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Prof. Dr. Ewa Dąbrowska (Northumbria University)



There is a crack in everything
That’s how the light gets in.

Leonard Cohen, “Anthem”

Little feet take small steps
Bloom (1991, 11)





Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 Early grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Computational cognitive modeling . . . . . . . . . . . . . . . . . 5
1.4 Goals of this research . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Providing a comprehensive model . . . . . . . . . . . . . 7
1.4.2 The conception of learning . . . . . . . . . . . . . . . . . 7
1.4.3 Starting small . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Naturalism in meaning . . . . . . . . . . . . . . . . . . . 8

1.5 A note on notation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . 10

2 A usage-based conception of language acquisition 11
2.1 Usage-based linguistics and language acquisition . . . . . . . . 12

2.1.1 Constructions and the constructicon . . . . . . . . . . . . 14
2.1.2 Producing and understanding an utterance . . . . . . . . 17
2.1.3 Acquiring a grammar . . . . . . . . . . . . . . . . . . . . 18

2.2 Theoretical issues with the usage-based perspective . . . . . . . 21
2.2.1 Representational metaphors: blocks and streams . . . . . 21
2.2.2 Mechanisms operating on early representations . . . . . 22
2.2.3 Gradualism and simultaneity in learning . . . . . . . . . 24

2.3 Desiderata for a usage-based model of language acquisition . . 27
2.3.1 D1: Explicitness . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 D2: Comprehensiveness . . . . . . . . . . . . . . . . . . . 28
2.3.3 D3: Simultaneity . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 D4: Cognitive realism in representations . . . . . . . . . 29
2.3.5 D5: Cognitive realism in processes . . . . . . . . . . . . . 30
2.3.6 D6: Cognitive realism in ontogeny . . . . . . . . . . . . . 31



viii

2.3.7 D7: Explanation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Core developmental phenomena . . . . . . . . . . . . . . . . . . 34

2.4.1 The abstractness of early representations . . . . . . . . . 34
2.4.2 Argument omission in early production . . . . . . . . . . 41
2.4.3 Argument-structure overgeneralization in early produc-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.4 Explananda for a usage-based model of language acqui-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Computational usage-based models of language acquisition . . 53

2.5.1 Semantic-grammar models . . . . . . . . . . . . . . . . . 53
2.5.2 Usage-based distributional models . . . . . . . . . . . . . 60
2.5.3 A comparison . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 The Syntagmatic-Paradigmatic Learner 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 General properties of input items to the model . . . . . . . . . . 70

3.2.1 Input items: utterances and conceptualizations of situa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2 The structure of the conceptual representations . . . . . 71
3.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Constructions as representational primitives . . . . . . . 73
3.3.2 A formal definition of constructions and the constructicon 74

3.4 Defining the space of possible analyses . . . . . . . . . . . . . . . 77
3.4.1 Mapping constructions to situations . . . . . . . . . . . . 77
3.4.2 Three general constraints . . . . . . . . . . . . . . . . . . 80
3.4.3 Starting a derivation: concatenation . . . . . . . . . . . . 81
3.4.4 Ignoring words . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.5 Applying construction-mapping pairings . . . . . . . . . 82
3.4.6 An example of the space of possible derivations . . . . . 85

3.5 Selecting the best analysis . . . . . . . . . . . . . . . . . . . . . . 95
3.5.1 The probability model for derivations . . . . . . . . . . . 95
3.5.2 Equivalent derivations: parses . . . . . . . . . . . . . . . 98
3.5.3 An example of the probability model . . . . . . . . . . . 100
3.5.4 Implementation: lineair processing and pruning . . . . . 103
3.5.5 SPL as a usage-based processing model . . . . . . . . . . 105

3.6 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6.1 Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6.2 Syntagmatization . . . . . . . . . . . . . . . . . . . . . . . 109
3.6.3 Paradigmatization . . . . . . . . . . . . . . . . . . . . . . 111
3.6.4 Cross-situational learning . . . . . . . . . . . . . . . . . . 115
3.6.5 SPL as a usage-based learner . . . . . . . . . . . . . . . . 118

3.7 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.7.1 Differences with the analysis procedure . . . . . . . . . . 120
3.7.2 Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.7.3 Selecting the best analysis and utterance . . . . . . . . . 122



ix

3.7.4 An example of the generation procedure . . . . . . . . . 122
3.8 Meeting desiderata with SPL . . . . . . . . . . . . . . . . . . . . 124

4 Modeling the acquisition of meaning 129
4.1 Three problems in acquiring meaning . . . . . . . . . . . . . . . 130
4.2 The informativeness of the situation . . . . . . . . . . . . . . . . 132

4.2.1 Earlier research . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2.2 How available are the communicated concepts . . . . . . 137
4.2.3 Noise-reduction through understanding intentionality . 144
4.2.4 Interpretation and implications . . . . . . . . . . . . . . . 149
4.2.5 The issue of situational interdependence . . . . . . . . . 150
4.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3 Towards a realistic simulation procedure . . . . . . . . . . . . . 155
4.3.1 Earlier methods . . . . . . . . . . . . . . . . . . . . . . . . 155
4.3.2 Operationalization of the input generation procedure . . 157

4.4 Directions for modeling symbol acquisition . . . . . . . . . . . . 162

5 Comprehension experiments 165
5.1 Measuring comprehension . . . . . . . . . . . . . . . . . . . . . . 165

5.1.1 General evaluation . . . . . . . . . . . . . . . . . . . . . . 166
5.1.2 Evaluating the used representations . . . . . . . . . . . . 167

5.2 Global evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2.2 Utterance coverage . . . . . . . . . . . . . . . . . . . . . . 168
5.2.3 Situation coverage . . . . . . . . . . . . . . . . . . . . . . 171
5.2.4 Robustness to uncertainty and noise . . . . . . . . . . . . 173

5.3 Used representations . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.3.1 The use of chunks . . . . . . . . . . . . . . . . . . . . . . 174
5.3.2 The use of bootstrapping . . . . . . . . . . . . . . . . . . 176
5.3.3 The use of concatenation . . . . . . . . . . . . . . . . . . . 179
5.3.4 The length and abstraction of the used representations . 180

5.4 Desiderata and explananda . . . . . . . . . . . . . . . . . . . . . 185

6 Entering the black box 189
6.1 Learning mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 189

6.1.1 Lexical learning . . . . . . . . . . . . . . . . . . . . . . . . 190
6.1.2 Grammatical learning . . . . . . . . . . . . . . . . . . . . 192

6.2 The representational potential . . . . . . . . . . . . . . . . . . . . 194
6.2.1 Length of the acquired constructions . . . . . . . . . . . . 194
6.2.2 Abstraction in the representational potential . . . . . . . 199

6.3 The independence of morphemes . . . . . . . . . . . . . . . . . . 201
6.3.1 Entity words . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.2 Attribute words . . . . . . . . . . . . . . . . . . . . . . . . 204
6.3.3 Pronouns . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.3.4 Event words . . . . . . . . . . . . . . . . . . . . . . . . . . 206



x

6.3.5 Role-marking words . . . . . . . . . . . . . . . . . . . . . 209
6.3.6 Comparing the classes . . . . . . . . . . . . . . . . . . . . 210
6.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.4 The growth of the caused-motion construction . . . . . . . . . . 213
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7 Production experiments 221
7.1 Global development of production . . . . . . . . . . . . . . . . . 221

7.1.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.1.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.1.4 Robustness to uncertainty and noise . . . . . . . . . . . . 225

7.2 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.2.1 Lexical errors . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.2.2 Argument structure errors . . . . . . . . . . . . . . . . . . 231
7.2.3 Argument omission . . . . . . . . . . . . . . . . . . . . . 232

7.3 Overgeneralization . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.3.1 Motivation and Experimental set-up . . . . . . . . . . . . 234
7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.3.3 Factors in the overgeneralization and retreat . . . . . . . 240

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8 Concluding remarks 243
8.1 Recapitulating SPL . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.2 The behavior of SPL . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.3 The representations acquired by SPL . . . . . . . . . . . . . . . . 248
8.4 Desiderata and explananda . . . . . . . . . . . . . . . . . . . . . 249
8.5 Suggestions for the usage-based conception . . . . . . . . . . . . 252
8.6 Suggestions for cognitive modeling . . . . . . . . . . . . . . . . . 253

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Curriculum Vitæ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285



Acknowledgements

Throughout the (almost) five years that I have been working on the project
constituting this dissertation, I have had the pleasure of being surrounded by
many great people who deserve to be acknowledged.

The first words of gratefulness definitely go out to my supervisors, Arie
Verhagen and Rens Bod. With each of them packing a vast breadth and depth
of knowledge, combined with their highly original and thorough ways of
thinking, I could not have wished for a more nurturing home for my ideas.

Second, I would like to thank all other teachers and mentors that have ful-
filled important exemplary roles in various phases of my academic develop-
ment, both before and during my doctoral research. I would like to thank, in a
somewhat chronological order, Gé Vaartjes, Leo van Santen, Ronny Boogaart,
Cor van Bree, Ariane van Santen, Marijke van der Wal, Ton van der Wouden,
Felix Ameka, Egbert Fortuin, Sandy Thompson, Pat Clancy, Jack DuBois, Stef
Grondelaers, Remko Scha, Jelle Zuidema, Melissa Bowerman, Afsaneh Fazly,
and Suzanne Stevenson for sharing their insights and stimulating my aca-
demic growth.

Important parts of this research have been discussed with Libby Barak,
Gideon Borensztajn, Ailis Cournane, Max van Duijn, Stewart McCauley, Aida
Nematzadeh, and Gareth O’Neill, whose criticisms helped further my think-
ing and writing and whose contributions I would like to acknowledge. The
comments of the members of the committee, Afra Alishahi, Roberta D’Alessan-
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CHAPTER 1

Introduction

When I utter the sentence John kissed Mary, anyone having a sufficient com-
mand of English will understand that I make an assertion, namely that an
event took place in which some person whom we both know, named John, en-
gaged in the act of kissing another person, again known to both of us, named
Mary. In comprehension, language users connect an observable signal, in this
case the string of sounds produced when uttering John kissed Mary, to an unob-
servable conceptualization of the situation and the speaker’s communicative
intent. In production, the reverse process takes place: given a conceptualiza-
tion of a situation and a communicative intention, the speaker tries to figure
out which observable signals to use in order for the hearer to arrive at the
desired conception of the situation and communicative intent.

At the heart of linguistics is the question how observable signals, such as
speech or sign, are connected to conceptualization. Various theoretical frame-
works have been developed to account for the connection. Whereas there is
widespread agreement between various recent frameworks concerning the
question how words work (everyone harks back to de Saussure’s (1916) idea
of a word being a symbol, i.e., a conventional pairing of a signifying form
and a signified meaning), the paths separate when it comes to the question
how words are combined into larger units, such as phrases (the red ball, deeply
enlightened) and whole clauses (The red ball seems deeply enlightened). Gener-
ative grammar, from the 1950s (Chomsky 1957) up to its various present-
day incarnations (Chomsky 1993), argues that at the core of the human abil-
ity to form complex linguistic representations is a cognitive mechanism for
structure-building that is autonomous, i.e., whose properties cannot be de-
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rived from other cognitive domains. Construction grammar, the theoretical
perspective constituting the starting point of this dissertation, provides a dif-
ferent perspective: the cognitive representations responsible for comprehend-
ing and producing complex utterances are constructions – like words, conven-
tional pairings of an (observable) signal and a signified meaning (e.g. Gold-
berg 1995). Because the content and structure of these representations fully
comes from other cognitive domains, a language user’s grammar is not an
autonomous cognitive system. Furthermore, if the representations responsible
for building complex linguistic structure are pairings of an observable signal
and an inferred meaning, they are qualitatively the same as regular words,
and as such, according to construction grammar, all linguistic representations
can be regarded as constructions.

The magnificent task faced by an infant being born into a community of
speakers, is to figure out how the connections between the observable sig-
nals and the meanings work. Again, various theoretical frameworks differ in
how they conceive of this task: in the Generative tradition, rooted in rational-
ist thought, the language learner’s task is to deduce which properties from
among a finite set of possibilities the grammar of her community’s language
has (Baker 2001). The constructivist approach, on the other hand, argues that
children build up their inventory of linguistic representations in a bottom-up
way, and without any preconceptions concerning grammar-wide regularities.

In the literature, one often finds a comparison of the frameworks, where
empirical data is presented as being suggestive for the truth of the one and the
falsehood of the other framework. To my mind, this approach is unwarranted
given the state of any current theoretical framework. Because of their infor-
mal nature, any datapoint presented by an adherent of one framework can
be brought into accordance with another framework or simply be dismissed
as non-data (because it is not part of the ‘core’ of language, or because it is
a ‘theory-internal matter’). Of course, this possibility exists even with highly
explicit and formalized theories in other fields of research, but it seems that
challenges to any linguistic theory can be resolved too easily. This is not to
lament the state of linguistics: independently, various theories have internally
developed themselves to an enormous extent.

A more productive strategy would be to devote one’s energy to the mat-
uration of the theoretical framework by scrutinizing the theoretical construct
on which it rests. This dissertation should be read as an attempt to do so. In
it, I employ formalization and computer simulation as tools for achieving a
deeper understanding of the theoretical framework of construction grammar.
Results from the modeling work presented in this dissertation that confirm the
line of reasoning of the theoretical vantage point are interesting and provide a
basic sanity check of the relation between the formalized model and the infor-
mal theory. More insightful, however, are the cases where we fail to simulate
a phenomenon. In those cases, it is either the model that is not faithful to the
theory, or there are gaps in the theory. It is in the recognition of these gaps that
theoretical progress can be made.
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1.1 Early grammar

Before we turn to the more theoretical issues, let us have a brief look at what
kinds of phenomena this dissertation will be occupied with. Children’s early
linguistic productions differ in several ways from the utterances adults pro-
duce. Their utterances are typically shorter, and markers of grammatical cat-
egories such as tense and number are mostly omitted (Brown 1973, 98-99).
The main phenomenon of interest in this research, however, is the realization
of argument-structure patterns over development. The event expressed by a
verb has certain roles, which are linguistically realized as the arguments of
that verb. Some examples of deviations from the language of adults are shown
below.

(1) open drawer (Kathryn 2;01, opening a drawer, Bloom, Lightbown &
Hood (1975))

(2) I made (Eric, 1;1 1, just reassembled a train, Bloom et al. (1975))

(3) put truck window (Adam 2;3, Brown (1973))

(4) pick up (.) puzzle up (Adam 2;6, wants to pick the puzzle up, Brown
(1973))

(5) Adam fall toy (Adam 2;3, dropped a toy, Brown (1973))

(6) eat Benny now (Ben, between 1;7 and 2;6, wants to eat Sadock (1982),
cited in O’Grady (1997, 61))

(7) the bridge knock down (Aran 2;4, knocked the bridge down; Manch-
ester corpus, cited in Marcotte (2005))

Examples (1)-(4) show how elements of the argument-structure patterns
that are grammatically obligatory for adult speakers of English are omitted.
We find subjects and objects being left unexpressed, for instance in examples
(1) and (2), but also obligatory prepositions, as in example (3). As Bloom et al.
(1975) note, children often produce patterns expressing different aspects of
the event they want to express in a sequential way. Example (4) is such a case:
to express an event that would be expressed by an adult as I want to pick up
the puzzle, or I want to pick the puzzle up, the child uses two structures, sepa-
rated by a short pause, seemingly because he was not able to integrate both
under a single syntactic constellation. Some basic findings with regards to the
argument omissions are that more arguments are expressed over time (Toma-
sello 1992, 244) and that subjects more frequently omitted than objects (Bloom
et al. 1975).

In examples like (5)-(7), we see cases of children’s productions where not
only are elements omitted, but also rules applied that are not in line with the
adult usage, so-called errors of commission. In a case like example (5), the

1I adopt the conventional <year>;<month> notation here for the child’s age.
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verb drop would be used in the transitive frame, instead of fall, which can-
not be used in a transitive syntactic frame. In example (6), the child’s wish
would be expressed with a pre-verbal subject and want to, as in Benny wants
to eat now, but we find the child changing the word order of the subject and
the verb. From this piece of behavior it is hard to glean what the underly-
ing representation might have been: is the child applying a grammatical rule
at all, and if so, which one? Example (7) is the mirror image of example (5):
here, the noun expressing the patient role is expressed pre-verbally, in the po-
sition where subjects are typically found. Some verbs, such as roll, allow for
the alternation whereby the semantic patient role is expressed as the syntac-
tic subject, but knock down is not among them. Again the question is: which
representations underlie this production?

From a developmental perspective, the occurrence of both errors of omis-
sion and commission in the same time span (roughly, Roger Brown’s Stage I) is
interesting, because the underlying representations and mechanisms produce
both of them. As acquisitionists, we thus face the puzzle of how the learner
both under- and overshoots the target. Despite decades of work on these early
productions, a comprehensive account of the representations and cognitive
mechanisms leading to these productions, and their development over time,
has not been satisfactorily given.

1.2 Theoretical background

The constructivist theory of language acquisition, briefly introduced earlier,
constitutes the starting point for our understanding of the phenomena I just
outlined. Construction grammar centrally makes a representational claim: all
linguistic representations are pairings of signifying elements, prototypically
phonological form, and signified meaning or conceptualization. This holds
for words, but also for grammatical patterns. A complementary addition to
the representational claims of construction grammar is the usage-based per-
spective. This perpective holds that linguistic representations are qualitatively
and quantitatively grounded in language use (Langacker 1988). The qualita-
tive grounding is taken to mean that the representations consist of the cog-
nitive reflections of usage events. Importantly, only representational content
derived from the processed usage events can be part of the linguistic repre-
sentations. That is to say: the language learning child has no preconception of
contentive elements that are expected to be part of linguistic representations.
An important consequence is that there is no place in a usage-based construc-
tivist theory of language for universal syntactic categories, such as ‘noun’ and
‘verb’.2 At the core of linguistic representations should be elements of the ob-
servable signal (sound structure for spoken languages) and elements of the

2The rejection of universal distributional or syntactic categories follows not only from Lan-
gacker’s (1988) ideas about the grounding of linguistic representation in usage. The most explicit
rejection is given by Croft (2001) on the basis of language-typological arguments.
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conceptualization of the world that these signaling elements are assumed to
refer to.

Given this perspective, the language-acquiring child faces the task of build-
ing up an inventory of representations allowing her to communicate success-
fully with the other members of her community. To do so, she has several,
highly general mechanisms at her disposal. Primarily, these involve mecha-
nisms of understanding other people’s intentionality, which emerge around
the first birthday, and a set of abilities to recognize patterns (Tomasello 2003).
The former allow the child to recognize that the speaker has communica-
tive intentions with the speech signal he is producing and roughly what this
communicative intention encompasses. The latter enable the learner to dis-
cover patterns of regularity in the signal and inferred communicative intent.
These patterns are discovered, furthermore, in a bottom-up and gradual way.
If we assume that the child has no preconceptions of the content of the lin-
guistic representations, any abstraction over the processed usage events can
be expected to arrive through a comparison of the structure of various usage
events. Abstraction in the inventory of linguistic representation therefore only
emerges after multiple comparable usage events have been observed.

1.3 Computational cognitive modeling

The past decade has seen a large number of publications on computational
models of the acquisition of grammar from a usage-based constructivist per-
spective. We find many learning models taking semantics into account, in line
with the constructivist tenet that linguistic representations consist of pairings
of form and meaning throughout. This does not only include work explicitly
being framed as being constructivist, such as the dissertation of Chang (2008)
and Alishahi & Stevenson’s (2008) clustering approach to argument-structure
constructions, but also modeling research in other frameworks such as Combi-
natorial Categorial Grammar (e.g. Kwiatkowski 2011). Distributional learners,
taking only distributional properties of the phonological form into account,
have shown how multi-word units, which are assumed to play a large role in
language acquisition on the usage-based perspective, are extracted (McCauley
& Christiansen 2014a), how the integration of the constructivist view and a
connectionist, sub-symbolic representation can be achieved (Borensztajn 2011),
how grammatical patterns assumed to be unlearnable can be learned from us-
age data (Bod 2009), and how early patterns of language production can be
modeled (Freudenthal, Pine & Gobet 2010). Finally, highly interesting work
on the appropriate analysis of corpus data of children’s early production have
sparked interesting, and perhaps even productive back-and-forths between
adherents of the usage-based perspective and generativist researchers (Lieven,
Salomo & Tomasello 2009, Yang 2011).

The development of computational models is interesting for several rea-
sons. First of all, in developing a computational model, the researcher is forced



6 1.4. Goals of this research

to operationalize the concepts of a linguistic theory at a level of precision that
allows a computer to run it as a piece of software. This means that the modeler
has to make design choices in the representations and algorithms of the model
that are not specified in the theory. The observed consequences of these design
choices can then be ‘fed back’ into the theory. For this reason, it are not only the
success stories that are interesting in modeling. In fact, the rhetorics of success
can be misleading: when we regard modeling as an extension of theorizing,
a model’s failure is essentially the exclusion of a logically possible variant of
the theory. Through successive failures, we can gradually delimit the range
of potentially successful theoretical options. Unfortunately, modeling failures
are rarely shown.

Secondly, modeling allows us to observe the interaction of various com-
ponents of the model. Rather than isolating the phenomenon of interest, as is
often done in experimental studies, modeling allows us to observe what the
effects are if multiple components of a theory interact in processing the data
(cf. Beekhuizen, Bod & Verhagen 2014). This does not mean that all models do
so, or should do so, but it is a possibility of the method that I believe is worth
exploring. A further consequence of this approach is that we can work to-
wards comprehensive models, that is, models being able to fully comprehend
and produce utterances.

Finally, modeling allows us an evaluation of the theory both on a wide
level and a narrow level. We can model both how an operationalization of the
theory behaves across the board (e.g., in understanding or producing novel
utterances), but also how the operationalized theory behaves in a simulation
of a particular experimental set-up or in the case of a rare event. Both lines
of inquiry are important: with linguistic theory often focussing on rare events
(crossing dependencies, sentences like Pat sneezed the foam off the capuchino),
the more global behavior of the theory is often left out of consideration.

1.4 Goals of this research

It is to the background of the modeling inquiries presented in section 1.3 that
the line of research reported on in this dissertation starts. At the time when
I started it, there were several issues that I thought to be insufficiently ad-
dressed in existing work. Four of them constitute the central theoretical issues
of this dissertation: a call for greater comprehensiveness of usage-based com-
putational models, a scrutiny of the conception of learning, a plea for more
naturalism when the acquisition of meaning is concerned, and the reassess-
ment of the starting-small position.

As such, the research presented in this dissertation should be regarded pri-
marily as a theoretical exercise. It involves reinterpreting, scrutinizing, synthe-
sizing, operationalizing, and, finally, evaluating ideas from the usage-based
approach to grammar. The conceptual work, to my mind, is an important part
of the endeavour of computational cognitive modeling. On an epistemological
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note: this does not suggest that the conceptual work has any kind of primacy
over the more empirically oriented work: both operate in a heuristic loop, in-
forming and enhancing each other.

1.4.1 Providing a comprehensive model
The usage-based approach to language is a non-modular approach, meaning
that what in componential theories are called ‘the lexicon’ and ‘the grammar’
are not distinct entities, both conceptually and cognitively. Because of this, it
is not possible to fully isolate the acquisition of lexical constructions (‘words’)
from that of grammatical constructions. At the very least, the mechanisms in-
volved in them operate in lockstep: it is unthinkable (from any theoretical
perspective, really) that the child waits until she has acquired an adult-like
lexicon before she starts to figure out the grammatical rules. Starting from a
usage-based perspective, even the weaker form (the child waits until it has a
lexicon of some size before it starts learning the grammar) is not satisfying. As
both are symbolic representations, roughly the same set of mechanisms have
to be involved in acquiring them from situated utterances, and as such it has to
be possible for a learner to pick them up at the same time. Except for a model
that is, interestingly enough, not framed as a usage-based model (Kwiatkow-
ski 2011), none of the models listed in section 1.3 does this. Models that do
incorporate meaning start with many lexical form-meaning pairings already
acquired (Chang 2008, Alishahi & Stevenson 2008). The first goal of this disser-
tation therefore, is to develop a computational model of language acquisition
that starts with no representational symbolic content and that acquires lexical
and grammatical constructions at the same time.

The comprehensiveness of a model bears on another issue too. If language
users are able to form utterances on the basis of some conceptualization and
a linguistic inventory and understand language on the basis of the utterance
and the same linguistic inventory, we have to model the task of language use
on both ends. That is to say: we want a model to be able to produce utter-
ances from a conceptualization of some situation and to comprehend utter-
ances with its inventory of linguistic representations to arrive at an interpre-
tation. Again, many computational models model only part of this task and
do not show how they can account for comprehension on the basis of an ut-
terance, and production on the basis of only a meaning to be expressed.

1.4.2 The conception of learning
When modeling the acquisition of grammar, cognitive modelers often find
inspiration in learning algorithms developed in computational linguistics or
artificial intelligence. Even if they turn out to be descriptively adequate, it
remains important to reflect upon the conception of learning they encompass.
Usage-based theorizing adheres to a general empiricist approach to learning,
in which categories are induced from the input rather than deduced given
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a pre-existing hypothesis space, as rationalist approaches have it. This does
not mean that there is no hypothesis space: given the nature of our cognition,
certain representations are possible, whereas other, logically possible ones, are
not. This ‘design space’, however, is not very informative, and it is mainly the
learner’s exploration of the space through language use that is of interest for
usage-based theorists. The learning algorithms used in usage-based models
typically reflect this (e.g., unsupervised clustering in Alishahi & Stevenson
(2008) and Bayesian Model Merging in Chang (2008)).

Another question is whether learning involves a rational decision mak-
ing process. Linguistic production and comprehension arguably involves such
processes: the speaker selects from his inventory a number of representations
that allow him to produce of comprehend an utterance. Whether the learning
process is also affected by (subconscious) decision making, is another issue. If
we follow Langacker (1988) in the argument that learning is merely the effect
of processing linguistic usage events, are there any cognitive mechanisms that
only affect the learning taking place after the processing of the usage events
but not the processing itself? This is not a question that I believe has been an-
swered yet, but for the research presented here, I believe it to be the best null
hypothesis to start from the idea that all learning takes place in the processing
of usage events and the reinforcement of representations used in processing.

1.4.3 Starting small
One of the central tenets of construction grammar, as well as the usage-based
perspective, is the idea that language users compute language with symbolic
representations that are ‘bigger’ than a single word. This focus has led to the
view in language acquisition that children often first acquire larger, unstruc-
tured wholes, ‘chunks’ of linguistic material, which they subsequently start
breaking down into their component parts.

There is definitely a lot to be said for this ‘starting-big’ approach. However,
the wholes-to-parts account of language acquisition may be overemphasized
in current usage-based approaches. Especially when we look at early produc-
tion, it seems that, besides the use of chunk-like structures, there is also a grad-
ual build-up of used representations taking place. If children produce increas-
ingly more arguments with a verb, for instance, I believe it is likely that they
are extending existing representations with additional valency roles, rather
than learning the larger unit first as a chunk, then breaking it down, and only
then recognizing its similarity with earlier acquired representations.

1.4.4 Naturalism in meaning
A final issue that is central to this thesis is naturalism in the acquisition of any
linguistic structure involving conceptual structure, or meaning. Many mod-
eling approaches, but psycholinguistic studies as well, make simplifying as-
sumptions concerning the question how available the conceptualization of the
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situation is to the child. If children are able to understand the communicative
intention of the speaker, they must derive the content of this intention from
some source. This source is often thought to be the situational context, but if
we assume the situational context to provide the learner with a source for her
meanings, we face a number of problems. The situational context, after all, is a
confusing place if you want to learn meaning. Even granted that the child has
joint-attentional skills that narrow down the set of conceptualizations that the
speaker can possibly be trying to convey, there are still often many conceptu-
alizations of the same situation possible, and often many situations co-present
with the utterance that are likely to be expressed. On the other hand, some
situations may simply be absent from the consideration of the learner. If we
want to simulate the acquisition of meaningful structures, we have to make
a realistic assessment of the overwhelmingness of other possible conceptual-
izations and the frequency of the absence of the situation which the speaker is
trying to express from the learner’s consideration.

1.5 A note on notation

In this thesis, I adopt Langacker’s (1987) Cognitive Grammar shorthand for-
malism for describing constructions. I briefly describe this notation at the out-
set, because I will use it throughout the dissertation. The formalism works as
follows. Conceptual structure is represented in small capitals and phonolog-
ical structure in italics. As a conceptual structure in the case of the model to
be developed often has many features (e.g., the feature set behind the mean-
ing of daddy being {ENTITY, ANIMATE, MALE, PERSON, FAMILY-MEMBER, FA-
THER}), I use only the most concrete, or otherwise most recognizable feature
to represent the set of features (so daddy would signify FATHER). A unit, or
construction, is a linguistic representation of a number of constituents where
each constituent is given between square brackets.

If, in a constituent, a phonological and a conceptual structure are present,
the phonological structure can be said to symbolize the conceptual structure,
which is represented with a slash sign. The whole of constituents is delimited
by square brackets as well. If the unit signifies conceptual structure beyond
the meaning in the constituents, this meaning will be represented after the
formal structure, marked with a pipe ‘|’.3 In many cases the non-compositional
meaning is not directly relevant, and will be omitted for the sake of space.
Examples are given in (8) and (9).

(8) [ BALL / ball ]

(9) [ [ HUMAN ] [ GRAB / grab ] ] | GRAB(GRABBER(HUMAN))

Using this formalism, we can also describe complex analyses or constructs.
Suppose the slot of the construction in (9) is filled (by means of what Lan-

3Here, my notation differs from Langacker’s.



10 1.6. Overview of the dissertation

gacker calls ‘elaboration’) with a construction [ FATHER / daddy ]. In that case
we denote this slot-filling operation with an arrow after the slot, followed by
the unit filling the slot, as in example (10).

(10) [ [ HUMAN ]→[ FATHER / daddy ] [ GRAB / grab ] ] |
GRAB(GRABBER(FATHER))

Another feature of Langacker’s notation is the use of parentheses for ex-
tensions of known units. I will employ this notation in several cases. To give
an example: the model to be presented allows for the concatenation of two
partial analyses of an utterance without any construction governing both of
them. We find a case of this concatenation operation in (11), where the partial
analysis in (10) is concatenated with the unit given in (8).

(11) ( [ [ HUMAN ]→[ FATHER / daddy ] [ GRAB / grab ] ] [ BALL / ball ] ) |
GRAB(GRABBER(FATHER),GRABBEE(BALL))

Similarly, the notation in parentheses will be used for the so-called ‘boot-
strapping’ of unknown words into open slots of constructions. When a word
is bootstrapped into a schematic position of a construction, a novel represen-
tation is created that links the hypothesized meaning of that word to its form.
An example of the notation of the bootstrapping process is given in (12), where
the unknown word epidemiologist is bootstrapped into the slot of the construc-
tion we saw before in examples (9) and (10).

(12) [ [ HUMAN ]→( EPIDEMIOLOGIST / epidemiologist ) [ GRAB / grab ] ] |
GRAB(GRABBER(EPIDEMIOLOGIST))

1.6 Overview of the dissertation

The core of this dissertation is the model, the Syntagmatic-Paradigmatic Lear-
ner (SPL), presented in chapter 3. I set out the theoretical and empirical issues
which I believe are worth studying using a computational model in chapter 2.
After this theoretical core, we first look at the issue of the acquisition of mean-
ing in chapter 4. This chapter does not constitute a modeling experiment, but
rather an observational study into the observable sources of meaning. The
results of this study are used in the subsequent three chapters that report sev-
eral aspects of simulation experiments performed with the model. In chapter
5, first, we look at the model’s ability to comprehend utterances in a noisy
situational context. Chapter 6 presents a ‘look under the hood’: what is the na-
ture of the representations acquired over time by the model, and what learning
mechanisms are involved in doing so. In chapter 7, finally, I discuss the results
of several production studies: what happens if we give the model a situation
and ask it to express it.



CHAPTER 2

A usage-based conception of language acquisition

The research reported in this dissertation consists of a computational model
that aims to operationalize the key concepts of a usage-based theory of lan-
guage acquisition in order to investigate their validity. In this chapter, I present
the usage-based perspective in some more detail (section 2.1) and criticize
several of its proposals (section 2.2). This theoretical discussion leads to a
set of theoretical desiderata which I believe a computational model should
meet (section 2.3). These desiderata are not so much empirical constraints, but
rather theoretical constraints on the kind of computational model to be built.
The class of algorithms and representations accounting for the linguistic be-
havior of the child may be vast, but as such this class is not very interesting.
What we want to know, echoing, but non-trivially reinterpreting, Chomsky’s
(1965) distinction between descriptive adequacy and explanatory adequacy,1

1Reinterpreting, because Chomsky’s notion is theory-laden, as the programmatic formulations
in the following quotes in Chomsky (1962) suggest:

• “In short, I think [emphasis mine, BB] that the development of the theory of grammar
[as, a.o.t., a class of potential grammars BB], and intensive application of this theory is a
necessary prerequisite to any serious study of the problem of language acquisition.” (p.
534)

• “[I]t seems to me [emphasis mine BB] that the scope and effectiveness of heuristic, inductive
procedures has been greatly exaggerated. [. . . ] the task remaining to heuristic procedures
is obviously lightened as we make the specification of the form of grammars increasingly
narrow and restrictive” (p. 536).

I consider these claims, in conjunction, to contain a central programmatic commitment of the
generative approach to look for restrictions on representations to explain the structure of lan-
guage. This commitment can and has be contested, but as such it is not an empirical claim (just
as the competing commitment to an explanation of the limitations on the representational struc-
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is to what extent a learning theory t, as operationalized in a computational
model, is a better (more principled) cognitive theory than a competing theory
t′.

Next, I discuss how the usage-based perspective accounts for several broad-
scale phenomena of child language acquisition (section 2.4). The work dis-
cussed in this section gives us a set of empirical explananda that a compu-
tational model starting from the usage-based vantage point has to meet as
well. In section 2.5, I will present several usage-based computational cogni-
tive models of language acquisition and discuss how they fare against the
desiderata and explananda.

2.1 Usage-based linguistics and language acquisi-
tion

Over the recent history of linguistics, the focus of attention has shifted from a
conception of language as a structural, abstract entity, to a more fine-grained
conception of language as a cognitive and social phenomenon (cf. Chomsky’s
(1986) ‘I-language’ and ‘E-language’, but also de Saussure’s (1916) ‘langue’
and ‘parole’). In this dissertation, I focus on the cognitive side of the medal,
without denying the reality of language as a social phenomenon. When we
take the perspective of language as a cognitive phenomenon, several posi-
tions concerning the characterization of the cognitive representation of lan-
guage are possible. The generative approach, broadly speaking, characterizes
linguistic knowledge, in particular grammatical knowledge, as a modular cog-
nitive system, that maintains interfaces with other cognitive modules (such
as the sensory-motoric system for producing and processing sound, and the
conceptual-intentional system, where the conceptualization underlying mean-
ing resides). The core of grammatical knowledge is not only modular in the
way it can be analyzed and described, but also ontologically: it is cognitively
independent from either the two systems it interfaces with, as well as from lan-
guage use. The usage-based and constructivist view can best be understood, at
least historically, as denying the modularity of the grammatical system. Start-
ing with Langacker (1988), who coined the term, the usage-based perspective
holds that linguistic representations are grounded in experiences of language
use. The cognitive processes involved in processing linguistic structures are
furthermore not specific to the domain of language, but are shared with other
cognitive domains, such as planning and inference.

This conception has several theoretical consequences. First of all, the rep-
resentational system is tightly linked to the processing of language in com-

tures and contents used from restrictions on the individual (the ‘heuristic procedures’) and social
mechanisms, as is found in most usage-based approaches, cf. infra, is not an empirical claim, but
a research program). Abstracting over this and other programmatic parts, what is left of the no-
tion of explanatory adequacy is a predictive theory that provides a principled choice between
alternative theories that may cover the data equally well.



A usage-based conception of language acquisition 13

prehension and production. This means that the representations a language
user employs in producing and understanding utterances are instructions for
linking sound (or any other kind of observable signal) to a conceptualization,
or: meaning. Construction grammar (Fillmore, Kay & O’Connor 1988, Gold-
berg 1995) gives representational hands and feet to this idea by arguing that
all linguistic knowledge, both ‘words’ and ‘grammatical rules’ constist of pair-
ings of form and meaning.

The language learning child, having no preconception of what the sys-
tem may look like, gradually finds the ways of linking sound to meaning
that are conventional in her community. Langacker (1988) characterizes the
system of constructions that thus emerges as non-reductive, bottom-up and
maximalist. Assuming that the mind cares little about economy of storage, the
set of constructions may display redundancy. More general or abstract pat-
terns only come into existence after the language user has found evidence
for the abstraction in the overlap between multiple more concrete construc-
tions. However, these patterns are not separate cognitive entities, ‘extracted’
from more concrete instances and stored elsewhere, but are rather ‘imma-
nent’ in the maximally concrete representations of the usage-events them-
selves (Langacker 2000, 7).

Importantly, if this abstraction consists of the mere reinforcement of shared
elements of form and function, abstraction per se can be thought to occur early.
This seems to contradict the findings (by the same usage-based researchers)
that children are conservative in generalizing abstract patterns to novel usage
events (see section 2.4.1 below), but essentially does not do so. Although ab-
stractions may arise as soon as some shared structure between two construc-
tions is detected, the representational strength of this overlap may initially be
too weak for the shared structure to be used. Through the recognition, use, and
hence reinforcement, of this shared structure, it may grow stronger in repre-
sentational strength, and become increasingly likely to be applied anew. This
perspective can be found in Langacker (2000), and, from the perspective of the
apparent opposition between exemplar-based and prototype-based views, in
Abbot-Smith & Tomasello (2006).

On the usage-based view, child language acquisition is furthermore not
something ‘special’ in the sense of being qualitatively distinct from what adults
do: language-acquiring children try to interact with their caregivers and sib-
lings, and in the process of doing so, acquire an inventory of constructions that
facilitate that interaction. The mechanisms whereby the inventory emerges, as
a by-product of language processing rather than as a goal in itself, are still ac-
tive in adults. Nonetheless, early linguistic development is the phase in which
some of these processes become most evident, and the study of the mech-
anisms whereby representations are acquired has been most comprehensive
for children.
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2.1.1 Constructions and the constructicon

Constructions

If the processing of linguistic experiences leaves traces in the mind, and if the
representations are not separate entities from these traces, it can be expected
that linguistic representations consist of elements of the situated linguistic ex-
perience and no elements from domains outside of it. This means that concep-
tual structure and (for spoken languages) phonological structure are the main
building blocks of linguistic representations.2 Words, as the prototypical form-
meaning pairings, can be easily explained from this vantage point: a word is
a recurrent experience of some phonological structure and some conceptual
structure which the language users assume to be conventional. The result-
ing representation is an instruction about inference, if we follow the construc-
tivist tenet that constructions are signs in the Saussurean sense (cf. Fillmore
et al. 1988, Goldberg 1995): if a hearer hears a particular phonological string,
he should make the inference that the speaker has a certain conceptualization
in mind that she wants to convey. ‘Big words’, such as fixed idioms (e.g., how
are you?, top of the morning) can be accounted for similarly. But according to
construction grammar, all sorts of ways of productively combining smaller
word-like constructions into larger, structured, wholes, that is: those things
traditionally considered to be the grammar, including morphology, are sym-
bolic units as well (Langacker 1987, Goldberg 1995).

Goldberg’s (1995) case of argument-structure patterns constitutes an in-
sightful example. For a sentence like he gave Pat a book, the ‘transfer’ sense
and the distribution of conceptual roles over the nominal arguments can be
said to be part of the lexical representation of the verb give. Such an account
becomes problematic for she smiled herself an upgrade, where it is less sensible
to assume that the ‘resultative’ sense and the interpretation of the nominal
arguments (‘she caused herself to be in the state of receiving an upgrade by
means of smiling’) is part of the lexical representation of smile. Rather, Gold-
berg argues, language users have an inventory of grammatical constructions
that contribute elements of meaning themselves to the composite conceptu-
alization. This means that the instructions for combining elements into larger
wholes should be considered signs as well.

When we assume that constructions only consist of phonological and con-
ceptual structure, grammatical constructions pose a problem. If a sentence
such as she smiled herself an upgrade is generated with a ‘resultative construc-
tion’, what is the form of this construction? For words, again, the question
what the form is, is easily answered: it is the phonological structure. How-
ever, in many construction-grammatical descriptions, no phonological form is
specified, and we can find descriptions of a resultative constructions such as:

(13) [ form: NPi V NPj NPk |meaning ‘i causes j to be in a state of k’ ]

2In fact, it is likely that language users store more information besides phonological and con-
ceptual structure, e.g., social information (Geeraerts 2010).
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This description involves representational entities that are not phonologi-
cal or conceptual structure, such as ‘noun phrase’ (NP) and ‘verb’ (V). Tradi-
tionally, notions such as ‘subject’, ‘noun phrase’, and ‘verb’ have been called
grammatical categories or relations, but their role as primitives in a usage-
based theory is doubtful. As Croft (2001) argues, their universality can be
doubted on methodological and empirical grounds. His solution is to reverse
the line of reasoning and consider the constructions primary and the paradigms
they define (e.g., the four positions in the resultative construction above) as
derived. Multiple paradigms across constructions may display a certain over-
lap, creating (the appearance of) a category. However, even if such high-level
cross-paradigmatic distributional categories exist, they are construction-speci-
fic, and, more importantly, language-specific. Croft’s proposal, then, is that the
slots suggested by the paradigms are in the end not defined in distributional
terms, but in conceptual ones, thereby reducing the notion of grammatical
form. Nonetheless, Croft does assume that a level of ‘morphosyntactic struc-
ture’ is part of the form side of a form-meaning pairing (Croft 2001, 62)

Langacker (2005) reaches a slightly different conclusion. In his theory of
Cognitive Grammar (cf. Langacker 1987), a sign consists of a semantic (con-
ceptual) and a phonological pole. There is no room for grammatical cate-
gories and, as Langacker argues, these can be reduced to conceptual struc-
ture. This reduction constitutes a more parsimonious position and is for that
reason worth pursuing. Langacker therefore proposes that the ‘form’-side of
constructions only consist of phonological structure. Verhagen (2009) points
out that this view is problematic as well, as a completely unspecified phono-
logical structure provides no constraints on what can fit in a slot and thus any
phonological string can be used to make the hearer recognize that part of a
construction in processing language. Verhagen argues that it is fruitful to dis-
tinguish the notion of ‘form’ as referring to phonological structure from ‘form’
as referring to the signifier of a construction (i.e., “what triggers the inference
of something unobservable”, p. 136). When we consider a construction to be a
sign, there is nothing that restricts us from considering conceptual structure to
signify, or: trigger the inference of a more encompassing conceptual structure,
as well.3 This means that we still need only phonological and conceptual struc-
ture, but that these building blocks are (partially) orthogonal to the roles they
fulfill in constructions: phonological as well as conceptual structure may sig-
nify, but only conceptual content can be signified. Membership of a paradigm
of a construction, or strong conceptual and/or phonological resemblance to
units that are members of that paradigm can thus be said to signify as well.
In this research, I follow Verhagen’s critique of Langacker (2005) and consider
as the form side (or rather: the signifying side) of a construction anything that
can trigger the inference of a more complex, unobserved conceptual structure.
This means that both phonological and conceptual structure can constitute the

3Interestingly, as Verhagen notes, this grounds the processing of grammatical construction in
the domain-general skill of understanding part-whole relations metonymically.
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signifying side of a construction.
I therefore take it to be crucial to the notion of constructions (be they lex-

ical or grammatical) as signs to consider them as conventional instructions
for making an inference. Conventionality, in Lewis’s (1969) sense, means that
constructions are mutually shared solutions to a coordination problem. This
aspect becomes important in the acquisition of the constructions, as it allows
the learner to make use of additional pragmatically-defined notions such as
contrast.

The constructicon

In order to produce and understand utterances, a speaker needs many con-
structions, differing in size and shape. This inventory, often called the con-
structicon, is not an unordered list, but is typically conceived as a network in
which constructions bear different kinds of relationships to each other. A com-
monly assumed relationship is that of ancestry, meaning that if one construc-
tion is another construction’s parent, the other construction has all features the
one construction has, and more, given the complete inheritance position (cf.
Croft & Cruse 2004, 270). Besides complete inheritance, normal inheritance has
also been hypothesized to be a possible ancestral link between constructions
in the network (for a discussion, see Croft & Cruse 2004, 275-276). Normal in-
heritance is the situation whereby certain features from a parent construction
are inherited by a construction, but others are not inherited, for instance be-
cause they conflict with another parent of that construction. In this research,
inheritance plays no role. In fact, one can consider inheritance to be a super-
fluous aspect of the constructivist theory if a usage-based perspective is taken.
If abstraction is immanent in the more concrete representations it is derived
from, the notion of inheritance emphasizes the misguiding metaphor of ab-
stract constructions being separate cognitive entities, which makes the point
of deciding between complete and default inheritance a moot one. Perhaps in-
heritance has mainly a descriptive function, but I fail to see an important role
for it in a theory of linguistic cognition.

As the constructicon comes into being through experience with language,
the representational strength of the various constructions can be thought to
reflect the amount of experience with them. Bybee (2006) discusses two ways
in which the amount of experience affects the representational strength. On
the one hand, there are several effects of a construction having a high token
frequency, that is: the amount of times that particular construction has been
processed. A high token frequency leads to the automatization of the unit: the
more frequently a unit is processed, the more readily it will be used in the
future as a whole. It will lose its internal structure and possibly be phonologi-
cally reduced. The other effect Bybee discusses is that of a high type frequency
over an element of a construction. The more different units are found filling
the slot of a construction, the more the language user will expect that slot to
be extended to be filled with even other units. That is to say: a language user
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expects a slot to be more productive the more different items are used in it.
This expectation is constrained by the (functional) generalization that can be
made over the items filling the slot. The acceptability of novel items, then, is
(co-)determined by semantic fit with the slot (cf. Ambridge 2013).

2.1.2 Producing and understanding an utterance
Despite the adherence to the idea of language use as the central factor in the
formation of linguistic representations, most usage-based work still focuses
on the representational properties of the constructions rather than how they
are used. Nevertheless, we find several ideas about the use of constructions in
the literature.

Langacker (2000) describes the operation of combining representational
units into larger, complex, wholes as the composition of linguistic units, or
constructions. In order for language users to compose multiple units, they
first have to recognize them, either by identifying a part of the linguistic usage
event (the utterance and the conceptual context) with them, or by extending
them to fit a particular part of the linguistic usage event (p.12)

Complex expressions, then, are assemblies of recognized symbolic struc-
tures. Importantly, composition in a situated context always involves an el-
ement of non-compositionality. That is: there are always aspects of the joint
meaning of two units that go beyond the contributions of the two items them-
selves. Langacker gives the example of novel noun-noun compounds in En-
glish: although we may have a schematized representation allowing us to as-
sign a generic meaning to two juxtaposed nouns, we always understand the
conceptual value or meaning of the composition in a context. This conceptual
value is not just the situated pragmatic resolution of a more abstract nominal-
compound meaning, as it can become part of the conventional meaning of that
particular nominal compound over historical time and the lexicalized mean-
ing of that compound for a language user. The identification of the conceptual
value with the nominal compound (say: beer belly) is, on the first encounter, an
elaboration of the schematized meaning of nominal compounds (something
like example (14), with the analysis in example (15)). Because a language user
stores all conceptual detail present along with the specific form beer belly (in
the form of a neural co-activation pattern), he can, upon future encounters,
identify part of the potentially intended meaning by means of identification
of the more concrete representation in example (16), rather than the on-the-fly
elaboration of the pattern in (14).

(14) [ [ ENTITYi ] [ ENTITYj ] ] | ENTITYj STANDS IN A CERTAIN RELATION
TO ENTITYi

(15) [ [ ENTITYi ]→[ BEER / beer ] [ ENTITYj ]→[ BELLY / belly ] | BELLYj IN
A PARTICULAR STATE THROUGH THE CONSUMPTION OF BEERi

(16) [ [ BEERi / beer ] [ BELLYj / belly ] ] | BELLYj IN A PARTICULAR STATE
THROUGH THE CONSUMPTION OF BEERi
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This example also serves to illustrate another concept, viz. the primacy
of low-level units over more schematic or abstract ones in Langacker’s con-
ception of language use. Because a low-level schema shares more features
with the target of identification (i.e., the conceptual space and the phonolog-
ical structure of the speech situation), it is more readily activated and hence
a better candidate for being selected as the activated unit. More generally, a
language user will often have multiple units at his disposal for interpreting or
producing an utterance. These units then compete with each other. Langacker
describes this as a more general categorization problem: out of an ‘activation
set’ of potentially applicable units, one has to be selected as the ‘active struc-
ture’. Both the degree of entrenchment of the units and their fit with the con-
ceptual and phonological structure play a role in deciding which unit wins the
competition.

Langacker’s notion of composition involves all sorts of operations. Al-
though he does not explicitly describe them, we find in the examples two
types: slot-filler operations, whereby one unit is used as the constituent of
another unit and the juxtaposition of two units. These units are similar to
the ones Dąbrowska (2014) describes, namely superimposition and juxtapo-
sition. In the former, two constructions are combined in such a way that the
corresponding elements are ‘fused’ (p. 623). This can be through regular slot-
filling, but also through overlaying two constructions (e.g., the hypothetical
[ [ HEARER / you ] [ ACTION ] [ OBJECT / it ] ] and the [ [ ENTITYi ] [ GET / get ]
[ ENTITYj ] ] constructions). Juxtaposition, on the other hand, merely involves
taking two constructions and listing them in some order. In production, mul-
tiple verbalizations are possible given the same conceptualization, but the one
that is retrieved first (i.e., the one with the most highly-entrenched construc-
tions) will be selected, unless the speaker rejects it, for instance because of a
low fit with the communicative intent.

Dąbrowska furthermore makes a difference between a holistic and an an-
alytic mode. In the former, language users use their highly concrete schemas
to arrive at an utterance. In the analytic mode, language users use the more
abstract schemas. As Bod (2009) argued, and in line with Langacker’s (2000)
perspective, we can also regard the maximally concrete and maximally ab-
stract schemas to be the end points of a scale. Following that line of reasoning,
there may not be something like an analytic mode as opposed to a holistic
mode: language users will try to stay as close as possible to what they know
about the conventions of the language (i.e., the maximally concrete schemas),
while sometimes experiencing the need to rely on more abstract units when
novel meanings need to be expressed.

2.1.3 Acquiring a grammar
On the usage-based account, acquiring a language is a process that is grounded
in the processing of linguistic usage events with symbolic constructions, which
is in principle identical for adults and infants alike. This continuity is impor-
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tant, as discontinuity would be a less parsimonious explanation in want of
an additional explanation. Whereas in Pinker’s (1984) version of the conti-
nuity assumption, the contents of the representations are equal over time, in
Tomasello’s (2003) version, the contents may vary over time, but the mecha-
nisms with which language is processed, intentions are understood, and pat-
terns are learned remain the same over time. However, perhaps a slightly
stronger claim to content continuity can be made as well: if constructions
consist of phonological and conceptual structure throughout development, a
usage-based account can also claim content continuity on a qualitative level:
constructions are built up out of phonological and conceptual components
and this property is stable over time.

Tomasello (2003) assumes that two sets of domain-general cognitive capac-
ities are central to answering the question how infants acquire an inventory of
linguistic symbols allowing them to be proficient communicative agents in
their communities, viz. intention-reading skills and cognitive pattern-finding
mechanisms. Importantly, the same sets are used to acquire both words and
grammatical patterns. The former allow a child to understand that other peo-
ple are mental agents, with (communicative) intentions and belief states, like
herself. On the basis of this understanding, the child can engage in cultural
learning (cf. Tomasello 1999), that is: the reverse engineering of behavioral
solutions to repeated coordination problems. Directing someone’s attention,
manipulating someone’s behavior or knowledge state, or engaging in joint
projects constitute some of these problems, a subset we could call ‘social coor-
dination’. The language of a community can be regarded as the set of solutions
of that community to these coordination problems (cf. Lewis 1969). The task of
the language-acquiring child then, is to use her intention-reading and pattern-
finding mechanisms to find out what these solutions are.

In this research I will focus on the latter set, the pattern-finding mecha-
nisms, as it is more evident how a formal operationalization of these mecha-
nisms may work and may help shed light on the hypothesized processes. As
pattern-finding mechanisms, Tomasello lists such things as the ability to build
up perceptual and conceptual categories, the ability to form sensory-motor
schemas, performing distributional analysis over perceptual and behavioral
sequences, and being able to analogize over larger structures, finding the com-
monalities and differences (Tomasello 2003, 4). All of these skills are available
to the child before she starts to speak, but it is only when social understanding
starts to develop around the child’s first birthday that the child will substan-
tially put them to work.

Using these mechanisms, the language-learning child will gradually pro-
gress from a state of knowing holophrases (single-word utterances referring
to a complete situation) and chunks (unanalyzed multi-word utterances), via
semi-abstract patterns, in which few constituents are not lexically specific and
may vary, to the more abstract patterns we typically assign to adults. Under-
lying this behavioral development, Tomasello (2003, 295-305) hypothesizes a
number of specific pattern-finding operations. Schematization, first off, is the
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process whereby the child observes that, over multiple utterances, some ele-
ments are identical while others vary, and that at the same time, some parts
of the communicative intent are identical, while other parts vary. The varying
elements are then abstracted over and a construction with a functionally de-
fined slot emerges. Elements common across these slots in different patterns
may give rise, through functionally based distributional analysis, to highly
abstract categories, such as ‘noun’ and ‘noun phrase’. However, as Tomasello
argues, these more abstract categories are still grounded in the function these
elements fulfill communicatively. Secondly, processes of entrenchment (rou-
tinization, automatization) cause certain symbols to be processed more read-
ily than others. A pattern becomes more entrenched the more it is processed.
Entrenchment plays a central role in the competition between similar patterns,
as we have seen in section 2.1.2.

In Tomasello’s older work, we find a slightly different exposition of the
learning mechanisms (Tomasello 1992, 234; 250-253). Two processes of ‘con-
structional integration’ he discusses there are the expansion of paradigms (the
widening of the initially narrow paradigmatic categories) and the addition
of syntagmatic terms. In the former case, the allowed complexity of elements
filling a paradigmatic position of a rule changes over time such that more com-
plex linguistic structures are allowed in there. It is not clear whether Tomasello
also includes the widening of the semantic scope of such a paradigmatic posi-
tion. The addition of syntagmatic terms simply means that another semantic
dependent is added to some semantic head. In the case of argument structure
constructions, this means that another argument or adjunct of the verb can be
expressed.

In addition to the parts-to-whole line of learning proposed by Tomasello,
usage-based theorists often also argue that early representations may not even
have an internal syntagmatic structure, but consist of unanalyzed chunks, in
which gradually ‘slots’ over varying elements are learned (Bannard, Lieven &
Tomasello 2009, Arnon 2010). That is to say, we can conceptualize a gradual
build-up of the grammar both through bottom-up procedures, going from the
parts to the wholes, as in Tomasello’s explanation, or through top-down pro-
cedures, going from the wholes to the parts, as in Arnon’s (2010) explanation.
The latter has been emphasized in usage-based studies, for historical reasons,
but there are good reasons to also consider parts-to-whole learning to be a
central mechanism in a usage-based account, as I will argue in section 2.2.3.

Two final processes of learning in Tomasello’s (1992) account are single-
verb coordination and two-verb coordination. The former happens when two
constructions with the same head but different dependency valencies are used
at the same time. In the case of the latter, the complexity of the production is
increased by having a complex structure (with a head and a dependent) as
a dependent of another construction. The development of the paradigmatic
positions and the syntagmatic relations is an instance of general categorization
according to Tomasello, where the emergent paradigms are an “organizational
outgrowth of the process of constructing syntagmatic structures”, i.e., a by-
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product of the attempt to construct complex messages using the syntagmatic
relations the child has picked up by then.

2.2 Theoretical issues with the usage-based perspec-
tive

In the previous section, I have given a brief account of the usage-based per-
spective on language. The presentation of the mechanisms and representa-
tions serves as a starting point for developing a computational model of the
acquisition of grammar. Several issues, however, are in want of further clarifi-
cation or elaboration.

2.2.1 Representational metaphors: blocks and streams
Both in theoretical linguistic (e.g. Tomasello 2003, Goldberg 2006, Dąbrowska
2014) and computational modeling work (e.g. Chang 2008), we find descrip-
tions of the process of language use involving discrete building blocks that
are combined into composite constructs by filling the slot of one construction
with another construction. However, Langacker (2000, 8) argues that the con-
ception of language use as stacking together building blocks is incomplete at
best. Given the dynamic perspective on representation (units or constructions
are always in development and any abstraction is immanent in the memories
of the concrete usage events), the building-block metaphor unduly empha-
sizes a static nature of the units. True as this may be, I believe that this should
not stop us from cautiously pursuing the metaphor of ‘building blocks’, as it
does yield great explanatory value. What I mean with explanatory value is
the following. When operationalizing a theory in computational terms, many
researchers take recourse to static structures and are able to explain what hap-
pens in the model in the process of composing the building blocks. Such mod-
els thus use a metaphor, which may foreground certain aspects of our concep-
tion of linguistic representations and the way they form composite structures,
while backgrounding other (nonetheless important) ones. The fact that it is
relatively easy to ‘look under the hood’ and see what the model does in an-
alyzing novel utterances, gives it the power to corroborate linguistic theories
with relative ease.4

When one adopts a more classic parsing approach, as is taken in this re-
search, the explanation of what is happening is relatively straightforward, as
will be seen in later chapters. Acknowledging the inherently metaphorical na-
ture of the formalization (just as Langacker does when he draws discrete box-
diagrammatic representations and illustrates their combination by using mul-

4Of course, it is conceivable to radically rethink language use in more dynamic terms. Connec-
tionist models such as McClelland & Kawamoto (1986) do exactly this. The problem with such
models, as noted in section 2.3, desideratum D7, is that interpreting them becomes difficult: what
happens in a neural network is to a large extent a black box.
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tiple such representations) is then a cautionary note which has to be kept in
mind, but which should not stop us from using that metaphor for explanatory
purposes.

Nonetheless, there are approaches which do emphasize a more dynamic
conception of linguistic structure. Worth acknowledging here is Borensztajn’s
(2011) model, in which a parse is a path through a self-organizing space. This
space corresponds to a continuous version of distributional categories, akin
to part-of-speech and other grammatical categories. By using this continu-
ous space, Borensztajn does away with the often faulty metaphor of discrete-
ness of categories while keeping the resulting parses relatively interpretable.
However, one reason why I believe the parses in Borensztajn’s model are in-
terpretable, is that the parses themselves do constitute well-defined discrete
graphical representations (i.e., trees). If we were to give up on the discrete na-
ture of the composition, as one should when taking Langacker’s (2000) ideas
to their extreme, I believe the potential for the linguist’s interpretation of the
resulting analyses would be seriously impeded.

2.2.2 Mechanisms operating on early representations
The parsing approach taken in this research does not imply that we have to use
the traditional operations defined for parsing in the computational-linguistic
literature. Most linguistic theories regard as their central operator a single op-
erator that allows a language user to combine structure recursively in order
to build a composite hierarchical structure. An interesting question follow-
ing from this conception of adult linguistic competence is whether language-
acquiring children use hierarchical structure building mechanisms from the
start as well. But it may be the case that early linguistic perception and pro-
duction is to a large extent guided by non-hierarchical rules, and that the use
of hierarchical rules only emerges later. To take this argument a little further,
it may be the case that some (or even a lot) of adult linguistic processing is
governed by processing mechanisms that are simpler and cognitively cheaper
than building hierarchical structure. The burden of proof, however, is on those
arguing for a multitude of mechanisms, as it is a less parsimonious account.

Tomasello’s (1992, 2003) perspective is of interest here. Tomasello (2003,
226) argues that when very early multiword utterances are not rote learned,
they are not by necessity ‘grammatical’ in the sense that we say an adult’s
production is, but rather instances of mere concatenation of linguistic items
(even if the order of the concatenation is copied from the input language). For
something like word order to be ‘grammatical’, in Tomasello’s (1992) view, it
has to be used contrastively with another word order.5 Importantly, Tomasello

5There is, however, a conceptual problem with defining ‘grammatical’ (in general) in terms of
existing in a system of oppositions. Certain word orders (e.g., determiner-noun in English) are
non-contrastive (noun-determiner does not mean something different, it rather is ungrammati-
cal), yet I would be reluctant to call this element of linguistic knowledge non-grammatical. This
is to say that some grammatical rules may be conventions and known as such without them be-
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(1992, 259) argues that concatenation, the mere stringing together of linguistic
elements, is a possible mechanism that operates before the use of mechanisms
giving rise to (hierarchical) structure. A related take on early production is the
‘groping patterns’ approach, which I will discuss in greater detail in section
2.4.3.

The idea that children may initially operate with a mechanism that linearly
concatenates linguistic material is to be dispreferred on prior grounds, namely
as a violation of the continuity assumption. However, the continuity assump-
tion rests on the preconception that adults only use a single mechanism of
hierarchical structure building. In several recent works outside language ac-
quisition, we find support for the position that different cognitive structure-
building mechanisms are at work in language production in the linguistic lit-
erature. Jackendoff (2002), and more recently Jackendoff & Wittenberg (2014)
argue that, although cognitively all methods of composition (stringing, com-
bining into hierarchies) are available to all humans, different languages em-
ploy different levels of syntactic complexity to different extents. Jackendoff &
Wittenberg (2014) discern levels such as ‘word concatenation grammars’, ‘sim-
ple (non-recursive) phrase grammars’ and ‘recursive phrase grammars’ (with
increasing complexity). Simpler mechanisms, Jackendoff & Wittenberg (2014,
1) argue, “put more responsibility for comprehension on pragmatics and dis-
course context”, as the syntax does not restrict the interpretation in structural
ways. On a biologically, as well as culturally phylogenetic timescale, Jackend-
off & Wittenberg (2014, 16-17) suggest, the simpler mechanisms probably pre-
cede the more complex ones, although they admit that this is speculative, and
at most plausible. A similar perspective is put forth in Frank, Bod & Chris-
tiansen (2012), who argue that linear processing (most akin to Jackendoff &
Wittenberg’s (2014) simple phrase grammar) may be what language users rely
on most in processing and producing language, relating it to psycholinguistic
processing studies (Frank & Bod 2011) rather than to structural analysis, as
Jackendoff & Wittenberg (2014) do.

Interestingly, Jackendoff & Wittenberg (2014) claim that the early gram-
matical production of a given language may rely more on the simpler mecha-
nisms than the adult’s grammatical production of that language, thus allow-
ing for some degree of quantitative discontinuity in the mechanisms used
by the language-learning infant and the adult: “As the child’s grammar ac-
quires more grammatical devices, it provides more resources for making com-
plex thoughts explicit, reducing the workload on the hearer” (Jackendoff &
Wittenberg 2014, 2). In other words: the increase of complexity of the acquired
grammatical structure allows the child to verbalize more complex thoughts.

Concluding, both structural linguistic and psycholinguistic studies pro-
vide evidence that language users employ grammatical representations at dif-
ferent levels of complexity in linguistic processing. Tomasello’s perspective

ing contrastive. Furthermore, when a child uses cup fell and fell cup interchangably, it does not
necessarily mean that the child is just stringing together words (even though this is the most
parsimonious analysis), an issue discussed further in section 2.4.3.
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that early combinatorial productivity may not be guided by rules building hi-
erarchical structure may be on the one hand less parsimonious, but may also
reflect the cognitive mechanisms underlying (early) language production and
understanding better. In the model to be developed, I will start off from this
perspective, arguing that concatenation-like mechanism may play a central
role in the development of a hierarchy-building mechanism but are not used
in production.

2.2.3 Gradualism and simultaneity in learning
Whereas the usage-based conception has a relatively clear explanation of the
development of linguistic behavior once some knowledge is in place, the ini-
tial emergence of that knowledge remains somewhat obscure. Two questions
require some more attention. First, how do the initial holophrastic, chunk-like
units and later lexical constructions come into being? Second: how do gram-
matical constructions develop from the initial lexical units?

Acquiring lexical constructions

The acquisition of lexical units is a process that is ongoing during the whole
life of a language user. Given Tomasello’s notion of developmental continuity,
we should expect the same mechanisms to be available to infants learning
their first words, and an adult language user learning a new word, and in
fact, they do (Golinkoff, Hirsh-Pasek, Bailey & Wenger 1992, Landau, Smith &
Jones 1992). However, als Hollich, Hirsh-Pasek & Golinkoff (2000) suggest, the
relative weight of different mechanisms may vary over time, and, contrary to
the null-hypothesis of developmental continuity, different mechanisms may
emerge at various points during ontogeny.

The varying weight of different mechanisms is easily explained from a
usage-based perspective. Assume that a language user always has the capac-
ity to identify the meaning of a phonological string in a top-down way, that is
by looking at the syntactic context (e.g., that’s a WORD vs Look! He’s WORD-
ing; (cf. Brown 1957)). To do so, a learner first needs to know grammatical con-
structions and the paradigmatic distribution over the words on the position
of the novel word. This requires an inventory of linguistic units to be in place
already, so this way of learning cannot be used at the very start of language
acquisition.

At the very beginning, there must be some more naïve form of association,
one that is less guided by knowledge of the rest of the linguistic system. This
mode of learning should be available throughout ontogeny, but can be ex-
pected to lose ground to the more structure-dependent modes of learning lex-
ical units, such as the one described above, as they are far more powerful, al-
low for immediate inference about a word’s meaning, and allow the language
user to acquire terms whose meaning is not easily identified in the situational
context (see also Gleitman, Cassidy, Nappa, Papafragou & Trueswell 2005).
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Acquiring grammatical constructions

Children’s initial productions are limited in length and, according to the usage-
based view, in the amount of combinatoriality involved. Presumably because
usage-based research argues against a nativist view in which abstract gram-
matical categories are available to the child before the acquisition commences,
the latter has attracted more attention than the former. However, the develop-
mental pathway leading from daddy give via daddy give it to daddy should give it
to me remains unexplained under a strict ‘starting-big’ perspective.

One mechanism that is often invoked is the break-down of larger chunks.
The learner does the ‘blame assignment’ of the parts of the chunks by function-
based distributional analysis. This is a whole-to-parts strategy. Tomasello (2003,
39) acknowledges that a parts-to-whole strategy is likely to be employed as
well, but does not go into the question how this works, nor do we find ac-
counts of this procedure elsewhere. Nonetheless, I believe understanding how
the parts-to-whole acquisition of grammatical units works is crucial for a full
understanding because whole-to-parts learning gives us an incomplete under-
standing for two reasons.

First of all, it is doubtful that early learners are able to process the full
phonological and conceptual structure without having any linguistic units to
analyze them with. The problem is similar to recalling meaningless strings of
numbers: the string 07011987 is, as such, hard to memorize. Once one regards
it as a date, January 7, 1987, the string of numbers itself can be memorized
more easily as well. Finally, if one happens to be the author of this dissertation,
the date gestalt becomes even more meaningful, as it is his date of birth. For
linguistic processing, I expect, we find the same: more of the conceptual and
phonological structure in the speech situation can be processed if we have
linguistic gestalts (i.e., constructions) to analyze the speech situation with. An
early learner will thus not be able to process as much of the speech situation
as an adult, leading to processed experiences that are of a lower granularity
and level of detail than those processed by adults.

The effect of this is that parts-to-whole learning quite naturally follows
from Roger Brown’s law of cumulative complexity (Brown 1973, 186). A gram-
matical phenomenon f is cumulatively more complex than a phenomenon f ′

if f involves everything that f ′ does plus something else. The developmen-
tal law associated with this is that we expect, ceteris paribus, f ′ to emerge in
behavior after f . As a cognitive law, we could formulate this as follows: a rep-
resentation r is cumulatively more complex than r′ if r involves everything r′

does and more. Developmentally, we expect r to arise before r′.
Note that this covers both parts-to-whole and whole-to-parts learning. Ad-

ding more parts to, say, a verb-argument construction, should happen incre-
mentally whereby verb-argument constructions with fewer arguments should
precede ones with more. On the whole-to-parts side this means that finding
out what parts of a thitherto unanalyzed chunk play certain roles in the chunk
should be an incremental process.
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The second reason why more attention to parts-to-whole learning is desir-
able is an empirical one. Children do use apparently unanalyzed multi-word
units from very early on, but large parts of early production also consists of
single-word utterances and two-word utterances that are not very chunk-like
in nature. Tomasello (2003, 39) admits that little is known about why chil-
dren begin with one-item units instead of larger productions, but dismisses
purely working-memory-based accounts (p. 312), a suggestion backed up by
the study of Berk & Lillo-Martin (2012), who argue that it is a development
specific to language.6 If chunk-learning is the primary mode, why do children
have such early control over well-segmented single words?

After this phase, it seems that not all that is produced is chunk-like in na-
ture either. When an 18-month old says daddy get ball, do they have only an
unanalyzed chunk or do they know what (at least) daddy, (possibly) ball, and
(maybe also) get mean? This is an empirical issue, but I find it harder to believe
that daddy get ball is an unanalyzed chunk than I find it to believe that where’s
the ball is one.

That is: different units may have been built up in different ways. In the case
of daddy get ball, the child has possibly processed something like daddy will get
the ball for you, with the child knowing the nouns daddy and ball in advance,
thereby ‘bootstrapping’ the meaning of get and leaving out the phonologically
weak items will, the and for you. This way, the child has done the blame assign-
ment in the initial processing of the pattern: no undersegmentation (in the
sense of Peters 1983) takes place.

For where’s the ball, it may be different: the child knows what ball means,
and stores the whole substring where’s the along with the communicative in-
tent of the speaker (she is looking for something), almost as a kind of interroga-
tive-locational prefix. Only later, where’s the is broken down, when the child
encounters utterances such as who’s the oldest man, where was the book, what’s a
beer belly and so on.

Finally, if we adopt the view that a parts-to-whole learning process plays
an important role as well, a desirable consequence is that we achieve a fur-
ther integration of the theoretical apparatus of the usage-based conception.
Recall that both Langacker (2000) and Dąbrowska (2014) allow for the juxta-
position of linguistic units. The processing of the juxtaposition of two units
should leave a trace in memory that involves more than the mere union of
the two units. As Langacker (2000, 4) formulates it: “When motor routines
[i.c., linguistic units, BB] are chained together into a complex action, their co-
ordination entails that no component routine is manifested in precisely the
form it would have in isolation”. This trace can then form the starting point
of the further entrenchment of the juxtaposition as a linguistic unit. I believe

6From which they conclude that this goes against the usage-based view, which in my opinion is
an unwarranted conclusion: the amount of experience with language shapes the representations,
and it is therefore completely expected that a 6-year old with limited exposure to language will go
through a two-word phase like an 18-month old does. Again, it is simply a matter of cumulative
complexity.



A usage-based conception of language acquisition 27

this pathway to be crucial in language acquisition, and, as we will see in later
chapters, it will play a central role in the model I develop.

Simultaneity

As I argued in the first paragraph of this section, different mechanisms for pro-
cessing and thereby learning have to be available throughout development,
unless we have strong evidence to the contrary. This means that we can as-
sume that cognitive operations for (among other things) identification, com-
position by juxtaposition and superimposition, and schematization are ‘wait-
ing to process relevant input’ from the start. From this, cognitive cumulative
complexity naturally follows. In a first stage, some lexical units are extracted
using naïve associative mechanisms. The other mechanisms are available, but
as there is nothing to apply them to, they remain unused. In a subsequent
stage, the lexical units are both broken down by analogical reasoning and jux-
taposed, thereby leaving a trace of the juxtaposed units. Third, something like
schematization can only operate on structures that are already partially blame-
assigned, that is: the results of wholes-to-part or parts-to-whole learning. With
those schemas, finally, new lexical units can be bootstrapped by extending a
constituent of a schema to fit a phonological structure not seen before.

Thus, I expect that, given a set of available learning mechanisms and op-
erations on use, the frequencies of these mechanisms and operations will vary
over time in such a way that the learner becomes more and more reliant on
the knowledge of the language in trying to find out what the unknown parts
are. Although this is much in line with Hollich et al.’s (2000) take on word
learning, I do not believe it requires its own ‘model’7 as it follows from an
interacting set of operations that take each other’s output as their input.

2.3 Desiderata for a usage-based model of language
acquisition

If we want to develop a computational model of language acquisition from a
usage-based perspective, what are the central ideas from the usage-based the-
ory of language acquistion that we want to see instantiated in such a model?
McCauley & Christiansen (2014b), Beekhuizen, Bod & Zuidema (2013), and
Beekhuizen, Bod & Verhagen (2014) discuss several desiderata for usage-based
models of language development, that, together with the previous discussion
of the theory, constitute the starting point for this section.

7Except for those cases where maturation clearly plays a role, such as the development of the
Theory of Mind (see for instance de Villiers & de Villiers 2000).
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2.3.1 D1: Explicitness
McCauley & Christiansen argue that models should make their simplifying
assumptions clear and explicit, and motivate them with developmental data.
Their desideratum states that these assumptions should not only be explicit,
but also grounded in our knowledge of what is available to the child cogni-
tively and perceptually. Studying meaning thus involves obtaining naturalis-
tic input of available conceptualizations of the learner (a topic to be discussed
in chapter 4). I formulate this desideratum as follows:

D1 The simplifying assumptions of a computational model should be clear and ex-
plicit.

The explicitness of simplifying assumptions is a general point that holds
for any model. Both in the mechanisms and representations, any model of
language acquisition makes simplifying assumptions (after all, it is a model of
something else).

2.3.2 D2: Comprehensiveness
McCauley & Christiansen argue furthermore that, if language use is held to
be central, a working model of language acquisition should be able to model
the processes of language use, in both production and comprehension. I be-
lieve this desideratum can be made unconditional from the assumption that
language use is central. Even for a theory in which the use of the linguistic
system is regarded as both logically and ontologically distinct from the repre-
sentational system, it has to be shown how the linguistic system interacts with
processes of use such that it can account for linguistic comprehension and pro-
duction. Usage processes form a bridging hypothesis between the representa-
tional theory and linguistic behavior in that case, but one that has to be shown
to work if we want to link the representational system to linguistic behavior.8

This leads to the formulation of a second general desideratum:

D2 The model should be able to produce an utterance on the basis of a conceptual-
ization and a conceptualization on the basis of an utterance.

2.3.3 D3: Simultaneity
In the previous section, I argued that with a usage-based conception, the same
set of mechanisms should be able to account for the acquisition of both lexi-
cal and grammatical constructions. Ideally, a usage-based model of language
acquisition performs both tasks at the same time. More specifically, it should

8The important question of what is considered to be data arises here. Although a fuller treat-
ment of this issue is outside the scope of the present work, I believe that even with a modular
perspective on the linguistic system, any cognitive operation on the system should be regarded
as behavioral (including introspection), and therefore in want of an auxiliary bridging hypothesis.



A usage-based conception of language acquisition 29

not be the case that the model has to await the formation of a set of lexical
constructions in order to start building up more abstract grammatical con-
structions.

D3 A model should have the mechanisms to learn both lexical and grammatical
constructions at the same time.

2.3.4 D4: Cognitive realism in representations
Another constraint discussed by McCauley & Christiansen (2014b) is that com-
putational models should reflect realistic conceptions of how (we think that)
the mind works. For usage-based linguists, this is not only a constraint on
computational models, but on all linguistic work, known as the ‘cognitive
commitment’ (Lakoff 1990). We can, somewhat artificially, separate the idea
cognitive realism into a set of desiderata on the representations, a set of desider-
ata on processing, and a set of desiderata on ontogenetic development. I will
discuss these in the sections 2.3.4-2.3.6.

Concerning representational realism we can formulate the following, wide,
desideratum:

D4 The model should adhere to psychologically plausible constraints on represen-
tation.

A consequence of language use being central in the usage-based account
is that the representations should reflect properties of language use (which is
why the separation is somewhat artificial). Qualitatively, this means that the
contents of the representations should be derived from the usage events. That
is: they should contain only phonological and conceptual structure, and distri-
butional knowledge about these, as long as it is built up in a bottom-up way.
On the quantitative side, grounding the representations in the usage events
means that the grammar should “encode best what people do most” (cf. Du
Bois 1987) and that the representational strength of the various representa-
tions should reflect the frequency of use of the representations (cf. the notion
of the grammar as ‘probabilistic’ in Beekhuizen, Bod & Zuidema 2013).This
brings us to the next two desiderata:

D4-1 The content of the representations the model employs should contain only as-
pects of the usage events from which they are learned.

D4-2 The representations should reflect the frequency of their use.

Following Langacker’s (1988) notion of immanence, the abstract represen-
tations of the model should not be ontologically distinct from the representa-
tions they were derived from. That is: they should not be seperate entities in
our conception of their cognitive status. I do not take this to mean that, for
instance, the abstractions cannot be represented in the computational model
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separately from the constructions they were derived from (cf. the discussion
in section 2.3.7). However, the content of the abstractions should reflect the
content of the more concrete representations in which they are immanent.

D4-3 The more abstract representations of a model should be immanent in the more
concrete representations.

Importantly, the concept of immanence implies that abstractions are not
abstract-ed, meaning that they are not novel entities created from other en-
tities. If we, nonetheless, represent grammar, for explanatory purposes, as a
set of discrete structures (where abstractions are separate members of this set,
or nodes in the network), it is inevitable that the grammar will display re-
dundancy (cf. Beekhuizen, Bod & Zuidema 2013), as all possible overlaps be-
tween the usage events is explicitly represented. These overlapping patterns
resemble each other to a large extent, and the resulting grammar can thus be
considered to be redundant. However, this is only an effect of the reification
of abstraction, which also, reversely, means that the often-made a priori argu-
ment for the parsimony of storage need not bother us here, as the redundancy
exists on a linguistic-analytical, rather than a cognitive-ontological level.

2.3.5 D5: Cognitive realism in processes
The counterpart to the desiderata concerning representational realism are the
desiderata concerning processing realism:

D5 The model should adhere to psychologically plausible constraints on processes
of comprehension and production.

Whereas most computational models assume a single combination oper-
ator, we want to allow our models to be less restricted. Especially a simple
mechanism like concatenation should be part of the models potential. This cre-
ates a less parsimonious explanation on the theoretical level, but mechanisms
beyond combination are necessary to get grammar learning of the ground (as I
will argue in chapter 3). Furthermore, even if we label them differently, the dif-
ference between a concatenation and a composition is not that big: both create
graphical objects in which the meaning structures are unified. In concatena-
tion, this novel object has no semantic top node (both concatenated objects are
hierarchically equal), whereas in composition, the novel object has a semantic
top node.

D5-1 In language use, the model should be able to employ a variety of structure-
building mechanisms, ideally involving slot-filling, concatenation, and proper
superimposition.

Furthermore, language processing does not involve a query for the analy-
sis that is optimized over the whole utterance that is being processed. Whereas
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many computational linguistic approaches conceive of the task of parsing an
utterance as finding the best analysis, a cognitive model has to be more con-
strained. We find evidence that processing takes place linearly and without
utterance-wide optimization in the experiments done by Ferreira & Patson
(2007). So-called garden-path sentences, of the type While Mary bathed the baby
played in the crib, involve an initial misinterpretation of an utterance (with
bathed being interpreted as a transitive verb and the baby as its direct object),
exactly because a language user does not keep track of all possible analyses
and is processing the utterance linearly. We find a similar take in Langacker’s
(1988) notion of activated unit, where only a single analysis is arrived at (cf.
section 2.1.2). Desideratum D5-2 can be formulated as follows:

D5-2 In language use, the model should not perform utterance-wide optimization,
but arrive at an analysis while linearly processing the utterance, keeping track
of only the most likely analyses.

2.3.6 D6: Cognitive realism in ontogeny
We do not only want a model to be realistic at the time scale of the processing
of utterances, but also at the time scale of ontogenetic development. Generally
stated:

D6 The model should adhere to psychologically plausible constraints on ontogenetic
processes.

A first constraint on development comes from Brown’s (1973) law of cu-
mulative complexity. We do not want a model to allow for more complex
representations before simpler ones are acquired, and we want it to find its
evidence in its set of simpler representations for a more complex one. This
holds for both syntagmatic and paradigmatic aspects of the representations
(i.e., shorter constructions should precede longer ones, and more concrete con-
structions should precede more abstract ones). The desideratum can be formu-
lated as follows:

D6-1 A model should not allow for novel representations of greater complexity (ab-
straction, length) than it has evidence for given its then current representations.

If we furthermore conceive of language learning as a blind effect or trace of
processing, learning operations should not constitute a separate process in the
theory. This does not mean that the processes are done in the computational
model with the same mechanism: there may be a methodological or analytical
separation of learning and processing, as long as it can be interpreted as on-
tologically reflecting a unified process. Foreshadowing desideratum D7, the
separation may in fact provide us with more insight in the exact nature of
what learning involves.
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Crucially, the learning mechanisms should not involve any decision-ma-
king processes after an exemplar has been processed. This would, after all,
constitute a case of learning being ontologically distinct from language use.
Of course, future evidence may point out that there is something akin to re-
organization going on in language learning, but this is, in the first place, a
less parsimonious hypothesis, as it involves reinforcement and reorganiza-
tion instead of only reinforcement, and secondly less coherent with the cur-
rent usage-based conception of language learning. Until such evidence is pre-
sented, we can state the following as a desideratum:

D6-2 The ‘learning’ of a model from an exemplar should not involve a decision-
making process between what is learned and what is not learned but rather
be a blind effect or trace of the processing of that exemplar.

Thirdly, I argued how, despite the emphasis of whole-to-parts learning,
learning from parts-to-wholes should also be expected to play an important
role in the acquisition of grammatical constructions. Although the empha-
sis on whole-to-parts learning is historically understandable, a usage-based
theory of language acquisition should involve both types of learning, and so
should a usage-based computational model:

D6-3 A model should allow for both parts-to-whole and wholes-to-part learning.

Finally, the roles of the various mechanisms involved may shift over time,
but they should be available to the learner throughout. Concatenation, for in-
stance, may be useful for the early language learner and then be hardly of any
use later on. Nevertheless, we would not want to say that the potential for
using concatenative operators goes away. Rather, the demand for the operator
in usage decreases, as the learner has ways of building up structure that allow
for more semantic integration, and thus more interpretability of the utterance.
Nonetheless, it is crucial that the mechanism itself remains available:

D6-4 A model should adhere to the idea of developmental continuity.

This desideratum foreshadows an important theoretical issue that will come
back in the discussion of the results of the model I will present in the next
chapter, namely that, even in a usage-based approach, it is important to distin-
guish between a (usage-based notion of) linguistic competence and linguistic
performance.

2.3.7 D7: Explanation
Although I fully agree with the spirit of the endeavor to ground computational
models in our conception of cognition, pushing the quest for cognitive realism
can conflict with the explanatory power of a model. To take an example: in
line with Langacker (1988), we can assume abstractions to be immanent in the
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more concrete representations that instantiate them. Thus, we take the imma-
nence of abstractions to be a psychological constraint. We can even model this
immanent potential without the abstractions being reified in the model. This
happens in so-called lazy learners: models that use analogical reasoning (and
thereby some form of abstraction) on the fly to generalize from an exemplar to
a novel, unseen exemplar (Daelemans & Van den Bosch 2005). However, there
is also some analytical insight gained by making the abstractions explicit and
discretely separated from the more concrete units, namely that doing so al-
lows us to see explicitly what kind of potential for abstraction the model has
at some point in time. That is: implementing abstractions as separate entities
gives us an analytical handle on the internal states of the model. Skousen’s
(1989) Analogical Modeling does exactly this for categorization: abstractions
are reified as nodes in a network of feature combinations, but the behavior of
the model consists of analogical reasoning over exemplars (thus assuming ab-
straction not to be ontologically real). Crucially, we can glean easily what hap-
pens in the model if we give it an input item, and, because of the explicitness
of the abstraction, we can use the model to investigate the level of abstraction
needed for optimal (linguistic) categorization behavior (cf. Beekhuizen 2010).

The general message is this. In a computational model, we may method-
ologically and analytically separate what we believe, ontologically, to be a sin-
gle thing. The reason to do so, is that we may inspect properties of the model
that are otherwise harder to glean from the learned representations. If every-
thing is latently present, as often in connectionist models (e.g. McClelland &
Kawamoto 1986), but also in analogy-driven lazy learners such as Daelemans
& Van den Bosch (2005), the interpretive step between the model and the lin-
guistic or cognitive-scientific conception of how language (i.c., abstraction)
works becomes hard because of the size and massively interactional nature
of the neural network. It is exactly the linguistic or cognitive-scientific con-
ception and its bridging hypotheses to the model that provide the researcher
with an intersubjective method of explaining the data.9

Minimizing the interpretive step between the computational model and
the theoretical conception it is argued to instantiate, constitutes the sixth desi-
deratum:

D7 The interpretive step between the computational model and the theoretical con-
ception it instantiates should be minimal and maximally intersubjective

An aspect of usage-based theorizing on which progress could be made
is the unification of mechanisms hypothesized to be involved in the process

9This does not mean that computational models that are harder or even impossible to interpret
are of no value; if a computational model that is hard to interpret turns out to predict a develop-
mental phenomenon really well, there must be ‘something to it’. However, unless we arrive at
a deeper level of understanding of the phenomena through the explicit connection with a com-
prehensive theoretical conception, a model that is hard to interpret remains a mere promissory
note.
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of language use. Especially in the explanations of behavioral patterns in lan-
guage acquisition, we find many mechanisms that are invoked to explain
certain phenomena. Ambridge, Pine & Rowland (2012), for instance, in their
study of the overgeneralization of verb-argument structure, explain the phe-
nomena they find with statistical pre-emption, the entrenchment of patterns,
and the semantic fit of the verbs in the argument-structure patterns (see sec-
tion 2.4.3 for a fuller discussion). The linking of model and theory discussed
in desideratum D7 may involve linking a single aspect (representation type,
mechanism) of the model with a number of aspects (representation types,
mechanisms) of the theoretical conception. This is a desirable feature, as we
simplify our conception.

At the same time, the methodological virtue of searching for unifying expla-
nations should not stop us from proposing a multitude of mechanisms that we
assume to be at work in language. If language phylogenetically emerged as a
cultural phenomenon that employs all sorts of pre-existing cognitive mecha-
nisms, as Tomasello (2003, 2008) argues, it is well conceivable that there is not a
single, overarching mechanism doing all the work is involved. The metaphor
Gigerenzer & Brighton (2009) employ is that of the use of old tools for all sorts
of purposes, many of which these tools were not intended for (or ‘selected
for’ in evolutionary terms). Human cognition, and the cognition underlying
language and other (presumably) phylogenetically recent phenomena can be
expected to involve the use of a number of old tools for new problems.10 As a
final sub-desideratum to D7, we can formulate these ideas as follows:

D7-1 The more aspects of a theoretical conception can be linked to a single aspect of
the model, the better.

2.4 Core developmental phenomena

Within four years, the language-learning child moves from saying nothing to
producing utterances very similar to those produced by adults. A viable the-
ory of language acquisition not only accounts for a possible way of arriving
at adult-like behavior, but also for the various waypoints, i.e., the linguistic
phenomena typical for linguistic development over developmental time. In-
stead of looking at detailed case-studies, I take three phenomena that apply
across the board to be crucial explananda of a theory of language acquisition
and discuss what the usage-based account has to say about them.

2.4.1 The abstractness of early representations
A central question in the study of language acquisition is how abstract the
representations underlying children’s early productions are. As this is a ques-

10Inversely, as researchers like Kirby (1999) have it, the nature of these old tools does shape the
range of solutions to the new problem.
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tion about the representations, which cannot be directly observed, one must
reason from the utterances a child produces or her behavior elicited in exper-
imental set-ups to the most likely level of abstraction in the representational
potential of the child.

Limited scope grammars

Braine (1963, 1976) analyzed children’s early productions in terms of combina-
tions of a fixed element, a pivot, and a variable, or ‘open’ element and argued
that most of young children’s productions can be understood in terms of pivot
schemas. Examples of pivot schemas are X + gone (ball gone, daddy gone) and
more + X (more juice, more play). Braine arrived at this conception by a counting
method over corpora of children’s productions. The categories employed in
the pivot schemas are, importantly, not the same as those an adult language
user uses, Braine argues, as evidenced by errors such as more outside, where the
child allows for elements to be combined with more in ways an adult would
not.

Regarding abstraction, Braine’s account thus is more specific and more ab-
stract at the same time. As anything can fit the open position of a pivot-open
schema, this position underspecifies the constraints on combinatoriality found
in adults. The pivots, on the other hand, are more specific than adults; they do
not form a paradigm of interchangeable items with each other on Braine’s ac-
count.

Importantly, the pivot-schema conception is not so much a cognitive ac-
count of learning, but rather a method of reasoning from behavior to a hy-
pothesized cognitive state. This is by itself not a problem, but because of this,
Braine provides no account of the developmental course of abstraction in the
schemas: questions like ‘how does the learner generalize over various pivots?’
and ‘how are longer utterances built using the pivot schemas?’ remain unan-
swered.

The semantic grammar approach

A similar idea about the nature of early representations was put forward by
Schlesinger (1971). On his account, children will initially learn from the lin-
guistic and situational input simple ‘realization rules’ such as [ [ ACTION ]
[ OBJECT ] ], which underly early productions like grab ball and want cookie.
The content of these linguistic representations is thus purely semantic.

Schlesinger’s account relies on the assumption that children initially take
the semantic realization rules to consist of prototypical event-structures. In
that sense, the early representations are of a highly abstract nature. This level
of abstractness of the semantic content of early representations has been chal-
lenged from a usage-based perspective. In Tomasello’s (1992) analysis of early
grammatical productions, he shows that notions like AGENT are not applied
across all verbs at the same time but rather emerge over the course of linguis-
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tic development. The semantic relations between a verb and its arguments, on
Tomasello’s account, are initially formulated in highly action-specific ways,
so that that AGENT of a hitting action is a HITTER. Only over time do chil-
dren come to understand that HITTERs and KICKERs belong to the same su-
perordinate category of AGENTs. In Tomasello’s line of reasoning, if a child
were to understand a general notion like AGENT very early on, she would dis-
play more grammatical productivity in her behavior, generalizing the notion
of AGENT across all ACTION-predicates. Furthermore, as Ambridge & Lieven
(2011, 202) argue, children do not seem to give preference to the prototypical
transitive schemas with AGENTs ACTing on PATIENTs over less prototypical
ones.

This argument is furthermore supported by cross-linguistic analyses of se-
mantic roles. Languages vary in where they draw the boundary in the ex-
pression of different semantic roles, thus casting doubt on the usefulness of
abstract universal primitive categories of conceptualization such as AGENT
in general (Bowerman 1990). As the semantic conflation of different micro-
roles (HITTERs,KICKERs, and others) under one formal marker (ordering po-
sition or case ending) is language-specific, the child has to be open to differ-
ent conflation patterns (possibly with universal biases in them, cf. Gentner
& Bowerman 2009). Having universal abstract semantic roles thus creates a
linking problem, rather than a solution to the bootstrapping problem, as the
learner will have to link the observed conflation pattern to a prior abstract
semantic role (cf. Beekhuizen, Bod & Verhagen 2014, fn. 1).

The early abstraction account

Pinker’s problem with Braine’s limited-scope accounts is that it may cover the
data well, but that, at the same time, there are “ambiguous gaps in the space
of possibilities in a corpus” (Pinker 1984, 140), that is to say: instantiations of
rules that are not found in a corpus can be either absent from the learner’s in-
ventory of linguistic knowledge or be present, but not produced in that sample
for other reasons. Pinker therefore concludes that the child’s productions do
not contradict an account on which they are generated by a grammar that is
as abstract as the adult’s, and favors this account as it allows for more (quan-
titative) continuity between the child state and the adult state.

Moreover, the child’s representational state may be more abstract than the
adult’s on Pinker’s account: given the underspecified innate rules for boot-
strapping the syntactic categories from the semantic information, the child
may have formed categories initially that are more abstract than the adult’s, to
be constrained later with narrow rules specific to the target language that gov-
ern the exact distributions in a more specific fashion (Pinker 1989). Pinker’s
account is further discussed in section 2.4.3.

Valian (2009) states the ‘more abstract’ position most clearly, arguing that
“the child’s set of theoretical categories does not differ form the adult’s in
kind, only in degree: infants’ categories are underspecified phonetically, mor-
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phologically, and syntactically.” Valian argues that from the very beginning,
children have access to the categories specified by a universal grammar. Study-
ing the acquisition of determiners, she cites the fact that children hardly make
any errors in determiner placement (e.g., the fact that children never produce
*red the book instead of the red book) as evidence for the view that they have
an adult-like syntactic representation of determiners and determiner phrases
(DPs), including their combinatorial properties. Furthermore, the fact that de-
terminers facilitate the recognition of nouns long before children use deter-
miners productively in their own language (around 0;11, see papers cited in
Valian (2009)) is taken as evidence that they have a syntactic category from the
onset of (observable) linguistic development.

Conservatism and lexical specificity

Contrary to Pinker’s account, usage-based approaches such as Tomasello
(2003) argue that early representations are more concrete than later ones, and
may develop in relative isolation from each other early on, only to be linked
later on in ontogeny. Proponents of this view defend this position with the
analysis that early on in production, lexical items are used in a more restricted
way than adults would use them. Tomasello (1992) crucially argues that early
utterances are structured around verbs, with the argument roles they project
being verb-specific, both semantically and distributionally, which he calls the
verb-island hypothesis.

Through processes of analogical reasoning, the verb-specific restrictions
become weaker over time, and general argument-structure patterns emerge.
For the argument structure constructions, this means that verbs are combined
with increasingly many argument-structure constructions over development,
as noted by Tomasello (1992, 241). Similarly, the restrictions on the combina-
toriality of the verb-island patterns (what elements can fit their slots) become
weaker over development as well.

As Tomasello (1992) only studied one child, McClure, Pine & Lieven (2006)
tested Tomasello’s hypotheses concerning the item-based, lexically-specific
nature of early representations against a larger corpus of children. Simi-
larly, Theakston, Maslen, Lieven & Tomasello (2012) analyzed a longitudinal
densely sampled corpus of child speech from a single child. These hypothe-
ses, and the outcomes of the two corpus studies were the following. First,
few verbs will first appear in multi-argument structures. Most verbs start out
in one-argument constructions. This is, of course, also due to the kinds of
verbs these children are learning: verbs that only occur in intransitive pat-
terns will simply not occur with multiple arguments. However, in both stud-
ies it was found that also for the group of transitive-only verbs, the early cases
occurred more in single-argument patterns than the later ones. Secondly, ut-
terances with verbs that were learned early will later on be found in more
complex structures than ‘newer’ verbs. Finally, it was found that utterances
with newly learned verbs are generally as complex earlier in development as
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utterances with newly learned verbs later in development (i.e., rather sim-
ple), in line with Tomasello’s (1992) idea that argument structure construc-
tions develop in a verb-specific manner. This is to say that, although there are
representations licensing highly general SVO patterns in the children’s utter-
ances, they somehow do not apply massively to newly learned verbs. Both
studies, however, did also find newly learned verbs that were directly used
in more complex argument-structure patterns later in development. They ex-
plain this with reference to the idea that argument-frame constructions such as
[ [ SPEAKER / I ] [ ACTION ] [ OBJECT / it ] ] might also play a role at this stage
(cf. Dodson & Tomasello 1998). Another more general developmental obser-
vation, found first by Tomasello (1992, 233-234), and established later with the
so-called ‘traceback method’ in Lieven, Behrens, Speares & Tomasello (2003),
Lieven et al. (2009) and Bannard et al. (2009), is that children’s novel produc-
tions can in many cases be explained as minimally different reproductions of
earlier productions: often only a single substitution is necessary to make a
novel utterance identical to a previously uttered one (e.g., you give me book on
the basis of an earlier production you give me ball).

Centrally, these findings point to a low level of generalization early on,
which becomes higher as the inventory of verb-specific patterns grows. This
suggests that the representations gradually become more abstract over time in
a lexically specific way, rather than through generalizations across the board.

Most studies cited here describe the patterns on an observational level, rea-
soning from the child’s behavior to likely cognitive representations in the child
and providing only a rough account of the mechanisms operating on the input
such that these patterns emerge. Important questions are what the represen-
tations underlying these behavioral patterns are and how they develop. The
various studies seem to argue for a ‘what you see is what you get’ approach:
if the child produces a VO pattern, there is no SVO representation underlying
it – the differences between the early productions of VO versus contempora-
neous SVO patterns support this position. This does not mean that the child
is not conceptualizing the full event she wants to express, only that the child,
at that point in development, finds the more restricted representation optimal.
This can be because the child does not have a general enough more complex
representation to produce the full pattern, or because the shorter representa-
tion is more entrenched than the fuller one.

In defense of the early-abstraction view

Recent usage-based approaches claim that children’s spontaneous and elicited
production provides evidence for a linguistic system that is initially organized
around specific linguistic items, and that only gradually becomes more ab-
stract. In response to this claim, several researchers have defended the early-
abstraction view, mainly by criticizing aspects of the method. The two main
lines of criticism on the usage-based view are foreshadowed by Pinker’s (1984)
critique of earlier work characterizing the grammatical knowledge of children
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in terms of pivot schemas (Braine 1976). As Pinker (1984, 100; 127-133; 142-
143) argues, there are two main reasons why we find less productivity in sam-
ples of early linguistic development. The first concerns the fact that the lack
of productivity is exaggerated, either because the sample is too narrow, or be-
cause we would expect the amount of productivity to be that low on statistical
grounds. The second concerns the idea that language-external factors (such as
memory constraints, linear biases, and the limited set of referents) may be the
reason why only a subspace of the grammatical possibilities is used.

An early representative of this response to the usage-based line of reason-
ing is Fisher (2002). Without denying the role item-based constructions play
in early language acquisition, Fisher argues that there is also evidence that ab-
stract representations exist from early on. Fisher argues that the apparent lim-
ited generalizability of argument-structure patterns may be due to the gradual
development of the lexical representations. It thus is not a matter of gram-
mar but of the lexicon. Furthermore, Fisher argues, language-external reasons
such as processing may play a role. Finally, there is the methodological issue
that we do not know how children interpret the meanings of verbs presented
in isolation in experiments, and the subsequent lack of willingness to extend
these verbs can thus be the result of many things over which an experimenter
has little control.

In response to Fisher’s line of reasoning, Abbot-Smith, Lieven & Tomasello
(2008) argue that the limited abstraction that emerges is not just an artefact of
full competence plus memory limitations or developing lexical preferences.
They provide evidence for this on the basis of a cross-linguistic elicited pro-
duction study. Importantly, the cues for semantic roles in German are stronger
than in English (word order and case in the former, and only word order in
the latter). In a repetition task, Abbot-Smith et al. found that German chil-
dren at age 2;0 more often corrected a novel verb presented with mismatching
cues (wrong case and/or wrong word order) to the prototypical constella-
tion of cues than the English children. Given that the performance constraints
(assumed to inhibit the child from correcting the grammatical error) are ex-
pected to be identical for German and English children, the difference must
be, according to Abbot-Smith et al. (2008) attributed to differences in the rep-
resentations of German and English children, where the German representa-
tions are stronger than the English ones. Abbot-Smith et al. (p. 50) conclude
that “representations are graded in strength, with only strong representations
allowing clean signaling to other parts of the cognitive system.”

Yang (2011) makes the important point that we have to consider what the
most sensible baseline pattern of expectation is. Usage-based approaches such
as Lieven, Pine & Baldwin (1997) argue that children’s knowledge of the lan-
guage is item-specific, as the overlap of different members of a paradigm to
the items they combine with is low. Lieven et al. argue, for instance, that chil-
dren’s knowledge of determiner-noun combinations is item-specific initially,
given that most nouns occur only with one determiner (from the set a and
the). Given that many linguistic items are distributed in their frequencies in
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adult language proportional to the inverse of their frequency ranks (the most
frequent item occurring twice as often as the second, and thrice as often as
the third; known as Zipf’s law after Zipf (1935)), Yang argues that this fact is
not unexpected, and thus not contradicting a view on which children operate
with fully abstract rules.

Another important work in this respect is Naigles, Hoff & Vear (2009), who
had caregivers keep track of the first ten instances of 34 selected common
verbs their child produced. The reason for choosing a diary study is that many
sampling methods where the researchers records the child’s spontaneous pro-
duction at regular intervals, have a situational bias. That is to say: they typi-
cally record only utterances produced in one or a few situational settings (free
play, eating), whereas the interactional world of the caregiver and the child
extends far beyond these.

Using this method, Naigles et al. (ch. 5) found that the syntactic flexibility
of children went beyond that reported in many usage-based studies (Toma-
sello 1992, McClure et al. 2006, Theakston et al. 2012). In their sample, the 8
children produced on average 66% of the verbs in more than one syntactic
frame within their first ten instances of use. Most changes were due to the ad-
dition or deletion of a single noun. Although this latter finding is in line with
results from the traceback method discussed in section 2.4.1, Naigles and col-
leagues disagree with Lieven and colleagues on the interpretation: given that
a child only produces very short utterances anyway, it seems that changing a
single word is almost the only opportunity for a child to produce a different
syntactic frame.

Analyzing these results, Naigles et al. found that the difference with Toma-
sello’s and Lieven et al.’s results was to a large extent due to the differences in
coding decisions. Whereas Tomasello (p. 40) counted all one-argument struc-
tures (whether that argument occurs pre-verbal or post-verbal) as instances
of one structure, Naigles et al. counted them as two (one for patterns with
pre-verbal arguments and one for patterns with post-verbal arguments). Fur-
thermore, Naigles et al. counted as different syntactic frames not only different
argument-structure patterns, but also the presence of negation and the mor-
phological marking of the progressive (-ing).

A final interesting finding in Naigles et al.’s (2009) study was that children
would display more syntactic flexibility in the number of different syntactic
frames they select per verb, than lexical flexibility, in the number of different
arguments they select per verb. Naigles and colleagues interpret this as mean-
ing that the child’s production is not syntactically limited, and that children
are ‘avid generalizers’.

Discussion

Deciding at what level of abstraction young children operate is not a trivial
matter. A lot seems to depend on the method of counting, the sample size,
and the baseline expectations. As these are complex methodological issues, it
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seems that at this point, we can only await the outcomes of the ongoing discus-
sions. That is: the level of abstraction of early representations (and the nature
of these abstractions – as weak schemas or something different) is an open is-
sue and cannot form an empirical constraint on a usage-based computational
model.

There is one empirical phenomenon that seems unchallenged, namely that
simpler structures typically precede more complex structures, up until the de-
velopmental point where learners have pronoun frames or otherwise more
abstract representations that allow novel verbs to be used in more complex
representations from the moment they are learned.

2.4.2 Argument omission in early production
In children’s Stage I productions, we often find lexical material not being ex-
pressed, despite the language not allowing such ‘omissions’.11 We find pro-
ductions such as put up dere (Adam, 2;3) or I put truck (Adam, 2;4), where ar-
guments (subjects, objects, locatives) are omitted. The observation is that, over
time, the child will produce more and more arguments (as we have already
seen in the previous section about the abstractness of early representations),
and that subjects are more often left out than other arguments.

On the explanatory side, the central question is: what causes children to do
so? Are the representations that Stage-I children use different from the repre-
sentations used by adults or are they the same with there being extra-linguistic
reasons for these omissions? And if there are extra-linguistic reasons, how do
they interact with the child’s linguistic knowledge at that point in time?

Predicting the omissions

Starting from the perspective that there is strong continuity between the
child’s linguistic knowledge and the adult’s, the answer to these questions
has often been that children have a fuller understanding of the grammar, but
that there are extra-linguistic factors that cause the child to not produce cer-
tain linguistically obligatory material. Before we get into the discussion of the
relation between representations and extra-linguistic factors, let us first have
a look at factors known to influence argument omission.

Bloom et al. (1975) found that in early productions, the omission of argu-
ments is not random, but rather follows a systematic pattern. In a corpus study
of four children (ages 1;10 - 2;30, four or five sample moments each, discarding
imperatives and incomplete utterances), Bloom et al. looked at four categories
of verb relations, given in table 2.1 below.

A basic finding was that children started producing utterances with fewer
of the main constituents (i.e., the verb and its obligatory dependents) before

11The term ‘omission’ should be understood here at a descriptive level; whether children actu-
ally ‘omit’ something that is present in their linguistic representation is exactly the issue under
scrutiny.
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verb relation main constituents (ordered) example

actions agent, verb, object You open it
agent-locatives agent, verb, object, location You put it on the table
mover-locatives mover, verb, location I sit in the chair
patient-locatives object, verb, location The ball goes in the box

Table 2.1: The four verb relation categories studied in Bloom et al. (1975).

producing ones with more constituents for each category, gradually moving
towards the complete expression of the main constituents. There was further-
more a pattern in the constituents that were produced: agents and movers
were most frequently left unexpressed. Moreover, and this being the central
point of their study, Bloom et al. compared certain properties of utterances
with two constituents (from the ones in table 2.1) with those of utterances
with three constituents (henceforth: 2Cs and 3Cs) produced in the same sam-
ple, and found that the number of arguments expressed covaried with several
of those properties.

On many measures, 2Cs were grammatically more complex than the chil-
dren’s contemporaneous 3Cs, for instance containing more modified argu-
ments (with the word another, an attributive adjective or a possessive) and
more cases of negation. Interestingly, on other measures of complexity, 2Cs
were as complex as contemporaneous 3Cs. This mainly concerns morphemes
with less semantic content than the ones named above, such as inflectional
forms for nouns and verbs, the presence of determiners.

On a lexical level, 2Cs are also more complex than contemporaneous 3Cs.
A larger number of verbs occurred in 2Cs compared to contemporaneous 3Cs.
2Cs furthermore attracted more new verbs (verbs not used by that child in the
previous sample) than 3Cs (cf. the findings of McClure et al. 2006, Theakston
et al. 2012). Furthermore, Bloom et al. reported that they found in an earlier
study that two of the children preferred pronoun forms in early productions
whereas the other two preferred nouns. The preferred argument form was
found to covary with the presence of arguments as well: for three out of the
four children, 2Cs had significantly more dispreferred arguments (nouns if
the child preferred pronouns, and pronouns if the child preferred nouns) than
3Cs. Bloom et al. speculatively attribute these covariations to memory limita-
tions.

On a discourse-pragmatic level, we find covariation as well. Graf, Theak-
ston, Lieven & Tomasello (2015) studied the effects of certain discourse prop-
erties on the elements that were omitted in the productions of young children
(age 3;2 to 4;2) with an elicitation study in which children were exposed to dif-
ferent discourse-pragmatic conditions of contrast. A pragmatic focus on con-
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trast (one action versus another, or one object versus another) predicted the
selective realization of linguistic elements well: when contrasting one element
in a transitive utterance and keeping the other parts identical (e.g., with a sit-
uation in which one puppet acts on an object, and another in which another
putter acts in the same way on the same object), children will produce the con-
trastive element when asked to describe a scene, but are likely to leave out the
‘given’ or non-contrasting linguistic material.

An interesting piece of evidence comes from a study by Berk & Lillo-
Martin (2012), who looked at two normally-intelligent, deaf children who
were only exposed to a language accessible to them (American Sign Lan-
guage) at around age 6. If general performance constraints are the sole cause of
the two-word stage around age 2, it is not expected that otherwise normally-
developed six-year-olds display such linguistic behavior. Nonetheless, Berk
& Lillo-Martin found that the two children they studied did follow a devel-
opmental trajectory similar to two-year-olds. From this, they concluded that
general performance constraints cannot be the driving factor behind the ex-
istence of a two-word phase. Similarly, vocabulary size and biological matu-
ration cannot be the factors, as these children had a larger vocabulary than
expected for a Stage-I child, and they should have passed the state of mat-
uration held responsible for the two-word phase. The two children did use
short utterances but did so with a wide range of semantic relations (ones one
would not expect in 2-year-olds) and lexemes. Berk & Lillo-Martin therefore
conclude that the two-word stage as we see it in young children consists of
two components: a linguistically-specific one and a general-cognitive one. For
the two children they studied, only the linguistically-specific one applied, as
they were otherwise cognitively similar to their age peers.

Accounts of the limited length of early production

Studies looking at the factors leading to omission are insightful, but provide
us, in principle, only with relatively loose constraints on the kinds of repre-
sentations children have. In his discussion of ideas about the representations
underlying the truncated utterances, Pinker (1984) discerns four classes of hy-
potheses that explain why children produce such utterances:

• The deletion-rules account (e.g., Bloom 1970) states that children have
fuller linguistic representations, but that there are deletion operations
that cause certain elements not to be expressed.

• Under the incomplete-rules account (e.g., Braine 1976), children simply
have rules that cover only the material that is expressed. That is: the
representations do not go beyond what is expressed.

• The optional-rules account (e.g., Bloom et al. 1975) holds that children
have fuller linguistic representations, as in the deletion-rules account,
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but that instead of deleting elements of the rule, these elements are sim-
ply optional, where the likelihood of producing them is given by a num-
ber of interacting extra-linguistic factors, such as discourse salience and
complexity of the element.

• The processing-limitations account (Lebeaux & Pinker (1981) as cited by
Pinker (1984)) explains early omissions with reference to general pro-
cessing limitations. The child’s representations are essentially identical
to the adult’s (as opposed to the other three accounts), but other, inter-
acting, cognitive mechanisms mature such that the child will eventually
produce adult-like utterances.

In principle, all four can be argued to be in accordance with the findings of
covariation discussed before. Under the deletion-rules and optional-rule ac-
counts, deletions or non-production (respectively) would be triggered by the
factors described, whereas in the processing limitation account, the filtering of
the mapping from conceptual structure to phrase structure would be driven
by these factors. An incomplete-rules account would argue that the selection
of certain incomplete rules over others is brought about by these factors. As
such, identifying factors behind omission does not discriminate between the
four conceptions, although some accounts would need additional machinery
to link discourse-pragmatic as well as memory constraints to the representa-
tions. Two explanations have been central in the study of length-limitations
over the last thirty years, viz. the processing-limitations account and, more re-
cently, the incomplete-rules account. As the usage-based theory has not made
specific claims about either, it is worth looking at them in some detail.

The processing-limitations account

Eliminating the deletion-rules, incomplete-rules and optional-rules accounts
on a priori grounds, Pinker (1984) argues that the limited length of early gram-
matical production can best be accounted for with general processing limi-
tations, although he admits his account is rather speculative. According to
Pinker (1984, 160ff.), the memory buffer can, in the mapping of f(unctional) to
c(onstituent) structure, only process a certain amount of functional elements
early on. Suppose that the child wants to express that the doll sits on the chair,
but the memory buffer only allows for two functional elements to be mapped
onto the constituent structure (which Pinker, on the basis of the continuity
assumption, assumes to be the full, adult-like tree). The child only selects the
pragmatically most salient elements to be mapped, so that only something like
sit chair is produced. The memory constraint is relaxed over development, so
that longer productions are possible, although Pinker does not go into the na-
ture of this development.

Similarly, Boster (1997) argues that children’s early utterances are
constrained by a linguistic processing constraint. In her model, every (lexical
or syntactic) operation has a cost, and for production, the cost of the generated
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representation underlying the utterance cannot surpass a processing-limit pa-
rameter. This parameter becomes less restrictive over time or the cost of the
rules that are applied and the lexical elements that are retrieved decrease.
Boster (p. 17) criticizes Pinker (1984) for not explaining why so many sub-
jects, as opposed to objects and verbs, are dropped. Her account does explain
this, referring to the order in which lexical elements are merged and moved in
the derivation underlying the production.

The advantage of these approaches is that they create maximal continu-
ity in the representations used. Furthermore, this approach is in line with the
findings discussed in section 2.4.2: children allow those elements of meaning
to pass through the filter that are pragmatically most salient (cf. Graf et al.’s
(2015) findings on the pragmatics of omission) and given a fixed memory
buffer, a modified noun phrase, for example, means that there is less buffer
‘left’ for other elements (cf. Bloom et al.’s (1975) findings of covariation).

A conceptual downside is that a new variable that changes over time is
introduced, namely the memory buffer. This creates cognitive discontinuity,
albeit on a non-linguistic level. A more important problem with having a
memory buffer that changes over time, is that it provides us with little of an
explanation. Rather, it seems to be a redescription of what we observe, viz.
limited-length utterances, in terms of a changing memory buffer.

The incomplete-rules account

The accounts of Braine (1963) and Schlesinger (1971), discussed earlier, con-
stitute prime examples of incomplete-rules accounts. The child operates early
on with incomplete rules, which it has extracted from use (possibly by map-
ping them onto prototypical event structures, as in Schlesinger’s explanation).
Schlesinger argues that the transition to longer utterances happens when the
child starts to combine shorter rules. An [ [ AGENT ] [ ACTION ] ] rule can be
combined with an [ [ ACTION ] [ OBJECT ] ] schema, thus producing an utter-
ance containing an AGENT, an ACTION, and an OBJECT. Schlesinger does not
provide any reasons as to why and when the child starts doing so, which makes
the analysis unsatisfactory from a developmental point of view.

Although the usage-based view does not say much about early argument
omission, we do find suggestions that this view is most coherent with an
incomplete-rules account. In studies such as Theakston et al. (2012) and Lieven
et al. (2009), we find that early on one-argument constructions used with tran-
sitive verbs can be slightly different in their selection preferences from the
two-argument constructions for transitive verbs acquired later. This provides
evidence that one-argument productions used with transitive verbs are not
simply generated by two-argument rules. This view is in line with the descrip-
tion of the process of acquiring further dependents (such as arguments) of a
head (i.c., a verb) given by Tomasello (1992, 234;250-253). Tomasello argues
that central to the acquisition of grammatical rules (or constructions) is the
widening of syntagmatic relations, with paradigmatic abstraction only being
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the by-product of this (cf. previous section). If syntagmatic development oper-
ates on certain representations only (lexically-specific rules, rules with a very
limited amount of abstraction), then it may be the case that a two-argument
rule is not simply a ‘coalescence’ of earlier one-argument rules, but an inde-
pendent development.

The grammatical-representation account

A third account that can be added, is the grammatical-representation account,
which depends among all accounts the most on the particular representational
theory of grammar it is associated with, viz. generative grammar. Several
lines of research start from the assumption that argument omissions can be
explained with reference to an erroneous (default) setting of a grammatical
parameter. The parameters regulate aspects of the grammar at a global level,
for instance whether the language allows for the omission of subjects or not
or whether tense is obligatorily expressed on verbs or not. The phenomenon
of subject omission has been explained with recourse to various parameters
(Hyams 1986, Yang 2002, Hyams 2011).

The omission of other obligatory elements of the argument structure has
received far less attention. For object-omission, Pérez-Leroux, Pirvulescu &
Roberge (2007) argue that the child is figuring out how the (innate) licensing
and recovery constraints for null-arguments work. These are general gram-
matical principles, but for every lexical item it has to be specified how they
work. It is in finding out the exact properties of lexical elements that children
make errors: expressing transitive events with only a subject and a verb be-
cause they assume the verb allows for recoverable or generic null-objects (as
the verb eat in English, for instance does: I ate all afternoon). Note that the er-
rors are thus not a purely grammatical matter on Pérez-Leroux and colleagues’
account, but rather an interaction between the developing lexical knowledge
and grammatical principles.

In short, grammatical-representational accounts explain the omission of ar-
guments with general grammatical principles and parameters. One interesting
consequence of this is that different omissions (subject, objects, prepositions)
may be caused by different underlying principles.

Discussion

Why do children leave obligatory lexical elements, such as nouns and prepo-
sitions out, despite their presence in the input? Different accounts point to dif-
ferent factors seemingly involved in this process. Most accounts come down
to an interaction between the representations and the processing capacity of
the child (the exception being the grammatical-representations account). On
top of this, there can be pragmatic effects explaining under what conditions
which argument is omitted. This identification of factors does not provide an
account of the question why (at all) children fail to produce certain arguments.
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Here, the interaction between representations and the processing capacity is
the most salient answer.

Interpreting Berk & Lillo-Martin’s (2012) study, I think that we can reverse
the line of reasoning. Instead of saying that the constraints loosen, we can
say that the constraints stay the same, but the cost of retrieving rules becomes
lower as a product of experience. This is not a language-specific operation, but
something applying to cognition at large. Under this reversal, the findings of
Berk & Lillo-Martin are congruent with a usage-based account, which focuses
exactly on this role of the frequency of experience on the nature and use of the
representations.

Empirically, the central explananda associated with early argument omis-
sion are the general development from fewer to more arguments, the frequent
omission of subjects, and the effects of covariation between argument com-
plexity and salience found. These constitute the first three explananda of for a
usage-based theory of language acquisition.

2.4.3 Argument-structure overgeneralization in early produc-
tion

In Stage I, children not only omit obligatory elements of the argument struc-
ture, they also make errors of a different kind, albeit less frequently. These er-
rors, known as errors of commission, are cases where the child seems to apply
a rule in a way an adult would not. They start showing up in children’s spon-
taneous productions around their second birthday (Bowerman 1974, Marcotte
2005). Arguments may have been added, as in example (5), repeated here as
(17), and the order of the elements may deviate from the ‘correct’ adult pro-
duction, as in example (6)-(7), repeated here as (18)-(19).

(17) Adam fall toy (Adam 2;3, dropped a toy)

(18) eat Benny now (Ben, between 1;7 and 2;6, wants to eat)

(19) the bridge knock down (Aran 2;4, knocked the bridge down)

The received opinion in the literature is that errors like these are vanish-
ingly rare and that grammatical acquisition is overwhelmingly error-free. I
believe there are two reasons not to take this as a discouragement for consid-
ering these errors crucial explananda of a developmental theory. Firstly, rarity
has never been an argument for downplaying the importance of phenomena
like, say, long-distance Wh-movement for theorizing about the necessary com-
plexity of the cognitive representations underlying linguistic behavior. Sec-
ond, the rarity of the errors depends on the method of counting. In a study of
causative-inchoative alternations (cases like examples (17) and (19)), Marcotte
(2005) gathered instantiations of these kinds of errors in a large portion of the
CHILDES database. Marcotte found that in contexts where an error could oc-
cur, children across all age categories make errors like the ones in (17) and (19)
in about one out of ten and one out of fifteen cases respectively (Marcotte 2005,
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56-57). These numbers furthermore suggest, as Marcotte notes, that the often
stated difference in frequency between the type in (17) and that in (19) may be
due to the fact that the former are more salient to the researcher doing a diary
study.

Going beyond the observed properties of these utterances, several ac-
counts of the linguistic knowledge underlying them have been developed.
Two main categories of interpretations can be discerned. First, ‘errors’ like
these may emerge from the child struggling to put all the meaningful elements
together, without applying any rule or rules for the linearization of such ele-
ments. Second, children may apply their inventory of lexical and grammatical
representations to construct an utterance, but there are qualitative or quanti-
tative differences in the selectional properties of the grammatical representa-
tions children and adults use.

The groping-patterns approach

A proponent of the former position for this stage of development, is Tomasel-
lo (1992). Tomasello argues that many productions in Stage I are not governed
by any sort of grammatical system. Tomasello explains the fact that the vast
majority of productions is in compliance with the adult order, by arguing that
the children are imitating the input on a superficial level, i.e., without under-
standing the function of word order. In terms of the continuity assumption,
this creates a strong discontinuity between the earliest productions and the
later ones, and there is no account in Tomasello (1992) how children move
from a pre-grammatical to a grammatical stage and whether this transition
is gradual or immediate. A further problem of this view is that there is often
more regularity in the kind of errors of commission children make, suggesting
an account in which structure-building rules do seem to play a role.

Groping patterns are were first discussed by Braine (1976) as patterns in
which the child attempts to compose a multi-word utterance without having
command over the rules for doing so. Under Braine’s (1976) analysis, it cru-
cially involves linearly stringing together known units. This happens, accord-
ing to Braine, when one of the elements occurs both as the first and the second
element in different two-word utterances in Stage I. An example would be
the element all gone, which occurs both in cases like all gone daddy and daddy
all gone. Braine provides no account, however, of the possible mechanisms
whereby these patterns are generated. The idea of young children using grop-
ing patterns is not unique to the usage-based view or its progenitors: although
Pinker (1984, ch. 4) tried to explain the descriptive facts of groping patterns
from the perspective that they are generated with rules and a single adult-like
combination mechanism, he cites Chomsky (1975) as conjecturing that “Stage
I speech reflects a prelinguistic system akin to a fledgling’s first flutterings”
(Pinker 1984, 97).

Clark (2003, 165-166) essentially agrees with the position that groping pat-
terns are not generated by adult-like rules, but adds that they may be driven
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by information structure (what is given and what is new in the discourse),
thus assigning slightly more structure to them than Braine would. Under this
analysis, the empirical task of finding out whether an utterance is generated
by a hierarchical-structure-building rule or simply strung together is more dif-
ficult. Children’s early patterns may structurally follow adult-like order and at
the same time be just strung together linearly, because the information struc-
ture for children will be very similar to that of adults. Clark raises another
point, namely that the pragmatic salience of the events and objects may play a
central role in the early Stage-I productions. She cites the example of get-down
cart, meaning ‘I want to get down in order to get my cart’ as a case in point. As
the two words reflect an event and an entity from a complex proposition (in
her semantic analysis), it seems hard to interpret this utterance as being gen-
erated by anything like a rule. A hypothesized (semantic) rule would have to
be something like [ [ ACTION ] + [ OBJECT INVOLVED IN THE PURPOSE OF THE
ACTION ] ] which is an unlikely, but logically not an impossible rule.

Pinker’s broad and narrow rules

The other interpretation of cases such as (18)-(19) is that they are not instan-
tiations of groping patterns, but rather the application of some grammatical
rule that is somehow used differently from how adults would use it. One in-
fluential account is Pinker (1989). Pinker argues, for the causative-inchoative
alternation, that children operate with two kinds of rules for deciding if a verb
heard in one argument-structure pattern can also occur in the other argument-
structure pattern. The broad-range rules, on the one hand, provide necessary
conditions for verbs to alternate between argument-structure patterns. Be-
cause they provide necessary conditions, they are rather abstract. Children
can apply them early on, because they are derived from the innate linking
rules between the conceptual and the formal structure. Narrow-range rules,
on the other hand, are acquired in a piecemeal fashion over development.
The child will gradually find out that manner-of-motion verbs can occur in
both causative-transitive and inchoative, that is: manner of motion is a suffi-
cient condition for allowing the verb to alternate. Initially, Pinker argues, chil-
dren without a well-developed set of narrow-range rules will, under discourse
pressure, resort to using only the broad-range rule.

Syntactic accounts

Early errors of commission have received a rather extensive treatment within
the generative nativist paradigm. Even though the present work does not start
from this perspective, or share its basic properties, some of the explanations
prove insightful for understanding what a child is doing.

An interesting account of the object-verb errors (such as example (19)) is
that of Radford (1990, 231). Radford argues that in these cases, only the object
noun and the verb, but not the subject noun, are presented to the syntax. Be-
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cause the verb is required to merge with a nominal phrase to provide a subject
role, the object-noun erroneously ends up in the subject position. In the case of
subject-omission in transitive clauses, yielding a verb-object pattern, Radford
argues that the subject is presented to the syntax but dropped (presumably
because of parameter settings, such as the ones discussed in the section on ar-
gument omission). Aside from the theory-internal details, this account points
to a general mechanism: if the learner for some reason cannot express an argu-
ment (in Radford’s terms: present it to syntax), she may have to take recourse
to whatever other syntactic pattern is available to express something close to
what she means. From the constructivist perspective taken in this research,
one could argue that the object is coerced into the subject slot of the intransi-
tive construction, because the transitive construction for some reason cannot
be used. A fuller account in these terms obviously would require a specifi-
cation of the conditions under which the better-fitting transitive construction
cannot be used.

Cases such as example (18), where the subject appears post-verbally, have
been analyzed by Deprez & Pierce (1993, 43) as misinterpretations of the sub-
ject role as an object. They argue that in 90% of cases of this error, the subject is
not an agent, but a theme of the verb’s semantics, and hence realized as the di-
rect object. The fact that this error occurs structurally with theme subjects is an
argument against the groping-pattern account of early errors of commission:
the high proportion of theme-subjects suggests that there is more structure to
this error type than if the child was just ‘groping’ to construct an utterance.

Another interpretation of the pattern in example (18) is given by MacWhin-
ney (1985, 1120), who argues that children initially go through a stage of plac-
ing all new, salient, or interesting information first. This is a pragmatic princi-
ple, rather than a structural one, and so MacWhinney’s account is not a syntac-
tic account, but rather a ‘groping-pattern-plus-pragmatics’ one. However, if it
is dominantly theme-subjects for which this error occurs, as Deprez & Pierce
(1993) note, MacWhinney’s account seems to predict falsely that these errors
would be made with agentive subjects as well.

Usage-based accounts

In a recent series of papers, Ambridge and colleagues (Ambridge & Lieven
2011, Ambridge et al. 2012, Ambridge 2013, Ambridge, Pine, Rowland,
Freudenthal & Chang 2014, Bidgood, Ambridge, Pine & Rowland 2014) look
at a number of factors involved in overgeneralization of argument-structure
patterns and the retreat from overgeneralization. First, statistical pre-emption,
as proposed by Goldberg (1995), plays a role. Statistical pre-emption is the
process whereby overgeneralizations stop being made once a more concrete,
competing form is part of the grammatical inventory. Second, the entrench-
ment of verbs in argument-structure constructions is shown to have an effect.
If a learner observes a verb fifty times with one argument-structure construc-
tion, and never with another, she can be more certain that it is unlikely that
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that verb will occur in the other construction than if she would have seen it
five times in one construction and never in the other. That is to say: in the for-
mer case, the verb is more entrenched in the first construction than in the lat-
ter case. Third, and similar to Pinker, children appear to become increasingly
sensitive to narrow verb-classes. Ambridge and colleagues showed this by
looking at novel verbs that expressed certain classes of meanings (e.g., man-
ner of motion, sound emission) and by studying whether children accepted
the generalization of the novel verb into an argument-structure construction
they did not observe it in previously. Children increasingly showed sensitivity
to the narrow-range rules that govern the generalizability. Because the verbs
were novel, pre-emption or entrenchment could not play a role, and it must
be the verb semantics that the children used to accept or reject a generaliza-
tion. Two further factors of interest are named, but not further worked out in
these articles, viz. the frequency of the argument-constructions per se, and the
pragmatics of the situation that may make the children’s use of an overgener-
alization more or less likely.

Although Ambridge and colleagues focus on a later age range, these re-
sults are insightful for the study of younger children’s overgeneralization be-
havior. The errors discussed at the outset of this section wax and (partially)
wane within this very developmental period. Under an assumption of conti-
nuity of processing mechanisms, this means that pre-emption, entrenchment,
verb semantics, construction frequency and pragmatics can be expected to
play a role as well. With the exception of the last factor (i.e., pragmatics), all of
these can be operationalized in a computational model of the kind I propose
later in this dissertation. In fact, as I will show there, the first four factors prove
to be only separate mechanisms on an analytical level, but all follow from the
process of selecting the optimal set of constructions to express the learner’s
conceptual intent with.

It has been argued that different regularities in the environment become
salient to the developing child at different ages (for a general account along
these lines, see, e.g., Hollich et al. 2000). In the case of overgeneralizations,
it has been argued that statistical distributional information (such as pre-
emption and entrenchment) have an effect on overgeneralization behavior
before the semantic classes do (Tomasello 2003, 180). Ambridge et al. (2014,
221-222), however, argue that in the studies operationalizing this idea exper-
imentally, the effect of earlier sensitivity to distributional statistics over verb
semantics may well be due to task effects. Again, under a continuity assump-
tion, it seems better to assume equal sensitivity to all properties, only to be
given up when there is strong evidence to the contrary.

Discussion

Findings about the frequencies of the errors, such as Marcotte’s (2005), should
be taken as explananda for any theory of language development and thereby
for a computational model. The fact that there are strong biases in the error
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patterns, as noted by Deprez & Pierce (1993), suggests that it is safe to assume
that the errors should follow from the grammatical representations the com-
putational model has at a point in time, rather than being due to the child
‘groping’ to construct an utterance.

From a usage-based perspective, experimental findings such as Ambridge
and colleagues’ provide conditions on the kinds of overgeneralizations that
should be expected: entrenchment, construction frequency, and pre-emption
should play a role from very early on, but the effect of semantic classes should
increase over time (regardless of whether we treat these as separate mech-
anisms or symptoms of a unifying process). This gives us two further ex-
plananda for a theory and model: to explain why overgeneralization takes
place, as well as to account for the shifting role of the various factors involved
in the retreat from overgeneralization.

2.4.4 Explananda for a usage-based model of language acqui-
sition

Not all phenomena discussed in the previous sections are equally suitable to
be studied with a computational model. Especially the notion of abstraction,
however interesting, is to my mind undecided, with empirical claims in favor
of both an early-abstraction and a conservatism point of view, and as such I
will not consider them as empirical explananda in this dissertation.

On the side of production, however, five interesting phenomena can be
found that seem uncontroversial:

E1 An increasing number of arguments is produced over developmental time.

E2 Subjects are omitted more often than other arguments

E3 The amount of arguments co-varies with the complexity of the arguments.

E4 Argument-structure constructions are overgeneralized at some point in devel-
opment, but the learner overcomes this overgeneralization.

E5 The role of various reasons for overgeneralization varies over developmental
time.

Besides these broad-level phenomena, there are of course also several more
detailed phenomena. The more of these can be captured with the same com-
putational model, the better. However, it seems good to have a baseline of
global phenomena to account for, so that models are not developed with a
single, narrow, purpose in mind.
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2.5 Computational usage-based models of lan-
guage acquisition

In the past two decades, computational modeling has been increasingly ap-
plied as a method of studying the nature of grammatical development in
ontogeny, with several important modeling attempts within the usage-based
framework being published in the past ten years. As this thesis deals with the
usage-based perspective, I will focus only on computational modeling studies
focussing on the mechanisms involved in language acquisition that start from
this perspective, with one exception.

Even within the usage-based tradition, there are several interesting mod-
els that I do not discuss here nonetheless, because they do not have the ex-
plicit goal of being psychologically realistic (e.g., the tradition of grammar
induction, see de la Higuera (2010) and references cited there), or because
they are models that try to analyse the utterances children produce in a
post-hoc fashion, thereby not being full input-output models (e.g. Bannard
et al. 2009, Borensztajn, Zuidema & Bod 2009) Also worth mentioning is the
approach of Fluid Construction Grammar, especially van Trijp’s (2008) disser-
tation. Although the model contains a working set of mechanisms for acquir-
ing constructions, the focus of the approach is not on language development.

2.5.1 Semantic-grammar models
The first kind of models we discuss are models directly operationalizing the
constructivist tenet that the grammar consists of form-meaning pairings. The
first three models discussed below constitute the direct starting points of the
model I present in chapter 3.

Chang (2008)

In her dissertation, Chang (2008) presents a model of the acquisition of gram-
matical constructions that is aimed to fit in with the Berkeley Neural Theory
of Language (Feldman 2006). The model assumes grammatical constructions,
pairings of phonological form and meaning, as its representational format.

The model processes input items (pairings of an utterance and a situational
context) one at a time. For every input item, the model tries to analyze it by
using its inventory of constructions. The resulting analysis is a semantic spec-
ification of the composite meaning of all constructions used, which can then
be pragmatically resolved against the situational context of the input item. As
the model will initially have an incomplete grammar (i.e., one that might not
be able to analyze every word), the analyzer allows for incomplete analyses
and cases where there are multiple partial analyses (e.g., when the analyzer
just recognizes two lexical constructions but has no construction to combine
them).



54 2.5. Computational usage-based models of language acquisition

Often multiple analyses are possible. In those cases, the model will select
the analysis from among the analyses with the lowest number of roots (or
partial analyses) that has the highest probability given the grammar (reflecting
how often the used constructions have been observed before) and that covers
as much of the context and utterance as possible.

On the basis of this best analysis, the model updates the counts of the
used constructions and hypothesizes novel constructions by reorganizing
the constructicon. Chang frames this as an incremental optimization pro-
cess, in which the model looks for an ‘optimal’ grammar. To do so, she em-
ploys Bayesian Model Merging (Stolcke 1994). Bayesian Model Merging eval-
uates whether a reorganization step in a model of the data (i.c., a constructi-
con of the language) enhances the trade-off between compactness and good
coverage of the data by using the Minimum Description Length principle
(Rissanen 1978). Making an abstraction over two grammatical constructions,
for instance, makes the grammar more compact (the commonalities are stored
only once), but also typically decreases the coverage (the model now allows
for the generation of structures that have not been observed before, so that the
observed ones become less likely).

The reorganization steps Chang discusses fall into two classes. The map-
ping operations, first, specify how a novel representation can be formed on
the basis of the unanalyzed parts of the utterance and meaning. ‘Simple map-
ping’ finds new pairs of unanalyzed phonological form and meaning to map
to each other as a novel construction, whereas ‘relational mapping’ takes the
relation between several partial analyses and, given the satisfaction of some
constraints, hypothesizes that relation to be a novel construction. The merging
operations, on the other hand, properly reorganize existing parts of the gram-
mar. In the case of ‘join’, two constructions that share part of their structure
are joined into a larger whole, creating, for instance, an [ [ ENTITY ] [ ACTION ]
[ OBJECT ] ] construction out of an [ [ ENTITY ] [ ACTION ] ] and an [ [ AC-
TION ] [ OBJECT ] ] construction. With ‘split’, on the other hand, a construction
is split into parts on the basis of its commonalities with another construction,
creating, e.g., a lexical [ BUTTERFLY / butterfly ] construction out of a [ [ SEE /
see ] [ BUTTERFLY / butterfly ] ] and a [ [ SEE / see ] [ ENTITY ] ] construction).
‘Merge’, the most powerful operator, takes the structural overlap in form and
function between two constructions, and adds this overlap as a novel con-
struction to the grammar. An example would be the case where the model has
a [ [ GRAB / grab ] [ BALL / ball ] ] and a [ [ GRAB / grab ] [ DOLL / doll ] ]
construction. The structural overlap in the phonological and conceptual struc-
ture constitutes the more schematic construction [ [ GRAB / grab ] [ TOY ] ],
which is then hypothesized as a new construction. Note that with ‘merge’ the
two daughter constructions are not discarded, as in Stolcke’s (1994) version
of Bayesian Model Merging, but rewritten as inheriting structure from their
newly abstracted parent.

In the experiments, Chang lets the model start out with many lexical con-
structions in place and thus the simple mapping operation (used for learn-
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ing new lexical constructions) is left out. Given this starting point, the model
shows improvement over time in analyzing utterances (both in the amount
of the utterance analyzed and the amount of the situation interpreted). The
grammar furthermore stabilizes over time.

Alishahi and Stevenson (2008)

Alishahi & Stevenson (2008) develop a model that learns argument-structure
constructions that generalize over particular verbs. The starting point for their
model are input items are frames consisting of a predefined set of functional
or conceptual and formal features which are specified with various values.
The model starts out, in the training phase, with the knowledge of the mean-
ings and distributional categories of words (sometimes left out if there is noise
– see chapter 4 for a fuller treatment), so that the argument structure (e.g.,
‘argument-1 + verb’ or ‘argument-1 verb on argument-2’) can be part of the set
of features. Other features include the semantic representations of the event,
the event roles, and the entities filling the event roles.

When processing a novel frame, the model tries to categorize it as belong-
ing to one of an (initially empty) set of clusters over frames. These clusters
represent abstractions over the frames that allow the model to go beyond the
observed input. In the clusters, each feature specifies a probability distribution
over the values as they were observed in the frames that were categorized as
belonging to that cluster. As such, the clusters are centroid representations of
the frames that were categorized with them.

The process of categorization (or clustering) is conceived of as a Bayesian
inference problem, where the frame is added to the cluster with the maximum
a-posteriori probability. This probability is given by the prior probability of
the cluster (roughly, its frequency) and the likelihood of the frame given the
cluster (roughly, how well the cluster fits the frame). A smoothed part of the
probability mass is assigned to the possibility of letting a frame form a new
cluster. This probability mass depends on the amount of observed frames, and,
as such, decreases over time. After a frame has been categorized with a cluster,
the probability distributions over the various features are updated with the
values of the frame.

In the experiments, Alishahi shows that several observed phenomena in
child language acquisition can be simulated, including Akhtar’s (1999) Weird-
Word Order experiments, and the overgeneralization and recovery thereof of
argument-structure constructions (Bowerman 1982). Importantly, the process
of categorization can also be used to make top-down predictions about miss-
ing features. This way, novel verbs can be ‘bootstrapped’ given the (known)
arguments and the categorization of these arguments with a certain cluster.
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Kwiatkowski (2011)

Although Kwiatkowski’s (2011) model is not framed as a usage-based model,
it is worth discussing here, because it contains one feature that no other model
contains, namely the fact that the meaning of lexical patterns (words) and the
parametrized meaning of grammatical patterns are acquired at the same time.
In Kwiatkowski’s model, a Combinatory Categorial Grammar (CCG) formal-
ism (Steedman 2000) is adopted for the development of a semantic parser. In
this formalism, grammatical rules are instructions to create larger, more en-
compassing syntactic and semantic representations. The model is therefore a
strictly componential one: all lexical semantic representations are associated
with words, and all rules for combining lexical semantic representations into
larger wholes are associated with grammatical rules. Given this division of
labor, the model has to learn two things: the set of correct rules given a hy-
pothesis space of possible CCG rules, and a lexicon of pairing of phonological
form and lexical meaning.

In an incremental fashion, the model updates the (pseudo-)counts of the
word-meaning pairings as well as that of the various possible rules, and even-
tually learns to parse and analyze utterances. It does so by, at every input
item, trying all possible parses and word-meaning pairings given the utter-
ance and the situational context. Each parse with word-meaning pairings at
the terminal nodes now has a a certain probability given the pseudocounts of
the previous step, and pseudocounts for the next step are updated with this
probability. By doing so, the model gradually assigns more pseudocounts to
rules and lexical items it has seen before, and thereby learns a grammar and a
lexicon at the same time. Interestingly, there is a bi-directional bootstrapping
process in the model: if it is very certain about the word meanings, but not so
much about the grammar rules, the grammar rules still receive a large pseu-
docount update. On the other hand, if the model is certain about the rules, the
weaker representations of the word-meaning pairings will be strongly rein-
forced.

µ-DOP

As a first attempt at modeling the acquisition of a grammar with semantic rep-
resentations, I developed a model starting from Data-Oriented Parsing (DOP:
Scha 1990, Bod 1998, Bod, Scha & Sima’an 2003), more specifically from Un-
supervised DOP, (U-DOP: Bod 2009). U-DOP is a distributional learner (i.e.,
only the form into account) that builds on a very simple principle: assume
all possible binary trees over a corpus of strings, and store all possible partial
trees (subtrees). When analyzing a novel utterance, the best analysis is taken
to be the one that involves the combination of the fewest subtrees in order to
derive that utterance. If multiple such combinations, or shortest derivations, are
possible, take the one that is most likely given the relative frequency of the
partial trees in the observed corpus (the Most-Probable Shortest Derivation,
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or MPSD principle).
This perspective constitutes a promising starting point for developing a

model that takes both form and meaning into account. The reliance of U-DOP
on units of heterogeneous size and the fact that the model allows for redun-
dant representations is congenial with usage-based constructivist tenets. The
fact that the model tries to stay as close as possible to what it has seen most
(i.e., the MPSD principle) is furthermore a clear operationalization of Lan-
gacker’s idea that more concrete units have precedence over more abstract
ones in language processing.

This idea was worked out in Meaningful Unsupervised Data-Oriented
Parsing (µ-DOP: Beekhuizen & Bod 2014). To include the acquisition of mean-
ing, we followed the same basic intuition as with U-DOP: try all possibilities,
and let the frequencies of the various possibilities ‘decide’ what are the best
rules. When we include meaning, the range of possibilities does not only con-
tain all possible branching structures, but also all possible combinations of
parts of the meaning with parts of the branching structure.

Starting with no knowledge of the grammar, µ-DOP processes one input
item at a time. As the model is a semantic-grammar learner, the input con-
sists of pairings of an utterance and a situational representation, in our case,
a simple logical form. In processing the input item, the model tries all deriva-
tions given the grammar so far, as well as a set of unseen rules, consisting of
combinations of meaning splits from the situational context with all possible
binary branchings. The rules in the grammar have a probability relative to
their pseudocounts in the grammar, whereas the unseen rules split up a small
probability mass reserved for unseen events that decreases as more rules are
learned.

The probability of each derivation then, is the product of the subtree prob-
abilities. After creating all possible derivations over the utterance, the model
updates the pseudocounts of the subtrees used in all derivations with the their
(normalized) probability among all derivations. Note that µ-DOP does not in-
stantiate the MPSD idea: the model simply takes all derivations and updates
the grammar with them. However, derivations consisting of fewer subtrees
are often more likely given the probability model (the combination of three
subtrees involves the product of three probabilities, which is typically higher
than the product of four probabilities, in case of a derivation consisting of four
subtrees).

As with Kwiatkowski’s model, µ-DOP incrementally figures out which
grammatical as well as lexical representations occur more frequently and are
therefore more useful in understanding novel utterances. A key difference
from Kwiatkowski’s representations is that the grammatical units (i.e., struc-
tures with more than one terminal node) may contain lexical semantic content,
whereas in Kwiatkowski’s model, they only contain instructions for combin-
ing lexical semantic content. This reflects a difference in starting assumptions:
whereas Kwiatkowski’s model is a componential one, with separate roles for
the lexicon and the grammar, the µ-DOP learner is agnostic about the proper
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P : hit(e1, e2)

e1 ·

/hits/ e2

◦ e : John

/John/

◦ e : Bill

/Bill/

= P : hit(e1, e2)

e : John

/John/

·

/hits/ e : Bill

/Bill/

Figure 2.1: Some representations and the way they are combined in µ-DOP.

location of lexical semantic content: both words (being unary subtrees) and
‘grammatical’ rules (being all sorts of constellations of binary branching sub-
trees) may carry lexical semantic content.

Figure 2.1 illustrates several µ-DOP representations and how they are com-
bined. The first construction can be seen as a verb-island construction (cf.
Tomasello 1992), where a particular verb distributes its roles. Translating this
format into a Cognitive Grammar representation, we have the three units in
examples (20)-(22), being combined into the construct in example (23).

(20) [ [ E1 ] [ hits ] [ E2 ] ] | HIT(E1,E2)

(21) [ E:JOHN / John ]

(22) [ E:BILL / Bill ]

(23) [ [ E1 ]→[ E1:JOHN / John ] [ hits ] [ E2 ]→[ E2 :BILL / Bill ] ] |
HIT(JOHN,BILL)

In an experiment on toy data, µ-DOP was presented with input items con-
sisting of a pair of seven situations and an utterance corresponding to one
of the situations. As a global measure of evaluation, I evaluated how often
the most likely derivation referred to the correct situation, that is: the situa-
tion that was paired with the utterance that the model processed. If the model
picked out the correct situation, it achieved some sort of communicative suc-
cess, and so the model should achieve a state of knowledge with which it can
communicate succesfully.

The situations were simple semantic predicate-argument structures of one-
place and two-place semantic predicates. Importantly, the model contained a
number of non-compositional idioms. Besides the semantic predicate SEE(E1 ,
E2), which was expressed by utterances such as Bill sees Abe or Mary sees Jack,
there was also an intransitive semantic predicate TURN.50(E1) that was ex-
pressed with the expression X sees Abe, with any entity filling the E1 on the
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Figure 2.2: The average accuracy of µ-DOP in the first 500 trials.

X.12 This means that the model faces two tasks: on the one hand, there is the
acquisition of a non-compositional idiom, on the other: there is an ambiguity
with the literal interpretation that hinders this acquisition.

Figure 2.2 gives the results of the accuracy of the most likely derivation
over time (averaging over 10 simulations). We can see the model converging
to a good performance. Given the limited nature of the toy example, it should
not be very hard for the model to understand how the various meanings are
expressed, but the amount of uncertainty (6 ‘distracting’ situations) appears
to be no problem for the learner.

On a more qualitative level, we can look at what derivations are being
used. Of particular interest in Beekhuizen & Bod (2014) was the acquisition
of idioms. Looking at the sees Abe idiom, we find the derivations in figure 2.3
(from different simulations) after about 500 input items. We can see here that
in analysis 1, the model (correctly) combines an intransitive construction with
the lexical construction referring to ED and the verbal idiom sees Abe, meaning
TURN.50. In the second case, the model has associated TURN.50 solely with
the word Abe, and has acquired a lexical construction in which Ed sees simply

12The idiom was modeled after the Dutch expression Abraham zien, ‘lit. seeing Abraham, turn-
ing fifty’.
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Analysis 1 P (e1)

e1 P

◦ e : Ed

/Ed/

◦ P : turn.fifty

·

/sees/

·

/Abe/

= P (e1)

e : Ed

/Ed/

P : turn.fifty

·

/sees/

·

/Abe/
Analysis 2 P (e1)

e1 P

◦ e : Ed

·

/Ed/

·

/sees/

◦ P : turn.fifty

/Abe/

= P (e1)

e : Ed

·

/Ed/

·

/sees/

P : turn.fifty

/Abe/

Figure 2.3: Two derivations of Ed sees Abe in a situation where TURN.50(ED) is
present.

refers to ED, which are combined with an intransitive construction.

2.5.2 Usage-based distributional models
Besides models that directly operationalize the constructivist tenet of gram-
matical knowledge consisting of form-meaning pairings throughout, there are
also models that take meaning out of the equation and focus on what can be
learned from the formal distribution of elements in the input. Both models
discussed here, MOSAIC and CBL, acknowledge the importance of meaning,
but focus on the role of formal distributions in the input. In the case of the for-
mer, the focus is on the incremental build-up of a network of words leading
to increasingly long productions, whereas the latter aims to model the role of
multi-word units or ‘chunks’ in language development.

MOSAIC

The first distributional model to be discussed is MOSAIC (Freudenthal et al.
2010). MOSAIC processes utterances from a corpus one by one and incremen-
tally builds up a network of phrases it has encountered. Crucially, the pro-
cessing is limited by an utterance-final bias: an unknown word is only added
to the network if everything that follows is already encoded in the network.
In a later version, an utterance-initial bias is added as well, so that the model
gradually builds up phrases at both edges of the utterance, as well as the con-
catenation of both (so that if it has seen where at the beginning of an utterance
and he go? at the end, it can concatenate both to form where he go?). New nodes
for unknown words are added to the network with a probability reflecting a
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bias towards shorter phrases (adding a fourth word in a chain is less likely
than adding a third) and an increasing ability to integrate nodes in the net-
work.

Some variants of the model furthermore implement a second kind of link
in the network, viz. a ‘generative’ link. With a generative link between two
words, MOSAIC can substitute the current word for any word linked to it with
a generative link. This allows the model some generalization beyond what it
has directly observed.

After having seen a number of utterances, the model can be evaluated
by having it generate a number of strings given the network. Each string is
generated by following a path through the network. After few processed in-
put items, the utterances are short, and over time they grow longer. Given
this property, it can be shown how phenomena such as subject-omission fol-
low from the nature of the input in combination with the simple edge-biased
learner. More interestingly, the rate of root infinitives in different languages
(utterances of the type daddy grab, where the inflected verb is left out) can be
modeled as a product of the input: some languages display many such utter-
ances in early child speech, whereas children learning other languages hardly
ever leave the verb uninflected if it is obligatory to inflect verbs. MOSAIC
accurately models the proportions of root infinitive errors found in various
languages because the languages vary in how often they have infinitives in
constructions with an inflected auxiliary. More infinitives in [ auxiliary + in-
finitive ] patterns means that, given a right-edge bias, the learner has more
opportunity to pick up these infinitives without the inflected auxiliary, and
therefore produce more utterances of the type where he go?.

Another phenomenon studied with MOSAIC is the nature of early gen-
eralizations, especially the Verb-Island hypothesis discussed in section 2.4.1
(Jones, Gobet & Pine 2000). Using the generative links, MOSAIC can be shown
to simulate distributions of [ noun + verb ] and [ verb + noun ] combina-
tions in production that are closer to the child’s distributions than to the care-
giver’s distributions. Moreover, the amount of pronouns, proper nouns and
common nouns in the model’s outputted utterances matches more closely to
the child’s than to the caregiver’s. Finally, the model can be shown to have
both verb-specific constructions, of the [ [ noun ] [ hit ] [ noun ] ] type, as well
as argument-frames, such as [ [ you ] [ verb ] ].

The CBL model

McCauley & Christiansen’s (2014a) Chunk-Based Learner (CBL) is a similar
distributional learner to MOSAIC, aimed to show the role of multi-word units
in language development and language use. CBL processes utterances word
by word, and keeps track of the backward transitional probabilities (BTPs) of
every word given the next word. When it encounters a peak in the BTP be-
tween two words, that is: a probability of the current word given the next one
that is higher than the average BTP over the entire corpus, the two words are
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‘chunked’ together. When a dip in the BTP is encountered (i.e., a probability
of the preceding word given the current one that is lower than the average
BTP over the corpus), a boundary is placed and all chunked words preced-
ing the boundary (at least the preceding word, but possibly more) are placed
in the ‘chunkatory’, the inventory of chunks. These chunks are then used in
subsequent processing: if, for any number of words, a chunk can be found,
the words in the utterance that are subsumed by it are automatically chunked
and no BTPs are calculated.

McCauley and Christiansen evaluate the CBL on various tasks. In a pro-
duction experiment, they give the model a sentence that a child produced in
an unordered form (i.e., as a multiset of words) under the assumption that this
is an approximation of the meaning of the utterance. They then ask the model
to find the most likely sequence of chunks given the start-of-utterance symbol.
Importantly, this is a process that happens incrementally over the utterance:
there is no whole-utterance optimization. When the most likely sequence is
found, it is scored against the actual utterance. Using this production process,
they are able to simulate children’s utterances in a typologically varied sample
of languages.

Furthermore, CBL simulates a number of interesting findings on the repeti-
tion of multi-word units in children. To give an example: Bannard & Matthews
(2008) found that two and three-year olds were significantly more likely to
correctly repeat a four word utterance if the first three words formed a chunk,
and three-year-olds furthermore did so faster than for correct repetitions of
four word phrases that contained no chunks. CBL closely mimics this behavior
when trained on child-directed speech. An interesting conclusion McCauley
and Christiansen draw is that “the importance of multi-word units may ac-
tually grow, rather than diminish, throughout development” (p. 428). That is:
chunks are not only a stepping stone for the early language learner, but may
continue to play an (even increasing) role in later processing.

2.5.3 A comparison
How well do the models discussed in this section instantiate the idea of a
usage-based learner? And for which of the developmental phenomena do they
account? Table 2.2 gives my, admittedly highly oversimplified, assessment. A
‘+’ means the model satisfies that desideratum or has been succesfully used
to simulate that empirical finding. A ‘−’ means that either the model does not
satisfy that desideratum, or has not succesfully been shown to simulate that
empirical explanandum. A ‘♦’, finally, means that the model does not satisfy
that desideratum or simulate that explanandum, but has, as I will discuss be-
low, the potential to do so.
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D1 (explicitness) + + + + + +

D2 (comprehensiveness) ♦ − ♦ ♦ − −
D3 (simultaneity) ♦ − + + − −
D4 (representational realism)

D4-1 (qualitative grounding) + + − + + +

D4-2 (quantitative grounding) + + + + + +

D4-3 (immanence) + + − + + −
D5 (processing realism)

D5-1 (heterogeneous structure building) − − − − + −
D5-2 (linear processing) − − − − + +

D6 (ontogenetic realism)

D6-1 (cumulative complexity) ♦ − − − + +

D6-2 (learning-by-processing) − + + + + +

D6-3 (parts-to-whole and whole-to-parts) + − − − + −
D6-4 (developmental continuity) + + + + + +

D7 (explanatory insight) + +/− + +/− +/− +/−
D3-1 (unification) − + − − + −

E1 (decreasing argument omission) ♦ − − − + −
E2 (prevalence of subject omission) ♦ − − − + −
E3 (co-varying complexity) − − − − − −
E4 (overgeneralization and retreat) ♦ + − − − −
E5 (mechanisms overgeneralization) − − − − − −

Table 2.2: A comparison of the various learners discussed in section 2.5.
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D1: Explicitness

Explicitness is one of the hardest desiderata to evaluate. All models discussed
here are explicit about what simplifying assumptions they make, and what
they do and do not take into account. For instance, Chang, Alishahi & Steven-
son, Kwiatkowski and Beekhuizen & Bod take conceptualizations of the sit-
uation as part of the input into account and do so with a varying degree of
naturalism. However, all of them are very explicit about the artificial nature of
the representation (in being derived from the utterance, for instance). More-
over, Chang and Alishahi & Stevenson discuss how their conceptual repre-
sentations are grounded in ideas about how meaning and conceptualization
work.

D2: Comprehensiveness

None of the models has been used for accounting for the full process of lan-
guage use, that is: going from conceptualization to an utterance in production
and from an utterance to a conceptualization in comprehension. Although
Chang, Kwiatkowski and Beekhuizen & Bod certainly have the potential to
do both, in none of these works the model is shown to be able to perform both
tasks.

D3: Simultaneity

Which models learn words and their meanings and grammatical patterns and
their meanings at the same time? Only the models of Kwiatkowski and Beek-
huizen & Bod have been shown to do so. Chang (2008)’s model certainly has
the mechanisms to do so. However, as she does not evaluate the model start-
ing with no constructions at all, we cannot tell if the mechanisms actually let
the learner build up an inventory of lexical and grammatical constructions at
the same time.

D4: representational realism

D4-1 and D4-2 All of the models under scrutiny have their representa-
tions grounded, both qualitatively (in what they contain) and quantitatively
(in keeping track of the frequency of their usage), in aspects of the usage
events. The sole exception concerning the qualitative grounding is Kwiatkow-
ski, whose combination rules come from a universal grammar and are thus not
derived from properties of language use. This is obviously not a problem, as
Kwiatkowski does not frame his model as a usage-based learner.

D4-2 All usage-based models that employ some notion of abstraction (i.e.,
Chang, Alishahi & Stevenson, Beekhuizen & Bod, Freudenthal et al.) satisfy
desideratum D4-3, viz. that abstractions should be, at least conceptually, im-
manent in the constructions they are derived from. In Chang’s model this is
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achieved through the use of inheritance relations between constructions. Al-
ishahi & Stevenson do so by taking a clustering approach, where the centroid
representation of the cluster of usage events can be seen as the shared poten-
tial of a set of usage events. In Beekhuizen & Bod, the Data-Oriented Parsing
dictum ‘assume all substructures and let the statistics decide’ (cf. Bod 1998) is
taken to instantiate the property of immanence.

Nevertheless, all three models represent the abstract constructions as sepa-
rate entities. I do not believe this to be a problem for the models. Although the
discussion about immanence does not show up in any of them, none of them
is incompatible with the view that abstractions are co-activation patterns over
multiple exemplars. MOSAIC is interesting in this respect, because there the
immanence is most faithfully implemented: abstraction over positions in the
chain of a network is represented with the generative links, which are only
made if the distribution of the words on two nodes is similar enough. Here,
abstraction is truly not something distinct from the actual usage events.

D5: processing realism

D5-1 The models that employ methods for combining structure (i.e., all ex-
cept Alishahi & Stevenson’s) mostly employ a single means of doing so. This is
a slot-filling operator in the case of Chang, Beekhuizen & Bod, and Kwiatkow-
ski, and a concatenation operator in McCauley & Christiansen. Only MOSAIC
allows for both concatenation, by following the regular links in the network,
and a form of substitution, with the generative links.

D5-2 Interestingly, the focus on linear processing and non-global optimiza-
tion is stronger in the two distributional learners than the models that involve
meaning. In all four semantic learners, the best analysis or the relative good-
ness of the analyses is found through a probabilistic calculation that takes the
full utterance into account, thus running counter to the idea that language
users process utterances linearly and without doing utterance-wide optimiza-
tion of the analysis. Both distributional learners, however, engage in a strongly
constrained process of analyzing the utterance.

D6: ontogenetic realism

D6-1 Both distributional models satisfy the constraint that more complex
representations are to be built up from simpler ones. In MOSAIC, this is done
by letting the network incrementally grow as more input is processed. The
network up until that point constitutes the simpler representation, which is
used to bootstrap the more complex representation the netwerk contains after
the processing. Similarly, CBL uses its chunks at a certain point to find bigger
chunks, and thus uses the simpler chunks as bootstrapping devices. None of
the semantic learners show how, for instance, longer argument-structure pat-
terns can only be learned after having seen simpler ones. In Kwiatkowski and
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Beekhuizen & Bod, the effect of considering all hypotheses is that the maxi-
mal level of syntagmatic complexity is in principle already within reach after
having processed only the first exemplar. Alishahi & Stevenson’s model as-
sumes lexical mappings to be (largely) in place prior to the acquisition of the
argument-structure constructions, and thus does not account for larger repre-
sentations (with more arguments) being built up from simpler ones. Chang’s
model is interesting, because it has the potential in its learning mechanisms to
build up more complex representations from simpler ones, but this potential
is not evaluated, because the model starts with full knowledge of lexical con-
structions. Because of this, argument-structure constructions are first acquired
with their full width rather than being bootstrapped using simpler construc-
tions.

D6-2 The idea of learning-by-processing is instantiated in all models: all
have an account on which an input item is processed and the results of that
processing inform the learner about updates and extensions of the grammar.
The reason I scored Chang with a ‘−’ is that the acquisition of abstract repre-
sentations crucially involves a decision making procedure on the basis of the
Minimum Description Length principle. This constitutes, to my mind, a case
of post-hoc decision making (especially in the case of the functions other than
the two mapping functions), and one, moreover, in which the value of adding
a rule in the light of the whole grammar is considered.

D6-3 Only two models allow for both parts-to-whole and whole-to-parts
learning, viz. Chang and Freudenthal et al.. Chang’s model is the clearest ex-
ample: with the learning mechanisms defined in her model, constructions can
both be joined and split, thus allowing the model to go from parts to wholes
and from wholes to parts. MOSAIC allows for parts-to-whole learning by
the build-up of the network, and whole-to-parts learning by the generative
links. In Beekhuizen & Bod and Kwiatkowski, the parts are known (or: being
learned). Although Beekhuizen & Bod allow for wholes with structure associ-
ated with them, the parts are always already present in them, and likely have
some probability mass assigned to them as well. In Alishahi & Stevenson’s
model, the blame assignment is done in advance, under the assumption that
the learner already knows the lexical constructions.

D6-4 All models assume the same set of mechanisms to be available
throughout development. Interestingly, in Chang’s model, the frequency of
use of some mechanisms may increase over time, while the frequency of use
of others may decrease, but all of them are available at all times.

D7: Explanation

Like explicitness, the amount of explanatory insight is hard to evaluate. The
model of Chang stays very close to a usage-based theory of language acqui-
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sition, but for all the others, the relation between theory and model takes
a slightly larger interpretive step. This is in principle not a problem, and it
may of course be the case that insights from modeling change some theoreti-
cal conceptions. Alishahi & Stevenson’s and Freudenthal et al.’s model stand
out for their unifying properties. In the former, it is shown how several pro-
cesses, such as syntactic bootstrapping, overgeneralization, and decreasing
verbal conservatism (in the weird-word-order studies) are all effects of the
same probability model that employs the induced clusters. In the latter, the
right-edge bias together with the incremental build-up of the network are fac-
tors that account for several empirical phenomena (argument omission, the
presence of optional infinitives) that are often thought to be due to a distinct
range of factors.

E1, E2, and E3

Issues concerning the limited length of early productions are generally not
extensively studied using computational modeling techniques. Most models
start out with the learner having the ability to process the full utterance and
derive possible representations from it. The limitation on processing in MO-
SAIC allows this model to simulate the decreasing amount of argument omis-
sion, and with the right-edge bias, it can be shown how subjects are left out
more often than other arguments. Of the other models, I believe only Chang’s
has the potential to simulate this, although we do not know if the model will
actually do this, given that in the simulations the model knows the set of
lexical constructions in advance, and can thus process the whole utterance,
thereby building up representations of full width.

E4 and E5

The only model that has addressed the overgeneralization of argument-struc-
ture constructions and the retreat thereof, is Alishahi & Stevenson (2008).

Wrap-up

The models vary in the extent to which they meet the desiderata and ex-
plananda pose throughout this chapter. Of course, this comparison is slightly
anachronistic: the modeling enterprise, like any field, proceeds in small steps,
and the desiderata and explananda are formulated by someone who was able
to look at more than a decade of progress in the field. The various points of
criticism should therefore be read as an agenda: we would like a cognitive
model of language acquisition to satisfy all of them. The model I will present
in chapter 3 constitutes my attempt to do so.





CHAPTER 3

The Syntagmatic-Paradigmatic Learner

3.1 Introduction

In this chapter, I introduce the Syntagmatic-Paradigmatic Learner (SPL for
short), a computational model of the acquisition of linguistic representations
that constitutes the culmination of my inquiries presented in chapter 2. In
that chapter, I discussed several desiderata and explananda for a usage-based
learner. With those in mind, I developed a model that satisfies many desider-
ata and explains most of the explananda (as we will see in the later chapters)
with a limited set of mechanisms and representations.

Globally speaking, SPL is an incremental learner that processes input items
one by one. Each input item consists of an utterance, paired with a set of situa-
tions to which the utterance can refer. SPL tries to analyze the utterance on the
basis of the situational context, its current state of linguistic knowledge, and
several general processing operations. Using the resulting analysis, SPL up-
dates and expands its linguistic knowledge. The learning gets off the ground
by a procedure of analogical reasoning over recent exemplars. Using this pro-
cedure, the model is able to learn initial lexical mappings between form and
meaning.

Unique features of SPL are that it performs the full comprehension and
production task (desideratum D2), and acquires lexical and grammatical con-
structions at the same time (D3). The gradual build-up of the representa-
tions in the model through the syntagmatization and paradigmatization op-
erations (defined below) furthermore makes SPL a faithful implementation of
the usage-based conception. At the same time, it addresses those aspect of the
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usage-based approach that I deemed unsatisfactorily worked out (cf. section
2.2).

As a note for readers not accustomed to reading set-theoretical and graph-
theoretical definitions, and probability calculations: I will only employ the
high degree of formalization in this chapter, and try to explain and motivate it
in the text surrounding the formalization. The formalization is meant to show
how one can operationalize certain usage-based notions.

3.2 General properties of input items to the model

3.2.1 Input items: utterances and conceptualizations of situa-
tions

SPL takes as its input pairings of an utterance and a number of conceptual-
izations of situations that the learner considers to be the possible conveyed
meanings. The idea that the language-learning child has a conception of the
possible meaning of an utterance (in a conceptualization of a situation) is a
logical necessity for symbol acquisition to get started. At the very least, not
all of the possible concepts a child can entertain should be considered to be
signified by every utterance, as this would disallow any correct associations
to be formed.

The assumption that the meaning of an utterance can be independently ob-
tained has been commonly made, and has been labeled the Interpretatibility
Requirement (O’Grady 1997, 260), put forward most eloquently by MacNa-
mara:

It is not too fanciful to think of the infant as treating the sentences
he hears as glosses on the events that occur about him. The gram-
mar he writes is not in Latin or in any other language, but in some
neurological code of which as yet not a single letter has been deci-
phered. (Macnamara 1972, 12)

The most obvious source of this language-independent understanding
is the perception of the situation in which the language is used (Gleitman
et al. 2005, 28). In fact, the primary external source of obtaining a set of can-
didate meanings is experience. As we know from work such as Tomasello &
Farrar (1986) and Baldwin (1993), this does not necessarily mean the perceptual
experience of the immediate situation in which the utterance is produced (al-
though that is the simplest imaginable source); it can also include concepts in-
ferred on the basis of perceived situations (e.g., mental states such as intentions
and attitudes) as well as non-immediate situations (concepts not present in the
here and now of the speech situation, or in the child’s visual field, but never-
theless deemed relevant by the child because of these inferential mechanisms).
Nonetheless, the simplest source of potentially signified concepts is the per-
ception of the situation that is spatially and temporally contiguous with the
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Figure 1 shows a sample verb usage, consisting of a natural language
utterance paired with the semantic information that is inferred through
observing the corresponding event given to our model as a sequence of
words in root form.

The meaning of the utterance is represented as three sets of semantic
features:

. Semantic primitives of the verb: the basic characteristics of the predicate
are described as semantic primitives (e.g., {cause, become, rotating}).
Some of the primitives are general and shared by many verbs (e.g.,
‘movement’ or ‘act’), whereas others are verb-specific (e.g., ‘consume’
or ‘play’).

. Lexical properties of each argument: the inherent properties of the
argument (e.g., {woman, adult, person, . . . }). These lexical semantic
properties are independent of the event that the argument participates in.

. Event-based properties of each argument: the properties that the
argument takes on in virtue of how it participates in the event. Some
of these properties are similar to the proto-role properties proposed by
Dowty (1991) (e.g., ‘cause’ or ‘affected’) but others are verb-specific
(e.g., ‘eating’ or ‘falling’).

We explain later how we choose the properties for events and arguments
in our experiments.

3.3 General constructions as groups of verb usages

A construction in our model is a group of verb usages that are ‘similar
enough’, according to the probabilities over their features, to be grouped
together. The notion of ‘similar enough’ is described in detail in the next

Sara eat lunch

Semantic primitives: {act, consume}

Lexical properties: {woman, adult female, female, person, individual, somebody, human, ...}
Event-based properties: {volitional, affecting, animate, independently exist, consuming, ...}

Lexical properties: {meal, repast, nutriment, nourishment, sustenance, ...}
Event-based properties: {non-independently exist, affected, change, ...}

Figure 1. A sample verb usage: an utterance paired with the inferred semantic information.
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Figure 3.1: Semantic features extracted on the basis of the utterance in Alishahi
& Stevenson (2010, 59).

utterance, as this is a source that requires little further cognitive sophistication
to arrive at, and that is attested in other species as well (Goodall 1986, Savage-
Rumbaugh, Murphy, Sevcik, Brakke, Williams & Rumbaugh 1993, Kaminski,
Call & Fischer 2004).

The Interpretability Requirement may, however, be too strong compared
to the situations the child finds herself in. It may be that the correct situa-
tion is not observed, for instance. Furthermore, there may be many situations
besides the correct one that are initially equally likely to be the situation the
utterance refers to. These issues constitute a topic that many computational
models discuss, but the empirical grounding on the eventual decision they
make concerning the frequency with which the correct situation is absent and
the number of ‘distracting’ situations being co-present, is thin. For that rea-
son, I decided to venture into this topic empirically by looking at videotaped
caregiver-child interaction. The results of that exploration and an answer to
the question how to provide the computational model with realistic input
items are discussed in chapter 4.

3.2.2 The structure of the conceptual representations
In dealing with the acquisition of a constructicon, hierarchical representations
of meaning are required. Rather than taking recourse to approaches to mean-
ing based on formal logic, I do so by using a graphical structure with sets of
features on the nodes that reflect the subtleties of conceptualization better. To
do so, I make use of Alishahi & Stevenson’s (2010) input-generation proce-
dure. In their procedure, an utterance with a conceptual frame is generated.
An example is given in figure 3.1. We can automatically extract hierarchical
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{act,consume}

{volitional,affecting, 
animate,independently 

exist,consuming,...}

{non-independently 
exist,affected, 

change,...}

{woman,adult female, 
female,person,individual, 

somebody,human,...}

{meal,repast, nutri-
ment,nourishment, 

sustenance,...}

Figure 3.2: An example of a situation.

conceptual representations from Alishahi and Stevenson’s procedure given
the following three basic rules:

• The event node is the root node.

• The semantic role nodes, or event-based properties are daughters of the
root node.

• The semantic argument nodes, or lexical properties, are daughters of a
semantic role node.

For the example in figure 3.1, we obtain the structure found in figure 3.2.
This structure constitutes (a conceptualization of) a situation s. As we will
use conceptual graphs more in the model, it is useful to have some general
definition. A situation is a graph G, which consists of a pair of a set of vertices
V (or nodes), each of which contains a set of conceptual features, and a set of
unlabeled directed edges (or links) E, connecting pairs of vertices in V . As we
will see, the meanings of linguistic representations consist of meaning graphs
as well.

In Alishahi & Stevenson’s (2010) procedure, every generated situation is
paired with a linguistic argument structure and a set of words filling the main
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predicate and argument positions. Together, these constitute the utterance U .
The argument structure for the situation in figure 3.2 would be ARGUMENT1

+ PREDICATE + ARGUMENT2, but prepositions can also be part of the argu-
ment structure, for example in ARGUMENT1 + PREDICATE + ARGUMENT2

+ on + ARGUMENT3.
For now, this short exposition suffices to give an idea of the structure of

the representations. Chapter 4 will deal with the exact properties of the input
generation procedure.

3.3 Constructions

3.3.1 Constructions as representational primitives
The only representational unit of linguistic knowledge employed in SPL is
the construction. While there are many perspectives on what a construction is
within the theory of construction grammar, I start off from Verhagen’s (2009)
vantage point (cf. the discussion in section 2.1.1). Recall that Verhagen argues
for the importance of the conceptual distinction between the contents of con-
structions and the roles these contents play. Crucially, a construction is a sym-
bol, that is: a conventional pairing of a signifier and a signified. Signification
entails that when the hearer observes a signifier, he infers that the speaker in-
tends him to conceptualize the signified. The conventionality means that the
signification process relies on a mutual understanding of the inferential pro-
cess of signification between any two members of a language community.

The next question is what kinds of elements we assume to be present as
the signifying and signified roles of a construction. Following desideratum
D4-1, we assume only phonological and conceptual structure to be the ele-
ments out of which constructions are built. In the simplest case, that of words,
the signifying element is a phonological string, and the signified element a
conceptual representation. Grammatical constructions, however, often have
non-phonological signifiers. As Verhagen argues, conceptual structure can be
taken to fufill the role of a signifying element as well, and it is this content type
that constitutes the signifying element in many grammatical constructions in
SPL.

In grammatical constructions, we can also see a second property of the sig-
nifier, namely that it can be complex, that is: consisting of multiple elements.
It is this property that allows language its expressivity: signification processes
can be recursively applied to the outcomes of other signification processes,
and multiple signifieds can function together as the signifier of a larger, more
encompassing construction, effectively giving rise to a hierarchical interpreta-
tion of a phonological string.

We therefore assume that the signifier of a construction consists of a num-
ber of constituents, each specifying what kind of element (a phonological
string, a conceptual representation, or both) should be satisfied for that con-
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stituent to be recognized. The signified element of a construction is taken to
be a conceptual graph that is a subgraph of a situation: as we will see, all
signified conceptual structures are grounded in the situations, and as such,
the meaning of the constructions is qualitatively grounded in linguistic usage
events as well. Importantly, no matter how abstract, all constructions in SPL
have a semantic representation as a signified. That is: I assume that there are
no conventions in a language that are completely devoid of meaning.1

Finally, it has to be noted that this research just forms a proof of concept
of the feasibility of operationalizing a usage-based constructivist approach to
grammar learning, early production and comprehension. In order to model
more complex phenomena than the ones we study here, richer conceptual rep-
resentations and further extensions to the definition of a construction have
to be assumed. To name a few: the current definition of conceptual struc-
ture as a graph without re-entrances is not suited for addressing issues of
co-referentiality within sentences, as this would require multiple links in the
conceptual graph to connect to the same node. In principle, there is no rea-
son why this cannot be implemented in SPL. Furthermore, the signifiers of
constructions are now strictly linearly ordered. This is unproblematic for a
language like English, that relies heavily on word order and constrains the
possible word orders rather strictly, but for languages with freer word order,
we may want to loosen the strict linearity constraint and define constructions
in terms of sets of signifying constituents which may or may not have some
ordering constraints on them.

3.3.2 A formal definition of constructions and the constructi-
con

Formalizing these assumptions, we arrive at the following definition of a con-
struction and a constructicon:

1This is an issue that has drawn some attention in the constructivist literature. Concerning the
case of subject-auxiliary inversion in English, which is often considered to be a purely structural
generalization, Goldberg (2006, ch. 8) argued that a common functional element to all cases can
be found. A full treatment of the question whether purely structural generalizations exist falls
outside the scope of this research, but one option that is rarely considered is that a generaliza-
tion such as subject-auxiliary inversion in English may only be a linguist’s generalization. This
means that linguists may observe structural commonalities in several grammatical patterns, but
that the language user does not have any sort of mental representation corresponding to these
structural commonalities. That is to say: the abstraction over the various patterns is not made by
the language user, but she rather maintains a number of semantically non-vacuous lower-level
constructions.
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Definition of a construction and a constructicon

• Let α be a phonological element from the speaker’s phonological
inventory. In principle, there are no constraints on the size of α: it
can consist of a single phoneme, or a string longer than a word. For
the purposes of the experiments here, we set the lower bound on α
to be a word in the input generation procedure.

• A construction c is a pair of a signifier src and a signified sdc, where:

– sdc is a conceptual graph G (as defined in section 3.2).

– src is an n-tuple (where n ≥ 1) of constituents. Each constituent
(denoted: sric for the ith constituent) is a pair of a conceptual
constraint K and a phonological constraint F , where

∗ K(sric) is a single vertex in G
∗ F (sric) is a string of phonological elements of any length

greater than or equal to one (F (sric) = α+, where + denotes
the Kleene plus) or unspecified (F (sric) = ε)

– A construction is furthermore associated with a countc = [0,∞]
reflecting how often that construction has been processed.

• We define the head constituent of a construction srhead
c to be the

constituent that has a conceptual constraint K(srhead
c ) such that

K(srhead
c ) = vroot(G).

• We define a lexical construction to be a construction c that has a
single signifier, i.e., |src| = 1.

• A constructicon Γt is a set of constructions c1, . . . , cn, including their
counts, at some time t

Figure 3.3 gives two examples of possible constructions. In Figure 3.3a
we can see a lexical construction, containing a single signifying constituent.
The construction’s meaning is a conceptual graph consisting of a single vertex
and no edges. The signifier consists of a conceptual constraint (K) pointing to
the root vertex of G, and the phonological constraint (F ) specifying that this
construction can be recognized with the phonological string ball. Figure 3.3b,
next, displays a grammatical construction, that is: a construction consisting
of more than one signifying constituent. The signified meaning is a meaning
graph G consisting of four vertices, each containing a set of conceptual fea-
tures. The first signifying constituent sr1 has a phonological constraint that is
empty (represented as F : ε) and a semantic constraint pointing to the vertex
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F: ball

K

{object,entity,ball}

sd

sr
sr1

count = 4

(a) An example of a lexical construction.

F: Ɛ

K

F: go

K

{move}

{agent,mover} {location,goal}

{animate} {surface}

sd

sr
sr1 sr2

count = 12

(b) An example of a grammatical construction.

Figure 3.3: Two examples of constructions.
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of G that contains the feature ENTITY. The second constituent sr2 has a spec-
ified phonological constraint, viz. go, and a conceptual constraint stating that
whatever is combined with this constituent must somehow combine with the
feature set {EVENT,MOVE}. This second constituent, furthermore, is the head
constituent of the construction, as its semantic constraint points to the root
vertex of the constructional meaning.

As the box-diagrammatic format is often unwieldy, we will make use of a
modified version of Langacker’s (1987) bracket notation format, as introduced
in chapter 1. The two constructions in figure 3.3 would be represented as fol-
lows in this format:

(24) [ BALL / ball ]

(25) [ [ ANIMATE ] [ MOVE / go ] ] |
MOVE(MOVER(ANIMATE),LOCATION(SURFACE))

3.4 Defining the space of possible analyses

When presented with an input item, the model employs its inventory of con-
structions and processing mechanisms to analyze it. Constructions can be ap-
plied if the string of signifying constituents is found to be present and if their
meaning ‘makes sense’ in the context of one of the co-present situations.

I conceptualize the analysis of an utterance with constructions as a deriva-
tion process in which a fixed set of rules2 is applied to an utterance. This is
perceived for explanatory purposes as a top-down branching process (start-
ing with a TOP-node, and terminating in the words of the utterance). How-
ever, as we will see in section 3.5.4, the model employs in the implementation
a more realistic bottom-up process in which it does not keep track of all logical
possibilities.

As the learner starts with no knowledge of the linguistic conventions, and
as in the early stages of learning, the constructicon does not allow for full
analyses of the utterance, the model will have to be robust enough to inter-
pret parts of the utterance and situation on the basis of little knowledge. To
this end, I define several rules that allow the model to create analyses of the
utterance despite having little or no knowledge of linguistic constructions.

3.4.1 Mapping constructions to situations
I assume that SPL always interprets an utterance in the light of the observed
situations in the input item. This means that the meaning of every used con-
struction has to ‘make sense’ given at least one of the situations, or in other
words: the model has to establish how the meaning of a construction is con-
textually resolved. In the simple case of a noun-like lexical construction, the

2I will call them ‘rules’ or ‘mechanisms’: these should be taken to be equivalent.
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model can apply that construction if there is at least one element in the con-
text to which the constructional meaning can refer. Potentially, there are more:
a word may refer to a number of entities, possibly in multiple situations, in
which case the hearer has to disambiguate to which entity the construction
refers. What the model needs is a means of finding out what parts of the situ-
ational context S can be expressed by each of the constructions c ∈ Γ.

In order to link the constructions to the situations, subset mappings be-
tween signified meaning of the constructions and parts of situations are made.
The (possibly empty) set of subset mappings M between the signified concep-
tual graph sdc of a construction c and the situational context S consists of all
legal subset mappings mapsubset between sdc and situations in the context. A
mapping mapsubset between sdc and a subgraph of a situation s ∈ S is estab-
lished if and only if sdc and the subgraph of s have the same edge structure
and if the sets of conceptual features on the vertices of the subgraph of s are
supersets of the sets of features on the vertices of sdc.

Definition of subset mapping

A subset mapping is an injective structure-preserving function
mapsubset = f : sdc → s between a signified constructional mean-
ing sdc of a construction c and a situation s ∈ S such that

• mapsubset(sdc) is a connected subgraph of s

• The feature sets of all vertices in sdc are subsets of the feature sets of
the vertices mapsubset(v) ∈ s they correspond with
(i.e., ∀v ∈ V (sdc).v ⊆mapsubset(v))

For any construction c, the set of possible subset mappings holding be-
tween sdc and any s ∈ S is denoted as M(sdc). As per convention, we
leave out the subscript when talking about subset maps, i.e., map =
mapsubset (as opposed to other kinds of maps which we will encounter
later).

Some examples of subgraph mappings are presented in figure 3.4. In the
first example, we see a semi-open construction mapped to a subgraph of situa-
tion 1. Each of the four vertices of the constructional meaning maps to another
vertex in situation 1, and all of the edges are preserved in the mapping. Fur-
thermore, each vertex to which the vertices of the constructional meaning map
is a subset of the conceptual features in the subgraph of the situation.

The second example shows a mapping of a lexical construction to two sub-
graphs, each in a different situation. The first mapping, represented as a dot-
ted line, maps the vertex containing the feature set {ENTITY, OBJECT, BALL} to
a vertex with an identical feature set in the first situation. The second map-
ping, represented as a triple-dash triple-dot line, maps that vertex to a vertex
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{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

F: go

K

{event,move}

{role,patient,moved} {role,location,goal}

Situation 2

{role,patient,possessed}

{entity,object,ball}

F: ɛ

K

{entity}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(a) A subset mapping between a semi-open construction and the situational context.

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

F: ball

K

{entity,object,ball}

(b) Two subset mappings between a lexical construction and the situational context.

F: ɛ

K

{event}

{role}
{role}

F: ɛ

K

{entity}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(c) Two subset mappings between an open construction and the situational context.

Figure 3.4: Three examples of subset mappings. Different subgraph mappings
are represented with differently patterned lines.
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with an identical feature set in the second situation. In both cases, the edge
structure is (trivially) preserved, and the content of the single vertex in the
constructional meaning is a subgraph of each of the two vertices it maps to.

Finally, in the third example, we see what happens when we have a rel-
atively abstract construction. Because the sets of conceptual features on the
vertices of the constructional meaning are small, they have the potential of
being the subset of many vertices in the situational context. In this case, the
first vertex containing the conceptual feature set {ROLE} can be mapped onto
either the vertex containing {ROLE, PATIENT, MOVED} of situation 1, or onto
the vertex containing {ROLE, LOCATION, GOAL}, and similarly for the other
vertices. Because of this, two subgraphs of situation 1 can stand in a subgraph
mapping relationship with the construction.

The constraint that there needs to be at least one situational mapping in
order to apply a construction is obviously an oversimplification: if a construc-
tion has a meaning that is not among the meanings considered to be relevant
for communication, the model simply does not consider it. In adult linguistic
communication, however, constructions can be referring to entities and events
beyond what the hearer assumes the speaker to be considering, which means
that these can nonetheless be retrieved and the communicative intent can be
understood. Nonetheless, I believe that much of the infant’s communication is
based in the here-and-now of the situational context, and that, therefore, she
will consider those primarily.

3.4.2 Three general constraints
Two general constraints on derivations furthermore hold. The first is that all
constructions used in a derivation must be mapped, via a subset mapping,
to the same situation. This is the principle of coherence, which ensures that
the interpretation of the utterance is coherent. It relies on a communicative
assumption that the speaker is trying to refer to a specific situation with her
message.

The second constraint, isomorphy, states that the root vertices of the mean-
ings of any two constructions used in a derivation may not be mapped to the
same vertex in the situation. The principle of isomorphy constitutes a strong
case of mutual exclusivity on the level of the sentence, similar to models of
the acquisition of word meaning such as Fazly, Alishahi & Stevenson (2010)
and Siskind (1996). It takes an intermediate position: whereas Fazly et al.’s no-
tion of mutual exclusivity is a soft constraint, Siskind (1996, 43) goes further,
stating that no two words may refer to the same part of a situation at all.

I believe Siskind’s approach to be too strong: two words can refer to the
same semantic elements. A verb like leave signifies a Source-Path-Goal image
schema (Lakoff 1987), and a preposition like from does so as well. The fact
that both refer to aspects of the same frame, does not preclude language users
from using both in the same sentence (I left from my house this morning). The
isomorphy constraint I define is non-probabilistic, but weaker than Siskind’s
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approach. It only states that the root vertices of the meanings of the used con-
structions may not map to the same vertex of a situation. In order to combine
constructions in our model, we require the two constructions to share one ver-
tex in a s, as we will see in section 3.4.5. Because of this, we need different
constructions to be able to stand in a subset-mapping relationship to the same
vertex in a situation (as in the case of leave and from), whereas Siskind’s notion
of isomorphy would preclude this.

One exception to isomorphy is the case in which the head constituent of
a construction c is filled with another construction c′. In that case, the root
vertex of sdc′ points by necessity to the same vertex as the root vertex of sdc.
The other constituents of c and c′ still have to obey isomorphy. The reason for
this exception is that we want to allow for abstract argument structure con-
structions to be combined with verbs and more generally: for abstract valency
patterns (i.e., without a phonological specification of the head constituent) to
be combinable with lexical constructions giving a phonological specification
of the head.

Unlike for coherence, the discrete nature of the isomorphy constraint is not
self-evident. Exploring a more probabilistic version of isomorphy (in which
multiple coverage of the same situational vertex is directly or indirectly pe-
nalized) may constitute an interesting future extension of the model.

A final constraint concerning heads is the the single-dependent-distribu-
tion constraint. This constraint states that the head constituent of a construc-
tion cannot be combined with another construction that has the same head,
unless it is a lexical construction. This constraint prevents the recursive appli-
cation of highly abstract constructions early on, which would otherwise lead
to spurious bootstrapping behavior. The motivation for this constraint comes
from the connection with dependency parsing the model has: given a head,
certain patterns of dependents (other constituents) can be selected, but the
selection can to be made only once. Cognitively, one could argue that, when
selecting a verb, the speaker selects only a single, and not multiple, argument-
structure constructions to express that verb with.

3.4.3 Starting a derivation: concatenation
Derivations are built using a set of processing mechanisms that are given to
the model before it has any contentive knowledge of the grammatical con-
structions. As such, they should be considered ‘innate’ to the model, or at least
existing prior to any linguistic input. However, they should be considered
to be very general structure-building operations rather than domain-specific
rules. The four operations defined by them (concatenation, rule application,
ignoring, and bootstrapping) can be seen as general operations on informa-
tion.

All processing mechanisms are applied to the left-most non-terminal sym-
bol of a current derivation. A derivation starts with the TOP symbol. From a
TOP symbol, we can start any number of concatenated derivations:
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i TOP→ START+

The START symbol, then, forms the starting point for the application of
pairings of a construction and a subset mapping (c,map pairings). We there-
fore add the following processing mechanism to the set:

ii START→ (c,map)

With mechanism i, any number of derivations can be concatenated as long
as they obey the coherence and isomorphy constraints. Mechanism i gives
the model the robustness to jointly interpret several partial analyses in early
stages when it has little linguistic knowledge. As such, it can be seen as a gen-
eral inferential strategy: the model understands several parts, assumes they
are parts of the same message, and so interprets them jointly. Importantly, this
processing mechanism remains available to the model throughout develop-
ment (desideratum D6-4), although its relative importance may decrease.

3.4.4 Ignoring words
Furthermore, this concatenative top rule allows the model to integrate words
that it cannot analyze into the derivation. This behavior, too, is needed in
early stages, as the model simply does not have constructions to analyze all
the words in the utterance. For ignoring words, we define the following rule,
given that α is a minimal phonological string (in our case defined as a pre-
segmented word).

iii START→ α

Importantly, any α ∈ U can be ignored with rule iii. This is important in
allowing the model the robustness to interpret complex constructions whose
constituents are disjunct, i.e., by ignoring the intermediate words (applying
rule iii for each ignored word).

3.4.5 Applying construction-mapping pairings
When applying a c,map pairing with rule ii, the constraints on its signifying
constituents src have to be satisfied in order to create a legal derivation. The
processing mechanism iv specifies this, by instructing the model to replace c
with its constituents src.

iv (c,map)→ sr1
c , . . . sr

n
c

Satisfying the constraints on each sric can be done in three ways, depending
on the constraints on sric.

v sric → α+ (if F (sric) 6= ε)
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vi sric → α+ (if F (sric) = ε)

vii sric → (c′,map′) (only if c is not a lexical construction)

Rule v, firstly, terminates the derivation with any number of termi-
nal nodes. In the generative process, these terminal nodes are specified by
the non-empty phonological constraint F (sric). In parsing, this phonological
string α+ has to be a substring of U . When the phonological constraint is not
specified (i.e., F (sric) = ε), we can bootstrap a substring of U into that con-
stituent with rule vi. This is another operation, besides the concatenation pro-
cess of rule i and ignoring words with rule iii, allowing the model to apply
constructions despite not knowing certain lexical constructions.

Rule vii, finally, allows the model to fill any constituent of a construction c
with another pairing of a construction c′ and a subset mapping map′. Apart
from having to satisfy the general constraints of isomorphy and coherence,
the new pairing c′,map′ has to satisfy the phonological and semantic con-
straints on sric.

Satisfying semantic constraints

Satisfying a semantic constraint means that whatever fills a constituent (from
a top-down perspective) or whatever is used to recognize a constituent (from
a bottom-up perspective) has a meaning that is compatible with the content of
the semantic constraint. Recall that a semantic constraint on a signifier K(sric)
is a pointer to a single vertex v in the meaning of c. As such, it can be mapped,
via the subset mapping map to a vertex in one of the situations.

Semantic constraint satisfaction is defined as the situation in which the
root vertex of the meaning of the construction filling a constituent is mapped
to the same vertex in one of the situations to which the semantic constraint on
the constituent is mapped. More formally:

Definition of semantic constraint satisfaction

A semantic constraint K(sric) of a construction c with a mapping map is
satisfied by a pairing of a construction and a mapping c′,map′ iff

• map(K(sric)) = map′(vroot(sdc′))

Satisfying phonological constraints

Satisfying phonological constraints in rule vii is a slightly more complex mat-
ter. After all, the construction c′ itself is not a phonological element. However,
if the head constituent of c′ terminates into a phonological string α+ that is
identical F (sric), we consider F (sric) satisfied.
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Formally, phonological constraint satisfaction works as follows:

Definition of phonological constraint satisfaction

A phonological constraint F (sric) of a construction c with a mapping
mapsubset is satisfied by a pairing of a construction and a mapping
c′,map′subset iff

• F (sric) = yield(srhead
c′ ), where the yield of a signifier yield(sric) is

defined as the string of phonological elements α+ governed by the
derivation at sric.

The motivation for allowing derivations themselves to satisfy phonologi-
cal constraints is that it allows us, for adult language, to parse modified idioms
like pull some family strings or pull political strings. In those cases, the strings
is a lexical constituent of a phonologically specified construction [ [ pull ]
[ strings ] ]. I propose that the analysis of pull political strings is that the [ [ pull ]
[ strings ] ] construction is combined with something like an [ [ PROPERTY ]
[ ENTITY ] ] construction, where the [ PROPERTY ] constituent is replaced with
the lexical element political. Similarly, if the child starts out with highly lex-
ically specified constructions, as usage-based theory has it, allowing for the
modification of a lexically specified constituent is a desirable feature of the
model.

Finally, a special constraint on head constituents srhead of constructions
is that rule vii can only apply if c′ is a lexical construction. I assume that a
head can only distribute its roles once, meaning that if a construction is ap-
plied in which the dependent constituents of a head constituent are given, the
head constituent of this construction cannot be filled with another construc-
tion which again gives the dependent constituents of the same head. We call
this constraint the single-dependent-distribution constraint. One could argue
that this constraint is overly strict: if a learner knows an [ [ AGENT ] [ kicks ] ] as
well as a [ [ kicks ] [ PATIENT ] ] construction, why could we not apply both sub-
sequently? It would give the learner more robustness for interpreting full(er)
utterances early on, for instance in cases where the learner does not have an
[ [ AGENT ] [ kicks ] [ PATIENT ] ] construction, but does have an [ [ AGENT ]
[ kicks ] ] and a [ [ kicks ] [ PATIENT ] ] construction (for a proposal along those
lines, see Langacker 2009).

One apparent problem is that this approach would allow for a lot of over-
generation: the head constituent of, say, a transitive construction can be filled
with a transitive construction, whose head constituent can be filled with an-
other transitive construction, and so forth. Of course, the isomorphy con-
straint limits this, and in practice it would not pose that much of a problem.
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PHON: go

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

F: ɛ 

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

F: ɛ 

K

{event}

{role,patient} {role}

F: ɛ

K

{entity}

PHON: ball

K

{entity,object,ball}

F: go

K

{event,move}

{role,patient,moved}

{role,location,goal}

c
1

c
2

c
3

c
4 c

5

count = 1 count = 2

count = 2 count = 5 count = 1

Γ

Figure 3.5: A constructicon Γ consisting of 5 constructions.

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

Figure 3.6: Two situations in the input item.

3.4.6 An example of the space of possible derivations
To illustrate the space of possible analyses of an utterance, let us take a look
at an example. First, assume the constructicon in figure 3.5. This constructicon
consists of five constructions. Let us further assume that the model is trying
to create derivations over the utterance U = ball go there. The situations S co-
present are given in figure 3.6.

First, all subset mappings between the constructions and subgraphs of the
situations are retrieved. Figure 3.7 gives all subset mappings for the five con-
structions and the two situations. Constructions c1 and c2 each have one map-
ping to situation s1. Construction c3, being more abstract, has two mappings:
one to s1 (let us call it map1(c3)), and one to s2 (map2(c3)), as has construction
c4 (map1(c4) and map2(c4)). The lexical construction c5, finally, just has one
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F: go

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

c
1

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(a) The mapping between c1 and the situations.

F: ɛ 

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

c
2

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(b) The mapping between c2 and the situations.

F: ɛ 

K

{event}

{role,patient} {role}

F: ɛ

K

{entity}

c
3

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(c) The mapping between c3 and the situations.
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F: ball

K

{entity,object,ball}

c
4

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(d) The mapping between c4 and the situations.

F: go

K

{event,move}

{role,patient,moved}

{role,location,goal}

c
5

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(e) The mapping between c5 and the situations.

Figure 3.7: The mappings between the constructions in the constructicon and
the situations.
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subset mapping.

d1 : i

iii

ball

iii

go

iii

there

d2 : i

ii(c4,m1)

iv(sr1(c4))

v

ball

iii

go

iii

there

d3 : i

ii(c4,m2)

iv(sr1(c4))

v

ball

iii

go

iii

there

d4 : i

iii

ball

ii(c5,m1)

iv(sr1(c5))

v

go

iii

there

Figure 3.8: Derivations d1 − d4 for ball go there.

Which derivations are possible given this set of construction-situation
mappings and the eleven processing mechanisms? Firstly, in the most trivial
case, d1, we ignore all words by applying rule i with an arity of three, followed
by three times rule iii, with which we ignore a word. In the next three deriva-
tions, d2-d4, we apply one grammatical construction with rule ii and ignore all
other words. Rule ii applies a c,map pair (represented as (c,mi)), which then
splits into the constituents of c with rule iv. Because the single constituent of
constructions c4 and c5 is phonologically specified and can be retrieved from
U with rule vi, the derivation is valid. Note that in the case of d2 and d4, the
construction is mapped to elements of situation s1, and in the case of d3 to s2.

d5 : i

ii(c4,m1)

iv(sr1(c4))

v

ball

ii(c5,m1)

iv(sr1(c5))

v

go

iii

there

d′5 : i

ii(c4,m2)

iv(sr1(c4))

v

ball

ii(c5,m1)

iv(sr1(c5))

v

go

iii

there

Figure 3.9: Derivations d5 and d5
′ for ball go there.
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Concatenating the constructions c4 and c5 is also possible. Derivation d5

exemplifies this: rule i is applied with an arity of three, after which construc-
tions c4 and c5 are inserted with rule ii, and the final word is ignored with rule
iii. Note that the derivation in d′5 is illegal: as c4 is mapped to situation s2 via
map2 and c5 to situation s1 via map1, the coherence constraint is violated,
rendering this derivation invalid.

d6 : i

ii(c1,m1)

iv(sr1(c1))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c1))

v

go

iii

there

d7 : i

ii(c1,m1)

iv(sr1(c1))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c1))

vii(c5,m1)

iv(sr1(c5))

v

go

ii

there

d8 : i

ii(c1,m1)

iv(sr1(c1))

vi

ball

iv(sr2(c1))

v

go

iii

there

d9 : i

ii(c1,m1)

iv(sr1(c1))

vi

ball

iv(sr2(c1))

vii(c5,m1)

iv(sr1(c5))

v

go

iii

there

Figure 3.10: Derivations d6 − d9 for ball go there.

Then there are four derivations in which construction c1 is applied and
there is ignored. In the first two cases, d6 and d7, the open constituent of c1 is
filled with the pairing c4,m1. In the latter two, d8 and d9, the word ball is boot-
strapped by directly terminating the phonological open constituent sr1(c1)
with rule vi. Secondly, in d6 and d8 rule vi is applied to the recognition of the
word go, whereas in d7 and d9 the second constituent of c1 is filled with c5,m1

via rule vii, which then terminates in the word go.
Construction c2, with two open constituents, allows for more derivations.

Derivation d10 gives the case in which c2 is combined with c4 and c5 and the
word there is ignored. However, we can also bootstrap either (d11−d14) or both
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(d15 − d19) constituents.
Note that, although in principle construction c1 could be combined with

the second constituent of c2, sr2(c2), the isomorphy constraint precludes this.
The combination of c5 with sr2(c2) is legal: although both c2,m1 and c5,m1

have root nodes mapped to the {EVENT,MOVE} vertex of situation s1, sr2(c2) is
the head constituent of c2, and hence this situation is exempt to isomorphy.

Finally, construction c3 allows for even more derivations. As it has two
mappings and is fully phonologically unspecified, many derivations involv-
ing bootstrapped constituents can be made. Below all 19 derivations can be
found (d20 − d37) in figures 3.13 and 3.14.
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d10 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vii(c5,m1)

iv(sr1(c5))

v

go

iii

there

d11 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vi

go there

d12 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vi

go

iii

there

d13 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vii(c5,m1)

iv(sr1(c5))

v

go

iii

there

d14 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vi

there

iii

go

d15 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball go

iv(sr2(c2))

vi

there

Figure 3.11: Derivations d10 − d15 for ball go there.
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d16 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vi

there

iii

go

d17 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vi

go

iii

there

d18 : i

iii

ball

ii(c2,m1)

iv(sr1(c2))

vi

go

iv(sr2(c2))

vi

there

d19 : i

iii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vi

go there

Figure 3.12: Derivations d16 − d19 for ball go there.
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rule probability

i TOP→ START+ 1
2

|START+|

ii START→ (c,map) P (c,map|CSSTART)

iii START→ α P (u|CSSTART)
iv (c,map)→ sr1(c), . . . , srn(c) 1

v sric → α+ (if F (sric) 6= ε) 1

vi sric → α+ (if F (sric) = ε) P (u|CSsric) · 1
2

|α+| · P (u|CSSTART)|α
+|

vii sric → (c′,map′) P (c′,map′|CSsric)

Table 3.1: Probabilities of the processing mechanisms in the analysis proce-
dure.

3.5 Selecting the best analysis

The six processing mechanisms, along with the construction-mapping pair-
ings used in them, will typically lead to a situation in which many deriva-
tions are possible, as we have seen in the example above. I assume that the
learner selects a single best analysis among those different analyses. In this
section, I describe the process for doing so, and the actual implementation,
which makes the model more realistic in its processing of the utterance.

3.5.1 The probability model for derivations
We can consider the branching process defined by the seven processing mech-
anisms to be a probabilistic process, where the application of a rule at a point
in the derivation has a certain probability of occurring given that point in the
derivation. Some of these probabilities are fixed, whereas others change as
the state of linguistic knowledge of the learner progresses. Table 3.1 gives the
probabilities of the processing mechanisms, which will be explained below.

P (c,map|CS) in mechanisms ii, vi, and vii is defined as the smoothed
relative frequency of the construction c out of all c,map pairings that can be
applied at that point in the derivation, i.e., that compete with c,map for being
applied. We call the set of all applicable c,map pairings at some point x the
competition set given x, or CSx. Formally, a competition set is defined as
follows:
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CSSTART = ∀(cc∈Γ,map).map(sdc) = s ∈ S (3.1)

CSsric = ∀(c′c′∈Γ,map′).map′(vroot(sdc′)) = map(K(sric)) (3.2)

That is to say: given the START symbol, all pairings of a construction in
the constructicon and a legal subset mapping compete with each other. Next,
given a constituent of a construction sric, all pairings of a construction c′ and
a mapping map′ for which the root vertex of the meaning of c′ refers to the
same vertex in a situation as the conceptual constraint of sric.

The smoothed relative frequency of the construction-mapping pairing is
then defined as:

P (c,map|CS) =
countc + 1∑

c′,map′∈CS
(countc′ + 1) + 1

(3.3)

The probability of an unseen event u, applied in rules iii and v, is given by
the remaining probability mass given a competition set CS, i.e.:

P (u|CS) =
1∑

c,map∈CS
(countc + 1) + 1

(3.4)

Motivating the probability of rule i In the concatenation process of rule i,
we set the probability of concatenating n derivations to 1

2

n, that is: the more
derivations are concatenated, the lower the probability of the overall deriva-
tion. This probability can be seen as a prior on the length of the concatena-
tion, while, at the same time, it ensures that the probabilities of all generations
given the constructicon and all possible situations sum to 1.

Motivating the probabilities of rules ii and iii Rule ii involves the ap-
plication of a c,map pairing given the START symbol. This means that
any construction, with any possible mapping to a situation in S can be ap-
plied. The competition set (as given in equation (3.1)) thus consists of all
these construction-mapping pairings. The probability of selecting the pairing
c,map out of all possible pairings is given by the smoothed relative frequency
of c out of all applicable pairings. The fact that the probabilities are based on
the counts of the constructions reflects desideratum D2-3, viz. the idea that
the representational strength of the representations or their ease of retrieval
should be grounded in their frequency of use.

Ignoring a word with rule iii, then, involves not selecting any construction-
mapping pairing. That is: the model considers ignoring a word to be an unseen
event u, and the remainder of the probability mass given CSSTART, as defined
in equation (3.4) is applied. Importantly, the probability of ignoring a word
goes down as the size of the part of the constructicon that can be applied to
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the current input item grows. This means that the more the model has learned,
the smaller the probability of ignoring a word becomes.

Motivating the probability of rule iv Rule iv can be considered a dummy
rule that expands the c of some c,map pairing into its signifying constituents
src. Because it can be trivially applied after rules ii and vii, I assign it a prob-
ability mass of 1

Motivating the probabilities of rules v, vi, and vii When substituting a sig-
nifying constituent sric of a construction for another element, several things
can happen. Firstly, if sric is phonologically specified (i.e., if F (sric) 6= ε), we
can terminate the derivation directly into the phonological structure given by
F (sric) with rule v. In that case, the termination has a probability of 1.

Regardless of whether the phonological constraint on sric is specified, we
can combine it with other c,map pairings with rule vii. Again, any c,map
pairing applied at this point in the derivation stands in competition with all
c,map pairings that can be applied at that point, that is: all c,map pairings
that satisfy the phonological and semantic constraints on sric. The probability
of applying a construction-mapping pairing c′,map′ thus is the smoothed rel-
ative frequency of c′ out of all c,map pairings that can be used to fill sric (i.e.,
CSsric ), as given in equation (3.3). Again, this aspect of the probability model
is grounded in desideratum D2-3, the idea that representational strength is
grounded in the frequency of use.

Finally, if the phonological constraint on sric is empty, we may nonetheless
terminate the derivation into a string of phonological elements α+ with rule
vi. This is the bootstrapping operation described earlier. The bootstrapping
operation competes with all construction-mapping pairings that are applica-
ble given sric, and, as with ignoring words, we assign it the remainder of the
probability mass of c′,map′ pairings given sric. However, as the bootstrapped
string α+ can be of any length, it is undesirable if bootstrapped phonological
strings of any length are equiprobable. This would lead the model to boot-
strapping very long phonological strings too eagerly. Therefore, we apply the
same principle as in the concatenation process of rule i to assign a quadrati-
cally decreasing probability over the length of the phonological string. Finally,
we consider all elements α in α+ to be ignored elements, and therefore multi-

ply P (u|CSsric) · 1
2

|α+| with the number of times rule iii would be applied if it
was a regular ‘ignore’ operation, that is: with P (u|CSSTART)|α

+|.

The probability of a derivation

The probability of a derivation can now be defined as the joint probability of
all applications of the mechanisms in the derivation process. That is, P (d|Γ, S)
is the product of the probabilities of all rules r applied in it, as defined in table
3.1:
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P (d|Γ, S) =
∏
r∈d

P (r) (3.5)

3.5.2 Equivalent derivations: parses
The 38 derivations we saw in section 3.4.6 give rise to different interpretations:
d3 and d30 − d37 refer to situation s2, d1 to no situation, and the remaining
derivations to s1. Also within the groups of parses referring to the same sit-
uation, there is variation as to which parts of the utterance and the inferred
linguistic structure point to which parts of the situation.

Under the usage-based assumption that linguistic knowledge can be re-
dundantly stored at several levels of abstraction (Beekhuizen, Bod & Zuidema
2013), the model will apply constructions at varying levels of abstraction when
analyzing an utterance. Several of these, however, have an identical deriva-
tional structure and refer in the same way to the same aspects of a situation.
Therefore, for the purposes of analyzing an utterance they can be considered
identical. We define DERIVATIONAL IDENTITY as follows:

Definition of DERIVATIONAL IDENTITY

Derivations d1 and d2 are derivationally identical iff

• rules(d1) = rules(d2)

• ∀ri:ri∈rules(d1), rj:rj∈rules(d2).mapi(ci) = mapj(cj)

Given this definition, d1 and d2 first have to satisfy the constraint that the
strings of rules rules(d1) and rules(d2) be equal, that is: the same rules are ap-
plied in the same order. The c,map pairings applied in these strings of rules
may, however, differ. At the same point in a derivation, the model can some-
times apply different construction-mapping pairings. Now, if for two strings
of rules each mapping map applied at a certain point in d1 has the same set
of vertices in its codomain (the subgraph of a situation s ∈ S) as the map-
ping map′ applied at the parallel point in derivation d2, we consider the two
derivations to be equal.

We define a parse or analysis a as the set of derivations that are deriva-
tionally identical to each other, and the set A as all parses given the utterance,
the situations, and the constructicon. The probability of a parse can then be
defined as the probability of either of the derivations subsumed by that parse
being generated by the constructicon given the situation:

P (a|Γ, S) =
∑
d∈a

P (d) (3.6)
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d30 : i

ii(c3,m2)

iv(sr1(c3))

vii(c4,m2)

iv(sr1(c4))

v

ball

iv(sr2(c3))

v

go

iii

there

Figure 3.15: Derivation d30 for Ball go there.

Parallel c,map pairings in various derivations of a parse stand in a parent-
child relationship to each other. As the derivational structure of the various
derivations is identical, the constructions used should have the same num-
ber and types of constituents (otherwise the tree structure and choice of pro-
cessing mechanisms would be different), and given the mapping equivalence,
they should have meanings that are supersets or subsets of each other. We can
relate this to Langacker’s notion of immanence: the various derivations are not
distinct events, but are all activation patterns over the same traces of linguistic
usage events. The advantage of using both the parents and child constructions
in the same parse is that we allow abstract constructions to back-up more con-
crete ones. This can be seen as a form of multiple licensing, albeit a very simple
one (cf. Kay 2002)

The best parse abest then, is taken to be the most-probable one.

abest = arg max
a∈A

P (a|Γ, S) (3.7)

The situation mapped to by abest is the identified situation sidentified, that is:
the situation SPL thinks the speaker refers to. If the best parse has no mapping
to any situation s ∈ S, for instance in the case when all words are ignored,
one situation is selected at random to be the interpretation of the utterance. If
multiple analyses are equally likely, one is selected at random to be abest.
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3.5.3 An example of the probability model

A single derivation

With the counts of the constructions, as given in figure 3.5, we can calculate
the probabilities of all derivations. Let us look at derivation d30, repeated here
as figure 3.15. By substituting the left-most open symbol every time, we can
order the rules as follows:

• i, ii(c3,m2), iv(sr1(c3)), vii(c4,m2), iv(sric4), v, iv(sr2(c3)), vi, iii

Rule i, applied with an arity of 2, has a probability of 1
2

2
= 1

4 . Applying rule
ii to the pairing c3,map2 requires us to consider the competing construction-
mapping pairings. Given the START symbol, this means we consider the com-
petition set CSSTART. As CSSTART contains all possible construction-mapping
pairings, it consists of {(c1, map1), (c2,map1), (c3,map1), (c3,map2),(c4,
map1), (c4,map2), (c5,map1)}. The probability of selecting (c3,map2) out
of this competition set, or its smoothed relative frequency, is 3 (the count of
c3 plus one) over the sum of all smoothed frequencies of the elements in the
competition set, plus one, or (1 + 1) + (2 + 1) + (2 + 1) + (2 + 1) + (5 + 1) +
(5 + 1) + (2 + 1) + 1:

P (ii) =
3

27
(3.8)

Next, the application of rule iv has a probability of 1. Applying rule vii
afterwards again requires us to consider the competition set of the selected
c,map pairing. In this case c4,map2 is selected. The set of c,map pairings
referring to the vertex {ENTITY, OBJECT, BALL} in situation 2 consists only of
c4,map2 itself, and the probability of selecting this pairing is

P (vii) =
5 + 1

(5 + 1) + 1
=

6

7
(3.9)

The subsequent applications of rule iv and v each have a probability of 1, in
the case of rule v because the phonological constituent of the first constituent
of c4 is specified.

After having terminated the first constituent of c3, we look at the second
constituent. Again, rule iv is applied with a probability of 1. After this applica-
tion, go is bootstrapped into the constituent slot. The second constituent of c3
has no phonological specification, and hence we take the second equation for
rule v. This requires us to get the competition set for the second constituent,
which consists of only the pairing c3,map2 itself,3 as well as for CSSTART,
which we saw in the application of rule ii before. The probability of an un-
seen event given CSsr2(c3) is 1 over 4 (2 + 1 for c3, and 1 to smooth). The

3Note that the application of this pairing is ruled out by the single-dependent-distribution
constraint, which in this case specifies that whatever fills the second constituent must be a lexical
construction.
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probability of an unseen event given CSSTART is 1
27 , given that the denomina-

tor given this competition set is 27, as we have seen in the application of rule
ii before. The P (u|CSSTART) is applied once, as the length of the phonologi-
cal string is |α+| = 1. Similarly, the probability constraining the length of the
concatenation 1

2 is also raised to the power |α+| = 1, giving us the following
probability

P (vi) =
1

(2 + 1) + 1
· 1

2

1

· 1

27

1

=
1

216
(3.10)

Finally, we apply rule iii in order to ignore the word there. This amounts to
an instance of an unseen event given the START symbol, which we have seen
before, viz. P (iii) = 1

27 . Table 3.2 below gives the probabilities of all deriva-
tions. I leave the calculation of the individual probabilities of the mechanisms
as an exercise to the reader.

Several things can be learned from this example. First of all, because of the
probability model, bootstrapping two adult words or bootstrapping one and
ignoring one are equiprobable. Derivations d30 and d31 illustrate this.

Second, not every bootstrapping operation is equally likely. The higher the
frequencies of the items in the competition set, the lower the probability of
bootstrapping an element into it. Derivations d22 and d23 show this effect: be-
cause a highly frequent construction (c4) can be fit into the first signifier, boot-
strapping it becomes less likely. c5 has a lower count, and hence bootstrapping
the second constituent is relatively more likely, resulting in a probability of d22

that is twice as high as that of d23. This effect can be seen as a pragmatic line
of reasoning: I know some construction to be applicable given the constituent
and the situation, so if that’s a very likely construction, it is unlikely that the
speaker would use a novel element to express it.

Third, we can see that the most likely derivations are those in which c1 is
used. This is a semi-open schema, with the phonological element go specified
on the second constituent. As such, less rules have to be applied in order to
arrive at a full derivations, and because of this, derivations with c1 are globally
more likely than those with c2 and c3, despite c1 having a lower count than
either c2 or c3. The most likely derivation is d6 (P (d6) = 1

1701 ), in which c1
is combined with c4, and the last word is ignored. Here we see an effect akin
to statistical pre-emption, which I will explore later in this thesis, namely that
derivations with more concrete constructions use fewer rules and are thereby
often more likely. It follows, however, from the general probability model and
the rules, and is as such not a special built-in feature of the model.

Getting equivalent derivations

As discussed in section 3.5.2, we first look for all parses, that is: sets of deriva-
tions that are created by the same processing mechanisms, and for which ev-
ery node in one derivation has the same subset mapping to a subgraph of a
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derivation P

d1
1
2

3 · 1
27 ·

1
27 ·

1
27 = 1

157,464

d2
1
2

3 · 6
27 · 1 ·

1
27 ·

1
27 = 6

157,464 = 1
26,244

d3
1
2

3 · 6
27 · 1 ·

1
27 ·

1
27 = 6

157,464 = 1
26,244

d4
1
2

3 · 1
27 ·

3
27 · 1 ·

1
27 = 3

157,464 = 1
52,488

d5
1
2

3 · 6
27 · 1 ·

3
27 · 1 ·

1
27 = 18

157,464 = 1
8748

d6
1
2

2 · 2
27 · 1 ·

6
7 · 1 · 1 · 1 · 1 ·

1
27 = 12

20,412 = 1
1701

d7
1
2

2 · 2
27 · 1 ·

6
7 · 1 · 1 · 1 ·

2
12 · 1 · 1 ·

1
27 = 24

489,888 = 1
20,412

d8
1
2

2 · 2
27 · 1 ·

1
7 · 1 · 1 ·

1
27 = 2

40,824 = 1
20,412

d9
1
2

2 · 2
27 · 1 ·

1
7 · 1 ·

2
12 · 1 · 1 ·

1
27 = 4

489,888 = 1
122,472

d10
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

3
12 · 1 · 1 ·

1
27 = 54

244,944 = 1
4536

d11
1
2

1 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
34,992 = 18

13,226,976 = 1
734,832

d12
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
648 ·

1
27 = 18

13,226,976 = 1
734,832

d13
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d14
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d15
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d16
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d17
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d18
1
2

2 · 1
27 ·

3
27 · 1 ·

1
378 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d19
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d20
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

3
12 · 1 · 1 ·

1
27 = 54

244,944 = 1
4536

d21
1
2

1 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
34,992 = 18

13,226,976 = 1
734,832

d22
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
648 ·

1
27 = 18

13,226,976 = 1
734,832

d23
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d24
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d25
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d26
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d27
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d28
1
2

2 · 1
27 ·

3
27 · 1 ·

1
378 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d29
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d30
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 ·

1
162 ·

1
27 = 18

3,306,744 = 1
183,708

d31
1
2 ·

3
27 · 1 ·

6
7 · 1 · 1 ·

1
8748 = 18

3,306,744 = 1
183,708

d32
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 ·

1
162 ·

1
27 = 18

3,306,744 = 1
183,708

d33
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
162 ·

1
27 = 18

178,564,176 = 1
9,920,232

d34
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
162 ·

1
27 = 18

178,564,176 = 1
9,920,232

d35
1
2

2 · 1
27 ·

3
27 · 1 ·

1
378 · 1 ·

1
162 = 18

178,564,176 = 1
9,920,232

d36
1
2 ·

3
27 · 1 ·

1
378 · 1 ·

1
8748 = 3

178,564,176 = 1
59,521,392

d37
1
2 ·

3
27 · 1 ·

1
20,412 · 1 ·

1
162 = 3

178,564,176 = 1
59,521,392

Table 3.2: Probabilities of derivations d1 − d37.
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situation as the parallel node in the other derivations. In our set of 37 deriva-
tions, we find several that are derivationally equivalent. There are ten cases
in which in one derivation the pairing c2,map1 is applied, and in the other
c3,map1. As the mappings of these pairings point to exactly the same ver-
tices in situation 1, it is possible that two derivations, when otherwise using
the same rules in the same order, are equivalent. Furthermore, there are two
cases (a7 and a9) in which three derivations are equivalent, namely when c1,
c2 and c3 are applied at the same point in the derivation. In these cases, the
first constituent of the three constructions is combined with c4 and the second
constituents with c5.

What this table tells us is that parse a6, consisting of derivations d6 is the
most likely analysis or abest. In parse a6, c1 is combined with c4 as its first con-
stituent, and the second constituent is phonologically specified and can hence
be terminated. This analysis is only minimally different from the second-best
parse, the slightly more compositional a7. In this parse, the second constituent
is combined with another construction (c5). The third-best analysis is a5, con-
sisting of just the derivation d5. In this derivation, the two lexical constructions
c4 and c5 are concatenated and no overarching construction is used. The three
best analyses, in the bracket notation, are given below:

(26) a6: [ [ ENTITY ]→[ BALL / ball ] [ MOVE / go ] ]

(27) a7: [ [ ENTITY ]→[ BALL / ball ] [ MOVE ]→[ MOVE(MOVED,GOAL) /
go ] ]

(28) a5: ( [ BALL / ball ] [ MOVE(MOVED,GOAL) / go ] )

3.5.4 Implementation: lineair processing and pruning
The use of a probability model to find the best analysis is inspired by the sta-
tistical parsing tradition (Jurafsky & Martin 2009), where the disambiguation
between multiple possible analyses is a massive practical problem. We may,
however, doubt its cognitive reality. The most elementary of these concerns,
that human beings do not actually perform such calculations, can be consid-
ered well-addressed by Jurafsky’s (2003) discussion of the use of probability
models in language comprehension and production. Jurafsky acknowledges
that it is unlikely that people actually perform these calculations, but argues
that probability models constitute a well-understood tool to model aspects of
frequency and the competition between units (words, constructions).

Nonetheless, it remains unlikely that, even if the probability model is but
an analytical tool, language users ‘consider’ all of the possible derivations that
a model like SPL allows for. Starting from the insight that processing takes
place linearly, and that language users do not keep track of all possible anal-
yses (as evidenced by studies on garden-path sentences, see for instance Fer-
reira, Bailey & Ferraro (2002)), SPL performs the actual analysis in a bottom-up
way, pruning away all but the most likely analyses (similar to the model de-
veloped by Jurafsky (1996)). As this aspect of the model was not at the heart



104 3.5. Selecting the best analysis

parse derivations probabilities derivations probability parse

a1 d1
1

157,464
1512

238,085,568

a2 d2
1

26,244
9072

238,085,568

a3 d3
1

26,244
9072

238,085,568

a4 d4
1

52,488
4536

238,085,568

a5 d5
1

8748
27,216

238,085,568

a6 d6
1

1701
139,967

238,085,568

a7 d7, d10, d20
1

20,412 + 1
4536 + 1

4536
116,640

238,085,568

a8 d8
1

20,412
11,664

238,085,568

a9 d9, d13, d23
1

122,472 + 162
238,085,568 + 1

1,469,664
2268

238,085,568

a10 d11, d21
1

734,832 + 1
734,832

648
238,085,568

a11 d12, d22
1

734,832 + 1
734,832

648
238,085,568

a12 d14, d24
1

1,469,664 + 162
238,085,568

324
238,085,568

a13 d15, d25
1

238,085,568 + 1
238,085,568

2
238,085,568

a14 d16, d26
1

238,085,568 + 1
238,085,568

2
238,085,568

a15 d17, d27
1

238,085,568 + 1
238,085,568

2
238,085,568

a16 d18, d28
1

238,085,568 + 1
238,085,568

2
238,085,568

a17 d19, d29
1

238,085,568 + 1
238,085,568

2
238,085,568

a18 d30
1

183,708
1296

238,085,568

a19 d31
1

183,708
1296

238,085,568

a20 d32
1

9,920,232
24

238,085,568

a21 d33
1

9,920,232
24

238,085,568

a22 d34
1

9,920,232
24

238,085,568

a22 d35
1

9,920,232
24

238,085,568

a23 d36
1

59,521,392
4

238,085,568

a24 d37
1

59,521,392
4

238,085,568

Table 3.3: All parses A for Ball go there.



The Syntagmatic-Paradigmatic Learner 105

of my research, the implementation of the parser simply satisfies these con-
straints, but more realistic processing models can be thought of. In line with
desideratum D5-2, I implemented the parser of SPL as follows.

SPL processes the words one by one. Over a span of words up to a cer-
tain word, a (possibly empty) set of derivations can be formed, which can be
derivationally equivalent, and hence form a set of parses. From among this
set of parses over a span, SPL only keeps the most likely one (or ones if there
are multiple equiprobable parses) and discards the rest. When processing the
next word, only the parses that are still active can be used to be combined
into larger parses. Technically, the model employs an adaptation of the Cocke-
Younger-Kasami algorithm that allows for words to be ignored, and prunes
every cell in the matrix to the most likely analysis.

The motivation for this way of implementing the model not only comes
from processing studies, but also from Langacker’s (1988) discussion of pro-
cessing, where he argues that when multiple units are in competition, a lan-
guage user only selects a single one as the active unit. The implementation
therefore not only constitutes an attempt to adhere to processing studies, but
is also faithful to the description of processing within the theoretical frame-
work.

3.5.5 SPL as a usage-based processing model
The derivation process described in this section allows the model to do com-
prehension on the basis of an utterance and a set of situations. As we will
see later in this chapter, the production of an utterance on the basis of a sit-
uation is also among the model’s possibilities, and therefore the model sat-
isfies desideratum D2 (comprehensiveness). The model furthermore satisfies
desiderata D5-1 (heterogeneous structure building) and D6-4 (developmen-
tal continuity) by having a set of diverse processing mechanisms that remain
available over time. In the actual implementation of the way SPL performs its
analyses, the model can be said to satisfy desideratum D5-2, although this as-
pect is not at the center stage of this research, and likely more realistic models
of processing can be developed.

3.6 Learning

The resulting best parse abest from every input item constitutes the input for
the learning procedure. The constructions used in the best parse are reinforced
(reinforcement), the result of any concatenative process is stored (syntagmati-
zation) and any new possible abstractions that can be made are added to the
constructicon (paradigmatization). Finally, the learner stores a limited num-
ber of recent best parses and the situations they were assumed to refer to, and
employs a simple form of cross-situational learning to extract initial repre-
sentations.
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The learning model presented here aims to make three contributions to
usage-based theory. First, SPL uses the syntagmatization operation to gradu-
ally build up longer constructions. The build-up of increasingly long construc-
tions is a feature needed by the model to satisfy the law of cumulative com-
plexity (D6-1). Second, the paradigmatization operation extracts any overlaps
between the more concrete constructions and involves no grammar-wide eval-
uation of how useful the abstraction is. As I will argue, these features make
the model conceptually congruent with the learning-by-processing and im-
manence view (cf. desiderata D4-3 and D6-2). Third, the model is the first
usage-based model of language acquisition that is shown to acquire both lex-
ical and grammatical constructions at the same time (cf. desideratum D2-8).

3.6.1 Reinforcement
The simplest form of learning is the reinforcement of the constructions em-
ployed in the derivations of the best parse.

Maximally concrete constructions

Langacker (2009) argues that the maximally concrete representations of the
situation and the linguistic units used leave a trace in memory when they are
processed. I operationalize this idea as follows. Recall that in an analysis a,
there are several parallel derivations (i.e., every step in the derivation is the
same, although different constructions may be used). For every such parallel
step s in the derivation where a construction-mapping pairing c,map is ap-
plied, a maximally concrete construction mcc is extracted. We assume mcc to
have as its meaning sdmcc the subgraph of the situation to which the mean-
ing of c maps via map. The meaning of this novel construction thus directly
reflects the conceptualization of the usage event in full detail. The signifiers of
mcc consist of the signifiers of c, where the phonological constraints will be
specified with whatever substring of the utterance is filling them, thus reflect-
ing the utterance of the usage event in full detail.

In the case of a string that has been bootstrapped into a signifier of a con-
struction c, we assume a novel construction mcc with as its signified meaning
sdmcc the vertex in the situation to which sric maps via the mapping map
paired with c. The signifier of this bootstrapped construction mcc is then a
pair of the string of words bootstrapped and a semantic constraint pointing to
the vertex that constitutes sdmcc.

All maximally concrete constructions (mccs) are then added to the con-
structicon Γ (if they are not already present in it) with a count of 0. Example
3.16 illustrates the extraction of the maximally concrete constructions out of
parse a7. Importantly, the mcc for the second step of the derivation (the appli-
cation of rule ii) is a phonologically specified grammatical construction. This
construction, as opposed to the second and third mccs, is not present yet in
the constructicon and added with a count of zero if a7 were the best parse.
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ball go there

a
7

{event,move}

{role,patient,moved} {role,location,goal}

{entity,object,ball}

{entity,object,ball}

{event,move}

{role,location,goal}

{role,patient,moved}

K

F: ball F: go

K

F: ball

K

F: go

K

mccs

Figure 3.16: Extracted maximally concrete constructions from parse a7.

The storage of maximally concrete representations is needed to account for
prototype effects. A group of constructions in the constructicon whose mean-
ing stands in superset-subset relations to each other may regularly map to the
same subgraph of a situation in the analysis. However, if some more concrete
constructions (i.e., constructions having more conceptual features specified in
the constructional meaning sd) are used more frequently, we expect them to
be more readily applicable than equally concrete constructions that are not
as frequent. Now, if we only reinforce the more abstract constructions used,
we cannot keep track of the frequency of the more concrete ones. Therefore,
adding the maximally concrete ones, and generalizing over them in the ab-
straction step of the learning procedure (cf. section 3.6.3) allows us to keep
track of this information.

This approach is similar to Alishahi & Stevenson’s (2010) clustering ap-
proach, where frequently occurring conceptual features have more weight in
the recognition of a construction. However, because in SPL the cluster can
be said to be stored in a distributed fashion (a cluster in Alishahi & Steven-
son’s (2010) approach would correspond to a number of constructions in the
constructicon in my approach), a ‘cloud’ of constructions may have multiple
prototypes. That is to say: there may be two distinct sets of features being
prototypical for a construction and both would be seperately stored in my
approach, whereas in Alishahi & Stevenson’s (2010) approach the association
strength of the features is averaged over when they are clustered together.4

4However, if they are too distinct, they will form different cluster. The point is that with a hard
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ball go there

a
7

{event,move}

{role,patient,moved} {role,location,goal}

{entity}

{entity,object,ball}

{event,move}

{role,location,goal}

{role,patient,moved}

F: ε

K

F: go

K

F: ball

K

F: go

K

mcucs
c

2

c
4

c
5

Figure 3.17: Extracted maximally concrete used constructions from parse a7.

Reinforcement for maximally concrete used constructions

Secondly, not only the most concrete constructions are added to the constructi-
con, the constructions that are actually used are reinforced as well. The model
does not reinforce all constructions used in all derivations of the best analy-
ses, but only the most concrete used constructions per parallel step s in the
derivation or: mcuc(s). Note that these are not necessarily the mcc(s) as de-
fined in the previous paragraph. A construction c in any derivation in abest is
a maximally-concrete used construction if there is no other construction c′ at
the same step s in another derivation in abest whose meaning is a superset of
the meaning of c.

For simplicity’s sake, I assume that after every input item, one ‘count’ can
be distributed over the various most concrete constructions per step. That is: if
there is a single derivation in the best parse, all constructions in that derivation
are updated with 1. However, we will sometimes have multiple maximally-
concrete used constructions for a certain step of the derivation. In that case,
we distribute the count of 1 uniformly over the maximally-concrete used con-
structions at that step of the derivation. The update function thus is defined
as follows:

countct = countct−1 + 1
|mcuc(s)| if c ∈mcuc(s)

countct−1 otherwise
(3.11)

Figure 3.17 gives an example of the extraction and update of the
maximally-concrete used constructions for parse a7. The main difference with
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the mccs in figure 3.16 is that the reinforced construction is not fully phono-
logically specified and has a more abstract signified conceptual representation.

The reason for using maximally-concrete used constructions, is that only
those constructions are reinforced that are used productively. Their ‘parents’
in the constructional network that may be used in parallel steps in other
derivations of abest do not get reinforced, as there is a more concrete construc-
tion ‘blocking’ their update. This could be regarded as a form of pre-emption
in the reinforcement procedure. Alternatively, we could say that the more ab-
stract constructions are only motivating the use of the use of the maximally
concrete constructions, backing them up with their probability mass.

A desirable effect of this procedure is that more abstract constructions are
only reinforced when they are used productively, that is: in novel situations
where no more concrete daughter constructions of those constructions can be
used. This reflects Bybee’s (2006) ideas about type and token frequency: the
more novel instances of an abstract pattern are found, the more distinct types
it can be said to have, and the more it will be reinforced.

3.6.2 Syntagmatization
Syntagmatization allows for the gradual build-up of the valency of construc-
tions (i.e., the number of slots they have). Postponing the formal definition of
the process for now, syntagmatization as a learning process is derived from
the same general gradualist starting points many usage-based developmental
theorists start off from (Tomasello 2003, Goldberg 2006). Despite being a grad-
ualist take on the growth of grammar, this notion has not been worked out
in detail by either of these theorists. If we want to adhere to Brown’s law of
cumulative complexity (desideratum D6-1), we have to assume that at least
something akin to this learning process has to take place in the language-
learning child

The fact that early productions often have fewer arguments expressed
can, to my mind, be explained most readily if we assume that the construc-
tions underlying these productions have more restricted valency patterns
than later constructions. Most developmental approaches assume a combina-
tion of richer linguistic structure plus the deletion of some elements (Bloom
et al. 1975). I believe this to be (1) a less parsimonious explanation, and (2)
not in line with findings such as those presented by Theakston et al. (2012),
who show that productions with transitive verbs and a single argument (SV
and VO-utterances) have a different profile than productions at the same age
with transitive verbs and two arguments (SVO-utterances). I interpret this fact
as suggesting that the child uses different representations to generate SV, VO,
and SVO-utterances respectively.

Similarly to the hypothesis that the various paradigms of a construction are
gradually learned (which is typically called ‘abstraction’), I assume that the

clustering operation, the model needs to decide and the cluster takes on a centroid representation.
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syntagms constituting adult constructions are also acquired in an item-based,
piecemeal way. Most developmental theorists, and many usage-based com-
putational models discussed in the previous chapter assume that the learner
is able to process the complete utterance and understand the valency rela-
tions between several elements of the utterance. Over these maximally con-
crete valency relations, then, more abstract constructions are learned. To my
mind, this approach overlooks two other steps which we should expect to
take place simultaneously, viz. the acquisition of lexical constructions and the
acquisition of the linguistic realization of the semantic valency relations of
these words. Syntagmatization takes care of this latter process. The gradual
build-up of grammatical syntagms is reminiscent of Freudenthal et al.’s (2010)
approach. Their MOSAIC model gradually builds up an inventory of strings
of words to process utterances. The SPL model takes a similar approach, but
combines it with a semantic parsing approach.

Implementation

Recall that a derivation can contain a number of concatenated constructions
by the application of rule i. These constructions are understood by the model
as being part of the same communicative intent. What syntagmatization does,
then, is to take these concatenated constructions, look for constructions whose
meanings stand in a semantic head-dependent relation to each other, and ex-
tend the ‘head’ constructions expressing that semantic head with the ‘depen-
dent’ constructions.

Formally, the set of concatenated derivations consists of all applications of
construction-mapping pairings that are directly governed by rule i. We use the
maximally-concrete construction mcc for every construction-mapping pair-
ing. For every construction c in this set with the meaning sdc, we take all other
constructions c′ in this set whose meaning sdc′ refers to a child or grandchild
of the root vertex of sdc. If the root vertex expresses an event, this involves the
semantic roles it projects and the referents filling these roles. The reason we in-
clude grandchildren is that event roles are specified on a separate vertex in the
meaning representation, and we want to capture events and their participants.
This particular design choice thus depends on the semantic formalism used,
and has to be modified to accomodate different representational formats.

Next, we take the constituents of c and the head constituents of any other
construction c′ that refers to semantic dependents of sdc, and linearly consider
those to be the signifiers of a novel construction csyn. The meaning of csyn,
viz. sdcsyn , consists of the meaning of c, the root vertices of the meanings of
all dependent c′ and any vertices from the situation needed to make sdcsyn

connected. csyn is then added to the constructicon with a count of 0.
To give an example, let us assume a5 was the best parse. In this parse,

three partial derivations are concatenated with rule i. The third, however, is
the ignoring of there, and hence is not considered. The set of concatenated
constructions thus consists of the mccs for c4 and c5. For the former, there
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ball go there

a
5

{entity,object,ball}

{event,move}

{role,location,goal}{role,patient,moved}

F: ball

K

F: go

K

c
syn

Figure 3.18: An example of the syntagmatization process applied to parse a5.

are no other constructions in the set that express semantic dependents of it
and hence no novel syntagmatizations can be made. c5, on the other hand,
expresses the {EVENT,MOVE} vertex of the situation, and c4 expresses {EN-
TITY,OBJECT,BALL}, which is a grandchild of the {EVENT,MOVE} vertex. We
therefore take all constituents of the mcc of c5 and the head constituent of the
mcc of c4 and consider those to be a novel construction. The meaning of this
novel construction consists of the meaning of the mcc of c4 and the root ver-
tex of the mcc of c5 and any vertices needed to connect them (i.c., none). This
novel construction is then added to the constructicon as c6 with a count of 0.
Figure 3.18 illustrates this process.

3.6.3 Paradigmatization
As we saw before, the model is able to parse utterances using a mixture of
concrete and abstract constructions. How does it obtain these more abstract
constructions? We can consider abstraction as the formation of paradigms of
linguistic elements that can be substituted for each other, and hence call the
process paradigmatization. In my implementation of the notion of abstrac-
tion, I again follow Langacker (2009), who argues that abstraction is not so
much the creation of a novel hypothesis about the constructicon, but rather
a by-product of processing several more concrete instantiations of a pattern.
The overlap between these more concrete instantiations then becomes a po-
tential to generalize. Whether one describes this in terms of abstract schemas
or as a set of exemplars plus a rule to analogize over these, does not matter ac-
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cording to Langacker (2009), as long as one is aware that these abstractions are
not new cognitive ‘entities’ created from other ‘entities’ but rather a potential
that is ‘immanent’ in these exemplars. In my implementation, however, the
abstractions are separate entities. This should be seen as reflecting an imple-
mentational rather than an ontological issue, and as such it does not conflict
with desideratum D4-3.

It is the idea of acquiring a grammar as a hypothesis testing procedure that
underlies Bayesian Model Merging. What I propose, for abstraction, is to take
the view seriously that there is no such thing as selection between levels of
abstraction, i.e., that the organization of the abstraction in the constructicon
is not governed by a selection mechanism deciding which level or cluster-
ing is the most appropriate one given the data and some prior conception on
what the constructicon, or grammars in general, should look like (e.g., com-
pact, or uniform). Rather, all possible abstractions over reinforced construc-
tions (i.e., constructions with non-zero counts) are made, and the reinforce-
ment of some of these abstractions, but not others (as discussed in section
3.6.1) leads to a constructicon that is highly general, but probabilistically con-
strained (i.e., utterances analyzed with both abstract and concrete construc-
tions will have higher probabilities than utterances analyzed with only ab-
stract constructions). This way, the abstraction in the SPL model differs from
that of Chang (2008) and Beekhuizen, Zuidema & Bod (2013), who apply a
Minimum Description Length criterion (Rissanen 1978) to the selection of ab-
stractions, as well as Alishahi & Stevenson (2010), who cluster maximally con-
crete frames, thereby forcing the model to categorize an input item discretely
with one or the other centroid cluster. Incorporating an element of ‘selection’
in one’s model fits better with a deductionist view on language acquisition
than an inductionist. For that reason, I think having a model that does allow
for a gradual, bottom-up search through the hypothesis space, but without se-
lection, is the preferable computational approach for a usage-based account of
grammar acquisition (cf. desideratum D6-2).

Implementation

Whenever a construction c obtains its first reinforcement, it is compared to all
constructions c′ ∈ Γ at that point in time that have also been reinforced (i.e.,
have a countc′ > 0). If from the overlap between c′ and c a new construction
cpara can be formed, and if cpara is not in Γ yet, cpara is added to the grammar.

The formation of an abstraction requires a comparison between c and c′.
Not all comparisons lead to novel abstractions. Crucially, the model has to
be able to find parallels between c and c′ in both their signifiers and sig-
nifieds. This does not constitute a selection process, but rather reflects what
comparisons the learner can and cannot make. A novel construction cpara can
be formed from c and c′ ∈ Γ under the following conditions:



The Syntagmatic-Paradigmatic Learner 113

Conditions for creating an abstraction over two constructions

• Let mapoverlap be a bijective structure-preserving mapping f : sdc →
sdc′ between the signified meanings sdc and sdc′ of two construc-
tions c and c′ such that

– ∀vv∈sdc .(mapoverlap(v) ∪ v) 6= ∅

• Let Moverlap(c, c′) be the set of all possible mapoverlap between c and
c′.

• For each mapoverlap ∈ Moverlap(c, c′), a novel construction cpara is
created iff

– |src| = |src′ |
– ∀ii∈[1,...,|src|].mapoverlap(K(sric)) = K(sric′)

– ¬((|src| = 1) ∧ (F (sr1
c ) 6= F (sr1

c′)))

• where cpara consists of

– sdc o contains the intersection between all elements in
mapoverlap as well as their edge structure.

– srcpara , where for each i ∈ [1, . . . , |src|], sricnew
consists of

∗ F (sricnew
= F (sric) if F (sric) = F (sric′) else ε

∗ K(sri(cnew)) = mapoverlap(K(sric)) ∪K(sric)

The starting point for the abstraction over two constructions c and c′ is
an intersection mapping mapoverlap between their meanings sdc and sdc′ . For
every possible intersection mapping between two constructions, we create a
novel construction if all signifiers in both c and c′ have conceptual constraints
mapped to each other per mapoverlap.

Two further constraints are that the number of signifying constituents
must be equal for both constructions, and that if one of the constructions is
a lexical construction, the two constructions must have the same phonologi-
cal constraint on that signifier. This last constraint is intended to obviate the
possibility of having phonologically-unspecified single-constituent construc-
tions. These constructions add little to the potential for analyzing an utterance,
and even though they could be extracted, using them would always result in
derivations of a lower probability than derivations mapping to the same part
of the same situation without them. Chang (2008), however, does allow for
them.

The constraints proposed above are motivated, but not cast in stone. One
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Figure 3.19: An example of succesful paradigmatization.

may drop the latter two constraints. The final constraint (identical phonolog-
ical signifiers in the case of lexical constructions) only keeps the model from
making spurious abstractions that, due to the probability model, will not be
used.5 The equal-number-of-signifiers constraint is more interesting. Loosen-
ing or dropping this constraint may result in different kinds of constructions
being abstracted (in a similar way to Chang (2008)), but for the current pur-
poses, this would needlessly complicate the model.

To give an example of the paradigmatization procedure, assume that a5

was the best parse, and that the syntagmatized construction in figure 3.18 was
added to the grammar. Through some subsequent input item, that construc-
tion becomes reinforced. Assume furthermore that another construction, rep-
resented as c′ in figure 3.19, was present in the grammar as well. The meanings
of the two constructions can be mapped with an overlap mapping, and the
signifying constituents of both constructions point to each other via this map-
ping, so an abstraction can be made. This abstraction, cpara in figure 3.19, con-
tains the intersection between c and c′ as its meaning. The first constituent is
phonologically specified and points to the {OBJECT,ENTITY,BALL} vertex in the
meaning of cpara. The second, on the other hand, is not phonologically speci-
fied (as the phonological constraints on the second constituents of c and c′ dif-
fer) and points to the root vertex of the meaning of cpara. With the paradigma-
tization operation, the model has now extracted a semi-open [ [ BALL / ball ]

5An ‘abstract’ lexical construction is simply useless in creating derivations as for every use of
an abstract lexical construction plus a concrete one, the competing analysis involving only the
concrete lexical construction is more probable.
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[ EVENT ] ] construction, which is then added to the grammar with a count of
0.

Paradigmatization, I claim, is congenial with the view that abstractions
are immanent in the more concrete patterns that instantiate them. Recall that
Langacker argues that abstraction is essentially the co-activation pattern of
several more concrete patterns. I believe the overlaps correspond to these co-
activation patterns. Because SPL ‘extracts’ any and all of these patterns, the
set of paradigmatized constructions can be seen as the potential for abstrac-
tion immanent in the more concrete ones. If a selection between paradigmati-
zations were made, on the basis of some criterion, the immanence would be,
at least, harder to defend, as it would require a bridging hypothesis between
the selection of certain paradigmatizations but not others. The view that ab-
stractions are immanent, but discretely represented in a model is not new: we
can find a similar idea in Skousen’s (1989) Analogical Modeling, where all ab-
stractions over a feature set are abstracted, and the model performs analogical
reasoning over these.6

Note that paradigmatized constructions can be reinforced without the
more concrete constructions instantiating them receiving further reinforce-
ment. If an abstract construction is frequently used as the maximally-concrete
used construction in many cases, it will receive much reinforcement, and
hence be established as a unit, without the more concrete constructions achiev-
ing unit status. If an abstraction, however, is hardly used, for instance, because
it generalizes over only two more concrete patterns that are themselves often
used as mcucs, the abstraction will stay rather weakly reinforce. As we will
see in the following chapters, this dynamic leads to interesting insights in the
development of constructional networks.

3.6.4 Cross-situational learning
When we assume a usage-based perspective on language acquisition, the
model starts with an empty inventory of signs. Therefore, it should have learn-
ing operations at its disposal to get an initial inventory of constructions off the
ground. A prime candidate for such learning operations is cross-situational
learning.

Broadly speaking, cross-situational learning is the process whereby a lear-
ner observes multiple situations in which utterances are produced and ex-
tracts or reinforces recurring matching pairs of parts of the utterances and
parts of the situations. An intuitive example would be the case in which the
learner first hears the utterance you grab the ball! and sees a ball on the table
and understands the intention that the caregiver want her to grab it, and next
the utterance oh, now the ball is on the floor!, paired with a situation where the
child just threw the ball off of the table. The phonological substring the ball is

6The difference being that the abstractions themselves can receive reinforcement and thus ob-
tain a degree of representational autonomy, whereas this in not possible in lazy learners such as
Analogical Modeling or Memory-Based Learning.
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shared between the two utterance-situation pairs, as is the semantic element
of an entity ‘ball’ being present in both understood communicative intentions.

The acquisition of form-meaning pairings via cross-situational learning
can be interpreted in several ways. Many word learning models (Xu & Tenen-
baum 2000, Frank, Goodman & Tenenbaum 2009, Fazly et al. 2010) assume a
probabilistic model, where the connections between phonological strings and
their referents get reinforced every time a pair of a word and a semantic ele-
ment co-occur in an utterance-situation pairing. Recently, this view has been
contested by researchers who argue that this places too much of a burden on
the learner, as she has to maintain and update an m × n matrix for all m seen
words and all n seen semantic elements (Stevens 2011). Instead, Stevens pro-
poses, the learner forms hypotheses at random, and validates these in next
rounds, either reinforcing them if the new utterance-situation pairing corrob-
orates it, or discarding them if not.

There are things to be said for both views. The probabilistic view, as op-
ponents of this view argue, creates behavior that is too gradient in nature.
Learner’s behavior seems more categorical than would be expected on the
basis of a probabilistic view. On the other hand, one could argue that a prob-
abilistic system interacts with more discrete decision-making systems which
are addressed (possibly in different ways) in experiments and natural process-
ing and production behavior. This could resolve the issue of apparent discrete-
ness in behavior, but until it is worked out, it remains hand-waving. On the
other hand, the creation of hypotheses at random seems like a strange starting
point. It is not clear to me why a learner would form a hypothesis about a
form-meaning pairing on the basis of no evidence.

The instantiation of cross-situational learning I assume here can be seen
as taking a halfway position between the two. Because I do not think the
metaphor ‘language acquisition as hypothesis testing’ is the right one (see sec-
tion 3.6.3 as well), I consider these initial form-meaning pairings to be reflec-
tions of the processing of utterance-situation pairs, despite the learner not hav-
ing any contentive linguistic knowledge yet. The cross-situationally extracted
patterns are not random guesses, but reflect a simple form of analogical rea-
soning. On the other hand, I do not want to assume too much keeping track
of every contingency between possible forms and possible meanings.

An exemplar is a structured representation of an experience. Importantly,
it is structured by linguistic processing. That is: whatever linguistic structure
is found in the input item (the U, S pairing) is stored alongside the U, S pair.
For the current purposes, I assume that a linguistic exemplar is a pair of the
selected situation s ∈ S, and the best parse abest. Let us furthermore assume
that the learner keeps track of the most recent n exemplars, where n = [1,∞].

Implementation

The form of cross-situational learning I assume extracts overlaps in form and
meaning between a new exemplar and the most recent n exemplars. It only



The Syntagmatic-Paradigmatic Learner 117

extracts those overlaps about which it is sure, that is: only if a single maxi-
mal overlap in the ignored parts of the utterance strings and a single maxi-
mal shared subgraph between the analyses can be found, a novel construction
containing exactly this overlap is extracted and added to the grammar with a
count of 0. More formally:

Cross-situational learning

For every new exemplar st, atbest and every exemplar st−i, at−ibest in the
range i = [1, . . . , n]:

• Let UI be the yield of a parse a that is governed by rule iii (i.e.,
ignored words).

• Let GI be the subgraph of s to which no root node of any construc-
tion used in a has a mapping, or:
GI = ∀vv∈Vs . 6 ∃c,mapc,map∈a.map(sdc) = v′ → v′ 6= v

• Extract a novel construction cxsl iff:

– U tI ∪ U
t−i
I 6= ∅

– U tI ∪U
t−i
I is a contiguous substring of the yield of atbest (i.e., the

original utterance U t).

– U tI ∪U
t−i
I is a contiguous substring of the yield of at−ibest (i.e., the

original utterance U t−i).

– Assuming the set M(GtI),

∗ which consists of all possible structure-preserving bijective
functions mapidentical between a connected subgraph of GtI
and a connected subgraph ofGt−iI containing identical fea-
ture sets on the mapped vertices,

there is exactly one most-encompassing mapping mapmem ∈
M(GtI) such that all other functions map′identical ∈M(GtI) spec-
ify a domain and a codomain that are subsets of the domain
and codomain of mapmem.

• where the new construction cxsl consists of

– sdcxsl , which is the subgraph ofGtI being the domain of mapmem

– srcxsl , being a single constituent sr1,

∗ where K(sr1
c ) = vroot(sdcnew), and

∗ F (sr1
c ) = U tI ∪ U

t−i
I
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Whenever a new exemplar st, at is added, it is compared to all exemplars
in this ‘memory buffer’. In this comparison, for st, at and some st−i, at−i, the
part of the utterance that is ignored in at is compared to the part of the ut-
terance that is ignored in at−i. If the maximal overlapping substring is not
a contiguous substring of the full yield of at and of at−i, or if the maximal
overlapping substring is empty, no new construction is extracted.

On the side of the meaning, a similar process takes place. The model com-
pares the part of the situations st and of st−i that are not analyzed with at

and at−i respectively (i.e., GtI and Gt−iI ). If, out of all functions mapping a
subgraph of GtI to an identical subgraph of Gt−iI , there is exactly one function
mapmem such that all other mapping functions specify subgraphs of the two
graphs in mapmem, a construction can be extracted. Otherwise, no construc-
tion can be extracted.

This precludes the situation in which more than one most-emcompassing
mapping can be made, i.e., the situation in which one mapping points to one
part of the situation graph, and another mapping to a (at most partially) over-
lapping other part of the situation. In those cases the learner cannot be fully
sure which analogy to make, and hence extracts no novel construction. Admit-
tedly, this strict rule for extracting initial constructions is relatively brittle and
simplistic, but given the complexity of the rest of the model I believe an overly
constrained learning mechanism is preferable over an underconstrained one.
Furthermore, the constraints all derive from more general principles of mak-
ing analogies and reasoning with uncertainty (beit in a very simple form: if
the learner encounters any uncertainty, it will do nothing).

Importantly, substrings of more than a single word in the adult represen-
tation can be extracted with the cross-situational learning procedure. These
holistic chunks correspond to undersegmentation in Peters’s (1983) sense.

To given an example of the cross-situational learning procedure, assume
that a6 was the best parse of the utterance, and that there is a previous ex-
emplar consisting of at−1, st−1, depicted in figure 3.20 below. As the maximal
overlap in unanalyzed parts of the situations consists of the {ROLE,LOCATION,
GOAL} vertex, and the overlap in the utterance of there, a novel construction,
linking these two can be extracted.

3.6.5 SPL as a usage-based learner
The mechanisms described in this section jointly embody many of the insights
discussed in the previous chapter. Despite being operationalized as learning
operations applying to the best analyses, they can be conceptualized as neu-
ral effects of the processing of the best analysis itself. That is to say: there is
no decision-making process outside the processing of the usage events (D6-
2). Novel constructions are learned without evaluating their value: if they are
of use to the model in analyzing utterances, they will receive subsequent re-
inforcement, if not, they will remain one-off patterns with a zero count. The
model embodies developmental continuity (D6-4), with all learning mecha-
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{role,location,
goal}

{entity,object,
box}

st

{role,patient,
moved}

{entity,object,
ball}

ball go there

at

{event,state}

{role,location,
goal}

{entity,object,
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st-1

{role,theme}

{entity,object,
cup}

cup lies there

at-1

{role,location,goal}

F: there

K

c
xsl

Figure 3.20: An example of succesful cross-situational learning. Analyzed
parts of the utterances and the situations are marked in grey.

nisms being available throughout developmental time and simultaneity (D3)
because both lexical and grammatical constructions can be learned with the
same set of mechanisms. Although in practice, cross-situational learning op-
erations will precede syntagmatization operations, which in turn precede the
paradigmatization operations on them, all operations are used all the time.

Interestingly, the model has several ways of acquiring novel lexical con-
structions, viz. cross-situational learning, bootstrapping, and the use of maxi-
mally-concrete constructions. As bootstrapping will only take place after
slightly more abstract constructions have been acquired, it typically takes
place later in development than the cross-situational learning. These two ways
of acquiring lexical constructions can be seen as reflecting Gleitman et al.’s
(2005) ideas of the various ways in which lexical mappings can be learned,
but from a usage-based perspective.

The two core mechanisms for the acquisition of grammatical construc-
tions, syntagmatization and paradigmatization, further instantiate a few other
desiderata. With syntagmatization, the acquisition of longer grammatical
rules is qualitatively grounded in the usage-events: there is no preconception
that longer rules will be part of the language, but the joint processing of sev-
eral shorter rules leaves a trace in the mind of the learner (D5-1 and D6-2).
At the same time, this means that longer constructions can only emerge if
their parts are known, which satisfies D6-1, but having this as the only mech-
anism of the acquisition of rules conflicts with D6-3, the idea that we want a
learner that does parts-to-whole and whole-to-parts learning. The latter is not
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instantiated in this model, and, as I expressed before, I am skeptical about the
necessity of such an operation and whether it fits in with ideas about learning-
as-processing (D6-2).

The notion of abstraction engendered in the model is similar to Chang’s,
but differs in that it contains no post-hoc decision mechanism, thus being
closer to the idea of learning-as-processing, to my mind. By extracting any
and all abstractions, we can easily dereify the (reified) discrete representations
as the potential for abstraction immanent in the most concrete constructions.
Furthermore, the reinforcement mechanism only ‘rewards’ the most concrete
used constructions, thereby boosting the potential of abstract representations
(giving them more of a ‘unit’ status in Langacker’s (2000) terminology) only if
they are productively used.

3.7 Generation

An important property of SPL, as a generative model, is that it is bidirectional:
we can analyze given utterances with it as well as generate new ones given a
situation. Doing so, the model can simulate both processes of language com-
prehension and production (desideratum D2). Generation works largely by
the same processes as analyzing an utterance, in that we generate a derivation
that corresponds to the situation and take the phonological symbols at the leaf
nodes of the derivation to be the utterance the model produces. Again, many
analyses are possible and the model has to select the best one.

3.7.1 Differences with the analysis procedure
One aspect of the model differs from the comprehension procedure in the gen-
eration procedure. Several processing mechanisms defined in section 3.4 are
geared towards processing input of which a part is not understood. In partic-
ular, the concatenation, ignoring and bootstrapping operations, as defined by
rules i, iii, and vi, are operations allowing the model to interpret utterances
despite having a limited inventory of linguistic signs. Generation works on the
basis of known signs, and hence these three rules are not used. We assume that
any derivation starts at rule ii, that is: with the application of a construction-
mapping pairing. That is, the set of rules applicable in generation consists of
rules ii, iv, v, and vi.

The probability of the derivation is again the product of the rules that are
applied in it, as in equation (3.5). The probabilities of the c,map pairings are
the same as for the comprehension procedure, and are repeated here as equa-
tions (3.12) and (3.13).

P (c,map|CS) =
countc + 1∑

c′,map′∈CS
(countc′ + 1) + 1

(3.12)
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rule probability

ii START→ (c,map) P (c,map|CSSTART)

iv (c,map)→ sr1
c , . . . , sr

n
c 1

v sric → α+ (if F (sric) 6= ε) 1

vii sric → (c′,map′) P (c′,map′|CSsric)

Table 3.4: Probabilities of the processing mechanisms in the generation proce-
dure.

P (u|CS) =
1∑

c,map∈CS
(countc + 1) + 1

(3.13)

The probability of a derivation is, as in comprehension, given by:

P (d|Γ, S) =
∏
r∈d

P (r) (3.14)

3.7.2 Expressivity
In producing an utterance, a language user wants to be as expressive as pos-
sible (with as little effort as possible). I operationalize this idea as follows.
Assume that the model creates analyses consisting of equivalent derivations,
as in the comprehension procedure. The model penalizes an analysis for ev-
ery feature of the situation that it does not express. It does so by taking the
summed proportion of features in the situation s not expressed by the analy-
sis a (unexpressed(a, s)) and raises the probability of an unseen event to the
power of unexpressed(a, s).

The calculation of unexpressed(a, s) is defined as follows. For every ver-
tex, the model checks which features are expressed by any construction in the
derivation and takes the proportion of unexpressed features per vertex, after
which the proportions are summed. Vertices that are completely unexpressed
will thus contribute a proportion of 1 to unexpressed(a, s), whereas partially
expressed vertices add a value between 0 and 1 (exclusive) to the score. The
referential penalty over a, or referential penalty(a) can thus be defined as:

referential penalty(a) = P (u|CSstart)
unexpressed(a,s) (3.15)
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Obviously, the notion of referential expressivity employed here is a rather
naïve one. The speaker, while interacting with the hearer, has a shared com-
mon ground with the hearer in the speech situation often allowing for the cor-
rect identification of the situation referred to with minimal means (see, e.g.,
Clark 1996). Furthermore, framing communicative success as the correct iden-
tification of a situation is rather simplistic as well. I leave it to future research
to operationalize and implement more complex notions, involving for in-
stance construal (Croft & Cruse 2004, ch. 3), argumentativity (Verhagen 2005),
and the many other dimensions of communication.

3.7.3 Selecting the best analysis and utterance
The full probability of an analysis can now be given as follows:

P (a|s,Γ) =
∑
d∈a

P (d|s,Γ) · referential penalty(a) (3.16)

Again, we can select the best analysis abest given the situation, using the
same definitions as in section 3.5.

Equally interesting is the selection of the best utterance. Multiple analyses
may have the same yield (i.e., the same string of phonological structures) as
the leaf nodes of the derivations. I take the probability of an utterance U given
a situation s and a grammar Γ to be the disjoint probability of all analyses that
have U as their yield.

P (U |s,Γ) =
∑

a:yield(a)=U

P (a|s,Γ) (3.17)

3.7.4 An example of the generation procedure
Assume the grammar with the five constructions in figure 3.5, and the first
situation (s1) from figure 3.6. All of these constructions have subset mappings
to the situation and hence all can be applied as the first rule. Constructions c1−
c3 are grammatical constructions and can therefore be combined with other
constructions. Figure 3.21 gives all possible derivations given the situation
and the grammar in the box-diagrammatic notation.

Calculating the derivational probabilities and the referential penalties, we
get the probabilities of the six derivations in table 3.5. As we can glean from
the table, derivations d2, d3 and d4 are derivationally equivalent, while the
other derivations are not equivalent with any other derivation. We thus arrive
at the four analyses in table 3.6.

The penalty is calculated by looking at the summed proportion of the fea-
tures on the vertices of the situation. For analysis a1, the entire vertex {ENTITY,
OBJECT,BOX} is left out. This means that the penalty is the probability of an
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Figure 3.21: All derivations for the generation of utterances given s1.
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d rules yield
∏
r∈d

P (r) P (d|s,Γ)

d1 ii, iv, vi, iv, v, v ball go 1
13
· 1 · 5

6
· 1 · 1 · 1 5

78

d2 ii, iv, vi, iv, v, vi, iv, v ball go 1
13
· 1 · 5

6
· 1 · 1 · 2

8
10
624

d3 ii, iv, vi, iv, v, vi, iv, v ball go 2
13
· 1 · 5

6
· 1 · 1 · 2

8
10
624

d4 ii, iv, vi, iv, v, vi, iv, v ball go 2
13
· 1 · 5

6
· 1 · 1 · 2

8
10
624

d5 ii, iv, v ball 5
13
· 1 · 1 5

13

d6 ii, iv, v go 2
13
· 1 · 1 5

13

Table 3.5: The probabilities of the six derivations in figure 3.21.

analysis derivations P derivations
∑
d∈a

penalty P (a)

a1 d1
5
78

5
78

1
13

1 5
1014
≈ 4.93e− 3

a2 d2, d3, d4 10
624

+ 10
624

+ 10
624

30
624

1
13

1 30
8112
≈ 4.93e− 3

a3 d5
5
13

5
13

1
13

4 5
371,293

≈ 1.35e− 5

a4 d6
5
13

5
13

1
13

2 5
2197
≈ 2.28e− 3

Table 3.6: The probabilities of the parses given the six derivation in figure 3.21.

unseen event to the power 1, or 1
13

(1). Analysis a3, on the other hand, leaves
out four full vertices, and thus has a penalty of 1

13

4.
Two analyses are equally likely, viz. a1 and a2. If we look at the yields, we

find that the utterance ball go is the most likely utterance given the situation
and the grammar, with a probability of P (U = ball go|s,Γ) = 9.86e − 3. At
about a quarter of that probability is the utterance go, supported only by anal-
ysis a4 (P (U = go|s,Γ) = 2.28e − 3). The utterance ball is least likely to be
generated by the model, with a probability of 1.35e− 5.

3.8 Meeting desiderata with SPL

SPL was developed with the theoretical discussion about the mechanisms nec-
essary to account for language acquisition in mind. The close adherence to lin-
guistic theorizing is therefore an aspect of this research that warrants its own
section. In this section I evaluate whether SPL meets the various desiderata
we set out in chapter 2. Throughout this chapter, I have discussed why the
several aspects of SPL do so. Here, I briefly summarize them.
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desideratum evaluation

D1 (explicitness) +

D2 (comprehensiveness) +

D3 (simultaneity) +

D4 (representational realism)

D4-1 (qualitative grounding) +

D4-2 (quantitative grounding) +

D4-3 (immanence) +

D5 (processing realism)

D5-1 (heterogeneous structure building) +

D5-2 (linear processing) +

D6 (ontogenetic realism)

D6-1 (cumulative complexity) +

D6-2 (learning-by-processing) +

D6-3 (parts-to-whole and whole-to-parts) +/−
D6-3 (developmental continuity) +

D7 (explanatory insight)

D7-1 (unification) +

Table 3.7: Evaluating SPL against the desiderata.
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Concerning the explicitness of the model’s simplifying assumptions (D1),
I believe SPL to be relatively clear. Several aspects of the model were more
at center stage than others, and, for instance, the implementation of cross-
situational learning and the linear parser constitute highly simplified versions
of obviously much richer cognitive processes.

Second, the model is (in principle) able to comprehend and produce utter-
ances using the process of forming derivations and selecting the best one from
among those (D2). It can, however, only be gradually expected to acquire this
skill, as the model starts with an empty set of constructions. Over time, the
model learns lexical and grammatical constructions, where the processes for
the acquisition of both apply at the same time and are available to the model
throughout developmental time (D3, D6-3).

The representations used by SPL, constructions, consist solely of concep-
tual and phonological structure, as well as a symbolic link, and can thus be
said to be qualitatively grounded in the linguistic usage events (D4-1). By
reinforcing the used constructions (more specifically, the maximally-concrete
used construction), the model is sensitive to the frequencies of aspects of usage
events (D4-2).

SPL processes utterances by using a derivation process, and selecting the
most likely set of equivalent derivations from among all possibilities. Because
such a global optimization process can be considered cognitively unrealistic,
the actual analysis is done with a parser that goes over the utterance linearly
and prunes all but the most likely analyses as it goes (D5-2). In building up
analyses, the model has several processing mechanisms at its disposal: simple
slot-filling, but also the creation of non-hierarchical analyses by means of con-
catenation, the top-down interpretation of a word by means of bootstrapping,
and the possibility to ignore words, and as such the model has a robust toolkit
of processing mechanism (D5-1).

Learning in SPL can be considered to be a by-product of processing (D6-
2): the model processes an utterance, and the resulting best analysis as it is
mapped to a situation leaves a trace by adding syntagmatized constructions
and maximally-concrete constructions. Syntagmatization can be said to in-
stantiate a cognitive take on Brown’s law of cumulative complexity (D6-1)
and part-to-whole learning: more complex constructions can only be learned
on the basis of concatenations of simpler structures that leave traces in the
mind of the speaker in the form of syntagmatized constructions.

Multiple constructions may share structure, in which case the model ex-
tracts a more abstract construction by means of paradigmatization. The para-
digmatization operation involves no selection process whereby it is decided
whether an abstraction is useful or not. As such any and all abstraction are
extracted, and, as I argued, this makes this implementation of a notion of ab-
straction congruent with the idea of abstractions being immanent (D4-3).

Whole-to-parts learning was not the focus of this model, and, for instance,
the model does not break down acquired unanalyzed chunks any further,
and hence I evaluated D6-3 as +/−. There are some aspects of whole-to-parts
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learning available to the model. One is the bootstrapping operator, whereby
the meaning of an unknown part is assigned to it on the basis of a whole. This,
however, does not constitute a case of the decomposition of a thitherto unan-
alyzed whole, and as such not all whole-to-parts learning operations conceiv-
able are done by the model. Discussing this, I argued that the decomposition
of chunks is perhaps an unlikely kind of cognitive operation from the per-
spective of D6-2: it requires the learner to engage in a post-hoc adjustment of
the acquired chunks, which seems to be a kind of off-line reasoning for which
more evidence would be needed. I leave it to proponents of the starting-big
perspective to reconcile the decomposition of chunks with the learning-as-
processing perspective, or to find evidence for off-line operations that break
down chunks.

The issue of explanatory insight (D7) can of course only be discussed sen-
sibly after we have seen some results. Before we turn to these, there is one
aspect of the realism of the model that I would like to consider, viz. the nature
of the input items, especially the situational contexts, given to the model. The
next chapter deals with this issue.





CHAPTER 4

Modeling the acquisition of meaning

In chapter 3, I presented a computational model of the acquisition of con-
structions. These constructions are incrementally learned from linguistic us-
age events, being pairings of an utterance and several situations, and are used
to analyze novel linguistic usage events. An important question that remains
is what these linguistic usage events consist of.

In this chapter, we will look at the way in which the conceptual side of
the linguistic usage events (viz. the situational context) is represented in input
items. What are the properties of these situational contexts? The motivation
for studying this, is that computational models of symbol acquisition (word
learning as well as constructional learning) often make strong assumptions
about the nature of the set of communicated concepts at which the learner ar-
rives independently of language. These assumptions, however, often do not
rely on empirical accounts of how a learner constructs this set. The represen-
tations acquired by a computational model depend on what is in the input,
and it is therefore equally important to provide the model with input items
that are as realistic as possible.

This chapter sets out to provide such an account, looking primarily at the
environmentally available information. The insights resulting from this inves-
tigation are then used to formulate a procedure for simulating realistic situa-
tional contexts in which utterances are produced. This procedure will then be
used to provide the learning model with input.
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4.1 Three problems in acquiring meaning

As I argued in the previous chapter, it is a logical necessity that the child has
some coarse understanding of what an utterance refers to when she hears it
(O’Grady’s Interpretability Requirement). In studies on symbol acquisition it
is often tacitly assumed that all of the meaning is correctly understood by the
child, and moreover, that only the correct meaning is understood, i.e., there are
no ‘distracting’, non-communicated concepts. Admittedly, the latter assump-
tion is less frequently made, as most researchers recognize that ‘distractors’
are present in the space of candidate meanings (that is: the set of considered
conceptualizations communicated with the utterance), and, in fact, this con-
stitutes a learnability problem by itself (cf. Quine’s (1960) Gavagai problem).
Nonetheless, this assumption is still used as the starting point of many compu-
tational modeling studies, as we will see later. Let us, for future reference, call
the ‘all-and-only’ assumption Assumption 1, with two corollaries, Assump-
tion 1a and Assumption 1b:

• Assumption 1: The correct set of concepts to be mapped onto the utter-
ance is active in the mind of the learner

– Assumption 1a: All of the concepts to be mapped onto the utter-
ance are active in the mind of the learner

– Assumption 1b: Only the concepts to be mapped onto the phono-
logical substrings of the utterance are active in the mind of the
learner

When we do find the assumption in an explicit form, for example in O’Gra-
dy (1997, 260) or Wexler & Culicover (1980, 80), it is presented as a requirement
for the acquisition of form-meaning pairings, but no supporting evidence for
its veracity is provided. We can wonder, however, to what extent the assump-
tion in its strong form holds. Even in a weaker form (most of the concepts
are available, and there are few distracting ones), we would like to know the
magnitude of the learning problem when the nature of the input deviates from
Assumptions 1a and 1b.

We can quantify and conceptualize the deviation as follows. First, are all
concepts the speaker wants to communicate with an utterance part of the can-
didate meanings? We will call this issue, corresponding with Assumption 1a,
the question of noise (cf. Siskind 1996, 50). When we, in a simplifying manner,
assume that the candidate meaningsMcandidate and the actually communicated
meanings Mcommunicated are sets of communicated elements (be they features,
entities, or whole propositions), we can measure the noise as follows:

Noise = 1− |Mcandidate ∪Mcommunicated|
|Mcommunicated|

(4.1)

That is: what proportion of the set of communicated concepts are actually
present in the set of candidate meanings? When noise = 0, all communicated
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concepts are part of the set of candidate meanings, whereas no element of the
communicated concepts is in the set of candidate meanings when noise = 1.

Second, to what extent are only the situations and objects the speaker
wants to refer to present in the set of candidate meanings? How many con-
cepts are there that are not referred to in the utterance, and thus increase the
referential uncertainty? We will call this issue, corresponding with Assump-
tion 1b the question of uncertainty (cf. Siskind 1996, 40).

Uncertainty = 1− |Mcandidate ∪Mcommunicated|
|Mcandidate|

(4.2)

uncertainty thus measures what proportion of the set of candidate mean-
ings is not communicated by the utterance. uncertainty = 1 means that the
candidate meaning Mcandidate consists fully of non-communicated concepts,
whereas uncertainty = 0 means that Mcandidate is entirely made up of commu-
nicated concepts.

Uncertainty, like noise, can take place on many levels: conceptual features
may be unavailable (conceptual noise), or superfluously available (conceptual
uncertainty, but also entire entities (objects, events, each of which can be de-
scribed with a number of conceptual features; referential noise and referential
uncertainty), and even full propositions (propositional noise and propositional un-
certainty). When operationalizing noise and uncertainty for specific cases, we
have to specify on what level this noise takes place, but for the current pur-
poses, the use of sets M generalizes over all three levels: it could refer to a set
of conceptual features, entities, or full propositions.

Once we acknowledge that learners probably operate under non-zero un-
certainty levels, another problem presents itself: is the non-target part of the
space of candidate meanings (the concepts not referred to) independent from
the target part of that space? If there are dependencies, this affects the ease
of learning: if certain elements in the space of candidate meanings are often
found together with other elements, the learner will have a harder time to use
cross-situational statistics, to name one learning mechanism, in order to disen-
tangle them (cf. Siskind 1996, 75). Examples of dependencies in the candidate
meaning would be different conceptualizations of the same event (e.g., ‘chase’
and ‘flee’), or meronymic relations (e.g., ‘rabbit’ and ‘ears’), but also concepts
that in principle engender different construals, but simply occur together of-
ten (e.g., ‘sitting at the table’ and ‘eating’, for the young child). Although the
full extent of this problem is beyond the scope of this chapter, we will briefly
touch upon the last kind of dependence, quantifying it and using the insights
in our simulation procedure.

Independently researching the environmental and cognitive sources of the
set of candidate meanings is relevant to the understanding of the cognitive
mechanisms responsible for forming the symbolic mappings. Experimental
work like Yu & Smith (2007) has demonstrated that learners can use the mech-
anism of keeping track of cross-situational co-occurance statistics in acquiring
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symbolic pairings. However, in several simulations and experiments, Smith,
Smith & Blythe (2011) and Blythe, Smith & Smith (2010) point out that, using
varying amounts of referential uncertainty, there are different strategies that
lead to optimal learning behavior: with higher levels of referential uncertainty,
a more heuristic variant of cross-situational learning explains the subjects’ per-
formance in learning form-meaning mappings better than with lower ones.
This means that, before we can determine (experimentally) what mechanisms
underly the acquisition of symbolic pairings, we have to understand in what
range the noise and uncertainty realistically fall.

This point becomes especially important in computational simulations of
the symbol acquisition process. In these studies, a formal operationalization
of a proposed cognitive mechanism is tested on data containing pairs of ut-
terances with meaning representations, thought to reflect the set of candidate
meanings. However, if amount of noise and uncertainty in the set of candi-
date meanings reflects the simplistic assumption, or the deviation from this
assumption is not empirically grounded, then the mechanisms under scrutiny
cannot be properly evaluated. Quantifying actual noise and uncertainty levels
on the basis of empirical data, for instance spontaneous caregiver-child inter-
action, allows us to do so.

A note on terminology is in place here. The term noise, as borrowed from
signal processing, is often used as a generic term concerning all undesirable
modulations of the signal, including both noise in the narrow sense, as I de-
fined it in this chapter, as well as uncertainty. Although ambiguity between
the superordinate term and a subordinate is in principle undesirable in scien-
tific discourse, and can lead to needless misunderstandings, it is at the same
time not beneficial to introduce completely new terms. Noise is used in both
the superordinate and subordinate sense in the literature and the value can
be contextually determined (in pairs such as noise and uncertainty, it always
means the absence of information in the signal, not both the absence and the
superfluence).

4.2 The informativeness of the situation

4.2.1 Earlier research

Linguistic research on the informativeness of the situation

Studies discussing situational availability are rather scarce, and are typically
framed on a propositional level, that is: does the utterance refer to a full sit-
uation in the here-and-now of the interactive setting. Moerk (1972) discusses
the nature of the interaction between mothers and children, and remarks that
“The mother [. . . ] model[s] nearly continuously for the child the process of
translating the structure of the objective environment and their own actions
into verbal utterances”, thus suggesting that little noise is to be expected in the
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mothers’ input. However, Moerk did not systematically investigate this, and
focusses only on what could be seen as the lack of noise: whenever the care-
giver talks to the child, the situation referred to is hardly absent. Cross (1977)
presents features of child-directed language that are predictive for the child’s
vocabulary size at certain ages. She discusses in the appendix four features
related to the referential nature of the mother’s utterance, namely whether the
utterance referred to 1) a child-controlled event, 2) a mother-controlled event,
3) other persons or objects present or 4) something outside of the here-and-
now. She defines the here-and-now of the speech situation as the time span
between the preceding and current conversational turn. Of the four features,
the first is significantly negatively correlated with vocabulary size, meaning
that mother will refer less to the child’s actions the more sophisticated a lan-
guage user the child is. Furthermore, the third is significantly positively cor-
related with vocabulary size, meaning that the mother will refer more to sit-
uations slightly more distal from the here-and-now the more advanced the
child’s language abilities are. As Cross provides no raw frequencies, we can-
not determine the precise situational availability in her data. Again, in Cross’
study, only the referential nature of the whole utterance is studied, and the
question of uncertainty (how much of the current situation is not being re-
ferred to), is not addressed.

From the only literature explicitly discussing co-temporal situational pres-
ence in naturalistic settings, Gleitman (1990), we know that both Assumptions
1a and 1b are problematic, especially for relational concepts, such as events.
Gleitman (1990, 20-22) discusses a paper by Beckwith, Tinkler & Bloom (1989),
where the authors describe how in many cases, the event to which a verb refers
is absent from the immediate context. This would constitute a case of referen-
tial noise. Gleitman further points to the imaginable plethora of cases where
the learner does perceive an event, but the label is not used in the utterance,
thus bringing about referential uncertainty.

With the scarcity of studies systematically addressing this issue on the ba-
sis of naturalistic data, it seems that we know very little about the extent to
which the utterances in the input are co-temporally matched with the commu-
nicated concepts. It is striking that empirical investigations into the nature of
the environmentally given information are so scant, whereas the Interpretabil-
ity Requirement constitutes a central assumption in acquisitional research.

Modeling approaches deriving candidate meanings from the utterance

Most computational research on acquiring form-meaning pairings focuses
on the cognitive mechanisms required to develop an inventory of symbols
given an existing set of candidate meanings, rather than on the learner’s un-
derstanding of the set of candidate meanings itself. Although computational
studies on the mechanisms have greatly added to our knowledge of possible
cognitive mechanisms, their evaluation remains problematic, as performance
may depend to a large extent on the properties of the set of candidate mean-
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ings. In this section, I will discuss computational studies of symbol acquisition
and the assumptions concerning noise and uncertainty they make.

The first group of studies derives properties of the set of candidate mean-
ings from the linguistic input. Corpora of child-directed speech are mostly
not structurally annotated with the situations that co-occur with the utter-
ances, let alone the child’s likely mental representation of those. As a means
of approximating the situation, several approaches, both in acquiring map-
pings between single words and their meanings, and in acquiring a grammar
with meaningful rules, use the utterance itself to infer the situation it is paired
with (Siskind 1996, Chang 2008, Alishahi & Stevenson 2010, Fazly et al. 2010).
Taken by itself, this method would constitute a very strong instantiation of
the assumption that all and only the correct meanings are present. Most, if
not all, authors acknowledge the problematic nature of this assumption, and
therefore introduce deviations from the ‘all candidate meanings are present’
assumption (by removing elements of the set of communicated concepts, thus
adding noise) and the ‘only the candidate meanings are present’ assumption
(by introducing additional elements into the set of candidate meanings, thus
increasing the uncertainty) so as to make the experiments with the models of
form-meaning pairing acquisition more realistic.

Older studies, like Regier (1992) and Bailey (1997) use toy examples with
more complex meaning representations than many later studies. However, be-
ing toy examples, the input data is generated in such as way that the situation
matches the word it is to be associated with. Because of that, we can also group
them in the category of utterance-derived candidate meanings.

The addition of noise and uncertainty found in most models of the ac-
quisition of form-meaning pairing is, by itself, a step in the right direction.
By adding noise and uncertainty, the models are shown to be robust to noise
and uncertainty (see table 4.1 below for some examples). However, few of
the works mentioned discuss how the parameter setting for their noise and
uncertainty values is motivated. That is: if we add noise, how much noise is
realistic? And is the amount of noise the same for every conceptual type and
every linguistic class? Are verb-to-event mappings noisier, for instance, than
noun-to-object-class mappings? The same question can be asked for uncer-
tainty. Crucially, as argued before, the evaluation of the explanatory value of
the model depends on its ability to deal with realistic sets of candidate mean-
ings: as long as we know little of what counts as realistic, the evaluations of
the models are problematic.1

This is not to say that the method of generating situations on the basis of
the utterances is useless. In fact, if one has an empirical grounding for the
amounts and types of noise and uncertainty that one introduces in the model,
this method may be currently the only way to obtain data sets large enough to
train our models on, as long as we do not have fully symbolically annotated

1Interestingly, only Siskind (1996) explicitly tries to ground the amount of uncertainty and
noise in acquisitional studies, citing Beckwith et al. (1989) and Snow (1977).
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model description parameter settings

Regier (1992) No noise or
uncertainty is
added

n.a.

Siskind (1996) Propositional
noise and
uncertainty are
added

Parametrized: between 0 and
20% of the utterances lacks the
target candidate proposition
completely and between 10 and
100 non-target candidate
propositions are added.

Bailey (1997) No noise or
uncertainty is
added

n.a.

Fazly et al.
(2010)

Referential
noise and
uncertainty are
added

In 20% of the utterances, one
element of the meaning is
discarded. Every other
utterance’s meaning is added as
referential uncertainty.

Chang (2008) No noise or
referential
uncertainty is
added

n.a.

Frank et al.
(2009)

Referential
noise and
uncertainty are
as in video data

n.a.

Alishahi &
Stevenson
(2010)

Conceptual
noise and
referential
uncertainty is
added

In 20% of the utterances, one
feature of the meaning is
discarded. In another 20%, one
feature is discarded and then
inferred. The meaning may
contain more referents than
expressed in the utterance.

Table 4.1: The treatment of noise and uncertainty in several models of the ac-
quisition of form-meaning pairings.
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descriptions of the situations accompanying the child-directed utterances.

Approaches deriving candidate meanings from empirical sources

The second group of modeling approaches to the acquisition of form-meaning
pairings explicitly addresses the issue of what can be gleaned from the situ-
ation accompanying the utterance by using videotaped caregiver-child inter-
action. Typically, this involves manual annotation of the candidate meanings,
although early work on video data shows that a mapping between the raw
visual input and the raw speech stream is possible too (Roy & Pentland 2002).
Ambitious as this project is, it remains limited as a method of studying lan-
guage acquisition, for two reasons. First of all, the data used by Roy & Pent-
land (2002) were not from natural dyadic interaction, let alone child-caregiver
interaction, which makes the ecological validity of the discourse problematic.
Secondly, the focus was on noun-to-object mappings only. Although this does
constitute an important part of the acquisition process, we have to move be-
yond this to gain insight on a more general level. The main reason is that a nar-
row focus on, for instance, nouns artificially limits the hypothesis space of the
learner: the event-like meanings form no uncertainty for the model learning
nouns, whereas we expect some uncertainty to be present unless we assume
that children start with attending only to objects and assuming that referring
to those is the sole function of language.

More recent approaches using video data suffer from the same problem
(Frank, Goodman & Tenenbaum 2008). Even if we assume that nouns are
more easily learned, and even if knowledge of the noun-object mappings
helps bootstrap other things, they artificially keep other kinds of candidate
meanings (events, relations, properties) out of the hypothesis space. The con-
tribution of these studies, however, is that they do show us, even for a narrow
subset of candidate meanings, what is and what is not available to the learner
(assuming that only the visual perception of spatiotemporally aligned objects
leads to the availability in the set of candidate meanings). This provides us
with the interesting opportunity of establishing empirically the levels of ref-
erential noise and (to some degree) referential uncertainty in caregiver-child
interaction.

A final approach that is of interest is one in which the focus is on a broader
class of candidate meanings than just object categories. Fleischman & Roy
(2005) had subjects play a game in which one subject had to verbally guide
the other subject through a video game world towards a certain goal. The lan-
guage involved directive and descriptive utterances about the task of the other
subject. The learning model received its input data from this experiment: the
utterances of the one subject were paired with the actions and the overarch-
ing plans behind the actions (opening a door is an action towards the plan of
entering a room) for the other subject. This represents a closer approximation
of the breadth of candidate meanings than the studies on noun-object map-
ping acquisition. A point of criticism here could be the ecological validity, as
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with Roy & Pentland (2002): the type of discourse is not the same as caregiver-
child interacting, although it should be granted that the directive nature of the
language and the fact that the subjects had a joint task approximate many sit-
uations of child-caregiver interaction relatively closely.

4.2.2 How available are the communicated concepts
What is the information in the actual environment in which children learn
words? Narrowing this question down to the two corrolaries of the inter-
pretability assumption, we have to ask what the noise and uncertainty is that
children face when starting to develop a lexicon. In this section, I present re-
search addressing these questions.2

Materials

Like the second group of modeling studies I discussed, we take videotaped
interactions of caregivers and children to be the starting point of our informa-
tion about the properties of the environment from which the set of candidate
meanings is inferred. The interaction has to be relatively typical of the kind
of interactions young children and their caregivers have. To this end, I used
videotaped interactions of Dutch mothers and 16 month-old daughters play-
ing a game of putting blocks in holes.3 Games form an interesting setting, as
they constitute a typical activity in which the child jointly attends the situ-
ation with the caregiver, and in which directive and descriptive language is
used (Tomasello & Farrar 1986, 1457). From the 131 available dyads, I selected
the first 32. The games were played for about five minutes per dyad, giving a
videotaped corpus of 152 minutes (henceforth: the corpus).

Annotation

In the corpus, I transcribed all speech according to CHAT-guidelines,4 and
two assistants coded the video data for the objects, properties and relations in
the situations. The transcriptions contained 7842 word tokens (480 types) in
2492 utterances. The language mostly refers to aspects of the game.

The situational coding was done according to guidelines described in
Beekhuizen (2011). As the situation consists of just one type of activity (play-
ing the game), the set of objects, properties and relations is relatively limited.
The most common object categories are the BUCKET, LID, BLOCKs, HOLEs and

2Parts of the research reported in this section was previously published in Beekhuizen, Fazly,
Nematzadeh & Stevenson (2013) and Beekhuizen, Bod & Verhagen (to appear)

3The data was courteously made available by Marinus van IJzendoorn and Marian
Bakermans-Kranenburg of the department of Child Studies at Leiden University.

4Available at http://childes.psy.cmu.edu/manuals/CHAT.pdf
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type name roles

action GRAB,LETGO,HIT Agent, Patient, (Instrument)
action POINT,SHOW Agent, Patient, Recipient, (Instrument)
action MOVE,FORCE Agent, Patient, Source, Goal, (Instrument)
action POSITION Agent, Patient, Ground, (Instrument)
spatial IN,ON,OFF, OUT,AT,NEAR Figure, Ground
spatial MATCH,MISMATCH Figure, Ground

Table 4.2: Coded relations. Parentheses denote optionality.

the two participants, MOTHER and CHILD.5 The feature COLOR={RED, GREEN,
YELLOW, BLUE} was coded for the blocks and the feature SHAPE={SQUARE,
ROUND, TRIANGULAR, STAR} for blocks and holes. The relations and their
roles can be found in table 4.2.

For every three-second interval of video, all coder-observed relations, the
objects partaking in these relations, and their properties were coded using
ELAN (Brugman & Russel 2004). The actions (first four rows of Table 4.2)
denote simple manual behavior, which we assume children can recognize
(Baillargeon & Wang 2002). The spatial relations reflect basic categories of
containment and support (IN,ON) and their negation (OUT,OFF), as well as
two relations denoting non-containment and non-support contact (AT) and
nearness (NEAR). Understanding basic spatial relations precedes the onset of
meaning acquisition and can thus be assumed to be in place (Needham &
Baillargeon 1993, Hespos & Baillargeon 2001), although many specifics may be
language-specific (Choi 2006).6 The MATCH or MISMATCH with a hole was fur-
thermore inferred from these relations. Spatial relations were deemed salient
if a change in the relation occurred (e.g., if a BLOCK was the Figure of an IN-
relation in the current interval, when it was not in the previous interval).

The coding procedure was evaluated for inter- and intracoder agreement
(Carletta 1996) on a subset of the data: both coders coded three randomly se-
lected dyads twice. All relations were coded reliably both within and between
coders (Cohen’s κ > 0.8), except POSITION (intercoder: κ = 0.51, intracoder:
κ = 0.47). Closer inspection showed that there was some leakage from POSI-
TION to MOVEMENT, which follows from the fact that the two predicates are

5In many cases, the complete description of a referent is a single feature. In those cases, only the
single feature is given. If multiple features constitute the description of a referent, this is marked
with curly brackets around the set of features making up a referent.

6Ideally, one would encode the range of construals of a situation, including ‘tightness-of-fit’.
As a first attempt at relational coding of situations, we opted for convenient, yet widely known
notions like ‘containment’ and ‘support’.
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time type coding/transcription
0m0s situation <nothing happens>

utterance een. nou jij een.
translation one. now you one. “One. Now you try one.”

0m3s situation position(mother, toy, on(toy, floor)) grab(child,
b-ye-tr) move(child, b-ye-tr, on(b-ye-tr, floor),
near(b-ye-tr, ho-ro)), mismatch(b-ye-tr, ho-ro)

utterance nee daar.
translation no there. “No, there.”

0m6s situation point(mother, ho-tr, child) position(child, b-ye-tr,
near(b-ye-tr, ho-ro)) mismatch(b-ye-tr, ho-ro)

utterance nee lieverd hier past ie niet.
translation no sweetie here fits he not. “No sweetie, it won’t

fit in here.”
0m9s situation: point(mother, ho-tr, child) letgo(mother,

lid) grab(mother, b-ye-tr) move(mother,
b-ye-tr, near(b-ye-tr, ho-ro), near(b-ye-tr,
ho-tr)) match(b-ye-tr, ho-tr) letgo(child,
b-ye-tr) grab(child, b-bl-st) move(ch,b-bl-
st,on(floor),in(air))

utterance: hier in. kijk e(en)s. een twee.
translation: here in. look once. one two. “In here. Look. One

two.”

Table 4.3: A sample of the dataset. The dash-separated abbreviations de-
note blocks and holes and their properties, where for blocks the order is
b-{red,green,blue,yellow}-{round,star,square,triangular}, and for holes ho-
{round,star,square,triangular}.

poles on the same scale (POSITION being motion in place, MOVE being motion
from one place to another), and the demarcation point is in practice rather
vague. When the coders disagreed, I decided the annotation. A sample of the
resulting data is given in Table 4.3.

Evaluation

Using these data, we can get closer to an answer to the question what the
environment is in which a learner acquires language. To do so, we first need
to determine what features form the set of candidate meanings at the time of
every utterance. As discussed earlier, we can do so at several levels of descrip-
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tion. First, we can wonder what conceptual features are available (conceptual
noise/uncertainty). Second, we can look at the availability of referents (entities
and events) of linguistic items in the utterance (referential noise/uncertainty). Fi-
nally, we can look at the availability of entire situations to which utterances
refer (propositional noise/uncertainty).

For this research, we focus on just the former two levels and collapse the
distinction between conceptual and referential noise and uncertainty: as many
events and objects were not coded with complex feature sets as representa-
tions, the single conceptual feature is identical to a description of the referent
class. For some cases, however, words are intended to refer to an event that
has to be described as a set of features. The verb zetten, for instance, means
‘to put/position something on/onto something’, so both POSITION and MOVE
can be part of the valid referent of this verb, in addition to the presence of
an ON feature. Other words refer to conceptual features of entities that do
not constitute the complete description of the referent itself: vierkant ‘square’,
means that the object is square-shaped, but the label can be applied to entities
of different categories: both blocks and holes can be square-shaped.

We assume that for the list of content words in table 4.4, the correct mean-
ing is the set of features given with it. Features that are separated with pipes
mean that one of these features is part of the correct meaning of that word. We
call this list the golden lexicon. Given this golden lexicon, we can investigate
how much uncertainty and noise the learner would experience in acquiring
that word. That is: we start from the words rather than from the sets of con-
cepts (as we did in the initial definitions of noise and uncertainty in section
4.1). Let us for now assume that the set of candidate meanings consists of
the set of features in the situation within the three-second interval in which
the utterance was starting to be produced, thus leaving out any hierarchy or
grouping in the annotation. Let us call the candidate meanings the situational
context S, the utterance U , consisting of words w, and the set of meaning fea-
tures to be associated with a word Meaning(w) (which would, for a set of
words constituting an utterance, be the set of communicated meanings of the
utterance).

Noise(w) = 1−

∑
f∈Meaning(w)

|U,SU,S:w∈U∧f∈S |
|U,SU,S:w∈U |

|Meaning(w)|
(4.3)

Uncertainty(w) = 1−

∑
U,S:w∈U

|S ∪Meaning(w)|

|U, SU,S:w∈U |
(4.4)

noise is the proportion of Utterance-Situation pairs in which the manu-
ally assigned feature of the word was lacking (averaged over all features in
Meaning(w), in the case of multiple features). uncertainty, then, is the av-
erage number of features in the situation of the Utterance-Situation pair in
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which a word occurs, that are not referred to by the word. In this operational-
ization, we do not formalize uncertainty as a proportion, but rather give the
average number of other situations. Again, the pipe-separated features ap-
plied when either of them was present (so that the noise will not become
higher when just one of them is present).

We calculate the levels of noise and uncertainty per word in the golden
lexicon, but also per part-of-speech class. For these latter calculations, we take
the average over the words contained in that class, weighted by the frequency
of that word. These aggregate figures give us an insight in how noise and
uncertainty values may differ between semantic/grammatical classes.

Noise in the input data

Figures 4.1 and 4.2 give the noise scores per word in table 4.4 and per part-
of-speech category respectively. We can see that the noise varies between 0.0
(everytime the word is uttered, the meaning is present in the set of candidate
meanings) to 1.0 (the meaning is always absent when the word is uttered).
For only 5 out of 41 words in the golden lexicon, the features to which the
word refers are always found in the situational context accompanying that
utterance. For another 21 out of the 41 words, the noise is lower than or equal
to 50%.

Interestingly, when we look per part-of-speech category (figure 4.2), the
category of adjectives (i.c., color and shape terms) has a substantially lower
average noise than the other categories. Furthermore remarkable is the lower
average noise for verbs than for nouns and prepositions, meaning that verbal
meanings (for the items listed in table 4.4) are less frequently absent from the
immediate situation than the meanings of nouns and prepositions. The high
values for nouns are striking; this is the class of words typically thought to be
learnable by ostension, but the object referred to is not being manipulated in
the immediate situational context in over 50% of all cases.

Uncertainty in the input data

Figures 4.3 and 4.4 give the uncertainty scores per word in table 4.4 and per
part-of-speech category respectively. For the uncertainty, we see far less vari-
ance between the words and different parts-of-speech: the majority of words
seem to have an uncertainty between 8 and 12. This does not come as a sur-
prise: we can expect the amount of other events happening and object being
present to remain approximately the same across different categories. In other
words: most of the time, about the same amount of candidate meanings can
be expected to be present.

Nevertheless, it is good to obtain this kind of information, because it pro-
vides us with insight in the amount of uncertainty per word, and shows how
most simulation-based models actually do approximate realistic values for ref-
erential uncertainty. In Fazly et al.’s (2010) approach, for every sentence, an-



Modeling the acquisition of meaning 143

0.00

0.25

0.50

0.75

1.00

di
ch

t
go

oi
en

pu
zz

el
st

uk
ro

od
ta

fe
l

st
er

ro
nd

st
op

pe
n

ga
t

ge
el

gr
oe

n
vi

er
ka

nt
pa

ss
en

de
ks

el
bl

au
w

bl
ok

di
ng

ha
le

n
dr

aa
ie

n
st

uk
pa

kk
en

ge
ve

n op
ze

tte
n

dr
ie

ho
ek in

em
m

er
op

en ui
t af

ho
re

n
do

os
du

w
en

gr
on

d
in

st
ee

kp
uz

ze
l

ki
ep

en po
t

pu
zz

el
sc

hr
oe

ve
n

sp
el

tr
om

m
el

Word

N
oi

se

Figure 4.1: Noise per word.
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Figure 4.3: Referential uncertainty per word.

other sentence’s situation is added to the current sentence as uncertainty: sup-
pose we have sentences of five words, we will also have simulated situations
of ten semantic features, which contains about the same amount of referen-
tial uncertainty as the empirical data discussed here, with for every feature 9
non-target meanings being present.

4.2.3 Noise-reduction through understanding intentionality
The values for noise and uncertainty obtained in the previous section have to
be interpreted in the light of the assumption that the learner is only attending
to the interval of three seconds in which the utterance was produced. This
attentional scope is artificially narrow. However, if we want to make it wider,
we need a principled way of doing so. In this section, we work out a principled
extension of the attentional scope.

From behavioral experiments on word learning, we know that learners go
well beyond the spatiotemporally contiguous situational context in creating a
set of candidate meanings (Tomasello 1995, Sabbagh & Baldwin 2005). What
these experiments show, on a conceptual level, is that the child uses other
sources than the immediate environment to form the set of candidate mean-
ings. Most of these sources require complex mental models: understanding
that a word label applies to the object some person is looking for, but cannot
find, requires the child to engage in a rather complex line of reasoning. Imple-
menting these socio-cognitive mechanisms as computational models (or parts
of symbol-learning models) would be an interesting research avenue, but for
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the current purposes we take a simpler approach.
Here we follow Cross’s (1977) approach, viz. to take the situation between

the previous and the subsequent utterance to constitute the attentional scope
of the learner. This constraint can be motivated on socio-cognitive grounds.
Tomasello (1995) showed how children acquire verb meaning more readily
when the event follows the utterance than when it precedes the utterance,
and preceding situations in turn allow children to learn the verb’s meaning
better than ongoing situations.

We extend Tomasello’s (1995) insight to other categories as well, by gener-
alizing that the child will attend to all situations in the context in close temporal
proximity to the utterance. Once the child knows that the signal the caregiver
is emitting is meaningful, that is, is intended to refer to something, the child
can assume that some utterance U probably refers to something happening
after the previous signal, and before the next one was emitted. After all, if
another utterance U ′ intervenes at some time between the time of some situ-
ation S and the time of U , it is more likely that U ′ rather than U refers to S.
Otherwise, the speaker would not have emitted a novel signal.

Operationalization

For every utterance U at time t, all situations are included in the set of candi-
date meanings that fall in the inclusive interval between the highest t′ lower
than t for which there is an utterance specified on the one hand, and the low-
est t′′ higher than t for which there is an utterance specified on the other. We



146 4.2. The informativeness of the situation

t utterance situational features candidate meanings

1 you grab ball! {} {CHILD, GRAB, LETGO, DOLL}
2 {}
3 {CHILD, GRAB, DOLL}
4 where’s the ball? {CHILD, LETGO, DOLL} {CHILD, GRAB, LETGO, DOLL, BALL,

MOTHER, POINT, COOKIE}
5 {CHILD, GRAB, BALL}
6 good girl! {MOTHER, POINT, COOKIE} {MOTHER, POINT, COOKIE, CHILD,

GRAB, BALL, LETGO, DOLL}
now this one. {MOTHER, POINT, COOKIE} {MOTHER, POINT, COOKIE, CHILD,

GRAB}
7 {}
8 {CHILD, GRAB, COOKIE}

Table 4.5: A toy example of how the wide set of candidate meanings is formed.

use the same golden lexicon and evaluation metrics as in the previous sec-
tion. Again, we describe the noise and uncertainty observed in these wider
candidate meaning sets, and compare them with the noise and uncertainty
observed in the narrower candidate meaning set, where the candidate mean-
ings include only the features observed in the interval in which the utterance
was starting to be produced.

Table 4.5 gives a toy example of the way the wide set of candidate mean-
ings is constructed. For the utterance at t = 1, all features up to and including
those at t = 4 (when the next utterance is produced) are included. Similarly,
the utterance at t = 4 includes all features between t = 1 and t = 6 inclusive.
At t = 6, two utterances are produced. The wider scope for the first thus is
limited to the features in the interval t = [4, 6], as at t = 6 the next utterance
is already produced. For the second utterance, the interval for the candidate
meaning is t = [6, 8], because the previous utterance is produced at t = 6 and
t = 8 is the endpoint of the fragment.

Noise given a wider attentional scope

As we can see in figure 4.7, the referential noise is lower for most words. This
is a logical necessity: as the narrow set of candidate meanings is a subset of the
wide set, anything present in the former is also present in the latter. For 13 out
of the 41 words in the golden lexicon, about one third, there is no noise in the
wide situational context, and for another 12 out of 41, the noise is lower than
or equal to 25%. So, whatever the level of uncertainty, the features referred to
by the words in the golden lexicon are often present in the situational context.

Interesting differences can be found between the different parts of speech.
For three out of the four categories, viz. adjectives, prepositions and verbs,
the noise is reduced on average with more than 50%, yielding noise levels for
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Figure 4.5: Noise per word, for both the narrow and wide set of candidate
meanings.
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Figure 4.7: Uncertainty per word, for both the narrow and wide set of candi-
date meanings.

verbs and prepositions of around 20%. Nouns remain a category for which
much noise is present: in about 33% of all cases, the object referred to by the
noun is absent from the wide-scope set of candidate meanings. The low lev-
els of noise for verbs and prepositions suggest that the absence of situational
information may not be as problematic as Gleitman (1990) suggests, if we as-
sign the language-learning child a slightly wider, but nonetheless temporally
restricted scope of attention. The high levels of noise for nouns remain puz-
zling, as it is often thought that this category has a salience bias because of
temporal stability (cf. Gentner & Boroditsky 2001) and can be learned through
ostension. One caveat is that what are called adjectives in this model, are in
fact most often expressions referring to objects (de rooie, ‘the red (one)’, die
vierkante ‘that square (one)’), so that the noise for all expressions referring to
objects (either by using their class label, or some salient property), is not as
high as that for nouns.

Uncertainty given a wider attentional scope

Increasing the scope of attention for the learner also logically increases the
amount of uncertainty: if the narrow-scope set is a subset of the wide-scope
one, all features present in the former are also present in the latter. The wide-
scope set furthermore contains all features found within the narrow scope, so
this set is always larger. As is shown in figures 4.7 and 4.8, most words now
have somewhere between 12 and 18 non-target features present in the set of
candidate meanings, again with little difference between the different parts of
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speech.

4.2.4 Interpretation and implications
What do these descriptive statistics imply for computational modeling?
Firstly, the noise levels found in the annotated video data are higher than any
of the authors suggest, even when applying a simple, motivated extension of
the temporal width of the attentional scope of the learner. Nevertheless, the
values, given the wider scope, are not much higher than with the methods of
Siskind (1996), Fazly et al. (2010), and Alishahi & Stevenson (2010). What we
do find, is a difference between parts of speech, with nouns displaying the
most noise, followed by prepositions and other spatial relations, followed by
verbs, and with adjectives displaying the least amount of noise.

Concerning uncertainty, we did not find any striking differences between
the word classes. Given the narrow attentional scope, between 8 and 12 non-
target features were present for every word, whereas given the wide scope,
this figure rose to somewhere between 12 and 18. These numbers are hard to
compare directly to the uncertainty parameters used by Siskind (1996) and
Fazly et al. (2010), but show that their choice to use a relatively high amount
of uncertainty is warranted.

Importantly, all of these results cannot be generalized without several
caveats. First of all, the amount of noise and uncertainty depends upon the
coding schema for the semantic features and the choice of features in the
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golden lexicon. One can criticize these, and it is likely that the methods I used
here can be improved. However, in formulating a method for measuring the
noise and uncertainty, this research is among the first (together with, for in-
stance, Matusevych, Alishahi & Vogt (2013); see section 4.2.5) to assess the
level of noise and uncertainty in realistic situations of caregiver-child interac-
tion.

Secondly, the setting in which this interaction is found is relatively narrow.
We looked only at situations in which the caregiver and the child were playing
a game of putting blocks in wholes. The setting of a game greatly influences
the discourse, and other situational contexts may show different noise and
uncertainty ratings.

Finally, the values may apply only to Dutch caregivers interacting with
their children. Possible effects of cultural background are not included. Is it
only the amount of verbal interaction that varies, or do we also find differences
in how the utterances relate to the set of candidate meanings? I do not expect
there to be any reason for the latter claim, but as long as this has not been
investigated, it remains an assumption.

As for the simulation method, the amount of noise we incorporate has to be
somewhat higher than the figures reported in table 4.1. With a stronger focus
on uncertainty, I believe the problem of noise has been understudied and thus
underestimated. Furthermore, a simulation method would have to approxi-
mate the noise-parameter differently for the different word classes. Although
the sample I used is rather small and non-varied, we can assume the values for
the different part-of-speech classes to hold until we have better information.

4.2.5 The issue of situational interdependence

Situational interdependence in earlier research

So far we have been making the assumption that the set of candidate meanings
is an unordered set. However, the concepts can be structured into events, rela-
tions, their participants and their properties. This is information that can both
be beneficial and detrimental to the learner. As Siskind (1996) notes, when a
model recognizes that several parts of the utterance map to several parts of
one situation out of the many possible ones, it can narrow down the space
of candidate meanings for the non-mapped words of the utterance, because
it can infer that these refer to (non-mapped) parts of that situation. On the
other hand: events do not occur independently from each other (as noted by
Siskind (1996) as well), so several different events and their participants may
be highly similar to each other, which makes the task of identifying the correct
one harder.

All models allowing for referential uncertainty incorporate this insight into
their procedures for generating non-target elements in the conceptual space.
Fazly et al. (2010) include the semantic representation of the previous utter-
ance in the set of candidate meanings. The motivation for this procedure is
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that contiguous utterances probably express related meanings (as the topics
of discourse will more often stay the same than shift drastically), and that by
adding these meanings, we have more realistic uncertainty than if we added
the semantic representation of a random sentence.

Siskind (1996) does not use corpora of child-directed speech to simulate
semantic representations and hence uses generation methods to obtain these
representations. In his generation procedure, he acknowledges and addresses
this issue of situational non-independence. His solution is to split up the space
of candidate events (thus: the candidate meanings, as structured into events,
represented as predicate-argument structures) into a number of clusters, each
of some size k (in Siskind’s case, k = 5). Within each cluster, the different situ-
ations are similar to each other. For each cluster, one event is first generated at
random, after which it is copied to form the cluster k − 1 times, where in the
copying elements of the event can be replaced with some probability, which
he sets at 0.25. This results in the candidate meanings consisting of a number
of internally similar clusters of events.

Siskind’s method seems a good way to generate realistic uncertainty, cap-
turing, among other things, Gentner’s (1978) concern that there are many
ways to conceptualize the same event or partition it into different sub-events
(where in his method the different conceptualizations or partitions would
form the different members of a cluster). However, we can again estimate the
probability of a similar event happening on the basis of the annotated video
data.

The inquiry into the dependence of situations on each other was pioneered
by Matusevych et al. (2013), starting from similar concerns as the ones raised
in this chapter, viz. providing more realistic simulated data to evaluate com-
putational models of symbol acquisition on. Matusevych et al. (2013) used
hand-coded video data of caregiver-child interaction in order to measure the
overlap between different situations. Aspects of the situation were coded as
atomic features, and every situation at some time consists of a set of such fea-
tures. They then calculated the overlap between two subsequent situations by
dividing the intersection of the two sets of features by the union of those sets:

Overlap(St−1, St) =
|St−1 ∩ St|
|St−1 ∪ St|

(4.5)

Matusevych et al. (2013) measured the overlap between situations in natu-
ral interaction under two conditions. In the ‘all’ condition, all objects and situ-
ations that were present in the visual field were part of the situation, whereas
in the ‘active’ condition, only the objects manipulated in actions performed
by the caregiver or child, as well as those actions themselves, were part of
the situation. Using the Overlap measure, they showed that the overlap be-
tween situations observed in natural interaction is significantly higher (0.436
for the ‘active’ condition, 0.912 for the ‘all’ condition) than when the situations
are generated on the basis of the utterances (0.112 using Fazly et al.’s (2010)
method).
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feature type features

objects CHILD, MOTHER, TABLE, LID, BUCKET, HOLE, HANDLE,
FLOOR, AIR, HAND OF CHILD, COOKIE, BLOCK

properties RED, YELLOW, BLUE, GREEN, SQUARE, CIRCULAR, TRIAN-
GULAR, STAR-SHAPED

relations IN, ON, AT, NEAR, OFF, OUT, MATCH, MISMATCH
actions REACH, GRAB, POINT, LET GO, HIT, FORCE, POSITION,

MOVE, SHOW

Table 4.6: Feature types.

Obtaining continuation probabilities

Operationalization Apart from obtaining more general insight in the situa-
tional stability using Matusevych et al.’s (2013) Overlap measure, we would
also like to measure whether certain aspects of the situation are more stable
over time. To do so, we can calculate the probability of a feature being present
in the next situation given its presence in the previous situation. We call this
measure the continuation probability, and we can calculate this per semantic
feature. The continuation probability of a semantic feature thus is given as
follows:

Continuation(f) =
|Sf∈St∧f∈St+1 |
|Sf∈St |

(4.6)

In other words: the continuation probability of a feature is given by the
cardinality of the set of situations in which f occurs, as well as in the subse-
quent situation, divided by the cardinality of the set of situations for which f
occurs.

We gain further insight in the continuation of certain types of features by
grouping them according to the kinds of meanings they constitute. Table 4.6
presents the grouping into four categories: objects, properties, static relations
and actions.

Results Matusevych et al.’s (2013) Overlap measure gives us a value of 0.429.
This value is very close to the 0.436 reported for the ‘active’ condition in their
study, which is the most similar to the coding method used with this data. The
continuation probabilities per feature, for all features occurring more than 20
times in the data, are given in figure 4.9. We can see that there is quite some
variation in the probability of a feature being found in the next situation, with
the primary agents and patients of the situations (the mother, child and blocks)
constituting the features for which it is most likely that they will be found
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Figure 4.9: Probability of a feature being present in the next interval given
presence in the current interval.

in the subsequent situation as well. When we look at the values for the se-
mantic types (figure 4.10), we observe that objects (0.679) and their properties
(0.661) have a higher probability of being found in the subsequent situation
than actions (0.515) and static relations (0.493). For the last category, it should
be remarked that it was only coded when a static relation came into being,
assuming the relation would only be salient when it is novel. Obviously, this
is a design choice that influences the continuation probability.

4.2.6 Discussion
In section 4.2, I reported several findings concerning the informativeness of
the situation in which the child is trying to create symbolic pairs. One can have
many doubts regarding the exact operationalization of the concepts and the
method of studying these. The main point was, regardless of these specifics,
to disentangle a set of concepts that influence the way we think about the ac-
quisition of symbolic pairs. Recall that noise was the absence of conceptual
material expressed with an utterance, uncertainty the superfluence of such
material with respect to what the utterance conventionally conveys, and con-
tinuation the consecutivity of conceptual material. Each provides the learner
with problems, and there may not be one learning mechanism to solve them
all. These finer distinctions thus provide ‘tools for thinking’: one looks at the
problem of the acquisition of symbolic pairings differently if one has to con-
sider all three problems and they subdivide the bigger problem of learning
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Figure 4.10: Probability of features being present in the next interval given
presence in the current interval, averaged over feature types.

conventional symbolic pairings into conceptually coherent subproblems. One
contribution of this chapter is to shape this conceptual toolbox.

The division into the levels of conceptual, referential and propositional
noise can be seen as another step towards conceptual clarification within the
domain. Here too, the ambiguity is not hurtful a priori, but the finer distinc-
tions can help focus research on the informativeness of the situation. This dis-
tinction for instance allows us to consider the different sources underlying and
mechanisms solving different kinds of noise and uncertainty: the absence of
conceptual features at a sub-referential level, such as considering a ball as only
being a round object, and not a toy, may point to misperception and cognitive
biases towards certain regions of the conceptual space, whereas the absence of
a referent or even an entire event is more likely due to simply not observing
it, the former being more cognitive and the latter more perceptual. The super-
fluous presence of conceptual features may not be a problem at all (as long
as the correct referents are identified, communication succeeds), but when too
many entities and events are considered as referents, or when too many situa-
tions or propositions are considered to be expressed, we may investigate what
mechanisms help the learner overcome this problem.

The reason why one would want to do an empirical exercise with such a
toolbox, as I did in this chapter, is to recognize the different problems noise,
uncertainty, and continuation cause and to evaluate the severity of these prob-
lems. This requires datasets such as the ones we used, and annotation pro-
grams such as ELAN. Although it requires prohibitively much effort to anno-
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tate enough data manually to directly train computational models on, they do
provide a source for further analysis of the concepts acquisitionists work with.
In explorations such as these, we can see how technological and methodolog-
ical innovation may direct further theoretical development.

4.3 Towards a realistic simulation procedure

For computational modeling studies, we need high quantities of training data.
Because obtaining such amounts of data in the way described in this chap-
ter is labor-intensive, the only way to proceed seems to be to use a method
for artificially generating data, as the other models described have done. The
properties of the data generated by his procedure have to be close to the pa-
rameter values for noise, uncertainty and continuation we have found in the
empirical study presented in this chapter. In this section, such a method is
presented, based on Alishahi & Stevenson’s (2008) method, insights from the
simulation method Matusevych et al. (2013) developed, as well as the findings
of the study presented earlier in this chapter.

4.3.1 Earlier methods
Matusevych et al. (2013) investigate to what extent the noise, uncertainty and
overlap (or: situation stability) values in naturally occurring caregiver-child
interaction are similar to those found in methods where the features of the
situation are based on the utterance, as in Fazly et al. (2010), and Alishahi &
Stevenson (2010). Motivated by the big differences found on all three param-
eters, Matusevych et al. (2013) developed a simulation method for generating
situation-utterance pairs whose noise, uncertainty and overlap is highly simi-
lar to the observed values.

The method Matusevych et al. (2013) propose generates situations, with
actions and objects, as well as utterances, on the basis of the utterance and sit-
uation generated in the prior turn. The probabilities of the situation and the
utterance at some time t thus depend (among other things) on the utterance
and situation at t − 1. The data generated by this procedure have noise, un-
certainty and overlap parameter values similar to the ones observed in the
‘active’ condition (see section 4.3.2 for a description of the conditions).

It is the insight of generating chains of events that we adopt from Matu-
sevych et al. (2013). For the purposes of training a model of symbol acquisition
that includes meaningful grammatical constructions, we need a semantic rep-
resentation that goes beyond flat sets of features, as hierarchically structured
grammatical representations correspond to hierarchically structured semantic
representations. One generation framework that does so, is that of Alishahi
& Stevenson (2010). The method described there generates utterances on the
basis of the frequencies of a set of verbs, their argument structures, as well as
their arguments in three subcorpora of child directed speech (the three chil-
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Figure 1 shows a sample verb usage, consisting of a natural language
utterance paired with the semantic information that is inferred through
observing the corresponding event given to our model as a sequence of
words in root form.

The meaning of the utterance is represented as three sets of semantic
features:

. Semantic primitives of the verb: the basic characteristics of the predicate
are described as semantic primitives (e.g., {cause, become, rotating}).
Some of the primitives are general and shared by many verbs (e.g.,
‘movement’ or ‘act’), whereas others are verb-specific (e.g., ‘consume’
or ‘play’).

. Lexical properties of each argument: the inherent properties of the
argument (e.g., {woman, adult, person, . . . }). These lexical semantic
properties are independent of the event that the argument participates in.

. Event-based properties of each argument: the properties that the
argument takes on in virtue of how it participates in the event. Some
of these properties are similar to the proto-role properties proposed by
Dowty (1991) (e.g., ‘cause’ or ‘affected’) but others are verb-specific
(e.g., ‘eating’ or ‘falling’).

We explain later how we choose the properties for events and arguments
in our experiments.

3.3 General constructions as groups of verb usages

A construction in our model is a group of verb usages that are ‘similar
enough’, according to the probabilities over their features, to be grouped
together. The notion of ‘similar enough’ is described in detail in the next

Sara eat lunch

Semantic primitives: {act, consume}

Lexical properties: {woman, adult female, female, person, individual, somebody, human, ...}
Event-based properties: {volitional, affecting, animate, independently exist, consuming, ...}

Lexical properties: {meal, repast, nutriment, nourishment, sustenance, ...}
Event-based properties: {non-independently exist, affected, change, ...}

Figure 1. A sample verb usage: an utterance paired with the inferred semantic information.
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Figure 4.11: Semantic features extracted on the basis of the utterance in Al-
ishahi & Stevenson (2010, 59).

dren in the Brown corpus; Brown (1973)). Only the intersection of the thir-
teen most frequent verbs in the child-directed speech in each subcorpus of the
Brown corpus was used (i.e., the thirteen verbs go, put, get, make, look, take,
play, come, eat, fall, sit, see, give). The frequencies of the argument structures
was estimated by manually inspecting 100 instances of each verb, as were the
frequencies of the arguments (nouns and pronouns) in these argument struc-
tures.

The verbs, arguments and prepositions marking several valency relations,
as well as the valency relations themselves, are then used to determine the
meaning of the utterance. To do so, several resources are used (Jackendoff’s
(1990) event features, Dowty’s (1991) proto-roles, as well as event-specific
roles such as ‘eater’ and ‘moved entity’, and WordNet hyperonym chains for
objects (?)). Figure 4.11 gives an example of the sets of semantic features ex-
tracted on the basis of the utterance Sarah eats lunch.

Note that in this procedure the linguistic realization of arguments is not
by necessity isomorphic to the conceptual argument structure of the event: it
may be that the event has two participants, but only one is expressed linguis-
tically as an argument of the verb. This is an important property of the input
items, which we described as referential uncertainty, as linguistic descriptions
of situations often leave out participants.

Alishahi & Stevenson’s (2010) method includes a post-hoc procedure for
adding noise to the data, viz. by removing or replacing features. Adding un-
certainty and specifying amount of overlap is not something that can be done
yet with the generation framework of Alishahi & Stevenson (2010). However,
extending it to allow for the generation of a set of situations, with the appro-
priate amount of overlap, to be paired with an utterance, is a relatively small
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Linguistic distributions
from Brown corpus

Semantic representations 
from Jackendoff (1990), 

Dowty (1991), and WordNet

Input-generation 
procedure of Alishahi 
& Stevenson (2010)

Input-generation 
procedure of 

Matusevych et al. (2013)

Empirical findings 
presented in this chapter

Current input-generation 
procedure

Figure 4.12: An overview of the components of the current input generation
procedure.

extension.

4.3.2 Operationalization of the input generation procedure
Where do the input items for the model come from? It is not easy to just pro-
vide the learning model with a single source of input data; each method dis-
cussed in this chapter has pros and cons and the best option at this point seems
to combine the best features of each. Figure 4.12 summarizes the components
and main sources of inspiration for the procedure to be presented below.

Essentially, I extend Alishahi & Stevenson’s (2010) procedure. This proce-
dure generates pairings of a situational context and an utterance on the basis
of a semantic ontology as well as the distribution of linguistic items in child-
directed speech. As such, it provides us with utterances that are linguistically
realistic in their distributional properties, and situational contexts or concep-
tual representations that are (arguably) cognitively realistic in their content
(especially Jackendoff (1990) and Dowty (1991) claim so). The conceptual rep-
resentations are, however, not realistic in their distribution, as the model op-
erates under no uncertainty and as subsequent input items are generated in-
dependently of each other.

In order to resolve this, I extend Matusevych et al.’s (2013) line of reason-
ing: we generate input items as chains, where every subsequent input item
is probabilistically constrained by the previous input item. Every input item
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furthermore contains not just one, but a range of situations from which the
learner then has to choose.

How does this work? As mentioned, the child often finds herself in the sit-
uation where multiple situations are likely candidates to be referred to, and we
use the uncertainty = [0,∞] parameter to regulate the number of additional
non-target situations in the input item. The noise = [0, 1] parameter, on the
other hand, regulates the probability of the absence of the target situation in
the input item. In this procedure, I only operationalize noise and uncertainty
at a propositional level, for convenience’s sake. Future extensions of the pro-
cedure may involve operationalizing both parameters at the level of referents
or features.

Recall that we defined the input of the model to consist of pairings of an ut-
terance U and a number of situations S. How do we arrive at sets of situations
that are grounded in what we know about the situational context in which the
language-learning child picks up the symbols of her language? First, we create
chains of U, s pairs. As we saw in paragraph 4.2.5, subsequent situations are
not independent from each other. We therefore use the notion of the continu-
ation probability to generate every situation at time t, or st on the basis of the
situation at t− 1, or st−1. We define two continuation probabilities as param-
eters of the model: one for the objects or semantic arguments of the situation
(Pargument_continuation), and one for the semantic predicate or event node of the
situation (Pevent_continuation). With these probabilities, we sample a set of nodes
that should be present in st, or node_constraintst.

Figure 4.13 gives an example. From the situation at t − 1, each object and
the event is added to the set of node_constraintst with a probability of the
continuation parameters Pargument_continuation and Pevent_continuation respectively.
In this case, say that the event node and the first argument node are sampled.
They are then added to the set of node constraints. Using this set, we find all
possible situations that fulfill all constraints, i.e., that have both nodes in their
graphical representations. If we find this set to be non-empty, we sample one
situation from it at random, for example the one on the right side of figure
4.13.

It is very likely that every now and then we will run into cases where the
set of situations meeting all constraints is empty. In such cases, we back off
and use the set of all possible situations meeting all but one constraints. If that
set is empty too, be back off further to the set of all possible situations meeting
all but two constraints, and so on until we have a non-empty subset. Globally,
we could say that we sample from the subset of all possible situations maxi-
mally satisfying the node constraints. Given the subset of situations of which
the members maximally meet the node_constraints, we sample similarly to
Alishahi & Stevenson (2010), that is: on the basis of the corpus frequency of
the verbs, argument structures and nouns expressing the situation (Psituation in
figure 4.14).

Furthermore, as chains of events in reality do not continue forever, we
start sampling without an empty node_constraints with a certain probabil-
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situationt-1 situationt

sampled node constraints
{act, consume}

{meal, repast, nutriment,nourishment,sustenance,...}

{act,consume}

{volitional,affecting, 
animate,independently 

exist,consuming,...}

{non-independently 
exist,affected, 

change,...}

{woman,adult female, 
female,person,individual, 

somebody,human,...}

{meal,repast, nutri-
ment,nourishment, 

sustenance,...}

{act,consume}

{volitional,affecting, 
animate,independently 

exist,consuming,...}

{non-independently 
exist,affected, 

change,...}

{Adam,male,person,
individual, 

somebody,human,...}

{meal,repast, nutri-
ment,nourishment, 

sustenance,...}

{non-independently 
exist,affected, 
instrument,...}

{artifact,tool,
cutlery,

fork}

Figure 4.13: An example of sampled node constraints.

ity, called the reset probability Preset. Figure 4.14 schematically represents the
sampling procedure

This procedure yields a chain of U, s pairs. To get input items in the form
of U, S pairs, we divide up the chain of U, s pairs into subchains. From each
subchain, we then select one U, s pair to be the utterance and target situation
starget. All of the other situations in the subchain are then added to S. The target
utteranceU , as well as S constitute one input item. The division into subchains
is thus the place in the generation procedure where we can parametrize un-
certainty: the longer the subchain is, the more non-target situations there are
in s, and the higher the uncertainty is.

We measure the uncertainty by the number of unique non-target nodes in
S, similar to the way we did it in section 4.2.2. That is: given a target situation
starget, we take the cardinality of the set of all nodes in all non-target situations
of S that are not part of starget. The subchain is divided at the point where this
cardinality exceeds the pre-set value for uncertainty, a non-negative value re-
flecting the maximum number of nodes in non-target situations in S. We do
not differentiate between different referent types, as this would complicate the
procedure too much. Figure 4.15 illustrates two chains, one with high uncer-
tainty and one with low uncertainty.

This way of generating input data is in several ways similar to Siskind’s
(1996), the main difference being that his procedure selects several clusters of
similar situations (see paragraph 4.2.5), whereas a subchain of situations in the
proposed procedure is comparable to only one such cluster. Although several
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situationt-1 situationt

Node constraints

P
event continuation

P
argument continuation

P
reset

P
situation

Figure 4.14: The procedure for sampling a situation.

s1 s2 s3 s4 s5 s6

U1 U2 U3 U4 U5 U6

s7 s8 s9 s10 s11 s12

U7 U8 U9 U10 U11 U12

s1 s2 s3 s4 s5 s6

U1 U2 U3 U4 U5 U6

s7 s8 s9 s10 s11 s12

U7 U8 U10 U11 U12U9 U10 U11 U12

Low uncertainty

High uncertainty

Figure 4.15: Two chains of situations, one subdivided with high uncertainty,
the other with low uncertainty. ‘U’ denotes an utterance and ‘s’ a situation. The
grey utterances are non-selected. An input item consists of all black marked
objects within one rectangle.
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s4 s6

U4 U5 U6

s7

U7

s5

Figure 4.16: A noisy input item. ‘U’ denotes an utterance and ‘s’ a situation.
The situation corresponding to the selected utterance has been removed and
is not part of the input item.

streams of events are likely to take place when the child is interacting with the
caregiver, the child probably only attends to one such stream, namely the one
that is in the joint focus of the caregiver and child.

Noise After creating an U, S pairing, we can add noise. We can do so on two
levels. Similarly to Siskind (1996), we can remove the target situation from the
set of situations S, so that the learner will always identify a non-target situ-
ation as the situation the speaker intended to refer to. This would constitute
propositional noise. Conceptually, this means that the learner for some reason
does not consider the target situation as a part of the set of candidate situa-
tions S. This may be because she did not observe it, or because she thought it
to be communicatively irrelevant. The parameter that determines the amount
of situations with propositional noise is called Ppropositional_noise. Another ap-
proach would be to change the feature sets for some parts of the representa-
tion. This would constitute conceptual noise, and it corresponds to the situa-
tion in which the learner misperceives aspects of the situation. The parameter
that controls the probability of replacing the feature set of a node in the target
situation for another is called Pconceptual_noise. Figure 4.16 provides an example.

Parameter settings Using the parameters of this input generation procedure,
we can generate data that fits realistic parameter settings. One major caveat
is to what extent the results from the video data can be extended to apply
more broadly. After all, they are derived from a very limited pragmatic setting.
We can apply them directly, which would give the values in table 4.7, but in
the following chapters, we will also evaluate the model presented in those
chapters with other values as well, to see under what conditions the model
performs well.

Note that several findings are not reflected in the parameters, e.g., the dif-
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parameters value motivation

Pargument_continuation 0.7 Continuation for objects in 4.2.5
Pobject_continuation 0.5 Continuation for actions and relations in

4.2.5
Preset 0.05 None
uncertainty 15 Given the average of 15 non-target referents

under the wide condition in section 4.2.3
Ppropositional_noise 0.1 High estimate on the basis of the different

values for referential noise in the wide scope
condition (section 4.2.3)

Table 4.7: Parameters of the generation procedure and values obtained from
the video data.

ference between various parts-of-speech in the parameters settings of noise
and uncertainty. This would require us to operationalize these parameters
at the level of semantic referents (entities and events), which turns out to be
problematic given the current definition of the model, and is therefore left for
future research.

4.4 Directions for modeling symbol acquisition

The experiments on the annotated video data described in this chapter pro-
vide a very simple first approach to empirically grounding the assumptions
concerning the availability of meaning independently of language. To this
end, we made some simplifying assumptions. We were only concerned with
features that were actively being attended to, following research on joint at-
tention (Tomasello 2003), and we assigned hardly any socio-cognitive skills
to the learner, beyond assuming that whatever situations are present between
the previous utterance and the subsequent one constitute the set of candidate
meanings for the current utterance.

Furthermore, we assumed that the features were independent within a sit-
uation, thereby making no difference between bundles of features occurring
together (properties always being the property of an object, events always
having participants). This inherent structure of the situations may provide
valuable cues for the learner. We will exploit this structure in the modeling
work described in the later chapters.

Finally, starting from a set of semantic primitives is problematic. Although
one can argue for a universal set of features underlying the semantics of all
natural languages (Jackendoff 1990), typological research shows that such a
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set at least has to be very flexible to accomodate the distinctions made in dif-
ferent languages. Conceptualizing the space of potential meanings in terms of
continuous scales rather than discrete features may prove to be a more insight-
ful starting point (Bowerman 1993, Levinson, Meira, & the Language and Cog-
nition Group 2003, Majid, Boster & Bowerman 2008) for describing language-
specific categories. Beekhuizen, Fazly & Stevenson (2014) describe how we
can use these continuous spaces to study semantic error patterns in language
acquisition, showing how overgeneralizations can be predicted on the basis
of continuous spaces and the insight that groupings of situations with one lin-
guistic marker that are cross-linguistically more common, are probably also
easier to acquire than groupings that are cross-linguistically less common.

One can always push realism further. I believe, however, that the current
proposal at least provides more realism than input generation procedures
hitherto proposed. With a computational model satisfying many constraints
or desiderata imposed by usage-based theorizing and a realistic input gener-
ation procedure, we can now see how the model behaves and what kinds of
representations it acquires. These issues will be addressed in the subsequent
three chapters.





CHAPTER 5

Comprehension experiments

5.1 Measuring comprehension

The previous two chapters set out a computational model of early grammar
acquisition and a procedure for generating realistic input items. The time has
come to look at the behavior of the model given these two. In this chapter, we
look at the ability of the model to understand the utterances it processes. Re-
call that, at every turn, the model is presented with an utterance in the context
of a number of situations, one of which may be the situation the speaker refers
to. Can SPL, given noise and uncertainty in the situation, build up an inven-
tory of symbolic units allowing it to comprehend the utterances? This question
first requires us to define what understanding means in formal terms. That is:
how do we define and operationalize ‘comprehension’?

Because the input items are generated randomly, we run 10 simulations of
10, 000 input items. The latter number was established on the basis of prior
testing to be the amount of input items when most scores had become stable.
Recall that the referential uncertainty was found to be 15 entities (events, en-
tities) in section 4.3.2. Translating this to a number of situations, we set the
number of situations co-present with the utterance to be 6 (I will henceforth
call the propositional uncertainty parameter uncertainty). It is hard to estab-
lish a motivated number of situations, but given the overlap between situa-
tions (given the continuation parameters), having six situations co-present is
roughly equivalent to having 15 unique entities (not counting the roles). One
of these six situations is the target situation, while the other five are distractors.
Furthermore, we set the value for propositional noisr, Pnoise, to 0.1, meaning
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that in one out of ten situations, the target situation is absent.

5.1.1 General evaluation
A first measure of successful comprehension is the ability of the model to
identify the target situation starget out of all candidate situation S. Recall that
SPL always identifies a situation sidentified as the situation the speaker was
thought to refer to. The identification score of an input item, then, is 1 if
sidentified = starget and 0 otherwise. Because the noise is set to 0.1 and the
uncertainty to 5 situations, there are 6 situations in the situational context S in
90% of the cases, and 5 in 10%. In that latter 10%, the model can, moreover, not
retrieve the target situation, because it is simply absent. A chance baseline for
identification is therefore 0.9× 1

6 = 0.15, or one out of six for all situations in
which the model can be expected to identify the target situation. Similarly, the
maximum proportion of situations the model can correctly identify, or ceiling
level for identification is 0.9, as in 10% of the cases, the target situation is not
present.

The input items do not have a single correct mapping of the parts of the
utterance to the target situation, and without such a gold standard, we cannot
evaluate how well the linguistic analysis maps to parts of the situation. What
we can evaluate, however, is what proportion of the utterance the model has
processed, and what proportion of the identified situation (whether it is cor-
rect or incorrectly identified) is being mapped to by the best analysis. The
first of these, utterance coverage is given by the proportion of the utterance U
that is governed by rules other than rule iii, i.e., the rule for ignoring words.
In other words: the proportion of U that is assigned a proper function in the
analysis. LetUanalyzed be the substring ofU that is governed by rules other than
rule iii in the derivations underlying abest. The utterance coverage can then be
given by:

utterance coverage =
|Uanalyzed|
|U |

(5.1)

The second of these measures, situation coverage, works similary, but ap-
plies to the situation. The combined mappings of all constructions used in the
best analysis specify a subgraph of the (correctly or incorrectly) identified sit-
uation sidentified that is analyzed by abest. Let us call this subgraph sanalyzed. The
situation coverage is then given as the proportion of vertices of s that sanalyzed
constitutes, or:

situation coverage =
|V (sanalyzed)|
|V (sidentified)|

(5.2)
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Figure 5.1: Identification scores for 10 simulations over time.

5.1.2 Evaluating the used representations
Foreshadowing the study of the representations acquired by SPL in section 6,
we can also inquire what the representations are that the model actually uses.
For the grammatical constructions, two interesting parameters are their length
(in number of constituents) and their abstraction. From Brown’s law of cumu-
lative complexity, it follows that the inventory of linguistic representations
grows more complex over time, which I take to mean that the representations
become longer and the number of abstract slots increases. How this affects the
choice of representations that the model actually uses in comprehension, is
not evident from Brown’s law itself.

Furthermore, we cannot speak of true ‘evaluation’ of the used represen-
tations: after all, we simply do not know what representations an actual lan-
guage user employs when trying to comprehend an utterance. In section 5.3
we will look at the representations and mechanisms the model employs in an-
alyzing input items, and compare them to hypotheses within the usage-based
framework.

5.2 Global evaluation

5.2.1 Identification
As can be seen in figure 5.1, the model is increasingly able to identify the
correct situation, reaching an identification score between 0.7 and 0.8 after
10, 000 input items, with a stabilization around 2500 items. Given a chance
baseline of 0.15, the model performs well above chance, suggesting that it has
learned to function relatively successfully as a communicative agent. Given a
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ceiling level of 0.9, I consider the scores to be relatively close. Nonetheless, a
score of 0.7 means that the model still makes a fair amount of errors (3 out of
10 cases, one of which is due to the noise).

What are those cases in which the model erroneously identifies a situation
as the target situation? Looking at the errors after 10, 000 input items, it seems
that the only cases where the model makes errors are input items in which
there are multiple, highly similar situations, and the model does not have the
representational potential to tell them apart. This happens for instance when
the model has misidentified attribute words like pretty or happy as markers of
the role of that attribute, i.e., in an erroneous construction such as [ [ PERSON ]
[ GET / get ] [ CHANGE-ROLE / pretty ] ]. When SPL has learned this construc-
tion, and next encounters two situations, one of which involves someone get-
ting happy, and the other one involving that person getting pretty, the model
is unable to choose between them, and guesses one, with a 50% chance of be-
ing correct. Other cases involve correctly learned constructions, but situations
to which such constructions can equally well apply.

5.2.2 Utterance coverage
Secondly, how much of each utterance is covered by the parses at the various
times? Figure 5.2a gives the results over time. The model reaches a state after
approximately 1500 input items in which it is able to process almost the full
utterance. It has to be kept in mind that this rapid peak may also be due to the
fact that the model applies bootstrapping relatively eagerly.

When we split the values for utterance coverage over the correctly and
incorrectly identified situations (figures 5.2b and 5.2c), we can observe that
throughout the simulation, the analyses with incorrectly identified situations
have lower utterance coverage scores. This is due to two things. First of all,
there are (especially initially) several cases in which the model simply only
ignores all words. Secondly, the model, in several cases, misidentifies the situ-
ation based on a partial understanding of the utterance. Given the continuity
between subsequent situations, it is likely that the event and/or some partic-
ipants of one situation are present in the next situation as well. When such
a string of situations constitutes S, it is easy to see how the model, having
understood one or two words, maps the analysis to the wrong situation.

Interestingly, in all simulations, the model reaches a peak in the coverage of
the utterance before suffering from a slight dip in the utterance coverage, from
with it recovers afterwards. When we look at the scores split over correctly
and incorrectly identified target situations, we can see that the peak is found
slightly earlier for the incorrectly identified ones (around 1100 − 1200) than
for the correctly identified ones (around 1300−1400). The dip in the utterance
coverage mostly occurs at the time when the model is reaching convergence
in the correct identification of the situation. This means that just before the
convergence, the model is applying representations that cover more of the
utterance, but do so with less success. In the next stage, the model uses slightly



Comprehension experiments 169

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000
time

ut
te

ra
nc

e 
co

ve
ra

ge

(a) Utterance coverage for all input items.
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(b) Utterance coverage for correctly iden-
tified target situations.
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(c) Utterance coverage for incorrectly
identified target situations.

Figure 5.2: Utterance coverage for 10 simulations over time.
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shorter representations to analyze the utterances, covering slightly less of the
utterance, but making more accurate analyses. Finally, the model starts using
the longer representations again, but now in an accurate way.

What the model does here is reminiscent of a phase of syntactic creativity
that is only later constrained by more ‘fitting’ representations. As we will see
in section 5.3 below, and in the closer inspection of the learning mechanisms
in the next chapter, the period around 2500 input items is also the moment
when the model has just acquired abstract representations and has ceased to
apply the syntagmatization operation frequently. This means that by then the
potential for generalization, in the form of abstract constructions (construc-
tions with few semantic constraints, obtained through paradigmatization), is
present, and that afterwards the model ‘recovers’ from applying these abstrac-
tions too frequently by building up an inventory of more concrete construc-
tions that ‘pre-empt’ the use of the abstract constructions in the analysis. The
continuing accrual of relatively concrete constructions allows the model to
overcome overgeneralization. As such, this robustness provides an argument
for the apparent redundancy of storage, as many within the usage-based ap-
proach have argued (Langacker 1988, Beekhuizen, Bod & Verhagen 2014).

Let us have a look at an example that illustrates this. In one of the sim-
ulations, the model encounters, after some 200 input items, the utterance in
example (29). The utterance illustrates a construction which is relatively rare
(compared to other kinds of three-word utterances that are formed on the ba-
sis of a transitive construction). The optimal analysis the model assigns to this
utterance is given in example (30). It involves an abstract intransitive con-
struction and the bootstrapping of go. Some 300 input items later, the model
encounters the same utterance, but now uses the analysis in example (31). This
is a regular transitive construction, in which the action of a person on an ob-
ject is expressed. With this construction, SPL erroneously takes the utterance
to refer to a caused-motion event. Nonetheless, it covers the full utterance, as
opposed to the analysis with the intransitive construction.

Finally, after another 300 input items, the model has an intransitive motion
construction, as shown in example (32), which is combined with the known
meanings of go and out. From this example, we can glean that the model ea-
gerly applies abstract patterns to situations in which they lead to misinterpre-
tations. These errors are overcome once a larger inventory of constructions is
built up.

(29) you go out

(30) [ [ ENTITY ]→[ HEARER / you ] [ EVENT ]→( GO / go ) ]

(31) [ [ PERSON ]→[ HEARER / you ] [ CAUSE ]→( CAUSE-MOVE / go ) [ OB-
JECT ]→( ARTEFACT / out ) ]

(32) [ [ PERSON ]→[ HEARER / you ] [ EVENT ]→[ CAUSE-MOVE / go ]
[ ROLE ]→ [ DESTINATION-ROLE(LOCATION) / out ] ]
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(a) Situation coverage for all input items.
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(b) Situation coverage for correctly identi-
fied target situations.
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(c) Situation coverage for incorrectly iden-
tified target situations.

Figure 5.3: Situation coverage for 10 simulations over time.

5.2.3 Situation coverage
We find a highly similar pattern for the model’s understanding of the parts of
the situation that are being signified by the utterance, or the situation cover-
age in figure 5.3a. The model quickly achieves high levels of understanding of
the situation, with a stabilization around 1500 input items.

Again, we see a difference between the correctly and incorrectly identified
target utterances (figures 5.3b and 5.3c). For input items in which the model
correctly identified the target situation, the situation coverage starts out rel-
atively high (values around 0.75), whereas for input items with incorrectly
identified target situations, the situation coverage starts out low (values be-
tween 0.25 and 0.50).

An interesting future step would be to have the utterance and situation
coverage affect the reinforcement of the used constructions. Currently, the
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(a) Identification scores for nine unique noise and uncertainty settings over time given
Preset = 0.05.
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(b) Identification scores for nine unique noise and uncertainty settings over time given
Preset = 1.

Figure 5.4: Identification scores given various parameter settings.

probability of an analysis is simply penalized for not being able to parse parts
of the utterance, but if an analysis involving ignored words and ignored parts
of the situation is (despite this penalty) the best analysis, the used construc-
tions receive as much of an increase as when the analysis covers all of the ut-
terance and the identified target situation. If we allow the model to reinforce
the construction proportionally to their utterance and situation coverage, er-
roneous analysis, and hence (often) erroneous constructions will receive less
counts, and therefore be less likely to be re-used.

The important question is: would this merely be a ‘hack’, i.e., a trick to get
the model to work better, or is it in some sense a cognitively motivated opera-
tion? I do not intend to give a definitive answer to that question, but it seems
to me that the firmness of the belief that something is the right analysis is a
feature that can be used by a model to ‘bootstrap’ itself. Furthermore, it is not
a grammar-wide optimalization operation, but a local effect of the processing,
and therefore still in line with desideratum D2-8 (learning-as-processing).
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5.2.4 Robustness to uncertainty and noise
The parameters noise and uncertainty that I used in the experiments were set
on the basis of the findings in chapter 4. It would nonetheless be interesting
to see how the model behaves under different settings for these parameters.
Furthermore, I set the probability of generating the next event without taking
the previous one into account to 0.05. This means that subsequent frames are
very likely to look alike. However, we may wonder how the model behaves if
all frames are independently generated (i.e., Preset = 1).

In figure 5.4a, the identification scores for nine unique parameter settings is
given if we set Preset = 0.05. For each unique parameter setting, three simula-
tions were run. The noise values were set to 0, 0.1, and 0.3, and the uncertainty
values to 0, 5, and 10.

Looking at uncertainty first, we can see that the model trivially performs
at ceiling level (given each noise setting) if there are no non-target situations
present. Adding uncertainty causes the model to misidentify the target sit-
uation more often. However, even with 10 non-target situations present, the
model still identifies the target situation correctly in six out of ten cases under
the no-noise condition (where randomly guessing would yield a score of 0.09).
It might furthermore be that given high levels of uncertainty, more input items
would be needed to arrive at some level of communicative competence: the
slopes of the developmental curves for the settings noise = 0.1, uncertainty =
10 and noise = 0.3, uncertainty = 10 do not seem to have reached a point of
convergence after 10, 000 input items (unlike the other curves).

With noise, we see a similar pattern. Adding more noise causes the model
to learn erroneous representations and apply them, even in situations where
the target situation is present. However, even with three out of ten target
situations being absent, the model still identifies the target correctly, given
uncertainty = 5, around 58% of the cases (where the ceiling level of the per-
formance would be 0.70.

Setting the probability of reset Preset to 1 causes a more variable perfor-
mance of the model (see figure 5.4b). Whenever there is uncertainty present,
this has a greater negative effect on the scores than when Preset = 0.05. The
reason for this is that, when the model misidentifies a situation under the con-
dition Preset = 0.05, it is very likely that it still has a correct partial identifi-
cation: some referents, or the action given in the situation can be the same as
the one in the target situation. Nonetheless, the model acquires some correct
constructions even under the most dire settings for noise and uncertainty,
given that the performance with that setting (identification = 0.3 after 10, 000
input items) is still more than four times as high as the chance baseline for that
setting (i.e., one out of eleven of seven of out ten situations, or ±0.07).

This means that the model’s performance decays gracefully under increas-
ingly hard conditions. Even though we motivated the parameter settings, this
result supports the idea that SPL is a robust learner.
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5.3 Used representations

We have seen in section 5.2 that the model is able to comprehend sentences
relatively well. In this section, we have a look at the kinds of representations
the model uses in analyzing the input items. From a usage-based perspective,
several topics are of interest: the use of unanalyzed chunk-like structures, the
use of bootstrapping to analyze unseen words, the use of the concatenation
operation, the abstractness of the used constructions, and the types of abstrac-
tion (over verbs, or over nouns). A computational model like SPL allows us to
look at the representations used in the analyses.

5.3.1 The use of chunks
The usage-based approach claims that in many cases, language users operate
with representations that could be further analyzed, but that are not further
analyzed (Arnon 2010, McCauley & Christiansen 2014a). SPL learns lexical
constructions without knowing what the word boundaries are. That is to say:
it has the true word boundaries, but it may extract larger units as being a sin-
gle word, both through bootstrapping and cross-situational learning. We can
therefore expect the model to build up an inventory of such unanalyzed-but-
analyzable lexical constructions. We furthermore expect the amount of chunks
used in the analysis of input items to decay over time, as the more compo-
sitional constructions, used in a wider array of cases, will become stronger
and outweigh the chunks. However, we can also expect the model to con-
tinue using some chunks, as even adult language users use unanalyzed-but-
analyzable language material. It should be noted here that our definition of
‘chunk’ only covers a subset of what McCauley & Christiansen (2014a) con-
sider chunks, namely the internally unanalyzed ones. As we will see, for the
internally analyzed larger units (which I call ‘lexically specific constructions’),
we do find a behavior akin to the one reported in McCauley & Christiansen
(2014a), viz. that their importance in use increases over time.

All of these expectations are found in the behavior of the model. I oper-
ationalize the notion of ‘chunk’ to be any construction in which there is at
least one constituent consisting of more than one word. This includes con-
structions with more than one constituent, but for which (at least) one of the
constituents has more than one word as their phonological constraint. Figure
5.5 shows the frequency of the use of chunks over time. For the first 750 input
items, the model employs chunk-like constructions relatively frequently, after
which the number drops, but remains stable at around 4 used chunks per 250
input items.

What are the chunks the model uses? Table 5.1 gives the most frequently
used chunks for three simulations. We can see that in simulation 0, there are
mainly many chunks with play with. The chunk has been syntagmatized with
entity words like matches and truck to form grammatical constructions involv-
ing the chunk. Note that all chunks in simulation 0 are ‘correct’, in that they
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Figure 5.5: Frequency of the use of chunks over time (summed over simula-
tions).

rank simulation 0

1 [ PLAY(AGENT,PATIENT) / play with ] (265)
2 [ PUT(AGENT(SPEAKER)) / I put ] (33)
3 [ COME(AGENT,DIRECTION-ROLE(LOCATION)) / out come ] (25)
4 [ [ PLAY / play with ] [ MATCHES / matches ] ] (11)
5 [ [ PLAY / play with ] [ TRUCK / truck ] ] (8)

rank simulation 4
1 [ THEY / here come ] (8)
2 [ SPEAKER / they make ] (7)
3 [ BABY / baby take ] (3)
4 [ SPEAKER / we go ] (1)
5 [ [ SPEAKER / we go ] [ SEE / outside ] ] (1)

rank simulation 7
1 [ [ PUT / put them ] [ DESTINATION-ROLE / in ] [ ARTEFACT ] ] (78)
2 [ GIVE / she give ] (46)
3 [ [ SIT(SURFACE-LOCATION) / sit on ] [ ARTEFACT / it ] ] (44)
4 [ PUT(AGENT(HEARER)) / you put ] (29)
5 [ [ SIT / sit on ] [ SPEAKER / me ] ] (27)

Table 5.1: Most frequent used chunks for three simulations.
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do seem to capture the meaning of the words they contain.
The extraction of play with as a chunk is interesting. SPL has acquired play

with with the meaning PLAY(AGENT,INSTRUMENT). This can be considered to
be an error, but the word with occurs in the input generation procedure only
in one other, highly infrequent, construction, namely the [ [ ENTITY ] [ CREATE
/ make ] [ ENTITY ] [ SOURCE / with ] [ ENTITY ] ] construction (e.g., I made
a cookie with dough). The meaning of with in this construction is furthermore
different from that in play with. Therefore, the model ‘decides’ to use play with
essentially as a bi-syllabic word denoting the action PLAY and its roles.

However, play is also used without with, in utterances like you play game.
This gives the model the opportunity to learn the meaning of play by itself,
which it does: it also has a [ PLAY / play ] construction. However, as the play
with-construction covers more of the utterance, it is given preference over the
lexical play-construction in the analysis of sentences containing the substring
play with. We again find that the play with-chunk, and its syntagmatic exten-
sions are used thoughout development.

Table 5.1 also shows us that there is massive variation between simula-
tions. Both simulation 4 and 7 display less use of chunks than simulation 0.
This is interesting, as it gives us the well-known difference between analytic
and holistic learners (Bretherton, McNew, Snyder & Bates 1982) without pa-
rameters governing that particular behavior. That is: it is not due to a change
in the model that different amounts of chunk use are found in different simu-
lations. Rather, it is merely an effect of input order, and the chance of the sub-
sequent co-occurrence of certain utterances. If two utterances with play with in
it are found subsequently with different arguments, the model will extract a
play with-construction. Perhaps this can be taken to mean that the difference
in what seem like learning strategies (some learner learn many chunks, while
others learn few), may (also) be an effect of input order and dispersion of the
input items.

Note, finally, that there is variation in the kinds of chunks the model learns
in different simulations. In simulation 4, the acquired chunks all refer to the
wrong entity, and hence receive little reinforcement, whereas in simulation 7,
the most frequent construction involving a chunk is a semi-open construction,
with put them as its first constituent, followed by in, which has its own role,
followed by any ARTEFACT. Again, this is an effect of the coincidental juxta-
position of input items and the subsequent build-up of the grammar through
syntagmatization and paradigmatization, which to my mind is an exciting,
albeit rather extreme hypothesis following from usage-based theory that can
and should be further explored using both experiments and dense corpora.

5.3.2 The use of bootstrapping
The ability to bootstrap words into open constituents of constructions is a
mechanism that allows the model to analyze utterances for which it does not
know all the words. Suppose that the model encounters the utterance in ex-
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Figure 5.6: Frequency of the use of the bootstrapping operation over time
(summed over simulations).

ample (33). Having access to a [ [ HEARER / you ] [ SIT / sit ] [ LOCATION / on ]
[ OBJECT ] ] construction, all the model has to do is make the assumption that
microphone refers to the OBJECT in the LOCATION-role of the sitting event, and
it has learned a new word, as can be seen in example (34), which gives the best
analysis of example (33).

(33) you sit on microphone

(34) [ [ HEARER / you ] [ SIT / sit ] [ LOCATION / on ] [ OBJECT ]→ ( MICRO-
PHONE / microphone ) ]

Bootstrapping provides a strong mechanism for interpreting and acquir-
ing novel lexical constructions. However, the risk of allowing for an opera-
tion like bootstrapping is that the model will bootstrap too freely, assigning
meanings to word forms that already have well-entrenched meanings asso-
ciated with them. When we look at the number of bootstrapping operations
over time (figure 5.6), several things can be observed. First of all: the num-
ber of bootstrapping operations decreases over time, consistent with the idea
that the learner has increasingly many (lexical) constructions in her inventory.
This can be expected, as the expected number of novel, unanalyzed words
decreases over time (cf. figure 5.7). However, whenever a novel word type is
encountered, it is most likely to be bootstrapped into a slot of a (semi-)open
grammatical construction.

More interestingly, the amount of bootstrapping operations over words
that have been analyzed before (i.e., for which there is a constructional repre-
sentation in SPL’s grammar) decreases less rapidly than the amount of boot-
strapping operations over unanalyzed words. This means that the model boot-
straps words for which it already has a representation. In some cases, this
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Figure 5.7: Number of observed word types for 10 simulations over time.

happens in noisy input items (i.e., items in which the target situation is ab-
sent). When encountering the utterance you make picture, but the meaning
MAKE(MAKER(HEARER(YOU),MADE-THING(PICTURE)) is absent, but another
situation MAKE(MAKER(HEARER),MADE-THING(COOKIE)) is present, the mo-
del will bootstrap the word picture as meaning COOKIE. This is not very prob-
lematic for the model, as the bootstrapped construction [ COOKIE / picture ]
will rarely if ever be reinforced in other input items. However, this does point
to a design feature of the model that might be too strict, namely that it is forced
to to select a situation. If the model has a strong conviction the picture means
PICTURE, having no situation present that contains that conceptual element
should ideally force the model to consider the input item to be noisy and not
consider the analysis in which picture refers to PICTURE to be the best one.

In other cases, the grammatical construction used to bootstrap the word
is erroneous. In the same simulation, the model has acquired a construction
[ [ PERCEIVE / you look at ] [ PERCEIVER-ROLE ] ], where the second constituent
refers to the PERCEIVER role. When encountering you look at picture, the model
considers picture to refer to that agent role (as if it were a nominative case
marker, essentially), and bootstrap a construction [ AGENT-ROLE / picture ].
Again, this construction will be used in few subsequent analyses and therefore
not be reinforced, but it does lead to an erroneous analysis of the mapping
between the utterance and the identified situation. Here too, the fact that the
model does not take the reinforcement of a [ PICTURE / picture ] construction
can be considered a weakness in the design of the model.

This analysis gives us an insight in the complex interaction of mechanisms
that must take place when a word is being bootstrapped. On the one hand, we
have the selection preferences of a slot of a construction and the number of
other elements that can fill that slot. The higher this number is, the lower the
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probability of bootstrapping something new in the slot. Interestingly, this idea
runs counter to Bybee’s (2006) ideas about high type frequencies (many other
constructions being able to fill a slot) making a slot more extendable. How-
ever this works, there is a top-down effect of the slot of the construction. On
the other hand, there are bottom-up effects of the word. If the hearer knows
with a lot of certainty that a word already refers to very different meanings,
he would find it very unlikely that the speaker uses it now to refer to this
particular concept. It would be as if a speaker and a hearer are looking at a
painting, and the speaker says what a nice book. The hearer would not, in this
situation, bootstrap book in the open slot of a what a nice-X construction, be-
cause the word form book is already used in lexical constructions referring to
BOOKs. In this case, the hearer would come to the conclusion that the speaker
is an uncooperative communication partner. However, if the speaker said what
a nice fammer, the hearer would be prone to bootstrap the meaning of the word
fammer as relating to something concerning the painting or maybe an object
depicted in it. Finally, there are cases where the use of a word seems like an
extension of the meaning. When the speaker says what a nice Vermeer, and the
hearer does not know that one can use the name of an artist metonymically
for the product of their artistry, the hearer can still make the inferential step
that Vermeer refers to a product of Johannes Vermeer. A new lexical represen-
tation is then added, linking Vermeer to the concept PAINTING-BY-VERMEER.
The bottom-up effects of the bootstrapping thus also concern the closeness of
the bootstrapped meaning to one of the known meanings, but this is likely the
way radial concepts in lexical meanings emerge (cf. Lakoff 1987).

Concluding, the bootstrapping operation as implemented in SPL is a naïve
one, that does what it should do, namely learn new words, but that also ap-
plies too frequently and in an underconstrained way. A possible solution is to
not only take into consideration the top-down preferences of the slots of the
grammatical constructions, but also the bottom-up knowledge concerning the
other constructions in which the word form is already used.

5.3.3 The use of concatenation
Concatenation is the processing mechanism that allows the model to form a
more encompassing interpretation of an utterance on the basis of partial anal-
yses. SPL explicitly frames concatenation as a back-off device for cases when
no better (i.e., construction-based) analysis can be found: the probability of the
rule leading to a concatenation is a small, smoothed probability depending on
the number of constructional analyses that can be given. As such, we can ex-
pect its use to decrease over time. Figure 5.8 shows that this is indeed the case:
the number of concatenations decreases over time.

A successful case of concatenation is given in the analysis in example (35).
When processing the utterance you put animal in it, SPL uses a construction
[ [ HEARER / you ] [ PUT / put ] [ ENTITY ] [ GOAL-LOCATION / in ] ], which
is combined with the lexical [ ANIMAL / animal ] construction. This derivation
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Figure 5.8: Frequency of concatenation operations over time (summed over
simulations).

is finally concatenated with the [ THING / it ] construction. Note that the con-
catenation has meaning beyond the sum of the elements: the THING-meaning
is bound to the referent filling the GOAL-LOCATION-role.

(35) ( [ [ HEARER / you ] [ PUT / put ] [ ENTITY ]→[ ANIMAL / animal ]
[ GOAL-LOCATION / in ] ] [ THING / it ] ) |
PUT(PUTTER(HEARER),PUT-THING(ANIMAL),
GOAL-LOCATION(THING))

The design feature of concatenation as a back-off device can be doubted,
however. Perhaps using something akin to concatenation is a regular way
of processing utterances (cf. Frank et al. 2012), in which case the probability
model would have to be adjusted. However, there still seems to be a differ-
ence between non-conventional concatenation, as implemented in SPL, and
conventional but non-hierarchical processing. I leave it to the proponents of
the strong non-hierarchicality thesis to develop a working model that involves
meaning.

5.3.4 The length and abstraction of the used representations
At the heart of the usage-based perspective on the acquisition of grammar is
the claim that grammatical representations are built up in a gradual, bottom-
up fashion. As I argued earlier, this is a cognitive take on Brown’s (1973)
(observational) law of cumulative complexity, which holds that more com-
plex representations emerge in development after, and on the basis of, sim-
pler ones. For grammatical representations, we can take this to mean that the
representations become increasingly long and increasingly abstract. However,
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we can wonder if this implies that the used representations become more ab-
stract. After all, the language-learning child also encounters more concrete
instances of grammatical patterns, which, under the usage-based perspective,
leave traces in the mind as well. Here, the old pair ‘competence and perfor-
mance’ (Chomsky 1965) comes in handy. Even within a usage-based model,
the potential of a model may differ from what is doing most of the time.
Whereas a model may have acquired the representational potential to make
all sorts of generalizations, it may be the case that the more abstract ones are
only needed in few cases, because the more concrete representations pre-empt
the use of the more abstract ones in use. The competence of the model is then,
of course, something derived from, or immanent in the processing involved in
the performance, but conceptually, we can describe the learner’s global com-
petence distinctly from its performance in specific cases. Again we see a case
of a conceptual or analytical distinction that is ontologically non-distinct, but
may methodologically or analytically be separated. Applied to a usage-based
perspective, it furthermore corresponds to the distinction between a static and
a dynamic take, where the competence describes the state of the language
user’s potential and the performance the actual use in processing of that com-
petence.1

Let us start with SPL’s performance first. In chapter 6, we explore the
competence side in more depth, but here, we look primarily at the nature
of the constructions that the model uses to analyze the utterances. In figure
5.9, the frequency of constructions of various length and abstraction over time
is given. The first thing worth noticing is that the longer representations are
only used to the full extent in the 1500 − 2000 bin for length-4 constructions
and the 3000− 3500 bin for length-5 constructions. Length-2 constructions are
used ‘too much’ over the first 2000 input items, which is when they are used
to analyze utterances for which length-3, 4 or 5 constructions would be most
suited. We see a similar pattern for length-3 constructions, being overused in
the 500 − 1000 bin. All in all, this means that early on, SPL analyzes input
items with longer utterances by means of shorter representations, concatena-
tion, and ignoring words, and that the development to higher-arity construc-
tions depends on the use of these lower-arity constructions.

For the abstraction of the used representations, the analysis is slightly more
complex. The end state, after 10, 000 input items, is that the longer the used
representation is, the higher the chance of it being a more abstract one. About

1Allowing myself a small digression: the idea that competence and performance are ‘imple-
mented’ in the minds of language users as distinct ‘things’ can be seen as a case of the reification
of an analytical distinction into an ontological one whereas the distinction may equally well be
viewed as two perspectives on the same object. As such, it constitutes a case of Gigerenzer’s (1991)
tools-to-theories heuristic, in which tools of analysis shape the conception of the objects of study.
Vice versa, going from the denial of this ontological distinction to a strict what-you-see-is-what-
you-get approach (more formally: the analyst’s inference of the most likely grammar on the basis
of behavioral patterns) is equally fallacious as it misses the logical possibility that the learner has
a more abstract representational potential, but simply not uses it because more concrete construc-
tions pre-empt the abstract ones in all but few cases.
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(a) Frequency of length-2 constructions.
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(b) Abstraction of length-2 constructions.
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(c) Frequency of length-3 constructions.
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(d) Abstraction of length-3 constructions.
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(e) Frequency of length-4 constructions.
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(f) Abstraction of length-4 constructions.
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(g) Frequency of length-5 constructions.
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(h) Abstraction of length-5 constructions.

Figure 5.9: Frequency and abstraction of constructions of various length used
in comprehension over time (summed over simulations).
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half of the length-2 constructions have no open slots, whereas for length-5 con-
structions this figure is around 20%. This, of course, is an effect of the kinds of
utterances they are employed for. There are simply fewer unique long utter-
ances than there are unique short ones. Nonetheless, if this effect is realistic,
it has interesting consequences for the nature of the representational system.
It means that the longer a construction is, the higher the likelihood of it being
more abstract, all other things being equal. Perhaps this can be taken to mean
that caused-motion constructions and prepositional datives have abstract rep-
resentations that are more reinforced than intransitives and transitives. With
the latter two being researched less intensely than the former, this question
cannot be straightforwardly answered, but it would be an interesting research
avenue.

Turning to the development over time, we can see that the length-4 and
length-5 constructions used early on are mostly very concrete, and that they
become more abstract over time. SPL employs them, despite building up an
ever-growing inventory of more concrete patterns that can be re-used. To give
an example, the model encountered the utterance you put her in here after some
9700 input items. The model has relatively concrete constructions available to
analyze this utterance (e.g., [you put ENTITY in ENTITY], and even [you put
ENTITY in here]), but it analyzes the utterance using the abstract construction
in example (36), in which only put is lexically specified.

(36) [ [ PERSON ] [ PUT / put ] [ OBJECT ] [ LOCATION-ROLE ] [ ENTITY ] ] |
PUT(PUTTER(PERSON), MOVED-OBJECT(OBJECT),
LOCATION-ROLE(ENTITY))

Why does the model do so? Given the high diversity in sentences express-
ing a caused-motion event, we can expect the more abstract constructions
to be the most-concrete used construction, and therefore get reinforced rela-
tively frequently. Furthermore, the words used in these slots are also seen in
many other contexts, and are therefore also well entrenched. With the high
count, and hence high probability, of the abstract construction, and the well-
entrenched lexical items, the analysis involving a more abstract representa-
tion thus becomes more likely than ones involving less abstract representa-
tions.The effect here is due to a dynamic version of Bybee’s (2006) notion of
type frequency: the more the abstract representation is actually used to an-
alyze unseen utterances (i.e., utterances with novel word types – at least in
that slot), the more it gets entrenched, and can therefore be used to analyze
utterances for which in principle more concrete representations can be used.

Given that the model uses a variety of concrete and abstract constructions,
what are the kinds of abstraction that are useful in language comprehension?
Recall that under Tomasello’s (1992) hypothesis, young learners operate with
verb-island constructions, consisting of verbs and their highly-specific roles.
Dodson & Tomasello (1998) added the possibility of learners using argument-
frame constructions, in which the arguments but not the verb is specified.
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(a) Verb-islands among length-2 construc-
tions.
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(b) Verb-islands among length-3 construc-
tions.
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(c) Verb-islands among length-5 construc-
tions.
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(d) Verb-islands among length-5 construc-
tions.

Figure 5.10: Frequency verb-island and non-verb-island constructions of vari-
ous length used in comprehension over time (summed over simulations).

This especially happens with pronouns, in hypothesized constructions such
as [ [ SPEAKER / I ] [ ACTION ] [ OBJECT / it ] ].

The model gives peculiar results when we look at the amount of construc-
tions with lexically-specific verbs slots being used (figure 5.10). The length-4
and length-5 constructions that the model uses initially all have verbs speci-
fied. Afterwards, the model discovers that there is regularity in the variation
(e.g., you can PUT a ball on the table, but also TAKE it from the box), and some
constructions with abstract verb slots are used. However, with the increasing
accrual of more concrete patterns that (crucially) involve a specific verb, the
model reverts to using verb-island-like constructions. These verb-island con-
structions potentially have all other slots of the construction being abstract (as
in example (36) above), but the verb is fixed. Before jumping to conclusions, it
should be said that the model has a low number of verbs occurring in length-
4 and length-5 constructions, and the type frequency of the verbs in this slot
therefore is rather low. Perhaps if the model were exposed to a wider array of
verbs in these slots, it would use constructions with abstract verb slots more
often.
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When we look at length-3 constructions, next, we see that the abstract-verb
constructions form a majority. Again, I believe this is an effect of the nature
of the distribution of verbs. As many verbs occur in length-3 constructions,
and as several more are at least at some point used in length-3 constructions
in comprehension, the constructions with abstract verb slot receive more re-
inforcement, and are hence more likely to be used later (again, despite there
being more concrete patterns in the models representational potential as well).

Length-2 constructions, finally, look more like length-4 and length-5 con-
structions than length-3 constructions. Initially, the model uses some abstract-
verb constructions, but these are given up in favor of verb-island constructions
later. Here too, I believe this effect is due to the nature of the distribution of the
verbs in the input: there are few verbs that occur in the intransitive pattern,
and therefore the model finds little use for a general intransitive.

5.4 Desiderata and explananda

In chapter 2, I set out several desiderata for a usage-based computational
model. In chapter 3, I presented the Syntagmatic-Paradigmatic Learner that
was intended to meet these desiderata. Using the parameter settings obtained
through the study in chapter 4, the present chapter constitutes a first evalua-
tion of the model in terms of its behavior in comprehending utterances. These
parameter settings are both stricter than most models’ (there is more noise
and uncertainty; cf. the comparison in section 4.2.1), and allow for more infor-
mative sets of candidate situations because of the overlap between situations.
The overlap between situations constitutes a problem in identifying the cor-
rect target situation, but also makes failing to do so less problematic – when
the model identifies the wrong situation, it still gets some mappings between
the utterance and conceptual elements right.

Given this input procedure, we have seen in this chapter how SPL is in-
creasingly able to understand the input items it processes. Not only does it
correctly identify the target situation more frequently (around 70− 80% of the
cases after 10, 000 input items, given a baseline of 15% and a ceiling of 90%),
it also is increasingly able to analyze the full utterance and map it to many el-
ements of the situation. Looking at the mechanisms and representations used
by the models provides insight in the way SPL achieves this. By recogniz-
ing multiple words and concatenating them, the model is able to understand
larger parts of the utterance. The trace these analyses leave, via syntagmati-
zation, leads to the first grammatical constructions, which are then abstracted
over if multiple similar ones have been seen. The (semi-)abstract constructions
further bolster the potential for analyzing input items by allowing for novel
combinations of constructions, but also by enabling the model to interpret un-
seen words through bootstrapping.

We are now in the position to evaluate the model against several of the
desiderata and explananda. In chapter 3, I argued how the model in princi-
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ple satisfies these, but we would like to know if that promise is made true by
the behavior of the model. Concerning desideratum D2, being able to do both
comprehension and production, we have seen that the model performs well
in the comprehension experiment given a level of noise and uncertainty that is
higher than that of most models, but with a set of candidate target situations
that consists of highly similar situations, thereby aiding the model as well.
This points to an often overlooked aspect in the discussion of referential uncer-
tainty: even if the child picks out the wrong situation, or the wrong conception
of a situation (as in multiply perspectivizable events, e.g., chase/flee), it will
get many other things right, which eventually helps the language-learning
child in verbally getting off the ground.

We have seen some remarkable effects of the quantitative grounding (D4-2)
of the representational system in the usage events. Besides the obvious effects
of entrenchment of more frequently processed representations, we found that
the used length-3 constructions tend to be more abstract than the other con-
structions. I identified two reasons for this. First, the number of verb types
in the ‘transitive’ construction is simply higher than that of the other con-
structions. Second, many length-4 and length-5 constructions develop from
the length-3 constructions (using a ‘transitive’ construction, a lexical item and
concatenation). The effect of this is that even more verb types are observed
in length-3 constructions, thus reinforcing the abstract representation of this
construction further.

This brings us to the cumulative complexity observed in the model (D6-
1). We have seen that the longer constructions emerge later in development
and are formed on the basis of shorter representations with concatenation.
Abstract constructions show up rather early in development, but their use
becomes increasingly constrained by more concrete ones, unless the abstract
construction and the lexical constructions filling the slots are reinforced to
such an extent that they outweigh the use of more concrete representations. As
such, SPL is an avid generalizer (cf. Naigles et al. 2009), but I do not consider
this property to be contrary to the usage-based perspective. It may be the case
that language-learning children are not conservative in forming abstractions,
but rather that their use of abstractions becomes increasingly constrained by
the growing inventory of more concrete constructions. At the stage where the
model has abstractions, but not many concrete constructions ‘pre-empting’
them, abstract patterns are used. This may also be the stage where overgener-
alizations are found, a topic to which we will return in chapter 7. It seems that
the distinction between a learner’s (usage-based) competence and her perfor-
mance is a relevant conceptual distinction: a potential for abstraction does not
entail its use. This view, again, is not at odds with the usage-based perspec-
tive: all representations and their degree of entrenchment is still grounded in
the experienced usage events.

A further property of SPL in which it differs from the other usage-based
computational models, but similar to Kwiatkowski’s (2011) model is that it ac-
quires an inventory of both lexical and grammatical constructions at the same
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time (D3). Unlike in Kwiatkowski’s model, the set of grammatical represen-
tations is unconstrained, but SPL fares well in solving this daunting task. All
processing and learning mechanisms involved are needed for this task: cross-
situational learning to get the model started, various forms of reinforcement to
find out which representations are the most useful, concatenation to build up
the grammatical constructions, abstraction to generalize, and bootstrapping
to acquire lexical constructions quickly.

Despite the availability of all mechanisms at all times, some are used more
in early development than others. When we look at the processing mecha-
nisms, we can observe that the bootstrapping operation peaks in frequency
early, but not at the beginning of development, and that the use of concatena-
tion decreases over time. In this sense, the model reflects the insights of Hol-
lich et al. (2000), who argue that various cues and various mechanisms may be
at work at various times in development. Again, the competence-performance
distinction is insightful: all mechanisms discussed are in principle available,
but it is their use that varies over time (D6-4).

Two of the explananda are partially satisfied in the comprehension exper-
iment. We have observed that verbs behave conservatively in the fact that
most constructions used in the comprehension process are verb-island con-
structions (E1). The model has the potential for using other, non-verb-specific,
constructions, but does not do so, suggesting that SPL finds it more useful
to structure its comprehension around verb-island constructions rather than
more general verb-argument constructions. However, the model does have
constructions available in which the verb is not lexically specified.

Obviously, SPL does not get everything right, and several aspects of the
model are worth reconsidering in future research. One that should be pointed
out here is that the current implementation is highly inefficient when an ut-
terance is analyzed without any situational context present. We should expect
the model to be able to do so at some point. Simulating this artificial situation
requires some changes to the model (e.g., allowing it to build up situational
representations within the space of all possible situations, rather than 2 or 5
or 10). Practically, this would be highly inefficient. Perhaps the design choice
present in Chang’s (2008) model, viz. to have a layer of constructional mean-
ing first being inferred, which is only then resolved against the situational
context (which, in the case of this hypothetical experiment would be absent),
resolves this, and it does not seem like a major step to change the model to
share this design feature. A downside of that feature, however, is that the prag-
matic resolution only takes place post-hoc, that is: after the semantic analysis
has been completed. A realistic analyzer would do this online. That is to say:
after hearing the man, an analyzer would have to resolve it already in the sit-
uational context (“what likely definite reference to an instance of the category
man can be given here?”), rather than it having to wait until the full utterance
is processed.

SPL functions well as a model of acquiring communicative competence
when comprehension is concerned. However, we would also like to know
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how well it satisfies the second half of desideratum D2, namely production. I
discuss several aspects of production in chapter 7. Before we go there, I would
like to dwell on the structure of the representational knowledge of the model
for a bit in chapter 6. In the present chapter, a revised take on the competence-
performance distinction came to light. As one of the goals of construction
grammar, or any cognitive theory of language, is to understand the represen-
tational knowledge or competence of a language user, it may be insightful to
take a ‘look under the hood’.



CHAPTER 6

Entering the black box

In chapter 5, we looked at the behavior of the model in understanding the in-
put items that it processes. At several points, I referred to the idea that SPL’s
potential for analyzing utterances may go beyond the behavior that it shows
in comprehending input items. Unlike with human subjects, a computational
model such as SPL allows us to ‘take a look under the hood’, and find out what
the inner workings of the model are. In this chapter, I explore two of these.
these. First, it is interesting to inspect the frequency with which the learning
operations are applied. Despite their availability thoughout ontogenetic de-
velopment (cf. desideratum D6-4), their actual use may vary. What does this
tell us about the actual use of the model’s processing competence? Second, we
look at the representations learned by the model. Recall from chapter 5 that
it may be that the model uses only a limited subset of all representations it
has acquired. In that chapter, I suggested that this be taken as the usage-based
instantiation of the (representational) competence-performance distinction. In
this chapter, we look at the representational competence of the model.

6.1 Learning mechanisms

We can inspect how frequently the various learning mechanisms are applied
by the model. A first reason to do so, is that it provides us with further in-
sight in the way the model works. Can the application of learning mechanisms
for instance be linked to the law of cumulative complexity? Furthermore, any
patterns we detect in the application of the learning mechanisms can inspire
novel hypotheses about the course of language acquisition in the child.
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6.1.1 Lexical learning
The hypothesis that the available mechanisms vary in their importance has
been framed most clearly by Lila Gleitman in various publications (Gleitman
1990, Gleitman et al. 2005). Although cast within a nativist framework, the
idea can be easily transferred to a usage-based one. In Gleitman’s account,
simple associative learning is a capacity available at any time in ontogeny,
but its use may be restricted to early development. Afterwards, after all, the
learner has acquired several grammatical representations that it may use in a
top-down way to analyze a substring of the utterance for which it does not
have a lexical representation yet. Gleitman calls this ‘syntactic bootstrapping’,
and the process is instantiated in SPL as the bootstrapping operator of rule vi,
whereby any phonological string can be fit into an non-phonologically spec-
ified slot of a construction. If the analysis involving the application of boot-
strapping turns out to be the best one, a lexical construction containing the
bootstrapped phonological string is added to the grammar.

When we look at the relative importance of the various operations in-
volved in the acquisition and reinforcement of lexical constructions (figure
6.1), we can see a very similar picture to Gleitman’s emerging. Light-colored
cells depict a high amount of applications of the learning mechanism, and
dark-colored cells a low amount. I counted an application of cross-situational
learning, bootstrapping and adding a most-concrete construction only if the
representation with which the grammar was updated was not already in the
grammar. In other words: I counted the first three mechanisms only if they
gave rise to a novel representation.

Simple, associative cross-situational learning is used only in the very early
stages, up until about 250 input items, after which it completely falls out of
use. After having processed very few input items, the model seems to have
built up a repertoire of grammatical constructions allowing it to bootstrap
novel lexical constructions. This mechanism remains being used by the model
to obtain novel lexical constructions throughout development, although less
frequently (recall that the model has seen almost all word types after some
1500 input items). This means that over the whole of development, most lex-
ical constructions are obtained by bootstrapping them on the basis of the lin-
guistic knowledge applied to the rest of the utterance rather than by a form of
cross-situational learning.

The mechanism whereby the model adds a new representation on the basis
of the most-concrete construction given an existing lexical item rarely occurs.
This does not come unexpected: most words have a fixed set of semantic fea-
tures, and hence abstractions over words are typically not very useful to the
model. Hence, these abstractions are few, and so are any novel most-concrete
construction mccs learned on the basis of analyses involving these abstrac-
tions.

Of course, one caveat here is that I only implemented one form of cross-
situational learning. Nonetheless, I believe this result provides us with an in-
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(a) Cross-situational learning.
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(b) Bootstrapping.
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(c) Update of a lexical most-concrete construction.
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(d) Reinforcement of a lexical most-concrete used construction.

Figure 6.1: Frequency of learning mechanisms involved in the acquisition of
lexical constructions over the first 1000 input items.
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teresting line of further study, namely the exploration of the ways in which
lexical constructions, or words and their meanings are acquired and the ques-
tion which sources of information are used over developmental time. The results
from SPL, in line with Gleitman’s idea, suggest that a combination of knowl-
edge of the rest of the linguistic structure with some form of top-down pro-
cessing, may be dominant in later development, whereas associative learning
may prevail earlier on.

An interesting pattern, finally, that we can glean from these graphs, is that
in simulation 5, relatively few reinforcements of the most-concrete used con-
struction are made. As we will see, this is because the model reinforces most-
concrete used grammatical constructions instead. I postpone the analysis of this
observation to the next section.

6.1.2 Grammatical learning
As for the acquisition of lexical constructions, we find variation in the fre-
quency of use of various learning mechanisms for grammatical constructions
over time (figure 6.2). Syntagmatization is mainly found in early development,
after which SPL starts abstracting over the obtained grammatical representa-
tions. Later syntagmatization operations likely involve the extension of three-
argument to four-argument patterns, and we will look at this more closely in
the latter two sections of this chapter.

Learning from most-concrete constructions is also a learning mechanism
that takes place mostly early in development, but its use over time decays
slower than that of syntagmatization. Recall that with the addition of a most-
concrete construction mcc, the model creates a trace of the processed exem-
plar. As novel input items (i.e., input items that – as a whole – have not been
seen before) will be presented to the model throughout development, adding
a trace of the analysis of that novel input item is something the model will
keep doing. Of course, the number of novel utterances will decay over time,
and because of that, the amount of mccs.

An interesting finding for abstraction is that, unlike the other mecha-
nisms, its application is not smoothly distributed over time. Syntagmatization
and the acquisition of novel representations by most-concrete constructions
are frequent early on, and gradually decay over time. Abstraction, however,
seems to take place in bursts. What happens here, is that when SPL encoun-
ters an analysis with a novel grammatical construction, for instance through
adding an mcc, this pattern may trigger a number of abstractions, with vari-
ous other constructions. These bursts are suggestive of a developmental pat-
tern Kwiatkowski (2011) models, namely, the non-gradual development of the
learner’s production. Similar bursts in the model’s potential will be seen in
chapter 7, where we discuss how the model generates utterances on the basis
of a situation.

Reinforcement of the most-concrete used constructions (the mcucs) is
something that takes place continuously. Recall that we observed that for sim-
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(a) Syntagmatization.
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(b) Abstraction.
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(c) Update of a grammatical most-concrete construction.
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(d) Reinforcement of a grammatical most-concrete used construction.

Figure 6.2: Frequency of learning mechanisms involved in the acquisition of
lexical constructions over time.
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ulation 5, SPL performed fewer updates of lexical mcucs than for the other
simulations. Interestingly, we find the reverse for the grammatical mcucs,
namely that there are more reinforcements of grammatical mcucs in simu-
lation 5 than for the other simulations. What happens in simulation 5, is that
the model relies more on lexically specific grammatical constructions than in
the other simulations. This is merely an effect of the order of the first hun-
dreds of input items, but it raises the interesting possibility that the order and
temporal distribution of the input items may affect the kinds of representa-
tional categories that are used and reinforced, thus allowing for individual
variation despite the same mechanisms and sensitivities (or parameters) of the
mechanisms. Crucially, in all simulations adequate behavioral performance is
achieved: the model is able to identify the target situation, analyze the full ut-
terance and understand to what parts of the identified situation the elements
of the utterance refer. This finding supports the recent insight that it may be
the case that, despite behavioral near-identity in everyday behavior, language
users’ internal grammars may vary (e.g., Dąbrowska 2012). However, they
do so through a different route: whereas in the case of Dąbrowska’s results,
the differences between individuals are likely a product of differences in the
quantity and quality of experience, in the case of this modeling experiment,
the quantity and (to a large extent) the quality of the linguistic experience are
the same between simulations. This raises the interesting suggestion that the
order of input items may affect the representations learned by a language user.

6.2 The representational potential

In section 5.3.4 we looked at how often constructions of various length and
abstraction are used by SPL in comprehending utterances. At that point, I re-
marked that there may be a difference between the constructions used by the
model and the potential the model has. The internal state of the model can
be compared with the behavior of the model (in comprehension, for instance).
This way, we can arrive at an understanding how distant the model’s con-
structional potential is from the behavior it produces. Such insights are impor-
tant, given that in many usage-based corpus studies a strong what-you-see-
is-what-you-get perspective is taken, assuming that the behavior as given in a
corpus does not provide evidence for a more abstract representational system,
but it may be that the typically highly limited behavior of children is produced
by a richer (i.e., more abstract) representational system in which, for instance,
the abstract patterns never surface in behavior because they are always pre-
empted by more concrete, slightly worse-fitting but better-entrenched ones.

6.2.1 Length of the acquired constructions
Before we look at specific cases, let us inspect some general properties of the
model. Figure 6.3a illustrates how the constructional knowledge is monoto-
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(a) Unsmoothed absolute frequency of constructions of various length over time.
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(b) Unsmoothed relative frequency of constructions of various length over time.

Figure 6.3: Unsmoothed frequency of constructions of various length over
time.
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Figure 6.4: Number of unique construction types of various length over time.

nously increasing. The height of the bars reflect the total amount of reinforce-
ments the constructions of various length have received as mcucs. As the fre-
quency is unsmoothed, constructions with a count of zero (i.e., those that have
been acquired through bootstrapping, cross-situational learning, syntagmati-
zation, paradigmatization, or as an mcc, but that have never been reinforced),
do not count towards the global frequency.

The figure that depicts the same data, but then as proportions of the total
grammatical knowledge (figure 6.3b) shows a slightly different picture. In it,
we can see that in the early stages, most of the counts are divided over lexical
constructions and length-2 grammatical constructions. One by one, length-3,
length-4 and length-5 constructions enter the constructicon and become rein-
forced.

Many constructions may be present as representations without ever hav-
ing received any reinforcements, and as such figures 6.3a and 6.3b give a
slightly distorted image. After all, in actual use, the counts of these construc-
tions are smoothed, so that their probability is non-zero. An alternative way of
conceiving of the absolute and relative strength of the various representations
is by looking at the number of unique construction types at each time. Figure
6.4 gives this information.

One striking aspect of the number of types, when compared to the abso-
lute or relative frequencies, is that there are many constructions of length 3
and greater that have not been reinforced. This is an effect of the blind appli-
cation of the paradigmatization operation, where any and all abstractions are
added to the grammar. It also points to the clear way in which SPL instantiates
the idea of immanence: any overlap between any two patterns is part of the
model’s potential for analyzing novel utterances.

Looking at the variation between simulations, next, we can first observe
that there is a difference in the absolute number of reinforcements divided
over the grammar. Whereas in simulation 3, the total number of reinforce-
ments after 10, 000 input items is around 23, 000, the number of reinforcements
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(a) Simulation 3
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(b) Simulation 5.

0

10000

20000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

time

ab
so

lu
te

 fr
eq

ue
nc

y

(c) Simulation 6.

Figure 6.5: Absolute frequencies of constructions over various lengths over
time for three simulations. Legend is the same as in figure 6.3.

in simulation 5 lies around 18, 000. Interestingly, simulation 5 also performs
slightly worse on the identification of the target situation as well as the sit-
uation coverage (cf. figures 5.1 and 5.3). As we will see in the next chapter,
the model also behaves slightly differently in simulation 5 than in the other
simulations. Nonetheless, even in simulation 5, SPL is a relatively successful
communicative agent, correctly identifying over 70% of the target situations.

Furthermore, an interesting pattern in the comparison between the simu-
lations surfaces. Whereas simulations 3 and 5 (and all others) have construc-
tions of length-5, in simulation 6, reinforced constructions of that length are
not in the representational system most of the time, with a few emerging only
at the end. The model is in this simulation nonetheless as successful as in the
other simulations. What happens in simulation 5, is that various length-4 con-
structions of the type given in example (37) are acquired. These constructions
become reinforced both by sentences of the type you put ball in basket as well
as cases of you put ball there, where the model analyzes there as referring to
the LOCATION. At some point in simulation 6, constructions of the type in
(37) have been reinforced to such an extent that the final word may even be
known (e.g., [ SPEAKER / me ]), but this word cannot be concatenated with
the construction, as it refers to the LOCATION as well. Combining them with
concatenation would constitute a violation of the isomorphy principle, and is
therefore excluded. Alternative analyses (e.g., using a length-3 construction
and concatenating that with the well-known word) turn out less likely than
the ones on the basis of the types of constructions exemplified in (37).

(37) [ [ ENTITY ] [ PUT / put ] [ ENTITY ] [ LOCATION ] ]

(38) [ [ ENTITY ] [ PUT / put ] [ ENTITY ] [ LOCATION-ROLE ] [ LOCATION ] ]

At around 9000 input items, SPL has started to acquire the caused-motion
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construction as exemplified in (38). Upon encountering further instances of
sentences like you put ball in basket, the model is now able to parse them with a
length-5 construction, and it is likely that this construction will continue being
reinforced over time. All in all, nothing is lost, but the model is simply a late
learner with respect to the length-5 constructions.

However, not all utterances that can be covered with length-5 constructions
are covered with such constructions. The model has mistakenly taken up the
prepositional dative construction (the construction behind sentences such as
he gave the book to Mary) as a length-4 construction:

(39) [ [ ANIMATEi ] [ GIVE / give ] [ OBJECT ] [ ANIMATEj / to ] ] |
GIVE(GIVER(ANIMATEi),GIVEN-OBJECT(OBJECT),
RECIPIENT(ANIMATEj ))

This construction involves (correctly) an animate entity in the giver-role,
the verb, and a given object. It has mistakenly learned to to refer to the recip-
ient entity, but only in the context of this constructions: SPL is able to analyze
sentences such as you go to school or you take ball to table with a construction
that involves to as a marker of direction. As with the earlier erroneous caused-
motion construction in (37), the fact that to refers to the entity filling the recip-
ient role blocks the pattern from being concatenated with a noun or pronoun
following it, even if that noun or pronoun is well known.

To ascertain that this is not an effect that can be overcome with more data,
I let simulation 6 continue processing input items after it was done. Even after
20, 000 input items, the model still analyzes prepositional datives with con-
structions such as (39). We can take this to mean that the model got stuck in
a local optimum. This means that it has acquired a construction (i.e., the one
in example (39)), that allows it to identify the situation correctly in most cases,
but that does not cover all of the utterance and the situation. Of course, real
language-learning children would never find themselves ‘stuck’ in such a sit-
uation: the functional relatedness of to in the prepositional dative to that in
several motion constructions (underlying such utterances as you go to school
and you take ball to table), and the fact that the application of the construction
of (39) always leaves one word of the utterance unanalyzed, even if that word
may be well known, should, at some point, convince the learner that the con-
struction in (39) is not a conventional pattern of the language.

This points to a point of weakness of the model: it is not able to overcome
these local optima. This constitutes a kind of brittleness that we would like
a model to be able to overcome. To my mind, a crucial change in the model
might be to make the ‘penalty’ for ignoring words proportional to how well
these words are known. If the learner encounters you give it to me, and knows
that me refers to the speaker, it should penalize analyses in which me is taken
to be noise more severely than analyses in which to is taken to be noise (as that
word likely has little reinforcements outside of the constructions in which it
constitutes a fixed element).
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(a) Abstraction among length-2 construc-
tions.
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(b) Abstraction among length-3 construc-
tions.
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(c) Abstraction among length-5 construc-
tions.
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(d) Abstraction among length-5 construc-
tions.

Figure 6.6: Relative frequencies of the various degrees of abstraction, per
length, over time.

6.2.2 Abstraction in the representational potential
In section 5.3.4, I discussed the use of constructions of various length and de-
grees of abstraction over time. Being the constructions that are used in finding
the best analysis, these constructions are also the ones that are reinforced over
time. We can interpret the effects on the abstraction of the constructions of
various lengths by looking at how much reinforcement each of these levels of
abstraction has accrued over time. Figure 6.6 shows the normalized frequen-
cies of each level of abstraction, per length, over time.

What the various figures show, is that the potential for generalization is
quickly obtained by the model (somewhat later in the length-4 and length-
5 constructions than the length-2 and length-3 constructions). After having
found this potential, more and more more concrete patterns are learned that
take up increasingly much of the relative frequency. That is: the potential for
having a fitting representation for each situation becomes greater over time.
Note that, unlike SPL’s use of unanalyzed lexical chunks, it’s increasing use of
analyzed but phonologically specific constructions is in line with the findings
reported by McCauley & Christiansen (2014a).
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What are the semi-abstract longer constructions that are well-entrenched?
If we look at simulation 5, and inspect the most-frequently used length-5 con-
structions, the following five constructions constitute the top-5:

(40) [ [ SPEAKER / you ] [ PUT / put ] [ PLURAL-PERSON / them ] [ CONTAIN-
MENT-ROLE / in] [ ENTITY ] ] (count = 94)

(41) [ [ PERSONi ] [ GIVE / give ] [ THING / it ] [ GIVER-ROLE / to ]
[ PERSONj ] ] (count = 93)

(42) [ [ PERSON ] [ GIVE / give ] [ THING / it ] [ GIVER-ROLE / to ] [ WOMAN ] ]
(count = 80)

(43) [ [ PERSONi ] [ GIVE / give ] [ THING ] [ GIVER-ROLE / to ] [ PERSONj ] ]
(count = 53)

(44) [ [ SPEAKER / you ] [ PUT / put ] [ THING ] [ CONTAINMENT-ROLE / in]
[ ENTITY ] ] (count = 30)

We see both the caused-motion pattern and the prepositional dative in
various degrees of abstraction among the five most-frequently used construc-
tions. These semi-open constructions function as composite multi-word units
in comprehension: multi-word units because they capture frequently occur-
ring lexical patterns, composite because each of the parts of the construction
specifies a certain role in the more global meaning. As such, these patterns are
distinct from true ‘chunks’, that are internally not analyzed.

In all of the five most-frequently used length-5 constructions, the verb is
fixed. In fact, in none of the length-5 constructions in this simulation, a pattern
in which a generalization over caused-motion constructions and prepositional
dative construction is made. This is a direct effect of the fact that the model
has erroneously acquired to in the prepositional dative to refer to the GIVER,
or AGENT, role. Because of this, the model cannot form an abstraction over the
meaning representations of the two constructions.

As we can glean from figure 5.9h in chapter 5, there are some simulations
in which the abstraction over caused-motion constructions and prepositional
datives is made, judging by the small, but non-zero amount of length-5 con-
structions with 5 abstract slots. In simulation 2, for instance, the model has
acquired a construction, given in (45), that only has a fixed subject, but no
other lexically specified roles. The reason this abstraction could be made, is
that in simulation 2 the model did correctly acquire the meaning of to in the
prepositional datives as referring to the RECIPIENT role (unlike in simulation
7, where it is analyzed as denoting the PATIENT or GIVEN-THING role, and
simulation 5, where it is analyzed as marking the RECIPIENT referent).

(45) [ [ HEARER / you ] [ CAUSE ] [ OBJECT ] [ ROLE ] [ ENTITY ] ] |
CAUSE(CAUSER(HEARER),AFFECTED(OBJECT),ROLE(ENTITY))

This construction, however, is used only between 1500 and 4900 input
items, and only to analyze prepositional datives. What happens here, is that
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the model extracts the construction in (45), and finds it to be part of the most
likely analyses of prepositional datives with give as the verb. These analyses
then are added to the grammar as maximally-concrete constructions (mccs),
and after 4900 input items, SPL has acquired a range of these more concrete
patterns to the extent that the abstraction in (45) is no longer needed.

Returning to to, it seems that the various simulations differ in how they
analyze to in the prepositional dative. Out of ten, only four assign the correct
RECIPIENT role to the word, whereas in five cases the RECIPIENT referent is
taken to be the meaning of to, and in one case, as we have seen, the PATIENT
role. Of course, more than 40% of children acquiring English get the meaning
of to correct (although it may be a preposition for which semantic errors could
be expected).

Several aspects prevent the model from being like a child for this phe-
nomenon. First, the input is more scarce in types of verbs and prepositions
than a child receives. If various verbs and prepositions are heard, the chance
of acquiring the right meaning of to, which contrasts with other prepositions
in that position, becomes greater. Suppose various verbs are heard in length-5
constructions. An abstraction of the type (45) is then quickly acquired. Even
if the meaning of to is erroneously acquired, a construction with an open verb
slot, like the one in (45), may ‘overrule’ the more specific, but erroneous pat-
tern with give and to lexically specified. As we have seen in chapter 5 that more
abstract constructions may ‘overrule’ (which we can take to be the antonym
of ‘pre-empt’) the use of more concrete ones if the abstract ones are well-
entrenched and the lexical units filling the slots are well-entrenched as well.

6.3 The independence of morphemes

We saw that to was acquired, with the correct or incorrect meaning, as part
of a larger construction. In none of the simulations, a lexical construction of
the type [ RECIPIENT-ROLE / to ] is well-entrenched. Of course, the represen-
tation is there, but it never gets reinforced, because it is always the larger con-
struction in which to is used that is reinforced. This raises an interesting issue,
namely whether the model can tell us something about the independence of
the smallest units. This is an issue that touches on both (what are traditionally
called) morphology and syntax: a unit is bound if it can be only used in combi-
nation with other units, whereas it is free if it can be used independently. Can
the model give us any insight in the degree of independence of the various
words?

The issue of independence finds its theoretical relevance for the usage-
based approach in the programmatic article on language acquisition by Lan-
gacker (2009), who argues that the independence of a unit (construction) de-
pends on the variety of contexts it occurs in, in interplay with the frequency
of the unit itself, both inside and outside of particular constructional contexts.
Certain words, such as determiners, may never obtain strong independent
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(a) Independence of the word cereal over time.
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(b) Independence of the word animal over time.
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(c) Independence of the word aunt over time.

Figure 6.7: Independence of various entity words over time.
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status, whereas others, occurring over a variety of contexts, do get reinforced
as independent units. I would like to add one aspect to Langacker’s concep-
tual analysis, namely that, besides the token frequency and the dispersion of a
word over various constructions, also the type frequency of the constructional
slot (i.e., the amount of types of units filling it), plays a role in establishing the
degree of independence of a unit. This last point is taken from Bybee’s (2006)
analysis of constructional productivity. In this section, I will show how all
these effects can be seen in the model when we look at the strength of the rep-
resentation of lexical constructions as opposed to grammatical constructions
containing those lexical constructions.

In the following paragraphs, we look at five groups of words, correspond-
ing roughly to nouns, adjectives, pronouns, verbs, and prepositions/spatial
adverbs. We can expect the degree of independence to vary between them,
as they have different quantitative values for the three properties mentioned
above.

As a simple measure to operationalize the independence of a word form
w, I take the relative frequency of lexical constructions out of all constructions
in which a word form w is lexically specified (cf. equation 6.1, where Γw is
defined as the subset of the constructicon Γ consisting of all constructions in
whichw occurs as the phonological specification of a constituent). This tells us
how often the word form w is analyzed with a lexical construction. The more
frequently this happens, the more we can claim that w and its meaning are
free units. We call this value the independence score, ranging between 0 and
1.

independence(w) =

∑
c∈Γw∧c=lexical

c.count∑
c′∈Γw

c′.count
(6.1)

6.3.1 Entity words
Words referring to entities, typically called ‘nouns’, can be expected to be
among the most independent words. After all, they occur as the arguments of
multiple action words (‘verbs’) in the input generation procedure, and many
other entity words fit these slots as well, making it likely that the optimal anal-
ysis involves the lexical construction involving the entity word and a gram-
matical construction with an open slot where the entity word is fit in. Figure
6.7 shows, for three entity words, that this is indeed the case. After 10, 000 in-
put items, constructions involving the phonological strings cereal, animal, and
aunt are mostly lexical.

When focusing on the developmental path, we see cereal being used mainly
in lexical constructions from the onset of the simulations, whereas aunt, and
especially animal start out as often being part of a grammatical construction
early on, and gradually being used more as an independent word, and hence
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receiving more reinforcement as a lexical construction. The string animal oc-
curs in all but a few cases as the theme argument of a caused-motion con-
struction (in utterances such as you put animal on table. Because of the restricted
variability, the model does not have to use the lexical construction [ ANIMAL
/ animal ] in any other context, and in the context of caused-motion sentences,
the model has a semi-open construction of the type in example (46). Whereas
the semi-open constructions in example (46) will receive reinforcement over
time, the lexical construction will not. This pattern of pre-emption, however,
is gradually overturned, as constructions such as (47) also receive much re-
inforcement. In this construction, the theme argument is open, and because
many different theme arguments are encountered, this kind of construction re-
ceives much reinforcement. Over time, the best analysis is increasingly likely
to involve the construction with an open theme-argument slot (example (47))
and the independent lexical construction [ ANIMAL / animal ], and more rein-
forcement is given to the lexical unit. The same happens, to a weaker degree,
for aunt.

(46) [ [ HEARER / you ] [ PUT / put ] [ ANIMAL / animal ] [ SURFACE-ROLE /
on ] [ ENTITY ] ]

(47) [ [ HEARER / you ] [ PUT / put ] [ OBJECT ] [ SURFACE-ROLE / on ]
[ ENTITY ] ]

6.3.2 Attribute words
Unlike the entity words, the attribute words (‘adjectives’) are not used in
many different constructions and the verbs that have them as arguments
have a fairly restricted set of attribute words in the input generation proce-
dure. Especially in the case of the construction [ [ ENTITY ] [ BECOME / get ]
[ ATTRIBUTE ] ], the model moreover often acquires chunks consisting of get
and the attribute word. Whenever attribute words are acquired, they vary in
whether they are learned as a lexical construction or as part of a grammatical
construction. For all three words we find the tendency that they become in-
creasingly associated with a construction in which they are lexically specific
(decreasing values on the y-axis). However, in some simulations (e.g., simula-
tion 1 for the word dirty), the word starts out being used most often in lexical
constructions, after which it is used as an element of a grammatical construc-
tion, and finally it is dissociated from that construction again. This effect is
caused by the interaction of the fact that dirty is only used in the [ [ ENTITY ]
[ BECOME / get ] [ ATTRIBUTE ] ] construction, but that the ATTRIBUTE slot of
that construction is extended with new types over time, leading to increased
reinforcement, and hence a greater likelihood of combining the lexical [ DIRTY
/ dirty ] construction with the construction in which the ATTRIBUTE slot is
phonologically open.

The fact that these attribute words gravitate towards being used in gram-
matical constructions may be partially due to the fact that there are no copula
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(a) Independence of the word dirty over time.
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(b) Independence of the word closer over time.
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(c) Independence of the word pretty over time.

Figure 6.8: Independence of various attribute words over time.
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constructions in the input generation procedure. If there were, the attribute
words would also be used in those cases, and their reinforcement as lexical
constructions would be greater.

6.3.3 Pronouns
Pronouns constitute an interesting case for the test of independence. Because
of their high frequency, they are expected, on a usage-based account, to be
part of argument-frame constructions. On the other hand, their varying distri-
bution (especially in a language like English where the pronouns only express
two grammatical cases) makes the reinforcement of their independent forms
to be expected. Figure 6.9 shows the independence for three pronouns, you,
I, and we. As we can see, their degree of independence varies dramatically
among them and between simulations. You is acquired in all cases both as
part of a lexical construction and as part of a grammatical construction (i.e.,
the learner has both a [ HEARER / you ] construction, and various grammat-
ical constructions in which you is used, and, crucially, reinforces all of them
regularly (otherwise the relatively stable, horizontal lines of figure 6.9a would
not be maintained). The variation ranges between independence scores per
simulation of 0.3 and 0.8.

For I, the picture is different. Here, we see that there is a significant amount
of between-simulation variation, but the stable state of the model in various
simulations seems to be more ‘polar’: either I is most strongly represented
as an independent construction, or the grammatical constructions in which
[ SPEAKER / I ] is a constituent are the primary locus of the knowledge about
I.

We, finally, is primarily acquired as the phonological constraint on an in-
dependent lexical construction. Unlike for the entity and attribute words, it
is not easy to find an explanation for this high amount of variation: all three
words are used in various constructional slots, and these slots are typically
highly productive (i.e., many other items can fit in them). This difficulty of ex-
planation, however, does point to the insight that the degree of independence
of a word may be an effect of many interacting factors.

6.3.4 Event words
As with the pronouns, the picture of the independence of the event words
(‘verbs’) is rather diverse (figure 6.10). The word eat is most strongly repre-
sented as an independent construction in most of the simulations. This does
not come as a surprise if we bring to mind that the non-lexically-specific tran-
sitive construction (i.e., the transitive construction with an open EVENT slot)
is strongly reinforced. Put, on the other hand, is only processed in the context
of the caused-motion construction, and this construction allows for no other
verbs in it in the input generation procedure. Furthermore, the abstraction
over the various caused-motion constructions and the prepositional datives is
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(a) Independence of the word you over time.
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(b) Independence of the word I over time.

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000
time

in
de

pe
nd

en
ce

simulation

0

1

2

3

4

5

6

7

8

9

(c) Independence of the word we over time.

Figure 6.9: Independence of various pronouns over time.
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(a) Independence of the word eat over time.
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(b) Independence of the word put over time.
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(c) Independence of the word make over time.

Figure 6.10: Independence of various event words over time.
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rarely made, so that there is neither a non-verb-specific length-5 construction
available. Make, finally, and like you, varies between simulations. In some sim-
ulations, the string is primarily used as the sole phonological constraint on
a lexically specific construction, whereas in others, make is the phonological
constraint of the [ MAKE / make ] slot of a larger, grammatical, construction.

A curious phenomenon for the verbs (and to some extent for the pronouns
as well) is that in some simulations, the curve displays a dip in independence,
after which the value goes up again. The effect that causes this is again the
interplay of the productivity of the EVENT slot of various grammatical con-
structions and the variety in grammatical constructions the verb can occur in.
In some simulations, it seems to be the case that the event word starts out
as an independent word (it is bootstrapped, or learned by means of cross-
situational learning), after which the semi-open constructions in which it is
specified amass reinforcement. As the amount of variation in the input data
grows, the abstractions over the various semi-open constructions begin ac-
cruing reinforcement as well, and at a certain point the most likely analyses
involving these event words consist of a grammatical construction with an
open EVENT slot, combined with a lexical construction containing the event
word. This moment is at the bottom of the dip: afterwards, the independence
score starts rising again, because the lexical construction gets reinforced, but
the grammatical constructions with lexically specified EVENT slots do not.

One could tentatively associate this effect with the idea that children are
conservative in the generalization of early verbs (McClure et al. 2006). This
very finding has been questioned (Naigles et al. 2009), but it may be that there
is a lot of variation between learners, between verbs, and that the periods
in which the learner behaves conservatively, or, oppositely, too progressively,
may vary as well.

6.3.5 Role-marking words
Role-marking words, traditionally known as prepositions, are expected to be
fixed elements of the grammatical constructions they occur in. However, as
figure 6.11 shows, this does not seem to be (fully) the case: both on and in have
a relatively strong representation as the phonological constraints on indepen-
dent lexical constructions. This is due to the fact that these words do occur
in multiple constructions, and contrast with other role-marking words (e.g.,
to and out of ). Nonetheless, in most simulations, the independence scores are
decreasing over time, meaning that more and more, the words are only used
as parts of grammatical constructions.

The difference between on and in is especially striking. After all, both
words occur in exactly the same constructional environments. I believe the
difference is due to their varying token frequencies. We can expect, in line
with Bybee (2006), that, all other things being equal, words with higher token
frequencies (in particular environments) will be more entrenched in those en-
vironments. After 10, 000 input items, the average counts of all constructions
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(a) Independence of the word in over time.
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(b) Independence of the word on over time.

Figure 6.11: Independence of various role-marking words over time.

containing in and on is 879 and 350, respectively. This means that in is simply
more frequent than on in the input generation procedure. The effect of this
difference is that the more frequent word, in, is associated more strongly with
the constructional environments it is used in, and hence that lexically specific
constructions containing in receive more reinforcement than those containing
on. We see here that SPL not only captures the effect of type frequency on
productivity, but also the effect of token frequency on entrenchment.

6.3.6 Comparing the classes
Finally, let us take a more global look. If we group all words for which the
model has any representation in at least one of the simulations according to
the five-way distinction presented above, and subsequently average over all
simulations and all words, per semantic class, we obtain the average indepen-
dence values presented in figure 6.12.

The pronouns and entity words clearly have the strongest independent
representations. Attribute words are mostly reinforced as part of the gram-
matical construction they occur in, and event and role-marking words start
out relatively independent, but become more and more associated with par-
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Figure 6.12: Mean independence of the five classes of words over time.

ticular grammatical constructions. This last finding is at odds with the verb-
island hypothesis (Tomasello 1992), but I believe it constitutes a viable hypoth-
esis within a usage-based framework in which the starting-small perspective
is re-emphasized. Once the learner (i.c., the model) has bootstrapped or cross-
situationally learned the meaning of an event word, the build-up phase con-
sists in finding the arguments with which this word can occur. Once those
have been found, abstractions are made over that event word and others oc-
curring in similar argument-structure constructions. These abstractions only
receive reinforcement if they are extended to novel event words. If that does
not happen, the event words will increasingly become associated with the
argument-structure constructions, leading to more lexically-specific construc-
tions. This hypothesized developmental pathway also suggests that, in the
long run, the representational knowledge of a speaker that is actually used be-
comes more concrete over time (cf. McCauley & Christiansen 2014a), whereas
the potential for generalization to novel cases remains stable. Speakers get
better at what they do most, without forgetting the tricks for handling novel
grammatical situations.

6.3.7 Discussion
The analysis of words in various semantic classes shows us how the degree
of independence, as measured by the independence score varies on the basis
of (1) the type frequencies of the constructional slots of grammatical construc-
tions they occur in, (2) the amount of different constructional environments
they occur in, and (3) their token frequencies, much in line with Bybee’s (2006)
and Langacker’s (2009) characterization of notion like productivity and in-
dependence. The cases discussed thus provide insight in the subtlety of the
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notion of productivity when applied to grammatical, as opposed to morpho-
logical constructions. Nonetheless, I believe that through careful analysis and
interpretation, we can identify the factors involved in the productivity of the
construction. Notably, this is not merely a study of the corpus frequencies of
the words: we have to take into account that we are dealing with a learner
selectively reinforcing patterns over ontogenetic time. An important differ-
ence with Langacker’s account is that a short phase of independence may, in
SPL, precede a higher degree of dependence. Whether this is an artefact of the
model, or an actual developmental phenomenon that becomes visible once we
re-evaluate aspects of the starting-small conception of language acquisition as
they apply to the usage-based theory, remains to be seen. I find the latter op-
tion not inconceivable.

An important insight from the various cases is that the model, in a way,
does engage in whole-to-part learning besides part-to-whole learning (D6-3),
but in a quantitative way. Qualitatively, after all, the word has been established
as a lexical unit. The ‘dips’ discussed for the event words suggest that after
this establishment, the word may go through a phase of being bound to the
grammatical constructions it occurs in, after which it re-establishes indepen-
dence. Part-to-whole and (quantitative) whole-to-part learning thus interact
in an interesting way.

A second insight from this analysis, is that SPL displays a tremendous
amount of variation between the simulations. The internal representational
states of the various ‘speakers’ differ in the independence of various words.
Nonetheless, they all perform very similarly on the comprehension experi-
ments described in the previous section, as well as, as we will see, on the
production task. It seems that there is more than one representational way
to Rome when grammatical behavior is concerned, a finding in line with the
recent experiments of Dąbrowska (2012).

Finally, I believe this exercise supports the recent reanalysis of some old
conceptions of language. Most of linguistics, even within the constructivist
take on it, is committed to a perspective in which words are the atomic primi-
tives of languages, to be combined with grammar.

The words-as-atomic-primitives perspective has led, within functional lin-
guistics especially, to debates about the nature of word-meaning. It has long
been recognized that words can have multiple related senses, a property espe-
cially true of function words, such as adpositions, auxiliary verbs and dis-
course particles. The discussion about word meaning mainly concerns the
question whether words have a single, highly abstract meaning (monosemy),
the details of which are filled in by the pragmatics, or multiple concrete and
related meanings (polysemy). The Croftian perspective, in which the construc-
tions are the primitives (but not necessarily the atoms), allows us to question
the central assumption underlying this debate: the word as the locus of mean-
ing. If we take the perspective that constructions are the non-atomic primi-
tives of linguistic knowledge, words (as we normally conceive them as lin-
guists) become secondary, derived realities. A word, by this token, is simply
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a phonological and conceptual similarity relation between the parts of vari-
ous constructions. In some cases, these constructions may coincide with the
word (which is what we expect for many nouns, for instance), but in others,
the ‘word’ is the potential emanating from the use of a phonological structure
and several similar functional structures across several constructions.

This perspective is much in line with suggestions of Verhagen (2006) and
Boogaart (2009). Boogaart argues, for modal verbs, that there may be a third
option, resolving the discussion, namely that words have certain meaning
within certain constructions. Polysemy becomes, under Boogaart’s analysis,
a superficial effect of the same word form occurring in multiple constructions.
This analysis is supported by the results of the analysis in this section: words
that are strongly associated with a particular construction have weak inde-
pendent representations as lexical constructions. It can be expected that modal
verbs, Boogaart’s case study, are strongly associated with particular construc-
tional frames (after all, they are fairly restricted in their use across construc-
tions, there is only a small set of them, and they have high token frequencies).
If that is the case, it may well be that the lexical representation of a Dutch
modal verb like kunnen is very weak and that the primary locus of represen-
tational strength of the word is in various constructions, each with their own
meaning (e.g., deontic vs. epistemological modality).

6.4 The growth of the caused-motion construction

Besides these more quantitatively-oriented explorations of the representa-
tional potential of the model, it may also be insightful, especially for those
used to doing grammatical analysis within the construction grammar frame-
work, to see how the ‘network’ of constructions grows over time. Because the
grammars after 10, 000 input items contain about the same number of con-
structions, it is not feasible to look at all of them. Therefore, we focus on a
part of this network, namely where it involves events in which motion is ex-
pressed, with an external cause for that motion being presented. These are the
constructions underlying such utterances as you put it on table. As even for this
small part of the network, the number of constructions is too vast1 to represent
graphically, I focus on some interesting ones.

Figure 6.13 displays a part of the network after 100 input items. The thick-
ness of the lines is indicative for the counts of the constructions, and construc-
tions in grey have not been reinforced. We can see that the model has learned
the action word put, and syntagmatized it with two entity words, you and
Sarah, to form two very simple grammatical constructions. Over these con-
structions, furthermore, the abstraction [ [ PERSON ] [ PUT / put ] ] is made,

1Note that this way of framing it (‘number’) presents the constructions as discrete units, which
they are in the implementation. As I argued earlier, we can equally well regard these as the poten-
tial for generalization the model has – a vast number of constructions in the discrete conception
corresponds to a wide potential on a ‘immanent perspective’.
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Figure 6.13: Part of the network of caused-motion constructions after 100 input
items.
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Figure 6.14: Part of the network of caused-motion constructions after 500 input
items.

but this construction has not been reinforced yet. We can see that a chunk
has been extracted as well, viz. [ PUT(AFFECTED(THEM)) / put them ], and this
chunk has been reinforced several times.

Four hundred input items later (figure 6.14), the lexical construction [ PUT
/ put ] has been further reinforced. Furthermore, several length-3 construc-
tions have been added. The various fully lexically-specific ones give rise to a
small network of abstractions, even though many of the fully lexically-specific
ones may not have been reinforced (not all constructions are shown here, as
there are already dozens of length-3 constructions at this point). The ‘old’ con-
structions remain at the same level of reinforcement: as there is now a more
useful length-3 construction, the various length-2 constructions no longer lead
to optimal analyses.

Moving to the state of the constructicon after 1000 input items, we can seen
that length-4 and length-5 constructions now entered the scene. For length-4
constructions, a small, but generalizable network has been built up, includ-
ing a well-reinforced, highly abstract construction in which only the word put
is specified. Note here that this abstract construction, [ [ PERSON ] [ PUT /
put ] [ OBJECT ] [ LOCATION-ROLE ] ], has received more reinforcement than
its daughter nodes. This is because it is the abstract construction, rather than
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Figure 6.15: Part of the network of caused-motion constructions after 1000 in-
put items.

its daughters that is used in processing the input items. The effect here is akin
to the effect of abstract constructions obtaining unit status without the more
concrete ones doing so, as described in Langacker. For the length-5 construc-
tions, a relatively lexically-specific construction [ [ HEARER / you ] [ PUT / put ]
[ ENTITY ] [ CONTAINMENT-ROLE / in ] [ ENTITY ] ] has been extracted, but the
model has not seen any evidence for abstractions beyond this level.

After 10, 000 input items, it has seen evidence for more abstract length-5
constructions, as can be seen in figure 6.16. The network now even contains
a construction in which the action word is not specified, abstracting over the
constructions with put and those with take (the other verb occurring in the
caused-motion construction in the input generation procedure). This maxi-
mally abstract construction has even been reinforced several times, but its
more concrete daughter construction involving a phonologically specified AC-
TION slot (with [ PUT / put ] ) has received the most reinforcement, and consti-
tutes the prototype of this network. As we have seen in the previous chapter, it
is this construction that sometimes trumps the use of more concrete construc-
tions, because of the many different types of arguments it occurs with.

Interestingly, between 1000 and 10, 000 input items, another length-4 con-
struction emerged as well. The pattern with a lexically specific LOCATION-
ROLE, i.e., [ LOCATION-ROLE(LOCATION) / there ], is used frequently enough
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Figure 6.16: Part of the network of caused-motion constructions after 10, 000
input items.

to be strongly reinforced. A more abstract construction exists as well, but that
one is less strongly reinforced. Note, finally, that all the older constructions
have not received any reinforcement in the meantime. If the model involved
some sort of decay function, these constructions would, by now, have with-
ered away.

The visualization of the development of the network illustrates several im-
portant aspects of SPL. First of all, the constructions grow in length and ab-
straction, with each next step of length and abstraction depending on what, at
that point, is available to the model. Second, we have seen how abstract units
may obtain unit status, or (at least) become strongly reinforced ‘prototypes’
in the network. Third, the temporal, or dynamic dimension of the model be-
comes clear: old constructions fall out of use, while novel, and more useful,
ones, take over.

6.5 Discussion

In this chapter, I looked at the learning mechanism the model employs and
the representations resulting from these. I made several observations that all
follow from a rigorous application of usage-based theory to the development
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of a model, but that may be at odds with some conceived ways of thinking.
First, we saw how the learning mechanisms are applied in section 6.1).

Whereas all mechanisms are available to SPL throughout development (D6-4),
the frequency of their application varies over time. Notably, the acquisition of
lexical constructions is primarily done by means of bootstrapping rather than
by cross-situational learning. Whereas the latter is used to get an initial set of
lexical constructions, the former makes for a more reliable way of acquiring
word meanings as the abstraction in the representational potential grows. In
the learning mechanisms for grammatical constructions, we found that syn-
tagmatization is applied only early on, after which the reinforcement of most-
concrete used constructions and the addition of most-concrete constructions
become the primary means of learning. If language is, as I suggested earlier,
a set of old tools (evolutionarily speaking), used for novel purposes (i.e., lan-
guage), the tools are of various use at different moments in time. A final point
of interest is that paradigmatization, the process whereby novel, more abstract
constructions are acquired, takes place in bursts. This observation may bring
the usage-based conception in harmony with the finding that not all develop-
ment is gradual.

Next, I discussed the length and abstraction of the acquired representation
(section 6.2). I found that the length of the constructions in the representational
potential of the model grows over time, in line with the law of cumulative
complexity (D6-1). For abstraction, the first main finding was that for longer
constructions, the model goes through a phase of abstraction before building
up an ever growing inventory of more concrete constructions. This suggests
that adult language users may operate with a large number of semi-open con-
structions, and that the abstractions are merely kept as a failsafe device in
case the more concrete constructions cannot be applied. Nonetheless, an an-
swer to the question when it is better to use a more concrete construction than
the combination of a more abstract one and a lexical construction, depends
on various quantities, viz. the degrees of reinforcement of the two grammat-
ical constructions as well as the lexical one. As we have seen in the previous
chapter, a more abstract construction may lead to a more likely analysis than
a more concrete one.

The second main finding concerning abstraction was that length-3 con-
structions (i.e., transitives) were generally more abstract than constructions
of other lengths. I argued that this effect is due to the type frequency on the
EVENT slot: as many different words occur in it, the more abstract version of
the transitive construction accrues more reinforcement as compared to con-
structions of other length.

Thirdly, I looked at the degree of independence of lexical constructions
(section 6.3). Word forms may be strongly associated with lexical construc-
tions, or with parts of grammatical constructions. In the former case, they
constitute independent units, whereas in the latter, they should be consid-
ered dependent on the grammatical construction they occur in. We found that,
for some items, the independence of word forms varies enormously between
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words, semantic word classes and even simulations. The main factors I iden-
tified were (1) the type frequency of the slot of the grammatical construction,
(2) the number of constructions a word occurs in, and (3) the token frequency
of the word. High values for the former two create more independent lexi-
cal constructions, whereas high values for the latter create more dependent
word forms. The effect of this is that words in semantic classes that combine
freely and have relatively few tokens, such as entity words, or nouns, display
stronger independent representations than words in semantic classes that oc-
cur in a fixed set of environments, where the environments themselves dis-
play little variation, and the token frequencies are high, such as event words,
or verbs.

An interesting development over time was found for the event words and
pronouns. For both cases we saw that, in some simulations, the word was first
used mainly as part of a grammatical construction, then as a free unit, and
finally as part of a grammatical construction again. In other simulations, we
observed only the second and third stage. Especially these latter cases are at
odds with the general conception of learning in a usage-based framework,
which states that the learner starts with larger units, which are decomposed
over time. However, I argued that these findings do follow from the insights
of a starting-small approach as applied to usage-based theory.

Despite this finding, the model does engage in some sort of whole-to-parts
learning. When a word form is used mainly as a part of grammatical con-
structions early in development and later on, by developing strong abstract
representations, the model comes to understand the word form as an inde-
pendent entity, it has effectively performed part-to-whole learning, albeit in a
quantitative sense. Qualitatively, the word form has already been established
as an independent unit, because the blame assignment (i.e., the creation of a
symbolic link to the meaning of the word form) has already been done.

The exploration of the development of the network in section 6.4 highlights
several important aspects of SPL. First, the law of cumulative complexity is il-
lustrated with the increase of length and abstraction in the network. Second,
we saw how more abstract units may receive strong reinforcement despite
their more concrete daughter constructions being less strongly reinforced. Fi-
nally, the temporal dimension of SPL becomes clear: some constructions may
play an important role early on, but become obsolete as longer and more en-
compassing constructions enter the scene.

In all of the first three sections, I discussed the between-simulation vari-
ation. As a mere effect of the input, I found that (1) some learners rely more
on lexically-specific grammatical constructions than others, and (2) that the
degree of independence of lexical constructions varies between simulations.
Despite this variation, all simulations perform similarly in the comprehension
experiment, as well as, as we will see, on the production experiment. This sug-
gests that, even without differing sensitivities to the input data, the order and
dispersion of the input items may have an effect on the representations that
are built up.
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What the analyses in this chapter finally show, is that the models potential
for linguistic behavior cannot be directly equated with its behavior itself. We
could consider this a re-appreciation of the competence-performance distinc-
tion, where the competence is, of course, one that is built up through language
use. Just as the strict division of competence and performance may be a false
reification of an analytic principle in generative approaches to language ac-
quisition, so may the all-too-strong reliance on behavior to understand the
representational system in usage-based approaches constitute a case of the re-
verse. The fact that, in the usage-based framework, the potential and the use
of that potential are considered to be one thing ontologically, does not imply
that we can make a direct inference from the use of that potential to the poten-
tial itself. This point will be further supported by the production experiments
presented in the next chapter.





CHAPTER 7

Production experiments

Having seen the behavior of the model (chapter 5) and its inner workings
(chapter 6), we now turn to the last topic: the production of language. Desider-
atum D2 holds that a computational model of language acquisition not only
has to account for comprehension, but also for production. In this chapter,
we look at the capacity of the model to produce utterances on the basis of a
situation, as well as how its behavior develops over time.

7.1 Global development of production

7.1.1 Evaluation
How do we evaluate the accuracy of the produced utterances? Recall that
the input generation procedure of Alishahi & Stevenson (2010) generates
utterance-situation pairs. In the first production experiment, we generate a
test set of 100 utterance-situation pairs at random. Importantly, we are inter-
ested in SPL’s grammatical behavior, and giving it situations it has seen before
would result in simple ‘recall’ of the analysis of an utterance paired with that
situation. For that reason, the 100 utterance-situation pairs in the test set are
held out from the input generation procedure for the input items in the simu-
lation as reported in chapter 5.1

1This works as follows: SPL first generates 100 unique utterance-situation pairs. When gener-
ating novel input items for the simulation, it checks for every input item if it can be found in this
set of test items. If it is found, a new input item is generated. This procedure is repeated until the
new input item is no longer one of the test items.
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After every 100 input items, we give the model the situations, but not the
utterances of the test set, and ask it to generate the most likely utterance on the
basis of the situation (as defined in section 3.7). The resulting utterance Ugen
can then be compared with the utterance Uwhich was generated by the input
generation procedure.

Two aspects of the comparison between U and Ugen are central to the eval-
uation. First, what proportion of Ugen is correct? That is: if we generate an
utterance, does the model produce words that are part of U . If it produces
different words, it has learned erroneous representations. Moreover, we want
the model to produce the correct words in the correct order. When generating
an utterance for the situation in which the father gets the ball, we do not want
the model to generate ball daddy get or ball get daddy. To measure the propor-
tion of words of Ugen being produced in the right order, we take the length of
the maximal, potentially discontiguous substring shared between U and Ugen
and divide it by the length of Ugen. We call this measure precision and errors
on the precision correspond to errors of comission: SPL produces things that
it should not produce. To give an example of the precision calculation: if the
model produced daddy give ball, and U consists of the string daddy give me ball,
the precision is 3

3 = 1 as all words in Ugen are found in U in the right order
(but me is missing from Ugen). If the model, however, produced give ball daddy,
the maximally shared discontiguous substring is give ball, and the precision is
2
3 ≈ 0.67.

The complementary measure of evaluation is the recall. This measure cap-
tures what proportion of U is present in Ugen, again in the correct order. To
calculate the recall, we again take the length of the maximal, potentially dis-
contiguous substring shared between U and Ugen, but now divide it by the
length of U rather than that of Ugen. Recall measures the amount of errors
of omission: the score is penalized for words that are left out of Ugen but are
present in U . For U = daddy give me ball and Ugen = daddy give ball, the maxi-
mal shared substring is daddy give ball, and the recall would be 3

4 = 0.75. For
Ugen = give ball daddy, the recall would be recall = 2

4 = 0.5.
Two other numbers are of interest. Besides precision and recall, it is in-

sightful to see how long the productions in Ugen are, compared to the actual
utterance U . This figure tells us whether produced utterances become longer
over developmental time regardless of their correctness. Relative length is
calculated by dividing the length of Ugen by the length of U . Finally, as with
the comprehension experiment, we would like to know what parts of the sit-
uation the model expresses with its production. To this end, we calculate the
situation coverage for the best analysis (see equation (5.2)).

7.1.2 Results
Figure 7.1 gives the values over time for the four measures. After 10, 000 input
items, the precision scores for the ten simulations range between 0.75 and 0.9
(0.84 on average), whereas the recall scores at the end of the simulation range
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(d) Situation coverage.

Figure 7.1: Evaluation of production results.



224 7.1. Global development of production

between 0.7 and 0.8 (0.75 on average). Alhough far from perfect, the model
does produce utterances that are relatively close to what an adult (i.c., the
actual utterances from input generation procedure) would have said. I will
analyze the errors the model makes in section 7.2.

Comparing precision and recall, it is remarkable to see how the precision
starts out high, goes through a small dip in some simulations, and then goes
up again, whereas recall starts low (0.2 to 0.35), and rises over the first 3000
input items to its final values (with the exception of simulation 5, the lowest
line in recall, relative length, and situation coverage, to which we will return
below). This observation is in line with the general observation that children’s
errors of commission are few, whereas they frequently make errors of omis-
sion.

Turning to the relative length now (figure 7.1c), we can see that the
length of the produced utterances when compared to the actual utterances
approaches its ceiling level after 4000 input items for most simulations (and
some 6000 for simulation 5). The relative length at the end of the simulation
is between 0.85 and 0.95, meaning that the utterances produced by the model
are on average 0.85 to 0.95 times as long as the actual utterances.

Finally, the situation coverage of the model converges to an almost full
expressivity relatively quickly, reaching values of around 0.90 and higher after
some 2500 input items, again with simulation 5 lagging behind and reaching
full expressivity after some 7000 input items.

Concluding: the model is relatively well able to produce utterances for
novel situations, expressing the largest part of the situation. The precision
and recall scores never reach, or even approach the full 1.00. We turn to the
sources of this effect in the next section.

7.1.3 An example
Suppose you want to express a state of affairs in which an entity who can be
categorized as a father enables the change of possession of a piece of gum.
An adult speaker could say something like father gives me gum in such a case.
Aften 900 input items, the model does so as well (example (52)), producing
the utterance father give me gum. When we look at the best analysis leading
to this utterance, we can see that SPL uses a maximally abstract ditransitive
construction, combined with lexical constructions for every word.

The road to this production is one of a gradual build-up of the full utter-
ance when looking at the utterances produced. As we can see in example (48)
through (51), the model subsequently produces give, me give, and father give me
before arriving at father give me gum. This is in line with the observation that
over time more and more arguments of a verb are expressed (Tomasello 1992).
When looking at the best analyses leading to these generated utterances, we
find an interesting pattern. First, only a lexical construction leading to the
word give is used, after which the model employs a maximally abstract in-
transitive construction to combine me with give. The intransitive construction
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only specifies that the first constituent fulfills a participant role in the event,
and so the recipient me fits that slot. Combining this constellation with the
lexical give-construction, the model arrives at a richer semantic interpretation:
the role filled by me is now specified to be the RECIPIENT. It is interesting that
the model makes a word-order error because of this: it takes the ‘pre-verbal’
slot to allow any semantic argument, and as such the model overextends a
construction. Note that this kind of generation is allowed by the model in
subsequent generation turns as well, but from t = 300 onwards, there are al-
ready analyses that are more likely and have a better coverage of the meaning.
Overgeneralization does not go away, it is just outcompeted.

Looking at the generations at t = 300 and t = 500 (examples (50) and (51)),
we can see that the model generates the string father give me, but does so with
different means. In the former case, SPL uses a fully lexicalized construction,
whereas in the latter, a verb-island construction [ [ PERSON ] [ GIVE / give ]
[ ENTITY ] ] is used, combined with lexical constructions for father and me.
This means that by 500 input items, the slightly more abstract construction has
become reinforced to a greater extent than the fully lexicalized construction.

(48) [ GIVE(GIVER,GIVEN,RECIPIENT) / give ]

(49) [ [ PERSON ]→[ SPEAKER / me ] [ EVENT ]→[ GIVE(GIVER,GIVEN,RECI-
PIENT) / give ] |
GIVE(GIVER,GIVEN,RECIPIENT(SPEAKER))

(50) [ [ FATHER / father ] [ GIVE / give ] [ SPEAKER / me ] ] |
GIVE(GIVER(FATHER),GIVEN,BENEFICIARY(SPEAKER))

(51) [ [ PERSON ]→[ FATHER / father ] [ GIVE / give ] [ ENTITY ]→[ SPEAKER
/ me ] ] |
GIVE(GIVER(FATHER),AFFECTED-ROLE(SPEAKER))

(52) [ [ PERSON ]→[ FATHER / father ] [ CAUSE ]→[ GIVE / give ] [ OB-
JECT ]→[ SPEAKER / me ] [ ENTITY ]→[ GUM / gum ] ] |
GIVE(GIVER(FATHER),GIVEN(GUM),RECIPIENT(SPEAKER)

7.1.4 Robustness to uncertainty and noise
As in section 5.2.4, we can look at the model’s performance given various
settings for Pnoise, uncertainty and Preset. If we make the conditions harder,
does the model perform much worse on the generation task, or does its per-
formance degrade gracefully? Again, we take values noise = {0.0, 0.1, 0.3},
uncertainty = {0, 5, 10}, Preset = {0.05, 1}, and we run three simulations for
every setting.

Looking at precision first, we can see that with Preset = 0.05, increasing the
levels of noise and uncertainty does not have a strong effect on the model’s
performance (figure 7.2a). Under the hardest condition, uncertainty = 10,
noise = 0.3, the precision score after 10, 000 input items is 0.68, meaning that
more than two thirds of the words the model produces are still correct. For
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(a) Precision scores for nine unique noise and uncertainty settings over time given
Preset = 0.05.
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(b) Precision scores for nine unique noise and uncertainty settings over time given
Preset = 1.
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(c) Recall scores for nine unique noise and uncertainty settings over time given Preset =
0.05.

0.0

0.4

0.8

0 2500 5000 7500 10000
time

re
ca

ll

noise

0

0.1

0.3

uncertainty

0

5

10

(d) Recall scores for nine unique noise and uncertainty settings over time given Preset =
1.

Figure 7.2: Precision and recall scores given various parameter settings.
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all other settings, the PRECISION scores range between 0.75 and 0.85. That is:
the model reasonably picks up the right representations from the noisy and
uncertain sets of situations.

Setting Preset to 1 makes SPL less robust to uncertainty and noise, as we
have seen for the identification scores in section 5.2.4. Under the hardest con-
ditions, the productions of the model are now only correct for some 20%,
meaning that SPL has acquired many erroneous representations that, more-
over, have been reinforced over time (figure 7.2b).

The variation between the various Pnoise and uncertainty settings is some-
what greater for the recall, meaning that, despite primarily producing utter-
ances that are correct, they become less complete if the model faces higher
levels of noise and uncertainty (figure 7.2c). The latter parameters seems to
have a stronger effect than the former here: the lowest two scores after 10, 000
input items are for the setting uncertainty = 10. Again, the effect of setting the
Preset to 1 is dramatic (figure 7.2d): SPL acquires many erroneous representa-
tions, especially in the situation sets with high uncertainty, and subsequently
fails to produce the correct target utterances.

Summarizing these findings, we could say that SPL is a robust learner
given relatively high levels of noise and uncertainty (at least: higher levels
than reported in other modeling experiments), but the chain of situations has
to be ‘coherent’: if situations do not resemble each other, the robustness of the
model fades away. However, I believe the uncertainty faced by actual learners
is rather like the one given Preset = 0.05 than Preset = 1, as I argued in chapter
4. Asking the model to perform well given Preset = 1 presents the experiential
world of the child as an incoherent, haphazard sequence of events which we
know it is not.

7.2 Error analysis

More interesting than the cases that are learned correctly are the ones where
the model fails. Studying them provides us with more insight in the aspects
of the model that cause this behavior, and thus constitute stepping stones to-
wards even more comprehensive models. When the model omits words that
are part of the actual utterance U or when it adds words that are not part of
U , what are the kinds of errors the model makes? Some errors are more inter-
esting than others: if the model simply has not acquired a lexical construction
yet, and is hence unable to produce a certain word, it is simply a matter of time
before the model encounters the word and (hopefully) acquires it. If we find
errors in the grammatical patterns, for instance in the omission of arguments
or displaying a different order, there is a more interesting story to be told. We
will have a look at several cases in this section.
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7.2.1 Lexical errors
When a word in U is not produced in the generated utterance Ugen, there are
several possibilities. First of all, SPL may simply not know the word, in which
case it will either use another word or not express the meaning. Second, it
may also be that the model has acquired the word. In that case, the acquisition
may be correct (the word is learned with the right meaning) or incorrect (the
word is learned with the wrong meaning). In the case of unknown words, and
incorrectly acquired words, the story is relatively simple: SPL does not have
the adequate representation, and hence does not produce the correct word.
The case of correctly known, but not produced words is more interesting. Why
would SPL not produce known and correct words when they are called for?

We can divide up the words of the various actual target utterances (the
Us) in several groups: there are words that are produced, and words that are
not produced (i.e., words that are or are not in Ugen. Both produced and non-
produced words can be known as a word or not known as a word (i.e., at time
t, there is a construction in Γt that has exactly one constituent with that word
form as its phonological constraint). The known words can be further subdi-
vided into correctly learned words and incorrectly learned ones (according to
the input generation procedure). We count a word as correctly learned if there
is at least one construction in Γt that has the meaning assigned to it in the
input generation procedure as its meaning.

The counts of the six groups over time are given in figure 7.3. After 10, 000
input items, about 5 out of 7 words in all Us are correctly learned and pro-
duced in the generated utterance Ugens. Initially, many words are simply not
known and hence not produced, but the count of this group drops rapidly (re-
call that most word types have been seen after 1500 input items, cf. figure 5.7).
Several words are simply acquired with the wrong meaning, and are therefore
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mostly not produced.

Outcompeted words

An interesting group are the cases in which the meaning has been acquired
correctly, but that are still not produced (the green bin in figure 7.3). There are
several reasons why cases like these exist. In the generation in example (53)
below, the model tries to express the event in which a boy plays with a pen.
It involves a semi-open construction involving the chunk play with and two
open constituents for the participants. The two participant roles, however, are
both filled with the word worse instead of boy and pen.

(53) Ugen: worse play with worse
U : boy play with pen

The expression of BOY with worse is easily explained: there are no lexi-
cal constructions involving boy. There are, however, several (erroneous) lex-
ical constructions involving worse as the phonological specification. The ab-
straction over these, (i.e., the lowest common denominator) is the maximally
abstract semantic feature ENTITY. The model now faces two choices: either
not expressing BOY at all, or expressing it with the highly abstract [ ENTITY /
worse ] construction. Because the model has acquired many grammatical con-
structions with the agent-role expressed as the first constituent and few with-
out it, it will prefer the generation in which it can use a ‘transitive’-like pattern
combined with worse over a verb-patient construction without any word.

Roughly the same happens for the patient role. SPL has, at this point, ac-
quired a [ PEN / pen ] construction, with a count of 1. Why does the model not
combine this construction with the third constituent of the grammatical con-
struction? The reason here is that worse has also been bootstrapped once (and
erroneously) as meaning PEN. The count, however, is 0. There are, nonethe-
less, many lexical constructions with worse as their phonological form, and a
meaning like ENTITY or ARTEFACT. These abstractions, as well as the [ PEN /
worse ] ‘gang up’ (being equivalent derivations) and outweigh the [ PEN / pen ]
construction.

This type of error can be considered to be a flaw in the design of the model,
but resolving it on principled grounds is harder, and as such poses more of a
theoretical challenge than an implementational issue. The problem is in the
abstraction over lexical constructions: if a word is erroneously acquired and
reinforced, and correctly learned and reinforced (e.g., [ FATHER / father ] and
[ PEN / father ]), the lowest common denominator between the two is ab-
stracted (e.g., [ OBJECT / father ]). We know this is unrealistic, but constrain-
ing the paradigmatization learning operation to apply in a more limited way
would have to apply across the board. This is what, for instance Chang (2008)
does in her model: the two constructions over which an abstraction is made,
have to be sufficiently similar according to some metric. It is likely that this
would work, but to what extent can it be justified as a cognitive operation? If
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abstraction is immanent, any shared structure is – in principle – an immanent
abstraction. Restricting the amount of abstraction seems to me to impose an
unprincipled constraint on immanence. If, however, such restrictions can be
motivated, there is nothing barring us from implementing such a feature in a
model.

Grammatical restrictions

The second case is constituted by words that are correctly learned, but not
produced because there is no grammatical construction facilitating them or
because the grammatical construction is less likely than another grammatical
construction that does not facilitate that word.

In the former case, there simply is no grammatical construction to acco-
modate the production of the word. We can see an example of that in the best
analysis of a situation in which Sarah puts a finger in her mouth (U = Sarah
put finger in mouth), represented in (54) below.

(54) [ [ PERSON ]→[ SARAH / sarah ] [ EVENT ]→[ PUT / put ] [ OBJECT ]→
[ MOUTH / mouth ] ]

What happens in this case is that the best grammatical construction, the
one that captures most of the situation and is most likely, is a transitive,
and Sarah and mouth are expressed as the two arguments of that transitive.
Nonetheless, at this point, the model does have two lexical constructions [ IN
/ in ] and [ FINGER / finger ], but it does not have the means to produce them
under a single grammatical constellation.

These cases are interesting, because they are in line with the claim that
errors of omission in early stages of language production do not depend on
the vocabulary size, but that it is really a matter of grammar (Berk & Lillo-
Martin 2012). Although Berk & Lillo-Martin (2012) argue for a different con-
ception of grammar, their point can be easily transferred to a constructivist
framework: all lexical constructions for producing a caused-motion pattern
are present, it is just the caused-motion construction that is missing. This kind
of analysis also provides a hint at a constructivist solution to Berk & Lillo-
Martin’s (2012) puzzle: if one-and-a-half-year-olds and six-year-olds that oth-
erwise developed normally, go through the same phase of argument omission,
the reason must be a grammatical one. A usage-based explanation of this phe-
nomenon that, crucially, involves syntagmatization would be that the more
abstact and longer grammatical patterns have not been ‘constructed’ yet.

The second case, where the grammatical pattern is available, but outcom-
peted, happens for an item in simulation 9 where the target utterance is she
play with toy and the target situation PLAY(PLAYER(FEMALE-PERSON),TOOL-
ROLE(TOY)). In the interval between 700 and 1400 input items, the model pro-
duces she play with toy, correctly, as the generated utterance, and does so on the
basis of the analysis in example (55). This analysis involves a highly abstract
transitive construction being combined with the chunk play with and the two
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participants. However, after 1400 input items, the model erroneously learns
that with refers to the entity filling the TOOL-ROLE of the PLAY event, and ac-
quires a construction given in example (56), in which the word with is taken
to refer to the TOY. On the basis of an analysis combining this construction
with the lexical construction [ FEMALE-PERSON / she ], the model produces
the incomplete utterance she play with. This case is illustrative of a lexical er-
ror that is made despite the word being known: the model considers another
construction ‘better’ for these purposes, despite even having a construction to
express more aspects of the meaning.

(55) [ [ PERSON ]→[ FEMALE-PERSON / she]
[ EVENT ]→[ PLAY(PLAYER,TOOL-ROLE) / play with ] [ OBJECT ]→[ TOY
/ toy ] ]

(56) [ [ PERSON ]→[ FEMALE-PERSON / she ] [ PLAY / play ] [ OBJECT / with ] ]

7.2.2 Argument structure errors
Argument structure errors come in various sorts in the generations of the
model. A first one is the case of a caused-motion event with a causer, and
a object undergoing a falling action. The target utterance for such a sentence
would be an intransitive utterance involving the undergoing object and the
word fall, for instance ball fall. However, the meaning does steer towards a
transitive expression. Note that the model does not have any alternative ex-
pressions available for expressing the causation of a falling event (e.g., the
suppletive verb drop in I dropped the ball or a periphrastic causative like I made
the ball fall. What happens in the model is that, after producing the sole word
fall for a number of test moments, the model starts producing fall in the transi-
tive frame, basically combining a maximally open transitive construction with
the words for the causer and the undergoing object, and fall. This could be seen
as a case of overgeneralization: the model wants to be expressive, but has no
better means to do so than to use a transitive. However, the model never ‘re-
covers’ from this overgeneralization, as it has, as I mentioned, no alternative
ways of expressing it and it has the built-in desire to trade off maximal expres-
sivity with likelihood of the constructions.

The same pattern is found with caused motion events that involve, in the
actual utterances, verbs like go and come, but are produced in a transitive frame
(you go it for ‘you made it move’). Here, again, there is no competing construc-
tion and the model relies on a highly general transitive construction despite
never having heard go or come used in this frame. Here, however, it seems that
the model does have a competing construction, viz. the caused-motion con-
struction. However, both situations with come and go have a semantic feature
COME and GO associated with them that clashes with the feature PUT associ-
ated with put, and hence the model is not able to use put. We will return to
overgeneralizations in section 7.3.
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7.2.3 Argument omission
Recall that two of the explananda for a usage-based theory, E1 and E2, held
that a computational model of language acquisition has to account for the
increasing length of utterances, as well as explain why subject omission is
more prevalent than the omission of other arguments. The data in figure 7.4
already suggests that the first explanandum is met: utterances become longer
over time. The question, however, is whether this is actually an effect of more
arguments being expressed or whether it is done for some other reason.

The three graphs in figure 7.4 show, over time, how often certain argu-
ments are expressed. I grouped the arguments into three bins: ‘first’ argu-
ments, such as agents and intransitive subjects, ‘second’ arguments, which
are always undergoers, and ‘third’ arguments, encompassing recipients and
locations. What we find, first, is that, in line with explanandum E1, more ar-
guments are expressed over time.

This is not simply a factor of the growing vocabulary, as one may argue.
The red bars in figure 7.4 display the ‘unexpressed unexpressables’, i.e., those
meanings for which there is no construction in the grammar at that moment
expressing them, whereas the green bars represent the ‘unexpressed express-
ables’ (i.e., those meanings that can be, but are not expressed). The former
case is ‘excusable’: SPL simply has no means of expressing that concept. The
latter group, the unexpressed expressables, is more interesting: here, SPL has
a means of expressing that meaning, but cannot do so, because the gram-
matical constructions do not allow for it. As we can see for all three groups
of arguments, the number of unexpressed unexpressables diminishes rapidly,
whereas the number of unexpressed expressables diminishes more gradually.
A main factor, according to this analysis, in early argument omission, is the
availability of grammatical constructions for expressing arguments, in line
with the findings of Berk & Lillo-Martin (2012), who excluded vocabulary size
as a factor for the two-word phase (as discussed in chapter 2).

Turning to explanandum E2, the prevalence of subject omission, we can see
that the model fares less well. For the first few hundreds of iterations, almost
all second and third arguments are omitted, but only about half of the first
arguments (i.e., subjects). One explanation for this could be that the model
has no notion of information structure. As I discussed in chapter 2, Graf et al.
(2015) found that children are more likely to omit old information. As subjects
typically contain old information (Du Bois 1987), it is more likely that they are
omitted. However, this explanation does not say how this is done representa-
tionally: are the subject arguments present in the grammatical representation
and omitted, or are they simply not part of the linguistic construct? This is
an issue that has been discussed extensively in various generative approaches
(see chapter 2), but for which there is no clear answer yet within the usage-
based framework.

A second explanation would be that learners have a right-edge bias in pro-
cessing, in line with, for instance the MOSAIC model. If this is the case, it is
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Figure 7.4: The expression of arguments over time, summed over 10 simula-
tions.
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likely that the model will start picking up [ [ EVENT ] [ ENTITY ] ] patterns ear-
lier than [ [ ENTITY ] [ EVENT ] ] patterns, and that, hence, first arguments will
be omitted more frequently. Similarly, one could imagine adding information
structure to the comprehension: the more an argument is expected, the less
salient it is, the less likely it is to be incorporated in the grammatical analysis,
and hence the less likely it is to syntagmatize patterns involving the expected
argument.

7.3 Overgeneralization

7.3.1 Motivation and Experimental set-up
In the previous section, we have seen that the model overgeneralizes the tran-
sitive construction to the verb fall, and does not overcome this overgeneral-
ization. The reason it does not learn that fall is not to be used in a transitive
frame, as adult speakers of English know, is that it has no alternative that pre-
vents (or: pre-empts) this production. The existence of alternatives opens up
the question under what conditions pre-emption takes place. The studies on
overgeneralization by Ambridge and colleagues, as discussed in 2.4.3 present
several factors involved in this process.

Statistical pre-emption, first, takes place when a competing form to the
overgeneralization has been frequently encountered. Second, children seem to
understand that if a verb is more frequently seen in a fixed set of constructions,
their expectation of the occurrence of that verb in other argument-structure
constructions becomes lower (entrenchment). Third, children are increasingly
sensitive to the narrow verb classes for the various constructions: verbs of
sound emission cannot be transitivized without a periphrastic causative (I
made him scream vs. *I screamed him) whereas verbs of manner of motion can
be transitivized both with and without a periphrastic causative (I rolled it and
I made it roll). Finally, Ambridge and colleagues suggest that the frequency
of the various argument-structure constructions involved may have an effect
as well: the more frequently an argument-structure construction occurs, ir-
respective of its relative frequency to the competing construction, the more
entrenched it will be, and hence the more accessible.

All of these effects seem to follow from Alishahi & Stevenson’s (2008)
model. Can we, similarly, find them in the parsing approach taken with SPL?
To investigate this, we adapt the input generation procedure slightly. The verb
fall is part of the input generation procedure. It is produced either with a mov-
ing object as the first argument, in which case the situational event mean-
ing is {EVENT,MOVE,FALL} and the underlying construction is [ [ ENTITY ]
[ FALL / fall ] ] | FALL(MOVER(ENTITY)). The second construction in which
fall has a moved object as the first argument, in which case the event meaning
in the situation is {EVENT,CAUSE,MOVE,FALL} and the construction underly-
ing it is [ [ ENTITY ] [ CAUSE-FALL / fall ] ] | CAUSE-FALL(MOVED(ENTITY)).
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Recall that SPL overgeneralizes the transitive construction to generate cases
like you fall it for the last type. Recall furthermore that the model does not
overcome this overgeneralization for a lack of an alternative. For this experi-
ment, I added another verb, drop, which has the same meaning as the second
type of fall (viz. {EVENT,CAUSE,MOVE,FALL}), but also occurs in the transitive
construction (i.e., [ [ ENTITYi ] [ CAUSE-FALL / drop ] [ ENTITYj ] ] | CAUSE-
FALL(CAUSER(ENTITYi),MOVER(ENTITYj ))). Will this alternative pre-empt the
use of fall in the transitive construction?

Using this additional verb, we can manipulate the frequencies of the two
verbs and the constructions they occur in to see if effects of entrenchment and
pre-emption are found. The three frequencies we manipulate are:

1. The frequency of fall in the non-causative meaning. We expect that the
higher the frequency of fall in this construction is, the more it will be
entrenched, and the less likely it is that it will be extended to other ar-
gument frames. Within SPL, this expectation arises through the effect of
independence, as discussed in chapter 6: the more a word will be seen
in a particular construction, the more it will be associated with that con-
struction, and the less autonomous it will be. We set the frequencies of
fall in the non-causative frame to 750 (its original frequency) or 75.

2. The frequency of fall given a causative meaning. We expect that the
higher the frequency of fall given this meaning, the more entrenched it is
in the intransitive construction (but with a causative meaning), and the
less frequent the overgeneralization will be.

3. The frequency of drop. If drop is rare, its reinforcement will be weaker,
and the chance of overgeneralizations will be higher. We set the frequen-
cies of drop to 10 or 100.

I test these hypotheses by running 10 simulations of 3, 000 input items
for each of the 8 unique combinations of frequency settings. Every 50 input
items, the model will receive 10 frames with a CAUSE-FALL event and two
participants and is asked to generate utterances for each of them. I scored the
produced generations as follows: the CAUSER-role can be expressed (Agt) or
left unexpressed (None). The CAUSE-FALL event can be expressed with drop,
fall, or another word, or left unexpressed. The MOVER-role, finally, can be ex-
pressed (Pat) or left unexpressed (None).

7.3.2 Results

Frequency of non-causative fall

Figure 7.5 displays the various types of generations for a CAUSE-FALL sit-
uation with two participants. For both frequency settings of non-causative
fall, we can see that the majority of generations involves a causer and a
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Figure 7.5: Produced frames for caused-falling events over time with the fre-
quency of fall with non-causative meaning as a dependent variable.
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word expressing the event, represented as ‘Agt fall’ (e.g., You fall for CAUSE-
FALL(CAUSER(HEARER),MOVED(BALL))). Over time, however, both the tran-
sitive use of fall (‘Agt fall Pat’, e.g., you fall ball) and the transitive use of drop
(‘Agt drop Pat’, e.g., you drop ball) are on the rise.

The difference between the two settings is that with the frequency of
non-causative fall set to 750, the use of transitive drop surpasses that of both
agentive-intransitive fall and transitive fall around 3, 000 input items, whereas
it remains lower than these two erroneous production types if we set the fre-
quency of non-causative fall to 1500. This means that we do not find an en-
trenchment effect of fall: given the pure entrenchment hypothesis, we would
expect that the more fall is seen in one grammatical construction, the less
likely it would be to use it in other grammatical construction. Of course, this
is an effect of the fact that SPL only positively reinforces verb-construction
associations (with most-concrete constructions), but does not inhibit the non-
occurrence of non-observed grammatical constructions.

Frequency of causative fall

Interestingly, for the frequency of fall in the causative, but intransitive, frame,
we do see an entrenchment effect (figure 7.6). Again, we find ‘Agt drop None’
being used most frequently early on, with ‘Agt fall Pat’ and ‘Agt drop Pat’ ris-
ing in frequency over time. However, here the higher frequency of fall given
a causative meaning makes the correct use of drop being acquired faster, with
its use surpassing that of ‘Agt fall’ and ‘Agt fall Pat’ at aroun 3000 input items
(figure 7.6b). This means that we do find an entrenchment effect here: the more
the model has seen fall with a causative meaning in the intransitive construc-
tion only, the quicker it arrives at productions with drop as a suppletive verb.
SPL behaves like this because the representation of the constructions under-
lying the intransitive-fall utterances with a causative meaning are more re-
inforced, thus allowing the model to produce ‘Pat fall’ constructions. These
constructions are, however, never produced, because the model finds the ‘Agt
fall Pat’ and ‘Agt drop Pat’ patterns more expressive, and the ‘Agt fall’ pattern
better entrenched and hence more likely.

Frequency of drop

The frequency setting for drop has the greatest effect. If we set the frequency of
drop to 10, as in figure 7.7a, the verb is simply not reinforced enough to com-
pete with fall, which has a frequency summed over both frames it occurs in of
775. Setting the frequency of drop to 100 remedies this and makes drop a viable
competitor to the use of fall: the use of drop in a transitive construction sur-
passes both the ‘Agt fall’ and ‘Agt fall Pat’ patterns around 1800 input items,
despite drop still being around 8 times as infrequent as fall.
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7.3.3 Factors in the overgeneralization and retreat
As we saw in the inspection of the various settings, the model overgeneralizes
fall to a transitive frame in all cases. This is not strange given the design of SPL:
the model rewards expressiveness strongly, and if no alternative to a transitive
construction with fall as the word expressing the EVENT is present, SPL will
simply use that pattern. Alternatively, it uses the less expressive, but very well
entrenched ‘Agt fall’ pattern, in which an intransitive is combined with the
word fall. Overgeneralization is, as it were, the default state of the model: in its
desire to be expressive, it will use whatever means it has available to express
as much of the conceptualization of the situation as possible.

We have also seen that the model can overcome this overgeneralization,
but that the alternative has to be frequent enough to outcompete fall. When
drop is highly infrequent (77.5 times as infrequent as fall), it will not outcom-
pete fall, but when it is less infrequent (‘only’ 7.8 times as infrequent), it will.
This opens the interesting possibility that we can model the regularizations of
linguistic systems through usage processes with SPL: as a diachronic model,
SPL would predict that drop would fall out of use if its frequency were 10, and
fall would become a transitive verb. If drop has a frequency of 100, however, it
would remain stable in the language.

The other interesting effect is that of the frequency of fall with a causative
meaning. If this pattern is seen often, the model is quicker to use drop as the ex-
pression of the causative meaning. This is remarkable, given that SPL does not
negatively reinforce (or: inhibit) non-observed grammatical constructions for
words. Why, then, does the frequency of causative-but-intransitive fall matter?
It seems to me that the causative-but-intransitive fall-construction is acquired
more readily given this setting. This construction prevents a more generic con-
struction (with any role as the first constituent and fall as the second con-
stituent) to be acquired. It is this latter, generic-intransitive-fall construction
that causes the model to overgeneralize, and if it is ‘latently pre-empted’2 by
the ‘Pat fall’ patterns, the ‘Agt drop Pat’ patterns have more of a chance of
being produced.

The two factors involved in the retreat from overgeneralization show that
SPL can account for explananda E4 and E5: the model overgeneralizes and
retreats from it, and we can study how the frequencies of the various con-
structions play a role in this. A high frequency of fall with a causative mean-
ing ‘latently pre-empts’ the use of transitive fall, and a high frequency of drop
straightforwardly pre-empts the use of transitive fall. This suggests that pure
entrenchment has no role to play and is a mere epiphenomenon. Given the
various findings in experimental studies, I will leave this suggestion to future
research.

The fact that SPL never produces ‘Pat fall’ patterns (i.e., patterns with the
patient of a CAUSE-FALL event as the subject) may indicate that the expressiv-

2I say latently because the ‘Pat fall’ patterns are never produced – they do, however, take
reinforcement mass away from the ‘Any-Role fall’ pattern.
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ity constraint on generation is too strong: the model finds both the erroneous
and correct patterns with two expressed arguments more likely in all cases,
because they express more of the situation. It may be that taking the discourse
salience of the participants into account remedies this.

7.4 Discussion

In the production experiment, SPL proves to perform reasonably well on the
various tasks, making the model fully satisfy desideratum D2 (comprehen-
siveness) now. We have seen that the model omits increasingly less arguments
over time (explanandum E1), but does not simulate the prevalence of subject
omission (E2). I argued that this latter effect is due to either the model having
no notion of discourse salience or its lack of a right-edge biased, a notion well
established by models such as MOSAIC (Freudenthal et al. 2010).

One may wonder why I made such an effort at analyzing the errors the
model makes. I believe it is in the things that the model does not do ‘right’,
according to the target utterance, that we see how it works. The error analysis
revealed the fact that lexical abstraction and grammatical abstraction seem to
work differently; whereas it does not hurt to abstract any and all abstractions
over grammatical constructions (they are pre-empted by more concrete ones
anyway), abstracting over lexical constructions is problematic, because overly
abstract word meanings emerge. This has theoretical consequences. Does it,
for instance, mean that they are, despite the constructivist axiom of ‘every-
thing is a construction’, different beasts? I would not be willing to draw that
conclusion yet, but this is an issue that is definitely in want of further atten-
tion.

Similarly, I found that many overgeneralizations were not overcome given
the set-up (maximally concrete features such as FALL and no suppletive cases
for verbs like fall). The addition of the latter, when drop is defined as CAUSE-
FALL, surely helps, as we have seen in section 7.3, but then the question re-
mains: how do we implement a system in which the violation of some of the
conceptual properties of the situation is allowed in a highly restricted way.
Again, like the condition on expressivity, we could argue that the model has
to be able to produce analyses for a situation that include features not present
in the situation, at the cost of some penalty. This would allow the model to
produce argument-structure patterns that match the situation better, but that
also are overly specific in their features (and therefore penalized).





CHAPTER 8

Concluding remarks

Understanding how children acquire the language of their community within
a limited amount of time is a central question in linguistics. The usage-based
constructivist approach to language acquisition holds that children do so by
using domain-general learning mechanisms such as social cognition and pat-
tern recognizing mechanisms. Computational modeling, that is: simulating a
child’s behavior by formalizing and implementing important pieces of our fa-
vorite hypotheses as software, is becoming an increasingly important method
in the field of language acquisition. I hope to have contributed to both the
field of language acquisition and computational cognitive modeling with this
dissertation by addressing four major points I presented at the outset:

• Achieving greater comprehensiveness of computational cognitive mod-
els

• Achieving greater naturalism in the computational modeling of the ac-
quisition of meaning

• A reappreciation of the starting-small hypothesis within the usage-
based framework

• A reassessment of proposed learning mechanisms (cognitive) and algo-
rithms (computational).

I believe I have done so with the Syntagmatic-Paradigmatic Learner (SPL),
a computational model of the acquisition of linguistic representations that
aims to implement various aspects of a usage-based theory of language ac-
quisition. Crucially, SPL starts off with no linguistic-representational content,
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and learns to comprehend as well as produce utterances. SPL processes utter-
ances in a context of situations (the properties of which were derived from an
empirical study presented in chapter 4), and in doing so, gradually builds up a
constructicon, an inventory of both lexical and grammatical constructions. The
‘learning mechanisms’ involved in the learning process are best thought of as
mere traces of processing operations, rather than actual hypothesis-testing op-
erations (which is the metaphor, grounded in deductivist thought, that is often
used to describe the acquistion of linguistic representations).

8.1 Recapitulating SPL

Let us briefly go over the main properties of SPL once more. The model uses
the representational format of the construction, a pairing of signifying ele-
ments and a signified conceptualization. Starting with no representations, it
tries to parse novel input items, pairings of an utterance and a set of situations
to which the utterance possibly refers.

The set of situations was generated by the input generation procedure of
Alishahi & Stevenson (2010). I modified this procedure to reflect the actual
properties of the situational contexts of linguistic used events, as studied in
chapter 4. In that chapter, we found that the levels for noise (the absence of
some conceptual target from experience) and uncertainty (the overwhelming
presence of conceptual non-targets in experience) typically used in compu-
tational modeling studies are low compared to the ones we find in actual
caregiver-child interaction. I studied the latter by looking at a corpus of video-
taped caregiver-child interaction and annotated the corpus for all conceptual
elements reasonably thought to be present in the situation around the speech
situation. Another insight following from this study was that chains of events
are highly dependent on each other: if the mother engages in an action with
a ball, it is very likely that she will engage in another action with the ball
afterwards, or perhaps in the same action with another object. Given the te-
diousness of hand-coding the data, this method did not prove scalable to the
demands of a computational model. The study of these properties of interac-
tion ‘in the wild’, however, did lead to an adaptation of Alishahi & Steven-
son’s (2010) input generation procedure. In this adapted procedure, we gen-
erate pairs of an utterance and the situational context in which the utterance
occurs, with the latter consisting of a set of situations, one of which is the tar-
get situation, unless the target situation is absent. Notably, the similarity of the
situations within the situational context, and between subsequent situational
contexts to each other is given by the similarity we found in the caregiver-
child interaction. Furthermore, the setting of the parameters for noise and un-
certainty was derived from the video data as well.

For every processed input item, the model arrives at an optimal analy-
sis, and does so without engaging in utterance-wide optimization. That is:
SPL processes the utterance linearly and while keeping track of only the most
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likely analysis up to that point. The best analysis constitutes the input for SPL’s
learning mechanisms. Through a set of learning mechanisms, SPL gradually
builds up an inventory of constructions allowing it to comprehend and pro-
duce utterances. The learning mechanisms constitute the central innovation
of the model in the aim to stay close to the usage-based approach as set out
by Langacker (1988). I believe this aim has been fulfilled in the design of the
model in several ways. Crucially, all of the learning mechanisms, with per-
haps the exception of cross-situational learning, are online mechanisms. That
is: they do not constitute post-hoc operations on the constructicon (the inven-
tory of constructions), but rather reflect the traces left by the processing of the
input item. These traces are found at several levels.

First, a trace of the most concrete representations of the utterances the pro-
cesses is left in the representational system of SPL through the use of most-
concrete constructions. This operation has the effect that highly concrete rep-
resentations, if they are reinforced often enough, can become stronger over
time. We can interpret this as the formation of category prototypes: the well-
reinforced, highly-concrete representations are readily available to the model
in analyzing and generating utterances.

Second, the mechanism of reinforcing the most-concrete used construc-
tions, i.e. the most-concrete constructions, allows the model to accrue rein-
forcement mass for those constructions that are used frequently. The effect of
this operation is that abstract constructions may obtain reinforcement if they
are used to analyze utterances. Because the model only reinforces the most-
concrete used construction, the reinforcement operation rewards patterns that
are actually used. The usefulness of a construction is therefore determined by
its frequency of use. Notably, this design feature implements Bybee’s (2006)
notion of type frequency. An abstract construction will typically only be rein-
forced once for each unique usage event for which it is used in an analysis.
If the same usage event is encountered again, it is very likely that the more
concrete construction blocks the use of the more abstract one. Routinization
through high token frequency follows from the same learning operation: if
a construction is used frequently, it is more readily available for subsequent
analyses. If this construction happens to be a highly concrete one (i.e., one
with many constituents lexically specified) the model will acquire such a con-
struction as a routine.

Third, the model builds up increasingly long constructions through the use
of the syntagmatization operation. Syntagmatization is the trace left by the
processing of multiple, smaller, constructions for which the model has found
no analysis in which they are connected to each other with a grammatical con-
struction. These smaller constructions then form the constituents of a novel,
wider, construction. Syntagmatization is the primary means through which
SPL builds up grammatical constructions.

Finally, paradigmatization allows the model its potential to generalize to
unseen usage events. By taking the joint structure of any two constructions
that have been reinforced, the paradigmatization ‘extracts’ abstractions from
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more concrete constructions. These abstractions, however, are only extracted
in the implementational sense: as no selection over them takes place, they can
be considered immanent in the more concrete constructions from which they
are abstracted, by simply restating their overlap. However, through the re-
inforcement of the most-concrete used construction, they can be reinforced
themselves, in a way akin to Langacker’s (2009) description of how abstrac-
tions may obtain unit status without the more concrete patterns doing so. This
way, selection of ‘good’ or ‘useful’ abstractions takes place, but without any
selection mechanism performing a global evaluation of the usefulness of a
novel abstraction.

The model gets off the ground by the cross-situational learning mecha-
nism, which compares recent usage events and extracts any reliable overlap
as initial lexical constructions. Another way of obtaining lexical constructions
is through the bootstrap operation. Bootstrapping is a property of the utter-
ance analysis mechanism that fills a non-phonologically-specified slot of a
construction with a substring of the utterance, by assuming that substring is
an actual word filling that slot.

Both cross-situational learning and bootstrapping allow for the extraction
of chunks: lexical constructions that are larger than a single word in the ‘adult’
language. These chunks, unlike what many within the usage-based frame-
work assume, are not broken down by the paradigmatization operation. This
would require the model to engage in a post-hoc re-analysis of the chunks,
which was an operation I wanted to avoid, as it makes learning more than a
mere by-product of processing.

8.2 The behavior of SPL

I evaluated SPL’s behavior both in a comprehension (chapter 5) and a produc-
tion (chapter 7) experiment. In the comprehension experiment, I looked at the
performance of the model in identifying the correct situation out of all possible
situations the utterance could refer to, as well as the coverage of the utterance
and the situation with the best analysis. On all three measures, SPL gradually
becomes a more competent language user over time. Similarly, for production,
SPL was tested by having it generate utterances on the basis of a situation and
its constructicon at that point in time. The generated utterances become longer
over time, and increasingly capture the linguistic material found in the utter-
ance that would have been produced by the input generation procedure. In-
terestingly, the model displayed high scores of precision, or correctness, from
the outset: whatever it produced was mostly correct. This is in line with the
finding that children mainly make errors of omission (leaving out elements
present in adults’ speech), but few errors of comission (producing linguistic
elements an adult would not produce).

Next, I looked at the robustness of the model. Recall that we set the pa-
rameters for the similarity of the situations in the situational context, as well
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as the noise and uncertainty of the situational context on the basis of the em-
pirical study of caregiver-child interaction. We may, however, ask how the
model performs given different values for these parameters. I found that if
the situations are similar to each other, the model is relatively robust to higher
levels of noise and uncertainty (on the measures discussed above). Generating
each situation independently of the previous one creates a situational context
in which the situations are more dissimilar from each other, and in that condi-
tion, noise and uncertainty do affect the model’s performance negatively. This
suggest that the coherence of the situational contexts in which children have
their early linguistic experiences plays an important role in bootstrapping a
linguistic system: even if the child misidentifies the precise situation, the erro-
neously identified situation likely contains many elements that are correct.

It is, however, at a more detailed level that the interesting behavioral pat-
terns can be seen, and especially from the failure of the model to behave as
we expect, we learn important things about how the mechanisms work. In the
two experimental chapters, I studied several behavioral patterns of the model
in qualitative detail, to try to understand why the model behaves in certain
ways.

In the production experiments, we observed that the number of expressed
arguments grew over time as an effect of an increasing number of syntagma-
tized and subsequently paradigmatized constructions being acquired. I was
not able to simulate the prevalence of subject omissions, but argued that this
is likely due to a lack of pragmatics and of a right-edge processing bias, as,
for instance, MOSAIC (Freudenthal et al. 2010) incorporates. What I did find
was that the omission of early arguments was not only a matter of a small
vocabulary: for many aspects of the situation the model had to express, it had
a lexical construction available, but it simply did not have a grammatical con-
struction ready to fit the lexical construction in. With this analysis, I provided
a usage-based analysis of Berk & Lillo-Martin’s (2012) finding that older chil-
dren who have been deprived of linguistic input but are otherwise normally
functioning, go through a two-word stage while having a far more extensive
vocabulary than a eighteen-month old. An important caveat here is that the
higher frequency of subject omissions over other argument omissions was not
predicted by the model. Here, the model is somewhat more remote from real-
ity. I argued that the most likely reason for this phenomenon is the information
structure of discourse and the salience of the participants: if subjects typically
denote less salient and discourse-given participants, we can expect them to
be learned (through comprehension) and produced less frequently. An inter-
esting extension of the current model would be to include a discourse model.
This seems a relatively small step, since the current input generation proce-
dure already involves chains of events and utterances, on the basis of which
we can change the salience of certain referents and words.

A central question in language acquisition is why children sometimes
overgeneralize argument-structure (and other) constructions and how they re-
treat from this overgeneralization. The overgeneralization of argument struc-
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ture constructions and the subsequent retreat were modeled in chapter 7. The
answer of SPL to these two questions is that it quickly builds up an inven-
tory of abstract, generalizable, grammatical constructions (which it, however,
hardly uses in comprehension) that it combines with verbs that cannot occur
in these constructions (e.g., you fall ball). The presence of an alternative con-
struction pre-empts this overgeneralization after a phase of overgeneraliza-
tion. I argued that pre-emption works in two ways. First, the more entrenched
this alternative construction is, the quicker the model retreats from overgener-
alization. Second, we find an entrenchment effect of the ‘correct’ construction:
when the model experiences more cases of ball fall with a causative meaning
(someone dropping a ball), the constructions underlying such utterances are
reinforced more, and because of this, highly general constructions allowing
for the overgeneralization become less entrenched. I argued that, rather than
describing this as entrenchment per se, we could better regard this effect as
‘latent pre-emption’, that is: as a pre-emption effect that is not seen in the be-
havior (the model does not produce ball fall, as it is less expressive than you
drop ball), but that does block the use of a novel, erroneous, combination of an
abstract construction and a verb.

8.3 The representations acquired by SPL

One interesting property of computational models is that we can study their
representations independently of the model’s behavior. I did so in chapter 6.
A first finding reported there is that, even though all learning mechanisms are
available over time, their use varies over time. For the acquisition of lexical
constructions we found that cross-situational learning, the naïve method by
means of which the model extracts similarities across linguistic usage events,
is only used for the first few hundreds of input items. Afterwards, the model
has built up an inventory of semi-open and open grammatical constructions
that it can use to bootstrap the meaning of words it has not seen. The paradig-
matization operation, secondly, displays interesting ‘bursts’ of activity over
time, meaning that the model does not arrive at abstractions gradually, but
encounters exemplars that ‘unlock’ new subspaces of the design space of lin-
guistic representations.

The abstractions learned by SPL display the interesting property that they
are not directly obvious from the behavior of the model in comprehension and
production. If we would not have looked under the hood of the model, we
might have arrived at the erroneous conclusion that its representational sys-
tem is very concrete. This is a false line of reasoning: given the usage-based
tenet that language users prefer the use of more concrete constructions over
more abstract ones (as implemented in the probability model of SPL), we ex-
pect the highly concrete constructions to show up most of the time. However,
representationally, the model has great potential for making generalizations.
In fact, generalizations are found rather early, and the model spends the later
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iterations mainly by adding more relatively concrete constructions to the ab-
stract ones that pre-empt the latter. This is not strange, given the overgener-
alization behavior we observe in both children and SPL: once abstraction is
available, the model will use it for expressivity’s sake, unless it has something
more concrete that is equally expressive.

An interesting feature of the abstractions found in the model is that
they clearly reflect the type frequencies of the items occurring in them (cf.
Bybee 2006): the transitive construction is strongly reinforced as a non-verb-
specific construction, because many verbs occur in it, whereas the caused-
motion construction is only seen with two verbs, and hence reinforced in verb-
island-like constructions rather than as constructions that abstract over verbs.

Reversing the perspective, we furthermore saw how certain words are
more readily learned as independent lexical constructions whereas others are
primarily learned as the constituents of grammatical constructions. Notably,
words referring to entities (‘nouns’), are typically learned as independent en-
tities. For the other kinds of words, there was more variation, both between
the words and between simulations. Pronouns are used in a lot of different
contexts, hence boosting the likelihood of their independent acquisition, but
they are also used frequently within particular constructions. What we find
for pronouns, as well as for prepositions and verbs displaying similar distri-
butions, is that they are acquired independently in some simulations, but as
‘bound’ elements of constructions in others. I identified three possible factors
that determined a word’s independence. First, the more different elements oc-
cur in a slot, the more likely it is that the abstraction over them will be used in
comprehension and production, and the more likely it is that the filler word
will be acquired independently. Second, the frequency of the word in the slot:
the higher this value is, the more likely it is that it will not be acquired inde-
pendently, as it will be reinforced as part of a grammatical construction often.
Finally, the word’s ‘promiscuity’ matters: if a word occurs across the slots of
many grammatical constructions, it is more likely that it will be acquired in-
dependently.

On several aspects of the representations, we found high degrees of ‘indi-
vidual’ variation between the simulations: the abstraction of the representa-
tions as well as the relative independence of various words varied between
simulations. This is interesting, as the various simulations display grossly the
same behavior – they perform equally well on the global tasks in comprehen-
sion and production. I will return to this issue in section 8.5.

8.4 Desiderata and explananda

In chapter 2, I set out a list of theoretical desiderata and empirical explananda
the model has to satisfy. Previous models have made important contributions
by focussing on parts of this list and my aim was to bring all insights together.
I believe SPL reasonably succeeds in doing so: table 8.1 displays the list and
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D1 (explicitness) + + + + + + +

D2 (comprehensiveness) ♦ − ♦ ♦ − − +

D3 (simultaneity) ♦ − + + − − +

D4 (representational realism)

D4-1 (qualitative grounding) + + − + + + +

D4-2 (quantitative grounding) + + + + + + +

D4-3 (immanence) + + − + + − +

D5 (processing realism)

D5-1 (heterogeneous structure building) − − − − + − +

D5-2 (linear processing) − − − − + + +

D6 (ontogenetic realism)

D6-1 (cumulative complexity) ♦ − − − + + +

D6-2 (learning-by-processing) − + + + + + +

D6-3 (parts-to-whole and v.v.) + − − − + − +

D6-4 (developmental continuity) + + + + + +

D7 (explanatory insight) + +/− + +/− +/− +/− +

D3-1 (unification) − + − − + − +

E1 (decreasing argument omission) ♦ − − − + − +

E2 (prevalence of subject omission) ♦ − − − + − −
E3 (co-varying complexity) − − − − − − −
E4 (overgeneralization and retreat) ♦ + − − − − +

E5 (mechanisms overgeneralization) − − − − − − +

Table 8.1: A comparison of SPL to the various learners discussed in section 2.5.
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whether or not SPL satisfies each particular desideratum or explanandum.
To the best of my knowledge, SPL constitutes the first usage-based compu-

tational model that is able to parse and generate utterances while starting with
no representational content (D2 and D3). Furthermore, I believe it most closely
instantiates the full set of ideas put forward within the usage based perspec-
tive: the representations are both qualitatively and quantitatively grounded in
the linguistic usage events through their reinforcement in analyzing the us-
age event. Any learned abstractions are furthermore immanent: they merely
restate commonalities across more concrete constructions. In making the anal-
yses, SPL reasonably satisfies the constraints on the realism of processing. Al-
though this was not the focus of this dissertation, it satisfies the baseline con-
ditions that processing is incremental over the utterance and does not involve
the search for an optimal analysis over the full utterance.

Obviously, SPL is not a complete model: no model ever is, which is why
we call it a model. Several design features of SPL function as ‘stubs’ in the
model to make it work.1 These stubs are well grounded in our knowledge of
pragmatic reasoning, linguistic processing, and learning theory, but I do see
room for improvement over the current formulations: a more gradient appli-
cation of them, over the discrete ‘constraints’ that have been formulated for
the model, is definitely a locus of such improvement.

On the empirical side, more evaluation of the model to experimental data
is needed. My reason to focus on ‘naturalistic’ comprehension and produc-
tion is that the natural situation of linguistic interaction forms a baseline: if we
cannot explain that, the fact that we do understand behavior in artificial set-
tings is to my mind a worthless one. After all, this is the context in which lan-
guages are culturally evolved and where the cognitive mechanisms involved
in linguistic behavior are geared towards (whether developmentally or bio-
logically). However, once we understand the naturalistic case (to some extent),
going back and forth between the evaluation on naturalistic behavior and ex-
perimentally elicited behavior vastly enriches our knowledge of the cognitive
mechanisms. I hope to contribute to this evaluation in future work.

Crucially, however, SPL satisfies the developmental desiderata: it obeys to
the cognitive law of cumulative complexity by gradually building up more
complex representations (both in length and abstraction) from simpler ones.
All learning in the model can be seen as the traces left by the processing of the
usage event: there are no reorganization operations on the constructicon as a
whole, nor does the model ‘allow’ constructions ‘in’ or not on the basis of how
useful they are: many representations are extracted from the usage events,
but only a few get reinforced in subsequent usage events. The issue of parts-
to-whole and whole-to-parts learning is interesting. SPL does parts-to-whole
learning by means of the syntagmatization operator, but does not break down
larger units into its components (e.g., when chunks are acquired). In chapter
6, I argued that this kind of offline blame assignment may be at odds with

1I owe this way of regarding aspects of the model to Suzanne Stevenson (p.c.).
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the idea that learning is a by-product of processing. It requires the learner to
re-analyze her previous experiences in terms of a novel conception. Perhaps
this is not impossible, but I believe this aspect of the starting-big conception
is in want of some more elaboration. Interestingly, SPL does display kinds
of whole-to-parts learning, for instance through the bootstrapping operator,
whereby a novel word is learned on the basis of a larger linguistic gestalt.
Finally, the learning operators are available to the model throughout time,
although, as I discussed earlier, their frequencies vary.

I believe SPL provides a good example of narrowing the gap between a
theoretical conception and a computational model (D7). Most aspects of the
model are readily interpretable as aspects of the usage-based perspective, as
I have argued in chapter 3. SPL furthermore provides some unifying expla-
nations: effects of type frequency, token frequency, overgeneralization and the
retreat from overgeneralizatio all emerge simply from the reinforcement pro-
cedure of the model by means of which the representational potential changes
over time.

Looking at the explananda, finally, we see that SPL meets explananda E1,
E4, and E5. I did not discuss explanandum E3 anywhere in this dissertation
and have not attempted to model it myself, but I do believe it to be a cru-
cial empirical observation that future studies should address. Explanandum
E2 is not met by the model: as I argued in chapter 7 it requires either an im-
plemented notion of discourse salience or a right-edge bias. Perhaps adding
either of those to SPL may help satisfy this explanandum.

8.5 Suggestions for the usage-based conception

All of the observations discussed in sections 8.2 and 8.3 are effects found
within the computational model. As such, we may easily dismiss them as arte-
facts of the model. I believe, however, that in many cases this is not the best
thing to do. SPL instantiates a rather close implementation of a usage-based
conception of language acquisition, and as such constitutes a way of study-
ing the various aspects of a usage-based account in interaction, something
not possible in the lab or from the armchair. The interpretation can lead to
two kinds of conclusions: either SPL is right about some aspect of the theory,
or SPL is wrong, but then a better implementation of a particular cognitive
mechanism has to be proposed in order to replace the proposal made in SPL.

A first aspect of the model I would like to draw attention to is the notion of
a competence-performance distinction it embodies. Looking at the behavior
of the model, it seems that it only has acquired highly concrete constructions.
However, these are the constructions it uses most frequently (which is why
they are stored at that level of concreteness in the first place), and for rarer
events, the model quickly arrives at a high level of abstraction in its represen-
tational potential. With the back-and-forths between adherents of the early-
abstraction and lexical conservatism perspectives, it is hard to find empirical
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data that are not contradicted by other data. The point I want to make with
SPL, however, is that the usage-based perspective is not at odds with an early-
abstraction view. Given the close implementation of an immanent abstraction
procedure, SPL quickly arrives at abstraction. Perhaps children do so as well.

Secondly, SPL supports the view that, despite their linguistic behavior be-
ing roughly the same, different language users may have different representa-
tions from one another. We have seen this in chapter 6 for several phenomena:
the number and abstraction of the constructions varies across simulations, and
whereas some simulations operate on the basis of pronoun frames like ‘you X
it’, others have independent pronouns. Nevertheless, in all simulations, the
model arrives at a very similar performance on the comprehension and pro-
duction tasks.

In the discussion of the independence of items, a factor was found that, to
my knowledge, has not been studied well within the usage-based framework.
Earlier in this conclusion, I coined it ‘promiscuity’: the ease with which a word
is used in the slots of various constructions. This may be a factor, besides type
frequency of a constructional slot and the token frequency of a word in that
slot and it would be interesting to study its effects on processing, both through
corpus studies and experimental work.

8.6 Suggestions for cognitive modeling

A first central contribution of this dissertation is the empirical grounding of
the situational context in empirical findings on the actual situational contexts
in which children experience linguistic usage events. Although not scalable by
itself to function as input to a computational model, the method did provide
us with valuable insights in the situational contexts in which children acquire
language. When studying the acquisition of meaningful units, I believe, one
cannot simply make up reasonable estimations of the uncertainty and noise
present in the situation, rather, an empirical grounding of these estimations is
required.

Nonetheless, the way most computational models approach conceptual-
ization is still far from perfect. Meaning is hard.2 A future direction I would
like to suggest is the combination of continuous representations with natural-
istic settings. The use of resources like WordNet is simply not suited to cap-
ture the subtleties of constructional meaning, and, more importantly, displays
a cultural bias. The induction of universal semantic maps and subsequent ac-
quisition of categories within this map forms an interesting way forward (cf.
Beekhuizen, Fazly & Stevenson 2014).

In computational modeling, the shadow of scalability is always looming.
The case is not different for SPL, I believe. I presented the performance of

2Or, as Hugo Brandt Corstius, famously, and intranslatably said “Wat je ook doet, de semantiek
gooit roet” (lit. ‘whatever you do, semantics throws soot’, ‘whatever you do, semantics is a spoil-
sport’).
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the model given an empirically grounded toy setting: the model processes
certain words, but not others, given a limited representation of the mean-
ing. Nonetheless, the distribution of the words, as per Alishahi & Stevenson’s
(2010) input generation procedure, as well as the parameters of the situational
noise and uncertainty, are grounded in empirical work. What I have attempted
is to trade-off the often conflicting notions of the faithfulness to a theoreti-
cal perspective, achieving realism in the simplifying assumptions, maximiz-
ing a model’s empirical coverage, and maximizing the number of things a
model can do (comprehensiveness). I have mainly focussed on the faithfull-
ness and comprehensiveness, perhaps slightly at the expense of attempting to
find more empirical coverage. There is a time for everything and only through
a methodologically heteredoxical approach to computational modeling can
we use its full potential.

Another issue of scalability that I believe needs to be addressed in usage-
based frameworks, is that of ‘hard’ constructions. Within the generative para-
digm, several constructions have been proposed to be unlearnable from the in-
put data alone. Two approaches are typically pursued within the usage-based
framework to counter these claims, namely the reconceptualization of the con-
struction (e.g., Verhagen (2005) for long-distance Wh-questions, or van Hoek
(1997) for pronominal binding), and corpus-driven work, possibly involving
computational models that show that one can arrive at, at least, representa-
tions leading to the correct outputs (Smets 2010, Bod & Smets 2012). However,
computational models doing so typicaly do not take meaning into account. It
would be interesting to see if such ‘hard’ constructions can be acquired in a
framework such as SPL.

Finally, I believe that cognitive modeling should be used more as a tool for
theory formation than only as a hypothesis testing device. Not that that latter
should be done less, but I believe that we, as a community of linguists and
cognitive scientists have not yet understood the full potential of the method,
which goes well beyond the mere empirical evaluation of a theory. At all levels
of the scientific process, modeling provides a tool for shaping our endeavors:
as a discovery procedure, a helping hand (but also a constraint) in formulating
and scrutinizing theories, a means of giving existence proofs, and a means of
both making as well as evaluating predictions. I hope to have presented a case
where many of these possible applications of computational modeling come
together, and furthermore hope that more research along similar lines will be
done.
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Summary

Understanding how children acquire the language of their community within
a limited amount of time is a central question in linguistics. The usage-based
constructivist approach to language acquisition holds that children do so by
using domain-general learning mechanisms such as social cognition and pat-
tern recognizing mechanisms. Computational cognitive modeling (simulat-
ing a child’s behavior by formalizing and implementing important aspects of
these hypotheses as software) is becoming an increasingly important method
in the field of language acquisition. This dissertation addresses four central
issues in the field of language acquisition and computational cognitive mod-
eling:

• Achieving greater comprehensiveness of computational cognitive mod-
els: the model should be able to produce, as well as interpret utterances,
and not just a part of the process.

• Achieving greater naturalism in the computational modeling of the ac-
quisition of meaning: the interpretability of utterances should be as re-
alistic as possible.

• A reappreciation of the starting-small hypothesis within the usage-
based framework: children do not only break down larger wholes into
their component parts, they also learn to arrive at larger linguistic struc-
tures by combining smaller ones.

• A reassessment of proposed learning mechanisms (cognitive) and algo-
rithms (computational): many learning mechanisms are still framed in
deductivist or rationalist terms, two perspectives on cognition which do
not connect naturally to the usage-based approach.

Besides these particular theoretical issues, I set out a list of general theoret-
ical desiderata and empirical explananda the model has to satisfy in chapter 2.
Previous models have made important contributions by focussing on parts of
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this list and my main aim in developing yet another model was to bring these
insights together.

If we want to build a comprehensive model, that is: one that can interpret
as well as produce utterances, we need to have a hypothesis of how children
arrive at an understanding of the communicative intention without the help of
language. Computational models that deal with meaning typically have a set
of situations to which the utterance potentially refers. In chapter 4, I studied
the realism of this assumption. I found that the levels for noise (the absence
of the meaning of an element of the utterance from experience) and uncer-
tainty (the overwhelming presence of possible meanings that are not referred
to in experience) typically used in computational modeling studies are low
compared to the ones we find in actual caregiver-child interaction. I studied
the latter by looking at a corpus of videotaped caregiver-child interaction and
annotated the corpus for all conceptual elements reasonably thought to be
present in the situation around the speech situation. Another insight follow-
ing from this study was that chains of events are highly dependent on each
other: if the mother engages in an action with a ball, it is very likely that she
will engage in another action with the ball afterwards, or perhaps in the same
action with another object. Given the tediousness of hand-coding the data,
this method did not prove scalable to the demands of a computational model.
The study of these properties of interaction ‘in the wild’, however, did lead
to an adaptation of Alishahi & Stevenson’s (2010) input generation procedure.
In this adapted procedure, we generate pairs of an utterance and the situa-
tional context in which the utterance occurs, with the latter consisting of a set
of situations, one of which is the target situation, unless the target situation is
absent. Notably, the similarity of the situations within the situational context,
and between subsequent situational contexts to each other is given by the sim-
ilarity we found in the caregiver-child interaction. Furthermore, the setting of
the parameters for noise and uncertainty was derived from the video data as
well.

In chapter 3 I formalize the model: the Syntagmatic-Paradigmatic Learner
(SPL). The model starts off with no linguistic-representational content, and
learns to comprehend as well as produce utterances. SPL processes utterances
in a context of situations, and in doing so, gradually builds up a constructi-
con, an inventory of both lexical and grammatical constructions. The ‘learn-
ing mechanisms’ involved in the learning process are best thought of as mere
traces of processing operations, rather than actual hypothesis-testing opera-
tions (which is the metaphor, grounded in deductivist thought, that is often
used to describe the acquistion of linguistic representations). SPL uses the rep-
resentational format of the construction, a pairing of signifying elements (both
phonological and conceptual) and a signified conceptualization.

For every processed input item, the model arrives at an optimal analy-
sis, and does so without engaging in utterance-wide optimization. That is:
SPL processes the utterance linearly and while keeping track of only the most
likely analysis up to that point. The best analysis constitutes the input for SPL’s
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learning mechanisms. Through a set of learning mechanisms, SPL gradually
builds up an inventory of constructions allowing it to comprehend and pro-
duce utterances. The learning mechanisms constitute the central innovation
of the model in the aim to stay close to the usage-based approach as set out
by Langacker (1988). I believe this aim has been fulfilled in the design of the
model in several ways. Crucially, all of the learning mechanisms, with per-
haps the exception of cross-situational learning, are online mechanisms. That
is: they do not constitute post-hoc operations on the constructicon (the inven-
tory of constructions), but rather reflect the traces left by the processing of the
input item. These traces are found at several levels.

First, a trace of the most concrete representations of the utterances the pro-
cesses is left in the representational system of SPL through the use of most-
concrete constructions. This operation has the effect that highly concrete rep-
resentations, if they are reinforced often enough, can become stronger over
time. We can interpret this as the formation of category prototypes: the well-
reinforced, highly-concrete representations are readily available to the model
in analyzing and generating utterances.

Second, the mechanism of reinforcing the most-concrete used construc-
tions, i.e. the most-concrete constructions, allows the model to accrue rein-
forcement mass for those constructions that are used frequently. The effect of
this operation is that abstract constructions may obtain reinforcement if they
are used to analyze utterances. Because the model only reinforces the most-
concrete used construction, the reinforcement operation rewards patterns that
are actually used. The usefulness of a construction is therefore determined by
its frequency of use. Notably, this design feature implements Bybee’s (2006)
notion of type frequency. An abstract construction will typically only be rein-
forced once for each unique usage event for which it is used in an analysis.
If the same usage event is encountered again, it is very likely that the more
concrete construction blocks the use of the more abstract one. Routinization
through high token frequency follows from the same learning operation: if
a construction is used frequently, it is more readily available for subsequent
analyses. If this construction happens to be a highly concrete one (i.e., one
with many constituents lexically specified) the model will acquire such a con-
struction as a routine.

Third, the model builds up increasingly long constructions through the use
of the syntagmatization operation. Syntagmatization is the trace left by the
processing of multiple, smaller, constructions for which the model has found
no analysis in which they are connected to each other with a grammatical con-
struction. These smaller constructions then form the constituents of a novel,
wider, construction. Syntagmatization is the primary means through which
SPL builds up grammatical constructions.

Finally, the paradigmatization operation allows the model its potential to
generalize to unseen usage events. By taking the joint structure of any two
constructions that have been reinforced, the paradigmatization ‘extracts’ ab-
stractions from more concrete constructions. These abstractions, however, are



272 Summary

only extracted in the implementational sense: as no selection over them takes
place, they can be considered immanent in the more concrete constructions
from which they are abstracted, by simply restating their overlap. However,
through the reinforcement of the most-concrete used construction, they can be
reinforced themselves, in a way akin to Langacker’s (2009) description of how
abstractions may obtain unit status without the more concrete patterns doing
so. This way, selection of ‘good’ or ‘useful’ abstractions takes place, but with-
out any selection mechanism performing a global evaluation of the usefulness
of a novel abstraction.

The model gets off the ground by the cross-situational learning mecha-
nism, which compares recent usage events and extracts any reliable overlap
as initial lexical constructions. Another way of obtaining lexical constructions
is through the bootstrap operation. Bootstrapping is a property of the utter-
ance analysis mechanism that fills a non-phonologically-specified slot of a
construction with a substring of the utterance, by assuming that substring is
an actual word filling that slot.

Both cross-situational learning and bootstrapping allow for the extraction
of chunks: lexical constructions that are larger than a single word in the ‘adult’
language. These chunks, unlike what many within the usage-based frame-
work assume, are not broken down by the paradigmatization operation. This
would require the model to engage in a post-hoc re-analysis of the chunks,
which was an operation I wanted to avoid, as it makes learning more than a
mere by-product of processing.

I argued in chapter 3 that the developed model reasonably succeeds in sat-
isfying the desiderata set out in chapter 2. To the best of my knowledge, it con-
stitutes the first usage-based computational model that is able to analyze and
produce utterances while starting its development with no representational
content. Furthermore, I believe it most closely instantiates the full set of ideas
put forward within the usage based perspective: the representations are both
qualitatively and quantitatively grounded in the linguistic usage events: their
reinforcement depends on their frequency of use in analyzing linguistic usage
events. Any learned abstractions are furthermore immanent: they merely re-
state commonalities across more concrete constructions rather than extracting
novel cognitive representations from the more concrete constructions. In an-
alyzing utterances, SPL reasonably satisfies the constraints on the realism of
processing. Although this was not the focus of this dissertation, it satisfies the
baseline conditions that processing is incremental over the utterance and does
not involve the search for an optimal analysis over the full utterance.

I evaluated SPL’s behavior both in a comprehension (chapter 5) and a pro-
duction (chapter 7) experiment. In the comprehension experiment, I looked
at the performance of the model in identifying the correct situation out of all
possible situations the utterance could refer to, as well as the coverage of the
utterance and the situation with the best analysis. On all three measures, SPL
gradually becomes a more competent language user over time. Similarly, for
production, SPL was tested by having it generate utterances on the basis of
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a situation and its constructicon at that point in time. The generated utter-
ances become longer over time, and increasingly capture the linguistic ma-
terial found in the utterance that would have been produced by the input
generation procedure. Interestingly, the model displayed high scores of preci-
sion, or correctness, from the outset: whatever it produced was mostly correct.
This is in line with the finding that children mainly make errors of omission
(leaving out elements present in adults’ speech), but few errors of comission
(producing linguistic elements an adult would not produce).

Next, I looked at the robustness of the model. Recall that we set the pa-
rameters for the similarity of the situations in the situational context, as well
as the noise and uncertainty of the situational context on the basis of the em-
pirical study of caregiver-child interaction. We may, however, ask how the
model performs given different values for these parameters. I found that if
the situations are similar to each other, the model is relatively robust to higher
levels of noise and uncertainty (on the measures discussed above). Generating
each situation independently of the previous one creates a situational context
in which the situations are more dissimilar from each other, and in that condi-
tion, noise and uncertainty do affect the model’s performance negatively. This
suggest that the coherence of the situational contexts in which children have
their early linguistic experiences plays an important role in bootstrapping a
linguistic system: even if the child misidentifies the precise situation, the erro-
neously identified situation likely contains many elements that are correct.

It is, however, at a more detailed level that the interesting behavioral pat-
terns can be seen, and especially from the failure of the model to behave as
we expect, we learn important things about how the mechanisms work. In the
two experimental chapters, I studied several behavioral patterns of the model
in qualitative detail, to try to understand why the model behaves in certain
ways.

In the production experiments, we observed that the number of expressed
arguments grew over time as an effect of an increasing number of syntagma-
tized and subsequently paradigmatized constructions being acquired. I was
not able to simulate the prevalence of subject omissions, but argued that this
is likely due to a lack of pragmatics and of a right-edge processing bias. What
I did find was that the omission of early arguments was not only a matter of a
small vocabulary: for many aspects of the situation the model had to express,
it had a lexical construction available, but it simply did not have a grammati-
cal construction ready to fit the lexical construction in.

A central question in language acquisition is why children sometimes
overgeneralize argument-structure (and other) constructions and how they re-
treat from this overgeneralization. The overgeneralization of argument struc-
ture constructions and the subsequent retreat were modeled in chapter 7. The
answer of SPL to these two questions is that it quickly builds up an inven-
tory of abstract, generalizable, grammatical constructions (which it, however,
hardly uses in comprehension) that it combines with verbs that cannot occur
in these constructions (e.g., you fall ball). The presence of an alternative con-
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struction pre-empts this kind of combinations after a phase of overgeneraliza-
tion. I argued that pre-emption works in two ways. First, the more entrenched
this alternative construction is, the quicker the model retreats from overgener-
alization. Second, we find an entrenchment effect of the ‘correct’ construction:
when the model experiences more cases of ball fall with a causative meaning
(someone dropping a ball), the constructions underlying such utterances are
reinforced more, and because of this, highly general constructions allowing
for the overgeneralization become less entrenched. I argued that, rather than
describing this as entrenchment per se, we could better regard this effect as
‘latent pre-emption’, that is: as a pre-emption effect that is not seen in the be-
havior (the model does not produce ball fall, as it is less expressive than you
drop ball), but that does block the use of a novel, erroneous, combination of an
abstract construction and a verb.

One interesting property of computational models is that we can study
their representations independently of the model’s behavior. I did so in chap-
ter 6. A first finding reported there is that, even though all learning mech-
anisms are available over time, their use varies over time. For the acquisi-
tion of lexical constructions we found that cross-situational learning, the naïve
method by means of which the model extracts similarities across linguistic us-
age events, is only used for the first few hundreds of input items. Afterwards,
the model has built up an inventory of semi-open and open grammatical con-
structions that it can use to bootstrap the meaning of words it has not seen. The
paradigmatization operation, secondly, displays interesting ‘bursts’ of activity
over time, meaning that the model does not arrive at abstractions gradually,
but encounters exemplars that ‘unlock’ new subspaces of the design space of
linguistic representations.

The abstractions learned by SPL display the interesting property that they
are not directly obvious from the behavior of the model in comprehension and
production. If we would not have looked under the hood of the model, we
might have arrived at the erroneous conclusion that its representational sys-
tem is very concrete. This is a false line of reasoning: given the usage-based
tenet that language users prefer the use of more concrete constructions over
more abstract ones (as implemented in the probability model of SPL), we ex-
pect the highly concrete constructions to show up most of the time. However,
representationally, the model has great potential for making generalizations.
In fact, generalizations are found rather early, and the model spends the later
iterations mainly by adding more relatively concrete constructions to the ab-
stract ones that pre-empt the latter. This is not strange, given the overgener-
alization behavior we observe in both children and SPL: once abstraction is
available, the model will use it for expressivity’s sake, unless it has something
more concrete that is equally expressive.

An interesting feature of the abstractions found in the model is that they
clearly reflect the type frequencies of the items occurring in them: the tran-
sitive construction is strongly reinforced as a non-verb-specific construction,
because many verbs occur in it, whereas the caused-motion construction is
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only seen with two verbs, and hence reinforced in verb-island-like construc-
tions rather than as constructions that abstract over verbs.

Reversing the perspective, we furthermore saw how certain words are
more readily learned as independent lexical constructions whereas others are
primarily learned as the constituents of grammatical constructions. Notably,
words referring to entities (‘nouns’), are typically learned as independent en-
tities. For the other kinds of words, there was more variation, both between
the words and between simulations. Pronouns are used in a lot of different
contexts, hence boosting the likelihood of their independent acquisition, but
they are also used frequently within particular constructions. What we find
for pronouns, as well as for prepositions and verbs displaying similar distri-
butions, is that they are acquired independently in some simulations, but as
‘bound’ elements of constructions in others. I identified three possible factors
that determined a word’s independence. First, the more different elements oc-
cur in a slot, the more likely it is that the abstraction over them will be used in
comprehension and production, and the more likely it is that the filler word
will be acquired independently. Second, the frequency of the word in the slot:
the higher this value is, the more likely it is that it will not be acquired inde-
pendently, as it will be reinforced as part of a grammatical construction often.
Finally, the word’s ‘promiscuity’ matters: if a word occurs across the slots of
many grammatical constructions, it is more likely that it will be acquired in-
dependently.

On several aspects of the representations, we found high degrees of ‘indi-
vidual’ variation between the simulations: the abstraction of the representa-
tions as well as the relative independence of various words varied between
simulations. This is interesting, as the various simulations display grossly the
same behavior – they perform equally well on the global tasks in comprehen-
sion and production.





Samenvatting

Hoe kinderen binnen zo’n korte tijd de taal van hun gemeenschap verwer-
ven, is een van de centrale vragen in de taalkunde. De gebruiksgebaseerde,
constructivistische benadering van taalverwerving stelt dat kinderen dit doen
door gebruik te maken van domein-algemene leermechanismes zoals sociale
cognitie en patroonherkenning. Het computationeel modelleren hiervan (dus:
het nabootsen van het gedrag van een kind door belangrijke aspecten van de
gebruiksgebaseerde hypothese the formaliseren en implementeren als com-
puterprogramma’s) wordt een steeds belangrijkere methode in het veld van
de kindertaalverwerving. Dit proefschrift snijdt vier centrale zaken in het
computationeel modelleren van de gebruiksgebaseerde benadering aan:

• Het bereiken van een grotere omvattendheid van de computationele
cognitieve modellen: het model moet het hele process, van geen tot veel
taalkennis, zowel in productie als begrip, kunnen uitvoeren.

• Het bereiken van een naturalistischere manier van het modelleren van
betekenisverwerving: de informatie die een kind tot haar beschikking
heeft, moet zo getrouw mogelijk aan het model gegeven worden.

• Een herwaardering van de ‘begin-klein’ hypothese binnen de gebruiks-
gebaseerde theorie: kinderen breken niet alleen grotere gehelen op
in hun delen (zoals de ‘begin-groot’ hypothese stelt), maar leren ook
grotere gehelen te vormen op basis van de kleine delen.

• Een nader onderzoek naar de aard en conceptualisatie van de leerme-
chanismes en de algoritmes die deze mechanismes instantiëren in het
modelleren ervan: veel leermechanismes worden nog steeds beschreven
in deductivistische of rationalistische termen, terwijl deze twee perspec-
tieven geen natuurlijke denkwijzen binnen de gebruiksgebaseerde be-
nadering zijn.
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Naast deze specifieke zaken, bespreek ik in hoofdstuk 2 een verzame-
ling algemene theoretische desiderata en empirische explananda waaraan een
computationeel model zou moeten voldoen. Eerdere modellen hebben belan-
grijke voortgang op deze desiderata en explananda gemaakt, en een belangrijk
doel van deze dissertatie is het bijeenbrengen van deze inzichten.

Als we een omvattend model willen ontwikkelen (d.w.z. een model dat
zowel taalbegrip als -productie nabootst), hebben we een antwoord nodig op
de vraag hoe kinderen de communicatieve intentie van de spreker begrijpen
zonder de talige elementen die deze uitdrukken te begrijpen. Computationele
modellen die zich met betekenisverwerving bezig houden, nemen meestal aan
dat het kind beschikt over een verzameling conceptualisaties van de situatie
waar de taaluiting over zou kunnen gaan. In hoofdstuk 4, heb ik de aan-
nemelijkheid van deze aanname onderzocht. Ik bevond dat de niveau’s van
‘ruis’ (de afwezigheid van in de zin aanwezige betekeniselementen uit de si-
tuationele context) en ‘onzekerheid’ (de mate van aanwezigheid van in de si-
tuationele context aanwezige mogelijke betekeniselementen die niet in de zin
worden uitgedrukt) in de meeste computationele modellen laag worden in-
geschat vergeleken met de waardes die we in eigenlijke ouder-kindinteractie
aantreffen. Deze conclusie bereikte ik door middel van een studie van een
grote verzameling ouder-kindinteracties waarin alle conceptuele elementen in
de aandacht van het kind en de ouder en alle taaluitingen precies beschreven
zijn. Een verder inzicht uit deze studie was dat opeenvolgende gebeurtenis-
sen in hoge mate afhankelijk van elkaar zijn: als de ouder op het ene moment
een handeling op een bal uitvoert, dan is het zeer waarschijnlijk dat deze nog
een handeling op die bal zal uitvoeren erna (i.p.v. op een ander object).

Aangezien het met de hand beschrijven van de data een tijdrovend proces
is, is deze methode niet op te schalen naar de hoeveelheid data die een com-
putationeel model nodig heeft. De studie naar de eigenschappen van ouder-
kindinteractie ‘in het wild’ gaf ons evenwel wel een mogelijkheid om de me-
thode van Alishahi & Stevenson (2010) om kunstmatig input voor het model
te genereren, aan te passen. Deze aangepaste procedure genereert input items,
paren van een taaluiting en een situationele context op basis van een realisti-
sche inschatting van de waarden van ‘ruis’ en ‘onzekerheid’. Daarnaast vormt
de situationele context een keten: welke situatie de volgende zal zijn, hangt af
van de huidige situatie.

In hoofdstuk 3 formaliseer ik het model: de Syntagmatisch-
Paradigmatische Leerder (SPL). Het model begint zonder enige talige
kennisinhouden, en leert geleidelijk zinnen te begrijpen en te produceren.
In het proberen zinnen in situationele contexten te verwerken, bouwt SPL
een constructicon op, een inventaris van zowel lexicale als grammaticale
constructies. De leermechanismes van SPL kunnen het best gezien worden
als de sporen van het verwerken van taal (i.p.v. als hypothese-testende
operaties, zoals taalverwerving vaak, op deductivistische wijze, voorgesteld
wordt). De constructies die SPL leert zijn paren van signifiërende elementen
(fonologische en conceptuele structuren) en gesignifieerde conceptuele
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structuur.
Het model verwerkt elk input-item met het constructicon dat het op dat

moment heeft. Deze verwerking geschiedt zonder een optimalisatie over de
hele zin: SPL verwerkt de zin lineair en onthoudt alleen de meest waarschijn-
lijke analyse na elk woord. De analyse die hier uitkomt vormt de input voor
de leerprocedure. Door middel van een verzameling leermechanismes vormt
SPL nieuwe constructies en versterkt het bestaande. De leermechanismes vor-
men de centrale theoretische vernieuwing van het model door nauwgezet
de gebruiksgebaseerde benadering van Langacker (1988) te operationaliseren
en implementeren. Het model bereikt dit doel doordat alle leermechanismes,
mogelijk met uitzondering van het cross-situationele leren (zie beneden), on-
line leermechanismes zijn. Dat wil zeggen: het zijn geen post-hoc, of achteraf
plaatsvindende, operaties op het constructicon die het constructicon reorga-
niseren. De leermechanismes kunnen gezien worden als de sporen die het
verwerken van de zinnen in hun situationele contexten achterlaten in de geest
van de taalgebruiker. Deze sporen kunnen op verschillende niveau’s gevon-
den worden.

Ten eerste laten de concreetste representaties van de uitingen die verwerkt
worden een spoor achter op het representationele systeem. Deze operatie heeft
het effect dat zeer concrete constructies, als ze maar vaak genoeg gebruikt
worden, met de tijd representationeel sterker kunnen worden. We kunnen
dit effect interpreteren als de formatie van prototypes van categorieën: de
vaak versterkte, zeer concrete representaties zijn hogelijk toegankelijk voor
het model in het analyseren en produceren van uitingen.

Ten tweede worden de concreetste gebruikte constructies versterkt. Dit zijn
de constructies die het model heeft gebruikt in de analyse, maar die mogelijk
abstracter zijn dan de gebruikssituatie zelf. De versterking van deze represen-
tatie staat het model toe om vaak gebruikte abstractere constructies in repre-
sentationele kracht te laten groeien. Het potentieel van een constructie hangt
daarmee dus af van de frequentie van gebruik ervan. Dit kenmerk van SPL
instantieert de notie van het effect van typefrequentie, zoals Bybee (2006) die
bespreekt. Een abstracte constructie zal normaliter alleen één maal versterkt
worden voor elk uniek gebruiksgeval waar het voor gebruikt wordt. Wan-
neer het model datzelfde gebruiksgeval opnieuw tegenkomt, zal het model
immers een concretere constructie hebben (door het eerste leermechanisme)
die dat gebruiksgeval beter dekt. Dit mechanisme instantieert niet alleen het
effect van typefrequentie, maar ook van tokenfrequentie: als een constructie
frequent gebruikt wordt, zal zijn representationele kracht toenemen en een
cognitieve routine gaan vormen

Ten derde bouwt het model toenemend lange constructies op door middel
van de syntagmatizatie-operatie. Syntagmatizatie is het spoor dat achterge-
laten wordt in de representaties wanneer er meerdere, kortere, constructies
naast elkaar verwerkt worden. Deze kortere constructies vormen dan tezamen
de constituenten van een langere constructie. Syntagmatizatie is een bottom-
up leerprocedure waarmee SPL grotere representationele eenheden opbouwt.
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Ten slotte vormt het model abstracties met de paradigmatizatie-operatie.
Deze operatie staat het model toe taalkennis op ongeziene uitingen toe te
passen. Paradigmatizatie neemt de gemeenschappelijke elementen van twee
constructies en ‘onttrekt’ deze om er een nieuwe constructie van te vormen.
Deze abstracties zijn evenwel alleen onttrokken in de implementatie. Er vindt
immers geen selectie over de abstracties plaats en derhalve kunnen ze als ‘im-
manent’ in de concretere constructies worden gezien. Door de versterking van
de concreetste gebruikte constructie (het tweede leermechanisme) kunnen ze
zelf ook representationele kracht opdoen (cf. de beschrijving van Langacker
(2009) van hoe abstracties de status van een ‘unit’ kunnen bereiken). Op deze
manier vindt de selectie van ‘goede’ of ‘bruikbare’ abstracties plaats zonder
dat het model een globale evaluatie van het constructicon uitvoert.

De eerste representaties van het model komen tot stand door cross-
situationeel leren. Dit mechanisme vergelijkt recente gebruiksgevallen met
elkaar en onttrekt alle overlappen in uiting en situatie tussen deze als ini-
tiële lexicale constructies. Een tweede manier om nieuwe constructies te ont-
dekken is door het gebruik van de ‘bootstrapping’-operator. Bootstrapping is
het vermogen van het model om een niet-fonologisch gevulde constituent van
een constructie van toepassing te laten zijn op een woord, zonder dat het dat
woord kent.

Beide leermechanismes zorgen ervoor dat het model ‘chunks’ kan extra-
heren: intern niet geanalyseerde lexicale constructies die groter zijn dan een
enkel woord in de taal van een volwassene. Deze chunks worden evenwel niet
in hun delen opgebroken door de paradigmatizatie-operatie. Dit zou immers
veronderstellen dat het model ze achteraf, en dus niet on-line herinterpreteert,
en dat is een operatie die ik wilde voorkomen om het leren daadwerkelijk een
neveneffect van het verwerken te laten zijn.

In hoofdstuk 3 betoog ik dat dit model behoorlijk goed de desiderata in-
stantieert. Voor zover ik weet, is het het eerste gebruiksgebaseerde computa-
tionele model dat zowel zinnen kan begrijpen als produceren zonder dat het
met enige representationele kennis van de taal begint. SPL instantieert verder
belangrijke aspecten van de gebruiksgebaseerde theorie: de representaties zijn
zowel kwalitatief als kwantitatief gegrond in de talige gebruiksgevallen, hun
representationele kracht hangt af van de frequentie van gebruik, de geleerde
abstracties zijn immanent, en SPL verwerkt zinnen op een redelijk realistische
wijze (lineair en zonder alle mogelijke analyses bij te houden.

SPL’s gedrag wordt vervolgens geëvalueerd in hoofdstukken 5 (begrip)
en 7 (productie). In het begripsexperiment onderzoek ik hoe goed het model
de juiste interpretatie aan een zin kan geven door het te laten kiezen uit een
aantal mogelijke interpretaties. Daarnaast bekijk ik hoe goed SPL de zin en
de geïnterpreteerde situatie dekt met de beschikbare taalkennis. Op alle drie
de vlakken zien we dat SPL een steeds competentere taalgebruiker wordt. In
de productie-experimenten zien we dat, gegeven een situatie die uitgedrukt
moet worden, SPL steeds langere en adequatere zinnen vormt. De fouten die
het model maakt zijn voornamelijk fouten van weglating (het niet produceren
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van woorden die een volwassene wel zou produceren) en niet van toevoeging
(het wel produceren van woorden die een volwassene niet zou produceren.
Dit is in overeenstemming met wat kinderen doen.

Daarnaast observeer ik in beide hoofdstukken dat het model robuust is. De
parameters voor ruis en onzekerheid zijn voor de hierboven besproken exper-
imenten ingesteld op grond van het onderzoek in hoofdstuk 4, maar we kun-
nen ons afvragen hoe het model presteert als we deze waardes hoger leggen.
SPL blijkt relatief goed hogere niveaus van ruis en onzekerheid aan te kunnen,
als de situaties maar een keten vormen. Zodra de ‘coherentie’ van de situatie
wegvalt, gaat de prestatie beduidend achteruit. Deze bevinding suggereert
dat de coherentie van de situatie een belangrijke rol speelt. De reden hiervoor
zou kunnen zijn dat zelfs bij de misidentificatie van de situatie, er nog steeds
relatief veel elementen in die verkeerd geïdentificeerde situatie zijn die wel
correct zijn.

Naast deze algemene tendensen kijk ik in de hoofdstukken 5 en 7 ook op
een gedetailleerder niveau naar het gedrag van het model. In de productie-
experimenten, bijvoorbeeld, observeerde ik dat het aantal uitgedrukte argu-
menten groeide als een effect van het toenemend aantal grammaticale con-
structies, en niet per se als gevolg van een toenemend aantal woorden. In veel
gevallen had het model de juiste woorden wel, maar produceerde het deze
toch niet, omdat het geen grammaticale constructies had om deze woorden
mee te combineren. Het bekende effect dat vooral grammaticale onderwer-
pen worden weggelaten kon ik niet nabootsen, maar dit is, m.i., te verklaren
doordat het model geen pragmatische kennis meeneemt en doordat het geen
focus op de rechterkant van de zin heeft, twee fenomenen waarvan we weten
dat ze van invloed zijn op het weglaten van onderwerpen.

Een centrale vraag in de kindertaalverwerving is waarom kinderen
soms argumentstructuurconstructies gebruiken waar volwassenen deze niet
zouden gebruiken en hoe ze dit gedrag ‘afleren’. Deze twee fenomenen zijn
gemodelleerd in hoofdstuk 7. Het antwoord dat SPL biedt is dat het vrij snel
een inventaris van abstracte, en dus generaliseerbare constructies opbouwt en
die vrij vroeg combineert met werkwoorden waar deze constructies niet mee
gecombineerd kunnen worden (bv. you fall ball in een situatie waarin iemand
een bal laat vallen). De aanwezigheid van alternatieve constructies (bv. you
drop ball ) voorkomt, even later, dat deze combinaties nog gebruikt worden. Ik
betoog in dat hoofdstuk dat het blokkeren van de ‘foute’ constructie op twee
manieren gebeurt. Ten eerste is de mate van representationele kracht van de
alternatieve constructie van belang: hoe sterker deze is, hoe sneller het model
de overgeneralisatie ‘afleert’. Ten tweede vinden we het effect dat hoe vaker
het model zinnen als ball fall tegenkomt, hoe waarschijnlijer de blokkade van
you fall ball wordt. Dit laatste effect is een geval van latente blokade: we zien
het niet terug in het gedrag, aangezien het model niet ball fall zal produceren
(omdat dit minder expressief is dan, bv. you fall ball of you drop ball, waar tel-
kens de agens genoemd is).
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Een interessante eigenschap van computermodellen is dat we, in tegen-
stelling tot bij kinderen, hun interne representaties kunnen bestuderen los
van het gedrag dat het model vertoont. Dit doe ik in hoofdstuk 6. Een eerste
bevinding hier is dat, hoewel alle leermechanismes te allen tijd beschik-
baar zijn voor het model, ze met een variabele frequentie gebruikt worden.
Voor de verwerving van lexicale constructies zien we dat de naïeve methode
van het cross-situationeel leren slechts in de allereerste fases gebruikt wordt,
waarna het model een inventaris van half-open en open grammaticale con-
structies opgebouwd heeft waarmee het de betekenis van onbekende woor-
den kan ‘bootstrappen’. De paradigmatizatie-operatie, op het grammaticale
vlak, vertoont verder interessante uitbarstingen van activiteit over de on-
twikkelingstijd, wat betekent dat het model niet gradueel tot nieuwe abstrac-
ties komt, maar dat het gebruiksgevallen tegenkomt die nieuwe deelruimtes
van de mogelijkhedenruimte van grammaticale constructies ontsluit.

De abstracties die SPL op deze manier leert, vertonen verder de interes-
sante eigenschap dat ze niet direct te observeren hoeven te zijn in het gedrag
van het model in begrip en productie. Als we niet ‘onder de motorkap’ had-
den gekeken, zouden we tot de onjuiste conclusie kunnen komen dat het rep-
resentationele systeem hogelijk concreet is. Deze redenering klopt evenwel
niet: uitgaand van de gebruiksgebaseerde stelling dat taalgebruikers in het ge-
bruik concretere constructies de voorkeur geven boven abstractere, valt het te
verwachten dat in het gebruik voornamelijk die concrete constructies zullen
opduiken. Tegelijkertijd heeft het model echter een sterker potentieel om te
generaliseren. Sterker nog: dit potentieel komt zeer vroeg op en het model
leert daarna voornamelijk concretere constructies erbij die deze abstracties
verder blokkeren. Dit is te verwachten: zodra abstracties beschikbaar zijn, zal
het model deze gebruiken om expressief te zijn, tenzij het een concretere con-
structie beschikbaar heeft die minstens even expressief is.

Een verdere interessante eigenschap van de abstracties die we in het model
aantreffen, is dat ze direct de typefrequentie van de meer concrete patro-
nen die er in voorkomen, weerspiegelen: de transitiefconstructie, bij voor-
beeld, is representationeel sterk met een open werkwoordspositie omdat
er veel verschillende werkwoorden in voorkomen, terwijl de veroorzaakte-
verplaatsingsconstructies met slechts twee werkwoorden gezien wordt door
het model, en daarom als twee werkwoordsspecifieke constructies wordt
opgeslagen.

Als we het perspectief omdraaien (kijkend vanuit de woorden in con-
structies i.p.v. vanuit de constructies), zien we dat sommige woorden als
onafhankelijke lexicale constructies geleerd worden, terwijl andere woorden
voornamelijk als constituent van een grotere constructie worden geleerd.
Woorden die naar entiteiten verwijzen (zelfstandig naamwoorden) worden
typisch geleerd als onafhankelijke lexicale constructies. Voor andere woord-
soorten nemen we meer variatie waar, zowel tussen woorden als tussen ver-
schillende simulatierondes. Persoonlijk voornaamwoorden worden in veel en
diverse contexten gebruikt, wat zou moeten leiden tot een verwerving als on-
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afhankelijke lexicale constructies, maar ze worden ook zeer frequent binnen
die constructies gebruikt, wat zou moeten leiden tot een opslag als deel van de
grotere constructie. Voor deze voornaamwoorden, maar ook voor voorzetsels
en werkwoorden, vinden we dat ze in sommige simulatierondes onafhanke-
lijk verworven worden, terwijl ze in andere als deel van een groter patroon
geleerd worden. Er zijn drie factoren te identificeren voor de neiging van een
woord om onafhankelijk verworven te worden. Ten eerste: hoe meer verschil-
lende elementen er op die plek voorkomen, hoe hoger de waarschijnlijkheid
dat het woord onafhankelijk geleerd wordt. Ten tweede: hoe hoger de frequen-
tie van dat woord op specifieke posities van grammaticale constructies, hoe
lager de waarschijnlijkheid dat het onafhankelijk geleerd wordt. Ten derde:
hoe meer verschillende constructies er zijn waarin dat woord voorkomt, hoe
hoger de waarschijnlijkheid dat het onafhankelijk geleerd wordt.

Ook op andere aspecten van de representaties vinden we individuele
variatie tussen de simulatierondes. De gemiddelde abstractie van de repre-
sentatie varieert ook tussen verschillende simulatierondes. Dit is interessant,
aangezien de diverse simulatierondes wel hetzelfde gedrag in productie en
begrip vertonen – ze presteren even goed op de verschillende taken.
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