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INTRODUCTION

Heart failure (HF) remains one of the major public health problems in developed
countries. In United States, nearly 6 million patients have HF symptoms and 500,000
new patients are diagnosed yearly.' Recently, important advances in HF therapy, such
as cardiac resynchronization therapy (CRT), have improved the outcome of these
patients.? However, the prognosis remains poor with a 5-year mortality of 42.3% after
hospitalization for HF.!

Selection of HF patients who are candidates for device therapies (such as CRT)
is crucial to optimize the therapy results while minimizing the risk of potential
complications (including lack of response to the device therapy). Advanced imag-
ing techniques have helped to better understand the pathologic substrate of heart
failure patients and have provided novel insight into the determinants of response
to therapy.

The study of cardiac mechanics and in particular, left ventricular (LV) strain and
twist are important aspects of cardiac mechanics.>4 LV strain refers to the deforma-
tion of the LV, which occurs in the longitudinal, circumferential and radial directions.
Furthermore, the spiral architecture of LV myofibers lead to a characteristic motion
of rotation of the LV apex and base in opposite directions, counterclockwise and
clockwise as viewed from the LV apex, respectively. The opposite rotation of LV apex
and base leads to a LV systolic wringing motion during systole referred to as twist or
torsion. In particular, LV twist is the net difference at isochronal time points between
apex and base in the rotation angle along LV longitudinal axis, whereas LV torsion
is LV twist indexed to the distance between LV apex and LV base.’ This characteristic
motion of the LV contributes significantly to LV systolic and diastolic function. In
the last decade, assessment of myocardial strain and twist has emerged as novel LV
functional parameters for risk stratification of patients with structural heart disease.

Nowadays, echocardiography and magnetic resonance imaging allow the study
of LV mechanics. However, echocardiography remains as the imaging technique of
first choice due to its wide availability and less time-consuming analysis compared
with magnetic resonance imaging. Two-dimensional (2D) speckle tracking, tissue
Doppler imaging and, less frequently, calibrated integrated backscatter imaging, are
the echocardiographic techniques to assess several aspects of LV mechanics. From
2D speckle tracking echocardiography, the assessment of active myocardial defor-
mation in multiple directions (radial, circumferential and longitudinal) and LV twist
can be obtained. From tissue Doppler imaging, velocities and indirect information
on deformation may be derived. Integrated backscatter, finally, through the analysis
of assessment of myocardial ultrasound reflectivity, may quantify the percentage of
myocardial fibrosis.
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Based on 2D gray scale echocardiographic images, the myocardium exhibit natural
acoustic markers or speckles that can be tracked frame-to-frame using speckle track-
ing software. Speckles are randomly distributed within the myocardium and the spe-
cific distribution of the speckles provides a distinguished pattern to each myocardial
region, such as a fingerprint. The movement of the speckles along the cardiac cycle
is tracked frame-to-frame independently from the ultrasound beam insonation angle
permitting the evaluation of myocardial contraction/relaxation along the circumferen-
tial, longitudinal and radial direction.®7 The LV contraction in these 3 directions leads
to rotation movement of the left ventricle. The speckle tracking software calculates LV
rotation from the apical and basal short-axis images as the average angular displace-
ment of the 6 standard segments referring to the ventricular centroid, frame by frame.
Counterclockwise rotation is marked as positive value and clockwise rotation as nega-
tive value when viewed from the LV apex. LV twist is defined as the net difference (in
degrees) of apical and basal rotation at isochronal time points.®

(L —
Time 119 msly;

oo

Figure 1. Examples of left ventricular (LV) twist in normal control (panel A) and in heart failure patient (panel

B). In both panels, the upper parts represent apical and basal rotations and the lower parts represent LV twist
calculation after exporting the data to a spreadsheet program (Excel 2003; Microsoft Corporation, Redmond,

Washington). AVC: aortic valve closure. AVO: aortic valve opening.
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Tissue Doppler imaging

Tissue Doppler imaging (TDI) permits the assessment of low velocities of the myo-
cardium along the cardiac cycle. TDI can be applied with pulsed-wave Doppler or
with color-coded TDI. While pulsed-wave TDI permits assessment of one myocardial
region on-line, color-coded TDI permits assessment of several regions simultane-
ously off-line. In contrast to 2D speckle tracking echocardiography, the measurement
of myocardial velocities with TDI is insonation angle dependent and therefore, the
analysis is frequently limited to the basal and midventricular regions. From spatial
derivation of myocardial velocities, regional strain rate can be obtained and from
further temporal integration of strain rate, myocardial strain can be obtained.

The assessment of myocardial velocities and the time elapsed between electrical
and mechanical (velocities) phenomena provide an estimate of the electromechani-
cal delay within the myocardium. It has been hypothesized that the time delay be-
tween the P-wave on the surface ECG and the A’ wave on TDI (total atrial conduction
time) may reflect the amount of myocardial fibrosis. Total atrial conduction time may
be estimated with color-coded tissue Doppler images by first placing the sample

counterclockwise

clockwise
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Figure 2. The time-interval from the beginning of the electrocardiogram P wave and the peak of A wave

LATERAL
(PA-TDI duration) was obtained with tissue Doppler images by placing the sample size on the LA lateral wall

just above the mitral annulus; next the PA-TDI duration was measured.
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size on the LA lateral wall just above the mitral annulus. Next, the time-interval from
the onset of the P-wave on lead Il of the electrocardiogram (on echocardiographic

images) to the peak of A’ wave (PA-TDI duration) is measured and an estima-

LATERAL

~<—— Peak QRS

IBS values(dB) 176 -21.4

Figure 3: Example of assessment of LV fibrosis in the antero-septal and posterior walls with calibrated IB.
A fixed gxg-pixel region of interest was positioned in the mid-myocardium of the antero-septal (ASW) and
posterior wall (PW) and a fixed 2x3-pixel region of interest was positioned in the pericardium. Calibrated
IB for the ASW is calculated by subtracting the pericardial IB intensity from the ASW IB intensity, and the
calibrated B for the PW is calculated by subtracting the pericardial IB intensity from the PW IB intensity.
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tion of atrial conduction time is obtained.® In HF patients, this TA-TDI duration has
been associated with increased risk of atrial fibrillation at follow-up.™®

Integrated backscatter

Calibrated integrated backscatter (IB) is a parameter based on gray-scale 2D images
which evaluates myocardial ultrasound reflectivity. In the heart, the pericardium is the
anatomic structure with the highest content of fibrosis and with the highest ultrasound
reflectivity; whereas blood pool has the lowest ultrasound reflectivity since no fibrous
tissue exists. The myocardium shows an intermediate ultrasound reflectivity and this
reflectivity may increase together with the amount of fibrosis.™ 2 Gray-scale 2D images
may be obtained at parasternal long-axis view, with frame rates between 8o and 120
frames/s. A fixed region of interest is then positioned in the mid-myocardium of the
antero-septal and posterior walls of the LV and a fixed region of interest is positioned
in the pericardium. A measure of myocardial ultrasound reflectivity or tissue density
is obtained with calibrated IB by subtracting pericardial IB intensity from myocardial
IB intensity of the LV antero-septal and LV posterior walls.

Objectives and Outline of the Thesis

The objectives of this thesis were to investigate the role of LV mechanics in the assess-
ment of HF patients who are candidates to CRT and to evaluate the prognostic value
of parameters derived from the several imaging techniques to assess LV mechanics.

In Part I, the study of cardiac mechanics is applied to HF patients in order to: 1.
distinguish LV mechanics between the different aetiologies of HF (Chapter 3); 2.
to investigate the beneficial effects of CRT on long-term outcome of HF patients
(Chapters 4-6); 3. how to optimize the response to CRT (Chapter 7).

Finally, Part Il provides an overview of the several parameters, clinical and echo-
cardiographic, that influence the outcome of HF patients. Specifically, Chapter 8
demonstrates that echocardiographic response to CRT is an independent predictor
of long-term outcome over other well-established prognostic indices of HF. Chapter
9 focuses on the assessment of risk of ventricular tachyarrhythmias in HF patients
based on LV cardiac mechanics. Chapter 10 shows that LV global longitudinal strain
is strong prognostic determinant of patients with ischemic HF. Finally, Chapter 1
underscores the relevance of electromechanical delay within the atrial myocardium
as a risk factor for atrial fibrillation in HF patients with an implantable cardioverter-
defibrillator.
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ABSTRACT

Technologic innovations in cardiac imaging have provided
new tools and algorithms for accurate assessment of left ven-
tricular (LV) twist mechanics. This review provides a focused
update on the incremental value of assessing LV twist mechan-
ics in patients with heart failure (HF) and its potential role in
characterizing response to cardiac resynchronization therapy
(CRT). First, the findings are summarized from recent experi-
mental and clinical studies that have specifically characterized
the patterns of abnormal LV twist mechanics in HF. Next, the
evolving application of LV twist is discussed in understand-
ing response to CRT, elucidating the independent relationship
between LV twist mechanics and reversal of LV remodeling at
6 months follow-up. Finally, the studies are addressed that un-
derscore a critical relationship between LV lead position and
changes in LV twist after CRT. These data suggests that the
reversal of LV remodeling seen in HF patients following CRT
primarily results from restoration of the global sequence of LV

twist mechanics.
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INTRODUCTION

Heart failure (HF) remains one of the major public health problems in developed
countries. In United States, nearly 6 million patients have HF symptoms and 500,000
new patients are diagnosed yearly ('). Recently, important advances in HF therapy,

such as cardiac resynchronization therapy (CRT), have improved the outcome of
these patients (%). However, the prognosis still remains poor with a 5-year mortality of
42.3% after hospitalization for HF (').

LV rotation, twist and torsion are important aspects of the cardiac mechanics. The
term rotation is referred to the rotation of LV short-axis sections. Due to the spiral
architecture of LV myofibers, the rotation of LV apex and base are counterclockwise
and clockwise, respectively, as viewed from the LV apex. The opposite rotation of LV
apex and base leads to a LV systolic wringing motion during systole referred to as
twist or torsion. In particular, LV twist is the net difference at isochronal time points
between apex and base in the rotation angle along LV longitudinal axis, whereas LV
torsion is LV twist indexed to the distance between LV apex and LV base (3). This
peculiar characteristic of the LV contributes significantly to LV systolic function, in
addition to myocardial shortening and thickening.

Following a brief overview of physiology of LV rotational mechanics, an in-depth
discussion is provided on different LV twist patterns in systolic HF and the evolving
role of LV twist as a marker of LV-dyssynchrony for understanding response to CRT.

NORMAL LV TWIST MECHANICS

In the normal heart, the myofiber geometry of the LV changes gradually from a right-
handed helix in the subendocardium to a left handed helix in the subepicardium. Taber
et al. (4) explored the impact of this changing transmural myofiber orientation on LV
rotational mechanics in a one-layer cylindrical model that consisted of obliquely aligned
muscle fibers embedded in an isotropic matrix. The contraction of the epicardial fibers
rotated the apical end of the model in the counterclockwise direction and the base in
the clockwise direction. Conversely, shortening of the subendocardial fibers rotated
the apex and base in clockwise and counterclockwise directions respectively. When
both layers are coupled to contract simultaneously, a larger radius of rotation for the
outer epicardial layer resulted in the epicardial fibers having a mechanical advantage
in dominating the overall direction of rotation. The endocardial layer does provide
some opposition to epicardial motion. This opposing action ensures that epicardial
and endocardial sarcomere shortening in all directions are equilibrated during ejec-
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tion, resulting in an optimal distribution of LV stress and strain (}). Elimination of
twist decreases epicardial shortening at the expense of an increase in endocardial
shortening. This in turn increases endocardial stress and strain, which increases oxy-
gen demand and reduces the efficiency of LV systolic performance.

Taber's model also provides explanation for the temporal changes in the sequence
of LV twist during a cardiac cycle. The initial shortening of subendocardium causes
a brief clockwise rotation of LV apex during the isovolumic contraction (>°). Subse-
quent transmural spread of electrical activation, results in simultaneous shortening
of subendocardial and subepicardial fibers. Due to the subepicardial fibers having a
larger moment arm, the direction of rotation is shifted towards a counterclockwise
rotation for the LV apex and a clockwise rotation for the LV base (Figure 1).

In the subepicardium, this twist supports contraction in the principal fiber direc-
tion. In the midwall, the twist enhances shortening in the circumferential direction.

Twist deformation of the LV wall causes fiber rearrangement that maximizes the
LV wall thickening. In particular, twisting and shearing of the subendocardial fibers
also deforms the matrix and results in storage of potential energy by compression
of cardiac proteins such as titin (°). The potential energy stored in the titin is subse-
quently unleashed during diastole, aiding myocardial relaxation and diastolic filling.

A B C

(/

4

Ejection

Figure 1. Mechanism of left ventricular twist

Left ventricular (LV) fiber orientation changes from a right handed helix in the subendocardium to a left
handed helix in the subepicardium (A). During isovolumic contraction (IVC), circumferential components

of force (arrows) are generated by endocardial fiber shortening, which rotates the LV about the long axis
clockwise as viewed from the apex (B). During ejection, shortening of subepicardial fibers wrapped in an
opposite, left-handed helix, rotates the LV counterclockwise (C). Twisting force by epicardial shortening
overcomes the forces of subendocardial shortening because the torque of the epicardial force is larger due to
a greater radius of the epicardial fibers from the central LV long axis.
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Factors Affecting LV Twist

Alterations in preload, afterload and contractility have been shown to alter cardiac
rotation (°). Loading mechanics influences twist through changes in LV end-diastolic
and end-systolic volumes. The directly proportional relationship between torsion and

LV end-diastolic volume and the inversely proportional relationship between torsion
and end-systolic volume illustrate the volume dependency of LV torsion. Like changes
in loading conditions, increasing contractility increases LV twist; for example, posi-
tive inotropic interventions such as dobutamine infusion and paired pacing, greatly
increase LV twist, whereas negative inotropic interventions markedly reduce twist (°).

Moreover, the LV twist increases gradually from infancy to adulthood. Notomi et
al. (?) assessed LV torsion and twisting velocities in individuals from 9 months to
49 years and found that with advancing age there was an increase in LV torsion and
untwisting velocity. Several other investigations examining older individuals have
shown LV torsion to be maintained or increased compared with younger adults.
It has been proposed that endocardial function is more likely to reduce with age
due to the subendocardium’s greater susceptibility to fibrosis and/or subclinical
reductions in perfusion. As per Taber’s model, the reduced endocardial function
would result in less opposition to the dominant epicardial action causing increase
in rotation. The finding of reduced subendocardial function and increased torsion in
older individuals results in preservation of global LVEF, suggesting a compensatory
mechanism that helps to preserve global LVEF despite the presence of subendocar-
dial dysfunction.

LV TWIST IN THE DYSSYNCHRONOUS, FAILING VENTRICLE

LV twist is emerging as an important parameter of LV systolic function. Several
authors previously reported a significant correlation between LV twist and LVEF, the
most commonly used index of LV systolic function in clinical practice (¥). However,
there is increasing evidence that LV twist is superior to LVEF in characterizing he-
modynamic aberrations in patients with HF. For example, Kim et al. (%), in a recent
experimental study, reported a strong correlation between dP/dt _ (an invasive,
relatively load-independent, measure of LV contractility) and LV twist (R* = 0.747, p
<0.001); however, the correlation between dP/dt__ and LVEF, despite significant, was
weaker (R? = 0.408, p <0.001). This observation is related to specific differences in LV
twist and LVEF: LV twist is an index of systolic myocardial deformation, while LVEF
simply reflects LV volume reduction during systole.
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In particular, the LV torsional deformation, related to the spiral architecture of LV
myofibers, permits the generation of LVEF 260% from myofibers that can shorten
by only 15%,; otherwise, simple longitudinal or circumferential shortening would not
allow LVEF higher than 30% ("> "). Besides being a sensitive indicator of myocardial
performance, the LV rotational mechanics appear strongly related to the sequence
of LV depolarization as well; the propagation of the electrical cardiac activity is in-
deed significantly related to the spiral architecture and the anisotropic properties of
cardiac myofibers ('2). The assessment of LV twist, therefore, may provide more in-
depth understanding of the pathophysiology of HF, as compared to the traditional
parameters of LV systolic function.

Significant alterations of LV rotational mechanics have been observed in patients with
previous myocardial infarction (MI) and chronic ischemic and non-ischemic HF.

Myocardial infarction. Several studies showed an impairment of LV twist after Ml
(*%). The observed reduction of LV twist correlates with the reduction of LVEF (being
more pronounced when LVEF is <45%) and the number of dysfunctional myocardial
segments. In addition, Gjesdal et al. (%) recently observed a significant correlation
between LV twist and the infarct mass (r =-0.59, p <0.001). The injury caused by the
infarction to the LV myofiber architecture, may explain these findings. Indeed, Wu et
al. ('), using diffusion tensor magnetic resonance imaging, observed an increase of
left-handed myofibers and a decrease of right-handed myofibers in the infarct area;
the extent of these changes was associated to the infarct size. Interestingly, opposite
changes were observed in the remote zone, likely representing an adaptive response
to increased wall stress.

Ischemic versus non-ischemic HF. As compared to MI patients, HF patients pres-
ent an even more pronounced impairment of LV rotational mechanics, irrespective
of HF etiology as result of reduction of both LV basal and apical rotation (Figure
2) (3757). In particular, the typical counterclockwise rotation of the LV apex may
be completely abolished, or even reversed in a clockwise rotation. Recently, in a
population of advanced HF patients with prolonged QRS duration, Bertini et al.(*®)
showed a modest but significant correlation between LV twist and LVEF (r = 0.53, p
<0.001). This finding supports the hypothesis that LVEF and LV twist are not identi-
cal parameters, and LV twist may provide incremental information on LV systolic
performance.

According to previous experimental studies, several mechanisms may explain the
impairment of LV twist in HF patients. First, as demonstrated by Taber et al. (4), LV
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Figure 2. Left ventricular twist in acute myocardial infarction and ischemic versus non-ischemic heart
failure.

Examples of left ventricular (LV) twist assessed with speckle tracking echocardiography in acute myocardial
infarction (MI), and chronic ischemic versus non ischemic heart failure (HF). Of note, LV twist is markedly
reduced in HF patients as compared to acute M| patient.

dilatation and thinning, present in dilated cardiomyopathy, equalize the radii of the
subepicardial and subendocardial layers; as a result, the mechanical advantage of
the subepicardial myofibers (the major determinants of LV twist under physiologic
conditions) is reduced. Consequently, LV twist decreases with increasing cavity
volume. Second, the long lasting processes determining dilated cardiomyopathy
and eccentric hypertrophy, cause myofibers disarray and alterations in myofibers
angle (*°). These phenomena eventually lead to the loss of the physiological spiral
architecture of the LV and to the impairment of LV twist (*9). Last but not least,
slowed transmural fiber activation, related to fibrosis and remodeling of gap junc-
tions, may delay the activation of the epicardial myofibers, determining an initial
clockwise twist (because of the unopposed rotation of the endocardial myofibers)
and finally an impaired peak LV twist (>>27).

According to these observations, it has been postulated that surgical techniques
able to restore a more physiological shape of the LV would improve the LV torsional
deformation (7). Indeed, in a preliminary study of 26 patients with ischemic dilated
cardiomyopathy, LV reconstruction surgery improved LV twist in the patients with
more severely impaired LV twist at baseline (7); these patients showed also signifi-
cantly greater improvement of LVEF after surgery as compared to the patients with
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relatively more preserved LV twist at baseline (ALVEF 15 £ 8% vs. 6 + 8%, p = 0.005)

()-

An effective LV pumping function requires the combination of preserved LV archi-
tecture and a preserved electrical conduction system. The presence of an abnormal
activation sequence of the ventricles (e.g. right ventricular apical pacing, right or left
bundle branch block) results in a slower spread of the electrical breakthrough across
the myocardium and in a dyssynchronous mechanical activation of the ventricles (*2).
In addition, the anisotropy of the LV myocardium determines the propagation of the
electrical wavefront. As previously described, ('* %) activation of the LV includes the
development of a potential over the lateral-apical region which reflects endocardial-to-
epicardial propagation of the LV free-wall activation front. Subsequently this epicardial
potential is seen to migrate from the lateral LV apex toward the posterolateral base. The
propagation is faster in the longitudinal direction of the myofibers rather than across
in the circumferential cross-fiber direction due to the higher density of gap junctions
concentrated in the intercalated disks along the longitudinal axis, as compared to
the cross-fiber densities (2). In the remodeled, failing LV this particular architectural
pattern may be distorted, with loss of anisotropy and gap junctions, resulting in a
slower conduction of the electrical excitation.

Several experimental studies have demonstrated the deleterious effects of asyn-
chronous ventricular activation on LV performance and the relation between the LV
activation pattern and LV twist (*#?%). Prinzen et al. (**) showed that ectopic activa-
tion induced asynchronous electrical activation and, subsequently, asynchronous
cardiac motion (mechanical asynchrony). Interestingly, mechanical asynchrony was
larger than electrical asynchrony because the time interval between the electrical
activation and the onset of fiber shortening was more prolonged at the most delayed
mechanical activated segments. Afterwards, changes in myofibers work within the
LV wall were evaluated during right ventricular and LV pacing in normal hearts of
dogs. Thus, both pacing modes determined a pronounced redistribution of midwall
fiber shortening and work, with 50% decrease in myofiber work at the paced regions
(hypofunctioning regions) and 150% increase at the remote areas (hyperfunctioning
regions). These regional changes resulted in significant reductions in LV pump func-
tion, particularly when pacing from the right ventricle (¥’). Recently, Delgado et al.
(*9) compared the effects of right ventricular apical pacing on LV twist in 25 patients
without structural heart disease. With the use of 2-dimensional speckle tracking
imaging, the authors demonstrated that right ventricular apical pacing induced a
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Figure 3. Left ventricular twist during right ventricular pacing.

Example of left ventricular (LV) twist during sinus rhythm (baseline) and during right ventricular (RV) pacing
in a patient without structural heart disease.

A standard diagnostic catheter was positioned in the RV apex as illustrated in the postero-anterior (PA) view
at fluoroscopy (upper left panel) and the 4-chamber apical view at standard 2-dimensional echocardiography
(upper right panel).

The curves of LV rotational parameters at baseline (lower left panel) and during RV pacing (lower right
panel). RV pacing induced a severe impairment in LV twist by decreasing both LV apical and basal rotation.

dyssynchronous mechanical activation of the LV, as measured by radial strain (from
21 to 91 ms, p<0.001) and a subsequent significant decrease in LV global longitudi-
nal shortening (from -18.3 + 3.5% to -11.8 + 3.6%, p<0.001) and LV twist (from 12.4
+3.7°to 9.7 + 2.6°, p=0.001; Figure 3).

Finally, two recent studies pointed out the relationship between LV-dyssynchrony
and LV twist in advanced HF patients with prolonged QRS duration (*®3°). A first
study showed that the extent of LV-dyssynchrony was inversely related to LV twist
(®°). Subsequently, these results were extended in another study demonstrating that
LVEF and LV-dyssynchrony were both independently correlated to LV twist (*¥). This
observation further underscores that LV twist is not only a parameter of LV function,
but also reflects the extent of LV (dys)synchrony.
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As previously indicated, LV mechanics and particularly LV twist are strictly dependent
on electro-mechanical activation and are influenced by different pacing modalities
(+253"). However, thus far, data on the effects of CRT on LV twist are limited ("%3%3).

Particularly, abnormal rotational mechanics in advanced HF patients with pro-
longed QRS duration may result from 2 different conditions that can also co-exist:
1) absolute reduction of LV apical and basal rotation (and consequently of LV
twist), due to an impaired myocardial contractility; 2) dyssynchronous contraction
of LV apical and basal regions, due to an altered pattern of LV electro-mechanical

A B

|Synchronous LV |Dyssynchronous LV

() (°)
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Peak LV twist 7.1° !
. | Peak LV twist 2.6°
Y sl /’T“"\\
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- - Apical rotation

— - Apical rotation

....... Basal rotation «...... Basal rotation
Figure 4. Left ventricular twist in the synchronous and dyssynchronous failing left ventricle.
Example of left ventricular (LV) twist in two patients with dilated cardiomyopathy and severe LV dysfunction
(LV ejection fraction <30%).
Example of patients with synchronous (Panel A) and with dyssynchronous LV contraction LV (Panel B).
In both the synchronous (Panel A) and the dyssynchronous LV (Panel B), the curves of the LV rotational
parameters reveal reduced LV twist. Of note, the peaks of apical and basal rotation occur almost at the
same time interval in the synchronous LV (Panel A), whereas they occur at different time intervals in the
dyssynchronous LV (Panel B). In particular, in the dyssynchronous LV (panel B) apical rotation is markedly
earlier as compared to the basal rotation, which may result in further worsening of LV twist.
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activation (Figure 4). Consequently, CRT, leading to a more physiologic electrical
depolarization and mechanical contraction of the myofibers, has the potential to
improve rotational mechanics in these patients.

Global Changes in LV twist after CRT

All the available studies are based on 2-dimensional speckle tracking echocardiogra-
phy that, unlike tagged magnetic resonance imaging, allows the analysis of rotational
parameters also after device implantation.

Recently, Zhang et al. (**) studied 39 patients scheduled for CRT, measuring LV
twist at baseline and 3 months after implantation. At baseline, peak LV twist was
significantly reduced in the HF patients as compared to normal controls (6.8 *
4.2° vs.16.2 * 5.5°, p <0.001). The authors also noted that in some patients, the
presence of apical and/or basal segments showed a paradoxical rotation (clockwise
for the apex and counterclockwise for the base), indicating a more compromised
rotational mechanics. However, at short-term follow-up the authors could not detect
any improvement of LV twist after CRT, although a significant increase of LVEF was
observed (from 28.1 £ 6.7% t0 35.0 = 9.4%, p <0.001).

Different findings were reported by Sade et al. (3°) that studied the acute effect of
CRT on 33 patients. At baseline, LV twist was significantly reduced as compared to
normal controls either for ischemic and non-ischemic HF patients and correlated
well with LVEF and radial dyssynchrony. A significant improvement of LV rotational

Peak LV twist (°)

15+
ANOVA p = 0.006

10+

Baseline Immediately 6 months
after CRT follow-up

Figure 5. Progressive improvement of LV twist induced by CRT.
A significant and progressive improvement of LV twist was observed immediately after CRT and at 6 months
follow-up.
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mechanics was observed immediately after CRT. These controversial results may be
related to the potential role of the LV lead position in determining LV twist pattern.
However, no data about LV lead position were reported in these studies.

A more recent study (*®) reported the acute and long-term effects of CRT on LV
twist exploring also the influence of LV lead position. Specifically, in a group of 8o HF
patients candidates to CRT a significant and progressive improvement of LV twist
was observed immediately after implantation and at 6 months follow-up (Figure 5).

The effect of CRT on rotational mechanics is more evident if the evaluation is per-
formed according to the presence of LV reverse remodeling. Sade et al.(*°) evaluated
the changes in LV twist in 33 HF patients treated with CRT. Responder patients (with
a reduction in LV end-systolic volume >10%) had an improved LV twist (from 1.5 +
2.8° 10 6.3 % 3.6°, p<0.0001). Conversely, in non-responders LV twist did not change
or tended to worsen (from 5.3 + 3.1° to 2.0 % 3.4°). Similarly in a more recent study
("®), a significant improvement in LV rotational mechanics was noted only in patients
who showed LV reverse remodeling (responders), both at the acute and long-term
follow-up. In particular, peak LV twist progressively improved in responders during
follow-up, whereas in non-responders a gradual deterioration of peak LV twist was
observed (Figure 6). Furthermore, at the multivariable logistic regression analysis, in
which LV-dyssynchrony and function parameters were included, absolute difference in
LV twist immediately after CRT was the strongest predictor of response to CRT at 6
months follow-up (OR =1.837, 95%Cl = 1.378-2.449, p <0.001).

These findings suggest that CRT may (partially) restore LV twist, possibly by
providing a more physiologic electrical depolarization and mechanical contraction
of the myofibers.

LV lead position is considered a potential tool to increase CRT response rate. In
clinical scenarios, the optimal site for LV pacing in patients receiving CRT remains
controversial. Previous studies indicated that patients with a (postero-)lateral LV
lead position and patients with a LV lead located close to the region with the latest
mechanical activation do not only derive more benefit in restoring systolic LV function,
but also tend to have superior long-term survival after CRT (3°). The different pat-
terns of LV depolarization induced by different LV lead positions may markedly change



Role of left ventricular twist mechanics in the assessment of cardiac dyssynchrony in heart failure

A | Immediately after CRT| |6-month foIIow-up|
)
1 Peak LV twist 12.0°
104 Peak LV twist 7.7° Peak LV twist 8.5
5
0 = 2 \"\\\\
{4\ DU N I e
-10 LV twist
LVEF (%) — — Apical rotation LVESV (ml)
....... Basal rotation 200
40
“ o g7

30
25
2 100
15:
10 50
5
o o

Baseline 6-month Baseline 6-month
follow-up follow-up
B Baseline | Immediately after CRT| |6-month foIIow-up|
(°)
Peak LV twist 6.8°
/\/\/\ Peak LV twist 4.7° Peak LV twist 3.6°
2 r g — e e
5 ‘.‘“'."x_-" i \\ ~~~~~ ",-" -------- =
-10-
LV twist

- — Apical rotation

LVEF (%) i LVESV (ml)
....... Basal rotation
30
25
20
15
10.
5
o
Baseline 6-month Baseline 6-month
follow-up follow-up

Figure 6. Left ventricular twist changing in CRT responders and non-responders .

Panel A: Example of responder to cardiac resynchronization therapy (CRT). Peak left ventricular (LV) twist
increases progressively from baseline to 6-month follow-up. In this example, the improvement of LV twist

is mainly due to the improvement of LV apical rotation over time. Immediately after CRT, LV twist increases
secondary to an improved electro-mechanical activation of the LV. Further improvement is observed at
6-month follow-up when LV reverse remodeling has also occurred. The lower panel shows the improvement
in left ventricular ejection fraction (LVEF) and reduction in left ventricular end-systolic volume (LVESV) after
6-month follow-up.

Panel B. Example of non-responder to CRT. Peak LV twist declines progressively from baseline to 6 months
follow-up. In this example, the main determinant of the reduction in LV twist is the deterioration of LV apical
rotation. Indeed, the direction of LV apical rotation is reversed (negative red dashed curve) immediately after
CRT and at 6 months follow-up. Here, the apical and basal levels have the same direction of rotation which
results in a worsening of LV twist. At 6 months follow-up a reduction in LV basal rotation is also observed,
which contributes to a further deterioration of LV twist. The lower panel shows the parallel worsening in LVEF
and LVESV after 6 months follow-up.
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the cardiac mechanics (). Thus, in CRT patients, the magnitude of LV twist may be
related to the LV pacing site. However, there is currently minimal data addressing
this issue. Firstly, experimental studies showed that LV twist was influenced by the
pacing mode (atrial, right and biventricular pacing) (>4 3'). For example, Sorger et
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Figure 7. Left ventricular twist versus left ventricular lead position.

Panel A. Example of responder to cardiac resynchronization therapy (CRT) with the left ventricular (LV)

lead placed in a (postero-)lateral vein with an apical position. Biplane fluoroscopy (left) displays the LV lead
position. Particularly, the left anterior oblique (LAO) view shows the LV lead in the (postero-)lateral vein
whereas the postero-anterior (PA) view shows the LV lead in an apical position. Peak LV twist increased from
3.8 at baseline to 10.6° at 6-month follow-up. LV ejection fraction (LVEF) improved from 24% at baseline

to 38% at 6-month follow-up. In this patient, pacing close to the LV apical region may produce a more
physiological pattern of electro-mechanical activation, resulting in a significant improvement in LV twist.
Panel B. Example of non-responder with the LV lead placed in a lateral vein (LAO view) with a basal position
(PA view). Peak LV twist decreased from 9.4° at baseline to 4.7° at 6-month follow-up. LVEF decreased from
30% at baseline to 26% at 6-month follow-up. In this patient, pacing close to the LV basal region may induce
a further worsening of the electro-mechanical activation with a significant worsening of LV twist.
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al.(®) evaluated the changes in LV twist during pacing from three different locations:
right atrium, right ventricular apex and base of the LV free wall. Biventricular pacing
with LV lead placed at the basal level of lateral wall, similarly to apical right ventricular
pacing, worsened LV twist as compared to a more physiological electrical stimulation
(i.e. right atrial pacing).

A recent study (*®) explored the change in LV twist after CRT in relation to different
LV lead positions in the (postero-)lateral veins. Interestingly, the authors observed
that patients with LV leads positioned in mid-ventricular and apical regions exhib-
ited a larger increase in systolic function with a significant increase in LV twist as
compared to patients with LV leads positioned in the basal regions of the LV free
wall (Figure 7). Possibly, LV pacing sites that yield the largest improvement in LV
twist may likely determine a more efficient cardiac contraction with subsequent
improvement of LV energetic (¥). Similar results were obtained in a experimental
study in a canine HF model, reporting that the mid-apical part of the LV free wall was
the optimal stimulation site (3¥). These findings could be explained by the direction
of cardiac depolarization, traveling from the apex towards the base in the normal
heart ('>39). Therefore, pacing close to the LV apex may replicate a more physiologi-
cal pattern of LV depolarization and subsequent mechanical activation, leading to
a significant improvement in LV twist ('® #). Furthermore, as the myocardial wall is
thinner in the LV apex compared to LV base (+>#), pacing leads positioned near the
apex are closer to the Purkinje network. This results in a faster electrical propagation
of the cardiac pulse and subsequently a more synchronous LV contraction.

These are early data derived from small experimental and clinical studies, there-
fore larger multicenter studies are needed to confirm these findings.

FUTURE DIRECTIONS

Thus far, several indices of mechanical dyssynchrony have been proposed to select
candidates for CRT. The analysis of LV twist may provide a more comprehensive evalu-
ation of LV mechanics and may help to understand the effects of CRT in HF patients.
Moreover, at present, CRT response relies on changes in clinical status, LV reverse
remodeling and improvement in LVEF. In this regard, LV twist analysis may be incre-
mental to changes in LV volumes and LVEF to characterize and define CRT response.
Recently, Sade et al. (°) proposed to quantify the magnitude of LV twist at aortic valve
closure timing as good index to predict CRT response, superior to LV-dyssynchrony.
Furthermore, pioneer studies showed that an improvement of LV twist early after CRT
predicts a reduction of LV volumes after 6 months (*®). Future studies are warranted to
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elucidate whether the magnitude and/or the specific pattern of baseline LV twist and
immediate changes in LV twist after CRT may be used as a more sensitive index for the
identification of CRT responders.

Currently, 2-dimensional speckle tracking echocardiography permits reliable
assessment of LV twist mechanics (#). Furthermore, different authors reported a
good reproducibility of the assessment of LV twist with 2-dimensional speckle track-
ing ('® 4 44). However, 2-dimensional speckle tracking echocardiography has some
limitations for the assessment of LV twist mainly related to the acquisition of LV
apical short-axis images. This may be technically difficult and is highly dependent
on the acoustic window and the through-plane motion, particularly at the basal
level, that may affect accuracy of the measurement of LV rotational parameters.
Recently developed 3-dimensional speckle tracking analysis may partially overcome
these limitations and may provide even more global characterization of LV twist
mechanics (¥). Future technical advances will lead to improved accuracy and easier
implementation of this technique in the clinical setting.

At present cardiac magnetic resonance remains the referral technique for the as-
sessment of LV twist mechanics although its use is limited by availability and the
presence of devices (pacemakers, internal cardioverter-defibrillators).

LV twist mechanics is a promising tool for characterizing the pathophysiology of HF.
In advanced systolic HF, the rotational parameters are severely deteriorated and may
be improved by restoring electro-mechanical activation through CRT. An immediate
improvement in LV twist after CRT may be a good surrogate of a more physiological
LV depolarization, and is independently related to reversal of remodeling after CRT.
Finally, LV lead position is important for modifying the extent of LV twist after CRT;
in particular pacing sites which provide the greatest improvement of LV twist likely
determine the largest reversal of LV remodeling after CRT.
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ABSTRACT

Left ventricular (LV) twist and untwisting rate are emerging
as global and thorough parameters for the assessment of LV
function. This study explored the differences of LV twist and
untwisting rate among acute myocardial infarction (AMI) pa-
tients and ischemic and non-ischemic chronic heart failure
(HF) patients. A total of 5o AMI patients, 49 ischemic HF and
38 non-ischemic HF patients were studied. As a control group,
28 normal subjects were included. Speckle tracking analysis
was applied to LV short-axis images at basal and apical level.
LV twist was defined as the net difference of apical and basal
rotation at isochronal time points. The first time derivative of
LV untwist was defined as LV untwisting rate. As compared to
normal subjects, peak LV twist was reduced in AMI patients and
extremely reduced in HF patients (ANOVA p value <o0.001). A
strong correlation (r=0.87, p<0.001) was found between peak
LV twist and LV ejection fraction in the overall study popu-
lation. LV untwisting rate was progressively reduced in AMI
and HF patients as compared to normal subjects (ANOVA p
value <0.001). A moderate correlation (r=0.56, p<0.001) was
noted between peak LV untwisting rate and the grade of dia-
stolic dysfunction in the overall study population. In conclu-
sions LV twist and untwisting rate are strongly related with LV
systolic and diastolic function, respectively. The impairment
of LV function observed in AMI and HF patients is associated
with a reduction of LV twist and untwisting rate.
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INTRODUCTION

Recently, novel speckle tracking analysis has become available as a simple echocar-
diographic modality to assess LV twist and the untwisting rate. This technique has
been validated against sonomicrometry and tagged magnetic resonance imaging,
which are currently considered the gold standards for the assessment of rotational
parameters.” * Initial studies evaluated LV twist and the untwisting rate in patients
with myocardial infarction and heart failure (HF),>* but thus far, the impact of these
different diseases on rotational mechanics has never been systematically evaluated.

The present study assesses the differences of LV twist and the untwisting rate between
patients with acute myocardial infarction (AMI) and chronic HF.

METHODS

A total of 137 consecutive patients were enrolled: 50 AMI patients, 49 patients with
chronic ischemic HF and 38 with non-ischemic HF. The diagnosis of AMI was based
on the presence of symptoms consistent with myocardial ischemia lasting =30 min-
utes and =2 mm ST-segment elevation in =2 contiguous electrocardiographic (ECG)
leads.® All AMI patients underwent urgent coronary angiography, followed by primary
percutaneous coronary intervention, and the echocardiographic examination was
performed within 48 hours after AMI. Etiology of HF was considered ischemic in the
presence of significant coronary artery disease (>50% stenosis in =1 major epicardial
coronary artery) on coronary angiography and/or the history of AMI or previous re-
vascularization.

In addition, 28 subjects without evidence of structural heart disease, matched for
age and gender were included as a normal control group. The clinical echocardio-
graphic analysis included standard 2-dimensional echocardiography to assess LV
systolic and diastolic function. Furthermore, speckle tracking analysis was applied
to assess LV rotational parameters (the twist and untwisting rate).

All patients were imaged in the left lateral decubitus position with a commercially
available system (Vingmed Vivid 7, General Electric-Medical Systems, Milwaukee,
Wisconsin, USA) equipped with a 3.5-MHz transducer. Standard 2-dimensional im-
ages and Doppler and color-Doppler data acquired from the parasternal and apical
views (2-, 3-, and 4-chamber) were digitally stored in cine-loop format; analyses
were subsequently performed offline using EchoPAC version 7.0.0 (General Electric-
Medical Systems).
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Left ventricular (LV) end-diastolic (EDV) and end-systolic (ESV) volumes were
measured according to the Simpson’s biplane method and LV ejection fraction (EF)
was calculated as [(EDV-ESV)/EDV] x100.7

Transmitral and pulmonary vein pulsed-wave Doppler tracings, obtained in ac-
cordance to the recommendations of the American Society of Echocardiography,®
were used to classify diastolic function as follows: 1) normal, when the E/A ratio
= 0.9-1.5, deceleration time = 160-240 ms and pulmonary vein systolic velocity
(PVs) = pulmonary vein diastolic velocity (PVd); 2) diastolic dysfunction grade 1
(mild), when the E/A ratio was <0.9, deceleration time >240 ms and PVs >> PVd; 3)
diastolic dysfunction grade 2 (moderate), when the E/A ratio = 0.9-1.5, deceleration
time = 160-240 ms and PVs < PVd; 4) diastolic dysfunction grade 3 (severe), when
the E/A ratio >2.0, deceleration time <160 ms and PVs << PVd; 5) diastolic dysfunc-
tion grade 4 (severe), when the E/A ratio >2.5, deceleration time <130 ms and PVs
<< PVd.®

Speckle tracking analysis is based on tracking of natural acoustic markers, or
speckles, on standard gray scale images. This novel technique is angle independent
and permits evaluation of myocardial contraction/relaxation along the circumferen-
tial, longitudinal and radial direction.™ "

In the present evaluation, speckle tracking analysis was applied to determine the
LV twist and LV untwisting rate. Parasternal short-axis images were acquired at 2
distinct levels: 1) basal level, identified by the mitral valve; 2) apical level, defined as
the smallest cavity achievable distally to the papillary muscles (moving the probe
down and slightly laterally, if needed). The frame rate ranged from 45 to 100 frame/s
and 3 cardiac cycles for each parasternal short-axis level were stored in cine-loop
format for the offline analysis. The endocardial border was traced at an end-systolic
frame and the region of interest (ROI) was chosen to fit the entire myocardium. The
software allows the operator to check and validate the tracking quality and to adjust
the endocardial border or modify the width of the ROI, if needed. Furthermore,
each short-axis image was automatically divided into 6 standard segments: septal,
anteroseptal, anterior, lateral, posterior, and inferior.

Subsequently, the speckle-tracking software calculates LV rotation from the apical
and basal short-axis images as the average angular displacement of the 6 standard
segments referring to the ventricular centroid, frame by frame. Counter-clockwise
rotation was marked as positive value and clockwise rotation as negative value when
viewed from the LV apex. The software automatically calculates LV twist, defined as
the net difference (in degrees) of apical and basal rotation at isochronal time points.
The opposite rotation following LV twist was defined as LV untwist and the time
derivative of LV untwist was defined as LV untwisting rate (in °/s) (Figure 1).

The following measurements were obtained:



Left ventricular rotational mechanics in acute myocardial infarction and in chronic heart failure patients — 43

1) peak apical and basal rotation,
2) peak LV twist and peak LV untwisting rate,
3)

4) time to peak LV twist and untwisting rate.
A pulsed-wave Doppler tracing obtained from the LV outflow tract was used to identify

the timing of aortic valve opening and closure. All the timings were expressed as

time to peak apical and basal rotation,

percentage of systolic phase.

Figure 1 Left ventricular twist and untwisting rate in a normal control (Panel A), AMI patient (Panel B),
ischemic HF patient (Panel C) and non-ischemic HF patient (Panel D).

The green line represents apical rotation (upper) and apical rotation rate (lower); the purple line represents
basal rotation (upper) and basal rotation rate (lower); the white line represents left ventricular twist/untwist
(upper) and left ventricular twisting/untwisting rate (lower).

AMI: acute myocardial infarction, AVC: aortic valve closure. AVO: aortic valve opening, HF: heart failure.
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To assess the reproducibility of peak LV twist and peak LV untwisting rate measure-
ments, 20 patients were randomly selected. Bland-Altman analysis was performed to
evaluate the intra- and inter-observer agreement repeating the analysis 1 week later
by the same observer and by a second independent observer. Bland-Altman analysis
demonstrated good intra-observer and inter-observer agreement, with small bias
not significantly different from zero. Mean differences + 2 standard deviation (SD)
for peak LV twist and peak LV untwisting rate were 0.05+0.43° and -1.93£15.97°/s,
for intra-observer agreement and 0.17+1.51° and -3.97+35.63°/s for inter-observer
agreement.

Continuous variables are expressed as mean +SD. Categorical data are presented
as absolute numbers and percentages. One-way ANOVA test was used to assess
differences in continuous variables between the different groups of patients; if the
result of the analysis was significant, Bonferroni's post-hoc test was applied. The
differences in categorical variables were analyzed using Chi-square tests or Fischer’s
exact tests, as appropriate. Linear regression analysis was used to determine the
relations between peak LV twist and LVEF, between peak LV untwisting rate and the
grade of diastolic dysfunction, and , between peak LV untwisting rate and LVESV. In
order to identify independent determinants of peak LV untwisting rate, a multivari-
able linear regression analysis was performed including LVESV and the grade of
diastolic dysfunction as covariates. All statistical tests were 2-sided, and a p value
<0.05 was considered significant. Statistical analysis was performed using the SPSS
software package (SPSS 14.0, Chicago, Illinois).

Table 1 summarizes clinical and echocardiographic characteristics of the different
patient groups and the normal controls.

As compared to normal controls, AMI patients had significantly lower values of
LV apical rotation (9.8+3.0° vs. 7.6+3.8°, p = 0.007), LV basal rotation (-6.3+2.4° vs.
-4.9£2.1°, p = 0.04), and LV twist (15.7+3.1° vs. 11.6+3.8°, p <0.001).

LV rotational parameters were not significantly different between ischemic HF
and non-ischemic HF patients, but were significantly impaired as compared to AMI
patients; peak apical rotation was 2.5£1.9° and 2.4+1.8°, respectively (p <0.001 as
compared to AMI patients) and peak basal rotation was -3.4+2.0° and -2.8+2.2°,
respectively (p = 0.003 and p <0.001, respectively, as compared to AMI patients).
Consequently, the peak LV twist was 5.2+2.2° and 4.0+2.9°, respectively (p <0.001 as
compared to AMI patients) (Table 1).
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Table 1. Clinical, echocardiographic and rotational parameters of the different groups: normal controls, AMI
patients, ischemic HF patients and non-ischemic HF patients

Variable Normal AMI Ischemic  Non-ischemic ANOVA
Controls  patients HF patients  HF patients  p value
(n=28) (n=50) (n=49) (n =38)
Age (years) 60+11 60+11 64+11 65+13 0.084
Men 21(75%) 38 (76%) 43 (83%) 28 (74%) 0.16
LV end-diastolic volume (ml) 87+26% 103+28* 1791679 214+74 <0.001
LV end-systolic volume (ml) 34+12% 55£21%* 130529 164161 <0.001
LV ejection fraction (%) 62+67 47+10% 28459 2416 <0.001
Diastolic function T § <0.001
Grade 0 28 (100%) 7 (14%) 0 0
Grade 1 0 19 (38%) 12 (24%) 8 (21%)
Grade 2 0 14 (28%) 13 (26%) 6 (16%)
Grade 3-4 0 10 (20%) 24 (49%) 24 (63%)
Peak LV twist (°) 15.7+3.1F  11.6+3.8* 5.2+2.2 4.0+2.9 <0.001
Peak LV untwisting rate (°/s) -107+29%F  -78+35 Iq -58+34 -59+32 <0.001
Time peak LV twist (% systole) 98+8(: 83+14 83+19 7527 <0.001
Time peak LV untwisting (% systole) 11419 118+17 11617 116+23 0.75

*=p <0.001 vs. ischemic and non-ischemic heart failure

1= p <0.001 vs. acute myocardial infarction, ischemic and non-ischemic heart failure
9= p <0.05 vs. non-ischemic heart failure

= p <0.01 vs. acute myocardial infarction

= p <0.01 vs. , ischemic and non-ischemic heart failure

= p <0.05 vs. , ischemic heart failure

AMI: acute myocardial infarction, HF: heart failure, LV: left ventricular.

Figure 2 shows the progressive reduction of peak LV twist and LVEF among the 4
different groups. In particular, a strong correlation (r = 0.87, p <0.001) was found
between peak LV twist and LVEF (Figure 3) and between peak LV apical rotation
and LVEF (r = 0.79, p <0.001) in the overall study population; conversely, only a
modest relation was found between peak LV basal rotation and LVEF (r = -0.48, p
<0.001). Furthermore, time to peak LV twist occurred earlier in AMI, ischemic HF
and non-ischemic HF patients as compared to normal controls (ANOVA p value
<0.001, Table 1).

As compared to normal controls, AMI patients had significantly lower values of
peak LV untwisting rate (-107£29°/s vs. -78+35°/s, p = 0.002).
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Figure 2: Peak LV twist (left panel) and LVEF (right panel) in normal controls, AMI patients, ischemic HF and
non-ischemic HF patients.
AMI: acute myocardial infarction, EF: ejection fraction, HF: heart failure failure, LV: left ventricular.

Peak LV twist (°)

25 - y =0.2988x —2.8478
r=0.87, p <0.001
n =164

Figure 3. Correlation between LVEF and peak LV twist in the entire study population including normal
controls (white triangle), AMI patients (black triangle), ischemic HF patients (white circles) and non-
ischemic HF patients (black circles).

AMI: acute myocardial infarction, EF: ejection fraction, HF: heart failure, LV: left ventricular.

Peak LV untwisting rate was not significantly different between ischemic HF and
non-ischemic HF patients with lower values as compared to AMI patients: -58+34°/s
in ischemic HF patients (p = 0.018) and -59+32°/s in non-ischemic HF patients (p
= 0.036) (Table1).

Peak LV untwisting rate and the grade of diastolic dysfunction among the 4 groups
are shown in Figure 4. A moderate correlation (r = 0.56, p <0.001) was noted be-
tween peak LV untwisting rate and the grade of diastolic dysfunction in the overall
study population (Figure 5). Furthermore, peak LV untwisting rate was significantly
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Figure 4: Left panel: A reduced peak LV untwisting rate is observed in AMI patients, IHF and NIHF patients
as compared to normal controls. Right panel: The distribution of the different grades of diastolic dysfunction
in normal controls, AMI patients, ischemic HF and non-ischemic HF patients is shown.

AMI: acute myocardial infarction, EF: ejection fraction, HF: heart failure, LV: left ventricular.
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Figure 5: Correlation between the grades of diastolic dysfunction (see definition in the text) and peak LV

untwisting rate in the entire study population: normal controls (white triangle), AMI patients (black triangle),

ischemic HF patients (white circles) and non-ischemic HF patients (black circles).
AMI: acute myocardial infarction, EF: ejection fraction, HF: heart failure, LV: left ventricular
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related to LVESV (r = 0.42, p <0.001). At multivariable linear regression analysis
both LVESV (B = 0.16, p = 0.047) and the grade of diastolic dysfunction (B = 0.47, p
<0.001) were independently related to peak LV untwisting rate.

No significant differences were found among the different groups for time to peak
LV untwisting rate (Table 1).

The current study comprehensively evaluated the differences in LV twist and untwist-
ing rate among AMI, ischemic and non-ischemic HF patients, providing new insight in
the relationship between LV rotational mechanics and LV function. The main findings
can be summarized as follows: 1) LV twist is strongly related to LV systolic function
and LV untwisting rate is modestly, but significantly related to diastolic function; 2)
impairment of LV function is associated not only with a reduction of LV twist and
untwisting rate, but also with an earlier peak of LV twist during systole.

As previously demonstrated in a mathematical model, LV twist distributes equally
LV fiber stress and shortening across the LV wall.’> Accordingly, LV twist increases the
efficiency of sarcomere shortening, and improves myocardial deformation during LV
ejection.” In the current study, a significant impairment of LV twist was observed in
AMI and HF patients, compared to normal controls. Moreover, a strong relationship
between the degree of impairment of LV twist and the observed impairment of LVEF
was noted, confirming the previous findings demonstrating a relation between LV
twist and LVEF.4 5" The strong correlation found between LV apical rotation and
LVEF is not surprising, since LV apical rotation contributes more to LV twist than
LV basal rotation.# The different impact of acute myocardial infarction and chronic
LV remodeling (in HF) on LV twist was also explored. LV twist was more reduced
in chronic HF as compared to AMI patients. These findings may be explained by
different mechanisms underlying a reduction in LV twist. In HF patients, LV twist
impairment is probably the result of a long-lasting process, with a rearrangement
of LV myofibers with a consequent loss of the specific LV architecture responsible
for the wringing motion.+ ¢ Conversely, in AMI patients the reduction of LV twist
may result from an acute impairment in rotation of the LV region involved in the
infarction.> 7 The severity of this impairment appears related to the transmurality of
the infarction and to the extent of dysfunctional myocardial segments.’s '8

Intriguingly, the time to peak LV twist occurred earlier in both AMI and HF patients
as compared to normal controls. The impaired LV rotational mechanics observed
in AMI and HF most likely explains this finding; less time is needed to reach peak
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LV twist because of the reduced contraction and rotation of the LV myofibers. In
addition, the diseased LV myofibers are not able to fully counteract the systolic
ventricular pressure, preventing further myocardial shortening and, consequently,
leading to earlier peak LV twist.™

LV systolic twist comprehends a deformation of the interstitial matrix resulting in stor-
age of potential energy; the rapid release of the potential energy stored during systole
in the isovolumic relaxation time leads to LV untwisting. In turn, LV untwisting gener-
ates an intraventricular pressure gradient facilitating diastolic LV filling.® Indeed, the
LV untwisting rate is emerging as an index of diastolic function.2>2 Particularly, LV
untwisting rate was related to the time constant of LV pressure decay (Tau) and the
intraventricular pressure gradient.®' In the present study, a good relation between the
LV untwisting rate and global diastolic function was observed. The relation was not
perfect, probably since the LV untwisting rate is a marker of diastolic suction rather
than global diastolic function. LV untwisting rate was also independently related with
LVESV; however, on multivariable linear regression analysis, the grade of diastolic
dysfunction was the strongest determinant of LV untwisting rate.

A significant impairment of LV untwisting rate was observed in AMI and HF
patients as compared to control subjects. In AMI patients, the impairment in LV
untwisting rate may be related to the increased ventricular stiffness and consequent
diastolic dysfunction due to recent acute ischemia and infarction.® In HF patients,
the LV untwisting rate was even more reduced as compared to AMI patients. This
observation may be explained by the presence of extensive, diffuse LV fibrosis as
encountered in HF patients, which is not (yet) present early after AMI.24

Finally, although groups of patients with different grades of diastolic dysfunction
were studied, no significant differences in time to peak LV untwisting rate were
noted. This finding is in line with previous experimental and clinical studies in which
only the peak of untwisting rate but not the time to peak untwisting rate was affected
by the grade of diastolic dysfunction.?"

As limitations, the acquisition of the LV apical short-axis images (highly dependent
on the acoustic window) and through-plane motion, particularly at the basal level,
could have affected the accuracy of the measurement of LV rotational parameters.
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ABSTRACT

Objectives. This study explored the effects of cardiac resynchronization
therapy (CRT) on left ventricular (LV) twist, particularly in rela-
tion to LV lead position.

Methods. Eighty heart failure (HF) patients were included. 2D-echocardi-
ography was performed at baseline, immediately after CRT, and
at 6 months follow-up. Speckle-tracking analysis was applied to
assess LV twist. LV lead was placed preferably in a (postero-)lat-
eral vein and at fluoroscopy, the position was classified as basal,
mid-ventricular or apical. Response to CRT was defined as re-
duction of LV end-systolic volume =15% at 6 months follow-up.
A control group comprised 30 normal subjects.

Results. Peak LV twist in HF patients was 4.8+2.6° compared to
15.0%3.6° of the controls (p<0.001). At 6 months follow-up,
peak LV twist significantly improved only in responders (56%),
from 4.3+2.4° to 8.5+3.2° (p<0.007). The strongest predictor
of response to CRT was the improvement of peak LV twist im-
mediately after CRT (odds ratio 1.899, 95% confidence inter-
vals 1.334-2.703, p<0.001). Furthermore, LV twist significantly
improved in patients with an apical (from 4.3+3.1° to 8.6+3.0°,
p=0.001) and mid-ventricular (from 4.8+2.2° to 6.4+3.9°,
p=0.038) but not with a basal (5.0+3.3 vs. 4.1£3.2, p=0.28) LV
lead position. Similarly LVEF significantly increased in patients
with an apical (from 26+7% to 37+7%, p<0.001) and mid-ven-
tricular (from 26+6% to 33+8%, p<0.001) but not with a basal
(26£5% vs. 28+8%, p=0.30) LV lead position.

Conclusions.  An immediate improvement of LV twist after CRT predicts LV
reverse remodeling at 6 months follow-up.
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INTRODUCTION

The human heart has a specific helical arrangement of the myofibers with a right-hand
orientation from the base towards the apex in the endocardial layers and a left-hand
orientation in the epicardial layers. This spiral architecture of the myofibers leads to a
left ventricular (LV) systolic wringing motion as a result of an opposite rotation of LV
apex and base (1, 2). The gradient between apex and base in the rotation angle along
LV longitudinal axis is called twist and contributes significantly to LV systolic function,
in addition to myocardial shortening and thickening (3-5).

In heart failure (HF) patients, LV twist is significantly reduced (6). Cardiac resyn-
chronization therapy (CRT) is considered a major therapeutic breakthrough for HF
patients, and recent large randomized trials have shown that CRT has beneficial ef-

fects on HF symptoms, LV systolic function and survival (7, 8). At present, minimal
data are available about the effect of CRT on LV twist (9, 10).

In the current study, the effect of CRT on LV twist was assessed using speckle-
tracking echocardiography. Furthermore, the relationship between the change in LV
twist and LV reverse remodeling at 6 months follow-up was investigated. Finally, the
influence of the LV lead position on the improvement in LV twist and response to
CRT was explored.

METHODS

Study population and protocol

A total of 87 consecutive HF patients scheduled for CRT were prospectively included.
According to current guidelines, the inclusion criteria were: New York Heart Associa-
tion (NYHA) functional class Il1-1V, sinus rhythm, LV ejection fraction (LVEF) =35%,
QRS duration =120 ms (11). Etiology of HF was considered ischemic in the presence
of significant coronary artery disease (>50% stenosis in =1 major epicardial coronary
artery) on coronary angiography and/or a history of myocardial infarction or revascu-
larization.

The clinical evaluation consists of: 1) assessment of clinical status: NYHA func-
tional class, quality of life (using the Minnesota Living with Heart Failure question-
naire) (12), and 6-minute walk distance (13) at baseline and 6 months follow-up;
2) assessment of LV volumes, function, dyssynchrony and twist, using standard
echocardiography and speckle-tracking analysis at baseline, within 48 hours (im-
mediately after CRT) and at 6 months follow-up.
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In addition, 30 subjects without evidence of structural heart disease, frequency-
matched for age, gender and body surface area, were included as a normal control
group, selected from an echocardiographic data base. These subjects were referred
for the echocardiographic evaluation because of atypical chest pain, palpitations or
syncope without murmur.

All patients were imaged in left lateral decubitus position using a commercially
available system (Vingmed Vivid 7, General Electric-Vingmed, Milwakee, Wisconsin,
USA). Standard 2-dimensional images were obtained using a 3.5-MHz transducer and
digitally stored in cine-loop format; the analysis was performed offline using EchoPAC
version 6.0.1 (General Electric-Vingmed).

From the standard apical views (4- and 2-chamber) LV volumes and LVEF were
calculated according to the American Society of Echocardiography guidelines (14).
At 6 months follow-up, patients were classified as echocardiographic responders
based on a reduction =15% of LV end-systolic volume (LVESV) (15).

Segmental wall motion was assessed according to American Society of Echocar-
diography in order to evaluate the presence of scarred segments within ischemic
HF patients (14). Akinetic and diskinetic segments (wall motion score 3 and 4) were
classified as scarred segments (16).

The speckle-tracking software tracks frame-to-frame the movement of natural myo-
cardial acoustic markers, or speckles, on standard gray scale images. Speckles are
randomly distributed and each region of the myocardium has a distinguishing pat-
tern, a fingerprint. Furthermore, speckle-tracking analysis is angle independent and
allows the evaluation of myocardial contraction/relaxation along the circumferential,
longitudinal and radial direction (17, 18).

In the current study, speckle-tracking analysis was applied to evaluate LV dyssyn-
chrony (based on radial strain analysis) and LV twist. Parasternal short-axis images
were acquired at 3 distinct levels: 1) basal level, identified by the mitral valve; 2) papil-
lary muscle level; 3) apical level (the smallest cavity achievable distally to the papillary
muscles, moving the probe down and slightly laterally, if needed). Frame rate ranged
from 45 to 100 frame/s and 3 cardiac cycles for each parasternal short-axis level were
stored in cine-loop format for the offline analysis (EchoPAC). The endocardial border
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was traced at an end-systolic frame and the region of interest (ROI) was chosen to
fit the whole myocardium. The software allows the operator to check and validate
the tracking quality and to adjust the endocardial border or modify the width of the
RO, if needed. Furthermore, each short-axis image was automatically divided into
6 standard segments: septal, anteroseptal, anterior, lateral, posterior, and inferior.

Aortic valve opening and closure were identified on pulsed-wave Doppler tracings
obtained from the LV outflow tract.

LV dyssynchrony analysis

LV dyssynchrony was derived from the radial strain curves obtained from the papillary

muscle short-axis view. As previously described, LV dyssynchrony was defined as the
time difference of peak radial strain between the anteroseptal and posterior segments

(19).

LV twist analysis

The speckle-tracking software calculates LV rotation from the apical and basal short-
axis images as the average angular displacement of the 6 standard segments referring
to the ventricular centroid, frame by frame. Counterclockwise rotation was marked
as positive value and clockwise rotation as negative value when viewed from the LV
apex. LV twist was defined as the net difference (in degrees) of apical and basal rota-
tion at isochronal time points. For the calculation of LV twist, averaged apical and
basal rotation data were exported to a spreadsheet program (Excel 2003; Microsoft
Corporation, Redmond, Washington) (Figure 1) (20, 21). The following measurements
were derived: peak apical and basal rotation, peak LV twist.

Reproducibility

Reproducibility of LV end-diastolic volume (LVEDV), LVESV, LVEF and peak LV twist
was assessed on 20 randomly selected HF patients. Bland-Altman analysis was per-
formed to evaluate the intra- and inter-observer agreement repeating the analysis few
days later by the same observer and by a second independent observer. The results
were expressed as absolute mean difference + 2 standard deviation (SD).

The intra-observer agreement for LVEDV, LVESV, LVEF and peak LV twist were 7.4
£11.2ml, 7.0 £10.1 ml, 1.9 £ 4.4%, and 0.2 + 0.3°, respectively.
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Figure 1 (Assessment of LV twist). Examples of left ventricular (LV) twist in normal control (panel A) and in
heart failure patient (panel B). In both panels, the upper parts represent apical and basal rotations and the
lower parts represent LV twist calculation after exporting the data to a spreadsheet program (Excel 2003;
Microsoft Corporation, Redmond, Washington). AVC: aortic valve closure. AVO: aortic valve opening.
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The inter-observer agreement for LVEDV, LVESV, LVEF and peak LV twist were 12.9
£14.7 ml, 11.3 £13.9 ml, 2.5 £ 4.9%, and 0.7 + 0.8°, respectively.

CRT implantation

All patients received a biventricular pacemaker with cardioverter-defibrillator func-
tion (Contak Renewal 4RF, Boston Scientific St. Paul, Minnesota; or InSync Sentry,
Medtronic Inc. Minneapolis, Minnesota; Lumax 340 HF-T, Biotronik, Berlin). The right
atrial and ventricular leads were positioned conventionally. All LV leads were implanted
transvenously, and positioned preferably in a (postero-)lateral vein. A coronary sinus
venogram was obtained using a balloon catheter, followed by the insertion of the LV

pacing lead. An &-F guiding catheter was used to place the LV lead (Easytrak, Boston
Scientific, or Attain-SD, Medtronic, or Corox OTW Biotronik) in the coronary sinus.

LV lead position

Target veins were lateral or postero-lateral veins. The LV lead position was determined
using biplane fluoroscopy classification (22). In the right anterior oblique view and/
or in the postero-anterior view, the distance between the coronary sinus/mitral plane
and the cardiac apex was divided in 3 parts and the LV lead position was classified in
3 groups: basal, mid-ventricular and apical.

Statistical analysis

All continuous variables had a normal distribution (as evaluated with Kolmogorov-
Smirnov tests). Summary statistics for these data are therefore presented as mean
+ SD. Categorical data are presented as numbers and percentages. Paired T test was
used for the comparison between continuous variables at baseline and immediately
after CRT and between baseline and at 6 months follow-up. Unpaired T test was per-
formed to compare continuous variables between normal controls and HF patients and
between CRT responders and non-responders. Chi-square/Fischer’s exact tests were
computed to test for differences in categorical variables. Linear regression analysis was
performed to determine the relations between LV twist, LVEF and LV dyssynchrony. In
order to identify independent determinants of LV twist, a multivariable linear regres-
sion analysis using the enter model was performed including as covariates LVEF and LV
dyssynchrony. Linear regression analysis was used to assess the relation between the
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A (difference between immediately after CRT and baseline) peak LV twist and A LVEF.
The differences in peak LV twist during follow-up in responders and non-responders
were assessed using ANOVA for repeated measurements. In order to identify variables
related to a positive response to CRT, univariable and multivariable logistic regres-
sion analysis were performed including clinical (age, gender, etiology, QRS duration
at baseline and 6-minute walk distance at baseline) and echocardiographic (LVESV at
baseline, A LVESV, LV dyssynchrony at baseline, A LV dyssynchrony, peak LV twist at
baseline, A peak LV twist) characteristics of the patients. Only, significant (p <0.05)
univariable predictors were entered as covariates in the multivariable logistic regres-
sion analysis which was performed using the enter model. Odds ratio (OR) and 95%
confidence intervals (Cl) were calculated. Model discrimination was assessed using
c-statistic and model calibration was assessed using Hosmer-Lemeshow statistic. The
differences in peak LV twist and LVEF between the groups of patients with different LV
lead position were assessed by one-way ANOVA. All statistical tests were 2-sided, and
a p value <o.05 was considered significant. A statistical software program SPSS 14.0
(SPSS Inc, Chicago, IL, USA) was used for statistical analysis.

Reliable speckle-tracking for rotation analysis was obtained in all normal controls
and in 80 (92%) HF patients. Consequently, 7 (8%) patients were excluded from the
study. Of the 8o HF patients enrolled, 9 did not complete the 6 months follow-up; 3
patients died of worsening HF, 1 had LV pacing switched off due to intolerable phrenic
stimulation, 1 had CRT device explantation secondary to infection, and 4 were lost to
follow-up. Therefore, data at baseline and immediately after CRT were collected for 8o
patients and data at 6 month follow-up were collected for 71 patients.

Baseline characteristics of normal controls and the HF patients are listed in Table 1.

As shown in Table 1, peak apical rotation, peak basal rotation and peak LV twist were
severely reduced in HF patients compared to normal controls: 2.4 + 1.8° vs. 9.4
3.2° (p <0.001), -3.3 £ 2.0° vs. -6.1 £ 2.4° (p <0.001) and 4.8 + 2.6° vs. 15.0 £ 3.6° (p
<0.001), respectively.



Effects of cardiac resynchronization therapy on left ventricular twist

Normal controls (n HF patients p value
=30) (n=280)

Age (years) 61+ 11 64+ 11 0.091
Gender (male/female) 22/8 61/19 0.46
NYHA class - 3.0+£0.4 -
QoL - 34 +20 -
6-minute walk distance (m) - 321+ 109 -
QRS duration (ms) 91+9 148 + 30 <0.001
Etiology, n (%)

Ischemic - 45 (56) -

Non-ischemic . 35 (44) :
Medication, n (%)

ACE Inhibitors - 74 (92) -

B-blockers - 69 (86) -

Diuretics and/or Spironolactone - 67 (84) -
LVEDV (ml) 86+ 26 196 + 74 <0.001
LVESV (ml) 34+ 11 146 + 60 <0.001
LVEF (%) 62+7 26+6 <0.001
LV dyssynchrony (ms) 14+9 146 + 81 <0.001
Peak apical rotation (°) 9.4+32 2418 <0.001
Peak basal rotation (°) 6.1+2.4 -3.3+£20 <0.001
Peak LV twist (°) 15.0 £ 3.6 48+26 <0.001

LVEDV: left ventricular end-diastolic volume, LVEF: left ventricular ejection fraction; LVESV: left ventricular
end-systolic volume, NYHA: New York Heart Association, QoL: Score on the Minnesota Living with Heart
Failure Questionnaire

A significant relation (r = 0.53, p <0.001) was observed between peak LV twist
and LVEF in HF patients. This relation was stronger in non-ischemic (r = 0.60, p
<0.001) than in ischemic HF patients (r = 0.34, p = 0.020) (Figure 2A). Moreover,
a modest relation (r =-0.33, p = 0.003) was observed between peak LV twist and LV
dyssynchrony in HF patients.

At multivariable linear regression analysis, LVEF ( = 0.47, p <0.001) and LV dys-
synchrony (B =-0.21, p = 0.032) were independent determinants of LV twist.

61
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Immediately after CRT, peak LV twist increased from 4.8 £2.6° t0 5.9 £ 3.2° (p = 0.007).
In particular, A peak LV twist was strongly related to A LVEF (r = 0.83, p <0.001) and
this relation was good in both non-ischemic (r = 0.85, p <0.001) and ischemic HF
patients (r = 0.82, p <0.001) (Figure 2B). Furthermore, the relations between A peak
LV twist and A LV dyssynchrony (r = -0.57, p <0.001) and between A LV dyssynchrony
and A LVEF (r=-0.63, p <0.001) were good but less strong than the previous relation
between A peak LV twist and A LVEF.

A Peak LV twist (°)

14 -
12 y = 0.2295x — 1.1571 U
10 4 rn—=0783 p <0.001 o
8 4
6 -
4 -
2 <
0 1
24 40
¢ LVEF (%)
4
O = ischemic HF patients (n =45, r = 0.34, p = 0.020)
® = non-ischemic HF patients (n = 35, r = 0.60, p <0.001)
B A peak LV twist (°) y = 0.6222x - 1.2061

- r=0.83, p <0.001
g n=79

25
A LVEF (%)

O =ischemic HF patients (n =45, r = 0.82, p <0.001)
® = non-ischemic HF patients (n = 35, r = 0.85, p <0.001)

Figure 2 (LV twist and LV systolic function). Panel A: Correlation between baseline peak LV twist and LVEF in
heart failure patients (ischemic, white circles, and non-ischemic, black circles). Panel B: Correlation between

A peak LV twist and A LVEF immediately after CRT in heart failure patients (ischemic, white circles, and non-

ischemic, black circles).
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Six months follow-up

At 6 months follow-up, 40 of 71 (56%) patients were classified as echocardiographic
responders to CRT (defined as a decrease in LVESV 215%).

No significant differences in the baseline clinical characteristics were found be-
tween responders and non-responders (Table 2). At 6 months follow-up, significant
improvement in NYHA class (from 3.0 = 0.5 to 2.0 + 0.7, p <0.001), quality of life

Table 2. Clinical characteristics of responders vs. non-responders at baseline and 6 months follow-up.

Responders Non-responders p value
(n = 40) (n=31)
Age (years) 66 = 10 66+ 11 0.88
Gender (male/female) 32/8 20/11 0.18
Medication, n (%)

ACE Inhibitors 37 (92) 29 (93) 0.77

B-blockers 35 (87) 27 (86) 0.82

Diuretics and/or

Spironolactone 34 (84) 26 (84) 0.82
Etiology, n (%)

Ischemic 20 (50) 18 (58)

Non-ischemic 20 (50) 13 (42) 0.63
QRS duration (ms) 149 + 32 149 + 30 0.97
NYHA class
Baseline 3.0+£0.5 3.0+0.5 0.92
6 months follow-up 2.0+0.7*% 2.7 £ 0.61 <0.001
QoL
Baseline 35+23 32+15 0.51
6 months follow-up 20 + 20* 29+ 19 0.065
6-minute walk distance (m)

Baseline 306 + 106 330+ 107 0.34
6 months follow-up 363 + 109* 327+ 110 0.17

* = p <0.001 baseline vs. 6 month follow-up; T = p<0.05 baseline vs. 6 month follow-up.
Abbreviations see Table 1.
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Figure 3 (LV twist in responders and non-responders). Peak LV twist in responders and non-responders at
baseline, immediately after CRT and at 6 months follow-up.

(from 35 + 23 to 20 + 20, p <0.001), and 6-minute walk distance (from 306 + 106 m
to 363 £ 109 m, p <0.001) were observed in CRT responders only (Table 2).

Baseline echocardiographic characteristics were also similar between the 2 groups,
except for LV dyssynchrony (Table 3) that was larger in responders compared to non-
responders (182 £ 71 ms vs. 116 + 83 ms, p = 0.003). A trend towards lower values of
peak LV twist were noted in responders as compared to non-responders (4.3 £ 2.4°
VS. 5.4 £ 2.9°, p = 0.072). At 6 months follow-up, LV dyssynchrony improved in CRT
responders (from 182 + 71 ms to 60 + 45 ms, p <0.001), whereas in non-responders
LV dyssynchrony did not change (116 + 83 ms vs. 136 + 89 ms, p = 0.30) (Table 3).
Importantly, within ischemic HF patients, CRT responders presented significantly
lower number of scarred segments at 2D-echocardiography as compared to non-
responders (2.7 £ 0.9 Vs. 4.2 £ 2.2, p = 0.016).

Concerning the rotational parameters, in responders peak LV twist progressively
improved during follow-up (ANOVA p value <0.001), whereas in non-responders
a progressive deterioration of peak LV twist was noted (ANOVA p value <0.001)
(Figure 3). Particularly, both apical and basal rotation significantly improved in
responders (from 2.3 +1.7° to 5.0 £ 3.0°, p <0.001 and from -3.2 £ 2.2° to -4.3 £ 1.9°,
p = 0.006), whereas only basal rotation significantly deteriorated in non-responders
(from -3.5 £ 1.7 to -2.1 £ 2.2, p = 0.001) (Table 3).
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Table 3. Standard echocardiographic variables and rotational parameters in responders vs. non-responders at

baseline and 6 months follow-up.

Responders Non-responders p value
(n = 40) (n=37) (responders vs. non-
responders)

LVESV (ml)
Baseline 144 + 58 153 + 67 0.56
6 months follow-up 110 + 43%* 164 + 72+ 0.001
LVEF (%)
Baseline 26+6 26+6 0.91
6 months follow-up 37 £ 7% 26+ 6 <0.001
LV dyssynchrony (ms)
Baseline 182+ 71 116 + 83 0.003
6 months follow-up 60 + 45* 136 + 89 <0.001
Peak apical rotation (°)
Baseline 23+17 28+2.1 0.32
6 months follow-up 5.0 + 3.0% 2.1+23 <0.001
Peak basal rotation (°)
Baseline -3.2+22 3.5+ 1.7 0.51
6 months follow-up -4.3 +1.97 2.1+2.2F <0.001
Peak LV twist ()
Baseline 43+24 54+29 0.072
6 months follow-up 8.5+3.2% 3.3+2.2* <0.001

* = p <0.001 baseline vs. 6 month follow-up; T = p <0.01 baseline vs. 6 month follow-up; * = p<o.0s baseline

vs. 6 month follow-up.
Abbreviations see Table 1.

Prediction of LV reverse remodeling

At univariable logistic regression, LV dyssynchrony at baseline, A LV dyssynchrony,

A LVESV and A peak LV twist were significantly related to LV reverse remodeling at 6

months follow-up (Table 4). At multivariable logistic regression analysis, A peak LV

twist was the strongest predictor of response to CRT at 6 months follow-up (OR =

1.899, 95%Cl = 1.334-2.703, p <0.001) (Table 4).
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Table 4. Univariable and multivariable logistic regression analysis for prediction of response to CRT (defined
as reduction in LVESV =15%)

Dependent variable: Univariable analysis Multivariable analysis
Response to CRT at 6 months follow-
up OR(95%Cl)  pvalue OR(95%Cl)  pvalue

Independent variables

Age 1.003 (0.958-1.050)  0.90
Female gender 2.198 (0.756-6.404)  0.15

Ischemic etiology 0.722 (0.281-1.858)  0.50

QRS width at baseline 1.000 (0.985-1.016)  0.97

6 minutes walking test at baseline 0.998 (0.993-1.002)  0.34

LVESV at baseline 0.998 (0.990-1.005)  0.56

A LVESV immediately after CRT 0.949 (0.915-0.984)  0.005 0.998 (0.950-1.049) 0.94
LV dyssynchrony at baseline 1.013 (1.005-1.021)  0.002 1.011 (1.001-1.022)  0.037
A LV dyssynchrony immediately after ~ 0.992 (0.986-0.998)  0.010 1.007 (0.996-1.017)  0.21
CRT

Peak LV twist at baseline 0.844 (0.698-1.019)  0.078

A peak LV twist immediately after CRT ~ 1.837 (1.378-2.449) <0.001 1.899 (1.334-2.703) <0.001

c-statistic: 0.885
Cl: confidence intervals; CRT: cardiac resynchronization therapy; LV: left ventricular; LVEF: left ventricular
ejection fraction; LVESV: left ventricular end-systolic volume; OR: odds ratio.

Considering the 71 patients with 6 months follow-up, 68 patients had the LV lead
placed in a (postero-)lateral vein and 3 in an anterior vein. The 3 patients with the LV
lead positioned in an anterior vein were non-responders at 6 months follow-up. Of
the remaining 68 patients, the LV lead position was classified (from the right anterior
oblique/postero-anterior view on fluoroscopy) as basal in 17 (25%), mid-ventricular
in 34 (50%), and apical in 17 (25%) patients. At baseline, peak LV twist was not sig-
nificantly different between patients with apical, mid-ventricular and basal LV lead
position, (ANOVA p value = 0.68). However, at 6 months follow-up, peak LV twist
showed a significant improvement in patients with apical (from 4.3 + 3.1° to 8.6 =
3.0°, p = 0.001) and mid-ventricular (from 4.8 £ 2.2° to 6.4 +3.9°, p = 0.038) LV lead
position, whereas in patients with a basal LV lead position, peak LV twist did not
change significantly (5.0 + 3.3° vs. 4.1 = 3.2°, p = 0.28) (Figure 4A). Similarly, LVEF
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Figure 4 (LV twist and LVEF in relation to LV lead position). Panel A. Peak LV twist at baseline and 6 months
follow-up in patients with basal, mid-ventricular and apical LV lead position. Significant improvement was
observed in patients with an apical or mid-ventricular LV lead position but not in patients with basal LV lead
position. Panel B. LVEF at baseline and 6 months follow-up in patients with basal, mid-ventricular and apical
LV lead position. Significant improvement was observed in patients with an apical or mid-ventricular LV lead
position but not in patients with basal LV lead position.

LV: left ventricular; LVEF: left ventricular ejection fraction

increased significantly in patients with an apical (from 26 + 7% to 37 £ 7%, p <0.001)
and mid-ventricular (from 26 £ 6% to 33 £ 8%, p <0.001) but not with a basal (26 +
5% vs. 28 + 8%, p = 0.30) LV lead position (Figure 4B).

Figure 5 shows an example of responder with the LV lead placed in an apical posi-
tion of a postero-lateral vein and significant improvement in peak LV twist and LVEF
after CRT (both immediately after CRT implantation and at 6 months follow-up).

DISCUSSION

The current study evaluated the effects of CRT on LV twist and provides new insights on
the relationship between LV rotational mechanics, CRT response and LV lead position.
The main findings can be summarized as follows: 1) LV twist was significantly reduced
in HF patients; 2) LV twist improved in responders and worsened in non-responders
to CRT; 3) the strongest predictor of LV reverse remodeling at 6 months follow-up was
A peak LV twist (immediate change in LV twist after CRT); 4) an LV lead placed in a
(postero-)lateral vein with apical or mid-ventricular position was associated with the
greatest improvement of LV twist after CRT and with the highest response rate to CRT.
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Figure 5. Example of a CRT responder with LV lead in an apical position. Panel A. Peak LV twist improved
from 3.9° at baseline to 9.7° immediately after CRT implantation. Peak LV twist further improved at 6 months
follow-up (peak LV twist 10.9°). AVC: aortic valve closure. Panel B. Biplane fluoroscopy: the left anterior
oblique (LAO) view shows the LV lead in a posterolateral cardiac vein; in the postero-anterior (PA) view the
distance between the coronary sinus/mitral plane and the cardiac apex was divided (dotted lines) in 3 parts
(basal, mid-ventricular and apical).

Relationship between LV twist and LV function

Several techniques have been applied for the assessment and quantification of LV
twist. For this purpose, tagged cardiac magnetic resonance imaging and sonomi-
crometry are considered the gold standard, but the most recent speckle-tracking echo-
cardiographic technique, used in the present study, demonstrated a good agreement
with these imaging modalities (20, 21). Previous studies, using both tagged cardiac
magnetic resonance imaging and speckle-tracking analysis, suggested an important
relation between LV twist and LVEF (4, 9). Similarly, in the current study the relation
between LV twist and LV systolic function was good (r = 0.53, p <0.001), illustrating
the potential role of LV twist as comprehensive index of LV systolic function. Further-
more, the results of the present study highlight that the relation between LV systolic
function and LV twist was stronger in non-ischemic patients as compared to ischemic
patients. A possible reason may be the presence of regional myocardial damage in
ischemic patients, involving specifically the apex or the base with a different effect on
LV twist (23).

Finally, LV twist was modestly related to LV dyssynchrony (r = -0.33, p <0.001), but
at multivariable linear regression analysis, LV dyssynchrony was still independently
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related to LV twist. This finding points out that LV twist not only is a sensitive and
thorough parameter of LV function, but also it may reflect the extent of LV (dys)
synchrony.

Relationship between LV twist and CRT response

The effects of CRT on torsional mechanics were different in responders and non-
responders. A trend towards more reduced LV twist at baseline in responders as
compared to non-responders was observed. In the present study, a significant im-
provement of LV twist was observed in CRT responders and a significant worsening
in non-responders. In contrast, a previous study of Zhang et al. did not show any

significant increase of LV twist in responders to CRT (10). The different results may be
related to sample size and population characteristics.

In the multivariable model, baseline LV dyssynchrony and an immediate improve-
ment in LV twist after CRT were the only predictors of LV reverse remodeling at
6 months follow-up. The predictive value of LV dyssynchrony has been shown
already in previous studies (19, 24). The novelty of the present study is that CRT
may (partially) restore LV twist, possibly by providing a more physiologic electri-
cal depolarization and mechanical contraction of the myofibers. Specifically, CRT
partially restored LV torsional behavior in responders, by not only improving apical
rotation but also basal rotation. In non-responders, the deterioration of LV twist
was mainly due to worsening of the basal rotation underscoring the influence of the
basal level on LV twist (25).

Relationship between LV twist and LV lead position

Previous studies showed that HF patients treated with CRT showed the best hemo-
dynamic improvement when the LV pacing lead was positioned in (postero-)lateral
veins (26). In the current study, 3 patients had the LV lead placed in an anterior vein,
and none of them responded to CRT. The remaining 68 patients had the LV lead posi-
tioned in the (postero-)lateral vein. In these patients, the optimal position of LV lead
inside the target vein was explored. Patients with a mid-ventricular or apical position
had the largest systolic improvement, and showed a significant increase in LV twist,
whereas patients with a basal LV lead position did not improve systolic function and
decreased in LV twist, confirming that pacing site may influence torsional behavior
of the LV (27). Similarly, a recent study by Helm et al.(28) reported that the optimal
site of stimulation (although in a canine model of HF) was the LV free wall centered
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over the mid-apical part. This finding may be related to the fact that normal cardiac
depolarization is directed from the apex towards the base (29), and an earlier activa-
tion of the LV basal region, altering the normal contraction pattern of the myofibers,
may lead to a significant deterioration of LV twist. Another explanation for the findings
may be related to the fact that the myocardial wall is thinner towards the apex (30,
31); therefore, the epicardial LV lead in this position is closer to the Purkinje network.
Consequently, pacing from this position may generate a cardiac pulse which spreads
faster to the entire myocardium with a more physiological activation (32-34).

LV twist is reduced in HF patients and improves in patients who respond to CRT.
Particularly, the change in LV twist immediately after CRT predicts LV reverse remodel-
ing at 6 months follow-up.
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ABSTRACT

The analysis of left ventricular (LV) mechanics provides novel
insights into the effects of cardiac resynchronization therapy
(CRT) on LV performance. Currently, advances in speckle-
tracking echocardiography analysis have permitted to char-
acterize subendo- and subepicardial LV twist. This study
investigated the role of the acute changes in subendo- and
subepicardial LV twist for the prediction of mid-term benefi-
cial effects of CRT.

A total of 84 heart failure patients scheduled for CRT were re-
cruited. All patients underwent echocardiography prior to, with-
in 48 hours after CRT implantation, and at 6 months follow-up.
The assessment of LV volumes, ejection fraction (EF) and me-
chanical dyssynchrony (SDI) was performed with real-time 3D
echocardiography. The assessment of subendo- and subepicar-
dial LV twist was performed with 2D speckle-tracking echocar-
diography. Favorable outcome was defined by the occurrence
of reduction =15% in LV end-systolic volume associated to im-
provement =1 in NYHA functional class at 6 months follow-up.
At 6 months follow-up, 53% of the patients showed a favorable
outcome. Ischemic etiology for heart failure, baseline SDI, im-
mediate improvement in LVEF, immediate improvement in SDI,
and immediate improvement in subendo- and subepicardial LV
twist were significantly related to favorable outcome. However,
at multivariable logistic regression analysis, only the immedi-
ate improvement of subepicardial LV twist was independently
related to favorable outcome (odds ratio=2.31, 95%Cl=1.29-
4.15, p=0.005). Furthermore, the immediate improvement of
subepicardial LV twist had incremental value over established
parameters. In conclusion, the immediate improvement in
subepicardial LV twist (but not subendocardial LV twist) is in-
dependently related to favorable outcome after CRT.



Effect of cardiac resynchronization therapy on subendo- and subepicardial left ventricular twist mechanics 75

INTRODUCTION

Recent advances in speckle-tracking echocardiography analysis have permitted to
characterize subendo- and subepicardial left ventricular (LV) twist."® The aim of the
present study was to investigate the changes induced by cardiac resynchronization
therapy (CRT)”9 on the rotational mechanics detected with speckle-tracking echocar-
diography. Specifically, the role of the acute changes in subendo- and subepicardial LV
twist for the prediction of mid-term beneficial effects of CRT (LV reverse remodeling
associated with clinical improvement at 6 months follow-up), was explored over the
classical parameters including mechanical LV dyssynchrony and LV ejection fraction
(EF).

METHODS

A total of 106 consecutive heart failure patients scheduled for CRT were included.
According to current guidelines, the inclusion criteria were: New York Heart Associa-
tion (NYHA) functional class IlI-1V, sinus rhythm, LVEF <35% and QRS duration =120
ms. Etiology of heart failure was considered ischemic in the presence of significant
coronary artery disease (>50% stenosis in =1 major epicardial coronary artery) on
coronary angiography and/or a history of myocardial infarction or revascularization.

All patients underwent complete baseline clinical evaluation, 12-lead surface
electrocardiogram and transthoracic echocardiography prior to and within 48 hours
after CRT device implantation. Global measures of LV performance were evalu-
ated with real-time 3-dimensional (3D) echocardiography and 2-dimensional (2D)
speckle tracking. The assessment of LV volumes, ejection fraction and mechanical
dyssynchrony was performed with real-time 3D echocardiography. The assessment
of subendo- and subepicardial LV twist was performed with 2D speckle-tracking. In
addition, the clinical and echocardiographic evaluation was repeated 6 months after
CRT implantation. Favorable outcome was defined by the occurrence of LV reverse
remodeling (reduction =15% in LV end-systolic volume) associated with clinical im-
provement (=1 NYHA functional class) at 6 months follow-up. Finally, the variables
related to favorable outcome were investigated and the role of the newest rotational
parameters over the established parameters was explored.

All patients were imaged in left lateral decubitus position using a commercially
available system (iE33, Philips Medical Systems, Bothell, Washington) equipped with
an X3, fully sampled matrix transducer. Apical full-volume data sets were obtained
at a frame rate of 20-35 frames/sec and quantitative analysis was performed off-
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line using a semiautomated contour tracing algorithm (Q-Lab, version 6.0, Philips
Medical Systems), as previously described.’' LV volumes and ejection fraction
were measured. In addition, the systolic dyssynchrony index (SDI) was obtained as
marker of global LV dyssynchrony, as previously reported.'

Two-dimensional gray-scale harmonic images were obtained in the left lateral
decubitus position using a commercially available ultrasound system (iE33, Philips
Medical Systems, Bothell, Washington) equipped with a broadband Ss-1 transducer.
Parasternal short-axis images were acquired at 2 different levels: 1) basal level,
identified by the mitral valve; 2) apical level, defined as the smallest cavity achiev-
able distally to the papillary muscles (just proximal to the level with end-systolic
luminal obliteration), moving the probe down and slightly laterally. Patients without
appropriate apical level were excluded from the study. Frame rate ranged from 55
to 9o frame/s and 3 cardiac cycles for each parasternal short-axis level were stored
in cine-loop format for the off-line analysis (Q-Lab, version 6.0, Philips Medical
Systems).

In the current study, 2D speckle-tracking analysis (Q-Lab, version 6.0, Philips
Medical Systems) was performed by placing manually several small kernel regions
in the subendo- and subepicardial border on an end-diastolic frame. Then, the
software tracked the 2 borders frame by frame and the tracking could be adjusted
manually, if needed.

The 2D speckle-tracking software calculates LV rotation from the apical and basal
short-axis images as the average angular displacement of the 6 standard segments
referring to the ventricular centroid, frame by frame. Counterclockwise rotation was
marked as positive value and clockwise rotation as negative value when viewed from
the LV apex. LV twist was defined as the net difference (in degrees) of apical and
basal rotation at isochronal time points. For the calculation of LV twist, averaged
apical and basal rotation data were exported to a spreadsheet program (Excel 2003;
Microsoft Corporation, Redmond, Washington). The following measurements were
derived both for subendo- and subepicardial layers: peak apical and basal rotation,
peak LV twist.

All patients received a biventricular pacemaker with cardioverter-defibrillator func-
tion (Contak Renewal 4RF, Boston Scientific St. Paul, Minnesota; or InSync Sentry,
Medtronic Inc. Minneapolis, Minnesota; Lumax 340 HF-T, Biotronik, Berlin). The
right atrial and ventricular leads were positioned conventionally. All LV leads were
implanted transvenously, and positioned preferably in a (postero-)lateral vein. A
coronary sinus venogram was obtained using a balloon catheter, followed by the
insertion of the LV pacing lead. An 8-F guiding catheter was used to place the LV
lead (Easytrak, Boston Scientific, or Attain-SD, Medtronic, or Corox OTW Biotronik)
in the coronary sinus.
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All continuous variables are presented as mean + SD. Categorical data are pre-
sented as numbers and percentages. Unpaired T-test was used to compare baseline,
immediately after CRT and 6 months follow-up parameters between patients with
vs. without favorable outcome. Chi-squared test was used to compare categorical
variables between patients with and without favorable outcome. Paired T-test was
used to compare baseline and 6 months follow-up data in each group of patients.
In order to identify variables related to favorable outcome at 6 months follow-up,
uni- and multivariable logistic regression analysis were performed including clinical
and echocardiographic characteristics of the patients at baseline and immediately
after CRT. Only significant (p <0.05) univariable factors were entered as covariates
in the multivariable analysis using backward selection model. Finally, the incre-
mental value of the newest rotational parameters (subendo- and subepicardial LV
twist) over other variables was assessed by calculating the global chi-square test for
each model. All statistical tests were 2-sided, and a p value <0.05 was considered
significant. A statistical software program SPSS 16.0 (SPSS Inc, Chicago, IL, USA)
was used for statistical analysis.

RESULTS

A total of 22 of 106 (21%) patients were excluded because the image quality did
not allow reliable analysis. Therefore, the overall patient population consisted of 84
patients. Of the 84 heart failure patients enrolled, 4 did not complete the 6 months
follow-up; 1 patients died of worsening heart failure, 1 had LV pacing switched off due
to intolerable phrenic stimulation, and 2 were lost to follow-up.

Baseline characteristics of the overall patient population are listed in Table 1. The
mean age was 65 + g years, and all the patients had dilated LV with poor LV func-
tion (mean LVEF 26 + 5%). In addition, the LV rotational parameters were severely
reduced in the subendo- and subepicardial layers (peak subendo- and subepicardial
LV twist were 4.2 + 2.9° and 2.3 = 1.8°, respectively).

At 6 months follow-up, 42 of 80 (53%) patients showed a favorable outcome (LV
reverse remodeling associated to clinical improvement at 6 months follow-up).

The baseline parameters of the patients with and without favorable outcome (LV
reverse remodeling associated with clinical improvement at 6 months follow-up)
are reported in Table 2. The patients with favorable outcome had less frequently
ischemic etiology of heart failure (p = 0.025). Both groups of patients showed
comparable LV volumes and ejection fraction. However, the baseline SDI was sig-
nificantly larger in the group of patients with favorable outcome (8.1 £ 2.3% vs. 6.4



78  Chapters

Table 1. Baseline characteristics of the overall patient population

Variable Heart failure patients
(n=84)
Age (years) 65+9
Male/female 55/29
Medication
ACE Inhibitors 76 (91%)
B-blockers 71 (85%)
Diuretics and/or spironolactone 71 (85%)

Etiology of the heart failure

Ischemic 44 (52%)

Non-ischemic 40 (48%)
NYHA functional class IlI/1V, n 81/3
QRS duration (ms) 151+ 29
LV end-diastolic volume (ml) 200+ 61
LV lead positioned in postero-lateral vein 80 (95%)
LV end-systolic volume (ml) 147 £ 50
LV ejection fraction (%) 26+5
Systolic Dyssynchrony Index (%) 73+2.1
Peak subendocardial apical rotation (°) 25+2.1
Peak subendocardial basal rotation (°) 25+2.1
Peak subendocardial LV twist (°) 42+£29
Peak subepicardial apical (°) 1.5+ 1.4
Peak subepicardial basal rotation (°) -1.7+£1.4
Peak subepicardial LV twist (°) 23+1.8

ACE: angiotensin-converting enzyme; LV: left ventricular; NYHA: New York Heart Association

£ 1.4%, p <0.001). In addition, no differences in baseline subendocardial LV twist
(4.0 £3.1° vs. 4.5 £ 2.7°, p = 0.45) or subepicardial LV twist (1.9 £ 1.8° vs. 2.6 + 1.8,
p = 0.10) were observed.

Immediately after CRT, the group of patients with favorable outcome showed a
significantly larger improvement in LVEF and SDI than patients without favorable
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Table 2. Patients with vs. without favorable outcome (left ventricular reverse remodeling associated to clinical
improvement at 6 months follow-up)

Patients with Patients without P value
favorable outcome favorable outcome
(n=42) (n=38)

Ischemic etiology, n (%) 16 (38) 24 (63) 0.025
QRS duration (ms) 152 + 27 151+ 31 0.87
NYHA functional class I/I1/11I/IV, n
Baseline 0/0/41/1 0/0/36/2 0.50
6 months follow-up 10/31/1/0% 2/8/26/2* <0.001
LV end systolic-volume (ml)
Baseline 150 + 47 143 + 54 0.50
6 months follow-up 107 + 39* 149 + 54 <0.001
LV ejection fraction (%)
Baseline 26+6 26+5 0.97
6 months follow-up 38 £ 7% 27 +7 <0.001
Systolic Dyssynchrony Index (%)
Baseline 8.1+23 6.4+ 1.4 <0.001
6 months follow-up 5.1+ 1.8* 8.0+3.8 <0.001
Peak subendocardial LV twist (°)
Baseline 4.0+3.1 45+2.7 0.45
6 months follow-up 5.7 £2.9% 3.8+28 0.004
Peak subepicardial LV twist (°)
Baseline 19+18 26+18 0.10
6 months follow-up 4.0+2.1% 1.9+ 1.87 <0.001

*:p <0.01 vs. baseline; {1 p <0.05 vs. baseline
LV: left ventricular; NYHA: New York Heart Association

outcome (delta [A] LVEF was 8 + 6% vs. 3 + 4%, p <0.001 and A SDI was -2.6 + 2.8%
vs. -0.3 £ 2.1%, p <0.001; Figure 1 A, B). Similarly, the improvement in subendo- and
subepicardial LV twist immediately after CRT was more pronounced in patients with
favorable outcome (A subendocardial LV twist was 1.9 £ 2.8° vs. 0.3 £ 2.9°, p=0.012
and 2.1 £ 2.1° vs. -0.2 £ 1.7°, p <0.007; Figure 1 C, D).
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Figure 1. Changes immediately after cardiac resynchronization therapy (CRT) in left ventricular ejection
fraction (LVEF; Panel A), systolic dyssynchrony index (SDI; Panel B), subendocardial left ventricular (LV) twist
(Panel C) and subepicardial LV twist (Panel D) in patients with favorable outcome (LV reverse remodeling
associated to clinical improvement at 6 months follow-up, white bars) and without favorable outcome (no LV
reverse remodeling and clinical improvement at 6 months follow-up, black bars).
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Figure 2. Example of patient with LV reverse remodeling associated to clinical improvement at 6 months
follow-up. Subendo- and subepicardial left ventricular (LV) twist were both significantly increased at 6
months follow-up and a parallel reduction of systolic dyssynchrony index (SDI) was observed between
baseline and 6 months follow-up.
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Finally, at 6 months follow-up, a further improvement in subendo- and subepicar-
dial LV twist was observed in patients showing favorable outcome (from 4.0 + 3.1°
to 5.7 £ 2.9°, p = 0.002 for subendocardial LV twist and from 1.9 + 1.8° to 4.0 + 2.1°,
p <0.001 for subepicardial LV twist; Table 2). In Figure 2 an example of a patient
with favorable outcome (LV reverse remodeling associated to clinical improvement
at 6 months follow-up) is shown. In contrast, patients without favorable outcome
showed a trend towards a deterioration of subendocardial LV twist (from 4.5 + 2.7°
t0 3.8 £+ 2.8°, p =0.11; Table 2), and a significant worsening of subepicardial LV twist,
(from 2.6 +1.8° t0 1.9 + 1.8°, p = 0.037; Table 2).

At univariable logistic regression, ischemic etiology for heart failure, baseline SDI,
immediate improvement in LVEF, immediate improvement in SDI, and immediate
improvement in subendo- and subepicardial LV twist were significantly related to
favorable outcome. At multivariable logistic regression analysis, only the immedi-
ate improvement of subepicardial LV twist was independently related to favorable
outcome at 6 months (odds ratio = 2.31, 95%Cl = 1.29-4.15, p = 0.005; Table 3). In

Table 3. Variables related to favorable outcome (left ventricular reverse remodeling associated to clinical
improvement at 6 months follow-up)

Univariable analysis

Multivariable analysis

Dependent variable: favorable outcome OR (95% Cl)  p value OR (95% Cl)  p value
Baseline independent variables:

Age (years) 0.98 (0.93-1.03)  0.36

Male gender 0.52 (0.20-1.36)  0.18

Ischemic etiology 0.36 (0.14-0.89)  0.027 0.50 (0.16-1.55) ~ 0.23
LV ejection fraction (%) 1.00 (0.92-1.01)  0.97

Systolic Dyssynchrony Index (%) 1.75 (1.26-2.43)  0.001 1.42 (0.96-2.01)  0.078
Peak subendocardial LV twist (°) 0.94 (0.81-1.02)  0.45

PeaK subepicardial LV twist (°) 0.81(0.62-1.05)  0.11

Immediately after CRT independent variables:

A LV ejection fraction (%) 1.25 (1.11-1.40)  <0.001  1.02 (0.87-1.21)  0.77
A Systolic Dyssynchrony Index (%) 0.68 (0.55-0.85)  0.001

A Subendocardial LV twist (°) 1.23 (1.04-1.47)  0.017 0.82 (0.63-1.08)  0.16
A Subepicardial LV twist (°) 2.21(1.50-3.27) <0.001 2.31 (1.29-4.15)  0.005

Cl: confidence intervals; CRT: cardiac resynchronization therapy; LV: left ventricular; OR: odds ratio; A:
immediate change (immediately after CRT value — baseline value)
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Figure 3. Incremental value of the variables detected immediately after CRT over the baseline variables.
Bar graph illustrating the incremental value (depicted by chi-square value on the Y-axis) of the immediate
improvement in left ventricular (LV) ejection fraction (LVEF) after cardiac resynchronization therapy (CRT)
and of the immediate improvement in subendo- and subepicardial LV twist after CRT for the prediction of
favorable outcome (LV reverse remodeling associated to clinical improvement at 6 months follow-up). The
addition of the immediate improvement in LVEF provides incremental prognostic information to baseline
variables (Model 2). Conversely, the addition of the immediate improvement of subendocardial LV twist does
not add further incremental prognostic value (Model 3). Finally, the addition of the immediate improvement
of subepicardial LV twist provides significant incremental prognostic information over baseline variables and
the immediate improvement in LVEF (Model 4).

Model 1: baseline variables (ischemic etiology and systolic dyssynchrony index).

Model 2: model 1 + immediate improvement in LVEF.

Model 3: model 2 + immediate improvement in subendocardial LV twist.

Model 4: model 3 + immediate improvement in subepicardial LV twist.

particular, the immediate improvement of subepicardial LV twist had incremental
prognostic value over baseline SDI and the immediate improvement of LVEF. In
contrast, the immediate improvement of subendocardial LV twist did not provide
any significant incremental prognostic value over baseline SDI and the immediate
changes of LVEF (Figure 3).

The current study provides novel insights in the effects of CRT on LV mechanics by
demonstrating that the immediate improvement of subepicardial LV twist after CRT
was independently related to favorable outcome at 6 months follow-up. Particularly,
the immediate improvement of subepicardial LV twist provided incremental prognos-
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tic value over immediate improvement of LVEF, whereas the immediate improvement
of subendocardial LV twist did not.

The contraction of the subepicardial fibers rotates the LV apex in the counterclock-
wise direction and the LV base in the clockwise direction.” Conversely, shortening of
the subendocardial fibers rotates the LV apex and LV base in clockwise and counter-
clockwise directions, respectively. The larger radius of rotation for the subepicardial
layer results in the subepicardial fibers having a mechanical advantage in dominat-
ing the overall direction of rotation.™

Advanced systolic heart failure patients have extensive LV remodeling with
severely deteriorated subendo- and subepicardial LV twist, partially related to the
LV dilatation and distortion of the spiral architecture of the myofibers and to the
altered LV electromechanical activation.> 47 Recently, novel speckle-tracking echo-
cardiography analysis has been introduced that permits exploration of subendo- and
subepicardial LV twist,> 4 and this approach was applied in the current study. A
typical patient population was included, characterized by end-stage systolic heart
failure, dilated LV and prolonged QRS duration. The patients showed pronounced
impairment of rotational parameters, and particularly subendo- and subepicardial
LV twist were severely reduced (4.2 + 2.9° and 2.3 + 1.8°, respectively) underscoring
transmural myocardial dysfunction.

It has recently been shown that CRT can increase global LV twist by restoring
a more physiological LV electromechanical activation in advanced heart failure
patients.”"7 The current findings extend these results by exploring the LV twist in the
subendo- and subepicardial layers. In patients with favorable 6 months outcome
after CRT (defined as improved symptoms and reverse remodeling), an acute im-
provement of LV twist was observed in both layers, possibly related to a (partially)
restored LV electromechanical activation. These patients showed a further improve-
ment of LV twist in both layers at 6 months follow-up, probably related to LV reverse
remodeling with subsequent partial restoration of the spiral architecture of the LV
myofibers. It was particularly interesting to note that the immediate improvement
in subepicardial LV twist was an independent predictor of favorable outcome at 6
months follow-up, whereas the immediate improvement of subendocardial LV twist
was not. Moreover, the immediate improvement in subepicardial LV twist added
incremental value over the classical parameters including mechanical LV dyssyn-
chrony and LVEF. This observation underscores that the beneficial effects of CRT
at 6 months follow-up may mostly rely on the acute improvement in subepicardial
LV twist. Several reasons may explain this important finding. First, subepicardial
LV twist may reflect the positive effects of CRT better than subendocardial LV twist,
because the subepicardial layer is the major determinant of LV twist. Second, LV
pacing in CRT is applied from the epicardial surface which may be more closely
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related to mechanical changes in the subepicardial than the subendocardial LV layer.
Finally, the immediate changes in subepicardial LV twist is more strongly related to
LV energetics and LV dP/dt max than LVEF;® therefore, immediate improvement in
subepicardial LV twist may identify patients who have better LV energetics after CRT
and most likely these patients will improve clinical status and reduce LV volumes.™

Accordingly, immediate assessment of changes in rotational mechanics of the
subepicardial layer after CRT implantation may be useful to predict a favorable
mid-term outcome, although the long-term prognostic value remains to be dem-
onstrated.

Speckle-tracking echocardiography provides reliable values of LV apical rotation,
but only when acquisition of the short axis view close to the real LV apex is possible4;
for this reason, patients without adequate apical acoustic window were excluded in
the current study. Moreover, motion throughout the planes of the myocardial re-
gions during the cardiac cycle may reduce the accuracy of speckle tracking analysis
in particular at the basal level where this motion is more pronounced.
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ABSTRACT

Background.

Left ventricular (LV) fibrosis is important for the response to
cardiac resynchronization therapy (CRT). Calibrated integrat-
ed backscatter (IB) derived by 2D-echocardiography quantifies
myocardial ultrasound reflectivity which may provide a surro-
gate of LV fibrosis. The aim of the study was first to investigate
the relation of myocardial ultrasound reflectivity assessed with
calibrated IB on CRT-response; second to explore the “myo-
cardial ultrasound reflectivity-CRT-response” relation in isch-
emic and non-ischemic heart failure (HF) patients.

Methods and Results. 159 HF patients referred for CRT underwent an exten-

sive echocardiographic evaluation at baseline and at 6-month
follow-up. LV dyssynchrony was derived from speckle-tracking
analysis. Calibrated IB was obtained from the parasternal long-
axis view. The mean value of calibrated IB of the antero-septal
and posterior wall was used to estimate myocardial ultrasound
reflectivity. CRT-response was defined as reduction =15% of
LV end-systolic volume. At baseline LV dyssynchrony was sig-
nificantly larger in responders as compared to non-respond-
ers (188+96ms vs. 115£68ms, p<0.001) and CRT-responders
showed less myocardial ultrasound reflectivity as compared
to non-responders (-20.8+3.0dB vs. -17.0+3.0dB, p<0.001). In
multivariable logistic regression analysis independent predic-
tors for CRT-response were LV dyssynchrony, renal function
and myocardial ultrasound reflectivity. Importantly, myocar-
dial ultrasound reflectivity provided an incremental value to
CRT-response (Chi-square change=40, p<0.001). Considering
ischemic HF patients, the only independent predictor of CRT-
response was myocardial ultrasound reflectivity whereas in
non-ischemic HF patients independent predictors of LV re-
verse remodeling were myocardial ultrasound reflectivity, LV
dyssynchrony and renal function.
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Conclusions.  Assessment of myocardial ultrasound reflectivity is important
in the prediction of CRT-response in ischemic and non-isch-
emic patients.

INTRODUCTION

Landmark randomized clinical trials have shown the benefits of cardiac resynchroniza-
tion therapy (CRT) on heart failure (HF) symptoms, left ventricular (LV) function and
survival."? Thus far, despite current selection criteria,? up to 30% of the patients does
not show clinical response to CRT. Furthermore, considering LV reverse remodeling as
end-point of the treatment, non-response rate is even higher (40-45%).4

Among different reasons proposed to explain the lack of response to CRT, the
etiology of HF remains still controversial. In the CARE-HF trial, ischemic HF pa-

tients showed a reduction in LV volumes or improvement in LV function to a lesser
degree than non-ischemic HF patients.>® Previous data suggest that the extent and
location of LV fibrosis, strongly influence response to CRT in patients with ischemic
etiology of HF.7'2 The presence of LV fibrosis has been also demonstrated in mixed
population of ischemic and non-ischemic HF patients.” However, particularly in
non-ischemic HF patients, little is known about the influence of the LV fibrosis on
CRT response. At present, contrast-enhanced cardiac magnetic resonance (CMR)
is considered the gold standard to detect LV fibrosis,* but its use is limited by
low availability.” Two-dimensional (2D) echocardiography imaging is more widely
available than contrast-enhanced CMR and, ultrasonic integrated backscatter (IB)
derived by 2D echocardiography provides information on myocardial ultrasound
reflectivity which may be a surrogate for fibrosis of the insonified tissue.’®'” Recent
studies demonstrated the use of this technique in different groups of patients to
characterize myocardial ultrasound reflectivity.’®> The echocardiographic assess-
ment of myocardial ultrasound reflectivity along with the evaluation of LV mechani-
cal dyssynchrony may provide more comprehensive and valuable information to
select candidates to CRT. In the current study calibrated IB was used to quantify
myocardial ultrasound reflectivity in HF candidates for CRT. The aim of the study
was twofold: first to investigate the influence of myocardial ultrasound reflectivity on
CRT-response in general; second to explore the “myocardial ultrasound reflectivity
-CRT response” relation specifically in ischemic and non-ischemic HF patients.
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A total of 184 consecutive HF patients scheduled for CRT were prospectively included.
According to current guidelines, the inclusion criteria were: New York Heart Associa-
tion (NYHA) functional class Il1-1V, sinus rhythm, LV ejection fraction (LVEF)<35% and
QRS duration=120 ms.3 Etiology of HF was considered ischemic in the presence of sig-
nificant coronary artery disease (>50% stenosis in =1 major epicardial coronary artery)
on coronary angiography and/or a history of myocardial infarction or revascularization.

All patients underwent a clinical and echocardiographic evaluation at baseline
and 6 months after CRT assessing NYHA functional class, hemoglobin and renal
function,® LV volumes and LVEF. Finally, the extent of myocardial ultrasound
reflectivity was estimated as the mean of calibrated IB of the antero-septal and
posterior walls in order to: 1. determine the role of myocardial ultrasound reflectivity
on CRT-response; 2. study the relation between myocardial ultrasound reflectivity
and CRT-response in ischemic and non-ischemic HF patients.

All patients were imaged in the left lateral decubitus position using a commercially
available system (Vingmed Vivid 7, General Electric-Vingmed, Milwakee, Wisconsin,
USA). Standard 2D images were obtained using a 3.5-MHz transducer and, digitally
stored in cine-loop format; the analysis was performed offline using EchoPAC version
7.0.0 (General Electric-Vingmed).

From the standard apical views (4- and 2-chamber) LV volumes and LVEF were
calculated according to the American Society of Echocardiography guidelines.?> At 6
months follow-up, patients were classified as echocardiographic responders based
on a reduction =15% of LV end-systolic volume (LVESV).4

In the current study 2 types of mechanical dyssycnhrony were assessed: the inter-
ventricular mechanical dyssynchrony and the intra-LV mechanical dyssynchrony (LV
dyssynchrony). Interventricular mechanical dyssynchrony was quantified using the
interventricular mechanical dyssynchrony index.? LV dyssynchrony was assessed us-
ing speckle-tracking echocardiography.” LV dyssynchrony was derived from the radial
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strain curves obtained at the 2D gray scale images of the mid-ventricular short-axis
(frame rate ranged from 45 to 100 frame/s). As previously described, LV dyssynchrony
was defined as the time to peak radial strain difference between the antero-septal and

posterior segments.*

Calibrated integrated backscatter

Calibrated IB is a parameter based on gray-scale 2D images which evaluates myocar-
dial ultrasound reflectivity. In the heart, the pericardium is the anatomic structure with
the highest content of fibrosis and with the highest ultrasound reflectivity; whereas
blood pool has the lowest ultrasound reflectivity since no fibrous tissue exists. The
myocardium shows an intermediate ultrasound reflectivity and this reflectivity may
increase together with the amount of fibrosis.'® ®2° Gray-scale 2D images were ob-
tained at parasternal long-axis view, with frame rates between 8o and 120 frames/s,
depending on the sector width, and 3 cardiac cycles were stored in cine-loop format
for the offline analysis (EchoPAC version 7.0.0, General Electric-Vingmed). A fixed
9x9-mm region of interest was positioned in the mid-myocardium of the antero-septal

and posterior walls of the LV and a fixed 2x3-mm region of interest was positioned in
the pericardium. A measure of myocardial ultrasound reflectivity or tissue density was
obtained with calibrated IB by subtracting pericardial IB intensity from myocardial
IB intensity of the LV antero-septal and LV posterior walls. The measurements of
calibrated IB were performed at a fixed point in the cardiac cycle (peak of the QRS
complex) and expressed in decibel (dB)."®¥2° The mean value of calibrated IB of the
LV antero-septal and posterior walls was calculated to indicate the myocardial ultra-
sound reflectivity (Figure 1)."

CRT implantation

All patients received a biventricular pacemaker with cardioverter-defibrillator function
(Contak Renewal, Cognis, Boston Scientific St. Paul, Minnesota; or InSync Sentry,
Consulta, Medtronic Inc. Minneapolis, Minnesota; Lumax 340 HF-T, Biotronik,
Berlin). The right atrial and ventricular leads were positioned conventionally. All LV
leads were implanted transvenously, and placed preferably in a (postero-)lateral vein.
A coronary sinus venogram was obtained using a balloon catheter, followed by the
insertion of the LV pacing lead. An 8-F guiding catheter was used to place the LV lead
(Easytrak, Boston Scientific, or Attain-SD, Medtronic, or Corox OTW Biotronik) in the
coronary sinus.
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<—— Peak QRS

IBS values(dB) -17.6

Figure 1: Example of assessment of LV fibrosis in the antero-septal and posterior walls with calibrated |B.

A fixed gxg-pixel region of interest was positioned in the mid-myocardium of the antero-septal (ASW) and
posterior wall (PW) and a fixed 2x3-pixel region of interest was positioned in the pericardium. In this patient
example, calibrated IB for the ASW is calculated by subtracting the pericardial IB intensity (-1.1dB) from

the ASW IB intensity (-17.6dB), and the calibrated IB for the PW is calculated by subtracting the pericardial
IB intensity (-1.1dB) from the PW IB intensity (-21.4dB). This results in calibrated 1B of the ASW and PW of
-16.5dB and -20.3dB, respectively. Accordingly, the mean calibrated 1B was -18.4dB.

Continuous variables are presented as mean + standard deviation. Categorical data
are presented as numbers and percentages. Unpaired T test was used to compare
continuous variables between HF patients with vs. without 6 months follow-up, re-
sponders vs. non-responders, and ischemic vs. non-ischemic HF patients. Paired T
test was used to compare baseline and 6 months follow-up data either in responders
and non-responders. Chi-square test was used to compare categorical variables. To
determine the reproducibility of calibrated 1B, 20 HF patients were randomly selected.
For each of the selected patients, the measurements of calibrated 1B were repeated
by the same observer in a blinded-fashion and at a separate time (1 week later). To
evaluate interobserver variability, a second independent observer re-analyzed the
same dataset.

Intra- and inter-observer variability were assessed using intraclass correlation
co-efficients.
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Linear regression analysis was performed to assess the correlation between the
relative change of LVESV and calibrated IB in the overall population, in ischemic and
non-ischemic HF patients.

In order to identify variables related to a positive response to CRT, uni- and mul-
tivariable logistic regression analyses were performed including baseline clinical
(age, gender, etiology, NYHA functional class, QRS duration, renal function and
hemoglobin) and baseline echocardiographic (LVESV, LVEF, LV dyssynchrony, cali-
brated IB) characteristics of the patients. Only variables with p<o.10 in univariable
analysis were entered as covariates in the multivariable model. The multivariable
logistic regression analysis was performed using a forward selection method with
entry p value <o.05. Model discrimination was assessed using c-statistic and model
calibration using Hosmer-Lemeshow statistic. Odds ratio (OR) and 95% confidence
intervals (Cl) were calculated. To increase clinical utility, OR and 95%Cl of continu-
ous variables were reported as per 1 year increase in age, per 1oms increase in QRS
width at baseline, per 3oml/min increase in estimated glomerular filtration rate,
per immol/ | increase in hemoglobin, per soml increase in LVESV, per 5% increase
in LVEF, per soms increase in LV dyssynchrony, and per 5dB increase in calibrated
IB. The incremental value of myocardial ultrasound reflectivity over other variables

was assessed by calculating the global chi-square test for each model. In order to
identify variables related to a positive response to CRT in the subgroups of patients
with ischemic and non-ischemic etiology of heart failure, uni- and multivariable
logistic regression analyses were performed including the same baseline variables
as indicated above, using the same inclusion criteria for the multivariable logistic
regression analysis.

All statistical tests were 2-sided, and a p value<o.o5 was considered significant.
The statistical software program SPSS 16.0 (SPSS Inc, Chicago, IL, USA) was used
for statistical analysis.

The authors had full access to the data and take responsibility for its integrity. All
authors have read and agree to the manuscript as written.

RESULTS

In 13(7%) of 184 patients, calibrated IB analysis was not feasible due to suboptimal
gray-scale 2D images with poor differentiation between myocardium and pericardium,
and these patients were excluded from the analysis. Furthermore, of the 171 patients
included, 12(7%) did not complete the 6 months follow-up; 4 patients died, 2 patients
had LV pacing switched off due to intolerable phrenic stimulation and 6 patients were
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lost to follow-up. Therefore, baseline and 6 months follow-up data were available for
159 patients.

The general characteristics of the overall patient population are summarized in Table
1.

The mean age was 66+10 years and 132 patients were male. Importantly, 58%
of the patients had ischemic etiology of HF; the mean LV end-diastolic volume
(LVEDV) was 218+81ml and the mean LVEF was 25+7%. No significant differences
were observed between HF patients with and without 6 months follow-up data.

The mean myocardial ultrasound reflectivity of the LV at baseline quantified with
calibrated IB was -19.2+3.7dB. The intra- and inter-observer agreements for calibrated
IB were 0.91 and 0.92, respectively.

In addition, myocardial ultrasound reflectivity was not related to QRS duration
(r=0.09, p=0.24), whereas a weak but significant inverse relation between myocar-
dial ultrasound reflectivity and renal function (r=-0.17, p=0.039) was observed.

Table 2 shows the baseline clinical characteristics of CRT responders and non-
responders. There were no differences in clinical characteristics, although non-
responders showed a trend to higher prevalence of ischemic etiology (p=0.10).
Conversely, QRS duration, estimated glomerular filtration rate and hemoglobin were
higher in responders as compared to non-responders. There were no differences
in baseline LV volumes and LVEF for responders and non-responders (Table 3). LV
dyssynchrony was significantly larger in responders as compared to non-responders
(188+£96ms vs. 115£68ms, p<0.001), whereas only a trend towards a larger interven-
tricular dyssynchrony in responders as compared to non-responders was observed
(41£23 ms vs. 35+33ms, p=0.17). Finally, CRT responders showed lower myocardial
ultrasound reflectivity as compared to non-responders (-20.8+3.0dB in responders vs.
-17.0£3.0dB in non-responders, p<0.001; Table 3).
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Table 1. Baseline characteristics of heart failure (HF) patients.

Overall HF  HF patients HF patients  HF patients with
patients with 6 without 6 vs. without 6
(n=171) months months months follow-up
follow-up follow-up p value
(n=159) (n=12)

Age (years) 66+10 6610 66+10 0.99
Gender (male/female) 132/39 123/36 9/3 0.85 (df=1)
NYHA class (lll/IV) 157/14 147/12 10/2 0.27 (df=1)
QRS duration (ms) 154+32 154+32 150+20 0.63
Estimated glomerular filtration rate 70.9+33.2 70.9+33.2 70.8+33.0 0.99
(ml/min)
Hemoglobin (mmol/l) 8.2£0.9 8.2+0.9 8.3£0.8 0.64
Etiology, n(%)

Ischemic 99(58) 93(58) 6(50) 0.57 (df=1)

Non-ischemic 72(42) 66(42) 6(50)
Medication, n(%)

ACE Inhibitors 154(90) 144(97) 10(83) 0.69 (df=1)

B-blockers 149(87) 137(86) 12(100) 0.35 (df=1)

Diuretics and/or

Spironolactone 145(85) 134(84) 11(92) 0.74 (df=1)
(Postero-)lateral LV lead, n(%) 161(94) 151(95) 10(83) 0.28
LVEDV (ml) 218+81 21881 240+86 0.35
LVESV (ml) 167+71 167+71 190+70 0.28
LVEF (%) 25+7 25+7 2216 0.12
Interventricular dyssynchrony (ms) 39+28 33+29 33£17 0.96
LV dyssynchrony (ms) 157+92 157+92 15581 0.96
Calibrated IB (dB) -19.2+ 3.7 -19.2+ 3.7 -18.8+3.0 0.70

dB: decibels, df: degree of freedom; IB: integrated backscatter LVEDV: left ventricular end-diastolic volume,
LVEF: left ventricular ejection fraction; LVESV: left ventricular end-systolic volume, NYHA: New York Heart

Association.

At 6 months follow-up, only responders showed a significant decrease in LVEDV
and LVESV (by definition), with a significant increase in LVEF (Table 3). In addition,
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Table 2. Clinical characteristics of responders vs. non-responders at baseline.

Responders Non-responders p value
(n=91) (n=68)
Age (years) 65+9 67+11 0.43
Gender (male/female) 71/20 52/16 0.85 (df=1)
Medication, n(%)

ACE Inhibitors 83(91) 61(90) 0.95 (df=1)

B-blockers 78(86) 59(87) 0.96 (df=1)

Diuretics and/or

Spironolactone 77(85) 57(84) 0.96 (df=1)
Etiology, n(%)

Ischemic 48(53) 45(66)

Non-ischemic 43(47) 23(44) 0.10 (df=1)
QRS duration (ms) 159+32 148+32 0.028
Estimated glomerular filtration rate (ml/min) 76+31 64+35 0.023
Hemoglobin (mmol/l) 8.4+0.9 8.0£0.9 0.040
NYHA class (l11/1V) 85/6 62/6 0.60 (df=1)

Abbreviations see Table 1.

responders revealed a more synchronous LV contraction after 6 months of CRT
whereas in non-responders the LV dyssynchrony remained unchanged (Table 3).

Of note, the relative change in LVESV (delta LVESV %) at 6 months follow-up was
significantly related to calibrated IB (r=0.50, p<0.001; Figure 2A).

At univariable logistic regression, ischemic etiology, QRS duration, estimated glo-
merular filtration rate, hemoglobin, LV dyssynchrony, calibrated IB were significantly
related to LV reverse remodeling at 6 months follow-up (Table 4). At multivariable
logistic regression analysis, the independent predictors of response to CRT were
estimated glomerular filtration rate, LV dyssynchrony and calibrated 1B (Table 4).
Furthermore, calibrated IB had incremental value over LV dyssynchrony and estimated
glomerular filtration rate for prediction of response to CRT (chi-square change=40,
p<o.001, degree of freedom=1).
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Table 3. Standard echocardiographic variables and calibrated IB in responders vs. non-responders at baseline
and 6 months follow-up.

Responders Non-responders p value
(n=91) (n=68) (responders vs.
non-responders)

LVEDV (ml)

Baseline 223+ 81 211+80 0.34

6 months follow-up 186+71%* 212+84 0.045
LVESV (ml)

Baseline 173+72 159+69 0.22

6 months follow-up 123+57* 161+737 0.001

LVEF (%)

Baseline 24+7 26+7 0.058
6 months follow-up 36+8* 26+7 <0.001
LV dyssynchrony (ms)

Baseline 188+96 115 + 68 <0.001
6 months follow-up 80+132* 125 + 121 0.032

Calibrated IB (dB)
Baseline -20.8+3.0 -17.0+3.0 <0.001

6 months follow-up -21.9+3.21 -15.6+3.57 <0.001

*=p<0.001 baseline vs. 6 month follow-up; T =p<0.05 baseline vs. 6 month follow-up.
Abbreviations see Table 1.

Ischemic vs. non-ischemic etiology of heart failure

Of the 159 patients with 6 months follow-up data, 93 patients had ischemic etiology
of HF, whereas 66 had a non-ischemic HF. The baseline clinical characteristics were
not different between patients with ischemic and non-ischemic cardiomyopathy. Con-
versely, patients with ischemic cardiomyopathy had significantly higher LVEF (26+7%
vs. 23+7%, p<0.001) and less LV dyssynchrony (144+92ms vs. 175£90ms, p=0.036)
as compared to patients with non-ischemic cardiomyopathy. In addition, myocardial
ultrasound reflectivity estimated with calibrated IB was higher in patients with isch-
emic as compared to non-ischemic cardiomyopathy (-18.5£3.8dB vs. -20.2+ 3.0dB,
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Figure 2A. Panel A: Relation between the relative change of LVESV at 6 months follow-up (delta LVESV) and
calibrated integrated backscatter (IB) in the overall population. Panel B: Relation between the delta LVESV
in ischemic HF patients and calibrated IB. Panel C: Relation between the delta LVESV in non-ischemic HF
patients and calibrated IB.

p=0.002). Finally, the relationship between the relative change of LVESV at 6 months
follow-up and calibrated IB was stronger in patients with ischemic cardiomyopathy
(r=0.56, p<0.001; Figure 2B) as compared to patients with non-ischemic HF (r=0.35,
p=0.005; Figure 2C).

In the subgroup of patients with ischemic HF, in univariable logistic regression, LVEF,
LV dyssynchrony, calibrated IB were significantly related to LV reverse remodeling at
6 months follow-up (Table 5). In multivariable logistic regression analysis, the only
independent predictor of response to CRT was calibrated IB (Table 5).
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Table 4. Multivariable logistic regression analysis for prediction of response to CRT (defined as reduction in

LVESV=15%)

Dependent variable:
Response to CRT at 6 months follow-up

Univariable analysis

Multivariable analysis

OR (95%Cl)  p value OR (95%Cl)  pvalue
Independent variables
Age (per 1years) 0.98(0.96-1.02) 0.42
Female gender 1.09(0.52-2.31) 0.82
Ischemic etiology 0.58(0.30-1.09) 0.09
NYHA class IV 0.73(0.22-2.37) 0.60
QRS width at baseline (per 10ms) 1.12(1.01-1.24)  0.029
Estimated glomerular filtration rate (per 1.43(1.04-1.96)  0.026 1.93(1.26-2.95)  0.003
30ml/min)
Hemoglobin (per Tmmol/I) 1.46(1.01-2.12)  0.043
LVESV at baseline (per 50ml) 1.15(0.92-1.45) 0.22
LVEF at baseline (per 5%) 0.80(0.63-1.01)  0.060
LV dyssynchrony at baseline (per 50ms) 1.77(1.38-2.28)  <0.001 1.90(1.39-2.59)  <0.001
Calibrated IB (per 5dB) 0.17(0.05-0.24)  <0.001 0.10(0.04-0.25)  <0.001

c-statistic: 0.89

Hosmer and Lemeshow Test: chi-square=9.5, p=0.30 (df=8)

Cl: confidence intervals; CRT: cardiac resynchronization therapy; df: degree of freedom; IB: integrated

backscatter; LV: left ventricular; LVEF: left ventricular ejection fraction; LVESV: left ventricular end-systolic

volume; OR: odds ratio.

Prediction of LV reverse remodeling in non-ischemic etiology

In the subgroup of patients with non-ischemic etiology of HF, in univariable logistic
regression, estimated glomerular filtration rate, LV dyssynchrony and calibrated 1B
were significantly related to LV reverse remodeling at 6 months follow-up (Table 6). In
multivariable logistic regression analysis, these variables were all independent predic-
tors of response to CRT (Table 6).
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Table 5. Univariable and multivariable logistic regression analysis for prediction of response to CRT (defined
as reduction in LVESV=15%) in ischemic heart failure

Dependent variable: Univariable analysis Multivariable analysis
Response to CRT at 6 months follow-up

OR (95%Cl)  p value OR (95%Cl)  pvalue

Independent variables

Age (per 1 years) 0.98(0.94-1.03) 0.45

Female gender 0.68(0.23-2.02) 0.49

QRS width at baseline (per 10ms) 1.13(1.00-1.27)  0.053

Estimated glomerular filtration rate (per 1.30(0.90-1.89) 0.16

30ml/min)

Hemoglobin (per Tmmol/l) 1.57(0.91-2.48) 0.11

LVESV at baseline (per 50ml) 1.21(0.89-1.66) 0.23

LVEF at baseline (per 5%) 0.71(0.51-0.99)  0.041

LV dyssynchrony at baseline (per 50ms) 1.37(1.06-1.78)  0.017

Calibrated IB (per 5dB) 0.07(0.02-0.23)  <0.001 0.07(0.02-0.23)  <0.001

c-statistic: 0.87
Hosmer and Lemeshow Test: chi-square=12.6, p=0.13 (df=8)
Abbreviations as in Table 4

The current study investigated the role of LV fibrosis in the prediction of CRT response
and demonstrated that: 1) myocardial ultrasound reflectivity assessed with calibrated
IB together with LV mechanical dyssynchrony and renal function were the major de-
terminants of LV reverse remodeling after CRT; 2) myocardial ultrasound reflectivity
assessed with calibrated IB provided incremental value over LV mechanical dyssyn-
chrony and renal function for prediction of CRT response; 3) myocardial ultrasound
reflectivity was the only independent predictor of CRT response in patients with isch-
emic HF; 4) myocardial ultrasound reflectivity was also an independent determinant
of CRT response in non-ischemic HF.

Currently, contrast-enhanced CMR provides accurate assessment of the extent of LV
fibrosis with high spatial resolution, but CMR remains limited for daily practice.™ Two-
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Table 6. Univariable and multivariable logistic regression analysis for prediction of response to CRT (defined
as reduction in LVESV=15%) in non-ischemic heart failure

Dependent variable: Univariable analysis Multivariable analysis
Response to CRT at 6 months follow-up

OR (95%Cl)  pvalue OR (95%Cl)  p value

Independent variables

Age (per 1years) 0.99(0.94-1.05) 0.86

Female gender 0.99(0.33-2.95) 0.99

QRS width at baseline (per 10ms) 1.04(0.85-1.28) 0.67

Estimated glomerular filtration rate (per 1.93(1.04-3.56)  0.036 5.76(1.55-21.4)  0.009
30ml/min)

Hemoglobin (per Tmmol/I) 1.29(0.72-2.29) 0.39

LVESV at baseline (per 50ml) 1.03(0.73-1.45) 0.86

LVEF at baseline (per 5%) 1.02(0.70-1.49) 0.87

LV dyssynchrony at baseline (per 50ms) 4.03(1.90-8.58) <0.001 6.94(2.14- 0.001

22.43)

Calibrated IB (per 5dB) 0.20(0.06-0.60)  0.004  0.06(0.01-0.60)  0.017

c-statistic: 0.94
Hosmer and Lemeshow Test: chi-square=2.5, p=0.96 (df=8)
Abbreviations as in Table 4

dimensional echocardiography permits assessment of myocardial ultrasound reflectiv-
ity or tissue density using calibrated IB analysis. The analysis of myocardial reflectivity
with IB relies on the quantification of ultrasonic energy returned to the transducer after
interactions with individual scattering elements within the myocardium.’®>>2 Picano
et al.’® showed a modest but significant relation (r=0.55, p<0.05) between the percent
connective tissue area determined in histologic sections of myocardial biopsies ob-
tained from the LV septum and the ultrasonic reflectivity of the same region of myocar-
dium assessed with 2D echocardiography. Moreover, experimental and clinical studies
demonstrated the usefulness of this technique for the detection of subtle alterations
of myocardial function and structure.”2°2 [n an animal model, Perez et al.”” found that
myocardial areas with increased IB corresponded histologically to discrete fibrocalcific
lesions whereas areas with normal IB corresponded to normal myocardium.

The present study explored the value of calibrated IB to estimate myocardial ultra-
sound reflectivity as a surrogate of LV fibrosis in HF patients who are candidates for
CRT. No significant relation was found between myocardial ultrasound reflectivity
and QRS duration. Furthermore, although QRS duration was larger in non-ischemic
as compared to ischemic HF patients (16225 ms vs. 149+35ms, p=0.006), myocar-
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dial ultrasound reflectivity was higher in ischemic as compared to non-ischemic HF
patients (-18.5+3.8dB vs. -20.2+3.0dB, p=0.002). These results extend the findings
of previous studies indicating the lack of relation between the QRS duration and
fibrosis in dilated cardiomyopathy.?® Therefore, the extent of fibrosis or a surrogate
such as myocardial ultrasound reflectivity can not be estimated by the QRS duration
on the surface ECG. In addition, renal function was weakly but significantly related
to myocardial ultrasound reflectivity underscoring that worse renal function was as-
sociated with higher IB reflectivity (possibly indicating more extensive LV fibrosis).?

Previous studies showed that beyond mechanical dyssynchrony, the quantification of
myocardial fibrosis is an important pathophysiological determinant of CRT response.
In particular, studies performed with nuclear imaging and contrast-enhanced CMR
underscored the importance of the assessment of LV fibrosis for clinical and echo-
cardiographic response to CRT.” 22825 For example, White et al.?® studied 23 HF
patients with previous myocardial infarction and demonstrated that the extent of scar
tissue in the LV, assessed with contrast-enhanced CMR, was significantly less in CRT
responders as compared to non-responders (1.0% vs. 24.7%, p=0.002). Furthermore,
a recent study from Bilchick and colleagues™ used CMR to assess both mechanical
dyssynchrony and LV fibrosis in a small group of 20 HF patients with ischemic and
non-ischemic etiology referred for CRT. The authors showed that the combined ap-
proach (assessment of mechanical dyssynchrony and quantification of LV fibrosis)
significantly improved predictive accuracy for clinical CRT response.

In the current study, mechanical dyssynchrony and myocardial ultrasound
reflectivity (a potential surrogate of LV fibrosis) were comprehensively evaluated
with 2D echocardiography techniques (speckle-tracking imaging and calibrated IB).
Myocardial ultrasound reflectivity was larger in non-responders as compared to
responders (-17.0+3.0dB vs. -20.8+3.0dB, respectively, p<0.001). Moreover, myo-
cardial ultrasound reflectivity was directly related to the extent of reverse remodeling
after CRT and provided incremental value over LV dyssynchrony and renal function
for prediction of CRT response, in line with previous studies.?43° 3

Various studies have focused on the relation between LV fibrosis and CRT response
in ischemic HF patients.” '>"> 2829 |n particular, Ypenburg et al.” demonstrated in 34
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ischemic HF patients the close relation between the total scar burden assessed with
contrast-enhanced CMR and LV reverse remodeling after CRT (r=0.91, p<0.05). In the
present study, in ischemic HF patients, the amount of myocardial ultrasound reflectivity
was not only significantly related to LV reverse remodeling, but also the strongest inde-
pendent predictor of LV reverse remodeling. These findings underscore the relevance
of this indirect parameter of LV fibrosis for CRT response in the setting of ischemic HF.

Few studies have reported on the presence of LV fibrosis in patients with non-
ischemic dilated cardiomyopathy,'#3? but none have explored the relation between
LV fibrosis and CRT response in patients with non-ischemic HF. The current results
demonstrated a significant direct relation between the extent of myocardial ultra-
sound reflectivity, as a potential surrogate of LV fibrosis, and LV reverse remodeling
after CRT. Moreover, in non-ischemic HF patients myocardial ultrasound reflectivity
was an important and independent predictor of CRT response. Accordingly, the
current findings underscore the role of the assessment of myocardial ultrasound
reflectivity to improve CRT response rate in non-ischemic HF patients.

Study limitations

As previously described,®®2° calibrated IB assessed in the antero-septal and posterior
wall was used to detect myocardial ultrasound reflectivity. The measurement of calibrated
IB in the antero-septal and posterior wall is dependent on ultrasound machine settings
(focus, depth, gain and insonation angle). These settings were adjusted in all patients
in order to optimize the image quality for offline analysis. In addition, by correcting cali-
brated IB of the antero-septal and posterior walls for the calibrated 1B of the pericardium,
the effect of these technical issues on the accuracy of this analysis may be minimized. In
addition, no independent technique as CMR was used to prove the association between
myocardial ultrasound reflectivity and fibrosis. However, previous studies showed a
potential relation between myocardial ultrasound reflectivity and fibrosis.’® "

CONCLUSIONS

In the current study, myocardial ultrasound reflectivity assessed with calibrated IB
was related to CRT-response. In particular, myocardial ultrasound reflectivity provided
incremental value to CRT response over mechanical LV dyssynchrony and renal func-
tion. Furthermore, myocardial ultrasound reflectivity was a strong determinant of LV
reverse remodeling after CRT, both in ischemic and non-ischemic HF patients.
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1. INTRODUCTION

At present, up to 40% of patients do not show improvement in left ventricular (LV)
performance or clinical symptoms after cardiac resynchronization therapy (CRT).' This
suboptimal response may be secondary to several pre-implantation and implantation
issues such as lack of LV mechanical dyssynchrony, the presence of substantial scar
tissue or non-optimal LV lead position.? Furthermore, the presence of suboptimal LV
filling time (atrioventricular [AV] dyssynchrony) or remaining LV dyssynchrony after
CRT may reduce benefit of this therapy.> Current CRT devices allow manipulation of
the AV and interventricular (VV) timings in order to maximize LV filling and stroke
volume. However, multiple single center and few multicenter trials have provided con-
troversial data on the beneficial effects of AV and VV intervals optimization on cardiac
performance and clinical status.#” In addition, multiple methodologies have been
proposed to optimize AV and VV intervals but no consensus has been reached on
which methodology should preferably be used.+7 Finally, whether AV and VV intervals
may be evaluated and adjusted periodically remains also controversial.2'° The present
article reviews the clinical evidence on AV and VV interval optimization by addressing
why, how and when we need to optimize AV and VV intervals.

2. WHY DO WE NEED TO OPTIMIZE CRT SETTING?

Management of heart failure patients after CRT implantation should include the
evaluation of the effects of CRT on LV hemodynamics and mechanics. A suboptimal
programming of the AV and/or VV interval may partially contribute to the presence
of AV or LV dyssynchrony and, consequently, may curtail the beneficial effects of CRT.
The hemodynamic importance of AV interval optimization was first demonstrated in
studies with dual chamber pacemakers; next, these benefits were confirmed also in
CRT recipients.> " Auricchio et al. demonstrated in 39 heart failure patients treated
with CRT that the maximum rate of increase of LV pressure (dP/dt__) and pulse pres-
sure were measured at different AV and VV intervals. The maximum hemodynamic
benefit occurred at the AV interval that provided the optimal LV diastolic filling and did
not decrease the LV end-diastolic pressure.? In addition, several prospective studies
have demonstrated the benefits of tailored optimized sequential biventricular pacing
strategies.’> 3 In 41 heart failure patients receiving CRT, Bordachar et al. evaluated the
effect of several sequential VV intervals on LV dyssynchrony, as assessed with pulsed-
wave tissue Doppler imaging (TDI) and hemodynamics (cardiac output and mitral
regurgitation).”> Changes in LV dyssynchrony were strongly correlated with changes in
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cardiac output and mitral regurgitation. An optimized VV interval provided the most
LV synchronous contraction, the largest cardiac output, and significantly reduced the
severity of mitral regurgitation.

About 20-30% of the resting stroke volume in heart failure patients is due to atrial
contraction. A too short AV interval results in early LV contraction and mitral valve
closure, thereby reducing left atrial contribution to LV filling (resulting in truncation
of the A wave on pulsed-wave Doppler transmitral inflow). In contrast a too long AV
interval is characterized by early left atrial contraction, with fusion of E and A wave,
with reduction of LV filling time and possible induction of diastolic mitral regurgita-
tion. Both these conditions result in impaired LV filling with a reduction in LV perfor-

. § MV closure
Optimal AV delay H /‘

iy

A A
"A A

Too long AV delay
\ i
E E Superimposed A and E
q q‘ Diastolic Mh
Too short AV delay
'\ g m
E E Truncated A wave

Figure 1. Effect of AV interval programming on echocardiographic pulsed-wave Doppler transmitral

inflow. An optimal AV interval (upper panel) permits completion of the left atrial contraction and the mitral
valve closes at the end of the A wave. When the AV interval is too long (middle panel), left atrial contraction
occurs prematurely, and the A wave is superimposed to the E wave (fusion of E and A wave). The LV diastolic
filling time is shortened and diastolic mitral regurgitation can occur. In contrast, when the AV interval is

too short (lower panel), LV contraction occurs earlier and the mitral valve closes before completion of left
atrial contraction. On pulsed-wave Doppler recordings of the transmitral inflow truncation of the A wave is
observed
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Table 1. AV interval optimization methods

Echocardiography Non-echocardiography

Optimization of LV diastolic filling Optimization of LV systolic function

« lterative method « LvdP/dt + Invasive dP/dt__

- Ritter's method « LV outflow tract VTI « Impedance cardiography
«  Mitral inflow VTI «  Myocardial performance «  Acoustic cardiography

+  Meluzin's method index « Intracardiac electrograms

Abbreviations = LV = left ventricular; VTI = velocity time integral.

mance.® The optimal AV interval is the shortest AV delay that does not compromise
left atrial contribution to the LV diastolic filling (Figure 1). Several echocardiographic
and non-echocardiographic methods have been proposed to optimize the AV interval
(Table 1). Using echocardiography, the AV interval can be optimized by maximizing
LV diastolic filling or LV hemodynamics.” The iterative method evaluates the effects of
the AV interval on LV diastolic filling. A long AV interval is first programmed and the
LV diastolic filling pattern is evaluated on the pulsed-wave Doppler transmitral inflow.
Thereafter the AV interval is shortened by increments of 20 ms until truncation of the
A wave occurs. The optimal AV interval is then identified by increasing the AV delay in
10 ms increment until the A wave is not longer truncated (Figure 2). The multicenter,
randomized CARE-HF trial optimized the AV interval with this method." However,
the effects of performing routinely AV interval optimization on clinical outcome or
LV systolic function and remodeling have not been reported. The Ritter's method is
also based on pulsed-wave Doppler recordings of the transmitral inflow.” With this
method, two extreme AV intervals are programmed: a long AV interval with A wave
attenuation (AV, ) and a short AV interval with A wave truncation (AV, ). For each

Long AV-delay | "———_> | Short AV-delay | 1"———_> | Optimal AV-delay |

|
{ Q‘p ] o UL
--40

75mm/s 80bpm 75mm/s

Figure 2. AV interval optimization with the iterative method. From a long AV interval (left panel), the AV
interval is shortened by 20 ms steps until the A wave is truncated (middle panel, yellow arrow). Thereafter,
the AV interval is increased to obtain the optimal AV interval (the shortest AV interval without truncation of
the A wave) (right panel).

111




12

Chapter 7

QA = 970 s

A

A N

i |
) s

4
W 'ﬁ“ W

bk s il
AV gng =200 ms ms
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AV interval = 80 + [(200 + 870) — (80 + 970)] = 100 ms

Figure 3. AV interval optimization with the Ritter's method. Two extreme AV intervals are programmed, a
long AV interval (AV, ) and a short AV interval (AV, ). The time difference between the QRS onset to the
completion of the A wave is measured at each AV interval. The optimal AV interval is calculated according to
the formula.

AV interval, the time between the QRS complex onset to the completion of the A-wave
is measured. The optimal AV interval is calculated with the formula: AV, + [(AV e *
QA,.) — (A, .+ QA )] (Figure3). This method has been used in several multicenter
trials (MUSTIC, MIRACLE, InSynclIl).’"7 However, the clinical use of this method may
be limited in patients with high heart rate or with an intrinsic AV interval <150 ms. In
addition, measurement of LV filling volume may be a useful method to optimize the AV
interval. On pulsed-wave Doppler recordings of the transmitral inflow, the measure-
ment of the velocity time integral (VTI) is a surrogate for LV filling volume (Figure 4).
The optimal AV interval is defined by the largest VTI. Another method to optimize AV
interval is the method described by Meluzin.® The AV interval is optimized by aligning
the end of LV filling and the onset of ventricular contraction. On pulsed-wave Doppler
recordings of the transmitral inflow, a long AV interval is defined as the maximum
AV delay that allows full ventricular capture (lowered by 5-10 s). Thereafter, the time
between the end of the A wave and the onset of the mitral regurgitation spectral signal
is measured (t1). The difference between the long AV interval and the t1 yields the
optimal AV interval. The use of this method in clinical practice may be limited by the
need for detectable mitral regurgitation signal. Echocardiographic methods that opti-
mize AV interval based on LV hemodynamics include measurement of stroke volume
on pulsed- or continuous-wave Doppler recordings of the LV outflow tract (LVOT) or
the non-invasive measurement of LV dP/dt _ on continuous-wave Doppler spectral
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AV-delay = 180 ms
Mitral VTl =14 cm
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Figure 4. Mitral inflow velocity time integral to optimize the AV interval. The mitral inflow velocity time
integral (VTI) is a surrogate for LV filling volume, assuming a constant mitral valve area. The optimal AV
interval yields the largest mitral VTI.

signal of mitral regurgitation (Figure 5).” The product of the LVOT cross-sectional area
and VTl measured on the pulsed- or continuous-wave Doppler recordings of the LVOT
or aortic valve yields the stroke volume.'?° The optimal AV interval is defined by the
largest stroke volume. The measurement of the LV dP/dt__ provides information on
LV contractility. Non-invasive measurement of this parameter is performed on the
continuous-wave Doppler spectral signal of the mitral regurgitation. First, the time

dP/dt,, = (36-4)/At

Figure 5. Echocardiographic methods to optimize the AV interval based on LV systolic function.
Measurement of LV dP/dt__as indicator of LV performance that permit AV interval optimization.

max
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Figure 6. AV interval optimization based on myocardial performance index evaluation. The myocardial
performance index is calculated by dividing the sum of the isovolumic relaxation and contraction times by
the LV ejection time. The sum of the isovolumic contraction and relaxation times is calculated by measuring

the A-E time on pulsed-wave Doppler transmitral inflow recordings (panel A) and the LV ejection time on
pulsed-wave Doppler recordings of the LV outflow tract (panel B). Sum of the isovolumic contraction and
relaxation times = A-E time — LV ejection time.

difference between two points of the spectral signal is measured (usually between
1 m/s and 3 m/s time points). Then, the pressure gradient between these two points
is calculated according to Bernoulli equation. The optimal AV interval corresponds
to the highest value of LV dP/dt__ . Finally, the measurement of the myocardial per-
formance index may be a useful method to optimize the AV interval.s The myocardial
performance index is a comprehensive measurement of LV function. This index is
calculated as the sum of isovolumic contraction and relaxation times divided by the
ejection time (Figure 6). The optimal AV interval is defined by the lowest myocardial
performance index.

Several non-echocardiographic methods have been proposed to optimize AV
interval. The aforementioned measurement of the LV dP/dt__ can be performed
invasively. During CRT device implantation, this parameter can be measured and
the AV interval can be set. However, this invasive approach limits its usability in rou-
tine clinical follow-up. Acoustic cardiography was proposed as fast and reproducible
method to optimize CRT setting.>’ Moreover, impedance cardiography optimizes
the AV interval by measuring changes in the impedance of an alternating current
applied across the thorax of the patient. These changes indicate the cardiac output.
With the use of intracardiac electrograms the optimal AV interval can be defined
by measuring electrical conduction delays (i.e., AV interval and QRS duration) that
maximize LV hemodynamics.*
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3.2 VV interval optmization

VV interval is the time delay between the contraction of the right and LV. In normal
subjects, the right and left ventricle are not simultaneously activated. In heart fail-
ure patients (particularly in the presence of left bundle branch block) the electrical
activation delay between both ventricles is more pronounced with a prolongation of
LV pre-ejection time and a shortening of LV ejection time. CRT partially reduces this
electrical activation delay, by pacing both the right and left ventricle. However, the first
generation of CRT devices could not differentiate the pacing channels and both ven-
tricles were always paced simultaneously. The recent generation of CRT devices allows
tailoring the activation delays between right and left ventricle (VV interval), aiming a
more physiological activation.* The most common methods used to optimize VV
interval are based on the assessment of surrogates of stroke volume or cardiac output
(LVOT VTI) or on the assessment of mechanical dyssynchrony (Table 2).

The echocardiographic method based on the assessment of LV systolic perfor-
mance (LVOT VTI) has been discussed in the AV interval optimization section.
Similarly, the largest LVOT VTI defines the optimal VV interval (Figure 7).

In contrast to AV interval optimization, measurement of mechanical dyssynchrony
at different levels (interventricular and intra-LV dyssynchrony) may constitute a
further helpful tool to select the optimal VV interval setting. Interventricular dys-
synchrony is assessed by the difference between the left and right pre-ejection time
measured with pulsed-wave Doppler echocardiography at LVOT and right ventricular

outflow tract, respectively. Intra-LV dyssynchrony mainly measured with TDI is also

Table 2. VV interval optimization methods

Echocardiography Non-echocardiography
Optimization of LV Optimization of LV mechanical
systolic function dyssynchrony
« LVoutflowtract VTl « Interventricular dyssynchrony + Invasive dP/dt__
(difference between aortic and - Radionuclide
pulmonary pre-ejection times) ventriculography
. Time to peak systolic velocity at «  Finger photo-pletismography

TDI (time difference between 2or4 «  Surface ECG
opposing walls, standard deviation « Impedance cardiography
of 12 LV segments) «  Acoustic cardiography

«  Speckle-tracking echocardiography ~«  Intracardiac electrograms
(radial, longitudinal and
circumferential dyssynchrony)

- Real time 3D echocardiography
(systolic dyssynchrony index)

Abbreviations = LV = left ventricular; TDI = tissue Doppler imaging; VTI = velocity time integral.
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LVOT = 18.26 mm

D
Stroke volume = 51.7 ml i Stroke volume = 47.8 m| I
Cardiac output = 4.0 L/min % b Cardiac output = 3.7 L/min

= -

B & . T T

VWV interval= LV pre-excitation of 40 ms VWV interval= simultaneous activation of LV and RV

Figure 7. Example of VV interval optimization by measuring stroke volume and cardiac output. Velocity-
time integral (VTI) at left ventricular outflow tract (LVOT) is measured with pulsed-wave Doppler
echocardiography. Stroke volume can be derived by multiplying the cross sectional area (CSA) with VTI.
Cardiac output can be derived by multiplying stroke volume with heart rate (HR). CSA = /4 X LVOT
diameter; Stroke volume = CSA X VTI; Cardiac output = stroke volume X HR.

used as effective means of guiding VV interval optimization.™ The time difference
between peak systolic velocity of 2 or 4 opposing walls or the standard deviation
of time to peak systolic velocity of 12 LV segments are the most common meth-
ods to measure intra-LV dyssynchrony (Figure 8A). In addition, speckle tracking
echocardiography and real time 3-dimensional echocardiography are valuable novel
techniques for intra-LV dyssynchrony assessment but so far no studies investigated
the role of these techniques for VV interval optimization (Figure 8 B,C).?®

Several non-echocardiographic methods have been also proposed to optimize VV
interval (Table 2). However, the majority of these methods are not routinely used in
clinical practice because they require invasive measurements (i.e. invasive LV dP/
dt__ ) or are time-consuming or not widely available (i.e radionuclide ventriculogra-
phy, acoustic cardiography or finger photo-pletismography) 2422728

Among the non-echocardiographic methods, surface ECG derived methods are
the simplest and widely available. Different parameters have been proposed, with
measurement of QRS duration at surface ECG in different VV intervals as the easiest
method.?*3° A substantial agreement was shown between the selection of the opti-
mal VV interval based on the narrowest QRS duration and on LVOT VTI measured
with echocardiography among 5 tested VV intervals (LV pre-excitation of 8o and
40 ms, simultaneous pacing, and right ventricle pre-excitation of 40 and 8o ms;
Figure 9).2 This study proposed a combined approach for VV interval optimization
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.

VV interval = RV pre-excitation of 40 ms VV interval = LV pre-excitation of 40 ms.

Figure 8. Examples of VV interval optimizations by measuring LV mechanical dyssynchrony. Panel A. Tissue
Doppler imaging (left) permits the assessment the time difference between peak systolic velocities of 2
opposing walls (septal and lateral wall). Panel B. Speckle-tracking echocardiography (middle) permits the
assessment of radial dyssynchrony from the parasternal short axis view at papillary muscle level. Radial
dyssynchrony is defined as the time difference between the peak systolic radial strain of the antero-septal
and posterior wall. Panel C. Real time 3D echocardiography (right) permits the assessment of systolic
dyssynchrony index (SDI). The LV 3D model is automatically subdivided in 17 standard wedge-shaped (apart
from the apex) subvolumes. For each volumetric segment, the time interval to reach the minimum systolic
volume is automatically calculated. The standard deviation of these timings for 16 segments (excluding the
true apex) is expressed as a percentage of the cardiac cycle, obtaining the SDI.
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Figure 9. Example of VV interval optimization by measuring QRS duration at surface ECC. The Figure shows
QRS complex in D1 and V1 leads for 5 VV intervals. Among these 5 QRS duration measurements, the value
corresponding to the narrowest QRS duration was considered as the ECG-optimized VV interval. In this
example the ECG-optimized VV interval was simultaneous (LV and RV VV interval = 0 ms). LV: left ventricle;
RV: right ventricle
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with ECG and echocardiography in 2 steps: first VV interval may be selected by the
ECG recording at the 5 VV intervals (LV pre-excitation of 80 and 40 ms, simultane-
ous pacing, and right ventricle pre-excitation of 40 and 8o ms); next the interval with
the greatest QRS duration shortening could be scanned in depth with pulsed-wave
Doppler echocardiography (20 ms steps) to determine the optimal VV interval. Such
an approach may save time reducing the number of VV intervals that should be
tested with echocardiography.®

Finally, several methods based on automated algorithms typical of different manu-
facturers have been proposed for VV interval optimization, the majority of them are
based on the intracardiac electrograms.?>33

At present there are no gold standard methods for AV and VV optimization. Recently,
Thomas et al. compared different echocardiographic measurements used for VV inter-
val optimization.>* The authors showed that among different measurements used for
WV interval optimization, LVOT VTI and interventricular dyssynchrony were the most
feasible (100% and 93% of feasibility, respectively). Furthermore, LVOT VTI resulted
the most reproducible with a coefficient of variation of only 3.0%.3+ Conversely, Zuber
et al. found a poor performance of LVOT VTI as method to optimize CRT settings as
compared to acoustic cardiography.?’ These controversial results and the absence of
a well recognized gold standard method to optimize the setting of the CRT devices
claim warrant further larger studies to address this issue.

Preliminary data suggested that AV and VV optimization may improve LV filling and
hemodynamic performance. However different physiologic conditions like rest and
exercise may markedly change the heart rate and loading conditions of the heart, and
therefore some authors hypothesized that in CRT recipients an optimal setting deter-
mined at rest may be different during exercise.® 3 Particularly, the optimal AV interval
was shown to be different between rest and during semisupine bicycle exercise in a
considerable proportion of patients and the same group also demonstrated a similar
behaviour of optimal VV interval that differed in 57% of the patients between rest
and during exercise.® 3® These preliminary observations may have important clinical
implications since one of the major benefits of CRT is the improvement of exercise
capacity. However, no studies investigated the potential long-term clinical benefit of
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this strategy. Furthermore, an important field of research may be the development of
CRT devices that, similarly to particular dual chamber pacemakers, are able to find the
optimal setting automatically (for both AV and also VV interval), and reset it regularly

at rest and during exercise.

3.5 Which interval first?

A recurrent question that was never completely addressed in the various studies, is
whether AV optimization should be followed by VV optimization or vice versa (or even
simultaneously). Indeed, performing this procedure in different order not necessarily
produces the same results.? The common clinical practice is to optimize the AV interval
first, followed by VV optimization; in all studies, AV and VV intervals were optimized
separately. It could be possible however that a method that permits simultaneous
optimization of the AV and VV intervals may provide additional hemodynamic benefit.

4. WHEN DO WE NEED TO OPTIMIZE THE CRT SETTINGS?

Preliminary evidence showed that the optimal settings obtained immediately after
CRT implantation may change during follow-up.% % Valzania et al. demonstrated in

14 patients who underwent CRT and were followed for 12 months, that optimal AV and
VV intervals changed over time. In particular a difference = 40 ms in the optimal VV
interval was observed in 57% of the patients at 12 months follow-up.’® More recently,
Zhang et al. underscored the importance of periodic reassessment of the optimal AV
delay in CRT recipients; indeed the optimal AV delay had changed (as compared to
acutely after CRT implantation) in 56% of the patients at long-term follow-up.3?

Therefore, the optimal setting of the CRT devices changes during follow up, as
loading LV conditions change over time due to LV (reverse) remodeling. Periodic
tailoring of CRT devices seems important in order to maintain or improve a posi-
tive hemodynamic effect over the long term, and to enhance benefit from CRT. In
the daily practice however, systematic optimization and periodic reassessment of
AV and VV intervals may not be feasible, but could be restricted to non-responder
patients, to potentially improve the effect of CRT. A practical algorithm to decide
when this procedure should be performed is proposed in Figure 10.
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Pre-discharge
AV and VV interval optimization

3 months follow-up
Lack of improvement in NYHA functional class

Yy I
NO
Repeat
AV and VV interval optimization
6 months follow-up

Reduction of LVESV < 15%

7
Repeat NO
AV and VV interval optimization
12 months follow-up

Clinical responder + LV reverse remodeling

Ny YES

Non-responder:
consider status of heart failure and
potential alternative therapies

<

Re-evaluation every 3-6 months:
If clinical or echocardiographic parameters worsen,
consider repetition of AV and VV interval optimization

Figure 10: Algorithm to decide when to optimize AV and VV interval during follow-up
LVESV: left ventricular end-systolic volume; NYHA: New York Heart Association

Several data form single center studies showed that the optimal AV settings further
improved hemodynamic benefits of CRT. At present, only one single blind randomized
trial investigated the impact of AV delay optimization based on aortic VTI on clinical
status 3 months after CRT.3® The authors showed that 75% of the patients in the arm
with optimized AV delay had an improvement by at least 1 New York Heart Association
functional class whereas only 40% of the patients in the arm with empiric AV delay had
an improvement by at least 1 New York Heart Association functional class (p <0.03).3
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Similar to AV interval optimization, several data from small single center studies
demonstrated that sequential CRT after VV interval optimization, rather than simul-
taneous CRT, may acutely further improve LV systolic performance (stroke volume,
dP/dt_ ) and LV dyssynchrony.# ®7 Sogaard et al.? showed for the first time the
additional benefits on the LV systolic function of the sequential biventricular pacing
after VV optimization performed using tissue tracking echocardiography. However,
Vidal et al.» in single center, nonrandomized clinical study did not show differences
in the numbers of CRT non-responders between patients with and without AV and
VV intervals optimized.

Finally, 3 multicenter trials investigated the benefits of VV interval optimization on
long-term outcomes (InSynclll, RHYTHM Il ICD and DECREASE-HF)."7:39.4°

The InSynclll clinical study evaluated the clinical effect of optimized sequential
CRT as compared to the control group (optimal pharmacological medical therapy
alone) and to the treatment group (simultaneous biventricular pacing) of the
MIRACLE trial. They demonstrated that: 1. optimized sequential CRT significantly
improved functional status as compared to the control group; 2. the optimal VV
interval showed a relative narrow range between right ventricular pre-excitation of
40 ms and LV pre-excitation of 40 ms, with a higher prevalence of LV pre-excitation;
3. controversial results about the clinical benefits of optimized sequential CRT as
compared to simultaneous biventricular pacing (optimized sequential CRT signifi-
cantly improved only the 6 minute walking distance but not NYHA functional class
or quality of life).

Inthe RHYTHM I1 ICD study3® 121 CRT recipients were included randomly assigned
in a 1:3 ratio to receive simultaneous biventricular pacing or optimized sequential
CRT. After AV interval optimization based on LV filling pattern, optimal VV interval
was set at the maximum stroke volume derived by LVOT VTI. The authors evaluated
the improvement in clinical end-points, such as NYHA class and 6 minute walking
test, after 3 and 6 months follow-up. Similar to InSync Ill, no additional clinical
benefit was demonstrated by the optimized sequential CRT over the simultaneous
biventricular pacing.

The DECREASE-HF trial+° evaluated 306 patients with advanced heart failure and
QRS duration =150 ms comparing simultaneous biventricular pacing, optimized se-
quential CRT, and LV pacing alone. Although all 3 pacing modalities led to reduced LV
size and improved LV systolic function, there was a trend toward a greater benefit in
patients with sequential and simultaneous pacing as compared to LV pacing alone.
Furthermore, despite the trial was not designed to specifically compare simultane-
ous biventricular pacing vs. optimized sequential CRT, no significant differences
between these 2 pacing modalities were observed in terms of improvement of LV
size and function after 6 months of CRT. Of interest in this trial, the VV interval was
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programmed based on intracardiac electrocardiograms at the time of the implanta-
tion and was not individually optimized according to the hemodynamic response.

In light of this evidence, AV and VV interval optimization may be beneficial in
some groups of heart failure patients treated with CRT, improving the clinical status
and LV performance. Non-responder patients and ischemic heart failure patients
with extensive myocardial scar tissue may benefit most likely from VV interval
optimization. Particularly, in ischemic heart failure patients, the inter- and intra-
ventricular conduction of the electrical pulse is very slow and may require larger LV
pre-excitation.#

Finally, whether AV and VV interval optimization may result in better long-term
outcome awaits further studies.

Single center studies pointed out the additional hemodynamic benefits provided by
the optimized CRT setting. Several echocardiographic and non-echocardiographic
techniques have been used to perform this operation but so far there is no accepted
gold standard method. In addition, what are the best physiologic conditions (rest or
during exercise) to perform the AV and VV optimization and which interval should be
optimized first, are issues that still need further study. Furthermore, it has been dem-
onstrated that optimal CRT settings may change during follow-up, but when repeat
optimization should be performed is unclear. Thus far, the available multicenter trials
did show modest clinical benefits of AV and VV interval optimization at mid- or long-
term follow-up. It remains to investigate whether AV and VV interval optimization may
improve the long-term survival.
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ABSTRACT

Background.

Clinical or echocardiographic mid-term responses to cardiac
resynchronization therapy (CRT) may have a different influ-
ence on long-term prognosis of heart failure patients treated
with CRT. The aim of the study was to establish which defini-
tion of response to CRT, clinical or echocardiographic, best
predicts long-term prognosis.

Methods and Results. A total of 679 heart failure patients treated with CRT

Conclusions.

were included. All patients underwent a complete history and
physical examination and transthoracic echocardiogram prior
to CRT implantation and at 6 months follow-up. The clinical
and echocardiographic responses to CRT were defined based
on clinical improvement (=1 NYHA class) and LV reverse
remodeling (reduction of LV end-systolic volume=15%) at 6
months follow-up, respectively. All patients were prospectively
followed-up for the occurrence of death. The mean age was
65+11 years and 79% of the patients were male. At 6 months
follow-up, 510 (77%) patients showed clinical response to CRT
and 412 (62%) patients showed echocardiographic response
to CRT. During a mean follow-up of 37+22 months, 140 (21%)
patients died. Clinical and echocardiographic responses to
CRT were both significantly related to all-cause mortality on
univariable analysis. However, on multivariable Cox regres-
sion analysis only echocardiographic response to CRT was
independently associated with a superior survival (hazard ra-
tio:0.38; 95% Cl,0.27-0.50; p<0.001).

In a large population of heart failure patients treated with CRT,
the reduction of LV end-systolic volume at mid-term follow-up
demonstrated to be a better predictor of long-term survival
than improvement in clinical status.
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INTRODUCTION

The long-term survival benefits of cardiac resynchronization therapy (CRT) dem-
onstrated in various trials have changed the clinical management of heart failure
patients.” CRT improves left ventricular (LV) performance by partially restoring more
physiological and synchronous contraction. As a consequence, significant improve-
ments in clinical status and reduction in LV volumes and mitral regurgitation have
been reported. Ultimately, these favorable changes result in improved long-term
morbidity and mortality rates.#5 Most of the landmark trials have evaluated the ef-
ficacy of CRT by means of improvement in clinical status and/or a reduction of LV
end-systolic volume (LVESV) at mid-term follow-up.®7 The value of these surrogate
end points relies on their ability to predict long-term survival.® ¢ Thus far, only few
studies have attempted to evaluate the long-term survival implications of mid-term
clinical and echocardiographic responses to CRT (commonly assessed at 3-6 months
follow-up).#5™ In a series of 141 heart failure patients treated with CRT, mid-term LV
reverse remodeling had superior accuracy to predict long-term survival than improve-
ment in clinical parameters.> A recent subanalysis of the CARE-HF trial showed that
LV volumes measured 3 months after CRT implantation predicted long-term survival
on univariable analysis with a hazard ratio higher than LV volumes at baseline; how-
ever, LV volumes (baseline and after 3 months) were not independent determinants
of long-term survival.® In view of these results, it remains unclear whether clinical
or echocardiographic mid-term responses to CRT have an influence on long-term
prognosis of heart failure patients treated with CRT. Accordingly, the present study
aimed to establish which definition of CRT response at mid-term follow-up (clinical
improvement or LV reverse remodeling) best predicts long-term prognosis.

METHODS

Patient population and protocol

A total of 679 heart failure patients undergoing CRT implantation were included. Ac-
cording to current guidelines, the inclusion criteria were: New York Heart Association
(NYHA) functional class IlI-1V, sinus rhythm, LV ejection fraction =35%, and QRS
duration =120 ms. Etiology of heart failure was considered ischemic in the presence
of significant coronary artery disease (>50% stenosis in =1 major epicardial coronary
artery) on coronary angiography and/or a history of myocardial infarction or revascu-
larization.
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All patients underwent a complete history and physical examination, 12-lead
surface ECG and transthoracic echocardiogram prior to CRT implantation and at 6
months follow-up. Clinical and ECG variables recorded included NYHA functional
class, medication, hemoglobin level, renal dysfunction (estimated glomerular filtra-
tion rate <60 ml/min/1.73mz2)," 2 and QRS duration.

In addition, the number of hospitalizations for heart failure within 6 months
follow-up was recorded. All clinical data were prospectively entered into the depart-
mental Cardiology Information System (EPD-Vision®, Leiden University Medical
Center, Leiden, the Netherlands) and retrospectively analyzed.

The echocardiographic examination consisted of comprehensive evaluation of LV
volumes and function, and severity of mitral regurgitation, if present.

Finally, the clinical and echocardiographic responses to CRT were defined based
on clinical improvement and LV reverse remodeling at 6 months follow-up, respec-
tively, as previously described.®

All patients were prospectively followed-up for the occurrence of death. To test
whether the clinical and echocardiographic mid-term responses to CRT could inde-
pendently predict mortality, the long-term follow-up started at 6 months after CRT
implantation.

Transthoracic echocardiography was performed with the patients in the left lateral
decubitus position using a commercially available ultrasound transducer and equip-
ment (M4S probe, Vivid 7, GE-Vingmed, Horten, Norway). All transthoracic echocar-
diographic examinations were performed prior to CRT implantation and at 6 months
follow-up. All images were digitally stored on hard disks for offline analysis (EchoPAC
version 7.0.0 and 108.1.5 GE-Vingmed, Horten, Norway).

A complete 2-dimensional and color Doppler echocardiographic examination was
performed. LV end-diastolic (LVEDV) and LVESV were calculated using Simpson’s
biplane method of discs. LV ejection fraction was calculated and expressed as a
percentage.” Intra- and inter-observer variability for the assessment of LV volumes
and LVEF were previously reported.'+ Severity of mitral regurgitation was graded
semi-quantitatively from color-flow Doppler data using the 4-chamber apical views
according to the ACC/AHA guidelines. Mitral regurgitation was classified as mild
(jet area/left atrial area <20%), moderate (jet area/left atrial area 20-40%) and
severe (jet area/left atrial area >40%)."
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CRT implantation

All patients received a biventricular pacemaker with cardioverter-defibrillator func-
tion (Contak Renewal 4RF, Boston Scientific St. Paul, Minnesota; or InSync Sentry,
Medtronic Inc. Minneapolis, Minnesota; Lumax 340 HF-T, Biotronik, Berlin). The right
atrial and ventricular leads were positioned conventionally. All LV leads were implanted
transvenously, and positioned preferably in a (postero-)lateral vein. A coronary sinus
venogram was obtained using a balloon catheter, followed by the insertion of the LV
pacing lead. An &-F guiding catheter was used to place the LV lead (Easytrak, Boston
Scientific, or Attain-SD, Medtronic, or Corox OTW Biotronik) in the coronary sinus.

Definition of CRT response

As previously reported, clinical response to CRT was defined as improvement =1 in
NYHA functional class at 6 months follow-up and echocardiographic response to CRT
was defined by the occurrence of LV reverse remodeling (reduction =15% in LVESV at
6 months follow-up).®

All clinical and echocardiographic analyses were performed by independent
blinded physicians.

Study end points

All patients were followed-up regularly (every 3-6 monthly intervals) and all deaths

occurring after 6 months follow-up were recorded as events. All-cause mortality was
adjudicated by physicians blinded to the clinical and echocardiographic data.

Statistical analysis

All continuous variables are presented as mean and standard deviation. Categorical
variables are presented as frequencies and percentages, and were compared using
Chi-square test. Student T test was used to compare unpaired continuous variables.
First, the cumulative event rates 6 months after CRT implantation were calculated
using the Kaplan-Meier method and dichotomizing the population according to the
clinical and echocardiographic response to CRT. The log-rank tests for time-to-event
data with respect to all-cause mortality were used for statistical comparison between 2
patient groups. In order to identify independent predictors of all-cause mortality, mul-
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tivariable Cox proportional-hazards models were constructed with backward selection
(Correct) model. All significant univariable clinical and echocardiographic predictors
at baseline, clinical and echocardiographic response to CRT at 6 months follow-up,
and hospitalizations for heart failure within 6 months follow-up were entered in the
multivariable model as covariates. The Cox proportional-hazards models were then
used to estimate hazard ratios and 95% confidence intervals (Cl) for those indepen-
dent variables. To avoid multicollinearity between the univariable predictors, a correla-
tion coefficient of <0.7 (corresponding to a tolerance level of >0.5) was set. Second,
the cumulative event rates 6 months after CRT implantation were calculated using the
Kaplan-Meier method after dividing the populations in 4 different subgroups based
on combined clinical and/or echocardiographic response: patients with both clinical
and echocardiographic response, patients with clinical but not echocardiographic
response, patients with echocardiographic but not clinical response and patients with
neither clinical or echocardiographic response. The log-rank tests for time-to-event
data with respect to all-cause mortality were used for statistical comparison between
4 patient subgroups All statistical tests were 2-sided, and a p value <0.05 was con-
sidered significant. A statistical software program SPSS 16.0 (SPSS Inc, Chicago, IL,
USA) was used for all statistical analyses.

Of the 679 patients enrolled in the study, 16 (2.4%) patients died before 6 months
follow-up and these patients were excluded from further analysis. Therefore, the
patient population consisted of 663 heart failure patients.

Baseline clinical, ECG and echocardiographic characteristics are reported in
Table 1. The mean age was 65+11 years and 79% of the patients were male. All
patients had dilated with depressed LV systolic function.

At 6 months follow-up, 510 (77%) patients showed an improvement =1 in NYHA func-
tional class (clinical response to CRT) and 412 (62%) patients showed =15% reduction of
LVESV (echocardiographic response to CRT). Furthermore, the patient population (n =
663) was divided in 4 subgroups based on combined clinical and/or echocardiographic
response to CRT at 6 months follow-up: 348 (52.4%) patients showed both clinical and
echocardiographic response, 159 (24%) patients showed clinical but not echocardio-
graphic response, 64 (9.7%) were echocardiographic but not clinical responders, and
92 (13.9%) patients did not show either clinical or echocardiographic response.
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Overall Survivors  Non-survivors  p value
population (n=523) (n=140)

(n=663)
Demographic characteristics
Age (yrs) 65+11 65+11 68+10 0.003
Male [n, (%)] 523(79) 405(77) 118(84) 0.078
Body surface area (m2) 1.97+0.22 1.98+0.22 1.94+ 0.22 0.041
Body mass index (kg/m2) 26.4+4.3 26.6+4.2 25.6+4.3 0.013
Medical history
Diabetes [n, (%)] 131(20) 90(17) 41(29) 0.001
Ischemic etiology [n, (%)] 398(60) 300(57) 98(70) 0.007
Systolic blood pressure (mmHg) 12120 123+20 114+19 <0.001
Diastolic blood pressure (mmHg) 72£12 73£12 69+11 <0.001
Medications [n, (%)]
ACE inhibitor/Angiotensin receptor blockers 597(90) 477(91) 120(86) 0.054
Beta-blockers 466(70) 381(73) 85(61) 0.005
Diuretics 551(83) 422(81) 129(92) 0.001
Nitrates 161(24) 120(23) 41(25) 0.12
Statins 386(58) 314(60) 72(57) 0.067
Oral anticoagulants/ Aspirin 619(93) 490(94) 129(92) 0.51
Clinical characteristics
NYHA functional class IV [n, (%)] 40(6.0) 26(5.0) 14(10.0) 0.026
Heart rate (bpm) 72+17 72+17 74+16 0.20
QRS duration (ms) 155+ 33 155+33 156+31 0.76
Hemoglobin level (mmol/l) 8.3+0.9 8.4+0.9 8.1+1.0 0.017
Renal dysfunction [(n, (%)] 269 (40.6) 176 (33.7) 93 (66.4) <0.001
Echocardiographic characteristics
LV end-diastolic volume (ml) 218+80 215+74 231+96 0.22
LV end-systolic volume (ml) 164+69 160+64 180+84 0.029
LV ejection fraction (%) 25+8 26+8 23+8 <0.001
Severe mitral regurgitation [n, (%)] 113(17) 72(14) 41(29) <0.001

ACE: angiotensin converting enzyme; LV: left ventricular; NYHA: New York Heart Association.

Renal dysfunction: glomerular filtration rate <60 ml/min/1.73mz2
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During a mean follow-up of 3722 months, 140 (21%) patients died. Baseline pa-
rameters of the survivors versus the non-survivors are reported in Table 2. Of note,
the survivors were younger, had less frequently diabetes, ischemic etiology of heart
failure, and NYHA functional class IV. Interestingly, the survivors had higher hemoglo-
bin levels and also more preserved renal function. Regarding the echocardiographic
data at baseline, the survivors had smaller LVESV, higher LV ejection fraction and less
frequently severe mitral regurgitation. There were 7 (1.3%) hospitalizations for heart
failure in the survivors and 8 (5.7%) in the non-survivors (p = 0.002) within 6 months
follow-up.

The survivors were more frequently clinical responders as compared to the non-
survivors (78% versus 70%, p = 0.037). Moreover, the survivors showed higher

Table 2. Cox uni- and multivariable regression analyses for all cause mortality

Dependent variable: Univariable analysis Multivariable analysis

All cause mortality

HR (95% Cl) p value HR (95% Cl) p value
Independent variables
Age (yrs) 1.03(1.01-1.05)  0.001 1.03(1.01-1.05)  0.012
Body mass index (Kg/m2) 0.95(0.91-0.99) 0.012 - -
Diabetes 2.06(1.422.97)  <0.001 2.05(1.40-3.01)  <0.001
Ischemic etiology 1.85(1.29-2.67) 0.001 - -
Systolic blood pressure (mmHg) 0.98(0.97-0.99) <0.001 0.99 (0.98-0.99) 0.023
Diuretics 2.24(1.21-4.15) 0.010 -
Hemoglobin level (mmol/l) 0.75(0.63-0.90) 0.002 -
Renal dysfunction 3.05(2.15-4.33) <0.001 1.93(1.29-2.89) 0.001
LV ejection fraction (%) 0.97(0.95-0.99)  0.003 0.98 (0.96-1.00)  0.088
Severe mitral regurgitation 1.91(1.32-2.75) 0.001 1.47(1.00-2.14) 0.048
Hospitalizations for heart failure 3.93(1.91-8.06) <0.001 4.03(1.91-8.50) <0.001
within 6 months follow-up
Clinical response 0.59(0.41-0.85) 0.004
LV reverse remodeling 0.31(0.22-0.43) <0.001 0.35(0.25-0.50) <0.001

Cl: confidence intervals; HR: hazards ratio; LV: left ventricular
Renal dysfunction: glomerular filtration rate <60 ml/min/1.73m2
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Figure 1. Panel A shows the absolute change between 6 months follow-up and baseline in New York Heart
Association (NYHA) functional class. Panel B and C show the relative changes in left ventricular end-
diastolic (LVEDV) and end-systolic volumes (LVESV). Panel D shows the absolute change in left ventricular
ejection fraction (LVEF)

echocardiographic response rate as compared to the non-survivors (69% versus
37%, p <0.001). The clinical (change in NYHA functional class at 6 months follow-
up) and the echocardiographic (change in LVEDV, LVESV and LV ejection fraction)
improvements are illustrated in Figure 1.

Clinical and echocardiographic response to CRT versus long-term mortality

Clinical and echocardiographic responses to CRT were both significantly related to
all-cause mortality. When the patient population was dichotomized based on clinical
response to CRT, a cumulative 2%, 7% and 12% of the patients with improvement in
=1 NYHA functional class died by 12, 24 and 36 months follow-up, respectively. In con-
trast, a respective 7%, 18% and 23% of the patients without improvement in =1 NYHA
functional class died during the same time period (log-rank p = 0.004: Figure 2A).
When the patient population was dichotomized based on echocardiographic re-
sponse to CRT, a cumulative 1%, 4% and 8% of the patients with LV reverse remod-
eling died by 12, 24 and 36 months follow-up, respectively. In contrast, a respective
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Figure 2. Kaplan Meier curves estimate of all cause mortality. Panel A shows the probability of all-cause
mortality which differed significantly between the clinical responders and clinical non-responders. Panel

B shows the probability of all-cause mortality which differed significantly between the echocardiographic
responders and echocardiographic non-responders. The orange shadowed bar indicates the 6-month follow-
up period after CRT implantation.

8%, 19% and 27% of the patients without LV reverse remodeling died during the
same time period (log-rank p <0.001) (Figure 2B).

To identify whether clinical and echocardiographic responses were independent
predictors of all-cause mortality during follow-up, significant univariable predictors
with a p value <o.05 were entered into the Cox proportional-hazard model as covari-
ates. On multivariable analysis, echocardiographic response (hazard ratio, 0.35;
95% Cl, 0.25-0.50; p <0.001) but not clinical response was independently associated
with a superior survival.

As expected, the main cause of death was cardiovascular (91[65%] of 140 patients)
and specifically related to progression of heart failure (81[89%)] of 91 patients).
Interestingly, echocardiographic non-responder patients died more frequently for
cardiovascular reasons as compared to responder patients (65 [74%] vs. 26[50%]
patients, p= 0.004).

Finally, dividing the patient population in 4 subgroups based on combined
clinical and/or echocardiographic response, patients with both clinical and echo-
cardiographic response to CRT and patients with echocardiographic but not clini-
cal response had significantly lower mortality (12.9% and 10.9%, respectively) as
compared to patients with clinical but not echocardiographic response or patients
without any response to CRT (nor clinical or echocardiographic), in whom mortality
rates were 32.7% and 39.1%, respectively (chi-square = 48.72, p <0.001). Figure 3
represents the Kaplan-Meier survival curves of these 4 subgroups of patients show-
ing superior survival for patients with both clinical and echocardiographic response
to CRT and for patients with echocardiographic but not clinical response to CRT.
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Figure 3. Kaplan Meier curves estimate of all cause mortality in 4 subgroups of patients: clinical +
echocardiographic responders, only echocardiographic responders, only clinical responders and non-
responders (nor clinical or echocardiographic). The orange shadowed bar indicates the 6-month follow-up
period after CRT implantation.

DISCUSSION

The present study demonstrated that reduction of =15% LVESV, regardless changes in
clinical status, was a predictor of all-cause mortality in heart failure patients treated
with CRT. Specifically, LV reverse remodeling was an important and independent pre-
dictor of outcome in CRT recipients over other well established predictors of mortality

in the general heart failure population.

Clinical and echocardiographic response to CRT

Along the various single- and multi-center trials on CRT, definition of response to CRT
has widely varied.”® Different clinical and echocardiographic parameters have been
used to evaluate the efficacy of CRT. In addition, the response to CRT has been evalu-
ated at different time points, most commonly at 3 or 6 months follow-up. However, it
has been repeatedly shown that clinical and echocardiographic CRT response may not
coincide and, indeed, a significant percentage of patients who showed an improvement
in clinical end points did not show any improvement in echocardiographic parameters
(215% LV reverse remodeling or significant improvement in LV ejection fraction).®¢"7
In the present study, 77% of the patients showed an improvement in NYHA function
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class of at least 1-point whereas 62% showed =15% reduction in LVESV. This confirms
previous findings and suggests the presence of a placebo effect that may overesti-
mate the benefits of CRT when the response is defined according to clinical criteria.
However, it may be more interesting to evaluate whether this improvement in clinical
status or in echocardiographic parameters at mid-term follow-up conveys or not a
superior long-term survival. Indeed, the appropriateness of surrogate end points,
such as NYHA functional class or LV reverse remodeling, to evaluate the efficacy of
heart failure therapies depends on the strength of the statistical relationship between
the change in the surrogate end points over time and the clinical outcome.?

The present study demonstrated that the occurrence of significant LV reverse remod-
eling at 6 months follow-up was related with superior long-term survival. In contrast,
improvement in NYHA functional class was not associated with improved long-term
survival. This was also confirmed dividing the patient population in 4 subgroups
based on combined clinical and/or echocardiographic response CRT response. The
patients with echocardiographic response to CRT (clinical and echocardiographic
or only echocardiographic CRT response) had better survival as compared to the
patients without echocardiographic response to CRT (Figure 3). Previously, Yu et al.s
have shown in 141 heart failure patients that LVESV reduction was independently as-
sociated to mid-term outcome after CRT. The authors found a relationship between
reduction of LVESV and mid-term clinical outcome. However, the association between
improvement in clinical status (defined by =1 point in NYHA functional class) and
all-cause and cardiovascular mortality was not evaluated. More recently, the results
of the REVERSE, MADIT-CRT and RAFT trials have shown that in mildly symptomatic
heart failure patients (NYHA functional class I-11), CRT reduced the number of heart
failure re-hospitalizations, induced a significant LV reverse remodeling and improved
the long-term survival.’®®2° This improvement in long-term survival might be related
to improvement in LV performance and LV reverse remodeling rather than improve-
ments in NYHA functional class since the included patients were asymptomatic or
mildly symptomatic.

The present study confirms and extends these preliminary results in over 650
heart failure patients treated with CRT. LV reverse remodeling was independently re-
lated to all cause mortality (hazard ratio, 0.34; 95% Cl, 0.25-0.50; p <0.001) together
with age, presence of diabetes, renal dysfunction, and heart failure hospitalizations.
These clinical parameters (age, diabetes, systolic blood pressure, renal dysfunc-
tion, and heart failure hospitalizations,) are well known strong prognosticators in
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patients with advanced heart failure.? However, thus far, the effects of CRT on
LV dimensions and its implications on long-term survival have not been evaluated
together with these clinical variables.# 5 The fact that LV reverse remodeling at
mid-term follow-up was still an independent predictor of long-term outcome after
adjusting for these powerful risk factors underlines the relevance of the assessment
of CRT response at mid-term follow-up based on LV reverse remodeling.

Study limitations

The study was retrospective and reported the experience of a single center. Data on
LV lead position was not included in the present study. The influence of this param-
eter on CRT response and outcome has been well —described in observational and
randomized trials. However, the impact of LV lead position on CRT response and
outcome was beyond the scope of the present study which focused on the prognostic
implications of clinical and/or echocardiographic response. The percentage of beta-
blocker use was relatively low but still higher as compared to previous randomized
trials (MIRACLE and COMPANION) and similar to the CARE-HF trial but lower than
the recent REVERSE, MADIT-CRT and RAFT trials.” 3 2024 However all the patients
received the maximum tolerated dose of beta-blocker.

CONCLUSIONS

In a large population of heart failure patients treated with CRT, the reduction of LVESV
at mid-term follow-up demonstrated to be a better predictor of long-term survival than
improvement in clinical status. In addition, LV reverse remodeling was an important
and independent predictor of outcome in these patients together with other well
established predictors of long-term survival.
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ABSTRACT

Background.  Quantification of segmental left ventricular (LV) strain by
speckle-tracking echocardiography can identify transmural in-
farcts in patients with chronic ischemic cardiomyopathy. The
aim of the study was to explore the relationship between the
LV longitudinal peak systolic strain (LPSS) of the infarct, peri-
infarct and remote zones and monomorphic ventricular tachy-
cardia (VT) inducibility on electrophysiological (EP) study.

Methods. A total of 134 patients with chronic ischemic cardiomyopathy
scheduled for EP study were included. The protocol consisted
of clinical, ECG and echocardiographic evaluation, including LV
longitudinal strain analysis using speckle-tracking echocardiog-
raphy, immediately before EP study. An infarct segment was de-
fined as a longitudinal strain value of >-5%, and a peri-infarct seg-
ment was defined as immediately adjacent to an infarct segment.

Results. The infarct zone had the most impaired longitudinal strain
(-0.5+3.0%), whereas the peri-infarct and remote zones had
more preserved longitudinal strain (-10.8+1.9% and -14.5+3.0%,
respectively; ANOVA p<0.001). Seventy-two (54%) patients had
inducible monomorphic VT on EP study. There was no significant
difference in LVEF (31£9% vs. 32+11%, p=0.29) between induc-
ible and non-inducible patients. LPSS of the peri-infarct zone was
more impaired in inducible patients (-9.8+1.5% vs. -11.0%2.1%,
p=0.001), but no differences in LPSS of the infarct (-0.5+3.2%
VS. -0.4+2.7%, p=0.75) and remote (-14.6+2.8% vs. -14.5+3.4%,
p=0.92) zones were observed. Only LPSS of the peri-infarct zone
(OR 1.43, 95% Cl 1.15-1.78, p=0.001) was independently related
to monomorphic VT inducibility on multiple logistic regression.

Conclusions.  Longitudinal strain analysis may be a useful imaging tool to risk-
stratify ischemic patients for malignant ventricular arrhythmia.
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INTRODUCTION

Coronary artery disease, provoking lethal ventricular arrhythmias, is one of the most
common causes of sudden cardiac death.' Usually, the electrical sequence is due to
the initial development of monomorphic ventricular tachycardia (VT) that subse-
quently degenerate into ventricular fibrillation.? The classical anatomical substrate
for monomorphic VT is the peri-infarct zone with re-entry pathways that abounds
the infarcted myocardial scar tissue.3 These scar areas represented by the infarct
zone are normally highly fibrosed, whereas the peri-infarct zone constitutes a highly
heterogeneous area with intermediate degrees of non-transmural fibrosis. The tissue
heterogeneity of the peri-infarct zone may be electrically unstable and constitute the
substrate for re-entrant VT.+°

Recently cardiac magnetic resonance imaging (CMR) permits identification of
myocardial scar tissue and can also characterize the peri-infarct zone.” # Specifi-
cally, the extent of peri-infarct zone can be quantified with contrast-enhanced CMR,
whereas the mechanical properties of the peri-infarct zone can be assessed by
tagged CMR.7® These studies demonstrated a strong relationship between the peri-
infarct zone heterogeneity and monomorphic VT inducibility.” ®

Novel speckle-tracking echocardiography with quantifications of regional
left ventricular (LV) longitudinal strain has been shown to have good sensitivity
and specificity in identifying transmural scar tissue by contrast-enhanced CMR.?
Therefore, regional speckle-tracking analysis of LV longitudinal peak systolic strain
(LPSS) permits the differentiation of the infarct, peri-infarct and remote zones by
characterizing the different tissue mechanical properties. Thus, the aim of the pres-
ent study was to explore the relationship between the LPSS of the peri-infarct zone
detected with speckle-tracking echocardiography and monomorphic VT inducibility
in patients with chronic ischemic cardiomyopathy.

METHODS

Patient population and protocol

A total of 141 consecutive patients scheduled for cardiac electrophysiological (EP)
study were included. Inclusion criteria were previous history of myocardial infarction
(>40 days ago), referral for a clinically indicated EP study because of syncope or non-
sustained ventricular tachycardia at ECG-Holter monitoring, and sinus rhythm during
the echocardiographic examination.
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The protocol consisted of an extensive clinical, electrocardiographic (ECG), and
echocardiographic evaluation, including LPSS analysis. Afterwards (maximum 24
hours later), all patients underwent a clinically indicated EP study to induce mono-
morphic VT. All echocardiographic analyses were performed by an independent
observer blinded to the EP study results. The echocardiographic analyses included
assessments of LV volumes, LV ejection fraction (LVEF) and wall motion scoring.
Speckle-tracking analysis using automated function imaging was applied to deter-
mine global LPSS. In addition, the LPSS of the infarct, peri-infarct and remote zones
were determined based on segmental strain values. Finally, the clinical, ECG, and
echocardiographic variables were tested by uni- and multivariable logistic regres-
sion analysis to investigate the association with inducibility of monomorphic VT at
EP study.

All patients were imaged in left lateral decubitus position using a commercially
available system (Vingmed Vivid 7, General Electric-Vingmed, Milwakee, Wisconsin,
USA). Standard 2-dimensional images were obtained using a 3.5-MHz transducer and
digitally stored in cine-loop format; the analysis was performed offline using EchoPAC
version 108.1.5 (General Electric-Vingmed).

LV end-diastolic volume (LVEDV), end-systolic volume (LVESV) and LVEF were
calculated using Simpson’s biplane method of discs as recommended by the Ameri-
can Society of Echocardiography guidelines.™

Segmental wall motions were evaluated and scored as 1: normal; 2: hypokinesia; 3:
akinesia; 4: dyskinesia. Global wall motion score index was calculated using the sum
of the segmental scores divided by the number of segments analyzed, as previously
described.™

The speckle-tracking software tracks frame-to-frame movements of natural myocar-
dial acoustic markers, or speckles, on standard gray scale images. Each region of the
myocardium has a characteristic speckle-pattern; therefore it can be followed during
the cardiac cycle. Furthermore, speckle-tracking analysis is an angle independent
technique that allows the evaluation of myocardial contraction/relaxation in the cir-
cumferential, longitudinal and radial directions.™
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Longitudinal strain analysis: global, infarct, peri-infarct and remote LPSS

Myocardial strain can be assessed from temporal differences in the mutual distance
of neighboring speckles. The change in length/initial length of the speckle-pattern
over the cardiac cycle can be used to calculate longitudinal strain, with myocardial
shortening represented as negative strain, and myocardial lengthening as positive
strain. During the systole the myocardium shortens in the longitudinal direction
and, conventionally, is presented as negative values. Therefore, more negative values
indicate larger and more preserved longitudinal strain. LV longitudinal strain was
determined from the apical long-axis, 4- and 2-chamber views with optimal 2D gray
scale image frame rates ranging from 50 to 100 frame/s. After defining the mitral an-
nulus and the LV apex with 3 index points at the end-systolic frame in each apical view,
the automated function imaging software automatically traces the endocardial border
while allowing the user to manually adjust the region of interest width to include
the entire myocardial wall. Further manual adjustments of the endocardial border
were performed to ensure adequate tracking throughout the cardiac cycle. The LV
was automatically divided in 6 segments in each apical view and tracking quality was
validated for each segment. Finally, the automated algorithm provides the LPSS value
for each LV segment in a 17-segment model polar plot, with the average value of LPSS
for each apical view and the averaged global LPSS value for the entire LV.

According to previous evidence, a segmental longitudinal strain value >-5%
was consistent with transmural scar on delayed enhancement cardiac magnetic
resonance imaging, and was classified as infarcted segment.® Thus, all segments
adjacent to the infarcted segments were classified as peri-infarct segments and all
remaining segments were classified as remote segments (Figure 1). Finally, LPSS of
the infarct, peri-infarct and remote zones were calculated as the means of the LPSS
of the infarct, peri-infarct and remote segments respectively.

The intra- and inter-observer variabilities for longitudinal strain analysis as as-

sessed with Bland-Altman analysis were previously reported and were -0.3 + 0.6%
and -0.2 + 2.6%, respectively.”

Cardiac electrophysiological testing

The cardiac EP study was performed within 24 hours after echocardiographic evalua-
tions. Studies were performed in the post absorptive, non-sedated state. Antiarrhyth-
mic drugs were discontinued for 5 half-lives, with the exception of amiodarone which
was continued in 13 patients.
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o: Infarcted segment
O: Peri-infarcted segment

: Remote segment

Figure 1. Example of assessment of longitudinal strain from the 3 apical views (upper panel from left to the
right: 3-chamber, 4-chamber and 2-chamber views). From the polar plot model (lower panel), all segments
with segmental strain value >-5% were classified as infarct segments. All segments adjacent to infarcted
segments were classified as peri-infarct segments, and the remaining segments were classified as remote
segments. Infarct zone strain (the average of the strain of the infarcted segments) was 2.7%. Peri-infarct
zone strain (the average of the strain of the peri-infarcted segments) was -11.7%. Remote zone strain (the
average of the strain of the remote segments) was -16.1%.

The EP study consisted of a programmed extrastimulation protocol using 3 drive
cycle lengths (600, 500, 400 ms) and 1, 2 and 3 extrastimuli while pacing at 2 right
ventricular sites (right ventricular apex and right ventricular outflow tract). The
initial S2 coupling interval in each stimulation sequence was at least 300 ms and
stimulation was not performed at a coupling interval of <200 ms. Inducibility at
EP study was defined as the induction of a monomorphic VT lasting for more than
30 seconds or monomorphic VT requiring termination because of hemodynamic
compromise.

All continuous variables are presented as mean + SD. Categorical data are presented
as numbers and percentages. Differences in LPSS and number of segments between
the different zones (infarct, peri-infarct and remote) in the overall population were
assessed by one-way analysis of variance (ANOVA), and post-hoc analyses were
performed with Bonferroni correction. Unpaired Student’s t-test and Chi-square test
were used to compare continuous and categorical variables respectively for inducible
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vs. non-inducible patients. In order to identify variables related to a positive response
to EP study, uni- and multivariable logistic regression analyses were performed and
included clinical (age, gender, etiology, cardiovascular risk factors, time since last
myocardial infarction, New York Heart Association [NYHA] functional class, heart rate,
and medications), ECG (PR, QRS duration and corrected QT interval duration), and
echocardiographic (LV volumes, LVEF, wall motion score index, global LPSS, infarct
LPSS, peri-infarct LPSS, remote LPSS) variables. Only univariable predictors with a
p value <o.10 were entered as covariates in multivariable logistic regression model
using an enter method. Odds ratio and 95% confidence intervals were calculated.
All statistical tests were 2-sided, and a p value <0.05 was considered significant. A
statistical software program SPSS 16.0 (SPSS Inc, Chicago, IL, USA) was used for
statistical analysis.

No extramural funding was used to support this work. The authors are solely
responsible for the design and conduct of this study, all study analyses, the drafting
and editing of the paper and its final contents.

RESULTS

Overall population

Reliable speckle-tracking was obtained in 134 (95%) patients and constituted the final
study population. Tables 1 and 2 show the demographic and clinical characteristics
of the overall patient population. In particular, the mean age of the overall patient
population was 67 + 10 years and 119 (89%) patients were men. Both the QRS dura-
tion and the corrected QT interval were slightly prolonged (122 + 28 ms and 444 + 35

ms respectively). Beta-blockers and angiotensin-converting enzyme inhibitor or an-
giotensin receptor blockers treatments were present in 67% and 92% of the patients,
respectively; whereas 10% and 16% of the patients were treated with amiodarone or
sotalol, respectively.

All the patients had dilated LV volumes (LVEDV and LVESV were 171 = 57 ml and
120 + 50 ml respectively) and reduced LVEF (31 = 10%). The mean global LPSS
was -9.1 + 3.8%. A progressive increment in LPSS from the infarct to peri-infarct
and remote zones (ANOVA p <o.001; Figure 2) was observed. The infarct zone
showed the most impaired LPSS values (-0.5 + 3.0%), whereas the peri-infarct and
remote zones showed more preserved values of LPSS (-10.8 + 1.9% and -14.5
3.0%, respectively; Figure 2).
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20 p <0.001 ‘
(%) ANOVA p <0.001

The EP study was conducted in all the patients without major complications. After EP
study, 72 (54%) patients were classified as inducible and 62 (46%) as non-inducible.
Table 1 shows the demographic and clinical characteristics of inducible and non-

Table 1. Demographic and clinical characteristics of overall population, and inducible vs. non-inducible
patients.

Overall Inducible Non-inducible p value
population monomorphic monomorphic

(n=134) VT (n=72) VT (n=62)
Age (yrs) 67+10 67+10 67+10 0.84
Male (%) 119 (89) 67 (87) 52 (90) 0.093
Hypertension (%) 58 (43) 31 (43) 27 (44) 0.95
Diabetes (%) 35 (26) 17 (24) 18 (29) 0.47
Family history of cardiac disease (%) 46 (34) 29 (40) 17 (27) 0.12
Current smoker (%) 21 (16) 11 (15) 10 (16) 0.89
Time since last myocardial infarction (months) 88+90 100+94 74+83 0.090
NYHA functional class I1I-IV (%) 47 (35) 24 (33) 23 (37) 0.65
Heart rate (bpm) 67+10 66+11 68+10 0.13
PR interval (ms) 182+32 185+32 178+33 0.21
QRS duration (ms) 122+28 126+27 117+28 0.044
Corrected QT interval duration (ms) 444435 446+33 44136 0.45

MVT: monomorphic ventricular tachycardia; NYHA: New York Heart Association
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inducible patients. There were no significant differences in age, gender, cardiac risk
factors, NYHA functional class and heart rate. Inducible patients tended to have
longer time since last myocardial infarction (100 £ 94 months vs. 74 + 83 months, p
=0.090). In addition, QRS duration was significantly longer in inducible patients (126
+27 ms vs. 117 + 28 ms, respectively, p = 0.044). Table 2 showed no significant differ-
ences in the use of cardiac medication between inducible and non-inducible patients.

In regards to the echocardiographic variables, there was a trend towards a more
dilated LV in inducible patients (178 + 60 ml vs. 161 + 53 ml, p = 0.094) but there
were no significant differences in LVEF (31 £ 9% vs. 32 = 11%, p = 0.29). However,
LPSS of the peri-infarct zone was more impaired in inducible patients (-9.8 + 1.5%
vs. -11.0 + 2.1%, respectively, p = 0.001), but there were no significant differences in
LPSS of the infarct (-0.5 + 3.2% vs. -0.4 + 2.7%, p = 0.75) and remote (-14.6 + 2.8%
VS. -14.5 + 3.4%, p = 0.92) zones (Table 3). Figure 3 shows examples of patients with
and without inducible monomorphic VT. The patient with inducible monomorphic
VT had a more reduced LPSS of the peri-infarct zone. Furthermore, in this subgroup
of patients mean VT cycle length was 288 + 65 ms and this was modestly but sig-
nificantly related to global LPSS (r = 0.52, p <0.001; Figure 4). Conversely, VT cycle
length was not correlated to LPSS of the peri-infarct zone.

Table 2. Medications use of overall population, and inducible vs. non-inducible patients.

Overall Inducible Non-inducible  p value
population monomorphic  monomorphic

(n=134) VT (n=72) VT (n=62)
Beta-blockers (%) 90 (67) 46 (64) 44 (71) 0.38
ACE inhibitor/Angiotensin receptor 124 (92) 64 (89) 60 (97) 0.083
blockers (%)
Ca-antagonists (%) 12 (9) 9 (12) 3 (5) 0.12
Sotalol (%) 21 (16) 12 (17) 9 (15) 0.73
Amiodarone (%) 13 (10) 6 (8) 7 (17) 0.56
Diuretics (%) 90 (67) 49 (68) 41 (66) 0.81
Nitrates (%) 22 (16) 14 (19) 8 (13) 0.31
Statins (%) 106 (79) 56 (78) 50 (81) 0.68
Acetil salicylic acid/anticoagulants 126 (94) 68 (94) 58 (94) 0.83

(%)

ACE: angiotensin-converting enzyme; MVT: monomorphic ventricular tachycardia
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Table 3. Echocardiographic characteristics of overall population, and inducible vs. non-inducible patients.

Overall Inducible Non-inducible  p value
population monomorphic monomorphic

(n=134) VT (n=72) VT (n=62)
LVEDV (ml) 17157 178+60 161+53 0.094
LVESV (ml) 120+50 126+52 113+47 0.13
LVEF (%) 31+10 31+9 32+11 0.29
WMSI 1.7+0.4 1.8+0.4 1.7+0.4 0.45
Global LPSS (%) -9.1£3.8 -9.1+£3.4 -9.0+4.2 0.81
LPSS of the infarct zone (%) -0.5+3.0 -0.5+3.2 -0.4+2.7 0.75
LPSS of the peri-infarct zone (%) -10.8+1.9 -9.8+1.5 -11.0£2.1 0.001
LPSS of the remote zone (%) -14.5+3.0 -14.6+2.8 -14.5+3.4 0.92

LPSS: longitudinal peak systolic strain; LVEDV: left ventricular end-diastolic volume; LVEF: left ventricular
ejection fraction; LVESV: left ventricular end-systolic volume; MVT: monomorphic ventricular tachycardia;
WMSI: wall motion score index.

After analyzing all clinical, ECG and echocardiographic variables, male gender, time
since last myocardial infarction, QRS duration, angiotensin-converting enzyme inhibi-
tor or angiotensin receptor blockers usage, LVEDV and LPSS of the peri-infarct zone
had a p value <0.10 on univariable logistic regression analysis and were entered in the
multivariable model (Table 4). Only LPSS of the peri-infarct zone (odds ratio 1.43, 95%
confidence intervals 1.15-1.78, p = 0.001) was independently related to monomorphic
VT inducibility on EP study.

The current study showed that in patients with chronic ischemic cardiomyopathy,
LPSS of the peri-infarct zone was strongly associated to monomorphic VT inducibility.
In particular, after correction for clinical, ECG and echocardiographic variables, LPSS
of the peri-infarct zone was the only independent factor related to monomorphic VT
inducibility.
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Figure 3. Example of 2 patients with and without inducible monomorphic ventricular tachycardia (VT). The
panels show the polar plot model illustrating the values of the longitudinal peak systolic strain for every
segment (left) and the electrocardiogram at 100 mm/sec obtained during the electrophysiological test for
inducibility (right). Panel A. Patient with postero-lateral scar with inducible monomorphic VT. LPSS of the
peri-infarct zone was -9.0%. Panel B. Patient with septal and apical scar without inducible monomorphic VT.
LPSS of the peri-infarct zone was more preserved (-11.0%) as compared to the inducible patient.
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Figure 4. Panel A: Correlation between ventricular tachycardia (VT) cycle length and global longitudinal peak
systolic strain (LPSS). Panel B: Correlation between ventricular tachycardia (VT) cycle length and LPSS of the
peri-infarct zone.
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Table 4. Uni- and multivariate logistic regression analysis to identify predictors of monomorphic ventricular
tachycardia inducibility

Univariable analysis Multivariable analysis
Dependent variable:
Inducibility of monomorphic VT OR (95% Cl) p value OR (95% ClI) p value
Independent variables
Male 2.58 (0.83-8.00) 0.10 1.89 (0.53-6.72) 0.33
Time since last myocardial infarction 1.00 (1.00-1.01) 0.093 1.00 (0.99-1.07) 0.16
(months)
QRS duration (ms) 1.01 (1.00-1.03)  0.047 1.01 (0.99-1.02)  0.44
ACE inhibitor/Angiotensin receptor 0.27 (0.05-1.31) 0.10 0.32 (0.06-1.69) 0.18
blockers (%)
LVEDV (ml) 1.01 (1.00-1.01)  0.097 1.00 (0.99-1.01)  0.35
LPSS of the peri-infarct zone (%) 1.44 (1.16-1.80)  0.001 143 (1.15-1.78)  0.001

Cl: confidence intervals; LPSS: longitudinal peak systolic strain; LVEDV: left ventricular end-diastolic volume;
LVEF: left ventricular ejection fraction; MVT: monomorphic ventricular tachycardia; OR: odds ratio.

In the chronic phase of myocardial infarction, monomorphic VT is caused by re-entrant
pathways around the borders of infarcted scar area.>s Therefore, the peri-infarct zone
is the anatomical substrate for these malignant ventricular arrhythmias.> 5

Previous animal studies demonstrated that 2 months after induction of myocar-
dial infarction, the myofibers of the peri-infarct zone were highly disorganized with
replacement by connective tissue.™* In particular, peri-infarct zone was characterized
by non-uniform anisotropic areas with isles of viable myocardium and fibrosis,
resulting in slow electrical conduction of the cardiac pulse.™* This tissue hetero-
geneity with altered mechanical properties results in electrical instability and may
predispose to ventricular arrhythmias.

The tissue heterogeneity of the peri-infarct zone has been investigated with dif-
ferent techniques trying to characterize the electrical, anatomical and mechanical
properties.

The electrical characterization of the peri-infarct zone has been studied with bipolar
electrograms derived from electro-anatomic mapping techniques.# ®'>'¢ The infarct
areas had the lowest voltage amplitudes whereas the remote areas had the highest
voltages amplitudes.’>'® The peri-infarct zone had intermediate voltage amplitudes
and subsequently, several clinical studies have demonstrated that these areas were
the target of successful monomorphic VT ablation.# ¢ Recently, contrast-enhanced
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CMR has been shown to be a useful imaging technique to anatomically characterize
the peri-infarct zone.® 7 '8 Whereas the infarct zone shows high-intensity contrast
signal, the peri-infarct zone shows an intermediate-intensity contrast signal that
can be quantified with dedicated algorithms.®'7'® The extent of the peri-infarct zone
has been related to an increased mortality after myocardial infarction, and increased
inducibility for monomorphic VT on EP testing.®'® Indeed, Yan et al.®® demonstrated
that the extent of peri-infarct zone predicted an increased mortality in patients with
previous myocardial infarction. Subsequently, Schmidt et al.® found that that larger
extent of peri-infarct zone was independently related with an increased inducibility
for sustained monomorphic VT. More recently, Roes et al.7 corroborated these pre-
vious observations by reporting the association between the peri-infarct zone extent
and the occurrence of spontaneous ventricular arrhythmia detected as appropriate
therapies of implantable cardioverter-defibrillator (ICD) in 91 patients with previous
myocardial infarction and who underwent ICD implantation.

Finally, the mechanical properties of the peri-infarct zone have been recently
studied by Fernandes et al.” using tagged CMR. The authors evaluated the circum-
ferential strain and time to peak circumferential strain at the peri-infarct zone. An
enhanced peak circumferential strain and earlier time to peak circumferential strain
at the peri-infarct zone were positively related with monomorphic VT inducibility.

In the present study 2-dimensional speckle-tracking analyses of the standard
grey-scale echocardiographic images was used. This imaging technique provides
valuable information on the mechanical properties of the peri-infarct zone. Particu-
larly, in the current study the longitudinal mechanics of the peri-infarct zone was
investigated. Inducible patients had larger impairment of LPSS in the peri-infarct
zone (-9.8 £1.5% vs. -11.0 + 2.1%, p = 0.001). Furthermore, after correcting for clini-
cal, ECG and echocardiographic variables, LPSS of the peri-infarct zone was the only
independent determinant of monomorphic VT inducibility (adjusted odds ratio 1.39,
95% confidence interval 1.11-1.78, p = 0.005). Therefore, this observation confirmed
the independent relationship between the mechanical properties of the peri-infarct
zone, particularly the longitudinal mechanics, and monomorphic VT inducibility.

Importantly, in contrast to global LPSS, peri-infarct peak longitudinal strain was
not related to VT cycle length. This finding underscores that the LPSS values of
peri-infarct zone did not reflect the extension of the scar but only the longitudinal
function of the tissue adjacent to the infarcted segments. Conversely, global LPSS
may reflect the total scar burden,” and more impaired global LPSS are associated
to longer VT cycle length.
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The present study underscores the independent relationship between reduced peri-
infarct zone longitudinal strain and VT inducibility in patients with chronic ischemic
cardiomyopathy. Regional LV longitudinal strain analysis by speckle-tracking echo-
cardiography may be helpful in identifying patients with increased risk of malignant
ventricular arrhythmias. Furthermore, quantifications of LPSS of the peri-infarct zone
may be a potentially useful tool for selecting patients who might benefit from 1CD
therapy.

In patients with chronic ischemic cardiomyopathy, LPSS of the peri-infarct zone was
independently associated to monomorphic VT inducibility. Thus, speckle-tracking
analysis may be a useful imaging tool to risk-stratify patients with chronic ischemic
cardiomyopathy who might benefit from ICD.
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ABSTRACT

Background.

Left ventricular (LV) global longitudinal strain (GLS) is a measure
of the active shortening of the LV in the longitudinal direction
which can be assessed with speckle tracking echocardiography.
The aims of this evaluation were to validate the prognostic value
of GLS as new index of LV systolic function in a large cohort of
patients with chronic ischemic cardiomyopathy and determine
the incremental value of GLS to predict long-term outcome over
other strong and well established prognostic factors.

Methods and Results. A total of 1060 patients underwent baseline clinical

evaluation and transthoracic echocardiography. Median age
was 66.9 years [interquartile range (IQR) 58.4, 74.2 years],
739 (70%) men. The median follow-up duration for the en-
tire patient population was 31 months. During the follow-up,
270 patients died and 309 patients reached the combined
end point (all-cause mortality and heart failure hospitaliza-
tion). Compared to survivors, patients who died (270, [25%)])
had larger LV volumes (p<o.05), lower LV ejection fraction
(p=0.004), higher wall motion score index (p=0.001) and
greater impairment of LV GLS (p<o.001). After dichotomiz-
ing the population based on the median value of LV GLS
(-11.5%), patients with a LV GLS =-11.5% had superior outcome
compared with patients with a LV GLS >-11.5% (log rank chi
squared 13.86 and 14.16 for all-cause mortality and combined
end point respectively, p<o.001 for both). On multivariate
analysis, GLS was independently related to all-cause mortality
(hazard ratio per 5% increase, 1.69, 95% Cl 1.33-2.15; p<0.001)
and combined end point (1.64, 95% Cl 1.32-2.04; p<0.001).

The assessment of LV GLS with speckle tracking echocardiog-
raphy is significantly related to long-term outcome in patients
with chronic ischemic cardiomyopathy.
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INTRODUCTION

Several studies have shown that various clinical, electrocardiographic (ECG), and
echocardiographic parameters predict long-term outcome in patients with chronic
ischemic cardiomyopathy.”? In patients with chronic ischemic cardiomyopathy, left
ventricular (LV) ejection fraction (EF) and wall motion score index (WMSI) are well
established predictors of long-term outcome.>” However, both LVEF and WMSI have
some limitations related to reproducibility, geometric assumption and expertise.

Recently new parameters derived from two-dimensional (2D) speckle tracking
echocardiography permit the assessment of active myocardial deformation in
multiple directions (radial, circumferential and longitudinal).®™ Particularly, the
measurement of LV global longitudinal strain (GLS), which is a measure of the ac-
tive shortening of the LV in the longitudinal direction, is more reproducible than
LVEF and WMSI and does not rely on geometrical assumptions."

Thus far, preliminary data suggest that LV GLS may be superior to LVEF and
WMSI for the prediction of long-term outcome in different populations.* However,
whether LV GLS is related to long-term outcome in patients with chronic ischemic
heart disease is not established yet. Accordingly, the aims of this evaluation were
to validate the prognostic value of LV GLS as new index of LV systolic function in a
large cohort of patients with chronic ischemic cardiomyopathy, and determine the
incremental value of LV GLS to predict long-term outcome over other strong and
well established clinical, ECG and echocardiographic prognostic factors.

METHODS

Patient population and evaluation

The present evaluation consisted of retrospective analysis of clinical and echocar-
diographic data from patients with chronic ischemic heart disease. Patients with

known coronary artery disease and prior myocardial infarction (>90 days prior to the
index echocardiography) who underwent echocardiography between 1999 and 2009
were included in the present evaluation. This patient cohort formed part of ongoing
institutional registries.’ '® Clinical and echocardiographic data were prospectively
entered into the departmental Cardiology Information System (EPD-Vision®, Leiden
University Medical Center) and the echocardiography database, respectively. All
patients received optimal medical treatment and coronary revascularization accord-
ing to the current guidelines.”® In the present evaluation, atrial fibrillation, recent
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myocardial infarction (< 9o days) and poor acoustic window resulting in inadequate
speckle tracking analysis were exclusion criteria.

All patients underwent an extensive baseline clinical history and physical examina-
tion, 12-lead ECG and transthoracic echocardiography. Baseline clinical variables
included New York Heart Association (NYHA) functional class, cardiovascular risk
factors, medical treatment, and glomerular filtration rates (GFR) calculated by the
Modification of Diet in Renal Disease formula as recommended by the National
Kidney Foundation, Kidney Disease Outcomes Quality Initiative Guidelines.’ Base-
line echocardiographic variables included LV volumes, LVEF, WMSI, and LV GLS. All
patients were prospectively followed up for the occurrence of death for any cause.
From the various clinical, ECG and echocardiographic variables recorded, indepen-
dent determinants of all-cause mortality were identified.

Transthoracic echocardiography was performed with the patients at rest in the left
lateral decubitus position with commercially available ultrasound equipment (M4S
probe, Vivid 7, GE-Vingmed, Horten, Norway). All images were digitally stored on hard
disks for offline analysis (EchoPAC version 108.1.5, GE-Vingmed, Horten, Norway).

LV end-diastolic volume (EDV) and end-systolic volume (ESV) were calculated
using Simpson'’s biplane method of discs. LVEF was calculated and expressed as a
percentage. To calculate the WMSI, the LV was divided into 16 segments. A semi-
quantitative scoring system (1, normal; 2, hypokinesia; 3, akinesia; 4, dyskinesia) was
used to analyze each study. Global WMSI was calculated by the standard formula:
sum of the segment scores divided by the number of segments scored.>

In the present evaluation, global systolic LV myocardial function was determined with
2D speckle tracking strain analysis.’» 222 The speckle tracking software tracks the
frame-to-frame movement of natural myocardial acoustic markers, or speckles, on
standard gray scale images. Speckle tracking analysis is angle independent and allows
accurate evaluation of myocardial deformation in all the LV segments.® ° The change
in length/initial length of the speckle pattern over the cardiac cycle is used to calculate
longitudinal strain, with myocardial lengthening or stretching represented as positive
strain, and myocardial shortening as negative strain.
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To quantify LV GLS, 2D speckle tracking analyses were performed on standard
routine grey scale images of the apical 2-, 4-chamber and long-axis views. During
analysis, the endocardial border was manually traced at an end-systolic frame and
the software traced automatically a region of interest that includes the entire myo-
cardium. The width of the region of interest could be manually adjusted to ensure
proper tracking of the myocardial wall. The software then automatically tracked
natural myocardial acoustic markers and accepted segments of good tracking qual-
ity and rejected poorly tracked segments, while allowing the observer to manually
override its decisions based on visual assessments of tracking quality. Results of the
LV longitudinal strain analysis were automatically displayed as a 17-segment polar

map model with 17 segmental/regional strain values and a mean global strain value
for the entire LV (Figure 1).'222

Figure 1. Example of assessment of global longitudinal myocardial strain (GLS) as provided by the EchoPAC
software: apical long-axis view where the closure of aortic valve is defined (left upper panel), 4- (right upper
panel) and 2-chamber (left lower panel) views. In the lower panel, the “bull‘s eye” plot, using a 17-segment
model, provides the value of longitudinal strain for each segment of the left ventricle and the values of
longitudinal strain of apical long-axis (GLPSS-LAX), 4-chamber (GLPSS_A4C), 2 chamber (GLPSS_A2C) and
the value of GLS (GLPSS_Avg)
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Previously reported intra- and inter-observer variabilities for LV GLS analysis
expressed as mean absolute difference + 1 standard deviation were 1.2 + 0.5% and
0.9 + 1.0% respectively.?

Patients were followed up at 6- 12 monthly intervals according to protocol.’s '
Data on the occurrence of adverse events at follow-up were collected by reviewing
medical records, retrieval of survival status through the municipal civil registries and
telephone interviews. In the present evaluation, all-cause mortality and heart failure
hospitalizations were recorded as event. Patients without data on the last 6 months
were considered as lost to clinical follow-up. Data of these patients were included up
to the last date of follow-up. From the various clinical, ECG and echocardiographic
variables recorded, independent determinants of all-cause mortality were identified.

For uniformity reasons, continuous variables were presented as median and interquar-
tile range (IQR). Categorical variables were presented as frequencies and percentages,
and were compared using Chi-square test with Yates’ correction. Mann-Whitney U test
was used to compare unpaired continuous variables. Cumulative event rates from the
time of inclusion were calculated using the Kaplan-Meier method for each independent
predictor of all-cause mortality. The log-rank tests for time-to-event data with respect to
the primary outcome were used for statistical comparison between 2 patient groups.
Multivariate Cox proportional-hazards models were constructed to identify inde-
pendent clinical, ECG and echocardiographic determinants of all-cause mortality
and combined end point. Univariate variables with a p-value <o0.10 were entered
as covariates using the stepwise backward likelihood ratio selection method. In all
the analyses, the Cox proportional-hazards models were used to estimate hazard
ratios and 95% confidence intervals for those independent variables. To avoid
multicolinearity between the univariate predictors, a correlation coefficient of <o0.7
(corresponding to a tolerance of >0.5) was set. The correlation coefficients between
LV GLS and LVEF and WMSI were 0.87 and 0.8s5, respectively (both p<o.001)
whereas the correlation coefficient between LVEF and WMSI was 0.88 (p<0.001).
Accordingly, the independent predictive value of echocardiographic variables such
as WMSI, LVEF and GLS was evaluated in different multivariate models. Finally, the
incremental value of LV GLS to predict long-term outcome over WMSI and LVEF
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was assessed by calculating the increment in Harrell’'s C concordance statistic.24
A two-sided p value of < 0.05 was considered significant. All statistical analyses
were performed using SPSS for Windows (SPSS Inc, Chicago), version 15 and STATA
software (version 10.1, StataCorp, Texas).

The authors had full access to and take full responsibility for the integrity of the
data. All authors have read and agree to the manuscript as written.

RESULTS

Patient population

Of the 1125 patients included, adequate echocardiographic analyses were feasible in
1060 (94%) patients (median age 66.9 years [IQR 58.4, 74.2 years], 739 [70%] men)
and constituted the final patient population. The general characteristics of the overall
patient population are reported in Table 1.

Hypertension, dyslipidemia and diabetes were present in 459 (43%), 440 (41%)
and 298 (28%) patients, respectively. Most patients were treated with antiplatelets
and/or oral anticoagulants (92%), beta-blockers (69%) and angiotensin converting
enzyme inhibitors or angiotensin-receptor blockers (84%). In addition, 606 (57%)
patients received an implantable cardioverter-defibrillator device. Furthermore, 32%
underwent prior coronary-aorto bypass grafting whereas 25% underwent percutane-
ous coronary intervention. The remaining 43% of patients received optimal medical
treatment. Table 2 summarizes the echocardiographic characteristics of the patient
population. The median LVEDV, LVESV and LVEF were 140 ml (IQR 91-199 ml), 87
ml (IQR 39-150 ml), and 34% (IQR 25-58%), respectively. The median WMSI was 1.5
(IQR 1.0-2.0), and the median LV GLS was -11.5% (IQR -17.0 - -7.6%).

Survivors versus non survivors

The median follow-up duration for the entire patient population was 31.0 months
(IQR 15.5, 52.7 months). A total of 270 (25%) patients died during the study duration
and the median time to death was 25.9 months (IQR 13.0, 44.5 months). Differences
in baseline clinical, ECG and echocardiographic variables between patients who died
and patients who survived are outlined in Tables 1 and 2. Patients who died were more
likely to be older (p <0.001) and diabetic (p <0.001), and to be in NYHA functional
class I11-IV (p <0.001). Interestingly, patients who died had lower hemoglobin (p =
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Table 1. Clinical characteristics of overall population, and survivors versus non-survivors

Overall Survivors Non-survivors  p value
population (n=790) (n=270)
(n=1060)
Demographic characteristics
Age — years, median (IQR) 66.9 (58.4-74.2) 65.4 (56.8-72.6) 71.7 (64.0-76.7) <0.001
Male gender — (%) 739 (70) 556 (70) 183 (68) 0.42

Body surface area — m?, median (IQR) ~ 1.97 (1.83-2.10) 1.97 (1.84-2.11) 1.95 (1.83-2.08)  0.24

Medical history

NYHA functional class 1I-IV— (9) 420 (40) 282 (36) 138 (51) <0.001
Hypertension — (%) 459 (43) 343 (43) 116 (43) 0.89

Dyslipidemia — (%) 440 (41) 338 (43) 102 (38) 0.15

Diabetes — (%) 298 (28) 199 (25) 99 (37) <0.001
Current smoker — (%) 253 (24) 174 (22) 79 (29) 0.016
Family history ischemic heart disease 339 (32) 239 (30) 100 (37) 0.039
- (%)

Systolic blood pressure - mmHg, 130 (112-150) 130 (115-150) 125 (110-148)  0.075
median (IQR)

Diastolic blood pressure — mmHg, 77 (70-84) 77 (70-85) 75 (65-81) 0.030
median (IQR)

Device therapy- (%)

Implantable cardioverter-defibrillator 606 (57) 438 (55) 168 (62) 0.052
Cardiac resynchronization therapy 429 (40) 296 (37) 133 (49) 0.001
Revascularization- (%) 0.028
Percutaneous coronary intervention 269 (25%) 216 53
Coronary-aorto bypass grafting 336 (32%) 243 93

Medication at baseline — (%)

Antiplatelets 627 (59) 477 (60) 150 (56) 0.16
Anticoagulants 446 (42) 314 (40) 132 (49) 0.009
Beta-blocker 740 (69) 545 (69) 195 (72) 0.32
ACE inhibitor or angiotensin-receptor 896 (84) 671 (85) 225 (83) 0.53

blocker
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Table 1. Clinical characteristics of overall population, and survivors versus non-survivors (continued)

Overall Survivors Non-survivors  p value
population (n=790) (n=270)

(n=1060)
Calcium channel blocker 199 (19) 142 (18) 57 (21) 0.25
Diuretic 662 (62) 472 (60) 190 (70) 0.002
Nitrate 208 (20) 136 (17) 72 (27) 0.001
Statin 774 (73) 583 (74) 191 (71) 0.33
Laboratory measure at baseline
Hemoglobin — g/dL, median (IQR) 13.9 (12.6-14.8) 14.0 (12.7-14.8) 13.7 (11.9-14.5)  0.004
Estimated GFR — mL/min/1.73m?, 66.8 (51.3-82.8) 71.8 (57.0-85.2) 53.7 (39.7-67.0) <0.001
median (IQR)
Electrocardiogram at baseline
Heart rate — beats/min, median (IQR) 70 (61-80) 70 (61-80) 73 (63-82) 0.005
QRS duration — ms, median (IQR) 100 (100-146) 100 (100-142) 116 (100-154)  0.001

ACE: angiotensin converting enzyme; IQR: interquartile range; NYHA: New York Heart Association;

0.004) and GFR (p <0.001). In addition, they had a higher heart rate (p = 0.005) and
wider QRS complex (p = 0.001). Regarding echocardiographic parameters, patients
who died had larger LVEDV (p = 0.012) and LVESV (p = 0.005) and lower LVEF (p =
0.004). Finally, patients who died had higher WMSI (p = 0.001) and a greater impair-

ment of LV GLS (p <0.001).

Table 2. Echocardiographic characteristics of overall population, and survivors versus non-survivors

Overall Survivors Non-survivors  p value

population (n=790) (n=270)

(n=1060)
Echocardiography at baseline
Wall motion score index, median 1.5 (1.0-2.0) 1.5 (1.0-1.9) 1.6 (1.0-2.1) 0.001
(IQR)
LVEF — %, median (IQR) 34 (25-58) 35 (26-59) 33 (22-56) 0.004
LVEDV — ml, median (IQR) 140 (91-199) 136 (90-195) 153 (94-225) 0.012
LVESV — ml, median (IQR) 87 (39-150) 84 (36-142) 100 (42-170)  0.005
GLS — %, median (IQR) -11.5 (-17.0--7.6)  -12.3 (-17.5--8.5) -9.8 (-15.3--6.5) <0.001

GLS: global longitudinal left ventricular strain; IQR: interquartile range; LVEDV: left ventricular end-diastolic
volume; LVEF: left ventricular ejection fraction; LVESV: left ventricular end-systolic volume.
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Kaplan-Meier curves for LV GLS of all-cause mortality in ischemic cardiomyopathy
patients are reported in Figure 2A. Particularly, when the patient population was di-
chotomized based on the median LV GLS (-11.5%), a cumulative 4%, 10% and 17% of
patients with a LV GLS =-11.5% (less impaired LV shortening) died by 1, 2 and 3 years
follow-up respectively. In contrast, a respective 7%, 17% and 27% of patients with a
LV GLS >-11.5% (more impaired LV shortening) died during the same time period (log
rank chi squared = 13.86, p <0.001; Figure 2A).

In addition, the combined end point (heart failure hospitalization and all-cause
mortality) was reached by 309 patients during the follow-up. Kaplan-Meier estimates
of the time to the combined end point for patients with an LV GLS =-11.5% and
patients with an LV GLS >-11.5% are indicated in Figure 2B. After 3 years of follow-up,
the cumulative free survival rates of combined end point in the group of patients
with an LV GLS =-11.5% were 6%, 13% and 20% at 1, 2 and 3 years follow-up, respec-
tively. In contrast, the group of patients with an LV GLS >-11.5% showed cumulative
free survival rates of combined end point of 10%, 20% and 29% at 1, 2 and 3 years
follow-up, respectively (log rank chi squared = 14.16, p<o.001; Figure 2B).
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Figure 2: Kaplan Meier estimates of all-cause mortality (panel A) and combined end point (panel B). The
cumulative survival rates were compared between patients with left ventricular GLS <-11.5% (solid line) and
patients with GLS >-11.5% (dotted line).

To identify predictors of all-cause mortality, univariate Cox analyses were performed.
First, among various clinical and ECG variables, the independent determinants were
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identified (Table 3). Age, diabetes mellitus, hemoglobin and renal function (measured
with GFR) were independent determinants of all-cause mortality. Next, several
echocardiographic variables of LV function were introduced in different multivariate
models to evaluate their prognostic value (Table 4). WMSI (HR 1.43, 95% Cl 1.14-1.79;
p=0.002), LVEF (HR 1.04, 95% Cl 1.00-1.08; p=0.026) and LV GLS (HR 1.69, 95%
Cl 1.33-2.15; p<0.001) were significantly associated with all-cause mortality. However,
the model including LV GLS had the best relative fit and LV GLS provided the highest
Harrell’s C concordance statistics (Table 5).

In addition, the clinical and ECG variables that were independently associated
with the combined end point (heart failure hospitalization and all-cause mortal-
ity) were age, diabetes mellitus and renal function. The predictive value of WMSI,
LVEF and LV GLS was evaluated in different multivariate Cox regression analyses to
avoid multicolinearity. WMSI (HR 1.44, 95% Cl 1.16-1.78; p=0.001), LVEF (HR 1.04,
95% Cl 1.00-1.08; p=0.009) and LV GLS (HR 1.64, 95% Cl 1.32-2.04; p<0.001) were
independent predictors of the combined end point (Table 4). In addition, the model
including LV GLS had the highest Harrell's C statistic (Table 5).

Table 3. Cox uni- and multivariable regression analysis to identify clinical predictors of all-cause mortality and
combined end point during follow-up

Univariable analysis Multivariable analysis

Dependent variable:

Death from any cause HR (95% Cl)  p value HR (95% Cl)  pvalue
Independent variables

Age — years 1.05 (1.03-1.06) <0.001  1.04 (1.03-1.06) <0.001
NYHA functional class I11-1V 1.79 (1.41-2.28) <0.001 1.23 (0.92-1.66) 0.164
Diabetes 1.60 (1.25-2.05) <0.001  1.49 (1.15-1.92)  0.002
Diastolic blood pressure, per 10 mmHg 0.98 (0.97-0.99) <0.001 0.94 (0.84-1.04)  0.227
increase

Cardiac resynchronization therapy 1.73 (1.38-2.16)  0.002 1.32 (0.88-1.98)  0.177
Anticoagulants 1.33 (1.04-1.68)  0.021 1.13 (0.87-1.47)  0.350
Diuretics 1.55 (1.19-2.02)  0.001 0.96 (0.71-1.31)  0.815
Nitrates 1.45 (1.11-1.90)  0.009 1.23 (0.93-1.62)  0.144
Hemoglobin, per 1 g/dl decrease 1.36 (1.06-1.22) <0.001 1.08 (1.01-1.16)  0.043
GFR, per 10 ml/min/1.73m? decrease 1.02 (1.02-1.03) <0.001 1.15 (1.09-1.22)  <0.001
Heart rate, per 5 beats/min increase 1.05 (1.00-1.09)  0.030

QRS duration, per 20 ms increase 1.03 (0.99-1.07)  0.060
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Table 3 (continued)

Dependent variable:
Combined end point

Univariable analysis

Multivariable analysis

HR (95% Cl)  p value HR (95% Cl)  p value
Independent variables
Age —years 1.04 (1.02-1.05) <0.001 1.03 (1.01-1.04)  <0.001
NYHA functional class I1I-1V 1.63 (1.33-2.03) <0.001
Diabetes 1.37 (1.08-1.74)  0.009 1.30 (1.02-1.66)  0.034
Diastolic blood pressure, per 10 mmHg 0.88 (0.80-0.96)  0.007
increase
Cardiac resynchronization therapy 1.45 (1.15-1.81)  0.001
Anticoagulants 1.26 (1.01-1.58)  0.043
Diuretics 1.40 (1.10-1.78)  0.006
Nitrates 1.34 (1.04-1.73)  0.025
Hemoglobin, per 1 g/dl decrease 1.12 (1.04-1.20)  0.001
GFR, per 10 ml/min/1.73m? decrease 1.20 (1.14-1.26)  <0.001 1.15 (1.09-1.22)  <0.001
Heart rate, per 5 beats/min increase 1.04 (0.99-1.08) 0.072
QRS duration, per 20 ms increase 1.03 (1.00-1.07)  0.041

Cl: confidence intervals; GFR: glomerular filtration rate; HR: hazard ratio; NYHA: New York Heart Association

Table 4. Cox uni- and multivariable regression analysis to identify echocardiographic predictors of all-cause

mortality during follow-up

Dependent variable:
All-cause mortality

Multivariable analysis

-2 log Likelihood

HR (95% Cl)

p value

Independent variables: clinical + WMSI
Age — years

Diabetes

Hemoglobin, per 1 g/dl decrease

GFR, per 10 ml/min/1.73m? decrease

WMSI

Independent variables: clinical + LVEF
Age — years

Diabetes

1.04 (1.03-1.06)
1.55 (1.21-1.99)
1.08 (0.99 -1.16)
1.17 (1.05-1.24)

1.43 (1.14-1.79)

1.04 (1.03-1.06)

1.59 (1.23-2.04)

3226.8

<0.001

<0.001

0.059

<0.001

0.002

3231.6

<0.001

<0.001
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Table 4 (continued)

Dependent variable:
All-cause mortality

Multivariable analysis

HR (95% Cl)

p value

-2 log Likelihood

Hemoglobin, per 1 g/dl decrease
GFR, per 10 ml/min/1.73m? decrease

LVEF, per 5% decrease

Independent variables: clinical + GLS
Age — years

Diabetes

Hemoglobin, per 1 g/dl decrease
GFR, per 10 ml/min/1.73m? decrease

GLS, per 5% increment

1.08 (0.99-1.16)
1.16 (1.10-1.24)

1.04 (1.00-1.08)

1.04 (1.03-1.06)
1.60 (1.24-2.05)
1.08 (1.00-1.16)
1.15 (1.09-1.22)

1.69 (1.33-2.15)

0.048

<0.001

0.026

<0.001

<0.001

0.043

<0.001

<0.001

3215.9

Dependent variable:
Combined end point

Multivariable analysis

HR (95% Cl)

p value

-2 log Likelihood

Independent variables: clinical + WMSI
Age — years

Diabetes

GFR, per 10 ml/min/1.73m? decrease

WMSI

Independent variables: clinical + LVEF
Age — years

Diabetes

GFR, per 10 ml/min/1.73m? decrease

LVEF, per 5% decrease

Independent variables: clinical + GLS
Age —years

Diabetes

GFR, per 10 ml/min/1.73m? decrease

GLS, per 5% increment

1.03 (1.02-1.04)
1.37 (1.08-1.74)
1.15 (1.09-1.21)

1.44 (1.16-1.78)

1.03 (1.02-1.04)
1.34 (1.06-1.70)
1.16 (1.10-1.22)

1.04 (1.01-1.08)

1.03 (1.02-1.04)
1.37 (1.08-1.74)
1.14 (1.08-1.21)

1.64 (1.32-2.04)

<0.001

0.010

<0.001

0.001

<0.001

0.016

<0.001

0.009

<0.001

0.010

<0.001

<0.001

37333

3737.3

3724.2

Cl: confidence intervals; GFR: glomerular filtration rate; GLS: global longitudinal left ventricular strain; HR:
hazard ratio; LVEF: left ventricular ejection fraction; WMSI: wall motion score index.
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Table 5. Incremental prognostic value of LV GLS: discrimination indices analysis.

Model All-cause mortality Harrell’s C-concordance statistic index
1 Clinical parameters + WMSI 0.689
2 Clinical parameters + LVEF 0.686
3 Clinical parameters + GLS 0.700
Model Combined end point Harrell's C-concordance statistic index
1 Clinical parameters + WMSI 0.653
2 Clinical parameters + LVEF 0.648
3 Clinical parameters + GLS 0.659

GLS: global longitudinal left ventricular strain; HR: hazard ratio; LVEF: left ventricular ejection fraction;
WMSI: wall motion score index.

The main findings of the present study were as follows: 1) LV GLS was significantly
related to long-term outcome; 2) the predictive model including LV GLS provided the
best relative fit and, finally, 3) LV GLS was independently related to all-cause mortal-
ity and combined end point and had prognostic incremental value over other well
established clinical and ECG predictors.

Global longitudinal strain vs. left ventricular ejection fraction and wall motion score
index

As previously described, LVEF and WMSI are important echocardiographic prognos-
ticators, especially in patients with coronary artery disease.37 However, the assess-
ment of LVEF and WMSI has several limitations. The measurement of LVEF with 2D
echocardiography is based on geometrical assumptions used to calculate LV volumes.
Although biplane Simpson’s method is the most accurate 2D measurement to calcu-
late LVEF, the presence of wall motion abnormalities or distorted LV geometry, may
reduce the accuracy of this method to estimate LV systolic function and increase the
intra- and inter-observer variability. Moreover, the assessment of WMSI is based on
visual assessment and requires high expertise.

At present, speckle tracking echocardiography is emerging as novel technique
to allow the assessment of LV mechanics through the quantification of active
myocardial deformation.®'° Cumulative data show that, unlike LVEF and WMSI, the
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assessment of LV mechanics with 2D speckle tracking strain imaging is feasible
and reproducible, does not rely on geometric assumptions and is independent of
LV geometry.®° In particular, the assessment of LV GLS with 2D speckle tracking
echocardiography has shown to be an accurate marker of LV function.?> 2

Stanton et al. reported in a retrospective analysis of 546 unselected patients
that LV GLS assessed with 2D speckle tracking echocardiography had incremental
value over LVEF and WMSI for the prediction of outcome. Furthermore, the authors
showed that LV GLS assessment was more reproducible as compared to LVEF as-
sessment.” These findings were also confirmed in subsequent series of heart failure
patients.'+2¢

Thus far, the largest series reporting the prognostic value of GLS included 603
patients with acute myocardial infarction,”? 697 patients with ST-segment eleva-
tion acute myocardial infarction treated with primary coronary intervention™ and
546 unselected patients clinically referred for echocardiography (34% had prior
myocardial infarction and 17% had prior coronary revascularization.” The present
patient population is unique as it includes a homogeneous population with chronic
ischemic heart disease and far larger (n=1060) compared with previous series.
Furthermore, the current study provides further insight into the prognostic value of
LV GLS in patients with chronic ischemic heart disease. In this group of patients, as-
sessment of LV systolic function may be challenged by the presence of wall motion
abnormalities and highly abnormal LV geometry. Therefore, LV GLS may be a more
appropriate measure of LV systolic function by direct evaluation of the myocardial
contractile properties. Particularly, this study investigated the prognostic value of
LV GLS in 1060 patients extending previous results. LV GLS similarly to LVEF and
WMSI was more preserved in survivor patients. However, among echocardiographic
parameters, GLS was independently related to all-cause mortality (hazard ratio per
5% increase, 1.69, 95% Cl 1.33-2.15; p<0.001) and combined end point (all-cause
mortality and heart failure hospitalization) (1.64, 95% Cl 1.32-2.04; p<0.001).

Global longitudinal strain and long-term outcome

Prognosis of patients with coronary artery disease is influenced by several clinical
parameters.> 7 Similarly to previous series, the present study showed that age,
diabetes, hemoglobin levels and renal function (assessed as GFR) were significantly
and independently related to all-cause mortality in patients with chronic ischemic
cardiomyopathy.> 7 More importantly, the present study demonstrated the superior
prognostic value of LV GLS over these clinical well established predictors of mortality.
Furthermore, LV GLS provided significant incremental value over the clinical inde-
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pendent predictors of long-term outcome. Particularly, in the present evaluation the
patient population was dichotomized based on the median value of LV GLS (-11.5%)
showing a significantly better long-term survival for patients with less impaired LV
GLS.

This finding underscores that LV GLS assessed with 2D speckle tracking echocar-
diography may be used as novel index of LV longitudinal function and also as strong
predictor of all-cause mortality in patients with chronic ischemic cardiomyopathy.? 25

Although the present evaluation was retrospective in design, this is the largest popula-
tion cohort in which LV GLS was analyzed. An additional limitation to the present
study is that radial and circumferential strains were not explored. However, it has
recently been proven that longitudinal deformation may be a more sensitive marker
of cardiac function which better exploring the endocardial function as compared
to radial or circumferential strain.?® 29 This issue is particularly relevant in chronic
ischemic patients.?

The multivariate models presented are non-nested models and therefore, the
comparison between the likelihoods may not be appropriate. Therefore, we could
not demonstrate that GLS provided superior incremental prognostic value over LVEF
and WMSI. However, the models including GLS had the lowest -2log likelihood and
the highest Harrell’s C statistic suggesting that GLS may be a valuable method to
risk stratifiy patients with chronic ischemic heart disease. Other echocardiographic
parameters related to long-term outcome of patients with chronic ischemic heart
disease such as left atrial volume, mitral regurgitation and diastolic function were
not evaluated.

The assessment of LV GLS with speckle tracking echocardiography is significantly
related to long-term outcome in patients with chronic ischemic cardiomyopathy.
Particularly, LV GLS was independently related to all-cause mortality and provided
incremental prognostic value over other well established clinical and ECG predictors.
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Clinical perspective

In patients with chronic ischemic cardiomyopathy, left ventricular (LV) ejection fraction
(EF) and wall motion score index (WMSI) are well established predictors of long-term
outcome. However, both LVEF and WMSI have some limitations related to reproduc-
ibility, geometric assumption and expertise. Recently, two-dimensional (2D) speckle
tracking echocardiography permit the assessment of active myocardial deformation
in radial, circumferential and longitudinal directions. The measurement of LV global
longitudinal strain (GLS), which is a measure of the active shortening of the LV in the
longitudinal direction, is more reproducible than LVEF and WMSI and does not rely
on geometrical assumptions. The present study showed that the assessment of LV
GLS with 2D speckle tracking echocardiography is significantly related to long-term
outcome in patients with chronic ischemic cardiomyopathy. Moreover, LV GLS was
independently related to all-cause mortality and provided incremental prognostic
valve over other well established clinical and ECG predictors. Therefore, these findings
underscore that LV GLS assessed with 2D speckle tracking echocardiography may
be used as novel index of LV longitudinal function and also as predictor of all-cause
mortality in patients with chronic ischemic cardiomyopathy.
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ABSTRACT

Heart failure and atrial fibrillation (AF) frequently coexist and
AF worsens heart failure prognosis. Device-based diagnostics
derived from implantable cardioverter-defibrillator (ICD) inter-
rogation provide an accurate method for detecting AF episodes.
This study sought to determine clinical and echocardiographic
predictors of AF occurrence, including an index of total atrial
conduction time derived by tissue Doppler imaging (PA-TDI
duration), in patients with heart failure. Moreover, the role of
PA-TDI duration on the prediction of AF occurrence in sub-
groups of patients with and without history of AF was explored.

Methods and Results. A cohort of 495 heart failure patients who underwent ICD

implantation was studied. Baseline echocardiographic param-
eters of systolic and diastolic function were evaluated together
with clinical parameters. Furthermore, PA-TDI duration was
measured. All patients were prospectively followed up after ICD
implantation for AF occurrence detected by ICD interrogation.
A total of 142 (29%) patients experienced AF over a follow-
up period of 16.4+11.2 months. PA-TDI duration was longer in
patients with AF occurrence as compared to patients without
AF occurrence (154+27ms vs. 135+24ms, p<0.001). On Cox-
multivariable analysis, female gender (hazard ratio=1.60; 95%
confidence intervals=1.09-2.35; p=0.017), history of AF (haz-
ard ratio=2.22; 95% confidence intervals=1.51-3.27; p<0.001),
and PA-TDI duration (hazard ratio=1.27; 95% confidence in-
tervals=1.13-1.42; p<0.001) were independent predictors of AF
occurrence. In the subgroups of patients with and without his-
tory of AF, PA-TDI duration remained an independent predic-
tor of AF occurrence.

PA-TDI duration may be useful to risk-stratify for AF occur-
rence in heart failure patients with and without a history of AF.



Prediction of atrial fibrillation in patients with an implantable cardioverter-defibrillator and heart failure ~ 183

INTRODUCTION

Atrial fibrillation (AF) is a frequent arrhythmia associated with increased cardiovascu-
lar morbidity and mortality."2 In particular, AF is well known to result in a substantially
increased risk for stroke.> Heart failure is a serious condition frequently associated
with AF.# In particular, AF may further worsen the long-term prognosis of heart failure
by increasing the risk of cardiac thromboembolism.#® Thus, the identification of
predictors of AF occurrence in heart failure patients is crucial for the initiation of pro-
phylactic oral anticoagulant therapy in order to reduce the risk of cardiogenic stroke.
Recently, a novel non-invasive echocardiographic index derived by tissue Doppler
imaging was demonstrated to predict AF occurrence in a heterogeneous patient
population.” Merckx et al. showed that the time-interval from the beginning of the

electrocardiogram P wave and the peak of A’ wave on tissue Doppler images

LATERAL
(PA-TDI duration) provided a good estimation of the total atrial conduction time.?
In addition, de Vos et al. demonstrated the independent association between PA-
TDI duration and AF occurrence in patients without history of AF.7 However, the
capability of this index (PA-TDI duration) to predict AF in heart failure patients
with and without history of AF still remains unknown. Furthermore, it should be
emphasized that clinical follow-up based on history of AF related symptoms fails
to identify asymptomatic AF episodes. These asymptomatic episodes have been
shown to be present in almost 20% of patients with paroxysmal AF and they have
important prognostic clinical implications.> ™ Device-based diagnostics derived
from pacemaker or implantable cardioverter-defibrillator (ICD) interrogation pro-
vide an accurate method for detecting asymptomatic AF episodes.> ™ Accordingly,
in order to detect all AF episodes including the asymptomatic AF episodes, a cohort
of heart failure patients who had undergone ICD implantation was studied, and AF
episodes were identified by ICD interrogation.

The aims of the present study were two-fold. Firstly, to identify clinical, and/or
echocardiographic predictors of AF occurrence, including left atrial (LA) volumes,
LA function and PA-TDI duration, in patients with heart failure. Secondly, the role of
PA-TDI duration on the prediction of AF occurrence was explored in the subgroups
of patients with and without history of AF.
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A total of 627 consecutive patients with mild to severe heart failure scheduled for ICD
implantation for primary or secondary prevention according to the current AHA/ACC/
ESC guidelines were included.” Exclusion criteria were: 1) absence of normal sinus
rhythm during echocardiographic examination; 2) acoustic window with poor image
quality.

All patients underwent a complete baseline history taking and physical examina-
tion, 12-lead electrocardiogram and transthoracic echocardiogram prior to ICD im-
plantation. History of AF, defined as documented AF on surface ECG or ECG-Holter
monitoring was collected. In addition, history of AF was divided into persistent and
paroxysmal AF. Specifically, history of persistent AF was defined based on the re-
quirement for pharmaceutical or electrical cardioversion. Conversely, paroxysmal AF
did not require pharmaceutical or electrical cardioversion.s Patients with permanent
AF were excluded from the study because of the absence of normal sinus rhythm
during the echocardiographic examination.

Baseline clinical variables recorded included New York Heart Association (NYHA)
functional class, cardiac risk factors and consequent CHADS score’, and medica-
tion. Baseline electrocardiographic variables recorded included heart rate, PR
interval, QRS duration, and corrected QT interval calculated by Bazett's formula
(corrected QT=QT/VRRinterval). Baseline echocardiographic parameters of systolic
and diastolic function were included. Furthermore, the total atrial conduction time
was estimated with tissue Doppler imaging (PA-TDI duration), as previously de-
scribed®. All baseline clinical, electrocardiographic and echocardiographic analyses
were performed by independent blinded observers.

All patients were prospectively followed up after ICD implantation for AF occur-
rence recorded by ICD. AF occurrence after ICD implantation was defined as atrial
high-rate episodes (>180 bpm) lasting at least 10 minutes in patients with cardiac re-
synchronization therapy and dual-chamber devices. In patients with single-chamber
devices, AF occurrence was defined based on ICD interrogation with device-based
diagnostics.'»™

From the various clinical, electrocardiographic and echocardiographic variables
recorded, independent predictors of AF occurrence were identified. The patients
were subsequently divided in 2 subgroups based on the history of AF (present or
absent) and independent predictors of AF occurrence were identified in each sub-

group.
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Echocardiography

All patients were imaged in the left lateral decubitus position using a commercially
available system (Vingmed Vivid 7, General Electric-Vingmed, Milwakee, Wisconsin,
USA). Standard 2-dimensional images were obtained using a 3.5-MHz transducer
and, digitally stored in cine-loop format; the analysis was performed offline using
EchoPAC version 108.1.5 (General Electric-Vingmed). From the standard apical views
(4- and 2-chamber) left ventricular volumes and left ventricular ejection fraction were
calculated according to the American Society of Echocardiography guidelines.™

Severity of mitral regurgitation was graded semi-quantitatively from colour-flow
Doppler data using the 4-chamber apical views according to the ACC/AHA guide-
lines.’s Mitral regurgitation was classified as mild (jet area/left atrial area <20%),
moderate (jet area/left atrial area 20-40%) and severe (jet area/left atrial area
>40%).

Left atrial volumes (LAVs) were calculated from the 4- and 2-chamber apical views
as recommended by the American Society of Echocardiography guidelines.'+ LAVs
were measured at 3 time points during the cardiac cycle: 1) maximum LAV (LAV-
max) at end-systole, just before mitral valve opening; 2) minimum LAV (LAVmin) at
end-diastole, just before mitral valve closure; 3) LAV before atrial active contraction
(LAVpreA) obtained from the last frame before mitral valve reopening or at the time
of the P wave on the electrocardiogram. Left atrial function was derived from the
LAV and expressed with the following formulas: 1) Total left atrial (LA) emptying
fraction = [(LAV max - LAVmin)/LAVmax] x 100; 2) left atrial expansion index: LA
reservoir function = [(LAVmax - LAVmin)/LAVmin] x 100; 3) passive LA emptying
fraction: LA conduit function = [(LAVmax - LAVpreA)/LAVmax| x 100; and 4) active
LA emptying fraction: LA booster function = [(LAVpreA - LAVmin)/LAVpreA] x 100,
which is considered an index of LA active contraction.®"

Spectral Doppler velocities were measured from the apical 4-chamber view using
a 2 mm sample volume positioned at the mitral leaflet tips. Peak transmitral early
(E wave) and atrial (A wave) mitral velocities, and the E wave deceleration time were
obtained. Doppler tracings were obtained in accordance to the recommendations of
the American Society of Echocardiography.™

Colour-coded tissue Doppler images of the left ventricle obtained in the apical
4-chamber view were acquired at high frame rates (at least 150 frames/s) during
end-expiration. Early diastolic myocardial velocities (E') were determined at the

septal and lateral sides of the mitral annulus (E'¢., ., E' xreeal) - E ueay Was calculated
as (F’ +E

SEPTAL ’LATERAL) /2'
Total atrial conduction time was estimated with colour-coded tissue Doppler im-

18

ages by first placing the sample size on the LA lateral wall just above the mitral
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Figure 1. The time-interval from the beginning of the electrocardiogram P wave and the peak of A", .. wave
(PA-TDI duration) was obtained with tissue Doppler images by placing the sample size on the LA lateral
wall just above the mitral annulus; next the PA-TDI duration was measured. Panel A. Patient without atrial
fibrillation (AF) occurrence. PA-TDI duration was 119 ms. Panel B. Example of patient with AF occurrence

and longer PA-TDI (171 ms).

annulus. Next, the time-interval from the onset of the P-wave on lead Il of the elec-

trocardiogram (on echocardiographic images) to the peak of A’ wave (PA-TDI

LATERAL
duration) was measured (Figure 1).8

Bland-Altman analysis demonstrated a good intra-observer and inter-observer
agreements with a non-significant bias for PA-TDI duration measurement. Mean
differences + 2 standard deviations for PA-TDI duration were 1.8 + 10 ms for intra-

observer agreement and 1.7 £ 10 ms for inter-observer agreement.
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Statistical analysis

Continuous data are presented as mean + SD and categorical data are presented
as frequencies and percentages. All continuous variables were evaluated for normal
distribution with Kolmogorov-Smirnov tests. Unpaired T test and Mann-Whitney U-
test were used to compare continuous variables between patients with vs. without
AF occurrence and between patients with vs. without history of AF, as appropriate.
Chi-square test was used to compare categorical variables between patients with vs.
without AF occurrence and between patients with vs. without history of AF. Univariable
and multivariable Cox proportional hazards regression analyses were performed to
identify clinical and echocardiographic predictors of AF occurrence. Only significant (p
<0.05) univariable predictors were entered as covariates in the multivariable analysis,
which was performed using the enter model. Hazard ratios and 95% confidence inter-
vals (Cl) were calculated. Time to first episode of atrial fibrillation in relation to PA-TDI
duration was analyzed with the Kaplan-Meier method and compared with the log-rank
test. Therefore, PA-TDI was dichotomized based on the median (139 ms). Similarly to
the overall patient population, univariable and multivariable Cox proportional hazards
regression analyses were used to identify predictors of AF occurrence in the subgroups
of patients with and without history of AF. For all the multivariable Cox proportional
hazards regression analyses a correlation coefficient of <0.7 (corresponding to a toler-
ance of >0.5) was set to avoid multicollinearity between the univariable predictors. To
increase clinical utility, the hazard ratios and 95% CI of LAVmin PA-TDI duration were
reported as per 10 ml/m? increase and per 20 ms increase, respectively. A 2-tailed
p value of <0.05 was considered significant. All statistical analyses were performed
using SPSS for Windows (SPSS Inc, Chicago), version 16.

RESULTS

In total 495 patients were included in the analysis: 94 patients were excluded due to
the absence of normal sinus rhythm during the echocardiographic examination and
38 patients were excluded because of suboptimal image quality. Primary prevention of
sudden cardiac death was the reason for implantation in 434 (88%) of the patients,
whereas 61 (12%) patients were implanted for secondary prevention of sudden cardiac

death. Overall, 481 (97%) patients were implanted with cardiac resynchronization
therapy or dual-chamber ICD devices; whereas only 14 (3%) patients got a single-
chamber ICD device.
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The general characteristics of the patient population are reported in Tables 1-3.

The mean age of the overall population was 62+12 years, and 21% of the patients

were women. A history of AF was present in 102 (21%) patients and, the majority of

the patients had high thromboembolic risk according to the CHADS _ score (2.2+1.1).

The mean QRS duration was 128+32 ms, and 61% of the patients received a cardiac

resynchronization therapy device. Most of the patients were treated with angio-

tensin converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers,
and diuretics (84%, 69%, and 73%, respectively). All of the patients had dilated
left ventricles (left ventricular end-diastolic volume = 95+35 ml/m?) with depressed

left ventricular ejection fraction (29+6%). Similarly, the LA was significantly dilated

(LAVmax = 31+13 ml/m?) and LA function was reduced (total LA emptying fraction

= 43%15%). Finally, the total atrial activation time expressed as PA-TDI duration was

141+26 ms.

Table 1. Demographic and clinical characteristics of overall population, and patients with vs. without AF

occurrence during follow-up

Overall Patients with  Patients without  p value
population  AF occurrence  AF occurrence

(n=495) (n=142) (n=353)
Age (yrs) 62.2+11.7 619+ 11.7 62.3+11.8 0.65
Female (%) 105 (21) 42 (30) 63 (18) 0.004
Hypertension (%) 164 (33) 50 (35) 114 (32) 0.53
Diabetes (%) 104 (21) 32 (23) 72 (20) 0.60
History of AF (9) 102 (21) 58 (41) 44 (13%) <0.001
Previous PCI/CABG 259 (52) 69 (49) 190 (54) 0.29
NYHA functional class 2.2+0.8 2.4+0.8 2.2+0.8 0.025
CHADS, score 2.2+1.1 22211 2222 1.1] 0.88
Heart rate (bpm) 70+13 72114 70+13 0.16
PR interval (ms) 174+34 173+33 174+35 0.73
QRS duration (ms) 128+32 131+31 127+32 0.15
Corrected QT interval duration (ms) 4448 +31.4  4446+313 4449 +31.4 0.95
Cardiac resynchronization therapy (%) 304 (67) 99 (70) 205 (58) 0.016

AF: atrial fibrillation; CABG: coronary artery bypass; NYHA: New York Heart Association; PCl: percutaneous

coronary intervention.
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Patients with vs. patients without AF occurrence

There were no differences in age between patients with and patients without AF oc-
currence. The percentage of women was higher in the group with AF occurrence as
compared to the group without AF occurrence (30% vs. 18%, p = 0.004) as was the
history of AF (41% vs. 13%, p <0.001). NYHA functional class was higher in patients
with AF occurrence as compared to the patients without AF occurrence (2.4+0.8 vs.
2.2+0.8, p = 0.023). In addition, 70% of the patients with AF occurrence received a
cardiac resynchronization therapy device, whereas only 58% of the patients without AF
occurrence received a cardiac resynchronization therapy device (p = 0.016; Table 1).

The use of medications was different for beta-blockers (lower in patients with AF
occurrence, p = 0.006), diuretics/aldosterone antagonists (higher for the patients
with AF occurrence, p = 0.046), and for statins (lower for the patients with AF oc-
currence, p = 0.018; Table 2).

Regarding the echocardiographic characteristics, patients with AF occurrence as
compared to the patients without AF occurrence had larger LAVmax (34+16 ml/m2
vs. 30£12 ml/m2, p = 0.003), LAVmin (2113 ml/m2 vs. 17£10 ml/m2, p = 0.001),
LAVpre-A (24£14 ml/m2 vs. 21£10 ml/m2, p = 0.010). In addition, LA booster func-
tion was more depressed in patients with AF occurrence (18£11% vs. 21£12%, p
= 0.007). Finally, PA-TDI duration was longer in patients with AF occurrence as

Table 2. Medication use of overall population, and patients with vs. without AF occurrence during follow-up.

Overall Patients Patients p value
population with AF without AF
(n=495) occurrence occurrence
(n=142) (n=353)

ACE inhibitors/Angiotensin receptor 417 (84) 117 (82) 300 (85) 0.47
blockers (%)
Beta-blockers (%) 341 (69) 85 (60) 246 (73) 0.006
Ca-antagonists (%) 30 (6) 7 (5) 23 (7) 0.50
Antiarrhythmics class Il (%) 100 (20) 33 (23) 67 (19) 0.29
Diuretics/aldosterone antagonists (%) 363 (73) 113 (80) 257 (73) 0.046
Nitrates (%) 89 (18) 21 (15) 68 (19) 0.24
Statins (%) 345 (70) 88 (62) 257 (73) 0.018
Oral anticoagulants (%) 263 (53) 77 (54) 183 (53) 0.80
Aspirin (%) 210 (42) 54 (38) 156 (44) 0.21

ACE: angiotensin-converting enzyme
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Table 3. Echocardiographic characteristics of overall population, and patients with vs. without AF occurrence
during follow-up.

Overall Patients Patients p value
population with AF without AF
(n=495) occurrence  occurrence
(n=142) (n=353)
LVEDV indexed (ml/m2) 95+35 92+34 97+35 0.22
LVESV indexed (ml/m2) 69+31 67+30 70+32 0.31
LVEF (%) 29+10 29+10 29+10 0.93
Severe mitral regurgitation (%) 28 (6) 9 (6) 19 (5) 0.68
E/A ratio 1.3+0.9 1.4+0.9 1.3+0.9 0.041
Deceleration time (ms) 176+72 181+81 174+68 0.65
E/E’ ratio 22+25 22+20 22+27 0.53
LAVmax indexed (ml/m2) 31£13 34+16 30£12 0.012
LAVmin indexed(ml/m2) 18+11 21+13 17+10 0.004
LAVpre-A indexed (ml/m2) 22+11 25+14 21x10 0.013
LA emptying fraction (%) 43+15 4116 44114 0.052
LA reservoir function (%) 92+60 86161 94+60 0.10
LA conduit function (%) 29+13 29+14 30+13 0.67
LA booster function (%) 20+12 18+11 21£12 0.002
PA-TDI duration (ms) 141+26 154427 135+24 <0.001

LA: left atrial; LAVmax: maximum left atrial volume; LAVmin: maximum left atrial volume; LAVpre-A: left
atrial volume before atrial active contraction; LVEDV indexed: left ventricular end-diastolic volume; LVEF: left
ventricular ejection fraction; LVESV: left ventricular end-systolic volume; PA-TDI duration: time-interval from

the beginning of the electrocardiogram P wave and the peak of A wave at tissue Doppler images
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compared to patients without AF occurrence (154+27 ms vs. 13524 ms, p <0.001;
Figure 1).

A total ofOverall 142 of the 495 (29%) patients experienced a first AF episode during
a mean follow-up of 16.4+11.2 months.
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To identify independent predictors of AF during follow-up, univariable predictors
with a p-value <o.05 were entered into the Cox proportional-hazard model as covari-
ates.

On multivariable analysis, female gender (hazard ratio, 1.60; 95% Cl, 1.09-2.35; p
= 0.017), history of AF (hazard ratio, 2.22; 95% Cl, 1.51-3.27; p <0.001), and PA-TDI
duration (hazard ratio per 20 ms increase, 1.27; 95% Cl, 1.13-1.42; p <0.001), were
independently associated with AF occurrence during follow-up (Table 4).

When the patient population was dichotomized based on the median PA-TDI
duration (139 ms), the Kaplan-Meier curve demonstrated that patients with longer
PA-TDI duration experienced significantly higher AF occurrence as compared to
patients with shorter PA-TDI duration (log rank p <o0.001; Figure 2). In particular,
a cumulative 18%, 30%, and 44% of patients with longer PA-TDI experienced AF
occurrence at 6, 12 and 18 months follow-up, respectively. In contrast, a respective
10%, 13%, and 18% of patients with shorter PA-TDI duration experienced AF occur-
rence during the same time period. Figures 3A and 3B show the Kaplan-Meier curves
for the other 2 variables independently related to AF occurrence during follow-up:
female gender and history of AF.

Table 4. Cox uni- and multivariable regression analysis to identify predictors of AF occurrence during follow- up

Dependent variable: Univariable analysis Multivariable analysis

AF occurrence during follow-up

HR (95% ClI) p value HR (95% ClI) p value
Independent variables
Female 1.73 (1.21-2.48) 0.003 1.60 (1.09-2.35) 0.017
History of AF 3.42 (2.44-4.78)  <0.001 2.22 (1.513.27)  <0.001
NYHA functional class 1.32 (1.01-1.63) 0.011 1.09 (0.83-1.43) 0.55
Cardiac resynchronization therapy 1.69 (1.18-2.41) 0.004 1.29 (0.85-1.96) 0.24
Beta-blockers 0.59 (0.42-0.83) 0.002 0.81 (0.56-1.16) 0.24
Diuretics/aldosterone antagonists 1.59 (1.01-2.39) 0.026 1.04 (0.65-1.65) 0.89
Statins 0.66 (0.47-0.93) 0.016 0.95 (0.66-1.36) 0.78
LAVmin indexed (per 10ml/m2) 1.29 (1.13-1.48)  <0.001 1.09 (0.92-1.29) 0.31
LA booster function (per 1%) 0.09 (0.02-0.40) 0.002 0.47 (0.08-2.72) 0.40
PA-TDI duration (per 20ms) 1.44 (1.30-1.60)  <0.001 1.27 (1.13-1.42)  <0.001

AF: atrial fibrillation; Cl: confidence intervals; HR: hazard ratio; LA: left atrial; LAVmin: maximum left atrial
volume; NYHA: New York Heart Association; PA-TDI duration: time-interval from the beginning of the

electrocardiogram P wave and the peak of A

LATERAL

wave at tissue Doppler images.
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Chi-square = 21.79, p <0.001
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0 6 12 18 24 30
Follow-up (months)
Number of patients at risk:

PA-TDI duration <139 ms 253 226 140 94 66 38

PA-TDI duration >139 ms 242 193 133 83 64 43

Figure 2. Kaplan-Meier estimates of occurrence of atrial fibrillation (AF). The probability of AF occurrence
differed significantly between the 2 groups dichotomized based on the median total atrial conduction time
estimated with tissue Doppler imaging (PA-TDI duration) of 139 ms.
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Figure 3. Kaplan-Meier estimates of occurrence of atrial fibrillation (AF) in male and female (Panel A), and in
patients with and without history of AF (Panel B).

From According to the baseline clinical history, a total of 102 (21%) patients had a his-
tory of AF. Of the 102 patients with history of AF, 56 (55%) had history of paroxysmal
AF and 46 (45%) of persistent AF. Specifically, AF occurrence during follow-up was
higher in patients with history of persistent AF as compared to paroxysmal AF (70%
vs. 46%, p = 0.019). There were no differences in the clinical characteristics between



Prediction of atrial fibrillation in patients with an implantable cardioverter-defibrillator and heart failure ~ 193

patients with and without history of AF except for age, patients with history of AF
were older than the patients without history of AF (6510 vs. 6112 years, p = 0.005).
In addition, patients with history of AF were most often treated with antiarrhythmic
drugs and oral anticoagulants (43% vs. 14%, p <0.001 and 64% vs. 51%, p <0.001,
respectively), whereas the use of aspirin was larger in patients without history of AF
(45% vs. 32%, p = 0.021).

Regarding the echocardiographic characteristics, as compared to the patients
without history of AF, the patients with history of AF had larger LAV (37£18 ml/m? vs.
30+12 ml/m?, p <0.001 for LAVmax, 24+14 ml/m? vs. 179 ml/m2, p <0.001 for LAV-
min, 28+15 ml/m?vs. 21£10 ml/m?, p <o0.001 for LAVpre-A) and poorer LA functions
(38+15% vs. 45+14%, p <0.001 for total LA empting function, 72+50% vs. 97+£62%,
p <0.001, for LA reservoir function, 27+13% vs. 30£13%, p = 0.028, for LA conduit
function, 15£10% vs. 22+12%, p <0.001, for LA booster function). In addition, PA-
TDI duration was significantly longer in patients with history of AF as compared to
the patients without history of AF (159+32 ms vs. 136+22 ms, p <0.001).

Predictors of AF occurrence in patients without history of AF

To identify independent predictors of AF during follow-up in patients without history
of AF, significant univariable predictors were entered into the Cox proportional-hazard
model as covariates. On multivariable analysis, female gender (hazard ratio, 1.95; 95%
Cl, 1.22-3.10; p = 0.005), and PA-TDI duration (hazard ratio per 20 ms increase, 1.34;
95% Cl, 1.13 to 1.58; p = 0.001), were independently associated with AF occurrence
during follow-up (Table 5). Figure 4A shows the Kaplan-Meier curves for the PA-TDI
duration in patients without history of AF.
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Figure 4. Kaplan-Meier estimates of occurrence of atrial fibrillation (AF) in patients without history of AF
(Panel A) and with history of AF (Panel B).
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Table 5. Cox uni- and multivariable regression analysis to identify predictors of AF occurrence during follow-

Dependent variable:
AF occurrence during follow-up

Univariable analysis

Multivariable analysis

HR (95% Cl)

p value HR (95% ClI) p value

Independent variables

Female

NYHA functional class

Cardiac resynchronization therapy
Beta-blockers
Diuretics/aldosterone antagonists
Statins

LAVmin indexed (per 10ml/m2)
LA booster function (per 1%)

PA-TDI duration (per 20ms)

1.98 (1.25-3.14)
1.31(0.99-1.72)
1.24 (0.80-1.94)
0.71 (0.45-1.13)
1.33 (0.81-2.18)
0.56 (0.36-0.87)
1.14 (0.92-1.42)
0.29 (0.05-1.76)

1.34 (1.13-1.58)

0.003 1.95 (1.22-3.10) 0.005

0.051

0.010 0.65 (0.42-1.02) 0.060
0.23
0.16

0.001 1.34 (1.13-1.58) 0.001

AF: atrial fibrillation; CI: confidence intervals; HR: hazard ratio; LA: left atrial; LAVmin: maximum left atrial

volume; NYHA: New York Heart Association; PA-TDI duration: time-interval from the beginning of the

electrocardiogram P wave and the peak of A

LATERAL

wave at tissue Doppler images.

To identify independent predictors of AF during follow-up in patients with history of
AF, significant univariable predictors were entered into the Cox proportional-hazard
model as covariates. On multivariable analysis, cardiac resynchronization device
therapy (hazard ratio, 2.67; 95% Cl, 1.39-5.10; p = 0.003), and PA-TDI duration (hazard
ratio per 20 ms increase, 1.19; 95% Cl, 1.03 to 1.38; p = 0.022), were independently
associated with AF occurrence during follow-up (Table 6). Figure 4B shows Kaplan-
Meier curves for the PA-TDI duration in patients with history of AF.

The main findings of the present study are: 1) the independent predictors of AF occur-
rence in advanced heart failure patients were female gender, history of AF and PA-TDI
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Table 6. Cox uni- and multivariable regression analysis to identify predictors of AF occurrence during follow-

Dependent variable: Univariable analysis Multivariable analysis
AF occurrence during follow-up
HR (95% ClI) p value HR (95% ClI) p value
Independent variables
Female 1.39 (0.77-2.51) 0.27
NYHA functional class 1.30 (0.91-1.86) 0.14
Cardiac resynchronization therapy 2.99 (1.58-5.65) 0.001 2.67 (1.39-5.10) 0.003
Beta-blockers 0.84 (0.50-1.40) 0.50
Diuretics/aldosterone antagonists 1.72 (0.82-3.64) 0.15
Statins 1.09 (0.64-1.86) 0.76
LAVmin indexed (per 10ml/m2) 1.15 (0.96-1.38) 0.12
LA booster function (per 1%) 0.12 (0.01-2.05) 0.14
PA-TDI duration (per 20ms) 1.25 (1.08-1.45)  0.003 119 (1.03-138)  0.022

AF: atrial fibrillation; Cl: confidence intervals; HR: hazard ratio; LA: left atrial; LAVmin: maximum left atrial
volume; NYHA: New York Heart Association; PA-TDI duration: time-interval from the beginning of the

electrocardiogram P wave and the peak of A’ wave at tissue Doppler images.
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duration; 2) in the subgroups of patients with and without history of AF, PA-TDI dura-
tion remained an independent predictor of AF occurrence during follow-up.

Heart failure and AF

Heart failure and AF are two disorders that frequently coexist. Indeed, many clinical
conditions such as age, hypertension, diabetes and coronary artery disease are com-
mon risk factors for both AF and heart failure.’” Moreover, in heart failure patients
conditions such as atrial enlargement or poor atrial function related to the remodel-
ling processes may predispose to AF occurrence.® In addition, previous studies have
shown that heart failure patients who develop AF have a worse prognosis than heart
failure patients free from AF." 2> Therefore, the identification of heart failure patients
at higher risk for AF occurrence may be useful in order to initiate early prophylactic

therapies and improve the long-term outcome of these patients.

process is the ability to identify all of the AF episodes in these patients. In par-
ticular, asymptomatic AF episodes may be misclassified during clinical follow-up
and it has been shown that these asymptomatic AF episodes may have relevant
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AF-related complications similar to overt, symptomatic AF episodes.? * Interroga-
tion of newer more sophisticated pacemaker or ICD devices allows the detection
of asymptomatic AF episodes.>2® A study by Glotzer et al.> demonstrated that in
patients with a pacemaker for sinus node dysfunction the atrial high rate events
detected by pacemaker interrogation were significantly related to the risk of death or
stroke. However, the interrogation of the device to classify AF episodes can be ap-
plied only in patients with a pacemaker or ICD. Therefore, in the current study, heart
failure patients selected for ICD implantation were recruited in order to detect all the
AF episodes, including the asymptomatic episodes, through the ICD interrogation.

In the present study, clinical and echocardiographic predictors of AF occurrence in
heart failure patients were explored. In particular, among the clinical predictors, fe-
male gender and history of AF were confirmed to be independently associated with AF
occurrence.> Among the echocardiographic variables, LA volumes and booster func-
tion together with PA-TDI duration were associated with AF occurrence at univariable
analysis. However, at multivariable analysis only PA-TDI duration was an independent
echocardiographic predictor of AF occurrence (adjusted hazard ratio = 1.27, 95% ClI
1.13-1.42, p <0.001). This finding underlines that a surrogate of the total atrial conduc-
tion time like PA-TDI was a stronger predictor of AF occurrence as compared to LA
volumes and LA function. A possible explanation may be that the LA remodelling pres-
ent in heart failure patients is associated with an increased risk of the development of
AF. The remodelling process causes an increase in LA volumes, with a deterioration
in LA function and an increase in LA fibrosis. Both LA enlargement and LA fibrosis
may promote the occurrence of AF in these patients.?” The total atrial conduction
time (PA-TDI duration) may be influenced not only by LA enlargement but also by
LA fibrosis which may further slow down the electrical atrial conduction. Therefore,
PA-TDI duration may be more strongly related to AF occurrence than measurement of
LA volumes or function.

Previous studies have explored the role of total atrial conduction time detected with
tissue Doppler imaging for the prediction of AF occurrence in patients without history
of AF.7#8 In particular, de Vos et al. used the PA-TDI duration to predict AF occurrence
in 249 patients with preserved ejection fraction (60+10%) referred for a standard
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echocardiographic examination. The authors demonstrated that PA-TDI duration was
independently related to AF occurrence during follow-up. In the present study, 393
of the heart failure patients had no previous history of AF and the mean ejection
fraction in this subgroup of patients was 29+10%. PA-TDI was still an independent
predictor of AF occurrence during follow-up. Therefore, the current study highlights
that PA-TDI is also an important predictor of AF occurrence in heart failure patients
with depressed left ventricular ejection fraction, extending previous results in different
patient populations.” 2

PA-TDI duration as a predictor of AF occurrence in the subgroup with history of AF

In the present study a total of 102 heart failure patients had a history of AF. The analy-
sis of this subset of patients underlined that PA-TDI duration was still an independent
predictor of AF occurrence together with implantation of a cardiac resynchronization
therapy device. Patients selected for cardiac resynchronization therapy were character-
ized by more advanced heart failure, a condition shown to be an important predictor
of AF occurrence.#5 In addition, the relevance of measuring PA-TDI duration in these
patients is stressed by previous findings.?® Specifically, Buck et al. reported that an
estimation of total atrial conduction time with PA-TDI may have great relevance for
the selection of advanced heart failure patients who will be amenable to cardiac resyn-
chronization therapy.?

The finding that PA-TDI duration was again independently associated with AF
occurrence during follow-up shows for the first time the relevance of this index even
in patients with history of AF. Therefore, PA-TDI duration may be useful for the
risk-stratification of heart failure patients with or without history of AF.

Clinical implications

Early risk stratification for AF occurrence is very important, especially in heart failure
patients who have increased risk of thromboembolic complications during AF. The
present study has demonstrated that PA-TDI duration can predict AF occurrence in
heart failure patients. However, future large randomized trials are needed to clarify
the potential relation between PA-TDI duration and thromboembolic complications

during AF in heart failure patients.
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PA-TDI duration was independently associated with AF occurrence in heart failure
patients with or without history of AF. This parameter may be useful to risk-stratify
heart failure patients for AF occurrence.
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SUMMARY AND CONCLUSIONS

The general introduction of the thesis outlines the role of cardiac mechanics assess-
ment in the evaluation and risk stratification of HF patients.

This part of the thesis summarizes current imaging techniques to assess various
aspects of LV mechanics in HF patients (Chapter 2), differentiating between ischemic
and non-ischemic HF (Chapter 3) and investigating its role in the selection of HF
patients who are candidates to CRT (Chapters 4-6). Furthermore, the role of imaging
techniques to optimize the results of CRT is summarized in Chapter 7.

The final part focuses on long-term prognosis of advanced HF patients. Novel echocar-
diographic techniques provide several parameters that have incremental prognostic
value over well-recognized echocardiographic and clinical parameters (Chapters 8-11).

CONCLUSIONS

The study of cardiac mechanics is crucial in advanced HF patients. Particularly, using
imagine techniques as speckle-tracking echocardiography, important information on
the effects of CRT in heart failure patients may be derived. Moreover, studying LV
mechanics may be helpful for understanding the differences in pathophysiological
mechanisms of different HF aetiologies. Finally, the role of non-invasive imaging
techniques for the study of LV mechanics may be paramount for the definition of
long-term prognosis in advanced HF patients.
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SAMENVATTING EN CONCLUSIES

De algemene introductie van deze scriptie geeft kort weer wat de rol is van de analyse
van cardiale dynamiek bij de evaluatie en risico inschatting van hartfalen patienten.

Dit onderdeel is een samenvatting van de huidige beeldvomings technieken voor het
beoordelen van de LV dynamiek in hartfalen patienten (Hoofdstuk 2), de differentiatie
tussen ischemische en non-ischemische hartfalen (Hoofdstuk 3) en de rol hiervan in
de selectie van CRT kandidaten.

Het laatste gedeelte richt zich op de lange termijn prognose van patienten met
eindstadium hartfalen. Nieuwe echocardiografische technieken en metingen hebben
steeds meer toenemende waarde naast de bekende, conventionele echocardiografi-
sche en klinische parameters (Hoofdstuk 8-11).

Onderzoek naar cardiale dynamiek is van cruciaal belang bij patienten met eind-
stadium hartfalen. Met beeldvorming zoals speckle-tracking echocardiografie kan
belangrijke informatie worden verkregen over de effecten van CRT bij deze populatie.
Bovendien kan analyse van LV dynamiek helpen bij het onderkennen van verschillende
pathofysiologische processen bij verscheidene vormen van hartfalen. De rol van non-
invasieve beeldvorming zou van essentieel belang kunnen zijn bij het vaststellen van
lange termijn prognose bij patienten met eindstadium hartfalen.
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