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Diabetes mellitus

In the second century AD, a Greek physician called the disease that was characterized by extreme 

loss of urine ‘diabetes’, meaning siphon. In 1679, the physician Thomas Willis added the word 

‘mellitus’ to diabetes, referring to the sweet taste of the urine (1). Diabetes mellitus is a disease of 

metabolic dysregulation, in particular dysregulation of glucose metabolism. In healthy individuals, 

blood glucose concentrations are tightly balanced by two counteracting hormones, insulin and 

glucagon, that are secreted by β- and α-cells, respectively, which are endocrine cells located in 

the pancreas (Fig. 1). Diabetes is characterized by an impaired glucose homeostasis due to an 

absolute or relative deficiency of insulin. Symptoms include polyuria, polydipsia, polyphagia, and 

weight loss. The diagnosis of diabetes is based on one of the following criteria: percentages of 

glycated hemoglobulin (HbA1c) ≥ 6.5%, fasting plasma glucose (FPG) ≥ 7 mmol/l, or a 2-hour 

plasma glucose ≥ 11.1 mmol/l after a 75-g oral glucose tolerance test (2). 

In 2013, 382 million people had diabetes worldwide and by 2035 this is expected to increase to 

592 million people (3). In The Netherlands approximately 1 million people are diagnosed with 

diabetes (4). The two major forms of diabetes are type 1 and type 2, although diabetes can 

also manifest during pregnancy and under other conditions including drug or chemical toxicity 

and genetic disorders. In type 1 diabetes (~10% of patients) the majority of β-cells is lost due 

to autoimmune destruction. A combination of genetic and environmental factors activates an 

immune response against β-cells. In type 2 diabetes (~85% of patients) β-cell function slowly 

decreases over time and is associated with a loss of β-cell mass up to 65% (5) probably due to 

metabolic and/or inflammatory factors. 

Patients with type 1 diabetes require life-long insulin replacement therapy by multiple-dose insulin 

or insulin pump therapy. In patients with type 2 diabetes, initially lifestyle changes as healthy 

eating, weight control and increased physical activity are stimulated to obtain an HbA1c <7.0%. 

If this target is not met, pharmacological therapy can be initiated, starting with metformin therapy 

that improves insulin sensitivity and suppresses glucose production by the liver. Many patients will 

ultimately require insulin therapy due to the progressive nature of the disease (2). 

Despite intensive treatment with diets, antihyperglycemic oral agents or insulin injections, 

normalization of glycemic control can often not be achieved. Patients are at risk to develop acute 

and long-term complications. Acute complications include diabetic ketoacidosis from persistent 

hyperglycemia, and hypoglycemic events. Long-term complications include a wide range of 

microvascular complications such as retinopathy, nephropathy and neuropathy. Furthermore, 

patients with diabetes have an increased risk for cardiovascular and cerebrovascular disease (6). 

Therefore, therapies that restore, maintain or prevent loss of functional β-cells are needed for 

all types of diabetes. For that reason it is critical to better understand mechanisms that regulate 

β-cell mass growth and function. 



Figure 1. A. Illustration of the pancreas and nearby organs. Inset: Illustration of the head, body and tail of 
the pancreas. B. Illustration of the insulin-secreting β-cell. Reprinted with permission from Terese Winslow. 
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General introduction  |  11

Glucose metabolism 

The blood glucose concentration is determined by the rate of glucose entering the circulation 

balanced by the removal of glucose out of the circulation. The primary action of insulin is to 

remove glucose from the circulation whereas its counterpart glucagon stimulates the entering of 

glucose into the circulation (Fig. 1B). In a fed state β-cells are triggered to secrete insulin, which 

facilitates the uptake of glucose from blood into cells. Inside the cell glucose will be metabolized 

via glycolysis, a multistep process of which pyruvate is the end product. Under aerobic conditions, 

pyruvate enters the citric acid cycle in the mitochondrion resulting in the production of NADH 

and FADH2 that are subsequently oxidized in the respiratory chain to generate energy (7). 

Excessive glucose can be stored in the form of the polymer glycogen in the liver and muscle. 

Also, insulin promotes lipogenesis and protein synthesis and inhibits the oxidation of free fatty 

acids and protein breakdown (8). During fasting, blood glucose concentrations are increased by 

the hormone glucagon that stimulates glucogenolysis from glycogen stores and gluconeogenesis 

from non-carbohydrate sources (9). Furthermore, it counteracts insulin by restraining the 

synthesis of glycogen, glycolysis and lipid storage. If fasting continues for several days, glucagon 

can stimulate lipolysis of adipose tissue and proteolysis from muscle tissue of which the substrates 

can be used to generate glucose by gluconeogenesis in the liver (10). At the same time, glucagon 

can stimulate ketogenesis, providing ketone bodies that can be used as an alternative fuel for the 

brain when glucose is sparse (9). 

β-Cells

The islets of Langerhans are clusters of endocrine cells that are scattered throughout the exocrine 

pancreas. Islets represent only 1 to 2% of the pancreas. The islets are composed of insulin-

producing β-cells (60-70%), glucagon-producing α-cells (20-30%), somatostatin-producing 

δ-cells, pancreatic polypeptide (PP) producing PP cells and ε-cells that produce ghrelin (11, 12). 

The remainder of the pancreas consists of exocrine cells that secrete digestive enzymes that 

are transported to the duodenum via the pancreatic duct system. Pancreatic islets are highly 

vascularized to enable efficient secretion of hormones into the circulation and densely innervated 

allowing control of the glucose homeostasis by the autonomic nervous system (13). 

The gene for insulin is located on chromosome 11 in humans and its product is a 110-amino acid 

precursor peptide called preproinsulin. The signal peptide of the protein brings preproinsulin into 

the lumen of the rough endoplasmic reticulum (ER) where it is removed generating proinsulin. 

Within the ER, proinsulin folds into a three-dimensional structure and is brought via vesicular 

transfer to the Golgi apparatus. In the Golgi, proinsulin enters immature secretory vesicles and 

is cleaved by prohormone convertases generating insulin and C-peptide. Insulin and C-peptide 
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are stored in secretory granules together with islet amyloid polypeptide. These insulin granules 

accumulate in the cytoplasm of the β-cell awaiting a signal to be released from the β-cell (14, 

15). The insulin secretory pathway becomes activated when glucose enters the cell through the 

glucose transporter-2. Oxidative metabolism of glucose leads to an increase in the ATP/ADP 

ratio. This leads to closure of ATP-dependent potassium channels. The subsequent membrane 

depolarization results in an influx of Ca2+ through the opening of voltage-gated calcium-channels. 

The increase in intracellular calcium concentration stimulates the fusion of insulin granules to the 

cell membrane and exocytosis of insulin (16, 17). 

Embryonic development and topological heterogeneity of islets in the pancreas

During embryonic development the pancreas originates from two epithelial buds, a ventral 

and dorsal bud, which protrude from the embryonic gut epithelium and converge to form the 

definitive pancreas (Fig. 2). The developing pancreatic duct epithelium consists of multipotent 

pancreatic progenitor cells that will give rise to all mature pancreatic cell types and undergoes 

extensive branching into a highly organized tubular network. Within the ductal epithelium 

endocrine progenitor cells arise, characterized by expression of the transcription factors Pdx1 

and Ngn3, which delaminate from the duct and migrate into the surrounding mesenchyme and 

aggregate into cell clusters that ultimately form the islets of Langerhans (18–21). The highest 

increase in endocrine tissue during development occurs in the second and third trimester of 

pregnancy in humans. During this period β-cell proliferation is relatively low and data suggest 

that the majority of new islet cells arise from precursor cells, a process called neogenesis (20, 22). 

The ventral bud gives rise to the posterior part of the mature pancreatic head and uncinate process, 

and the dorsal bud forms the anterior part of the head, the body and tail (Fig. 1A). A systematic 

study of the rat pancreas revealed that in the lower part of the head of the pancreas contains 

islets with a high percentage of PP-cells, whereas few glucagon-positive cells are observed in this 

same region (23). In humans, similar PP-rich lobules are identified in the pancreatic head region, 

most likely the part originating from the ventral pancreatic bud during embryogenesis (24–26). 

Also, islets derived from the dorsal bud secrete more insulin after a glucose stimulus compared 

to islets derived from the ventral bud in rats (27). Furthermore, in adult human pancreas the 

density of islets is higher in the tail-region compared to the head and body-region of the pancreas 

(28–30). Altogether this shows that islet morphology and function can be different throughout 

the pancreas.
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Figure 2. Organogenesis of the pancreas. The pancreas originates from 2 buds, the ventral and dorsal 
pancreatic bud. The ventral and dorsal pancreas fuse to form the mature pancreas. Adapted with permission 
from Cano et al. Gastroenterology 2007 (19). 

β-Cell mass adaptation 

In adults the β-cell mass is tightly controlled in order to maintain blood glucose concentrations 

within a narrow range. When the demand for insulin is chronically increased by physiological 

or pathological changes, such as obesity, pregnancy, glucocorticoid treatment and pancreatic 

damage, β-cells can adapt by enhancing insulin secretion via increased β-cell function and/

or increased β-cell mass (Fig. 3). Inadequate β-cell adaptation leads to the development of 

hyperglycemia and eventually diabetes mellitus (28, 31).

Increased demand for insulin
(e.g. obesity, pregnancy,
glucocorticoid therapy)

Decreased demand for insulin
(e.g. postpartum, cessation of 
glucocorticoid therapy)

Figure 3. Changes in the demand for insulin are associated with an adaptation of the β-cell mass.
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Obesity 

Obesity in humans is associated with an increased insulin secretory response following a glucose 

or meal challenge (32, 33). In 1933 Ogilvie reported that islets in humans with obesity were 

enlarged (34). Later this observation was confirmed by several studies comparing β-cell mass 

between non-diabetic obese and lean individuals. These studies have reported increases in β-cell 

mass ranging from 20 – 100% in obese subjects (28, 31, 35, 36). Recently, Saisho et al. (37) 

studied the largest population of pancreas donors. A 50% increase in β-cell mass was found 

when comparing 61 obese vs. 53 lean subjects. Obesity is associated with insulin resistance, 

which results in an increased demand for insulin from β-cells (16). Mice fed a high-fat diet 

become obese and develop insulin resistance that is associated with an increased β-cell mass (38, 

39). In young (5 - 6 weeks old) mice the β-cell mass increase ranges from 2 – 3.5 fold after a high-

fat diet for 8 weeks (39, 40). Also, genetic mutations in rodents that lead to obesity and insulin 

resistance, such as leptin-deficient ob/ob mice and db/db mice or Zucker fa/fa rats that have a 

defective leptin-receptor, are associated with a compensatory increase of the β-cell mass (41–44). 

The development of diabetes in Macaca mulatta is associated with obesity and insulin resistance 

and in normoglycemic, hyperinsulinemic monkeys associated with an increased β-cell area (45).

The importance of insulin resistance generating an environment of increased insulin demand is 

illustrated by mice that are double heterozygous for null alleles in the insulin receptor (IR) and 

insulin receptor substrate-1 (IRS-1) genes. These mice develop severe insulin resistance that is 

associated with a massive increase of the β-cell mass, up to 30-fold (46). Specific knockout of the 

insulin receptor in the liver (LIRKO) also results in dramatic insulin resistance and is associated with 

a 6-fold increase in β-cell mass (47). Mezza et al. (48) reported an increased islet size in insulin 

resistant non-diabetic humans, that was inversely correlated with insulin sensitivity. Recently it 

was shown that transplantation of human islets isolated from non-obese donors into insulin 

resistant mice results in β-cell mass adaptation of the human islet graft in vivo (49). 

Together these studies show that in obesity-related, diet- or genetically-induced insulin resistance 

there is a compensatory growth of the insulin producing β-cell mass. Since about 80% of obese 

humans remain non-diabetic (50), this adaptation of the β-cell mass is successful in most cases. 

Pregnancy

Pregnancy is accompanied with series of metabolic changes including a progressive development 

of insulin resistance that requires adaptation of the β-cells to maintain normoglycemia (51). 

Several studies have reported increases of the islet mass during pregnancy in rodents (52). The 

extent of the increase varies from 1.5- to 2-fold (53–55). Interestingly, postpartum the β-cell mass 

involuted to prepartum levels (53, 55).

Obviously the possibility to study pancreas material from pregnant women is limited and until 

today only a few groups have studied the β-cell mass in pregnant women. Van Assche et al. 

reported an enlargement of the islets of Langerhans and hyperplasia of β-cells resulting in a 
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2.4-fold increase of β-cell area when comparing 5 pregnant with non-pregnant women (56). 

More recently, Butler et al. (57) reported a 1.4-fold increase of the β-cell area in the pancreas 

of 18 pregnant women. Interestingly, this latter group also studied β-cell area in a few pancreas 

samples from post-partum women and observed a strong tendency for a decrease in β-cell area 

compared with pregnant women suggesting that, similar to rodents, the β-cell mass returns to 

baseline levels postpartum. It is thought that failure to compensate β-cells during pregnancy 

may contribute to the development of gestational diabetes in women, which is a risk indicator 

for the development of type 2 diabetes later in life (58). Together these studies show that 

during pregnancy the β-cell mass increases to compensate for the increased insulin demand, a 

compensation that seems to be reversible postpartum. 

Glucocorticoid therapy

Glucocorticoids are essential to the adaptation of the body to fasting, injury, and stress. Their 

receptors are expressed on most cells, by which they can influence a variety of physiological 

processes. Therefore, glucocorticoids are used extensively as therapeutic agents, especially for 

their anti-inflammatory actions. However, patients become glucose intolerant and they have an 

increased risk to develop diabetes because glucocorticoids antagonize the action of insulin (59). 

This change in glucose metabolism increases the demand for insulin. In rodents and non-human 

primates glucocorticoid treatment induces insulin resistance, which is associated with increased 

insulin secretion and compensatory β-cell mass growth (60–64). Interestingly, discontinuation of 

the therapy in rats resulted in involution of the β-cell mass to pretreatment levels (64). 

Pancreatic damage

When (part of) the endogenous β-cell mass is removed surgically or by physical or chemical 

damage to the pancreas, an increased demand for insulin on remaining β-cells arises. Multiple 

animal models have been developed to study the response of the β-cell mass in situations of 

pancreatic damage. β-Cells can be destroyed using cytotoxic agents, such as streptozotocin (STZ) 

or alloxan. Following STZ treatment and in the presence of insulin treatment, the β-cell mass in 

mice regenerated to about 50% after 6 days (65). In STZ-treated newborn rats the β-cell mass 

was regenerated to 39% of the normal value by day 20 (66). However, no regeneration of the 

β-cell mass was observed in male vervet monkeys treated with STZ (67). Also removal of 50 – 

90% of the pancreas is associated with a (partial) regeneration of the pancreas after a couple 

of weeks (68–70). So, depending on the treatment regimen, chemically induced destruction or 

(partial) removal of the β-cells can lead to regeneration of the β-cell mass in rodents (68).

In humans, glucose concentrations begin to rise when the β-cell mass is reduced by approximately 

50% (71), which fits the observation that in patients with type 2 diabetes β-cell mass is reduced 

to 65% compared to non-diabetic subjects (5). No compensatory growth of the β-cell mass was 

observed in patients that underwent a 50% pancreatectomy because of chronic pancreatitis or 
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pancreatic cancer (71). Also, hemipancreatectomy in healthy donors resulted in deterioration of 

insulin secretion and glucose intolerance in 25% of the donors one year after surgery (72). Of 

22 children diagnosed with nesidioblastosis who had undergone 90-95% pancreatectomy, 55% 

showed complete pancreatic regeneration (assessed by ultra-sound, no histology data available) 

resulting in a pancreas normal in size for the age (73). Since these patients were normoglycemic, 

this suggests that the regenerated pancreas consisted of an adequate number of endocrine cells. 

Altogether this shows that, in contrast to rodents, there is no evidence in adult humans that the 

β-cell mass regenerates in response to pancreatic damage. 

Mechanisms of β-cell mass adaptation

The β-cell mass is determined by the balance of β-cell renewal and loss. Mechanisms potentially 

involved in β-cell mass regulation are proliferation and apoptosis of existing β-cells and the 

formation of new β-cells from precursor cells (neogenesis). More recently it was reported that 

mature cells (e.g. α-cells or acinar cells) are able to transdifferentiate into insulin-producing cells 

(74, 75). 

β-Cell proliferation

In young mice (5 - 6 weeks) basal β-cell proliferation detected by Ki67 staining is ~2.5% (76, 

77). β-Cell proliferation is restricted with advanced aging and drops to 0.1 – 0.3% in older 

(> 1 year) mice (38, 77). β-Cell mass adaptation or regeneration in response to diet-induced 

obesity, pregnancy, glucocorticoid-induced insulin resistance and pancreatic damage have all 

been associated with increased number of proliferating β-cells in rodents. β-Cell proliferation was 

found to be increased from ~0.6% to 4.5% Ki67 positive β-cells after a high-fat diet for 8 weeks 

(40). Recently, Stamateris et al. (78) showed that β-cell proliferation already increases within the 

first week of high-fat diet feeding. In rodents and non-human primates, glucocorticoid treatment 

increases β-cell proliferation (60, 63, 79). In pregnant rodents, β-cell proliferation increases until 

mid gestation and then declines to prepartum levels (53, 55, 80). DNA analogue-based lineage-

tracing in mice showed that β-cell mass adaptation following pregnancy was the result of β-cell 

replication and that no specialized progenitor cells were involved (81). Partial destruction of the 

β-cell mass using STZ resulted in an increased β-cell proliferation rate from ~0.6% Ki67 positive 

β-cells in control to 2.5% in STZ-treated mice 7 days after the treatment (40). In rats, β-cell 

regeneration following 90% pancreatectomy was associated with an increased mitotic index 

of β-cells that was about 3 - 4-fold higher than sham animals already after 3 days (82). Several 

lineage-tracing studies have demonstrated that proliferation of pre-existing β-cells are the major 

source for β-cell regeneration after a partial (50 – 70%) pancreatectomy or destruction of 70-

80% of the β-cell mass in mice (81, 83, 84). The regenerative capacity of β-cell proliferation is 
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restricted with advanced age. Partial pancreatectomy, STZ and diet-induced obesity did not result 

in increased β-cell proliferation in aged mice (40, 76). 

In humans, it is estimated that in normal individuals the β-cell mass is established in the second 

or third decade of life (85, 86) and that the highest peak of postnatal β-cell proliferation (1 - 2% 

of β-cells positive for the proliferation marker Ki67) occurs within the first months of life (22, 87, 

88). This means that under normal conditions turnover of adult human β-cells is very low and 

that individual β-cells are long-lived (22, 85, 86). The reported occurrences of β-cell proliferation 

in adult human β-cells range from 0 - 0.07% (22, 37, 89, 90). Remarkably, the percentage of 

replicating β-cells in samples obtained directly at surgery was 0.5% and from frozen biopsies was 

0.18% as determined by Ki67 staining (71, 91). This raises the question whether the ability to 

detect Ki67 is lost during certain conditions of tissue preparation and may therefore explain the 

differences in β-cell proliferation rates observed.

In humans, the increased β-cell mass observed in obese and pregnant subjects did not correlate 

with an increase of β-cell proliferation, using Ki67 as a marker for cell proliferation (31, 37, 57). 

Conversely, a study by Hanley et al. (36) reporting an increased β-cell mass in obese subjects 

found an increased percentage of β-cells positive for the marker proliferating cell nuclear antigen 

(PCNA). However, PCNA is also involved in DNA repair, which makes it a less specific marker 

for cell proliferation than Ki67 (92, 93). These studies have led to the current view that the 

replicative capacity of adult human β-cells is very limited and that other mechanisms may be 

responsible for the increased β-cell mass observed in obesity and during pregnancy. However, 

given the static nature of these cross-sectional studies, it cannot be excluded that the window 

of β-cell proliferation was missed. Furthermore, an increased number of proliferating β-cells in 

adult humans have been reported in areas adjacent to gastrinoma (94) and in patients with recent 

onset type 1 diabetes (95, 96) with a reported β-cell proliferation rate of 0.7% (Ki67 staining) in 

an 89-years-old patient (96). These studies show that adult human β-cells are able to proliferate 

under certain conditions. 

Altogether the results from human and animal studies show that in both species the rate of β-cell 

proliferation reduces strongly with advanced age during both basal situations and in response 

to an increased insulin demand (Table 1). In young rodents, physiological or pathophysiological 

changes that result in a higher demand for insulin are associated with an increased number of 

proliferating β-cells. Whether this is also true for β-cell mass adaptation in young humans has not 

been investigated. 

Baseline Obesity/HFD
Humans Young (2 months) 1 – 2% Not determined

Adult (>20 years) 0 – 0.07% 0.02%
Mice Young (5 – 6 weeks) 2.5% 4.5%

Adult (~1 year) 0.1 – 0.3% 0.1 – 0.3%

Table 1. Reported percentages of β-cell proliferation (detected by Ki67 staining) in mice and humans. 
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β-Cell apoptosis 

Another mechanism by which the β-cell mass can be regulated is apoptosis. In rodent models 

of diabetes that have a reduced β-cell mass, an increased rate of β-cell apoptosis is observed. 

In obese mice transgenic for human islet amyloid polypeptide (IAPP) that develop islet amyloid 

deposits similar to human type 2 diabetes, β-cell proliferation and neogenesis were increased 

comparable to non-transgenic mice (97). However, in transgenic mice a 10-fold increase in β-cell 

apoptosis prevented adequate β-cell mass expansion. Also, despite a similar β-cell proliferation 

in normoglycemic obese Zucker fa/fa rats and Zucker diabetic fatty (ZDF) rats, the latter develop 

diabetes most likely due to an increase in β-cell apoptosis (44). In humans, the decrease in β-cell 

mass observed in humans with type 2 diabetes is associated with an increased percentage of 

apoptotic β-cells, about 3-fold in obese and 10-fold in lean diabetic subjects compared to non-

diabetic controls (31). Also Yoneda et al. (89) recently reported that the percentage of β-cells 

positive for the apoptosis marker TUNEL was 0.12% in patients with long-standing type 2 

diabetes compared to 0% in healthy controls and newly diagnosed patients. 

Reduction of the β-cell mass as a physiological response to a decreased insulin demand is 

associated with an increase of apoptotic β-cells in rodents. Involution of the β-cell mass in rats 

that had been infused with glucose for 2 days to expand the β-cell mass, was associated with an 

increased number of apoptotic β-cells (98). Also, transplantation of insulinomas in rats resulted 

in a reduction of the endogenous β-cell mass and an increase in β-cell apoptosis (99). Involution 

of β-cell mass postpartum was associated with an increase in β-cell apoptosis in rats (53). In the 

pancreas of postpartum women, β-cell apoptosis was rarely detected and similar to non-pregnant 

women (57). Because of the low frequency of β-cell apoptosis and the small number of women 

in the post-partum group, no conclusion could be drawn for the involvement of apoptosis in 

the involution of the β-cell mass in human pregnancy. Altogether, β-cell apoptosis is one of the 

mechanisms involved in decreasing the β-cell mass in type 2 diabetes. Studies in rodents have 

shown that β-cell apoptosis also plays a role in normal physiology when involution of the β-cell 

mass is required. 

β-Cell neogenesis

β-Cell neogenesis, or the formation of new β-cells from pancreatic progenitor/stem cells, is a 

process that occurs during embryonic development of the endocrine pancreas and has been 

suggested to play a role in normal growth and β-cell adaptation (100). In rodents, regeneration 

of the endocrine pancreas after pancreatic damage coincides with an increased number of 

proliferating duct cells that seem to recapitulate embryonic development of the pancreas (101–

103). This ductal origin of the regenerating β-cell mass has been challenged by several lineage 

tracing studies in rodents after pancreatic damage (104–106) and by a recent publication that did 

not notice regeneration of β-cell mass in response to duct ligation (107). Recently a systematic 

lineage tracing study showed that β-cell neogenesis predominantly occurs during embryogenesis 
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and is completely absent in adult mice using different models to stimulate β-cell regeneration: 

pregnancy, partial pancreatectomy, pancreatic duct ligation and chemical β-cell injury by STZ or 

Alloxan (108). 

Measuring the extent of neogenesis in human cross-sectional histological studies is difficult since 

there is no marker to identity newly formed cells. The most common criteria for identification of 

neogenesis are insulin-positive cells in the pancreatic duct epithelium or tiny clusters (1 - 3 cells) 

of scattered insulin-positive cells in the pancreas (100). During human pancreatic development 

the percentage of insulin positive cells emerging and/or associated with ductal cells and duct cells 

positive for insulin is the highest in the prenatal period and drops to ~0.5% postnatal (22, 87). 

Both human pregnancy and obesity are associated with an increased number of insulin-positive 

duct cells, ~0.75% in obese and ~1% in pregnant subjects (31, 57). The latter percentage was 

not reverted postpartum. In patients with impaired glucose tolerance or with newly diagnosed 

type 2 diabetes an increase in β-cell neogenesis was reported (36, 89) suggesting that this 

represents an attempt for β-cell mass compensation. Also Mezza et al. (48) recently reported an 

increased number of cells positive for both insulin and the duct marker CK19 in insulin resistant 

non-diabetic subjects.

Altogether this has led to the current view that β-cell neogenesis from cells in the ductal 

compartment occurs during embryogenesis of the endocrine pancreas. However, so far, a major 

role in β-cell mass regeneration has not been shown using adult animal models (109). The 

contribution of β-cell neogenesis to β-cell mass adaptation in adult humans remains subject for 

future investigations. 

Transdifferentiation

Transdifferentiation, or direct conversion, is a process characterized by the conversion of one 

mature cell into another mature cell without an intermediate pluripotent or progenitor state. 

Previously, it was thought that once cells become fully differentiated they could not switch their 

phenotype. It was shown that β-cells can be generated by forced expression of key transcription 

factors from pancreatic non-β-cells (74, 75, 110). The potential of transdifferentiation to 

contribute to β-cell mass regeneration was shown by Thorel et al. (111) in a model of near-total 

(>99%) β-cell ablation in which lineage tracing revealed that 65% of the regenerated β-cell 

mass originated from α-cells. Recently, the β-cell mass of alloxan-induced diabetic mice was 

regenerated by acinar-to-β-cell reprogramming through transient cytokine exposure (112). These 

studies have led to the suggestion that transdifferentiation of acinar- or α-cells may contribute to 

alterations in β-cell mass. In obese non-diabetic human donors, Hanley et al. found an increased 

number of acinar-associated insulin positive cell clusters that was related to an increased β-cell 

mass (36). Also, several studies have reported increased numbers of cells positive for both 

insulin and glucagon in patients with diabetes (113), newly diagnosed diabetes patients (89) 

or insulin resistant subjects (48). It is evident that there are cells present in the human pancreas 
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that are positive for both insulin and glucagon. Whether these double positive cells are newly 

formed endocrine cells derived from progenitor cells or α- or β-cells converting into β- or α-cells, 

respectively, remains an open question and difficult to assess given the limitations of human 

tissue samples. Future research should elucidate the role of transdifferentiation in β-cell mass 

adaptation. 

Factors involved in β-cell mass adaptation

Numerous factors have been suggested to play a role in adaptation of the β-cell mass to changes 

in insulin demand. The first stimulus suggested was obviously glucose, however, the discovery 

of many hormones and other growth factors that can influence β-cell proliferation and function 

suggested that glucose has many coworkers (Fig. 4). 
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Figure 4. Illustration of several potential factors and some of the multiple signaling pathways that have been 
reported to be involved in adaptation of β-cells (16, 114, 115). Oxidative metabolism of glucose entering 
the cell via glucose transporter 2 (Glut-2) leads to an increase in the ATP/ADP ratio. This results in closure of 
ATP-dependent potassium channels. The subsequent membrane depolarization results in an influx of Ca2+ 
through the opening of voltage-gated calcium-channels. The increase in intracellular calcium concentration 
stimulates the fusion of insulin granules to the cell membrane and exocytosis of insulin. Increased glucokinase 
(GCK) activity and activation of the insulin/IGF-1 receptor (IGFR/IR) lead to phosphorylation of insulin receptor 
substrate 2 (IRS-2) activating a cascade of downstream molecules including phosphoinositide 3-kinase 
(PI3K) and protein kinase B (PKB) that are associated with increased β-cell proliferation and decreased β-cell 
apoptosis. Hepatocyte growth factor (HGF) binding to the HGF receptor (HGFR) is also associated with β-cell 
proliferation via activation of PI3K/PKB signaling. The binding of growth hormone (GH) to the GH receptor 
(GHR), and prolactin (PRL) or placental lactogen (PL) to the prolactin receptor (PRLR), are associated with 
activating Jak/Stat signaling pathway leading to activation of protein kinase C (PKC) that is associated with 
increased β-cell proliferation, decreased β-cell apoptosis, and enhanced insulin secretion. Activation of the 
Gq-protein coupled receptors Htr2b and GPR40 leads to activation of phospholipase C (PLC), which then 
activates PKC. Binding of glucagon-like peptide-1 (GLP-1) to the Gs-protein coupled receptor for GLP-1 (GLP-
1R) leads to an increase in cAMP levels. cAMP signals are transduced via the exchange protein activated 
by cAMP (EPAC) or cAMP-dependent protein kinase A (PKA) leading to augmentation of glucose-induced 
insulin secretion. Activation of PKA also activates signaling pathways involved in β-cell proliferation and 
survival. Activation of the Gs-protein coupled receptor GPR119 is associated with increased levels of cAMP 
and improved insulin secretion. 
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Glucose and insulin

Infusion of glucose results in an increase of the β-cell mass in rats (98, 116). However, there 

is much debate whether it is glucose itself or the accompanying increase of insulin that is 

the main trigger for β-cell mass to adapt (117). The critical role for insulin signaling in β-cells 

became apparent in a model of β-cell specific deletion of the insulin receptor (IR) (ßIRKO) in mice 

(118) that results in glucose intolerance and impairment of high-fat diet-induced β-cell mass 

adaptation (119). Also, agonism of IR results in signaling through insulin receptor substrate (IRS)-

1 and IRS-2. Mice globally deficient in IRS-1 become insulin resistant, but not diabetic because 

of a compensatory growth in β-cell mass whereas failure of compensation in IRS-2 knock-outs 

results in diabetes (120). Together this points to an important role for insulin-stimulated IR-IRS-2 

signaling in β-cell mass adaptation. However, insulin by itself does not lead to an increase in 

the β-cell mass. Transplantation of insulinomas in rats results in profound hypoglycemia and a 

reduction of the endogenous β-cell mass (99, 121). Therefore, it is thought that insulin signaling 

pathways in β-cells play a more permissive role for β-cell expansion (117). A double knockout 

of the genes encoding insulin 1 and 2 in mice resulted obviously in fetal growth retardation, 

diabetes and neonatal lethality, however, these mice exhibited an increased islet mass showing 

that even in absence of insulin β-cell mass can increase (122). 

The importance of glucose metabolism for β-cell mass adaptation was shown in mice 

haploinsufficient for β-cell glucokinase (GCK+/- mice) (123). In β-cells, GCK catalyzes the rate-

limiting step in glucose metabolism and is considered to be the glucose-sensor for regulating 

glucose-induced insulin secretion (117). GCK+/- mice were unable to increase their β-cell mass 

when challenged with a high-fat diet, an effect that was mediated by IRS-2 (123). This study 

illustrates the involvement of glucose metabolism in β-cell mass adaptation that includes cross 

talk to the insulin signaling pathways. More recently, Porat et al. (124) confirmed the key role 

for glucose metabolism in regulating β-cell proliferation by showing that β-cell specific knockout 

of GCK in mice decreases β-cell proliferation and mass and that treatment of mice with a GCK 

activator resulted in increased β-cell proliferation and mass. 

Incretins

The observation that intrajejunal infusion of glucose resulted in a higher insulin secretory response 

compared to an intravenous glucose injection resulted in the hypothesis that the intestinal wall 

may be the origin of an insulinogenic mechanism (125). The two most important gut hormones 

responsible for this effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-

like peptide-1 (GLP-1) (126). GIP is secreted by intestinal K-cells, whereas GLP-1 is secreted by 

intestinal L-cells in response to carbohydrate or fat intake. Both hormones are rapidly inactivated 

by the enzyme dipeptidyl-peptidase-IV (DPP-IV) in vivo (127). Mice with a double knock-out for 

the GLP-1 receptor (GLP-1R) and the GIP receptor showed less β-cell adaptation in response to 

high-fat diet feeding than control mice, which emphasizes the role for these hormones in the 
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regulation of β-cell mass (128). GLP-1R agonists, more than agonists of the GIP receptor, appear 

to be involved in β-cell survival and regeneration following pancreatic damage by STZ (129). 

In animal models of diabetes GLP-1 or GLP-1R agonist treatment results in increased β-cell 

proliferation and β-cell mass (130, 131). Also, studies have reported that GLP-1R activation 

improves regeneration of the β-cell mass following partial pancreatectomy and STZ-induced 

pancreatic damage in rodents (132–134). However, activation or inactivation of the GLP-1R does 

not attenuate the endogenous β-cell mass adaptation in insulin resistant ob/ob mice (131, 135). 

Also, it has been shown that aging negatively affects the ability of the β-cell mass to expand 

in response to incretins in mice (40, 76). Altogether this shows that GLP-1 receptor agonism 

contributes to β-cell mass regeneration in animal models of diabetes, especially in younger 

rodents. 

In the past decade, numerous GLP-1-based therapies have become available for patients with type 

2 diabetes, leading to an improvement of glycemic control (136, 137). There is some evidence 

that this improved glycemic control may partly be attributed to an improvement of β-cell function 

(138, 139). In vitro it has been shown that incretin therapy has a beneficial effect on survival 

of isolated human islets by decreasing islet-cell apoptosis (140). In pancreas tissue from donors 

with type 2 diabetes a 6-fold increase in β-cell mass was observed in patients receiving incretin-

based therapies (113). Moreover, the β-cell mass was 3-fold higher compared to non-diabetic 

controls. No difference in β-cell proliferation was observed. However, these β-cells were probably 

not functional since the patients still had diabetes. This paper has been criticized because of 

methodological deficiencies, which may limit interpretation of the results (141). Whether incretins 

or incretin-based therapies can increase or stabilize the β-mass in adult patients with diabetes 

remains an open question. 

Adipose tissue-derived factors

Obesity is associated with an increased release of free fatty acids (FFA), adipokines such as leptin 

and resistin, and proinflammatory cytokines from adipose tissue that may affect insulin sensitivity 

of the muscle and liver leading to insulin resistance (16). Some of these factors have also been 

described to affect β-cell mass regulation. Leptin is a key hormone in the control of food intake, 

energy expenditure, metabolism, body weight, and glucose homeostasis. Ob/ob and db/db mice, 

which have defects in leptin or in the leptin receptor, respectively, become severely obese, insulin 

resistant and have an increased β-cell mass. Since β-cells express leptin receptors, leptin has 

been implicated as a negative regulator of β-cell mass (142). In a mouse model of pancreas-

specific (using the Pdx1 promoter) knock-out of the leptin receptor β-cell mass adaptation was 

hampered after feeding a high-fat diet may point to a direct effect of leptin on β-cell turnover 

(143). Furthermore, Park et al. (144) reported that central infusion of resistin increased β-cell 

mass by β-cell proliferation in pancreatectomized diabetic rats. Also, β-cells abundantly express 

the nutrient sensing G-protein coupled receptor GPR40, which can bind medium- and long-chain 
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fatty acids leading to glucose-dependent insulin secretion (145, 146). Similarly, the ‘fat sensor’ 

GPR119 is highly expressed on β-cells and activation results in release of incretins leading to 

enhancement of insulin secretion (147, 148). Whether activation of these FFA receptors can also 

directly affect β-cell mass and proliferation remains to be investigated. Altogether these studies 

show that several adipose tissue-derived factors can directly modulate β-cell function and mass. 

Liver-derived factors

The liver plays a central role in glucose homeostasis, as it is one of the primary sites for storage 

of glucose and generation of glucose from noncarbohydrate precursors, processes that are 

regulated by insulin and glucagon (8). Liver-specific insulin receptor knock-out (LIRKO) mice have 

severe insulin resistance and marked hyperinsulinemia due to an increased β-cell mass (47). This 

suggests that the liver plays an important role in regulating the β-cell mass. It was shown that 

regulation of β-cell mass occurred through neuronal signals from the liver (149). Furthermore, 

several factors produced in the liver have been reported to increase β-cell mass adaptation. 

Hepatocyte growth factor (HGF) is increased in mice fed a high-fat diet and pharmacological 

inhibition of HGF resulted in impaired β-cell mass adaptation to diet-induced obesity (150). It 

was shown that one of the stimuli for β-cell adaptation in LIRKO mice, is a systemic hepatocyte-

derived growth factor(s) that was also able to increase proliferation of human β-cells in vitro (151). 

Finally, chemically induced insulin resistance resulted in the discovery of betatrophin, a protein 

that is enriched in liver and fat tissues, and potently stimulates β-cell proliferation (152). Also, 

this study reported that expression of increased betatrophin in the liver of pregnant mice and in 

diabetic ob/ob and db/db mice, which emphasizes its involvement in β-cell mass adaptation (152). 

However, transplantation of human islets into insulin resistant mice with elevated concentrations 

of betatrophin, did not enhance human β-cell proliferation (153). Recently, a study reported 

that both patients with type 1 and type 2 diabetes have increased circulating concentrations of 

betatrophin compared to healthy controls (154, 155). This may suggest that a potential stimulus 

for β-cell proliferation is present in patients with diabetes; however, this is insufficient to increase 

the number of β-cells.

Pregnancy-related factors

Placental lactogen and prolactin are both members of the growth hormone/prolactin/placental 

lactogen family and have been described to be involved in the regulation of β-cell mass 

adaptation during pregnancy in rodents. Placental lactogen is secreted by the placenta and 

prolactin and growth hormone by the pituitary gland. Placental lactogen and prolactin can both 

bind the prolactin receptor (PRLR), which is expressed on β-cells (156). In rats, gene expression of 

PRLR and the growth hormone (GH) receptor were increased in the pancreas during pregnancy 

(157). Recently it was reported that deletion of the GH receptor in β-cells was associated with 

a lack of compensatory β-cell mass adaptation in response to HFD-induced obesity (158). β-Cell 



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

General introduction  |  25

proliferation in pregnant mice followed the same temporal pattern as serum concentrations of 

placental lactogen, suggesting a causal relationship (80). Overexpression of placental lactogen 

in normal mice resulted in increased β-cell proliferation and islet mass that was associated with 

hypoglycemia (159). Also, β-cell proliferation and β-cell mass adaptation was impaired in pregnant 

mice carrying a heterozygous PRLR null mutation (160). Furthermore, it was demonstrated that 

lactogenic signaling is associated with an increase in serotonin production by β-cells that activates 

β-cell proliferation in a paracrine/autocrine way (161). Inhibition of serotonin synthesis blocks 

β-cell mass expansion in pregnant mice. Interestingly, during pregnancy the expression of the 

stimulatory Gq-coupled serotonin receptor Htr2b was high but normalized at the end of gestation, 

while expression of the inhibitory Gi-linked serotonin receptor Htr1d was increased shortly before 

parturition and associated with cessation of β-cell proliferation and regression of β-cell mass 

(161). This suggests that the effect of serotonin on β-cell adaptation can be modulated by a shift 

in the receptor expression. 

α-Cell mass adaptation

When in 1921 Frederick Banting and Charles Best tested their first crude pancreatic extract in a 

pancreatectomized dog, which would lead to the Nobel Prize awarded discovery of insulin, they 

noticed mild hyperglycemia preceding the insulin-induced hypoglycemia. This was attributed to 

the presence of a substance that mobilized glucose, therefore named ‘glucagon’ (9, 162). Until 

recently, most research has focused on how β-cells adapt to physiological and pathophysiological 

changes in the glucose metabolism. Therefore, little is known about α-cell adaptation during 

changing metabolic demands. Both type 1 and type 2 diabetes are characterized by a disrupted 

glucagon-insulin balance due to an absolute or relative hypoinsulinemia leading to insufficient 

suppression of glucagon secretion (9, 163). The subsequent (relative) hyperglucagonemia 

aggravates the consequences of hypoinsulinaemia because of an increased glucose output 

from the liver (9). This is illustrated by the observation that glucagon receptor knockout mice 

are protected against the development of streptozotocin-induced diabetes in mice (164). Also, 

GLP-1RA decreases glucagon secretion, which is one of the mechanisms by which this therapy 

improves glucose homeostasis in patients with type 2 diabetes (165). In non-human primates 

that spontaneously develop insulin resistance associated with obesity and type 2 diabetes, an 

increased islet amyloid deposition is associated with increased α-cell proliferation leading to an 

imbalance in the α- to β-cell ratio (166). Recently this same group showed that in overweight 

insulin-resistant baboons the α-cell volume was significantly increased, even preceding changes 

in β-cell volume (167). Also in mice fed a high-fat diet for 8 weeks, α-cell mass was increased in 

the absence changes in β-cell mass (168). In patients with type 2 diabetes a higher α- to β-cell 

ratio has been reported, that is due to a decrease in β-cell mass rather than an increase in α-cell 
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mass (169). In this study the α- to β-cell ratio did not change when comparing obese versus non-

obese individuals. This suggests that the extent of α-cell mass adaptation is similar to β-cell mass 

adaptation. 

Aims and structure of this thesis

The aim of the research described in this thesis was to investigate β- and α-cell adaptation in 

response to different metabolic changes. 

Although it has been recognized for a long time that the pancreas is a regionally heterogeneous 

organ, it is unknown whether β-cell adaptation also occurs heterogeneously throughout the 

pancreas. Chapters 2 – 4 describe studies in which we assessed whether β-cell adaptation is 

topologically homogenous throughout the pancreas in response to an increased demand for 

insulin in different species. In chapter 2, we examined early events of β-cell adaptation in 

different regions of the pancreas of high-fat diet induced insulin resistant mice. Chapter 3 

describes β-cell adaptation throughout the pancreas in dexamethasone-induced insulin resistant 

rats. Glucocorticoid-induced insulin resistance occurs within 5 days of treatment (170) and is 

therefore an acute stimulus for β-cell adaptation. In chapter 4, findings from rodent studies are 

translated to humans. In this chapter we examined β- and α-cell adaptation in different regions 

of the pancreas from lean and obese human donors. 

In chapter 5, we studied the effect of one of the most potent stimuli involved in the regulation 

of β-cell mass and function, GLP-1R activation, on β- and α-cell adaptation under normoglycemic 

conditions in mice. In animal models of diabetes, incretin-based therapies increase β-cell mass. 

GLP-1R agonist treatment is also associated with a reduced blood pressure, improved lipid profiles 

and endothelial function and may therefore also be of benefit for non-diabetic individuals with 

obesity or cardiovascular disease (171–174). However, the effect of GLP-1R agonist under 

normoglycemic conditions on β- and α-cells is unclear. 

Chapter 6 describes a study in which the influence of a long-term high-fat low-carbohydrate 

ketogenic diet on glucose tolerance and β- and α-cell adaptation in mice was assessed. Nutrition 

plays an important role in the development of diabetes and can directly affect β-cell growth 

and function (98, 115, 116, 145, 147). In many popular diets the amount of fat is substantially 

increased at the cost of carbohydrates. Thereby the body is forced to use fats instead of 

carbohydrates as a primary source of energy. We investigated whether these changes in glucose 

metabolism are associated with changes in β- and α-cells on the long term. 

Diabetes mellitus results from an absolute or relative deficiency of functional β-cells leading to 

an impaired glucose homeostasis. For patients with diabetes, therapies are needed that restore, 

maintain or prevent loss of functional β-cells. Insight in mechanisms relevant for the protection 

or improvement of β-cell function is therefore important. Currently, there is no robust technique 
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available to measure the β-cell mass or function of humans in vivo. Also, existing in vitro assay 

platforms are mostly using rodent-derived cell lines and are set up to assess insulin gene expression 

or protein content (175–178). Following glucose stimulation only a fraction of the total insulin 

content is secreted from β-cells, which makes these existing read-outs poor indicators of secretory 

function (14). Therefore, there is a strong need for a robust assay platform using human islets to 

study β-cell function in order to find novel mechanisms involved in human β-cell function and 

adaptation to changing metabolic demands. In chapter 7 we describe three culture platforms 

using primary human islets in which β-cell function can be assessed. These platforms can be 

used for high-throughput screening assays to identify novel mechanisms involved in β- and α-cell 

adaptation. 

Chapter 8 summarizes the findings and aims to place various aspects of this thesis in the context 

of current literature about β- and α-cell adaptation. 
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Abstract

Aims

β-Cells adapt to an increased insulin demand by enhancing insulin secretion via increased 

β-cell function and/or increased β-cell number. While morphological and functional 

heterogeneity between individual islets exists, it is unknown whether regional differences in 

β-cell adaptation occur. Therefore we investigated β-cell adaptation throughout the pancreas 

in a model of high-fat diet (HFD)-induced insulin resistance in mice. 

Methods

C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The 

pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for 

either histology or islet isolation. The capacity of untreated islets from the three regions 

to adapt in an extrapancreatic location was assessed by transplantation under the kidney 

capsule of streptozotocin-treated mice. 

Results

SR islets showed 70% increased β-cell proliferation after HFD, whereas no significant 

increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold 

enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. 

In contrast, transplantation of islets isolated from the three regions to an extrapancreatic 

location in diabetic mice led to a similar decrease in hyperglycemia and no difference in β-cell 

proliferation. 

Conclusions

HFD-induced insulin resistance leads to topologically heterogeneous β-cell adaptation and is 

most prominent in the splenic region of the pancreas. This topological heterogeneity in β-cell 

adaptation appears to result from extrinsic factors present in the islet microenvironment. 
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Introduction

The insulin producing pancreatic β-cells are essential to maintain blood glucose levels within a 

narrow range. When the demand for insulin is chronically increased by physiological or pathological 

changes, β-cells can adapt by enhancing insulin secretion via increased β-cell function and/or 

increased β-cell mass (1, 2). Inadequate adaptation leads to the development of hyperglycemia 

and eventually diabetes mellitus (3, 4). Therefore, insight into the mechanisms that control β-cell 

adaptation is important for developing therapies that can preserve or enhance β-cell mass.

The pancreas is a regionally heterogeneous organ. During embryonic development the pancreas 

originates from two epithelial buds. The ventral bud gives rise to the posterior part of the head 

and the uncinate process, and the dorsal bud forms the anterior part of the head, the body and 

the tail of the pancreas (5, 6). Pancreatic islets derived from the ventral bud contain more cells 

producing pancreatic polypeptide (PP), whereas islets derived from the dorsal bud contain more 

α-cells and secrete more insulin upon glucose stimulation (7, 8). Furthermore, several histological 

studies in human pancreas describe a higher islet density in the tail compared to the body region 

of the pancreas (4, 9, 10). 

While morphological and functional heterogeneity between individual islets exists, it is unknown 

whether there are regional differences in β-cell adaptation throughout the pancreas. Regional 

heterogeneity in cell proliferation rate is observed in regenerating liver lobules after partial 

hepatectomy (11). In this study, we examine early events of β-cell adaptation in different regions 

of the pancreas using a model of high-fat diet induced insulin resistance in mice that is known to 

increase β-cell mass in the long term (12, 13). 

Research design and methods

Animals

Male C57BL/6J mice, 8 weeks old (Charles River Laboratories, Wilmington, MA, USA) were fed a 

high-fat diet (HFD, 45 kcal% fat, D12451, Research Diets, New Brunswick, NJ, USA) or a normal 

diet (control, 10 kcal% fat, D12450B, Research Diets) for 6 weeks. Average food intake was 

determined per cage housing 3-4 mice weekly. For the 12-week diet study, 12 week old male 

C57BL/6J mice (Animal Facility Leiden University Medical Center), that were fed a high-fat or 

normal diet, were used. For islet transplantation experiments we used male C57BL/6J donor and 

recipient mice, 8-10 weeks old and fed regular chow. Animal experiments were approved by the 

ethical committee on animal care and experimentation of the Leiden University Medical Center 

(Permit Numbers: 09174, 07145, and 11146).
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Glucose and insulin tolerance test 

An intra-peritoneal glucose tolerance test (GTT) was performed in overnight-fasted mice. Blood 

samples were drawn from the tail vein before injecting 2 g/kg glucose and after 15, 30, 60 and 

120 minutes. An intra-peritoneal insulin tolerance test (ITT) was performed in animals that had 

been fasted for 6 hours. After measuring basal blood glucose concentration from the tail vein 

0.75 U/kg insulin was injected followed by monitoring of the blood glucose concentrations after 

15, 30 and 60 minutes. Blood glucose concentrations were measured using a glucose meter 

(Accu-Chek, Roche, Basel, Switzerland) and insulin concentrations were measured in 5 μl plasma 

samples by ELISA (Ultra Sensitive Mouse Insulin ELISA kit, Chrystal Chem, Downers Grove, IL, 

USA).

Pancreas dissection and islet isolation 

The pancreas was dissected, weighed and based on their spatial relation to adjacent organs 

divided into three parts: the duodenal, gastric and splenic region (Fig. S1) (14, 15). The duodenal 

region was defined as the section of the pancreas attached to the duodenum, the gastric region 

as the part attached to the pylorus and stomach and the splenic region as the part attached to 

the spleen. For immunohistochemistry each pancreatic region was fixed in a random orientation 

in 4% paraformaldehyde and embedded in paraffin. For islet isolation the pancreas of 6-8 

mice were pooled per region and digested using 3 mg/ml collagenase (Sigma-Aldrich, St Louis, 

CA, USA). Islets were manually picked and tested for insulin secretion or purified by gradient 

separation (1.077 g/ml ficoll, hospital pharmacy, LUMC) and transplanted after overnight culture. 

RNA preparation and real-time PCR

Total RNA was extracted from isolated islets using RNeasy micro kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocol. Total RNA (400 ng) was reverse transcribed using 

M-MLV reverse transcriptase (Invitrogen). Quantitative PCR (qPCR) was performed on a 

CFX384 Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA) using 

the SYBR Green PCR Master Mix (Applied Biosystems, Foster city, CA, USA). Fold induction 

was calculated using deltaCT method with mouse cyclophilin as housekeeping gene. Mouse 

primers used were: cyclophilin (forward) 5’-CAGACGCCACTGTCGCTTT-3’ and (reverse) 

5’-TGTCTTTGGAACTTTGTCTGCAA-3’; cyclin D1 (forward) 5’- TCCGCAAGCATGCACAGA-3’ 

and (reverse) 5’-GGTGGGTTGGAAATGAACTTCA-3’; insulin 2 (forward) 

5’-CTGGCCCTGCTCTTCCTCTGG-3’ and (reverse) 5’CTGAAGGTCACCTGCTCCCGG-3’.

Glucose-induced insulin secretion

Groups of 10 islets were incubated in a modified Krebs-Ringer Bicarbonate buffer (KRBH) 

containing 115 mM NaCl, 5 mM KCl, 24 mM NaHCO3, 2.2 mM CaCl2, 1 mM MgCl2, 20 mM 

HEPES, 2 g/l human serum albumin (Cealb, Sanquin, The Netherlands), pH 7.4. Islets were 
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successively incubated for 1 hour in KRBH with 2 mM and 20 mM glucose at 37ºC. Insulin 

concentration was determined in the supernatants by ELISA (Mercodia, Uppsala, Sweden). Insulin 

secretion was corrected for DNA content to correct for islet size differences. DNA content was 

determined by Quant-iT PicoGreen dsDNA kit (Invitrogen, Carlsbad, CA, USA). 

Islet transplantation 

For islet transplantation experiments recipient mice were made diabetic by intra-peritoneal 

injection of 160 mg/kg streptozotocin (STZ, Sigma-Aldrich), freshly dissolved in citrate buffer (pH 

4.5). Mice were considered diabetic when the blood glucose concentration was greater than 20 

mmol/L. Blood glucose concentrations were determined in blood obtained from the tail vein by a 

glucose meter (Accu-Chek). Prior to the transplantation mice were given 0.1 mg/kg buprenorfin 

(Temgesic, Schering-Plough, Kenilworth, NJ) after which they were anaesthetized using isoflurane 

and kept warm on a heating pad. The left kidney was exposed by a small opening in the flank 

of the mouse. A small incision was made in the kidney capsule. Using a Hamilton syringe 

(Hamilton Company, Reno, CA) and polyethylene tubing (PE50, Becton Dickinson, Franklin Lakes, 

NJ) siliconized with Sigmacote (Sigma-Aldrich), 150 islets per mouse were transplanted under 

the kidney capsule. The peritoneum and the skin were sutured and the animals were allowed 

to recover under a warm lamp. Blood glucose concentrations were monitored every other day 

after transplantation via blood from the tail vein. The islet graft was removed 10 days post-

transplantation, fixed by immersion in a 4% paraformaldehyde solution, embedded in paraffin 

blocks and sliced into 4 μm sections and mounted on slides. 

β-Cell mass morphometry and proliferation

For the identification of β-cells, sections were immunostained with guinea-pig anti-insulin IgG 

(Millipore, Billerica, MA, USA) or rabbit anti-insulin IgG (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) for 1 hour followed by HRP- or AP- conjugated secondary antibodies for 1 hour. Sections 

were developed with 3,3’-diaminobenzidine tetrahydrochloride (DAB) or liquid permanent red 

(LPR, Dako, Denmark) and counterstained with hematoxylin. 

For determining the β-cell mass, 3-4 insulin-DAB stained sections (200 µm apart) per pancreatic 

region were digitally imaged (Panoramic MIDI, 3DHISTECH, Hungary). β-Cell area and pancreas 

area stained with hematoxylin were determined using an image analysis program (Stacks 2.1, 

LUMC), excluding large blood vessels, larger ducts, adipose tissue and lymph nodes. The area of 

clusters containing ≥ 4 β-cells was individually measured and used to determine the average β-cell 

cluster area per pancreatic region. Islet density was determined by dividing the number of β-cell 

clusters by the (regional) area that was analyzed. β-Cell mass was determined by the percentage 

of β-cell area to pancreas (regional) area multiplied by the pancreas (regional) weight.

Two techniques were used to identify proliferating β-cells. First, incorporation of 5-bromo-2′-
deoxyuridine (BrdU, Sigma-Aldrich) in proliferating β-cells was established by administering 50 
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mg/kg BrdU subcutaneously twice daily during the final 7 days of the 6-week study period. The 

transplanted recipient mice received 1 mg/ml BrdU in the drinking water (refreshed every other 

day) during the final 7 days. Sections were double stained for insulin-LPR and BrdU (BrdU staining 

kit, Invitrogen). BrdU-positive β-cells were assessed as a proportion of all β-cells per pancreatic 

region or islet graft. Second, sections were double stained with goat anti-Ki67 IgG (Santa Cruz 

Biotechnology) and guinea-pig anti-insulin IgG (Millipore) overnight at 4ºC after heat-induced 

antigen retrieval in 0.01 M citrate buffer (pH 6.0) followed by biotin-conjugated anti-goat IgG 

(Dako), streptavidine-Alexa 488 (Invitrogen) and TRITC-conjugated anti-guinea-pig (Jackson 

ImmunoResearch Laboratories, West Grove, PA, USA). Nuclei were stained with DAPI (Vector 

Laboratories, Burlingame, CA, USA). Apoptotic beta-cells were counted after being identified 

by immunostaining for insulin and by the terminal deoxynucleotidyl-transferase-mediated 

deoxyuridine 5-triphosphate nick end labeling (TUNEL) assay (Roche). The investigator was blind 

to the experimental conditions.

Statistical analysis

Data are presented as means ± SEM. Statistical calculations were carried out using GraphPad 

Prism 5 (GraphPad Software, San Diego, CA, USA). The statistical significance of differences was 

determined by an unpaired Student’s t test or two-way ANOVA, followed by Bonferroni’s multiple 

comparisons test, as appropriate. P<0.05 was considered statistically significant. 

Results

Metabolic characteristics of mice fed HFD for 6 weeks

Body weight and food intake were increased after 6 weeks HFD compared to control (Fig. 1A, B). 

After overnight fasting glucose concentrations were similar (5.1 ± 0.2 mmol/L (HFD) vs 5.0 ± 0.2 

mmol/L (control), p=0.72). Glucose tolerance was decreased in HFD mice compared to control 

(Fig. 1C, D), whereas insulin concentrations were increased twofold (Fig. 1E, F). Insulin tolerance 

was decreased by HFD (Fig. 1G, H). Therefore, HFD for 6 weeks is sufficient to induce insulin 

resistance leading to an increased demand for insulin from β-cells. 
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Figure 1. Metabolic characteristics of control mice and mice fed a high fat diet for 6 weeks. A. Body 
weight (n = 13-14 mice). B. Food intake (n = 4 cages). C. Blood glucose concentrations during GTT (n = 6 
mice). D. AUC blood glucose concentrations during GTT (n = 6 mice). E. Insulin concentrations during GTT  
(n = 5-6 mice). F. AUC insulin concentrations during GTT (n = 5-6 mice). G. Blood glucose concentrations 
during ITT (n = 8 mice). H. AUC of glucose concentrations during ITT (n = 8 mice). HFD = high-fat diet, AUC 
= area under the curve. *p<0.05, **p<0.01, ***p<0.001.

Increased β-cell proliferation in the splenic region of the pancreas in response to HFD

The effect of HFD on early β-cell adaptation in different regions was evaluated. The pancreas 

was divided in three regions: a duodenal, gastric and splenic region. The β-cell mass was 

determined by analyzing 29.9 ± 1.6 mm2 pancreatic tissue per region per mouse. A difference 

in β-cell mass between HFD and control mice was found neither in the entire pancreas, nor in 

the separate regions (Fig. 2A, B). For determination of the average β-cell cluster area 46 ± 2.5 

clusters were included per region. The β-cell cluster area was significantly larger in islets from 

the GR, no differences were found between HFD and control mice (Fig. 2C, D). Islet density was 

homogeneous throughout the pancreas and similar after HFD for 6 weeks (Fig. 2E, F). After 12 

weeks HFD we could confirm an increased beta-cell area, which was mostly augmented in the SR 

of the pancreas compared to control mice (Fig. 2G, H).

For determination of the number of proliferating β-cells, Ki67+ β-cells were counted in 95 ± 6 

islets per mouse (Fig. 3A). The occurrence of Ki67+/insulin+ cells was very low (Ki67+/Insulin+ 0.12 

± 0.03 % (HFD) vs. 0.09 ± 0.02 % (control)). To increase the sensitivity for detecting proliferating 

β-cells, BrdU was administered for 7 days. We counted 885 ± 48 β-cells per region per mouse. 

β-Cell proliferation was significantly increased in HFD mice compared to control mice (Fig. 3C). 

A positive correlation was found between the increase in body weight and the rate of β-cell 
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proliferation in HFD mice (r2=0.70; p<0.05) (data not shown). HFD increased β-cell proliferation 

by 70% in the SR of the pancreas whereas no significant increase was found in the DR and GR 

(Fig. 3B, D). Also mRNA levels of Cyclin D1 were increased in islets from the splenic region of 

HFD mice (Fig. 3E). By counting on average 460 ± 73 cells per region per mouse, the occurrence 

of apoptotic β-cells was very low and not different between the two groups (data not shown). 

 

Figure 2. β-Cell mass morphometry in control and HFD mice. A. β-Cell mass in the entire pancreas after 6 
weeks (n = 6 mice). B. β-Cell mass by pancreatic region after 6 weeks (n = 6 mice per region). C. β-Cell cluster 
area in the entire pancreas after 6 weeks (n = 6 mice). D. β-Cell cluster area by pancreatic region after 6 weeks 
(n = 6 mice per region). E. Islet density in the entire pancreas after 6 weeks (n = 6 mice). F. Islet density by 
pancreatic region after 6 weeks (n = 6 mice per region). G. β-Cell area in the entire pancreas after 12 weeks (n 
= 6 mice). H. β-Cell area by pancreatic region after 12 weeks (n = 6 mice per region). DR = duodenal region, 
GR = gastric region, SR = splenic region, HFD = high-fat diet. *p<0.05, #p<0.05 by unpaired Student’s t test. 
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Figure 3. β-Cell proliferation in control and HFD mice after 6 weeks. A. Image of proliferating beta-cells 
(arrowheads), Ki67 (green), insulin (red) and DAPI (blue). Scale bar = 50 μm. B. Image of proliferating beta-
cells (arrowheads), BrdU (brown) and insulin (red) per pancreatic region in control and HFD mice. Mice 
received BrdU during the final 7 days. Scale bar = 50 μm. C. β-Cell proliferation in the entire pancreas, BrdU 
labeling during the final 7 days (n = 6 mice). D. β-Cell proliferation by pancreatic region, BrdU labeling during 
the final 7 days (n = 6 mice per region). E. Cyclin D1 mRNA expression by pancreatic region, control = 1. 
DR = duodenal region, GR = gastric region, SR = splenic region, HFD = high-fat diet. *p<0.05, ***p<0.001

Prominent increase in glucose-induced insulin release from isolated islets in the splenic 

region by HFD

The functional adaptation of islets from HFD mice was assessed by measurement of glucose-

induced insulin secretion. Stimulation of islets from HFD mice with 20 mM glucose led to a twofold 

increase in insulin secretion compared to control mice (Fig. 4A). When comparing the response 

of islets derived from the different pancreatic regions after HFD, insulin secretion was 56% and 

72% higher in SR islets compared to GR and DR islets, respectively (Fig. 4B, C). Expression levels 

of Insulin mRNA showed a similar pattern (Fig. 4D). 
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Figure 4. Glucose-induced insulin secretion from isolated islets of control and HFD mice. Insulin secretion was 
corrected for DNA content. A. Insulin secretion during 2 mM and 20 mM glucose stimulation from islets in 
the entire pancreas (n = 24). B. Insulin secretion from islets by pancreatic region during incubation in 2 mM 
glucose buffer (n = 8 per region) and C. 20 mM glucose buffer (n = 8 per region) for control and HFD mice. 
D. Insulin mRNA expression by pancreatic region, control = 1. DR = duodenal region, GR = gastric region, SR 
= splenic region, HFD = high-fat diet. *p<0.05, **p<0.01, ***p<0.001.

Similar islet function and β-cell proliferation after transplantation of islets from different 

regions to an extrapancreatic location

Next we assessed whether the observed proliferative and functional islet heterogeneity is due to 

differences in the islet microenvironment or due to intrinsic differences between islets from the 

three regions. Islets isolated from the three pancreatic regions were transplanted under the kidney 

capsule of syngeneic STZ-induced diabetic mice. All grafts contained 150 handpicked islets with 

an average size of that was similar for all transplants resulting in a similar graft size (Fig. 5A). Since 

hyperglycemia in these mice is required for detectable adaptation of grafted islets (16, 17), the 

increased demand for insulin in this model is expected to be a potent stimulus for β-cell adaptation 

in the islet graft. The islet graft size was sufficient to reduce blood glucose concentrations, but 

it was not sufficient to lead to normoglycemia in most mice thereby maintaining the stimulus 

for β-cells to adapt (17). Normoglycemia (defined as blood glucose concentration <10 mmol/L) 

was reached with 3 out of 7 DR, 1 out of 6 GR and 2 out of 8 SR islet grafts. On average, all 

transplants led to a similar decrease in hyperglycemia (blood glucose concentrations 10 days 

post-transplantation 11.5 ± 1.6 mmol/L (DR grafts), 15.5 ± 2.1 mmol/L (GR grafts), 15.7 ± 1.7 
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(SR grafts) mmol/L, p=0.20; Fig. 5B, C). For determination of the number of proliferating β-cells 

in the grafts 1114 ± 113 β-cells per islet graft were counted. β-Cell proliferation was similar for 

DR, GR or SR islet grafts (p=0.53, Fig. 5D, E). 

Figure 5. β-Cell adaptation in islets grafts from different pancreatic regions transplanted in syngeneic diabetic 
mice. A. Average islet size per transplant. B. Blood glucose concentrations of STZ-induced diabetic mice 
followed up to 10 days after transplantation (n = 6-8 mice per region) of DR, GR or SR islets. C. AUC blood 
glucose concentrations post-transplantation corrected for pre-transplantation glucose concentration (n = 6-8 
mice per region). D. Image of proliferating beta-cells, positive for both BrdU (brown) and insulin (red) in islets 
transplanted under the kidney capsule of diabetic mice. Scale bar = 20 μm. E. β-Cell proliferation in the islet 
grafts 10 days after transplantation, BrdU labeling during the final 7 days (n = 6-7 mice per region). DR = 
duodenal region, GR = gastric region, SR = splenic region, AUC = area under the curve.

Discussion

The main results of our study show that β-cell adaptation is topologically heterogeneous 

throughout the pancreas. Splenic islets are involved in the first line of response in β-cell 

adaptation. Although morphological and functional heterogeneity between individual islets have 

been described before, this is the first study showing regional differences in β-cell adaptation to 

an increased metabolic demand.
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β-Cell adaptation in different pancreatic regions was studied in mice fed HFD for 6 weeks. We 

hypothesized that this time period would be long enough to induce metabolic changes and 

would allow us to investigate early islet adaptation. Six weeks HFD led to insulin resistance, 

with a higher demand for insulin to which β-cells started to adapt. Since β-cell mass was not 

significantly changed yet, but an increased rate of β-cell proliferation was already observed, this 

is an appropriate model for studying early events of β-cell adaptation.

The presence of increased β-cell proliferation and an augmented insulin secretory response in 

islets derived from the splenic region of the pancreas indicates that islets in this part of the 

pancreas constitute an early line of defense against an increased insulin demand. Our study was 

not designed to answer whether the relative contribution of β-cell adaptation in the different 

regions changes during prolonged high-fat feeding. 

The observed proliferative and functional heterogeneity between islets from different regions 

in response to a HFD stimulus could be explained in two ways: either the islets from different 

pancreatic regions are intrinsically different or they receive distinct extrinsic signals from their 

microenvironment. This latter hypothesis was investigated by transplanting isolated islets to an 

extrapancreatic location in diabetic mice. After 10 days, islet grafts from the duodenal, gastric 

or splenic region led to a similar decrease in hyperglycemia and there was no difference in β-cell 

proliferation. Therefore we suggest that this newly identified topological heterogeneity of β-cell 

adaptation observed in HFD mice is most likely the result of distinct extrinsic signals present in the 

microenvironment of the islet.

The islet microenvironment is formed by a complex network of nerves and blood vessels that 

mediate neuronal, humoral and circulatory signals which are involved in β-cell adaptation. Islets 

are densely innervated by the autonomic nervous system (18) and it was reported that β-cell 

mass adaptation is regulated by neuronal signals from the liver (19). A recent study identified 

a subpopulation (5%) of islets with greater blood perfusion and vascular density, which was 

associated with increased β-cell function and proliferation (20). But it still remains unclear 

whether the increased vascular density is the cause or the consequence of the increased β-cell 

mass. Another possible factor is the strong paracrine dialogue between the islet microvasculature 

and β-cells (21). However, here we show that early adaptation persists in vitro after isolation of 

the islets, since SR islets from HFD mice display an enhanced glucose-induced insulin secretion 

compared to DR and GR islets. Therefore, this indicates that heterogeneity in β-cell adaptation is 

not dependent on immediate innervation or vascular blood supply.

Furthermore, a strong structural and functional relationship between islets and acinar cells exists, 

which is referred to as the islet-acinar axis, in which insulin and somatostatin play an important 

role in regulating exocrine function (22). It was shown that the amylase content of acinar tissue 

from the splenic region of rats is higher than in the duodenal region of the pancreas (23). 

Whether the exocrine tissue surrounding islets can locally influence β-cell adaptation remains an 

open question. 
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Past studies have shown that islets from the dorsal pancreas secrete more insulin compared to 

islets from the ventral region (8, 24). The gastric and splenic regions originate from the dorsal 

lobe. However our data also show heterogeneous adaptation within the dorsal pancreas (GR 

vs SR) indicating that embryonic origin of the different regions does not entirely explain the 

heterogeneity observed in this study. 

It is likely that our findings of regional heterogeneity in β-cell adaptation can be extended 

to the human pancreas. In the pancreas of humans and non-human primates heterogeneity 

in islet density throughout the pancreas (4, 9, 10), and changes in islet mass associated with 

different metabolic conditions have been described (3, 25–29). For patients undergoing distal 

pancreatectomy, this would imply loss of the most adaptive islets which may lead to a higher risk 

for postoperative diabetes. Furthermore, histological studies of β-cell adaptation in the human 

pancreas are often based on tissue samples from the splenic region only (3, 25), whereas this may 

not be representative for the entire organ. 

Finally, the findings of this study imply that the islet microenvironment harbors factors that 

are involved in β-cell adaptation. Investigation of these regional differences may lead to the 

identification of factors that play a key role in β-cell regeneration.
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Supporting Information 

Figure S1. The spatial relation to adjacent organs was used to divide the pancreas into three parts: DR = 
duodenal region, GR = gastric region, SR = splenic region. 
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Abstract

Introduction

β-cells adapt to an increased insulin demand by increasing β-cell function and/or the number 

of β-cells. Diet-induced insulin resistance in mice leads to topologically heterogeneous β-cell 

adaptation. It is unknown whether this also occurs in other models of insulin resistance. 

In this study we investigate β-cell adaptation throughout the pancreas in glucocorticoid-

induced insulin resistance in rats. 

Methods

Wistar rats were treated with 10 μg/day dexamethasone (DXM) for 3 or 6 weeks. Glucose 

tolerance was assessed by an intravenous glucose tolerance test (GTT). The pancreas was 

divided in a duodenal (DR), gastric (GR), and splenic region (SR) and taken for histology. 

Immunostainings for insulin and Ki67 were performed to identify β-cells and proliferating 

β-cells, respectively. 

Results

After 2 weeks of DXM-treatment the insulin secretory response during the GTT was two-fold 

increased compared to controls. β-Cell area was significantly increased after DXM-treatment, 

and this increase was most prominent in the SR of the pancreas. The average β-cell cluster 

size in the SR of DXM-treated rats was increased, whereas β-cell proliferation was not 

significantly different. 

Conclusion

DXM-induced insulin resistance in rats leads to topologically heterogeneous β-cell adaptation. 

The splenic region of the pancreas is particularly responsive to changes in insulin resistance 

in rodents. Comparison of regional differences may lead to the identification of mechanisms 

involved in β-cell adaptation. 
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Introduction

The insulin producing β-cells are essential for keeping the blood glucose levels within a narrow 

range. When insulin sensitivity is chronically reduced by physiological or pathological changes, 

β-cells can meet the higher demand for insulin by enhancing β-cell function and/or increasing 

the number of β-cells. Obese non-diabetic subjects have a higher β-cell mass compared to lean 

subjects (1–3). Also, insulin resistance in animal models of obesity is correlated to a higher β-cell 

mass (4–6). An inadequate number of functional β-cells contributes to the development of type 

2 diabetes (1, 7). Therefore, it is important to elucidate mechanisms involved in β-cell mass 

adaptation for developing therapies that can preserve β-cell mass.

Glucocorticoids are widely used as therapeutic agents, especially for their anti-inflammatory 

actions. However, they antagonize the action of insulin and thereby induce insulin resistance (8). 

In rats and non-human primates glucocorticoid treatment is associated with increased insulin 

secretion and β-cell mass adaptation (9–13). Glucocorticoid-induced insulin resistance occurs 

within 5 days of treatment (11) and is therefore an acute stimulus for β-cell adaptation. 

The pancreas is a heterogeneous organ. We have recently shown that high-fat diet induced insulin 

resistance leads to topologically heterogeneous β-cell adaptation in mice (14). β-Cell adaptation 

was most prominent in the splenic region of the pancreas, suggesting that these islets are the 

first to respond to changes in the demand for insulin. It is unknown whether this also occurs in 

other models of insulin resistance. In this study we investigated beta-cell adaptation throughout 

the pancreas of glucocorticoid-induced insulin resistance in rats. 

Materials and Methods

Animals 

Experiments were performed in adult male Wistar rats (220-310 g, Harlan, Zeist, The Netherlands) 

with approval of the Animal Care Committee of the Royal Netherlands Academy of Arts and 

Sciences. The rats had access to standard diet and water ad libitum. All experiments were 

performed in the rats’ home-cage. Rats were treated with 10 μg dexamethasone 21-phosphate 

disodium salt (Sigma-Aldrich, St Louis, CA, USA) per day in the drinking water for 3 or 6 weeks. 

Control rats received untreated drinking water for 3 weeks. According to the method of Steffens 

et al.(15), an intra-atrial silicone catheter was surgically implanted into the left jugular vein of 

rats that were anesthetized using a mixture of fentanyl/fluanisone (Hypnorm; 1 ml/kg i.m.) and 

midazolam (Dormicum; 0.3 ml/kg s.c.) 2 weeks before the GTT. After the surgery the animals 

were placed into an incubator (30°C) until awakening; saline was injected subcutaneously to 

prevent dehydration. 
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Glucose tolerance test 

An intravenous GTT was performed in 2-hours fasted rats 1 week before sacrifice. A blood sample 

was drawn (t=0), immediately followed by the infusion of a glucose bolus (25%, 1.0 g/kg BW) 

into the jugular vein catheter. Subsequently blood samples were collected at t=5, 10, 20, 30 and 

60 min after the infusion of the glucose bolus. Plasma glucose concentrations were determined 

using a glucose/glucose oxidase-Perid method (Boehringer Mannheim, GmGH, Germany). 

Plasma immunoreactive insulin concentrations were determined using a radio immunoassay kit 

(Linco Research, St Charles, MO, USA). Area under the curve (AUC) for insulin and glucose were 

measured for each curve relative to a y-axis value of 0.

Pancreas dissection

The pancreas was dissected, weighed and based on their spatial relation to adjacent organs 

divided into three parts: the duodenal, gastric and splenic region, as described before (14). The 

duodenal region (DR) was defined as the section of the pancreas attached to the duodenum, the 

gastric region (GR) as the part attached to the pylorus and stomach and the part attached to the 

pancreas was taken as the splenic region (SR). Pancreas tissue was fixed by immersion in a 4% 

paraformaldehyde solution, embedded in paraffin blocks, sliced into 4 μm sections and mounted 

on slides. Each pancreatic region was separately embedded, immunostained and analyzed. The 

average of the three regions was taken as a measure for the entire organ. 

β-Cell mass morphology and proliferation

For identification of β-cells, sections were immunostained with rabbit anti-insulin IgG (Santa 

Cruz Biotechnology, Santa Cruz, CA, USA) for 1 hour followed by anti-rabbit IgG-HRP (DAKO, 

Glostrup, Denmark). Sections were developed with 3,3’-diaminobenzidine tetrahydrochloride 

(DAB) and counterstained with hematoxylin. Stained sections were digitally imaged (Panoramic 

MIDI; (3DHISTECH, Budapest, Hungary). β-Cell area and pancreas area were determined using an 

image analysis program (Stacks 2.1; LUMC), excluding large blood vessels, larger ducts, adipose 

tissue, and lymph nodes as previously described (14). β-Cell mass was determined by the ratio of 

β-cell area to pancreas area multiplied by the pancreas weight. β-Cell cluster size was determined 

as the average size of β-cell clusters (defined as ≥4 β-cells per cluster) per rat. 

To identify proliferating β-cells sections were double stained with mouse-anti Ki67 (Becton 

Dickinson, Franklin Lakes, NL, USA) and guinea pig anti-insulin (Millipore, Billerica, MA, USA) 

overnight, after heat-induced antigen retrieval in 0.01 M citrate buffer. Sections were incubated 

with secondary antibodies biotin anti-mouse (Jackson Immunoresearch Laboratories, West Grove, 

PA, USA), SA-alexa 488 (Invitrogen, Carlsbad, CA, USA) and TRITC anti-guinea pig (Jackson 

Immunoresearch Laboratories) for 1 hour. DAPI (Vectashield; Vector Laboratories) was used to 

visualize the nuclei. Randomly selected islets were digitally imaged using a 20x objective on a 

fluorescence microscope (Leica Microsystems, Wetzlar, Germany). 
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Statistics

All data are presented as means ± SE. Statistical calculations were carried out using GraphPad 

Prism 5 (GraphPad Software, San Diego, CA, USA). The statistical significance of differences 

was determined by an unpaired Student’s t-test or ANOVA, followed by Bonferroni’s multiple-

comparisons test, as appropriate. P < 0.05 were considered statistically significant. 

Results

Metabolic characteristics of control and DXM-treated rats 

Food- and water intake by the rats were not affected by DXM treatment (data not shown) and 

body weight between DXM-treated and control rats was similar at time of sacrifice (Table 1). 

Two weeks of DXM treatment increased the peak of glucose concentration at 5 min (Fig 1A), 

but the AUC of glucose was not significantly different between the groups (Fig 1B). In contrast, 

glucose levels during the GTT were normal in 5 weeks DXM treated rats. In both DXM-treated 

groups the insulin secretory response during the GTT was significantly increased (Fig. 1C and D). 

DXM treatment led to increased 2-hour fasted plasma insulin levels after 3 weeks and 6 weeks, 

whereas blood glucose levels were unchanged (Table 1). 

Control DXM 3 wks DXM 6 wks ANOVA
Body weight (g) 354.5 ± 3.0 357.2 ± 10.6 340.9 ± 5.4 p=0.11
Blood glucose (mmol/l) 6.49 ± 0.22 6.10 ± 0.11 6.07 ± 0.13 p=0.17
Plasma insulin (ng/ml) 1.34 ± 0.18 4.17 ± 0.72* 5.18 ± 0.58** p<0.0001

Table 1. Body weight, blood glucose and plasma insulin levels at time of sacrifice. *p<0.01, **p<0.001 vs. 
control. DXM = dexamethasone. 
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Figure 1. Glucose tolerance in control and 2 or 5 weeks DXM-treated rats. A. Blood glucose concentrations 
during the glucose tolerance test (GTT) (n = 5-9 rats). B. Area under the curve (AUC) of glucose concentrations 
during the GTT. C. Insulin concentrations during the GTT (n = 5-9 rats). C. AUC of insulin concentrations 
during the GTT. DXM = dexamethasone. **p<0.01 or *** p<0.001 for DXM 2 weeks vs. control; #p<0.05 or 
###p<0.001 for DXM 5 weeks vs. control. 

DXM-treatment increases β-cell mass 

The effect of DXM treatment on β-cell mass was evaluated. Pancreas weight was increased in 

DXM-treated rats after 3 weeks (control 1.13±0.04 g vs. DXM 3 weeks 1.31±0.06 g, p<0.05). 

The β-cell area was determined by analyzing 23.5±1.1 mm2 of pancreatic tissue per region per 

rat. DXM treatment led to a significant increase of the β-cell area after 6 weeks (Fig 2A-C). Also, 

the β-cell mass was significantly increased in rats treated with DXM for 3 weeks (control 7.9±0.9 

mg vs. DXM 3 weeks 12.7±1.5 mg, p<0.05). This increase was associated with an increase of the 

average β-cell cluster size after 6 weeks of treatment (Fig 2D). No difference in islet density was 

measured (Fig 2E). 
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Figure 2. β-Cell mass morphometry in control and DXM-treated rats. A. Representative picture of β-cells 
(brown) in a control rat. Scale bar = 100 μm. B. Representative picture of β-cells (brown) in a 6 weeks DXM-
treated rat. Scale bar = 100 μm C. β-Cell area (n = 5-9). D. Mean β-cell cluster area (n = 5-9). E. Islet density 
(n = 5-9). DXM = dexamethasone. *p<0.05 by unpaired Student’s t test, **p<0.01. 

Increased β-cell area in the splenic region of the pancreas in response to DXM treatment

To assess β-cell adaptation throughout the pancreas, the β-cell area, β-cell cluster size and 

islet density were determined by pancreatic region (i.e. DR, GR and SR). After 6 weeks DXM 

treatment, the β-cell area in the SR of the pancreas was significantly increased compared to 

control rats (Fig 3A). This was associated with an increased average β-cell cluster size in the SR of 

DXM rats treated for 6 weeks (Fig 3B). In contrast, no differences in β-cell area or β-cell cluster 

size were observed in the DR and GR of the pancreas after DXM treatment (Fig 3A,B). Islet density 

was similar between DXM-treated and control rats (Fig 3C). The mean area of individual β-cells 

was unchanged after DXM-treatment in the SR (individual β-cell size 205.1±7.1 μm2 (control) vs. 

189.3±9.1 μm2 (DXM 3 weeks) vs. 209.1±9.5 μm2 (DXM 6 weeks), p=0.32). For determination 

of the proliferating β-cells, we counted the number of Ki67 positive cells out of 928±128 β-cells 

per region per rat. The frequency of proliferating β-cells was similar between control and DXM-

treated rats at 3 and 6 weeks (Fig 3D). 
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Figure 3. β-Cell morphometry and β-cell proliferation in control and DXM-treated rats by pancreatic region. 
A. β-Cell area by pancreatic region (n = 5-9). B. β-Cell cluster size by pancreatic region (n = 5-9). C. Islet density 
by pancreatic region (n = 5-9). D. β-Cell proliferation by pancreatic region (n = 5-8). DXM = dexamethasone, 
DR = duodenal region, GR = gastric region, SR = splenic region. *p<0.05 by one-way ANOVA, **p<0.01. 

Discussion

The main finding of our study is the heterogeneous adaptation of the β-cell mass to DXM-

induced insulin resistance in rats. The splenic region of the pancreas appears to be particularly 

responsive to changes in insulin resistance compared to the body and head region that show no 

adaptation after 6 weeks of DXM treatment. 

In line with previous studies we observe that DXM-treatment is associated with insulin resistance 

and compensatory growth of the β-cell mass (9–13). We now show for the first time that 

glucocorticoid-induced β-cell adaptation is primarily occurring in the splenic region of the 

pancreas. Functional and morphological differences of islets derived from different regions of 

the pancreas have been described (18–20). We have recently shown that high-fat diet (HFD) 

induced insulin resistance leads to heterogeneous β cell adaptation in mice (14). Remarkably, 

this adaptation was also most prominent in the splenic region of the pancreas. Together these 

studies strongly point to the splenic region of the pancreas being involved in the first line of β-cell 

adaptation to insulin resistance in rodents. 

The results of the present study could either be explained by a difference in the local islet 

environment between different regions leading to differential stimuli for β-cell adaptation and/
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or β-cell responses or an intrinsic difference in the capacity of β-cell mass adaptation between 

islets in the different regions of the pancreas. We have shown before that transplantation of islets 

isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar 

compensatory response (14). Therefore, extrinsic factors present in the islet microenvironment 

may be responsible for the observed topological heterogeneity in β-cell adaptation. 

Islets have an extensive vascular network to enable efficient secretion of insulin into the circulation. 

They receive about 20-times more arterial blood compared to the exocrine pancreas in rats (21, 

22). Intravital microscopy and in vivo labeling studies have shown that insulin resistance leads to a 

greater blood flow in islets that is associated with improved β-cell function and proliferation (23, 

24). Furthermore, islets are densely innervated by the autonomic nervous system (25) and it has 

been reported that β-cell mass adaptation can be regulated through neuronal signals from the 

liver (26). Also, the surrounding exocrine pancreas has a close functional interaction with islets 

(29) and is known to be topologically heterogeneous (30). Whether the local islet environment 

plays a role in topologically heterogeneous β-cell adaptation remains to be established.

In human subjects, heterogeneity of the β-cell area throughout the pancreas is well known. 

Several studies have reported a higher islet density in the tail-region of the pancreas (2, 31, 32). 

Also, the β-cell mass has been reported to be increased in subjects with obesity (1, 2, 33, 34). 

However, most studies in humans rely on tissue sampling from the tail-region of the pancreas only 

(1, 33, 34). Importantly, our study implies that this may not be representative for the entire organ.

The presence of enlarged β-cell clusters in the splenic region in the absence of β-cell hypertrophy 

in DXM-treated rats points to β-cell proliferation as the major compensatory mechanism in this 

study. We did not observe an increase in β-cell proliferation at 3 or 6 weeks of DXM treatment. 

In non-human primates 3 weeks of glucocorticoid treatment was associated with an increase in 

β-cell proliferation (9). Previous studies in rats show an increased β-cell proliferation already after 

3 days of DXM treatment (12, 13, 16). Also in HFD-induced insulin resistance in mice it has been 

reported that β-cell proliferation begins within the first 7 days of HFD exposure (17). This suggests 

that the peak in β-cell proliferation induced by DXM-treatment in our study occurred within the 

first 3 weeks of DXM treatment. 

In conclusion, we show that DXM-induced insulin resistance in rats is associated with β-cell 

adaptation that is topologically heterogeneous throughout the pancreas. Comparison of regional 

differences may lead to identification of novel mechanisms involved in β-cell adaptation. 



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

60  |  Chapter 3

References

1. 	 Butler AE et al. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 
diabetes. Diabetes 52:102–110.

2. 	 Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC (2008) Pancreatic beta-cell mass in European 
subjects with type 2 diabetes. Diabetes Obes Metab 10 Suppl 4:32–42.

3. 	 Saisho Y et al. (2013) β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care 
36:111–7.

4. 	 De Koning EJP, Bodkin NL, Hansen BC, Clark A (1993) Diabetes mellitus in Macaca mulatta monkeys is 
characterised by islet amyloidosis and reduction in beta-cell population. Diabetologia 36:378–384.

5. 	 Hull RL et al. (2005) Dietary-fat-induced obesity in mice results in beta cell hyperplasia but not increased 
insulin release: evidence for specificity of impaired beta cell adaptation. Diabetologia 48:1350–8.

6. 	 Peyot M-L et al. (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight 
gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell 
mass. Diabetes 59:2178–87.

7. 	 Matveyenko A V, Butler PC (2008) Relationship between beta-cell mass and diabetes onset. Diabetes 
Obes Metab 10 Suppl 4:23–31.

8. 	 Gulliford MC, Charlton J, Latinovic R (2006) Risk of diabetes associated with prescribed glucocorticoids 
in a large population. Diabetes Care 29:2728–2729.

9. 	 Like AA, Chick WL (1974) Pancreatic beta cell replication induced by glucocorticoids in subhuman 
primates. Am J Pathol 75:329–348.

10. 	 Ogawa A et al. (1992) Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced 
diabetes. J Clin Invest 90:497–504.

11. 	 Rafacho A, Giozzet VAG, Boschero AC, Bosqueiro JR (2008) Functional alterations in endocrine pancreas 
of rats with different degrees of dexamethasone-induced insulin resistance. Pancreas 36:284–93.

12. 	 Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR (2009) High doses of dexamethasone 
induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 
296:E681–9.

13. 	 Rafacho A et al. (2010) The adaptive compensations in endocrine pancreas from glucocorticoid-treated 
rats are reversible after the interruption of treatment. Acta Physiol 200:223–35.

14. 	 Ellenbroek JH et al. (2013) Topologically heterogeneous beta cell adaptation in response to high-fat 
diet in mice. PLoS One 8:e56922.

15. 	 Steffens AB (1969) A method for frequent sampling of blood and continuous infusion of fluids in the 
rat without disturbing the animal. Physiol Behav 4:833–836.

16. 	 Rafacho A et al. (2011) Morphofunctional alterations in endocrine pancreas of short- and long-term 
dexamethasone-treated rats. Horm Metab Res 43:275–81.

17. 	 Stamateris RE, Sharma RB, Hollern D a, Alonso LC (2013) Adaptive β-cell proliferation increases early 
in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 
expression. Am J Physiol Endocrinol Metab 305:E149–59.

18. 	 Baetens D, Malaisse-Lagae F, Perrelet A, Orci L (1979) Endocrine pancreas: three-dimensional 
reconstruction shows two types of islets of langerhans. Science 206:1323–5.

19. 	 Trimble ER, Renold AE (1981) Ventral and dorsal areas of rat pancreas: islet hormone content and 
secretion. Am J Physiol 240:E422–7.

20. 	 Trimble ER, Halban PA, Wollheim CB, Renold AE (1982) Functional differences between rat islets of 
ventral and dorsal pancreatic origin. J Clin Invest 69:405–13.

21. 	 Eberhard D, Kragl M, Lammert E (2010) “Giving and taking”: endothelial and beta-cells in the islets of 
Langerhans. Trends Endocrinol Metab 21:457–63.

22. 	 Lifson N, Lassa C V, Dixit PK (1985) Relation between blood flow and morphology in islet organ of rat 
pancreas. Am J Physiol 249:E43–8.

23. 	 Lau J, Svensson J, Grapensparr L, Johansson Å, Carlsson P-O (2012) Superior beta cell proliferation, 
function and gene expression in a subpopulation of rat islets identified by high blood perfusion. 
Diabetologia 55:1390–9.



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

β-Cell adaptation is topologically heterogeneous in rats  |  61

24. 	 Dai C et al. (2013) Pancreatic islet vasculature adapts to insulin resistance through dilation and not 
angiogenesis. Diabetes 62:4144–53.

25. 	 Ahren B, Wierup N, Sundler F (2006) Neuropeptides and the Regulation of Islet Function. Diabetes 
55:S98–S107.

26. 	 Imai J et al. (2008) Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 
322:1250–4.

27. 	 Gregg BE et al. (2012) Formation of a human β-cell population within pancreatic islets is set early in 
life. J Clin Endocrinol Metab 97:3197–206.

28. 	 www.t1dbase.org.
29. 	 Barreto SG, Carati CJ, Toouli J, Saccone GTP (2010) The islet-acinar axis of the pancreas: more than just 

insulin. Am J Physiol Gastrointest Liver Physiol 299:G10–22.
30. 	 Malaisse-Lagae F, Dehaye JP, Winand J, Vandermeers A, Malaisse WJ (1983) Exocrine pancreas: 

difference in the amylase content of the dorsal and ventral regions. Experientia 39:1045–6.
31. 	 Wittingen J, Frey CF (1974) Islet concentration in the head, body, tail and uncinate process of the 

pancreas. Ann Surg 179:412–4.
32. 	 Reers C et al. (2009) Impaired islet turnover in human donor pancreata with aging. Eur J Endocrinol 

160:185–91.
33. 	 Saisho Y et al. (2013) β-Cell Mass and Turnover in Humans: Effects of Obesity and Aging. Diabetes Care 

36:111–7.
34. 	 Hanley SC et al. (2010) Beta-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. 

Endocrinology 151:1462–72. 





Chapter 4 
Topologically heterogeneous β- and α-cell 

adaptation with maintenance of α- to 

β-cell ratio in obesity

Johanne H. Ellenbroek1, Hendrica A. M. Töns1, Maaike A. Hanegraaf1, Ton J. Rabelink1, 

Marten A. Engelse1, Françoise Carlotti1, Eelco J. P. de Koning1,2,3

1Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; 

Netherlands; 2Department of Endocrinology, Leiden University Medical Center, Leiden, 

The Netherlands; and 3Hubrecht Institute, Utrecht, The Netherlands

Submitted



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

64  |  Chapter 4

Abstract

Background/Objectives

In order to maintain glucose homeostasis the number and/or function of insulin-producing 

pancreatic β-cells can change. It is unknown whether β-cell adaptation is homogeneous 

throughout the pancreas of human subjects. Hyperglucagonemia is present in type 2 

diabetes, but data are lacking whether the glucagon-producing α-cells adapt to changes in 

weight. In this study we examined β- and α-cell mass of non-diabetic obese and lean human 

subjects throughout different regions of the pancreas. 

Subjects/Methods

Pancreatic tissue of the head-, body- and tail-region of the pancreas was examined from 15 

obese organ donors with a Body Mass Index (BMI) ≥ 27 kg/m2 and age-matched lean organ 

donors with a BMI ≤ 25 kg/m2. β- or α-cells were identified by immunostaining for insulin 

and glucagon, respectively. 

Results

In obese subjects β- and α-cell mass were proportionally increased compared to lean subjects 

(β-cell mass 2.4±0.3 g (obese) vs. 1.6±0.2 g (lean), p<0.05; α-cell mass 1.2±0.2 g (obese) vs. 

0.8±0.1 g (lean), p<0.05), thereby maintaining the α- to β-cell ratio. While the fractional β- 

and α-cell area were the highest in the pancreatic tail, the homeostatic adaptation to obesity 

occurred preferentially in the head of the pancreas. 

Conclusions

In obese subjects β- and α-cell mass are increased and this adaptation is topologically 

heterogeneous. As data so far have been derived from studying β- and α-cell mass in tissues 

from the tail-region of the pancreas, the homeostatic adaptive capacity of humans to obesity 

has previously been underestimated. 
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Introduction 

Both type 1 and type 2 diabetes are characterized by the loss of functional pancreatic β-cell mass 

(1). For these patients therapies are needed that restore, maintain or prevent loss of functional 

β-cells. Therefore, it is critical to understand how the β-cell mass is regulated. In order to maintain 

glucose homeostasis the number and/or function of insulin-producing pancreatic β-cells can 

change. In human subjects it is well established that obesity and pregnancy are associated with 

an increased β-cell mass (2–9). However, several of these studies rely on tissue sampling from the 

pancreatic tail-region of the pancreas only (4, 5, 7, 9). We have recently shown that high-fat diet 

induced insulin resistance leads to topologically heterogeneous β-cell adaptation in mice, that 

is most prominent in the splenic region of the pancreas (10). In human subjects it is not known 

whether β-cell adaptation is homogeneous throughout the pancreas of human subjects. 

Type 2 diabetes is also characterized by hyperglucagonemia and associated with an increased α- 

to β-cell ratio (11). In two separate studies we have recently shown that in addition to the β-cell 

mass, the glucagon-producing α-cell mass can also be modulated by dietary changes in mice 

(12, 13). It is unknown whether obesity modulates the α-cell mass and if so, how this affects the 

α- to β-cell ratio. In this study we examine the α- and β-cell mass in obese subjects and compare 

these to the findings in lean subjects as an indication of β- and α-cell mass adaptation to obesity. 

Materials and methods

Subjects

Human pancreata were procured through a multiorgan donor program. Pancreatic tissue was 

used in our study if the tissue could not be used for clinical islet transplantation, according to 

national laws, and if research consent was present. Pancreatic tissue of the head-, body- and tail-

region of the pancreas was examined from obese organ donors with a Body Mass Index (BMI) ≥ 

27 kg/m2 (n=15) and age-matched lean organ donors with a BMI ≤ 25 kg/m2 (n=15). None of the 

organ donors had a clinical history of diabetes. Characteristics of the studied subjects are given 

in supplementary table 1. 

Immunohistochemistry

Pancreas samples were fixed overnight in 4% formaldehyde (Klinipath, Duiven, The Netherlands), 

embedded in paraffin and sliced into 4 μm sections. Pancreatic polypeptide positive cells were 

identified in the head-regions of the pancreas using rabbit anti-PP IgG (Millipore, Billerica, MA, 

USA) for 30 min followed by horseradish peroxidase (HRP)-conjugated secondary antibody 

for 1 h. Sections were developed with 3,3’-diaminobenzidine tetrahydrochloride (DAB) and 

counterstained with haematoxylin. If microscopic examination revealed a PP-cell rich area the 

head-region of this pancreas was excluded from the analysis. 
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For identification of β-cells pancreas sections were immunostained with rabbit anti-insulin IgG 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA) or guinea pig anti-insulin IgG (Millipore) 

for 1 h followed by HRP- or alkaline phosphatase-conjugated secondary antibodies for 1 h. 

α-Cells were identified by immunostaining using rabbit anti-glucagon IgG (Vector Laboratories, 

Burlingame, CA, USA) for 1 h followed by a HRP-conjugated secondary antibody for 1 h. To 

identify proliferating β- or alpha-cells, sections were double stained with mouse anti-Ki67 (Becton 

Dickinson, Franklin Lakes, NJ) and primary antibodies against insulin or glucagon, respectively, 

overnight at 4°C after heat-induced antigen retrieval in 0.01 M citrate buffer followed by HRP- 

and AP-conjugated secondary antibodies. Sections were developed with DAB or liquid permanent 

red (LPR, Dako, Denmark) and counterstained with haematoxylin. Stained sections were digitally 

imaged (Panoramic MIDI, 3DHISTECH, Budapest, Hungary).

Morphometry 

For determining the fractional β-cell area, the percentage of insulin-DAB stained area out of total 

pancreas area stained with hematoxylin was determined using an image analysis program (Stacks 

2.1, LUMC, (10)), excluding large blood vessels, larger ducts, adipose tissue and lymph nodes. The 

surface area of each insulin-positive cell cluster was measured and used to calculate the average 

β-cell cluster area per pancreatic region. Islet density was determined by dividing the number of 

β-cell clusters by the (regional) area that was analyzed. For measurements in the entire organ, 

the average of the three regions was calculated. The pancreas weight was estimated by use of an 

equation based on the population data from our own institute (supplemental figure 1, formula: 

pancreas weight = 2.31 x BMI + 47.7). β-Cell mass was determined by the β-cell area multiplied 

by the estimated pancreas weight. The fractional α-cell area was determined by calculating the 

ratio of α-cell area to β-cell area of 20 randomly selected islets per pancreatic region, using Stacks 

2.1. α-Cell mass was calculated by multiplying the α- to β-cell ratio by the β-cell mass.

Statistical analysis

Data are presented as means ± SE. Statistical calculations were carried out using GraphPad Prism 

5 (GraphPad Software, San Diego, CA). The statistical significance of differences was determined 

by Mann-Whitney test, or two-way ANOVA, followed by Bonferroni’ s multiple-comparisons test, 

as indicated. Correlations were tested using Spearman rank analysis. P < 0.05 was considered 

statistically significant.
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Results

Increased β- and α-cell mass in obese subjects

The average age of obese and lean subjects was similar (53.2±3.3 years (lean) vs. 52.4±3.0 years 

(obese), p=0.86; table S1). The average body mass index (BMI) was 30.1±0.6 kg/m2 for obese 

and 22.5±0.3 kg/m2 for lean subjects. The β-cell mass was determined by analysing 22.1±1.4 

mm2 pancreatic tissue per donor. The β-cell mass was ~1.5x higher in obese compared to lean 

subjects (Fig. 1A-C). No significant difference in β-cell cluster area was observed (Fig. 1D) whereas 

a tendency (p = 0.06) for a higher islet density was present in obese subjects (Fig. 1E). A positive 

correlation was found between β-cell mass and BMI (Fig. 1F, r=0.32, p<0.05). 

α-Cell mass was found to be 50% increased in obese subjects (Fig. 1A, B and G). A similar 

α- to β-cell ratio was observed in lean and obese subjects (Fig. 1H) resulting in a strong positive 

correlation between β- and α-cell mass (Fig. 1I). No correlation was found between age and β-cell 

mass (r=0.19, p=0.16) or α-cell mass (r=-0.28, p=0.08) but a negative correlation was found 

between age and the α- to β-cell ratio (Fig. 2, r=0.55, p<0.01).
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Fig. 1. β- And α-cell mass in lean and obese subjects. A. Representative picture of β-cells (red) and α-cells 
(brown) in islets of a lean subject. Scale bar = 100 μm. B. Representative picture of β-cells (red) and α-cells 
(brown) in islets of an obese subject. Scale bar = 100 μm. C. β-Cell mass (n = 15). D. β-Cell cluster area (n 
= 30). E. Islet density (n = 30). F. Correlation between β-cell mass and BMI (n = 30). G. α-Cell mass (n = 12-
14). H. α- to β-cell ratio (n = 12-14). I. Correlation between β- and α-cell mass (n = 26). *p<0.05 by Mann-
Whitney U test. 
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Fig. 2. Correlation between age and α- to β-cell ratio (n = 26).

β- And α-cell area are topologically heterogeneous throughout the pancreas 

To assess the distribution of the β- and α-cells throughout the pancreas, the fractional β- or α cell 

area, islet density, islet size and α- to β-cell ratio were determined by pancreatic region (i.e. head, 

body and tail). In the tail-region of the pancreas both β- and α-cell area were significantly higher 

compared to the head and body region in lean subjects (Fig. 3A and D). Islet density was similar 

throughout the pancreas in lean individuals (Fig. 3B) whereas β-cell cluster area was significantly 

higher in the tail-region of the pancreas compared to the head-region in lean donors (Fig. 3C). 

The α- to β-cell ratio was similar throughout the pancreas (Fig. 3E). 

Fig 3. β- And α-cell area in lean and obese subjects. A. Fractional β-cell area by pancreatic region (n = 10-15 
per region). B. Islet density by pancreatic region (n = 10-15). C. Mean β-cell cluster area by pancreatic region 
(n = 10-15). D. Fractional α-cell area by pancreatic region (n = 10-14). E. α- to β-cell ratio by pancreatic region 
(n = 10-14). *p<0.05 and **p<0.01 by two-way ANOVA followed by Bonferroni’s multiple comparisons test, 
#p<0.05 and ##p<0.01 by Mann-Whitney U test.
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β- And α-cell adaptation are topologically heterogeneous in obese human subjects

In obese subjects, islet density was increased in the tail-region of the pancreas (Fig. 3B). When 

comparing regional islet cell areas between lean and obese individuals, the β-cell area was found 

to be ~1.4x increased in the head-region of obese subjects (Fig. 3A). This was associated with 

a significantly increased average β-cell cluster area (Fig. 3C). Also, the α-cell area was ~1.7x 

increased in the head-region of obese subjects compared to lean controls (Fig. 3D). β-Cell and 

α-cell proliferation were rarely observed (data not shown). The α- to β-cell ratio throughout the 

pancreas was similar between lean and obese individuals (Fig. 3E). 

Discussion

The main results of our study indicate that obesity is associated with adaptation of both β-and 

α cell mass and that this adaptation is topologically heterogeneous between different regions in 

the pancreas.

In line with previous studies (3–7), we found that obesity in humans is associated with an increase 

of the β-cell mass, most likely to compensate for the increased demand for insulin (14, 15). Also, 

a strong positive correlation between β- and α-cell mass was observed, which is in accordance 

by the study of Henquin and Rahier (11). We now show for the first time that the α-cell mass is 

also increased in obese subjects. Recently it was found that in overweight insulin-resistant non-

human primates the fractional α-cell area was significantly increased, and that the changes in 

α-cell area preceded changes in β-cell area (16). Whether an increased α-cell mass during obesity 

is a physiological adaptive response to maintain an adequate hormonal balance between insulin 

and glucagon or that this increase predisposes obese individuals for the development of type 2 

diabetes remains an open question (17).

Heterogeneity of the β-cell area throughout the pancreas is well known (6, 18, 19) and in line 

with these studies we also observe the highest β-cell area in the tail-region of the pancreas. 

Reers et al. (19) noted an increased islet density in the tail-region when analysing 20 donors with 

BMIs ranging from 17.2 to 33 kg/m2. Here we show that this increased islet density is present in 

obese donors only. Previous studies have observed fewer α-cells in the part of the pancreas that 

originates from the ventral bud during embryonic development (20, 21). We now show that, 

within the part of the human pancreas that is derived from the dorsal bud, the α-cell area is 

higher in the tail-region. 

We recently demonstrated that high-fat diet induced insulin resistance leads to topologically 

heterogeneous β-cell adaptation in the pancreas of mice (10). Now we show that also in human 

pancreas β- and α-cell adaptation are topologically heterogeneous. 

Interestingly, both β- and α-cell area were increased in the head-region of the pancreas in obese 

compared to lean subjects. Recently, Wang et al. (22) observed a preferential loss of β-cells in the 
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pancreatic head-region of patients with type 2 diabetes compared to healthy controls. Together 

these data suggest that preservation of the endocrine cell mass in the head-region of the pancreas 

may be of importance for maintenance of normoglycemia in humans. In most histological studies 

of α and/or β-cell adaptation the head-region of the human pancreas was not included (4–7, 11), 

which may have led to an underestimation of actual changes in these studies. 

The α- to β-cell ratio was found to be negatively correlated with age. This confirms the observation 

by Rahier et al. (11) that the negative correlation between α-cell mass and age was stronger than 

for β-cell mass and age in humans. Furthermore, Saisho et al. (5) showed that ageing in humans 

was not related to loss of β-cell mass. Together these results indicate that with advanced age 

the β-cell mass is more constant than the α-cell mass. Whether this is a physiological adaptation 

to counteract the age-associated deterioration in glucose tolerance, which is associated with 

increased glucagon concentrations (23), remains to be determined. 

Following adaptation of the β- and α-cell mass in obesity, the α- to β-cell ratio was preserved. This 

is in line with the study by Rahier et al. (11) who found a similar α-to β-cell ratio when comparing 

subjects with a BMI lower or higher than 25 kg/m2. We now show that this ratio is also similar 

throughout different pancreatic regions in both obese and lean subjects. It has been described 

that human islets have a unique architecture in which heterologous contacts between β- and 

α-cells are preferred (24). Insulin secretion from individual human β-cells is enhanced when they 

are coupled to an α-cell (25), possibly due to paracrine cholinergic stimuli secreted by α-cells (26). 

Altogether, our data show that both β- and α-cell mass are increased in obese subjects and that 

this adaptation is topologically heterogeneous. The α- to β-cell ratio is similar throughout the 

pancreas and preserved following adaptation in non-diabetic obese subjects.
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Supplemental data

Lean (BMI<24)     Obese (BMI>27)    
# Age (years) BMI (kg/m2) F/M # Age (years) BMI (kg/m2) F/M
1 25 22 M 1 27 28 M
2 35 21 M 2 42 29 M
3 42 23 F 3 43 29 M
4 44 23 F 4 43 27 M
5 47 19 F 5 44 31 F
6 47 23 F 6 49 29 M
7 55 24 F 7 51 32 M
8 57 22 F 8 52 31 F
9 58 23 F 9 54 28 F
10 60 22 F 10 59 31 M
11 61 23 M 11 61 34 M
12 64 24 M 12 63 35 M
13 65 24 M 13 63 31 F
14 68 22 M 14 64 28 F
15 70 22 M 15 71 28 F

AVG   53,2 22,5 7M, 8F   52,4 30,1 9M, 6F
SEM   3,3 0,3     3,0 0,6  

Supplemental table 1. Characteristics of pancreas donors. 

Supplemental figure 1. 
Relationship between body mass index and pancreas weight of 154 pancreas donors.
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Abstract 

Aims/hypothesis

Incretin-based therapies improve glycaemic control in patients with type 2 diabetes. In animal 

models of diabetes, glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase β-cell 

mass. GLP-1RAs are also evaluated in non-diabetic individuals with obesity and cardiovascular 

disease. However, their effect on β-cell mass in normoglycaemic conditions is not clear. 

Here, we investigate the effects of the GLP-1RA liraglutide on β-cell mass and function in 

normoglycaemic mice.

Methods

C57BL/6J mice were treated with the GLP-1RA liraglutide or PBS and fed a control or high-

fat diet (HFD) for 1 or 6 weeks. Glucose and insulin tolerance tests were performed after 6 

weeks. BrdU was given to label proliferating cells 1 week before the animals were killed. 

The pancreas was taken for either histology or islet isolation followed by a glucose-induced 

insulin-secretion test.

Results

Treatment with liraglutide for 6 weeks led to increased insulin sensitivity and attenuation of 

HFD-induced insulin resistance. A reduction in β-cell mass was observed in liraglutide-treated 

control and HFD-fed mice at 6 weeks, and was associated with a lower β-cell proliferation 

rate after 1 week of treatment. A similar reduction in α-cell mass occurred, resulting in 

an unchanged α- to β-cell ratio. In contrast, acinar cell proliferation was increased. Finally, 

islets isolated from liraglutide-treated control mice had enhanced glucose-induced insulin 

secretion.

Conclusions/interpretation

Our data show that GLP-1RA treatment in normoglycaemic mice leads to increases in insulin 

sensitivity and β-cell function that are associated with reduced β-cell mass to maintain 

normoglycaemia.
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Introduction

Glucagon-like peptide 1 (GLP-1) is an incretin hormone secreted by intestinal L cells in response to 

ingestion of carbohydrates and lipids (1). Activation of the GLP-1 receptor (GLP-1R) on pancreatic 

β-cells leads to glucose-dependent insulin secretion and improves glycaemic control in patients 

with type 2 diabetes (2, 3). In animal models of diabetes these therapies increase β-cell mass 

(4–6).

The β-cell mass is tightly controlled in order to keep glucose levels within a narrow range. When 

the demand for insulin is chronically increased by physiological or pathological changes, such 

as pregnancy or obesity, there is an increase in β-cell function and/or β-cell mass (7, 8). When 

the demand for insulin decreases, for example postpartum, the β-cell mass reverts to its original 

capacity (9).

Besides their effects on β-cells, GLP-1R agonists (GLP-1RAs) exert several extrapancreatic effects 

that may be of therapeutic benefit. GLP-1RAs decrease body weight and are associated with 

reduced blood pressure, improved lipid profiles and improved endothelial function in patients 

with type 2 diabetes (10, 11). Therefore, these compounds have also been evaluated in non-

diabetic individuals with obesity or cardiovascular disease (12–15). However, the effect of GLP-

1RAs on β-cells in these normoglycaemic conditions is not clear. Therefore, we investigated the 

effects of GLP-1RA treatment on β-cell mass and function in normoglycaemic mice.

Methods

Animals

Male C57BL/6J mice, 8–9 weeks old (Charles River Laboratories, Wilmington, MA, USA), were 

housed under standard conditions with a 12 h light/dark cycle and free access to food and water. 

Mice were fed a normal diet (control; 10% of total energy intake derived from lard fat, 16.3 kJ 

[3.9 kcal]/g; D12450B, Research Diets, New Brunswick, NJ, USA) or a high-fat diet (HFD; 45% 

of total energy intake derived from lard fat, 19.7 kJ [4.7 kcal]/g; D12451, Research Diets) for 1 

or 6 weeks. Average food intake was determined weekly per cage housing three or four mice. 

Liraglutide (0.1 mg/kg, Novo Nordisk, Bagsvaerd, Denmark) or PBS was given twice daily with at 

least a 10 h interval between subcutaneous injections. Treatment was discontinued 1 day before 

the animals were killed. Body weight was determined after overnight fasting. Animal experiments 

were approved by the institutional ethical committee on animal care and experimentation at the 

Leiden University Medical Center.
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Glucose and insulin tolerance tests

Insulin tolerance and glucose tolerance were assessed after 6  weeks of treatment. An 

intraperitoneal insulin tolerance test (ITT) was performed in animals that had been fasted for 

6  h. After measuring basal blood glucose concentration from the tail vein, 0.75  U/kg insulin 

was injected followed by monitoring of the blood glucose concentrations after 15, 30 and 

60 min. An intraperitoneal glucose tolerance test (GTT) was performed in overnight-fasted mice. 

Blood samples were drawn from the tail vein before injecting 2 g/kg glucose and after 15, 30, 

60 and 120 min. Blood glucose concentrations were measured using a glucose meter (Accu-

Chek, Roche, Basel, Switzerland) and insulin concentrations were measured by ELISA (Chrystal 

Chem, Downers Grove, IL, USA). Plasma IL-6, IL-1β and monocyte chemoattractant protein-1 

(MCP-1) were detected using a custom cytokine/metabolic multiplex assay (Meso Scale Discovery, 

Gaithersburg, MD, USA).

Pancreas dissection and islet isolation

Mice were anaesthetised by isoflurane inhalation and exsanguinated. The pancreases were 

dissected and weighed. For immunohistochemistry the pancreas was fixed by immersion in a 

4% (vol./vol.) paraformaldehyde solution. For islet isolation the pancreases of six to eight mice 

were pooled and digested using 3 mg/ml collagenase (Sigma-Aldrich, St Louis, CA, USA) in RPMI 

1640 medium (Invitrogen, Carlsbad, CA, USA) supplemented with 2 μg/ml DNAse I (Pulmozyme, 

Roche) and shaken at 37°C for 15–18 min until a homogeneous digest was obtained. The digest 

was then washed three times with cold RPMI medium supplemented with 10% (vol./vol.) heat-

inactivated FCS (Bodinco, Alkmaar, the Netherlands) and penicillin/streptomycin (100 U/ml and 

100 μg/ml, respectively; Invitrogen). Islets were purified from exocrine tissue by manual selection 

picking under a dissecting microscope.

Glucose-induced insulin secretion test

A glucose-induced insulin secretion test was performed on freshly isolated islets. Groups of 

ten islets were incubated in a modified Krebs-Ringer  bicarbonate buffer with HEPES (KRBH) 

containing 115 mmol/l NaCl, 5 mmol/l KCl, 24 mmol/l NaHCO3, 2.2 mmol/l CaCl2, 1 mmol/l 

MgCl2, 20 mmol/l HEPES and 2 g/l human serum albumin (Cealb, Sanquin, the Netherlands), 

pH 7.4. Islets were washed and pre-incubated with KRBH buffer containing 2 mmol/l glucose for 

1.5 h at 37°C. They were then incubated in 2 mmol/l glucose KRBH buffer for 1 h at 37°C and 

switched to 20 mmol/l glucose KRBH buffer for 1 h at 37°C. Supernatant fractions were kept 

for determination of insulin concentration by ELISA (Mercodia, Uppsala, Sweden). Islet cells were 

lysed by sonication in distilled water. Islet insulin content was measured by acid ethanol extraction 

followed by ELISA (Mercodia). Islet DNA content was determined by Quant-iT PicoGreen dsDNA kit 

(Invitrogen).
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Immunohistochemistry and morphometry

In order to obtain representative samples of the entire organ, pancreases from each mouse (six per 

group) were cut into three pieces (duodenal, gastric and splenic region) (16) that were embedded 

in paraffin blocks and sliced into 4 μm sections. For each analysis two to four sections per block, 

with an interval of at least 200 μm between sections, were immunostained and analysed. The 

average of the three regions was taken as a measure for the entire organ.

For the identification of β-cells, nine to twelve sections per mouse pancreas were immunostained 

with guinea pig anti-insulin  IgG (Millipore, Billerica, MA, USA) or rabbit anti-insulin  IgG (Santa 

Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h followed by horseradish peroxidase (HRP)- 

or alkaline phosphatase-conjugated secondary antibodies for 1  h. α-Cells were identified by 

immunostaining by rabbit anti-glucagon  IgG  (Vector Laboratories, Burlingame, CA, USA) for 

1  h followed by HRP-conjugated secondary antibody for 1  h. Sections were developed with 

3,3′-diaminobenzidine tetrahydrochloride (DAB) or Liquid Permanent Red (LPR; Dako, Glostrup, 

Denmark) and counterstained with haematoxylin. Stained sections were digitally imaged 

(Panoramic MIDI, 3DHISTECH, Budapest, Hungary).

β-cell and pancreas areas stained with haematoxylin were determined using an image-analysis 

program (Stacks 2.1, LUMC, Leiden, the Netherlands), excluding large blood vessels, larger ducts, 

adipose tissue and lymph nodes as previously described (16). β-Cell mass was determined by the 

ratio of β-cell area to pancreas area multiplied by the pancreas weight. β-Cell cluster area was 

determined as the average area of β-cell clusters (defined as ≥4 β-cells per cluster) per mouse. 

α-Cell mass was determined by calculating the ratio of α-cell area to β-cell area per islet, using 

ImageJ software (ImageJ, US National Institutes of Health, Bethesda, MD, USA), multiplied by the 

β-cell mass.

To label proliferating β-cells, mice were given 50 mg/kg BrdU  (Sigma-Aldrich) subcutaneously 

twice daily during the entire period for the 1 week study and the final 7 days for the 6 week 

study. Sections were double stained for insulin-LPR and  BrdU  (BrdU  staining kit, Invitrogen). 

Stained sections were digitally imaged (Panoramic MIDI). BrdU-positive β-cells were assessed as a 

proportion of all β-cells. Pancreatic duct cells were identified based on their typical morphology 

and location. The number of BrdU-positive duct cells was counted. The number of BrdU-positive 

acinar cells was counted using Stacks 2.1 and expressed as a percentage of the total number of 

acinar cells. The area in which these were counted was divided by the total number of cells as a 

measure of acinar cell size. Apoptotic β-cells were identified by the TUNELtechnique (Roche) in 

combination with insulin immunostaining and were counted. The investigator was blind to the 

experimental conditions during counting.
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Statistical analysis

Data are presented as mean±SEM. Statistical calculations were carried out using GraphPad 

Prism 5 (GraphPad Software, San Diego, CA, USA). The statistical significance of differences 

was determined by two-way  ANOVA, followed by Bonferroni’s multiple comparisons test, as 

appropriate. p < 0.05 was considered statistically significant.

Results
 

Metabolic characteristics of control and HFD-fed mice following 6 weeks of liraglutide 

treatment

Liraglutide treatment for 6 weeks was associated with decreased body weight and increased 

insulin sensitivity in both control and HFD-fed mice (Fig. 1a–c). After a glucose load, liraglutide 

treatment attenuated the peak glucose concentration induced by HFD at 30 min (Fig. 1d), but this 

did not reach significance for the AUC for glucose (Fig. 1e). In mice on a normal diet there was 

no significant difference in glucose concentrations after liraglutide treatment (Fig. 1d). In both 

liraglutide-treated groups the early response of insulin secretion during the GTT was increased to 

a similar extent as in HFD-fed mice (Fig. 1f, g).

Increased acinar cell proliferation after liraglutide treatment

After 6 weeks, pancreatic weight was significantly greater in liraglutide-treated mice (Fig. 2a), 

despite the decrease in body weight (Fig. 1a). Therefore, we analysed the effect of liraglutide 

treatment on the exocrine pancreas. Treatment with liraglutide was associated with an increased 

size of acinar cells in control mice (Fig. 2b). We counted 13,441 ± 439 acinar cells per mouse. The 

number of proliferating acinar cells was 65% higher in liraglutide-treated control mice (Fig. 2c, 

d). A similar effect was observed in liraglutide-treated HFD-fed mice, though the difference was 

less prominent. No significant difference in the number of proliferating duct cells was observed 

between the groups after 6 weeks of treatment (528 ± 28 duct cells were counted per mouse; 

Fig. 2e, f). Assessment of pro-inflammatory cytokine plasma concentrations (IL-1β, IL-6 and MCP-

1) showed no significant differences between the groups (electronic supplementary material 

[ESM] Fig. 1).
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Fig. 1. Metabolic characteristics of control (squares) and HFD-fed (circles) mice treated with liraglutide (black) 
or PBS (white) for 6 weeks. (a) Body weight (n = 13–14 mice). (b) Blood glucose concentrations expressed as 
percentage of basal glucose concentration during the ITT (n = 7–8 mice). (c) AUC of glucose concentrations 
during the ITT corrected for basal glucose concentration (n = 7–8 mice). (d) Blood glucose concentrations 
during GTT (n = 6 mice). (e) AUC for blood glucose concentrations during the GTT (n = 6 mice). (f) Insulin 
concentrations during GTT (n = 5–6 mice). (g) AUC 0–15  min insulin concentrations during GTT (n = 5–6 
mice). *p < 0.05, **p < 0.01 and ***p < 0.001;  †  p < 0.05 vs control + PBS;  ‡  p < 0.05 vs control + PBS and 
HFD + liraglutide.
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Fig. 2. The effects of liraglutide (black bars) or PBS (white bars) treatment on the exocrine pancreas in 
control and HFD-fed mice after 6  weeks. (a) Pancreas weight (n = 13–14 mice). (b) Acinar cell size (n = 6 
mice). (c) Representative picture of proliferating acinar cells, BrdU (brown); scale bar, 100 μm. (d) Acinar cell 
proliferation, BrdU  labelling during the final 7 days (n = 6 mice). (e) Duct cell proliferation, BrdU  labelling 
during the final 7 days (n = 6 mice). (f) Representative picture of proliferating duct cells (arrows), BrdU (brown); 
scale bar, 50 μm. *p < 0.05, **p < 0.01 and ***p < 0.001.

Liraglutide reduces β-cell and α-cell mass

β-cell mass, determined by analysing 94.9 ± 4.7 mm2 pancreatic tissue per mouse, was reduced in 

control and HFD-fed mice after treatment with liraglutide for 6 weeks (Fig. 3a). This was associated 

with a decreased average β-cell cluster area (Fig. 3b). Liraglutide treatment did not affect insulin 

content in freshly isolated islets (Fig. 3c). No difference in the number of apoptotic β-cells was 

found between groups after counting 1,129 ± 170 β-cells per mouse (Fig. 3d). To determine the 

number of proliferating β-cells 1,807 ± 128 cells per mouse were counted. Liraglutide treatment 

in both control and HFD-fed mice was associated with a lower number of proliferating β-cells 

after 1  week, but after 6  weeks no difference was observed (Fig.  3e–g). Similarly, the α-cell 

mass was reduced in liraglutide-treated control mice. The lower α-cell mass in HFD-fed mice 

was unaffected by liraglutide treatment (Fig. 3h). The ratio of α- to β-cell area did not change 

significantly between the groups (Fig. 3i).
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Fig. 3. β-Cell and α-cell mass in control and HFD-fed mice after liraglutide (black bars) or PBS (white bars) 
treatment. (a) β-Cell mass after 6  weeks of treatment (n = 6 mice). (b) β-Cell cluster area after 6  weeks 
of treatment (n = 6 mice). (c β-cells Insulin content from isolated islets corrected for DNA content (n = 24). 
(d) β-Cell apoptosis, identified by  TUNEL+/insulin+  staining, after 6  weeks of treatment (n = 6). (e) β-Cell 
proliferation in control mice after 1 and 6 weeks of treatment, BrdU labelling during the final 7 days (n = 6 
mice). (f) β-Cell proliferation in HFD-fed mice after 1 and 6 weeks of treatment, BrdU labelling during the final 
7 days (n = 6 mice). (g) Representative picture of proliferating β-cells (arrows), BrdU (brown) and insulin (red). 
Scale bar = 50 μm. (h) α-Cell mass after 6 weeks of treatment (n = 6 mice). (i) Ratio of α-cell area to β-cell area 
after 6 weeks of treatment (n = 6 mice). *p < 0.05, **p < 0.01 and ***p < 0.001.

Increased glucose-induced insulin release from isolated islets of liraglutide-treated 

control mice

Finally, in order to investigate whether 6 weeks of liraglutide treatment had specific effects on 

β-cell function in the presence of a reduced β-cell mass, we assessed glucose-induced insulin 

secretion in isolated islets. Basal insulin secretion (2 mmol/l glucose) was increased twofold in 

islets from liraglutide-treated control mice (Fig. 4a). Glucose stimulation of islets from liraglutide-

treated control mice resulted in a 35% increase in insulin secretion (Fig. 4a). As expected, glucose 

stimulation of islets from HFD-fed mice led to increased insulin secretion compared with mice fed 
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regular chow (Fig. 4b). This glucose stimulation was unchanged in HFD-fed mice that had been 

treated with liraglutide for 6 weeks (Fig. 4b).

Fig. 4. Glucose-induced insulin secretion from isolated islets of control mice and HFD-fed mice treated with 
liraglutide for 6 weeks. Insulin secretion is presented as a percentage of total insulin content. (a) Insulin 
secretion of islets from control mice, n = 24, and (b) insulin secretion of islets from HFD-fed mice, n = 23–24; 
white bars, 2 mmol/l glucose; grey bars, 20 mmol/l glucose. *p < 0.05, **p < 0.01 and ***p < 0.001.

Discussion

The effect of  GLP-1-based therapy on insulin secretion from β-cells has been reported to be 

glucose dependent (17–19), but its effect on β-cell mass under different glycaemic conditions is 

less clear. While GLP-1RA treatment increases β-cell mass in animal models of diabetes, we now 

show a reduction in β-cell mass in normoglycaemic mice.

GLP1-RA treatment of non-diabetic obese individuals results in weight loss and improved β-cell 

function (12, 13). Therefore, it is relevant to understand how β-cell mass adapts during GLP1-RA 

treatment under normoglycaemic conditions and different dietary situations. So far, few studies 

have investigated the effect of GLP-1RA in non-diabetic animals and showed either no difference 

or an increase in β-cell proliferation after short-term treatment for between 2 and 10 days (6, 

20–22).

Liraglutide treatment for 6  weeks resulted in decreased body weight and increased insulin 

sensitivity in normoglycaemic mice and HFD-fed mice, in line with earlier studies (23, 24). In 

addition, the increased early response of insulin secretion during the GTT in liraglutide-treated 

mice is in line with the working mechanism of GLP-1 (25, 26). This was associated with a major 

reduction in β-cell mass in both control and HFD-fed mice. The lower β-cell proliferation rate that 

we observed in mice treated for 1 week suggests that the β-cell mass adapted rapidly after the 

start of liraglutide treatment. Interestingly, we also show that α-cell mass was reduced to such an 

extent that the ratio of α- to β-cells remained unchanged.
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Acute GLP-1R stimulation of β-cells is known to increase insulin secretion in a glucose-dependent 

manner (17–19). We show that sustained GLP-1RA treatment during normoglycaemic conditions 

is associated with increased insulin secretion from isolated islets even in the absence of direct GLP-

1RA stimulation in vitro. In HFD-fed mice, liraglutide treatment increased insulin sensitivity, but 

the enhanced insulin secretory response remained. Together these data suggest that liraglutide 

treatment in normoglycaemic mice leads to increased insulin sensitivity and an enhanced insulin 

secretory response from existing β-cells, thereby reducing the need for new β-cells. In addition, 

these data imply that chronic GLP-1RA treatment during normoglycaemia results in an increased 

β-cell function as was shown in non-diabetic obese individuals (12). In contrast, GLP-1RA 

treatment does not increase β-cell proliferation during normoglycaemia.

Finally, we observed increased acinar cell proliferation after liraglutide treatment indicating that 

this effect can occur during normoglycaemia. There was a non-significant difference in duct cell 

proliferation after 6 weeks of treatment. These observations and the findings of other studies 

(27–32) raise the issue of whether GLP-1-based therapies are a potential risk for pancreatitis; 

some studies did not observe this effect (33, 34), however, which may reflect the animal model 

used, the age of the animals and/or the labelling and counting methods used for proliferating 

cells. In our study, there was no indication of a systemic inflammatory state. Ductal proliferation 

is also associated with the development of pancreatic adenocarcinoma but the relationship 

between GLP-1-based treatment and the development of new pancreatic malignant lesions is 

not clear (35).

In conclusion, our data indicate that GLP-1RA under normoglycaemic conditions can have different 

effects on pancreatic islet and non-islet cells. GLP-1RA treatment during normoglycaemia results 

in a reduction in β-cell mass, whereas it exerts proliferative effects on the exocrine pancreas.
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Supplementary material

ESM Fig. 1. The effect of liraglutide (black bars) or PBS (white bars) treatment on pro-inflammatory cytokines 
after 6 weeks. (a) Plasma interleukin-1β (IL-1β) concentrations. (b) Plasma monocyte chemoattractant 
protein-1 (MCP-1) concentrations. (c) Plasma interleukin-6 (IL-6) concentrations. HFD = high-fat diet.
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Abstract

High-fat, low-carbohydrate ketogenic diets (KD) are used for weight loss and for treatment 

of refractory epilepsy. Recently, short-time studies in rodents have shown that, besides their 

beneficial effect on body weight, KD lead to glucose intolerance and insulin resistance. 

However, the long-term effects on pancreatic endocrine cells are unknown. In this study 

we investigate the effects of long-term KD on glucose tolerance and β- and α-cell mass 

in mice. Despite an initial weight loss, KD did not result in weight loss after 22 wk. Plasma 

markers associated with dyslipidemia and inflammation (cholesterol, triglycerides, leptin, 

monocyte chemotactic protein-1, IL-1β, and IL-6) were increased, and KD-fed mice showed 

signs of hepatic steatosis after 22 wk of diet. Long-term KD resulted in glucose intolerance 

that was associated with insufficient insulin secretion from β-cells. After 22 wk, insulin-

stimulated glucose uptake was reduced. A reduction in β-cell mass was observed in KD-fed 

mice together with an increased number of smaller islets. Also α-cell mass was markedly 

decreased, resulting in a lower α- to β-cell ratio. Our data show that long-term KD causes 

dyslipidemia, a proinflammatory state, signs of hepatic steatosis, glucose intolerance, and a 

reduction in β- and α-cell mass, but no weight loss. This indicates that long-term high-fat, 

low-carbohydrate KD lead to features that are also associated with the metabolic syndrome 

and an increased risk for type 2 diabetes in humans.
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Introduction

High-fat, low-carbohydrate ketogenic diets  (KD) are used in weight loss programs and are 

associated with improvement of the glycemic status in obese subjects (1, 2) and patients with 

type 2 diabetes (3, 4). KD are also used as an effective treatment for refractory epilepsy (5–7).

Blood glucose levels are tightly controlled by the hormones insulin and glucagon produced by 

pancreatic β- and α-cells, respectively. When the consumption of carbohydrates is limited, the 

body switches from a glucose-based energy metabolism to a fat-based metabolism in which 

β-oxidation of free fatty acids (FFA) serves as the primary source of energy. This leads to a 

permanent state of ketosis. Insulin counteracts ketogenesis by stimulating the use of glucose 

as primary energy source and by decreasing the release of FFA in the circulation (8). In contrast, 

glucagon stimulates ketogenesis, hepatic glucose production, and lipolysis (9, 10). Changes in 

glucose metabolism are associated with adaptation of the number and/or function of β-cells to 

produce and secrete an adequate amount of insulin (11, 12). Also α-cell mass can be modulated 

by dietary changes (13). Inadequate adaptation leads to glucose intolerance and eventually results 

in diabetes mellitus (8, 14).

Despite their beneficial effects on weight loss and epileptic seizures, KD may have adverse side 

effects such as kidney stones, impaired growth, osteoporosis, and hyperlipidemia (15, 16) on 

the long term. Furthermore, several short-term studies in rodents have shown that KD leads to 

hepatic steatosis, insulin resistance, and glucose intolerance (17–19).

It is unknown whether the metabolic effects induced by long-term KD also affect the endocrine 

pancreas. In addition, the effect of KD on glucose metabolism has only been studied in mice after 

short-term diets (18–20). Therefore, we investigated the effects of a long-term KD on glucose 

tolerance and pancreatic β- and α-cell mass.

Materials and methods

Animals

Male C57BL/6J mice, 10 wk old (Charles River Laboratories, Wilmington, MA), were fed a KD 

(Research Diets, New Brunswick, NJ) or regular chow (control; Special Diets Services, Essex, UK) 

for 22 wk. The proportion of calories derived from nutrients for the KD, which is similar to other 

studies (18–21), and control diet is described in Table 1. In addition, 8-wk-old male C57BL/6J mice 

were fed a KD or a normal diet (D12450B; Research Diets) for 1 wk. Before euthanization, mice 

were anesthetized by isoflurane inhalation. Animal experiments were approved by the ethical 

committee on animal care and experimentation of the Leiden University Medical Center.
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Control KD 
kcal/100kcal g/100 g kcal/100 kcal g/ 100 g

Protein 27.2 22.5 5.9 10.0
Carbohydrate 61.2 50.4 1.0 2.0
Fat 11.5 4.2 93.1 72.0
Dietary fiber 16.2 8.5
Methionine 0.37 0.29
Choline 0.14 0.34
Saturated fatty acids 1.9 0.7 29.6 22.8
Monounsaturated fatty acids 3.0 1.1 33.7 25.9
Polyunsaturated fatty acids 4.2 1.6 24.6 18.9
ω-3 fatty acids 0.5 0.2 2.0 1.5
Energy density, kcal/g 3.3 6.9

Table 1. Diet composition. KD, ketogenic diet

Glucose and insulin tolerance test

Glucose tolerance was assessed after 1, 5, 12, and 20 wk of diet. An intraperitoneal glucose 

tolerance test (GTT) was performed in overnight-fasted mice. Blood samples were drawn from 

the tail vein before injecting 2 g/kg glucose and after 15, 30, 60, and 120 min. Insulin tolerance 

was assessed after 22 wk of diet. An intraperitoneal insulin tolerance test (ITT) was performed in 

animals that had been fasted for 6 h. After measuring basal blood glucose concentration from the 

tail vein, 1.0 U/kg insulin was injected followed by monitoring of the blood glucose concentrations 

after 15, 30, 60, and 90 min. Blood glucose concentrations were measured using a glucose meter 

(Accu Chek, Roche, Basel, Switzerland) and β-hydroxybutyrate concentrations using a ketone 

meter (Precision Xtra System; Abbot Diabetes Care, Alameda, CA). Insulin concentrations were 

measured by ELISA (Ultra Sensitive Mouse Insulin ELISA kit; Chrystal Chem, Downers Grove, IL).

Plasma analysis

Plasma leptin, IL-6, IL-1β, and monocyte chemotactic protein (MCP)-1 were detected using a 

custom Cytokine/Metabolic multiplex assay (Mesoscale Discovery, Gaithersburg, MD). Plasma 

cholesterol, triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) 

were measured on a Roche Modular P800 analyzer (Roche).

Liver triglyceride analysis

Following euthanization, the liver was dissected, weighed, and stored at −80°C. Lipid extraction 

was performed using a modified protocol of Bligh and Dyer (22). Briefly, liver tissue was 

homogenized in ice-cold methanol. Lipids were extracted by addition of ice-cold chloroform. 

After centrifugation, the supernatant was dried with nitrogen gas. Lipids were dissolved in 

chloroform with 2% Triton X-100 (Sigma-Aldrich) and dried. Finally, lipids were dissolved in 100 

μl H20. Triglyceride content was measured using an enzymatic kit (Roche), and protein content 
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was measured using the BCA protein assay kit (Pierce, Rockford, IL). Liver triglyceride content was 

defined as total triglyceride content per milligram of protein.

Islet morphometry

The pancreas was dissected and weighed after euthanization. To obtain representative samples 

of the entire organ, pancreata from each mouse (6/group) were cut in three pieces (duodenal, 

gastric, and splenic region) (23) that were fixed by immersion in a 4% paraformaldehyde solution, 

embedded in paraffin blocks, and sliced into 4-μm sections. From each block four sections, with 

an interval of at least 200 μm between sections, were immunostained and analyzed. The average 

of the three regions was taken as a measure for the entire organ.

For the identification of β-cells, sections were immunostained with guinea pig anti-insulin IgG 

(Millipore, Billerica, MA) or rabbit anti-insulin IgG (Santa Cruz Biotechnology, Santa Cruz, CA) 

for 1 h followed by horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h. α-Cells 

were identified by immunostaining by rabbit anti-glucagon IgG (Vector Laboratories, Burlingame, 

CA) for 1 h followed by HRP-conjugated secondary antibody for 1 h. Sections were developed 

with 3,3′-diaminobenzidine tetrahydrochloride or liquid permanent red (LPR, Dako, Denmark) 

and counterstained with hematoxylin. Stained sections were digitally imaged (Panoramic MIDI; 

3DHISTECH).

β-Cell area and pancreas area were determined using an image analysis program (Stacks 2.1; 

LUMC), excluding large blood vessels, larger ducts, adipose tissue, and lymph nodes as previously 

described (3). β-Cell mass was determined by the ratio of β-cell area to pancreas area multiplied 

by the pancreas weight. β-Cell cluster size was determined as the median size of β-cell clusters 

(defined as ≥4 β-cells per cluster) per mice. α-Cell mass was determined as previously described 

(13) by calculating the ratio of α-cell area to β-cell area, using Image J software (Image J; National 

Institutes of Health, Bethesda, MD) multiplied by the β-cell mass.

Statistical analysis

Data are presented as means ± SE. Statistical calculations were carried out using GraphPad Prism 

5 (GraphPad Software, San Diego, CA). The statistical significance of differences was determined 

by an unpaired Student’s t-test, Mann-Whitney test, or two-way ANOVA, followed by Bonferroni’s 

multiple-comparisons test, as appropriate. P < 0.05 was considered statistically significant.

Results

No weight loss after 22 wk of KD

The KD was not associated with weight loss after 22 wk of diet, despite an initial weight loss 

during the first weeks of diet (Fig. 1A). After 22 wk, body weight in the KD-fed mice was 34.8 

± 1.2 vs. 32.2 ± 0.4 g in the control mice (P < 0.05). After 5 wk, increased concentrations of 
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circulating β-hydroxybutyrate were measured and remained elevated after 20 wk of diet, which 

indicates a ketotic state in KD-fed mice (Fig. 1B).
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Fig. 1. Effects of 22-wk control or ketogenic diet (KD) on weight gain and ketosis. A: weight gain during 22 
wk of diet (n = 8–10 mice). B: β-hydroxybutyrate (βOHB) levels (n = 2–7 mice). **P < 0.01 and ***P < 0.001 
vs. control.

KD leads to dyslipidemia, a proinflammatory state, and hepatic steatosis

To assess the metabolic profile of KD-fed mice, several markers that are also associated with the 

metabolic syndrome in humans were measured. After 22 wk, there was a significant increase of 

plasma cholesterol, triglyceride, leptin, MCP-1, IL-1β, and IL-6 concentrations in plasma of KD-fed 

mice (Table 2). To assess whether these systemic markers were related to metabolic changes in 

the liver, the intrahepatic triglyceride levels were determined as a measure of hepatic steatosis. 

Liver triglyceride content was increased twofold after 22 wk of KD [379 ± 41 nmol/mg protein 

(KD) vs. 159 ± 19 nmol/mg protein (control), P < 0.01]. In addition, plasma ALT and AST were 

significantly increased.

Control KD
Total cholesterol, mg/dl 92.7 ± 3.1 141.3 ± 9.5 b

Triglyceride, mg/dl 42.0 ± 1.5 64.9 ± 6.8b

Leptin, ng/ml 0.63 ± 0.37 2.35 ± 0.99a 
MCP-1, pg/ml 6.20 ± 0.73 12.65 ± 1.40c

IL-1b, pg/ml 1.19 ± 0.31 3.86 ± 1.17a

IL-6, pg/ml 3.20 ± 2.11 19.84 ± 8.02a

ALT, U/l 31.3 ± 0.9 80.6 ± 15.8 b

AST, U/l 89.0 ± 10.7 155.2 ± 31.4 a

Table 2. Plasma markers of the metabolic syndrome in control mice and mice fed a ketogenic diet for 22 wk.
Values are means ± SE; n = 8-10 mice. MCP, monocyte chemotactic protein; IL, interleukin; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase. aP<0.05, bP<0.01, and cP<0.001. 
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Long-term KD leads to glucose intolerance

Glucose tolerance tended to be decreased after 5 wk, but KD-fed mice became markedly glucose 

intolerant after 12 wk of diet (Fig. 2, A–D). After 1 wk KD, insulin concentrations were increased 

during the GTT (Fig. 2, E and I). However, continuation of the diet for 5 wk or longer resulted in 

insufficient insulin secretion from β-cells to maintain glucose tolerance (Fig. 2, F–H and J–L). After 

20 wk diet, glucose-induced insulin concentrations were significantly decreased in KD-fed mice 

(Fig. 2L). Insulin-dependent glucose uptake assessed by an ITT was also reduced in KD-fed mice 

compared with control mice after 22 wk (Fig. 3, A and B). Also, the fasting insulin-to-glucose ratio 

was significantly increased in KD-fed mice (Fig. 3C).
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Fig. 2. Glucose tolerance in control and KD-fed mice. Blood glucose concentrations during the glucose 
tolerance test after 1 (A), 5 (B), 12 (C), and 20 wk (D) of diet (n = 5–10 mice). Insulin concentrations during 
the glucose tolerance test after 1 (E), 5 (F), 12 (G), and 20 (H) wk of diet (n = 3–10 mice). Area under the curve 
(AUC) 0–15 min insulin concentrations during the glucose tolerance test after 1 (I), 5 (J), 12 (K), and 20 (L) wk 
of diet (n = 4–10 mice). *P < 0.05, **P < 0.01, and ***P < 0.001 vs. control.
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Fig. 3. Insulin tolerance in control and KD-fed mice.  A: blood glucose concentrations during the insulin 
tolerance test (n = 7–8 mice) after 22 wk of diet. B: inverse AUC below baseline glucose concentrations 
during the insulin tolerance test (n = 7–8 mice). C: fasting insulin-to-glucose ratio after 20 wk of diet (n = 8–9 
mice). **P < 0.01 and ***P < 0.001 vs. control.

KD leads to decreased β- and α-cell mass.

After 22 wk, β-cell mass in KD-fed mice, determined by analyzing 175.1 ± 7.1 mm2 pancreatic 

tissue/mouse, was decreased (Fig. 4, A–C). The density of islets was unchanged (Fig. 4D), but the 

median β-cell cluster size was significantly decreased (Fig. 4E). This was because of a relatively 

increased number of islets with a size smaller than 2,500 μm2 in KD-fed mice (Fig. 4F). The α-cell 

mass was reduced by 50% in KD-fed mice after 22 wk, which resulted in a decreased α-cell/β-cell 

ratio in KD-fed mice (Fig. 5, A–D).
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Discussion

High-fat, low-carbohydrate KD have been associated with beneficial effects on body weight and 

epileptic seizures. However, their effects on pancreatic endocrine cells and glucose metabolism on 

the long term are less clear. The main results of our study show that long-term KD in mice causes 

glucose intolerance and a reduction in both β- and α-cell mass, but no weight loss. This indicates 

that long-term KD leads to features that are also associated with the metabolic syndrome in 

humans and an increased risk for type 2 diabetes.

KD resulted in weight loss in the first weeks of the diet, which is in line with previous reports 

in rodents (19–21). Also in patients with refractory epilepsy, short-term (3–4 mo) KD treatment 

resulted in decreased body weight (24, 25). However, we now show that a prolonged KD is not 

associated with weight loss. After 12 wk, weight gain is similar in both groups of mice. Long-term 

use of KD in children with epilepsy resulted in slowed growth but did not change the body mass 

index (25–27). In rats it has been shown that 4–6 wk KD leads to visceral fat accumulation (28) 

and increased leptin concentrations (29). We did not assess the effect of long-term KD on body 

composition. However, the elevated plasma leptin concentrations observed in our study suggest 

that prolonged KD eventually leads to regaining weight because of an increase of body fat.

Long-term KD leads to increased plasma cholesterol and triglyceride levels indicative of dyslipidemia. 

In previous short-term studies, increased plasma cholesterol levels were observed after 9 wk of 

diet (20), whereas at that time point plasma triglyceride levels were lower. Also, in both adults 

and children with refractory epilepsy, KD was associated with increased plasma cholesterol and 

triglyceride levels (30, 31). Furthermore, the increased plasma cytokine concentrations in our 

study suggest a systemic proinflammatory state in long-term KD-fed mice. This is in line with the 

observation that short-term KD in mice is associated with increased inflammatory markers in liver 

and adipose tissue (20) and macrophage infiltration in the liver (18). Also, we show that KD-fed 

mice had increased plasma levels of the chemokine MCP-1, which is associated with increased 

macrophage recruitment to the liver (32). In patients with the metabolic syndrome, increased 

MCP-1 is associated with macrophage infiltration in fat tissue and a proinflammatory state (33). 

Recently, a short-term very-low-carbohydrate diet in overweight and obese humans resulted in 

increased concentrations of the inflammatory marker C-reactive protein (34), which is associated 

with an increased risk for the metabolic syndrome (35).

Dyslipidemia and the proinflammatory state induced by KD may be the consequence of the high 

content of saturated fatty acids. It was shown that a short-term polyunsaturated fat-enriched KD 

did not adversely alter lipid metabolism in adults (36). Also, supplementation of a high-fat diet 

with ω-3 polyunsaturated fatty acids has been shown to prevent high-fat diet-induced insulin 

resistance by reducing inflammasome-dependent inflammation in rodents (37). However, in our 

study, the higher content of ω-3 fatty acids in the KD could not prevent proinflammatory effects 

on the long term. Whether further modification of the fatty acid content of KDs can attenuate 

dyslipidemia and the proinflammatory effects on the long term needs further study.
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Furthermore, KD-fed mice showed signs of steatohepatitis as indicated by the increased hepatic 

triglyceride content and elevated AST and ALT levels. This is in line with metabolic changes 

observed in previous studies in mice (18–21) and may indicate an early stage of nonalcoholic fatty 

liver disease (18, 38). Recent short-term studies have shown that supplementation of KD with 

choline or methionine could limit hepatic steatosis and the proinflammatory state of the liver, 

respectively (39, 40). However, the similar methionine and higher choline content of KD in our 

study did not prevent signs of steatohepatitis in the long term. Altogether these data indicate that 

a prolonged KD leads to dyslipidemia, a proinflammatory state, and signs of hepatic steatosis.

In this study we show that long-term KD is associated with pronounced glucose intolerance and 

reduced insulin-stimulated glucose uptake. This was also observed in a recent study by Bielohuby 

et al. after 4 wk of KD in mice (17). We now show that insulin concentrations were increased 

to maintain normoglycemia after 1 wk of KD, but continuation of the KD resulted in insufficient 

insulin secretion to maintain glucose tolerance.

This inadequate insulin secretory response could be the result of β-cell dysfunction, an insufficient 

β-cell number, or a combination of these two mechanisms. The results in this study strongly 

indicate that long-term KD leads to an insulin secretory defect. Furthermore, not only after short-

term diet (17) but also after long-term KD, β-cell mass is reduced. An inadequate function and/

or number of β-cells leads to insufficient insulin secretion that results in glucose intolerance and 

ultimately type 2 diabetes in humans (8, 41). Interestingly, also the α-cell mass was decreased 

considerably, which is in line with decreased glucagon levels that have been observed after 5 wk 

of KD in mice (19). In relative terms, this decreased α-cell mass was even more pronounced than 

the reduction in β-cell mass, resulting in a major decrease of the α-cell/β-cell ratio. Decreased 

glucagon levels lead to less gluconeogenesis from the liver, which may prevent hyperglycemia in 

KD-fed mice. Whether this change in α-cell mass is a direct consequence of KD or a response to 

counteract glucose intolerance remains to be elucidated.

Altogether, the results of this study indicate that a long-term high-fat, low-carbohydrate KD in 

mice does not cause weight loss and leads to glucose intolerance and a reduction in both β- and 

α-cell mass. In addition, dyslipidemia, a proinflammatory state, and signs of hepatic steatosis are 

observed. Effects of short-term diets cannot be automatically translated to metabolic effects after 

long-term diet use.
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Abstract

Aims

β-Cell dysfunction plays a crucial role in all types of diabetes mellitus. Therapies that restore 

β-cell mass and/or function are needed. High-throughput platforms using primary human 

β-cells can be a powerful tool for the screening of viral-delivered shRNA or small compound 

libraries to identify new mechanisms involved in β-cell dysfunction and to identify possible 

starting points for therapeutic interventions. We developed a high-throughput culture 

platform for primary human islets to assess β-cell function. 

Methods

Three culture systems were established in microwell plates format and compared: intact 

human islets, and islet cells cultured either in monolayer on ECM or reaggregated into islet-

cell clusters. β-Cell function was determined by measuring glucose-induced insulin secretion 

and responsiveness to known insulin secretagogues. In addition, we assessed the efficiency 

of adeno- or lentivirus mediated transduction of the cells.

Results

All three culture platforms were set up successfully over a period of 3 days. Glucose-induced 

insulin secretion of islet cell aggregates was similar to intact islets, whereas the response of 

islet cells in monolayer was reduced. Exposure to glucagon-like peptide-1 receptor agonists 

did not enhance insulin secretion, independent of the culture platform used. Activation of 

cAMP/EPAC-2 signal transduction and inhibition of K-channels enhanced glucose-induced 

insulin secretion in intact islets and islet cell aggregates, but not in monolayer culture. In 

contrast to intact islets, dispersed islet cells were efficiently transduced with adeno- or 

lentivirus.

Conclusions

We present three culture platforms in microwell format using primary human islet cells in 

which β-cell function can be assessed. Dispersed islet cells can be efficiently transduced 

using adeno- or lentivirus. Intact islets and islet cell aggregates did respond to insulin 

secretagogues, while islet cells in monolayer did not. These platforms can be used for high-

throughput screening of viral-delivered shRNA or small compound libraries to identify new 

mechanisms involved in β-cell function and survival. 



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

A screening platform to assess human β-cell function  |  105

Introduction

Diabetes mellitus affects 382 million people worldwide and by 2035 this is expected to increase 

to 592 million people (1). β-Cell dysfunction plays a crucial role in all types of diabetes. Despite 

intensive treatment with diets and/or current antihyperglycemic agents, normalization of 

glycemic control can often not be achieved and patients are at risk to develop long-term micro- 

and macrovascular complications (2). Therefore, novel therapies are needed that restore β-cell 

function. 

High-throughput screenings of viral-delivered shRNA or small compound libraries can be used 

to identify novel mechanisms involved in the regulation of glucose-induced insulin secretion. 

However, the development of robust high-throughput assay platforms of intact islets is 

challenging because islet sizes are heterogeneous and the virus transduction efficiency of these 

three-dimensional cell clusters is low (3).

Currently no assay platforms are present in which human islet function is assessed. Existing 

assay platforms are mostly using rodent-derived cell lines and are set up to assess insulin gene 

expression or protein content (4–7). Following glucose stimulation only a fraction of the total 

insulin content is secreted from β-cells, which makes these existing read-outs poor indicators 

of secretory function (8). Therefore, the aim of this study is to set up a high-throughput culture 

system using primary human islets in which β-cell function can be assessed. Three different culture 

systems were compared: intact human islets, and cells from dispersed human islets cultured either 

in monolayer or reaggregated into islet-cell clusters.

Materials and Methods

Human islet isolation and cell culture

Human pancreata were procured through a multiorgan donor program. Islet isolation was 

performed in the Good Manufacturing Practice facility of our institute according to the method 

described by Ricordi et al. (9). Isolated islets could be used for scientific research if the number 

and/or quality of the islets were insufficient for clinical islet transplantation, in accordance with 

national laws, and if research consent was available. Alternatively islets were obtained from 

Asterand (Detroit, MI, USA) or Tissue Solutions (Glasgow, UK). Islet purity was determined by 

dithizone staining. Only islet fractions with a purity of >70% were used in the studies. Islets were 

cultured in CMRL 1066 medium (Cellgro; Mediatech, Manassas, VA, USA) supplemented with 

10% heat-inactivated FBS, 2 mmol/l L-glutamine, 10 mmol/l HEPES, 1.2 mg/ml nicotinamide, 50 

μg/ml Gentamycin and penicillin/streptomycin (50 U/ml and 50 ug/ml respectively).
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Islet dissociation and culture

Islets were dispersed into single cells by incubation with TrypLE Express (Invitrogen; Thermo Fisher 

Scientific, Waltham, MA, USA) at 37°C while gently pipetting up and down for 8 – 12 minutes. 

For monolayer culture 384-wells plates (Greiner Bio-One, Frickenhausen, Germany) were coated 

with a mixture (referred to as ECM) of 50% (vol/vol) ECM (final concentration 0.5 mg/ml; Sigma-

Aldrich, St Louis, CA, USA), 37.5% PureCol (final concentration 1.12 mg/ml; Inamed, Gauting, 

Germany), 5% DMEM 10x (Gibco; Thermo Fisher Scientific), 5% NaCO3 (37 g/l), 2.5% Hepes (1 

M), pH 7.4. Coated plates were incubated at 37°C for at least 30 minutes. Per 384-well 10,000 

islet cells were plated. For the aggregate culture 20,000 cells were seeded in 96-wells U-shaped 

ultra-low binding plates (Costar, Corning, New York, USA). In parallel, intact islets were cultured 

at a density of 20 islets per well in 96-wells U-shaped ultra-low binding plates (Costar). 

Virus transduction

Virus transduction was performed 2 hours after seeding the cells. Adenoviruses expressing the 

cDNA of the Zsgreen fluorescent protein, or the shRNA adenoviral construct expressing an shRNA 

sequence with no significant homology to any known mammalian genes (eGFP) or an empty 

virus vector were produced as described before (10). Islet cells cultured in monolayer and islet cell 

aggregates were transduced by the addition of adenovirus suspension resulting in a final MOI of 

2 infectious particles per cell. Lentivirus transductions of islet cells were performed using vectors 

derived from pRRL – cPPT-CMV-GFP-PRE. Third generation self-activating lentivirus vectors were 

produced as described before (11). Islet cells cultured in monolayer and islet cell aggregates 

were transduced by the addition of lentivirus resulting in a final MOI of 2 (3). After 24 hours, 

the proteins Zsgreen protein was visualised using fluorescence microscopy and the transduction 

efficiency was determined by estimating the percentage of cells expressing the fluorescent protein 

of at least 3 wells per donor.

Glucose-stimulated insulin secretion

Three days after seeding the cells or islets a glucose-induced insulin secretion test was performed. 

Intact islets and islet cell aggregates were transferred to a 96-wells transwell plate (Corning). 

Cells were washed two times with a modified Krebs-Ringer Bicarbonate HEPES (KRBH) buffer 

containing 115 mM NaCl, 5 mM KCl, 24 mM NaHCO3, 2.2 mM CaCl2, 1 mM MgCl2, 20 mM 

HEPES and 2 g/l human serum albumin, pH 7.4 (incubation buffer). Cells were primed for 1.5 

h at 37 °C in incubation buffer supplemented with 2 mM glucose (low glucose). Subsequently, 

the cells were incubated in fresh incubation buffer supplemented with 2 mM glucose for 1 h to 

measure the basal insulin secretion levels. The cells were then incubated for 1 h in incubation 

buffer supplemented with 16.7 mM glucose (high glucose) in the presence or absence of 

insulin secretagogues. Insulin secretagogues tested were liraglutide (Novo Nordisk, Bagsvaerd, 

Denmark), exendin-4 (Sigma-Aldrich), the EPAC-2 agonist Reh3 (kindly provided by H. Rehmann), 
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forskolin (Sigma-Aldrich) and 3-isobutyl-1-methylxanthine (IBMX; Calbiochem, Millipore, Billerica, 

MA, USA), and tetraethylammonium chloride (TEA; Sigma-Aldrich). Insulin concentrations were 

determined by ELISA (Mercodia, Uppsala, Sweden) in the supernatants that were collected after 

low and high glucose incubation. For each donor n=4 wells per condition were tested, from which 

the average was calculated. The stimulation index of insulin was expressed as the ratio of insulin 

secreted during high glucose over low glucose. The stimulation index of insulin secretagogues 

was expressed as the ratio of insulin secreted during high glucose in the presence of the insulin 

secretagogue over high glucose. 

Immunofluorescence staining 

Cells were fixed in 4% paraformaldehyde for 30 minutes and washed in PBS. Intact islets or islet 

cell aggregates were spun down at high speed in fluid agar. Agar-containing cell pellets were 

embedded in paraffin blocks and sliced into 4 µm sections. For identification of β-cells, sections 

were incubated with guinea-pig-anti-insulin IgG (1:200, Millipore) and for the identification of 

α-cells with rabbit-anti-glucagon IgG (1:200, Vector Laboratories, Burlingame, CA, USA) for 1 

hour, followed by secondary antibodies TRITC-anti-guinea pig (1:400, Jackson ImmunoResearch 

Laboratories, West Grove, PA, USA) and goat-anti-rabbit Alexa-488 (1:500, Molecular Probes; 

Thermo Fisher Scientific) and Dapi (Vector Laboratories) was used as a nuclear staining. For islet 

cells cultured in monolayer, cells were permeabilized with 0.5% Triton for 10 minutes after which 

the cells were incubated with mouse-anti-c-peptide IgG (1:1000, Millipore) and rabbit-anti-

glucagon IgG (1:100, Vector Laboratories) overnight. Hoechst was used as nuclear staining and 

secondary antibodies were goat-anti-mouse Alexa-568 (1:1000, Molecular Probes) and goat-anti-

rabbit Alexa-488 (1:500, Molecular Probes). 

Statistical analysis

Data are expressed as means ± SEM. Statistical calculations were carried out using GraphPad 

Prism 5 (GraphPad Software, San Diego, CA, USA). The statistical significance of differences was 

determined by Mann-Whitney test or Kruskal-Wallis test, followed by Dunn’s multiple comparison 

test, as appropriate. P<0.05 was considered statistically significant.

Results

Cellular composition of human islet cells cultured either in monolayer or in 3D aggregates 

is similar to intact islets

Human islets were obtained from pancreas of 20 organ donors (13 M / 7 F, age 47.8±2.5 years, 

Body Mass Index 25.9±0.7 kg/m2). The purity of the islets was 85.6+/-1.3% (range 80 - 95%) 

as determined by dithizone staining (Fig. 1A). Intact human islets were dispersed into single 
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cells which were cultured either in monolayer on a matrix of ECM (Fig. 1B) or reaggregated islet 

cell clusters (Fig. 1C). For the monolayer culture different matrices were tested (gelatin, poly-l-

lysin, methylcellulose, collagen-I, laminin, ECM (data not shown). Using ECM, cells were firmly 

attached to the matrix, which was essential for the multiple washing steps that are required for 

the glucose-induced insulin secretion tests. For islet cell aggregates, spontaneous reaggregation 

of 20,000 islet cells resulted in one islet cell cluster without affecting cell viability (data not shown) 

that could be easily transferred to trans-well membrane plates for the glucose-induced insulin 

secretion test. To determine the percentage of β- or α-cells present in the three culture platforms, 

the presence of insulin or glucagon immunostaining was examined in 324±73 (islets), 265±5 

(monolayer) and 371±50 (aggregates) cells per donor. After 3 days of culture the percentage of 

β- or α-cells present in islet cells cultured either in monolayer or in islet cell aggregates was similar 

to intact human islets (Fig. 1D-G). 

Figure 1. Morphologic appearance and cellular composition of intact human islets, islet cells in monolayer 
and islet cell aggregates. A. Purified human islets after isolation stained for insulin using dithizone (red), 40x 
magnification. B. Islet cells cultured in monolayer on ECM, 40x magnification. C. Re-aggregated islet cells, 
40x magnification. D-F. Representative pictures of an intact human islet (D), islet cells in monolayer (E) and 
aggregated islet cells (F), immunostained for insulin (red) and glucagon (green) to identify β-cells and α-cells, 
respectively. Cell nuclei are stained using DAPI/Hoechst (blue), scale bar = 20 μm. G. Percentage of β-cells and 
α-cells of total cell number of intact human islets (n=5 donors), islet cells in monolayer (n=2 donors) or islet 
cell aggregates (n=5 donors). 
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Efficient virus transduction in human islet cells in monolayer or islet cell aggregates 

The transduction efficiency of cells from dispersed human islets was assessed by expression 

of adenoviral-transduced Zsgreen. Zaldumbide et al. (3) have shown that in intact human 

islets, primarily the outer layer of islet cells is transduced by virus. For islet cells in monolayer a 

transduction efficiency of >80% was reached using adenovirus with MOI 2 (Fig 2A). Also, after 

transduction of single cells in suspension, islet cells were able to cluster together into islet cell 

aggregates resulting in a transduction efficiency with adenovirus of >80% with MOI 2 (Fig 2B). 

Similar results were obtained using lentivirus (data not shown). 

Figure 2. Transduction efficiency of islet cells in monolayer and islet cell aggregates. A. Representative pictures 
of islet cells in monolayer and B. aggregated islet cells, transduced with adenovirus expressing Zsgreen (MOI 
2) imaged 24 hours post-transduction, 40x magnification. 

 

Cultured intact islets and islet cell aggregates maintain glucose-induced insulin secretory response 

Next we assessed the insulin secretory response of human islet cells in the different culture 

platforms. Intact human islets cultured in a 96-well plate preserved their glucose-induced insulin 

secretory response after 3 days (Fig. 3A). High glucose stimulation of intact islets resulted in a ~8x 

increase of insulin secretion compared to low glucose (Fig. 3B, E). Although glucose stimulation 

resulted in increased insulin secretion from islet cells cultured in monolayer, this response was 

significantly lower than in intact islets (Fig. 3C, E). In contrast, the stimulation index of islet cells 

cultured in aggregates was similar to intact human islets (Fig. 3D, E). The stimulation index was 

not significantly affected by adenovirus transduction of islet cells cultured either in monolayer or 

aggregates after 3 days (Fig. 3F). Similar results were obtained using lentivirus (data not shown 

and (3)). 
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Figure 3. Glucose-induced insulin secretory response of intact islets, islet cells in monolayer and islet cell 
aggregates. A. Insulin release expressed as ratio of the insulin secretory response during high (16.7 mmol/l) 
glucose and low (2 mmol/l) glucose stimulation (stimulation index) of intact human islets after culture for 
0 or 3 days in 96-well plates (n=4 donors). B-D. Insulin secretion from intact islets (B, n=8 donors), islet 
cells in monolayer (C, n=3 donors) and aggregated islet cells (D, n=4 donors) in response to ≥16.7 mmol/l 
glucose (High glucose). E. Stimulation index of glucose-induced insulin secretion. Intact islets: n=14 donors, 
islet cells in monolayer: n=5 donors, and aggregated islet cells: n=8 donors. F. Stimulation index of glucose-
induced insulin secretion in monolayer (n=2 donors) and aggregated islet cells (n=3-4 donors) untransduced 
or transduced with an empty adenovirus vector or an adenovirus expressing shRNA against eGFP as a negative 
control (MOI = 2), 3 days post-transduction. *p<0.05, ***p<0.001.

In vitro exposure of human islet cells to GLP-1R agonists does not significantly enhance 

glucose-induced insulin secretion

The effect of glucagon-like peptide-1 receptor (GLP-1R) agonism on enhancement of glucose-

induced insulin secretion was assessed for the three culture platforms. When intact human 

islets were exposed to glucose and different concentrations of the GLP-1R agonist exendin-4 or 

liraglutide, only a minor enhancement of insulin secretion by 100 nM liraglutide was observed 

(Fig. 4A). Furthermore, there was no significant enhancement of glucose-induced insulin secretion 

by GLP-1R agonist treatment in islet cells in monolayer or islet cell aggregates (Fig. 4B, Fig. 5A-C). 
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Figure 4. Insulin secretory responses of intact human islets, human islet cells in monolayer and islet cell 
aggregates to GLP-1R agonist treatment. A. Insulin secretion from intact islets (n=2-5 donors) in response to 
2 mM glucose (low) and ≥16.7 mmol/l glucose (high) alone and in combination with different concentrations 
of exendin-4 or liraglutide. B. Stimulation index of liraglutide (100 nM)-induced enhancement of insulin 
secretion in intact human islets (n=11 donors), human islet cells in monolayer (n=2 donors) and islet cell 
aggregates (n=4 donors). **p<0.01 vs. low glucose.

Activation of cAMP/EPAC-2 signal transduction and inhibition of K-channels enhances 

glucose-induced insulin secretion in intact human islets and islet cell aggregates

To evaluate whether the signaling pathway activated after GLP-1 receptor activation was 

functional, we assessed the effect of cAMP/EPAC-2 signal transduction on insulin secretion in our 

culture systems. Increasing cAMP levels by forskolin and IBMX resulted in ~2.5x enhancement of 

glucose-induced insulin secretion compared to control in intact human islets (Fig. 5A). A similar 

induction of insulin secretion was reached with an EPAC-2 agonist in intact islets. However, 

neither forskolin and IBMX, nor EPAC-2 agonism significantly enhanced insulin secretion from 

islet cells in monolayer (Fig. 5B). In contrast, reaggregated islet cells showed increased glucose-

induced insulin secretion upon stimulation with forksolin and IBMX or the EPAC-2 agonist (Fig. 

5C). K-channel inhibition of intact human islets using TEA resulted in ~2x potentiation of insulin 

secretion and a similar response was observed in islet cell aggregates (Fig. 5A, C). Conversely, 

exposure of islet cells in monolayer to TEA did not result in enhancement of glucose-induced 

insulin secretion (Fig. 5B). Finally, the stimulation indices for the insulin secretagogues forskolin 

and IBMX, EPAC-2 agonist and TEA were reproducible in different donors and similar between 

intact islets and islet cell aggregates derived from the same donor (Fig. 5D-F). 
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Figure 5. Insulin secretory responses to elevation of cAMP, EPAC-2 agonism and K-channel inhibition of intact 
islets. A-C. Stimulation index of high glucose (16.7 mM) in the presence of liraglutide (100 nM), forskolin (10 
µM) and IBMX (100 µM), EPAC-2 agonist (100 µM), or TEA (100 µM) over high glucose alone in (A) intact 
human islets (n=2-7 donors), (B) human islet cells in monolayer (n=2 donors) and (C) islet cell aggregates 
(n=3-5 donors). D-F. Stimulation index of forskolin and IBMX (D), EPAC-2 agonist (E) and TEA (F) in intact islets 
or aggregates expressed per donor. *p<0.05 and **p<0.01 vs. DMSO control.

The use of intact human islets, islet cells in monolayer or islet cell aggregates for high-

throughput screening purposes

We evaluated the use of three different culture platforms in microwell plates using primary 

human islets. Table 1 summarizes the main characteristics of the three culture platforms that were 

compared in this study. These platforms can ultimately be used for medium to high-throughput 

screening of viral-delivered shRNA or small compound libraries to identify hits that can enhance 

insulin secretion in human islets. We therefore calculated the number of compounds that can be 

tested on 10,000 human islets (in quadruplicates) per set-up showing their ability to serve as a 

platform for medium to high-throughput screening purposes.
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Intact islets Monolayer Aggregates
Glucose responsiveness yes yes (reduced) yes
Insulin secretagogues responsiveness yes no yes
Transduction efficiency low high high

No of compounds tested 
per 10.000 islets (quadruplicates)*

125 360 190

Table 1. Culture platform characteristics. 
*Calculations were done based on the assumption that 1 islet consists of ~1.500 islet cells. 

Discussion

In this study, we present a high-throughput culture platform in which the insulin secretory 

response of human islets is used as readout. In previous studies using rodent-derived cell lines, 

platforms were used in which ATP-levels were used as a proxy indicator for islet function (12), 

insulin protein content (6) or insulin gene expression (7). However, the biology of islets from 

rodents is very different from humans (13). One of the few culture systems using human islet 

cells is the multiparameter high-throughput screening by Hill et al. (4). However, in this platform 

gene expression was assessed as indicator for the ability of natural compounds to modulate 

insulin and Pdx1. Also, Kiselyuk et al. (5) who used a cell line derived from human islets, used 

insulin promoter activity as readout. Following glucose stimulation only a fraction of the total 

insulin content is secreted from β-cells, which makes these readouts poor indicators of secretory 

function. Since insulin gene expression and protein content do not directly correlate to β-cell 

function (8), measurement of insulin secretion is a more accurate reflection of islet function. 

In this study we show that human islet cells cultured in monolayer show reduced glucose-

responsiveness compared to intact islets. In the platform set up by Walpita et al. (14) human islet 

cells were also cultured in monolayer on ECM to screen for compounds that could enhance β-cell 

proliferation. The magnitude of the glucose-responsiveness of this study and our results for the 

monolayer culture are similar. Interestingly, in our study the insulin secretory function of human 

islet cell aggregates was comparable to intact human islets. This is in line with the observation 

that mouse MIN6 pseudoislets show improved insulin secretion compared to a monolayer culture 

of MIN6 cells (15). Also, Wojtusciszyn et al. (16) showed that insulin secretion from human β-cells 

improved when β-cells were paired with another β- or α-cell. Altogether these results show that 

the glucose-induced insulin secretory response of reaggregated islet cells is more in line with 

secretory capacity of intact human islets than of islet cells cultured in a monolayer.

From rodent studies it is known that activation of the GLP-1 receptor, which is expressed on 

β-cells, can potently enhance glucose-induced insulin secretion in vitro (17). In our study GLP-1 

receptor activation did not significantly increase insulin secretion from human islet cells in any of 

the culture platforms. Recently, Hodson et al. (18) showed that loss of cell-cell communication 

results in decreased incretin-stimulated insulin secretion in human islets, which may explain 
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the low responsiveness in our monolayer culture. Furthermore, Hansen et al. (19) failed to see 

the expected increment in insulin release by exposing intact human islets to exogenous GLP-1. 

Also, α-cells within intact islets may already secrete GLP-1 locally, which may prevent further 

enhancement of insulin secretion by exogenously provided GLP-1R agonists (19, 20). Since α-cells 

are present in all three culture platforms, this may have interfered with the insulin secretory 

response of β-cells to exogenous GLP-1 analogues. 

Nevertheless, direct stimulation of cAMP/EPAC-2 signal transduction, one of the main signaling 

pathways activated by GLP-1 receptor activation, resulted in enhancement of insulin secretion 

in intact islets and islet cell aggregates. This response was absent in islet cells in monolayer. In 

addition, closure of K-channels in β-cells resulted in increased insulin secretion from intact islets 

and islet cells in aggregates, but not from islet cells in monolayer. Together these results show 

that the aggregation of human islet cells is necessary to remain responsive to several insulin 

secretagogues. Whether this is also attributed to the loss of cell-cell communication as described 

for incretin-stimulated insulin secretion remains an open question (18). For screening platforms 

in which efficient virus transduction is required, reaggregation of cells into islet cell aggregates is 

therefore preferred over monolayer culture. 

The culture platforms presented in this study show that human islets can be used for high-

throughput screening assays to identify targets or compounds that enhance human islet function. 

Also, these systems can be applied to study other aspects of islet cell biology, such as β-cell 

proliferation and apoptosis. This could lead to the identification of novel mechanisms involved in 

β-cell function and survival.
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Chapter 8 
Summary and general discussion
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Diabetes mellitus affects approximately 1 million people in The Netherlands (1). Diabetes is 

characterized by an absolute or relative deficiency in insulin secretion from β-cells, leading to 

an impaired glucose homeostasis. For these patients, therapies that restore, maintain or prevent 

loss of functional β-cells are needed. Therefore, it is critical to understand how the β-cell mass is 

regulated. When the demand for insulin is chronically increased by physiological or pathological 

changes, the endocrine pancreas can adapt by increasing insulin secretion via an enhanced β-cell 

function and/or by increasing β-cell mass in order to maintain glucose homeostasis. Both obesity 

and pregnancy lead to insulin resistance and multiple studies have associated these conditions 

with an increased β-cell mass in humans (2–9). Inadequate β-cell adaptation leads to the 

development of hyperglycemia and eventually diabetes mellitus.

β- And α-cell adaptation are topologically heterogeneous 

The pancreas is a regionally heterogeneous organ. During embryonic development the pancreas 

develops from two epithelial buds. The ventral bud gives rise to the posterior part of the head 

and the uncinate process and the dorsal bud to the anterior part of the head, body and tail of 

the mature pancreas (10, 11). Pancreatic islets from the ventral bud contain more cells producing 

pancreatic polypeptide (PP), whereas islets from the dorsal bud contain more α-cells and secrete 

more insulin upon glucose stimulation (12, 13). Also, several studies show that the relative area of 

islets in the tail-region of the pancreas is higher compared to the head and body region in humans 

(6, 14, 15). However, it is unknown whether β-cell adaptation to an increased insulin demand 

occurs homogeneously throughout the pancreas. 

In chapter 2 we describe a study in mice, which were fed a high-fat diet (HFD) to induce insulin 

resistance or a control diet. The pancreas was divided in a duodenal, gastric and splenic region 

(corresponding to the head, body and tail-region of the human pancreas, respectively) (Figure 

1) and β-cell mass, β-cell proliferation and insulin secretory function of islets were studied. After 

6 weeks of diet no change in β-cell mass was apparent yet, however, β-cell proliferation and 

glucose-induced insulin secretion were significantly higher in islets derived from the splenic region 

compared to islets derived from the duodenal and gastric region of the pancreas (Table 1). We 

therefore conclude that β-cell adaptation is topologically heterogeneous in response to HFD in 

mice. Also, α-cell mass was found to be decreased in the splenic region only after 6 weeks HFD 

(data not shown). 

Next, we assessed whether β-cell adaptation is topologically heterogeneous in a different animal 

model of insulin resistance. Glucocorticoid-induced insulin resistance occurs within 5 days of 

treatment (16) and is therefore an acute stimulus for β-cell adaptation. We investigated β-cell 

adaptation throughout the pancreas in glucocorticoid-induced insulin resistance in rats (chapter 

3). After 6 weeks, the β-cell area was significantly increased in DXM-treated rats, and this increase 
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mainly occurred in the splenic region of the pancreas. This increase was associated with an 

enlarged β-cell cluster size while no change in β-cell proliferation was observed after 3 and 6 

weeks of treatment. 

Subsequently, we wondered whether β-cell mass adaptation in humans would be topologically 

heterogeneous as well. Chapter 4 describes a study in which we examined the β-cell mass and 

glucagon-producing α-cell mass of 15 non-diabetic obese and 15 lean age-matched human 

subjects in the head (excluding regions that were rich in PP cells), body and tail region. Both 

β- and α-cell area were the highest in the tail-region of the pancreas (Table 1). In obese subjects 

β- and α-cell mass were increased and both β- and α-cell area were significantly higher in the 

head-region of the pancreas compared to lean controls, whereas islet density was significantly 

increased in the tail-region. The α- to β-cell ratio was similar throughout the pancreas and 

preserved following adaptation in non-diabetic obese subjects. Altogether these data show that 

in obese human subjects β- and α-cell mass adaptation is topologically heterogeneous.

Model Head / DR Body / GR Tail / SR
Insulin secretory function Mice = = 

β-Cell mass Mice = = 

Rats* = = 

Humans*  = =
α-Cell mass Mice = = 

Humans*  = =

Table 1. Changes in insulin secretory function, β-cell area and α-cell area of different pancreatic regions 
compared in HFD-fed vs. control mice (Mice), DXM-treated vs. control rats (Rats) and obese vs. lean human 
subjects (Humans). *β-cell area. DR = duodenal region, GR = gastric region, SR = splenic region.

Human versus rodents

In this thesis we show for the first time that β-cell adaptation to an increased insulin demand 

is topologically heterogeneous throughout the pancreas of mice, rats and humans (Table 1, 

chapters 2 - 4). In rodents, islets derived from the splenic region of the pancreas are involved 

in the first line of response in β- and α-cell adaptation. In obese humans the islet density was 

mostly increased in the tail-region of the pancreas. Nevertheless, the most prominent increase in 

β-cell area was observed in the head-region of the pancreas of obese human donors; which also 

appeared to be the region showing a preferential loss of β-cells in patients with type 2 diabetes 

(17). Dissimilarities observed between the study results from humans versus rodents can obviously 

be attributed to differences in species. Several differences between rodents and human endocrine 

pancreas have been observed (18). The gross morphology of the mature pancreas is different 

between rodents and humans (Fig. 1A, B). The rodent pancreas has a lobular structure of loosely 

connected tissue that aligns the spleen, stomach and upper part of the intestine whereas the 

human pancreas is a single, compact organ surrounded by a fibrous stroma. In rodents, the 
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majority of the islets consists of β-cells that are surrounded by a single layer of α-cells, whereas 

in humans endocrine cells are more mixed throughout the islets resulting in more heterologous 

contacts between α- and β-cells (Fig. 1 C, D) (19, 20). Also, the proportion of β-cells in humans 

islets is on average 55% versus 77% in mice, whereas about 38% of the human islet is composed 

of α-cells compared to 18% of the mouse islet (19). In humans, we show that the β-cell area is the 

highest in the tail-region of the pancreas (chapter 4); which is in line with previous observations 

in human donor pancreases (6, 14, 15). However, the β-cell area was similar throughout the 

pancreas of mice fed a control diet for 12 weeks (chapter 2). Hornblad et al. (21) reported that 

the β-cell area was the highest in the head-region of the pancreas of 8 weeks old mice. Together 

these studies indicate that the head-region of the pancreas in humans may not necessarily 

correlate to the head-region of the mouse pancreas. 

Furthermore, in the splenic region of the pancreas in HFD-fed mice we observed an increase in 

β-cell proliferation (BrdU labeling for 7 days), whereas β-cell proliferation (identified by Ki67 as 

a proliferation marker) was not changed in DXM-treated rats after 3 and 6 weeks of treatment. 

Previous studies have observed increased β-cell proliferation after 3 days of DXM-treatment (22–

24), suggesting that the peak in β-cell proliferation induced by DXM-treatment in our study 

occurred within the first 3 weeks. β-Cell proliferation was rarely observed in the human pancreas 

donors and was not different between regions. It should be noted that the animals in our studies 

(mice and rats were ~8 weeks old at the start of the study) could be considered young adults, 

whereas the average age in our study of human pancreas donors was approximately 50 years. 

As it is well known that β-cell proliferation and adaptation are negatively affected by ageing (25, 

26), this may have contribute to observed differences as well. 



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

122  |  Chapter 8

A

C D

B

Figure 1. Mouse versus human pancreas and islets. A. Gross anatomy of mouse pancreas, DR = duodenal 
region, GR = gastric region, SR = splenic region. B. Gross anatomy of human pancreas. Reprinted with 
permission from Terese Winslow. C. Representative image of a mouse islet, with α-cells (brown) surrounding 
β-cells (center of the islet). Scale bar = 50 μm. D. Representative image of a human islet, α-cells (brown) are 
intermingled with β–cells (red). Scale bar = 50 μm.

Mechanisms and stimuli of topologically heterogeneous β-cell adaptation

The observed regional heterogeneity in β-cell adaptation in response to a HFD stimulus, 

DXM-treatment or in obese humans could be explained in two ways: the islets from different 

pancreatic regions are intrinsically different or, the islets receive distinct extrinsic signals from 

their microenvironment within the pancreas. In chapter 2 we assessed this latter hypothesis, by 

transplantation of untreated mouse islets from the three pancreatic regions to an extrapancreatic 

location in diabetic mice, in which the increased demand for insulin will stimulate β-cell 

regeneration. After 10 days, no difference between islets isolated from different regions was 

found. These results suggest that the observed topological heterogeneity of β cell adaptation in 

HFD-fed mice is most likely the result of distinct extrinsic signals present in the microenvironment 

of the islet within the pancreas. 

Stimuli that have been identified to affect β-cell proliferation comprise several growth factors 

and hormones. These proteins are often produced by other organs than the pancreas, such 

as the liver, adipose tissue and the intestine, and released in the vasculature. Islets are highly 

vascularized to enable efficient secretion of insulin and glucagon into the circulation; they receive 
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per unit weight about 20 times more arterial blood compared to the exocrine pancreas in rats 

(27, 28). Differences in vascular density between pancreatic regions could result in heterogeneous 

exposure to growth factors and hormones. By using in vivo labeling methods, Lau et al. (29) 

characterized a subpopulation of mouse islets (5%) with a greater blood perfusion and vascular 

density that were associated with increased β-cell function and proliferation. Recently, intravital 

blood vessel labeling revealed that the islet vascular supply increases during insulin resistance 

by dilation of preexisting vessels in mice (30). In addition, this same study showed that islets 

of insulin resistant mice have increased global islet innervation visualized by the labeling of the 

neuronal marker neuronal class II β-tubulin (TUJ1). Islets are densely innervated by the autonomic 

nervous system (31) and it was reported that obesity-induced β-cell mass expansion is regulated 

through neuronal signals from the liver (32). 

It remains unclear whether changes in vascular supply or innervation are the cause or consequence 

of β-cell mass adaptation. Islet cells produce angiogenic factors including vascular endothelial 

growth factor (VEGF)-A, which is one of the principal regulators of vascular homeostasis (33). 

Interestingly, VEGF-A expression was increased in the subpopulation of islets having a greater 

blood perfusion (29). Also, it has been reported that α-cells of human islets provide cholinergic 

signals to neighboring β-cells, thereby priming β-cell function in a paracrine way (34). 

Furthermore, islets are structurally and functionally closely related to the exocrine pancreas. This 

is referred to as the islet-acinar axis, in which exocrine functions are regulated by insulin and 

somatostatin (35). The content of one of the main enzymes produced by acinar cells, amylase, 

was found to be higher in the dorsal region compared to the ventral region of the pancreas in 

rats (36). Also, in the field of regenerative studies there appears to be a strong link between 

exocrine acinar cells and β-cells, which share their endodermal origin. One of the first studies 

showing that adult cells can be reprogrammed into another adult cell type, without reversion 

to a pluripotent stem cell state, showed the conversion of adult exocrine cells to β-cells by 

expressing three transcription factors (Ngn3, Pdx1 and MafA) in mice (37). Recently it was 

shown that the β-cell mass of alloxan-induced diabetic mice was regenerated by acinar-to-β-

cell reprogramming, without genetic modification, through transient cytokine exposure (38). In 

addition to demonstrating a potential source for de novo β-cell generation, these studies illustrate 

the intimate relation between islets and its exocrine environment. Future research should clarify 

whether the exocrine tissue surrounding islets is involved in the regulation of β-cell adaptation. 

Implications for future research 

Most importantly, the results in chapters 2 - 4 imply that quantification of the β- and α-cell mass 

in animal or human pancreases should be based on representative samples throughout the entire 

organ. In most histological studies of α- and/or β-cell adaptation the head-region of the human 

pancreas was not included (5–7, 39, 40), which may have led to an incorrect estimation of actual 

changes in these studies. Furthermore, comparison of regional differences in β-cell adaptation 

may lead to the identification of novel factors involved in β-cell mass growth and function. 
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β-Cell adaptation in response to different metabolic stimuli

In this thesis we studied β-cell adaptation in response to different metabolic changes (Table 2). 

One of the main stimuli for β-cell adaptation is insulin resistance. In chapters 2 – 4 we show 

that insulin resistance is associated with an increased β-cell mass in different species. High-fat 

diet induced insulin resistance in mice led to an increased β-cell function, β-cell proliferation and 

β-cell mass as a compensatory response to the increased demand for insulin (chapter 2). Also in 

human obesity, which is associated with insulin resistance, an increased β-cell mass was observed 

(chapter 4). In chapter 3 we show that DXM treatment results in an increased insulin secretory 

response after a glucose load that is associated with an increased β-cell mass after 3 weeks. 

One of the most potent hormones that can enhance both β-cell function and β-cell proliferation 

is the incretin glucagon-like peptide-1 (GLP-1). In animal models of diabetes, GLP-1 receptor 

agonist (GLP-1RA) treatment increases the β-cell mass (41–43). GLP-1 based therapies improve 

glycemic control in patients with type 2 diabetes and are associated with reduced blood pressure, 

improved lipid profiles and improved endothelial function (44, 45). Therefore, these compounds 

have also been evaluated in non-diabetic individuals with obesity and cardiovascular disease (46–

49). However, their effect on β-cell mass in these normoglycemic conditions, in which there is no 

increased demand for insulin, is not clear. In chapter 5 we studied the effects of the GLP-1RA 

liraglutide on β-cell mass and function in normoglycemic mice. Mice were treated with liraglutide 

or PBS and fed a control or HFD for 1 or 6 weeks. Treatment with liraglutide for 6 weeks led to 

increased insulin sensitivity and attenuation of HFD-induced insulin resistance. After 6 weeks 

of treatment a reduction in β-cell mass was observed in liraglutide-treated control and HFD-fed 

mice. This was associated with a lower β-cell proliferation rate after 1 week of treatment. Islets 

isolated from liraglutide-treated control mice showed an enhancement of glucose-induced insulin 

secretion. Together these data show that GLP-1RA treatment in normoglycemic mice leads to 

increases in insulin sensitivity and β-cell function that are associated with a reduction in β-cell 

mass in order to maintain normoglycemia. 

Nutrients like glucose and free fatty acids can modulate β-cell mass growth and function (50–54). 

In many popular weight loss diets the amount of fat is substantially increased at the expense of 

carbohydrates. Such diets force the body to use fats instead of carbohydrates as primary source 

of energy. However, the long-term effects of these high-fat low-carbohydrate ketogenic diets 

(KD) on pancreatic endocrine cells are unknown. We hypothesized that a long-term KD creates 

a metabolic environment in which there is a decreased demand for insulin and an increased 

demand for glucagon to stimulate gluconeogenesis. Chapter 6 describes a study in which mice 

were fed a KD for 22 weeks. Despite an initial weight loss, KD did not result in weight loss after 

22 weeks. Long-term KD resulted in glucose intolerance that was associated with insufficient 

insulin secretion from β-cells. After 22 weeks, the β-cell mass was found to be reduced in KD-

fed mice compared to controls. Together our data show that long-term KD causes dyslipidemia, 
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a proinflammatory state, signs of hepatic steatosis, glucose intolerance, and a reduction in 

β-cell mass, but no weight loss. This indicates that long-term KD leads to features that are also 

associated with the metabolic syndrome and an increased risk for type 2 diabetes in humans.

Model Species Insulin secretory function β-Cell mass
Obesity Humans 

DXM Rats  

HFD Mice  

GLP-1RA Mice  

HFD + GLP-1RA Mice  

KD Mice  

Table 2. Changes in insulin secretory function and β-cell mass in obese vs. lean human subjects (Obesity), 
DXM-treated vs. control rats (DMX), HFD-fed vs. control mice (HFD), liraglutide-treated vs. control mice (GLP-
1RA), liraglutide-treated HFD-fed vs. control mice (HFD + GLP-1RA), ketogenic diet-fed vs. control mice (KD). 
DXM = dexamethasone, HFD = high-fat diet, GLP-1RA = glucagon-like peptide 1 receptor agonist, KD = 
ketogenic diet. 

Mechanisms of β-cell adaptation in response to different metabolic 
stimuli

GLP-1RA can lead to different effects on insulin secretion and β-cell proliferation under 

normoglycemic conditions

The effect of GLP-1-based therapies on insulin secretion from β-cells has been reported to be 

glucose-dependent (55). No insulin secretory response was observed from isolated perfused rat 

pancreas to GLP-1 stimulation at a glucose concentration of 2.8 mM, whereas insulin secretion 

was increased when glucose concentrations were raised to 6.6 and 16.7 mM (51). We show 

in chapter 5 that sustained GLP-1RA treatment during normoglycemic conditions is associated 

with increased insulin secretion from isolated islets, in the absence of direct GLP-1RA stimulation. 

These results imply that GLP-1RA treatment during normoglycemic conditions enhances insulin 

secretion. In contrast, GLP-1RA treatment during normoglycemic conditions did not enhance β-cell 

mass in mice. Moreover, the increased insulin sensitivity and enhancement of insulin secretion 

resulted in a decreased need for new β-cells, resulting in a decrease in β-cell proliferation and a 

reduced β-cell mass in GLP-1RA treated normoglycemic mice. This is in line with the observation 

by Porat et al. that glucose-driven glycolysis is one of the key drivers for β-cell proliferation (56). 

In our study, GLP-1RA treatment during normoglycemia resulted in increased insulin secretion 

whereas β-cell proliferation was reduced. Activation of the GLP-1R on β-cells leads to an increase 

in cyclic AMP (cAMP) concentrations, which is a key messenger in β-cells (Fig. 2) (55, 57). 

Activation of its signaling pathways has been reported to stimulate insulin secretion and β-cell 

proliferation (58). It is unknown how GLP-1RA treatment regulates these two different effects in 
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the β-cell. cAMP signals are transduced via two pathways in the β-cells, the cAMP-dependent 

protein kinase A (PKA) and the exchange protein activated by cAMP (EPAC). Both PKA and EPAC 

have been implicated in transducing the beneficial effects on β-cell function and the protection 

of β-cell mass (58, 59). Recent studies have shown the predominant role for PKA-dependent 

signaling for β-cell function in vivo (60, 61). PKA activity is transduced either to transcriptional 

events through PKA phosphorylation of the transcription factor cAMP response element-binding 

protein or by the formation of complexes with A-kinase anchoring proteins (AKAPs). AKAPs are a 

family of intracellular-signaling adaptor proteins that direct PKA to locations within the cell where 

it can exert specific effects (57, 62). Future research should elucidate which AKAP complexes are 

involved in regulation of insulin secretion or β-cell proliferation to understand the mechanisms by 

which cAMP/PKA signaling is regulating both β-cell function and mass.

C C
RR

GPCR (e.g. GLP-1R, β-adrenergic receptor)

cAMP

EPAC
PKAKATP channel

Ca2+ channel

↑ Insulin granule 
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↑β-cell proliferation
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Figure 2. Schematic overview of cAMP/PKA signaling pathway in the β-cell. Red arrows indicate the potential 
different pathways by which cAMP regulates β-cell function and survival. GPCR=G-protein coupled receptor; 
GLP-1R=Glucagon-like peptide-1 receptor; cAMP=cyclic AMP; PKA=cAMP-dependent protein kinase A; 
EPAC=exchange protein activated by cAMP; CREB=cAMP response element-binding protein; AKAP=A-kinase 
anchoring proteins; R=regulatory subunit; C=catalytic subunit. 
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Long-term KD leads to a reduced β-cell mass and an insulin secretory defect

In chapter 6 we show that a long-term ketogenic diet results in glucose intolerance most likely 

because of β-cell dysfunction and a reduction in β-cell number that result in inadequate insulin 

secretion. Already after 5 weeks of KD diet, mice show the first signs of glucose intolerance. The 

insulin secretory response is not increased to compensate for this increased demand for insulin. 

Ultimately insulin secretory function and the number of β-cells in mice fed a KD was reduced. 

This strongly suggests that the β-cell adaptive response and secretory function have become 

dysfunctional as a result of the long-term KD feeding. Similar to patients with type 2 diabetes 

(63), the reduction in β-cell mass was most prominent in the DR of the pancreas (data not shown). 

Long-term KD results in dyslipidemia, which can lead to β-cell dysfunction due to lipotoxicity. 

Chronic exposure of β-cells to increased concentrations of free fatty acids (FFA), reduces insulin 

secretion and induces β-cell apoptosis (64, 65). Excess FFAs can promote the expression of pro-

inflammatory factors in islets, such as Il-1β (66). Il-1β, which was increased after long-term KD 

in our study, is a master regulator of inflammation and can inhibit insulin secretion and stimulate 

β-cell death (66, 67). Altogether, long-term KD leads to dyslipidemia and a pro-inflammatory 

state, which are associated with an impaired adaptive response of β-cell function and mass to 

KD-induced changes in glucose metabolism. 

α-cell adaptation in response to different metabolic stimuli

Adaptation of α-cell mass in human obesity (chapter 4) and in normoglycemic mice receiving 

incretin therapy (chapter 5) was similar to changes in the β-cell mass and resulted in maintenance 

of the α- to β-cell ratio (Table 3). It has been reported that human islets prefer heterologous 

contacts between β- and α-cells (20). Also, insulin secretion from individual human β-cells is 

enhanced when they are coupled to an α-cell (68). This functional connection between β- and 

α-cells may explain the maintenance of the α- to β-cell ratio following adaptation to metabolic 

stimuli. 

In contrast, the α- to β-cell ratio in long-term KD mice was decreased due to the considerable 

reduction of α-cell mass. This change can be a direct consequence of KD or a response to counteract 

glucose intolerance. During ketosis, glucagon stimulates hepatic glucose production and lipolysis 

to generate energy. In chapter 6 we show that long-term KD results in a reduced insulin-

stimulated glucose uptake. This could result in a negative feedback to glucagon-producing α-cells 

resulting in less gluconeogenesis and no further worsening of the blood glucose concentration. 

This is supported by the observation that circulating glucagon concentrations were decreased 

after 5 weeks of KD in mice (69). In order to maintain glucose homeostasis, the rate of glucose 

entering the circulation should be balanced by the removal of glucose out of the circulation. In 

this process both insulin and glucagon play a major role. Past research has shown that the insulin 

producing β-cell mass can adapt to changing metabolic demands (reviewed in chapter 1). Little 
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is known about the involvement of the α-cell mass in this process. In chapters 4 - 6 we show 

that, in addition to adaptation of the β-cell mass, metabolic changes also affect the α-cell mass. 

Interestingly, in chapter 5 we show changes in α-cell mass preceding adaptation of the β-cell 

mass in HFD-fed mice, which is in line previous observations in mice and non-human primates 

(70, 71). An imbalance between glucagon and insulin characterizes both type 1 and type 2 

diabetes (72, 73). This suggests that failure of both β- and α-cell adaptation can contribute to 

the development of diabetes. Future research on β-cell adaptation should therefore also study 

changes in α-cell mass and function.

Model Species α-cell mass Ratio α- to β-cells
Obesity Humans  =
HFD Mice  =
GLP-1RA Mice  =
HFD + GLP-1RA Mice  =
KD Mice  

Table 3. Changes in α-cell mass and the ratio α- to β-cells in obese vs. lean human subjects (Obesity), HFD-fed 
vs. control mice (HFD), liraglutide-treated vs. control mice (GLP-1RA), liraglutide-treated HFD-fed vs. control 
mice (HFD + GLP-1RA), ketogenic diet-fed vs. control mice (KD). HFD = high-fat diet, GLP-1RA = glucagon-like 
peptide 1 receptor agonist, KD = ketogenic diet.

Mechanistic studies of human islet adaptation 

For studying β- and α-cell adaption in human islets, we currently depend on histological analyses 

of biopsies taken at autopsy or after pancreatectomy generating a static picture. Animal models 

can provide more mechanistic insight because β- and α-cell adaptation in response to metabolic 

changes can be studied in a controlled setting at different time points. In addition, in vitro 

biotechnology platforms can be a powerful tool to assess the influence of different metabolic 

stimuli and factors on human islet function and survival in order to identify new mechanisms 

involved in β- and α-cell adaptation. Since no assay platforms for human islet adaptation studies 

were available, we developed three high-throughput culture platforms for primary human islets 

to assess β-cell function in chapter 7: intact human islets, and cells from dispersed human islets 

cultured either in monolayer on extracellular matrix coated plates or reaggregated into islet-cell 

clusters. Dispersed islet cells can be efficiently transduced using adeno- and lentivirus. Activation 

of cAMP/EPAC-2 signal transduction and inhibition of K-channels enhanced glucose-induced 

insulin secretion in intact islets and islet cell aggregates, but not in monolayer culture. This shows 

that human islet cells behave most similar to intact human islets when cells are clustered three-

dimensionally. Furthermore, these systems can also be used to study other aspects of human islet 

adaptation, such as α-cell function, and β- or α-cell proliferation and survival. These three culture 

platforms can be used in future studies for the screening of viral shRNA or small compound 

libraries to identify new mechanisms involved in β- and α-cell adaption of human islets.
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Nederlandse samenvatting

In Nederland lijden ongeveer 1 miljoen mensen aan diabetes mellitus. Diabetes wordt 

gekarakteriseerd door een absolute of relatieve tekortkoming aan de hoeveelheid insuline die de 

β-cellen uitscheiden. Deze β-cellen bevinden zich in de eilandjes van Langerhans in het pancreas. 

Het insulinetekort leidt tot een verstoorde balans in de glucosehuishouding. Voor mensen met 

diabetes zijn therapieën nodig die de β-celfunctie herstellen, onderhouden en het verlies van 

deze van deze cellen tegengaan. Het is daarom van groot belang om te begrijpen hoe het 

aantal β-cellen, de β-celmassa, wordt gereguleerd. Wanneer de vraag naar insuline chronisch 

is verhoogd door fysiologische of pathologische metabole veranderingen, zoals bijvoorbeeld 

gedurende een zwangerschap of bij obesitas, kan het endocriene pancreas zich aanpassen door 

de insulinesecretie te laten toenemen. Dit kan gebeuren via een verhoogde β-celfunctie of een 

vermeerdering van het aantal β-cellen. Door deze adaptatie van de β-cellen kan de balans in de 

glucosehuishouding behouden worden. Onvoldoende β-celadaptatie leidt tot de ontwikkeling 

van een verhoogde bloedsuiker en uiteindelijk diabetes mellitus. 

β- en α-celadaptatie zijn topologisch heterogeen

Het pancreas is een regionaal heterogeen orgaan. Tijdens de embryonale ontwikkeling wordt 

het pancreas gevormd door twee epitheliale uitstulpingen. De ventrale uitstulping vormt het 

posteriore gedeelte van de kop en het uncinate proces, en de dorsale uitstulping vormt de kop, 

romp en staart van het volgroeide pancreas. Eilandjes van Langerhans die ontstaan in het ventrale 

gedeelte van het pancreas bevatten meer cellen die pancreas polypeptide maken, terwijl eilandjes 

van de dorsale uitstulping meer glucagon-producerende α-cellen bevatten. Ook scheiden deze 

dorsale eilandjes meer insuline uit als ze gestimuleerd worden met glucose. Daarnaast hebben 

diverse studies laten zien dat in het pancreas van mensen meer eilandjes in de staartregio zitten 

vergeleken met de kop- en rompregio. Echter, het is niet bekend of de adaptatie van β-cellen aan 

een toegenomen vraag naar insuline homogeen plaatsvindt door het hele pancreas. 

In hoofdstuk 2 beschrijven we een studie waarin muizen een hoog-vet dieet (HVD) gevoerd 

kregen, om daarmee insulineresistentie te veroorzaken, of een controledieet. We verdeelden 

het pancreas in drie regio’s: een duodenale, gastrische en een splenische regio (respectievelijk 

corresponderend aan de kop-, romp- en staartregio van het pancreas in mensen). In elk gedeelte 

bepaalden we de β-celmassa, β-celproliferatie en β-celfunctie. Na 6 weken dieet was het aantal 

delende β-cellen en de β-celfunctie significant toegenomen in eilandjes afkomstig van de 

splenische regio van het pancreas in vergelijking met eilandjes van de duodenale en gastrische 

regio. Hieruit concluderen we dat de adaptatie van β-cellen in reactie op een HVD in muizen 

regionaal verschillend is. Ook zagen we dat de α-celmassa was afgenomen in de splenische regio 

van het pancreas, maar niet in de andere regio’s. 
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Daarna hebben we onderzocht of β-celadaptatie ook topologisch heterogeen is in een ander 

diermodel van insulineresistentie. Glucocorticoid-geïnduceerde insulineresistentie openbaart zich 

binnen 5 dagen na de start van de behandeling in ratten en is daarom een acute stimulans 

voor β-celadaptatie. In hoofdstuk 3 bestuderen we regionale β-celadaptatie in het pancreas 

van glucocorticoid-geïnduceerde insulineresistente ratten. De relatieve β-celmassa was significant 

toegenomen na 6 weken dexamethason (DXM) behandeling in ratten en de toename was het 

grootst in de splenische regio van het pancreas. 

Vervolgens wilden we weten of β-celadaptatie in mensen ook topologisch heterogeen 

verloopt. In hoofdstuk 4 beschrijven we een studie waarin we de β-celmassa en de glucagon-

producerende α-celmassa onderzoeken in verschillende regio’s van het pancreas in mensen. 

Hiervoor bestudeerden we het donorpancreas van 15 obese individuen zonder diabetes en 15 

slanke controles met een vergelijkbare leeftijd. Zowel de relatieve β- als α-celmassa was het 

grootste in de staartregio van het pancreas. In obese individuen waren de β- en α-celmassa 

groter. In de kop-regio van het pancreas waren de relatieve β- en α-celmassa significant groter 

vergeleken met de slanke controles. De eilandjesdichtheid was significant hoger in de staartregio 

van obese individuen. Deze resultaten laten zien dat in obese individuen de β- en α-celmassa 

adaptatie regionaal heterogeen zijn. 

Model Kop / DR Romp / GR Staart / SR
β-celfunctie Muizen = = 

β-celmassa Muizen = = 

Ratten* = = 

Mensen*  = =
α-celmassa Muizen = = 

Mensen*  = =

Tabel 1. Veranderingen in β-celfunctie, en de β- en α-celmassa in verschillende regio’s van het pancreas in 
hoog-vet dieet gevoede vs. controle muizen (Muizen), dexamethason-behandelde vs. controle ratten (Ratten) 
en obese vs. slanke mensen (Mensen). *relatieve celmassa: afgeleid van gemeten cel- en pancreasoppervlaktes. 
DR = duodenale regio, GR = gastrische regio, SR = splenische regio. 

De heterogeniteit in adaptatie van β-cellen uit verschillende regio’s van het pancreas in reactie 

op een verhoogde vraag naar insuline kan op twee manieren verklaard worden: (i) de eilanden 

afkomstig van de verschillende pancreas regio’s zijn intrinsiek verschillend, of, (ii) de eilanden in 

elk van de regio’s in het pancreas ontvangen andere extrinsieke signalen via bv. de bloedtoevoer, 

zenuwimpulsen of het omliggende exocriene weefsel van het pancreas. In hoofdstuk 2 

testen we deze laatste hypothese door eilandjes afkomstig uit verschillende pancreasregio’s 

van onbehandelde muizen te transplanteren naar een locatie buiten het pancreas (onder het 

nierkapsel) in muizen met diabetes. In een muis met diabetes is de vraag naar insuline sterk 

verhoogd. Dit resulteert in aanpassing van de getransplanteerde eilandjes om daarmee de 

hoeveelheid insuline te verhogen. Tien dagen na de transplantatie hadden eilandjes afkomstig uit 
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de verschillende regio’s van het pancreas zich op dezelfde manier aangepast. Dit suggereert dat 

de heterogeniteit in adaptatie van eilandjes die we eerder in HVD-gevoede muizen observeerden 

het resultaat is van extrinsieke signalen die aanwezig zijn in het micromilieu van de eilandjes in 

het pancreas.

De resultaten uit hoofdstuk 2 – 4 impliceren dat kwantificatie van de β- en α-celmassa in het 

pancreas van dieren en mensen gebaseerd moet zijn op representatieve monsters uit het gehele 

orgaan. In de literatuur worden histologische studies naar de β- en/of α-celmassa beschreven 

waarbij de kopregio van het pancreas vaak niet is meegenomen. Dit kan in deze studies geleid 

hebben tot een incorrecte inschatting van de veranderingen in de endocriene celmassa. Daarnaast 

kan het vergelijken van regionale verschillen in β-celadaptatie leiden tot de identificatie van 

nieuwe factoren die betrokken zijn bij de groei en functie van β-cellen. 

β-celadaptatie in reactie op diverse metabole stimuli

In dit proefschrift bestuderen we de adaptatie van β-cellen in reactie op verschillende metabole 

veranderingen (tabel 2). Een van de belangrijkste stimuli voor adaptatie van β-cellen is 

insulineresistentie. In de hoofdstukken 2 - 4 laten we zien dat insulineresistentie leidt tot een 

vergrote β-celmassa in knaagdieren en mensen. HVD-geïnduceerde insulineresistentie in muizen 

leidt tot een toename van de β-celfunctie, β-celproliferatie en β-celmassa ter compensatie voor 

de toegenomen vraag naar insuline (hoofdstuk 2). Ook obesitas bij mensen, dat vaak samen 

gaat met insulineresistentie, is geassocieerd met een grotere β-celmassa vergeleken met slanke 

individuen (hoofdstuk 4). In hoofdstuk 3 zien we dat DXM behandeling van ratten gedurende 

3 weken resulteert in een verhoging van de insulinesecretierespons na een glucosestimulus en 

een toename van de β-celmassa.

Een van de meest potente hormonen die zowel β-celfunctie als β-celproliferatie kan stimuleren 

is de incretine glucagon-like peptide-1 (GLP-1). In diermodellen van diabetes is aangetoond dat 

behandeling met GLP-1 receptor agonisten (GLP-1RA) de β-celmassa kan vergroten. Therapieën 

gebaseerd op het werkingsmechanisme van GLP-1 verbeteren de glycemische controle in 

patiënten met type 2 diabetes. Vanwege positieve effecten op lichaamsgewicht en lipidewaarden 

in het bloed worden deze therapieën nu ook geëvalueerd in individuen met obesitas en/of hart- 

en vaatziekten die geen diabetes hebben. De gevolgen van deze behandeling op de β-celmassa 

tijdens normoglycemische condities, waarbij er geen vraag is naar extra insuline, is echter niet 

duidelijk. In hoofdstuk 5 bestuderen we het effect van de GLP-1RA liraglutide op de β-celmassa 

en β-celfunctie in normoglycemische muizen. Muizen werden met liraglutide of PBS behandeld 

en kregen een controle of een HVD gedurende 1 of 6 weken. Zes weken behandeling met 

liraglutide resulteerde in een toegenomen gevoeligheid voor insuline en voorkwam HVD-

geïnduceerde insulineresistentie. Na 1 week behandeling met liraglutide was het aantal delende 

β-cellen sterk verminderd wat resulteerde in een kleinere β-celmassa na 6 weken behandeling. 

Geïsoleerde eilanden van met liraglutide behandelde normoglycemische muizen lieten een 
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toename zien van glucose-geïnduceerde insulinesecretie. Deze data laten zien dat GLP-1RA 

behandeling van normoglycemische muizen kan leiden tot toename van de gevoeligheid voor 

insuline en β-celfunctie. Dit is geassocieerd met een reductie van de β-celmassa om daarmee de 

glucosehuishouding in balans te houden. 

Voedingsstoffen zoals glucose en vrije vetzuren kunnen de groei en functie van β-cellen 

beïnvloeden. In een aantal populaire gewichtsverminderende diëten is de hoeveelheid vetten 

substantieel verhoogd ten koste van koolhydraten. Dergelijke diëten dwingen het lichaam om 

als primaire energiebron vetten in plaats van koolhydraten te gebruiken. De langetermijneffecten 

van deze hoog-vet laag-koolhydraat ketogene diëten op endocriene cellen in het pancreas zijn 

echter onbekend. Een langdurig ketogeen dieet zou een metabole omgeving kunnen creëren 

waarin de vraag naar insuline sterk is verlaagd, terwijl de vraag naar glucagon verhoogd zou 

kunnen zijn om hiermee gluconeogenese te stimuleren. Hoofdstuk 6 beschrijft een studie 

waarin muizen gedurende 22 weken een ketogeen dieet gevoed kregen. Hoewel er in de eerste 

weken van het dieet een gewichtsverlies optrad, resulteerde het ketogeen dieet na 22 weken 

niet in een verminderd gewicht. Een langdurig ketogeen dieet leidde tot glucose-intolerantie, 

dat geassocieerd was met een tekort aan insulinesecretie door de β-cellen. Na 22 weken was 

de β-celmassa kleiner in ketogeen dieet-gevoede muizen vergeleken met controlemuizen. Onze 

data laten zien dat een langdurig ketogeen dieet leidt tot dyslipidemia, een proinflammatoire 

staat, tekenen van leversteatose, glucose-intolerantie en afname van de β-celmassa, maar 

geen gewichtsverlies. Deze resultaten suggereren dat een langdurig ketogeen dieet leidt tot 

symptomen die ook zijn geassocieerd met het metabole syndroom en een toename op het risico 

voor type 2 diabetes bij mensen. 

Model Soort β-celfunctie β-celmassa
Obesitas Mensen 

DXM Ratten  

HVD Muizen  

GLP-1RA Muizen  

HVD + GLP-1RA Muizen  

KD Muizen  

Tabel 2. Veranderingen in β-celfunctie en β-celmassa in obese vs. slanke mensen (Obesitas), dexamethason-
behandelde vs. controle ratten (Ratten), HVD-gevoede vs. controle muizen (HVD), liraglutide-behandelde vs. 
controle muizen (GLP-1RA), liraglutide-behandelde HVD-gevoede vs. controle muizen (HVD + GLP-1RA), KD 
dieet-gevoede vs. controle muizen (KD). DXM = dexamethason, HVD = hoog-vet dieet, GLP-1RA = glucagon-
like peptide 1 receptor agonist, KD = ketogeen dieet. 

α-celadaptatie in reactie op diverse metabole stimuli

Voor de glucosehomeostase is het van belang dat de hoeveelheid glucose die de circulatie 

binnenkomt en uitgaat in balans is. In dit proces spelen zowel insuline als glucagon een 

belangrijke rol. Eerder onderzoek heeft aangetoond dat de insulineproducerende β-celmassa zich 
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kan aanpassen aan veranderde metabole omstandigheden. Er is echter weinig bekend over de rol 

van de α-celmassa in dit proces. In hoofdstuk 4 – 6 laten we zien dat metabole veranderingen 

tot aanpassing van zowel de β- als de α-celmassa leiden. 

De aanpassing van de α-celmassa in obese mensen (hoofdstuk 4) en in normoglycemische 

muizen onder behandeling van de GLP-1RA liraglutide (hoofdstuk 5) was vergelijkbaar met de 

veranderingen die optraden in de β-celmassa, en resulteerde in het behoud van de balans tussen 

α- en β-cellen (tabel 3). Uit literatuur weten we dat in humane eilanden er veel celcontacten 

zijn tussen α- en β-cellen en dat dit contact resulteert in een verhoging van de insulinesecretie. 

Deze functionele verbinding tussen α- en β-cellen zou kunnen verklaren waarom de verhouding 

tussen α- en β-cellen behouden blijft in reactie op metabole veranderingen. In hoofdstuk 5 zien 

we dat veranderingen in de α-celmassa plaatsvinden voordat deze in de β-celmassa zichtbaar 

worden in HVD-gevoede muizen. In hoofdstuk 6 laten we zien dat de ratio α- tot β-cellen in 

muizen die langdurig een ketogeen dieet ontvingen was verlaagd door een sterke reductie in de 

α-celmassa. Deze verandering kan een directe consequentie zijn van het ketogeen dieet of een 

aanpassingsreactie van de α-celmassa om zo de ontstane glucose-intolerantie tegen te gaan. 

Een disbalans tussen glucagon en insuline is karakteristiek voor zowel type 1 als type 2 diabetes. 

Het suggereert dat het falen van zowel de β- als α-celadaptatie kan bijdragen aan de ontwikkeling 

van diabetes. Voor toekomstig onderzoek naar veranderingen in de β-celmassa is het daarom 

relevant om ook de α-celmassa te bestuderen. 

Model Soort α-celmassa Ratio α- tot β-cellen
Obesitas Mensen  =
HVD Muizen  =
GLP-1RA Muizen  =
HVD + GLP-1RA Muizen  =
KD Muizen  

Tabel 3. Veranderingen in de α-celmassa en de ratio α- tot β-cellen in obese vs. slanke mensen (Obesitas), 
HVD-gevoede vs. controle muizen (HVD), liraglutide-behandelde vs. controle muizen (GLP-1RA), liraglutide-
behandelde HVD-gevoede vs. controle muizen (HVD + GLP-1RA), KD dieet-gevoede vs. controle muizen (KD). 
HVD = hoog-vet dieet, GLP-1RA = glucagon-like peptide 1 receptor agonist, KD = ketogeen dieet. 

Onderzoek naar adaptatie mechanismen in humane eilandjes 

Voor het bestuderen van β- en α-celadaptatie in humane eilandjes zijn we momenteel 

afhankelijk van histologische analyses van biopten die genomen worden bij een autopsie of na 

pancreatectomie. Dit is altijd een momentopname. Diermodellen bieden meer mechanistisch 

inzicht omdat β- en α-celadaptatie in reactie op metabole veranderingen op een gecontroleerde 

wijze en op verschillende tijdspunten bestudeerd kunnen worden. In aanvulling hierop zouden 

in vitro biotechnologische platforms een uitkomst kunnen bieden. Hierbij worden primaire 

humane eilandjes cellen gebruikt om de invloed van verschillende metabole stimuli en factoren 
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op de functie en overleving van eilandjes te bestuderen. Zo zouden we nieuwe mechanismen 

kunnen identificeren die betrokken zijn bij de adaptatie van β- en α-cellen. Momenteel is er 

echter geen assayplatform beschikbaar waarmee adaptatie van humane eilandjes gemeten kan 

worden. Daarom hebben we drie ‘high-throughput’ kweekplatformen opgezet met humane 

eilandjes om hiermee de functie van β-cellen te meten (hoofdstuk 7): (i) intacte humane 

eilandjes, en (ii) cellen afkomstig van uit elkaar gehaalde eilandjes gekweekt in een monolaag 

op extra-cellulaire matrix of (iii) gereaggregeerd in humane eilandjescelclusters. De uit elkaar 

gehaalde eilandjescellen kunnen efficiënt worden getransduceerd met adeno- of lentivirussen. 

Uit elkaar gehaalde eilandjescellen die in clusters werden gekweekt leken qua functie het meest 

op intacte humane eilandjes. De platforms kunnen ook gebruikt worden om andere aspecten van 

de humane eilandjesadaptatie te bestuderen, zoals α-celfunctie, β- of α-celproliferatie en β- of 

α-celoverleving. De drie kweekplatforms kunnen bij toekomstig onderzoek gebruikt worden voor 

het screenen van virale shRNA-collecties of collecties van chemische moleculen om zo nieuwe 

mechanismen te identificeren die betrokken zijn bij β- en α-celadaptatie van humane eilandjes.
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