARCH

Multimodal—Adequate Global Structure. IPOP-ACTCMA-ES � MOS � DE-F-
AUC � iAMALGAM � Nelder-Doerr � (1+2_mˆs) CMA-ES � PSO �
FULLNEWUOA � G3PCX �BFGS � RANDOMSEARCH

Here we can see that while Nelder-Doerr is only second in the overall ranking,
it dominates two function groups, whether the IPOP-ACTCMA-ES leads only one.
Additionally, FULLNEWUOA and iAMALGAM, which do not play an important role
in the overall ranking, each dominate one function group. It is obvious that knowing
the problem type is very important for selecting the right algorithm.

After looking at these different ways to aggregate the results we might ask if there
is a natural grouping of functions that arises from the performance of the algorithms. To
answer this question and gain further insight into the performance characteristics of the
set of best algorithms we will need some tools from statistics, which will be introduced
next.

3.5 Statistical Methods

In the following section we apply different methods from data analysis and statistics to
visualize and interpret the BBOB results. These statistical tools will be briefly introduced
in this section. Much more detailed explanations can be found in the cited literature,
and we recommend Hastie et al. (2001) as a general reference, which covers all the
required material.

3.5.1 Multidimensional Scaling
Multidimensional scaling (MDS) is a visualization technique, embedding objects xi

for i ∈ {1, . . . , n}, from a high-dimensional into a lower dimensional Euclidean space
(usually 2D or 3D). MDS operates only on a matrix of given distances (e.g., Euclidean)
or dissimilarities δi,j between the objects. Note that MDS can therefore be applied even
when only the δi,j are known, but not the xi themselves. The embedding is performed
in such a way that the distances are maintained as closely as possible by solving the
following optimization problem:

min
z1,...,zn

∑

i
=j

(||zi − zj || − δi,j

)2
.

Here, the zi ∈ R
k are the low-dimensional mappings of the original xi. The optimization

problem is usually solved by a gradient descent algorithm.

3.5.2 Partitioning Around Medoids
Partitioning around medoids (PAM) is an unsupervised data mining method, which
clusters unlabeled objects xi into sets of neighbor items. Again, we assume having a
matrix of distances δi,j between all objects xi and xj available. At each stage of the
algorithm a set of k representatives (the medoids) is maintained. As this is just a subset
of the original data points, their set of indices {i1, . . . , ik} suffices. The target function to
minimize is defined as

k∑

j=1

∑

C(i)=j

δi,ij ,

Evolutionary Computation Volume 23, Number 1 177

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

where C(i) = arg minj δi,ij is the index of the nearest representative to observation
xi.

In the initial phase the medoids are chosen in a greedy, iterative way to reduce the
target function value. Afterward, the algorithm exchanges in each step until conver-
gence of a medoid with a nonmedoid so that the target function is maximally reduced.

The number of clusters can be decided by running PAM several times with different
values for k and calculating the so-called average silhouette width. This width defines
a numerical measure for each observation and reflects how well it fits into its selected
cluster C(i) instead of any other cluster. For a formal definition see Kaufman and
Rousseeuw (1990). The parameter k is then chosen by selecting the number of clusters
with the highest silhouette width.

3.5.3 Classification and Regression Trees
Breiman et al. (1984) try to find a mapping between a d-dimensional input space X =
X1 × . . . × Xd (where the individual features are usually measured on a metric, ordinal,
or nominal scale) and a set of finite labels Y = {y1, . . . , yg}. The mapping is of the form
of a binary tree, where every node represents a univariate rule xi < c (or xi = c if Xi is
nominal). These rules are generated in a greedy, top-down fashion by analyzing a finite
set of learning examples (xi, yi) ∈ X × Y . The best rule for the current node k is found
by first considering the so-called impurity

i(k) = 1 −
g∑

j=1

pk(j)2

of the node. This is maximal if all classes in the data which reach node k occur with
equal relative frequency pk(j). Note that our definition above is also called the Gini
index and alternative measures of node impurity are available. The rule for node k is
selected now in such a way that the difference in impurity between k and its subnodes
(created by this new rule) is maximal:

δ(k) = i(k) − pli(l) − pri(r).

Here i(l) and i(r) are the impurities of the left and right subnode of k, and pl and pr

are the percentages of data which move from the parent node r to its children l and r,
respectively.

Usually, a large tree is grown w.r.t. some stopping criterion, such as the minimal
node size, and then simplified in a second stage by cost-complexity pruning.

3.6 Characterizing Performance of the Best Group

In Section 3.3 we chose a subset of algorithms from the original dataset called the best
algorithms and used consensus methods to find a best algorithm for some dimension
or some subset of the test functions. In this section we will focus on understanding
the structure the algorithms reveal in our set of test functions. Consequently, we will
restrict ourselves to what we consider the current sweet spot of black box optimization,
that is, to 5–20 dimensional problems.

For these problems, we would like to know if the similarity between test functions
that is implied in the five function groups defined by the BBOB team is also present in
the rankings. Therefore, we need means to characterize similarity or distance between
rankings. Recall that we introduced such a distance metric for the optimization-based
consensus method in Section 2. Using the SD metric proposed there we can calculate
a similarity matrix between all the individual rankings. We can visualize this matrix

178 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Figure 6: Plot of the two-dimensional projection recovered from the dissimilarity matrix
of the rankings of the best algorithms in 5 to 20 dimensions. Each point represents a
single test function/dimension combination. On the left the points are coded according
to the function group the test function belongs to and on the right the coding shows
which cluster was assigned to the test function by the PAM procedure.

using multidimensional scaling and also try to cluster the rankings based on their
relative distance to each other using PAM. Using the average silhouette width as the
cluster index, the optimal number of clusters into which to partition the rankings is
four. This is already a departure from the five function groups proposed. To see how
well the two groupings of the test functions agree, we plot the 2D representation of the
dissimilarity matrix as recovered by the MDS in Figure 6, and color the points according
to their group memberships.

Even though the MDS is only an approximate representation of the distance matrix,
we can see that the clusters are also visible in the plots. On the other hand, the function
groups do not seem to be reflected in the clustering or the MDS plot. We therefore infer
that the function grouping which was provided by the BBOB team does not coincide
with similar algorithm behavior. Instead we have empirically determined the four new
groups shown in Table 4.

What is missing is a set of rules describing these clusters. From the list above it
is almost impossible to deduce anything about what defines a cluster. Some functions
are spread between different clusters, and all clusters contain some 5-, some 10-, and
some 20-dimensional functions. So instead of trying to describe the clusters based on
the function name and dimension, we will try to abstract away from the concrete test
function and replace each test function by a set of features that describes the function.
These were first proposed by Mersmann et al. (2010a) and are shown in Table 5. They
are again a subjective way of categorizing each function. We then train a classification
tree on the obtained dataset by using the function properties as the features and the
cluster as our target class. The resulting tree is displayed in Figure 7 and permits two
interesting observations.

First of all, we have no way of differentiating between cluster 3 and cluster 4
using the defined features. This is surprising and might lead to the discovery of new
characteristics of the test functions which might explain the difference between the
two clusters. The main difference between the remaining cluster 1 and cluster 2 is that
cluster 1 has no variable scaling and cluster 2 is unimodal.

We conclude by presenting a Borda consensus over the four groups discovered
using the cluster analysis. Recall that these four groups are already fairly homogeneous

Evolutionary Computation Volume 23, Number 1 179

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Table 4: Table showing the cluster that was assigned to each function/dimension com-
bination. Note that for f24 in 20 dimensions we do not have enough data to assign a
cluster.

Function 5D 10D 20D

f01 1 1 1
f02 1 2 2
f03 3 3 4
f04 4 4 4
f05 1 1 1
f06 2 3 3
f07 2 2 2
f08 1 1 1
f09 1 1 1
f10 2 2 2
f11 2 2 2
f12 1 2 2
f13 2 3 2
f14 2 2 2
f15 3 3 3
f16 3 3 3
f17 3 3 3
f18 3 3 3
f19 3 3 4
f20 3 3 4
f21 1 1 1
f22 1 1 1
f23 3 4 4
f24 3 4 –

w.r.t. the algorithm rankings since their distance to each other, in the SD metric, is small.
The resulting consensus rankings are as follows.

Cluster 1. FULLNEWUOA � BFGS � Nelder-Doerr � (1+2_mˆs) CMA-ES � IPOP-
ACTCMA-ES � G3PCX � iAMALGAM � MOS � DE-F-AUC � PSO.

Cluster 2. IPOP-ACTCMA-ES � (1+2_mˆs) CMA-ES � iAMALGAM � MOS �
DE-F-AUC � Nelder-Doerr � G3PCX � FULLNEWUOA � BFGS � PSO.

Cluster 3. IPOP-ACTCMA-ES � MOS � DE-F-AUC � iAMALGAM �
FULLNEWUOA � PSO � G3PCX � (1+2_mˆs) CMA-ES � Nelder-Doerr � BFGS.

Cluster 4. MOS � iAMALGAM � IPOP-ACTCMA-ES � Nelder-Doerr � PSO �
(1+2_mˆs) CMA-ES � BFGS � DE-F-AUC � FULLNEWUOA � G3PCX.

The consensus rankings allow for making several interesting observations. We
discover that the difference between clusters 1 and 2 is that classical optimization
approaches work well on functions in the first cluster while evolutionary strategies
outperform them on the second cluster of functions. These are the two clusters we can
characterize fairly well, as can be seen in Figure 7. The last two clusters consist of a

180 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Ta
bl

e
5:

C
la

ss
ifi

ca
ti

on
of

th
e

no
is

el
es

s
fu

nc
ti

on
s

ba
se

d
on

th
ei

r
pr

op
er

ti
es

.P
re

d
efi

ne
d

gr
ou

ps
ar

e
se

pa
ra

te
d

by
ex

tr
a

sp
ac

e.
N

ot
e

th
at

w
e

d
id

no
t

as
si

gn
gl

ob
al

st
ru

ct
ur

e
to

th
e

un
im

od
al

pr
ob

le
m

s.
T

hi
s

is
d

eb
at

ab
le

an
d

co
nt

ra
ry

to
th

e
op

in
io

n
of

th
e

B
B

O
B

or
ga

ni
ze

rs
.

H
ow

ev
er

,i
th

as
no

tb
ee

n
fo

rm
al

ly
d

efi
ne

d
in

th
e

B
B

O
B

se
tu

p.

G
lo

ba
l

V
ar

ia
bl

e
B

as
in

G
lo

ba
l-

lo
ca

l
Fu

nc
ti

on
M

ul
ti

m
od

al
it

y
st

ru
ct

ur
e

Se
pa

ra
bi

lit
y

sc
al

in
g

H
om

og
en

ei
ty

si
ze

s
co

nt
ra

st
Pl

at
ea

us

1:
Sp

he
re

N
on

e
N

on
e

H
ig

h
N

on
e

H
ig

h
N

on
e

N
on

e
N

on
e

2:
E

lli
ps

oi
d

al
se

pa
ra

bl
e

N
on

e
N

on
e

H
ig

h
H

ig
h

H
ig

h
N

on
e

N
on

e
N

on
e

3:
R

as
tr

ig
in

se
pa

ra
bl

e
H

ig
h

St
ro

ng
H

ig
h

L
ow

H
ig

h
L

ow
L

ow
N

on
e

4:
B

üc
he

-R
as

tr
ig

in
H

ig
h

St
ro

ng
H

ig
h

L
ow

H
ig

h
M

ed
iu

m
L

ow
N

on
e

5:
L

in
ea

r
sl

op
e

N
on

e
N

on
e

H
ig

h
N

on
e

H
ig

h
N

on
e

N
on

e
N

on
e

6:
A

tt
ra

ct
iv

e
se

ct
or

N
on

e
N

on
e

N
on

e
L

ow
M

ed
iu

m
N

on
e

N
on

e
N

on
e

7:
St

ep
el

lip
so

id
al

N
on

e
N

on
e

N
on

e
L

ow
H

ig
h

N
on

e
N

on
e

Sm
al

l
8:

R
os

en
br

oc
k

L
ow

N
on

e
N

on
e

N
on

e
M

ed
iu

m
L

ow
L

ow
N

on
e

9:
R

os
en

br
oc

k
ro

ta
te

d
L

ow
N

on
e

N
on

e
N

on
e

M
ed

iu
m

L
ow

L
ow

N
on

e

10
:E

lli
ps

oi
d

al
hi

gh
co

nd
it

io
ne

d
N

on
e

N
on

e
N

on
e

H
ig

h
H

ig
h

N
on

e
N

on
e

N
on

e
11

:D
is

cu
s

N
on

e
N

on
e

N
on

e
H

ig
h

H
ig

h
N

on
e

N
on

e
N

on
e

12
:B

en
tc

ig
ar

N
on

e
N

on
e

N
on

e
H

ig
h

H
ig

h
N

on
e

N
on

e
N

on
e

13
:S

ha
rp

ri
d

ge
N

on
e

N
on

e
N

on
e

L
ow

M
ed

iu
m

N
on

e
N

on
e

N
on

e
14

:D
if

fe
re

nt
po

w
er

s
N

on
e

N
on

e
N

on
e

L
ow

M
ed

iu
m

N
on

e
N

on
e

N
on

e

15
:R

as
tr

ig
in

m
ul

ti
m

od
al

H
ig

h
St

ro
ng

N
on

e
L

ow
H

ig
h

L
ow

L
ow

N
on

e
16

:W
ei

er
st

ra
ss

H
ig

h
M

ed
iu

m
N

on
e

M
ed

iu
m

H
ig

h
M

ed
iu

m
L

ow
N

on
e

17
:S

ch
af

fe
r

F7
H

ig
h

M
ed

iu
m

N
on

e
L

ow
M

ed
iu

m
M

ed
iu

m
H

ig
h

N
on

e
18

:S
ch

af
fe

r
F7

m
od

er
at

el
y

ill
-c

on
d

.
H

ig
h

M
ed

iu
m

N
on

e
H

ig
h

M
ed

iu
m

M
ed

iu
m

H
ig

h
N

on
e

19
:G

ri
ew

an
k-

R
os

en
br

oc
k

H
ig

h
St

ro
ng

N
on

e
N

on
e

H
ig

h
L

ow
L

ow
N

on
e

20
:S

ch
w

ef
el

M
ed

iu
m

D
ec

ep
ti

ve
N

on
e

N
on

e
H

ig
h

L
ow

L
ow

N
on

e
21

:G
al

la
gh

er
10

1
pe

ak
s

M
ed

iu
m

N
on

e
N

on
e

M
ed

iu
m

H
ig

h
M

ed
iu

m
L

ow
N

on
e

22
:G

al
la

gh
er

21
pe

ak
s

L
ow

N
on

e
N

on
e

M
ed

iu
m

H
ig

h
M

ed
iu

m
M

ed
iu

m
N

on
e

23
:K

at
su

ur
a

H
ig

h
N

on
e

N
on

e
N

on
e

H
ig

h
L

ow
L

ow
N

on
e

24
:L

un
ac

ek
bi

-R
as

tr
ig

in
H

ig
h

W
ea

k
N

on
e

L
ow

H
ig

h
L

ow
L

ow
N

on
e

Evolutionary Computation Volume 23, Number 1 181

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Figure 7: Decision tree describing the relationship between the features defined in
Table 5 and the clusters found by PAM. Each node of the tree describes a decision.
The variable on which the decision is based is given in the node and the values are the
labels on each edge. The leaves of the tree describe the relative frequency of each cluster
in the data that, according to the decision rules, belong in that leaf. High values mean
that it is likely that a function with these properties would belong to the respective
cluster. For example, all test functions which are in leaf node 4, that is, that have no
multimodality, and no variable scaling, belong to cluster 1.

large number of functions that are some of the hardest in the test function set because
on these RANDOMSEARCH outperforms some more advanced methods. Nearly all
functions in clusters 3 and 4 are multimodal, and most of them are highly multimodal.
Whereas the functions in cluster 3 can usually be solved by the IPOP-ACTCMA-ES, this
is often not the case for cluster 4, so that many of these are not solved by any method.

Comparing the results obtained on the newly found four clusters and the clusters
defined by the BBOB team based on human experience, we come to very different
conclusions. However, we have to admit that we do not yet have adequate features to
describe our groups.

4 Outlook on Future Work

Analyzing the benchmark data as done in Section 3 already generates many valuable
insights into the performance ranking of optimizers and algorithmic groups under
various problem conditions. However, it does not provide a satisfying answer to the
urgent problem of what optimization algorithm should be selected in practice for a
given, unknown problem or problem domain. It is a well known fact from practice—and
also clearly visible in our presented results—that no current optimization algorithm
solves all problems equally well. Although the no-free-lunch theorem does not hold for
the case of continuous spaces as shown by Auger and Teytaud (2007), it is very unlikely
that one optimization algorithm will completely dominate all others in the near future.
Therefore, a general set of rules which guide a practitioner in choosing an appropriate
algorithm for the problem at hand from the vast pool of available optimizers would be
a highly useful tool. At the same time, the knowledge used to construct such a ruleset
might be used to construct even better or more robust optimizers.

Of course, the construction of such a set of rules requires the definition of test prob-
lem characteristics and relating them in a meaningful way to the expected performance

182 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

of an optimizer. This will in general be a very challenging problem. A very similar task
has been considered in the machine learning community under the term metalearning
(see, e.g., Brazdil et al., 1994), where one tries to predict which learner is most ap-
propriate given a feature vector of dataset characteristics. In Mersmann et al. (2010a)
we already proposed a set of manually constructed testset properties. These have two
major disadvantages: They are discrete (e.g., low, medium, or high multimodality) and
therefore somewhat ambiguous. And they obviously require their definition by an ex-
pert, which limits their practical usefulness, if one wants to move beyond solving and
analyzing the BBOB problem set.

We are currently working on the definition of an extensive set of numerical, com-
putable test problem characteristics, which contain, among other numerical properties,
average gradients and convexity, landmarking by simple and fast optimizers and tech-
niques from regression and classification to capture general landscape shapes. For first
results see Mersmann et al. (2011).

In our future work we will try to demonstrate that:

1. These features can be constructed for any test problem without help from a
human expert.

2. For the BBOB set these at least contain all the information gained by the manually
crafted features.

3. At least in an exploratory sense they can be used to relate test problem charac-
teristics to optimizer performance or ranking.

The biggest remaining challenge then will be to efficiently calculate a relevant subset
of these features in an online fashion and use them to select or switch to an appropriate
optimization algorithm set for a considered, unknown target problem.

5 Conclusions

In this article, we have shown how a combination of benchmarking methods and classi-
cal statistical exploratory data analysis can be used to gain insight into the performance
characteristics of a set of algorithms under test. For this we introduced a novel ap-
proach to aggregate the results of black box optimization benchmarks. The approach
requires a carefully chosen set of test functions and performance measures. We apply
this approach to the combined 2009 and 2010 BBOB results. After reducing the number
of algorithms by partitioning the set of algorithms into groups of similar algorithm de-
signs and reducing these partitions to one or two representative algorithms, we are able
to show that the relative performance of these algorithms is far from uniform over all
test functions. Even within the predefined groups of functions, algorithm performance
varies widely. Using the similarity between the individual rankings we used cluster
methods to find four groups within which the relative performance of the algorithms is
homogeneous. We then set out to explain the cluster memberships by using properties
of the functions as features in order to build a decision tree which describes the rela-
tionship between clusters and function properties. We will continue this line of work
by developing tools to automatically characterize functions using empirical features.
Based upon these, rules can be constructed which allow practitioners the selection of a
reasonable set of algorithms as a starting point for a new optimization problem. We call
this new line of research ELA.

Evolutionary Computation Volume 23, Number 1 183

O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs

Acknowledgments
This work was partly supported by the Collaborative Research Center SFB 823, the
Graduate School of Energy Efficient Production and Logistics and the Research Training
Group “Statistical Modelling” of the German Research Foundation.

Supplementary Material
The complete source code used to produce the figures, tables and consensus rankings
in this paper, and all figures, in color, as well some additional figures which might be
useful to better understand how some of the conclusions were derived, especially for
Figure 2, are available at http://ptr.p-value.net/ecj13.

References

Arrow, K. J. (1950). A difficulty in the concept of social welfare. Journal of Political Economy, 58(4):
328.

Auger, A., Finck, S., Hansen, N., and Ros, R. (2010). BBOB 2010: Comparison tables of all algo-
rithms on all noiseless functions. INRIA. (Technical Report RT-388).

Auger, A., and Teytaud, O. (2007). Continuous lunches are free! In Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’07, pp. 916–922.

Brazdil, P., Gama, J., and Henery, B. (1994). Characterizing the applicability of classification
algorithms using meta-level learning. In ECML-94: Proceedings of the European Conference on
Machine Learning, pp. 83–102.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees. London:
Chapman & Hall.

Cook, W. D., and Kress, M. (1992). Ordinal information and preference structures. Upper Saddle
River, NJ: Prentice Hall.

de Borda, J. C. (1781). Mémoire sur les élections au scrutin. Historie de l’Académie Royale des Sciences,
Paris.

Hansen, N., Auger, A., and Auger, A. (2005). Performance evaluation of an advanced local search
evolutionary algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 1777–1784.

Hansen, N., Auger, A., Finck, S., and Ros, R. (2009). Real-parameter black-box optimization
benchmarking 2009: Experimental setup. INRIA. (Technical Report RR-6828)

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošı́k, P. (2010). Comparing results of 31 algorithms
from the black-box optimization benchmarking BBOB-2009. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’10, pp. 1689–1696.

Hansen, N., Finck, S., Ros, R., and Auger, A. (2009). Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. INRIA. (Technical Report RR-6829)

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning. Berlin: Springer.

Hornik, K., and Meyer, D. (2007). Deriving consensus rankings from benchmarking experiments.
In R. Decker and H.-J. Lenz (Eds.), Advances in Data Analysis, Proceedings of the 30th Annual
Conference of the Gesellschaft für Klassifikation, pp. 163–170. Springer.

Hunter, D. J. (2008). Essentials of discrete mathematics. Boston, MA: Jones and Bartlett.

Kaufman, L., and Rousseeuw, P. (1990). Finding groups in data: An introduction to cluster analysis.
New York: Wiley Interscience.

184 Evolutionary Computation Volume 23, Number 1

Analyzing the BBOB Results by Means of Benchmarking Concepts

Kemeny, J. G., and Snell, J. L. (1972). Mathematical models in the social sciences. Cambridge, MA:
MIT Press.

Mersmann, O. (2009). Benchmarking evolutionary multiobjective optimization algorithms us-
ing R. Bachelor’s thesis, TU Dortmund. http://www.statistik.tu-dortmund.de/∼olafm/
files/ba.pdf

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., and Rudolph, G. (2011). Ex-
ploratory landscape analysis. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, pp. 829–836.

Mersmann, O., Preuss, M., and Trautmann, H. (2010a). Benchmarking evolutionary algorithms:
Towards exploratory landscape analysis. In Proceedings of the 11th International Conference
on Parallel Problem Solving from Nature, PPSN XI. Lecture notes in computer science, Vol. 6238
(pp. 71–80). Berlin: Springer-Verlag.

Mersmann, O., Trautmann, H., Naujoks, B., and Weihs, C. (2010b). Benchmarking evolution-
ary multiobjective optimization algorithms. In Proceedings of the Congress on Evolutionary
Computation, CEC.

Mersmann, O., Trautmann, H., Naujoks, B., and Weihs, C. (2010c). On the distribution of EMOA
hypervolumes. In C. Blum and R. Battiti (Eds.), LION. Lecture notes in computer science,
Vol. 6073 (pp. 333–337). Berlin: Springer-Verlag.

Mood, A., Graybill, F., and Boes, D. (1974). Introduction to the theory of statistics. New York:
McGraw-Hill.

Saari, D. G., and Merlin, V. R. (2000). A geometric examination of Kemeny’s rule. Social Choice and
Welfare, 17(3): 403–438.

Zitzler, E., and Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms—A
comparative case study. In Proceedings of the 5th International Conference on Parallel Problem
Solving from Nature, PPSN V. Lecture notes in computer science, Vol. 1498 (pp. 292–304). Berlin:
Springer-Verlag.

Evolutionary Computation Volume 23, Number 1 185

http://www.statistik.tu-dortmund.de/~olafm/ files/ba.pdf
http://www.statistik.tu-dortmund.de/~olafm/ files/ba.pdf

