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Preface 
Modeling biological systems is an important process in the endeavor of investigations in the life-

sciences. Many studies rely on construction, simulation and analysis of models applying methods, 

which vary from schematic drawings to complex systems of equations, in order to understand 

function and behavior of biological phenomena. It is a challenger to model the complex interplay of 

the cause-and-effect among components that represents a specific biological behavior, e.g. 

regulatory pathways. It requires an analysis of in vivo and in vitro experiments, gathering 

information and data by category, such as concentration over time in response to a certain stimulus. 

Therefore it is possible to create reductive methods to represent the biological system. 

Computational biology has provided tools and methods to investigate how these interactions 

give rise to the function and behavior of that system. In this thesis we consider computational 

methods to model biological behavior, in particular the mycobacterium infection process. The scope 

of this thesis is to model and simulate the dynamics of the infection and the interactions between its 

components from a macro level (i.e. cell) to a micro level (i.e. molecular, protein). In addition, we 

analyze qualitative and quantitative the model, providing simulation of different scenarios of 

specific testable hypotheses about a biological system. The aim of this thesis is to provide and 

validate a computational method for modeling and simulate biological process, considering its 

functionalism, scalability and portability. Throughout the thesis one particular application domain is 

used, Mycobacterium marinum infection in zebrafish and the innate immune response.  

This dissertation presents the modeling aspects of the mycobacterial infection process and innate 

immune response. From the choice of the modeling formalism, addressing the qualitative and 

quantitative aspects of the model as well as simulation results from different scenarios. The goal is 

to create an accurate model that represents the early stage of the infection process.  In the first 

chapter an overview is given of modeling methods used to represent a biological behavior. Their 

relevance and characteristics are presented followed by a description on the technique used in the 

models presented on the followed chapters. The first chapter establishes a context for the subsequent 

chapters, 2 to 5, in which a series of models are presented, describing characteristics and scenarios 

of the infection process. 
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1. Introduction 
 

 

Based on: 

 

Carvalho, Rafael V., Davids, Willem, Meijer, Annemarie H., Verbeek, Fons J.: Spatio-temporal 

Modelling and Simulation of Mycobacterium Pathogenesis Using Petri nets. In: BIONETICS2011. 

Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications 

Engineering, vol. 103, pp 236-241, Springer (2012). 

 

And 

 

Carvalho, Rafael V., Kleijn, Jetty, Meijer, Annemarie H., Verbeek, Fons J.: Modeling Innate 

Immune Response to Early Mycobacterium Infection. In: Computational and Mathematical Methods 

in Medicine, vol. 2012, 12 pages (2012).  

 

 

 

 

 

 
Papel 
 
E tudo que eu pensei 
e tudo que eu falei 
e tudo que me contaram 
era papel. 
 
E tudo que descobri 
amei 
detestei: 
papel. 
 
Papel quanto havia em mim 
e nos outros, papel 
de jornal 
de parede 
de embrulho 
papel de papel 
papelão 
 
 Carlos Drummond de Andrade, Brasil (1902 – 1987) 

Paper 
 
And everything I’ve though 
and everything I’ve said 
and everything they’ve told me 
was paper. 
 
And everything I’ve discovered 
loved 
hated: 
paper. 
 
Paper everything that was in me 
and in the others, paper 
news-paper 
wallpaper 
wrapping paper 
paper-paper 
papier-mâché  
 
Carlos Drummond de Andrade, Brazil (1902 – 1987) 
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Abstract 

Modeling of biological systems is evolving into the description, simulation and analysis of the 

behavior and interdependent relationships of biological phenomena. The process of formulating a 

model relies on the synergistic combination of experimentation, theory and formalization of the 

processes that happen in such systems. In this chapter we describe the characteristics of the 

modeling process and a broad view of the formal models used to model biological systems. We 

choose the Petri net formalism as modeling technique, describing its structure and characteristics 

applied in the models described in the following chapters. This thesis is about an application of Petri 

nets in biology; the examples will directly refer to or rely on biological context. 
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1.1 Modeling systems biology  

Modeling is the art of representing, manipulating and communicating an object, process or concept. 

In the dictionary1, the verb to ‘model’ is defined as “to plan or form after a pattern” or “to produce a 

representation or simulation of”. As one can easily realize, for the modeling is necessary to observe, 

to gather information and generate hypotheses that are consistent with the data collected. Systems 

biology is an empirical science. It represents facts of life with a complex structure. Modeling 

biological systems is an endeavor to better understand the inner workings and emergent properties 

of such system. 

The core of systems biology relies on the construction of models describing biological behavior. 

The aim is to study biological components, i.e. molecules, cells, organs or entire species, and their 

complex interactions, in order to understand the processes and emergent properties that happen 

within such systems. There is ample scientific use for models that represent biological behavior: 

education, using the biological information to describe system characteristics; analysis and 

prediction, testing which assumptions about the system best fit the data and eventually, to predict 

response to different stimuli; instrumentation or device, designing an “alternative system” to 

circumvent experiments that are too costly, time consuming or ethically undesirable. 

In order to build a model that will represent biological behavior, it is necessary to collect the 

information, select the most relevant components and construct first a simplified version of the 

entity we want to model. This process is referred to as the modeling decisions; and basically it takes 

into account the properties of the information, the purpose of the model and the aspects of the 

structure and the process on which the model focuses. Therefore, model formalism is required to 

define, implement and simulate the model and it is part of the modeling decision process to choose 

the formalism that will be used to describe a biological problem. In this chapter, we focus on the 

modeling decisions and the formalisms that are commonly used in modeling biological behavior. 

First, we discuss about the model properties that are considered to make the modeling decision. 

Subsequently, we describe the formal methods used to model biological behavior. We emphasize 

the formalism chosen to model the case study presented in the following chapters. In this chapter we 

also briefly introduce how the formalism that we will use in this thesis, the Petri net, is successfully 

used in the domain of biology. We will explain that the current status of the PN formalism allows us 

to gradually build a model of increasing complexity. Modern biology research is capable of 

producing lots of data that together represent a biological system; the systems biology approach is to 

integrate all these different components and data in order to understand the system and its 

interacting components. We think that the concurrent aspects and different layers can be well 

                                                           
1 Merriam-Webster online dictionary: www.merrian-webster.com/dictionary, access on March 

2015 
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represented in a Petri net and therefore in this thesis, using a case study, we further investigate 

mapping of complex systems studied in the context of systems biology. The different modeling 

aspects are explored and probed with the different Petri net methods. A problem typical to systems 

biology is one in which multiple organisms are involved and interact on different levels – and in 

order to integrate these levels procedures need to be developed. Therefore, a system with an 

invader-host interaction common to disease models was chosen to further develop these procedures. 

More specifically, the invader host system of tuberculosis (Mycobacterium) is studied using the 

zebrafish model. It addresses infection and response mechanisms on various levels of detail. The 

Mycobacterium infection and the response is a very interesting system to study we aim to also use it 

to push the limits of modeling forward. 

 

1.2 Modeling process and properties 

Every modeling process starts by an analysis of the problem; this is essential for a clear definition of 

the questions one asks the model. What do we want to model? What is the aim? What should the 

model achieve? This step includes the definition of the model objective and it implies a certain 

level of understanding of the problem. In the attempt to understand the problem, it is necessary to 

state what the model will represent, and how to analyze its output. Once the objective of the 

modeling is defined, the next step is to collect the information and data about the problem 

consulting scientific literature and/or empirical data together with discussions with field experts. 

After stating the objective and gathering the data, the next step in the modeling process is to define 

a hypothesis. The hypothesis is the basis for the model and the results will depend on it. On basis of 

the hypothesis that we can formulate the model structure, correlating the acquired information and 

the model objective, considering only the data that are relevant for the specific purpose of the 

model. Therefore, in this step we define the level of detail that will be modeled and based on the 

model properties start to construct the model. 

It is crucial to analyze the model properties to define the model structure. Therefore, 

interpretation of the requirements of the model and the aspects of the information/data are acquired 

to define the properties of the structure and process on which the model focuses.  

A model is considered descriptive when it represents the observed data without considering 

directly the processes that produce these data. An example is a graphical representation of the steps 

of the cell cycle: G2 phase (cells with duplicated chromosome); Mitosis (chromosome separation 

and cell division); G1 phase (cells with one chromosome); Synthesis (chromosome duplication). It 

gives the information about the cell process but there is no data about the variables that trigger the 

process (molecules interaction, rates, time). 
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A mechanistic model assumes that a complex system can be understood by examining the 

working of its individual parts and the manner in which they are coupled. For instance, for modeling 

the genetic pathways underlying the cell division, one should consider the data about molecular 

interactions, rates and time consuming. 

Other model properties are related to the dynamics of the process, which is studied. A model can 

be static or dynamic. A static model represents structures that do not provide time dependency. The 

model refers more to the structure than to the behavior of the system. These models are considered 

descriptive and not mechanistic.  

A dynamic model describes relevant information that can be put in a chronological, time 

dependent order. It models systems that represent a process flow, what an object does essentially 

with many possibilities that may arise. Such models can be both descriptive and mechanistic. The 

models presented in Chapter 2 and 3 are examples of a dynamic descriptive model and a dynamic 

mechanistic model respectively. 

Another two important model properties to be considered are directly related to the information 

and data acquired. A qualitative model describes processes without using exact experimental data. 

The model relies on the examination, analysis and interpretation of observations. The purpose is to 

describe underlying meanings and patterns of relationships, including classifications of types of 

phenomena and entities in the biological system. A qualitative model helps to obtain an in-depth 

understanding of biological behavior and the reasons that govern such behavior (why and how, not 

just what, where, when). 

The quantitative model is based on systematic empirical investigation of biological phenomena 

from experimental data that are available. The model allows via statistical, mathematical and/or 

computational analysis, to make predictions about future states in its behavior. A quantitative model 

can contribute, for example, in the prediction of results from experiments and generation of further 

hypothesis about the biological behavior.  

The construction of a model to describe a biological system does not always require exact 

quantitative data. A qualitative model is a starting point for modeling processes for which 

experimental data are still incomplete. When experimental data are available, a migration to a 

quantitative model can be realized by including variable and extending the model complexity. This 

thesis shows this process in its Chapters 2 to 5 where we start to model qualitatively and then 

migrate to a quantitative model. Each model represents an extension of the previous model adding a 

layer of complexity and more data information. The convenience in the process of transformation 

from qualitative to quantitative model is directly related to the formal method used to implement the 

model and will be discussed in the next sections. 
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1.3 Formal models 

Further to the definition given in section 1.1, a model can be seen as description of a system 

designed to help an observer to understand how the system works and to be able to predict on the 

behavior of such system. Models are typically conceptual, existing as an idea, a computer program 

or a set of mathematical conceptualizations. Next, formal models are methods to represent the 

knowledge of a system using computational and/or mathematical structures. For systems biology, 

the theory of concurrency is at the basis of most approaches that have been applied. Many different 

formal methods, languages and modeling paradigms exist, that depend on the information, data and 

the model properties that guide the modeling process.  

In systems biology, Mathematical models are, most often, equation based models that express 

mathematical relationships between quantities and how they change over time. The language in 

which they are specified is denoted by a set of equations that describes different parts, components 

or processes of a system and their behavior.  

Next, Computational models are based on algorithmic process models that are executable and 

progress from state to state, not necessary time dependent. They use an algorithm/programing 

language to specify an abstract execution engine to mimic a design or natural phenomenon. 

In an extended review, Fisher and Henzinger [35] distinguished between computational and 

mathematical models and how they are used to model biological phenomena. They survey the 

applicability and benefits of both approaches and how they can be interconnected. Essentially the 

distinctions are related to important information that drives the modeling decision, such as: 

I. Discrete or continuous:  

A discrete model represents the behavior of the system in distinct spatial and/or temporal 

steps. The state variables change only at a countable number of points in time. In the time 

points an event or a change in state occurs. In a continuous model the behavior of the 

system is represented continuously. The state variables change in a continuous way, and 

not abruptly from one state to another. In fact, the number of states is infinite. 
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II. Deterministic or nondeterministic: 

In deterministic models, series of events are determined at the onset and are precise. It is 

possible to predict what will happen in the system. In nondeterministic (stochastic) 

models, multiple outcomes of the processes can occur and the behavior of the system 

cannot be entirely predicted. In stochastic models, the rates and/or probabilities of events 

that can occur are included.  

III. Sequential or concurrent: 

As the name suggest, in a sequential model the events occur sequentially and a process 

cannot start before its predecessor has ended. It will always depend on information of the 

pre-process. In a concurrent model, different events can occur at the same time. Most 

process in biological system can be characterized by concurrency, and therefore should 

be modeled in such a manner 

Although the description of mathematical models is based on equations, in systems biology 

computer power is used to describe and analyze such models. Therefore, algorithms and programs 

are used to implement such models. In the research presented in this thesis, we designate 

mathematical models as those models that are using process algebras, term rewriting systems or 

different mathematical structures; i.e. Stochastic Differential Equations, Ordinary Differential 

Equations, Partial Differential Equations and Delay Differential Equations. These mathematical 

models also include methods that are inspired by biological phenomena such as Brane Calculi [15], 

P-Systems [96], Biocham [14] and Calculus of Looping Sequence (CLS) [6]. Next, there are 

computational methods based on concurrent systems; i.e. Calculus of Communicating Systems 

(CCS) [27], π-Calculus[99], Bio-PEPA [2, 23], agent-based model (ABM) [46, 108], Petri nets [86, 

98] as well as  variants of this method [49, 61]. The modeling technique of Petri nets (PNs) is 

widely used to model biological behavior due its flexibility and strong emphasis on concurrency and 

local dependency. It comprises an abstract model of information flow, providing a graphical 

representation and a formal mathematical definition. The Petri Net model is the formalism that is 

used to model the biological behavior presented in this thesis. In the following section, we will 

provide an overview about Petri nets, its classes and definitions. 

 

1.4 Petri nets 

Based on a graphical representation and an underlying mathematical structure, the Petri net 

formalism is applicable to model the behavior of a concurrent distributed system that can be 

described in terms of system states and changes in these system states. Among the advantages to use 

Petri nets to model biological systems we can state that the model 

• Has an intuitive graphical representation and a directly executable model 
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• Has a strong mathematical foundation providing a variety of analysis techniques 

• Addresses structural and behavioral properties and also their relationship 

• Integrates qualitative and quantitative methods as well as analysis techniques and 

simulation/animation 

• Covers discrete and continuous, deterministic and stochastic, sequential and concurrent 

methods including hybrid techniques for quantitative and qualitative analysis 

• Has a range of tools to support the implementation, simulation and analysis of the 

models   

 In the formal sense, a Petri net is a directed, finite, bipartite graph. Typically without isolated 

nodes, a PN is basically composed of three main elements [33]:  

Places: are passive nodes that refer to conditions or local states of a system; they can be used, 

e.g. to represent resources; Transitions: are active nodes that describe local state changes in the 

system; 

Directed arcs: specify relationships between local states and local actions by depicting the 

relations between places and transitions. 

Tokens: are elements used to represent information in local states; 

Places, transitions and arcs describe the static structure of the Petri net and how they are 

connected. A transition has input places to which it is connected by a number of places with a direct 

arc leading to the transition. Next, it has output places connected by a direct arc from the transition. 

Direct connections between two places or two transitions are not allowed. The tokens can be 

distributed in the places in order to define a state of the Petri net, referred to as a marking. The state 

space of a Petri net is the set of all possible markings. 

The dynamic properties of the system are governed by a firing rule. It relates the transitions that 

can occur when enabled and then move tokens around the places in a Petri net. A transition can fire 

(occur) depending on the presence of tokens in its input places. The transitions fire by consuming 

the tokens from each of its input places and then producing (deposing) tokens on each of its output 

places. One of the elegant elements of the Petri Net formalism is the graphical notation; the notation 

helps to understand the flow of information through the net. A place is represented by a circle and a 

transition by a rectangle. Arcs connect a place to a transition. Tokens are represented by dots that 

pass through the net (cf. Figure 1.1). 

The basic standard class of the formalism consists of place/transition Petri nets (PTNs). These 

nets are discrete and have no association with time or probability. Possible behaviors of the system 

are analyzed in terms of causalities and dependencies, without any quantification. A Petri net model 

can be enhanced with special read and inhibitor arcs as a means of modeling activation or inhibition 

of activities respectively. In addition, features can be added allow one to connect sub-models in a 
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hierarchical structure. In Chapter 3 we present a model that represents the bacterial-macrophage 

interaction in such a multi-scale structure. 

There are several ways to add time to a net for quantitative modeling. In Continuous Petri nets 

(CPN) the discrete values of the net are replaced by continuous (real) values to represent 

concentrations over time [48]. In Stochastic Petri nets (SPN) an exponentially distributed firing rate 

(waiting time) - typically state dependent and specified by a rate function – is associated with each 

transition [85]. Hybrid Petri nets (HPN) [28] allow one to combine continuous and stochastic 

features of the process to be modeled.  

Initially studied in [83, 88, 115, 116] and summarized by Marsan [78], Stochastic Petri nets can 

be considered as a timed Petri net in which the timings have stochastic values, where a firing delay 

(rate functions) is associated with each transition. It specifies the amount of time that must elapse 

before the transition can fire. This firing delay is a random variable following an exponential 

probability distribution. The semantics of a SPN with exponentially distributed firing delays for all 

transitions are described by a continuous time Markov chain (CTMC). Their firing transition 

follows the standard firings rule of QPNs, and do not consume time. The Stochastic Petri nets can 

also be enhanced with modifier arcs, which allow pre-places to modify the firing rate of a transition 

without influence on its enable state. There are also the special transitions: 1) deterministic which its 

firing delay is specified by an integer constant; 2) immediate which have zero delay and always 

high priority; and 3) scheduled which is a special case of deterministic transition which is specified 

at an absolute point in the simulation time at which it might occur (it will always depend if it is 

enable).         

The Colored Petri nets, proposed by Jensen [60, 62], is an extension to the PN formalism in 

which information is added in the form of ‘colors’ (data types) assigned to tokens, allowing further 

operation and structure abstraction. The functional programming language Standard ML is used to 

manipulate and test data, providing a flexible way to create compact and parameterizable models. In 

a Colored Petri nets, to regulate the occurrence of transitions there are arc expressions that specify 

which tokens can flow over the arcs; and guards that are in fact Boolean expressions used to decide 

which transitions instances exist.  

In the Colored Petri net, a transition is enabled (allowed to fire) if it has no input place, or if each 

of its input places is sufficiently marked by tokens: i.e. the arc expressions evaluate to a multi-set of 

token colors that should be available in the corresponding preceding place. In addition, the guard of 

the transition – if present – should evaluate to true for the given binding. When a transition fires a 

multi-set of colored tokens are consumed (taken) from each of the preceding places, according to 

the evaluation of the expression on the arc. A multi-set of colored tokens is produced (added), in 

correspondence with the arc expression, to each successor place. The overall state space of the Petri 

net is determined by the firing sequences consisting of iterated occurrences of transitions [33].  
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A typical example of a Colored Petri net and its components is depicted in Figure 1.1. Here both 

the graphical representation and the values that make of the QPNC are given.. Figure 1.1 (a) shows 

the declaration of the data values assigned to the net defining two color-sets: count with integer 

values, and individual with a string mm; a constant Max with an integer value; the two variables: k 

and x used in arc expressions and the guard of the transition. The color-sets are assigned to places 

and the tokens on each place will have a color from a color-set assigned to the place. In Figure 1.1 

(b) the net is defined with place P1 (with color-set individual) containing 1 token with the color 

mm, place P2 (with color-set count) containing one token with the integer value “1”, and place P3 

(with color-set individual) without token. The transition T1 is connected with the place P1 by a 

read-arc that works as a test arc: if there is a token in P1, as described by the binding of x and that 

satisfies the firing rule, then the transition can occur, producing a token on the output places, but not 

consuming the token read in P1. Transition T1 is connected to place P2 by two arcs indicating that it 

will consume and produce tokens according to the arc expressions. Figure 1.1 (c) shows the new 

marking obtained when T1 has read P1 and consumed the token in P2, adding a new token in P2 

and P3 according to the firing rule. Repeating this process, the firing sequence will stop in the end 

state as shown in Figure 1.1 (d). In this case, the guard condition turns false since the value of the 

token in P2 does not fulfill the condition. 

 

 

 
(a)  

(b) 

 
(c) 

 
(d) 

Figure 1.1. Colored Petri net example. (a) Declarations of the data types and variables. (b) Colored 
Petri net components. (c) State of the net after firing the transition. (d) End state of the net; the 
transition is not able to fire since the condition of the guard is not satisfied. 

 

The Petri net and its colored extension permit to organize the formalism in a set of modules as a 

family of related Petri net classes, sharing structure, but being specialized by their kinetic 

information, dividing it in colored and uncolored: QPN – QPNC (colored), SPN – SPNC (colored), 
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CPN – CPNC (colored), HPN – HPNC (colored). The conversion of these classes can be realized by 

a folding process. This process groups similar model components in one colored model by defining 

color-set and the set of arc expression. The unfolding process dismembers a colored Petri net in one 

or more similar nets without colors. Moving between the colored and uncolored level changes the 

style of representation, but not necessary the net structure, though there may be loss of information 

in some direction. Heiner et al. [50] produced a classification of the different nets and Figure 1.2 

depicts their structure paradigm of the Petri nets formalism. . For practical reasons we adapt this 

classification as, in our case, this closely aligns with the tools that we use to compose the net. In 

Chapter 2 we present a qualitative colored Petri nets representing the dynamics of the infection 

process. In Chapter 4 and 5 we demonstrate the portability of the Petri nets formalism throughout its 

classes by presenting a QPNC and a SPNC respectively. A formal definition of the underlying Petri 

net classes used in this thesis can be found in Appendix A, Appendix B and Appendix C. 

 

 
Figure 1.2. Paradigm structure of the Petri nets formalism. According to [50].  

 

1.5 Model analysis 

We have seen that for a model to represent the behavior of a biological system, it has to concisely 

summarize and replicate the information about the biological process as present in the system. Once 

a model has been constructed, it should serve as a clear description of the system, and can be 

unequivocally communicated. Therefore, an analysis of the model is required in order to verify and 

validate its structure and behavior. A reliable model is responsible to reproduce a biological process 

bringing evidences in reproduce a specific behavior and confidence on its predictive capability. 
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For the analysis of a model it is necessary to refer to the model objective and the information 

and data used in the modeling process. In the process of analysis we can test the model: does the 

model represent the hypothesis at hand?. Is the data concisely represented?. Does the model 

reproduce the problem? Moreover, the analysis of the model must consider the characteristics of the 

biological system that have been used to define the model properties (cf. Section 1.2). A 

verification analysis evaluates if the model meets its specification by checking the structure and 

behavior of the model. A validation analysis intends to ensure meeting the operational 

requirements by executing a model checking on the result.   

One important (experimental) strategy to verify and validate the model is using simulation. The 

analysis of  the results of a simulation can demonstrated the proper behavior of the model and also it 

can contribute to possibly further refine the model so the results approximate reality as close as 

possible. Although model simulations will never replace laboratory experiments, a model allows 

one to probe system behavior in ways that would not be possible in the lab. Simulations can be 

carried out quickly (often in seconds) and incur no real cost. Model behavior can be explored in 

conditions that are otherwise difficult to achieve in a laboratory settings. Every aspect of model 

behavior can be observed at all time-points. Furthermore, model analysis yields insights into why a 

system behaves the way it does, thus providing links between network structure modeled and 

observed in real experiments. 

 

1.6 Petri nets in biology 

In our descriptions until now it has been implicitly assumed that the Petri net formalism is applied 

on a case from the domain on biology, especially due to the concurrent nature that is 

overwhelmingly present in biological systems. The Petri net formalism has been successfully 

applied in systems biology in the representation of networks [67]; in particular, applications of Petri 

nets in regulatory and metabolic pathways [3, 45, 52, 59, 98, 128]. In addition to conventional 

graphical representations, the flow of information can be demonstrated and visualized. Different 

networks can be connected and what-if scenarios can be tried to understand the effect of presence 

and/or absence of a component. The common denominator of these domains is the concurrent 

behavior that needs to be captured in a model. 
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Systems biology requires integration and a next step in the application of Petri nets is to use it in 

the integration of the components in a systems biology analysis. Such components are described at 

different levels, the process level, the organismal level, the organ/tissue level, the molecular level 

and the gene level. A collection of PN’s typically can integrate all these levels. We need to 

investigate how this can be done in the best possible manner and rather than constructing a 

theoretical framework, we investigate how the existing PN variants can be invoked in a multi-scale 

problem. The infection of Mycobacterium to a host is such a typical problem. It already includes 

two players each with the own agenda and still their strategies interfere. The Mycobacterium 

tuberculosis is the evil-doer for tuberculosis in human. In order to study the infection of 

mycobacterium a model system is used, the zebrafish. In zebrafish the Mycobacterium marinum is 

used to infect the host. The infection in the zebrafish model is used a case study to understand the 

process itself, how it can be represented in a Petri net and how it can be elevated in a Petri net 

representing a systems biology approach. In the next chapters the zebrafish infection is further 

explained in order to map it to a Petri net model. These models then gradually integrate more layers 

are able to represent this complex invader-host process.  

 

1.7 Structure of this Thesis 

This thesis is structured as follows: In Chapter 2, the steps related to the dynamics of the 

mycobacterial infection process and early immune response are used as basis for the first model. In 

this chapter, a qualitative model is presented in which one can visualize the process involved in the 

infection from the moment  the bacteria enter in the host: Immune system detection, phagocytosis, 

migration, proliferation, granuloma formation and infection dissemination are the steps that drive 

the dynamics of the infection process. Chapter 3 presents a model that represents how the bacteria 

explore regulatory pathways, to evade host immune responses and enhance the infection inside the 

immune cell. In this chapter the introduction of hierarchical modeling process is introduced. The 

hierarchical model provides an overview of the important host-cell signaling pathways that occur at 

multiple (molecular, intracellular and intercellular) scales. Chapter 4 demonstrates the power of the 

computational method by coupling the two models from the previous chapters in one hierarchical 

structure. It presents a qualitative model that represents the infection process from the molecular 

interaction to granuloma dissemination. It is possible to correlate the information of the model, its 

structure and its results to behavior observed in vivo. Moreover, a 3D visualization is added to 

support the interpretation of the biological process. In Chapter 5, the qualitative model presented 

previously is extended to a quantitative model that, through support of empirical data, enables to do 

quantitative analysis as well as perform simulations and predictions. Data from zebrafish infection 
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studies were used as a basis for such quantitative model and different simulation scenarios were 

performed in order to verify and validate the model.  

Following the content of Chapters 1 to 5, it gradually optimizes the knowledge and functionality 

of the modeling decisions by increasing the complexity of the model so as to better reproduce the 

biological behavior. As a result, new methodologies of modeling a biological system using 

computational methods were developed. An overview and discussion of this thesis is presented in 

Chapter 6 with the insights obtained from the research explored in previous chapters as well as 

pointing to new directions in the research of modeling biological systems. 
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Ленинград 
 
Я вернулся в мой город, знакомый до слез,  
До прожилок, до детских припухлых желез.  
 
Ты вернулся сюда, - так глотай же скорей  
Рыбий жир ленинградских речных фонарей.  
 
Узнавай же скорее декабрьский денек,  
Где к зловещему дегтю подмешан желток.  
 
Петербург, я еще не хочу умирать:  
У тебя телефонов моих номера.  
 
Петербург, у меня еще есть адреса,  
По которым найду мертвецов голоса.  
 
Я на лестнице черной живу, и в висок  
Ударяет мне вырванный с мясом звонок.  
 
И всю ночь напролет жду гостей дорогих,  
Шевеля кандалами цепочек дверных. 
 
Осип Мандельштам, Россия (1891 – 1938) 

Leningrad 
 
I am back in my city, dear to me like my tears 
Like small veins, swollen glands of my infancy years. 
 
You have come here, now go ahead in one gulp 
Down the fish-oil of Leningrad’s river lights lamps.  
 
Can you make out this day of December that’s marred 
By the egg-yolk stirred into the menacing tar. 
 
Petersburg! I don't want to die yet! 
You’ve still got my phone numbers I’m here to get. 
 
Petersburg! There’re the addresses that I have had 
Where I still can find voices of those who are dead. 
 
I dwell on the backstairs, and my temple is hit 
By the doorbell ripped out by the flesh of its meat.  
 
All night long I am waiting for my dear guests, 
As I stir the door chain shackles, having no rest. 
 
Osip Mandelstam, Russia (1891 – 1938) 
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Abstract 

In the previous chapter we presented a survey of the importance of modeling biological system and 

the aspects involved in the process of designing a model. In this chapter we start the modeling 

process by defining the biological problem, the model objective and formulate the first model based 

on the information collected so far. In this chapter we present a simplified model that represents 

only part of the biological problem. The result points out the direction of the next steps in the 

modeling process, and how to extend the model in order to create a more accurate model of the 

biological problem here defined.  
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2.1 Introduction 

Tuberculosis (TB) is an infectious disease responsible for million deaths annually. About one third 

of the world’s population is infected with the pathogen that causes this disease, Mycobacterium 

tuberculosis (Mtb) [129]. Most infections are controlled by the host’s immune system and remain 

asymptomatic. However, the Mtb is capable to persist in the host inside granulomas, highly 

organized structures characterized by the presence of differentiated macrophages, lymphocytes and 

other immune cells that contain, but fail to eradicate, the pathogen [36, 81]. The key to success of 

Mtb infection lies, at least in part, with the ability of the bacteria to proliferate inside host 

macrophages despite the antimicrobial properties of these cells. Some of the infecting bacteria can 

survive for extended periods within macrophages and in a granuloma. They establish long-term 

infections that may resurface later, for example when the host’s immune system is compromised 

due to malnutrition, HIV co-infection, or immunosuppressive treatment. Insight in the mechanisms 

that contribute to this long and complex relationship between pathogen and host is essential to the 

understanding of the fundamental aspects of TB [26]. 

Various animal models are used to mimic Mtb pathogenesis in humans, each having their 

specific strengths as well as limitations. In recent years, the zebrafish has emerged as a valuable 

addition to mammalian models. They are genetically tractable and have an immune system with 

innate and adaptive branches, very similar to the human immune system. A particularly useful 

property is the transparency of the embryos, which allows for real-time imaging of the interaction 

between pathogens and host immune cells [30, 32, 80, 117]. Mycobacterium marinum (Mm), one of 

the closest relatives of Mtb, is used to study mycobacterial pathogenesis in zebrafish. It causes a 

systemic tuberculosis-like infection in zebrafish, with the formation of structured granulomas that 

closely resemble those in human TB. The use of this model has recently contributed important 

insights into the function of the granuloma in expansion and dissemination of mycobacteria during 

the early stages of infection [82]. 

Mathematical and computational modeling provides an important additional avenue for the 

further exploration of disease dynamics. It offers powerful and complementary tools for the study of 

the host pathogen interaction. Gathering and analyzing the information from the animal model in a 

computational modeling process, makes it possible to describe, simulate, analyze and predict the 

mechanism and interactions behind the infection process in intuitive and easily analyzable terms. 

Agent Based Model (ABM) are a computational formalism based on rules that govern autonomous 

agents [7]. It can be used to model discrete as well as stochastic events in biology. Pappalardo et al. 

have implemented and simulated models using ABM and Cellular Automata to study the vaccine 

administration and immune response to cancer in mice [4, 92, 93]. Kirschner et al. have utilized 

ABM to model and simulate the Mtb disease and the host-pathogen interaction [65, 66, 72]. They 
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suggest ABM as an appropriate method for exploring complex spatiotemporal systems such as 

granuloma formation [108]. The PN formalism has already been successfully applied on case 

studies in biology to create, verify and validate models. Stochastic Active Networks (SAN) forms 

an extended Petri net model that uses probabilistic time, and is in particular useful for performance 

evaluation. Tsavachiou et al. [118] have used SAN in modeling and quantitative evaluation of the 

biological pathways involved in menopause. They use biological pathways and experimental data in 

an accurate quantitative model to simulate and compare to in vivo/in vitro experiments. Peleg et al. 

[94] have used Colored Hierarchical Petri nets to study effects of mutations in tRNA on the protein 

translation. They define qualitative models of molecular function at different levels of granularity. 

The application domain of tRNA was chosen due the abundant literature on tRNA molecular 

structure as well as the diseases that relate to abnormal structure.  

Regarding the mycobacterial infection process, the interaction with host-pathogen is complex 

and much remains unknown. Significant specific immune factors present on the mycobacterial 

infection process still poorly understood. To date, mathematical and computational models applied 

to mycobacterial infection have been used to explore specific aspects at various biological scales 

(e.g. intracellular, cell-cell interactions, and cell population dynamics) [65, 72, 108]. The 

mycobacterial infection process thus is composed of numerous sub-processes, some of which are 

mutually dependent; giving rises to a very complex set of interactions. A model describing the 

process at a dynamic level that can connect such sub-processes is missing. Therefore we take the 

construction of a model of the infection mechanism at a higher level of granularity as a starting 

point for our modeling efforts and explorations. The availability of such a model enables to connect 

and visualize the whole infection process. This top-down approach allows identifying, modeling and 

testing of the lower level processes in both qualitative and quantitative manner. The input for these 

lower level processes can be obtained from both empirical research and literature data. 

The zebrafish model of mycobacterium infection, based on Mm infection, has been identified as 

very useful in the understanding of host-mycobacteria interactions during early stages of infection. 

This model system is used to generate experimental data that elucidate the pathogenesis as well as 

to transfer the findings to the human case. The perspective of analysis from in vivo/in vitro studies 

requires an integration layer. Therefore, experimental data can be understood in the range of 

complex interactions that are underlying the infection process. We intend to construct such 

integration layer from an in silico perspective using the Petri net formalism as a modeling method to 

simulate bacteria-host interactions in early stages of tuberculous granuloma formation. As indicated, 

our starting point is to construct such a model from a higher level of abstraction. We, therefore, 

have designed a PN by first identifying the dynamics of the infection process; i.e., phagocytosis of 

mycobacteria by macrophages, the migration of infected macrophages to deeper tissue, the growth 

of mycobacteria within individual macrophages, and the granuloma formation and maturation [82]. 
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These processes were represented in a colored qualitative Petri net (QPNC) using the Snoopy 

software [54], a tool for modeling and animating/simulating hierarchical graph-based formalisms.  

In our approach, we design the elements involved in the dynamics of the infection process by 

describing their causal relations. We have identified entities such as the zebrafish, the macrophage, 

the granuloma and the bacteria, in this manner the phases of the infection process are addressed. For 

the moment, time and probability are not considered. In this manner, our model explores the disease 

on a high level of abstraction, modeling the factors that are crucial to visualize the mycobacterial 

infection process and the early immune response. Complex processes involving cell-cell or cell-

bacteria communication can be modeled in small scale process and incorporated into the model as a 

hierarchical layer. The model shows the cause-effect relations that trigger the infection process 

through a graphical representation in a manner biologists can grasp immediately. Now, as the model 

incorporates the process of infection, the toolbox of the biologist is extended with an approach that 

allows to perform “what-if” as part of the experimentation whereas, at the same time new 

experimental findings can be added to the model in a close collaboration between empirical and 

modeling scientists.  

The remainder of this paper is structured as follows. In Section 2.2 we discuss the pathogenesis 

of the mycobacterium infection in Zebrafish in more detail and next we introduce the building 

blocks of the QPNC and the software that we have used to build the model. In Section 2.3 as a result, 

we provide a series of design considerations to come to an implementation of the model. Finally in 

Section 2.4 we present the conclusion and discussion. 

 

2.2 Materials and methods 

 

2.2.1 The zebrafish model of mycobacterial pathogenesis 

The zebrafish is naturally susceptible to infections caused by Mycobacterium marinum (Mm), 

genetically closely related to Mycobacterium tuberculosis (Mtb). The Mm infection shares 

pathological hallmarks with Mtb infection. Like other pathogenic mycobacteria, Mm causes chronic 

infection of macrophages resulting in tuberculous granulomas, making it a useful model to study 

mycobacterial pathogenesis [8]. Zebrafish embryos have functional innate immune cells 

(macrophages and neutrophils), while their adaptive immune system is not yet functional. Injected 

bacteria into the blood circulation or into tissue initiate the experimental infection of zebrafish 

embryos. Macrophages that are attracted to the site of infection take up the mycobacteria by a 

process called phagocytosis. Real-time imaging of infected zebrafish embryos has allowed the direct 

observation of the arrival of phagocytes at the infection site and their uptake of bacteria. The 
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macrophages are the primary cell type infected with Mm, however also infected neutrophils have 

been observed [6, 8] and were recently shown to play an important role in Mm infection control 

[130]. In Figure 2.1 an Mm infection in a zebrafish is depicted. 

 

Figure 2.1: Microscope image of a zebrafish larva infected with Mycobacterium marinum by injection used for 
the study on infection progression and immune system response. Image is obtained with a Leica Stereo 
Fluorescence Microscope commonly used in zebrafish research. Here the microscope image is depicted with an 
overlay of a fluorescent channel (red) in which the bacteria are visualized. The arrows indicate granulomas that 
have developed after an induced infection with Mycobacterium marinum. 

 

Inside the macrophage, bacteria can be exposed to bactericidal mechanisms and degraded in 

lysosomes. However, intracellular mycobacteria are predominantly distributed between the early 

and late phagosomal compartments, with some also escaping into the cytoplasm [22, 23]. Similar to 

Mtb, Mm escapes from lysosome degradation and its survival inside macrophages is facilitated 

through the dynamic modulation of a range of cellular processes. These include inhibition of 

pathways involved in the fusion of the phagosome with lysosomes, antigen presentation, apoptosis, 

and the activation of bactericidal responses [104, 113, 114]. Mycobacterial interference with the 

host signaling machinery severely compromises the immune defenses. Therefore, mycobacteria 

multiply inside the macrophage over time causes its death, thereby enabling further spreading of the 

infection.  

Once it has become infected with mycobacteria, the macrophage starts to induce recruitment of 

uninfected macrophages. Studies have established an important role for a mycobacterial virulence 

factor, the ESX-1 secretion system, in the recruitment of new macrophages to granulomas and the 

expansion of infected macrophages [5, 25, 26]. These macrophages efficiently find and 

phagocytosis infected macrophages and bacteria that are released from dead cells. In this process 

these macrophages are getting infected too and the aggregated macrophages become activated. A 

transformation reflected by an increase in their size and subcellular organelles, ruffled cell 

membranes and enhanced phagocytic and microbicidal capabilities. A common feature of all 

mycobacterium granulomas is the further differentiation of the macrophages into epithelioid cells. 

They have tightly interdigitated cell membranes in zipper-like arrays linking adjacent cells. Those 

aggregates grow into organized structures that are referred to as granulomas, lumps of immune cells 

that surround the infection [114]. 
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Primary granulomas are capable of disseminating infection throughout the body by egression of 

infected macrophages. This process suggests that granuloma macrophages constitute the major 

mechanism for dissemination of the infection [32]. These granulomas are the hallmark of the 

tuberculosis disease in both human and animal models. In Figure 2.2 a schematic representation is 

depicted of the early stages of the mycobacterial of the pathogenesis infection process.  

 

 

Figure 2.2: Schematic representation of the early stages of the immune response to the early stages 
of the mycobacterial infection process. Figure is an authors’ rendition adapted from [71] 

 

2.2.2 Computational model 

Experimental research has generated a tremendous amount of insights into host-pathogen 

interactions that occur during mycobacterial infections. Mathematical and computational models 

can offer powerful and complementary methods in support for better understanding the mechanisms 

behind the infection process in intuitive and easily analyzable terms. Amongst these methods we 

can refer to modeling approaches such as Brane Calculi [15], π-Calculus [99], Agent Based 

Modeling (ABM) [108] and Petri nets (PN) [98]. These modeling methods can be used to describe, 

simulate, analyze and predict the behavior of biological system by turning what is known about the 

biology into equations and/or rules to describe and ultimately understand the system. Previously, we 

proposed a system for modeling, simulating and visualizing the Mycobacterium infection and 

granuloma formation.  We discussed the basic layout and the modeling challenges for this approach. 
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Moreover, evaluated between computational methods the Petri net as an appropriate method for the 

modeling of the infection process [18]. 

In order to create a flexible, compact and parameterizable model, we decided to use a QPNC to 

model the early stages of the infection process and granuloma formation. Although standard Petri 

nets can be used to model parts of our problem, such as reaction processes and biochemical 

components, it becomes impractical to represent different levels of abstraction, when in addition, 

other aspects have to be taken into account such as the physical and spatial organization of the 

organism, from the intracellular to the intercellular level and beyond (molecular, cellular, tissues). 

Colored Petri nets allow the description of several similar network structures in a concise and well-

defined way, providing a flexible template mechanism for network designers. In Colored Petri nets, 

tokens can be distinguished by their colors. This allows one to discriminate levels (molecules, 

metabolites, proteins, secondary substances, genes, etc.). In addition, the tokens colors can be used 

to distinguish between sub-populations of a species in different locations (cytosol, nucleus and so 

on). A formal definition of the Colored Petri nets can be found in Appendix C. 

 

2.2.3 Software and hardware platform 

Several tools are available to model biological systems using Petri nets, simulate their dynamic 

behavior and analyze their structure. The Snoopy software provides an extensible, adaptive and 

multiplatform framework to design, animate and simulate Petri nets [54]. Its design facilitates the 

modular implementation of our QPNC model allowing future extensions to be added through 

hierarchical organization of Petri nets. We have used the Snoopy software to implement and 

animate our net with two different operating systems (OS): Windows 7 (HP Intel core i7, 4 Gb 

RAM) and Mac OS 10.6 (MacBook Pro Intel core i7, 4 Gb RAM). The main difference between the 

two platforms is the additional features in the user-interface for the Windows implementation. The 

QPNC model runs with the same accuracy on both OS-versions. This illustrates the platform 

independency of the Snoopy software framework. 

 

2.3 Results 

We have modeled the role of the innate immune system in the early stages of a mycobacterial 

infection. Our approach is to provide a large-scale model that drives the infection behavior using 

Colored Petri net. We have defined the color sets	+, places ,, transitions -, and the initial marking . 
present in our QPNC	= 0+, ,, -, 2, 3, 4, 5, .6. 
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2.3.1 Set of color sets ! 

We have defined five simple color sets: Position, Individual, Status and Count; and four 

compound color sets: Macrophage, Bacteria, Proliferation, Granuloma composed of the basic 

colors sets. They represent empirical information from the infection process: 

• position: is an integer value representing the location of a macrophage, bacteria and/or 

granuloma; 

• individual: is a string value (mm, mac) used to identify bacteria and macrophages; 

• status: is a Boolean value, it can represent the infection status (healthy/infected) of a 

macrophage or the saturation of a proliferation; 

• count: is an integer value representing a threshold for the simulation; 

• Macrophage: is composed of Position, Individual and Status colors and represents 

host macrophage immune cells; 

• Bacteria: is composed of Position and Individual colors and represents M. Marinum 

bacteria that will be injected; 

• Proliferation: is composed of Count, Individual and Status colors and represents the 

amount of infected aggregated macrophages; 

• Granuloma: is composed of Position, Individual and Count colors and represents 

granulomas with the amount of macrophages. 

 

2.3.2 Set of places " 

The set of places of our QPNC is defined as: 

 " =	 7$89:;<=>8, $??@8:ABC<:?, "DEF>;B<>C=C, G=FHE<=>8, IE;<JH>K<D,
LD:;MN>=8<, L>8O=<=>8, P:EOGE;H>NDEF:,
Q:;H@=<?:8<L>@8<, RFH:FE<=>8R?>@8<, A<>NA=F8ES=8F, GE<@HE<=>8,
P=CC:?=8E<=>8T	 

They represent population of cells and multicellular complexes that are part of our model: 

• C(Infection)={Bacteria}: a place with the mycobacteria that intrude the host; 

• C(ImmuneSystem)={Macrophage}: a place containing the immune cells (healthy 

macrophages) that will react to an infection signaling; 

• C(Phagocytosis)={Macrophage}: a place containing the infected macrophages; 

• C(Migration)={Macrophage}; C(BactGrowth)={Proliferation}: places containing 

information about the bacterial replication within one macrophage and its movement; 

• C(DeadMacrophage)={Macrophage}; C(AgregationAmount)={Granuloma}: places 

containing dead macrophages and the aggregation of recruited healthy macrophages 

(granuloma); 



26 
 

• C(Maturation)={Macrophage}; C(Dissemination)={count}: places containing 

information about the infected aggregated macrophages (intracellular bacterial spread) 

and the control of the infection dissemination; 

• C(Checkpoint)={status};C(Condition)={status};C(RecruitmentCount)={coun}; 

C(StopSignaling) = {count}: places controlling the flow of the simulation.  

 

2.3.3 Set of transitions # 

The set of transitions of our model is defined as: 

# = 	 7IE;A=F8ESS=8F,GE;A=F8ESS=8F, $8<HE;:S@SSEHANH:EO, ANH:EO, <U, <V, <W, <XT  
They describe important events that govern the infection process, refer to the molecular 

interaction, signaling reaction and intracellular changes; they also regulate some thresholds that 

control the simulation:  

• BacSignalling: represents the signaling process when bacteria reach the host; 

• MacSignalling: represents the signaling process of an infected macrophage after its 

death (recruitment of healthy macrophages); 

• IntracelullarSpread: represents the bacterial replication among the aggregated 

macrophage in the granuloma; 

• Spread: represents the dissemination of granuloma infection; 

• t1, t2, t3 and t4: represent the control-thresholds of the simulation. 

 

2.3.4 Initial marking $ 
The initial marking in our model determines for each place the number and type of colored tokens 

initially present in the places. We have the condition markings that are fixed and used to control the 

process, and the example markings, which are used in our example and can be modified without 

changing the workflow. They are defined as: 

Condition markings: 

• I(Checkpoint)=1`(true): initialized for checking if the bacterial replication inside the 

macrophage reaches its limits; 

• I(RecruitmentCount)=1`(0): initialized for counting the number of macrophages 

recruited to aggregate into the dead macrophage;  

• I(BactGrowth)=1`(1,mm,true): initialized to trigger replicating the bacteria inside the 

macrophage; 

• I(Dissemination)=1`(0):  initialized to keep count of the dissemination of the 

granuloma. 
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• I(Condition)=1`(true): initialized to enable one infected macrophage become dead and 

start the signaling process.  

Example markings: 

• I(Infection)=1`(1,mm) + 1`(2,mm) + 1`(3,mm): defines the initial concentration of the 

mycobacteria that will intrude  the host. We have defined three different positions to 

represent different injection sites; 

• I(ImmuneSystem)=1`(1,mac,false) + 1`(2,mac,false) + 1`(3.mac,false) + … + 

1`(10,mac,false): defines the initial concentration of healthy macrophages in the host. 

The positions and amount of healthy macrophages are empirical and used just to 

represent their presence in the host; 

All other places are initially empty, i.e. there are no tokens at the onset. 

 

2.3.5 Implementation and execution of the model 

Our model is motivated by the biological problem discussed in Section 2.2 and it specifically 

focuses on the process of granuloma formation and infection dissemination. The environment of the 

model represents the innate immune response based on the Mycobacterium marinum infection 

process in the zebrafish embryo. Although at this level, the QPNC model can be used to describe the 

early immune response to any kind of mycobacterial infection process. The elements of the Colored 

Petri net described in the previous sections represent key factors involved in the processes of 

infection, innate immune response, and granuloma formation. The rules of the model represent the 

biological interactions as described in Section 2.2.1, i.e.:  

• Signaling of intruding bacteria detected by healthy macrophages followed by 

phagocytosis;  

• Migration and intracellular bacterial replication within infected macrophages and their 

death;  

• Recruitment and migration of healthy macrophages in response to the dead macrophage 

signals;  

• The aggregation process and granuloma formation;  

• The bacterial spread in the aggregate macrophage and the infection dissemination.  

Figure 2.3 shows the prototype model in a Colored Petri net implemented using the Snoopy. 

Arrows labeled with a black dot as an arrow head are so called testing arcs: they represent two arcs 

in opposite directions between the place and transition with an identical arc expression, however, 

the tokens are not consumed, just tested for their presence. 
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Figure 2.3: Screenshot of the QPNC modeling the early stages of the immune response to the 
mycobacterial infection process implemented in snoopy software. 

 

As initial conditions to our model, we have defined some numbers as boundaries to check the 

behavior of the net using the simulation mode in the Snoopy software. The intracellular bacterial 

spread is limited to a concentration of 255 bacteria. In the literature no specific information was 

found about the capacity of a macrophage or about its absolute position. In early stages of the 

zebrafish embryos it is known where the macrophages are not present [30]. For this reason we have 

defined 10 relative positions to represent the presence of macrophages and their movement during 

the infection process and granuloma formation. In order to keep the model straightforward, we also 

limit the concentration of aggregated macrophages (cf. Fig. 2.5). Next, we have defined a threshold 

concerning the infection dissemination; i.e. we limit the concentration of dissident macrophages that 

are released from the granuloma. Although from in vivo/in vitro experiments it seems that the 

dissemination is regulated by the adaptive immune system [5, 15], we have not considered this to be 

in the scope of our model. 

The infection starts when the mycobacteria intrude the host. In our model we concentrate on 

three different positions of the mycobacteria (1,mm), (2,mm), (3,mm). Each position represents 

different injection sites used in the experiments with the zebrafish animal model (yolk, caudal vein 

or hindbrain ventricle). In our example, the bacteria are detected by the innate immune system by 

signals to immune cells. The model describes healthy macrophage (1, mac, false), (2, mac, false), 
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(3, mac, false) … (10, mac, false), to take up the bacteria (phagocytosis). Figure 2.4 shows this 

process. 

 

 

Figure 2.4: Screenshot of the infection detection and phagocytosis process. 

 

After phagocytosis, the bacteria start to proliferate and move within the macrophage; the 

macrophage changes its position, moving to deep tissue while the bacteria replicate inside the 

macrophage. The intracellular growth of mycobacteria is modeled as bacterial multiplication until a 

concentration of 255; causing the death of the macrophage. Figure 2.5 depicts this process. 

 

 

Figure 2.5: Screenshot of the migration and bacterial replication within macrophage causing its death. 

 

A dead macrophage starts to signal, recruiting new healthy macrophages to take up the infected 

macrophage and the bacteria. In this way aggregates of immune cells are formed. The aggregates 

contain the bacteria but are unable to get rid of them. This process is visualized in Figure 2.6 where 



30 
 

a dead macrophage 1`(10, mac, true) is recruiting new macrophages to aggregate. The recruitment 

of macrophages is controlled by the MacSignalling transition that stops when four healthy 

macrophages are recruited. The numbers of macrophages that are recruited are set such that a 

minimal number will give rise to the formation of a granuloma. The latter is important in the 

development of the infection and the disease in general. The number can be increase if a particular 

scenario for an in silico experiments so requires. It will not alter the general layout of the net rather 

create different balances. The place RecruitmentCount controls that. 

 

 

Figure 2.6: Screenshot of the dead macrophage signaling and aggregation process. 

 

As these aggregates grow, structures develop that are referred to as tuberculous granulomas, 

lumps of immune cells that surround the infection. Figure 2.7 shows the representation of this 

process in our model, where one granuloma is formed at the position 10 with a concentration of five 

macrophages10 1`(10, mac, 5). 

 

 

Figure 2.7: Screenshot of the granuloma formation process. 
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The intracellular mycobacterial spread in the granuloma is visualized in our model by the 

process depicted in Figure 2.8. There, all five immune cells that form the granuloma on the position 

10 {5`(10, mac, true)} get infected and start the process of dissemination. 

 

  

Figure 2.8: Screenshot of the intracellular mycobacterial spread and infection dissemination process. 

 

In the dissemination process, an infected macrophage leaves the granuloma structure {3`(10, 

mac, true)} and starts another infection. The process repeat: moving, hosting an intracellular 

mycobacterial replication, dying and repeating the granuloma formation process on another 

position. This process is visualized in Figure 2.9. 

 

 

Figure 2.9: Screenshot of the granuloma formation process on the dissident infected macrophages on different 
positions. 

 

The outcome of our model reproduces the early stages of the mycobacterial process and the 

innate immune response. We used the animation mode available in the Snoopy software to verify 

the dynamic behavior of our model. This property allows to animate the token-flow of the net as 

well as to observe the causality of the model and its behavior. For inspection and perusal, the 

animation sequence can be found at http://bio-imaging.liacs.nl/galleries/cpn-mmarinum. 
 

2.4 Conclusion and discussion 

The aim of this work is to introduce a modeling approach new to the modeling of the innate immune 

response in a model; this model represents the dynamic behavior of the mycobacterial infection 
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process. We consider our model to represent a high level of abstraction in which the infection 

process can be visualized in a large-scale model. We use the Petri net formalism as a formal 

modeling method because of its extensible, modular, easy and intuitive construction properties 

different from other and more broadly used modeling frameworks [49]. We have developed a high 

level abstraction of the infection process by designing a PN by acknowledging the major processes 

of the mycobacterium infection together with the basic actors that are involved in these processes.  

As a result we have delivered a QPNC model that expresses, at a high level of abstraction, the 

details that are involved in the early stage of mycobacterial infection. Information about the 

mycobacterial infection process, the innate immune response and the infection dissemination can be 

observed in our model. Through a parameterizable net, the model assembles information about the 

host-pathogenesis interaction phases. It provides a visualization of the structure and dynamics of the 

infection process. The scalability of our model allows extension on different levels of abstraction 

providing the aggregation of independent and related model hierarchically i.e., gene expression 

pathways, molecular process, cell-to-cell interaction events, etc. In this manner allowing 

experiments that simultaneously track molecular, cellular, tissue, organism and population scale 

events. Biologists have greatly appreciated the visualization of the processes through the animation 

of the PN. 

Several reliable tools have been developed to create and investigate qualitative and quantitative 

properties of Petri nets by structural analysis, simulation of time-dependent dynamic behavior and 

model checking. In the research presented here we have chosen the Snoopy software [54] to 

implement and animate our model. This software is extensible, and adaptive through support of 

simultaneous use of several models. Moreover, it is platform-independent. Further extensions are to 

investigate the quantitative properties of the process. Such can be accomplished using the Charlie 

tool [38] so as to verify and validate the net and further analyze our model. 

A systems biology approach, integrating both modeling and experimental aspects, has much to 

contribute to the study of host-pathogen interactions. Biological processes that are relevant to the 

immune response occur at different scales or levels of resolution: i.e., molecular, cellular and tissue 

level [39, 40]. Development of multi-scale, multi-compartment models based on in vivo/in vitro 

experimental data is essential to create a computational system that reflects this biological behavior 

[77]. Starting from the abstract model of the global infection process as presented in this work, 

future extensions can be modeled. Therefore, sub-models representing processes on tissue, cellular 

and molecular scale will hierarchically connect as a single model. In close collaboration with the 

empirical scientist and using the model, we intend to perform in silico experiments that are 

otherwise impractical or not feasible in vivo or in vitro. Thereby, predicting results of new 

experiments and generate further hypotheses about the immune system response to mycobacterial 

infection. The QPNC model presented in this paper is the cornerstone of that process. 
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In summary, we have developed a straightforward model to explore the early mycobacterial 

infection and the immune response. Modeling the steps that regulate the infection process require 

further testing on both theoretical and experimental level. The results of these in silico 

experiments/findings can become the input for further analysis. It will support, for example, 

identification of key parameters or mechanisms, interpretation of data, or comparison of the 

capability of different mechanisms to (re)generate the observed data. Finally, a model that 

successfully describes existing experimental data may be used in the prediction of results from new 

experiments. It can generate further hypotheses about the immune system response to mycobacterial 

infection, helping to unravel the mechanisms of TB infection [91]. As indicated from the design of 

our QPNC, the next steps in the development of the net are to add lower level processes representing 

the tissue, cellular and molecular interactions relevant to the infection process. The QPNC 

accommodates this as hierarchical layers. Along with these layers numerical data will become 

available that will allow to elaborate on the quantitative aspects of this process. The interplay of 

hierarchical levels and quantitative information has the potential to develop to a powerful tool for 

the research in tuberculosis disease. Hopefully it will further mature in a paradigm for integrated 

research to infection diseases.  
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3 Multi-scale Petri net model of the bacterial–
macrophage interaction 

 

 

 

Based on: 

 

 

Carvalho, Rafael V., Kleijn, Jetty, & Verbeek, Fons J.: A Multi-Scale Extensive Petri Net 

Model of the Bacterial-Pathogen Interaction. In: Heiner, M. (ed.) 5th International Workshop 

on Biological Process & Petri Nets. Pp. 15-29. CEUR Workshop Proceedings 1159, Tunis, 

Tunisia (2014).  

 

 

 

 

 

 

 

 

 

 
O, Arbeid 
 
Niet de partijen 
Niet de stellingen 
Niet de woorden 
Niet het zijn 
 
Leven of sterven 
Winnen of verliezen 
Het is alles een 
Recht of waarheid 
Blijft alles het zelfde 
Zonder arbeid is er geen 
 
Arbeid alleen kost al dit leven 
Leven is dus arbeid alleen. 
 
Marinus van der Lubbe, Nederland (1909 – 1934) 

Oh, Labor 
 
Not the parties 
Not the propositions 
Not the words 
Not the being 
 
To live or die 
To win or lose 
It is all one 
Law or truth 
Everything remains the same 
Without labor, there is none 
 
Just labor costs all this life 
So life is just labor. 
 
Marinus van der Lubbe, Netherlands (1909 – 1934) 
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Abstract 

A primordial step in the modeling process is refinement. This becomes feasible  once more 

information about the phenomenon under study, i.e. bacterial infection, is collected. Therefore, we 

can extend the model  allowing more complexity according to the information acquired. The 

previous chapter has indicated the direction for the refining process, where increasing the 

complexity is directed to modeling the interactions that occur at cellular and molecular level. In this 

chapter we, therefore, gather the information about the complex pathways related to the infection 

persistence modeling them in a hierarchical structure. The result is a model that can perform 

qualitative simulations in order to mimic the alternatives that might occur during the infection. 
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3.1 Introduction 

Tuberculosis (TB) is the second greatest killer disease worldwide due to a single infectious agent: 

mycobacterium tuberculosis (Mtb) [129]. Effective vaccination against tuberculosis is a challenge; a 

better understanding of the host-pathogen relationship provides an important key for new 

treatments. The host innate immune response is the first line of defense against invading microbes. 

It recognizes the pathogen in the first stage of infection and initiates an appropriate immune 

response. Therefore it has been the subject of much scientific research involving mycobacterial 

infection [24, 30, 69, 71, 110, 111] . 

The complex interactions between bacteria and the immune cell involve various structures and 

processes that control, activate and inhibit proteins and signaling pathways in a dynamical system 

that determines the outcome of an infection [20]. A systematic approach to modeling these 

interactions should help to comprehend the events that occur between the host and pathogen [124]. 

Different methods have been used to model the mycobacterial infection process: Gammack et al. 

[41] provided a mathematical model based on Ordinary Differential Equation (ODE) to investigate 

the early and initial immune response to Mtb. Such work has inspired Segovia-Juarez et al. [108] to 

implement the ODEs that regulate the interaction between host and pathogen using an agent-based 

approach, and Warrender et al. [124] use the CyCells simulator tool to simulate the interactions in 

Early mycobacterium infection. 

Mathematical models, like those based on differential equations, are difficult to obtain and 

analyze when the number of interdependent variables grows and when the relationship depends on 

qualitative events. The computational models used for this problem offer an additional avenue for 

exploring the infection dynamics through the visualization of a specific behavior simulation. 

However, in both cases the interactions between bacteria and the immune cells and their structures 

are not intuitively described. The interactions are embedded in programing code and/or described in 

rules, which are not straightforward to interact with, nor comprehend their relationship.  

A graphical representation of the interactions and influences among the various molecular and 

cellular components that involve the bacteria and host immune cells that also captures the dynamics 

of the system should be very useful. The framework of Petri nets represents a well-established 

technique in computer science for modeling distributed systems [105] and they have been 

successfully used to model biological behavior. Heiner et al. [52] propose a methodology of 

incremental modeling using Petri nets. They develop and analyze a qualitative model of the 

apoptotic pathway. In our previous work [19] we have developed a qualitative model of the 

mycobacterial infection process and the innate immune response. We modeled the cell dynamics 

level, characterized by the steps that are involved in the Mycobacterium marinum infection and 

granuloma formation in zebrafish. 
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In this paper, we extend our model and focus on interactions between the bacteria and the host 

immune cells - specifically the macrophages - in a multi-scale model. We identify and connect the 

important pathways involved in the host-pathogenic interactions that act over different scales 

(molecular, intracellular, and intercellular) during the innate immune response. The model captures 

the quintessential functional processes of the macrophage upon exposure to mycobacteria, their 

interconnections, subsequent signals and activation of the immune response. It provides a 

visualization of the signaling pathways that the host immune cell utilizes to terminate the infection 

as well as the way the pathogen exploits the pathways of the macrophages to enhance its 

intracellular survival persistence. This Petri net model makes it possible to perform “what-if” 

situations as part of the experimentation, simulating possible pathway disruptions and the 

consequences to the infection process. In this paper, we demonstrate the power of the Petri net 

formalism in modeling signaling and metabolic pathways that are involved in the host-pathogen 

interaction in a multi-scale model. We simulate and animate three different dynamics to mimic the 

alternatives that might occur once a bacterium is phagocytized by a macrophage and persists in 

infection. As a next step we plan to consider a qualitative validation of the model so as to confirm 

consistency and correctness of its biological interpretation. 

 

3.2 Mycobacteria interaction with macrophages 

Macrophages play rather contradictory roles in infection and disease as they are likely the first host 

immune cells to respond to invading mycobacteria, and yet aid in subsequent dissemination of the 

bacteria [37]. The successful parazitation of macrophages by mycobacteria involves the inhibition 

of several host-cell processes, which allows the bacteria to survive inside the host cells. The host 

processes that are inhibited by the pathogenic bacteria include fusion of Phagosome with 

Lysosomes, antigen presentation, apoptosis and the stimulation of bactericidal response [68].  

Mycobacterial cells release a mixture of lipids and glycolipids that interfere on the macrophage 

response towards elimination and enabling bacterial survival [104]. Mannosylated 

Lipoarabinomannam (ManLAM) is one of the major modulators of phagosome maturation [112]. It 

prevents fusion of mycobacterial phagosome with the late endosome and lysosome by inhibiting the 

Calmoduling-Ca2+ phosphotidol-inositol-3 kinase [40]. Ca2+ also has an influence on the apoptotic 

pathways since it increases the permeability of mitochondrial membranes releasing pro-apoptotic 

elements to facilitate apoptosis [68]. ManLAM also influences the apoptosis by phosphorylating the 

apoptotic protein Bad leaving the anti-apoptotic protein Bcl-2 free which inhibits caspase activity 

and functions as an anti-apoptotic regulator [1].  

Macrophages and T cells produce many cytokines that promote or inhibit protective response to 

the mycobacterial infection. An important family of cytokines is the interleukin-10 (IL-10), which 
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regulates the pro-inflammatory (PICs) and anti-inflammatory (AICs) cytokines. The bacteria can 

limit macrophage apoptosis by inducing the production of IL-10 which blocks the synthesis of 

Tumor-Necrosis Factor (TNF), a stimulator of apoptosis in infected macrophage [84, 107]. It is 

likely that bacteria prevent apoptosis in the early phase of infection to allow them to replicate 

efficiently. However, in the later phase, they induce or are unable to prevent cell death, which might 

facilitate their systemic dissemination through uptake into immune cells [68]. 

 

3.3 Cell-cell host pathogen interaction 

The modulation of host signaling mechanism is a dynamic process requiring mycobacterial 

components that trigger or inhibit the host response such as the fusion of Phagosome with 

Lysosomes, antigen presentation, apoptosis and stimulation of bactericidal responses due to the 

activation of pathways that leads to the bacterial survival. The immune cells can identify the 

pathogen through Pattern Recognition Receptors (PRRs), which are found on the cell surface, on the 

endosomes and on cytoplasm. It triggers a cascade of events that leads to proinflammatory and 

antimicrobial response through the phagosome maturation pathway. Van der Vaart et al. reviewed 

the PRRs that identify invading microbes, as well as the innate immune effector mechanisms that 

they activate in zebrafish embryos [120]. The maturation of the phagosome forms the late-

phagosome, which fuses with the lysosome forming the phagolysosome. It can digest the pathogen 

and leads to the bacterial death [11, 12, 102]. The mycobacteria are using several strategies to avoid 

the maturation of the phagosome and the key contributor is mannosylated lipoarabinomannan 

(ManLAM), a glycolipid of the mycobacteria cell wall.  ManLAM is involved in the inhibition of 

phagosome maturation by inhibiting both calcium (Ca2+) concentration of increase in the 

macrophage as well as the concentration of Calmoduling-Ca2+ phosphotidol-inositol-3 kinase 

(PI3K) which is responsible for leading the maturation of the phagosome and driving the fusion 

with the lysosome [40, 76, 122]. To accomplish complete arrest and prevent the phagosome 

maturation, a second mycobacterial macromolecule, SapM, is released degrading the existing 

Phosphatidylinositol 3-phosphate (PI3P), a phospholipid found in the cell membrane involved in the 

phagosomal maturation [97]. A schematic representation of the phagosomal maturation arrest by the 

pathogenic mycobacteria is given in Figure 3.1. 
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Figure 3.1: Schematic overview of the phagosomal maturation pathway blocked by pathogenic 
mycobacteria according to Koul et al. [68]. Nascent phagosome acquires Rab5 recruiting PI3K 
that generate PI3P. Pathogenic mycobacteria block the rise in cellular Ca2+, recruitment of PI3K to 
the phagosome and degrading PI3P through Sap-M 

 

When the immune cell is not able to kill the bacteria through the phagolysosome, the 

macrophage activates the apoptosis thereby programming its own death and signaling to other 

defense mechanisms. Once the maturation fails, the apoptotic programme is mainly activated by the 

extrinsic apoptosis pathway, which is initiated by the binding of ligands to death receptors. The 

apoptotic program also activates the intrinsic pathway, which involves translocation of cytochrome-

C from mitochondria to the cytosol. The activation of the caspase cascade and degradation of 

genomic DNA are characteristics of apoptotic cell death [68]. Mycobacteria alter host apoptotic 

pathways interfering on the intrinsic death pathway preventing the increase in cytosolic Ca2+ 

concentration. Mycobacteria also inhibit caspase activity and functions by stimulating the 

phosphorylation of the apoptotic protein Bad [76, 103]. Mycobacteria limit macrophage apoptosis 

by inducing the production of cytokines such as interleukin-10 (IL-10). These cytokines interfere 

with one of the apoptosis stimulators of the macrophage in the extrinsic apoptosis pathway, the 

tumor-necrosis factor-α (TNF- α) [25, 84]. Mycobacteria take advantage of blocking these defense 

mechanisms of macrophages - phagocytosis and apoptosis - to proliferate inside the cell till a 

necrosis breakdown. Therefore, bacteria disseminate the infection through the other immune cells 

that aggregate with that particular infected macrophage to take over the infection. The apoptotic 

pathway is depicted in Figure 3.2. 
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Figure 3.2: Apoptotic pathway inhibition by pathogenic mycobacteria according to Koul et al. [68]. 
Pathogen mycobacteria interfere in intrinsic apoptotic pathway suppressing Ca2+ and releasing Bcl-2. In the 
extrinsic apoptotic pathway it inhibits binding ligands and DISC formation. 

 

3.4 Molecular host pathogen interaction 

At the molecular level the most important interactions occur in both the phagosomal maturation 

pathway and in the apoptosis pathway. In both cases, the mycobacteria interfere in different ways to 

guarantee their survival and proliferation. Ca2+ is a key messenger that is released from intracellular 

storage. An increase in cytosolic Ca2+ concentration promotes the phagosomal maturation process 

by regulating calmodulin and the multifunctional serine/threonine protein kinase CaMKII [76]. 

CaMKII is important to PI3K activation and recruitment of early endosomal antigen 1 (EEA1) to 

the phagosomal membrane, which is extremely important in the process of phagosomal maturation. 

PI3K is also essential for the production of the lipid regulator phosphatidylinositol 3-phosphate 

(PI3P), which forms a ligand together with EEA1 leading to an intermediate phagosome. The 

intermediate phagosome maturates to the late endosome after EEA1 dissociation and acidic 

expression due to accumulation of the proton-ATPase [39, 114].  Through releasing ManLAM, the 

mycobacteria inhibit the rise of the Ca2+ concentration in macrophages and also the PI3K activation. 

It prevents the generation of PI3P degrading the existing PI3P by the action of SapM.  

Despite the fact that phagosome fail to fuse with the lysosomes to degrade the bacteria, 

pathogen-derived material is released in the host cell lysosomes and on cell surface of the infected 

macrophage, which can induce the apoptosis process [106]. Mycobacteria influence the host 

apoptosis through several mechanisms, which interfere in the intrinsic and extrinsic apoptosis 

pathways. The cytosolic Ca2+ facilitates apoptosis by increasing the permeability of mitochondrial 

membranes. This process promotes the release of pro-apoptotic elements such as cytochrome-C. In 

the cytosol, cytochrome-C associates with procaspase-9 and apoptosis protease forming a signaling 

complex called the apoptosome, which activates the induction of apoptosis [70]. ManLAM 

interferes in the intrinsic apoptosis pathway not only by inhibiting the concentration of Ca2+ but also 
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through stimulation of the phosphorylation of the apoptotic protein Bad. The Bad phosphorylation 

leaves BCL-2 free by which the release of cytochrome c is prevented.  

The extrinsic apoptosis pathway is induced by Toll-like receptors (TLRs) that identify the 

virulence mycobacterial pathogen. Those receptors trigger the synthesis of tumor-necrosis factor-α 

(TNF-α) - a stimulator of apoptosis – trough the TLR signaling pathway. To do so, an important 

adaptor factor protein, the Myeloid differentiation factor 88 (MYD88) recruits a family of kinases 

(IRAK) that will form “Myddosome” signaling complex [119]. This signaling complex activates 

nuclear factor kB (NF-kB) to transcript target gene to synthesize TNF-α [68]. The tumor necrosis 

factor binds with death receptors leading to a cascade of events that will release caspase 8 and 10. It 

also leads the formation of a death-inducing signal complex (DISC) resulting on the apoptotic 

vesicles [70, 132]. Pathogen mycobacteria interfere in this process by inducing the production of 

immunosuppressive cytokine interleukin-10 (IL-10). IL10 inhibits the phosphorylation of NF-kB, 

and thereby the synthesis of TNF-α. It also inhibits the DISC formation and consequently, the 

extrinsic apoptotic pathway fails. 

 

3.5 Petri net model of the bacterium–macrophage interaction 

We have formulated a Petri net model of the processes triggered in the macrophage in response to 

mycobacterial infection. The model is based on an extensive literature survey (cf. Sections 3.2 to 

3.4) and on extending our previous model [19]. The model captures the interactions between the 

immune cell and the pathogen once a bacterium is phagocytized. The model is hierarchical and has 

three different levels of representations to mimic the signal processing that activates/inhibits the 

pathways related to the macrophage response to the bacteria. The first level models the overall 

actions from the system started after the phagocytosis and it represents the cell-cell interaction 

between the macrophage and the bacteria. The second level representing the intracellular interaction 

models two important signaling pathways: the Phagosome Maturation which is responsible for the 

degradation of the infection through antimicrobial components; and the Apoptotic Pathway which is 

the macrophage mechanism responsible to resolve the infection in response to virulence factors. It 

represents an alternative way to the phagolysosome. The third level represents the molecule-

molecule interactions that occur on the level of Phagosome Maturation and Apoptotic pathways. 

To model the host-pathogen interaction we use a qualitative Petri net as implemented in the 

Snoopy software [50] using maximal concurrency semantics. All formal definitions can be found in 

Appendix A. The pathways described in Section 3.2 to 3.4 represent a complex process involving 

various host-bacterial factors in a heavy cross-talk interaction. To get a consistent view of the entire 

interaction process, we express the most important reactions simplifying the pathways at different 

levels of abstraction. We define each biochemical compound or receptor as a place. The relations 
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between biochemical substances are basically represented by transitions with corresponding arcs 

modeling biochemical reactions, inhibitions/degradations (using inhibitor arcs) or signaling/catalytic 

atomic events (using read arcs). To hierarchically connect the sub-nets we use coarse transitions and 

coarse places structuring all the levels as a tree as shown in Figure 3.3. The top level (the root) 

models the overall view of the system, starting by interactions that occur in the cellular boundary 

and its consequences. It is connected to the sub-nets (mid-level) through coarse transitions which 

link to the molecular level modeled in coarse places (the leaves of the tree). This structure increases 

the granularity of the model along the levels. Deeper is the level more detailed is the sub-net. Table 

3.1 describes each sub-model implemented hierarchically and the respectively level of interaction. 

 

 
Figure 3.3: Hierarchical structure of the net. The three levels are implemented in independent 
interconnected sub-nets 
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Table 3.1: Set of places per hierarchical structure and the scale in which they occur  
Level Scale Description 

Main model Intercellular Models the states of the macrophage and the 
interaction that occur ate the intercellular level. 

Phagosome Maturation 
Pathway 

Intracellular Implemented by the coarse transition 
Phagosome_Maturation_Pathway, it models the 
interactions at the intracellular level that triggers 
the phagosome maturation process. It connects the 
molecular scale with the intracellular scale. 

Apoptosis Pathway Intracellular Implemented by the coarse transition 
Apoptosis_Pathway, it models the interactions at 
the intracellular level that triggers the apoptosis 
process. It connects the molecular scale with the 
intercellular scale. 

Ca_pathway Molecular Coarse place that models the molecular 
interactions that produce/inhibit calcium and 
CMKII. 

Maturation_pathway Molecular Coarse place that model the molecular interactions 
that leads/inhibits the maturation of the 
phagosome process. 

TLR_Signaling_Pathway Molecular Coarse transition that models the molecular 
interactions that leads to the activation/inhibition 
of pro-inflammatory cytokines. 

Bad_Signaling_Pathway Molecular Coarse transition that models the molecular 
interactions that triggers/inhibits the 
phosphorylation of Bad apoptotic protein. 

Extrinsic_Apoptosis_Pathway Molecular Coarse place that models the molecular 
interactions related to the extrinsic apoptosis 
process. 

Intrinsic_Apoptosis_Pathway Macrophage Coarse place that models the molecular 
interactions related to the intrinsic apoptosis 
process. 
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3.6 Model definition 

We start the modeling with the interaction between the bacteria inside the macrophage once it is in 

the host. The first level of our Petri net model is given in Figure 3.4. The input place 

Infected_macrophage represents this situation. The sequence of interaction events happens once 

there are bacteria infecting the macrophage. This process is represented in the net by a token that is 

present at the input place, detected by three reading arcs that trigger the interactions. The 

macrophage uses the PRRs to detect the presence of the pathogen and starts the phagosome 

maturation process. The bacteria start its protein secretion system and counter attack by releasing 

SapM to degrade existing PI3P in the cytosol and ManLAM to interfere in the maturation of the 

phagosome. The maturation of phagosome is modeled in a deeper level by the coarse transition 

Phagosome_Maturation_Pathway. ManLAM also interfere in the apoptosis process, which is 

modeled in a deeper level in the coarse transition Apoptosis_Pathway. The presence of ManLAM 

triggers the macrophage production of the cytokine IL10 and also interferes in both pathways. 

Phagosome_Maturation_Pathway interacts with Apoptosis_Pathway releasing calcium and 

bactericidal material that was not degraded by the maturation. 

 

 
Figure 3.4: Petri net of host-pathogen interaction at the top (root) level. The coarse transitions: 
Phagosome_Maturation_Pathway and the Apoptosis_Pathway contain the second level of the model 
and are represented here by a double square.  
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In our model there are three different scenarios: The phagosome maturation occurs in the 

Phagosome_Maturation_Pathway, leading to a late phagosome that will fuse with lysosome 

digesting the bacteria, and turning the macrophage healthy. The second scenario can occur if the 

maturation fails. The apoptosis process in the Apoptosis_Pathway is triggered, leading to a dead 

macrophage that will signal for another defense mechanism. The third scenario occurs when both 

pathways (maturation and apoptosis) are failing at the molecular level. In that case the bacteria 

proliferate and accumulate in the macrophage till a necrosis breakdown, releasing all the pathogenic 

material to the surrounding cells. To represent the proliferation and accumulation of bacteria, we 

use weighted arcs that double the amount of bacteria, as accumulated in the place 

Bacterial_accumulation. The breakdown of the macrophage occurs when it reaches a threshold of 

50 bacteria, thereupon a weighted arc fires the transition Necrotic_breackdown. Here we should 

note that the weighted arcs, with weights 2 and 50, are examples to express the idea of bacterial 

proliferation.  

Following the hierarchical tree, at the second level we have: Phagosome_Maturation_Pathway 

and Apoptosis_Pathway. They are two sub-nets, which basically connect the cellular interaction 

(top level) with the molecular interactions at the biochemical pathways implemented in the coarse 

places (the branches of the tree). Figure 3.5 depicts these sub-nets respectively. At this level we 

have the signaling started in the cell surface (first level) that will trigger the production/interaction 

between molecules. For example, the production/releasing of calcium is triggered by the PRRs and 

this process occurs at Ca_pathway; the PIP3 concentration and bactericidal material that are not 

degraded at the maturation_pathway and interact with the top level. We also have the interaction 

between the cytokine IL10 from the top level with the pro-inflammatory cytokines that will interfere 

in the TNF-α in the Extrinsic_Apopthosis_Pathway and ManLAM interfering in the BCL2 

activation, which will act in the Intrinsic_Apopthosis_Pathway. 
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(a) 

(b) 
Figure 3.5: Second level. (a) The Maturation_Pathway Sub-net which connects the cellular level with the 
molecular interactions in the production of calcium (Ca_pathway) and phagosomal maturation 
(Maturation_pathway) implemented in another sub-net level (coarse places). (b) Apoptosis_Pathway 
Sub-net which connects the cellular level with the molecular interactions in the pro inflammatory 
cytokines, Bcl2 activation and their influences in the extrinsic and intrinsic apoptosis pathway. 

 

At the deeper level of the hierarchical model, we have modeled six related but independent sub-

nets. They represent the important molecular pathways responsible for: the production of 

calcium/CMKII in ca_pathway and phagosome maturation and PI3P concentration in 

maturation_pathway, both implemented in coarse places; activation of pro-inflammatory 

cytokines in TLR_Signaling_Pathway and Bcl2 activation in Bad_Signalling_Pathway, both 

implemented in coarse transitions; and also the interactions that occur in the intrinsic and extrinsic 

apoptosis pathways implemented in the coarse places Extrinsic_Apopthosis_Pathway and 

Intrinsic_Apopthosis_Pathway respectively. In Figure 3.6 all sub-nets in the branches of the 

proposed hierarchical model are depicted. 
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(a) 

 
(b) 

 
(c) 

 

(d) 

 

(e) 

 

(f) 
Figure 3.6: Sub-nets that implement the molecular pathway interaction. (a) Ca2+ and CaMKII. (b) 
Phagosome maturation pathway and PI3P. (c) TLR signaling and pro-inflammatory cytokines. (d) 
Bad/BCL2 phosphorylation. (e) Extrinsic apoptosis pathway. (f) Intrinsic apoptosis pathway. 

 

3.7 Animation and validation 

Animation and validation are important tools in order to provide a consistent model for biological 

behavior. They allow experimenting with different situations and possibilities of the model as well 

as checking for integrity and correspondence to the real world. Simulation and analysis for 

qualitative and quantitative behavior prediction are other steps necessary to certify a useful model. 

For the model presented here, we also performed nonscientific simulation and validation. For this 

we employed the animation mode available in the Snoopy software. This feature allows animating 

the token flow of the net through all the sub-nets, visualizing the causality of the model and its 

behavior. Three different animations for the scenarios, previously discussed, were performed to 
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experience the events that can occur in the model. For inspection and perusal, the animations can be 

found at http://bio-imaging.liacs.nl/galleries/epn-infection/. 

To validate the model, it is necessary to define validation criteria for a consistency check. To do 

so, we have to consider that our model is based on a heuristic procedure of collecting information 

from the literature, perhaps with different interpretations, modeled from the process perspective (top 

level) down to the molecule perspective (leaves). We built a large model composed of sub-models 

and to provide a complete analysis, it is necessary to verify each component individually and them 

the system as a whole, which increases the complexity of the validation even with computational 

support. Basic qualitative behavior properties can be checked using the Charlie analyzer tool [126]. 

Heiner et al. have used as example, p-invariants and t-invariants to analyze case studies in 

biochemical pathways in [51]. We started to analyze the structural and behavior properties of our 

model based on results from the Charlie tool which should then be biological meaningful. As a first 

result, we found that our model is not structurally bounded and not reversible. This implies that 

indeed the net allows for the proliferation of the bacteria and the infection process is not reversible. 

 

3.8 Conclusion 

In mycobacterial infection, the dynamics of the interactions between the host and bacteria form a 

complex system involving numerous activations, inhibitory and control structures that determine the 

outcome of the infection. A systems approach is essential to comprehend the significance of the 

multiple events that occur simultaneously among the various molecular and cellular components of 

the host and pathogen. 

Here, we seek to model the interaction of the macrophage upon exposure to pathogenic 

mycobacteria, capturing important functional processes and their interconnections including 

signaling and activation/inhibition of the immune responses on different levels of abstraction. The 

Petri net formalism has proved to be a useful modeling approach to describe and interconnect 

different abstract levels into a large and extensive model [52, 79] In Chapter 2 we have developed a 

Colored Petri net model to explore the early mycobacterial infection and the immune response, 

modeling the steps that regulate the infection process. In this chapter we focus on the processes 

occurring in different scales, from the cell and descend to molecular interactions relevant to the 

infection process. Therefore, we use a qualitative Petri net modeling different pathways in sub-nets, 

interconnecting them in a hierarchical structured model. The model provides a visualization of the 

processes occurring at multiple scales using levels that can be operated independently. It also 

describes the interconnections and signals that influence the host pathogen interaction. 

In the model we express, at different levels of abstraction, the details that are involved in the 

macrophage-mycobacterium interaction. Information about the proteins released by the bacteria, 
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their interference in the immune response and the pathways involved in this process are observed in 

our model. It is possible to visualize the dynamics of the molecular and cellular interaction as well 

as analyze different scenarios performing “what-if” simulations as part of the experimentation. In 

this manner, different animation/simulation can be accomplished. The model represents the 

information about host-pathogen interaction available in the literature but the scalability of our 

model allows extension to a more complete system. 

As part of the modeling process, we used the Charlie analyzer [126] to check basic properties of 

the model and its consistency. As a next step, an extensive analysis of more structural and behavior 

properties is necessary to validate the model. We also intend to extend to a quantitative model 

where, with support of experimental data rather than the examples we used until now. In this 

manner we would be able to perform quantitative simulations and behavior analysis. This can 

contribute, for example, in the prediction of results from new experiments and generation of further 

hypotheses about the innate immune system response to mycobacterial infection. Another challenge 

is to combine the models implemented in different classes of Petri nets in one system. One solution 

is to adapt each model in a Hybrid Petri net, or abstract the models in a Nets-within-Nets approach 

where the communication of the tokens occurs via predefined interfaces which are dynamically 

bounded [57]. 

In summary, in this chapter we have presented a model that explores the interaction between 

mycobacterial pathogen and macrophage, modeling the dynamics in three different level of 

abstraction while interconnecting them in a hierarchical structure. We have checked the structural 

behavior of our model through an analysis tool. The interplay of hierarchical levels and 

qualitative/quantitative information has the potential to develop a powerful tool for the research in 

tuberculosis disease. 
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4 Coupling of Petri net models of the 
mycobacterial infection process 

 

 

 

Based on: 

 

 

Carvalho, Rafael V., Heuvel, Jeroen H., Kleijn, Jetty, Verbeek, Fons J.: Coupling of Petri 

Net Models of the Mycobacterial Infection Process and Innate Immune Response. In: 

Computation, vol.3, 150-76 (2015).  

 

 

 

 

 

 

 

 

 

 

 
Misterio 
 
¿Por qué estoy vivo 
y el vaso lleno de agua 
y la puerta cerrada 
y el cielo igual que ayer 
y los pájaros dorados 
y mi lengua mojada 
y mis libros en orden? 
¿Por qué estoy muerto 
y el vaso igual que ayer 
y la puerta dorada 
y el cielo lleno de agua 
y los pájaros en orden 
y mi lengua cerrada 
y mis libros mojados? 
 
Jorge Eduardo Eielson, Peru (1924 –2006) 

Mystery 
 
Why am I living 
and the glass full of water 
and the door shut 
and the sky just like yesterday 
and the birds golden 
and my mouth wet 
and my books in a row? 
Why am I dead 
and the glass just like yesterday 
and the door golden 
and the sky full of water 
and the birds in a row 
and my mouth shut 
and my books wet? 
 
Jorge Eduardo Eielson, Peru (1924 –2006) 
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Abstract 

Refinement a model may lead to an expansion of the model when more detailed processes are 

added. A modular and extensible model is important to support the increase of the model structure. 

Besides, a hierarchical organization to support the model design is necessary in order to be able to 

conceptualize the model object. The previous chapter has proposed an extension for the model in 

Chapter 2. Although it was a refinement of the model, it was implemented separately as an 

independent but correlated sub-model. In this chapter we combine the two models previously 

described exploring the modular structure of the formalism. The resulting model explicitly reflects 

the organization of the biological process in hierarchical modular structure. In addition, we provide 

a 3D simulation tool that is able to animate the model and relating it to  an in vivo situation. This 

chapter also addresses the new directions in the refining process, moving from a qualitative to a 

quantitative approach.  
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4.1 Introduction 

The understanding of the highly complex world of immunology is a major challenge for scientists in 

the fields of biology, medicine and pharmacology. For the description of biological phenomena 

related to the immune system, the modeling, simulation, and analysis of the immune system are 

considered important practices and these can contribute to improved diagnostics and optimized 

immune treatments. For that purpose, mathematical and computational methodologies have been 

utilized to create models that represent biological behavior. These models can support explanations 

of the interaction mechanisms between pathogenic agents and the defense mechanism in intuitive 

and yet analyzable terms. 

In the context of our research, a mathematical model is a formal model describing by means of 

equations relationships between quantities and how quantities change over time. Computational 

models such as agent-based models (ABMs) describe dependencies between activities of 

components of a system. Combinations of the two approaches have been used to describe, simulate, 

and analyze the networks and interactions in the immune system [16, 21, 44, 75, 77]. Pappalardo et 

al. provided an extensive study on vaccine administration and immune response to cancer in mice 

by implementing and simulating models using ABMs and cellular automata [4, 92, 93]. Gammack 

et al. [41] provided a mathematical model based on Ordinary Differential Equations (ODEs) to 

investigate the early and initial immune response to mycobacterial infection (Mtb) in mice. This 

work has inspired Segovia-Juarez et al. [108] to implement the ODEs that regulate the interaction 

between host and pathogen using an ABM approach. Warrender et al. [124] use the CyCell 

simulator tool to simulate the interactions in early mycobacterial infection.  

The different scales of the models can be an obstacle in modeling the infection process and the 

immune response. For biologists, it is intuitive to establish a process that involves cells, molecules 

and/or organs. It is, however, not trivial to identify the line of information retrieval that 

connects/switches from one level to the next [109]. A multi-scale approach has been used to connect 

interactions at molecular, cellular, and tissue level as well as the modeling of the dynamics from a 

spatial and temporal perspective. Multi-scale models, including how to connect different individual 

levels, have been extensively explored, see e.g. [34, 42, 109, 123]. In the study of the mycobacterial 

infection process and immune response, establishing an adequate method to account for multi-scale 

processes is still a challenge. In mathematical models, like those based on differential equations, the 

interactions are described in rules and equations, whereas computational models are embedded in 

programming code with which one cannot interact in a straightforward manner and neither can one 

directly understand its structure. 

Thus, a graphical representation of the interactions and influences among various components 

that involve the bacteria and host immune cells, i.e. molecules and proteins, that also captures the 
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dynamics of the system would be very useful. The Petri net formalism (PN) represents a well-

established technique in which a graphical representation is combined with a mathematical basis for 

modeling distributed concurrent systems [100, 101]. Petri nets are successfully used to model 

biological behavior [67, 128]. Heiner et al. [52] propose a methodology of incremental modeling 

using Petri nets to develop and analyze a qualitative model of the apoptotic pathway. Albergante et 

al. [3] have developed a Petri net model that simulates the formation of hepatic granuloma for 

Leishimania donavani infection in mice. 

In previous work [19], we have developed a qualitative Petri net model of the mycobacterial 

infection process and the subsequent innate immune response. We organized our model at the level 

of cell dynamics, and it is characterized by steps involved in the Mycobacterium marinum infection 

and granuloma formation in zebrafish. Subsequently, we used Petri nets to model the interactions 

between the bacteria and the host immune cell in a multi-scale approach [17], connecting important 

pathways involved in the host-pathogen interactions that are acting over different scales (molecular, 

intracellular, and intercellular) during the innate immune response. 

In this paper, we extend our two previous models by combining them in a hierarchical fashion, 

so as to jointly represent the mycobacterial infection process and innate immune response. The 

qualitative model captures the relationship between the pathogen and the host immune cells, i.e. the 

bacteria and the macrophages, from the perspective of cell dynamics down to interactions at 

intercellular, intracellular, and molecular level. The hierarchical model provides a visualization of 

the infection process from the moment the bacteria enter the host: the migration, proliferation, 

granuloma formation, and dissemination. Moreover, it models the signaling pathways that a 

macrophage employs to terminate the infection and the way the bacterium exploits those pathways 

to enhance its intracellular survival persistence. In this paper we introduce an additional 

visualization, which renders the infection process as modeled and simulated with the qualitative 

Petri nets on a 3D mesh model of the zebrafish. It is possible to correlate the information of the net, 

its structure and its results to behavior observed in vivo. In this manner, we demonstrate the power 

of the Petri net formalism by modeling and animating the mycobacterial infection from the 

perspective of different but yet interconnected scales. By coupling the resulting Petri net model with 

the 3D mesh model visualization is added that supports the interpretation of the biological process.  

The remainder of this paper is structured as follows. In Section 2 we focus on the material and 

methods including the description of the colored qualitative Petri net, the history of modeling and 

our extensions to the visualization of net information. In Section 3 we provide a detailed discussion 

of our hierarchical Petri net model by defining of all of its constituent components and boundary 

conditions. In Section 4 we show our results for both the hierarchical Petri net of the 

Mycobacterium infection and the 3D visualization of the infection process as we have modeled it. 
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Finally, in Section 5 we present our conclusions and discuss the results as well as directions of our 

future work. 

 

4.2 Material and methods 

 

4.2.1 Biological model 

Human tuberculosis is caused by the bacteria Mycobacterium tuberculosis (Mtb), and causes over a 

million deaths every year [129]. Mycobacterium marinum (Mm) is genetically closely related to Mtb 

and, like other pathogenic mycobacteria, causes chronic infection of macrophages resulting in 

tuberculous granulomas [24]. The Zebrafish (Danio rerio) is naturally susceptible to infections 

caused by Mm. The zebrafish embryo has functional innate immune cells (macrophages and 

neutrophils) while its adaptive immune system is not yet functional. This makes it a useful model to 

study the mycobacterial pathogenesis [8]. An experimental infection in zebrafish embryos is 

initiated by an injection of bacteria into the blood circulation or tissue [8, 113]. Upon infection, 

immune cells, mostly macrophages, are triggered and migrate to the site of injection to take up the 

bacteria by a process called phagocytosis. Mycobacterial interference with the host signaling 

machinery severely compromises the immune defenses. This enables the mycobacteria to proliferate 

inside the macrophage. Over time, this causes the rupture of the macrophage and initiates a further 

spread of infection [8, 30]. In this paper we report on our further explorations of the bacteria-

macrophage interaction and infection process using the Mm infection in a zebrafish model.  

Mycobacterium prevents the anti-bacterial mechanisms of macrophages by inhibiting several 

host-cell processes, which include the fusion of phagosome with lysosomes, antigen presentation, 

apoptosis and stimulation of bactericidal response [68]. Lipids and glycolipids released by the 

bacteria, such as Mannosylated Lipoarabinomannam (ManLAM), prevent the fusion of the 

mycobacterial phagosome with the late endosome and lysosome. The prevention of phagolysosome 

formation can occur by the inhibition of the Calmodulin-Ca2+ phosphotidol-ionositol-3kinase 

(PI3K) at a molecular level [40]. The lower concentration of Ca2+ also has influence in the apoptotic 

pathway since it reduces the permeability of mitochondrial membranes by suppressing the apoptosis 

process [68]. ManLAM also suppresses apoptosis by phosphorylating the apoptotic protein BAD. 

This phosphorylation releases Bcl-2, which inhibits the caspase activity and functions as an anti-

apoptotic regulator [1]. Another strategy of the mycobacteria to avoid the apoptosis is by inducing 

the production of interleukin-10 (IL-10) which blocks the synthesis of Tumor-Necrosis Factor 

(TNF), a stimulator of apoptosis in infected macrophage [84, 107].  
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By preventing phagolysosome formation and apoptosis, the bacteria survive and are able to 

efficiently replicate inside the macrophage while the macrophage is moving in the blood circulation. 

Once the infected immune cell is overloaded with mycobacteria, it gets out of the circulatory system 

and attaches to a tissue. The infected macrophage dies, triggering an immune response by recruiting 

uninfected macrophages [31, 32, 113]. New macrophages are attracted to the infection, and absorb 

the infected macrophages and bacteria cells. The process repeats itself as bacteria also infect these 

immune cells. A common feature of all Mycobacterium infections is the further differentiation of 

macrophages into epithelioid cells that have their cell membranes tightly clustered in linking 

adjacent cells. These aggregates grow into organized structures that are referred to as granulomas 

[114]. Primary granulomas are capable of disseminating infection throughout the body by 

withdrawal of infected macrophages. This suggests that granuloma macrophages constitute the 

major mechanism for dissemination of the infection [32]. Figure 4.1 depicts the infection process 

from the perspective of cell dynamics. At the phagolysosome fusion process we have represented, at 

one scale down, the interactions between macrophage and bacteria at intercellular, intracellular and 

molecular level. 
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Figure 4.1. Infection at cell dynamic level and interaction between macrophage and bacteria at 
intercellular, intracellular, and molecular level (partially adapted from [17]). A is a graphical 
representation of the molecular interactions in the phagosome maturation pathway and B is a 
graphical representation of the apoptosis pathway. 

 

4.2.2 Background on previous PN models 

At the onset of our modeling work [19] we have used colored qualitative Petri nets (QPNC) to model 

the early stages of the mycobacterial infection process and granuloma formation. In all of our 

modeling work we have used an infection model of Mycobacterium marinum in zebrafish embryos 

as this allows us to connect with empirical work. We defined a qualitative model on the level of cell 

dynamics in the early stage of the infection and dissemination. The process goes through the 

following stages: (1) migration of the macrophage to the infection site, i.e. the initial positioning of 

the bacteria, (2) phagocytosis, (3) migration into tissue, (4) bacterial replication within an individual 

macrophage, (5) bacterial burst and recruitment of uninfected macrophages, (6) aggregation to a 

granuloma, and (7) dissemination of the infection.  
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Our subsequent research focused on defining a qualitative Petri net model representing the 

interactions between macrophages and bacteria [17], from the moment the pathogen is inside the 

host immune cell through a process of phagocytosis. We created a hierarchical model based on an 

extensive literature survey, dividing the Petri net model in three different containers (levels). Each 

container represents a sub-model of the signaling cascade that activates or inhibits important 

pathways related to the host immune response to the pathogen. The first level models the cell-cell 

interaction between bacterium and macrophage. The second level represents the intracellular 

interaction and models two important signaling pathways: the phagosome maturation, which leads 

to the phagolysosome process that kills the bacteria; and the apoptotic pathway, which is the 

macrophage mechanism responsible for acting in response to virulence factors, as an alternative 

way to the phagolysosome. The third level models the molecule-molecule interactions that occur on 

the phagosome maturation and apoptotic pathways. 

In the research described in this paper, we now combine our former models [17, 19] into one 

hierarchical structure in order to capture the infection process from the level of molecular 

interactions to the level of  granuloma formation. In order to accomplish this, we have converted the 

QPN model and its hierarchical sub-models into a colored Petri net. This process assigns a colored 

token to represent a discrete value for the presence or absence of a protein, therefore modeling the 

activation or inhibition of a specific pathway. We combine the two colored qualitative Petri nets 

models in one hierarchical structure. 

 

4.2.3 Software environment for PN modeling 

We use the Snoopy software [50] to implement our colored Petri nets and to simulate their dynamic 

behavior. Snoopy provides a unifying Petri net framework with all the Petri nets classes and 

extensions. Conversion between classes according is possible to the paradigm structure of the 

formalism. It is a multiplatform where one can design, animate and simulate Petri nets models. It 

provides features that facilitate the implementation of our Petri nets in a hierarchical and modular 

structure. In this structure each module works as a container, allowing future extensions to be added 

without the need to change the structure of the model. 

 

4.2.4 3D visualization environment for PN modeling 

In addition to the “classical” visualization of the Petri net focusing on state transition and token 

progression, we have extended the visualization with a 3D environment. We project the animation 

of the interaction between host and pathogen onto a 3D representation of our model system, i.e. the 
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zebrafish embryo. This computational environment thus illustrates how the infection develops and 

progresses in a spatial context using the output of Petri net model.  

To construct the 3D model and produce the dynamic visualization, we use OpenGL as graphical 

library, structuring the code in object oriented C++. To represent the zebrafish embryo we have 

created a 3D mesh object derived from a microscope image. The visualization has the purpose to 

render and animate the process as modeled in the Petri net providing its representation as well as 

how the infection process is affected. Therefore, it is necessary to read from Snoopy the markup file 

of the model in its resulting state space. This requires execution of the Petri net model from its 

initial markings to the end state. 

The Petri net captures the essence and flow of the infection. It, however, cannot provide a 

complete visualization of the spatio-temporal aspects in relation to our model system. From the state 

space of the net, the 3D visualization essentially replays the infection process in the zebrafish 

embryo. The flow of this 3D animation resembles the in vivo biological behavior of the infection. 

As the qualitative colored Petri net is used, time is not relevant and its progress is only represented 

by the sequence of events that occur during the infection. The quantities that are read and 

represented by the visualization are the colored tokens (cf. Section 3) defined in the Petri net model. 

They are used as boundaries to limit and represent the qualitative aspect of the infection. 

 

4.3 Implementation 

The biological processes described in Section 4.2.1 occur at different scales, i.e. the molecular, the 

cellular, and the tissue level. Therefore, in this study, we have designed our qualitative colored Petri 

net model in a hierarchical structure with four different levels of representation. The model 

reproduces the dynamics of the steps that are involved in the infection process and innate immune 

response. It also models the signaling pathways activated by macrophage in response to the bacteria 

and how the bacteria explore this to proliferate. The implemented levels operate as containers where 

level 1 represents the large scale model, which contains the entire small-scale model. The 

information flow is triggered on the top level but eventually flows in both directions (top-down and 

bottom-up). Figure 4.2 depicts the hierarchical structure of the net. The level 1 provides a model for 

the phases of the infection process: infection detection and phagocytosis, phagolysosome failure, 

bacterial proliferation, migration of infected macrophages to deep tissue, death of macrophages, 

recruitment of new immune cells and granuloma formation, intracellular spread and granuloma 

dissemination. At level 2 we have modeled the bacteria and macrophage interaction on the 

intercellular scale. This is directly connected to level 3 in which we model the interactions at the 

intracellular scale; here, the important pathways related to the bacterial proliferation are modeled. 
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At level 4 we have assembled the important interactions from the molecular perspective influencing 

the infection process.  

Snoopy supplies features for the design and systematic construction of larger Petri nets. In 

hierarchically structured nets, coarse places and coarse transitions hide place-bordered (transition-

bordered) sub-nets. Through these, it is possible to zoom in the model to a specific sub-model and 

check a local behavior.  

In the following sections, we present the color-set Σ, places &, transitions T and the initial 

marking I from the main model i.e. level 1 as well as the coarse places and transitions that compose 

our hierarchical structured model, a qualitative colored Petri net specified as	0Σ, &, ', \, ], ^, _, (6. 
 

 
Figure 4.2. Hierarchical structure of the model. The levels are implemented as independent and interconnected 
sub-nets, following the structure of [17].  

 

4.3.1 Set of color-sets % 

The set of color-sets from [19] is extended with a new color-set Dot. This is a color-set with only 

one element as a color. It is used to define discrete numbers of markings that represent the presence 

or absence of a molecule, protein or cell in the sublevels of our model. Table 4.1 describes the 5 

simple color-set defined in our model. We introduce three compound color-set as product of simple 

color-set predefined. Table 4.2 describes the compound color-sets of the model. 
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Table 4.1: Simple color-sets defined for the colored Petri net model 

Color-set Data type Description 

position Integer Represents a location (of a macrophage, bacteria and/or granuloma) 

within the zebrafish embryo 

individual String Distinguishes bacteria and macrophages (mm, mac) respectively 

status Boolean Represents the infection status of a macrophage,  

i.e. healthy=true; infected=false 

count Integer Represents a threshold for the simulation in the recruitment of 

macrophage and the dissemination of a granuloma 

Dot dot Default black color, used to evaluate a condition being true or false for 

a specific molecule or protein, or to count a number of cells 

 
Table 4.2: Compound color-sets defined for the colored Petri net model 

Color-set Product type Description 

Bacteria position, individual Represents the Mycobacterium marinum bacteria 

that are modeled 

Macrophage position, individual,  status Represents host macrophage immune cells 

Granuloma position, individual, count Represents granuloma with a number of infected 

macrophages 

 

4.3.2 Set of places & 

Places represent a population of cells and multicellular complexes that are integrated in our model. 

The set of places P that composes level 1 of our model are defined as: 

 & ={Infection, ImmuneSystem, InfectionPosition, InfectedMacrophage, 

ActiveMacrophage, DeadMacrophage, RecruitedMacrophage, FormedGranuloma, 

MatureGranuloma, MacrophageDisseminated, IntracellularInteraction} 

(7) 

These places are defined and described in Table 4.3.  
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Table 4.3: Set of places composing the level 1 of the model 
Place Color-set Description 

Infection Bacteria Represent the initial infection site. It contains the 
initial mycobacteria that intrude the host 

ImmuneSystem Macrophage Represents the immune cells of the zebrafish. It 
contains the non-infected macrophage cells that 
respond to an infection or recruitment signaling 

InfectionPosition Bacteria Maintains the information of the initial position of 
the infection. This is important for the 3D 
visualization to identify where the infection initially 
occurs 

InfectedMacrophage Macrophage Represents the macrophage after phagocytosis of 
bacteria. 

ActiveMacrophage Macrophage Represents the infected macrophage moving in the 
blood circulation. It shows the macrophage 
changing its position while the bacteria proliferate 

DeadMacrophage Macrophage Represents the necrotic macrophages positioned in 
the tissue after been completely infected and 
signaling to new immune cells to take the infection 

RecruitedMacrophage count Counts/Controls the amount of healthy 
macrophages that are recruited to form the 
granuloma 

FormedGranuloma Granuloma Represents the formation of granuloma. It contains 
the information about the granulomas formed with 
their specific position and amount of macrophages. 

MatureGranuloma Macrophage Represents the spread of the bacteria inside the 
granuloma. It contains information about the 
granulomas i.e. their positions and amount of 
macrophages (concentration) of each granuloma 

MacrophageDisseminated count Counts/Controls the amount of infected 
macrophages that will leave the granuloma to 
disseminate the infection on another position 

IntracellularInteraction Dot Coarse place that holds the hierarchical sub-nets, 
i.e. the connected hierarchical layers in the model 
and represents the bacterial-macrophage interaction 
at the intercellular, intracellular and molecular level 
as defined in [17] 
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4.3.3 Set of transitions ' 

The set of transitions T of level 1 of our model is defined as: 

' ={Phagocytosis, PhagolysosomeFail, Migration, MigrationDeepTissue, 

Recruitment, IntracellularSpread, Dissemination} 
(8) 

These describe important phases in the infection process and are regulated by thresholds that 

control the simulation. Table 4.4 describes these transitions and their guards (if present). 

 
Table 4.4: Set of transitions composing the level 1 of the model 

Transition Guard Description 
Phagocytosis  Fires once its pre-places contain bacteria and 

immune cells at the same position. It produces 
tokens that represent infected macrophages as well 
as tokens that hold the information of the initial 
infection position for the 3D visualization tool 

PhagolysosomeFail  Responsible for the activation of the intracellular 
bacterial spread, modeled in the sublevels of the 
hierarchical structure, while the infected 
macrophage moves along the blood stream, i.e. 
changes its position 

Migration  Responsible for controlling the macrophage 
position change (movement throughout the blood 
stream) 

MigrationDeepTissue  Fires once the macrophages reach the threshold 
within the bacteria migrating to deep tissue to form 
the granuloma 

Recruitment  Signals to the non-infected immune cells i.e. 
healthy macrophages, to take over the dead 
macrophage in their specific tissue position thereby 
forming the granuloma 

IntracellularSpread  Represents the maturation of the granuloma by 
releasing bactericidal material and infecting 
macrophages that form the granuloma 

Dissemination I<=MaxDissemination Controls the threshold of the amount of infected 
macrophages that will leave the granuloma and 
disseminate the infection, forming a new 
granuloma on a different position 

  

4.3.4 Initial marking ( 
An initial marking defines the number and type of colored tokens that are initially present in a 

specific place. For the modeling of the Mm infection, we have defined initial makings in our 

previous work [19]. There exist two types of markings, i.e. (1) condition markings that are fixed and 
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used to control the process, and (2) example markings that are not fixed and can be changed 

according to the experimentation with the net. Table 4.5 and Table 4.6 respectively describe these 

types of markings. 

 
Table 4.5: Condition markings initially defined in the colored Petri net model 

Place Marking Description 

RecruitedMacrophage 1`(1) Initializes the counting of the number of macrophages 

recruited to aggregate into the dead macrophage. It has a 

threshold defined by a constant MaxAggregation i.e. 5 

MacrophageDisseminated 1`(1) Initializes the counter of the amount of infected 

macrophages that leave the granuloma and spread the 

infection to different positions. It has a threshold defined 

by a constant MaxDissemination i.e. 3 

 
Table 4.6: Example markings initially defined in the colored Petri net model 

Place Marking Description 

Infection 1`(1,mm)  

++1`(2,mm)  

++1`(3,mm) 

Defines the initial concentration of mycobacteria 

that will intrude the host. We have defined three 

different positions to represent different initial 

infection sites 

ImmuneSystem 1`(1,mac,true) 

++1`(2,mac,true) 

++…++1`(12,mac,true) 

Defines the initial concentration of non-infected 

macrophages in the host. The positions and amount 

are empirical information used just to represent their 

presence in the host 

 

All other places in the top-level model, i.e. level 1 of the hierarchical structure, are initially 

empty, meaning that there are no tokens in the places at the onset of the simulation. 

 

4.3.5 Sub-models in the hierarchical structure 

Following the tree of the hierarchical structure, the sub-models, implemented through the coarse 

place IntracellularInteraction, model a complex process involving various host-bacterial factors in 

a cross-talk interaction distributed in the sublevels. In order to get a consistent view of the entire 

interaction process, we express the most important reactions by simplifying the pathways at 

different levels of abstraction. The simplification of the pathways corresponds to our previously 

defined modeling decisions [17], where each biochemical compound or receptor is defined as a 

place. The relations between biochemical substances are represented by transitions with 

corresponding arcs for the reactions. Inhibitor arcs represent inhibitions and degradations. Signaling 
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and catalytic atomic events are represented by read-arcs. We specifically use the color-set Dot to 

represent the presence of a protein, component and/or cell that are involved in the interaction 

process between the macrophage and bacteria once it is phagocytized. To hierarchically connect the 

different pathways we use coarse transitions and coarse places structuring all the sublevels as shown 

in Figure 4.2.  

 

4.4 Results 

The simulation environment for the model represents the innate immune response to 

Mycobacterium marinum infection in the zebrafish embryo. The elements of the qualitative colored 

Petri net described in the previous sections, represent key factors involved in the processes of 

infection, innate immune response, and granuloma formation. Moreover, the interactions are 

represented by the firing rules that describe the behavior of the model: 

• Signaling of the intruding bacteria, detected by non-infected macrophages followed by 

phagocytosis; 

• Migration of the infected macrophage to the deep tissue within bacterial replication 

motivated by the phagolysosome failure in the macrophage causing the cell death; 

• Recruitment of non-infected macrophage in response to signals of the dead macrophage, 

clustering to form the granuloma; 

• Granuloma maturation and bacterial spread between aggregated macrophage; 

• Infection dissemination through infected macrophage that scape from the matured 

granuloma forming new granulomas at different positions. 

The top-layer level of our model is depicted in Figure 4.3. Places are represented by circles and 

coarse places by double circles. Transitions are represented by squares and coarse transitions by a 

double square. The number of tokens is expressed inside the places and their empirical data below 

the color-set (cf. Figure 4.3, dark blue). Arrows represent the arcs labeled with their expression on 

top of it (cf. Figure 4.3, light red). The arcs with a black dot as an arrowhead are read arcs. In the 

notation of our PN software environment, these are represented as two arcs in opposite directions 

between place and transition with an identical arc expression. However, the tokens are not 

consumed, just tested for their presence.  
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Figure 4.3. Visualization of the qualitative colored Petri net model implemented in the Snoopy framework 
[50]. In the left panel, information about the Petri net model is displayed: the hierarchical structure and 
definitions used in the model, the color-set, the constants and variables. The main panel shows the level 1 
(cf. Top Level) of the hierarchical Petri net model and its properties.  

 

In the model, the data value of the colored Petri net formalism is used to represent the quantities 

that change during the simulation. Although our focus is on a qualitative model, the quantitative 

aspects promote a better interpretation of the dynamical aspects of the simulation. Level 1, depicted 

in Figure 4.3, models the different stages of the infection process. It represents the phases of 

injection, phagocytosis, migration, granuloma formation and dissemination. Expanding the 

hierarchical structure, the connection of the sub-models and their components are depicted in 

Figure 4.4. The level 2 is modeled in the coarse place IntracelularInteraction of level 1 (cf. 

Figure 4.3). It represents the intercellular interaction between mycobacterium and a macrophage 

and it is triggered by the phagolysosome fail (cf. Figure 4.4 (a)). Level 3 models the intracellular 

interaction, represented by the coarse transitions: Phagosome_Maturation_Pathway (cf. Figure 

4.4 (b)) and Apoptosis_Pathway (cf. Figure 4.4 (c)). These course places bridge the signaling 

started at the cell wall (cf. level 1) that triggers the interactions between molecules. Level 4 models 

the molecular interaction of the proteins released by the bacteria and the proteins from the 

macrophage. They are represented by the coarse places Extrinsic_Apoptosis_Pathway, 
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Intrinsic_Apoptosis_Pathway, Ca_Pathway, Maturation_Pathway, and also the coarse 

transitions Bad_Signaling_Pathway and TLR_Signaling_Pathway.  

We have defined some boundaries to limit the model for a better qualitative analysis of the 

behavior of the system. The intracellular bacterial proliferation is defined by the arc expression 

2`dot which represents the offspring of two new bacteria every time the transition 

' ={bacterial_proliferation} fires (cf. Figure 4.4 (b)). The capacity of the infected macrophage is 

limited to a concentration of 50 bacteria. After the place & ={bacterial_acumulation} reaches this 

boundary, i.e. arc expression 50`dot, the transition ' ={Necrotic_Breakdown} can fire. This 

action, changes the infected macrophage into a necrotic macrophage that will leave the blood stream 

and migrate into the tissue (cf. Figure 4.4 (a)) 

 

 

(a) 

Figure 4.4 Cont. 

 

 

 

 

 

 

 

 



68 
 

 

(b) 

 

 

(c) 
Figure 4.4. Sub-models in the hierarchical structure: (a) Level 2: Intercellular interaction between 
bacteria and macrophage. (b) Apoptosis_Pathway and (c) Phagosome_Maturation_Pathway 
represent the intracellular interaction are positioned at the level 3. The level 4 represents the 
molecular interactions defined in [17]; they are modeled in the coarse places and coarse transitions 
(data not shown). 

 

Another threshold used is related to the position of macrophages and granulomas. Nezhinsky et 

al. [89] have developed an image processing platform for the analysis of high-throughput screens in 

zebrafish. In this platform, infected zebrafish embryos are automatically recognized as a shape. 

Relative to the shape, the bacterial infection is analyzed as an infection spread, to this end, the shape 

is divided into 12 regions of infection. This research has inspired us to determine 12 relative 

positions based on this division to model the presence of the macrophages, their movement during 

the infection process and also the spread of the granuloma. The concentration of aggregated 

macrophages is limited by setting a constant called MaxAggregation. Moreover, the infection 

dissemination is limited further by setting a constant MaxDissemination (cf. Figure 4.3). We use 

these thresholds to control the amount of cells that form the granuloma, as well as the number of 
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dissident infected macrophages that are released from the granuloma to spread the infection to other 

positions.  

The outcome of our model reproduces the early stages of the mycobacterial infection process 

and innate immune response.  We use the animation mode available in the Snoopy framework to 

verify the dynamic behavior of our model. This property enables the animation of token flow 

through the net, in order to observe the causality of the model and its behavior on the whole 

hierarchical structure. To show the importance of the immune cells, molecules, and processes in the 

dynamics of the infection, we performed a simulation based on our specific experimental scenario 

defined in Section 4.2.1.  

We start the simulation by defining the amount of bacteria and their initial position at the place 

of Infection, adding the initial markings: ({1`(1,mm)++ 1`(2,mm)++ 1`(3,mm)}. The 

ImmuneSystem place, which contains macrophages, sends to the initial infected position a non-

infected macrophage to phagocytosis the bacteria. The macrophage becomes infected through a 

failure of the phagolysosome process. Next, in the sublevels of the net the proliferation of bacteria 

will occur while the infected macrophage is migrating along the blood circulation. In the net, the 

proliferation process is triggered by sending a token 1`dot, to the coarse place 

IntracelularInteraction. At the level 2, the infected macrophage attempts to kill the bacteria by 

activating the phagosome maturation or apoptosis process. The signaling process starts by sending a 

token from the place Nascent_Phagosome to the coarse transition 

Phagosome_Maturation_Pathway, and from the place Bactericiadal_Material to the coarse 

transition Apoptosis_Pathway. At the level 3, these pathways trigger the molecular interaction, by 

sending tokens to the coarse places and coarse transitions which models the protein-protein 

interactions at level 4. The bacteria interact with both pathways by releasing the ManLAM as 

presented by the place Man_LAM. It avoids to be killed and, instead, proliferates inside the 

macrophage (cf. place Bacterial_acumulation) causing a macrophage necrotic breakdown. At this 

moment the necrotic macrophage leaves the blood circulation (at the level 1) and migrates to deep 

tissue. There it will recruit non-infected macrophages to form a granuloma (cf. place 

Formed_Granuloma). The bacteria will spread inside the granuloma, and will disseminate the 

infection by releasing an infected macrophage to the blood circulation. The processes repeat itself 

for each infected macrophage that leaves the granuloma. 

The amount of infected macrophages leaving the granuloma is limited through the constant 

MaxDissemination. Once this threshold is reached, there is no more transition enabled to occur and 

the execution will terminate in its final state. Since our model is focused on the qualitative aspects 

of the bacterial infection process and innate immune response, we bound our simulation by this 

constant to represent the initial dissemination of the infection. The final state then provides the 

quantity of granuloma formed during this process and their respective positions, accumulated at the 
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place MatureGranuloma. In Figure 4.5 the final state of the net is depicted; an animation 

sequence of this PN can be found at http://bio-imaging.liacs.nl/galleries/couplingcpn. By saving the 

final state result of the QPNC it becomes possible to derive the complete state space from the Petri 

net file. This file is subsequently used as the input for the 3D visualization of the process. The 

Snoopy file can be obtained upon request.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 3D visualization tool was built to provide an alternative animation of the Petri net. We 

defined graphical elements to represent bacteria, macrophages and granulomas whereas a 3D mesh 

object represents the zebrafish embryo. The 3D visualization of the infection process plays the exact 

same simulation as the   animation of the colored Petri net model. We define 12 regions in the mesh 

to represent the positions where the infection can occur. The positions are relative to spatial 

enumerations in the zebrafish model and normalized to its total length. The 3D animation is played 

over the entire volume of the 3D mesh. The 3D animation visualization software arranges the 

positioning of the objects in such a way that there is no overlap between the objects nor do they 

mutually collide. In Figure 4.6, the graphical elements and the object environment of the 3D 

visualization, is depicted. 

 
Figure 4.5. Animation mode at its final state, where there are no more enabled transitions to occur. 
We save this state and use the file as input to our 3D visualization tool 
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(a) 

 

(b) 
 

(c) 

 

(d) 

(e) 
Figure 4.6. 3D visualization tool and its elements: (a) Macrophage. (b) Bacteria. (c) Infected 
macrophages. (d) Granuloma. (e) Fish embryo with the 12 regions where infection can occur.  

 

In the 3D animation, the initial bacteria are introduced according to the information of the Petri 

net model. It reads the colored tokens in the place InfectionPosition, normalizing the position 

values and placing the bacteria objects in the predefined regions accordingly. In the Petri net model, 

the non-infected macrophages are in all of the 12 possible regions as they are transported through 

the blood vessels. The granuloma formation and dissemination occurs on the basis of the 

information from the colored tokens as present in the place MatureGranuloma. The constants 

MaxAggregation and MaxDissemination bound the infection process. The animation is time 

independent and sequentially follows the infection steps as defined in the model. The 3D animation 

renders the dynamics of infection process and granuloma formation according to the final state 

space from the Petri net. For inspection and perusal, an animation sequence can be found at, 

http://bio-imaging.liacs.nl/galleries/couplingcpn. In Figure 4.7 a comparison is provided of the 3D 

visualization with the Petri net data with a real zebrafish embryo that has been infected with Mm. 

The microscope image of a 7 days old zebrafish depicted in Figure 4.7 (a) is the result of an 

analysis for the spread of the Mm bacteria after 6 days of infection (dpi). This result was obtained 

with specific software and the granulomas extracted from the image are overlaid as magenta blobs 

[89, 113]. The final result of the 3D animation visualization is depicted in Figure 4.7 (b) As one can 

appreciate here, the simulation reproduces the distribution of the granulomas resulting from 

infection process along the fish, in a similar pattern as it occurs in the real zebrafish. So, it is 

possible to correlate our final result with in vivo experiments although we are not using quantitative 

data. The thresholds to manipulate the dynamics of the QPNC model is the only quantitative 
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information that has been used, and these threshold are not directly based on the analysis of 

empirical data. We, therefore, cannot directly compare the amount of granuloma or the distribution 

of the infection as obtained from our QPNC model to in vivo situations. However, we can 

extrapolate from the results of our simulation that the structure of our Petri net model qualitatively 

represents the behavior of the in vivo infection process. 

 

(a) 

 

(b) 
Figure 4.7: (a) Microscope image of a 7 day old zebrafish (7 dpf) infected with wild-type Mm bacteria 1 day 
old, referred to as 6 days post infection (6 dpi). The granulomas are displayed as magenta blobs. (b) The end 
state of the 3D animation with all the granulomas formed according to the final state space of the colored Petri 
net model. 

 

4.5 Conclusions and discussions 

The model we presented in this work is concerned with an infection scenario: the innate immune 

response to Mycobacterium marinum in zebrafish. It represents the dynamics of bacterial 

proliferation, granuloma formation, and dissemination. The model captures the relevant functional 

processes and their interconnections including signaling and activation or inhibition of the immune 

responses at different levels of abstraction. In sublevels, we have connected the most important 

pathways in order to model the response of the macrophage on the exposure to pathogenic 

mycobacteria. Information about the proteins released by the bacteria, their interference with the 

immune response, and the pathways involved in this process are also taken into account. 

We focused on modeling the qualitative aspects of the infection process through connecting two 

complementary models: one for the reaction process and biochemical components implemented as a 

qualitative Petri net (without colors) [17]. The other model [19] represents the dynamics of the cells 

in the infection process which is implemented as a colored Petri net. The resulting hierarchical Petri 
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net model covers the relevant phases of the infection process, as well as the interaction pathways 

related to the infection persistence. 

In order to combine the two models into one net model, the QPN model [17] was first converted 

into a QPNC model. The color-set Dot was introduced to represent the presence of signaling 

molecules, proteins, and concentrations of cells involved in the interaction between macrophage and 

bacteria that are phagocytized. Through this color-set, the two models were combined in one 

modular structure. Using the Snoopy platform in animation mode, the combined hierarchical model 

could be executed. 

The animation mode of Snoopy allows one to verify the dynamics of an animated Petri net by 

analyzing the markings encountered during a simulation. This showed that our Petri net model was 

able to replicate the steps in the infection process.  This is due to the fact that the structure of the 

Petri net is based on the actual description of the infection process as extracted from the literature. 

Hence, the qualitative aspects in the sense of cause-and-effect are in accordance with the actual 

process. The quantities used in the model have no direct significance but to support the qualitative 

modeling and serve only as threshold. Neither quantities nor time are essential to the working of the 

model. 

From a biological perspective, the additional 3D visualization environment has proven to be an 

interesting complementary approach to illustrate the infection process. The possibility to visualize 

the infection occurring from the introduction of bacteria to granuloma formation as it would happen 

in vivo, provides a better understanding of the infection process.  

A comparison of the simulation results with an in vivo experiment (an infected zebrafish at 6 

dpi) confirms once more the strength of the qualitative aspects of our model (cf. Figure 4.7). 

Because the 3D visualization tool reads markings of the Petri net model, changes in the initial 

marking of the net are directly reflected in the 3D visualization. Thus it can lead to more insight into 

the infection process, e.g. how dissemination and concentration of granulomas depend on the initial 

position of the bacteria, the amount of aggregation cells that form a granuloma, as well as on the 

number of infected macrophages that can leave the granuloma. By changing the number and/or 

positions of tokens, "what-if" scenarios can be executed to represent different biological conditions. 

Disruptions of pathways, presence or absence of proteins, and also different positions of cells, can 

be simulated as part of the experimentation in the animation mode. 
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For the further development of “what-if” scenarios, however, a quantitative model is necessary 

that, through support of empirical data would enable to do quantitative analysis as well as perform 

simulations and predictions. An advantage of our Petri net model is its modularity facilitating the 

conversion from a qualitative model to a quantitative model without changing the structure. Since 

the 3D visualization can perform an animation based on the final state space of the net, it would 

then provide an even more realistic perspective of the infection process. Currently, we are collecting 

and analyzing data from zebrafish infection studies to use these as a basis for such quantitative 

model. As a next step we will integrate these data in our simulation framework that will then be able 

to perform different scenarios as part of the simulation process. It will contribute to identify 

important parameters that can help to unravel mechanisms related to the mycobacterial infection 

process and innate immune response. 

In summary, in this paper, we have presented the coupling of two distinct models of different 

aspects from the mycobacterial infection process and innate immune response. To understand the 

infection and the immune response, it is necessary to analyze the process from its epidemiology 

down to genetic levels. We have modeled the dynamics of the infection and also the intracellular, 

intercellular and molecular interactions, interconnecting the models in a hierarchical structure. The 

resulting multi-scale Petri net model allows the observation of events at a given scale and how they 

interact with higher or lower levels. In addition, we provided an animation of the model using the 

Snoopy framework and related the Petri net output to a 3D environment. The hierarchical 

structuring of information in Petri net has the potential to become an important tool for research in 

the development of infection diseases, Tuberculosis in particular. 
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5 Quantitative Petri net model approach for 
the Mycobacterium infection process 
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Our days as a polar winter . 
 
Its hours of joy are glancing as lightning. 
And adversities are as a night, never ends. 
For happiness, Times run fast. 
And for darkness, the seasons reside. 
 
And in days that are heavy as lead 
Flashes as a quick lightening, a love 
this is illogical. 
Then poetry erupts as fire 
in straw hit by a thunderbolt. 
In all these spreading ashes 
How did these burning words survived? 

Jabra Ibrahim Jabra, Palestina (1920 – 1994) 

 : أيامُنا كالشتاءِ القطبيِّ 
 

 .ساعاتُ الفرح فيھا, كالضياء, خاطفة
 .والفواجعُ, كالليل, Ë تنتھي

 لÖشراقات أوقات ما أسرع ركضھا
 .وللظلماتِ المواسمُ المقيمة

 
 وفي نھارات, أثقالھُا كالرصاص

 يومض كخطفِ البرق حبُّ 
 ,Ë يفُھم منطقه

 ويندلعُ الشعرُ كاللھيب
 : في ھشيم ضربتْه الصاعقة

 في ھذا الرماد العتيِّ المنتشر
  الحارقة ؟كيف بقيت ھذه الكلمات 

 
 )1994 -  1920 (جبرا إبراھيم جبرا، فلسطين،
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Abstract 

In the introduction of this thesis we have stated that a model has to concisely summarize and 

replicate the relevant information about the biological process. In the previous chapters, we have 

presented models, which outline the components and dynamics of the Mycobacterium infection 

process. These models have been used as building blocks to create a qualitative model, with, 

according to the results, a validstructure . However, a reliable model has to reproduce the structure 

and behavior of the biological process. In this chapter we present a model that fits these 

requirements and can simulate scenarios that are in accordance with the behavior of the infection 

process. We used data from biological experiments to validate the model leading to a quantitative 

analysis of the simulations. 
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5.1 Introduction 

The availability of data representing various biological states, processes and their time dependencies 

enables the study of biological systems at various levels of organization, from molecules to 

organism and even up to population level. It is also essential to build models that can simulate 

scenarios and predict behavior of the system. Moreover, we can use the biological data to validate 

the model leading to a quantitative analysis of the experiments. Therefore it can contribute to 

identify important parameters that can help to unravel mechanisms related to the biological process. 

Walpole et al. [123] review the importance of integrating data across spatial, temporal and 

functional scales and how multi-scale models, that are developed to work across these scales, may 

provide insights into biological systems using quantitative methods. 

The QPNC model presented in Chapter 4 provides a visualization of the dynamic processes 

involved in Mycobacterium infection in the zebrafish host as well as the interconnected pathways 

that interact once bacteria are inside the host immune cell (phagocytosis). Although we have used 

quantified boundaries to express the dynamics of the model, our earlier focus was to create a pure 

qualitatively model using data information only as boundary condition for the model simulation. 

Analyzing the deterministic aspect of the model, these boundaries add an oscillation in the final 

result according to the simulations. The reason was the accumulation of tokens in the sub-nets that 

model the pathways related to the mycobacterial proliferation (intracellular, intercellular and 

molecular interaction). This accumulation occurs along the iterations of the simulation process in 

order to provide a non-deterministic result. The accumulation of tokens did not interfere in the 

model simulation. In this chapter, we analyze data from biological experiments on Mycobacterium 

marinum infection in zebrafish embryos. We use this information to redesign our previous 

qualitative model from Chapter 4 into a quantitative model using SPNC. For validation, we execute 

two scenarios, i.e. simulations of certain conditions, and compare the results with the data from in 

vivo experiments. The process of validation and refinement may lead to the discovery of new 

knowledge about the infection process. 

The remainder of this chapter is structured as follows. In Section 5.2 we focus on the material 

and methods describing the data analysis process and the description of the extension of the 

previous model emphasizing the quantitative aspects. We discuss about the changes in the model to 

fit to the problem and how the data is implemented in the model. In Section 5.3 we show our results 

from the simulations. We compare with the data from in vivo experiments and validate the model. 

Finally, in Section 5.4 we present our conclusions and discuss the results pointing to possible 

directions for future work. 
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5.2 Material and methods 

The original motivation was to refine the previous models, removing the unnecessary accumulation 

of tokens used to provide a non-deterministic qualitative output of the simulation process. To tackle 

the quantitative aspects of the infection process, we have converted the QPNC model into a 

Stochastic Colored Petri net (SPNC). This process assigns a rate function to the transitions that will 

address a probability to “fire” during the simulation. Therefore, the firing rule adds an extra 

condition for a transition to consume/produce tokens. When a particular transition becomes enabled, 

then a local timer is set to an initial value, which is computed at this time point by means of the 

corresponding probability distribution. The local timer is then decremented at constant speed, and 

the transition will fire when the time reaches zero [53]. 

The hierarchical structure of our model is not affected (cf. Section 4.3), though we restructure the 

dynamic level in order to add quantitative aspects related to the distribution of the infection 

(granuloma formation) along the positions. These data are derived from a statistical analysis from in 

vivo experiments with Mycobacterium marinum in zebrafish embryos [113]. The stochastic model is 

implemented in the Snoopy tool. This software environment also allows to execute simulations and 

animations with SPNC [50]. In the following sections, we will present the data analysis and the 

stochastic model implemented. 

 

5.2.1 Data collection and analysis 

As the basis for our model, we have analyzed data from in vivo experiments on zebrafish embryos. 

The empirical data consist of microscope images of zebrafish, that are 6 day post fertilization (6 

dpf), infected with wild-type Mycobacterium marinum (E11 strain) inoculated into the caudal vein 

immediately after the onset of blood circulation, i.e. at 28 hours post fertilization (28 hpf). The 

inoculated amount of bacteria ranges from 50 to 200 colony forming units (CFUs). The images were 

acquired by Leica stereo fluorescence microscope. The images contain infected zebrafish at 5 days 

post infection (5 dpi).The images were part of experiments performed at the department of Medical 

Microbiology and Infection control (MMI) from the VU Medical Center Amsterdam, under the 

procedures presented in [113]. For screening, two channel images are used; one channel with a 

bright field image of the zebrafish and a second channel containing a fluorescent image visualizing 

the bacteria colonies.  

 

 

 

 



79 
 

For the analysis of the images, we have used a data analysis environment for high throughput 

screening (HTS) called eLaborant [90]. This computational platform offers a complete solution for  

image analysis and pattern recognition for zebrafish screening and  extracts information about size, 

shape factors, intensity, texture and location of specific anatomical parts of the zebrafish in the 

images. The eLaborant platform analyzes the zebrafish images [89], by dividing the specimen in 12 

regions and quantifying the fluorescence in the regions. It identifies the infection spread within the 

object and calculates the surface area of the bacterial signal by performing relative measurements 

about the proportional surface area of infection, cluster count and cluster infection intensity. In 

Figure 5.1 one microscope image is depicted containing two zebrafish as analyzed by eLaborant. 

Here, we can notice the centers of the 12 regions (represented by dots and connected by a red line) 

as well as the granuloma distribution as obtained from the fluorescent channel and overlaid as 

magenta blobs [89, 113]. 

 

Figure 5.1: The image analysis result for the spread of the wild-type E11 strain on zebrafish with 5 
dpi. Circles represent the centers of the 12 regions and the granulomas are displayed as magenta 
blobs. 

 

For the scope of this work, we have considered the total area of infection, which represents the 

distribution of the infection along the fish according to the 12 pre-defined regions. To that end, we 

have analyzed 138 zebrafish infected larva by the E11 strain at 6 dpf. We calculate the average 

distribution of infection as proportional surface area of the total infection per segment (the pre-

defined regions). The eLaborant measures the surface area of the infection by evaluating the 

fluorescence in the fluorescence channel. This sums to the total area of infection (At), i.e. the total 

surface are of granulomas in the zebrafish. Moreover, per segment (i) the surface area of the 
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granuloma is known (Ai). Consequently, the contribution per segment to the total infection, i.e. total 

granuloma size, is computed as: 

 

&\` = 	
\`
\a

 (5.1) 

 

The contribution per segment to the total infection is expressed as a proportion of the sum of all 

regions (At). This is computed for our set of 138 samples and from the results we calculate the 

average proportion per region. This result is depicted in Figure 5.2 where one can notice that the 

infection has a large concentration of granulomas localized near the head (referred to as regions 2 

and 3), and also at the center of the zebrafish (referred to as regions 6 and 7). The caudal area 

(referred to as regions 11 and 12) is the site of bacterial inoculation, thus, the most infected regions 

have developed from dissemination of the bacteria over the body. We can also analyze the behavior 

of the infection from the perspective of the circulatory system;   an infected macrophage travels 

while the bacteria proliferates inside its cytosol (cf. Section 4.2.1) we then can reason that  the 

infected macrophage travels at least about 4 regions before leaving the circulatory system and 

attaches into the tissue to form the granuloma. One of the objectives of this work is to replicate this 

behavior as well as predict this dynamics over time using a quantitative model with stochastic 

behavior and taking the PN from chapter 4 as a starting point. In the next section we present the 

model and explain its characteristics.   
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5.2.2 Modeling decisions 

The first step in the modeling process was to export our earlier model based on a QPNC to a 

stochastic colored Petri net (SPNC). The Snoopy tool provides  portability processing between the 

methods [50]. By exporting the net, the tool preserves the discrete state space, but assigns 

exponentially distributed waiting times (probability) to transitions, which are specified by firing rate 

functions. The firing rates are typically state dependent and the predefined function is the kinetic 

mass action [74] assigned by the rate equal to 1 (cf. Chapter 1,Appendix B and Appendix C for a 

formal definition). The exporting process does not change components and structures, i.e. color-set, 

places, arcs, variables and guards. Therefore, the sub-nets remain the same. 

In the next step, we refine the model by adapting its structure in order to make it suitable to 

simulate the quantitative aspects of the infection process. Therefore, we use the data obtained 

through experimental analysis in the stochastic transitions to regulate the migration process of the 

infected macrophage. There are 12 transitions with their own mass action function. The proportional 

granuloma distribution 0&\`6 is used as rate b` in the kinetic mass action function for the 12 

transitions. These data assign a probability of an infected macrophage migrating to a specific region 

of the zebrafish to form a granuloma. Besides the transitions related to the migration process, we 

replace all other stochastic transitions by immediate transitions. The immediate transitions are time 

independent (no rate/probability) and have higher priority than stochastic transitions to occur. 

Therefore, they will always fire, without any delay, if they are enabled. We have decided for this 

adaptation due to the limitations in our data-set, the quantitative information that we extracted from 

biological experiments relates to the infection distribution. There are no data (rates or time 

dependencies) about other interactions involved in the infection process, i.e. protein concentrations, 

time delays for molecular interactions, probability of a pathway, etc. Moreover, we have adapted the 

color-set and markings previously defined (cf. Chapter 4) to ensure that the model will be able to 

replicate the dynamics of the infection process in a stochastic simulation. In Figure 5.3 the new 

model and its hierarchical structure are depicted.  
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5.2.3 Structure of the stochastic model 

The hierarchical structure presented in Chapter 4 remains intact; the first layer net (top level) 

represents the dynamics of the infection process, while the sub-nets (levels 2, 3 and 4) represent the 

bacteria-macrophage interactions at intracellular, intercellular and molecular level. In the refinement 

process, we have changed the structure of the apoptosis pathway and its sub-models to better fit to 

the biological process (cf. Figure 5.3 (e)): The intrinsic apoptosis pathway (cf. Figure 5.3 (j)) is an 

amplification process triggered by the release of caspase from the extrinsic apoptosis pathway and 

cellular stress (cf. Figure 5.3 (k)). Moreover, the apoptosome is formed at the intracellular level 

(apoptosis pathway) which leads to the induction of macrophage death [68] (cf. Figure 5.3 (e)). We 

also removed the unnecessary accumulation of tokens in the sub-nets by adding logical nodes to 

consume those extra tokens in the simulation process. The logical nodes, a.k.a. fusion nodes, are 

copies of a single node used for the sake of readability of the net. They are features for the design, 

working as graphical copies with identical function.  We use the transition Necrotic_Breakdown as 

a logical node on the sub-models in level 2 (intercellular model, cf. Figure 5.3 (c)) and in level 4 

(molecular models, cf. Figure 5.3 (f) to (k)). Therefore, whenever this transition is enabled, it will 

consume all tokens on each level at the same time. With this solution, we have guaranteed that for 

each infected macrophage there is an individual host-pathogen interaction at the intracellular, 

intercellular and molecular levels. Table 5.1 describes the places that previously accumulate tokens 

on each level and now are connected with the logical transition.  

On the dynamic level (level 1), we have replaced the migration process, represented by the place 

ActiveMacrophage and the transition Migration, for a sub-net at level 2 implemented in the coarse 

place MigrationProcess (cf. Figure 5.3 (b)). This sub-net represents the migration of the infected 

macrophage towards the 12 regions according the data analysis presented in the Section 5.2.1. 

Therefore, the sub-net is composed of 12 stochastic transitions that specify the region where the 

infected macrophage will move to form the granuloma when it fires. The firing rule uses the kinetic 

mass action function and the firing rates are distributed based on the average distribution of 

infection previously analyzed (cf. Figure 5.2). The mass action function is used because it depends 

on the rate and not on the concentration of tokens. It follows the mass action law in which at a fixed 

concentration, the quantities (mass) have no influence upon the state of equilibrium [74]. It is not 

how much or how little of a substance is present that will be decisive, but how dense or sparse it is 

distributed in the space. Therefore, we correlate the distribution of the infection concentration along 

the 12 regions from the empirical data with the probability of the 12 transitions of the model to fire. 
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Table 5.1: Description of places connected through the logic node: Necrotic_Breackdown. 
Whenever this transition occurs, all the remains tokens are consumed. 
Place Sub-model (level) Description 
Nascent_Phagosome 
and 
Bactericidal_Material 

IntracellularInteraction 
(Level 2) 

Accumulates tokens that represent 
the signals triggering the phagosome 
maturation and the apoptosis process 
respectively (cf. Figure 5.3 (c)) 

SapM IntracellularInteraction 
(Level 2) 

Accumulates tokens that represent 
the SapM protein released by the 
bacteria inside the macrophage (cf. 
Figure 5.3 (c)) 

Ca_Activator  
and 
Ca_Supressor 

Ca_Pathway  
(Level 4) 

Accumulates signals (tokens) to the 
production/inhibition of calcium (cf. 
Figure 5.3 (f)) 

Rab5  
and 
PI3K_Inhibitor 

Maturation_Pathway  
(Level 4) 

Rab5 place accumulates maturation 
signals while PI3K inhibitor 
accumulates the ManLAM signals. 
(cf. Figure 5.3 (g))  

MyD88; IKK and 
IL10_Repressor 

TLR_Pathway  
(Level 4) 

MyD88 and IKK are proteins 
accumulated by the TLR signals and 
IL10_Repressor is accumulate 
signals to repress NFkB production 
(cf. Figure 5.3 (i)) 

Akt_PKB and 
Bcl2_Active 

Bcl2_Pathway  
(Level 4) 

Akt protein is accumulated induced 
by presence of ManLAM while Bcl2 
is accumulated by phosphorylation 
(cf. Figure 5.3 (h)) 

Death_Receptors Extrinsic_Apoptosis_Pathway 
(Level 4) 

Accumulates the signals (tokens) to 
activate the receptors that bind with 
TNFa (cf. Figure 5.3 (k)) 

 

5.2.4 Stochastic model extension  

For a proper implementation, the set of color-sets Σ predefined in Chapter 4 also requires some 

modification. This involves the restructuring of the semantics of the color-set in order to make them 

suitable for the stochastic model. The SPNC uses two sets of color-sets, the simple color-set 

described in Table 5.2, and the compound color-set described in Table 5.3. 
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Table 5.2: Simple color-sets modified for the colored stochastic Petri net model 
Color-set Data type Description 

Dot dot Default black color. Defined for all the places at the 
IntracellularInteractions sub-models 

Position Integer Represents a location (of a macrophage, bacteria and/or 
granuloma) within the zebrafish embryo. It connects to the 
compound color-set. 

count Integer Represents a threshold for the simulation in the recruitment of 
macrophage and calculate the amount of the dissemination. 

BacterialType String Distinguishes the type of bacteria. Here represented by wild-
type (E11) c.f. Section 5.2.1 

ImmuneCellType String Distinguishes the type of immune cells. Here represented by 
macrophages. 

 
Table 5.3: Compound color-sets modified for the colored stochastic Petri net model 

Color-set Product type Description 
Macrophage Position, ImmuneCellType Represents host macrophage immune cells 
Bacteria position, BacterialType Represents the bacteria that are modeled 
Granuloma position, ImmuneCellType, count Represents granuloma with a number of 

infected immune cells 

 

There are no significant changes with respect to the set of places & and set of transitions ' as 

previously defined in Chapter 4. Since we add a new sub-model implemented in the coarse place 

MigrationProcess (cf. Figure 5.3 (b)), we also add two places and 12 stochastic transitions to 

model the stochastic distribution of the infection. In order to extend our simulation experiments, we 

added the place Granuloma_Distribution to the dynamic model (cf. Figure 5.3 (a)). In this 

manner we are able to collect the information about the amount and position of the granulomas that 

were formed. Moreover, at this level we also add the transition Restoring_Immunecell to consume 

tokens from the place Healthy_Macrophage at IntracellularInteractions sub-model, cf. Figure 

5.3 (c); and from the place Moving_Macrophage at MigrationProcess sub-model, cf. Figure 5.3 

(b). This transition represents the return of an infected macrophage to its functionality in case it has 

been able to digest the bacteria (phagolysosome process and bacterial death). In this scenario, the 

macrophage becomes healthy and no granuloma formation will take place. In Table 5.4 and Table 

5.5 the set of places and transitions added to our model are described respectively. 
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Table 5.4: Set of places & added to the stochastic model 
Place Color-set Description 

Moving_Macrophage Bacteria Represents the macrophage in the moving process. It 
contains the initial infected macrophage that will move 
within the bacteria. 

Migrated_Macrophage Bacteria Represents the infected macrophage repositioned into a 
region where it will leave the circulatory system and form 
the granuloma. 

Granuloma_Distribution Position This place is used to keep track on the spatial distribution 
of the infected macrophage along the 12 regions. 

 
Table 5.5: Set of transitions ' added to the stochastic model 

Transition Type Rate function 
Pos1 Stochastic MassAction(0.106042565) 
Pos2 Stochastic MassAction(0.165508512) 
Pos3 Stochastic MassAction(0.196383367) 
Pos4 Stochastic MassAction(0.056442759) 
Pos5 Stochastic MassAction(0.071513451) 
Pos6 Stochastic MassAction(0.148477928) 
Pos7 Stochastic MassAction(0.121384737) 
Pos8 Stochastic MassAction(0.057348882) 
Pos9 Stochastic MassAction(0.030160435) 
Pos10 Stochastic MassAction(0.015993484) 
Pos11 Stochastic MassAction(0.021050388) 
Pos12 Stochastic MassAction(0.00969349) 
Restoring_Immunecell Immediate -  

 

The initial marking ( also does not significantly change compared to the qualitative model from 

Chapter 4. The condition markings remain the same, whereas the example marking regarding the 

amount of bacteria changed so as to represent the concentration of bacteria inoculated in the in vivo 

experiments. We defined that 125 tokens represent the amount of wild-type bacteria (E11) injected 

at position 12. This value is derived from the average concentration of bacteria inoculated at the 

caudal region according to our empirical data (c.f. Section 5.2.1). If we change the number of tokens 

that represent the number of bacteria, it will influence in the total of granuloma that will be formed, 

i.e. the more bacteria, the more macrophage will phagocytosis and become infected; the relation is 

one to one (one macrophage to one bacterium). This effect does not occur with the initial marking 

related to the total number of macrophage. The place ImmuneSystem works as an infinite resource, 

it always contains macrophages in all positions. All the transitions connected to this place do not 

consume its token, only check if it has a macrophage in a specific position by the read arcs. 

Therefore, adding more macrophage in a specific position does not influence in the amount of 

granuloma, although, if there is no macrophage in a specific position, the bacteria that eventually 
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have settled in this position, will not be phagocytosis by the immune cell. The same process occurs 

for an infected macrophage that eventually migrates to a position without a macrophage; it will not 

form a granuloma. In Table 5.6 the example markings initially defined for the stochastic model are 

described. 

 
Table 5.6: Example markings initially defined in the colored stochastic Petri net model 

Place Marking Description 
Infection 125`(12,E11)  

 
Defines the initial concentration of mycobacteria that will 
intrude the host.  

ImmuneSystem 1`(1,mac)++  
1`(2,mac)++ 
1`(3,mac)++ 
…  
1`(12,mac) 

Defines the initial position of non-infected macrophages in 
the host. We considered that macrophage can be present in all 
the 12 regions and the first macrophage to arrive at the 
infection site is and the nearest macrophage positioned 

 

5.2.5 Simulation environment 

Now that our SPNC model has been set up, we simulate the stochastic process in order to reproduce 

the behavior of the mycobacterial infection process and innate immune response compared to the in 

vivo experiments. Snoopy software [50] provides a simulation environment for stochastic models. In 

this environment, it is possible to set-up the initial markings for the places; the function rates 

defined for the stochastic transitions; apply weights for immediate transitions. Moreover, it is also 

possible to specify the simulation time interval and the number of time points in the time interval 

that the information is recorded. In addition, the number of runs of the simulation process can be 

defined. The result is determined from calculation of the average values over all runs. The output of 

the simulation can be visualized in the simulation environment in different graphical formats (e.g. 

scatter plot, histogram, tabular) and also can be exported to a file (csv format). 

 

5.3 Simulation and results 

We perform stochastic simulations to test how well the model captures the dynamics of the system 

and how changes might affect the behavior of the infection process. Two simulation scenarios were 

performed reproducing the dissemination of the infection. We use the results of the data analysis 

from Section 5.2.1 as input parameter for our simulations as well as a means to compare the end 

result. The output of the simulations is the number of tokens accumulated at the place 

Granuloma_Distribution along the simulation time. The number of tokens represents the average 

granuloma formation on each position. The time is simulated in days, from the inoculation of the 
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bacteria (day 0) till the 5th day post infection (5 dpi), according to our data analysis from the 

zebrafish images. Hereafter we present the simulation scenarios and their outcome. 

 

5.3.1 Stochastic simulation: ideal scenario for bacterial burden  

In our first simulation, we consider that each macrophage that phagocytosis bacteria is not able to 

digest the bacteria (phagolysosome process) and neither suppress the infection (apoptosis process). 

Therefore, the infected macrophage migrates to form granuloma in one of the 12 regions, according 

to the probability distribution based on the rates given in Table 5.5. The granuloma disseminates the 

infection by releasing infected macrophages that will form more granulomas along the regions.  

In this scenario, the infection behavior is simulated from the time point the bacteria are 

introduced in zebrafish embryo (time 0), till the time the zebrafish larva were screened by taking 

images at 5 dpi. The place Granuloma_Distribution contains the information about the total of 

granulomas that are formed per region. We plot the average of the number of tokens accumulated 

during the simulation time per region. Figure 5.4 and Figure 5.5 depict the results. In Figure 5.4 

(a) we depicted the accumulation of the infection, as average of the number of tokens per region 

(Macrophage_Distribution_1 till Macrophage_Distribution_12) in 5 days, for one random 

specimen of zebrafish (1 simulation run). We performed 138 simulation runs within one experiment 

in order to compare with the number of samples (138 zebrafish) from our empirical data. In Figure 

5.4 (b) we depicted the average value of number of granuloma accumulated over 138 runs. It 

represents the accumulation of the infection per region during the 5 days from 138 zebrafish.  

Figure 5.5 presents the percentage of distribution per region (Pos1 till Pos12) for both simulations 

(1 run and 138 runs). It is possible to verify the similarity of the distribution and the behavior of the 

system by comparing the simulation results with the empirical data. Most of the infection regions in 

the simulations are concentrated in the head (position 2 and 3) and also at the center of the zebrafish 

(position 6 and 7), which is similar to the in vivo experiments. For one simulation run, we have a 

total of 224 granulomas formed, while the 138 simulation runs totalized an average of 221.88 

granulomas formed. The infection distribution grows exponentially, reaching a steady state during 

the run time. This means that, for this model, there will be hardly any difference witch simulations 

for 6, 7 dpi. However we cannot predict the same behavior for the in vivo experiments since there is 

no data yet that report such behavior. The tendency of the simulations to reach the steady state in the 

number of tokens (infection distribution) is reflected in the single parameter set for the stochastic 

properties of the model. For this simulation we only have considered the probability for the 

distribution of the infection, whereas the other factors are considered to occur at as instantaneous 

events (immediate transition) and have no stochastic influence on the system. If we add more 

stochastic influence in the system, a different behavior might occur. Next, we simulate a second 
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scenario exploring a different simulation set in order to approximate the model to the in vivo 

experiments results observed in our empirical data.  

 

 
(a) 

 
(b) 

Figure 5.4 Simulation results of the stochastic Petri net model: ideal scenario for bacterial burden. 
(a) Infection distribution over time (5dpi) for one simulation run and (b) for an average of 138 
simulation runs. 
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5.3.2 Stochastic simulation: macrophage response to infection  

In the studies on mycobacterial infection, Armstrong and Hart [5] were the first to identify the 

bacterial influence in the phagolysosome. They performed in vitro experiments with cultured 

macrophages infected with Mycobacterium tuberculosis (Mtb). They showed that approximately 

70% of the infected macrophages display failure in the process of fusion of the phagosome with the 

lysosome. Although their experiments were with Mtb, in our simulations, we assume that 

Mycobacterium marinum behaves similar and used this particular fact in our second scenario. We 

add a probabilistic factor of the macrophage to perform the phagolysosome process, degrading the 

bacteria, becoming healthy, complying with its immune properties, and thereby reducing the 

virulence spread. In this manner, we consider to reproduce the infection process in a more realistic 

manner. 

 To perform this simulation, we added a stochastic transition at IntracellularInteractions sub-

model (cf. Figure 5.3 (c)) which will fire a token to the place P={Late_Phagosome} indicating the 

maturation process has occurred. This stochastic transition will fire according to the MassAction 

function that will indicate the probability of the phagosome maturation take place in an infected 

macrophage. For this scenario we performed 3 simulations with different probabilities (rates) for a 

macrophage to perform the phagolysosome process. In simulation one, we consider the probability 

of 70% of chance for a macrophage failure in the phagosome maturation process, become infected 

and disseminate the infection, forming granuloma as observed in [5]. Therefore, a macrophage has 

30% of chance to kill the bacteria by performing the phagolysosome process and becoming healthy. 

For the simulation two and three we arbitrary extrapolate the system, by considering 40% of chance 

for an infected macrophage form a granuloma (60% of chance to kill the bacteria) and 10% of 

chance for an infected macrophage form a granuloma (90% of chance to kill the bacteria) 

respectively. The reason for these rates is to analyze the behavior of the system in different 

scenarios, where the immune cell is able to respond to the infection process, as observed by 

Armstrong and Hart [5]. In Table 5.7 we describe the rates (probability) of phagolysosome 

manifestation assigned for the transition for each simulation. 

 
Table 5.7: Rates assigned to the MassAction function indicating the probability of a macrophage 
degrade the bacteria 

Simulation Function Description 
Simulation 1 MassAction(0.3) Indicate there is a 30% of chance to a macrophage perform the 

phagolysosome and degrade the bacteria (become healthy) 
Simulation 2 MassAction(0.6) Indicate there is a 60% of chance to a macrophage perform the 

phagolysosome and degrade the bacteria (become healthy) 
Simulation 3 MassAction(0.9) Indicate there is a 90% of chance to a macrophage perform the 

phagolysosome and degrade the bacteria (become healthy) 
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We performed the three simulations under the same initial condition of the First Scenario, using 

the average of granuloma distribution per region from 138 simulation runs (cf. Section 5.3.2). In 

Figure 5.6 we depict the average of granuloma formed for the three simulations. Moreover, in 

Figure 5.7 we plot the average of concentration of granuloma per region formed during the 

simulation, compared with the First Scenario and the empirical data. 

Analyzing the results from the simulations and the empirical data we can conclude that the 

model behaves similar to the biological experiments from the data analysis. Despite the bacteria 

CFUs are injected in the tail, a high concentration of granuloma is formed near the head and the 

center of the fish (regions 2, 3 and region 6, 7 respectively). We also noticed that the average of 

granuloma formation diminishes once we increase the probability of a macrophage to perform the 

phagolysosome and kill the bacteria. The Simulation 1 presented an average of 30.49 granulomas 

formed, simulation 2 resulted in 4.79 and simulation 3 presented an average of 1.60 granulomas 

considering 138 simulation runs in 5 days (cf. Figure 5.6). 

Despite the fact that the amount of infection (number of tokens) has been less than the previous 

simulation, we can notice that the distribution of the granulomas slightly differentiates from the 

First Scenario and the empirical data. The higher the probability of a macrophage to be able to 

degrade the bacteria, the more the percentage of granuloma distribution per region from the 

empirical data differs. The percentage of distribution for the simulation without probability of 

phagolysosome (First Scenario) and with 30% of chance for the phagolysosome (simulation 1) are 

more similar to the empirical data, compared with the simulations of 60% and 90% of chance of a 

macrophage to degrade the bacteria. This is logical because we this to be part of the empirical data. 

In the next section, we perform a statistical analysis to assess the confidence interval and hypothesis 

on the similarity of the percentage of the granuloma distribution from our simulation experiments 

and the empirical data. 
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Granuloma_Distribution_1 Granuloma_Distribution_4 Granuloma_Distribution_7 Granuloma_Distribution_10 
Granuloma_Distribution_2 Granuloma_Distribution_5 Granuloma_Distribution_8 Granuloma_Distribution_11 
Granuloma_Distribution_3 Granuloma_Distribution_6 Granuloma_Distribution_9 Granuloma_Distribution_12 

Figure 5.6 Simulation results of the stochastic Petri net model: First Scenario average of 221.88 
granulomas formed; Simulation 1 average of 30.49 granulomas formed; Simulation 2 average of 
4.79 granulomas formed; Simulation 3 average of 1.60 granulomas formed. 
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5.3.3 Analysis of the results 

A statistical analysis on the average of granuloma formation per region was performed, verifying 

the similarity of the percentage of distribution of each simulation with the analysis of our empirical 

data (cf. Section 5.2.1). The idea is to check if the result is statistically similar to what the plot in 

Figure 5.7 shows, or if what we see is a coincidence of the stochastic process. Therefore, we use a 

one sample hypothesis test (t-test) since we are dealing with the average of the infection distribution 

per region. The t-test is the most commonly used confidence interval and hypothesis test of 

population means [13]. It is used to test whether the mean of a population takes a particular value, 

for repeated measurements (which is our case). It requires the sample to be independent, normally 

distributed and equal in sample size and variance. 

 We applied the t-test in the simulation of the First Scenario, in which an infected macrophage 

does not perform the phagolysosome process (0% chance to kill the bacteria); also in the 

simulations of the second scenario, in which an infected macrophage has a chance to perform the 

phagolysosome process (simulation 1 with 30% of chance to kill the bacteria, simulation 2 with 

60%, and simulation 3 with 90%). In Table 5.8 the t-test results for each simulation are given. It 

presents the percentage of similarity between the averages of concentration of granuloma per 

position similar to the analysis of our empirical data.  

 
Table 5.8: One sample t-test result: probability of each position been similar to the empirical data 
Simulation Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 Pos9 Pos10 Pos11 Pos12 

First 
Scenario 88.07% 86.00% 98.07% 95.82% 88.62% 98.59% 93.71% 75.28% 94.01% 54.69% 84.76% 83.19% 

Simulation 1 80.12% 97.99% 79.51% 85.91% 93.95% 96.18% 95.12% 66.31% 96.58% 53.34% 56.81% 99.96% 

Simulation 2 74.61% 83.90% 68.72% 56.43% 51.64% 78.48% 96.44% 71.55% 52.20% 0.00% 70.64% 21.75% 

Simulation 3 89.54% 16.57% 96.89% 25.48% 31.53% 48.54% 25.40% 33.86% 63.56% 0.00% 19.11% 48.99% 

 

In Figure 5.8 the confidence levels from the t-test for each simulation are depicted according to 

their position in the zebrafish.  A high confidence level, i.e. similarity > 95%, demonstrates that in 

that particular region there is no statistically significant difference between the simulation and the 

empirical data (indicated by color blue). A mid confidence level, i.e similarity in >80%, <95%, 

demonstrates that  in that region there is an acceptable significant difference between the simulation 

and the empirical data (indicated by color gray). A lower confidence level (similarity < 80%) 

demonstrates that in that region there is a statistically significant difference between the simulation 

and the empirical data (indicated by color red). Analyzing the results, we can notice that Simulation 

1, i.e. a Macrophage with 30% chance to kill the bacteria, has more similarities in the distribution of 

the granuloma per position than the other simulations. We can correlate these results with the in 



       

101 
   

vitro experiments performed by Armstrong and Hart [5], indicating that indeed not all the 

macrophages that phagocytosis bacteria will generate a granuloma. 

 

 

First Scenario 

 

Simulation 1 

 

Simulation 2 

 

Simulation 3 

Figure 5.8 Confidence level per region of the t-test result for each simulation: in blue high 
confidence level (bigger than 95%); in gray mid confidence level (between 95% and 80%); in red the 
low confidence level (lower than 80%)   

 

5.4 Conclusion and discussion 

In this chapter, we have used a colored stochastic Petri net to model and simulate the mycobacterial 

infection process. To that end, we had to redesign our previous QPNC model presented in Chapter 4 

making it  a quantitative model, in order to simulate scenarios that can reflect the behavior of the 

infection process. The objective was to convert our QPNC model into a colored stochastic Petri net 

model using information we have obtained from in vivo experiments as the basis for the simulation 

and model validation. 

We have analyzed data from biological experiments on Mycobacterium marinum (Mm) infection 

in zebrafish embryos. We used a dedicated image analysis software package [89, 90, 113] to 

measure the “spread” of the Mm bacteria after 5 dpi. The image analysis software has shown to be 

an indispensable tool in the modeling process. It provides information about the granuloma 

concentration along a pre-defined set of 12 regions within the zebrafish. We organized the data as a 
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proportion of infection per region (cf. Table 5.2). This information was used in our model as a 

probability rate for an infected macrophage to form granuloma on a specific position.         

We redesigned the colored Petri net model into a SPNC model taking in account the specified 

position from where the infected macrophage migrates to form the granuloma. We implemented a 

sub-model with stochastic transitions, addressing the position of each region granuloma are formed, 

as described in the empirical data (cf. Figure 5.3 (b)). We decided to use stochastic transitions only 

to model the process related to the infected macrophages migration, as that corresponds to the 

information extracted from in vivo experiments. The other transitions of the model  are implemented 

as immediate transitions to represent processes present in the model but not explicitly measured in 

the empirical data. The use of immediate transitions implies no time consumption (delays) for a 

specific event (transition) to happen, and they have higher priority over the stochastic transitions. 

We could have used the stochastic transition with a rate function of 1.0 (100% probability to occur) 

but the addition of a time delay for each transition would skew the result. The motivation for using 

immediate transitions was to keep control over the transitions of no stochastic information available, 

providing more precise simulation results. In this manner, we are able to gradually increase the 

model by replacing the immediate transitions for stochastic transitions according the availability of 

data or to perform controlled simulations experiments. 

We have performed two simulation scenarios with the new model, and validated them by 

comparing the results with the data from in vivo experiments. 

In the first simulation scenario, we considered that all infected macrophages could form a 

granuloma in a specific region according to the rate function defined from the data analysis. This 

could be the ideal scenario for the bacteria since all inoculated Mm bacteria would survive and 

spread the infection over the time. We simulated the behavior of the infection for one zebrafish and 

for 138 zebrafishes, comparing the results with the distribution in our empirical data. The analysis 

of the results showed that the infection tends to reach a steady state over the time (cf. Figure 5.4). 

We assume that this behavior is related to the deterministic aspects of the immediate transitions. 

Despite of this, the granuloma distribution remains similar to the analysis of the empirical data, 

which corresponds to the biological behavior of the in vivo experiments. Therefore, this result 

validates our model. 

For the second scenario, we have added another stochastic process to represent a natural factor 

that influences the infection process. This process consists of a stochastic transition that adds a 

probability of an infected macrophage to perform the phagosome maturation. For this scenario we 

performed three more simulations, considering that an infected macrophage has 30%, 60% or 90% 

of chance to successfully perform the phagolysosome process, hence kill the bacteria and avoid the 

formation of granuloma. This strategy could be accomplished by adding quantitative information on 

the calcium regulation and maturation process, by changing their respective pathways in the model. 
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However, such measured information was not available from biological experiments or through 

literature. Therefore, for convenience, we connected a stochastic transition to the late phagosome 

indicating that it has a specific probability to occur according to each simulation. The result was a 

reduction of the infection (amount of granuloma), expressed by the number of tokens accumulated 

in the place Granuloma_Distribution. This result should be expected since, for each simulation, 

we have increased probability of one infected macrophage to kill the bacteria and consequently, not 

forming a granuloma. By analyzing the concentration of the granulomas per region for each 

simulation, we noticed that the behavior of the distribution of the infection remained similar 

compared to the analysis of the empirical data. Although, we found that the percentage of 

granuloma concentration per region (position) for the simulation, where a macrophage has 30% 

chance to kill the bacteria, was more accurate than the first scenario and the other simulation - 60% 

and 90% chances of phagolysosome - (cf. Figure 5.7). We corroborate this result by performing a t-

test to statistically verify the similarity between the simulations and the empirical data cf. Table 5.8 

and Figure 5.8). We can correlate these findings with the results found by Armstrong and Hart on 

their in vitro experiments [5]. Although their experiments where in tuberculosis and we do not have 

information of such experiment replicated in vivo for Mm with zebrafish, we can, to a certain extent, 

validate our model. 

There are many natural factors that influence the infection in the biological process for which at 

the moment no measurements are available. Having demonstrated the robustness of our model in the 

simulation scenarios, we can extrapolate the model in order to approximate the results with its 

biological behavior. It is possible to add more complexity by replacing the immediate transitions for 

stochastic transitions and using results from in vivo/in vitro experiments as data input. An example 

of such possible extension is modeling the influence of calcium in the phagolysosome maturation. 

As we demonstrated before, 30% of infected macrophages are able to degrade the bacteria through 

this process. Future simulations could focus on the level of calcium that can influence in this 

percentage and that can suggest new in vivo/in vitro experiments to validate the results. In addition, 

we can perform the animation of the model in the 3D environment using the 3D visualization tool 

introduced in Chapter 4. The 3D tool was designed to read qualitative models, modeled using 

colored Petri nets. Therefore, a necessary adaptation to read the output of the stochastic simulation 

is required in order to express the quantitative aspects from the model. 

In summary, in this chapter, we analyzed data from biological experiments on Mycobacterium 

marinum infection in zebrafish embryos. This information was used to redesign our previous model 

to obtain a quantitative model. We performed simulations on the new model and validated it by 

comparing the empirical data from in vivo experiments. We demonstrated the robustness of our 

model by performing different simulation scenarios, comparing them with the behavior observed 

from the experiments and suggested further model refinement. The process of validation and 
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refinement contribute to identify important parameters that can help to unravel mechanisms related 

to the biological process. 
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6 Discussion and conclusion 
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The blossoms fall but why the hurry? 
Coming of age I want the spring slowing down. 
Unfortunately all places of pleasure 
are different from the days of my youth. 
 
What relaxes me is just the wine, 
What distracts my mind is the poetry. 
This idea, Tao Yuanming would understand - 
My life falls later than yours! 
 
(Du Fu , China, 712 –770) 
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Abstract 

In this thesis we provided a comprehensive overview on the steps that are involved in the modeling 

process and simulation of biological phenomena; from the choice of the method to the validation of 

the results. We gradually implemented a model with which we would be able to study the complex 

interplay of the components involved in the Mycobacterium marinum infection process and innate 

immune response in zebrafish embryos. In itself this process is a model for deeper understanding of 

tuberculosis infection in humans using zebrafish as model organism. Each chapter is a building 

block in the modeling process, which gradually forms a model that can represent cause-and-effect 

among these components involved in the biological behavior. In this chapter we present our 

discussion and conclusion about the work presented in this dissertation. 
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6.1 Modeling mycobacterial infection process 

In Chapter 1 we introduced the modeling process and the methods that can be used to model a 

biological system. It is important to the modeling process to identify the characteristics of the 

problem, the data available and to be able to generate the hypothesis to define the properties of the 

model. The next step is to choose the formal method to use for the implementation of the model. In 

this Chapter 1 we emphasize the Petri net formalism, its characteristics of scalability, extensibility 

and effectiveness to model a biological system. The Petri net formalism is also combined with an 

intuitive graphical representation with a strong mathematical foundation, integrating qualitative and 

quantitative aspects in range of tools that support implementation, simulation and analysis. The 

characteristics presented in Chapter 1 suggest that Petri net is an important method to model, 

simulate and analyze biological behavior. 

 We started the modeling process by defining the central biological problem of this dissertation: 

the Mycobacterium marinum infection process and innate immune response in zebrafish. In Chapter 

2 we presented the characteristics of the biological behavior and the modeling decision used to 

create the first concept of our biological case study. The resulting model provides a qualitative 

representation of the dynamics of the infection process and the primary defense mechanism. The 

model in this described chapter shows to be able to reproduce the steps of the infection process and 

granuloma formation as implemented in a qualitative colored Petri net method. Throughout this first 

model, questions about how the bacteria proliferate and why the immune cells do not respond 

effectively to the infection, guided us to analyze other aspects of the infection process. 

Motivated by the conclusions of Chapter 2, we started to analyze the aspects of the interaction 

between bacteria and immune cells that influence the infection process. The challenge addressed in 

Chapter 3 was to assemble the information about the different components involved in activation, 

inhibition and control of the infection. We analyzed the range of concurrent events that occur 

simultaneously, and how their molecular and cellular components are interconnected. Through an 

extensive literature research, in this chapter we have modeled the important regulatory pathways 

explored by the bacteria to evade the host immune cell and to be able to proliferate. We opted to 

implement the pathways in sub-models to represent the biological scales in which they occur: 

intracellular, intercellular and molecular level. Therefore, we explored the scalability of the Petri net 

formalism using the QPN method. We connect each sub-model in a hierarchical structure 

representing the biological scales. The model provides an overview of the important signaling 

pathways that occur between the host-pathogen interactions.  

In possession of two independent but interrelated models, other questions about the modeling 

process emerged: How to combine a colored Petri net model that represent the dynamics of the 

infection, with the qualitative Petri net model that represent signaling process; and can these be 
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connected in a natural hierarchy? Moreover, how to visualize the infection process from a different 

perspective while maintaining the Petri net formalism? In Chapter 3 we therefore, started this 

discussion by suggesting a hybrid Petri nets or Nets-within-Nets approach. The HPN would be a 

good solution in case continuous and stochastic information is used. The Nets-within-Nets is more 

an abstract approach for large nets that are independent and complex. So far, the complexity of our 

models and the information available does not yet demand such methods. 

The hierarchical combination in natural scales was explored in Chapter 4. In this chapter, we 

coupled the previous two models in one hierarchical structure extending the QPN model to its 

colored extension. We use the QPNC adding a color-set “Dot” to represent the signaling process on 

the pathways implemented at the molecular and cellular level.  In addition we implemented a 3D 

visualization environment that reads the Petri net model simulating the infection process model as if 

it would happen in vivo. Using a different visualization method from the Petri net formalism, but 

keeping its strong mathematical foundation, we compared the simulation result with an image from 

in vivo experiment to confirm the strength of the qualitative aspects of the model. 

The model presented so far, refers to the qualitative aspects of the infection process and its 

characteristics. For testing and prediction of different scenarios, however, a quantitative model is 

required that, through support of empirical data would enable to do quantitative analysis. Therefore, 

an further extension of the model taking stochastic aspects of the infection into account is presented 

in Chapter 5. As a basis for this model, we collected and analyze data from zebrafish infection 

studies. In the analysis we found the average granuloma distribution per region in the zebrafish. We 

use this information as basis for the quantitative model experiments. To create the quantitative 

model, we used another characteristic of the Petri net formalism related to the integration between 

qualitative and quantitative methods. We exported the QPNC model from Chapter 4 to a stochastic 

Petri net model, which assign rates (probabilities) to the transitions to occur. We redesigned the 

model in order to use the data collected as basis for the model. We use the data to specify 

probabilities for an infected macrophage to form a granuloma in a specific region. Therefore, a new 

structure related to the movement process of an infected macrophage was added to support this 

quantitative approach. Moreover, we considered the other activities in the infection process as 

instantaneous (time independent), replacing the stochastic transitions that are not related to the 

movement for immediate transitions.  

For this model, we performed a number of simulations considering the average of granuloma 

concentration as a probability rate for the stochastic simulations. The results of a simulation 

scenario indicate that our model behaves quantitatively similar to the empirical data, validating our 

hypothesis about the model structure and behavior. For a second simulation scenario, we add a 

stochastic parameter to disturb the concentration and infection distribution. The result shown the 

same behavior for the infection though the concentration of granuloma and the percentage of 
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distribution per region changed. Therefore, we demonstrated the robustness of our model by 

comparing the simulation results with the behavior observed from the in vivo experiments. Further 

refinement in the model based on availability of more data can lead to simulations that can 

approximate the model to the in vivo scenarios even better. 

 

6.2 Model implementation 

There are many tools available on internet as well as web platforms that can be used for 

implementation of Petri net models [9, 23, 29, 43, 45, 47, 64, 95, 121, 125, 131]. Most of the tools 

are confined to specific classes and/or not support extensions, portability or analysis. However, few 

tools can provide an extensible experience with Petri net methods [22, 63, 87]. We assessed that 

Snoopy software [50] is the most complete tool available to design and evaluate models in Petri 

nets. It supports a set of related important Petri net classes, i.e. QPN, SPN, CPN and HBPN and 

their colored extensions. Snoopy provides analysis techniques, e.g. animation, simulation, and also 

exports properties between classes and to external analysis tools i.e. Charlie [56] and Marcie [55]. 

Recently, the Snoopy Steering and Simulation Server tool (S4) [58, 59] was released as an extension 

of the Snoopy simulation to perform stochastic simulations in multi-core servers. This extension 

provides a better performance for simulations of big models as well as to change stochastic 

properties of the model while it is running. The Snoopy is platform independent and freely available 

for all relevant platforms, i.e. Linux, Windows and MacOS platforms. 

 

6.3 Conclusion and future work 

Here we present our final conclusions about our study on modeling of the Mycobacterium marinum 

infection process and the innate immune response in zebrafish. We have applied the modeling 

process from the concept of the problem up to simulation and validation of the results. We gradually 

increment the model complexity through a refinement process, where different and complementary 

models have been created in sub-models and these have been gradually connected. This was an 

important process on the modeling decision and turned to be a valuable approach to model a 

complex biological system. The literature research, gathering the biological processes and separate 

the processes in sub-models, was a challenge that was feasible just because of the powerful of the 

Petri net formalism. The result was a readable and extensible model that can be animated, simulated 

and analyzed independently or in as a whole.  

Another contribution of this thesis is related to the hierarchical structure of the model. Coupling 

different biological scales still an open challenge in modeling biological systems. Using the Petri net 

formalism, we proposed a simple and effective solution to connect events that occur simultaneously 
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at molecular, intercellular and intracellular scale. The color Petri net extension bridges each scale 

using a simple color “dot” which realizes the flow between the scales, representing the presence or 

absence of an entity, signals and/or activity in the sub-nets. 

The migration from qualitative model to quantitative also demanded an effort to collect and 

analyze data related to the biological problem. We use stochastic model, extending the QPNC 

previously modeled to SPNC. The stochastic process consist of define probability rates for a specific 

event to occur. Since our data was related to the concentration of granuloma per region in the 

zebrafish, we use the relative proportion distribution as a probability rate of one granuloma been 

formed in a specific region. We innovated the stochastic model by using the probabilities only for 

the infection migration (time delays), considering the other events as instantaneous (no time 

dependent). This approach not only simplifies the simulation, but also provides a controlled 

extension of the model by gradually replacing a specific instantaneous event for a stochastic 

(probability) one once data is available. Therefore, different “what-if” scenarios can be performed 

as part of the simulation process leading for new insights about the infection process. 

In this thesis we studied the importance to identify the characteristics of the biological system to 

be modeled, the collection of information/data and how they influence the modeling decision. A 

modular implementation is essential since you can gradually increase the complexity of the model 

by adding new sub-models structure. Obviously to achieve the modular implementation it is 

necessary to separate the process in related groups identifying the key elements that bridge each 

sub-model. Moreover, a visual representation that can depict the modeled process is also important 

to depict the biological behavior. Therefore, it is important to choose a model formalism that can 

combine a method with a strong mathematical foundation and graphical representation that better 

suits to your problem. The validation and analysis of the model is an important step since it can 

leads to new refinements and conclusions that can drive future experiments.  

As result of our studies, we presented computational models that are able to represent qualitative 

and quantitative the Mycobacterium infection process and innate immune response in zebrafish. It is 

a starting point for in silico experiments, new refinements can be performed along the availability of 

biological data. As future work, new simulations considering bacteria mutants can leads to new 

discovering on the localized behavior of the infection. Moreover, quantitative information about 

protein concentrations (i.e. calcium or anti-inflammatory cytokines), and pathways inhibitions (i.e. 

apoptosis or necrosis) can be used as part of simulation experiments that can bring new insights in 

the research and treatment of mycobacterial infection in humans. 

Biological systems are inherently complex in nature. They are composed of multiple functional 

processes, which involve complex interconnected networks in a cross talk interaction. Principally, 

creating a multi-scale model to represent a biological system, it is important to identify and separate 

the processes that belong to each level of interaction. It is difficult to visualize these levels in the 
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biological literature, which brings another challenger to the modeling process. We have learned 

from modeling the Mycobacterium infection process using Petri nets the importance of 

simplification, modularization and extensibility in the modeling process. Through the simplification 

and modularization, we defined each scale in sub-models by simplifying their boundaries condition 

into black boxes, in which the connection between models is given by simple signals. The 

extensibility of the modeling process allowed gradually increasing the complexity of the model, 

while we were collecting and analyzing more information about the infection process and the innate 

immune response.  

A key observation from this thesis is that the methodology used to model the behavior of the 

mycobacterium infection process using Petri nets can be used to represent other diseases e.g. 

diabetes. Most of the components are related to the immune system response and the modularization 

aspect facilitates the replacing process of modules, i.e. pathways that are specific related to the 

disease without changing the whole structure of the system. It is our hope that the techniques and 

practices presented here will guide future efforts in modeling biological process using high-quality 

multi-scale model implementation using Petri nets.  
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Appendix A 
 

A Petri net is represented by a directed, finite, bipartite graph, typically without isolated nodes. The 

three main components are: places, transitions and arcs. In addition, there are markings describing 

global states. Basically, places and transitions alternate on a path connected by consecutive arcs. In 

this appendix, we provide a formal definition of the Qualitative Petri net method as used for the 

model presented in Chapter 3.  

 

Qualitative Petri nets (QPN): Formal definition 

Based on [10] we define a Qualitative Petri net as tuple c = 0&, ', \, (6, where 

• & is a finite nonempty set of places; 

• ' is a finite nonempty set of transitions such that 

& ∩ ' = 	∅. (A1) 

• \ is a finite set of arcs, weighted by non-negative integer values such that 

\ ⊆ 0& × '6 ∪ 0' × &6 → ℕ. (A2) 

• ( is an initialization function (the initial marking) such that 

(: & → ℕ. (A3) 
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Appendix B 
 

A stochastic Petri net is an extension of the Petri net formalism in which random firing delays are 

associated with transitions whose firing is an atomic operation. The specification of the firing delay 

is of probabilistic nature, i.e. probability density function or probability distribution function. This 

appendix provides a formal description of the Stochastic Petri net method as used in Chapter 5. 

 

Stochastic Petri nets (SPN): Formal definition 

Adapted from [53] we define a Stochastic Petri net as tuple c = 0&, 'm, \, n, (6, where 

• & is a finite nonempty set of places; 

• 'm is the union of two disjunctive transition sets 

'm = 	'oapqr⋃	'̀t. (B1) 

where : 

1. 'oapqr  is the set of stochastic transitions with exponentially distributed waiting time 

2. '̀t is the set of immediate transitions with waiting time zero 

• \ is a finite set of arcs, weighted by non-negative integer values (cf. A2) 

• n is a function such that 

'oapqr → u (B2) 

which assigns a stochastic hazard function ℎa to each transition w, whereby 
u = ⋃a∈yz{|}~�ℎa|ℎa: ℕ|°a| → ℝ�� (B3) 

is the set of all stochastic hazard functions, and  

n0w6 = ℎa	∀	w	 ∈ 'oapqr (B4) 

• ( is an initialization function (the initial marking) (cf. A3) 

The stochastic hazard function ℎa defines the marking-dependent transition rate ba0�6 for the 

transition w, i.e. ℎa = ba0�6. The domain of ℎa is restricted to the set of input places of w, denoted 

by °w	with °w = 7� ∈ &|\0�, w6 ≠ 0T, to enforce a close relation between network structure and 

hazard functions. Therefore,  ba0�6 actually depends on a sub-marking only. 
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Appendix C 
 

Colored Petri nets is a Petri net modeling concept which extend quantitative and qualitative Petri 

nets by combining the capabilities of programing languages to describe data types and operations. It 

adds the concept of “color” to distinguish tokens and arc expressions that specify which token can 

flow over the arcs. Moreover, Boolean expressions (guards) can be defined in the transitions 

defining additional constrains to enable it. This appendix gives a formal description of the Colored 

Petri Net method as used in Chapters 2, 4 and 5. 

 

 Colored Petri nets: Formal definition 

Following [73], we use Type (n���) to denote the set of types 7'���0�6|	�	 ∈ n���T of a typed set 

Vars. To denote the Boolean type, we use the set B consisting of the elements {false, true}. 

A multi-set � over a nonempty set S is a function � ∶ � → ℕ. An element � ∈ � is said to 

belong to the multi-set � if �0�6 ≠ 0, and then we write �	 ∈ �. The integer �0�6	is the number of 

appearances of the element � in �. 

We represent a multi-set � over � by the formal sum:  

∑ �0�6′�o∈� . (C1) 

By ��� we denote the set of all multi-sets over �. 

A colored qualitative Petri net is a tuple 0Σ, &, ', \, ], ^, _, (6,	where 

• % is a finite nonempty set of types, called color-sets; 

• & is a finite nonempty set of places; 

• ' is a finite nonempty set of transitions  

• \ is a finite set of arcs  

• ] is a color function, it is defined from & to Σ; 

• ^ is a guard function, it is defined from ' to Boolean expressions such that 
∀	w ∈ ': �'����^0w6� = � ∧ '��� �n���^0w6�� ⊆ Σ�. (C2) 

• _ is an arc expression function, it is defined from \ to expressions such that 
∀	� ∈ \: �'����_0�6� = ]��0�6� ∧ '��� �n���_0�6�� ⊆ Σ�, (C3) 

where �0�6 is the place component of �; 

• ( is an initialization function (the initial marking), it is defined from & to multi-sets of 

colors such that 
∀	� ∈ &: �'����(0�6� ⊆ ]0�6�. (C4) 

In general, a marking associates with each place & a multi-set over ]0�6, that is, a marking 

assignes to each place a multi-set of “colored tokens”.  
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In the formal definition of Colored Stochastic Petri nets, we replace the set of transitions ' by 'm 

defined in (B1), and add the function n as defined in (B4). Therefore the formal definition of our 

SPNC is denoted as: 

�&c	 ∪	 &c¡ = 0Σ, &, 'm, \, V, ], ^, _, (6. (C5) 
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Summary 
 

The modeling of biological systems is an important issue in the research of living organisms in the 

live sciences. In Health, biological models are essential to study treatment and solutions for 

infectious and contagious diseases. Therefore, researches use animal models that are closely related 

to human. At the same time, many ethical, legal and financial aspects have a strong influence on 

research using animal models. Along that line, computational models represent an alternative, and 

an addition, in order to minimize the impact of such aspects. Moreover, it can help in the research of 

infectious diseases performing experiments that are note feasible in lab. 

Tuberculosis (Tb) is a contagious bacterial infectious disease, through Mycobacterium 

tuberculosis, that is still killing millions of people worldwide. In order to gain understanding of 

tuberculosis infection, several studies in Tb use Mycobacterium marinum infection in zebrafish 

(Mtb) as basis for their research. One reason is related to the fact of similarity of the infection 

behaviour between Mtb and Tb in humans. Moreover the impact of zebrafish on the ethical, legal 

and financial aspects for animal model research is low. Another reason to study mycobacterial 

infection process using zebrafish is the advantage on the data acquisition due to the transparency of 

zebrafish embryos and larva, so that a considerable data volume that can be generated in a short 

period of time. 

In mycobacterial infection diseases, several components represent a biological process that 

interacts with each other and the environment through complex networks interconnected in a 

layered fashion. This thesis is presenting the computational modeling aspects of the mycobacterial 

infection process, in particular the infection through Mycobacterium marinum and the response of 

the innate immune system in zebrafish (Danio rerio). In the computational modeling process, both 

the qualitative and quantitative aspects of the models discussed have been addressed, together with 

simulations using different scenarios as well as validation of the results. 

Each chapter represents a part of the modeling process, which in a modular fashion gradually 

establishes a model capable of representing the interactions between the principal components 

involved in the behaviour of the biological phenomenon. The objective of the research presented in 

this thesis is to introduce a more precise model that can represent the initial stages of a 

mycobacterium bacterial infection. 

In Chapter 1, an overview on modeling methods used to model biological system is presented. 

The relevant aspects and characteristics of modeling process are raised as well as an extended 

discussion on the Petri net method, which is used in the models presented in this thesis. 

Chapter 2 presents a qualitative model that represents the phases related to the dynamics of the 

mycobacterial infection process and the reaction of the innate immune system. From a macroscopic 
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perspective it is possible to visualize the dynamics of the infection process from the moment the 

bacteria is inoculated, detected and phagocytosis by the macrophages, the migration and bacterial 

proliferation, granuloma formation, as well as the dissemination of the infection to other regions in 

the host organism. 

In Chapter 3 another qualitative model is introduced which represents one of the stages related 

to the infection process from a microscopic perspective. The model described in this chapter is 

composed of a range of components, in fact sub-models, that represent the interactions between the 

bacteria and the macrophage. This is organized in different hierarchical levels; i.e. intracellular and 

molecular. It is possible to visualize the regulatory pathways explored by the bacteria for survival 

and proliferation in the immune cell. Moreover, it is described how it is possible to simulate 

different scenarios through which the macrophage is able to prevent the proliferation through the 

process of bacterial digestion or apoptosis. 

In Chapter 4 an important step in the process of modeling biological systems is introduced; that 

is, the merging of independent models that are, however, inter-related. The model that is presented 

in this chapter combines, in a hierarchical fashion, the models described in Chapters 2 and 3 in a 

unique structure that is able to visualize the infection process from the dynamics of the process, i.e. 

the macroscopic perspective, to the regulatory pathways, i.e. the molecular perspective.  It is 

possible to simulate the infection process and correlate with the observed behaviour in nature, i.e. in 

vivo experiments. Besides, a 3D visualization tool is added in order to provide a better interpretation 

of the behaviour of the infection. This facilitates to relate the in silico to the in vivo observation. 

Chapter 5 introduces a quantitative extension to the model that was previously described in 

Chapter 4 as a qualitative model. In this chapter integration is accomplished between the qualitative 

model and a quantitative model, defined by probabilistic functions on the processes related to the 

distribution of the granulomas over the host organism.  As a result, a stochastic model is introduced 

which is able to simulate the behavior of bacterial infection in zebrafish. Data from laboratory 

experiments are used as a basis for a quantitative analysis of the model as well as simulations, 

verification and validation of the results. 

In our studies, we emphasize the importance of the identification of the characteristics of the 

biological system to be modelled. The importance of collecting and connecting data as well as how 

they influence the modeling decision is essential to create a computational model that can represent 

the biological phenomenon.  By modeling bacterial infection with a Petri net, we learned about the 

value of simplification, modularization and extension of the modeling process. It is, important to 

emphasize that the methodology introduced in this thesis can be used for the representation of other 

biological phenomena, i.e. diabetes. We hope that the techniques and methods that have been 

discussed in this thesis can then serve as a basis for future research in the modeling process of 

biological systems, using stochastic and hierarchical models implemented in Petri nets.  
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Resumo 
 

A modelagem de sistemas biológicos é uma questão importante nas pesquisas dos organismos vivos 

dentro da ciência da vida. Na área da saúde, modelos biológicos são essenciais na busca de 

tratamento e soluções para doenças infecto contagiosas. Para tanto, estudos com animais são 

utilizados onde pesquisadores utilizam de modelos animais que mais se aproximam ao modelo 

humano. Entretanto, diversos aspectos éticos, legais e financeiros influenciam nas pesquisas 

utilizando modelos animais. Dessa forma, a modelagem computacional se torna uma excelente 

alternativa, minimizando o impacto de tais aspectos e se tornando uma excelente alternativa nas 

pesquisas em doenças infecto contagiosas. 

A tuberculose é uma infecção bacteriana extremamente contagiosa e que continua a matar 

milhões de pessoas no mundo. Diversas pesquisas utilizando modelos animais tem servido como 

base na busca de soluções para conter a tuberculose, onde vários modelos animais tem sido 

empregado. As pesquisas com Mycobacterium marinum em peixe-zebra (Danio rerio) tem atraído 

pesquisadores devido à semelhança com o modelo da tuberculose em humanos e que possui baixo 

aspecto ético, legal e financeiro. Além disso, outros aspectos como praticidade na aquisição de 

dados devido à transparência do peixe-zebra, e o volume de dados gerados em pouco tempo devido 

ao  rápido ciclo de vida do animal, são atrativos extras no estudo da interação bactéria-sistema 

imunológico.  

Na infecção bacteriana, vários componentes que representam o processo biológico interagem 

entre si e com o meio através de complexas redes de interações interconectadas em camadas. Nessa 

dissertação foi apresentado os aspectos de modelagem computacional da infecção bacteriana 

(Mycobacterium marinum) e a resposta do sistema imune inato em peixe-zebra (Danio rerio). 

Foram abordados os aspectos que envolvem a escolha do formalismo a ser utilizado na modelagem, 

os aspectos qualitativos e quantitativos dos modelos apresentados, bem como simulação em 

diferentes cenários e validação dos resultados. Cada capítulo apresenta uma etapa no processo de 

modelagem, que em módulos, forma gradualmente um modelo capaz de representar as interações 

entre os principais componentes envolvidos no comportamento do fenômeno biológico. O objetivo é 

apresentar um modelo mais preciso que possa representar os estágios iniciais da infecção bacteriana.  

No Capítulo 1, é apresentado uma visão geral dos métodos de modelagem utilizados para 

modelar comportamentos biológicos. São levantados as relevâncias e características, bem como um 

aprofundamento no método Petri net, utilizado nos modelos apresentados nessa dissertação. Esse 

capítulo contextualiza os capítulos subseqüentes, onde uma série de modelos são apresentados, 

descrevendo características e cenários do processo de infecção bacteriana. 
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O Capítulo 2 retrata um modelo qualitativo que representa as etapas relacionadas à dinâmica do 

processo de infecção bacteriana e a reação do sistema imunológico inato. Em uma perspectiva 

macroscópica, é possível visualizar o processo dinâmico a partir do momento em que a bactéria é 

inoculada, detectada e ingerida pelos macrófagos, migração e proliferação da bactéria, formação de 

granulomas, bem como a disseminação da infecção para outras regiões. 

No Capítulo 3, é apresentado mais um modelo qualitativo que representa uma das etapas 

relacionadas ao processo de infecção, em uma perspectiva microscópica. O modelo deste capítulo é 

composto de vários componentes (submodelos), que representam as interações entre a bactéria e o 

macrófago, em diferentes níveis hierárquicos (intracelular, intercelular e molecular). É possível 

visualizar as vias regulatórias exploradas pela bactéria para sobreviver e proliferar dentro da célula 

imune. Além disso, é possível simular diferentes cenários onde o macrófago consegue impedir a 

proliferação através do processo de digestão da bactéria ou de apoptose. 

O Capítulo 4 apresenta um passo importante no processo de modelagem de sistemas biológicos 

que é a junção de modelos independentes porém inter-relacionados. O modelo presente neste 

capítulo combina hierarquicamente os modelos apresentados nos Capítulos 2 e 3, em uma única 

estrutura capaz de visualizar o processo de infecção à partir da dinâmica dos processos (perspectiva 

macroscópica) até as vias regulatórias (perspectiva microscópica). É possível simular o processo de 

infecção e correlacionar com o comportamento observado na natureza (in vivo). Além disso, uma 

ferramenta de visualização 3D é adicionada, de forma a proporcionar uma melhor interpretação do 

comportamento da infecção.  

No Capítulo 5 é apresentado uma extensão do modelo qualitativo, previamente descrito no 

Capítulo 4, para um modelo quantitativo. Neste capítulo é feito uma integração entre o modelo 

qualitativo e quantitativo, definindo funções probabilísticas nos processos relacionados à 

distribuição dos granulomas. Como resultado, um modelo estocástico capaz de simular o 

comportamento da infecção bacteriana em peixe-zebra é apresentado. Dados referentes a 

experimentos laboratoriais são utilizados como base para uma análise quantitativa do modelo, bem 

como simulações, verificação e validação dos resultados.   

Em nossos estudos, enfatizamos a importância de identificar as características do sistema 

biológico a ser modelado. O levantamento das informações e dados e como eles influenciam na 

decisão da modelagem são essenciais para criar um modelo computacional que possa melhor 

representar o fenômeno biológico. Aprendemos com a modelagem de infecção bacteriana usando 

Petri net, a importância da simplificação, modularização e extensão no processo de modelagem. É 

importante ressaltar a metodologia apresentada nessa dissertação, que pode ser utilizada para 

representar outros fenômenos biológicos, como por exemplo diabetes. Esperamos que as técnicas e 

métodos presentes nessa dissertação possam servir como base para futuras pesquisas em modelagem 

de processos biológicos, usando modelos estocásticos e hierárquicos implementados em Petri nets.  
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Samenvatting 
 

Het modelleren van biologische systemen is een belangrijk issue in het onderzoek van levende 

organismen in de levenswetenschappen. In biomedisch onderzoek zijn modellen essentieel voor het 

bestuderen van het vinden van oplossingen en behandelingen voor besmettelijke en infectie-ziekten.  

Daarom gebruiken onderzoekers diermodellen die nauw gerelateerd zijn aan de mens. Daarbij zijn 

ethische, juridische and financiële aspecten van invloed op het onderzoek waarbij gebruik gemaakt 

wordt van diermodellen.  Hiervoor bieden computationele modellen een alternatief teneinde de 

impact van voornoemde aspecten te minimaliseren. Bovendien kunnen computationele modellen 

helpen in het onderzoek naar infectieziekten door experimeten te doen die anders niet uitvoerbaar 

zijn in het lab. 

      Tuberculosis (Tb) is een besmettelijke infectie ziekte veroorzaakt door Mycobacterium 

tuberculosis waaraan nog steeds miljoenen mensen wereldwijd overlijden. Om de tuberculosis 

infectie te begrijpen wordt in Tb onderzoek gebruik gemaakt van infectie studies met 

Mycobacterium marinum (Mtb) in de zebravis. Eén van de redenen hiervoor is de gelijkenis van het 

infectiegedrag  van  Mtb met  Tb in de mens. Daarbij heeft het gebruik van zebravis een geringe 

ethische, juridische en financiële impact.  Een andere reden voor het gebruik van zebravis in de 

studie van microbiële infectie processen is de eenvoud in het verkrijgen van data mede vanwege de 

doorzichtigheid van de zebravis in de embryonale en larvale stadia, waardoor een aanzienlijk 

datavolume kan worden gegenereerd in een korte tijd. 

     Verschillende componenten die een biologisch systeem representeren interacteren met elkaar en 

de omgeving in complexe netwerken die ook nog eens onderling verbonden zijn on een gelaagde 

manier. Dit proefschrift behandelt de modelleeraspecten van biologische systemen en in het 

bijzonder het process van bacteriële infectie door Mycobacterium marinum en de respons van het 

aangeboren immuunsysteem  in de zebravis (Danio rerio). 

In dit proefschrift, worden zowel kwalitatieve als kwantitatieve aspecten van de modellen 

besproken, dit tezamen met simulaties gebruikmakend van verschillende scenarios alsmede validatie 

van de resultaten. 

Elk hoofdstuk vertegenwoordigt een deel van het modelleerprocess, waarmee langs een 

modulaire wijze, geleidelijk een model ontstaat waarmee het mogelijk is interacties te representeren 

tussen de belangrijkste componenten betrokken in het gedrag van het biologische fenomeen dat 

wordt bestudeerd. 

Het doel van het onderzoek dat in dit proefschrift wordt beschreven is om een exacter model te 

introduceren waarmee de initiële stadia van mycobacterium infectie kunnen worden 

gerepresenteerd.  
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In Hoofdstuk 1 wordt een algemene inleiding gegeven over methoden die worden gebruikt om 

biologisch gedrag te modelleren. Belangrijke zaken en kenmerken met betrekking tot het 

modelleren worden besproken en daarbij wordt bijzondere en uitgebreide aandacht gegeven aan de 

methode van het Petri Net. Deze laatste methode wordt gebruikt voor de modellen die in dit 

proefschrift worden beschreven. 

Hoofdstuk 2 beschrijft een kwalitatief model hetgeen de stadia gerelateerd aan de dynamiek van 

het bacteriële infectieproces weergeeft alsmede de reaktie van het aangeboren immuunssysteem.  

Van  een macroscopisch perspectief  bezien is het mogelijk deze dynamiek te visualiseren van het 

moment van inoculatie van de bacteriën, detectie van en integratie in de macrofagen, migratie en 

bacteriële proliferatie, granuloma formatie tot disseminatie van de infectie is andere delen van het 

gastheerorganisme. 

In Hoofdstuk 3 wordt een nieuw model geïntroduceerd, dit model vertegenwoordigt stadia 

specifiek gerelateerd aan infectie vanuit een moleculair perspectief. Het model dat in dit hoofdstuk 

wordt beschreven bestaat uit een reeks van componenten, die we kunnen beschouwen als kleine 

sub-modelletjes, die samen de interacties vertegenwoordigen tussen de bacteria en de immuuncel. 

Dit alles is georganiseerd in hierarchische niveaus; i.e. het intracellulaire niveau en het moleculaire 

niveau.  Daardoor wordt het mogelijk de regulatoire netwerken te visualiseren die door de bacteriën 

worden gebruikt om te overleven en zich te vermenigvuldigen in de immuuncel. Daarnaast wordt 

beschreven hoe het mogelijk is om hiermee simulaties uit te voeren met verschillende scenarios 

waarmee de immuuncel in staat is deze proliferatie te verhinderen door het proces van fagocytose of 

door apoptose. 

In Hoofdstuk 4 wordt een belangrijke stap in het modelleren van biologische processen 

geïntroduceerd; het betreft het samenvoegen van onafhankelijke modellen die desalniettemin wel 

met elkaar verbonden zijn. Het model dat wordt beschreven in dit hoofdstuk combineert, op een 

hierarchische wijze, de modellen die eerder in de hoofdstukken 2 en 3 zijn beschreven in een unique 

struktuur. Hiermee wordt het mogelijk het infectie process te visualiseren vanaf de process 

dynamiek, i.e. het macroscopische perspectief, tot de regulatoire netwerken, i.e. het moluculaire 

perspectief. Het is bovendien mogelijk het infectieproces te simuleren en te correleren aan het 

gedrag dat wordt waargenomen in de natuur; dat wil zeggen in in vivo experimenten. Daarnaast is er 

een 3D visualisatie methode toegevoegd zodat er een betere interpretatie van het gedrag van de 

infectie kan worden gegeven. Hiermee kan de het in silico resultaat makkelijker worden gerelateerd 

aan de in vivo waarneming. 

Hoofdstuk 5 introduceert een kwantitatieve uitbreiding op het model dat eerder als een 

kwalitatief model is beschreven in Hoofdstuk 4. In dit Hoofdstuk wordt een integratie 

bewerkstelligd tussen  het kwalitatieve en het kwantitatieve model, gedefinieerd door 

probabilistische funkties over de processen die zijn gerelateerd aan de distributie van granulomas 
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over het gastheer organisme. Hiermee wordt een stochastisch model geïntroduceerd waarmee het 

mogelijk wordt het gedrag van de bacteriële infectie in zebravis de simuleren. Gegevens uit 

laboratorium experimenten zijn gebruikt als basis voor de kwantitatieve analyse van het model,  

simulaties, verificatie en validatie van de resultaten. 

In onze studies benadrukken we het belang van het goed vaststellen van de kenmerken van het 

biologische systeem dat wordt gemodelleerd. Het inbrengen van informatie en nummerieke 

gegevens en de invloed hiervan op de modelleer beslissingen is essentieel voor het bouwen van een 

computationeel model dat een biologisch fenomeen goed kan representeren. Door het modelleren 

van de bacteriële infectie met een Petri net, hebben we inzicht gekregen in het belang van 

versimpeling, modularisatie en geleidelijke uitbreiding van het modelleerprocess. Het is daarom 

belangrijk om te benadrukken dat de methodologie die in dit proefschrift is beschreven kan worden 

gebruikt om andere biologische fenomenen te representeren, zoals, bijvoorbeeld diabetes. We hopen 

dat de technieken en methoden die besproken zijn in dit proefschrift daarom als een basis kunnen 

dienen voor toekomstig onderzoek in het modelleren van biologische processen, gebruik makend 

van stochastische en hierarchische modellen die in Petri nets geïmplementeerd zijn. 
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