

Universiteit Leiden

The handle http://hdl.handle.net/1887/36063 holds various files of this Leiden University dissertation

Author: Boyd, Ginger
Title: The phonological systems of the Mbam languages of Cameroon with a focus on vowels and vowel harmony
Issue Date: 2015-11-05

The phonological systems of the Mbam languages of Cameroon with a focus on vowels and vowel harmony

Published by
phone: +31 302536111
Trans 10
3512 JK Utrecht
The Netherlands
e-mail: $\operatorname{lot} @ u u . n l$ http://www.lotschool.nl

Cover illustration : Mbam river ferry crossing, north of Bafia © Virginia Lee Boyd
ISBN: 978-94-6093-193-2
NUR 616

Copyright c 2015: Virginia Lee Boyd. All rights reserved.

The phonological systems of the Mbam languages of Cameroon with a focus on vowels and vowel harmony

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 5 november 2015 klokke 13:45 uur door

Virginia Lee Boyd geboren te Bethesda, Maryland USA.
in 1961

Promotores :
Promotor: Prof. dr. Maarten Mous
Co-promotor : Dr. Constance Kutsch Lojenga

Promotiecommissie :
Prof. dr. Rod Casali Trinity Western University, Canada
Prof. dr. Laura Downing University of Gothenburg
Prof. dr. Marc van Oostendrop
Dr. Bert Botma

Acknowledgements

The present research on the languages of the Mbam was conducted for a doctoral programme in the Department of African Languages and Cultures at Leiden University in the Netherlands. Fieldwork was carried out in the context of the language development work of SIL Cameroon. Authorisation for field research was granted by MINRESI (the Ministère de la Recherche Scientifique et de L'Innovation) of Cameroon, permit 0000108/MINRESI/B00/C00/C10/nye.

I wish to thank my colleagues at Leiden University for their welcome and help whenever I showed up. In particular, I would like to thank Dr. Maarten Mous for his patience with me and his capacity to impel me to go farther than I thought possible. I also greatly appreciate the welcome and friendship of Dr. Constance Kutsch Lojenga. I doubt this study would have been finished without her encouragement and help.

I thank my colleagues of SIL Cameroon who contributed in many ways to the success of this work. Special thanks go to Bianca van den Berg, Scott Satre and Joseph Lovestrand, who showed the willingness to wade through large sections of this study. I appreciate their insight, corrections and comments which have made this work vastly better than it would have been without their input.

I appreciate the academic exchange with many other people working in the field. In particular, the comments and insights of Dr. Roderic Casali were invaluable. I was sure of a ready and meaty response with each e-mail exchange. In addition, I want to thank Dr. Coleen Anderson Starwalt for her willingness to share her expertise in acoustic phonetics with me, and for the acoustic research done with her on Yangben, Mmala and Elip in October 2004. Although the data collected was not used in her own thesis, it has been invaluable in my own. Thanks are also due to Drs. Constance Kutsch Lojenga, Mike Cahill, Mary Pearce and John Rennison for sharing with me aspects of their research in vowel-harmony systems in other African languages. Their contributions have made this study all the richer.

Je suis vraiment reconnaissante de l'accueil j'ai toujours eu au village de Yambassa auprès de la famille de Esseba Ombessa Lambert, où j'ai passé cinq agréables années. D'ailleurs j'aimerais aussi remercier Kibassa Otoke, Okono Tchopito, Bébiyémé Nkono Raymond, Kiolé Frédéric, Baboga Achille, Balan Jean Marc, Bolioki Kignan Léonard Albert, Sinstimé Crépin, les personnes qui m'ont aidée le plus dans toutes mes recherches.

Preface

Languages are so rich, multiple and varied that through this study I have merely "... been at a great feast of languages and stol'n the scraps." ${ }^{1}$ This book is dedicated to all who introduced me to that 'great feast of languages', even if I have come away with only the scraps.

This book is dedicated to the peoples of the Mbam who put up with my incessant questions about their languages, tolerated my foibles, and joked with me and about me. Despite the glazed eyes when I went on too long about some linguistic drivel interesting only to me, despite the occasional wish that you could slip by me unperceived, you have shown me love throughout it all. Thank you, my brothers and sisters, my fathers and mothers.

On dit que le monde entier n'est qu'un village. De la même manière, une œuvre telle que celle-ci n'est jamais le travail d'une seule personne. J'aimerais remercier toutes les personnes qui ont contribué des données pour cette œuvre, sans lesquelles rien n'aurait pu être fait:

Les villages du canton elip : village de Balamba (jours du marché) : Oloumou Protais, Abessayona Odile, Ngoya Nicodème, Bomono Bernadin, Oguela Etienne, Benengueye Hilaire, Kigougna Jean Bosco, Amayana Jaccobine, Bomobongina Raphaël, Boussang Justin. Village de Balamba (Bunyungo) : Jacqueline Abianina, Félisee Olemba, Blandine Mangotogue, Désiré Banabanaga, Thérèse Atibouta, Félecité Omolona, Hervé Omobiona, Luc, Guissoubegue, Juliette Eporelis, Angèle, Emeguirune, Bernadette Omonga, Marie Justine Omossola. Village de Yambassa : Ateba Nicolas, Bagaha Théophile, Adibinihina Désiré, Babissamana Joseph, Bogolion Afouda, Banaga Jean-Marie, Ebekie Evariste, Babissougana, Nianga Antoine, Bebine B. Sylvestre, Abiyouguina Maturin, Beling Jean-Marie, Essosso Barthélémy, Ebigoume Madéleine, Esseba O. Alain, Ossimbie Denis, Obenga Bossiome, Bebine Boyoma, Nigoya Constantin, Biguedegue Magloire, Balong Jean, Bikele Robert, Guilang Bruno, Abiamba Aimé, Adegana Jean Dekenty, Kiossa André, Essogola, Benengenye, Bamaguena Augustine, Bolamo Patrice, Oyolia Etienne, Bemehiguine Raphaël Bonguena Olivier, Bassaga Lucien, Assena Cathérine, Mme Noula Martine, Nimaandia Justin, Bebisemenye Alexi. Village de Bassolo : sa majesté Omossoba Frédéric, le chef de Bassolo, Biliga Mbabia, Gigunga Jean B., Bitoba Faustin, Etamboa Sylvestre, Emene Jeanne, Bitong Virginie, Abalia Honoré, Amalega Célestine, Obussong Gaspard, Booga Joseph M., Emmana Adalbert, Am. Maurice, Molossiba Frederic, Bemelegue Babo, Bebine Bassa, Bemelingue T., Bemolie Stephan, Obiombe Polycarp, Abitanga Didier,

[^0]Bissaba Pierre. Village de Bongando : Keloga Joseph, Oboya Marius, Nuono Suzanne, Bondong Jean-Marie, Buyaga André, Ayimba Omokolo, Kimetoumine Damien, Ambessa Simon, Abilana Antoinette, Etiaba Georges René, Atibilinsa Laurentine, Emessiene Didier, Bossiomo Sylvestre, Kilangua Dieudonné, Mombogne Jeorgette, Ndobe M Cécile, Bamalandona, Amamana Lidie. Village de Botombo: Bamayona Joseph, Ongnong Bessube Jariel, Moanogam Abitala Monique, Mafouma Florence, Manyala Agnes, Onboua Abitala Côme Xavier, Amakega Binjamin, Nigala Nicolas, Bamayona Berthe, Amaguiga, Ngae Dieudonné, Omossolo Jean Pierre, Ngoyo Dieudonné, Mananga Ruben, Kioak Laurent, Guimobong Joseph. Village de Botatango : Nolabia Dieudonné, Olemba Barnabé, Odionoloba Charles, Beyeme Bienvenu, Babiala Benjamin, Amanamba Jules, Ebinembegue, Célestine, Anihala Pelagie, Atibia Dorothée, Amolena Julienne, Nimahand Régine. Village de Bualando : Aboloa Thimothée, Amassoume Philo, Belebeye Ebougou, Bemesingue Alex, Mamkilanga Crescence, Behineguie Elise, Amalega Lambert, Emeguide Faustin, Omolomo Laurent, Bamalega Thérèse, Amassangalita Hélène, Mendeng Georges, Bohona, Ssolange, Atiosaya Génévieve, Abimana Dorothée, Bamamouguina, Betimé Germaine, Bamabissassiga, Abomo Cathérine, Amana Georgette, Omossola Pulehervie, Bamba Boniface, Ambassa Jacque, Bessegueye Marie, Ossonga, Badomana Joseph, Bolama Magloire, Obiona Patrice, Ossonga Zéphyrin, Bagnogna Augustin, Bobito Jérôme, Ahinaga Michel, Belongue François, Omoloma Paulin, Omossola Parfait, Ogoundé Armand, Mokassa, Dieudonné, Kitétié Bertrand, Baliyama Jeanne, Aboloa Ives, Mousondima Honorine, Abiambama Germain, Amatagana Brice, Buana François. Village de Kilikoto : Bahina Benoît, Obiono Célestin, Omonikiyoguino, Bessingue Paul, Omossolo Ignace, Bédédié Silvère, Oloumou François, Babiabana Barthény, Ongomo Dieudonné, Boyitogo André, Eyamo Achille, Bénénguégné Bernard, Bissaya Eugienne, Bayangona Jean-Claude, Bébindé Janvier, Bolamo Timothée, Manambang Dominique, Obilongui Christine, Agombo Guientsing, Nimayona Anne-Marie, Kbakata Clairice Village de Kananga : Rémy Beguide, Abihanona Cécile, Bagagne Apollinaire, Ombono Athanase, Aluna Celestin, Emebé Rigobert, Etiégne Casimir, Amatamboka, Bomossioto Blaise, Oyougou Alexandre, Joseph Omana, Ayemba Bruno, Jean Paul Omolomo, Amaba Pierre, Manaba Michel, Bébissémégné Sébastien, Bebine Laurent, Eloumé Firmin, Ngala, Atibia Rose, Abimana Esthère, Abitanga Rémy, Kimobongo Béméling, Bémétiné Cyrille, Batiba Bernard, Bahanaguina Simon, Bouéloumé Jean-Marie, Beneguéguyé Faustin, Bedilene Emile, Amita Binjamin, Ngueti Bernard, Bolikoussana André.

Les villages du canton mmala : village de Begne : sa majesté Moussa Amassoka René, le chef du canton mmala, Edogue Bernard, Ebidedie Benoît, Bang Bernard, Badiana Ernest, Ododi Jean-Baptiste, Obonino Alphonse, Edissigue Madeleine, Kouke Marie, Guiégou Rose, Bodo Ododi, Bayaka Assala Jean-Marie, Béyéké Paul, Bassiomo Parfait, Begoumé Amagné Abraham, Bebiyémé Nkono Raymond. Village de Yoro: Ayangma Nknon Joseph, Boulologo Innocent, Giegou Jean de Yorro, Bossogo Jean-Marie, Siade Christophe, Osimbo Emile, Obogo Jean-Pierre,

Babissagana Bosse. Villages de Kedia et Ediolomo : Akegne Moïse, Kiolé Frederic, Omonino Jean Paul, Emessiene Marguerite, Bokagné Myriam, Mbodo Josephine, Kiolé Evelyne, Botessoko Marie, Onana Paul, Baboka Jean Aimé, Niogné Théodor, Emessiéné Lazare, Beliengué Antoine, Edougé Paul, Bogonomo Abaya Réné, Egoumé Moïse, Ododi Bénédicte, Botokoko Marten, Bémélinguine Seraphin, Bélénu Oli Suzane, Amassaka Dorothé, Bonguen Didier, Bognomo Maurice, Ombiomi Jacqueline, bossomo Frédéric, Amadiang Biedi Simon, Biyoma Ossoko Simon, Sa majesté Batabaka Jean Marie, chef de Ediolomo, Binambia Thomas, Omonino Hubert, Yoko Christophe, Oloko Oli Thomas, Babilama Pierre, Obiono Ndjama, Nambama Joseph. Les autres mmala qui ont contribué : Amadiang Jean Christophe, Nkono Ododi Raymond, Ossougo Simon, Oloko Thomas, Mbamba Emmanuel, Onana Ferdinand, Oli Emmanuel, Sioyo Benjamin, Sidio Jonas, Omatakana Ayaba André, Bamaka Richard, Ndemé Gregoire, Badibiyaka Onana, Bebenyi Siosio, Begoumé Amagné Abraham, Beyebé Amatabama Paul, Eméné Patient, Beliemogué Antoine, Assala Marie, Kokoloko Christine, Bomombo, Beleme Leandre, Giyakana, Egoumé Elisabeth.

Les villages du canton yangben : village de Yangben (jours de marché et séances de travail avec les gens des villages de Omende et Patanga) : the deceased Alunga, Kibassa Otoke Moïse, Okono Tchopito, Ombiognio Joseph Amang Rosette, Mbotto Roger, Beyeke Owono, Batifono Dieudonné, Mouyoumé Joseph, Ossono Cléophas, Omong Blandine, Pianga Hélène, Omoko Jean-D’Arc, Ekando Gertrude, Emenguéné Fabrice, Boteba Théophile, Ngueti Germain, Bissassa Antoinette, Atibia Olive-Pascaline, Nguili Michel, Bikamba Albert, Bétibikié André, Ambiana Célestin, Mogni Bikamba, Obilomo Elise, Séloukou Cléopas, Koloko Faustin, Paléléké Jean, Bégnimbé Béatrice, Atiba Thérèse, Menene Augustine, Noumou Dieudonné, Koloko Roland, Emessiéné Didier, Ambiana Brigitte, Ombiono Thomas, Botondono Pierre, Bomono Sogniol André, Amayene Polycarp, Amayene Michoux, Mbeleke, Amaliki Yvonne, Nikala Barthelemy, Ekuse Mboah Siméon and Bemeyeke Jean-Marie. Village de Bongo (langue Baca) : sa majesté Ntsomo Mpong Pierre, chef de Bongo, Mpong Ntsomo Pierre Gérémie, Ntsomo Ntsomo Mpong Pierre Marie. Village de Mbola (langue Mbure) : sa majesté Noueye Noueye Joachim, chef of Mbola, Kibindé Babouet, Inengué Gilbert,

Village de Ndikimeniki (langue Nen) : Mongele Daniel, Maniben Jean Paul, Leumou Benoit, Balehen Jacques René, Sebineni Alphonsine Flore. Villages de Bilomo et Mbangassina (langue Tuki) : Ilomo Ntosbe, Ayissi Ndjebe Jean Pierre, Ebaka Marius, Koroko Emile, Nkengue Marie, Toue Jacqueline, Biteya Marguerite Hortense. Village de Kon-Yambeta and (langue Yambeta) : Bolioki Kignan Léonard Albert, Ondaffe Nfon Emmanuel, Nkoum Ngon André.

Séances de travail à Yaoundé : avec les gens du village de Tchekos (langue Maande) : Balan Marc, Biondokin Jean-Jules. Avec les gens de la langue Gunu : Sintsimé Crépin (d'Ombessa), Ndeme Raymond (de Bakoa). Avec les gens de la
langue Yambeta: Mobam Gilbert, Otang Pascal, Kamana Bernadette, Bayambang Joseph, Bekidoun Joseph, Ossah Angeline, Belias Ossah, Bendo Jean, Mongo Raoul, Mefout Vincent de Paul, Ogolo Martin, Elam Joseph, Oliang Remi-Alexis, Mossasso Fong Georges.

In memory of Beatrice Miriam Ackor née Decker (1908-1993) who abandoned a girlhood dream of Africa, and died just weeks before it was fulfilled in her granddaughter.

Contents

Acknowledgements v
Preface vii
Contents xiii
Abbreviations and symbols xvii
1 Introduction 1
1.1 The Mbam languages in this study 2
1.2 The sociolinguistics of the Mbam 4
1.3 Oral histories of the origins of the Mbam peoples 4
1.4 Previous work done in the Mbam languages 10
1.5 Types of data collected 11
1.6 The language corpus 12
1.6.1 Nen 12
1.6.2 Maande 13
1.6.3 Yambeta 13
1.6.4 Tuki 14
1.6.5 The Yambassa languages 15
1.6.6 Mbure 17
1.7 Divergent features of the Mbam languages 18
1.8 Purpose of the thesis 20
2 Phonological overviews 21
2.1 Nen phonological overview 21
2.1.1 Consonants 21
2.1.2 Vowels 23
2.1.3 Vowel-harmony processes 27
2.1.4 Hiatus-resolution processes 36
2.1.5 Tone 38
2.2 Maande phonological overview 39
2.2.1 Consonants. 39
2.2.2 Vowels 42
2.2.3 Vowel-harmony processes 46
2.2.4 Hiatus-resolution processes 54
2.2.5 Tone 59
2.3 Yambeta phonological overview 61
2.3.1 Consonants 61
2.3.2 Vowels 66
2.3.3 Vowel-harmony processes 70
2.3.4 Hiatus-resolution processes 77
2.3.5 Tone 80
2.4 Tuki phonological overview 82
2.4.1 Consonants. 82
2.4.2 Vowels 86
2.4.3 Vowel-harmony processes 89
2.4.4 Hiatus-resolution processes 98
2.4.5 Tone 99
2.5 Gunu phonological overview 102
2.5.1 Consonants 102
2.5.2 Vowels 103
2.5.3 Vowel-harmony processes 106
2.5.4 Hiatus-resolution processes 114
2.5.5 Tone 115
2.6 Elip phonological overview 116
2.6.1 Consonants 117
2.6.2 Vowels 119
2.6.3 Vowel-harmony processes 123
2.6.4 Hiatus-resolution processes 132
2.6.5 Tone 134
2.7 Mmala phonological overview 135
2.7.1 Consonants. 136
2.7.2 Vowels 138
2.7.3 Vowel-harmony processes 144
2.7.4 Hiatus-resolution processes 156
2.7.5 Tone 158
2.8 Yangben phonological overview 159
2.8.1 Consonants 160
2.8.2 Vowels 161
2.8.3 Vowel-harmony processes 169
2.8.4 Hiatus-resolution processes 178
2.8.5 Tone 180
2.9 Mbure phonological overview 181
2.9.1 Consonants. 181
2.9.2 Vowels 187
2.9.3 Vowel-harmony processes 192
2.9.4 Hiatus-resolution processes 198
2.9.5 Tone 200
2.10 Baca phonological overview 201
2.10.1 Consonants 202
2.10.2 Vowels 207
2.10.3 Vowel-harmony processes 212
2.10.4 Hiatus-resolution processes 218
2.10.5 Tone 220
2.11 Acoustic analysis of the Mbam vowel systems 222
2.11.1 Acoustic considerations in ATR harmony 223
2.11.2 Acoustic analysis of the vowels of the Mbam languages 225
2.12 Conclusions 243
3 Dominance, directionality and domain of Mbam vowel harmony 245
3.1 [+ATR] dominance 245
3.2 Directionality in vowel harmony 246
3.2.1 Overview of vowel-harmony directionality in the literature 246
3.2.2 Directionality and prefix-/suffix-controlled vowel harmony in theMbam languages249
3.2.3 Conclusions 256
3.3 The domain of vowel harmony 257
3.3.1 The phonological word 257
3.3.2 The grammatical word 257
3.3.3 Clitics 258
3.3.4 Vowel harmony and the phonological word 259
3.3.5 Mismatches in the noun phrase 269
3.3.6 Conclusion 276
4 Contrastive features and the relationship between inventory and behaviour 279 279
4.1 Vowel inventories and vowel harmony 279
4.1.1 The high front vowel in the Mbam 8-vowel languages 281
4.1.2 Comparison of the Mbam vowel systems 285
4.2 The vowel/a/ in ATR-harmony systems 287
4.2.1 An overview of the behaviour of /a/ in ATR-harmony systems 287
4.2.2 Behaviour of / $\mathrm{a} /$ in the Mbam languages 288
4.2.3 Conclusion 290
4.3 Neutral vowels 291
4.3.1 Neutral vowels in ATR harmony 291
4.3.2 Neutral vowels in rounding and fronting harmony 294
4.3.3 Neutral vowels in height harmony 300
4.3.4 Various analyses of neutral vowels. 302
4.4 Interaction of vowel inventory and vowel harmony 310
4.4.1 Contrastive-feature hierarchy in phonology (Dresher 2009) 310
4.4.2 Modified Contrastive Specification 313
4.4.3 Contrastive-feature hierarchy and MCS analysis of the Mbam languages 314
4.4.4 The problem of ATR disharmony in Mmala 323
4.5 Conclusions 326
4.5.1 The relationship of vowel inventory and ATR harmony 326
4.5.2 Gaps in vowel harmony and language-specific feature hierarchies 32 327
5 Classification of the Mbam languages 329
5.1 Historical classification 329
5.1.1 Mbam diachronic vowel derivations from proto-Bantu 329
5.1.2 Origins of ATR harmony and proto-Bantu *i (and *u). 336
5.1.3 Sound change: from I, v to e, o ? 339
5.1.4 Sound change: e >o? 346
5.1.5 Towards proto-Mbam 348
5.2 Structural issues in language classification 353
5.3 Lexicostatistical classification 356
5.4 Conclusions 359
5.5 Classification of the Mbam languages in the wider linguistic context 361
5.5.1 Basaa and Nyokon 361
5.5.2 The Mbam languages in the wider context of Bantu and Bantoid .. 36
6 Conclusion 373
6.1 Summary of the topics discussed in this study 373
6.2 The salient aspects of vowel harmony in the Mbam languages 374
6.2.1 Non-participating (neutral) vowels 374
6.2.2 The role of domains and directionality in vowel harmony 375
6.3 Relationship between vowel inventory and vowel harmony 376
6.4 Classification and interrelationship of the Mbam languages. 377
References 379
English Summary 391
Samenvatting 393
Curriculum vitae 395

Abbreviations and symbols

\#	micro-stem boundary	cl .	cluster
-	morpheme break	COMP	completive
=	clitic boundary	CONJ	conjunction
(n)	noun	CONT	continuous
(v)	verb	DEM	demonstrative
1p	$1^{\text {st }}$ person pl. concord	DIM	diminutive
1s	$1^{\text {st }}$ person sing. concord	DIR DIST	directional distal prefix
1sIO	$1{ }^{\text {st }}$ person indirect object	e.o.	each other
2p	$2^{\text {nd }}$ person pl. concord	EXT	extension
2s	$2^{\text {nd }}$ person sing. concord	EXTENS F1	extensive formant one
3pPOS	$3^{\text {rd }}$ person pl. possessive	F2 Ft	formant two front (vowel)
3s.OBJ	$3{ }^{\text {rd }}$ person object	FT1	immediate (certain)
3sIO	$3^{\text {rd }}$ person sing. indirect object	FT2	future distant future
ADV	adverb	FT3	distant (uncertain)
APPL	applicative suffix		future
ASSOC	associative	FT	Future (not defined)
ATR	advanced tongue root	FV	final vowel
AuxV	auxiliary verb	H	high tone
Ave.	average	HAB	habitual
C	consonant	IMP	imperative
c9	noun class 9	INC	incompletive
CAUS	causative	INF	infinitive

INTENS	intensifier	PST	past tense (not defined)
INTR	intransitive verb		
IO	indirect object	RD	round (vowel)
ITER	iterative	RECP	reciprocal
L	low tone	REFL	reflexive
LOC	locative	REP	repetitive
MCS	Modified Contrastive	RT	root
	Specification	S	subject
NARR	narrative tense	s.o.	someone
NC	noun class	SDA	Successive Division Algorithm
NEG	negative marker		Algoritm
NPhr	noun phrase	SEPAR	separative
o.s.	oneself	sffx	suffix
OBJ	object	sg	singular
P0	immediate past tense	smth.	something
P1	recent past tense	sp.	species
P2	yesterday past tense	ss	same subject
P4	distant past tense	STATIV	stative
P.C.	personal	SUBJ	subject
	communication	T/A	tense/aspect marker
PFX	prefix	TBU	tone bearing unit
PL	plural	TR	transitive verb
POS	positional	trad.	traditional
POSS	possessive	V	vowel
PR	present	VH	vowel harmony
PREP	preposition	Vrt	verb root
PFV	perfective	V-sffx(es)	Verb-suffix(es)

Introduction

The languages of Mbam have a unique position in Bantu linguistics. Bastin and Piron (1999: 155), for example, consider these languages as the joint between "narrow" Bantu and "wide" Bantu, sometimes patterning with the one and sometimes with the other, while Grollemund (2012: 404) goes so far as to claim that it is "... le centre de diffusion proto-bantu, à partir duquel auraient débuté les migrations bantu..." As such, they are a rich motherlode for linguistic research to better understand both the Bantu A and Southern Bantoid languages and their relationship to each other.

The Mbam languages have another point of interest as well. They have been considered as standard 7 -vowel languages (/i, e, $\varepsilon, \mathrm{a}, \mathrm{o}, \mathrm{o}, \mathrm{u} /$) with Advanced Tongue Root (ATR) harmony. Several of the languages in this study, Nen (Stewart \& van Leynseele 1979, Mous 1986, 2003), Maande (Taylor 1990), Gunu (Robinson 1984, Hyman 2001) and Yangben (Hyman 2003a), have been previously analysed as having ATR harmony and 7 -vowel vowel inventories. Vowel harmony ${ }^{2}$ has been described as "a requirement that vowels in some domain, typically the word, must share the same value of some vowel feature, termed the "harmonic feature" (Casali 2008: 497), in the case of the Mbam languages, an important "harmonic feature" is ATR.

Vowel harmony in African languages is a topic that has received a lot of notice and study, and the vowel harmony of not a few of the Mbam languages has also been studied. Most of these previous studies, however, have been on languages in isolation. This study seeks to compare and analyse the Mbam languages as a group; ${ }^{3}$ by comparing their vowel inventories and their vowel-harmony systems, and to discuss how they fit into the wider picture of vowel harmony in African languages and what they may reveal about language typology.

Many African languages which have some sort of ATR harmony have either 7vowel, $7 / 9$-vowel or 9 -vowel systems. The Mbam languages discussed in this study do not fully follow these models. While three of the Mbam languages do have 9vowel systems, the others do not. One has ten surface vowels of which nine are contrastive. Another has nine surface vowels of which eight are contrastive and four

[^1]others have 8 -vowel systems. The tenth language has eight surface vowels of which seven are contrastive.

1.1 The Mbam languages in this study

The Mbam languages in this study are spoken in the District of the Mbam-et-Inoubou, in Cameroon's Centre region. They are located between the more straightforward Bantu A languages to the south and the Grassfields Bantu languages to the north and west.

The languages in the District of the Mbam-et-Inoubou divide into two distinct groups: The Bafia group (Guthrie code A50) and the Nen-Yambassa group (Guthrie code A40-A60). While both groups of Mbam languages are related, the main distinction is that the latter group has robust vowel harmony which the former does not have. For this reason, the Bafia group A50 languages are not included in this study. Furthermore, the Basaa ${ }^{4}$ group A40 languages, generally found south of the Mbam are also not included. These languages are generally considered distinct from the Nen-Yambassa A40-A60 group.

While the A40-A60 languages have different Guthrie codes, they form a genetic unit both lexicostatistically and structurally. All but four of the Mbam languages found in this group are discussed in this study, although generally only the reference dialect is included. In some cases, where there are relevant known dialectal differences, that information has also been included. The four languages not included in this study are Tustomb (A46) of the village of Bonek) and Nyokon A45, both closely related to Nen, Hijuk and Bati (A65) located in the Ndom subdivision of the Sanaga-Maritime Division of the Littoral Region of Cameroon.

Nyokon was classified by Guthrie as A45 (Guthrie 1971: 32) and by ALCAM as [514] and in the on-line Ethnologue as (nvo). While previous editions of the Ethnologue placed Nyokon as a dialect of Nen, all of the research done in the language from Guthrie and Tucker (1956: 29) to Mous (2003) show rather that they are distinct languages. The differences between Nen and Nyokon are important. The lexicostatistic similarity is very low, around 36% (Lovestrand 2011: 4 and Mous \& Breedveld 1986) and Nyokon shows little evidence of ATR vowel harmony, unlike Nen (Lovestrand 2011: 34). It is, however, a Mbam language and one classified in the same group as the languages in this study.

Tuotomb (A46), ALCAM [513] is spoken in only one village, Bonek, located on the highway between the Yambeta and Nen language groups. It has an estimated 800 speakers. Phillips (1979) and Mous and Breedveld (1986: 177-241) include Swadesh-based wordlists and indicate that lexicostatistically, it is closest to Nen, but that it has -VC noun-class suffixes in addition to the CV- noun-class prefixes,

[^2]although the data from the Phillips (1979) and Mous and Breedveld (1986) wordlists indicate that there is variation in the Tustomb noun-class prefixes and suffixes. It is not included due to a lack of opportunity to collect data for it.

Hijuk ALCAM [560] is spoken only in Nike and Meke the southernmost quarters of Batanga, a Yangben village, just north of Mbola village where Mbure is spoken. While ALCAM considers it more closely related to Bafia than the A40-A60 languages surrounding it, Boone (1992c: 2, 4) considers it to be closer lexicostatistically to Basaa with an 87% similarity. Due to this similarity to Basaa, Hijuk was not included in this study.

Bati (A65), ALCAM [530] is located just south of the Mbam. It is considered to be closely related to the other A60 languages, Baca, Mbure, Yangben, Mmala, Elip and Gunu. While vowel harmony has been reported, little study ${ }^{5}$ has been done to verify it. Bati, like Tustomb, was not included due to lack of time and inaccessibility. The ten languages discussed in this study are located on Map 1, below.

Map 1: The location of the Mbam languages in this study

[^3]
1.2 The sociolinguistics of the Mbam

The District of the Mbam-et-Inoubou is linguistically very complex. The multiplicity of languages as well as their relatively small size and close proximity lends to a high degree of multilingualism among the populations. Generally speaking, there is a very high level of bilingualism not only in French, but also in the neighbouring languages. Most people, men and women alike, can speak or at least understand one other Mbam language, and more commonly several. Due to the high level of multilingualism, most people can speak to someone from a neighbouring language in their own language and understand the other's language in return.

The Mbam peoples recognise an ethnic interrelationship and history. Although they are quick to identify their own tribe, there is a close interrelation between the tribes. This is perceived in the oral stories of their origins or migrations to the region.

1.3 Oral histories of the origins of the Mbam peoples

While oral histories are too varied to form any solid conclusions, in combination with other information, they can shed light on the history and the interrelatedness of the peoples of the Mbam.

The name "Yambassa" comes from a phrase "bunya Ambassa" the descendents of Ambassa. It is said that the Yangben, Baca, Mmala, Elip and Gunu peoples are all the descendents of a certain Ambassa who was, according to some, the wife of Ombono and according to others, a son of Ombono. Although the stories vary according to the people group, there are some definite points of similarity. Many of the Mbam people groups self-identify as children of Ombono and name one of his sons as their ancestor.

In most of the origin stories, Ombono or one of his descendents sets out on a hunt and gets lost. He then establishes himself in a new place (sometimes where there is a lot of game) and founds a village. For this reason, most of the villages in the area are so named after the ancestor who established the village.

Maande: The unpublished Maande text, "La Création de la Famille de Ombónó" (Ebaya Silas et al. 1981), tells the story of Ombono, a hunter who sets out with his dog. He finds himself in the Osimbe savannah. Being tired (and it seems unsuccessful in his hunt), he sits under a prune tree (buhétú) and rests. When he awakes, he collects the fallen fruits and takes them home to his wife, Ekiíkí. She soaks the fruits and prepares them for their supper. The next time, Ombono's wife comes with him on his hunt. When they arrive at the prune tree, they decide to build their house there. Ekiíkí is from the Banen people and since Ombono had not paid a bride price for her, their first son, whom they named Benenyi, was sent to his maternal uncles among the Banen in lieu of the bride price. The rest of the text lists the children of Ombono and their descendents.

Figure 1: The descendents of Ombons
1- Ombónó
$+\quad$ Ekiíkí ${ }^{6}$
2- $\quad B^{2}$ enenyi ${ }^{7}$
2- Omaya
3- Enóka
4- Makanà
5- Nduku-Búéke
5- Nduku-Likúné
5- Nduku-Hókó
5- Nduku-Bisuŋe
4- Aláama
3- Inúlúku
4- Nyenoóks
4- Mayabó
2- Kóono (Yambeta)
3- Otobo
3- Kóono-Kindúné
3- Bonyana-Caya
2- \quad Omaándé (Maande)
3- Osimbe ${ }^{8}$
3- Nyiambya
3- Anyangema
3- Tobaánye
3- Béyéke
3- Nyદkáma
3- Iceku
3- Dmeya
2- Ekiíki (Bafia)
3- Betayo ${ }^{9}$
3- Muks
2- \quad Omendé (Yangben)
3- Balamba (Elip)
3- Kefíke (Gunu)
3- Bákóá (Gunu)
2- Kaloŋa (Yangben)
3- Kとtéa (Mmala)
3- Yoóŕ́ (Mmala)
3- Bényi (Mmala)

[^4]Elip: There are three dialects of Elip. According to Abiadina (1988: 7), Ombona was a son of Belibe. His sons were Omenda, Yegele, Kiki, Bunya, Gianabina, Nimandia and Ntsine.

Yegele had seven sons: Ambassa, Giligodua, Gananya, Bualunda, Bodomba, Osula and Bunyandua.

According to Esseba Ombessa Lambert, Mbónó, the son of Dugalagala, had three sons, Elibie, Nimaandia and Nsije. Elibie's son Ambassa's son, Olamba is the ancestor of the Elip and Gunu people Nimaandia's son Dyulug is the ancestor of the Maande and Nsije's son Bekolo is the ancestor of the Sanaga (Tuki).

The villages of the Mana-Kanya dialect of Elip consider themselves the descendents of Olouo. Olouo had two natural sons, Botombo, Kananga and an adopted son, Killikoto, who was found by the others when out on a hunt. Olouo also had an albino daughter whose son Bongando gave his name to the fourth Mana-Kanya village (Belinga 2013: 2).

The people of Balamba according to (Abiadina 1988: 9) are unrelated to the other Belip, being the children of Bayaga of unknown origins.

Yangben: Ombono's children were Koon, (ancestor of the Gunu), Kiiki (ancestor of the Maande), Muko, Bitang, Bongo, Omende, Kiyangaben (Kaloy). ${ }^{10}$

The descendents of Kalon give their names to the major clans found today. They are divided into two larger groups the "Pemuene" which include the clans of Pundalo, Poyon, Kapolع, Ponomanє, Epukie and Apoyє and their descendents. The "Punyokıətı" include the clans of Kanye, Pukelck, Mfuno, Ipayє, Ipeye and Kuake and their descendents.

Baca: Bongo, the son of Ambono (Ombono) and brother of Balamba. The other sons of Ambono are Yangben, Omende and Kiiki. According to his Excellency Ntsomo Npong Pierre, the chief of the village of Bongo, after an unsuccessful hunt, Bongo found himself lost in the savannah of Buyok. He finally settles in the area at the place called Nday mpile (the big oil palm) ${ }^{11}$ and founded the village of Bongo.

The Baca also acknowledge a relationship with the Bati in the Sanaga-Maritime, who, according to his Excellency Ntsomo Npong Pierre, acted as a buffer between the Baca and the Basaa further south.

[^5]Gunu: Ombono was the only daughter of Kamba, the son of Nnyole. Kamba and his wife Molela are considered by the Gunu as the ancestor of five tribes which "crossed the river", the Gunu, Maande, Elip, Bafia (Rikpa) and the Sanaga. According to Boyomo Mouko Michel (narrative elicited by Sintsimé Crépin, p.c. Nov. 2013), Kamba was a slave of a great warrior who was chief of the tribe. He got into trouble when he fell in love with the beautiful wife of this warrior. Condemned to death, Kamba and his wife fled to the land of the Banen on the other side of the Sanaga, which was at that time sparsely populated.

Figure 2: Descendents of Kamba (Boyomo Mouko Michel. 2013, p.c.)

1- Kamba and his wife,

+ Molela
2- Ombono (their only daughter) who gave birth to
3- Gunu
3- Lemande (ancestor of the Maande)
3- Iguigui (ancestor of the Bafia)
3- \quad Saasa (ancestor of the Sanaga (Tuki))
3- Zong (ancestor of the Elip)
Mmala: The Mmala, like many of the other Mbam people groups, consider themselves as the children of Ombono. While information concerning the origins of the tribe was not found, the stories of the foundation of certain of the principal towns were. According to Oyolo Jonas of Bokito, the first inhabitant of Bokito was a certain Ibondo, who came from the Maande mountains. A certain Amaboda, who was a native of the village of Baliama and a nephew of Bakoa (Gunu) and who was a criminal chased from his village, found refuge at Bokito. Amaboda and Ibondo became allies, along with Guilo of the village of Yorro, to defeat the Bakoa. Thus the village of Bokito is home to three peoples, the Maande, Mmala and Gunu.

There are two similar stories about the village of Begni (principal village of the canton Mmala), both explaining the name (which means "four" in Mmala). In one story, by Mbendé Alain, a hunter and his dog, while hunting in the bush, came across a termite mound where there were four people. In the other story, by Bébiyémé Nkono Raymond, when the colonialists were exploring the area, they came upon four people on a rock. When they asked the name of the area where they were, the people answered "four", thus the area was named "Begni" ([bénì). In both accounts, the village of Yorro is considered related to Begni. The first account that says Yorro was the brother of Begni, and thus it was originally a quarter of Begni, the other, that since the village was vast with few people, to protect their territory, some of the inhabitants were sent to "giolo" that's to say to the empty land or desert. The name later corrupted to "Yorro".

Mbure: The Mbure people consider themselves to be originally from the District of Sanaga-Maritime, south of the Sanaga. Due to war with the Basaa and Bati, they fled
north across the river. Massamatila is one of the ancestors of Mbola, the founder of the village. The Mbure acknowledge that they are related to the Bogando (Elip) and Batanga (Yangben) and Bongo (Baca).

Tuki: According to Dugast (1949: 65-7), the Tsinga or Betsinga were originally from the northern bank of the Sanaga river and were pushed south of the river by the Babute (Vute) in the late 1800's (Dugast 1949: 148). With the arrival of the Germans, some of the Tsinga returned to the northern bank of the Sanaga.

The Bundju (Bonjo) ${ }^{12}$ and Kombe (Bakombe) are listed as separate ethno-linguistic groups (like Tsinga) in Dugast (1949: 61-2). The Bundju, who consider themselves related to the Mengisa, were pushed south of the Sanaga by the Vute and later returned to their original lands, when the Germans rebuffed the Vute. The Kombe were subjugated by the Vute and dispersed.

The Ngoro (Angoro) also claim to be related to the Mengisa as well as the Bundju, Kombe and Tsinga (Dugast 1949: 62-3). Like the Kombe, they were subjugated by the Vute and dispersed. Dugast relates that among the Ngoro slaves dispersed, a boy named Ndenge caught the attention of the Germans and eventually worked and reunited the Ngoro in their native land.

Interestingly, the Mengisa people speak two languages. One of these, Njowi, is most closely related to the Beti-Fang languages of Ewondo and Eton. The other, Leti, is most closely related to the Tuki variants. Njowi is spoken south of the Sanaga River and Leti to the north, in the Mbam. ${ }^{13}$

Yambeta: According to Phillips (1979: 8-9), the Yambeta believe they have always lived on the right bank of the Nun River (also Dugast 1954: 136). While many outside researchers group Yambeta with the Banen (Nen) group, both culturally and linguistically, the Yambeta consider themselves more closely connected with the Gunu.
${ }^{12}$ The name in parenthesis is the name of the dialect identified in this study.
${ }^{13}$ Some time ago, I did a lexicostatistical study of these variants based on a Swadesh 100 -word wordlist. The results show that there is a close linguistic distance between Njowi, Ewondo and Eton.
Mengisa-Njowi
77\% Ewondo

94%	Ewondo					
$\mathbf{2 3 \%}$	77%	Eton				
24%	23%	23%	Mengisa-Leti		Tuki-Tocenga	
27%	24%	24%	82%	83%	Tuki-Tutsingo	

The distances between Njowi, Leti and the Tuki variants are much larger.

However, according to Bolioki Léonard-Albert, a Yambeta speaker, the origin of the Yambeta people is not so simple. The two main dialects of Yambeta, Nigii and $N \varepsilon d \varepsilon k$, have different origin stories.

Nigii is spoken in the villages of Kon, Kon-Kidoun and Edop. The people consider themselves descendents of the same ancestor as the Gunu, a certain Mbono (Ombono). The Nigii separated from the Gunu over a dispute concerning the entrails of an antelope. ${ }^{14}$

Nedzk is spoken in the villages of Babetta, Bamoko, Bayomen and Bebis. The people of Nedzk, unlike the Nigii, trace their origins to the Bamoun. During a time of war, a certain Timin, who was fleeing the war, arrived on the right bank of the Nun and settled there. He had three sons, Peda, Onkon and Yomen, who founded the $N \varepsilon d \varepsilon k$ villages of Babetta, Bamoko and Bayomen. They do not consider themselves descendents from Mbono (Ombono) but believe they are the true natives of Yambeta. ${ }^{15}$

Like the Nen, the $N \varepsilon d \varepsilon k$ trace their origins to the region of the Bamoun near Foumban, while the Nigii trace their origins to Ombono and the other Yambassa groups.

Nen: Unlike many of the other groups, the Banen, like the N $\varepsilon d \varepsilon k$ of Yambeta, do not identify themselves as the descendents of Ombono. Rather, according to Baléhen Jacques René, two of the four sons of a certain Biwoung are implicated in the origins of the Nen people. The four sons, Ganté, ${ }^{16}$ Onga, Munen and Bofia, ${ }^{17}$ leave the area around Foumban (Bamoun). Ganté settles in the area of Baganté. Onga settles near Tonga, and Munen and Bofia cross the Ndé River. The two brothers stayed together until a dispute between their sons caused Bofia to move south towards the present-day city of Bafia. Munen and his two sons, Ndiki and Niméki settled in the area, which is now named after them, Ndikiniméki.

Many of the peoples speaking Mbam languages share similar oral histories, many of which recount a story of migrations. These people relate to each other by referring to related historical people and the similarities of their traditions indicate a sense of cultural relatedness which is felt by these people and is due either to a common origin or convergence.
${ }_{15}^{14}$ p.c from Mboussi Ntafor (Kon) collected by Bolioki Léonard-Albert.
${ }^{15}$ p.c. from Kibilé Victor (Babetta) collected by Bolioki Léonard-Albert.
${ }^{16}$ Who founded the Baganté (Mədumba, ALCAM [902].
${ }^{17}$ Who founded Bafia (Rikpa, ALCAM [584])

1.4 Previous work done in the Mbam languages

This study looks at ten of the Mbam languages, comparing their vowel inventories and vowel-harmony systems. The languages compared are:

Table 1: Lang.	$\begin{aligned} & \text { entifical } \\ & \text { ISO } \end{aligned}$	$\begin{aligned} & \text { on of the } \\ & \text { ALCA } \\ & \mathbf{M} \end{aligned}$	bam la class.	uages in this study other sources consulted
Nen	BAZ	511	A44 ${ }^{18}$	Dugast 1949, Stewart et al. 1979, De Blois 1981, Van der Hulst et al. 1986, Janssens 1988, Mous 1986, 2003, Bancel 1999, Stewart 2000.
Maande	LEM	512	A46	Scruggs 1982, 1983a, 1983b, Taylor 1982, Wilkendorf 2001 Nomaande-French lexicon, http://www.silcam.org/documents/lexic ons/nomaande/index.html
Yambeta	YAT	520	A46 ${ }^{19}$	Phillips 1979, Yambetta Provisional Lexicon, http://www.silcam.org/download.php?ss tid=030100\&file=YambettaProvisional Lexicon.pdf
Tuki	BAG	551	A61	Biloa 1997, Essono 1974, 1980, Hyman 1980, Kongne 2004 Lexique Tuki- Français, http://www.silcam.org/download.php?ss tid $=030100 \&$ folder $=$ documents\&file $=T$ ukiFrenchLexicon2006.pdf.
Gunu	YAS	541	A62 ${ }^{20}$	Gerhardt 1984, 1989, Orwig 1989, Patman 1991, Quilis et al. 1990, Robinson 1979, 1984, 1999, Hyman 2002a. Nugunu Provisional Lexico,. http://www.silcam.org/download.php?ss tid=030401\&file=NugunuProvisionalLe xicon.pdf
Elip	EKM	542	(A62)	Paulian 1986b, Ekambi 1990, Onana Nkoa 2007
Mmala	MMU	542	(A62)	Paulian 1986b, Kaba 1988, Idiata 2000
Yangben	YAV	542	(A62)	Paulian 1986a, Paulian 1986b, Hyman 2003a

[^6]| Lang. | ISO | ALCA | class. | other sources consulted |
| :--- | :--- | :--- | :--- | :--- |
| Baca | BAF | 543 | (A62) | Abessolo Eto 1990, Sebineni 2008, |
| Mbule | MLB | 544 | --- | --- |

1.5 Types of data collected

The data collected for this study consists of several types, as follows:

1) Wordlists, for each of the ten languages, consisting of approximately 700 to 4,000 words, depending on the language.

In five languages, Nen, Maande, Yambeta, Tuki and Gunu, these wordlists were started by others (several of which are on-line, see references). Having access to these language groups, I checked this data and elicited additional data as needed from the language areas. These same five languages have also had the most prior research done, works which I have perused in-depth. The principal of these sources are mentioned in Table 1 above for each language.

The wordlists from three of the remaining languages, Yangben, Mmala, Elip, are fully my own personal research, based on five years living among the populations (2003-2008) and an additional five years (2009-2013) working with the languages from Yaoundé. The data of the last two languages, Baca and Mbure are also personal research, based on data collected during short trips taken to the locations, and checked with individuals brought into Yaoundé for work sessions (2009-2013).
2) Example sentences and verb conjugations based on the wordlists, as well as recorded and transcribed narrative texts for seven of the ten languages. ${ }^{21}$
3) Acoustic recordings: Selected words and phrases from the wordlists have been recorded for acoustic analysis for each of the ten languages. The principal informants who provided me with acoustic data are the following:

Nen:	Mongele Daniel, Maniben Jean Paul, Leumou Benoit, Balehen Jacques René, Sebineni Alphonsine Flore
Maande:	Balan Marc, Bondiokin Jean-Jules
Yambeta:	Bolioki Léonard Albert, Ondaffe Nfon Emmanuel, Nkoum Ngon Andre
Tuki:	Ilomo Ntosbe, Ayissi Ndjebe Jean Pierre, Ebaka Marius, Koroko
	Emile, Nkengue Marie, Toue Jacqueline, Biteya Marguerite Hortense
Gunu:	Sintsimé Crépin
Elip:	Esseba Ombessa Lambert, Ologa Tite, Baboga Achille
Mmala:	Kiolé Frédéric, Bébiyémé Nkomo Raymond

[^7]Yangben: Kibassa Otoke, Okono Tchopito
Baca: H.E. Ntsomo Mpong Pierre, chief of Bongo, Mpong Ntsomo Pierre Gérémie, Ntsomo Ntsomo Mpong Pierre Marie
Mbure: Kibindé Babouet, Inengué Gilbert, H.E. Noueye Noueye Joachim, chief of Mbola

1.6 The language corpus

This section introduces the ten Mbam languages discussed in this study and presents some background information of their location, dialect situation, and a summary and discussion of previous studies.

1.6.1 Nen

Nen (also known as Tunen, or Banen) is spoken in the subdivision of Ndikinimeki (District of the Mbam-et-Inoubou) by an estimated 35,300 speakers (Lewis et al. 2013), and spills over in the south into the subdivision of Yingui (District of the Nkam). Nen has four dialects; the two biggest, Tsbóánye (the reference dialect) and Tufomb'́, have several subdialects. The list of Nen dialects and the villages where they are spoken is listed below in Table 2. This information was collected through personal communication with Loumou Benoît (of the village of Nd\&kalعnd), the 20/Oct/2009 at Ndikinimeki. The reference dialect is underlined.

Table 2: Dialects and villages of the Nen-speaking region

[^8]| Dialects: | Ethnologue ${ }^{22}$ | Villages: |
| :---: | :---: | :---: |
| Ninguessen (Mese) | Mese (Paningesen, Ninguessen, Sese) | Ninguessen |
| Tufombó | Ndogbang (Ndっkbanol) | Ndokbassiomi
 Ndokbassaben
 Ndokbandalemak |
| | Ndokbiakat | Yingui
 Iboti
 Ndokanyak
 Ndoknanga |
| Alinga | Eling (Tuling) | Nituku
 Nebassel
 Neboya |
| Ndoktúna | Ndoktuna | Ndoktúna |

Nen is one of the better-known and documented of the smaller languages of Cameroon, due to a large degree to the work of Dugast. Other studies on Nen vowel harmony include: Wilkinson 1975; Stewart and van Leynseele 1979; Bancel 1999; De Blois 1981; Van der Hulst, Mous \& Smith, 1986; Janssens, 1988; 1993-4; and Mous 1986; 2003. While Dugast mentions vowel harmony (1971: 44-47), she merely lists the vowel combinations found within the word without elaborating on how the harmony functions.

1.6.2 Maande

Maande (also known as Nomaande, Lemande etc.) is spoken in seven villages of the Lemande canton in the highlands of the Bokito subdivision (District of the Mbam) by an estimated 6,000 speakers (Lewis et al. 2013). Maande has two main dialects: Nonyambaye, spoken in Nyambaye and Njoko, and Nuceku (the reference dialect), spoken in the village of Tchekos. There are two subdialects, which fall between the two major dialects: Nobanye, spoken in the villages of Tobanye and Bougnougoulouk, which is closer to Nonyambaye, and the dialect spoken in the villages of Omeng and Ossemb, which is alternatively called Nomeng or Nossemb, depending on the speaker.

Maande is also one of the better-known and documented of the smaller languages of Cameroon. Much work has been done by various SIL linguists notably Scruggs, Taylor and Wilkendorf.

1.6.3 Yambeta

Yambeta is spoken in the subdivision of Bafia, in the grasslands between Bafia and Ndikinimeki. Yambeta has four dialects; two main dialects Nigii and N $\varepsilon \mathrm{d} \varepsilon \mathrm{k}$, and two lesser dialects Begi (subdialect of Nigii) and Nibum (subdialect of $N \varepsilon d \varepsilon k$). Nedzk is spoken in the villages of Babetta, Bamoko, Bayomen and Bebis and is according to the people the "original Yambeta". Nigii is spoken in the villages of Kon,

Konkidoun and Edop. Begi is spoken in Bégui and Nibum is spoken in the villages of Kiboum I and Kiboum II. This study is based on Nigii, which is the largest and most centrally-located dialect, which has been chosen by the community as the reference dialect. The only in-depth study of Yambeta found is Phillips 1979 The initial standardization of the Yambsta language.

1.6.4 Tuki

Tuki (also known as Sanaga) is spoken along the border of Mbam-et-Kim Division with a few villages also in the Mbam-et-Inoubou Division, from Ntui to Mbangassina to Ngoro. There are approximately 26,000 speakers (Lewis et al. 2013). Tuki consists of seven dialects, although there are some discrepancies between authors concerning both the number (6 or 7) and the names of the Tuki dialects. For the purpose of this study, I am following the lists in Huey and Mbongué (1995). The reference dialect is underlined in Table 3 below:

Table 3: dialects of Tuki (Huey \& Mbongué 1995) ${ }^{23}$

Dialect	People	Location	Villages
Tangoro	Angoro	Subdivision of Ngoro	Angadjimberete, Ngoro, Ngamba, Moungo, Egona II, Bakouma, Massassa, Mbengué, Ngoro-Nguima, Nyamongo (N. of the Mbam river) and Djara-Kanga
Tuchangu ${ }^{24}$	Acango	Subdivision of Bafia	Egona I, Ngomo, Nyatsota and Nyamongo (S. of the Mbam river)
Tukombe	Bakombe	Subdivision of Mbangassina	Bialanguena, Boura I and Boura II Tubangassina, Enangana, Bilomo, Tsinga Tiapongo, Assola, Badissa, Nyamanga II, Nyambala, Biatombo, Yanga, Yébékolo, Etoa and Esséré
Tondjo	Bonjo		Biakoa, Bindamongo, Endingué, Tchamongo, Talba, Biatenguéna, Goura and Nyambala

[^9]| Dialect | People | Location | Villages |
| :--- | :--- | :--- | :--- |
| Tocenga | Bacenga | Subdivision of
 Ntui | Nachtigal, Ehondo, Njame, Essougli,
 Nguété, Odon, Bétanbam Koussé,
 Kéla, Edjindigouli, Koro and Mbanga |
| Tumbele | Mvele | | Bindandjengué, Biatsota I, Biatsota II,
 Ntui, Bindalima I, Bindalima II,
 Koundoung, Bilanga, Ossombé |

Tuki has had a moderate amount of previous study. The most extensive work has been done by Jean-Jacques Marie Essono, notably his Description phonologique du tuki (ati) (1974) and his Morphologie nominale du tuki (langue sanaga) (1980). Other works on Tuki include Hyman's (1980) article on the Tuki noun-class system, a preliminary survey carried out in Tuki in 1994 (Huey and Mbongué 1995), Biloa's (1997) Functional categories and the syntax of focus in tuki and Kongne Welaze's (2004) Morphologie verbale du tuki.

1.6.5 The Yambassa languages

Five linguistic varieties are identified as Yambassa in the literature. These are: Gunu, Yangben, Mmala, Elip and Baca. The best known and most studied of these varieties is Gunu. Following Gunu, the most comprehensive study has been done on Yangben (Hyman 2003a). The other three languages, Mmala, Elip and Baca are referred to in only a few comparative or lexicostatistical articles. ALCAM further divides Yambassa by making a distinction between Gunu (Yambassa nord [541]), Baca (Yambassa sud [543]) and Yambassa central [542], consisting of the remaining three: Yangben, Mmala and Elip. A sixth language, Bati [530], located just beyond the Liwa river in the Sanaga Maritime Division of the Littoral Region is also considered closely related to the Yambassa varieties. While these languages are synchronically similar, they do not seem to form a genetic unit, as will be shown in this study.

1.6.5.1 Gunu

Gunu (also referred to as Nugunu) is spoken in sixteen villages in two cantons by an estimated 35,000 speakers (Lewis et al. 2013). It has two dialects: Gunu sud, spoken in the canton of the same name (Bokito subdivision) in the villages of Assala I and II, Guéfigé, Guebaba, Bokaga and Bakoa, and Gunu nord, spoken in the canton of the same name (Ombessa subdivision) in the villages of Ombessa, Boyaba, Essende, Baningoang, Bouaka, Guienising I and II, Boyabissoumbi, Baliama and Bogondo.

At least a dozen articles have been written on Gunu, although most concern grammatical or discourse-level study. Of most interest for this study are Robinson's (1984) Phonology of gunu, Paulian's (1986) lexicostatistical comparison with the other Yambassa varieties and Hyman's (2002) article on vowel harmony in Gunu. Other works consulted include: Gerhardt 1984; 1989; GULICO (Gunu Linguistic Committee) 2003; Orwig 1989; Patman 1991; and Robinson 1979; 1999.

1.6.5.2 Elip

Elip (also referred to as Nulibie or Libie) is spoken in ten villages in the Elip Canton by an estimated 6,400 (Lewis et al. 2013). Three dialects are attested. These are Nuyambassa, spoken in the village of Yambassa, principal village of the canton Elip, Nulamba, spoken in the villages of Balamba, Basolo, Botatango, Boalondo and Boatanye, and Nukanya, spoken in the villages of Botombo, Kananga, Bongando and Kilikoto.

Elip is referred to in only a few works, predominantly in lexicostatistical studies, and in one article (Paulian 1980: 63-66) on the noun-class system. It is referred to in $L a$ méthode dialectométrique appliquée aux langues africaines, 1986, edited by Guarisma and Möhlig, where it is compared with the other Yambassa languages, Mmala and Yangben (Paulian 1986b: 243-279). Other lexicostatistical studies include survey reports: Scruggs 1982; Taylor 1982; Boone et al. 1992. In addition, there are two MA theses from Yaoundé I: a phonology by Ekambi (1990), and a verb morphology by Onana Nkoa (2007).

1.6.5.3 Mmala

Mmala (referred to as Mmaala, Numala, or Numaala) is spoken in the Mmala Canton by an estimated 5,300 speakers (Lewis et al. 2013). It has two dialects: Nuenyi, spoken in the villages of Begni, Yorro and the Mmala quarter of Bokito, and Nukitia, spoken in the villages of Kedia and Ediolomo.

Mmala is referred to in only a few works, predominantly in lexicostatistical studies, and in one article (Idiata 2000: 23-32) on the noun-class system as well as in Paulian (1986: 243-279). Other lexicostatistical studies include survey reports: Scruggs 1982; Taylor 1982; Boone et al. 1992. In addition, there is a MA thesis from Yaoundé I: a phonology by Kaba (1988).

1.6.5.4 Yangben

Yangben (also referred to in some literature as Kalon or Nukaloŋq) is spoken in three villages of the Yangben Canton by an estimated 5,296 speakers according to the 1977 census (Boone et al. 1992). ${ }^{25}$

Yangben is spoken in the villages of Yangben, Omende and Batanga. The language is known by various names. The local populations refer to their language as the speech of \qquad village; or in other words, as Nukalつne: speech of Kalon (Yangben) village; Numende: speech of Omende village; and Nutaya: speech of Batanga village. The differences between these varieties are minor. The local population has recently

[^10]given a more inclusive name to the speech varieties of these three villages: they call it Nuasue: "our language".

Yangben is referred to in a few works, predominantly in lexicostatistical studies with the notable exception of Hyman's 2003 article on the vowel-harmony system of Yangben. Hyman's article is also mentioned in Vowel harmony and correspondence theory (Krämer 2003: 13-14). Maho 1999 also refers to it in his A comparative Study of Bantu Noun Classes. In addition there are two separate articles on Yangben in $L a$ méthode dialectométrique appliquée aux langues africaines, 1986, edited by Gladys Guarisma and Wilhelm J.G. Möhlig. In one article (Guarisma and Paulian 1986: 93176), Yangben is compared to several other Bantu A languages. In the second article (Paulian 1986b: 243-279), it is compared with the other Yambassa languages. Other lexicostatistical studies include survey reports: Scruggs 1982; Taylor 1982; Boone et al. 1992.

1.6.5.5 Baca

Baca ${ }^{26}$ (also known as Nubaca or Bongo) is spoken only in the village of Bongo by an estimated 800 people (Boone 1992a: 1; Lewis 2009). The chief of Bongo village, his excellence Ntsomo Npong Pierre, however, says that the population of Bongo is closer to 4,500 , most of whom are Baca speakers (p.c. February 2009).

The language is identified as having three dialects, Baca, spoken in the quarters of Ganok, Nkos, Buyatolo, Buyabikel, Buyabatug and Buyamboy; Kélendé, spoken in the quarters of Kélendé Mbat and Kélendé Moma; and Nibieg, spoken in the quarter of the same name. This study is based on personal research of the main dialect spoken in Ganok quarter.

Baca is referred to in only a few works, notably Scruggs' 1982 linguistic survey of the Bokito region (including approximately 180 terms), Paulian's (1986: 243-279) article on the Yambassa languages (with a bit more than 100 terms), Boone's (1992a) survey of Baca (including approximately 100 terms). In addition to these surveys, two Université de Yaoundé I MA in linguistics theses have been produced: Abessolo Eto 1990 and Sebineni 2008; the latter includes 250 terms in the annex.

1.6.6 Mbure

Mbure (also referred to as Dumbule, Mbule or Mbola) is spoken only in the village of Mbola by an estimated 100 persons (Boone 1992b; Lewis et al. 2013). In personal communication with residents, the population figures were given as 112 persons in 34 households for the four quarters of Mbola (Nikoyo Charles Dieudonné, catechist p.c. 13 Feb. 2009). The quarters of Mbola are Bougnabog, Cade, Kidjo and TanéMos. There appears to be no variation in the language between the various quarters.

[^11]Mbure is referred to in only a couple of works, notably Scruggs' 1982 linguistic survey of the Bokito region (including approximately 180 terms), and Boone's (1992b) survey of Mbure (including approximately 100 terms). Only seven vowels are identified in these works.

1.7 Divergent features of the Mbam languages

The Mbam languages in this study diverge from the general Bantu pattern in several ways and to a greater or lesser extent. The four main areas of divergence involve (1) separate preverbal elements, including differing word order (SOV) and full words interposing between the verb stem and the subject/tense complex; (2) a reflexive/middle derivational prefix replacing the proto-Bantu passive suffix; (3) differences in noun-class prefixes and (4) additional non-Bantu verbal extensions.

Separate preverbal elements:

Bantu languages are generally agglutinative, and while some of the southern Mbam languages (i.e. Yangben, Mmala and Elip) retain a highly agglutinative structure, most of the Mbam languages have phonologically separate preverbal elements. In some of these latter languages, other grammatical words such as indirect object nouns (Nen) and pronouns (Nen and Maande) or adverbs (Maande and Gunu) may be occur between the verb root and the subject/tense complex. Nen in particular is exceptional for having an SOV word order with full nouns occurring between the subject/tense complex and the verb root. Maande, while retaining a SVO word order for full object nouns, does have independent indirect-object pronouns ${ }^{27}$ which occur before the verb root.

Reflexive/middle derivational prefix:

The majority of the Mbam languages have a reflexive/middle derivational prefix, bá- or bí-. While there is also a suffix, -Vb, which is a reflex of the proto-Bantu *ibu, found in some of the Mbam languages (Elip, Mmala Yangben and Maande), it is not generally productive except in two of the languages. Baca has both a bí- prefix and a -Vb suffix, both with a reflexive/middle sense. Mbure exclusively ${ }^{28}$ has the Vb suffix, in Example 1.

[^12]

Gunu has both the bí- reflexive/middle prefix as well as a passive suffix -lú (*-u) which attaches to the verb after all other suffixes and extensions, including the final vowel (Orwig 1989: 293).

Noun-class distinctions:

All of these Mbam languages have fairly traditional Bantu noun-class systems. With a few exceptions, the noun-class prefixes are reflexes of the reconstructed protoBantu noun-class prefixes. There are three particularities: First, noun class 13 pairing as a plural class with either singular classes 11 or 19. All of the Mbam languages have a plural class $13 .{ }^{29}$ Second, in many of these Mbam languages, there are two "morphologically distinct class 6 prefixes" (Maho 1999: 251). These are 6 mà- and 6a àN-. The third particularity is the plural of a class 19. In the Mbam A60 languages, the plural of class 19 is mo-, which is considered in Guthrie (1971: 32) as extraneous and was not assigned a class number. In some literature, it is identified as class 18 or in Scruggs (1982) as class 6.

Extra extensions:

There are a handful of extensions found in various of the Mbam languages which are not readily identified with Guthrie's common Bantu extensions. As these are not productive extensions, it is difficult to determine their role. Some examples found in the various Mbam languages are in Example 2.

Example 2: Extra (non-Bantu) extensions found in the Mbam languages

-om	gò $\neq l$ lág-óm-ìn	be light (Elip)
	j̀ $\neq \mathrm{bíl}$-1ók-óm-à	listen, pay attention (Maande)
	gò \neq yób-òm-à	stagger (Gunu)
	ù \neq hól-úm-̀̀	rest, breathe (Nen)

[^13]| -rj (-I) | d̀ \ddagger sàl-ì-à | divorce (v) (Nen) |
| :---: | :---: | :---: |
| | ò \neq tán-ál-í-án-à | block (Maande) |
| | \#pób-ìj-à | babble (baby) (Mbure) |
| | gơキ bál-ì-à | swear (Gunu) |
| | ò \ddagger sìr-ìj-à | slip (Tuki) |
| $-\mathrm{al}{ }^{30}$ | ù $=$ kìt-ə̀l-ò | slap (Nen) |
| | gò $=$ bà ${ }^{\text {mb }}$-àl-à | palpitate (Gunu) |
| | gò \neq gág-ál-à | wrap up (Mmala) |
| | kò \ddagger sík-ill-à | carve smth small \& round (Yangben) |
| | kò \ddagger kj̀k- ${ }^{\text {l }}$-à | gnaw (Baca) |
| $-\mathrm{il} /-\mathrm{id} /-\mathrm{it}^{31}$ | ò \neq miòt-ìl-à | press (v)(Nen) |
| | ò \ddagger fóg-it | shake(Yambeta) |
| | ù $\neq \mathrm{t} \mathrm{j}^{\prime \prime} \mathrm{g}$-ít-̇े | abandon (Tuki) |

1.8 Purpose of the thesis

The purpose of this study is to understand the complexities of the vowel systems and vowel harmony of these ten related languages, located in a relatively small area. The microvariation within these comparable but different vowel systems provides a greater understanding of the phonologies of each of the individual languages. Furthermore, by finding the relevant parameters of variation in a bottom-up manner, this study contributes to the understanding of phonology and specifically that of vowel harmony.

[^14]
Phonological overviews

This chapter gives a basic summary of the contrastive consonants, vowels and tones as well as an overview of how the vowel-harmony system operates both within roots and between roots and affixes for each of the ten languages, Nen, Maande, Yambeta, Tuki, Gunu, Elip, Mmala, Yangben, Mbure and Baca respectively. The first section for each language discusses the consonant system, the second the vowel system, the third the various vowel-harmony processes in particular between the root and the affixes, the fourth various hiatus-resolution processes and the final section the lexical tone melodies.

The basic phonological overviews of these ten languages will reveal their similarities and differences. In particular the variations in their vowel inventories from Baca with nine contrastive vowels and a tenth non-contrastive vowel, Mbure, Yangben and Mmala with nine contrastive vowels, Gunu, Yambeta, Maande and Nen with eight contrastive vowels to Tuki with only seven contrastive and one noncontrastive vowel. Furthermore, while all ten languages have ATR vowel harmony, they differ as to the scope of ATR harmony as well as which, if any additional type of vowel harmony, rounding, fronting or height is present.

2.1 Nen phonological overview

This study is based on Tobóánye, the reference dialect. It is based on personal research as well as previous research of several linguists and an unpublished wordlist ${ }^{32}$.

2.1.1 Consonants

This section discusses the consonant inventory of Nen (section 2.1.1.1), and consonant distribution restrictions (section 0).

[^15]
2.1.1.1 Consonant inventory

The consonant system of Nen consists of 17 contrastive consonants. Only Dugast (1971) and Mous (2003) discuss the Nen consonants at any length.

Table 4: Nen contrastive consonants

	labial	alveolar	palatal	velar	
stops	b / p	t		k	
prenasalised		mb	${ }^{n} \mathrm{~d}$	${ }^{\mathrm{n}} \mathrm{d} 3$	${ }^{\mathrm{n}} \mathrm{g}$
fricatives		f	s		h
resonants	nasal	m	n	n	y
	oral	w	l	j	

2.1.1.2 Restrictions in consonant distribution

There is no voicing opposition in Nen (Mous 2003: 284). All stops are voiceless except for the bilabial stop. There is a high degree of free variation in the pronunciation of the bilabial stop among native speakers, some pronouncing it more like [b], and others favouring [p]. It also has the tendency to be more voiced in initial position and voiceless in final position. In addition, bilabial consonants are rounded before / $/ 2$ (Mous 2003: 284; Janssens 1988: 62).

While both Mous and Dugast identify the velar fricative /x/ as contrastive (and Dugast also includes the palatal fricative /ç/ which Mous considers an allophone of $/ \mathrm{x} / \mathrm{after}$ front vowels), from the data I have, it seems that both [x] and [ç] are allophones of $/ \mathrm{h} /$. Dugast (1971: 36) acknowledges that $[\mathrm{x}]$ and [ç] are probably related to $/ \mathrm{h} /$, and Mous (2003: 284) points out that [x] does not occur in word-initial position and is realised as [h] intervocalically. However, /h/ does not occur in wordfinal position in the 2,000+ word Nen database (CODELATU 2008), see Figure 3 below.

Figure 3: Allophonic variations of /h/ in Nen

\qquad
[ç] / $\mathrm{V}_{[+\mathrm{ft]}} \ldots \#$
[h] / \#___ V__V
Dugast does give examples of $/ \mathrm{h} / \mathrm{in}$ word-final position; however she does not take into account final-vowel elision in Nen. Rather, she refers to CVC structures with an epenthetic "voyelle de liaison" (1971: 48-51) ${ }^{33}$. Therefore, in Dugast's examples, /h/ is not in word-final position but rather intervocalic position, see Example 3 below.

[^16]| Example 3: Dugast $/ \mathrm{h} /$ in word-final position
 Dugast (1971: 36)
 yúh | Welaze database | gloss |
| :--- | :--- | :--- |
| -ǹ̀h | [jùhó] | bone |
| ìlùh | $[\neq$ nòhà $]$ | cease |
| -nyóh | [ìlùhə̀ | sweat |
| | $[\neq$ nóh̀̀̀ $]$ | suckle (baby) |

2.1.2 Vowels

This section discusses the vowel inventory of Nen (section 2.1.2.1) and the various adaptations to it due to allophonic realisations such as utterance-final devoicing (section 2.1.2.2), vowel co-occurrences and co-occurrence restrictions (section 2.1.2.3).

2.1.2.1 Vowel inventory

Nen has an inventory of eight contrastive vowels ${ }^{34}$. A complex system of vowel harmony regulates the co-occurrences and co-occurrence restrictions of the vowels. The vowels can be divided into two sets which are mutually exclusive within roots and stems:

Table 5: Nen contrastive vowels

[-ATR]

I
U
0
a
[+ATR]
i u
u
o
∂

In the verb system, all eight contrastive vowels are attested in the verb root. While the distinction between $/ 0 /$ and $/ 0 /$ is slight, this distinction is emphasised by rounding harmony. Rounding harmony is triggered by non-high (open) round vowels and targets the final vowel $/-\mathrm{a} /$. High round vowels, $/ \mathrm{u} /$ and $/ \mathrm{v} /$ do not trigger rounding harmony. In the Nen verb system, the root vowel generally determines the changes in the final vowel according to ATR and/or rounding harmony, as shown in Example 4 below.

[^17]| Example rt vowel | ATI | round | FV | b stems in example | gloss |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i | x | --- | -ə | ù $=$ tím-ə̀ | dig |
| I | --- | --- | -a | ò \neq kít-à | pick (fruit) |
| ə | X | --- | -ə | ù $=$ kə́t-̇̀ | paint, decorate |
| a | --- | --- | -a | ù \neq tát-à | guard, watch over |
| 0 | --- | X | -0 | $\begin{aligned} & \grave{o ̀} \neq \text { śśs-̀ } \\ & \grave{\partial} \neq k \leq ́ l-\grave{c} \end{aligned}$ | smoke, suck scratch, scrape |
| o | x | x | -0 | ù $=$ kót-ò
 ù \neq kòl-ò | bite, crunch create |
| U | --- | --- | -a | ò $\neq k u ́ t-a ̀$
 ò \neq kòl-à | dry
 go, buy medicine |
| u | X | --- | -ə | ù \ddagger fúk-̀̀ | shake |

In the noun system, seven contrastive vowels are found in monomorphemic $\mathrm{CV}_{1} \mathrm{CV}_{1}$ roots, as in Example 5 below. The [-ATR] vowel $\boldsymbol{\omega}$ is not found in $\mathrm{CV}_{1} \mathrm{CV}_{1}$ noun roots.

Ex	Permitted vowels in $\mathrm{CV}_{1} \mathrm{CV}_{1}$ noun roots in Nen				
	nì $=$ tísì hì $=$ síní	bowl metal pot	u	nì \neq fùnú ì \neq kútú	cola nut fist
$ə$	$\begin{aligned} & \text { hì } \neq \text { pòmà } \\ & \text { ì } \mathrm{p}{ }^{\text {m}} \mathrm{m} \text { bá } \end{aligned}$	shoulder blade valley	o	$\begin{aligned} & \text { hì } \neq \text { kótó } \\ & \text { ù }{ }^{\text {nd dòkó }} \end{aligned}$	small of back ladle
I	$\begin{aligned} & \mathrm{i} \neq \mathrm{kìtí} \\ & \mathrm{̀} \neq \mathrm{f} \text { 'ìt } \end{aligned}$	trap hunting bow	0	hì $\neq l$ l̀̀k̀̀ ì $=$ sòpó	poison civet cat
a	hìłkàsà ì \neq sáká	firewood palaver			

2.1.2.2 Vowel devoicing/elision in utterance-final position

In Nen, all vowels are susceptible to devoicing or deletion in utterance-final position. This utterance-final devoicing is interdependent with the utterance-final loss of contrast in the tone melody, as shown below. Table 6 shows the tone and finalvowel reduction in disyllabic noun roots (Janssens 1988: 67; Mous 2003: 287).

Table 6: Tone and final-vowel reduction in Nen CVCV noun roots

\# Cv̀Cv̀	\rightarrow	$\neq \mathrm{Cv̇C}$
$\neq \mathrm{Cv́C}{ }^{\text {c }}$	\rightarrow	$\neq \mathrm{Cv} \mathrm{C}$
$\neq \mathrm{Cv́C} \mathrm{v}^{\text {l }}$	\rightarrow	\# С ${ }^{\text {ćC }}$
$\neq \mathrm{Cv̀r}$ v́	\rightarrow	$\neq \mathrm{Cv̀r} \mathrm{C}$

Example 6 below illustrates the melody and the associated vowel reduction in utterance-final position.

Example 6: Final-vowel devoicing in Nen

underlying forms		final	non-final	gloss
nì \neq tòlú mờ \neq kà \mathfrak{y} á	\neq LH	[nìtàlù] [mòkànà]	[nìt̀̀lú] [mòkàná]	chin root
ì $=$ pókù hì $=$ pánà	\# HL	[ìpák] [hìpáy]	[ìpákù] [hìpánà]	wing ankle
mì \neq sว̀kù hì=lùpù mì \neq nàmà	$\neq \mathrm{L}$	[mìsว̀kù̀] [hìlùp] [mìnàm]	[mìsว̀kù] [hìlùpù] [mìnàmà]	elephant cocoon grain
$\begin{aligned} & \text { ì=lánún } \\ & \text { ì } \neq \text { sáká } \end{aligned}$	$\neq \mathrm{H}$	[ilà̀] [ìsàk]	[ìlánú] [ìsáká]	metal palaver

2.1.2.3 Vowel co-occurrences

Several factors govern the co-occurrences of vowels in CVCV nouns. These factors include 1) ATR-harmony restrictions and 2) restrictions on V_{2}, depending on the features of V_{1}. Each of these vowel co-occurrence restrictions will be discussed in turn in sections Error! Reference source not found. and 2.1.2.3.2 below.

2.1.2.3.1 ATR-harmony restrictions

ATR harmony requires that both vowels in the noun root agree in tongue-root position. The [-ATR] vowels never occur in the same root with [+ATR] vowels. The vowel /a/ is always [-ATR] and never found in a [+ATR] environment. In Example 7 below, all ATR vowel co-occurrences in CVCV noun roots are shown.

Example 7: ATR vowel co-occurrences in CVCV noun roots in Nen [-ATR] vowels [+ATR] vowels					
I-I	ì \neq títí	bowl	i-i	ì \neq kítì	piece (of)
I-a	nì \neq títà	forehead	i-ə	ì \neq kìt̀	ram
I-U	mì \neq ílò	sperm	i-u	---	---
a-I	Ì $\boldsymbol{\sim}$ hàkì	genet	ว-i	hì $=$ sálì	hare
a-a	Ì \neq máká	monitor lizard	ə-ə	mò $=$ s ¢́kı̀	wailing (n)
a-ひ	Ì 7 p àk 35	agama lizard	ə-u	mì \neq sàkù	elephant

${ }^{35}$ Dugast has this word (1971: 74) glossed as 'lizard' and written with [o]. Mous (2003:286) in addition states that a-o is one of the non-adjacent vowel sequences excluded in Nen. The Welaze (2008) database					
has this word written with [0]. Based on my own recordings and analysis of the F1/F2 formants of this back round vowel, it is somewhat closer to the averages of $/ \sigma /$ therefore more closely in accordance with					
Dugast's [-ATR] vowel $\mathbf{0}$.					
Dugast 1971	gloss	Welaze 2008	gloss	F1 ave	F2 ave
èbako	lézard (p74)	Èpàkj́	agama lizard	568	1003
èkaho	crachat (p75)	èkàhó	phlegm	569	1038

[-ATR] vowels

U-I	pờ $=$ òjí	beehive	u-i	pùflùfí	curse (n)
0-a	$\grave{\text { j }} \neq$ hùta 36	hair	u-ə	ì 1 lúk ${ }^{\text {á }}$	latrine
O-0	mò̇kùló	foot, leg	u-u	mò \ddagger lùkù	wine
--1	nì \neq pótí	heap, pile	o-i	nì \ddagger hókí	language
--a	---	---	0-ә	---	---
-0	Ì $=$ k kòt ${ }^{\text {a }}$	hoof	--o	hì=tókó	hernia

2.1.2.3.2 Other $\mathrm{V}_{1} \mathrm{~V}_{\mathbf{2}}$ co-occurrence restrictions

When V_{1} in $\mathrm{CV}_{1} \mathrm{CV}_{2}$ nouns is a front, high vowel, V_{2} may either be a high or an open (non-high) vowel. The contrastive features of Nen vowels can be analysed with only one height distinction: high vs. non-high, or following Hyman (2001, 2003a), "open". Any vowel, therefore, which is not a high vowel is an open vowel. There is no contrastive distinction in height between $/ \mathrm{o} / \mathrm{or} / \mathrm{\rho} / \mathrm{and} / \mathrm{\rho} / \mathrm{or} / \mathrm{a} /$; the only contrast is in ATR. When V_{1} is a non-high, non-back vowel, V_{2} may be either a high, round or open (non-high) vowel. When V_{1} is a non-high round vowel, V_{2} may be either a high vowel or an identical round vowel. Which high, round or open vowel occurs in V_{2} position depends on the ATR value of V_{1}. The high V_{2} is $/ \mathrm{I} /$ (which has a surface representation [$\varepsilon]$) in [-ATR] noun roots or $/ \mathrm{i} /$ in [+ATR] noun roots. The round V_{2} is generally either $/ v /$ in [-ATR] noun roots or [u] in [+ATR] roots, with certain exceptions. The open (non-high) vowel is either /a/ in [-ATR] roots or $/ 2 /$ in [+ATR] roots, see Example 8 below.

Example 8: Value of $\mathbf{V}_{\mathbf{2}}$ in CVCV noun roots in Nen		
$\mathbf{V}_{\mathbf{2}}$ in CVCV noun roots	[-ATR]	[+ATR]
High	$\mathrm{I}([\varepsilon])$	i
Round	v or ρ	u or o
Open	a	∂

Table 7 summarises the possible CVCV noun-root combinations permitted in Nen.

[^18]Table 7: Surface $\mathrm{CV}_{1} \mathbf{C V}_{2}$ combinations permitted in Nen

$\mathrm{V}_{1} \mathrm{~V}_{2}$	high	round	open
/i/	i-i	---	i-2
/I/	I-I	--- (I-ひ) ${ }^{37}$	I-a
/u/	u-i	u-u	u-ə
/ $/ 1$	U-I	U-ర	U-a
/o/	O-i	O-O	--- ${ }^{38}$
$10 /$	0-I	--0	--- ${ }^{39}$
/a/	a-I	a-ひ	a-a
/2/	--i	--u	ə-ə

2.1.3 Vowel-harmony processes

Nen has a complex system of vowel harmony consisting of two interacting types of harmony: ATR and rounding harmony. Both types of vowel harmony cross morpheme boundaries and are found within the phonological word.

2.1.3.1 Pre-stem elements

Both nominal and verbal pre-stem elements undergo vowel harmony in Nen. These are ATR harmony and rounding harmony which will be discussed in turn below.

ATR harmony in pre-stem elements

Nen has a system of twelve noun classes. The nasal-initial classes, 1, 3, 4, 6 and 9 also have subclasses without a nasal (Mous 2003: 299). The subclass 6a, unlike in some of the other Mbam languages, occurs only as a collective of class $5 / 6$ nouns (Dugast 1971: 72).

The following double-class genders occur: $1 / 2,1 \mathrm{a} / 2,3 / 4,3 / 6,3 \mathrm{a} / 4 \mathrm{a}, 3 \mathrm{a} / 6,5 / 6,7 / 8$, $9 / 4,9 / 8,9 \mathrm{a} / 6,14 / 6,14 / 8,19 / 13$. Mous (2003: 299) also found a couple of examples of $7 / 13$.

[^19]| class | prefixes | - class | prefixes |
| :---: | :---: | :---: | :---: |
| 1 | mo- /mu- | 2 | pa- / po- |
| 1a | O-/ u- | | |
| 3 | mo- /mu- | - 4 | mI / / mi- |
| 3a | U- / u- | $\bigcirc{ }^{-} 40$ | $\mathrm{I}^{-} / \mathrm{i}$ - |
| 5 | ni- / ni- | $\square 6$ | ma- / mə- |
| 7 | I- / i- | 8 | pı- / pi- |
| 9 | mI / mi- | , | |
| 9a | I- / i- | | |
| 14 | po- / pu- | | |
| 19 | hi- / hi- | 13 | to- / tu- |

All noun-class prefixes with a vowel undergo ATR harmony, as shown in Example 9.

Example 9: ATR harmony of Nen noun-class prefixes

class	noun-class prefix	example	gloss
1	mo- /mu-	mò $\ddagger 1$ limbà $^{\text {a }}$	sorcerer
		mù \neq kójì	co-wife, sister-in-law
1a	U- / u-	ò \neq mólá	young woman
		ù $=$ mìnə̀	taro
2	pa- / pə-	pà $=1$ ìmbà	sorcerers
		pà $=$ kójì	co-wives, sisters-in-law
		pà \ddagger púlá	young women
		pà p pìǹ̀	taros
3	mo- / mu-	mòキlíyí	tail
		mù $\neq 1$ '̇ndù $^{\text {d }}$	tendril
3a	ט- /u-	ò $\neq \mathfrak{n}{ }^{\text {n }}$ dò	peanut
		ù \neq míl̀	palm nut
4	mI - / mi-	mì\#líní	tails
		mì $\neq 1{ }^{\text {n }}$ dù	tendrils
4a	I- / i-	ì $\neq \mathfrak{j}{ }^{\text {n }}$ dò	peanuts
		ì \neq mílà	palm nuts
5	$n \mathrm{I}-/ \mathrm{ni}-$	nì \ddagger fớfá	current (stream, river)
		nì $=$ púná	wall

class	noun－class prefix	example	gloss
6	ma－／mə－	mà f tà ${ }^{n}$ dà mà $\neq 1$ lùkù mà $=$ fúfá mà $=$ pún	urine wine currents（streams，rivers） walls
7	I－／i－	ì \neq tátú ì \neq pókù	mushroom wing
8	pI－／pi－	pì \neq tátú pì \neq pókù	mushrooms wings
9	$\mathrm{mI}-/ \mathrm{mi}-$	mì \neq nàmà mì $=$ sı̀kù	meat elephant
9 a	I－／i－	ì \neq máká ì \neq mít	monitor lizard calabash
13	to－／tu－	$\begin{aligned} & \text { tò } \neq \text { kòlì } \\ & \text { tù }=\text { kòlí } \end{aligned}$	squirrels strings，threads
14	po－／pu－	pò $\neq n$ ǹ̀nò pù \neq nùt̀̀	village swelling
19	hi－／hi－	$\begin{aligned} & \text { hì } \neq \text { kòlì } \\ & \text { hì } \neq \text { kolí } \end{aligned}$	squirrel string，thread

Nen verbs have only two prefixes which obligatorily harmonise with a［＋ATR］ vowel in the verb root：infinitives have a／$\sigma-/$（class 3 ）prefix and the reflexive prefix ／pí－／．As with the noun－class prefixes，the reflexive prefix is subject to ATR harmony， see Example 10.

Example 10：ATR harmony of high vowels in Nen verb prefixes

> ひ- ù \neq kit-ə̀
> ò \neq kít-à
> ù \neq kźt-ə̀
> ò \neq kàl-à
> ̀̀ \neq ḱ́l-う̀
> ù \neq kòl-ò
> ù \neq kòt-à
> ù \neq kùl-ə̀
strike
pick（fruit）
carve
patch（v）
scrape，scratch
create
gather，pile up
hoe（v）

```
pí- ù-pí\not=kìnd-̀े wipe off excrement
    ù-pífkís-à shave oneself
    ù-píflón-\grave{ rejoice}
    ù-píffàl-à comb oneself
    ò-pí\not=nók-ò slither
    ù-pífhól-j̀̀ thank
Ù-pífnóm-ín-à grab, take hold
ù-píffùm-̀̀ dive; submerge oneself
```

Nen is unusual in that it also has a few concord prefixes which are dominant and trigger ATR harmony for the numerals "one" and "two" as well as in other constituents of the noun phrase, see Example 11. The numerals with [+ATR] prefixes are bolded.

Example 11: Nen numeral prefixes			
class	num. prefix	example	gloss
1	0-	mò $\ddagger^{\text {n }}$ dò $\grave{j} \neq \mathrm{mòtí}$	one person
2	pa-	pì ${ }^{\text {n }}$ dò pá $\neq f$ àn $^{\text {dí }}$	two people
3	u-	mòキlímá úfmò̀tí	one heart
4	i-	mì $\neq 1$ ímá ízfồndí	two hearts
5	ni-	nì \ddagger kání ní \ddagger mòtí	one king-fisher
6	ma-	mà \neq kání má \ddagger fàn ${ }^{\text {dí }}$	two king-fishers
7	I-		one genet
8	pi-	pì \neq hàkì píffà ${ }^{\text {dí }}$	two genets
9	I^{-}	mì $=$ ímò $\grave{\text { ì }}$ mòtí	one house
13	to-		two leaves
14	po-	pù \ddagger lá púfmòtí	one tree
19	hi-		one leaf

Roots are either [-ATR] or [+ATR]. Those that are [+ATR] are dominant and the concord prefixes will undergo ATR harmony. Only numeral four ${ }^{40}$ has a [+ATR] root which will cause a prefix to assimilate. Nen numerals have an additional peculiarity; the numbers three, five, six, seven and eight are inherently [-ATR] and dominant, causing the [+ATR] noun-class 4 numeral prefix to assimilate to [-ATR] (Bancel 1999: 5). In Example 12 below, the dominant [+ATR] vowels are bolded and the dominant [-ATR] vowels are double underlined.

[^20]| Example 12: Nen numerals | | |
| :---: | :---: | :---: |
| c2 (pá-) | | four people |
| c3 (ú-) | | one month |
| c4 (í-) | | two months |
| | | three months |
| | $\mathrm{m}^{\text {w }} \neq \mathrm{lilí} \mathbf{i} \neq$ nìs ${ }^{\text {a }}$ | four months |
| | | five months |
| | | six months |
| | | seven months |
| | | eight months |

The singular possessive pronouns in Nen are [-ATR] and the plural forms are [+ATR] and dominant ${ }^{41}$. In Example 13, the [+ATR] adjectives are bolded.

Example 13: Nen ATR harmony in Possessive pronouns

possessive pronouns	pá \neq má $^{\text {ia }}$ pà \neq nís j \neq àjí ì $\neq \mathfrak{q}$ gílí	$c 2 \neq 1$ s.POSS $c 2 \neq b r o t h e r s / c o u s i n s$ c $9 \neq 3$ s.POSS c $9 \neq$ idea
	wà \neq ósú $\grave{j} \neq \mathrm{m}$ bílá mว̀ $=$ ว́sw’́ mə̀ \neq nífó 	c3 $\ddagger \boldsymbol{1 p}$.POSS c $3 \neq$ compound (house) c $6 \neq 1$ p.POSS $c 6 \neq$ water c19 9 c2.POSS cl9 \neq trench

Nen verbal pre-stem elements optionally undergo ATR harmony. In normal speech, the subject concord and tense markers may assimilate to a dominant [+ATR] vowel in the verb root, depending on the speaker, if no other word interferes. However, the further one gets from the verb stem, the less likely the element will harmonise. In Example 14 below, all three possible pronunciations are found. In my recordings, Example 14b and c were the most common pronunciations.

Example 14: Optional ATR harmony of preverbal elements in Nen

Nen, unlike the other Mbam languages in this study, has an OV word order and both the direct and the indirect objects, as well as certain adverbs, may occur between the subject and tense markers on the one hand and the verb stem on the other. When these other words are present, the preverbal clitics optionally harmonise with any dominant vowel present. Bancel (1999: 7-8) notes that "...harmonisation of preverbal markers does not depend on their syntactic relationships, but only on the

[^21]ATR value of the word to the right". In Example 15 below, only (a) and (b) optionally harmonise the subject and tense markers.

Example 15: Optional ATR harmony of other elements in Nen V phrase

(a) bá-ná hígpwá hìfià tìm-ว̀k-ə̀

bá-ná	hiáp ${ }^{\text {wá }}$	hìfià	tìm-ə̀k-ə̀
c2-P2			
c19.3pPOSS	c19.pit	dig-pl-FV	

They dug their pit.
(b) hìsólì à-ná pàsú ìmbátà hík-ín-ว̀
hìsólì j̀-ná pàsú ìmbátà hík-ín-à
duiker c1-P2 1p much conquer-intensive-FV
Duiker has completely conquered us.
(c) bá-ná wíjà ò òmb-ók-ó ú
c2-P2 3s.OBJ throw-prog-FV there
They threw him over there.

(d)	à-ná	wíjà	píjí	pìlá	pìlàl̀	pàt-à
	c1-P2	3s.OBJ	c8.DEM	c8.things	c8.three	request-FV

S/he requested of him three things.

2.1.3.1.1 Rounding harmony in pre-stem elements

Rounding harmony targets /a/ and is triggered by the non-high (open) round vowels $/ \mathrm{/}$ and in one case only, $/ \mathrm{o} /$. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{\sigma} /$ never trigger rounding harmony. Only two noun-class prefixes, classes 2 and 6 , have an underlying /a/ which may undergo rounding harmony, and of the two, only class 6 does so consistently, see Example 16 below. Class 2 has at least one example where rounding harmony does not occur.

Example class	16: Nen rounding h noun-class prefix	rmony of examples	s prefixes gloss
2	pa-	pò \neq nómì	males
		pò \ddagger kónó	frogs
		pò $=$ óp-ì	thief
		pò $=$ kójì	co-wives, sisters-in-law
6	ma-	mò \neq pótí	piles
		mò \ddagger hóy	fat
		mò \ddagger ló	oil
		mò \ddagger tókó	crotch (of tree)

[^22]Rounding harmony is more restricted than ATR harmony in Nen. None of the verbal pre-stem elements with /a/ undergo rounding harmony.

2.1.3.2 Vowel harmony in suffixes

Most verb suffixes undergo vowel harmony, but there are some that trigger ATR harmony. Discussed in turn below are suffixes that undergo ATR harmony, the ATR-dominant suffix -i, and rounding harmony.

2.1.3.2.1 ATR harmony in suffixes

ATR harmony is triggered by a [+ATR] vowel, usually in the root from where it spreads bidirectionally. All [-ATR] vowels in the phonological word change into their [+ATR] counterpart. The final vowel will also assimilate. A few examples are shown in Example 17 below:

Example 17: ATR harmony of verbal suffixes

applicative	-In	ò \neq kòll-ìn-à ò \neq lòt-ìn-à ù \neq kòl-ìn-ə̀ ù \neq lòt-ìn-ə̀	go buy protective medicine gather up something create tease oneself
reciprocal	-an	ò \neq nán-àn-à ù \neq kùs-ə̀n-ว̀	join, meet, put together receive, get, obtain
positional	-Im	ò \neq tín-ím-à ò \neq pà ${ }^{\text {n }}$ d-ìm-ìn-à ù \neq kíl-ím-̀̀ ù \neq kùt-ìm-ìn-ə̀	stand, stand up stoop, bend over shiver, tremble bend, bow
separative	-on	ò \neq fát-ón-à ù \neq súy-ún-ə̀	loosen untie
??	-al	ò \neq sìk-àl-à ù \neq kìt-ə̀l-ว̀	slice slap
progressive	-ak	ù \neq tát-ák-à ù \neq tìm-ə̀k-ə̀	watch, guard dig

Some deverbal nouns are formed by adding the applicative suffix and a noun-class prefix to the verb root. These suffixes also undergo ATR harmony, see Example 18.

Example 18: Nen deverbal nouns with applicative suffix

̀̀ \ddagger sìk-ìl-à	winnow	ì $=$ sìk-Íl-ín-á	van
ò \ddagger s ${ }^{\text {àn-ò }}$	sweep	ì \ddagger sòn-ín-á	broom
ù $=$ súp-̀̀	thresh, beat	mə̀ \ddagger súp-ín-ó	threshing floor
ù $=$ kùs-ə̀	get, obtain	pì $=$ kùs-ín-ó	goods, possessions
ù \neq pít-ə̀	hide	nì $=$ pít-ím-ín-ə́	shelter (n)

Other deverbal nouns are formed simply by adding a noun-class prefix to a verb. Any verbal suffixes present will undergo ATR harmony, see Example 19.

Example 19: Nen deverbal nouns

ù $=$ púm-ə̀	hunt (v)	mù \neq púm-ə̀	hunter
ù \ddagger tà ${ }^{\text {d }}$-à	urinate	màftà ${ }^{\text {d }}$-à	urine
ò \neq hán-ìn-à	give, offer (gift)	nìłhán-ìn-à	gift, sacrifice
ò \neq màn-ìn-à	govern, dominate	nì \neq màn-ìn-à	order, command
ù $=$ túmb-ól-ə̀n ${ }^{\text {j}}$-ว̀	announce	mù \ddagger túmb-ól-ònj-ə̀	messenger

2.1.3.2.2 ATR-dominant suffixes.

The [+ATR] causative suffixes -i and -Vsi, and the pluractional -əni, unlike the other verbal extensions and aspectual suffixes, are underlyingly [+ATR \} and trigger ATR harmony. ATR harmony is generally bidirectional and the causative suffix spreads both to the root and to the final vowel, as seen in Example 20. Since Nen does not permit non-identical vowels in juxtaposition, the -i of each of these suffixes is realised on the surface as a glide preceding the final vowel.

Example 20: ATR Dominant suffix - in in Nen

caus.	-i	̀̀ \ddagger fòl-ò	borrow	ù \neq fòl-ì-ว̀	loan (cause to borrow)
		ò \ddagger kút-à	dry	ù \neq kút-ì-̇̀	cause to dry
		̀̀ \neq fát-à	tighten	ù \neq fót-ì-ว̀	cause to tighten
		ò \neq hìk-à	be tasty	ù $=$ hìk-ì-̀	please, satisfy
	-əsi	ò \ddagger síp-à	peel	ù \ddagger síp-ว́sì-̀े	cause to peel
		ò \neq pòk-à	begin	ù \ddagger pùk-ว̀sì-̀̀	cause to begin
pluractional	-əni	ù \ddagger sàl-à	chop	ù s sı̀l-ว̀nì-ə̀	chop into many pieces
		ò \neq tát-à	guard	ù tót-ə́nì-ว̀	guard often/together

2.1.3.2.3 Rounding harmony in suffixes

Most verbal extensions and inflectional suffixes which contain the vowel/a/ may undergo rounding harmony as well as ATR harmony. Like ATR harmony, rounding harmony is bidirectional. Rounding harmony is triggered only by non-high (open) round vowels. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{v} /$ do not trigger rounding harmony. Rounding harmony may be blocked by a high vowel. A few examples are shown in Example 21 below:

Example 21: Rounding harmony of verbal suffixes in Nen			
final vowel	-a	ò \ddagger lı́n-ó	whistle (v)
			sweep
		ù \ddagger kót-ò	crunch
		ù $=$ tóp-ò	paint (v)
		ò \ddagger kòt-à	gather, heap up
		ù \neq húk-̇̀	blow (wind)
progressive	-ak	òw \neq ¢̀l-ók-̀̀	fasten, bind
		ò \ddagger sós-ók-う̀	suck, smoke
		òw \ddagger ò $^{\text {b }}$ b-òk-ò	throw away
		ù \ddagger kùt-ák-à	gather, heap up
		ù $=$ húl-ə́k-ə́	come
??	-al	¢̀ \ddagger kı̀l-òl-ò	snore
		ùf fò̀n-òl-ò	tickle
		ù $\neq \mathrm{k}$ òt-àl-à	light (fire)
		ùfpùl-̇̀l-̇̀	stir
pluractional	-әni	ùキlón-ónì-ว̀	whistle often/together
		ù \ddagger sùy-ว̀nì-ว̀	defend
causative	-əsi	ù \ddagger sòn-ò̀ì-̀̀	cause to sweep
		ù \ddagger fúk-ósili-̀̀	shake (TR)

Not all variations of ATR and rounding harmony are evidenced in the causative and the pluractional verb forms. Since both the pluractional and causative suffixes are dominant, only the [+ATR] root form is found.

High vowels are opaque to rounding harmony. Where a suffix or extension with a high vowel occurs, the rounding harmony will be blocked, see Example 22. The long causative and the pluractional /i/ block rounding harmony to the final vowel as is seen above in Example 21. This is particularly true with -on separative suffix and
 explain which can not show that/u/blocks rounding harmony in the suffix.

Example 22: Opacity of front vowels in Nen rounding harmony

separative	-on	ù \ddagger kón-ón-à	tip over
$? ?^{44}$	-om	$\begin{aligned} & \text { đ̀ } \neq k \text { ḱ-óm-à } \\ & \text { ò } \neq 1 \text { b́y-óm-à } \end{aligned}$	be afraid listen
applicative	-In	ò \neq pò̀n-òl-ìn-à ù \neq hól-ín-ə̀ ù \neq kóp-ín-ò	fence in wrap up surround, protect
diminutive	-Il	ò \neq miòt-ìl-à	press (v)
positional	-Im	$\grave{o} \neq$ nón $^{\text {n }}$ d-ím-ìn-à ù $\neq 1{ }^{\text {n }}$ d-ìm-ìn-̀̀	squat stalk

2.1.4 Hiatus-resolution processes

There are several hiatus-resolution processes found in Nen. These are glide formation in section 2.1.4.1, vowel assimilation in section 2.1.4.2 and hiatus retention in section 2.1.4.3.

2.1.4.1 Glide formation

Non-identical vowels in juxtaposition are not permitted. Where $V_{1} V_{2}$ sequences occur, either within the morpheme or across morpheme boundaries, a high vowel in V_{1} position becomes a glide. Glide formation occurs principally between a high vowel in the noun-class prefix and a vowel-initial noun root, as seen in Example 23.

Example 23: surface from	-root glide forma underlying form	gloss
hiǒlì	hìfólì	hawk
hiòfó	hì $=$ ¢̀f'́	fish
pwòlí	pùfôlí	work
pwèsí	pờ̇òsí	day
m"ìpí	mò̀łipí	termi

Glide formation my also occur between a CV verb root and a $-\mathrm{V}(\mathrm{C})$ verbal extension, Example 24.

[^23]| Example 24: surface form | formation in the underlying form | gloss |
| :---: | :---: | :---: |
| ùfònjò | ò $\#$ fà̀-ì-à | hang up |
| òsánià | ò \ddagger sán-ì-à | blow up, inflate |
| ùhw' ${ }^{\text {ch }}$ | ù \neq hú- ${ }^{\text {a }}$ | cover |
| òk ${ }^{\text {wà }}$ | ù $\ddagger \mathrm{k}$ ò-à | fall |
| ùnwə̀njò | ù $=$ nù-ว̀n-ì-̀ | defend |
| òh ${ }^{\text {wínà }}$ | ò \neq hó-ín-à | melt (INTR) |

2.1.4.2 Vowel assimilation

Nen has a few instances of vowel assimilation between noun prefix and root. These occur predominantly when the root is vowel initial and the prefix has a non-high vowel. When the root has an initial high front vowel, the root vowel assimilates to the low prefix vowel (Example 25(a)). When the vowel-initial root has a round vowel, the prefix vowel assimilates to the root vowel (Example 25(b)).

Example 25: Nen vowel assimilation

surface form	underlying form	gloss
màápì	màfípì	c6.termite hills
màzs ${ }^{\text {a }}$	mò\#ísò	c6.eyes
mùùmó	màfùmó	c6.baobabs
mờòjí	mà $=$ c̀jí	c6.beehives
mòòní	màłòní	c6.markets
mò́pò	mà $=$ ¢́pò	c6.nests

2.1.4.3 Hiatus retention

Identical vowels in juxtaposition are permitted. This is particularly evident between the noun-class prefix and the noun root. Where the vowels are either underlyingly identical or have identical surface realisations due to a vowel-harmony process, both vowels are retained, see Example 26 below.

Example 26: surface Form	root hiatus retention underlying Form	gloss
mììlì	mì̇filì	c4.months
nî́ṡ̀	nì=ísı̀	c5.eye
mò̀̀vò	mò̇ \ddagger ùkò	c3.stone
mìipí	mì̇łı̀pí	c4.termites
mòs̀sí	màfòsí	c6.days
mòónì	màfónì	c6.voices

2.1.5 Tone

Nen has a two-tone system underlyingly, high and low. Downstepped highs occur after an unrealised low tone before a high (Mous 2003: 286). In addition, Nen has high-tone spreading where a high tone will spread and replace the low tone of the following syllable. A high tone only spreads once and will not replace a low caused by the assimilation of two low-toned vowels (Mous 2003: 287). Rising and falling tones are found where there is juxtaposition of two or more dissimilar tones, usually where two vowels are juxtaposed across morpheme boundaries. As mentioned above in section 2.1.2.2, utterance-final loss of contrast in the tone melody and utterancefinal vowel reduction are interdependent. The vowel reduction may also occur when the word in question is followed by a vowel-initial word. In these cases, where the final vowel of a LH noun root precedes a vowel-initial word, the vowel does not elide and the high tone is realised on the following vowel. The low tone of an elided vowel disappears and is not realised on the following vowel nor does it induce downstep (Mous 2003: 286-7; Janssens 1988: 84).

2.1.5.1 Tone melodies on nouns

High and low tone contrast in monomorphemic noun roots. Four tone melodies are attested in CVCV noun roots, see Example 27 below. Noun prefixes usually have a low tone, although there are a few exceptions.

Example 27:	Nen nominal tone melodies	
ì \neq sàsà	$\neq \mathrm{L} . \mathrm{L}$	chest
$\mathrm{i} \neq$ pàsá	$\neq \mathrm{L} . \mathrm{H}$	salt
$\mathrm{i} \neq$ tákà	$\neq \mathrm{H} . \mathrm{L}$	scaffolding
$\mathrm{i} \neq$ sáká	$\neq \mathrm{H} . \mathrm{H}$	palaver

2.1.5.2 Tone melodies on verbs

Nen verb roots most commonly have a CVC structure, although there are some VC and CV roots as well. The CODELATU (comité de langue Tunen) database to which I have access lists all verbs with an extra-radical final vowel /-a/ which varies according to vowel harmony. This differs from Mous' analysis of an epenthetic vowel. The loss of the final vowel in Nen is considered to be a historical process (Mous 2003: 292).

According to Mous (2003: 291-3), Nen verb roots lexically have either a high or a low tone; there is a third class which has a floating high tone underlyingly. As with nouns, there is reduction of tone in utterance-final position. Nen verbs may have one of two tone "shapes" depending on the tense. These are the basic and a high-tone shape which is mostly found in negative tenses, the hodiernal past and the optative. The high-tone shape originates from an inflectional final high tone which attaches to the last vowel which is not part of the root. These grammatical functions of tone,
however, are beyond the scope of this study. The verbal tone patterns found in the CODELATU database are as in Example 28 below.

Example 28: Nen verbal tone melodies

L	ù \neq fàf-à ò \neq fàf-ìt-à	apply oil
H	$\begin{aligned} & \text { ̀̀ } \neq \text { pát-à } \\ & \grave{v} \neq \text { pát-íl-à } \end{aligned}$	gather, pick up
LHL	ù \neq wǎ:l-à ù \neq wǎ:l-ìl-à	babble (baby)

2.2 Maande phonological overview

This study is based on Nuceku, the reference dialect. It is based on personal research as well as previous research of several linguists and an unpublished wordlist ${ }^{45}$.

2.2.1 Consonants

This section discusses the consonant inventory of Maande (section 2.2.1.1), the allomorphic variation of $/ \mathrm{n} /$ (section 2.2.1.2) and consonant distribution restrictions (section 2.2.1.3).

2.2.1.1 Consonant inventory

The consonant system of Maande consists of 18 contrastive consonants, as is shown in Table 8.

Table 8: Maande contrastive consonants

		labial	alveolar	palatal	velar
stops		$\mathrm{p} / \mathrm{b}^{46}$	t	t 5	k
prenasalised		mb	${ }^{\text {n }}$ d	${ }^{\text {n }}$ d3	${ }^{\text {ng }}$
fricatives		f	s		h
resonants	nasal	m	n	n	1
	oral	(w)	1	j	

[^24]Scruggs (1983a: 6, 68-9) only identifies 13 contrastive consonants, considering "NC" combinations as clusters rather than prenasalised consonants. She comes to this conclusion by noting that in many of the neighbouring languages, there is a clear morpheme boundary between nasal and consonant, which does give preference to a $\mathrm{N}+\mathrm{C}$ interpretation. However, Scruggs also notes that there are no non-suspect CC sequences within a syllable. Scruggs eventually decides in favour of N+C sequences (1983a: 69). While there are noun-class prefixes in various Mbam languages which have a N - or VN - structure causing $\mathrm{N} \neq \mathrm{C}$ combinations across morpheme boundaries, various noun classes, including 6, 11, 13, 14 and 19 illustrated below (see Example 29), never have a nasal in the prefix. In addition, according to Scruggs (1983a: 74; 1983b: 16), noun-class prefixes in Maande have either V- or CV- shape. No VNprefixes occur. Such being the case, these "NC" combinations are morpheme- and syllable-internal. Therefore, only two possibilities remain: a NC sequence within the syllable (as Scruggs analyses them) or a prenasalised consonant. Since there are no unambiguous CC sequences in Maande, and unambiguous prenasalised consonants do occur in other Mbam languages, the latter interpretation is preferred in this study. Another motivation for the latter interpretation is for the sake of uniformity in these sketches since the languages do not differ significantly in this area and the choice of analysis is on grounds that are not language-specific. In addition, prenasalised consonants are not more restricted in their distribution than other consonants.

Example 29: Maande prenasalised stops in root-initial position

$\begin{aligned} & \text { hì }=\text { mbòkí } \\ & \text { nù }=\text { mbàtí } \end{aligned}$	tù mbòkí $^{\text {m }}$ tù mb $^{\text {b }}$ tí	c19/13.large terracotta pot c11/13.earth worm
hì ${ }^{\text {n }}$ dày ${ }^{\text {a }}$	tù ${ }^{\text {n }}$ dà ${ }^{\text {a }}$ á	c19/13.calabash for drinking wine
bù $⿻^{\text {n }}$ dìwá	mò ${ }^{\text {n }}$ dìwá	c14/6.bush used to mark territory
nờ ${ }^{\text {¹ gáhó }}$	tờ ${ }^{\text { }}$ gáhó	c11/13.smell of good food cooking
hì $⿻^{\text {¹ }}$ gífílí	tù $\mathcal{F}^{\text {² }}$ gífílí	c19/13.riddle

2.2.1.2 Morphological variation of $/ \mathbf{n} /$

The Maande high vowels, /i/ and /I/ in the causative suffixes -i and -is-i and in the neuter suffix -I will cause anticipatory palatalisation of alveolar nasals $/ \mathrm{n} /$ to $/ \mathrm{n} /$ (right-to-left). The causative suffixes occurring at the right edge of the verb word will trigger the palatalisation for several alveolar nasals in the verb word. In Example 30(a), pairs of verbs show verbal suffixes -on (-an) continuous suffix and -m applicative suffix becoming -on and -in (bolded below) after the causative suffixes (underlined). Example 30(b) shows how multiple suffixes with /n/ may be palatalised by the causative suffix -i.

Example 30: Palatalisation of $/ \mathbf{n} /$ in Maande causative constructions
(a) $\mathrm{o} \neq \mathrm{ból}$-ót-ón-o become red $\mathrm{o} \neq \mathrm{ból} \mathrm{l}$-ót-ón-ís-i make red j̀ \neq hòl-ìn-à pass by ò \neq hùl-ìn-ì \quad transmit, cause to pass
(b) ò \neq sìm-ìn-ìn-ə̀
j̀ \neq làt-ìn-ìn-à
enclose
ò \neq tón-ín-ínn-ị
add, enlarge
show
The neuter suffix -I, unlike the causatives, occurs either in the first or second suffix slot after the root (see Example 31(b) below). In this position, there are never multiple targets for palatalisation. Non-high vowels will block the spread of palatalisation (see Example 31(c) below). In Example 31(a), the alveolar nasal of the verb root \neq san disperse, (bolded below) is palatalised by the neuter suffix -I (underlined).

Example 31: Palatalisation of /n/ with the Maande neuter suffix -I

(a)	ò\# sán-à disperse	ò $=$ sáj-ì-	escape, flee, scatter oneself
(b)	ò $=\mathrm{t}$ ¢ik-ill-ìl-ə̀n-̇̀		arrange, classify
	ò \ddagger hàt-ì̀-àk-ìn-à		catch, stop as a group
(c)	̀̀キbón-ós-ì-à		punish

Other suffixes and extensions with high vowels /i/ or /I/ do not cause palatalisation. In Example 32, the applicative suffix -m (bolded) does not palatalise /n/. ${ }^{47}$

Example 32: Non-palatalisation after applicative suffix -m/-in

ò $\neq 1$ lán-̀̀	love, desire	ò-bíflón-ín-̀̀	rejoice in, take pleasure in
̀̀ t fân-à	split	ò $\neq \mathrm{t}$ fân-ìn-à	split (appl.)

2.2.1.3 Restrictions in consonant distribution

Maande has only open syllables. Consonant-glide sequences, especially when they occur at morpheme boundaries, are formed by the desyllabification of a high vowel. The consonant /w/ is very rare. Scruggs (1983a: 9-13) considers that [w] is usually either a phonetic off-glide of a round vowel or a desyllabified $/ \mathrm{u} /$ in most cases, however there are a few cases where neither of these two analyses fit. The predictable occurrences of [w] will be discussed in further detail in section 2.2.4 below.

[^25]
2.2.2 Vowels

This section discusses the vowel inventory of Maande (section 2.2.2.1), long vowels (section 2.2.2.2), utterance-final devoicing (section 2.2.2.3), and vowel cooccurrences and co-occurrence restrictions (section 2.2.2.4).

2.2.2.1 Vowel inventory

Maande has an inventory of eight contrastive vowels. A complex system of vowel harmony regulates the co-occurrences and co-occurrence restrictions of the vowels. The vowels can be divided into two sets which are mutually exclusive within roots and stems:

Table 9: Maande contrastive vowels

I^{48}	[-ATR]			[+ATR]
	0	i		u
	0			

In the verb system as well, all eight contrastive vowels are attested in the verb root. While the distinction between $/ 0 /$ and $/ v /$ is slight, this distinction is emphasised by rounding harmony. Rounding harmony is triggered by an open (non-high) round vowel and targets the final vowel $/-\mathrm{a} /$. High round vowels, $/ \mathrm{u} /$ and $/ \mathrm{v} /$ do not trigger rounding harmony. In the Maande verb system, the root vowel generally determines the changes in the final vowel according to ATR and/or rounding harmony, as shown in Example 4 below.

Exampl		ive vow	in M	CVC ve	
rt vowel	AT	round	FV	example	gloss
i	x	---	-ə	ò\#tím-ə̀	dig
I	---	---	-a	̀̀ $=$ hìk-à	be beautiful, good
ə	X	---	-ə	ò $\neq 1$ l̀k-̇̀	prohibit, impede
a	---	---	-a	̀̀ \neq kát-à	pick (fruit)
0	---	x	-	ò $\neq \mathrm{b}$ ¢́k-̀̀	create, conceive
o	x	x	-0	ò \ddagger bók-ò	cry, scream
U	---	---	-a	ò \ddagger tớk-à	draw (water)
u	x	---	-ə	ò $=$ túk-̇̀	feed, nourish

In the noun system, all eight contrastive vowels are found in monomorphemic $\mathrm{CV}_{1} \mathrm{CV}_{1}$ roots, as in Example 34 below.

[^26]| Example 34: Permitted vowels in Maande $\mathrm{CV}_{1} \mathbf{C V} \mathbf{V}_{1}$ noun roots | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i | $\begin{aligned} & \mathrm{o} \neq \mathrm{híl} \mathrm{l}_{1} \\ & \text { ̀̀ } \neq \mathrm{t} 1 \mathrm{l} \end{aligned}$ | black monkey sp. pigeons sp. | u | ì \neq nd ${ }^{\text {dúpú }}$
 bù $=1$ lúnú | hippopotamus abundance |
| I | $\begin{aligned} & \text { nò } \neq \text { bímbì } \\ & \text { à } \neq \mathrm{kì̀̀̀} \end{aligned}$ | tongue hill | U | $\begin{aligned} & \text { à } \neq \mathrm{ból}{ }^{\prime \prime}{ }^{49} \\ & \text { à } f \text { fókù } \end{aligned}$ | mushroom sp. trad. manacle |
| ə | mà $=$ sàk
 mù $\neq j$ j̀̀k | sleeping sickness hot pepper $s p$. | o | ò \neq tókó
 nù $=$ bókó | calf (of leg)
 squirrel $s p$. |
| a | à $=$ tà ${ }^{n}$ dá bò \neq sàkà | grasshopper moustache | 0 | nว̀ $\neq \mathrm{b}$ b́b́
 ̀̀ $\neq \mathrm{f}$ ว̀k̀̀ | rain
 gnat |

2.2.2.2 Long vowels

Long vowels are contrastive and occur in either the first syllable of the noun root or in the verb root, as illustrated in Example 35.

Example 35:	orphemic long v	s in nou	b roots
noun	gloss	verb	gloss
i: nì\#hì:tò	part, turn	ò \neq hî:t-ə̀	take
I: $\grave{\text { a }}$ mî:ndí	limit, boundary	ò $\neq \mathrm{hì}$:s-á	pray, see
ə: mù $=\mathrm{j}$ ¢̌:	gorilla	ò \neq pó:t-ì	respect, cause to rise
a: nòł \ddagger â:tí	courtyard, outside	ò \neq pá:t-à	climb, rise
o: ò \ddagger sǒ:só	fish sp.	ò \neq hó:n-ò	make smooth
	yam	̀̀ \neq pò:t-ıे	bump, knock
v:	---	òキkù:n-à	say
u: ò \ddagger kǔ:kà	notable	ò \neq sù:n-ə̀	fart

However, there are instances of long vowels that are not contrastive but predictable. These include bimorphemic VV sequences due to the juxtaposition of identical vowels across a morpheme boundary and therefore are not underlying long vowels. Usually these bimorphemic long vowels occur between a noun-class prefix and a VCV root. See Example 36 below:

[^27]

2.2.2.3 Vowel devoicing/elision

In Maande CVCV noun roots, the V_{2} is susceptible to devoicing. The presence of these devoiced vowels is noticeable by aspiration for [-rd] vowels and lip rounding for [+rd] vowels. Some examples taken from Scruggs (1983a: 18-19) are listed below in Example 37. Devoiced V_{2} vowels respect vowel-harmony processes.

Example 37: Indication of devoiced vowels (Scruggs 1983a: 18-19).
Underlying form surface form gloss
hì $=$ sàm $^{\text {bà }}{ }^{51}$ hèsàm ${ }^{\text {b }}{ }^{\text {h }}$ bush rat
hì \neq sámbú hésámb ${ }^{w}$ partridge
nìキhásà jèhhás (nèhásà) ${ }^{52}$ twin
nì $\neq h a ́ s u ́ ~$
nèhás ${ }^{\text {w }}$
twin
nì \neq hàtí
nèhàt ${ }^{533}$
fruit $s p$.
hì \neq ndzàt́
$h \grave{\varepsilon}^{n}$ dzàt ${ }^{h}$
malice
small basket
With the devoicing of V_{2}, there is also some loss of contrast in the tone melody, as shown below. Table 6 shows the tone and final-vowel reduction in disyllabic noun roots. Noun-root melody Cv́Cv̀ does not permit the elision of the final vowel.

Table 10: Tone and final vowel reduction in Maande CVCV noun roots
\neq Cv́Cv́ $\quad \rightarrow \quad \neq$ Cv́C
$\neq \mathrm{Cv́Cv̀} \quad \rightarrow \quad \neq \mathrm{Cv́C} \mathbf{v}$
\neq Cv̀Cv́ $\quad \rightarrow \quad \neq \mathrm{vic}$

2.2.2.4 Vowel co-occurrences

Several factors govern the co-occurrences of vowels in CVCV nouns. These factors include 1) ATR-harmony restrictions and 2) restrictions on V_{2}, depending on the

[^28]features of V_{1}. Each of these vowel co-occurrence restrictions will be discussed in turn (sections 2.2.2.4.1 and 2.2.2.4.2) below.

2.2.2.4.1 ATR-harmony restrictions

ATR harmony requires that both vowels in the noun root agree in tongue-root position. The [-ATR] vowels never occur in the same root with [+ATR] vowels. The vowel/a/ is always [-ATR] and never found in a [+ATR] environment. In Example 38 below, all ATR vowel co-occurrences in CVCV noun roots are shown.

Example 38: ATR vowel co-occurrences in Maande CVCV noun roots [-ATR] vowels [+ATR] vowels					
I-I	à \neq sìlì	fly sp.	i-i	ò $\neq \mathrm{t}$ fílì	termite sp.
I-a	à \neq bíhà	net	i-ə	ə̀ \neq kìt̀̀	ram
I-U	---	---	i-u	---	---
a-I	hì \neq yàlí	striped rat	--i	hì $=$ Sátì	duiker
a-a	à \neq sáká	mushroom sp.	ə-ə	ì $=$ y ¢́nə́	infant
a-v	à $=$ pàkú	agama lizard	-u	ə̀ \neq bákù	wing
U-I	mà \ddagger nómì	sperm	u-i	hì \neq kútí	mosquito
ט-a	ì $=$ mùt \int á	gizzard	u-ə	̀̀ \ddagger húnı̀	wind
ט-ঠ	à=lónó	cadaver, body	u-u	ì ${ }^{\text {n }}$ d 3 úbú	hippopotamus
--I	ì \boldsymbol{z} kj̀kí	hen, chicken	o-i	nùfkòlí	vine, cord
--a	---	---	--ə	---	---
--	nù $=$ bólò	rain	0-0	hìłtókó	calf (leg)

2.2.2.4.2 Other V_{2} co-occurrence restrictions

When V_{1} in $\mathrm{CV}_{1} \mathrm{CV}_{2}$ nouns is a front high vowel, V_{2} may either be a high or an open (non-high) vowel. When V_{1} is a non-high, non-back vowel, V_{2} may be either a high, round or open (non-high) vowel. When V_{1} is a non-high (open) round vowel, V_{2} may be either a high vowel or an identical round vowel. The high round vowel $/ \mathrm{u} /$ patterns like the non-high vowels with a high, open (non-high) or identical round vowel in V_{2} position, while / $\sigma /$ has the most restricted co-occurrence pattern only allowing an open vowel in V_{2} position. Which high, round or open vowel occurs in V_{2} position depends on the ATR value of V_{1}. The high V_{2} is $/ \mathrm{I} /$ (which has a surface representation [ε]) in [-ATR] noun roots or $/ \mathrm{i} /$ in [+ATR] noun roots. The round V_{2} is generally either $/ \delta /$ in [-ATR] noun roots or [u] in [+ATR] roots, with certain exceptions. The open vowel is either $/ \mathrm{a} /$ in [-ATR] roots or $/ 2 /$ in [+ATR] roots, see Example 39 below.

Example 39: Value of $\mathbf{V}_{\mathbf{2}}$	in Maande CVCV noun roots	
\mathbf{V}_{2} in CVCV noun roots	[-ATR]	[+ATR]
High	I	i
Round	v or ρ	u or o
Open	a	∂

Table 11 summarises the possible CVCV noun-root combinations permitted in Maande.

Table 11: Surface $\mathbf{C V}_{1} \mathbf{C V} V_{2}$ combinations permitted in Maande

$\mathrm{V}_{1} \mathrm{~V}_{2}$	high	round	open
/i/	i-i	---	i-ə
/I/	I-I	---	I-a
/u/	u-i	u-u	u-ə
/ $/$	U-I	U-ర	U-a
/o/	O-i	O-O	--- ${ }^{54}$
/0/	0-I	--0	--- ${ }^{55}$
/a/	a-I	a-ひ	a-a
/2/	ว-i	--u	--ə

2.2.3 Vowel-harmony processes

Maande has a complex system of vowel harmony consisting of two interacting types of harmony: ATR and rounding harmony. Both types of vowel harmony cross morpheme boundaries and are found within the phonological word.

2.2.3.1 Pre-stem elements

Both nominal and verbal pre-stem elements undergo vowel harmony in Maande. These are ATR harmony and rounding harmony which will be discussed in turn below.

2.2.3.1.1 ATR harmony in pre-stem elements

Maande has a system of fifteen noun classes that combine into the following doubleclass genders: $1 / 2,3 / 4,5 / 6 a, 7 / 8,9 / 10,11 / 13,14 / 6,19 / 13$. Some minor double-class genders are also found: 3/6, 9/8, 9/6, 14/8 (Scruggs 1983b) and 5/10.

[^29]| class | prefixes | | class | prefixes |
| :---: | :---: | :---: | :---: | :---: |
| 1 | mo-/mu- | | 2 | ba- / bo- |
| 1a | 0 - / o- | | | |
| 3 | $0-10-$ | | 4 | I- / i- |
| 5 | nI- / ni- | $\stackrel{ }{ }$ | 6a | a- / -- |
| 7 | a- / -- | | 8 | bI- / bi- |
| 9 | I- / i- | $\xrightarrow{-}$ | 10 | I- / i- |
| 9a | $\mathrm{t} \mathrm{I}_{\mathrm{I}} / \mathrm{t}$ ¢ $\mathrm{i}-$ | - | 10a | $\mathrm{t} \mathrm{I}_{\mathrm{I}} / / \mathrm{t} \int \mathrm{i}-$ |
| 11 | no- / nu- | $\xrightarrow{\text { P- }}$ | 13 | to- / tu- |
| 14 | po- / pu- | $\xrightarrow{\sim}$ | 6 | ma- / mo- |
| 19 | hI- / hi- | - | | |

All noun-class prefixes may undergo ATR harmony, as shown in Example 40. The vowel of the prefix will become a glide before vowel-initial noun roots.

Example 40: ATR harmony of Maande noun-class prefixes class

noun-class prefix

mo-

0-

2
2
ba-

0-

I-

example noun-class prefixes	
mòftánà	gloss
mùfkólísì	spokesman
ò \neq bólà	judge
ò \neq húhà	girl
	co-wife

bà f tánà
bà \neq kálísì
bà \neq bólà
bà \neq húhà
spokesmen
judges
girls
co-wives
$\begin{array}{ll}\text { ̀̀ }=\text { témá } & \text { heart } \\ \text { ò } \neq \text { mòhú } & \text { flesh }\end{array}$

$\mathrm{o} \neq \mathrm{m}$ m̀nu	flesh
ì \neq témá	hearts

ì $=$ màhú flesh (pl)

5
ni-
nì \neq ndání \quad stone
nì \neq kòkú beard

6 ma

6a

class	noun-class prefix	example	gloss
7	a-	à $=\mathrm{bàk}$ ú ə̀ \neq bókù	agama lizard wing
8	bı-	bì \ddagger bàkú bì \ddagger bókù	agama lizards wings
9/10	I- tfi-	ì \neq nàmà ì \ddagger tfòkù t \mathfrak{x} ī \neq ánà t \mathfrak{i} ì $\mathfrak{i k}$ ź	animal(s) elephant(s) guinea fowl(s) porcupine(s)
11	no-	nò \ddagger bímbì m nù $=$ bókó	tongue, language bush squirrel
13	to-	tò $\neq \mathrm{b}$ ímbì $^{\text {b }}$ tù $=$ bókó tờ \neq sà ${ }^{\text {m }}$ bà tù $\neq b u ́ b$ á	tongues, languages bush squirrels bush rats pigeons
14	bu-	bò \neq yànà bùキhúnì	song word, speech
19	hi-	hì $=$ sàmbà hì¥búbá	bush rat pigeon

Maande verbs have only two prefixes, which obligatorily harmonise with a [+ATR] vowel in the verb root: infinitives have an $/ 0-/$ (class 3) prefix and the reflexive prefix /bí-/. As with the noun-class prefixes, /bí-/ undergoes ATR harmony, see Example 41.

Example 41: ATR harmony in Maande verb prefixes

0-	ò $=$ kìt-̀̀	strike, tap
	̀̀ \ddagger kìl-à	do
	ò \ddagger kók-̇̀	respect (v), be surprised
	$\grave{\text { j }} \neq$ kát-à	pick (fruit)
		hoe (v)
	ò \ddagger bók-ò	shout
	j̀ \ddagger sòl-à	absorb
	ò $\neq k u ́ s$-ə̀	scratch, scrape

bí-	ò-bíftís-ò	touch
	ò-bí 1 kíl-à	become, realise
	ò-bíflı́n-ə̀	rejoice
	ò-bíłfám-à	blow one's nose
	ò-bífój-ò	warm oneself
	j̀-bífhô:k-̀े	save oneself, escape
	j̀-bífkô:n-à	be prideful, arrogant
	ò-bífkút-ə̀	shave oneself

Maande numeral concord prefixes are invariably [-ATR] and will undergo ATR harmony when the numeral root is [+ATR].

Example 42: Maande numeral concord prefixes			
1	う̀-		one person
2	pá-	bà $=$ át ${ }^{\text {a }}$ b báffò ${ }^{\text {ndí }}$	two people
		bà $=$ át \int ò bá táatú	three people
3	ó-	ò \ddagger tćmá $\mathfrak{\text { ó }}$ mòtí	one heart
4	Í-	ì \ddagger tćmá 1 ífò̀̀ ${ }^{\text {dí }}$	two hearts
		ì \ddagger témá íftátó	three hearts
5	ní-	nì ${ }^{\text {n }}$ dání ${ }^{\text {níf }}=$ mòtí	one stone
6a	á-	à $⿻^{\text {n }}$ dání ${ }^{\text {á }} \mathrm{f}$ ¢ ${ }^{\text {n }}$ dí	two stones
		à $\chi^{\text {n }}$ dání ${ }^{\text {á} \neq \text { tátú }}$	three stones
7	á-	à \neq mìnà ${ }^{\text {ó }}$ m mòtí	one neck
8	pí-	bì \neq mìnà bíffò̀ ${ }^{\text {din }}$	two necks
		bì $=$ mìnà bíftátú	three necks
9	ì-	ì \ddagger nàmà i ímòtí	one animal
10	Í-	ì \ddagger nàmà íffò̀ ${ }^{\text {dí }}$	two animals
		ì \ddagger nàmà í 1 tátú	three animals
11	nó-	nờ $\mathrm{b}^{\text {mimbì }}$ nó \neq mòtí	one tongue
13	tó-	từ \ddagger bímbì tú $\neq \mathrm{f}{ }^{\text {n }}$ dí	two tongues
		tò $\neq \mathrm{bím}^{\text {mbì }}$ tớ tátớ	three tongues
14	bú-	bờ \ddagger ànà búfmòtí	one song
6	má-	mà \ddagger yànà má \ddagger fòndí	two songs
		mà \neq yànà má \ddagger tátớ	three songs
19	hí-	hì \neq sàmbà hí $=$ mòtí	one savannah rat

Maande verbal pre-stem elements generally undergo ATR harmony. In rapid speech, the subject concord and tense markers may assimilate to a dominant [+ATR] vowel in the verb root, depending on the speaker, if no other word interferes. In a similar way to Nen, with the exception that it is not optional in Maande, the preverbal clitics harmonise with the ATR value of the word to the right (Bancel 1999: 7-8). Therefore, if an object pronoun or adverb intervenes, the elements to the left will harmonise with it. Taylor (1990: 11) gives some examples of this as illustrated in

Example 43^{56} below. The shaded boxes show the extent of ATR harmony from the bolded [+ATR] trigger vowel.

Example 43: ATR harmony of preverbal elements (Taylor 1990: 11)

$\begin{aligned} & \text { tù } \\ & 1 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { tì } \\ & \text { neg } \end{aligned}$	$\begin{aligned} & \text { yó } \\ & \text { T/A } \end{aligned}$		$\begin{aligned} & \text { àsù } \\ & 1 \mathrm{p} \end{aligned}$		líkímə̀ be.afraid	we are not afraid
$\begin{aligned} & \text { tò } \\ & 1 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { tì } \\ & \text { neg } \end{aligned}$	$\begin{aligned} & \text { yá } \\ & \text { T/A } \end{aligned}$	hánà again	$\begin{aligned} & \text { àsù } \\ & 1 \mathrm{p} \end{aligned}$		líkímà be.afraid	we are not afraid again
$\begin{aligned} & \text { tò̀ } \\ & 1 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { tì } \\ & \text { neg } \end{aligned}$	$\begin{aligned} & \text { yá } \\ & \text { T/A } \end{aligned}$		$\begin{aligned} & \text { àsò } \\ & 1 \mathrm{p} \end{aligned}$		lókúmà understand	we do not understand
$\begin{aligned} & \text { tù } \\ & 1 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { tì } \\ & \text { neg } \end{aligned}$	$\begin{aligned} & \text { yó } \\ & \text { T/A } \end{aligned}$	tónì quickly	$\begin{aligned} & \text { àsò } \\ & 1 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { bànó } \\ & \text { 2p.IO } \end{aligned}$	bílít Iínìnì notice	we did not quickly notice you

2.2.3.1.2 Rounding harmony in pre-stem elements

Rounding harmony targets /a/ and is triggered by the non-high (open) round vowels $/ \rho /$ and $/ \mathrm{o} /$. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{v} /$ never trigger rounding harmony. Only noun-class prefixes with an underlying/a/ undergo rounding harmony, see Example 44 below.

Example 44: Rounding harmony of /a/ in Maande noun-class prefixes
class noun-class prefix examples gloss

2
ba-
bò $=$ só:ḱs others (other people)
bò \neq nónó daughters-in-law
bà fbúlà girls
bòキhúhò co-wives
6 ma
mò \neq nòỳ̀ countries, villages
mòftòlì safou plum trees
mà f sòlà soup, sauce
mò \neq lùkù drink gen. (except water)

[^30]| class | noun-class prefix | examples | gloss |
| :---: | :---: | :---: | :---: |
| 6a | a- | ò \ddagger kònó | spears |
| | | ò \ddagger fò ${ }^{\text {n }}$ dí | termite sp. mound |
| | | à ¢kúbà | furrow, groove |
| | | ว̀f sùs̀̀ | ant hives |
| 7 | a- | | lump, hump |
| | | ò \ddagger fòkó | valley, hollow |
| | | à \ddagger fǒk ${ }^{\text {à }}$ | tuft (of grass, etc) |
| | | ə̀ \ddagger fûk | pike, stake |

Any verbal pre-stem elements with /a/ may undergo rounding harmony as well as ATR harmony in the environment of the non-high (open) round vowels $/ \mathrm{s} /$ and $/ \mathrm{o} /$. As in other contexts, the high round vowels (/v/ and $/ \mathrm{u} /$) do not trigger rounding harmony. Rounding harmony may be either triggered by the verb-root vowel or by the 2 s subject concord clitic and is bidirectional. In Example 45, the vowel which triggers the harmony is underlined and the vowels which undergo rounding are bolded.

Example 45: Rounding ঠ̀- $\boldsymbol{\eta} \mathbf{z} \neq \mathrm{b} \underline{\underline{\prime} k} \mathrm{k}$ - c1-Pr \neq create-FV	de preverbal elements s/he creates
 c2-P1 \neq create-INTENS-FV	they created
bó-ŋǒ \ddagger bò̀k-ò c2-Pr-scream-FV	they scream
ú-ŋò $\neq b \underline{o} k-i ̀ t-\grave{̀}$ c1-P1 $=$ scream-DIM-FV	s/he screamed
ঠ̀-yăftú́k-à c1-Pr \neq draw-FV	s/he draws (water)
ù-yǎ=túk-ə̀ c1-Pr \neq nourish-FV	s/he nourishes (child)
ò- - ŋǒ \neq túk- 2s-Pr \neq nourish-FV	you nourish (child)
$\begin{aligned} & \frac{\grave{j}-\boldsymbol{\eta} \mathbf{y} \neq t \text { tók-à }}{2 \mathrm{~s}-\operatorname{Pr} \neq \text { draw-FV }} \end{aligned}$	you draw (water)

2.2.3.2 Vowel harmony in suffixes

Most verb and deverbal-noun suffixes undergo vowel harmony, but there is one that triggers ATR harmony. Discussed below are suffixes that undergo ATR harmony (section 2.2.3.2.1), the ATR dominant suffix -i (section 2.2.3.2.2) and rounding harmony in suffixes (section 2.2.3.2.3).

2.2.3.2.1 ATR harmony in suffixes

ATR harmony is triggered by a [+ATR] vowel, usually in the root, and spreads bidirectionally. All [-ATR] vowels in the phonological word change into their [+ATR] counterpart. A few examples are shown in Example 46 below:

Example 46: ATR harmony of Maande verbal suffixes

applicative	-In	 ò \neq fán-ín-ə̀	talk to someone mock, ridicule someone
reciprocal	-an	ò $\neq \mathrm{bán}$ d-án-à	join, unite
		ò $\neq 1$ lón-ón-ə̀	love each other
positional	-Im	ò \ddagger tál-ím-ín-à	stand, stand up
		ò \neq kùt-ìm-ìn-̇े	bend down, stoop
separative	-on	ò-bíキlán-òn-à	undress
		òft ffùk-ùn-z̀	uproot
intensive	-ak	̀̀ \ddagger táy-ák-à	talk often/a lot
		ò-bíキkút-ə̀k-̇̀	shave oneself often/a lot

Some deverbal nouns are formed by adding the applicative suffix and a noun-class prefix to the verb root. These suffixes also undergo ATR harmony, see Example 47.

Example 47: Maande deverbal nouns with applicative suffix

	play (game)	à \neq f \int àk-òn-ín-á	toy, game
ò \neq bàl-àk-à	urinate	à $=$ bál-ák-ín-á	bladder
ò \neq súb-ò	thresh, beat	nì=súb-ín-̇̀	threshing floor
ò \ddagger fúm-ə̀	blow	bù \ddagger fúm-ín-ə́	fan
ò \ddagger bíán-ว̀	give birth	̀̀ \neq bíán-ín-ว̀	placenta

Other deverbal nouns are formed simply by adding a noun-class prefix to a verb. Any verbal suffixes present will undergo ATR harmony, as seen in Example 48.

Example 48: Maande deverbal nouns

ò \neq bíón-ว̀	give birth	òm=bíán-ì	nephew, niece
ò $=$ bín-ว̀	dance (v)	mò \ddagger bín-ə̀	dance (n)
ò \ddagger táy-à	speak, talk	mò	spokesman
ò \neq nàmb-à	hide	nì \ddagger nà ${ }^{\text {mbeà }}$	hiding place
ò \ddagger táb-ón-à	repair, fabricate	mờtáb-ón-à	repairman

2.2.3.2.2 ATR-dominant suffixes.

The [+ATR] causative suffixes -i and -Vs[-...]-i, unlike the other verbal extensions and aspect suffixes, are dominant and trigger ATR harmony. The causative suffixes replace the final vowel, so while ATR harmony is generally bidirectional, it is less evident due to the replacement of the final vowel as seen in Example 49. The longer causative suffix -Vs[-...]-i may be separated by other suffixes especially the intensifier -Ik and the applicative -m.

Example 49: ATR Dominant suffix -i				
caus. -i	j̀ $\ddagger 1$ lòl-à	burn	ò \ddagger lùl-ì	cause to burn
	̀̀ \ddagger fı̀l-̀̀	borrow	ò \neq fòl-ì	cause to borrow
	j̀ $\ddagger \mathrm{k}$ ćt-à	$d r y ~(I N T R) ~$	ò \neq kút-ì	$d r y(T R)$
	̀̀ \ddagger kı̀t-̀̀	refuse, miss	ò $=$ kòt-ì	cause to miss
	j̀ $\neq \mathrm{t} \int$ İt \int-à	laugh	ò \neq fjít -ín-ì	cause to laugh
$\begin{aligned} & \text {-Vs- } \\ & \text { i } \end{aligned}$	$\grave{\mathrm{j}} \neq \mathrm{m}^{\mathrm{w}}$-á	drink	ò \neq mú-ús-ì	cause to drink
	$\grave{\mathrm{j}} \neq \mathrm{k}^{\mathrm{w}}$ - $\mathrm{a}^{\text {a }}$	fall	ò \ddagger kù-ùs-ì	cause to fall
			ò \neq kù-ùs-ìk-ì	cause to fall often
	ò \neq màn-à	finish	ò \neq mə̀n-ìs-ì	put to an end
			ò \neq mə̀n-ìs-ìk-ì	put to an end often
	$\grave{\mathrm{j}} \neq \mathrm{kín} \mathrm{~d}$-à	be courageous	ò $\neq \mathrm{kin}^{\text {n }}$ d-ís-ín-ì	encourage s.o.
			ò $\neq \mathrm{kin}^{\text {n }}$ d-ís-ík-ì	encourage often

2.2.3.2.3 Rounding harmony in suffixes

Most verb extensions and inflectional suffixes with the vowel/a/ may undergo rounding harmony as well as ATR harmony. Like ATR harmony, rounding harmony is bidirectional. Rounding harmony is triggered only by non-high (open) round vowels. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{J} /$ do not trigger rounding harmony. Rounding harmony may be blocked by a high vowel. A few examples are shown in Example 50 below:

Example 50: Rounding harmony of verbal suffixes			
final vowel	-a	̀̀ \ddagger kı̀t-ò	refuse
		ò \neq bók-ò	cry (v)
		ò \ddagger kút-à	dry (INTR)
		ò \ddagger kùt-ə̀	shave, style hair
intensive	-ak		pierce
		ò \neq nóy-ók-ò	fill up
		ò\#lò̀b-àk-à	uproot
		ò \neq búm-ók-̀̀	hunt
reciprocal	-an	̀̀ \ddagger hòn-òn-ゝे	quarrel
		ò \neq ból-ót-ón-ò	be red
		ò \neq mú-án-à	drink
		ò \ddagger fúúm-ón-̀̀	be clean

High vowels are opaque to rounding harmony. Where a suffix or extension with a high vowel, /u/, /v/, /i/ or /i/ occurs, the rounding harmony will be blocked, see Example 51. Not all possible forms were found in my data; the [+ATR] non-high (open) round vowel /o/ in particular is missing.

Example 51: Opacity of front vowels in rounding harmony

separ.	-on		$\begin{aligned} & \text { j̀ } \neq \mathrm{b} \text { ́n-ón-à } \\ & \text { j} \neq \mathrm{s} \text { ól-ón-à } \end{aligned}$	find, obtain extract
appl.	-In	$\begin{aligned} & \text { òw } \neq \text { ót-ók-ò } \\ & \text { òw } \mathrm{o} \mathrm{t}-\mathrm{o} \end{aligned}$	っw \ddagger ’́t-ók-ín-à òw \neq òt-ìn-ə̀	attach water, sprinkle
dim.	-It	$\begin{aligned} & \text { ò } \neq \text { lón-ò } \\ & \text { ófbók-ò } \end{aligned}$	$\begin{aligned} & \text { ò } \neq \text { lón-ít-à } \\ & \text { ò } \neq \text { bók-ít-à } \end{aligned}$	call, invite cry
pos.	-Im	----	ò \neq nól-ím-ín-à ò \neq nòn-ìm-ìn-ì	squat watch (a hole)

2.2.4 Hiatus-resolution processes

There are several hiatus-resolution processes found in Maande. These are glide formation in section 2.2.4.1, hiatus retention in section 2.2.4.2, semivowel insertion in section 2.2.4.3 and vowel assimilation in section 2.2.4.4.

2.2.4.1 Glide formation

Non-identical vowels in juxtaposition are not permitted. Where $\mathrm{V}_{1} \mathrm{~V}_{2}$ sequences occur, either within the morpheme or across morpheme boundaries, a high vowel in V_{1} position becomes a glide. Glide formation occurs principally between a high vowel in the noun-class prefix and a vowel-initial noun root. As seen in Example 52,
where the prefix vowel and the root vowel are identical，both are retained．These are discussed in further detail in Section 2．2．4．2 below．

Example 52：Prefix－root glide formation in Maande nouns

$\mathbf{V}_{1} \mathbf{V}_{2}$	surface from	underlying form	gloss
u－i	－－－	－－－	－－－
i－i	t ¢íbò	t i if	c9．house
O－I	－－－	－－－	－－－
I－I	t Sítò̀		c9．body
$0-\mathrm{a}$	nwăyí	nò̇ \ddagger ání	c11．leaf
I－a	tfăgà	t $\int 17 \neq$ ánà	c9．guinea fowl
u－ə	$\mathrm{b}^{\text {w}}$ ¢̀nù	bờキə̀nù	c14．yam field
i－ə	hiòt ${ }^{\text {át }}$ ¢＇	hì $=\grave{\text { àt }}$ ¢́tjó	c19．mushroom
U－0	nwòmó	nòfòmó	c11．river
I－O	hij̀f＇́	hì $=$ ¢̀f́́	c19．fish
u－o	$\mathrm{b}^{\text {wòhó }}$	bòfoòhó	c14．seed for sowing
i－o	tfǒyò	t $\int 1$ íóyò	c9．smoke
U－ひ	bò̀̀tí	bò̇キòtí	c14．tree
I－U	biòfà	bì \ddagger òfà	c8．fur
u－u	tùúní	tòfúní	c13．firewood
i－u	hiǔlí	hìłúlí	c19．ant

Glide formation also occurs between a CV verb root and the final vowel as is seen in Example 53．The low tone of the final vowel is delinked by the high tone of the verb root．

Example 53：Glide formation between CV verb roots and verb suffixes

	surface form	underlying form	gloss
va	òmwá	j̀ \ddagger mó－à	drink
	òmwákínà	ò \neq mó－ák－ín－à	consume（INTENS）wine
	òhwà	ò \ddagger hò－à	peel（v）
นว	òtw＇${ }^{\text {a }}$	ò $=$ tú－̇̀	sell
	òtwźnə̀	ò \neq tú－ón－ə̀	sell（APPL）
	òhẁ̀	ò \neq hù－̇̀	harvest（yam）
Ia	ı̀bià	j̀ \ddagger bì－à	dig up
	òjiá	ò \neq ní－à	eat
	j̀tfà	$\grave{\partial} \neq \mathrm{t} \mathrm{I}$ ìá	light（v），collect
	jtflǎkà	$\mathfrak{o} \neq \mathrm{t}$ ¢i－ák－à	light（v），collect（INTENS）

	surface form	underlying form	gloss
iə	òní	ò \neq ní-̀̀	rub
	òníókà	ò $\neq n i ́-\partial ́ k-\grave{~}$	rub (INTENS)
เ	э̀¢ ${ }^{\text {¢ }}$	ò \neq nì-̀̀	cultivate
	ว̀niònว̀	̀̀ $=$ nì-òn-ゝ̀	cultivate (APPL)

Glide formation also occurs within a verb or noun root. Scruggs (1983a: 32-33) considers these as diphthongs and states that the high vowel is "a full mora of length and [...] carr[ies] its own tone whereas \mathbf{w} is shorter and does not carry a tone." Differing from her analysis, and taking into consideration what is found in other Mbam languages, these are also to be considered glide formation as a hiatusresolution technique. With the desyllabification of the high vowel, its tone links to the V_{2}. The resulting SV sequence seems to retain two morae of length. Among nouns only, four diphthongs have been found in nominal monomorphemic contexts: /ча/, /иә/, /ıa/ and /iə/ as in Example 54 below.

Exva	le 54: Monom surface form	mic diphthongs in underlying form	de noun roots gloss
	$\grave{j}^{\text {mb}}{ }^{\text {waxhý }}$	$\grave{j} \neq \mathrm{m}$ bùání	arrowhead
	òmwàná	$\grave{j} \neq$ mòàná	sky
	ìswǎjí	ì $=$ sùájí	wine calabash
บข	ònw'	ò \neq nù ${ }^{\text {a }}$	orifice, hole
	bùswว̀	bù $=$ sù̀̀	whip
	ə̀bwว́mó	ว̀キ búám'́	fox
ıa	àciâ	à $=$ cíà	bird sp.
	bơờfià	bờfơfià	rodent's burrow
io	ə̀sióná	̀̀ $=$ síónó	field
	bùùniว̀	bù $=$ ùnì̀	liver

In Maande verbs, six possible diphthongs have been found in monomorphemic verb roots. In addition to /va/, /uә/, /ıa/ and /iz/ found also in nouns, /io/ and /io/ are found only in verbs as in Example 55.

2.2.4.2 Hiatus retention

Identical vowels in juxtaposition are permitted. This is particularly evident between the noun-class prefix and the noun root. Where the vowels are either underlyingly identical or have identical surface realisations due to a vowel-harmony process, both vowels are retained, see Example 52 above and Example 56 below.

Example 56: Maande prefix-root hiatus retention		
surface form	underlying form	gloss
tfî́ló	t $\mathfrak{1}$ ì \ddagger íló	c9.palm rat
niíṡ̀	nì $=$ ís ${ }^{\text {a }}$	c5.eye
màábá	mà \ddagger ábá	c6.shrubs sp (edible leaves)
nơớlà	nơ̇キólà	c11.granary
nùút i_{1}		c11.spring, stream

2.2.4.3 Semivowel insertion

There are predictable occurrences of [w] which occur especially between the verbinfinitive class 5 prefix, $\mathbf{0}-\mathbf{o}$ - and a vowel-initial verb stem. Unlike in other cases of hiatus resolution, the insertion of [w] occurs even between identical vowels, see Example 57.

Example 57: Semi-vowel insertion in Maande verbs		
surface form	underlying form	gloss
òwíndjus ${ }^{57}$	ò \neq índ $^{\text {d }}$ J-ì-̀̀	give, offer
j̀wínd ${ }^{\text {wà }}$	̀̀ $\ddagger I^{\prime} \mathrm{n}$ d3-ò-à	return, give back ${ }^{58}$
j̀wà ${ }^{\text {bà }}$	j$\ddagger \ddagger$ àmb-à	search
òwábà	ò \neq ə́b-ə̀	steal, rob
ว̀wónò	う̀ \ddagger ón-̀	kill
òwòmbò	ò \ddagger òmb-ò	scratch

2.2.4.4 Vowel assimilation

In $\mathrm{V}_{1} \neq \mathrm{V}_{2}$ juxtaposition across morpheme boundaries, where V_{1} is a non-high vowel and V_{2} is a high vowel, V_{2} assimilates completely to the features of V_{1}. The high vowels $/ \mathrm{i} /$, $/ \mathrm{I} /([\varepsilon]), / \mathrm{u} /$ and $/ \delta /$ in $\neq \mathrm{VCV}$ roots assimilate fully to the non-high vowel of the noun-class prefix. In Example 58 below, both the singular and plural forms are shown for both the surface and underlying forms. Where the root-initial vowel is non-high, it will not assimilate. $\mathbf{s} \neq \boldsymbol{\boldsymbol { v }}$ and $\mathbf{o} \neq \mathbf{u}$ combinations are not attested.

Example 58: Assimilation of a high $\mathbf{V}_{\mathbf{2}}$ to a non-high \mathbf{V}_{1} in Maande

	surface form		underlying form		gloss
$\mathrm{a} \neq \mathrm{I}$	ààtó	bìtớ	à $=$ itó	bì\#ìtó	c1/2.head
	bò̀otí	mààtí	bò̀ \ddagger ití	mà $=$ ití	c14/6.tree
$a \neq u$	bờơfià	mààfià	bò $=$ ơfià	màfớfià	c14/6.rodent burrow
$\partial \neq \mathrm{i}$	ə̀̀̀nı̀	bì̀ǹ̀	à \ddagger ı̀nı̀	bì\#ı̀̀ı̀	c1/2.tomb
$\partial \neq \mathrm{u}$	bùúsà	màásว̀	bù \ddagger ús	mò \ddagger ús ${ }^{59}$	c14/6.face
$\bigcirc \neq 1$	ว̀òsò	bì̀sò	ò \ddagger is ${ }^{\text {cos }}$	bì\#ìsò	c1/2.habit, behaviour
$\mathrm{o} \neq \mathrm{i}$	jì̀tó	òòtó	nì\#ìtó	ò i itó	c5/6a.navel
	òòtSó	ìtfó	ò $=1$ itfó	ì \ddagger itfó	c3/4.fire

Juxtaposed high vowels also assimilate. High front vowels /i/ and /i/ assimilate fully to the high round vowels $/ \mathrm{u} /$ and $/ \mathrm{v} /$ regardless of their location in the prefix or the root, as in Example 59.

[^31]| | surface | orm | underlying form | | gloss |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{u} \neq \mathrm{i}$ | tfî́bà | mə̀ə́bà | t $\int 1$ í \ddagger íb ${ }^{\text {a }}$ | mà $=$ íbà | c9/6a.house |
| | hî́bà | tùúbà | hìł=́bò | tò $=$ íbò | c19/13.house (dim), hut |
| $\mathrm{i} \neq \mathrm{u}$ | nùútó | ̀̀áṫ | nì \neq úto ${ }^{60}$ | à $=$ útó | c5/6a.mouth |
| | tfùúmó | màám | | mà $=$ ómə́ | c9/6.boa |
| $\nu \neq \mathrm{I}$ | bò̀̀té | mààté | bò \ddagger itif ${ }^{62}$ | mà $=$ ití | c14/6.tree |
| | hè̀̀tćté | tò̀tctété | hì \ddagger ititítí | tờ \ddagger ití-tí | c19/13.tree (dim) |
| $1 \neq 0$ | ţơớŋá | ţòóná | | t $\mathfrak{l i} \neq$ óná | c9/10.giraffe |

Noun-class 19 prefix $\mathbf{h I}^{\prime}$ - is an exception ${ }^{63}$ to this rule. Where it comes in juxtaposition with /u/ it patterns like a high vowel preceding a non-high vowel and disyllabifies as in Example 60. No examples have been found in the corpus with $\boldsymbol{\sigma}$ initial root and a class 19 prefix.

Example 60 surfa	19 ht	ix bef under	aande form	
hiǔní	tùúńí	hì $=$ úní	tù $=$ úní	
huǔlí	tùúlí	hìłúlí	tù $=$ úlí	

2.2.5 Tone

Maande has a two-tone system underlyingly, high and low. Contour tones do occur, predominantly falling tones caused by the elision of the V_{2} and the linking of the low tone to the previous TBU's high tone (Scruggs 1983a: 20, 66).

[^32]\mp@subsup{}{}{236
c1- P1= 1s.wash-APPL-FV cloth
She washed the clothes for me.

```
\(\begin{array}{lll}\text { è- } & \text { béè }=\text { tím-ín-é } & \text { gìbílá } \\ \text { c1- } & \mathrm{P} 1= & 1 \text { s.dig-APPL-FV } \\ \text { hole }\end{array}\)
S/he digged the hole for me.

\footnotetext{
\({ }^{236}\) The 1 sIO. marker is a homorganic nasal. The \(/ \mathrm{N} /+/ \mathrm{s} /\) is realised on the surface as \(\left.[\mathrm{t}]\right] . / \mathrm{N} /+/ \mathrm{d} /\) is realised on the surface as [ \(t\) ]. This phenomenon is more clearly explained in Robinson (1984: 44).
}
\begin{tabular}{ll|l} 
è- gèé \(=\) & dím-é & gìbílá \\
c1- FT1 \(=\) & dig-FV & hole \\
S/he will dig & a hole. &
\end{tabular}
```

à- bóò= ggl-\grave{-}
c1- P1= take-FV

```
s/he took
```

à- bóò= pòl-ò
c1- P1= pierced
*è- bóò= pòl-ò
s/he pierced

```

Although there is no obvious reason why the subject-concord prefix does not undergo rounding harmony, one possible reason is to ensure the differentiation between the \(\mathrm{c} 1(3 \mathrm{~s})\) subject concord and the 2 s concord, \(\mathbf{o}\)-.

\subsection*{3.3.4.2 Vowel harmony and phonological-word boundaries}

With the exception of post-lexical anticipatory spread such as found in Nen, no phonological word will assimilate to the vowel harmony of another phonological word. This is most clearly seen in Nen which, unique among the Mbam languages, has a SOV word order. The object noun or pronoun customarily occurs between the subject-concord/tense complex and the verb stem. The Nen subject-concord/tense complex is not its own phonological or grammatical word. It is a proclitic, which attaches to whatever host word is to its immediate right, whether that is the verb stem or an object noun or adverb. When the object noun (underlined in Example 328 below) is [+ATR], it generally triggers ATR harmony in the subject concord/tense proclitic to its left. Segments which are [+ATR] are bolded.

Example 328: ATR harmony in Nen pre-stem elements \({ }^{237}\)


Certain adverbs may also occur among the pre-stem morphemes of the verb unit. The subject-concord/tense proclitic will attach to the adverb to its right and if the adverb has a [+ATR]-dominant vowel, the proclitic may undergo vowel harmony. Example 329 illustrates the ATR-harmony assimilation of the subject-concord/tense

\footnotetext{
\({ }^{237}\) Bancel 1999: 8 (with my modifications of the phonetic transcriptions).
}
complex in the context of two adverbs, hútú quickly and mónó again. The [+ATR] morphemes are bolded and the adverbs are underlined.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Example 329: Modification of ATR harmony in Nen verb pre-stem \({ }^{238}\)} \\
\hline [mí- & yò= & mónó & \multicolumn{2}{|l|}{bín-ók-ə̀̀]} & \multirow[t]{2}{*}{I will again dance.} \\
\hline 1s & FT2 & again & dance & NTENS-FV & \\
\hline [mí- & yù= & \multicolumn{2}{|l|}{bíb-ə́k-ə̀} & tónà̀ & \(I\) will dance again. \\
\hline 1 s & FT2 & \multicolumn{2}{|l|}{dance-INTENS-FV} & again & \\
\hline [mì- & só= & hútú & ànóá & bóy-̇̀ ] & \multirow[t]{2}{*}{I did not quickly find you.} \\
\hline 1s & NEG & quicky & 2 sIO & find-FV & \\
\hline mì- & sá= & àyóá & bónó & tòfà \(]\) & \multirow[t]{2}{*}{I did not find you quickly.} \\
\hline 1 s & NEG & 2 sIO & find & quickly & \\
\hline
\end{tabular}

Unlike in Nen, ATR harmony spreads obligatorily throughout the preverbal morphemes in Maande. Although Maande does not have full object nouns occurring before the verb stem, it does have full object pronouns and adverbs that do. These object pronouns and adverbs are phonological and grammatical words and as such interrupt vowel-harmony spread from the verb stem. Like Nen, however, an adverb with a [+ATR]-dominant vowel will trigger ATR harmony to the left, as is seen with the adverb, ténì quickly, in Example 330. The interposing words are underlined. As discussed earlier, Maande repeats the subject pronoun, one occurs with the subjecttense proclitic and the second before the verb stem.
```

Example 330: ATR harmony in Maande pre-stem elements
tù- tì-\etaó= sù}=\mathrm{ lík-ím-̀े
1p- NEG-T/A= 1p= be.afraid-POS-FV
We are not afraid. 239
tò̀- tì-ŋá= hánà àsù= lík-ím-ə̀
1p- NEG-T/A= again 1p be.afraid-POS-FV
We are not afraid again.

```

```

We did not notice you quickly.

```

In Gunu also, adverbs and object pronouns are phonological as well as grammatical words and as such interrupt vowel-harmony spread from the verb stem. The subject-

\footnotetext{
\({ }^{238}\) Examples from Sebineni Alphonsine Flore: p.c. Aug. 2009. According to her, ATR harmony is more likely to spread than not in normal-speed speech.
\({ }^{239}\) Examples from Taylor 1990: 11
}
concord/tense proclitic attaches to the host word to its right. Unlike in Maande, none of the adverbs or object pronouns has a dominant vowel, so they cannot trigger vowel harmony. The negative marker dì is illustrated in Example 331 (a); the adverb gゝ̀ǹे again, in Example 331 (b), and the object pronouns in Example 331 (c) below. The interposing lexemes are underlined.

\section*{Example 331: Gunu adverb and object lexemes}
a) à \(=\) dì báà \(\neq\) sờg-à
c1= NEG P1 wash-FV
S/he did not wash.
\begin{tabular}{llll} 
à \(=\) & dì & béè \(\neq f\) & dím-è \\
\(\mathrm{c} 1=\) & NEG & P 1 & dig-FV \\
S/he did not dig.
\end{tabular}
b) bá- báà= gònó bá \(\neq\) sìg-à
c2- P1= again REFLEX-insult-FV
They insulted each other again.
\begin{tabular}{lllll} 
bá- & ná \(=\) & gònò & dím-è & gìbílá \\
c2- & FT2 \(=\) & again & dig-FV & hole
\end{tabular}

They will dig a hole again.
c) à- báà= gò dím-èn-è gìbílá
c1- P1= 2sIO dig-CONT-FV hole
S/he dug you a hole
à- báà= tfò dím-èn-è gìbílá
c1- \(\mathrm{P} 1=1 \mathrm{pIO}\) dug-CONT-FV hole
S/he dug us a hole.
ŋkò mbà= mò bó \(=\) sòn-ìn-ò
leopard P3= 3sOBJ REFLEX \(\neq\) decide.against-FV
Leopard decided against him.
\begin{tabular}{|c|c|c|c|}
\hline à- & báà= & tfò & not-on-i-o \\
\hline 3s- & \(\mathrm{P} 1=\) & 1 pIO & oblige-CONT-CAUS-FV \\
\hline \multicolumn{4}{|l|}{S/he made us (do it).} \\
\hline
\end{tabular}

Tuki, \({ }^{240}\) Baca and Mbure are the only Mbam languages which have no vowelharmony processes in the preverbal morphemes. The subject concord is a phonological as well as grammatical word and the tense markers are possibly enclitics which attach to the host word to their left. There are phonological processes

\footnotetext{
\({ }^{240}\) There is one exception in Tuki, which will be discussed below.
}
which occur between the subject concord and the tense marker, including nasal assimilation to the point of articulation of a following consonant. These morphemes are generally [-ATR], but there are some which are [+ATR]; all are invariable. In Example 332, illustrating the preverbal morphemes of Baca and Mbure, the [+ATR] verb roots are bolded.

Example 332: Lack of vowel harmony in preverbal elements
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Mbure} & \[
\begin{aligned}
& \text { à } \\
& \mathrm{c} 1
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
sśh-à \\
smoke-FV
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
S/he smoked. \\
I pulled up peanuts.
\end{tabular}} \\
\hline & \[
\begin{aligned}
& \text { ì=ní } \\
& 1 \mathrm{~s}=\mathrm{FT} 2
\end{aligned}
\] & pâr pull up & mùrònè peanuts & \\
\hline & \[
\begin{aligned}
& \mathrm{w}=\mathrm{a} \\
& 2 \mathrm{~s}=\mathrm{P} 2
\end{aligned}
\] & kànd break & \begin{tabular}{l}
ìmbàs \\
maize
\end{tabular} & You harvested maize. \\
\hline & \[
\begin{aligned}
& \text { à } \\
& \mathrm{c} 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { pín-è } \\
& \text { dance-FV }
\end{aligned}
\] & & S/he dances. \\
\hline & \[
\begin{aligned}
& \grave{\mathrm{O}=\mathrm{ní}} \\
& 2 \mathrm{~s}=\mathrm{FT} 2
\end{aligned}
\] & \begin{tabular}{l}
pín-ìt \\
dance-DIM
\end{tabular} & & You will dance a little. \\
\hline \multirow[t]{5}{*}{Baca} & \[
\begin{aligned}
& \mathrm{jì} \\
& 1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
tór-à \\
sell-FV
\end{tabular} & \begin{tabular}{l}
àká niònò \\
PREP market
\end{tabular} & I sell at market. \\
\hline & \[
\begin{aligned}
& \text { jì } \\
& 1 \mathrm{~s}
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
kès-ìm-à \\
sneeze-POST-FV (PRES)
\end{tabular}} & I sneeze. \\
\hline & \[
\begin{aligned}
& \grave{\eta}=\mathrm{g} \grave{\varepsilon} \\
& 1 \mathrm{~s}=\mathrm{FT}
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
sámb \\
pay
\end{tabular}} & \(I\) will pay. \\
\hline & \[
\begin{aligned}
& \grave{\mathrm{y}}=\mathrm{g} \grave{\varepsilon} \\
& 1 \mathrm{~s}=\mathrm{FT}
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
kòmb \\
throw.away
\end{tabular}} & I will throw away garbage. \\
\hline & \[
\begin{aligned}
& \grave{\mathrm{c}}=\mathrm{m} \\
& \mathrm{c} 1(3 \mathrm{~s})=1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
f"ák \\
O build
\end{tabular} & \(\begin{array}{ll}\mathbf{i n}^{\mathbf{2 4 1}} & \mathrm{k}^{\mathrm{jan} \mathrm{n}} \mathrm{f} \\ \text { CAUS } & \text { house }\end{array}\) & S/he builds me a house. \\
\hline
\end{tabular}

Tuki, like Mbure and Baca, does not harmonise preverbal tense or subject concord morphemes. These morphemes remain invariable whether the verb is [+ATR] or not, as is seen in Example 333.

\footnotetext{
\({ }^{241}\) The vowel /a/ in Baca has a [+ATR] variant [3]; this word therefore is [òm fẃsisi kiànt \(f\) ].
}
Example 333: Lack of ATR spread in Tuki preverbal morphemes
\begin{tabular}{|c|c|c|c|c|c|}
\hline Tuki \({ }^{242}\) & \[
\begin{aligned}
& \text { à } \\
& \mathrm{c} 1
\end{aligned}
\] & & \begin{tabular}{l}
gún-ámò \\
hunt-PERF
\end{tabular} & & S/he hunts. \\
\hline & \[
\begin{aligned}
& \text { à= } \\
& \mathrm{c} 1=
\end{aligned}
\] & \[
\begin{aligned}
& \text { má } \\
& \text { P2 }
\end{aligned}
\] & \begin{tabular}{l}
gún-á \\
hunt-FV
\end{tabular} & & S/he hunted. \\
\hline & ò= & ro \({ }^{243}\) & mìn-à & mètí & You swallowed saliva. \\
\hline & \(2 \mathrm{~s}=\) & P1 & swallow-FV & saliva & \\
\hline & ò= & ró & húm-ə́ & & You left. \\
\hline & \(2 \mathrm{~s}=\) & P1 & exit-FV & & \\
\hline
\end{tabular}

However, according to Kongne (2004: 118-9), the completive aspect of the P2 (recent past) has two forms: mâ and mâ, depending on the ATR value of the verb. Unlike the other preverbal morphemes, Kongne attaches this P2 morpheme to the verb stem, as in Example 334

Example 334: ATR harmony of completive-recent past (P2) in Tuki
\begin{tabular}{llll} 
Tuki \({ }^{244}\) & ǎ & mâ \(\neq\) bàn-à & S/he has already read. \\
& c1 & COMP.P2 \(\neq\) read-FV & \\
& ă & mâ \(\neq\) tùmb-̀ & S/he has already bathed . \\
& c1 & COMP.P2 \(\neq\) bathe-FV &
\end{tabular}

The completive aspect/recent past, with its obligatory ATR harmony is clearly a prefix of the verb stem. All other preverbal morphemes are invariable and indicate the presence of a phonological word boundary.

\subsection*{3.3.4.3 Rounding-dominant vowels in preverbal morphemes}

The spread of ATR harmony also differs from the spread of rounding harmony because of the presence of rounding-dominant vowels in the preverbal morphemes of some Mbam languages. These rounding-dominant morphemes spread only within the proclitic or between the proclitic and its host word.

Both Gunu and Maande have certain subject concords which have a dominant round vowel. In Gunu, for example, \(2 \mathrm{~s} \mathbf{0}\) - and the 2 p no- will trigger rounding harmony in an adjacent negative marker. What is most interesting in this situation, however, is that the negative morpheme is di-, which contains a transparent neutral vowel that is not generally susceptible to rounding harmony. The reason for this is not clear. However, due to the fact that the vowel is transparent rather than opaque makes it

\footnotetext{
\({ }^{242}\) Examples from Kongne Welaze J. 2004: 61 with my phonetic modifications.
\({ }^{243}\) Tuki has [+ATR] preverbal morphemes. It does not trigger ATR harmony.
\({ }^{244}\) Examples from Kongne Welaze J. 2004: 119.
}
more apt to rounding harmony. There is nothing impeding its harmonisation, unlike what would be true for an opaque vowel.

In Maande, only the 2 s subject and object concords, o-/o-, have a [+round] vowel. Like the \(2 \mathrm{~s} / 2\) p pronoun vowels in Gunu, these morphemes will trigger the rounding of adjacent preverbal morphemes. In Maande, this morpheme is [-ATR] and is also susceptible to ATR harmony, whereas in Gunu, the second person subject concord is always [+ATR], as in Example 335. The trigger vowels are underlined and the domains in which they operate are bolded in the examples below.

Example 335: Rounding-dominant preverbal morphemes.


High vowels in Maande are generally opaque and block rounding harmony. However, in the case of the anticipatory rounding triggered by the second person indirect-object pronouns, the high front vowels of the first person concord, in Example 335 above, exceptionally do not block rounding.

While Nen does not have robust rounding harmony in the preverbal morphemes, it does have a rounding-dominant vowel in the subject concord/tense proclitic. The future tense morpheme ỳ̀- (underlined below) will cause the negative marker sá- to undergo rounding, as seen in Example 336.

\footnotetext{
\({ }^{245}\) Taken from Robinson 1999: 10, my phonological interpretation.
\({ }^{246}\) Following examples from Taylor 1990: 12
}

\section*{Example 336: Rounding of negative marker with the future in Nen \({ }^{247}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline [à- & nó & & \(\neq\) ná & S/he drank. \\
\hline [á- & sá & & \(\neq\) ná] & S/he didn't drink. \\
\hline [ \({ }^{\text {a }}\) & no & & \(\neq\) ná] & You will drink. \\
\hline [ว̀- & só- & nゝ & \(\neq\) ná] & You will not drink. \\
\hline
\end{tabular}

In summary, the differences in the spread of rounding harmony and ATR harmony in the verb can be explained by the location of dominant vowels, the type of neutral vowel (transparent or opaque), and the presence of word breaks and cliticisation. There is variation among the Mbam languages in the position of the grammatical word boundaries in the preverbal morphems. With the exceptions of Yangben, Mmala and Elip, all show grammatical word boundaries in the verb and thus differ from cannonical Bantu in that respect.

\subsection*{3.3.5 Mismatches in the noun phrase}

Similar to the mismatches between the grammatical and phonological word in the verb phrase, there are also mismatches between the grammatical and the phonological word in the noun phrase. The associative marker, the coordinating conjunction and prepositions are either proclitics, full lexemes or have characteristics of both, depending on the language.

\subsection*{3.3.5.1 All noun-phrase elements are proclitics}

The associative markers, prepositions and the coordinating conjunction are proclitics which attach to the noun to their right. ATR, rounding and fronting vowel harmonies will anticipatorily spread to these proclitics. Only height harmony in Mmala does not spread to these associated proclitics. In Figure 19, the phonological word (PW) is shaded. Solid lines show the constituents of the phonological word and the dotted lines show the association of the proclitics to the phonological word. The vowelharmony features spread throughout the expanded phonological word.


\footnotetext{
\({ }^{247}\) Kongne 2011: 136, 140
}

Figure 19: Phonological-word structure: Yangben, Mmala, Elip and Maande nouns

Table 58 gives examples of the participation of associative markers, the conjunction with and various prepositions in vowel harmony. In the associative construction, the associative marker (translated by of below) agrees with the noun class of the head noun. The examples which undergo vowel harmony are bolded.

Table 58: Vowel harmony in the associative markers, conjunctions and prepositions: Elip
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{associatives} &  \\
\hline & gilímb gié=b"ébì \\
\hline & mìmbì mó=gìdòn \\
\hline & mègúd mó=gìgǒ:gè \\
\hline \multirow[t]{4}{*}{conjunctions} & ngímbíko nà=giánsì \\
\hline &  \\
\hline & yทòjí, nsóg nò=gìjòb \\
\hline & mànán nò=mǒk \({ }^{\text {cònné }}\) \\
\hline \multirow[t]{4}{*}{prepositions} & ùg \({ }^{\text {wá }}=\) già \({ }^{\text {n }}\) t \(\mathrm{I}_{\text {í }}\) \\
\hline & ùg \({ }^{\text {wé }}=\) mèsígè \\
\hline &  \\
\hline & ùg \({ }^{\text {º́ójòógi }}\) \\
\hline
\end{tabular}

\section*{Mmala:}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{associatives} & gjà \({ }^{\text {nit }}\) gá=múù \({ }^{\text {n }}\) d \\
\hline & giànsì gé=siê \\
\hline & màdàdà mó=jı̀ỳ̀̀ \\
\hline & òsón wó=gik \({ }^{\text {ho }}\) \\
\hline \multirow[t]{4}{*}{conjunctions} & bòdêd nà=nìdày \\
\hline & àsàg nè=mèbìn \\
\hline & ǹtfédí nò=gèbbòsòss \\
\hline & bòtô nò=bòkónó \\
\hline \multirow[t]{4}{*}{prepositions} & àgá=giànt \({ }_{\text {cin }}\) \\
\hline & ègé=mèsíg \\
\hline & j̀gó=nùbゝ̀mゝ̀ \\
\hline & ògó=nò̀ì \\
\hline
\end{tabular}

> c7.house of the man
> c7.tongue of thieves (liar)
> c6.water of the village
> c6.fat of bone
> sparrowhawk and cockroach
> antelope and tortoise
> lion, hare and hyena
> yams and sweat potatoes
> in the house
> in the fields
> in the forest
> in the fire

Yangben:
associatives
màkìp má=mó \({ }^{\mathrm{n}} \mathrm{d} \quad\) c6.the wine of the man
màkìp mé=sí c6.the wine of the father
mèté mó=nók̀̀m̀̀ c6.sap of "nukวmo" tree
mèkút mó=kìkòkó c6.fat of bone (marrow)
mèté \(\mathbf{m} \dot{\varepsilon}=\mathbf{k i ́ t}_{\mathbf{i}} \mathbf{n} \mathbf{d} \boldsymbol{\varepsilon} \quad\) c6.sap of the palm
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{conjunctions} & èmèkú nà=mànớy \\
\hline & mbùn nè=kìtétì \\
\hline & j̀mbòk nò=kìkónd \\
\hline & nò=mòòmb \\
\hline & nè=picìj \\
\hline \multirow[t]{5}{*}{prepositions} & á=nìtán \\
\hline & é=kùsì \\
\hline & j́=mòk̀ \\
\hline & ó=jònıí \\
\hline & £́=kitı̀̀ndè \\
\hline
\end{tabular}
flesh and blood
goat and cock
hand and foot
with water
with the spirits
on the rock
on the ground
at the cemetery
at the market
on the palm tree
\begin{tabular}{|c|c|}
\hline Maande: associatives & ìcálì t \(\mathrm{S}_{\text {íl }}\) báhólî \({ }^{248}\) \\
\hline \multirow{5}{*}{conjunctions} & nìkờtfà jí=mèhújì \\
\hline & bàánà bó=jòśkókśl̀ \\
\hline & bàánà bó=Bókìto \({ }^{24}\) \\
\hline & tònààná nà=bìlàyà \({ }^{249}\) \\
\hline & İbálà nò=hìsétì \\
\hline \multirow{6}{*}{prepositions} & hìsźtì nò=jıs̊kókśl̀ \\
\hline & òòt \(\int\) ó nò=tfójò \\
\hline & àá=búnándà \\
\hline & д̀ó=t fííbe \(^{250}\) \\
\hline & jó= mòlı̀̀̀ \\
\hline & òó=jòní \\
\hline
\end{tabular}
c9.fight of the Bafias
c5.group of words
c2.children of the frog
c2.children of Bokito
pots and clothes
leopard and duiker
duiker and frog
fire and smoke
at the feast
at the house
to Moloko market
to market

\subsection*{3.3.5.2 Certain noun-phrase elements are proclitics}

In Gunu, the prepositions and the conjunction are proclitics which will always undergo ATR and rounding harmony triggered by the vowels of the following noun, but the associative markers act differently. While they will obligatorily undergo ATR harmony, they only optionally undergo rounding harmony. Due to these tendencies, the associative marker is considered as a separate phonological word which in certain circumstances becomes associated with the phonological word of the noun and undergoes vowel harmony, as in Figure 20.

\footnotetext{
\({ }^{248}\) Taylor 1990: 8. The associative marker is always [+ATR] before [+ATR] nouns in the associative construction. There is variation only before [-ATR] nouns. According to some, a majority of Maande speakers actually use the [+ATR] form of the associative in all contexts.
\({ }^{249}\) Taylor 1990: 8 with my phonetic transcriptions.
\({ }^{250}\) Taylor 1990: 13 with my phonetic transcriptions.
}

272 The phonological systems of the Mbam languages


Figure 20: Phonological word structure: Gunu nouns
In Table 59, the examples which undergo vowel harmony are bolded. The shaded cells highlight the optional rounding harmony in Gunu associative markers.

Table 59: Vowel harmony in the associative markers, conjunctions and prepositions: Gunu
\begin{tabular}{|c|c|c|}
\hline associatives & \begin{tabular}{l}
gì̀èfi gá gílà \\
gìsìnì gé cí \({ }^{251}\) \\
bìfólìnà bá mòtò \\
bìfólìnà bé ǹtfèé
\end{tabular} & c7.wripped c7.ASSOC clothing c7.matter c7.ASSOC land c14.cultivation c14.ASSOC the man c14.cultivation c14.ASSOC yams \\
\hline & mègúdé má/mó póní gìsìnì ná/nó niònı̀̀ & c6.oil c6.ASSOC the bee c7.affaire c7.ASSOC the market \\
\hline conjunctions & bùgúlè nà=mùtò \({ }^{252}\) àlí nè=bùsùgé t fédì nò=„そk̀̀i gìsìg̀̀ nò=bòkó & friendship with a man s/he is with the meat duiker and panther monkey and squirrel \\
\hline prepositions & \[
\begin{aligned}
& \text { nàá=ntímí } \\
& \text { nèé=nùfèn"dù } \\
& \text { nد̀ó=ǧy̆̀े } \\
& \text { nòó=nìò̀ì }
\end{aligned}
\] & \begin{tabular}{l}
in the field \\
in the ravine \\
in the granary \\
at the market
\end{tabular} \\
\hline
\end{tabular}

It is the coordinating conjunction in Nen is a phonological word in itself which never undergoes vowel harmony. The prepositions and the associative markers are proclitics which, in certain circumstances, may undergo ATR harmony. None of these noun-phrase proclitics will undergo rounding harmony (Figure 21).

\footnotetext{
\({ }^{251}\) Robinson 1984: 77.
\({ }^{252}\) Robinson 1984: 76.
}


Figure 21: Phonological word structure: Nen nouns
In Table 60, the examples which undergo vowel harmony are bolded. The shaded cells highlight the lack of vowel harmony in the Nen conjunctions. The symbol = indicates the clitic boundary.

Table 60: Vowel harmony in the associative markers, conjunctions and prepositions: Nen
\begin{tabular}{|c|c|c|}
\hline associatives & nìhóká ní=mò \({ }^{\text {do }}{ }^{253}\) & c5 \\
\hline & nìhóká ní/ní=m \({ }^{\text {w }}\) ºd \({ }^{\text {d }}\) & c5.axe c5.ASSOC the woman \\
\hline & mòlùk mà=pwj̀j! & c6.wine c6.ASSOC honey \\
\hline & bàná bá=mòkónó & c2.children c2.ASSOC the frog \\
\hline & bàná bá/bá=mùkójì & c2.children c2.ASSOC the co-wife \\
\hline \multirow[t]{3}{*}{conjunctions} & ìsòbó nà mìkwà & civet cat and leopard \\
\hline & hìsélì nà mìsèkú & duiker and elephant \\
\hline & nà bòlòmó & with baggage \\
\hline \multirow[t]{3}{*}{prepositions} & \(\mathbf{u}=\mathrm{n}^{\mathbf{w}} \mathbf{i j}{ }^{\text {j }}\) & to the river \\
\hline & ò=wàjí íbókà & to their places \\
\hline & ò=nis \({ }^{\text {mb }}\) ból \({ }^{254}\) & on the termite mound \\
\hline
\end{tabular}

In the Yambeta noun phrase, the coordinating conjunction, the prepositions and the associative markers all undergo anticipatory [+ATR] vowel harmony in the context of a [+ATR] noun. However, only the associative markers and the prepositions undergo anticipatory rounding harmony. The coordinating conjunction never undergoes rounding (Figure 22).

\footnotetext{
\({ }^{253}\) Bancel 1999: 7 with phonetic changes according to my databases.
\({ }^{254}\) Dugast 1971: 218 (with my phonetic modifications).
}

274 The phonological systems of the Mbam languages


Figure 22: Phonological word structure: Yambeta nouns
In Table 61, the examples which undergo vowel harmony are bolded. The shaded cells highlight the lack of rounding harmony in the conjunctions.

Table 61: Vowel harmony in the associative markers, conjunctions and prepositions: Yambeta
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{associatives} & mòón đ̀=mòòd & c1.child c1.ASSOC the man \\
\hline & mòón ù=kìíd & c1.child c1.ASSOC the devil \\
\hline & pòón pá=mò̀d & c2.children c2.ASSOC the man \\
\hline & pòs \({ }^{\text {pá= }}\) kîíd & c2.children c2.ASSOC the devil \\
\hline & pòn pó=pólón'śk & c2.children c2.ASSOC the deaf-mutes \\
\hline & pòs pó=pólò \({ }^{\text {d }}\) dók & c2.children c2.ASSOC sorcerers \\
\hline \multirow[t]{4}{*}{conjunctions} & nà sì & with father \\
\hline & òtwîy nò nì̀s & ear and eye \\
\hline & Đŋòníà nà giǒkj̀n & boar and monkey \\
\hline & nà pòmónŋí & with sisters \\
\hline \multirow[t]{4}{*}{prepositions} & à=pòlím & to the plantation \\
\hline & อ̀=màní & to the water (hole) \\
\hline & j\(=\) pij̀ \({ }^{\text {a }}\) & in the marshes \\
\hline & ò=niòn & to the market \\
\hline
\end{tabular}

\subsection*{3.3.5.3 No noun-phrase elements are proclitics}

In Tuki, Baca and Mbure noun phrases, no associative marker, preposition or coordinating conjunction will assimilate to the vowel harmony of the noun. These morphemes are considered independent phonological words.


Figure 23: Phonological word structure: Tuki nouns
Table 62 illustrates the complete lack of vowel harmony in the associative markers, conjunctions and prepositions in these three languages. The nouns with [+ATR] vowels are bolded.

Table 62: Lack of vowel harmony in the associative markers, conjunctions and prepositions: Baca
\begin{tabular}{|c|c|c|}
\hline assocatives & \begin{tabular}{l}
kìpíl kí \(\mathfrak{y k \grave { \mathrm { n } } \mathrm { d } \text { d̀ }}\) \\
t \(\int\) ह́né sí mpừt fú
\end{tabular} & \begin{tabular}{l}
c7.bunch c7.ASSOC bananas \\
cl0.worms c10.ASSOC stomach
\end{tabular} \\
\hline conjunctions & àká:nd nà mòón àtû nà nìis & woman and child ear and eye \\
\hline prepositions & \begin{tabular}{l}
àká niò̀nò \\
ò Kàlòn \\
ò Béní
\end{tabular} & \begin{tabular}{l}
at the market \\
to Kalong (Yangben) \\
to Begni
\end{tabular} \\
\hline Mbure: assocatives & m̀bót ḑì m̀bàs m̀bót ḑì rònè màbén má jò & c10.seed c10.ASSOC maize c10.seed c10.ASSOC peanuts c6.place c6.ASSOC burial \\
\hline conjunctions & ŋ̀kánd nì mòón ŋ̀kánd nì nùmbét & woman and child woman and man \\
\hline prepositions & \begin{tabular}{l}
kú kìbámbó \\
kú ǹt"è
\end{tabular} & on the bed on the head \\
\hline
\end{tabular}

Tuki:
\begin{tabular}{|c|c|c|}
\hline associatives & ǹtfó rá mbàsà \(\mathrm{m}^{\text {wànà wà }} \mathbf{~ m b}^{4}\) ìnì & \begin{tabular}{l}
c6a kernel 6a.ASSOC c9.maize \\
c1.child c1.ASSOC c9.goat
\end{tabular} \\
\hline \multirow[t]{2}{*}{conjunctions} & t \ítí nà mbà:né & duiker and porcupine \\
\hline & kúrè nà tjítí & turtle and duiker \\
\hline \multirow[t]{4}{*}{prepositions} & nà jànḑè & at the house \\
\hline & nà wùtú: & at night \\
\hline & nà kờ \(\mathrm{dờ}\) & in the savannah \\
\hline & nà dévere \({ }^{255}\) & on the table \\
\hline
\end{tabular}

\subsection*{3.3.6 Conclusion}

The phonological word is made up of a grammatical word and various clitics which will attach to it, forming a phonological unit. A dominant vowel found within this phonological unit will spread throughout the word, unless blocked by an opaque neutral vowel.

The difference in spread between ATR and rounding harmony in the verb is due to three factors: the presence and type of neutral vowels, phonological word breaks between the subject-concord/tense proclitic and the verb stem, and the location of harmony-dominant vowels. Only one of these factors plays a role in the difference in the spread of vowel harmony in the noun phrase: phonological word breaks. Since neither neutral vowels nor [+ATR] and/or [rounding]-dominant vowels occur outside of the noun, associative markers, conjunctions and prepositions undergo vowel harmony only if they are proclitics which attach to the head noun as its host.

Vowel harmony in the Mbam languages is obligatory in the phonological word and between a clitic and its host. Vowel harmony spreads in the direction of cliticisation. As a result, Baković (2000: 7) is to some degree correct in saying that the morphological structure of the language plays a role in the directionality of vowel harmony.

There is a mismatch between the scope of ATR harmony and that of rounding harmony in the noun phrase in certain languages; this may be the result of a change in the structure of the phonological noun word. Noun-phrase proclitics may be in the process of becoming independent grammatical words rather than proclitics, resulting in an increasingly irregular spread in vowel harmony. In all cases of mismatches in the spread of ATR harmony as opposed to the spread of rounding harmony, the latter is less robust.

\footnotetext{
\({ }^{255}\) Essono 1980: 53. Essono has the coordinative conjunction with a high tone in this example.
}

While Bantu languages \({ }^{256}\) are generally considered to be agglutinating, the Southern Bantoid languages, especially the Grassfields languages tend to be isolating. The Mbam languages are found geographically and historically \({ }^{257}\) between these two groups and share characteristics with both groups. For example, in his study of the consecutive morpheme in Bamileke-Ngomba, \({ }^{258}\) Satre (2010: 48) summarises that the preverbal morphemes are considered elements of the verb phrase rather than of the verb word.

If the constraint to vowel-harmony spread in the preverbal morphemes is due to a residual historical phonological boundary, the tendency of vowel harmony to spread right-to-left has perhaps, to a greater or lesser extent, eroded the phonological boundaries within the morphosyntactic domain. If the preverbal morphemes are indeed morphosyntactic prefixes, then the anticipatory tendencies of vowel harmony, barring other impediments, will spread throughout the entire grammatical word, which is the case for Yangben, Mmala and Elip.

On the other hand, strong morphosyntactic boundaries signalled by the SOV word order in Nen and the periphrastic tense constructions in Yambeta would be the most obvious and powerful blockages to the spread of vowel harmony in these languages. Nen, despite strong morphosyntactic boundaries, does have anticipatory vowel harmony. Its spread is less powerful, having the tendency to be optional and gradient, rather than the vowel-harmony spread of other Mbam languages with similar morphosyntactic boundaries, such as Gunu and Maande. At the other extreme, strong morphosyntactic boundaries prevent any anticipatory vowel-harmony spread in the preverbal morphemes, as is the case for Tuki, Baca and Mbure.

\footnotetext{
\({ }^{256}\) Many of the Bantu languages of Cameroon are written in a rather isolating manner. This is especially true for the A70 languages of Ewondo and Bulu and the A40 language of Basaa. My assumption is that the orthography somewhat camouflages the underlying agglutinating nature of these languages.
\({ }^{257}\) See Chapter 5 for more discussion on the historical classification of the Mbam languages.
\({ }^{258}\) Bamileke-Ngomba [jgo] is a Western Bamileke, Grassfields Bantu language spoken primarily on the Bamileke plateau in the Mbouda Subdivision of the Bamboutos Division in the West Region of Cameroon.
}

278 The phonological systems of the Mbam languages

\section*{Contrastive features and the relationship between inventory and behaviour}

\begin{abstract}
"Feature markedness refers to the likelihood (or the unlikelihood) of certain features co-occurring. For instance, vowel height features and tongue root features have a close connection (see Archangeli \& Pulleyblank 1994): Tongue root advancement, [+ATR], and [+high] are compatible, as are [+low] and tongue root retraction (or [-ATR]). The opposite combinations are not compatible" (Archangeli 1999: 543).
\end{abstract}

The above point of view is widely accepted and does indeed have some validity. It is clear that there is good evidence that certain combinations of height and tongue-root features can be treated as especially marked (Casali 2013: 2). However, in vowel inventories with ATR contrast in the high vowels ( \(\mathbf{i} / \mathbf{I}\) and \(\mathbf{u} / \mathbf{v}\) ), there is evidence that \(\square[I],[\sigma]\) often occur with very high frequency, characteristically have unrestricted distributions, and may have a wider distribution than their [+ATR] counterparts [i], [u] (Casali 2002, 2012).

This typological generalisation, coupled with the difficulty in identifying certain vowels in previous studies and the tendency of these vowels to function in contradictory ways vis-à-vis the vowel-harmony system is an indicator that an /i, e, \(\varepsilon, \mathrm{a}, \mathrm{o}, \mathrm{o}, \mathrm{u} /\) inventory analysis of the Mbam languages is inadequate. In many ways, the misanalysis of the Mbam vowel inventories is not surprising; others have noted as Schadeberg (1994/95: 74) that "linguists are all too often influenced by their own spellings.," \({ }^{259}\)

\subsection*{4.1 Vowel inventories and vowel harmony}

Languages with the most clear and ideal form of ATR harmony have ten contrastive vowels which divide into two mutually exclusive sets of five vowels: a [-ATR] set and a [+ATR] set, which vary at each chart position only in their ATR value, see Table 63.

\footnotetext{
\({ }^{259}\) Including, I doubt not, myself.
}

280 The phonological systems of the Mbam languages

Table 63: Ideal ten-vowel ATR-harmony languages
\begin{tabular}{llll} 
a. [-ATR] vowels & front & central & back \\
high & I & & o \\
mid & \(\varepsilon\) & a & 0 \\
low & & & \\
& & central & back \\
b. \([+\) ATR] vowels & front & & u \\
high & i & & o \\
mid & e & \(\ddots\) &
\end{tabular}

Ten-vowel systems however are not the most common. More frequent are languages which lack a contrastive [+ATR] counterpart of /a/. This leaves nine contrastive vowels which divide into five [-ATR] vowels but only four [+ATR] vowels, see Table 64.

Table 64: Nine-vowel ATR-harmony languages
\begin{tabular}{llll} 
a. [-ATR] vowels & front & central & back \\
high & I & & u \\
mid & \(\varepsilon\) & a & 0 \\
low & & & \\
& & central & back \\
b. \([+A T R]\) vowels & front & & u \\
high & i & & o \\
mid & e & --- &
\end{tabular}

Another common vowel system in ATR-harmony languages is the 7/9-vowel system. These languages have seven contrastive vowels and two additional predictable vowels. Malila (Kutsch Lojenga 2006: 2-3) has seven underlying vowels but nine surface realisations with \([\mathrm{e}]\) and \([\mathrm{o}]\) as the allophonic [+ATR] variants of \(/ \varepsilon /\) and \(/ \mathrm{o} /\). In addition, as with some 9 -vowel systems, /a/, although phonetically [-ATR], is neutral, and may occur in [+ATR] environments.

Among the seven-vowel languages which have ATR harmony. Two types of systems are attested: type (1) which lack [+ATR] mid vowels /e/ and /o/ as in Table 65, and type (2) which lack the [-ATR] high vowels \(/ \mathrm{I} /\) and \(/ \mathrm{J} /\), as in Table 66. Type (1) seven-vowel languages tend to have ATR harmony (Casali 2003). Type (2) seven-vowel languages tend to have a retracted root harmony (RTR) (Casali 2003, Leitch 1996).

Table 65: Seven-vowel systems (type 1)
\begin{tabular}{llll} 
a. [-ATR] vowels & front & central & back \\
high & I & & o \\
mid & \(\varepsilon\) & a & o \\
low & & & \\
& & central & back \\
b. [+ATR] vowels & front & & u \\
high & i & & --- \\
mid & --- & --- &
\end{tabular}

An eight-vowel variant of the (type 1) vowel system, with a [+ATR] counterpart of the central vowel also exists.

Table 66: Seven-vowel systems (type 2)
\begin{tabular}{llll} 
a. [-ATR] vowels & front & central & back \\
high & --- & & --- \\
mid & \(\varepsilon\) & a & 0 \\
low & & & \\
& & central & back \\
b. [+ATR] vowels & front & i & u \\
high & e & & o \\
mid & & -- &
\end{tabular}

These are typical vowel inventories commonly found in Bantu languages. The vowel inventories of three Mbam languages, Mmala, Yangben and Mbure fit the very typical and frequent 9 -vowel system presented above in Table 64 which is common in many ATR-harmony languages. A fourth language, Baca, has a 9/10-vowel inventory consisting of nine contrastive and one non-contrastive vowel, [3]. Most of the Mbam languages, however, have a less typical inventory. These will be discussed in section 4.1.1 below.

\subsection*{4.1.1 The high front vowel in the Mbam 8-vowel languages}

A number of the Mbam languages, however, do not have particularly common vowel inventories. The 8 -vowel languages appear asymmetric when one looks at them from a merely phonetic perspective with two [+/-ATR] pairs of back/round vowels and only one [+/-ATR] pair of front vowels, see Table 67.

282 The phonological systems of the Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline & Front & Centre & back/round & \\
\hline \multirow[t]{2}{*}{High} & i & & u & \multirow[t]{2}{*}{[+ATR]} \\
\hline & & & U & \\
\hline \multirow[t]{2}{*}{Mid} & & ə & O & \multirow[t]{2}{*}{[+ATR]} \\
\hline & \(\varepsilon\) & & 0 & \\
\hline Low & & a & & \\
\hline
\end{tabular}

Hyman proposes a "bottom-up" or "system-driven" approach to the analysis of the vowels of two Mbam languages, Yangben and Gunu. He (Hyman 2001, 2003a) identifies only those features which are "phonologically active" in the vowel system, and suggests four active features either present or once present in the Mbam languages. For example, Hyman (2003a) proposes four contrastive features for Yangben (Kaləy): ATR, front, round and open (or non-high). Table 68 illustrates how Hyman's (2001, 2003a) features present a more symmetrical inventory which we will see fits the phonological characteristics of the Mbam languages, Table 68.

Table 68: Mbam 8-vowel inventory modified Hyman (2001, 2003a)
\begin{tabular}{llll} 
& \([(+\) front \()\)-round \()]\) & {\([(-\) front \()+\) round \(]\)} & \\
[-open] & i & u & [+ATR] \\
& \(\mathrm{I}(\varepsilon)\) & 0 & \\
[+open] & 0 & 0 & [+ATR]
\end{tabular}

The [ \(+/\)-ATR pair] \([\mathrm{i}] /[\varepsilon]\) illustrates an asymmetry in the Mbam 8 -vowel inventories. Although phonetically and acoustically a mid vowel, \([\varepsilon]\) patterns phonologically as a high vowel, \(/ \mathrm{I}\) /.

Maande gives evidence that this [-ATR] front vowel is actually a high rather than a mid vowel. Noun class 5 in many of the Mbam languages is \(\mathbf{n I}-/ \mathbf{n i}-\); however, in Maande, the nasal is palatalised before high front vowels, so the noun-class 5 prefix in Maande is jur-/ni-. In Example 337, the noun-class 5 prefix in Maande is compared with the same prefix in a selection of other Mbam languages. Where Maande has \(/ \mathrm{n} /\) before a high front vowel, the others have \(/ \mathrm{n} /\).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Example 337: Variation in prefix nasal in NC 5 before high front vowels} \\
\hline \multirow[t]{2}{*}{Maande} & nyebána & nì \(\ddagger\) bánà & breast, teat \\
\hline & nyikekú & nìłk 文kú & beard \\
\hline \multirow[t]{2}{*}{Mmala} & --- & nì \(\ddagger\) bánà & breast, teat \\
\hline & --- & nì \(=\) sèlú & chin \\
\hline \multirow[t]{2}{*}{Gunu} & nebánya & nì \(\ddagger\) bánà & latrine \\
\hline & niheyé & nìłhèjé & tree sp. \\
\hline \multirow[t]{2}{*}{Yambeta} & nedóm & nì \(\ddagger\) dóm & breast, teat \\
\hline & nigúu & nì \(\neq\) gúù & village \\
\hline
\end{tabular}

The Maande high vowels, /i/ and /I/, in the causative suffixes -i and -is-i and in the neuter suffix -I, will cause anticipatory palatalisation of alveolar nasals \(/ \mathrm{n} /\) to \(/ \mathrm{n} /\) (right-to-left). In the case of the causative suffixes, occurring at the right edge of the verb word, /i/ will trigger the iterative palatalisation of several alveolar nasals in the verb word. In Example 338 (a), the verbal suffixes -on and -In become -on and -ij (bolded below) preceding the causative suffixes (underlined). The palatalisation is not limited to the suffix immediately preceding the causative, multiple suffixes with \(\mathrm{ln} /\) may be palatalised by the causative suffix -i, as in Example 338 (b).

Example 338: Palatalisation of \(/ \mathbf{n} /\) in Maande causative constructions
(a) \(\mathbf{o} \neq \mathrm{ból}\)-ót-ón-o become red \(\mathrm{o} \neq \mathrm{ból}\)-ót-ón-ís-i to make red ̀̀ \(\neq\) hòl-ìn-à pass by ò \(\neq\) hùl-ìjn-ì - transmit, cause to pass
(b) ò \(\neq\) sìm-ìn-ìn-ə̀ ̀̀ \(\neq\) làt-ìn-ìn-à to add, enlarge ò \(\neq\) tón-ín-ín-i to show

The neuter suffix -I, unlike the causatives, occurs either in the first or second suffix slot after the root (see Example 339 (b) below). In this position, there are never multiple targets for palatalisation. Non-high vowels will block the spread of palatalisation (see Example 339 (c) below). In Example 339 (a), the alveolar nasal of the verb root \(\neq\) san disperse, (bolded below) is palatalised by the neuter suffix -I (underlined).

Example 339: Palatalisation of \(/ \mathbf{n} /\) with the Maande neuter suffix -I
\begin{tabular}{|c|c|c|c|}
\hline (a) & j̀fsán-à disperse & ò \(=\) sán-ì-à & escape, flee, scatter oneselves \\
\hline (b) & ò \(=\mathrm{t}\) ¢ik-ill-ì-ə̀n-̇̀ & & arrange, classify \\
\hline & ò \(\ddagger\) hàt-ìleàk-ìn-à & & catch, stop as a group \\
\hline (c) & òキ bón-ós-ì-à & & punish \\
\hline
\end{tabular}

Other suffixes and extensions with high vowels /i/ or /I/ do not cause palatalisation. In Example 340, the applicative suffix -m (underlined) does not palatalise \(/ \mathrm{n} / .^{260}\)

\footnotetext{
\({ }^{260}\) See footnote 47 above.
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Example 340: Non-palatalisation by applicative suffix -m/-in (Maande)} \\
\hline ò \(\neq\) lı́n-ə̀ & love, desire & ò-bíflı́n-ín-ə̀ & rejoice in, take pleasure in \\
\hline ò \(\ddagger\) t ân-à & split & ò \(\ddagger\) t ân-ìn-à \(^{\text {a }}\) & split (APPL) \\
\hline
\end{tabular}

In conclusion, although previously analysed otherwise, the [-ATR] front vowel is high and is best analysed as \(/ \mathrm{I} /\). For what reason does an underlying high [-ATR] front vowel /I/ have a surface form as [ \(\varepsilon]\). One reason may be that, with a lack of underlying front mid vowels, the [-ATR] high vowel is lowered. Roark (2001: 4), in his theoretical article on vowel-inventory tendencies, posits three underlying assumptions:
1. "there is a range of possible vowel locations that makes up a perceptual "space";
2. there is a tendency to maximise contrast between vowels within a particular inventory;
3. contrast \(=\) distance in the perceptual space"

It is the second and third of these assumptions which are of particular interest as a possible explanation to 1 ) the lowering of \(/ \mathrm{I} /\) to \([\varepsilon]\) in the 8 -vowel inventories, and 2) the tendency in most \({ }^{261}\) of the Mbam languages for all the [+ATR] vowels to be higher than all of the [-ATR] vowels as is the case with Nen (Bancel 1999: 3). The acoustic "distance" maximises the contrast between the [-ATR] vowels and their corresponding [+ATR] counterparts. So the [+ATR] vowel is not acoustically adjacent to its [-ATR] counterpart. While \(/ \delta /\) and \(/ 0 /\) may be very close to each other in the acoustic space, they are acoustically quite distant from their tongue-root counterparts, \(/ \mathrm{u} /\) and \(/ \mathrm{\rho} /\). In the case of the front vowels, \(/ \mathrm{I} /\) has two allophones, [ I ] and \([\varepsilon]\), in 9 -vowel languages, but with the loss of the \(\mathrm{e} / \varepsilon\) pair in the 8 -vowel languages, / \(\mathrm{I} /\) maximises the distance from /i/ and always surfaces as \([\varepsilon]\). This acoustic distance between the [+ATR] and the [-ATR] members of a pair facilitates the ability to "hear" the difference between them, and in part explains why \(/ \sigma /\) has been often confused with \(/ \mathrm{o} /\) ( or \(/ 0 /\) ). For the native speaker, there is no ambiguity between \(/ \mathrm{o} /\) and \(/ \mathrm{o} /\) as these two vowels never occur in the same phonological context.

Figure 24 below, illustrates the general order of positions (based on the acoustic data) of the vowels in most of the Mbam 9- and 8-vowel languages. The [+/-ATR] pairs are indicated by the connecting lines. While customarily, [-ATR] high vowels are presented as being above [+ATR] mid vowels, as has been shown elsewhere in many of the Mbam languages, the [-ATR] high vowels acoustically have a higher F1 than the [+ATR] mid vowels. This tendency is seen below and highlights the maximum contrast (distance) between the members in the [+/-ATR] vowel pairs.

\footnotetext{
\({ }^{261}\) The exceptions are Elip, Baca and Mbure. In these three languages, the [-ATR] high vowels \(/ \mathrm{I} /\) and \(/ \mathrm{J} /\) have a lower F1 than the [+ATR] mid vowels /e/ and /o/. In the other seven languages, the F1 of \(/ \mathrm{I} /\) and \(/ \mathrm{v} / \mathrm{is}\) higher than the F1 of the mid vowels /e/ and /o/.
}

Contrastive features \& relationship between inventory and behaviour 285


Figure 24: Positions and [+/-ATR] pairs of 8- and 9-vowel inventories \({ }^{262}\)
The phonetic content of a phoneme is determined by its 'patterning' and "the behaviour of a phoneme is a function of its contrastive features" (Dresher 2009: 72). By this definition, the patterning of the [-ATR] counterpart of \(/ \mathrm{i} /\) differs phonologically from /i/ only in the contrastive feature [ATR], despite its tendency to have acoustically a rather high F1. It patterns as a high vowel.

\subsection*{4.1.2 Comparison of the Mbam vowel systems}

The Mbam languages have two sets of vowels that are mutually exclusive within the phonological word. One set is [+ATR] and usually "dominant" the other [-ATR] and usually "recessive". These pairs vary somewhat depending on the language. Table 69 below shows the [+ATR]/[-ATR] vowel pairs for each language. The noncontrastive forms are noted in phonetic brackets.

In some of the languages, the underlying front [-ATR] high vowels surface with a high F1. Interestingly, these languages are the ones which no longer have two pairs of front vowels ( \(\mathbf{I} / \mathbf{i}\) and \(\varepsilon / \mathbf{e}\) ). An additional independent phenomenon, a fronting of \(/ \partial /\) to [e], is also taking place. Table 69 lists each of the languages in this study, and the [+/-ATR] vowel pairs attested. Two of the languages have non-contrastive vowels included. These are Tuki, which has a non-contrastive [o], which is the [+ATR] counterpart of \(/ \rho /\), and Baca, which has a non-contrastive [3], which is the [+ATR] counterpart of /a/. These two non-contrastive vowels are bolded below.

\footnotetext{
\({ }^{262}\) The values of these charts are taken from the averages of the vowel formants for two representative languages, one eight-vowel language (Nen), and one nine-vowel language (Yangben).
}

Table 69: Comparison of the [-/+ATR] pairs in the Mbam languages
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & \multicolumn{5}{|l|}{[+/-ATR] vowel pairs} \\
\hline Nen & I/i & - & a/s & s/o & \%/u \\
\hline Maande & I/i & - & a/a & \%o & o/u \\
\hline Yambeta & I/i & - & a/s & \% \(/\) & o/u \\
\hline Tuki & I/i & - & a/a, e & ¢/[0] & o/u \\
\hline Gunu & I/i & - & \(\mathrm{a} / \mathrm{e}^{263}\) & \%/o & \%/u \\
\hline Elip & I/i & - & a/e & \%/o & o/u \\
\hline Mmala & I/i & ع/e & a/e & \% \(/\) & o/u \\
\hline Yangben & I/i & ع/e & a/e & \% \(/\) & o/u \\
\hline Baca & I/i & ع/e & a/[3] & \%/o & o/u \\
\hline Mbure & I/i & ع/e & a/e & s/o & o/u \\
\hline
\end{tabular}

In addition to ATR harmony, all of the Mbam languages except for Baca and Mbure also have rounding harmony. There are two sets of vowels: those that have a contrastive feature for rounding and either trigger or undergo rounding assimilation, and those that are neutral to rounding harmony even if they are phonetically round. Rounding-neutral vowels fall into two types in the Mbam languages: opaque neutral vowels (indicated in the shaded cells) and transparent neutral vowel (indicated in the non-shaded cells in the neutral column in Table 70. Neutral vowels will be discussed at greater length in section 4.3 below. Yangben fronting harmony functions as the mirror image of rounding harmony. The high vowels in Yangben are transparent in both fronting and rounding harmony.

Table 70: Comparison of vowels sets in rounding/fronting harmony
\begin{tabular}{|c|c|c|c|c|}
\hline Name & [+round] & [-round] & \multicolumn{2}{|r|}{neutral} \\
\hline Nen & o, \(\bigcirc\) & a, \({ }^{\text {a }}\) & i, I, & \(\mathrm{u}, \mathrm{o}\) \\
\hline Maande & o, \(\bigcirc\) & a, ə & i, I, & u, e \\
\hline Yambeta & o, \(\bigcirc\) & a, ə & i, I, & u, e \\
\hline Tuki & \(\bigcirc\) & a & i, I, & u, e \\
\hline Gunu & o, \(\bigcirc\) & a, \({ }^{\text {a }}\) & i, I, & u, e \\
\hline Elip & o, \(\bigcirc\) & a, e & i, I, & \(\mathrm{u}, \mathrm{e}\) \\
\hline Mmala & o, \(\bigcirc\) & a, e & i, I, & \(\mathrm{u}, \mathrm{o}\) \\
\hline Yangben & o, \(\bigcirc\) & a, e & i, I, & \(\mathrm{u}, \mathrm{e}\) \\
\hline Васа & --- & --- & & -- \\
\hline Mbure & --- & --- & & \\
\hline Yangben & \[
\begin{aligned}
& \text { [+front] } \\
& \mathrm{e}, \varepsilon
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { [-front] } \\
& \text { a, e (ə) }
\end{aligned}
\] & i, I & u, o \\
\hline
\end{tabular}

\footnotetext{
\({ }^{263}\) The [+ATR] counterpart of /a/, although often found with a relatively high F2, with some speakers is slightly centralised. Due to this, Robinson (1984: 50) considered it a central vowel. A similar situation is found in Tuki, and Hyman (2003: 87) states concerning Yangben that "While some speakers pronounce schwa, others convert it to [e]..." It is clear that despite the high F2, [e] as the [+ATR] counterpart of /a/ is derived from a central vowel.
}

Height harmony, reminiscent of the Bantu Vowel-Height Harmony (presented in detail in section 4.3.3.1 below) with the high vowels \(*_{I}\) and \(*_{\partial}\) lowering to \(*_{\varepsilon}\) and \(*_{\rho}\) (Hyman 1999: 236-7) is found only in Mmala. Only the [-ATR] high vowels are targeted by the harmony and only the [-ATR] mid vowels, \(/ \varepsilon /\) and \(/ \rho /\) trigger height harmony, although some speakers will idiosyncratically lower \(/ \mathrm{I} /\) and \(/ \mathrm{v} /\) also in the context of /a/. The [+ATR] vowels never participate in height harmony, as in Table 71 below.

Table 71: Height-harmony vowel sets in Mmala
\begin{tabular}{l|l|c|l||l} 
& \multicolumn{2}{c|}{-ATR } & +ATR \\
& & {\([+\mathrm{mid}]\)} & {\([-\mathrm{mid}]\)} & \\
\hline Mmala & \(\mathrm{I}, \circlearrowright\) & \(\varepsilon, \rho\) & a & i, e, o, u
\end{tabular}

The two principal types of vowel harmony found in the Mbam languages, ATR and rounding, are attested in both 9 -vowel and 8 -vowel inventories. Fronting and height harmonies are found in only one language each, both of which have 9 -vowel inventories. The vowels tend to divide into subsets according to whether or not they participate in a given vowel-harmony type.

\subsection*{4.2 The vowel /a/ in ATR-harmony systems.}

In vowel-harmony languages with seven- or nine-vowel inventories, the vowel /a/ does not have a contrastive [+ATR] counterpart. The behaviour of this vowel in these systems is noteworthy and therefore merits further discussion.

\subsection*{4.2.1 An overview of the behaviour of /a/ in ATR-harmony systems}

The vowel /a/ is inherently [-ATR], but in some languages, it may occur in a [+ATR] environment. In languages where /a/ occurs in a [+ATR] environment, there are three harmony-resolution processes found:
1) The vowel /a/ is realised as [a] and is neutral with respect to vowelharmony spreading, namely it can be either transparent or opaque. Although it is [-ATR], it occurs in both [+ATR] and [-ATR] vowel sets. The vowel /a/ may be transparent, in that it does not block ATR harmony, as in languages such as Kibudu (D35) (Kutsch Lojenga 1994: 128), or opaque, in that it will block ATR harmony, as in languages like Akan (Clements 1976: 27). Blocking is the more common type of neutral /a/ according to typological and theoretical studies.
2) The vowel /a/ has a predictable [+ATR] variant which is not contrastive. Kinande (Mutaka 1995: 42) is an example.
3) In some languages, the [+ATR] counterpart of \(/ a /\) is realised as a mid front or mid back round [+ATR] vowel, [e] or [o]. In some languages, the /a/ may not occur in a [+ATR] environment and the back vowel /o/functions as the [+ATR] counterpart of both \(/ \mathrm{\rho} /\) and \(/ \mathrm{a} /\). Lika, a Bantu language of the northern Bantu borderland spoken in the north-east of the D.R. of Congo, is an example (Kutsch Lojenga 2008). In other languages, a front vowel /e/ functions as the [+ATR] counterpart both of \(/ \varepsilon /\) and \(/ \mathrm{a} /\). Alur, a WesternNilotic language of the D.R. of Congo is an example (Kutsch Lojenga 1989).

Of the ATR-harmony resolution techniques for /a/ listed above, all three are attested in various Mbam ATR-harmony languages.

\subsection*{4.2.2 Behaviour of /a/ in the Mbam languages}

As discussed above, there are various types of harmony-resolution processes when the [-ATR] /a/ is found in a [+ATR] environment.

Nen, Maande, Yambeta and Tuki \({ }^{264}\) each have atypical eight-vowel systems with four pairs of [+/-ATR] vowels: \(\mathbf{i} / \mathbf{I}, \boldsymbol{\jmath} / \mathbf{a}, \mathbf{o} / \mathbf{s}\) and \(\mathbf{u} / \boldsymbol{\boldsymbol { v }}\). Two additional languages, Gunu \({ }^{265}\) and Elip, have a variation in which the [+ATR] counterpart of \(/ \mathrm{a} /\) is more fronted, so that the four pairs are \(\mathbf{i} / \mathbf{I}, \mathbf{e} / \mathbf{a}, \mathbf{o} / \mathbf{s}\) and \(\mathbf{u} / \mathbf{v}\). In all these languages except Tuki, the vowels /e/ or /a/ occur without exception \({ }^{266}\) as the [+ATR] counterpart of \(/ \mathrm{a} /\) within the phonological word.

In the 9-vowel Mbam languages, such as Mbure, Yangben and Mmala, the vowel which functions as the [+ATR] counterpart of \(/ a /\) is realised as an open front [+ATR] vowel, /e/ (option 3, above). In the case of Yangben and Mmala the /a/ never occurs in a [+ATR] context.

In Baca, the vowel /a/ in [+ATR] contexts is realised as [3] a predictable [+ATR] variant which is not contrastive (option 2, above). In all [+ATR] contexts, this noncontrastive counterpart of the vowel \(/ \mathrm{a} /\) is found.

The most interesting is the behaviour of / \(\mathrm{a} /\) in Tuki and Mbure. Both these languages have a contrastive [+ATR] counterpart to /a/, yet both languages, unlike all the others, allow /a/ to occur as unchanged in certain [+ATR] contexts.
\({ }^{264}\) Tuki does not have a contrastive [+ATR] counterpart of \(/ \mathrm{\rho} /\).
\({ }^{265}\) Robinson (1984: 50) notes in his Phonologie du gunu: parler yambassa that "Chez certains locuteurs la réalisation [du phonème/e/] est légèrement centralisée." This being the case, Robinson defines /e/ as a central vowel.
\({ }^{266}\) Nen has an instance of post-lexical anticipatory ATR harmony involving \(\mathbf{a} / \boldsymbol{z}\) and affecting only the last vowel of the word, see section 3.2.2 below. In such cases, a [+ATR] word may have a final \(/ \mathrm{a} / \mathrm{if}\) the following word is [-ATR]. The reverse is true as well: a [-ATR] word may have a final/ \(/\) / if the following word is [+ATR].

The greatest co-occurrence restrictions on /a/ in [+ATR] contexts are found in the noun root. In both Tuki and Mbure, the [+ATR] counterpart of /a/, namely /e/ or \(/ 2 /\), will occur in a \(\neq \mathrm{CVCV}\) noun root. In Table 72 below, \(\mathrm{V}_{2}\) in \(\neq \mathrm{CVCV}\) noun roots must respect ATR harmony and is limited to either a high, open, front or round vowel in Mbure. In Tuki, \(\mathrm{V}_{2}\) may only be high, open or round. Certain combinations are neutralised, such as \(\boldsymbol{\varepsilon - \mathbf { I }}\) and \(\boldsymbol{\varepsilon}-\boldsymbol{\varepsilon}\) in Mbure. In Tuki, i-u and \(\mathbf{I}-\boldsymbol{\sigma}\) are lowered to [i-o] and [I-o] due to a constraint of having two high vowels together. This same constraint lowers \(\boldsymbol{\sigma}-\mathbf{I}\) to [o-i] and causes a change in vowel harmony.

Table 72: Mbure

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline V1/V2 & high & open & round & high & open & round \\
\hline i & i-i & i-ə & i-u ([i-o]) & & & \\
\hline e & ว-i & ə-ə & ə-u & & & \\
\hline u & u-i & u-ə & u-u & & & \\
\hline I & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & I-I & I-a & I-U ([I--]) \\
\hline a & & & & a-I & a-a & a-d \\
\hline 0 & & & & --I & --- \({ }^{267}\) & -0 \\
\hline U & & & & U-I ([0-i]) & O-a & --৩ \\
\hline
\end{tabular}

Vowel harmony in the verb is limited to the verb stem in both Tuki and Mbure. The final vowel /a/ will assimilate to the ATR value of the verb root in Tuki (see Example 341), but many verbal suffixes will block ATR harmony.

\footnotetext{
\({ }^{267}\) The absence of \(\mathbf{C \jmath C a}\) is due to rounding harmony, so underlying forms surface as [ C 0 C 0 ].
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Example 341: The behaviour of the final vowel in Tuki CVC verb stems} \\
\hline Rt vowel & ATR & Round & FV & example & gloss \\
\hline i & X & --- & -ə & \(\neq\) hít-ó & coil (rope) \\
\hline I & --- & --- & -a & \#tít-á & draw (water) \\
\hline ə & X & --- & -ə & \(\neq\) pót-ó & seal (door) \\
\hline a & --- & --- & -a & \(\neq\) pát-á & pick (fruit) \\
\hline 0 & --- & x & - & \#sót-ó & dwell, inhabit \\
\hline v & --- & --- & -a & \#kót-á & dry (INTR) \\
\hline u & X & --- & -ə & \(\neq\) sús-ó & ask, demand \\
\hline
\end{tabular}

In Mbure, however, vowel harmony is more restricted. The final vowel is realised as the [+ATR] counterpart /e/, only in the context of the high vowels \(/ \mathrm{i} / \mathrm{and} / \mathrm{u} /\). In all other cases, the vowel /a/ in affixes is realised as [a], even with other [+ATR] verbroot vowels (note the bolded examples) in Example 342.

\section*{Example 342: The behaviour of the final vowel in Mbure CVC verb stems}
\begin{tabular}{|c|c|c|c|}
\hline & ATR & surface form & gloss \\
\hline i & X & \(\neq t^{\text {níbub }}\)-è & pierce \\
\hline I & --- & \(\neq\) mín-à & drink \\
\hline e & x & \#pél-à & call \\
\hline \(\varepsilon\) & --- & \(\neq\) sér-à & flow \\
\hline a & --- & \(\neq\) sár-à & chop \\
\hline 0 & --- & \# sód-à & live \\
\hline o & x & \#sòg-à & wash \\
\hline 0 & --- & \#póh-à & bark (dog) \\
\hline u & x & \(\neq p^{\text {hu}}\) ùg-è & close \\
\hline
\end{tabular}

In both Tuki and Mbure, the domain of vowel harmony is essentially the root. Within the root, the vowel /e/ is the [+ATR] counterpart of /a/ and occurs in all [+ATR] contexts. This extends, in Tuki in particular, to the final vowel in verbs, whereas other affixes with the vowel /a/ occur as [a] and do not undergo ATR harmony.

\subsection*{4.2.3 Conclusion}

With the exception of the eight-vowel languages where the vowel /a/ has a [+ATR] counterpart, the vowel /a/ in the Mbam languages fits one of three patterns. In most of the nine-vowel languages, /a/ in a [+ATR] context has a [+ATR] counterpart, /e/. Baca, however, has a non-contrastive vowel, [3] in [+ATR] contexts. In Mbure (nine vowels) and Tuki (seven vowels), /a/ in [+ATR] contexts will take the [+ATR] counterpart /e/ or \(/ 2 /\) within noun roots and between the verb root and the final vowel, but where the vowel /a/ occurs in other affixes, it is neutral and blocks ATR harmony from spreading.

Contrastive features \& relationship between inventory and behaviour 291

\subsection*{4.3 Neutral vowels}

All types of Mbam vowel harmony have neutral vowels. But what is neutral in ATR harmony is not neutral in rounding harmony and vice versa. ATR-neutral vowels will be discussed in section 4.3.1. Rounding and fronting neutral vowels will be discussed in section 4.3.2. Neutral vowels in rounding harmony are particularly challenging as they demonstrate both opaque and transparent tendencies. Heightharmony neutral vowels are presented in section 4.3.3, and finally, in section 4.3.4, we will consider various analyses of opaque and transparent neutral vowels and discuss their merits in the context of rounding harmony in the Mbam languages.

\subsection*{4.3.1 Neutral vowels in ATR harmony}

One of the more complex problems in analysing vowel-harmony systems involves the occurrence of neutral vowels. According to Van der Hulst and Smith (1986: 234), neutral vowels may occur in one of two circumstances, (1) where the two nonoverlapping sets of vowels intersect, resulting in a situation where one or more vowels do not have a harmonic counterpart, and (2) where the "... harmony system is "obscured" by the presence of vowels which, although they do have a harmonic counterpart [...] fail to harmonise, either in particular morphemes, or everywhere."

In both these circumstances, neutral vowels may either be transparent, in which the harmony, so to speak, passes through the vowel as if it were not there, or opaque where the neutral vowel blocks the harmony process. The Mbam languages have both circumstances where neutral vowels may occur, as mentioned by Van der Hulst and Smith (1986) above: those that do not have a harmonic counterpart and those that do, but fail to harmonise. In addition, certain vowels are neutral in relationship to ATR harmony, but they participate in rounding harmony, and others there are others that are neutral in relationship to rounding harmony, but participate in ATR harmony. These will be discussed in turn below.

\subsection*{4.3.1.1 Neutral vowel/a/in ATR harmony}

Two languages, Mbure and Tuki, have an ATR-neutral vowel /a/. In both cases, the vowel /a/ has a harmonic counterpart /e/ or / \(/\) /, which occurs predominantly in roots. As Van der Hulst and Smith (1986: 234) find, "the harmony system is obscured" because the vowel /a/ fails to harmonise in particular morphemes. In both Tuki and Mbure, the vowel /a/ occurs external to the root and is opaque, blocking-ATR harmony spread. In Example 343, the bolded elements are [+ATR]. The suffixes with /a/ which block ATR harmony are underlined.

292 The phonological systems of the Mbam languages


In both Mbure and Tuki, noun-class prefixes with the vowel /a/ do not have a [+ATR] counterpart. The prefix vowel is realised as [a], even with [+ATR] vowels in the noun root, as indicated by the bolding in Example 344.

Example 344: Neutral vowel /a/ in prefixes
\(\left.\begin{array}{llll}\text { Mbure } & \text { [pàkánd }] & \text { pà } \neq \text { kánd } & \text { women } \\ & \text { [pàkónì }] & \text { pà } \neq \text { kónì } & \text { adults } \\ \text { Tuki } & {[\beta a ̀ k u ́ t o ́ ~}\end{array}\right]\)

Outside the root, the only affix in Tuki with the vowel /a/ which optionally undergoes ATR harmony is the reflexive verb prefix, \(\boldsymbol{\beta}\) á-. The [+ATR] elements are bolded in Example 345.

Example 345: Optional ATR harmony of the reflexive prefix in Tuki
\begin{tabular}{|c|c|c|c|c|}
\hline ঠ̀-ßá \(=\mathbf{t i ́ j}\)-ə́ & ò- \(\beta\) ó \(\neq \mathbf{t i ́ j}\)-ə́ & &  & embrace, hug \\
\hline \multicolumn{5}{|l|}{c3-REFL \(\ddagger\) hug-FV} \\
\hline ò-ßáłtóm-ìn-à ~ & ò-ßáłtóm-ìn-à & & ù- \(\beta\) áキtóm-ìn-à & lie down, slee \\
\hline \multicolumn{5}{|l|}{c3-REFL \(=\) sleep-APPL-FV} \\
\hline ò- \(\beta\) á \(\neq\) hún-á & ò-ßó\#hún-ə́ & & ù- \(\boldsymbol{\beta}\) á\# \(\boldsymbol{h}\) ún-ó & blow (nose) \\
\hline \(3-\) REFL \(\ddagger\) blow-Fv & & & & \\
\hline
\end{tabular}

In Tuki, if the prefix /a/ undergoes ATR harmony, other prefixes to its left may also undergo ATR harmony. If the prefix /a/ does not undergo ATR harmony, it is neutral and blocks the spread of ATR.

\subsection*{4.3.1.2 Other neutral vowels in ATR harmony}

While the vowel /a/ is the most common neutral vowel in ATR harmony, Tuki has another neutral segment with a high [-ATR] neutral vowel. The applicative suffix -m (underlined) occurs in verbs as neutral and blocks ATR harmony from spreading, although the vowel /i/ has a [+ATR] counterpart /i/.

Contrastive features \& relationship between inventory and behaviour 293
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{Tuki} & --- &  & lie down, sleep \\
\hline & & -REFL \(=\) sleep-APPL-FV & \\
\hline & \multirow[t]{4}{*}{\(\neq\) gún-ó} & \(\neq\) gún- & drive away \\
\hline & & \#drive.away-APPL-FV & \\
\hline & & \#rìt-ìn-j-̇̀ & harmonise \\
\hline & & \# harmonise-APPL-CAU & \\
\hline
\end{tabular}

While most ATR-neutral vowels are [-ATR], there is a handful of [+ATR] neutral vowels found in Tuki and Maande noun-class prefixes. In the case of Tuki, nounclass prefixes 5,8 , and 19 are invariably [+ATR] even with noun roots which are [ATR] as in Example 346.

Example 346: Invariable [+ATR] noun-class prefixes in Tuki
\begin{tabular}{ll}
\(\mathbf{l} \neq\) tá:ní & c5.rock \\
\(\mathbf{i} \neq\) bùmù & c5.stomach \\
\(\boldsymbol{\beta} \mathbf{i} \neq\) tóndó & c8.navels \\
\(\boldsymbol{\beta} \neq\) tótí & c8.roosters \\
\(\mathbf{l} \neq\) hórá & c19.broom \\
\(\mathbf{i} \neq\) kókú & c19.breast, chest
\end{tabular}

Taylor (1990: 5) notes that in Maande, there are a few [-ATR] words which are exceptional in that their prefix may optionally be [+ATR]. Of the three cases given by Taylor (see Example 347 below), two are from noun class \(19^{268}\).

\section*{Example 347: Optional disharmonic [+ATR] prefixes in Maande \\ Maande hìłkólókótò ~ hì \(=\) kólókótò c19.wasp \\ hì \(\neq\) j̀fò ~ hì \(\neq\) òfò c19.fish \\ ì \(\neq\) bálà \(\quad\) ì \(\neq\) bálà \(\quad\) 9.leopard}

Prepositions in Maande will generally become [+ATR] when followed by a [+ATR] noun as seen in Example 348 (a). However, these disharmonic [+high, +ATR] prefixes are not dominant; rather like [-ATR] words, they do not cause the preposition to become [+ATR], as seen in Example 348 (c) and compared with (b).

Example 348: Maande disharmonic [+ATR] prefixes in noun phrases
\begin{tabular}{ll} 
a) ìbálà nà hìsótì \({ }^{269}\) & leopard and duiker \\
b) tònààná nà bìlà & pots and clothes \\
c) nà tfjóyó nà hìkólókótò & bee and wasp
\end{tabular}

The disharmonic [+high, +ATR] prefixes, although they are neutral vowels, cannot be said to be either transparent or opaque to vowel harmony. In the Mbam languages, [-ATR] does not spread, rather it is the default value. Thus in Example 348 above, one cannot speak of [-ATR] spreading through a "transparent" [+ATR]

\footnotetext{
\({ }^{268}\) It is not surprising that noun class 19 would be [+ATR] since it is a reflex of the proto-Bantu *pi-
\({ }^{269}\) The first two examples come from Taylor (1990: 8) with my phonetic transcriptions.
}
vowel. Rather, the [+ATR] vowel is disharmonic but not dominant so that its [+ATR] feature does not spread to the preposition which then surfaces in its default form.

\subsection*{4.3.1.3 Relevance of neutral vowels in the context of the Mbam languges}

As mentioned above, one of the more complex problems in analysing vowelharmony systems involves the occurrence of neutral vowels. In the following sections, we will look at how neutral vowels (both opaque and transparent) have been previously analysed and discuss some of the problems with these analyses given the facts of the behaviour of neutral vowels in the various vowel-harmony types present in the Mbam languages.

First, in sectons 4.3.2 and 4.3.3 we will discuss Mbam rounding, fronting and height harmonies and their neutral vowels, placing these vowel harmonies in the wider context of Bantu and African lingustics. Then in section 4.3.4, we will look at various analyses of neutral vowels taking into account the characteristics and behaviours of neutral vowels in Mbam rounding harmony, and discussing the problems they pose to the theories pertaining to neutral vowels. Later in section 4.4, we will consider the interaction of vowel inventory and vowel harmony in the Mbam languages and what they can reveal about neutral vowels.

\subsection*{4.3.2 Neutral vowels in rounding and fronting harmony}

Rounding and fronting harmony are less common in African or Bantu languages, but, especially in the case of the former, are robustly attested in the Mbam languages. This section looks at these two harmonies in the wider context of African languages (sections 4.3.2.1 and 4.3.2.2 respectively), in order to place the rounding and fronting harmony of the Mbam languages into the wider context of Niger-Congo and other African languages. Then in section 4.3.2.3, we will discuss neutral vowels in rounding (and fronting) harmony. Neutral vowels occur in both rounding and fronting harmony. However, fronting harmony occurs only in Yangben and patterns identically with rounding harmony. For this reason, fronting neutral vowels will be discussed with Yangben rounding neutral vowels.

Rounding neutral vowels include both opaque and transparent vowels. For example, the vowels ( \(/ \mathrm{i} /\), \(/ \mathrm{I} /, / \mathrm{u} /\) and \(/ \mathrm{J} /\) ) are all neutral in rounding and fronting harmony and can be either transparent or opaque depending on the language. Of most interest is that in Tuki, the vowels /i/ and /I/ are opaque to rounding harmony, and the vowels \(/ \mathrm{u} /\) and \(/ \mathrm{v} /\) are transparent, but in Gunu, the opposite is true: the vowels \(/ \mathrm{i} /\) and \(/ \mathrm{I} /\) are transparent to rounding harmony and the vowels \(/ \mathrm{u} /\) and \(/ \mathrm{v} /\) are opaque to it.

\subsection*{4.3.2.1 Overview of rounding harmony}

Rounding harmony "is a phonological process whereby certain vowels surface as rounded under the influence of a neighbouring rounded vowel" (Kaun 2004: 87).

Rounding or round harmony is common in the Turkic, Mongolian and Tungusic branches of Altaic, but it is also found in many Niger-Congo languages. Rounding harmony is often restricted, and only applies when the affected vowel happens to "agree with respect to a second feature like height or backness" (Krämer 2003: 7).

Akan, a Kwa (Niger-Congo) language of Ghana, is described by O'Keefe (2003) as having both ATR and rounding harmony. O'Keefe looks at three dialects of Akan: Asante, Akuapem and Fante. In this section, I look only at what O'Keefe says about Akan rounding harmony. He lists several Akan prefixes which undergo rounding as well as ATR harmony (2003: 10). In particular, the future prefix is either /be-/ or /be-/ in Akuapem and Asante dialects, but it can also surface as /bo-/ or /bo-/ in Fante (O'Keefe 2003: 11), when the verb root has a round vowel. In Fante, when the root vowel is not round, the future prefix is not round. He gives the following in Example 349 as evidence. The rounded future prefix is bolded and the round root vowel, which triggers rounding, is underlined:
\begin{tabular}{|c|c|c|c|c|}
\hline Example 349: & nding h & mony in verb & refixes & \\
\hline Dialect & [-ATR] & gloss & [+ATR] & gloss \\
\hline Akuapem/Asante & o.be.kv & he will fight & o.be.tu & he will dig it up \\
\hline Fante & o.bo. \(\underline{\text { k }}\) & he will fight & o.bo.tu & he will dig it up \\
\hline & & & o.be.dzi & he will eat it \\
\hline
\end{tabular}

In Example 350, O'Keefe (2003: 15-16) demonstrates a case in Asante where both rounding and ATR harmony are at work. A past tense suffix /-Vyz/ and a nominal suffix which is a mid vowel undergo both ATR and/or rounding harmony. The target vowel is bolded and the trigger vowels are underlined.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Example 350: Akan (Asante) rounding harmony in suffix} \\
\hline Suffix & [-ATR] & gloss & [+ATR] & gloss \\
\hline -V:yc & 0.ton.v:yع & he sewed it & o.kan.ı: ye & he read it \\
\hline \multirow[t]{2}{*}{\(-\mathrm{V}_{\text {[mid] }}\)} & adi.e & thing & esi.e & anthill \\
\hline & ¢WU. \(\boldsymbol{v}\) & honey & owu. 0 & death \\
\hline
\end{tabular}

\subsection*{4.3.2.2 Overview of fronting harmony}

Fronting harmony is commonly found in Finno-Ugric and Turkic languages, among others (Krämer 2003: 6), where it is more generally called palatal or back harmony. All vowels in the domain, often the phonological word, are either front vowels or back vowels. As in other types of vowel harmony, there are often some vowels which are neutral, either transparent or opaque to the vowel harmony.

Unlike the Uralic languages, which have two mutually exclusive sets of vowels differing only in regards to the feature back, many African languages have a fronting vowel harmony where the feature affects only susceptible vowels.

Kera, an East Chadic (A.3) language of south-western Chad, has height, fronting and rounding harmony (Pearce 2007: 94). In Kera, height harmony is bidirectional and will raise a low vowel (ex. \(/ \varepsilon /\) or \(/ \mathrm{a} /\) ) to high in the environment of a high vowel (Pearce 2003: 8 and 2007: 93), as is seen when the suffix \(/-\varepsilon /\) becomes \(/-\mathrm{i} /\) when it is added to /vi:g/ empty or the suffix /-i/ causes /bà: \(\mathrm{d} /\) wash to assimilate to /bì: \(\mathrm{d} / \mathrm{as}\) in Example 351. Fronting harmony in Kera is illustrated when the underlying high central vowel, /i/, is fronted to /i/ by an underlying high front vowel (Pearce 2007: 94), as is seen in the words /cii/ head and /isk/ hear when the suffix /-i/ is added also in Example 351 below.
\begin{tabular}{lclll} 
Example 351: & Fronting harmony in Kera & (Pearce 2003: 8) & \\
& underlying form & surface form & gloss \\
H. trigger/target & ciì-i & cīirī: & your \((f)\) head \\
& isk-i & iskī: & hear you \((f)\) \\
non-H trigger & vi:g- \(\varepsilon\) & vi:gi & is emptying \\
non-H target & baad-i & bìidì: & wash you \((f)\)
\end{tabular}

Pearce (2003: 9, 14; 2007: 95) also identifies another type of fronting harmony triggered by a front suffix vowel and targeting central vowels in the same foot, \({ }^{270}\) Example 352 Kera feet are identified by parentheses. Note that fronting does not occur across the foot boundaries.
\begin{tabular}{|c|c|c|c|}
\hline Example 352: & Kera suffix-triggere underlying form & fronting (Pear surface form & \[
\begin{aligned}
& \text { 2003: 2007) } \\
& \text { gloss }
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{single foot} & is- \(\varepsilon\) & (īsī:) & to sit down \\
\hline & bij- \(\varepsilon\) & (bìǹi:) & to open \\
\hline & bal- \(\varepsilon\) & (belc) & to love \\
\hline & fal- \(\varepsilon\) & (félé:) & to find \\
\hline \multirow[t]{2}{*}{two feet} & isk- \(\varepsilon\) & ('ss)(kí:) & sit you ( \(f\) ) down \\
\hline & fal-t- \(\varepsilon\) & (fál)(ť́:) & find (HAB) \\
\hline
\end{tabular}

Konni, a Gur language of Ghana, has a type of front assimilation which occurs where a sequence aCı optionally becomes \(\varepsilon \boldsymbol{C l}_{\mathbf{I}}\) if the C is coronal (Cahill 2007: 277), as in Example 353 (a). When the intervening consonant is a velar or labial, front assimilation does not occur, as in Example 353 (b).

\footnotetext{
\({ }^{270}\) Kera is a weight-sensitive language. Feet may include one or two syllables. The licensed feet are 1) one heavy (CV: or CVC) syllable, 2) a light syllable (CV) with a heavy syllable, or 3) two light syllables. (Pearce 2003: 22).
}

\section*{Example 353: Konni fronting of /a/ with coronal (Cahill 2007: 277-8)}
\begin{tabular}{|c|c|c|c|c|}
\hline (a) & balı & ~ & belı & speak (v) \\
\hline & tasi & \(\sim\) & tesi & kick (v) \\
\hline & gbáríáy & \(\sim\) & gbéríáy & earthworm \\
\hline & gbalıgı & \(\sim\) & gbelıgı & be tired \\
\hline & prası & \(\sim\) & piesi & ask \\
\hline & kprası & \(\sim\) & kpıesı & chickens \\
\hline (b) & dagı & & & show (v) \\
\hline & nmabi & & & shatter \\
\hline
\end{tabular}

Fronting harmony is probably the least attested vowel harmony in African languages, with only a few languages found having it. While the fronting harmony of Yangben is more general and robust than is found in the languages above, it does illustrate that although perhaps rare, the fronting harmony of Yangben is not an anomaly.

\subsection*{4.3.2.3 Neutral vowels in rounding harmony}

While the neutral vowel/a/ in ATR harmony is clearly opaque or occurs at the word edge, the neutral vowels in rounding harmony are more complicated. The fact that \(/ \mathrm{i}\), \(\mathrm{I}, \mathrm{u}, \mathrm{o} /\) are neutral to rounding harmony is not exceptional, since they are phonologically-motivated non-participating vowels (Finley 2009: 18). Following Dresher (2009: 9), who proposes assigning "contrastive features based on an ordering of features into a hierarchy" rather than "based on minimal differences between fully specified phonemes..." none of the high vowels \(/ \mathrm{i} /, / \mathrm{I} /, / \mathrm{u} /, / \mathrm{c} /\) in the Mbam languages has a contrastive feature [round], see section 4.4 for a more complete discussion of Dresher's contrastive-feature hierarchy and its application to the Mbam languages.

The question therefore is why there is variation between the Mbam languages concerning the opacity or the transparency of these high vowels ( \(/ \mathrm{i} /, / \mathrm{I} /, / \mathrm{u} /, / \mathrm{J} /\) ) in rounding harmony. Four patterns are attested: (1) both high front and high back vowels are opaque and block rounding harmony, (2) only high front vowels are opaque, (3) only high back vowels are opaque, (4) neither high front nor high back vowels are opaque:

\section*{High front and high back vowels are opaque to rounding harmony.}

In Nen and Maande, all high vowels block rounding harmony from spreading from the verb root to the final vowel, as in Example 354.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Example 354: All high vowels are opaque to rounding harmony} \\
\hline \multirow[t]{3}{*}{Nen} & òキkón-ón-à & tip over-SEPAR-FV \\
\hline & ù \(\ddagger\) hól-ín-̀̀ & wrap up-APPL-FV \\
\hline &  & press (v)-DIM-FV \\
\hline Maande & ò \(\neq \mathrm{b}\) ¢́y-ón-à & find, obtain-SEPAR-FV \\
\hline & ò \(\neq\) bók-ít-̇̀ & cry-DIM-FV \\
\hline
\end{tabular}

In Yambeta, high front vowels are clearly opaque to rounding harmony in the verb stem. Very few examples of suffixes with high back vowels are found in the corpus, and the few examples found either do not have a target vowel /a/, or occur on verbs without a non-high (open) round vowel. However, in Yambeta preverbal morphemes, the high back vowels do block rounding harmony, see section 3.3.4.1 above.

\section*{Example 355: Yambeta opaque high front vowels}
\begin{tabular}{lll} 
Yambeta & \(\neq\) j̀p-ìn-à & crush-APPL-FV \\
& \(\neq\) kós-ín-à & cough-CONT-FV
\end{tabular}

\section*{Only high front vowels are opaque}

While high front vowels are opaque, high back vowels are transparent. In Tuki, only \(/ 0 /\) triggers rounding harmony. The high back vowels \(/ v /\) and \(/ \mathrm{u} /\) do not trigger or block rounding harmony. Example 356 shows the opacity of the high front vowels \(/ \mathrm{I} /\) and \(/ \mathrm{i} /\), but it shows also that \(/ \mathrm{\sigma} /\) is transparent to rounding harmony. Since the [+ATR] [ 0 ] is not contrastive, examples of the transparency of /u/ are precluded.

\section*{Example 356: High front vowels are opaque}

Tuki
\begin{tabular}{|c|c|}
\hline \(\neq\) no \({ }^{\text {n }}\) g-ìt-à & fold-DIM-FV \\
\hline \#tòmb-ìj-è & calm o.s.-CAUS-FV \\
\hline \(\neq \mathrm{t}\) fók-óm-ìj-è & narrow-STATIV-CAUS-FV \\
\hline \# sóm-ón-ò & accuse-SEPAR-FV \\
\hline \(\neq\) to \(^{\text {¹ }}\) g-ór-ò̀n-ò & admire-SEPAR-FV \\
\hline
\end{tabular}

\section*{Only high back vowels are opaque}

While high back vowels are opaque, high front vowels are transparent to rounding harmony. In contrast to Tuki, high back vowels in Gunu are opaque and block rounding harmony, while even multiple high front vowels are transparent to rounding harmony, as in Example 357.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Example 357: High back vowels are opaque} \\
\hline Gunu & \(\neq\) sóm-ìn-ò & accuse-APPL-FV \\
\hline & \# sól-ìl -ò & insist-INTENS-FV \\
\hline & \#pòl-ìn-ò & pierce-APPL-FV \\
\hline & \# bón-ìg-ì-ò & cause to drink-INTENS-FV \\
\hline & \(\neq\) fòj-òg-à \({ }^{\text {a }}\) & wake up-SEPAR-FV \\
\hline & \#jòb-òm-à \({ }^{271}\) & stagger-STATIV-FV \\
\hline
\end{tabular}

High front and high back vowels are transparent to rounding harmony
In three Mbam languages, Elip, Mmala and Yangben, all high vowels are transparent to rounding harmony. Example 358 below illustrates Elip and Yangben.

Example 358: All high vowels are transparent to rounding harmony
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Elip} & \(\neq\) dól-íg-òn & set fish trap-INTENS-CONT \\
\hline & \# sòn-ìg-òn-è \({ }^{272}\) & insert-INTENS-CONT-CAUS \\
\hline & \(\neq{ }^{\text {m }}\) p-ò̀n-òn-ìn & peel-SEPAR-RECP-APPL \\
\hline & \(\neq\) ơn \(^{\text {d }}\)-úg-òn-è & heal-?-CONT-CAUS \\
\hline \multirow[t]{6}{*}{Yangben} & \(\neq\) pónd-ìk-òn & shrink-INTENS-CONT \\
\hline & \(\neq\) ǒk-ìk-òn & bank a fire-INTENS-CONT \\
\hline & \#jóp-ìl-ò & stutter, babble-?-FV \\
\hline & \#tòt-ìn-ò & smile-APPL-FV \\
\hline & \(\neq\) ǒm-ùk-òs-ì & honour, praise-SEPAR-CAUS \\
\hline & \(\neq\) kós-ò̀n-̇े & cough-SEPAR-FV \\
\hline
\end{tabular}

In Mmala, the intensive extension -ig lowers to - \(\varepsilon g\) due to height harmony triggered by \(/ 0 /\) in the verb root. It is underlyingly a high vowel, see section 2.7.3.2.4. The separative suffix -on never surfaces with a [-ATR] vowel in the context of \(/ \mathrm{o} /\), see Example 359. The reasons for this are discussed in section 4.4.4 below.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Example 359: Transparent high vowels in Mmala} \\
\hline Mmala & -bíf dòll-èg-òn & REFL \(\ddagger\) listen-INTENS-CONT \\
\hline & \# góg-íd-òn-ì \(^{\text {den }}\) & pull-DIM-RECP-CAUS \\
\hline & \(\neq\) ¢̀ y -ùn-ò & sell, barter-SEPAR-FV \\
\hline & \(\neq{ }^{\text {m }}\) f-ùn- \({ }^{\text {a }}\) & peal-SEPAR-FV \\
\hline & キol-un-o & unwrap, untie-SEPAR-FV \\
\hline
\end{tabular}

As with rounding harmony, no high vowels block fronting harmony in Yangben, as is seen in Example 360 (a). However, there is loss of contrast between [+ATR/-front] and [+ATR/+front] harmony combinations. Since front is dominant in Yangben, it is assumed that the final vowel -e is due to fronting and ATR harmony rather than merely to ATR harmony in Example 360 (b).

\footnotetext{
\({ }^{271}\) No [+ATR] examples were found in the Gunu corpuses, because \(/ 0 /\) is less commonly found in roots.
\({ }^{272}\) As indicated above, most dialects of Elip never round the final vowel, see section 2.6.3.2.4 above.
}

\section*{Example 360: High-vowel transparency in fronting harmony \\ Yangben \\ \begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{(a)} & \(\neq \mathrm{t}\) ¢̀t-ìn- \({ }^{\text {c }}\) & tremble-INTENS-FV \\
\hline & \(\neq\) sès-ò̀n- & crush, step on-SEPAR-FV \\
\hline (b) & \(\neq\) sèn-ùl-è & tickle-EXTENS-FV \\
\hline & \#pèp-ìn-è & palpitate (of heart)-INTENS-FV \\
\hline
\end{tabular}

\subsection*{4.3.3 Neutral vowels in height harmony}

While height harmony is fairly common in Bantu languages, only one Mbam language, Mmala, has a robust and active height harmony. Since Elip has only unproductive traces of height harmony in its noun-class system, it will not be discussed in this section. An overview of Bantu height harmony is presented in section 4.3.3.1, and a description of Mmala height-neutral vowels is discussed in section 4.3.3.2.

\subsection*{4.3.3.1 Overview of height harmony in Bantu languages}

Hyman identifies vowel height harmony (VHH) as the harmonising of the historical degree-2 vowels ( \(*_{I}, *_{U}\) ) in height with a preceding mid vowel. This process may be different with respect to the back vs. front vowels (Hyman 2003: 46).

Hyman (1999: 236-8) identifies certain characteristics considered canonical in vowel-height harmonies in Bantu languages. These characteristics are that only mid root vowels trigger vowel harmony. The high vowels undergo harmony and the low vowel /a/ is generally opaque. Vowel-height harmony usually affects only certain derivational suffixes and may be symmetric as in the case of proto-Equatorial Bantu, or asymmetric, as in the case of proto-Savannah Bantu where the front mid vowels do not trigger the harmonic lowering of \(/ \mathrm{u} /\).

Kinande (D/J.42) has a 7/9-vowel system ([e] and [o] are not contrastive) and asymmetric vowel-height harmony where both high vowels are lowered after a back mid vowel, but only the front high vowel is lowered after a front mid vowel (Hyman 1999: 237). In Example 361, given by Mutaka (1995: 43), \({ }^{273}\) the suffixes -ul and -ir in the bolded examples are lowered to - \(\mathbf{o l}\) and \(-\varepsilon \mathbf{r}\) after the back mid vowel \(/ \mathrm{o} /\), but only -ir is lowered after the front mid vowel \(/ \varepsilon /\).

\footnotetext{
\({ }^{273}\) There is more going on in Kinande that I go into here. This example does not take into account more recent analyses.
}

\section*{Example 361: Kinande VHH (Mutaka 1995: 43)}
\begin{tabular}{|c|c|c|}
\hline -lim-a & -lim-ir-a & to work (for) \\
\hline -hck-a & -hék-cr-a & to carry (for) \\
\hline -seng-a & -seng-ul-a & to (un)pack \\
\hline -hat-a & -hat-ir-a & to peel (for) \\
\hline -log-a & -log-er-a & to bewitch (for) \\
\hline - \(\beta\) oh-a & - \(\beta\) oh-sl-a & to (un)tie \\
\hline -lung-a & -lung-ul-a & to join (straighten) \\
\hline
\end{tabular}

Unlike in the previous example, where the front mid vowels did not trigger lowering of the round mid vowels, vowel-height harmony in many Western or Equatorial Bantu languages have symmetrical VHH in which both the front and the back mid vowel(s) will lower all high vowels of the extensions to mid. Hyman (2003: 47) illustrates symmetric VHH of Mongo (7-vowel system) in Example 362. Note (in the bolded examples) that both suffixes -el and -ol are lowered to - \(\boldsymbol{\varepsilon l}\) and \(-\mathbf{o l}\) (bolded) after both \(/ \varepsilon /\) and \(/ \rho /\) in the verb root (underlined).

\section*{Example 362: Mongo-Nkundo VHH (Hyman 2003: 47)}
\begin{tabular}{|c|c|c|c|}
\hline -íy-el & steal for & -is-ol- & uncover \\
\hline -ét-el- & call for/at & -bet-ol- & wake up \\
\hline -kınd-el- & go for/at & -téng-ol- & straighten out \\
\hline -kamb-el & work for/at & -bák-ol- & untie \\
\hline -kgt-cl- & cut for/at & -mom-sl- & unglue \\
\hline -tóm-el & send for/at & -komb-ol- & open \\
\hline -lúk-el- & paddle for & -kund-ol- & dig up \\
\hline
\end{tabular}

\subsection*{4.3.3.2 Neutral vowels in Mmala height harmony}

Height harmony spreads from right-to-left from a height-dominant suffix or root vowel to all [-ATR] high vowels. The vowel/a/ is opaque to height harmony unless it has also undergone rounding harmony. The vowel \(/ \rho /\), whether it is underlyingly \(/ \mathrm{/}\) or the result of rounding harmony, always participates in height harmony. The [+ATR] disharmonic vowel \(/ \mathrm{u} /\) is transparent to height harmony in Mmala.

In Example 363 (a), the height-dominant suffix - \(\boldsymbol{\varepsilon n}\) (underlined) triggers lowering of the vowel in the verb root, the reflexive prefix bí-, and the near-future prefix gàgó- (bolded). The vowel /a/ in the tense markers is neutral and blocks height harmony to the \(\mathrm{c} 1(3 \mathrm{~s})\) concord \(\boldsymbol{\sigma}\)-, which does not undergo lowering.

In Example 363 (b), the height-dominant root vowel (underlined) will cause lowering in the vowel of the negative preverbal morpheme dì- (bolded). As \(/ \mathrm{s} /\) also triggers rounding harmony, both the final vowel and the tense markers with the vowel /a/ are rounded. The rounded vowel is not opaque to height harmony, allowing the height harmony to trigger the lowering of the vowel in the negative marker.

Due to the［＋ATR］disharmonic vowel in the context of \(/ \rho /\)（see section 4．4．4 for a full discussion on the disharmonic［＋ATR］high back vowel in Mmala），all the high back vowels are［＋ATR］and as such do not participate in height harmony，as seen in Example 363 （c）．However，these disharmonic［＋ATR］high vowels are transparent to height harmony as well as rounding harmony．In Example 363 （d），the verb root with \(/ \mathrm{o} /\) triggers height harmony in the first person plural concord，despite the fact that the \([+\mathrm{ATR}] / \mathrm{u} /\) is in the present tense marker gú－．

Example 363：Height harmony in Mmala preverbal morphemes
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{（a）} & UF & Ù－sà－bífodóg－èn & \multirow[t]{2}{*}{S／he put her load on her head．} \\
\hline & SF & \[
\begin{aligned}
& \text { ঠ̀-sà-b } \neq \mathbf{d} \mathbf{g} \text { - }-\mathrm{\varepsilon} \mathrm{n} \\
& \text { c1-P1-REFL } \neq \text { load-APPL }
\end{aligned}
\] & \\
\hline & UF & Ù－gàgó－bífdóg－Èn & S／he will put her load on her head． \\
\hline & SF & \[
\begin{aligned}
& \text { ⿱亠乂寸-gàgó-b } \dot{\varepsilon} \neq \mathbf{d} \mathbf{g} \mathbf{g}-\underline{\text { èn }} \\
& \text { c1-FT1-REFL } \neq \text { load-APPL }
\end{aligned}
\] & \\
\hline \multirow[t]{3}{*}{（b）} & UF & ǹ－dì－má－g \({ }^{\mathrm{W}} \neq\) òn－à & \multirow[t]{3}{*}{I am not laughing at you．} \\
\hline & SF & ǹ－dè－mó－ \(\mathrm{g}^{\mathrm{w}} \neq \underline{\text { òn－}}\) & \\
\hline & & 1s－NEG－P0－2sIO－laugh－FV & \\
\hline \multirow[t]{3}{*}{（c）} & UF & Ù－gàgúf dóny－à & \multirow[t]{3}{*}{S／he will sing．} \\
\hline & SF & ù－gògú－dón－ò & \\
\hline & & c1－FT1－sing－FV & \\
\hline \multirow[t]{3}{*}{（d）} & UF & dì－gú \(\neq\) j̀ \(^{\text {d }}\)－à \(\quad\) mò \(\neq\) j̀bò & \multirow[t]{3}{*}{We are buying fish} \\
\hline & SF &  & \\
\hline & & 1p－PRES \(\ddagger\) buy \(\quad \mathrm{mu} \neq \mathrm{fish}\) & \\
\hline
\end{tabular}

\section*{4．3．4 Various analyses of neutral vowels}

Neutral vowels，especially transparent vowels，have been a topic of discussion in many phonological theories：
＂．．．vowel transparency flies in the face of the assumption maintained in this dissertation that assimilation only applies between strictly adjacent segments＂（Baković 2000：266）．

Many efforts have been made to explain why certain neutral vowels＂seem to allow the opposite value of the harmonic feature to pass right through them．．．＂（Baković 2000：265）．Baković（2000：266－8）summarises three different analyses of transparent vowels，favouring the last one：
- Non-local assimilation: The harmonising feature skips over the transparent vowel. There have been many arguments against this analysis in the literature.
- Feature copying: The transparent vowel blocks the spread of vowel harmony, as though it were opaque, but then the harmonic feature is copied onto a vowel on the opposite side of the neutral vowel and vowel harmony continues as usual.
- Derivational opacity: The neutral vowel is harmonic at an intermediate level, which later is neutralised at the surface level.

Van der Hulst and Smith (1986: 261) propose classing vowels into two categories "accessible" and "inaccessible". Inaccessible vowels are opaque. They are represented autosegmentally as having segmental boundaries which extend to the harmonic tier. Accessible vowels fall into two subsets: those that are underlyingly associated (i.e. transparent vowels) and those that are not associated (i.e. harmonising vowels). Opaque vowels are those which are outside "the scope of a feature" and cannot associate to it or are associated to a feature within a segmental domain and cannot associate to a feature outside that domain (Van der Hulst \& Smith 1986: 260). Van der Hulst and Smith's analysis assumes privative features for vowels, with the unassociated vowels taking a default value.

Archangeli and Pulleyblank (1994) propose that the lack of contrast may underlie the transparency of these vowels. That is, in Wolof, the non-contrastiveness of [+high, -ATR] vowels is reflected in their neutrality to vowel harmony.

Finley (2008) proposes an adaptation on Goldrick's (2001) Turbidity Theory to explain the occurrences of opaque and transparent neutral vowels in vowel harmony. Finley (2008: 127-8) explains that
"In Turbid Spreading, all features have three levels of representation: an underlying form, a projection (abstract) form and a phonetic (surface) form. These three levels interact such that spreading is initiated by an underlying form and applies through the projection level. Because the pronunciation representation need not share the same feature value as the projection level, vowels may undergo spreading abstractly, but pronounce a different feature, providing an account of transparent vowels. Because this mismatch of pronunciation and projection comes at a cost (violating a RECIPROCITY constraint), some rankings will produce transparent nonparticipating vowels, while other rankings will produce opaque nonparticipating vowels."

So transparent vowels are those that undergo spreading abstractly, but their underlying form is pronounced, while opaque vowels are those that do not have a mismatch of pronunciation and projection.

Following Finley's (2008) examples but using the feature [round] instead of [ATR], her Turbid Spreading does account for some of the Mbam data. The modified features used therefore are:
- *[+high, +round]: high vowels may not be contrastively round (following Dresher's (2009) contrastive-feature hierarchy (see Section 4.4). The high back vowels \(/ \mathrm{u} /\) and \(/ \sigma /\), which are redundantly round, are also neutral.
- SPREAD [+round]-R: Rounding harmony spreads to the right ([-round] does not spread).
- RECIPROCITY: "When projection and pronunciation are mismatched, the RECIPROCITY constraint is violated" (Finley 2008: 65).
- ID[round]: "ID[F] \({ }^{274}\) is violated by any segment that is projected by its surface representation or the projection of one of its neighbours" (Finley 2008: 88).
- The down arrow \((\downarrow)\) represents a phonologically unchanged (faithful) representation; a projection from the underlying form. The side arrows \((\leftarrow\), \(\rightarrow\) ) represent spreading from a neighbouring form (Finley 2008: 75).

Taking an example from Yangben (Table 73), in which all high vowels are transparent to rounding harmony and as well an example from Maande (Table 74) in which all high vowels are opaque, Finley's model works rather well. In Finley's model, SPREAD \([\mathrm{F}]\) involves the spread of both \([+\mathrm{F}]\) and \([-\mathrm{F}]\). In order to best fit the data of the Mbam languages, this study claims that only [+round] spreads. For the neutral vowels to be transparent, SPREAD is ordered before RECIPROCITY.

\footnotetext{
\({ }^{274} \mathrm{ID}(\mathrm{F})\) is featureal identity and "...governs the relationship between the underlying form and the projection level" (Finley 2008: 88).
}

Table 73: Transparency \& Turbid Spreading (Finley 2008: 95): Yangben
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{\(1 \neq\) pónd-ik-àn/ [ \(=\) pónd d -ìk-òn] shrink-INTENS-CONT} & \begin{tabular}{l}
*[+high, \\
+round]
\end{tabular} & \[
\begin{aligned}
& \text { Spread } \\
& \text { [+round] }- \\
& \text { R } \\
& \hline
\end{aligned}
\] & Reciprocity & ID [round] \\
\hline & & & & \[
\bar{\downarrow}
\] & \[
\rightarrow
\] & -/
-] & & **! & & * \\
\hline &  & & & \[
+
\] & \[
\rightarrow
\] & \begin{tabular}{l}
-/ \\
\(+\) \\
+]
\end{tabular} & & & * & ** \\
\hline & & & & \begin{tabular}{l}
\(\downarrow\) \\
- \\
- \\
\hline
\end{tabular} &  & \[
\begin{aligned}
& -/ \\
& \downarrow \\
& - \\
& -]
\end{aligned}
\] & & **! & & \\
\hline & \[
\begin{array}{r}
\mathrm{d} \\
\hline
\end{array}
\] & & & \[
+
\] & \[
\rightarrow
\] & \begin{tabular}{l}
-/ \\
\(+\)
\[
+]
\]
\end{tabular} & *! & & & ** \\
\hline
\end{tabular}

In Yangben, where all high vowels are transparent to rounding harmony, options (a) and (c) are excluded due to the lack of spreading rounding harmony. Option (d) is excluded because it produces the ungrammatical [+high, +round] vowel. This leaves the winner as (b) even though reciprocity is violated.

In Maande (Table 74), where all high vowels are opaque, RECIPROCITY is ordered before SPREAD. Option (a) is excluded because it produces the ungrammatical [+high, +round] vowel. Options (b) and (d) are excluded because reciprocity is violated. This leaves the winner as (c), although spread is violated.

Table 74: Opacity \& Turbid Spreading (Finley 2008: 96): Maande


Finley (2008: 91) states, "If RECIPROCITY is ranked above SPREAD, the nonparticipating vowel is opaque. If RECIPROCITY is ranked below SPREAD, the non-participating vowel is transparent" (Finley 2008: 91). While this works for those languages which have only transparent or only opaque vowels (as illustrated above), the problem with Finley's Turbid Spreading becomes apparent with those languages with both opaque and transparent vowels active in the same vowel-harmony process. It is not clear what kind of ranking would permit certain high vowels to be transparent while others are opaque to rounding harmony. There is inconsistency between the languages about whether the [+high, +back] vowels are transparent or opaque to rounding harmony. In Gunu, the [+high, +back] vowels are opaque, but in Tuki, they are transparent (see Example 356 and Example 357 above).

Kiparsky and Pajusalu (2006: 221) following Van der Hulst and Smith (1986) posit three typological generalisations concerning neutral vowels: (1) Unmarkedness meaning that the neutral vowel is \([-F]\) where \([\mathrm{F}]\) is the harmonic feature. (2) Uniformity meaning that all vowels with a given value \([\alpha \mathrm{F}]\) will be either opaque or transparent. [-F] neutral vowels are transparent, \([+\mathrm{F}]\) vowels are opaque. (3) Asymmetry in that transparent vowels are predictably [-F].

The rounding neutral vowels in the Mbam languages do not support Kiparsky and Pajusalu's generalisations. Vowels transparent to rounding harmony in the Mbam languages are not predictably [-round]. In some of the Mbam languages with
rounding harmony, the high [+round] vowels \(/ \mathrm{u} /\) and \(/ \mathrm{v} /\) are transparent and in others the high [-round] vowels, /i/ and /i/, are opaque to rounding harmony or vice versa.

Generally, Optimality Theory assumes strict segmental locality and that "no outputs are generated in which a single featural autosegment is associated with segments S1 and S3 but not an intervening segment S2" (Walker 2012: 585). In support of this strict segmental locality, Ní Chiosáin and Padgett (2001) claim that intervening consonants also participate in vowel harmony, but may not be perceived as altered.

Following a similar line, Gafos and Dye (2011) discuss the phonetic bases of vowel harmony in general and of neutral vowels in particular. According to Gafos and Dye and others (2011: 22-3), there is a discontinuity in both the articulatory and electromyographic measures of lip rounding when English speakers pronounce identical vowels with an intervening consonant \((\mathrm{uCu})\). There is a trough in the electromyographic signal co-occurrent with the production of the intervening consonant. "The cessation of muscle activity during the consonant is consistent with the analysis that [...] the rounding of the two identical vowels [represents] two independent events". However when a speaker of a vowel-harmony language, like Turkish, produces a similar uCu utterance, instead of a trough, there is a "plateau of continuous activity" through the production of the consonant.
"... the linguistic representation underlying the production of lip rounding in Turkish is consistent with a central idea of autosegmental theory, namely, that assimilation and harmony involve representations in which a single instance of the assimilating or harmonising property extends over a domain encompassing all segments required to agree on that property" (Gafos and Dye 2011: 23).

If vowel harmony extends throughout the domain, affecting even consonants, the logical conclusion would be that even transparent vowels are somehow affected by rounding harmony in the Mbam languages. Then, it is assumed that even the high [round] vowels, /i/ and \(/ \mathrm{I}\) /, are affected by rounding harmony even though they do not show any perceptible rounding to [y] and [y].
"If the phonetics of 'rounding' is pursued with some care (Goldstein 1991, Disner 1983), lip posture can be hypothesised to spread through the intervening [i] without a substantial effect on its acoustics. Overall, then, the plausible hypothesis is that transparency is not failure to participate in harmony but failure to produce salient acoustic consequences of harmony (my italics) on a specific class of segments" (Walker 2012: 25). It is generally held that lip rounding will lower all three of the first formants. So, if rounding harmony spreads though the transparent vowels, there should be some symptom of this rounding (even if it is subphonemic) in the acoustic output of the transparent vowels. With this theory in mind, acoustic measures were taken for two languages, Yangben with all transparent high vowels in rounding

308 The phonological systems of the Mbam languages
harmony，and Maande with all opaque high vowels in rounding harmony to see whether there was any acoustic difference between the＂transparent＂vowels of Yangben and the＂opaque＂vowels of Maande．The tokens analysed are as found in Example 364．The shaded cells indicate high vowels in the context of rounding harmony．

Example 364：Rounding neutral suffixes in Yangben and Maande
\begin{tabular}{|c|c|c|}
\hline Yangben & \(\neq p\) ónd－ìk－òn & shrink－CONT \\
\hline & \＃ǒk－ìk－òn & bank a fire－CONT \\
\hline & \(\neq \mathrm{j}\) ¢́p－ìl－̀̀ & stutter，babble－EXTENS－FV \\
\hline & \(\neq\) tò：t－ìn－う̀ & smile－APPL－FV \\
\hline & \(\neq \mathrm{k}\) ¢́s－ธ̀n－ & cough－SEPAR－FV \\
\hline & \＃ǒm－ùk－òs－ì & honour，praise－SEPAR－CAUS \\
\hline & \(\neq\) kít－ìk－èn－ì & find（at some place）－INTENS－CONT－CAUS \\
\hline & \(\neq \mathrm{a}^{\mathrm{m}}\) b－ìk－àn & spread out，dry－INTENS－CONT \\
\hline & \(\neq\) sím－ìl－è & surprise，be astonished－EXTENS－FV \\
\hline & \＃sík－ìl－à & notch，carve something small and round－EXTENS－FV \\
\hline & \(\neq \mathrm{fà}:\) t－ìn－àn & carve，sharpen－APPL－CONT \\
\hline & \(\neq\) àn－òn－à & examine－SEPAR－FV \\
\hline & \＃àt－ı̀k－c̀n & get up and leave－SEPAR－FV \\
\hline & \＃tép－ùk－ès－ì & pass，traverse－SEPAR－CAUS \\
\hline Maande & \＃b bóy－ún－à & find，obtain－SEPAR－FV \\
\hline & \(\neq\) sól－ón－à \({ }^{275}\) & extract－SEPAR－FV \\
\hline & \(\neq\) ót－ók－ín－à & attach－SEPAR－APPL－FV \\
\hline & \＃òt－ìn－̇̀ & water，sprinkle－APPL－FV \\
\hline & \[
\neq \text { lóy-ít-à }
\] & call，invite－DIM－FV \\
\hline & \[
\neq \text { bók-ít-ə̀ }
\] & cry－DIM－FV \\
\hline & \(\neq\) fál－ón－à & succeed，lead to－SEPAR－FV \\
\hline & \＃fàn－で心㇒－à & unhook－SEPAR－FV \\
\hline & \(\neq\) ták－ín－à & plan，organise－DIM－FV \\
\hline & \(\neq\) bí－bíén－ín－̇̀ & REFLEX－give birth－APPL－FV \\
\hline & \(\neq \mathrm{t}\) ¢ân－ít－à & wound－DIM－FV \\
\hline & \(\neq\) fàl－ìt－à & weed a little－DIM－FV \\
\hline & \(\neq\) líh－ít－ò & last，remain－DIM－FV \\
\hline
\end{tabular}

In Yangben，where all the high vowels are transparent to rounding harmony，there is an indication that the high vowels have slightly lower frequencies in the context of rounding harmony than where there is no rounding harmony．The vowels／i／and／i／ in particular have，on average，lower F3 formants，and somewhat lower F1（for the vowel \(/ \mathrm{i} /\) ）or F2（for the vowel \(/ \mathrm{I} /\) ）．The high back vowels \(/ \mathrm{u} /\) and \(/ \mathrm{J} /\) are less

\footnotetext{
\({ }^{275}\) No example of the［＋ATR］－un suffix in a［＋round］context was found in the corpus．While examples were found for non－round verb roots，these were excluded due to the lack of the corresponding round verb roots．
}
consistent which may be due to the fact that they are already phonetically round vowels. However, a similar phenomenon is evident in Maande, where all the high vowels are opaque to rounding harmony. The high front vowels /i/ and /i/ were perhaps even more consistently lowered in the rounding harmony contexts than in Yangben. The shaded boxes in Example 365 indicate the lower formant averages for the neutral vowels in rounding harmony, and the italics show where the lower formant averages showed up in the non-round contexts.

Example 365: Variation in F1/F2/F3 values of neutral vowels in [+/-round] verbs: Yangben
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline AVE & \multicolumn{3}{|l|}{ in [+round] verbs } & \multicolumn{3}{l|}{ in [-round] verbs } \\
\hline & F1 & F2 & F3 & F1 & F2 & F3 \\
\hline\(/ \mathrm{i} /\) & 203 & 2215 & 2896 & 265 & 2172 & 2994 \\
\hline\(/ \mathrm{I} /\) & 335 & 2027 & 2723 & 321 & 2099 & 2789 \\
\hline\(/ \mathrm{u} /\) & 287 & 893 & 2524 & 272 & 891 & 2325 \\
\hline\(/ \sigma /\) & 347 & 955 & 2572 & 334 & 1225 & 2229 \\
\hline
\end{tabular}
[+/-round] verbs: Maande
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline AVE & \multicolumn{3}{|l|}{ in [+round] verbs } & \multicolumn{3}{l|}{ in [-round] verbs } \\
\hline & F1 & F2 & F3 & F1 & F2 & F3 \\
\hline\(/ \mathrm{i} /\) & 216 & 2077 & 3075 & 268 & 2285 & 3102 \\
\hline\(I_{\mathrm{I}} /\) & 444 & 2129 & 2684 & 400 & 2156 & 2815 \\
\hline\(/ \mathrm{u}^{276}\) & --- & -- & -- & -- & --- & --- \\
\hline\(/ \sigma /\) & 510 & 1028 & 2552 & 471 & 979 & 2584 \\
\hline
\end{tabular}
"The hypothesis grounding transparency in articulatory-acoustic relations may also allow us to understand why certain vowels exhibit transparency but other similar vowels exhibit opacity" (Gafos and Dye 2011: 25). In these two Mbam languages, however, there is not much evidence that the lowering of the frequencies of the first three formants in the context of rounding harmony is different in a language with transparent vowels than it is in a language with opaque vowels. The most that can be said from this limited data is that there is some indication that the frequencies of all rounding-neutral vowels are slightly lowered in the context of rounding harmony as opposed to the same vowels in non-round contexts. This slight lowering, too slight to make a perceptible difference, is perhaps sufficient to justify Ní Chiosáin and Padgett (2001) and Gafos and Dye (2011)'s hypothesis that vowel harmony does encompass all segments occurring in the vowel-harmony domain, including transparent vowels.

In rounding harmony, all the high vowels are neutral. They may be either transparent or opaque, but none of the high vowels, even the phonetically round vowels \(/ \mathrm{u} / \mathrm{and}\) \(/ \sigma /\), are phonologically [+round]. While no one disputes that \(/ \mathrm{u} /\) and \(/ \sigma /\) are

\footnotetext{
\({ }^{276}\) No example of \(/ \mathrm{u} /\) in suffixes in a [+round] context was found in the corpus.
}
phonetically round "... the question [...] is whether they function phonologically as though they are specified..." for rounding (Dresher 2009: 175).

It is possible that, with more sophisticated testing and a larger data sample, those languages where all the high vowels are transparent to rounding harmony (Yangben, Mmala and Elip) will provide evidence that the transparent vowels do undergo some phonetic variations as a result of rounding harmony, and that those languages where all the high vowels are opaque to rounding harmony (Maande, Nen, Yambeta, etc.), the opaque vowels are not (or less) affected by the phonetic variations caused by the rounding harmony. As a result, the vowel harmony is blocked.

The neutral vowels in ATR harmony are different. The ATR-neutral vowels, unlike the rounding-neutral vowels, are contrastively indicated as [-ATR]. Since they do in fact have the opposite value of the harmonising feature, in this case [+ATR], these vowels are invariably opaque.

\subsection*{4.4 Interaction of vowel inventory and vowel harmony}

In this section we will look a phonological framework of contrastive features proposed by Dresher (2009) to explain a number of anomalies in Mbam vowelharmony systems. While Dresher's approach is used, I am in no way claiming that it is superior to other approaches, nor do I try to improve on the theory as such. After looking at a number of other approaches, I found it a useful tool to enhance the description of the Mbam languages and the peculiarities of their vowel-harmony systems. Section 4.4.1 describes Dresher's (2009) contrastive-feature hierarchy and section 4.4.2 gives further information about Dresher's (2009) Modified Contrastive Specification (MCS) which is used to assign an order to the contrastive-feature specifications into a hierarchy. Then in section 4.4.3, we will apply Dresher's model to the Mbam languages and in section 4.4.4 discuss some of the anomalies on which it sheds light.

\subsection*{4.4.1 Contrastive-feature hierarchy in phonology (Dresher 2009)}
"Phonological contrast refers to those properties of phonemes that are distinctive in a given phonological system. In most theories of phonology, this means determining which features are contrastive and which are redundant" (Dresher 2009: 2).

In the Mbam languages, it is evident, by this definition, that ATR must be a contrastive feature. But what are the other vowel features which account for the secondary vowel harmonies present in these languages and how do we account for the differences in the vowel-harmony systems with similar vowel inventories? Dresher (2009: 169) proposes a contrastive-feature hierarchy which makes two empirical claims:

\begin{abstract}
1. "Distinctive features in each language are organised into a hierarchy."
2. "This hierarchy determines which feature values are contrastive in a given language."
\end{abstract}

Dresher (2009) considers that the most logical approach assigns "contrastive features based on an ordering of features into a hierarchy" (Dresher 2009: 9) rather than "based on minimal differences between fully specified phonemes." He lists five diagnostics for identifying contrastive features.

Figure 25: Diagnostics for identifying contrastive features (Dresher 2009: 72)
A phoneme \(\varphi\) has the contrastive feature \(F\) if:
a. \(\varphi\) enters into an alternation or neutralisation that is best explained if \(F\) is part of \(\varphi\).
b. \(\varphi\) causes other phonemes to alternate or neutralise in a way that is best explained if \(F\) is part of \(\varphi\).
c. \(\varphi\) participates in a series with other phonemes, \(\phi\), with respect to phonotactic distribution, where F is required to characterise \(\varphi\) in a general way.
d. the set of allophones which make up \(\varphi\) all have \(F\) in common.
e. speakers adapt a sound from another language in a way that can be explained by supposing that they assign F to the foreign sound.

According to Dresher (2009: 74), "Only contrastive features are active in the phonology. System-redundant features are inert." This view reflects Hyman's in his discussions of the vowel-harmony systems of Kaloy (Yangben) and Gunu. Hyman proposes a "bottom-up" or "system-driven" approach to the analysis of Yangben vowel harmony in which "the study of languages is informed by theory" (Hyman 2003a: 85). He follows a similar approach for Gunu (Hyman 2001).

Hyman (2001, 2003a) identifies only those features which are "phonologically active" in the vowel system, and suggests four active features either present or once present in the Mbam languages. For example, Hyman (2003a) proposes four contrastive features for Yangben (Kaloy): ATR, front, round and open. In Table 75, reproduced from Hyman (2003a: 8), the double line indicates a tenth underlying vowel / \(/\) / which surfaces as [e]. This tenth vowel is phonetically undistinguishable from /e/.

Table 75: Hyman's (2003a: 8) contrastive features for Yangben (Kaloy)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & i & u & I(I) & v(U) & e & o & \(\varepsilon\) & 0 & a & ว[e] \\
\hline A & + & + & & & + & + & & & & + \\
\hline F & \(+\) & & + & & + & & + & & & \\
\hline R & & \(+\) & & + & & + & & + & & \\
\hline O & & & & & + & + & + & \(+\) & + & + \\
\hline
\end{tabular}

These four features are the only ones Hyman (2001, 2003a) needs to account for, and they explain all the types of vowel harmony found in Gunu and Kalon (Yangben). \({ }^{277}\) Dresher has a different approach to determine the contrastive features of a phoneme based on its behaviour within the system. While both Hyman and Dresher identify the "phonologically active" features, they differ in how these features are determined. Dresher proposes an algorithm for defining contrast and redundancy for members of an inventory as indicated in Table 76.

Table 76: The Successive Division Algorithm (Dresher 2009: 16-7)
a. Begin with no feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
b. If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
c. Repeat step (b) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.

While both Hyman and Dresher speak of "phonologically active" features, Hyman does not assume a hierarchical organisation of these features. As a result, although Hyman's (2003a) contrastive features for Yangben do explain much of the vowelharmony processes, it does leave open the question why the high vowels, which do have a feature round or front, do not participate in rounding and fronting harmony. Hyman's solution is "... since /i/ and /u/ do not condition front or rounding harmony, we need a feature open on which these harmonies are -parasitic" (Hyman 2003a: 5). Why this should be true is not explained.

Dresher's (2009) contrastive-feature hierarchy provides a different rationale as to why the high vowels do not participate in rounding and fronting harmony in Yangben. Using Dresher's (2009: 16-7) Successive Division Algorithm (SDA) as in Table 76 above, we can identify the contrastive specifications "by splitting the inventory by means of successive divisions, governed by an ordering of features" (Dresher 2009: 16) as in Figure 26 below. The height feature is [ \(+/\)-open] following Hyman (2001, 2003a). Only two height levels are required for most of the Mbam languages. For reasons which will become clear in the discussion of the contrastivefeature hierarchy for Mmala (section 4.4.3.3), I prefer [open] to [low] as it is more general and with the addition of a feature [mid] for Mmala, it fits the pattern better.

While this hierarchical ordering of features necessitates a feature "back" as well as a feature "front", that Hyman (2003a) doesn't require, it allows for high vowels not to have the contrastive features "round" and "front" and thus explains why they do not undergo rounding or fronting harmony.

\footnotetext{
\({ }^{277}\) While Hyman (2003a) only finds seven surface vowels, he effectively argues that Yangben must have nine underlying vowels based on the active features of the language and the vowel-harmony processes. His (2001) treatment of Gunu is similar.
}


Figure 26: Contrastive-feature hierarchy for Yangben vowels
Dresher's ordering of contrastive features and his premise that it is only contrastive features that are phonologically active are both elements in an approach to phonology that comes out of research done at the University of Toronto since the mid 1990s known as Modified Contrastive Specification or MCS.

\subsection*{4.4.2 Modified Contrastive Specification}

Modified Contrastive Specification (MCS) assigns a central role to contrastive feature specifications and has two main tenets (Dresher 2009: 75):
1) "Only contrastive feature specifications are active in the phonology (the Contrastivist Hypothesis)"
2) "Contrastive features are assigned by ordering the features and applying the Successive Division Algorithm (SDA)"

Modified Contrastive Specification started as a focus of complexity in phonology and grew into a discussion of the interrelation between contrast and markedness. Dresher's notion of markedness is structural (logical), rather than phonetic (natural), and as a result relative to a particular inventory (Dresher 2009: 164, footnote 2). In the MCS model, complexity in phonology is driven by both contrast and structural markedness. Features are binary with both marked and unmarked values rather than privative. Complexity is driven only by marked features, so segments with fewer
marked features are less complex than those with more marked features (Dresher 2009: 163-4).
"MCS proposes that contrasts are determined by the SDA operating on a hierarchy of features. Since a more marked representation is permitted only if needed to establish a contrast with a less marked one, the theory of MCS leads us to expect a relation between the amount of segmental markedness a system allows and the number and nature of contrasts it has" (Dresher 2009: 163-4).

The MCS approach assumes that phonology is underspecified with respect to phonetics. While "the number and nature of contrasts that a segment enters into influence, [they] do not determine its phonetic realisation. Therefore, the contrastive specifications assigned by the phonological component must be supplemented by further principles to derive the detailed phonetic specification of a speech sound" (Dresher 2009: 168). As a result, the concept of phonetic enhancement is adapted by MCS.

Phonetic enhancement is posited by Stevens, Keyser and Kawasaki (1986) and Stevens and Keyser (1989), who propose that "phonological contrasts can be enhanced by phonetic specification of non-contrastive features" (Dresher 2009: 168). Phonetic enhancement also explains why certain vowel inventories are more common than others.

\subsection*{4.4.3 Contrastive-feature hierarchy and MCS analysis of the Mbam languages}

The Mbam languages, despite similar vowel inventories, have rather distinct vowelharmony systems. Given Dresher's premise that only contrastive features are phonologically active and that features are hierarchically ordered, the differences in what vowel harmonies occur are the function of which features are active and their position in the language-specific contrastive-feature hierarchy. No feature can occur at different levels within the hierarchy of any given language, nor does the level of the feature tell us anything about the robustness of the vowel harmony associated with it. Languages with very robust ATR harmony may rank ATR high or low. The most important aspect of the contrastive-feature hierarchy is that it determines which vowels are affected by which feature. Vowels such as \(/ \mathrm{u} / \mathrm{or} / \mathrm{/} /\) in Yangben (see Figure 26 above), although they are clearly round vowels (phonetically), are not contrastively round. The feature [+round] affects only [+open] vowels in Yangben.

\subsection*{4.4.3.1 Yangben}

As discussed above in Figure 26 and reproduced in Figure 27 below, Yangben has a contrastive-feature hierarchy, open>>round/back>>front>>ATR.


Figure 27: Contrastive-feature hierarchy for Yangben vowels
The first contrast divides the vowels into [+open] (e, \(\mathbf{\varepsilon}, \mathbf{a}, \mathbf{\jmath}, \mathbf{o})\) and [-open] (i, \(\mathbf{r}, \mathbf{u}\), ©) separated in Table 77 below by the double line. As Dresher (2009: 177) finds for Classical Manchu, "Splitting the inventory in this manner has the effect of allowing for different contrasts in each set." The next features, [back] and [round] (separated by the heavy line) apply to different sets. The feature [back] applies only to the [-open] vowels and distinguishes between \(\mathbf{i}, \mathbf{I}\) and \(\mathbf{u}, \boldsymbol{v}\). The feature [round] only applies to the [+open] vowels. It distinguishes \(\mathbf{o}, \boldsymbol{v}\) from \(\mathbf{a}, \boldsymbol{\varepsilon}\), e. The [round] feature is relevant in Yangben for rounding harmony, the [-open] vowels, even \(\mathbf{u}, \boldsymbol{\sigma}\) are not contrastive for rounding and do not participate in or block rounding harmony. The next feature, [front], applies only to the [-round] vowels and distinguishes \(\boldsymbol{\varepsilon}\), \(\mathbf{e}\) from a. The [front] feature (indicated by the fine line) is relevant in Yangben for fronting harmony. The [-open] vowels, even \(\mathbf{i}\) and \(\mathbf{I}\) are not contrastive for [front] and hence do not participate in fronting harmony. The last contrastive feature is [ATR] (distinguished by the dashed lines). It distinguishes between all of the remaining pairs except for \(\mathbf{a}\). The [ATR] contrast for \(\mathbf{a}\) is determined in Yangben by the next higher node, which in this case is the feature [front], so a takes its [+ATR] counterpart from the [front] node, hence \(/ \mathrm{e} /\).

316 The phonological systems of the Mbam languages


The contrastive-feature hierarchy differs between the various Mbam languages. Baca and Mbure, which have inventories similar to Yangben's, do not have fronting harmony.

\subsection*{4.4.3.2 Baca and Mbure}

Baca and Mbure both have 9 -vowel systems with similar features to Yangben, but with a different order. While the features [front] and [back] are at the same level, [front] is associated with the [-open] vowels in Baca and Mbure, and with the [+open] vowels for Yangben. Since the vowels /e/ and \(/ \varepsilon /\) are not contrastive for [front], they do not undergo fronting harmony. There is still need for a contrastive feature [round] (needed to distinguish between \(/ \mathrm{a} /\) and the round vowels \(/ \mathrm{\rho} / \mathrm{and} / \mathrm{o} /\) ), and to account for the trace of rounding in both these languages. The contrastivefeature hierarchy for Baca and Mbure is: open>>back/front>>round>>ATR, as illustrated in Figure 28.


Figure 28: Contrastive-feature hierarchy for Baca and Mbure vowels

Like with Yangben, both Baca and Mbure first divide vowels by the feature [+open]. Unlike Yangben, the next contrastive feature [back] applies only to [+open] vowels and the contrastive feature [front] only to [-open] vowels and distinguishes \(\mathbf{i}, \mathbf{I}\) from \(\mathbf{u}, \boldsymbol{\boldsymbol { v }}\). This slight change is the reason why fronting harmony does not occur in either Baca or Mbure. The feature [back] distinguishes a, \(\mathbf{o}, \mathbf{s}\) from \(\mathbf{e}, \boldsymbol{\varepsilon}\). The feature [round] distinguishes \(\mathbf{0}, \mathbf{\jmath}\), from \(\mathbf{a}\). The final contrastive feature, [ATR], distinguishes between all the remaining pairs except for \(\mathbf{a}\), which does not have a [+ATR] counterpart in certain environments and uses /e/ in others.

Table 78: Contrastive features for Baca and Mbure


\subsection*{4.4.3.3 Mmala}

Mmala, which is unique for its active height harmony, has a rather different contrastive-feature hierarchy. The feature [mid] is proposed rather than [front] to distinguish the [+open] mid vowels \(\boldsymbol{\jmath}, \boldsymbol{\varepsilon}\) from a. Unlike the languages discussed above, the feature [ATR] is the highest ranked. The features [back] and [round] are similarly ranked after [mid] with [back] affecting only the [-open] vowels and [round] affecting only the [+open] vowels. The contrastive-feature hierarchy for Mmala is: ATR>> open>>mid >>round/back as illustrated in Figure 29.


Figure 29: Contrastive-feature hierarchy for Mmala vowels
[ATR] is the highest-ranked feature in the hierarchy for Mmala. It separates \(\mathbf{i}, \mathbf{u}, \mathbf{e}\), and \(\mathbf{o}\) from \(\mathbf{I}, \boldsymbol{v}, \boldsymbol{\jmath}, \boldsymbol{\varepsilon}\), and \(\mathbf{a}\). Second in the hierarchy is [open] which applies to both [+ATR] and [-ATR] vowels. The feature [mid] applies only to [-ATR], [+open] vowels and distinguishes \(\boldsymbol{v}, \boldsymbol{\varepsilon}\) from \(\mathbf{a}\). The feature [mid] is required to account for height harmony in Mmala, which is triggered by \(/ \rho /\) and \(/ \varepsilon /\) but not generally by \(/ \mathrm{a} /\). The lowest-ranked features in the Mmala hierarchy are [round], which applies to all [+open] vowels and [back] which only applies to [-open] vowels. This distinction accounts for why rounding harmony in Mmala only affects the [+open] vowels.

Table 79: Contrastive features for Mmala


\subsection*{4.4.3.4 The 8 -vowel languages}

Five languages with 8 -vowel systems, Elip, Gunu, Nen, Maande and Yambeta, all have similar contrastive feature hierarchies. As with most of the other languages, the highest-ranked feature is [open] and separates \(\mathbf{a}, \boldsymbol{\jmath}, \boldsymbol{\jmath}, \mathbf{o}\) from \(\mathbf{i}, \mathbf{I}, \mathbf{u}, \boldsymbol{\boldsymbol { v }}\). Since there is no fronting harmony, only the feature [back] is necessary for distinguishing between the [-open] vowels. The [+round] feature is needed to account for rounding harmony
in the [+open] vowels. The contrastive-feature hierarchy for the 8 -vowel languages is open >>round/back>>ATR as illustrated Figure 30.


Figure 30: Contrastive-feature hierarchy for the 8 -vowel languages
Like the 9 -vowel systems, the feature [round] applies to the [+open] vowels and the feature [back] to the [-open] vowels. Unlike the 9 -vowel systems, /a/ in the 8 -vowel languages has a distinct [+ATR] counterpart.

Table 80: Contrastive features for the 8-vowel Mbam languages


\subsection*{4.4.3.5 Tuki}

The tenth language, Tuki, has only seven contrastive vowels, having lost the [+ATR] open vowel \(/ \mathrm{o} /\), which now only occurs as an allophone of \(/ \rho /\) in a [+ATR] context. The contrastive-feature hierarchy of Tuki ranks the feature [ATR] as second after [open]. The lowest-ranked contrastive features are [back] and [round]. The contrastive-feature hierarchy for Tuki is open>>ATR>>round/back as illustrated in Figure 31.


Figure 31: Contrastive-feature hierarchy for Tuki
Tuki, like Mmala, places [ATR] high in the contrastive-feature hierarchy. The features [open] and [ATR] affect all vowels. The features [back] and [round] are ranked last; the former applies only to [-open] vowels and the latter to [+open] vowels. The feature round is needed to distinguish between \(/ \mathrm{s} /\) and \(/ \mathrm{a} /\) and accounts for the rounding harmony, which occurs in the word root.

Table 81: Contrastive features for Tuki


\subsection*{4.4.3.6 Summary of the contrastive feature hierarchies of the Mbam languages}

Yangben, Mbure and Baca have similar contrastive features, but the ranking is different. The differences in ranking affect which types of vowel harmony are present. While both Baca and Mbure, like Yangben, have a contrastive feature [front], this feature, because of its position in the feature hierarchy, only applies to the [-open] vowels and does not trigger fronting harmony.

Mmala, unique among the 9 -vowel languages, does not have a contrastive feature [front]. It is replaced with the feature [mid] which allows for the height harmony found in the language.

The 8 -vowel languages, Elip, Gunu, Nen, Maande and Yambeta, have similar contrastive features to Tuki, but the ranking differs, with [ATR] ranking higher than [round/back] in Tuki. Table 82 summarises the contrastive features of the Mbam languages and their hierarchical ranking.

Table 82: Summary of the contrastive-feature hierarchy for the Mbam languages
\begin{tabular}{|c|c|}
\hline Yangben & [open] \(\gg\) [round/back] \(\gg\) [front] \(\gg\) [ATR] \\
\hline Mbure, Baca & [open] \(\gg\) [back/front]>>[round] \(\gg\) [ATR] \\
\hline Mmala & [ATR] \(\gg\) [open] \(\gg\) [mid] \(\gg\) [round/back] \\
\hline Elip, Gunu, Nen, Maande, Yambeta & [open]>>[round/back]>>[ATR] \\
\hline Tuki & [open]>>[ATR]>>[round/back] \\
\hline
\end{tabular}

While Dresher's (2009) contrastive-feature hierarchy of features is useful to explain how vowel harmony is triggered and to some degree why certain vowels do not participate (e.g. why the high vowels do not trigger rounding or fronting harmony), the situation is less clear about why some segments are transparent and others opaque. "There are various reasons why segments may block harmony, not all derived from their contrastive status. Similarly, targets may be restricted for reasons beyond their contrastive status" (Dresher 2009: 176 footnote). In rounding harmony, in particular, the high vowels, /i, I, u, \(\mathrm{J} /\) do not have the contrastive feature [+/-round] (or in the case of fronting harmony the feature [+/-front]) and thus do not participate in rounding or fronting harmony. In certain languages, however, they are all transparent, while in other languages, they are all opaque and in some cases /i, i/ are opaque while \(/ \mathrm{u}, \mathrm{v} /\) are transparent or vice versa.

Van der Hulst and Smith (1986: 246) propose a universal law that a neutral vowel is transparent if it shares the dominant value, and is opaque if it has the recessive value. This hypothesis does not work in the Mbam languages nor in Dresher's model with regards to rounding harmony, since neutral vowels are those vowels that have no specification at all for the harmonising (contrastive) feature. Even the concept "phonetic enhancement", posited by Stevens, Keyser and Kawasaki (1986) and Stevens and Keyser (1989), which adds phonetic specification with non-contrastive features, does not help. It cannot account for why even the phonetically-enhanced round vowels, \(/ \mathrm{u} /\) and \(/ v /{ }^{278}\) (i.e. the dominant feature) are opaque to rounding harmony in Gunu and transparent to rounding harmony in Tuki. Likewise it cannot account for why /i/ and /i/ (i.e. the recessive value vis-à-vis rounding harmony) is transparent in Gunu (as well as Elip, Mmala and Yangben), and opaque in Tuki (and Nen and Maande). This study can offer no solution for these problems, but it is
\({ }^{278}\) If the high vowels are phonetically enhanced, it would make sense to associate the redundant feature [+round] with [+back], but this still doesn't help us. The vowels \(/ \mathrm{u} /\) and \(/ \mathrm{J} / \mathrm{in}\) Gunu are [+back], thus redundantly [+round], but they block rounding harmony, while \(/ \mathrm{i} /\) and \(/ \mathrm{I} /\), which are [-back], thus redundantly [-round], are transparent to rounding harmony.
hoped that the issues and questions brought forward here will contribute to the understanding of the behaviour of neutral vowels.

In the 9 -vowel inventory, Dresher's contrastive-feature hierarchy can explain in part why the [+ATR] counterpart of \(/ \mathrm{a} /\) surfaces as \(/ \mathrm{e} /\) and not \(/ \mathrm{o} /\), as happens in a number of other Bantu languages. Several methods are found depending on the language:
1) The [+ATR] counterpart of the odd vowel is drawn from the next higher node.
2) A non-contrastive [+ATR] allophone occurs in [+ATR] contexts.
3) \(/ \mathrm{a} /\) occurs without alternation in \([+\mathrm{ATR}]\) contexts (i.e. /a/ is neutral).

Illustration of method (1): The [+ATR] counterpart of /a/ is /e/ in Yangben and Mmala. Where there is a lack of a contrastive [+ATR] counterpart [a], we must go up to the first superior node which can provide it to get the [+ATR] counterpart for \(/ \mathrm{a} /\). In Yangben, which has [ATR] as the lowest node, the [+ATR] counterpart of \(/ \mathrm{a} /\) ([+open]>>[-round]>>[-front]) must come from the [front] node, which is the immediately superior node, see Figure 26 above. So we go down the [+front] side to get to the [ATR] node, which gives us le/ ([+open]>> [-round]>> [+front]>> [+ATR]) as the [+ATR] counterpart of \(/ \mathrm{a} /\).

In Mmala, since [ATR] is the highest node, we must get the [+ATR] counterpart of /a/ ([-ATR] \(\gg[+\) open] \(\gg[-\) mid \(]\) ) from the highest node. We must go down the [+ATR] side and chose [+open] (since \(/ \mathrm{a} / \mathrm{is}\) an open vowel), and [-round] (since \(/ \mathrm{a} /\) is [-round] phonetically, even though not [-round] contrastively and hence not specified as [-round]). The [+ATR] counterpart of \(/ a /\) in Mmala therefore is /e/ ([+ATR]>> [+open]>> [-round]), see Figure 29 above.

Method (2) above, is illustrated in Baca. A non-contrastive [+ATR] vowel [3] occurs in [+ATR] contexts in Baca.

Since "... harmony observes limitations that are not due to contrast, but to other factors, that is, having a contrastive feature is a necessary but not sufficient condition for triggering harmony..." (Dresher 2009: 184), we see two methods at work in Mbure and Tuki.

In Tuki, it is the vowel \(/ \mathrm{J} /(\) not \(/ \mathrm{a} /\) ) that lacks a contrastive \([+\mathrm{ATR}]\) counterpart. Tuki uses method (2) and has a non-contrastive allophone [o] occurring in [+ATR] contexts.

However, for both Tuki and Mbure, the vowel /a/functions differently depending on its position: within the word root or in affixes. In noun roots, the vowel /a/ must undergo ATR harmony. Both languages use method (1) for the [+ATR] counterpart.

In Mbure, the [+ATR] counterpart of \(/ \mathrm{a} / \mathrm{is} / \mathrm{e} /\). Since \(/ \mathrm{a} /\) ([+open] \(\gg[+\) back] \(\gg\) [-round]) has no [ATR] value in the feature hierarchy, it must get it through the superior node, [back]. As the feature [round] distinguishes \(/ \mathrm{a} /\) from \(/ \mathrm{o} /\) and \(/ \mathrm{s} /\) and is hierarchically higher than [ATR], the vowel /a/ must get its ATR value from the node higher than [round], that is the [back] node, see Figure 28 above. There we must take the [-back] side and choose the [+ATR] side to /e/ ([+open]>>[-back]>> [+ATR]) when imposed by [+ATR] dominance within the root. In affixes, both languages use method (3): the vowel /a/ occurs unaltered in [+ATR] contexts in prefixes and suffixes.

The choice between these methods is language specific, and Dresher's model offers an explanation only for the first.

\subsection*{4.4.4 The problem of ATR disharmony in Mmala}
"Any new theory puts old questions into a new light..." (Dresher 2009:
138).

As seen earlier, Mmala has an unusual ATR disharmony which cannot be explained by either positional neutralisations of [ATR] contrasts or the favouring of a disharmonic but faithful candidate over a spreading one. The Mmala ATR disharmony is not the instance of a [-ATR] segment occurring in a [+ATR] context, but rather that of a [+ATR] segment occurring exceptionally in a [-ATR] context. The context is extremely limited and it seems impossible to find a way of ordering OT constraints to account for it. Descriptively, it is easy to define:
- All instances of \(/ v /\) found in the context of \(/ \rho /\) in the phonological word will surface as a [+ATR] vowel, /u/.
- \(/ \mathrm{J} /\) will trigger rounding harmony, and height harmony in \(/ \mathrm{I} /\) but not in \(/ \mathrm{v} /\).
- The [+open] allophone of \(/ \mathrm{v} /^{279}\) will trigger height harmony in both \(/ \mathrm{I} /\) and \(/ 0 /\), but it never triggers rounding harmony.

There are numerous examples found both in prefixes and suffixes in nouns and verbs. In Example 366, the vowel /o/ is underlined and the effect on the [-ATR], high back vowel is bolded. In Example 367, the rounding harmony triggered by / \(/\) is also underlined.

\footnotetext{
\({ }^{279}\) With the limitation of symbols, this allophone must be written as " 0 "; however, phonologically, it is not identical to the contrastive vowel \(/ \mathrm{J} /\). The vowel \(/ \mathrm{L} /\) has a contrastive feature [ + round] whereas the allophone of \(/ v /\) does not, as we will see below, the contrastive features of this allophone are [-ATR], [+open] and [+back], while the contrastive features of \(/ \mathrm{\rho} /\) are [-ATR], [+open], [+mid] and [+round]
}

324 The phonological systems of the Mbam languages
\begin{tabular}{|c|c|}
\hline Example 366: Mma bò̀fnánò & c14.yam (generic) \\
\hline ò \(\neq\) mà \({ }^{\text {di }} / \mathrm{d}\) dò \(\neq \mathrm{màn}^{\text {dì }}\) & c11/13.wild cat \\
\hline - \(=1 \underline{\grave{j}} \mathrm{~g}\) & c 14.meat \\
\hline  & c11/13.river \\
\hline  & c11/13.rain \\
\hline
\end{tabular}

Example 367: Mmala ATR disharmony in verbs
\begin{tabular}{|c|c|c|c|}
\hline  & join & [ \(\ddagger \underline{\text { g }}\) y-ùn-2̀ \(]\) & separate \\
\hline [\#\#̛ón-ón] ~ [nóy-ón] & evade & [\#\#̛́y-ón-à] & evade (cont) \\
\hline
\end{tabular}
[ \(\mathbf{u}-s \underline{\text { ì }} \neq \underline{\text { sós }}-\varepsilon\) èd]
s/he smoked.
c1-P2 \(\neq\) smoke-DIM
[gó-nù- \(\mathrm{n} \neq \mathrm{g} \underline{1}-\)-̀̀n] you ( pl ) take me.
DIST-2p-1sIO \(\neq\) take.IMP-APPL
[ù-gògú-dóñ-̀] s/he will sing
c1-FT1-sing-FV
However easy it may be to describe the phenomenon, explaining it is more difficult. While OT constraints and orderings do not shed light, Dresher's contrastive-feature hierarchy does. This study will argue that, instead of being an unexpected occurrence of [+ATR], the presence of \(/ \mathrm{u} / \mathrm{is}\) an instance of a height analysis.

While Dresher does not speak about allophones in detail, he does state that "the set of allophones which make up \(\varphi\) all have F in common..." (Dresher 2009: 72). Regardless of how similar a particular allophone might be phonetically to another phoneme, \(\phi\), the allophone(s) of \(\varphi\) will have similar contrastive features to \(\varphi\), varying from \(\varphi\) only within the hierarchical position of \(\varphi\). Therefore, allophones will have only the contrastive features of the phoneme; they will not assume additional contrastive features from elsewhere in the hierarchy.

For example, in Mmala, the high vowels (see Figure 29 above) are contrastively [+/-ATR]>>[-open]>>[+/-back]. Their allophonic variations, therefore, must include only these contrastive features, and therefore logically may only be [+/-ATR] or [+/-open] or [ \(+/\)-back]. So theoretically, there are \(2^{3}\) possible allophones of /0/ ([-ATR]>>[-open] \(\gg[+\) back]):
- [-ATR]>>[-open]>>[+back]: [ \(]\) ].
- [-ATR]>>[-open]>>[-back]: [r]. This does not occur as an allophone of \(/ \mathrm{v} / \mathrm{in}\) Mmala
- [-ATR]>>[+open]>>[+back]: the feature [+back] is not a contrastive element for the [+open] node. It would be interpreted as something close to [จ], but lacking the contrastive feature [+round]. This does occur as an allophone for \(/ \mathrm{o} / \mathrm{in}\) Mmala.
- [-ATR]>>[+open]>>[-back]: the feature [-back] is not a contrastive element for the [+open] node. It would be interpreted as something close to \([\varepsilon]\). This does not occur as an allophone of \(/ \delta /\) in Mmala.
- [+ATR]>>[-open]>>[+back]: [u]. This does occur as an allophone of \(/ v /\) in Mmala.
- [+ATR]>>[-open] >>[-back]: [i]. This does not occur as an allophone of \(/ \mathrm{v} / \mathrm{in}\) Mmala.
- [+ATR]>>[+open]>>[+back]: the feature [+back] is not a contrastive element for the [+open] node and does not occur as an allophone of \(/ 0 /\) in Mmala.
- [+ATR]>>[+open]>>[-back]: the feature [-back] is not a contrastive element for the [+open] node and does not occur as an allophone of \(/ \sigma /\) in Mmala.

In Mmala, at least, an allophone, \(\alpha\), of any given phoneme, \(\varphi\), will allow for only one feature to vary; so that the allophones of \(/ \mathrm{\sigma} /\) are actually reduced to four possibilities:
- [-ATR]>>[-open]>>[+back]: /v/
- [-ATR] \(\gg[+\) open \(] \gg[+\) back]: similar to [ 0 ]
- [+ATR] \(\gg[\)-open \(] \gg[+\) back]: /u/
- *[-ATR]>>[-open] >>[-back]: [r]

Of these options, the first three are found in Mmala. Likewise, for /I/ ([-ATR] \(\gg[-\) open \(] \gg[-\) back \(]\) ), the possible allophones are:
- [-ATR] \(\gg[\)-open] \(\gg[\)-back]: /i/
- [-ATR] \(\gg\) [+open] \(\gg\left[\right.\)-back]: similar to \([\varepsilon]^{280}\)
- \(*[+\) ATR \(] \gg[\)-open \(] \gg[\)-back]: /i/
- \(\quad\) [-ATR] \(\gg[\)-open] \(\gg[+\) back]: \(/ \mathrm{\sigma} /\)

Of these options, the first two are found for \(/ \mathrm{I} /\).

While phonetically the same, or at least very similar, the contrastive features of \(/ \mathrm{s} /\) in Mmala are very different from those of the \([\rho]^{281}\) allophone of \(/ \sigma /\). The former has the contrastive features [-ATR] \(\gg\) [+open \(] \gg[+\) mid \(] \gg[+\) round \(]\), while the latter, since it is the [+open] allophone of \(/ \sigma /\), is \([-A T R] \gg[+\) open \(] \gg[+\) back]. As a result,

\footnotetext{
\({ }^{280}\) This allophone occurs wherever height harmony lowers /I/.
\({ }^{281}\) Since the contrastive features of these two vowels are very different, I choose to consider them as entirely different vowels despite their phonetic similarity, hence the the usage of the square brackets, [0], rather than referring to it as \(/ \rho /\), which featurally, it is not.
}
[॰], not having a contrastive feature [round] will never trigger rounding harmony, but since it does have the feature [+open] it will trigger height harmony.

In Mmala, / / / is lowered predominantly in closed syllables. \({ }^{282}\) This lowering will also trigger lowering in preceding (including open) syllables. In Example 368, the underlying \(/ \mathrm{\sigma} /\) ([-ATR]>>[-open]>>[+back]) in roots is lowered to [ 0 ] ([-ATR] \(\gg[+\) open \(] \gg[+\) back \(]\) ) in closed syllables and will trigger lowering of the prefix vowel (bolded).

A second allophone of \(/ v /\) occurs within the phonological word with \(/ 0 /\) ([-ATR]>>[+open] \(\gg[+\) mid \(] \gg[+\) round \(]\) ). While \(/ \mathrm{c} /\) generally triggers height harmony, which lowers high affix vowels, in this case, the opposite occurs, and /v/ in a prefix is raised and surfaces as \(/ \mathrm{u} /([+\mathrm{ATR}] \gg[\)-open \(] \gg[+\) back \(]\) ). The surface variation of the prefix vowel is bolded in Example 368 below.

Example 368: Comparaison of \(/ \boldsymbol{v} /\) and \(/ \omega /\) in Mmala.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Underlying /v/ in root} & \multirow[b]{2}{*}{send something} & \multicolumn{2}{|l|}{Underlying /o/ in root} \\
\hline gò \(\ddagger\) dóm & \(\sim\) & g \(\mathbf{y} \neq\) dóm & & gù \(\ddagger\) dóm & eat first fruits \\
\hline gò \(\neq\) gól & \(\sim\) & g \(\mathbf{3}\) ¢ g ól & crush, grind & gù \(=\mathrm{g}\) ¢́l & take \\
\hline nò \(\ddagger\) bóg & \(\sim\) & ǹ \(\ddagger\) bóg & c11/13.prophecy & bù \(=1\) l̀g & 14/6.meat \\
\hline
\end{tabular}

Logically, ATR harmony must be triggered by a vowel which is contrastive for ATR, which \(/ \mathrm{s} /\) evidently is not. The disharmonic variation of \(/ \mathrm{v} / \sim[\mathrm{u}]\) in the context of \(/ 0 /\) is therefore not due to any spread of ATR. This disharmonic variation precludes the height-harmony lowering of \(/ \sigma /\) by \(/ \mathrm{\rho} /\). Since the allophone of \(/ 0 /\) is [+ATR], it is excluded from height harmony as are all [+ATR] vowels.

\subsection*{4.5 Conclusions}

In this chapter we looked at two questions:
- Is there a relationship between vowel inventory and ATR harmony crosslinguistically?
- Can we account for the apparent gaps in vowel harmony in the Mbam languages by using language-specific feature hierarchies to identify which features are phonologically active and which are phonologically inert?

\subsection*{4.5.1 The relationship of vowel inventory and ATR harmony.}

Casali \((2003\), 2008) gives good typological evidence that there is a strong correspondence between vowel inventory and tongue-root harmony, so that [+ATR]

\footnotetext{
\({ }^{282}\) Refer to chapter 2, section 2.7.3. Some speakers idiosyncratically lower/v/even in open syllables. The tendency to phonetically lower the [-ATR] high vowels is a common occurrence in many of the Mbam languages, and as we have seen elsewhere, acoustically it has, even in its non-lowered form, a rather high F1.
}
is normally dominant in languages with an [ATR] contrast among high vowels, whereas [-ATR] generally serves as the dominant value in languages in which [ATR] contrasts only for non-high vowels (Casali 2003: 307).

Previous studies of the Mbam languages (Nen, Yangben \({ }^{283}\) and Gunu in particular) seem to contradict Casali's findings of a correspondence between vowel inventories and ATR harmony, as all previous studies of the Mbam languages have analysed these as 7 -vowel systems with contrast in the non-high vowels and robust dominant [+ATR] harmony. However, almost all these studies also posit an underlying or a historical \(9 / 10\)-vowel inventory. While there has been disagreement on this point, Casali's typological arguments lend credence to those theories which argue for an ATR contrast in the high vowels.

It is the premise of this study that, while certain vowels in the Mbam languages are realised phonetically and acoustically as rather low, notably \(/ \mathrm{I} /\) and \(/ v /\), they function phonologically as high vowels. In other words, it is not the phonetic make-up which determines what a phoneme is, rather the phoneme is determined by its behaviour in the system. The behaviour of a phoneme in the system is a function of its contrastive features (Dresher 2009: 72). As a result, rather than having 7-vowel inventories with [+ATR] contrast in the non-high vowels and having a typologically atypical dominant [+ATR] harmony, these languages are better analysed as having an [ATR] contrast in the high vowels, and having a typologically expected dominant [+ATR] harmony.

\subsection*{4.5.2 Gaps in vowel harmony and language-specific feature hierarchies}

Dresher (2009) argues that only phonologically active features are contrastive, and by extension, in the domain of vowel harmony, in that "harmony triggers should be contrastive features" (Dresher 2009: 175). In considering Mbam rounding harmony, the high back vowels \(/ \mathrm{u} /\) and \(/ \mathrm{v} /\), although phonetically round, are not contrastively round. Roundness is a redundant feature for the high vowels and therefore inert and cannot trigger rounding harmony. The fact that \(/ \mathrm{u} /\) and \(/ \mathrm{J} /\) do not participate in rounding harmony is phonetic evidence that the feature [round] is unspecified for the high vowels.

Dresher's (2009) contrastive-feature hierarchy also explains why languages with similar vowel inventories and even similar contrastive features may have rather different vowel-harmony processes. Within the feature hierarchy, certain features may apply only to a subset. In the cases of Yangben, Mbure and Baca, the secondhighest features apply separately, the first of the set to the [+open] subset, the second to the [-open] subset, as illustrated in Table 83.

\footnotetext{
\({ }^{283}\) Referred to as Kalong or Nukalonge in much of the literature.
}

Table 83: Comparison of Yangben, Baca and Mbure contrastive hierarchies


The difference in the hierarchical order and to which subset each feature is applied accounts for the difference in vowel harmony between these languages. In Yangben, rounding and fronting harmony apply to the only vowel which is both [-round] and [-front], /a/. Both these harmonies target /a/ and cause it to assimilate to the contrastive feature wherever it occurs within the phonological word. As the high [-open] vowels have neither [round] nor [front] as contrastive features, they do not participate in rounding or fronting harmony.

The difference in the hierarchical order of features in Baca and Mbure cause the feature [front] to apply only to the high [-open] vowels. Since [front] is not a contrastive feature to distinguish /a/ from other vowels, it does not trigger fronting harmony. A minimal rounding harmony does occur in Mbure verb stems, which is consistent with the presence of [round] as a contrastive feature separating /a/ from the back vowels \(/ \mathrm{s} /\) and \(/ \mathrm{o} /\). In the case of Baca, although it also has [round] applying to differentiate \(/ \mathrm{a} /\) from \(/ \mathrm{\rho} /\) and \(/ \mathrm{o} /\), it does not have any rounding harmony tendencies. Hence, while vowel harmony must be triggered by a contrastive feature, the presence of a contrastive feature doesn't obligate the presence of vowel harmony.

\section*{Classification of the Mbam languages}

In this chapter, we will look into various methods of classifying the Mbam languages; in particular historic sound changes, structural changes and lexicostatistics in order to classify and further understand the differences in the vowel inventories and vowel-harmony systems of these languages.

\subsection*{5.1 Historical classification}

In section 5.1.1, we will look at the diachronic vowel derivations from proto-Bantu, then, in sections 5.1.2, 5.1.3 and 5.1.4, the various sound changes in evidence, and finally, in section 5.1.5, we will present a possible analysis of the derivations of the Mbam languages from proto-Mbam.

\subsection*{5.1.1 Mbam diachronic vowel derivations from proto-Bantu.}

The vowels of proto-Bantu, \(*_{j} *_{\mathrm{i}} *_{\mathrm{e}} *_{\mathrm{a}} *_{\mathrm{O}} *_{\mathrm{u}} *_{\mathrm{u}}\), are generally considered to correspond with the phonetic vowels \([\mathrm{i}, \mathrm{I}, \varepsilon, \mathrm{a}, ~\lrcorner, v, \mathrm{u}]\). With this assumption in mind and for the ease of reading, this study will refer to the proto-Bantu vowels using these phonetic transcriptions.

Diachronically, the most straightforward derivations from proto-Bantu are in noun and verb stems with \(*_{\mathbf{i}} *_{\mathbf{u}}\) and \(* \mathbf{a}\), which generally have reflexes \(/ \mathrm{i} /, / \mathbf{u} /\) and \(/ \mathrm{a} /\) in the Mbam languages. In the examples below, all words are included, even those which are not regular cognates of the proto-Bantu stem or have different lexical roots.
\begin{tabular}{|c|c|c|c|c|}
\hline & 369: Refle language & item & \[
\begin{gathered}
\text { and *a in } \\
\text { BLR } 3^{284}
\end{gathered}
\] & m langua gloss \\
\hline *i>i & PB & *-bî & 6425 & excreta \\
\hline & Nen & -pí & & \\
\hline & Maande & -bí & & \\
\hline & Yambeta & -bì & & \\
\hline & Tuki & -mí & & \\
\hline & Gunu & -bî̀ & & \\
\hline & Elip & -bí & & \\
\hline & Mmala & -bì & & \\
\hline & Yangben & -pì & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{284}\) The proto-Bantu reconstructed forms come from Bantu Lexical Reconstruction 3 (BLR3) database from the Royal Museum for Central Africa in Tervuren, Belgium: http://www.africamuseum.be/collection \(\mathrm{s} /\) browsecollections/humansciences/blr. The number in this column is the ID of the reconstructed PB form from BLR3.
}

330 The phonological systems of the Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline & language & item & BLR \(3^{284}\) & gloss \\
\hline & Baca & -pìh & & \\
\hline & Mbure & -pí & & \\
\hline & PB & *-dìbà & 1025 & water \\
\hline & Nen & -nífó & & \\
\hline & Maande & -nífó & & \\
\hline & Yambeta & -ní & & \\
\hline & Tuki & -tíjá & & \\
\hline & Gunu & -ìmpò & & \\
\hline & Elip & -ìmbì & & \\
\hline & Mmala & --- (-dígà) & & \\
\hline & Yangben & -òmb & & \\
\hline & Baca & -ìmb & & \\
\hline & Mbure & \(-\mathrm{i} \mathrm{m}^{\mathrm{m}}{ }^{\text {h }}\) & & \\
\hline & PB & *-jínò & 3472 & tooth \\
\hline & Nen & -ínò & & \\
\hline & Maande & -ínı̀ & & \\
\hline & Yambeta & -ìn & & \\
\hline & Tuki & -ijó & & \\
\hline & Gunu & -ínò & & \\
\hline & Elip & -ín & & \\
\hline & Mmala & -ín & & \\
\hline & Yangben & -ìn & & \\
\hline & Baca & -îj & & \\
\hline *u>u & PB & \[
\begin{aligned}
& \text { *-tíkì } \\
& \text { var.*-túkì }
\end{aligned}
\] & 2917 (3105) & night \\
\hline & Nen & -lú & & \\
\hline & Maande & -òtú & & \\
\hline & Yambeta & -dúk & & \\
\hline & Tuki & -tú: & & \\
\hline & Gunu & -dúgú & & \\
\hline & Elip & -dúg & & \\
\hline & Mmala & -dúg & & \\
\hline & Yangben & -túk & & \\
\hline & Baca & -túk & & \\
\hline & Mbure & -pèr & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{285}\) It is from the variant rather than the main form that these tokens are derived.
}
\begin{tabular}{|c|c|c|c|}
\hline language & item & BLR \(3^{284}\) & gloss \\
\hline PB & *-túd- & 3101 & forge \\
\hline Nen & -lún- & & \\
\hline Maande & -tún- & & \\
\hline Yambeta & -tún- & & \\
\hline Tuki & -tún- & & \\
\hline Gunu & -dún- & & \\
\hline Elip & -dún- & & \\
\hline Mmala & -dún- & & \\
\hline Yangben & -tún- & & \\
\hline Baca & -tún- & & \\
\hline Mbure & -tùn- & & \\
\hline PB & *-gùbú & 1532 & hippopotamus \\
\hline Nen & -vgùpú & & \\
\hline Maande & -júbú & & \\
\hline Yambeta & --- (-gưáy) & & \\
\hline Tuki & -duúwé & & \\
\hline Gunu & --- & & \\
\hline Elip & -súb & & \\
\hline Mmala & -sùb & & \\
\hline Yangben & -súp & & \\
\hline Baca & -súp & & \\
\hline Mbure & -sùp & & \\
\hline PB & *-kúpà & 2132 & bone \\
\hline Nen & -ùhó & & \\
\hline Maande & -úhó & & \\
\hline Yambeta & -gú & & \\
\hline Tuki & -tís \({ }^{286}\) & & \\
\hline Gunu & -gúé- & & \\
\hline Elip & -gǒgè & & \\
\hline Mmala & -kò & & \\
\hline Yangben & -kóó & & \\
\hline Baca & -kóh & & \\
\hline Mbure & -sóhà & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{286}\) Both Tuki and Gunu have reduplicated stems. Only the reduplicant is indicated here.
}

332 The phonological systems of the Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{* \(\mathbf{a} \times \mathbf{a}\)} & language & item & BLR \(3^{284}\) & gloss \\
\hline & PB & *-tátò & 2811 & three \\
\hline & Nen & -láló & & \\
\hline & Maande & -tátó & & \\
\hline & Yambeta & -dáád & & \\
\hline & Tuki & -tátó & & \\
\hline & Gunu & -dàdó & & \\
\hline & Elip & -dád & & \\
\hline & Mmala & -dádò & & \\
\hline & Yangben & -tátò & & \\
\hline & Baca & -tát & & \\
\hline & Mbure & -tá:t & & \\
\hline & PB & *-dà & 773 & abdomen \\
\hline & Nen & -nà & & intestines \\
\hline & Maande & -nà & & \\
\hline & Yambeta & --dò & & \\
\hline & Tuki & -nà & & \\
\hline & Gunu & -ònà & & \\
\hline & Elip & -nùà & & \\
\hline & Mmala & -nà & & \\
\hline & Yangben & -nà & & \\
\hline & Baca & -nà & & \\
\hline & Mbure & -nà & & \\
\hline & PB & *-nyàmà & 3180 & animal \\
\hline & Nen & -nàmà & & \\
\hline & Maande & -nàmà & & \\
\hline & Yambeta & -nàm & & \\
\hline & Tuki & -nàmà & & \\
\hline & Gunu & -nàmà & & \\
\hline & Elip & -nàm & & \\
\hline & Mmala & -nàm & & \\
\hline & Yangben & -nàm & & \\
\hline & Baca & -jàm & & \\
\hline & Mbure & -nàm & & \\
\hline
\end{tabular}

In some cases, where the proto-Bantu stem has both *a and *i, the reflex in some of the Mbam languages is the [+ATR] vowel, a / \(/\) /. This primarily happens in Nen and Maande, and on one occasion in Tuki. Yangben, Mmala and Elip tend to have a reflex /a/ but in these cases, the *i has a [-ATR] reflex \(/ \mathrm{I} /\), as in the words for leaf and two. In the examples below, the *a>a process is underlined.
\begin{tabular}{|c|c|c|c|c|}
\hline Example & 0: Reflex & .i and *i...a in the & Ibam la & \\
\hline & language & item & BLR 3 & gloss \\
\hline *a...i>a & PB & *-kádí comp.*-káíntò \({ }^{287}\) & \[
\begin{aligned}
& 1674 \\
& (9300)
\end{aligned}
\] & woman \\
\hline & Nen & -̇̀n \({ }^{\text {dú }}\) & & \\
\hline & Maande & - \({ }^{\text {nd }} \mathrm{d}\) 3ú & & \\
\hline & Yambeta & -kîid & & \\
\hline & Tuki & -kútó & & \\
\hline & Gunu & -kódò & & \\
\hline & Elip & -gándó & & \\
\hline & Mmala & -gándó & & \\
\hline & Yangben & -kà \({ }^{\text {ndò }}\) & & \\
\hline & Baca & -ká: \({ }^{\text {d }}\) & & \\
\hline & Mbure & -kánd & & \\
\hline \(*_{\mathbf{i}}^{\mathbf{i} . . .} \mathbf{a}\) >a & PB & \[
\begin{aligned}
& \text { *-dá } \\
& \text { var. }{ }^{*-i ̀ d a ́ ~}{ }^{288}
\end{aligned}
\] & \[
\begin{aligned}
& 780 \\
& (9653)
\end{aligned}
\] & louse \\
\hline & Nen & -ìnつ́ & & \\
\hline & Maande & -ìnǵ & & \\
\hline & Yambeta & -náy & & \\
\hline & Tuki & -ìn \({ }^{\text {a }}\) & & \\
\hline & Gunu & -ìnó & & \\
\hline & Elip & -ìnì & & \\
\hline & Mmala & -ทìní & & \\
\hline & Yangben & -pàl & & \\
\hline & Baca & -sêl & & \\
\hline & Mbure & -sér & & \\
\hline & PB & *-bàdí & 36 & two \\
\hline & Nen & -fàndí & & \\
\hline & Maande & -fòndí & & \\
\hline & Yambeta & -bààn & & \\
\hline & Tuki & -wá & & \\
\hline & Gunu & -à̀ \({ }^{\text {dí }}\) & & \\
\hline & Elip & -ándì & & \\
\hline & Mmala & -à̀ \({ }^{\text {n }}\) ì & & \\
\hline & Yangben & -à̀ \({ }^{\text {dí }}\) & & \\
\hline & Baca & - \(\mathrm{a}^{\mathrm{n}} \mathrm{f}\) & & \\
\hline & Mbure & -pànd & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{287}\) While the BLR 3 main entry for this reconsturction is found in Zone A, it is hard to justify the \(*_{i}>*_{U}\) variation. The complex form, also found in Zone A as woman may be the actual source in the Mbam languages. Interestingly, the word for man (male) is also a complex form, therefore, it is perhaps not so strange that woman should be complex as well.
\({ }^{288}\) BLR 3 has this variant for Zone A only. Neither the main entry nor the other variant, *-ná, lists that they occur in Zone A.
}

334 The phonological systems of the Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline & language & item & BLR 3 & gloss \\
\hline \multirow[t]{11}{*}{*a...i>a} & PB & *-jánì & 1567 & leaf \\
\hline & Nen & -ándyì & & \\
\hline & Maande & -ání & & \\
\hline & Yambeta & -áyánán & & \\
\hline & Tuki & -àní & & \\
\hline & Gunu & -ánt \({ }_{\text {IT }}\) & & \\
\hline & Elip & -ăn & & \\
\hline & Mmala & -ăn & & \\
\hline & Yangben & -àn & & \\
\hline & Baca & -àn & & \\
\hline & Mbure & -kás & & \\
\hline
\end{tabular}

The PB *s generally has the reflex /o/ in the Mbam languages; although in a few cases /v/ also occurs.

Example 371: Reflexes of PB *s in the Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline & language & item & BLR 3 & gloss \\
\hline \multirow[t]{11}{*}{*)} & PB & *-tó & 2954 & ashes \\
\hline & Nen & -òló & & \\
\hline & Maande & -òtá & & \\
\hline & Yambeta & -dò & & \\
\hline & Tuki & -tó & & \\
\hline & Gunu & -dô & & \\
\hline & Elip & -dó & & \\
\hline & Mmala & -dó & & \\
\hline & Yangben & -tó & & \\
\hline & Baca & -tô & & \\
\hline & Mbure & -tó & & \\
\hline & PB & *bśkj̀ & 260 & arm, hand \\
\hline & Nen & -kátá & & \\
\hline & Maande & -òbó & & \\
\hline & Yambeta & -pòk & & \\
\hline & Tuki & -bǒ & & \\
\hline & Gunu & -bógò & & \\
\hline & Elip & -bóg & & \\
\hline & Mmala & -bóg & & \\
\hline & Yangben & -pìk & & \\
\hline & Baca & -pôk & & \\
\hline & Mbure & -kàr & & \\
\hline
\end{tabular}

In some PB stems, with *i or *u as a second vowel, *s often has the reflex /o/. The
* \(\mathbf{0}>\mathbf{0}\) variation is underlined in Example 372 below.
\begin{tabular}{|c|c|c|c|c|}
\hline Exa & 2: Reflex & and *....i in & bam lang & \\
\hline & language & item & BLR 3 & gloss \\
\hline *) & PB & *-kśbú & 1865 & navel \\
\hline & Nen & -ló & & \\
\hline & Maande & -tó & & \\
\hline & Yambeta & -tòk & & \\
\hline & Tuki & -tóndó & & \\
\hline & Gunu & -dégù & & \\
\hline & Elip & -dégù & & \\
\hline & Mmala & -dégú & & \\
\hline & Yangben & -tèkù & & \\
\hline & Baca & -ték & & \\
\hline & Mbure & -ték & & \\
\hline *) & PB & \[
\begin{aligned}
& \text { *-jùnì } \\
& \text { var. *-nòdì }
\end{aligned}
\] & \[
\begin{aligned}
& 1627 \\
& \text { (2285) }
\end{aligned}
\] & bird \\
\hline & Nen & -nòní & & \\
\hline & Maande & -nòní & & \\
\hline & Yambeta & -sàk & & \\
\hline & Tuki & -nô:ní & & \\
\hline & Gunu & -nòní & & \\
\hline & Elip & -nònì & & \\
\hline & Mmala & -nòní & & \\
\hline & Yangben & -nòní & & \\
\hline & Baca & -nònó & & \\
\hline & Mbure & -nòn & & \\
\hline *) & PB & *-gòdí & 1417 & string \\
\hline & Nen & -kòlí & & \\
\hline & Maande & -kòlí & & \\
\hline & Yambeta & -wòò & & \\
\hline & Tuki & -èrí & & \\
\hline & Gunu & -èlí & & \\
\hline & Elip & -ólì & & \\
\hline & Mmala & -ólì & & \\
\hline & Yangben & -òlí & & \\
\hline & Baca & -gòlú & & \\
\hline & Mbure & -káhì & & \\
\hline
\end{tabular}

The sound changes \(* \mathbf{s}>/ \mathrm{o} /\) and \(* \mathbf{a}>/ 2 /\) mentioned above are evidently the result of [ATR] harmony. Stewart (2000: 51-3) proposes that an initial sound change from PB to proto-Nen must have included [+ATR] spreading, this sound change is summarised in Example 373.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Example 373: Stewart's (2000: 51-3) proto-Nen [+ATR] spread} \\
\hline PB & * \({ }_{\text {i }}\) & \(*_{\text {I }}\) & \(*_{\varepsilon}\) & *a & *) & *U & *u \\
\hline [+ATR] & i & I/i & ع/e & a/a & \%/o & v/u & u \\
\hline spread & & & & & & & \\
\hline
\end{tabular}

\subsection*{5.1.2 Origins of ATR harmony and proto-Bantu *i (and *u)}

ATR is historically derived from dominant \(* \mathbf{i}\) (and to a lesser extent \(* \mathbf{u}\) ). Kutsch Lojenga (2009: 4-6) in her study of certain Bantu languages of the Great Lakes Region and a little beyond in the Democratic Republic of Congo (DRC), Uganda, and Tanzania finds that there are five [+ATR] suffixes which all relate to proto-Bantu forms with the extra high vowels \(* \mathbf{i}\) and \(* \mathbf{u} .{ }^{289}\) These [+ATR] suffixes will often trigger ATR harmony in various languages. In the Mbam languages, only the Agentive *-i and the causatives *-i and *-ici trigger ATR harmony. These suffixes are as follows:

Table 84: Proto-Bantu suffixes which may trigger ATR harmony

Agentive *-i
Causative *-i and *-ici
Perfective / Past *-ide
Adjectiviser *-u
Plural Addressee *-Vni
(Schadeberg 2003: 80)
(Schadeberg 2003: 73)
(Nurse 2003: 96)
(Schadeberg 2003: 81)
(Nurse 2008: 277)

What is it about \(/ \mathrm{i} /\) and \(/ \mathrm{u} /\) that makes them the best candidates to introduce ATR harmony? Are there any acoustic or articulatory reasons why these vowels should trigger tongue-root harmony? While acoustic studies of ATR harmony show that F1 is probably the most reliable acoustic correlate between [+ATR] and [-ATR] vowel pairs, it is not evident that even though, the F1 values of \(/ \mathrm{i} /\) and \(/ \mathrm{u} /\) are lower than the F1 values of /e/ and /o/, they should trigger the genesis of ATR harmony.

As concerns the question of what makes \(/ \mathrm{i} /\) and \(/ \mathrm{u} /\) the best candidates to introduce ATR harmony, Archangeli and Pulleyblank (1994) posit that vowel height and ATR are related and that, if a vowel is high, it will also be [+ATR]. This HI/ATR constraint "... expresses the optimal enhancement relation between highness and advancement" (Ola 2001: 118-9). As both height and ATR affect F1 values to the extent that [+high] [+ATR] vowels always have the lowest F1 values, could it be that this "optimal enhancement" between height and ATR is the reason the high vowels synchronically trigger ATR harmony and diachronically are responsible for the evolution of ATR harmony?

In regards to articulatory reasons why the high vowels should trigger tongue-root harmony, Ladefoged and Maddieson (1996: 300-1) show x-ray tracings redrawn

\footnotetext{
\({ }^{289}\) The vowels of proto-Bantu, \(*_{i} *_{i} *_{\mathrm{e}} *_{\mathrm{a}} *_{\mathrm{o}} *_{\mathrm{u}} *_{\mathrm{u}}\), are generally considered to correspond with the phonetic vowels \([i, \mathrm{I}, \varepsilon, \mathrm{a}, \rho, v, \mathrm{u}]\). With this assumption in mind, for the ease of reading, this study will refer to the PB vowels using the phonetic transcription.
}
from Lindau (1975) of the articulatory positions of non-low vowels in the Akan dialect Akyem. These x-ray tracings show that the tongue-root advancements of /i/ and \(/ \mathrm{u} /\) are greater than that of \(/ \mathrm{e} /\) and \(/ \mathrm{o} /\). Could the more extreme advancement of the tongue root be a possible reason why \(/ \mathrm{i} / \mathrm{and} / \mathrm{u} /\) are the best candidates to introduce ATR harmony historically?

It is interesting to note that these same two vowels, \(*_{i}\) and \(*_{u}\) also trigger other phonological phenomena such as spirantisation. "Meinhof's term 'heavy vowels' was intended to catch the mysterious property of his reconstructed vowels *i and *u to trigger spirantisation" (Schadeberg 1994/95: 75). More recently, Maddieson (2003) suggests that "... the distinctive characteristic of these original vowels was ... an unusually narrow constriction nearly consonantal in character" (Maddieson 2003: 19-20). This narrow constriction gives rise to a "noisy release" of a stop which is assumed to be the genesis of assibilation or "spirantisation" in various Bantu languages (Bostoen 2008: 309). Fricative vowels such as those found in Mambila in Cameroon are also considered derived from the proto-Bantu super-close vowels \(*_{\mathrm{i}}\) and \({ }^{u} \mathrm{u}\) (Ladefoged and Maddieson 1996: 314).

However, this view is not universally accepted. Bostoen argues that "The major objection against these theories is the fact that such 'super-close' vowels are nowhere (convincingly) attested in Bantu today. Phonetically speaking, the highest vowels in all present-day 7 V languages are always [i] and [u]..." (Bostoen 2008: 307).

Whether the proto-Bantu vowels *i and *u were "super-high" or, phonetically speaking, like the present day [i] and [ u ] is a question that cannot be answered here. Of interest is that the proto-Bantu suffixes which may trigger spirantisation are generally the same as the suffixes which may trigger ATR harmony (compare Table 85 with Table 84 , above), and generally have reflexes of \(* i\) and \(* u\). Bostoen (2008: 311-2) lists four proto-Bantu suffixes which trigger spirantisation as a morphological alternation; all four are also implicated in triggering ATR harmony:

\section*{Table 85: proto-Bantu suffixes which often trigger spirantisation}
1) the agentive suffix *-i
2) the causative suffix *-i
3) the perfect and/or past tense suffix *-ide
4) the adjectival derivation suffix *-u

Maddieson (2003: 20-1) raises the question of how "... the role of ATR interacts with ... the nature of the high vowels, as the *super-high/*high contrast might have been an expression of an ATR contrast, or transformed into one in daughter languages" (Maddieson 2003: 20-1).

While many of the Bantu languages have undergone spirantisation and, a subsequent a seven-to-five (7>5) vowel merger, a number of other languages took a different path involving ATR spreading to a \(7>9 / 10\) vowel system and ATR harmony (cf. Hyman 2003, among others). Stewart (2000: 51-3), in effect, proposes such a sound change from proto-Bantu to proto-Nen. \({ }^{290}\)

It is interesting to note that in one Mbam language, Mbure, both ATR harmony and spirantisation/assibilation/aspiration occur distinguishing between the proto-Bantu \(\boldsymbol{*}_{\mathbf{i}}, \boldsymbol{*}_{\mathbf{u}}\) and \(\mathbf{*}_{\mathbf{I}}, \boldsymbol{*}_{\boldsymbol{v}}\).

In Mbure, a high [+ATR] vowel will trigger aspiration or assibilation of the preceding stop. The vowel itself is sometimes reduced to mere aspiration or assibilation on the occlusive. The [-ATR] high vowels do not cause aspiration/assibilation, as in Example 374.
\begin{tabular}{|c|c|c|c|}
\hline Example 374: surface forms & piration of M & occlusives prece underlying form & \[
\begin{aligned}
& \mathrm{g} / \mathrm{i} / \text { and } / \mathbf{u} / \\
& \text { gloss }
\end{aligned}
\] \\
\hline \(\mathrm{k}^{\text {hùt }}{ }^{\text {hùr }}\) & \(\sim \mathrm{k}^{\text {hthù }}\) & kù \(=\) tùr & dull (v) \\
\hline \(\mathrm{k}^{\text {hù }} \mathrm{b}^{\text {hit }}{ }^{\text {ti íb }}{ }^{\text {hínì }}\) & \(\sim \mathrm{k}^{\mathrm{h}} \mathrm{p}^{\text {hit }}{ }^{\text {h }}{ }^{\text {hínì }}\) & kù \(\neq\) pít-íp-ín-ì & make dirty \\
\hline ǹthú & & ǹ=tú & ear \\
\hline \(\mathrm{k}^{\text {hìph}}\) hùg-è & ~ \(\mathrm{k}^{\mathrm{h}} \mathrm{p}^{\mathrm{h}}\) ugè & kì \(=\) pùk-à & close \\
\hline jôthìnè & ~ jòthnè & j\#oòtìnè & star \\
\hline kòkúyà & & kò \(\neq\) kón-à & hunt (v) \\
\hline kìpòmá & & kì \(=\) pòmá & dust \\
\hline kìdídīmà & & kì:tí-tímà & butterfly \\
\hline ki̇̀̇ & & kì̀キİn & yam sp. \\
\hline màbìdìgà & & mà \(\neq\) pìt-ìk-à & think (v) \\
\hline
\end{tabular}

Of all of the Mbam languages, Mbure is the only one where the phonetic distance between the high vowels is very small, whereas in most of the other languages, \({ }^{291}\) the distance between the high vowels is so large that the [-ATR] high vowels are perceptibly closer phonetically to the mid vowels. The aspiration/assibilation on consonants preceding [+ATR] high vowels in Mbure gives an additional phonetic clue distinguishing the [+ATR] from the [-ATR] high vowels.

There are many tantalising hints concerning whether the acoustic and/or articulatory characteristics of the high vowels, /i/ and \(/ \mathrm{u} /\), shed light on why they are the best candidates for introducing ATR harmony. We have seen diachronically that the proto-Bantu extensions with *i and *u are most likely not only to trigger ATR harmony, but also spirantisation/assibilation in the daughter languages. While this

\footnotetext{
\({ }^{290}\) Stewart is specifically looking at Nen in his article, but one could expand this analysis to include proto-Mbam. Stewart's (2000) study of Nen is discussed in greater depth in Chapter 5.
\({ }^{291}\) Elip is the only other exception, and it has an allophone of \(/ \mathrm{I} /,[\varepsilon]\) occuring in certain contexts.
}
study can not give a definitive response to any of these questions, it is hoped that its contribution will lead to the greater understanding of vowel harmony in general.

\subsection*{5.1.3 Sound change: from \(I, \boldsymbol{v}\) to \(\mathrm{e}, \boldsymbol{o}\) ?}

Many of the Mbam languages have the same vowel inventory as Nen, so a further discussion of Stewart's (2000) analysis of Nen with an eye to the other 8-vowel Mbam languages is in order.

In comparing Nen vowels with the proto-Bantu vowels, Stewart (2000: 47-53) posits a series of sound changes and arrives at a vowel inventory for Nen of seven vowels \(/ \mathrm{i}, \varepsilon, \rho, \mathrm{a}, \rho, \mathrm{o}, \mathrm{u} /\). The sound change which is the most important for this study is the one that posits a change from \(\mathbf{I}, \boldsymbol{\sigma}\) to \(\mathbf{e}, \mathbf{o}\), with a later lowering of \(\mathbf{e}\) to \(\boldsymbol{\varepsilon}\) in stems. In prefixes, Stewart (2000: 55) claims that the vowel e still occurs in the context of [-ATR] noun roots that do not have the vowel \(\boldsymbol{\varepsilon}\). My analysis of the synchronic situation, however, is different from Stewart's.

Based on my own acoustic and phonological research, the vowel * \(\boldsymbol{\sigma}\) in proto-Bantu stems, in most instances, corresponds with / \(\delta /\) in Nen. Although there are a few examples were found where \(\mathrm{PB} * \boldsymbol{\sigma}\) corresponds with \(/ \rho /\). Where a proto-Bantu stem has \(\boldsymbol{i}_{\mathbf{i}}\) or \({ }_{\mathbf{u}}\) as an additional vowel, often, \({ }^{292} \boldsymbol{*}_{\boldsymbol{\sigma}}\) has the reflex \(/ \mathbf{u} /\) in Nen.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Examp & 375: Refle & of proto-Ba & * * \({ }^{\text {in }}\) & & \\
\hline & gloss & proto-Bantu & BLR3 ID & Boyd & \begin{tabular}{l}
Stewart/Van \\
Leynseele 1979
\end{tabular} \\
\hline \(*_{U}>0\) & to wash & *-còk- & 711 & -só & -sò \\
\hline & to fight & *-dò & 1150 & -nò & -nò \\
\hline & to bite & *-dóm- & 1181 & -nóm- & -nóm- \\
\hline & head & *-túè & 3023 & -lóá & -ló \\
\hline & hair (body) & *-bòdì & 369 & -hờtá & --- \\
\hline & dog & *-bóà & 282 & -mơa & --- \\
\hline & to be dry & *-kút- & 5215 & -kút & --- \\
\hline & three (3) & *-tátò & 2811 & -láló & -là \({ }^{293}\) \\
\hline & to send & *-tóm- & 3055 & -lóm- & --- \\
\hline & to fall & *-gò & 1466 & -kò & -kò \\
\hline & leg & *-gòdờ & 1490 & -kòló & --- \\
\hline * \({ }^{\text {P }}\) & nose & *-jódò & 1620 & -ônò & -ón \\
\hline & pig & *-gòdò \({ }^{\text {è }}\) & 1494 & -kònífí & --- \\
\hline \(*_{U}>\) u & ear & *-tờ & 3030 & -lúá & --- \\
\hline & goat & *-búdì & 303 & -múíní & --- \\
\hline
\end{tabular}

\footnotetext{
\({ }^{292}\) There are exceptions, e.g. *-bòdì body hair in the examples given.
\({ }^{293}\) From Stewart 2000: 52.
}

340 The phonological systems of the Mbam languages

The other Mbam languages follow a similar pattern, with * \(\boldsymbol{\sigma}\) corresponding to either \(/ \mathrm{/}\) or \(/ \mathrm{o} /\) (underlined in Example 376 below).

Example 376: Reflexes of PB * \(\mathbf{v}\) in the other Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline & language & item & BLR 3 & gloss \\
\hline \multirow[t]{11}{*}{* \({ }_{\text {d }}\)} & PB & *-dóm- & 1181 & bite \\
\hline & Nen & -nóm- & & \\
\hline & Maande & -nóm- & & \\
\hline & Yambeta & -nóm- & & \\
\hline & Tuki & -nóm- & & \\
\hline & Gunu & -nóm- & & \\
\hline & Elip & -nóm- & & \\
\hline & Mmala & -nóm- & & \\
\hline & Yangben & -nóm & & cling to teeth \\
\hline & Baca & -nóm- & & \\
\hline & Mbure & -nóm- & & \\
\hline \multirow[t]{11}{*}{\(*_{\text {U }}\)} & PB & *-gò & 1466 & fall \\
\hline & Nen & -kò & & \\
\hline & Maande & -kò- & & \\
\hline & Yambeta & -ťà̀ \({ }^{\text {a }}\) & & \\
\hline & Tuki & -dúm- & & \\
\hline & Gunu & -òb- & & \\
\hline & Elip & -gò- & & \\
\hline & Mmala & -gò- & & \\
\hline & Yangben & -kò- & & \\
\hline & Васа & -kò- & & \\
\hline & Mbure & -kòw- & & \\
\hline \multirow[t]{11}{*}{* \({ }^{\text {d }}\)} & PB & *-gùdò & 1490 & leg \\
\hline & Nen & -kòló & & \\
\hline & Maande & -kòló & & \\
\hline & Yambeta & -gòò & & \\
\hline & Tuki & -gòrú & & \\
\hline & Gunu & -góndó & & \\
\hline & Elip & - \(\mathrm{g} \mathrm{g}^{\mathrm{n}} \mathrm{d}\) & & \\
\hline & Mmala & -góndó & & \\
\hline & Yangben & -kj \({ }^{\text {n }}\) d & & \\
\hline & Baca & -kj'd & & \\
\hline & Mbure & \(\underline{-k \grave{j}^{\text {n }}}\) & & \\
\hline
\end{tabular}
\begin{tabular}{llll} 
language & item & BLR 3 & gloss \\
PB & *-kót- & \(\mathbf{5 2 1 5}\) & to be dry \\
Nen & -kót- & & \\
Maande & -kót- & & \\
Yambeta & -kós- & & \\
Tuki & -kót- & & \\
Gunu & -kót- & & \\
Elip & -gòd- & & \\
Mmala & -gòd- & & \\
Yangben & -kót- & & \\
Baca & -kót- & & \\
Mbure & -kón- & &
\end{tabular}

As with other vowels where a proto-Bantu stem has *i or *u as an additional vowel, * \(\mathbf{U}\) often has a reflex \(/ \mathrm{u} /\) in the Mbam languages.

Example 377: Reflexes of PB * \({ }^{*} . . . \mathrm{i}\) in the Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline & language & item & BLR 3 & gloss \\
\hline \multirow[t]{11}{*}{* \(\boldsymbol{v i}_{1}\)} & PB & *-tớ̀ & 3030 & ear \\
\hline & Nen & -lúó & & \\
\hline & Maande & -ว̀tú & & \\
\hline & Yambeta & -tờ̀ & & \\
\hline & Tuki & -tú & & \\
\hline & Gunu & -dû & & \\
\hline & Elip & -dú & & \\
\hline & Mmala & -dú & & \\
\hline & Yangben & -tù & & \\
\hline & Baca & -tû & & \\
\hline & Mbure & -tú & & \\
\hline \multirow[t]{11}{*}{* \({ }_{\text {U }}\)..i} & PB & *-búdì & 303 & goat \\
\hline & Nen & -múíní & & \\
\hline & Maande & -búpì & & \\
\hline & Yambeta & -bòm & & \\
\hline & Tuki & -búiní & & \\
\hline & Gunu & -búnè & & \\
\hline & Elip & -búínì & & \\
\hline & Mmala & -bún & & \\
\hline & Yangben & -pún & & \\
\hline & Baca & -bûn & & \\
\hline & Mbure & -pùn & & \\
\hline
\end{tabular}

The non-back vowels present another problem. While Stewart's \(\boldsymbol{0}>\mathbf{0}\) merger is excluded based on acoustic data which shows the current existence of both vowels in Nen and the other 8 -vowel Mbam languages, the same cannot be said for his \(\mathbf{1}>\mathbf{e}\)

342 The phonological systems of the Mbam languages
merger. All previous analyses of Nen present only four contrastive non-back vowels \(\mathbf{i}, \boldsymbol{\varepsilon}, \boldsymbol{\partial}, \mathbf{a}\). A very straightforward diachronic explanation would be as Stewart proposes:
*i>i
\(*_{I}>\mathrm{e}>\varepsilon\)
* \(\varepsilon>\varepsilon\)
*a>a, ə
However, as this study has shown, non-back vowels are in reality /i, \(\mathrm{I}, ~ \partial\), \(\mathrm{a} /\), and the proto-Bantu * \(\varepsilon\) reflex is generally \(/ \mathrm{I} /\), or as is also the case, \(/ \mathrm{a} /\) in Nen. Where the gloss in Nen differs slightly from the proto-Bantu, the Nen gloss is added.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Example 378: Reflexes of PB* \(\varepsilon\) in Nen} \\
\hline & gloss & P-Bantu & BLR3 & Nen & gloss \\
\hline \multirow[t]{9}{*}{\(*_{\varepsilon}>{ }_{I}\)} & sand & *-cèkè & 528 & -sí & \\
\hline & walk, travel & *-gènd- & 1362 & -kìnd- & \\
\hline & bell & *-gèngédé & 1365 & -乌gíní & \\
\hline & cricket & *-jénjé & 1583 & -ìndsí & cockroach \\
\hline & (der. cockroach) & & (3311) & & \\
\hline & blow (wind) & *-pép- & 2463 & -fíf- & blow, fan \\
\hline & slip & *-tèdıd & 2817 & -tìl- & slip, smear \\
\hline & put pot on fire, stand up & *-tédık & \[
2821
\] & -tíním- & stand, get \\
\hline & (TR) & (*-tédam) & (2816) & & up \\
\hline \multirow[t]{4}{*}{* \(\mathrm{C}>\mathrm{a}\)} & be honoured & *-dèmm \({ }^{294}\) & 907 & -nàm- & be famous \\
\hline & & & & -nə̀m-ì-ə & to honour \\
\hline & molar tooth & *-gègò & 1355 & -kà & molar \\
\hline & cut & *-kèt- & 1782 & -kà- & chop up \\
\hline
\end{tabular}

Unlike the back vowels, where the proto-Bantu derived vowels reflect rather closely the modern Mbam reflexes, the proto-Bantu derivations of the non-back vowels are not so close. The proto-Bantu * \(\varepsilon\) has a wider range of reflexes, including a, a and \(\mathbf{i}\). Several languages have reflexes which may not be regular cognates of the protoBantu stem, despite their similarity. Reflexes with \(/ \mathrm{I} /\) or \(/ \varepsilon /\) are italicised, reflexes with \(\mathbf{a}\) or its [+ATR] counterpart \(\mathbf{a}\) ( \(/ 2 /\) or \(/ \mathrm{e} /\) ) are underlined in Example 379.

\footnotetext{
\({ }^{294}\) The verb -lèm- be heavy in Nen is also derived from the PB *-dèm. Apparently -lèm- does not have the connotation be honoured.
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Example 379: Reflexes of PB * \({ }^{\text {a }}\) in the Mbam languages} \\
\hline & language & item & BLR 3 & gloss \\
\hline \multirow[t]{11}{*}{\(*_{\varepsilon}\)} & PB & *-cèkè & 528 & sand \\
\hline & Nen & -sí & & \\
\hline & Maande & -síbíá & & \\
\hline & Yambeta & --- (-sájín) & & \\
\hline & Tuki & -t jit \(_{\text {tirici }}\) & & \\
\hline & Gunu & --- (-sánánà) & & \\
\hline & Elip & -silig & & \\
\hline & Mmala & --- (-sánó) & & \\
\hline & Yangben & -sćlèk & & \\
\hline & Baca & -sčlèk & & \\
\hline & Mbure & --- (-sásáán) & & \\
\hline \multirow[t]{11}{*}{\(*_{\varepsilon}\)} & PB & *-dèdù & 897 & beard, chin \\
\hline & Nen & -tólù & & chin \\
\hline & Maande & -nduàlú & & chin \\
\hline & Yambeta & -às & & chin \\
\hline & Tuki & -àsó & & chin \\
\hline & Gunu & --- & & \\
\hline & Elip & -sèlù & & chin \\
\hline & Mmala & -sèlú & & chin \\
\hline & Yangben & -sèlú & & chin \\
\hline & Baca & -kègé & & chin \\
\hline & Mbure & -ndjèrì (-às) \(^{\text {a }}\) & & beard (chin) \\
\hline \multirow[t]{11}{*}{\(*_{\varepsilon}\)} & PB & \begin{tabular}{l}
*-tédık \\
der *-tźdam
\end{tabular} & \[
\begin{aligned}
& 2821 \\
& (2816)
\end{aligned}
\] & put pot on fire, stand up(TR) \\
\hline & Nen & -tíním- & & redress \\
\hline & Maande & -tálím & & stand \\
\hline & Yambeta & -tím- & & stand up \\
\hline & Tuki & -tírîn- & & put pot on fire \\
\hline & Gunu & -dílim- & & stand \\
\hline & Elip & -délím- & & \\
\hline & Mmala & -délím- & & \\
\hline & Yangben & -tén- & & \\
\hline & Baca & -téníb- & & \\
\hline & Mbure & -tímb- & & \\
\hline
\end{tabular}

344 The phonological systems of the Mbam languages
\begin{tabular}{|c|c|c|c|c|}
\hline & language & item & BLR 3 & gloss \\
\hline \multirow[t]{11}{*}{\(*_{\varepsilon}\)} & PB & *-béżdè & 125 & breast \\
\hline & Nen & -pómbì & & \\
\hline & Maande & -bánà & & \\
\hline & Yambeta & -dom & & \\
\hline & Tuki & -bání & & \\
\hline & Gunu & -pínì & & \\
\hline & Elip & -bánà & & \\
\hline & Mmala & -bánà & & \\
\hline & Yangben & -pénè & & \\
\hline & Baca & -pićnè & & \\
\hline & Mbure & -núk & & \\
\hline \multirow[t]{11}{*}{\(*_{\varepsilon}\)} & PB & *-gènd- & 1362 & walk, travel \\
\hline & Nen & -kìnd- & & \\
\hline & Maande & -kànd- & & \\
\hline & Yambeta & -tág- & & \\
\hline & Tuki & -ndìnd- & & \\
\hline & Gunu & -ind- & & \\
\hline & Elip & -ànd- & & \\
\hline & Mmala & -ànd- & & \\
\hline & Yangben & -ènd- & & \\
\hline & Baca & -ènd- & & \\
\hline & Mbure & -ènd- & & \\
\hline
\end{tabular}

Furthermore, proto-Bantu *ía also has a reflex /I/ in Nen. Rather than Stewart's sound changes, one finds that both proto-Bantu \(*_{\mathrm{I}}\) and \({ }^{*} \varepsilon\) both have reflexes \(/_{\mathrm{I}} /\) in Nen.

\section*{Example 380: Reflexes of PB * \(\boldsymbol{*}_{1}\) in Nen}
* \begin{tabular}{lllll}
\(\mathrm{I}>_{\mathrm{I}}\) & boil up & *-bíd & 181 & -fìn- \\
& eat & *-dí & 944 & -ní \\
& cry, wail & *-dìd & 959 & -iil- \\
& tree & *-tí & 2881 & -lí \\
& heart & *-tímà & 2895 & -límá
\end{tabular}

In the Mbam languages with eight or fewer vowels, *I generally has a reflex \(/ \mathbf{I} /\); in those languages with nine vowels, the proto-Bantu *I will have a reflex in either \(/ \mathrm{I} /\) or occasionally \(/ \varepsilon /\). In Example 381, the words with a reflex \(/ \mathrm{I} /\) are underlined. The few cases of an \(/ \varepsilon /\) reflex of \({ }^{\mathbf{I}}\) are underlined below.
\begin{tabular}{|c|c|c|c|c|}
\hline Examp & : Reflex & e oth & ngua & \\
\hline & language & item & BLR 3 & gloss \\
\hline \(*_{1}{ }_{\text {I }}\) & PB & *-dí & 944 & eat \\
\hline & Nen & -ní- & & \\
\hline & Maande & -ní- & & \\
\hline & Yambeta & -ní- & & \\
\hline & Tuki & -ní- & & \\
\hline & Gunu & -ní & & \\
\hline & Elip & -ní- & & \\
\hline & Mmala & -ní- & & \\
\hline & Yangben & -nì- & & \\
\hline & Baca & -nì- & & \\
\hline & Mbure & -ní- & & \\
\hline \(*_{\mathrm{I}}>\mathrm{I} / \mathrm{\varepsilon}\) & PB & *-tí & 2881 & tree \\
\hline & Nen & -lí & & \\
\hline & Maande & -ití & & \\
\hline & Yambeta & -ìd & & \\
\hline & Tuki & -rití & & \\
\hline & Gunu & -ítì & & \\
\hline & Elip & -dí & & \\
\hline & Mmala & -dîd & & \\
\hline & Yangben & -té & & \\
\hline & Baca & -àsá & & \\
\hline & Mbure & -mbúm & & \\
\hline \(*_{1}>\mathbf{1} / \boldsymbol{\varepsilon}\) & PB & *-tímà & 2895 & heart \\
\hline & Nen & -límá & & \\
\hline & Maande & -tímá & & \\
\hline & Yambeta & -tím & & \\
\hline & Tuki & -tímá & & \\
\hline & Gunu & -dímá & & \\
\hline & Elip & -dím & & \\
\hline & Mmala & -dìm & & \\
\hline & Yangben & -tím & & \\
\hline & Baca & -t fém & & \\
\hline & Mbure & -tím & & \\
\hline
\end{tabular}

A further indication that, while the \({ }^{\boldsymbol{\varepsilon}} \boldsymbol{\Sigma}>\mathbf{I}\) reflex seems odd, Nen verbs derived from \({ }^{*} \varepsilon\) will go to \(/ \mathrm{i} /\) with the [+ATR]-dominant causative suffix in the same fashion that verbs derived from * \({ }_{\text {I }}\) go to \(/ \mathbf{i} /\) with the causative suffix, as seen in Example 382. In the 9 -vowel Mbam languages, verbs derived from proto-Bantu \(*_{\varepsilon}\) tend to have a reflex /e/ with the causative, not /i/.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Example 382: Reflexes of PB * \(\varepsilon\) and \({ }^{\text {I }}\) with the causative in Nen} \\
\hline & gloss & PB & BLR 3 & Nen V & der. V & gloss \\
\hline \multirow[t]{3}{*}{\(*_{\varepsilon}>_{\text {I }}\)} & walk & *-gènd- & 1362 & -kìnd- & -kìnd-ì-̇े & cause to walk \\
\hline & stand & \begin{tabular}{l}
*-tédık \\
(*-tédam)
\end{tabular} & \[
2821
\] & -tíním- & -tín-ím-ì & to redress, \\
\hline & TR & (*-tı́dam) & (2816) & & & \\
\hline \multirow[t]{2}{*}{\(*_{\text {I }}>\mathrm{I}\)} & boil up & *-bíd & 181 & -fìn- & -fin-ì-ò & boil (food)-CAUS \\
\hline & eat & *-dí & 944 & -ní- & -ní-ə́s-ì-̀̀ & eat (CAUS) \\
\hline
\end{tabular}

\subsection*{5.1.4 Sound change: \(e>0\) ?}

In this section, Stewart's (2000) proposed sound changes and mergers account for the changes from proto-Bantu, through proto-Nen to present-day Nen. In this section, his proposal is described and discussed. This study builds on Stewart's analysis for the diachronic sound changes in Nen, and by extension, the other Mbam languages which will be presented in detail in section 5.1 .5 below.

While in many of the studies on Nen (especially in Dugast 1971), the [+ATR] vowel \(\mathbf{e}\) is present, most studies either account for it in a sound change (i.e. \(\mathbf{e}>\boldsymbol{o}\) as in Stewart 2000: 53, simply ignore it (De Blois 1981: 12: "Roots having [e] as the only vowel are very restricted in number and will be left out of discussion"). The existence of the vowel \(\mathbf{e}\) in modern-day Nen is doubtful. The various analyses in previous studies of the vowel \(\mathbf{e}\) are discussed briefly.

Dugast contrasts e and \(\boldsymbol{\bullet}\), but she (1971: 29) admits that "... /e/ apparait rarement dans les radicaux des substantifs..." She lists only a few words, many of which are derived forms. For the others, where she lists "e", my databases have \(/ \partial /\), some examples are found in:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Example 383: Comparison of words with "e" in Dugast (1971)} \\
\hline Gloss & Dugast (1971: 33) & Boyd & \\
\hline uncle & ì-sen & ì \(\ddagger\) sàn & \\
\hline give birth & -bíen & -pión- & \\
\hline field of yams & ì-ten & ìキtóní & \\
\hline fly swatter & bù-kiek-i & from & ì \(\neq \mathrm{k} \grave{\text { j }}\) \\
\hline lion & ngwêy & ì \(\ddagger\) ¢ \({ }^{\text {n }}\) dá & \\
\hline
\end{tabular}

Dugast also admits that in many words, there is "une réalisation intermédiaire" between /a/ et /e/. This "réalisation intermédiaire" of Dugast is similar to other synchronic variations in a number of the Mbam languages. While some, like Maande and Yambeta, clearly have a central [+ATR] vowel/a/ (although in both instances, it is written in the orthography as e), in other languages such as Yangben (or Kaloŋ: Hyman 2003a) and Gunu, as Robinson (1984: 50) found: -Chez certains locuteurs la réalisation (du phonème /e/) est légèrement centralisée." This being the case, [e] is likely a realisation of the central [+ATR] vowel \(/ \partial /\).

Stewart (2000: 54-5), using data from Dugast (1967, 1971), found a lowering of certain Nen prefixes (those with \(\mathbf{e}\)-) before a stem vowel \(\boldsymbol{\varepsilon}\). While the vowel \(/ \mathrm{I} /\) is acoustically rather low, it is also quite widespread in its acoustic space. While I do not doubt that there is some phonetic variation, I found no evidence in my databases or acoustic analysis of a lowering such as Stewart found. Stewart's examples are as follows:
\begin{tabular}{|c|c|c|}
\hline Stewart (2000: 55) & Boyd & gloss \\
\hline nè-sèk & nì \(\ddagger\) síkí & termite \\
\hline nè-bàt & nì \(\neq\) pàtà & cloth \\
\hline né-hòk & nìłhơká & axe \\
\hline nè-bók & nì \(\neq\) pókà & forehead \\
\hline nì-bíl & nìfpílò & palm tree \\
\hline nì-fù & nì \(=\mathrm{f}\) w'่ & bundle \\
\hline
\end{tabular}

Stewart (2000: 53-4) therefore suggests an additional sound change, merging /e/ from proto-Bantu \(* \varepsilon\) and \(/ \partial /\) from \(*\) a due to [+ATR] spread. In support of this, he shows a few cases where proto-Bantu \(*_{\varepsilon}\) has the reflex \(/ \partial /\) in Nen.

As seen above, when proto-Bantu has *i or *u in the stem (often, but not always in final position), a non-high vowel in the same stem has a reflex that is [+ATR] in Nen. In Example 384, the low vowels are bolded in both the proto-Bantu derivation and the [+ATR] reflex in Nen.

\section*{Example 384: [+ATR] reflexes of PB low vowels in Nen}
\begin{tabular}{|c|c|c|c|c|c|}
\hline *a>o & give birth name & \begin{tabular}{l}
*-bíad- \\
*-jínà
\end{tabular} & \[
\begin{aligned}
& 226 \\
& 3464
\end{aligned}
\] & \begin{tabular}{l}
-píán- \\
-ínò
\end{tabular} & \\
\hline \multirow[t]{4}{*}{* \(\gg 0\)} & string & *-gòdí & 1417 & -kòlí & \multirow[t]{4}{*}{string, thread} \\
\hline & bird & *-jòǹ & 1627 & -nòní & \\
\hline & & var. *-nı̀dì & (2285) & & \\
\hline & navel & *-kóbú & 1865 & -ló & \\
\hline \multirow[t]{3}{*}{\(*_{\varepsilon} \gg\)} & \multirow[t]{2}{*}{elephant} & \multirow[t]{3}{*}{\begin{tabular}{l}
*-jògù \\
var. *-jègù
\end{tabular}} & 1607 & \multirow[t]{2}{*}{-sàkù} & \\
\hline & & & (1580) & & \\
\hline & beard & & 897 & -tólù & chin \\
\hline
\end{tabular}

There are instances where \(*_{\varepsilon}\) has a reflex \(/ \partial /\) in Nen where there is not an obvious high vowel in the proto-Bantu stem:
\begin{tabular}{lllll} 
speak & *-déb- & 7745 & -jám- & speak \\
father (his) & *-cé & 501 & -sá & father
\end{tabular}

After [ATR] spread, Stewart (2000: 53) proposes three sound changes to arrive at his inventory of vowels for Nen 1) \(\mathbf{I}, \boldsymbol{v}>\mathbf{e}, \mathbf{o} 2) \mathbf{e}>\boldsymbol{\jmath}\) and 3) stem \(\mathbf{e}>\boldsymbol{\varepsilon}\). In this manner,
he accounts for the \(\varepsilon / \mathbf{i}\) ATR harmony pair. A fourth change is the ouster of the \(\varepsilon / \boldsymbol{o}\) harmony pair in lexical items. With these changes, Stewart arrives at a Nen inventory of i \(\varepsilon / \mathrm{i},{ }^{295} \mathrm{a} / \partial, \rho / \mathrm{o}, \mathrm{o} / \mathrm{u}, \mathrm{u}\).

In light of the other Mbam languages, however, a different analysis is possible, which fits the wider data collected from the ten Mbam languages discussed in this study.

\subsection*{5.1.5 Towards proto-Mbam}

Stewart (2000) proposes three sound changes to arrive at his inventory of vowels for Nen 1) \(\mathbf{I}, \boldsymbol{v}>\mathbf{e}, \mathbf{o} 2) \mathbf{e}>\mathbf{o}\) and 3) stem \(\mathbf{e}>\boldsymbol{\varepsilon}\). This study presents a different analysis for each of these proposals. Stewart's first sound change, \(\mathbf{I}, \boldsymbol{\omega}>\mathbf{e}, \mathbf{o}\), is excluded since my data shows evidence that \(\mathbf{I}\) and \(\boldsymbol{\sigma}\) are present in modern-day Nen as well as in all of the other Mbam languages. It is rather \(\mathbf{e}\) and, in the case of Tuki, also \(\mathbf{o}\) which are lost rather than the high vowels. Stewart's second sound change, \(\mathbf{e}>\boldsymbol{\boldsymbol { a }}\), is plausible but unnecessary and the presence of \(\boldsymbol{\jmath}\) can be more simply accounted for as the [+ATR] counterpart of /a/ without other sound change necessary. The third sound change, stem \(\mathbf{e}>\boldsymbol{\varepsilon}\), is excluded since in my data, there is no reflex /e/ of either \(*_{\varepsilon}\) or \(*_{\mathbf{I}}\), as seen in the discussion above. In this section I present my proposal of the sound changes from proto-Mbam.

Following Hyman's (2001, 2003a) and Dresher's (2009) idea of identifying only those features which are "phonologically active" in the vowel system, using either Hyman's four features: ATR, front, round and open or Dresher's contrastive-feature hierarchy, most of the Mbam languages which have nine contrastive vowels have a "phonologically active" feature [front] and those with eight or fewer vowels lack a "phonologically active" feature [front].

\footnotetext{
\({ }^{295}\) Stewart (2000: 54) does claim that \(\varepsilon / \partial\) occurs in "the diminutive extention - \(\boldsymbol{l} /-\boldsymbol{\partial l}\) " only. The situation, however, isn't so easy as this. There is no phonological conditioning as there were, or still are, two different extensions which are similar: one is -il/-il (possibly a reflex of \(*\)-id ( \(\mathrm{n}^{\circ} 2188\) )) and the other -al/-əl (/-ol/-ol) (possibly a reflex of *-ad (an expansion or ill-defined suffix (Meeussen 1967: 90)). Another possibility is that -al/-əl may be a reflex of *-at. One word has been found which contains both extenstions: \(\grave{o} \neq \mathrm{t} \tilde{o}^{\mathrm{m}} \mathrm{b}\)-ál-ill-à approach s.o. (from the verb \(\dot{\text { ùftút }}{ }^{\mathrm{m}} \mathrm{b}\)-à pass, succeed). Below is a paradigm of all the forms found in the corpus with each extension (bolded). While not all forms have been attested, there are enough examples to show the differences, as presented in the example below.
\begin{tabular}{|c|c|c|c|}
\hline ùftìn-̇̀l-̇̀ & attach & ù \(\neq\) mín-íl-̇े & polish \\
\hline ù \(\neq\) sik-àl-à & slice & ò \(\neq\) sìk-ìl-à & winnow \\
\hline ù \(\neq\) sál-ál-à & whistle & òftát-íl-à & wait \\
\hline ù-pífhión-ə̇l-̇̀ & soar & --- & --- \\
\hline ù \(\ddagger\) to \({ }^{\text {mb }}\) b-ı̀l-à & peel & ù \(\neq\) mij̀t-ìl-à & press \\
\hline ùfnòn-òl-ò & tickle & --- & --- \\
\hline ùキkúp-ál-à & insult & ò \(\ddagger\) tớmb-ál-ìl & approa \\
\hline ù \(\neq\) pùl-̀̀l-̇̀ & stir & ù-píf \(=\) úp-íl-ì & capsize \\
\hline
\end{tabular}

While they could be allomorphs which are (exceptionally) not phonologically conditioned, the fact that they do co-occur in one stem gives credence to the argument that they were, at least historically, two differenct morphemes, despite dificulty of determining the difference in meaning.
}

Baca, with ten surface vowels, most closely resembles proto-Mbam after the [+ATR] spread from the proto-Bantu vowels. The hierarchy of contrastive features for Baca, as well as my proposal for proto-Mbam is as follows: open>>back/front>>round>>ATR, and illustrated in Table 86.

Table 86: Contrastive features for Baca and Mbure
i| || || || || || || || || || || || || || || || || || || || ||

The only sound change in Baca from proto-Mbam is the loss of contrast between the [+ATR] and [-ATR] low vowels a/ą. While the [+ATR] vowel is still found as an allophone, it is no longer contrastive.

Table 87: Baca sound changes from PB
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline proto-Bantu & i & I & \(\varepsilon\) & a & 0 & 0 & u \\
\hline (1) [+ATR] spread & i & i/I & ع/e & a/ạ & \%/o & v/u & u \\
\hline (2) Loss of contrast of a & & & & (a) & & & \\
\hline Baca & & I/i & ع/e & \(\mathrm{a} /[3]\) & っ/o & «/u & u \\
\hline
\end{tabular}

While Mbure has the same contrastive-feature hierarchy as Baca (open>>back/front>>round>>ATR), it has an additional sound change. The third sound change proposed is the merger of ạ>e. \({ }^{296}\) Mbure, Yangben and Mmala undergo this sound change.

Table 88: Mbure sound changes from PB
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline proto-Bantu & i & I & \(\varepsilon\) & a & 0 & U & u \\
\hline (1) [+ATR] spread & i & I/i & \(\varepsilon / \mathrm{e}\) & a/ą & 9/0 & v/u & u \\
\hline (3) Merger of a \(>\mathrm{e}\) & & & & a/e & & & \\
\hline Mbure & i & I/i & ع/e & a/e & 0/0 & v/u & u \\
\hline
\end{tabular}

The other 9 -vowel languages, Yangben and Mmala, have similar vowel inventories and vowel features as Mbure, but their contrastive hierarchies differ from each other and from Mbure. Yangben's contrastive-feature hierarchy differs from the Mbure's contrastive-feature hierarchy by a change in the order of the features. The contrastive-feature hierarchy for Yangben is open>>round/back>>front>>ATR.

\footnotetext{
\({ }^{296}\) While Mbure does have instances where /a/ may occur in [+ATR] contexts, this is discussed elsewhere and is not important here.
}

350 The phonological systems of the Mbam languages


An additional sound change evident in both Yangben and Mmala, namely, a gradient phonetic lowering of \(\mathbf{I}\) and \(\boldsymbol{\sigma}\) in certain environments (sound change \#4), as is seen in Table 90.

Table 90: Yangben and Mmala sound changes from PB
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline proto-Bantu & i & I & \(\varepsilon\) & a & 0 & U & u \\
\hline (1) [+ATR] spread & & I/i & \(\varepsilon / \mathrm{e}\) & a/a & 9/0 & v/u & u \\
\hline (3) Merger of a \(>\mathrm{e}\) & & & & a/e & & & \\
\hline (4) Lower i, \({ }^{\text {(phonetic) }}\) & & \(\mathrm{I} \sim \varepsilon\) & & & & U~0 & \\
\hline Yangben, Mmala & i & I/i & ع/e & a/e & 9/0 & v/u & u \\
\hline
\end{tabular}

While Yangben and Mmala have the same vowel inventory and have undergone the same sound changes, their contrastive hierarchies are very different. Instead of a contrastive feature, front, Mmala has a height feature mid. Mmala's contrastive feature hierarchy is then ATR>>open>> mid>>round/back.

Table 91: Contrastive features for Mmala
-

In the 8 -vowel languages, another sound change is evident. Hyman (2001: 155) concludes that in Gunu, the feature [front] is not required in underlying representations. While certain vowels in a general sense are front vowels, the feature [front] is not active in the vowel system. All of the vowels in Gunu and the other 8 -vowel languages can be accounted for with the contrastive feature hierarchy and is open>>round/back>>ATR

Table 92: Contrastive features for the 8 -vowel Mbam languages


With the loss of [front], the gap left by its absence triggers the lowering of the [ATR] high vowel. In Nen, /I/ occurs only optionally (depending on the speaker) in certain noun-class prefixes, when not lowered by the vowel \(\boldsymbol{v}\) in the noun root. \({ }^{297}\)

Table 93: Nen, Maande and Yambeta sound changes from PB
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline proto-Bantu & 1 & I & \(\varepsilon\) & a & 0 & U & u \\
\hline (1) [+ATR] spread & 1 & I/i & \(\varepsilon / \mathrm{e}\) & a/a & 9/0 & v/u & u \\
\hline (5) Loss of feature: [front] & & & --- & & & & \\
\hline (6) Lowering of I>[ I ] & & \(\varepsilon / \mathrm{i}\) & & & & & \\
\hline Nen, etc. & i & \(\varepsilon / \mathrm{i}\) & --- & a/ə & 0/0 & v/u & u \\
\hline
\end{tabular}

However, among the 8 -vowel languages, the situation of two, Elip and Gunu, is more complicated. Both Elip and Gunu have undergone a sound change similar to sound change \#3 (a merger of a>e) as well as the loss of the feature [front], sound change \#5. There are two possibilities for classifying these two languages:
- Elip and Gunu should be grouped with Yangben and Mmala as having undergone sound changes \#1, \#3 and \#4, which precludes sound change \#5, which they also seem to both have undergone, or
- Elip and Gunu should be grouped as a separate subgroup along with the other 8 -vowel languages which have not undergone sound change \#3, but have undergone sound changes \#5 and \#6.

Both these options have their difficulties. The first option would argue that the loss of the feature front in both Elip and Gunu would have come about later through contact. We will discuss this scenario in section 5.2 below.

The second option would have to account for the high F2 frequency of the [+ATR] counterpart of /a/ which surfaces in the acoustic space of [e] and for the limited and optional height harmony found in Elip. The latter is likely influenced by contact with Mmala.

In the latter scenario, the F2-raising of / \(/\) can be perhaps attributed to either contact with the neighbouring languages to the south and/or maximising the acoustic space due to the loss of the feature front similar to the lowering of the high front vowel found in sound change \#6. A seventh sound change is therefore proposed, that of the fronting or F2-raising of \(\boldsymbol{ə}\).

\footnotetext{
\({ }^{297}\) Of the recordings of three Nen speakers, only one had a slightly lower F1 for noun-class 5 or 7 prefixes on [-ATR] nouns. The vowel [ 0 ] in the noun root nullified this lowered F1 in the prefix, although it was still evident when \([\mho]\) was in the noun root.
}

352 The phonological systems of the Mbam languages

Table 94: Possible Elip and Gunu sound changes from PB
proto-Bantu
(1) \([+A T R]\) spread
(5) Loss of feature: [front]
(6) Lowering of \(\mathrm{I}>[\varepsilon]\)
(7) "Fronting" or F2-raising of \(\boldsymbol{\imath}\)

Gunu, Elip
\begin{tabular}{lllllll}
i & I & \(\varepsilon\) & a & \(\rho\) & 0 & u \\
i & \(\mathrm{I} / \mathrm{i}\) & \(\varepsilon / \mathrm{e}\) & \(\mathrm{a} / \mathrm{a}\) & \(\rho / \mathrm{o}\) & \(\tau / \mathrm{u}\) & u \\
& & --- & & & & \\
& \(\varepsilon / \mathrm{i}\) & & & & & \\
& & & a/e & & & \\
i & \(\varepsilon / \mathrm{i}\) & --- & a/e & \(\rho / \mathrm{o}\) & \(\tau / \mathrm{u}\) & u
\end{tabular}

A final sound change is in process in the tenth language, Tuki. The open [+ATR] round vowel [ o ] is no longer contrastive. The vowel [ o ] occurs only as the [+ATR] allophone of \(/ \omega /\). Tuki's contrastive feature hierarchy is: open>>ATR>>round/back.

Table 95: Contrastive features for Tuki


In Tuki, the vowel [o] does not occur in noun roots or verb stems unless another [+ATR] vowel is present. In these cases, it can be interpreted as a [+ATR] allophone of \(/ \mathrm{o} /\) within the root or stem.

Table 96: Tuki sound changes from PB
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline proto-Bantu & i & I & \(\varepsilon\) & a & 0 & v \\
\hline (1) [+ATR] spread & i & I/i & ع/e & a/a & s/o & v/u \\
\hline (5) Loss of feature: [front] & & & & ə & & \\
\hline (6) Lowering of \(\mathrm{I}>[\varepsilon]\) & & [ \(\varepsilon] / \mathrm{i}\) & --- & & & \\
\hline (8) Loss of contrast of o & & & & & (o) & \\
\hline Tuki & & [ \(\varepsilon] / \mathrm{i}\) & --- & a/a & ¢/[o] & v/u \\
\hline
\end{tabular}

We have discussed the sound changes which may have occurred from proto-Bantu to arrive at the current vowel inventories of the Mbam languages. The eight primary sound changes proposed above are listed in Table 97.

Table 97: Proposed historic sound changes in the Mbam languages
[+ATR] spread
1.

Loss of contrast of a
Merger of a̦>e
Lower I, v (phonetic)
Loss of feature: [front]
Lowering of \(\mathrm{I}>[\varepsilon]\)
"Fronting" or "F2-raising" of ə
8. Loss of contrast of o

Along with the historical sound changes discussed above and summarised in Table 97, there are also hints of possible sound changes occurring now, perhaps due to language contact with Basaa. Both Mbure and Baca are at the extreme south of the Mbam and adjacent to the greater Basaa region. Mbure in particular has a very narrow distance between the high vowels and may be undergoing a vowel merger of the high vowels; for example a \(9>7\) vowel merger. However, the distinction is being preserved by aspiration or assibilation on consonants preceding /i/ and /u/, which does not occur on consonants preceding \(/ \mathrm{I} /\) and \(/ \mathrm{v} /\). This aspiration/assibilation is similar to Schadeberg's (1994/95: 73) finding that "No language has undergone [a] \(7>5\) [vowel merger] but not Spirantisation".

Mbure seems to be in a process of undergoing a merger influenced by contact with Basaa: that of merging [-ATR +high] vowels with either the [+ATR] high or the [-ATR -high -low] vowels.

The Mbam languages are classified from proto-Mbam with the above sound changes noted (by the numerals listed above). It is assumed that proto-Mbam had ten vowels, so the loss of contrast (sound change \#2) is the change where Baca splits off. The next sound change \#3, along with sound changes \#5 and \#6 separates Mbure, Yangben and Mmala from Elip, Gunu, Yambeta, Maande, Nen and Tuki. The noncontrastive lowering of the [-ATR] high vowels, sound change \#4, distinguishes Mbure from Mmala and Yangben. Sound change \#7, the "fronting" or F2-raising of the vowel \(\boldsymbol{\rho}\) separates Elip and Gunu from Yambeta, Maande, Nen and Tuki. The final vowel change, \#8, the loss of contrast of /o/, separates Tuki from Yambeta, Maande and Nen, as in Table 98:

Table 98: A possible classification of the Mbam languages


\subsection*{5.2 Structural issues in language classification}

A fuller understanding of the history of the Mbam languages must include language contact. The dilemma of Elip which manifests a trace of height harmony like Mmala indicates either a long shared history with, or borrowing, not only of lexical items but of structural features, from Mmala.

In this section, we will consider some structural changes evident in these languages, in order to investigate the scenario of contact to explain the differences in the vowelharmony systems which are not accounted for by historic sound changes alone.

As mentioned above, Elip and Gunu appear to have undergone similar historic sound changes as Yambeta, Maande and Nen, but also to have undergone a similar historic sound change as Mbure, Yangben and Mmala. In addition, Elip shares an obvious trait with Mmala, that of having a trace of height harmony. The question is whether Elip and Gunu are better classified as belonging to the same subgroup as Mmala, but borrowing structural features from the Yambeta-Maande-Nen subgroup (mentioned above), or are better classified as belonging to the same subgroup as Yambeta-Maande-Nen, and borrowing structural features from the Mmala subgroup.

In Table 98 above, Yangben and Mmala are not differentiated by a sound change (they both have the same vowel inventory). The difference between Yangben and Mmala is structural. As has been seen in Chapter 4, they have different contrastive hierarchies of their vowel systems. The main structural difference that distinguishes Mmala from Yangben is the replacement of the feature front with the feature mid. While this structural change has no bearing on the surface vowels, it does have a critical effect on the vowel-harmony systems of these two languages.

While the historic sound changes alone would favour the classification found in Table 98 above, taking into consideration structural features, Elip and Gunu can be classified differently. Assuming that a sound change may have a structural change at its root, but that not all structural changes have an associated sound change, we will start out with the sound changes presented above in Table 97, to which we will add two structural changes to account for both the differentiation of Mmala from Yangben and resolve the dilemma of Elip.

The first structural change proposed, is the replacement of the feature front with the feature mid (structural change \#4a. [front]>[mid]), which distinguishes Mmala (ATR >>open >>mid >>round/back) from Yangben (open >>round/back >>front \(\gg A T R\) ). If we assume that both Elip and Gunu have undergone sound change \#3 (the merger of \(\mathbf{a}>\mathbf{e}\) ), they can now be connected with the larger subgroup Mbure-Yangben-Mmala rather than the larger subgroup Yambeta-Maande-Nen-Tuki, which has not undergone sound change \#3. A further structural change, the loss of the feature mid (structural change \#4b), can thus be proposed to distinguish Elip and Gunu (open>>round/back>>ATR) from Mmala (ATR>>open>>mid>> round/back), see Table 99 below. The differences in ranking are language-specific and do not
have any bearing on the structural change \({ }^{298}\) between languages (see discussion of the contrastive-feature hierarchy in Chapter 4).


With the loss of mid, Elip and Gunu would be historically closer to Mbure-YangbenMmala but would structurally more closely resemble Yambeta-Maande-Nen (which also have a contrastive-feature hierarchy: open>>round/back>>ATR). Although similar, the contrastive-feature hierarchy of Gunu and Elip would be the result of a different series of historic changes than the contrastive-feature hierarchy of Nen, the latter due to the loss of the feature front, the former due to the loss of the feature mid.

With these two structural changes, we can account for why both Elip and Gunu have a [+ATR] counterpart of \(/ \mathrm{a} /\) with a surface form [e], unlike the Yambeta-Maande-Nen-Tuki subgroup, and account for the trace of height harmony found in Elip, now interpreted as a remnant left over after structural change \#4b. This reinterpretation would eliminate the necessity of proposed sound change \#7 in Table 97 (and barred in Table 99 above) since Elip and Gunu are no longer considered a part of the Yambeta-Maande-Nen-Tuki subgroup that requires it. The modified tree would then be as found in Table 100 below.

\footnotetext{
\({ }^{298}\) Both Baca and Mbure have the same contrastive-feature hierarchy, but, due to historic sound changes, are separated in the classification tree.
}

Table 100: Revised classification of the Mbam languages


The advantage of considering structural innovations along with historic sound changes is that it presents a more complete picture of the classification of the Mbam languages.

The position of Elip in the classification of the Mbam languages is a dilemma. It has a shared history either with the Yambeta-Maande-Nen subgroup and, through contact, borrowed a trace of height harmony from Mmala, or it (and Gunu) has a shared history with the Mbure-Yangben-Mmala subgroup and due to contact with the other Mbam languages, has lost its feature mid, leaving only a remnant of height harmony, generally retained only be the oldest speakers of the language. While there is no synchronic evidence that Gunu ever had height harmony, it is generally considered to be more closely related to Baca, Mbure, Yangben, Mmala and Elip than to Nen and Maande.

\subsection*{5.3 Lexicostatistical classification}

Generally languages are classified by their lexical similarities. This section presents my own lexicostatistical analyses of these ten Mbam languages, and considers whether the lexicostatistical evidence supports or contradicts the classification based on historic sound and structural changes discussed above.

There is some discussion about what is the best size of wordlist to use. With a shorter list, each word has a higher importance in the percentages. However the longer lists likely include cultural vocabulary and may have lateral influences from neighbouring languages (Piron 1997: 535). On the other hand, while a list of 100 words is sufficient to establish a synchronic classification, it is too small for establishing regular phonological correspondences, which are essential as they form the basis for deciding whether a partial divergence is phonological or merely phonetic (Möhlig 1986: 23).

In collecting data for this study, a Swadesh 200 -word list \({ }^{299}\) was elicited for each of the ten languages included in this study. Due to various lacunas in several of the

\footnotetext{
\({ }^{299}\) These wordlists are included in the larger lists mentioned in the introduction.
}
languages, the actual number of terms compared is between 165 and 190. Table 101 gives the results.

Table 101: Lexicostatistical comparison of the Mbam languages
\(\mathrm{N}^{300}\)
\begin{tabular}{llllllllll}
\(53 \%\) & Ma & & & & & & & & \\
\(37 \%\) & \(33 \%\) & Ya & & & & & & & \\
\(33 \%\) & \(36 \%\) & \(33 \%\) & T & & & & & & \\
\(33 \%\) & \(39 \%\) & \(38 \%\) & \(44 \%\) & G & & & & & \\
\(36 \%\) & \(41 \%\) & \(35 \%\) & \(44 \%\) & \(60 \%\) & E & & & & \\
\(36 \%\) & \(41 \%\) & \(34 \%\) & \(43 \%\) & \(61 \%\) & \(81 \%\) & M & & & \\
\(36 \%\) & \(40 \%\) & \(34 \%\) & \(37 \%\) & \(52 \%\) & \(65 \%\) & \(74 \%\) & Yg & & \\
\(41 \%\) & \(38 \%\) & \(35 \%\) & \(36 \%\) & \(48 \%\) & \(55 \%\) & \(58 \%\) & \(66 \%\) & B & \\
\(37 \%\) & \(30 \%\) & \(34 \%\) & \(34 \%\) & \(41 \%\) & \(43 \%\) & \(44 \%\) & \(51 \%\) & \(59 \%\) & Mb
\end{tabular}

The two extreme methods of lexicostatistical subclassification are Nearest Neighbour (NN) and Furthest Neighbour (FN). "NN assumes that the distance is equal to the closest distance between any member of X and (any member of) Y; FN takes the greatest distance as its measure" (Schadeberg 1986: 71-2). A third method, often called Branch Average (BA), takes the average between the greatest and the closest distance. Table 102 presents the result of the cluster analyses. Each row indicates the distance between languages or clusters of languages according to the three calculations. For example, Elip and Mmala have a distance of 810 (81\%) and form the first cluster. In the next row, by the Nearest Neighbour calculation cluster 1 (i.e. Elip-Mmala) and Yangben have the next closest distance at 740 (74\%) and form the second cluster, while the Furthest Neighbour calculation, the next closest distance is between Yangben and Baca at 660, and they form cluster 2. The Branch Average calculation, like the Nearest Neighbour, groups cluster 1 (Elip-Mmala) with Yangben at \(695(69.5 \%)\). Cluster 2 in row three includes the elements found in the second row and compares with the next closest language or cluster of languages.
\begin{tabular}{llll}
\({ }^{300}\) Abbreviations are as follows: & & \\
\(E=\) Elip & \(M=\) Mmala & \(Y g=\) Yangben & \(B=\) Baca \\
\(G=\) Gunu & \(M a=\) Maande & \(T=\) Tuki & \(N=\) Nen
\end{tabular}

Table 102: NN, FN, and BA Cluster Analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Clusters & \multicolumn{3}{|l|}{Nearest Neighbour} & \multicolumn{3}{|l|}{Furthest Neighbour} & \multicolumn{3}{|l|}{Branch Average} \\
\hline & \(\lg \mathrm{X}\) & \(\lg \mathrm{y}\) & 1/1000 & \(\lg \mathrm{X}\) & \(\lg \mathrm{y}\) & 1/1000 & \(\lg \mathrm{X}\) & \(\lg \mathrm{y}\) & 1/1000 \\
\hline 1 & E & M & 810 & E & M & 810 & E & M & 810 \\
\hline 2 & cl. 1 & Yg & 740 & Yg & B & 660 & cl. 1 & Yg & 695 \\
\hline 3 & cl. 2 & B & 660 & cl. 1 & cl. 2 & 650 & cl. 2 & B & 605 \\
\hline 4 & cl. 3 & G & 610 & cl. 3 & G & 600 & N & Ma & 530 \\
\hline 5 & cl. 4 & Mb & 590 & N & Ma & 530 & cl. 3 & Mb & 530 \\
\hline 6 & N & Ma & 530 & cl. 4 & T & 430 & cl. 5 & G & 483 \\
\hline 7 & cl. 5 & T & 440 & cl. 6 & Mb & 340 & cl. 6 & T & 400 \\
\hline 8 & cl. 7 & cl. 6 & 410 & cl. 5 & Ya & 330 & cl. 7 & cl. 4 & 352 \\
\hline & & & & cl. 7 & Ya & 330 & & & \\
\hline 9 & cl. 8 & Ya & 380 & cl.7/5 & cl. 8 & 300 & cl. 8 & Ya & 350 \\
\hline
\end{tabular}

In the Furthest Neighbour analysis, Yambeta has 33\% similarity with both the Nen-Maande cluster and with the Elip-Mbure cluster. If Yambeta is grouped with the Nen-Maande cluster, it joins the Elip-Mbure cluster at \(30 \%\), and vice versa. Therefore two Furthest Neighbour trees are possible depending on to which group Yambeta is attached. In Table 103, Yambeta is bolded and the competing classifications are shaded.

Table 103: Furthest Neighbour subclassifications (1) \& (2)


The unstable position of Yambeta in the Furthest Neighbour subclassification is reflected differently in the Nearest Neighbour and Branch Average classifications. Yambeta is the most distant language in both of these subclassifications.

In all three subclassifications, two nodes are evident: the Elip-Mmala node and the Nen-Maande node. No other nodes are evident in all the subclassifications. While Furthest Neighbour classification has a Yangben-Baca node, this is not found in the Nearest Neighbour or Branch Average subclassification in which Yangben and Baca join the Elip-Mmala node one after the other. Gunu, Tuki and Mbure join the Elip-Mmala-Yangben-Baca node successively in all three subclassifications, but in
different orders. In the Furthest Neighbour classification, the order is Gunu, Tuki and Mbure (Table 103). In the Nearest Neighbour classification it is Gunu, Mbure and Tuki and in the Branch Average classification it is Mbure, Gunu and Tuki (Table 104).

Table 104: Nearest Neighbour and Branch Average subclassifications


These classifications differ from Phillips' (1979) comparison of Yambeta with eight other languages of the Mbam region: Bafia and Bape (A50), Maande, Nen, Alinga (a Nen dialect), Bonek (A40), Gunu, and Tuki (A60). \({ }^{301}\) Her conclusions were that Yambeta more closely related to Gunu and Tuki than to Maande or Nen. My analysis indicates otherwise. The Furthest Neighbour trees put Yambeta at equidistance from both the Gunu-Tuki subgroup and the Maande-Nen subgroup. The Nearest Neighbour and the Branch Average trees, put the Maande-Nen subgroup closer to the Gunu-Tuki group than to Yambeta.

While earlier studies may differ in calculating the distance between Yambeta and its neighbours, it is interesting to note that the position of Yambeta as being in between the other clusters is not different. Mous and Breedveld (1986: 187) note that "Yambeta occupies a position in between different groups." While Mous and Breedveld indicate a distance of \(60 \%\) with Maande, they acknowledge 14 missing items between Yambeta and Maande (Mous and Breedveld 1986: 184), which is substantial in a list of 100 items. Yambeta forms a group with the other languages in the same group as Maande (Nen, Alinga, and Bonek) at only \(34.5 \%\) (Mous and Breedveld 1986: 187) which is similar to my findings.

\subsection*{5.4 Conclusions}

In comparing the lexicostatistical classification (section 5.3) with that of the historic sound and structural changes discussed in section 5.2, there are several conclusions that may be drawn:

\footnotetext{
\({ }^{301}\) Phillips (1979: 22-35) uses a 120-word list based on the Swadesh basic wordlist.
}
- The revised classification (Table 100) is more similar to the Nearest Neighbour and Branch Average classifications (Table 104) than the classification proposed in Table 98.
- In every lexicostatistical subclassification (Nearest Neighbour, Furthest Neighbour and Branch Average), Elip and Mmala form a node. This supports the argument that Elip and Mmala have a long shared history and supports the revised classification (Table 100). The other languages, Yangben, Baca, Mbure and Gunu join the Elip-Mmala node earlier than the languages of the other historic subgroup, Yambeta, Maande, Nen and Tuki.
- While the historic classification groups Yambeta and Tuki more with the Nen-Maande subgroup, the lexicostatistical classification groups Tuki distantly to the Gunu-Elip-Mmala-Yangben-Baca-Mbure subgroup and Yambeta as between the two groups. A possible explanation is that Yambeta, structurally closer to the Nen-Maande node, has probably borrowed substantially from the Gunu-Elip-Mmala-Yangben-Baca-Mbure subgroup.

Due to their close proximity, it is not surprising that Tuki should pattern lexicostatistically with Baca, Mbure, Yangben, Mmala, Elip and Gunu. These are small groups with a high degree of intermarriage and movement between them. An indication of this mobility and intermingling of populations is the long-time presence of a displaced Tuki village, Nyamanga I, \({ }^{302}\) established between the Elip village Kananga and the Yangben village Omende. Dugast (1949) also relates substantial movement of most of these people groups even as late as the late 1800's, preceding German colonisation.

Of additional interest is the fact that Mbure, historically and physically close to Baca and Yangben in particular, is lexicostatistically relatively distant from them. One reason appears to be geographic. The Mbure people live at the southernmost extremity of the Mbam region along the banks of the Liwa River, which forms part of the border of the Mbam-et-Inoubou District with the Sanaga-Maritime District (Littoral Region) and Basaa country. The Mbure people tend to look south towards Basaa more than north towards their Mbam relatives. Most Mbure people are bilingual in the dialect of Basaa spoken south of the Liwa River, and they are more likely to frequent the closest Basaa markets to the south, than the closest market to the north in the Yangben village of Batanga.

The road which accesses the village of Mbola from the north dwindles down after the Yangben village of Batanga and, in 2011, when I last visited the village, the bridge over the Liwa River was barely passable; few vehicles other than motorcycles were able to reach Mbola. This relative isolation counteracts the historical relation of

\footnotetext{
\({ }^{302}\) I do not know the date of the founding of this village, but Dugast's (1949: 49, 65-7) maps of the area identified it as a Tsinga-Betsenga (i.e. Tuki) village.
}

Mbure with the neighbouring Mbam languages, and is perhaps a reason for the lower lexicostatistical similarities between it and them.

Baca, like Mbure, is a border language, but the road south of Yangben village to Bongo village is a major road (joining the Douala road south of Yaoundé at Mboumnabel) and has relatively dense traffic. Baca, therefore, is less isolated. Furthermore, there is another language, Bati, which is located between Baca and the larger Basaa community. This geographic location of both Baca and Mbure near the border with Basaa also explains the intermediary position of these two languages with reduced vowel-harmony systems, between the strong vowel harmony of Yangben and Mmala on one hand, and the absence of vowel harmony in Basaa, on the other.

The situation of Yambeta is also interesting. Historically, it is unambiguously grouped with the other eight-vowel languages, but lexicostatistically, it is equidistant between the two groups Nen-Maande and the Mbure-Baca-Yangben-Mmala-Elip-Gunu-Tuki group. Their oral histories indicate an affiliation with both groups.

The two Yambeta dialects claim different origins in their oral histories with the Nedsk people coming from Bamoun like the Nen, and the Nigii claiming correlation with the other children of Ombono, especially the Gunu. This division in the oral histories is suggestive and leads one to imagine a possible blending of two speech forms to create a new one. Such a blending could explain a structural tie to the Nen-Maande group and a lexical tie to the Mbure-Baca-Yangben-Mmala-Elip-Gunu-Tuki group.

\subsection*{5.5 Classification of the Mbam languages in the wider linguistic context}

This chapter started with a discussion of the interrelationships and subgroupings of the Mbam languages within the context of the wider group by means of diachronic sound and structural changes and synchronic lexicostatistical subclassifications. In this section, we will look at the relationship of the Mbam languages in the wider linguistic context. First we will look at two neighbouring languages, Basaa and Nyokon (section 5.5.1), and then we will consider how the Mbam languages have been classified in the wider context of the Bantu and Bantoid languages (section 5.5.2).

\subsection*{5.5.1 Basaa and Nyokon}

Any discussion about the Mbam languages and their placement in the wider linguistic context should also include a discussion of two additional languages: Nyokon, due to it purported close relationship with Nen and its location in the Mbam region, and Basaa, the largest of the A40 languages.

\subsection*{5.5.1.1 Nyokon}

A recent study of Nyokon posits a somewhat unusual 9 -vowel inventory, \(/ \mathrm{i}, \mathrm{I}, \varepsilon, \dot{\mathrm{i}}, ~ \partial\), \(\mathrm{a}, \mathrm{u}, \mathrm{J}, \mathrm{g}\) (Lovestrand 2011: 13-14). However, [ I\(]\) is uncommon and occurs following a palatal approximant in every case. It is in complementary distribution with [i], which is more common. Lovestrand (2011: 15) also posits "... that the other near-close back vowel [ \(\delta\) ] may also be disappearing from the language by merging with the close back vowel [u]... If so, the language is moving from a symmetrical 9 -vowel system to a symmetrical 7 -vowel system."

While the presence of \(/ \mathrm{i} /\) in Nyokon is hard to explain in the context of the Mbam languages, it can be explained in the context of the Bamileke (Mbam-Nkam) languages. Nyokon is on the border with the Bamileke languages which do tend to have vowel inventories similar to Nyokon's. A near neighbour of Nyokon, a Mbam-Nkam language, Medumba, is reported to have ten vowels, \(/ \mathrm{i}, \mathrm{I}, \varepsilon, \mathrm{a}, \mathrm{i}, \partial, \mathrm{u}, ~ \cup\), \(\nu, a /\). The influx of the Bamileke into the Nyokon area perhaps explains the presence of \(/ \mathrm{i} /\) in the language.

The other peculiarity of Nykon is that it does not appear to have an active ATRharmony system. Lovestrand (2011: 15) notes:
"Evidently, the language once had an ATR harmony system but lost it at some point in the not-so-distant past. The hypothesis regarding the nearclose vowel [I] is that once the binary phonological feature separating it from the close vowel [i] stopped being part of an active phonological process, the need to distinguish the binary pair also disappeared. It is suspected that the other near-close back vowel [0] may also be disappearing from the language by merging with the close back vowel [u]..."

The primary domain of vowel harmony is the word root. As is seen in many of the Mbam languages, the scope of vowel harmony spreads to a greater or lesser extent from the root. Nyokon, which structurally has at least \(80 \%\) of nominal stems being monosyllabic (Lovestrand 2011: 25), vowel harmony will be less evident, especially if it does not spread beyond the word root. Structurally, Nyokon reduces the possibility of vowel harmony even if the vowel inventory permitted it. \({ }^{303}\)

Nyokon, situated at the northern limit of the Mbam region, has a vowel system which resembles many of the Mbam-Nkam (Southern Bantoid) languages to its

\footnotetext{
\({ }^{303}\) While the presence of central vowels does not preclude ATR harmony, as is evident in some of the Kru langauges, such as Kpokolo, which has six [+/-ATR] pairs: \(\mathrm{i} / \mathrm{I}, \mathrm{e} / \varepsilon\), \(\mathrm{i} / \mathrm{f}, ~ \partial / 3, \mathrm{u} / \mathrm{v}, \mathrm{o} / \mathrm{\rho}\) plus /a/ and ATR harmony (Kaye et al. (1985), the Mbam-Nkam languages nearest geographically and genetically to the Mbam languages do not have ATR harmony.
}
north and west. It has a vowel system distinctly different from the vowel systems of the other Mbam languages which have ATR harmony.

Rather than the idea put forth in Lovestrand (2011) that Nyokon lost ATR harmony, perhaps another way to look at it, is that Nyokon never developed ATR harmony.

\subsection*{5.5.1.2 Basaa}

While Basaa is an A40 language like Nen and some of the others, it has never been considered a part of the Mbam languages. Basaa has been described as having a typical seven vowel system, i, e, \(\varepsilon\), a, o, o, u (Hyman 2003: 258). However, Basaa has a "vowel raising" process that occurs in verb roots when either the causative or applicative extensions are added to the verb (Hyman 2003: 274-275).

Example 385: Vowel raising in Basaa (Hyman 2003: 274)
\begin{tabular}{llll} 
& & causative & applicative \\
lim & be silent & limis & limil \\
6ép & beat & 6íbîs & 6íbôl \\
kép & tattoo & kébês & kébêl \\
kun & choose & kúnûs & kúnûl \\
hól & sharpen & húlûs & húlûl \\
bol & rot & bólôs & 6ólôl \\
pát & pick off & pédês & pédêl
\end{tabular}

The Basaa vowel raising looks suspiciously like the ATR harmony found in the Mbam languages.

Schlindwein Schmidt (1996: 241-2) sees similarities in the Basaa "vowel raising" and the Nen vowel harmony discussed by Stewart and van Leynseele (1979). She gives the pattern for Basaa:

Basaa harmonic sets (Schlindwein Schmidt 1996: 242)
basic vowels ([-ATR]) i e \(\varepsilon\) a 0 o u
raised vowels ([+ATR]) i ieeou u
In similar fashion to Nen and other languages, the vowels \(\mathbf{e}, \mathbf{o}\) in Basaa surface in both [+ATR] and [-ATR] contexts. In the latter, they have i, u as their [+ATR] counterparts. She goes so far as to say that the [-ATR] e, o must be "... in some sense really /ı/ and /o/" (Schlindwein Schmidt 1996: 243).

While Schlindwein Schmidt rejects the idea of absolute neutralisation, she finds that "... the surface realisations of \(/ \mathrm{I} /\) and \(/ \mathrm{J} /\) are indistinguishable from the raised versions of \([\varepsilon]\) and [ \(\rho] . . . "(S c h l i n d w e i n ~ S c h m i d t ~ 1996: ~ 245) . ~\).

Contrary to Schlindwein Schmidt (1996: 247), Mutaka and Kody (2001: 17-18) explain the \(\boldsymbol{\varepsilon} \sim \mathbf{i}\) instead of the expected \(\boldsymbol{\varepsilon} \sim \mathbf{e}\) alternation in certain Basaa verbs and posit a [-ATR +high] vowel \(\mathbf{I}\), in the underlying representations, which has "either merged with the [+ATR] high or the [-ATR -high -low] vowels", resulting in an underlyingly nine-vowel inventory.

Basaa vowel raising, however, is limited to verb morphology and does not appear to be found in stems, and there are no vowel co-occurrence restrictions found in noun roots. For this reason, although in many ways similar, Basaa vowel raising differs from the vowel harmony in the Mbam languages.

Basaa did not undergo the Mbam sound change that introduced ATR vowel harmony. The raising here reported is unlikely to be the remnant of vowel harmony as it is different in nature from vowel harmony.

\subsection*{5.5.2 The Mbam languages in the wider context of Bantu and Bantoid}

Guthrie's original classification of the languages of the District of the Mbam divides them into three groups: A50, the Bafia group, A60, the Sanaga group, and A40, the Basaa group. It is the latter two groups which are of concern in this study, specifically the A60 group, and part of the A40, notably A44-A46 languages. Guthrie (1971: 31-2) lists the languages in Figure 32 in his A40 and A60 groups. The bolded languages are the ones that are discussed in this study. The A40 group in particular has a divide between the A41-A43 languages and the A44-A46 languages; the latter are physically located in the District of the Mbam-et-Inoubou. There are also important linguistic differences between the two parts of Guthrie's A40 group.

Guthrie identifies A61 and A64 as separate languages that are elsewhere considered dialects of Tuki. Of the other two languages identified by Guthrie in the Sanaga group, Leti (one of the two languages of the Mengisa people) or Tungijo, as other Tuki speakers call it, is considered by the Tuki as a dialect of Tuki (Kongne Welaze 2004: 8-9).
```

A. }40\mathrm{ (Basaa group)
A.41 Lombi (Rombi)
A. }42\mathrm{ Bakon (Abo)
A.43a Mben\varepsilon (Basa, Koko, Mvele)
A.43b N. Kogo
A.43c S. Kogo
A.44 Banen
A.45 Nyz̃'\tilde{`}}\mathrm{ (Nyokon)
A.46 Mandi (Lemande)

```

\section*{A. 60 (Sanaga group)}
A. 61 Ngoro [Tuki dialect]
A. 62 Yambassa
A. 63 Mengisa [Leti]
A. 64 Bacenga [Tuki dialect]
A. 65 Bati

Figure 32: Guthrie (1971: 31-2) A40 and A60 languages \({ }^{304}\)
The Atlas Linguistique du Cameroun (ALCAM) (Dieu and Renaud 1983), taking note of the linguistic differences in Guthrie's A40 group, divides A. 40 into the Basaa group and the ( Tu )nen group, and groups the latter with Guthrie's A60. There is no question that the Nen A40 group is linguistically much more closely related to the A60 group than to the other A40 languages. Both the Nen group and the A60 group have robust vowel harmony which the Basaa A40 group lacks. ALCAM also separates these languages from narrow Bantu (Equatorial, Zambesi) referring to the whole group as "le bantou du Mbam". Figure 33 lists the Benue-Congo languages of Cameroon from ALCAM, in particular the Mbam languages (bolded) discussed in this study.

\footnotetext{
\({ }^{304}\) Comments between square brackets are additions by author.
}
```

Benue-Congo
Junkunoid
Cross River
Bendi
Bantoid
Mambiloid
Bantu
Jarawan
Tivoid
Ekoid
Nyang
Beboid
Grassfields
Tikari, Ndemli
Equatorial
Zambesi
Mbam
ex-A40 (1) [514] nyo's (Nyokon)
[511] tunen (Nen)
[513] tuotomb
[512] numand (Maande)
[520] nigi (Yambeta)
(2)
ex-A60 yambassa
[541] nugunu (Gunu)
[542] yambassa central
-mmaala (Mmala)
-nu yangben (Yangben)
-nu libie (Elip)
[543] nubaca (Baca)
[544] dumbule (Mbure)
sanaga
[551] tuki (Tuki)
-tu ngoro
-tukombe
-tonjo
-tocenga
-tutsingo
-tumb\varepsilonl\varepsilon

```
[552] leti
Figure 33: ALCAM classification of the Mbam languages in Benue-Congo.
One problem with the ALCAM classification (Dieu and Renaud 1983) is that its conclusions are generally impressionistic rather than based on any rigorous lexicostatistical count (Watters 1989: 410) or comparative historical research.

Watters and Leroy (1989: 433, 435) modify the ALCAM classification slightly by separating Bantoid into two groups, northern and southern, with the Mbam languages in Southern Bantoid. The Mbam languages are split into three subgroups: West, Yambassa, and Sanaga, following ALCAM (Dieu and Renaud 1983).
I. Northern Bantoid
II. Southern Bantoid
A. Tivoid
B. Jarawan
C. Mbe
D. Ekoid
E. Mamfe (Nyang)
F. Beboid
G. Wide Grassfields
H. Tikar
J. Ndemli
K. Mbam

\author{
1. West \\ 2. Yambassa \\ 3. Sanaga
}
L. (Narrow) Bantu

Figure 34: Southern Bantoid (Watters and Leroy 1989: 433)
While Dieu and Renaud (1983) and Watters and Leroy (1989) group the Mbam A40 (Nen group) and A60 languages as a subgroup of (Southern) Bantoid or (wide) Bantu, the placement of the Mbam languages is not so simple. Others, notably Bastin et al. (1983), Piron (1995), Bastin and Piron (1999), note that these languages statistically sometimes pattern with Bantu north-west and other zone A and some zone B languages, and sometimes with Bantoid non-Bantu languages, depending on which method (Group Average or Furthest Neighbour) is used (Piron 1997: 624630). The place of the Mbam Bantu languages shifts depending on which method is employed, as seen in Figure 35.

Bastin and Piron (1999: 155) summarise this tendency by stating that "... la clef de l'articulation entre bantou et bantoïde se situe dans le bantou du Mbam qui tantôt attire le reste de la zone A et \(\mathrm{B} / 10,20,30\) vers le bantoïde, tantôt est associé, avec le seul A50, à un embranchement bantoïde non bantou."

Furthest neighbour tree (from Bastin et Piron 1999: 155)


Figure 35: Lexicostatistical trees from Bastin and Piron 1999: 154-5
Grollemund (2012: 403-5) expands on the thesis of Bastin and Piron (1999) in saying that the "clef de l'articulation" between Bantu and Bantoid is localised in the Mbam languages. Based on her classification (Figure 36), and exploiting the well-known split in the A40 languages between the languages like Basaa which are clearly "bantu-like", and the Mbam A40 languages, like Nen, which are more "bantoid-like", Grollemund identifies a similar split in her so-called A60 languages.

\author{
She identifies two groups＂A40－60－Bantoid＂（i．e．the Mbam languages）and her ＂A40－50－60－70 Bantu＂．\({ }^{305}\)
}

\footnotetext{
\({ }^{305}\) Grollemund（2012）lists Mengisa（A63）and three little－known languages mentioned in Guarisma and Paulian（1986）which she labels as＂Ngoro－Asom＂，＂Ngoro－Lunda＂and＂Ngoro－Bisoo＂（A61）as among the A60＂Bantu－like＂languages which fit into North－West Bantu as opposed to the Mbam A40－A60 languages，which pattern more as Bantoid．She however acknowledges（2012：233）that all these languages are lexico－statistically closer to the A70＂Yaunde－Fang＂group．Mengisa，in particular，is confusing as there are two distinct languages spoken by the Mengisa people，one，Leti is most definitely an A60 language and is often considered a dialect of Tuki．The other，Njowi（the source of Grollemund＇s data（2012：232）），is definitely an A70 language（see footnote 13）．The confusion is perhaps due to the possiblity that Guthrie＇s classification was based on Leti whereas others since then have instead studied Njowi（Guarisma and Paulian 1986：94，footnote 2，posit this explanation as well for the A60 code for Mengisa）．As for the A61 varieties，Breton et Fohtung（1991：39）report，＂Enfin se trouvent dans le Mbam trois petit îlots de populations de langue bəti－fan（i．e．A70）détachés du dialecte septentrional eki；les Feuk－parlant le bafək et le yaŋavok（yangafok）－et les Yasəm＂（asəm）．The languages Bisoo（bìsə̀̀）and Lùndá mentioned in Guarisma and Paulian（1986：94－6 footnote 3）are not mentioned in the atlas．Bis \(⿰ 冫 欠 口 ⿱ ⺈ ⿵ ⺆ ⿻ 二 丨 力 刂 ~ i s ~\) mentioned in Dieu et Renaud（1983：100）as a dialect of Bakoko［402］and closely related to Basaa （A43）：＂Au Nord－est le bisoo，du canton Basso（arr．de Ndom，département de la Sanaga－Maritime），parler des basso ba likol（＂Basso du Nord＂）．．．＂While Grollemund connects Bisoo with Lunda and Asam based on Guarisma et Paulian（1986：94，see Grollemund 2012： 232 footnote 57），I suspect she misread Guarisma et Paulian＇s chart，which lists Lunda，Asom and Bisoo as numbers 12，13，and 14 with only 12 and 13 connected with Guthrie＇s A61 Ngoro．Guarisma et Paulian＇s（1986：95）map places Bisoo much further south near Yaoundé，not at all in the vicinity of Ngoro，and Maho（1999：284）lists Bisoo as A79． Although I have not been able to find a language called Lunda in the Mbam region in any written source， I did get oral information about it．According to Ambonda Olounou Martin（about 70 years old），a dignitary of the Supreme Chief of Ngoro，the Lunda people include four groups which migrated from Adamawa，The Boko（village of Boko， \(4^{\circ} 58^{\prime} 60^{\prime \prime} \mathrm{N}\) et \(11^{\circ} 13^{\prime} 0^{\prime \prime} \mathrm{E}\) ，west of Ngoro），the Nanda as well as the bafək and the yanavok．They are located in the village of Séréré（ \(4^{\circ} 58^{\prime} 60^{\prime \prime} \mathrm{N}, 11^{\circ} 22^{\prime} 60^{\prime \prime} \mathrm{E}\) ）in the District of Ngoro．It is considered as one of the boti－fay＂dialects＂mentioned in ALCAM（Dieu et Renaud 1983： 101）which lists the Yaŋavok，Bafək and Yasəm all in＂l＇extrémité nord de l＇arr．de Ngoro，dép．du Mbam．＂ All of these supposed A60－Bantu languages are in reality A70 languages．
}


Figure 36: Grollemund's (2012: 391) simplified tree: Neighbour-Joining
This split in A40 languages between "A40-Bantoid" and "A40-Bantu" and Grollemund's supposed similar split in the A60 languages below) is one of her arguments that the foyer of the Bantu languages was in the Mbam, and that those groups which migrated out of the Mbam could be the earliest of the Bantu languages. She summarises as follows:
"La division de ce groupe A40-60 semble résulter de la séparation entre bantoïdes et bantu. En conséquence, le centre de diffusion proto-bantu, a partir duquel auraient débuté les migrations bantu, se situerait a proximité de la région du Mbam ... Cette division des langues A40 constitue un premier argument en faveur d'une possible migration bantu ayant débutée dans cette région. En effet, les langues A40 bantu se séparent et migrent en direction du sud-ouest. Elles donnent ensuite naissance aux autres langues appartenant au groupe NO 1. Au sein du groupe "A40 bantu" le basaa A43a constitue la première langue à diverger (selon l'étude de l'arbre Neighbor-Joining) ... Si l'on suppose que la migration bantu ait débuté dans la région du Mbam, cela permettrait d'expliquer la division des langues A40-60 (ainsi que le statut ambivalent des langues A50 observée dans notre classification)" (Grollemund 2012: 404).

While Grollemund's A60 split is not well founded, her supposition of migration is not necessarily wrong. In much of the Mbam region, there is a migration legend telling about the crossing of "the river" (usually considered to be the Sanaga River).

In this story, the people find themselves trapped at the banks of a vast river they cannot cross. In the morning, they discover that a miraculous bridge has appeared overnight. Overjoyed, they begin crossing the river on this "bridge". At one point during the crossing, something happens: in one account, an old blind man using his spear as his walking stick, stumbles and plants the point of his spear into the "bridge", which turns out to be an immense boa. The boa, in pain, sinks into the water and flees, thus dividing the immigrants into two groups; those who have successfully crossed and those left behind. The Mengisa people, who are effectively divided by the Sanaga and speak two distinct languages, a variety similar to Tuki (A63) in the Mbam region and along the banks of the Sanaga river, and a variety similar to Eton (A71) south of the river, lend an oral-history credibility to the theory of migration from the Mbam region.

Interestingly, almost all the language groups of the Mbam region have a river-crossing story, although in some, such as in one of the Elip versions (Abiadina Samba 1988: 5-6), the migrating peoples cross the Sanaga from the south to the north to access the vast savannas of the Mbam region or as in the Nigii Yambeta version, it was the Noun river that was so crossed. The Yangben have two river-crossing stories, one south-to-north over the Sanaga and the other back south.

It is not only in the Mbam region and its surroundings where the story of the crossing of the Sanaga is found. On a trip to Campo, on the Gulf of Guinea at the border with Equatorial Guinea, I heard another version of this story by an Iyassa (A33) speaker, Patrice Ipoua (13 August 2014. p.c. in the village of Campo Beach). The Iyassa also claim a connection to the Mbam region. They say that they left the Mbam region as a people and crossed the Sanaga on the back of a huge snake, but when the majority had crossed, the snake disappeared leaving only a small number behind on the other side. The Iyassa call the people who were left behind the Isanaga. \({ }^{306}\) Patrice Ipoua assured me that among the Isanaga, they recount the story of how they were once a much larger group, but that some of them crossed the river and went to the sea in search of salt.

\footnotetext{
\({ }^{306}\) A rather suggestive name! Generally the Tuki people are called the Sanaga by outsiders.
}

372 The phonological systems of the Mbam languages

The migration traditions about crossing a river are shared by many peoples speaking Mbam languages. These traditions show a sense of unity among the Mbam peoples and one that is, by a perceived common history, linked to a major river, possibly the Sanaga. While these histories are not direct evidence for a historical event of such a river-crossing, they do suggest that these traditions are shaped to forge an idea of common origin.

\section*{Conclusion}

The goal of this study has been to give a comprehensive look at the complexities of the vowel and vowel-harmony systems of the genetically related Mbam languages. Of particular interest is the comparison and classification of these languages and what they reveal about language typological. Furthermore, the study of the microvariations found in the vowel system provides a greater understanding of the phonology of each language and the relevant parameters of variation between them. It also contributes to the understanding of vowel harmony in particular and phonology in general.

ATR harmony is found in all ten of the Mbam languages discussed in this study. While not unique, these languages are somewhat unusual in that a number of them have additional vowel-harmony processes which interact with ATR harmony, namely rounding harmony, fronting harmony and height harmony. Most of the Mbam languages have both ATR and rounding harmony, but there are some languages which only have ATR harmony, and some which have a third vowelharmony process, either fronting harmony or height harmony.

Of particular interest is that the Mbam languages differ in the number of underlying and surface vowels and the scope of vowel harmony. It is likely that historically, the Mbam languages had ten contrastive vowels. Currently, seven to nine contrastive vowels are found.

\subsection*{6.1 Summary of the topics discussed in this study}

This study has looked into various topics pertaining to the phonological systems of ten Mbam languages. In chapter one, we introduced the Mbam languages, considered the sociolinguistic context of the Mbam, presented the previous work done in these languages, and presented the types of data collected for this study.

Chapter two presented a phonological overview of each of the ten languages, discussing principally their consonant systems, vowel systems, vowel-harmony processes, hiatus-resolution processes and lexical tone. Of particular interest is that most of the Mbam languages have a mixture of two or three of the four types of vowel harmony found, namely, ATR, rounding, height and fronting harmony, of which ATR harmony is the most prevalent. In presenting the phonologies of these ten languages, the similarities and differences in the application of their vowelharmony systems are emphasised.

Chapter three discussed in-depth the vowel-harmony processes of the Mbam languages. Included was a discussion of the acoustic characteristics of the vowels, in particular the high vowels; the correlation between the vowel inventory and vowel harmony and non-participating (neutral) vowels. In addition, the scope and domain of vowel harmony was examined, in particular the directionality in the spread of vowel harmony.

Various phonological issues in vowel harmony are considered in chapter 4, in particular how contrastive vowel features and vowel harmony are related. Dresher's (2009) contrastive-feature hierarchy of features and his Successive Division Algorithm are discussed in detail and applied to the vowel-harmony systems of the Mbam languages. Finally in chapter 5, we looked at various means of classifying the Mbam languages, looking at their sociolinguistic context, lexicostatistical, historical (lexical sound changes), and structural classifications.

\subsection*{6.2 The salient aspects of vowel harmony in the Mbam languages}

The three most salient aspects of vowel harmony in the Mbam languages examined in chapter 3 of this study are the following:
- Non-participating (neutral) vowels and their behaviour in the vowel-harmony system
- Directionality in vowel harmony and
- The domain of vowel harmony

\subsection*{6.2.1 Non-participating (neutral) vowels}

Non-participating or neutral vowels occur in all the types of vowel harmony found in the Mbam languages. They do not, however, behave in the same manner. As seen in this study, the fact that certain vowels are neutral can be attributed to their position in the contrastive feature hierarchy, but this hierarchy cannot explain why neutral vowels may be transparent or opaque. For example, certain rounding-neutral vowels are opaque in one language and transparent in the neighbouring language.

Given the generally accepted strict segmental locality of Optimality Theory, that "... no outputs are generated in which a single featural autosegment is associated with S1 and S3 but not an intervening segment S2" (Walker 2012: 585), it is possible that the height-transparent vowels, such as found in the rounding harmony of some of the Mbam languages, are affected by rounding but fail to produce salient acoustic consequences of harmony While clear evidence that transparent vowels are affected in Mbam rounding harmony has not yet been found, there are hints in slightly lowered frequencies of the first three formants that rounding may in fact have an effect on neutral vowels. More research, however, is needed to determine whether this subphonemic rounding has any real affect in determining whether these neutral vowels are transparent or opaque.

\subsection*{6.2.2 The role of domains and directionality in vowel harmony}

The contrastive features of vowels may explain which of the various vowel-harmony processes occur and why, but it cannot explain the scope or direction of vowel harmony. The scope of vowel harmony is determined by the language-specific definition of the phonological word, which may not be the same as the grammatical or morphosyntactic word. These mismatches may indicate an historical residue of a strong phonological border. The existence of such a phonological border in the preverbal morphemes of at least some of the Mbam languages is not particularly surprising, considering that they are geographically and historically located between Bantu and the Southern Bantoid Grassfields languages, and share characteristics with both groups.

The domain of vowel harmony in all of the Mbam languages is the phonological word, which comprises at least one grammatical word and any associated clitics. A dominant vowel found within this phonological unit will spread throughout the unit unless blocked by an opaque neutral vowel. Vowel harmony in the Mbam languages is obligatory within the phonological word and between a clitic and its host.

Rounding harmony and ATR harmony do not spread identically. In the verb, rounding harmony is curtailed by three factors:
a. the presence and type of neutral vowels (opaque or transparent),
b. phonological word boundaries, and
c. the location of the harmony-dominant vowel(s).

Only the second factor plays a role in curtailing the spread of rounding harmony between the noun and its prepositions, associative markers and coordinating conjunction. This mismatch between the scope of ATR harmony and that of rounding harmony may be the result of a change in the structure of the phonological noun word. The proclitics associated with the noun may be in the process of becoming independent grammatical words rather than proclitics, resulting in an increasingly irregular spread in vowel harmony. In all cases of mismatches, the spread of ATR harmony is more robust than that of rounding harmony.

If the lack of vowel-harmony spread to the preverbal morphemes is due to a residual historical phonological boundary, the tendency of vowel harmony to spread right-to-left has perhaps eroded the phonological boundaries within the morphosyntactic domain. If the preverbal morphemes are indeed morphosyntactic prefixes, then the anticipatory tendencies of vowel harmony, barring other impediments, will spread throughout the entire grammatical word, which is the case for Yangben, Mmala and Elip.

The strong morphosyntactic boundaries signalled by the SOV word order in Nen and the periphrastic tense constructions in Yambeta would be the most obvious and powerful blockages to the spread of vowel harmony in these languages. While Nen, despite strong morphosyntactic boundaries, does have anticipatory vowel harmony, its spread is less powerful, having the tendency to be optional, and is more gradient than the vowel-harmony spread of other Mbam languages with similar morphosyntactic boundaries, such as Gunu and Maande. At the other extreme, strong morphosyntactic boundaries prevent any anticipatory vowel-harmony spread in the preverbal morphemes, as is the case for Tuki, Baca and Mbure.

Much has been discussed elsewhere concerning directionality in vowel harmony as well as whether it is root-/stem-controlled or dominant-recessive. It is hoped that this study of the Mbam languages will contribute to the discussion. The Mbam languages have 7- to 9 - vowel systems with an active and complex dominant-recessive vowelharmony system. The vowel harmony of the Mbam languages shows strong evidence for bidirectionality due to the existence of a few dominant prefixes. Dominant prefixes occur in the two most robustly attested vowel-harmony types, ATR and rounding. While [ATR]-dominant prefixes occur in only two languages, and only in closed paradigms such as numerals, the rounding-dominant prefix in Mmala is a noun-class prefix and triggers rounding on the noun stem wherever conditions apply. There is also evidence that this noun-class prefix is also heightdominant in Mmala (as discussed in Section 3.2.2 above).

\subsection*{6.3 Relationship between vowel inventory and vowel harmony}

While certain vowels in the Mbam languages are realised phonetically and acoustically as quite low, notably \(/ \mathrm{I} /\) and /v/, they function phonologically as high vowels. It is not the phonetic make-up which determines what a phoneme is; instead, the phoneme is determined by its behaviour in the system, which is a function of its contrastive features (Dresher 2009: 72). As discussed in this study, only contrastive features are phonologically active, and thus capable of triggering vowel harmony. Following Dresher (2009), contrastive features are hierarchically ordered, and the differences in what types of vowel harmony occur are the function of which features are active and their position in the language-specific contrastive-feature hierarchy.

In Mbam rounding harmony in particular, the high back vowels \(/ \mathrm{u} /\) and \(/ \mathrm{v} /\), although phonetically round, are not contrastively round. Roundness is a redundant feature for the high vowels and therefore inert and cannot trigger rounding harmony. The fact that \(/ \mathrm{u} /\) and \(/ v /\) do not participate in rounding harmony is phonetic evidence that the feature [round] is unspecified for the high vowels.

Dresher's (2009) contrastive-feature hierarchy also explains why languages with similar vowel inventories and even similar contrastive features may have rather different vowel-harmony processes. Within the feature hierarchy, certain features may apply only to a subset. The difference in order and to which subset each feature
in the hierarchy is applied makes the difference which vowel harmony type may occur. Furthermore, while vowel harmony must be triggered by a contrastive feature, the presence of a contrastive feature doesn't obligate the presence of vowel harmony.

\subsection*{6.4 Classification and interrelationship of the Mbam languages}

The Mbam languages are generally situated between Bantu and the other Southern Bantoid languages, both geographically and genetically. They pattern sometimes with the northwestern Bantu languages and at other time with the nearest Bantoid languages.

This study has looked at several different ways to classify the Mbam languages internally, considering first what the various diachronic sound changes from protoMbam can reveal. Then we considered how the role of contact and various subsequent structural changes clarify the interrelationships between these languages. Finally we compared the basic lexicons of the languages and compared the various types (Nearest Neighbour, Furthest Neighbour and Branch Average) of lexical subclassifications to substantiate the historic and structural classifications.

Both the lexicostatistical, historical and structural comparisons show that, while the Mbam languages make up a cohesive unit, there are two subgroupings within it, although the division between these two groups varies somewhat depending on the type of classification.

If recent history is any indication, and as hinted also in the origin and migration stories of the populations, the Mbam region and the area around it underwent multiple population displacements. Migrations into and out of the Mbam area were frequent, and even people groups who today speak the same language, or dialects of the same language, consider themselves to have different origins. It is evident that many if not all of these people groups met, enslaved, and fought each other, intermarried, and in more than one case, joined each other to form a larger group, even if traces remain in the form of dialectal differences and individual sentiments. It is to be assumed that these contacts and mergings must have had an impact on the development of and changes in today's Mbam languages. With ever-increasing mobility and intercommunication, these groups are in closer contact with each other than ever before, and most people master more than one of their neighbouring languages.

Language contact can also explain why the languages at the extremities, such as Mbure and to a lesser extent Baca, while still evidently Mbam languages, show signs of borrowing from the larger and more prestigious Basaa to the south. This is most evident in the weakening of the vowel-harmony systems of these two languages.

378 The phonological systems of the Mbam languages

\section*{References}

Abessolo Eto, Roger. 1990. Esquisse phonologique du bongo. Yaoundé, Cameroon: Université de Yaoundé, FLSH thesis.

Abiadina Samba, Bernard. 1988. Aperçu de l'histoire du peuple yambassa. unpublished ms .

Abwa, D. 1995. The Banen and slavery. Paideuma 41:107-125.
Aikhenvald Alexandra Y. 2002. Typological parameters for the study of clitics, with special reference to Tariana. In Dixon, Robert M. W. \& Alexandra Y. Aikhenvald (eds.), Word: A cross-linguistic typology. 42-78. Cambridge: Cambridge University Press.

Archangeli, Diana \& Douglas Pulleyblank. 1994. Grounded phonology. Cambridge, MS: MIT Press.

Baković, Eric. 2000. Harmony, dominance and control. New Brunswick, NJ: Rutgers University dissertation.

Bancel, Pierre. 1999. The three-way vowel harmony in Nànì (Bantu A.44, Cameroon). In Hubbard, Kathleen (ed.), Proceedings of the seventeenth annual meeting of the Berkeley Linguistics Society. Berkeley, CA: Berkeley Linguistics Society.

Barreteau, Daniel. 1980. Questionnaire linguistique ORSTOM pour nì nòró. photocopied ms.
Barreteau, Daniel \& Robert Hedinger (eds.), 1989. DELAN (Description systématique des langues nationales): Descriptions de Langues Camerounaises. Paris: ORSTOM.

Bastin, Yvonne, André Coupez \& B. de Halleux. 1983. Classification lexicostatistique des langues bantoues ( 214 relevés). In Bulletin des Séances 27(2). 173-199. Brussels: Académie Royale des Sciences d'OutreMer.

Bastin, Yvonne \& Piron, Pascale. 1999. Classifications lexicostatistiques: bantou et bantoïde. De l'intérêt des 'groupes flottants'. In Hombert, Jean-Marie and Larry Hyman (eds.), Bantu Historical Linguistics: Theoretical and Empirical Perspectives. 149-64. Stanford: CSLI Pub.

Bastin, Yvonne, André Coupez, Evariste Mumba, \& Thilo C. Schadeberg (eds). 2002. Bantu lexical reconstructions 3 / Reconstructions lexicales bantoues 3. Tervuren: Royal Museum for Central Africa, online database: \(\mathrm{http}: / /\) linguistics.africamuseum.be/BLR3.html (Consulted extensively throughout 2013 and 2014).

380 The phonological systems of the Mbam languages

Belinga Ndjali Jean Yves. 2013. Rapport socio-linguistique provisoire central yambassa. unpublished ms.

Bendor-Samuel, John (ed.) 1989. The Niger-Congo Languages. Lanham: University Press of America.

Breton, Roland J.L. Bikia \& G. Fohtung. 1991. Atlas administratif des langues nationales du Cameroun. Yaoundé, Cameroon: CREA, ISH et MESIRES.
Biloa, Edmond. 1997. Functional categories and syntax of focus in Tuki. LINCOM studies in African Linguistics 02. Newcastle: Lincom Europa.

Blois, Reinier de. 1981. On the origin of underlying cross-height vowel harmony in Nen. Leiden, Netherlands: Universiteit Leiden, Dept. of African Linguistics.
Boone, Douglas W. 1992a. Baca (Bongo) survey report. Yaoundé, Cameroon: SIL. SILwww.silcam.org/download.php?sstid=030100\&folder=documents \&file=nubaca_boone1992_1618_p.pdf. Downloaded 26 June 2006.

Boone, Douglas W. 1992b. A sociolinguistic survey in Mbola: Mbule survey report. Yaoundé, Cameroon: SIL. http://www.silcam.org/languages/langua gepage.php?languageid=185. Downloaded 26 June 2006.

Boone, Douglas W. 1992c. Hijuk survey report. Yaoundé, Cameroon: SIL. http://www.silcam.org/download.php?sstid=030100\&folder=documents\&fi le=hijuk_bradley1992_1654_p.pdf. Downloaded: 23 October 2014.
Boone, Douglas W., David P. Bradley \& Caroline A. Grant. 1992. Central Yambasa survey report. Yaoundé, Cameroon: SIL. http://www.sil.org/silesr/1999/00 9/YAMBASSA.html. Downloaded: 26 June 2006.

Bostoen, Koen. 2008. Bantu spirantization: Morphologization, lexicalization and historical classification. Diachronica 25(3). 299-356. Amsterdam: John Benjamins.

Cahill, Michael. 2007. Aspects of the morphology and phonology of Konni. Dallas, TX: SIL International.

Casali, Roderic F. 2001. An introduction to ATR vowel harmony in African languages. Dallas, TX: SIL International.
Casali, Roderic F. 2002. Nawuri ATR harmony in typological perspective. Journal of West African Languages 29(1). 3-43.

Casali, Roderic F. 2003. [ATR] value asymmetries and underlying vowel inventory structure in Niger-Congo and Nilo-Saharan. Linguistic Typology 7. 307-382.
Casali, Roderic F. 2008. ATR harmony in African languages. Language and Linguistics Compass 2: 496-549.

Casali, Roderic F. 2012. On the markedness of high [-ATR] and mid [+ATR] vowels: Some non-trivial effects of vowel inventory structure. Paper presented at WOCAL 7, University of Buea, Cameroon, 20-24 August 2012.

Clements, George N. 1976. Vowel harmony in nonlinear generative phonology : an autosegmental model. Bloomington: Indiana University.
Clements, George N. 1984. Vowel harmony in Akan: A consideration of Stewart's word structure conditions. Studies in African Linguistics 15(3). 321-337.

CODELATU. 2008 Toolbox lexicon database for Tunen. unpublished ms.
Dieu, M. \& P. Renaud. 1983. Atlas linguistique de l'Afrique centrale. Atlas linguistique du Cameroun: Inventaire préliminaire. Yaoundé, Cameroon: CERDOTOLA, Délégation Générale à la Recherche Scientifique et Technique.

Dixon, Robert M. W. \& Alexandra Y. Aikhenvald (eds.). 2002. Word: A crosslinguistic typology. Cambridge: Cambridge University Press.
Dixon, Robert M. W. \& Alexandra Y. Aikhenvald. 2002. Word: A typological framework. In Dixon, Robert M. W. \& Alexandra Y. Aikhenvald (eds.), Word: A cross-linguistic typology. 1-41. Cambridge: Cambridge University Press.

Dresher, B. Elan. 2009. The contrastive hierarchy in phonology. Cambridge: Cambridge University Press.

Dugast, Idelette. 1949. Inventaire ethnique du Sud-Cameroun. Mémoires IFAN, Centre Cameroun, Série Populations 1. Sans lieu.

Dugast, Idelette. 1954. Banen, Bafia and Balom. In Forde, Darell (ed.), Ethnographic Survey of Africa, part IX: Peoples of the Central Cameroons. London: International African Institute.

Dugast, Idelette. 1967. Lexique de la langue tunen. Paris: Éditions Klincksieck.
Dugast, Idelette. 1971. Grammaire du tùnzn. Langues et littérature de l'afrique noire 8. Paris: Éditions Klincksieck.

Ebaya, Silas; Bekoume Boukong Pierre \& Emondo. 1981. La création de la famille de Jmbónó. Comité de langue Nomaande. unpublished ms.

Ekambi, Aline. 1990. Esquisse phonologique du nulibie. Yaoundé, Cameroon: Université de Yaoundé I. MA thesis.

Essono, J. J. M. 1974. Description phonologique du tuki (ati). Yaoundé, Cameroon: Université de Yaoundé, FLSH. DES thesis.

Essono, J. J. M. 1980: Morphologie nominale du tuki (langue sanaga); Yaoundé: Université de Yaoundé, DLAL. dissertation.

382 The phonological systems of the Mbam languages

Fant, Gunnar. 1960. Acoustic theory of speech production. The Hague, Netherlands: Mouton \& Co.

Finley, Sara. 2008. Formal and cognitive restrictions on vowel harmony, dissertation. Baltimore, MD: Johns Hopkins University.

Finley, Sara. 2009. Locality restrictions on exceptions to vowel harmony. In Lehnert-LeHouillier, H. \& A.B Fine (eds.), University of Rochester Working Papers in the Language Sciences, 5(1), 17-48. www.rochester.edu/college/cls/assets/pdf/working/Finley1.pdf. Downloaded: 05 September 2014.

Gafos, Adamantios \& Amanda Dye. 2011. Vowel harmony: Transparent and opaque vowels. In van Oostendorp, Marc, Colin J. Ewen, Elizabeth Hume and Keren Rice (eds.), The Blackwell Companion to Phonology. 2164-2189. Oxford, UK: Blackwell.

Geography from Global Ministry Mapping System 2007, Global mapping international with input from Road map of Cameroon. 1998. London: Macmillan Education Ltd.

Gerhardt, Phyllis. 1984. Les classes nominales en gunu (nugunu). Paper presented at the 16th West African Languages Congress. Yaoundé, Cameroun, 25-29 March 1985.

Gerhardt, Phyllis. 1989. Les temps en nugunu. In Barreteau, Daniel \& Robert Hedinger (eds.), DELAN (Description systématique des langues nationales): Descriptions de Langues Camerounaises. 315-331. Paris: ORSTOM.

Grollemund, Rebecca. 2012. Nouvelles approches en classification: Application aux langues bantu du nord-ouest. Lyon: Université Lumière Lyon 2, dissertation. http://www.evolution.reading.ac.uk/~vy904310/pdf/Grollemun d_2012_classification\%20bantu\%20NO.pdfhttps://www.academia.edu/Jobs. Downloaded: 12 February 2014.

Grollemund, Rebecca \& Jean-Marie Hombert, 2012, Sorting out the position of Bantu languages in Bantoid. Paper presented at World Congress of African Linguistics 7 (Wocal 7), Buea, Cameroun, 20-24 August. http://www.evolution.reading.ac.uk/~vy904310/pdf/WOCAL\%207\%20Gro llemund_Final\%202_short.pdf. Downloaded: 12 February 2014.

Guarisma, Gladys. 2003. Kpā? (A53). In Nurse, Derek and Gérard Philippson (eds.), The Bantu Languages. 307-334. London: Routledge.
Guarisma, Gladys \& Christiane Paulian. 1986. Dialectometrie lexicale de quelques parlers bantous de la zone A. In Guarisma, Gladys \& Wilhelm J.G. Mǒhlig (eds.), La méthode dialectometrique. 93-176. Berlin: Dietrich Reimer Verlag.

Guarisma, Gladys \& Wilhelm J.G. Mǒhlig (eds.). 1986. La méthode dialectometrique. Berlin: Dietrich Reimer Verlag.
GULICO (Gunu Linguistic Committee). 2003. Nugunu provisional lexicon. ms. http://www.silcam.org/download.php?sstid=030401\&file=NugunuProvisio nalLexicon.pdf.

Guthrie, Malcolm. 1971a. Comparative Bantu: An introduction to the comparative linguistics and prehistory of the Bantu languages, vol. 2. Farnborough: Gregg Press.

Guthrie, Malcolm. 1971b. Comparative Bantu: An introduction to the comparative linguistics and prehistory of the Bantu languages, vol.4. Farnborough: Gregg Press.

Guthrie, Malcolm \& A.N. Tucker (eds.), 1956. Linguistic survey of the northern Bantu borderland: Volume One. New York: Oxford University Press.

Halle, Morris \& J.-R. Vergnaud 1981. Harmony processes. In Klein, W. \& W. Levelt (eds.), Crossing the Boundaries in Linguistics, 1-22. Dordrecht: Reidel.

HENYENO (comité de langue nomaands). 2003. Nomaande-French lexicon. Yaoundé: SIL. http://www.silcam.org/documents/lexicons/nomaande/index. html.

Hombert, Jean-Marie \& Larry Hyman (eds.), 1999. Bantu historical linguistics: Theoretical and empirical perspectives. Stanford: CSLI Publications.

Hombert, Jean-Marie \& Rebecca Grollemund. 2011, A phylogenetic classification of Grassfields and closely related Bantu languages. Paper presented at the Bantu 4 Conference. Berlin, 7-9 April. http://www.evolution.reading.ac.uk/ ~vy904310/pdf/Hombert\%20Grollemund\%20Grassfields\%20Berlin.pdf. D ownloaded: 02 November 2013.

Huey, Paul \& Joseph Mbongué. 1995. A rapid appraisal survey of Tuki (ALCAM 551) Mbam et Inoubou \& Mbam et Kim divisions Centre Province. Yaoundé: SIL.

Hulst, Harry van der \& Norval Smith. 1986. On neutral vowels. In Bogers, K., H. van der Hulst and M. Mous (eds.), The Phonological Representation of Suprasegmentals, 233-279. Dordrecht: Foris.

Hulst, Harry van der, Maarten Mous \& Norval Smith. 1986. The autosegmental analysis of reduced vowel harmony systems: the case of tunen. In Eukema, F. \& A. Hulk (eds.), Linguistics in the Netherlands 1986. 105-122. Dordrecht: Foris.

Hulst, Harry van der and Jeroen van de Weijer. 1995. Vowel harmony. In Goldsmith, J. (ed.), The Handbook of Phonological Theory. 495-534. Oxford: Basil Blackwell.

384 The phonological systems of the Mbam languages

Hyman, Larry. 1980. Esquisse des classes nominales en tuki. In Hyman, Larry M. (ed.), Noun Classes in the Grassfields Bantu Borderland. 27-35. Southern California Occasional Papers in Linguistics no. 8. Los Angeles, CA: University of Southern California.

Hyman, Larry. 1999. The historical interpretation of vowel harmony in Bantu. In Hombert, Jean-Marie and Larry Hyman (eds.), Bantu Historical Linguistics: Theoretical and Empirical Perspectives. 235-295. Stanford: CSLI Pub.

Hyman, Larry. 2001. Vowel harmony in gunu. Studies in African Linguistics 30(2).149-170.

Hyman, Larry. 2002. Is there a right-to-left bias in vowel harmony? Paper presented at the 9th International Phonology Meeting, Vienna, 01 November. http://linguistics.berkeley.edu/~hyman/Hyman_Vienna_VH_pa per_forma.pdf. Downloaded: 10 November 2008.

Hyman, Larry. 2003a. "Abstract" vowel harmony in Kàlòy: A system driven account. In Sauzet, Patrick \& Anne Zribi-Hertz (eds.), Typologie des langues d'Afrique et universaux de la grammaire. 85-112. Paris: Harmattan.

Hyman, Larry. 2003b. Basaá (A43). In Nurse, Derek and Gérard Philippson (eds.), The Bantu Languages. 257-282. London: Routledge.

Hyman, Larry. 2003c. Segmental phonology. In Nurse, Derek and Gérard Philippson (eds.), The Bantu Languages. 42-58. London: Routledge.
Hyman, Larry. 2005. Directional asymmetries in the morphology and phonology of words, with special reference to Bantu. Published on line: http://linguistics.berkeley.edu/~hyman/Hyman_Leipzig_word_Linguistics. pdf. Downloaded: 31 October 2012
Hyman, Larry. 2008. Directional asymmetries in the morphology and phonology of words, with special reference to Bantu. Linguistics 46.2. 309-350. http://www.degruyter.com.ezproxy.leidenuniv.nl:2048/dg/viewarticle.fullc ontentlink:pdfeventlink/\$002fj\$002fling.2008.46.issue-\$002fling.2008.012\$002fling.2008.012.pdf?t:ac=j\$002fling.2008.46.issue2\$002fling.2008.012\$002fling.2008.012.xml. Downloaded 09 February 2015.

Idiata, Daniel Franck. 2000. Le système mmala (group A 60). In Idiata, Daniel Franck (ed.), Les classes nominales et leur semantisme dans les langues bantu du nord-ouest. 23-32. LINCOM Studies in African Linguistics, 48. Munich: Lincom Europa.

Janssens, Baudouin. 1988. Ton et élision vocalique en nen. in Linguistique Africaine. 1. 61-94. Paris: GERLA.

Janssens, Baudouin. 1992-1993. Doubles reflexes consonantiques: Quatre études sur le bantou de zone A (Bubi, Nen, Bafia, Ewondo). Brussels: Université Libre de Bruxelles, Faculté de Philosophie et Lettres dissertation.

Kaba, Elizabeth. 1988. Esquisse phonologique du mmaala (dialect yambassa). Yaoundé, Cameroon: Université de Yaoundé I thesis.

Kaun, Abigail Rhoades, 1995. The typology of rounding harmony: An optimality theoretic approach. Los Angeles, CA: University of California, Los Angeles dissertation.

Kaun, Abigail Rhoades. 2004. The phonetic foundations of the rounding harmony typology. In Hayes, B., R. Kirchner \& D. Steriade (eds.), Phonetics in Phonology. 87-116. Cambridge: Cambridge University Press.
Kaye, Jonathan, Jean Lowenstamm \& Jean-Roger Vergnaud. 1985. The internal structure of phonological elements. Phonology Yearbook (2). 305-328. Cambridge: Cambridge University Press.

Kiparsky, Paul \& Karl Pajusalu. 2006. Towards a typology of disharmony. The Linguistic Review. 20 (2-4). 217-241.
Kongne, Welaze J. 2004. Morphologie verbale du tuki. Yaoundé, Cameroon: Université de Yaoundé I DLAL thesis.

Kongne, Welaze J. 2006. Lexique tuki-français. Association Nationale des Comité de Langue Camerounaises (ANACLAC). http://www.silcam.org/download. php?sstid=030100\&folder=documents\&file=TukiFrenchLexicon2006.pdf.

Kutsch Lojenga, Constance. 1989. Vowel harmony in Alur: On the crossroads of two systems in Proceedings of the Third Nilo-Saharan Linguistics Colloquium, Franz Rottland and Lucia N. Omondi (eds.). Nilo-Saharan vol 6. Hamburg: Buske, pp. 131-41.

Kutsch Lojenga, Constance. 1994. Kibudu: a Bantu language with nine vowels. Africana linguistica XI. 127-133. Tervuren: Musée Royal de l'Afrique centrale.

Kutsch Lojenga, Constance. 2008. Nine vowels and ATR vowel harmony in Lika, a Bantu language in D.R. Congo. Africana linguistica XIV. 63-84. Tervuren: Musée Royal de l'Afrique central.

Kutsch Lojenga, Constance. 2009. [+ATR] affixes in Bantu language. Paper presented at the Third International Conference on Bantu Languages. 25-27 March 2009. Tervuren, Belgium.
Krämer, Martin. 2003. Vowel harmony and correspondence theory. Studies in Generative Grammar \#66. Berlin-New York: Mouton de Gruyter.

Ladefoged, Peter \& Ian Maddieson. 1996. The sounds of the world's langauges. Oxford: Blackwell Publishers Ltd.

386 The phonological systems of the Mbam languages

Lewis, M. Paul, Gary F. Simons \& Charles D. Fennig (eds.). 2013. Ethnologue: Languages of the World, Seventeenth edition. Dallas, Texas: SIL International. Online version: http://www.ethnologue.com/.
Lovestrand, Joseph. 2011. Notes on Nyokon phonology (Bantu A.45, Cameroon). Yaounde: SIL. http://www.silcam.org/download.php?sstid=03 0401\&folder=documents\&file=Nyokon_notes_phonologyLovestrand_2011.pdf. Downloaded: 08 August 2013.
Maddieson, Ian. 2003. The sounds of the Bantu languages. In Nurse, Derek and Gérard Philippson (eds.), The Bantu Languages. 15-41. London: Routledge.

Maho, Jouni. 1999. A comparative study of Bantu noun classes. Sweden: ACTA Universitatis Gothoburgensis.
Meeussen, A.E. 1967. Bantu grammatical reconstructions. Africana Linguistica III. Annalen van het Koninklijk Museum voor Midden-Afrika 61: 79-121.

Möhlig, Wilhelm J. G. 1986. Introduction à la dialectométrie synchronique. In Guarisma, Gladys \& Wilhelm J. G. Möhlig (eds.), La méthode dialectométrique appliquée aux langues africaines. 15-26. Berlin: Dietrich Reimer Verlag.

Mous, Maarten \& Anneke Breedveld. 1986. Dialectometrical study of some Bantu languages (A.40-A.60) of Cameroon. In Guarisma, Gladys \& Wilhelm J. G. Möhlig (eds.), La méthode dialectométrique appliquée aux langues africaines. 177-241. Berlin: Dietrich Reimer Verlag.
Mous, Maarten. 1986. Vowel harmony in Tunen. In Bogers, Koen J. J., Harry van der Hulst, John M. Stewart and Maarten Mous (eds.), The Phonological Representation of Suprasegmentals. Dordrecht: Foris.

Mous, Maarten. 2003. Nen (A44). In Nurse, Derek and Gérard Philippson (eds). The Bantu Languages. pp. 283-306. London: Routledge.

Mous, Maarten. 2005. The innovative character of object-verb word order in Nen (Bantu A44, Cameroon). In Bostoen, Koen J. J. \& Jacky Maniacky (eds.), Studies in African Comparative Linguistics with Special Focus on Bantu and Mande: Essays in Honour of Yvonne Bastin and Claire Grégoire. 411424. Tervuren: Musée Royal de l'Afrique Central (MRAC).

Mutaka, Ngessimo M. 1995. Vowel harmony in Kinande. Journal of West African Languages 25(2). 41-55.

Mutaka, Ngessimo M. \& Zachée Bitjaa Kody. 2001. Vowel raising in Basaa verbal forms. Journal of West African Languages 28(2). pp. 11-26.

Ní Chiosáin, Máire \& Jaye Padgett. 2001. Markedness, segment realization and locality in spreading. In Lombardi, Linda (ed.), Segmental phonology in Optimality Theory. 118-56. Cambridge: Cambridge University Press.

Nespor, Marina \& Irene Vogel. 1986. Prosodic phonology. Dordrecht: Foris.
Nurse, Derek. 2003. Aspect and tense in Bantu languages. In Nurse, Derek \& Gérard Philippson (eds.), The Bantu Languages. 90-102. London: Routledge.

Nurse, Derek. 2008. Tense and aspect in Bantu. Oxford: Oxford University Press.
Nurse, Derek \& Gérard Philippson (eds.). 2003. The Bantu languages. London: Routledge.
Nurse, Derek \& Gérard Philippson. 2003. Towards a historical classification of the Bantu languages. In Nurse, Derek \& Gérard Philippson (eds.), The Bantu Languages. 164-181. London: Routledge.

O'Keefe, Michael. 2003. Akan vowel harmony. http://www.swarthmore.edu/SocSci/ Linguistics/Papers/2004/okeefe_michael.pdf Downloaded: 24 January 2012.

Onana Nkoa \& Jean Roland. 2007. Morphologie verbale du nulibie. Yaoundé, Cameroon: Université de Yaoundé I thesis.

Orwig, Carol. 1989. Extensions verbales en nugunu. In Barreteau, Daniel \& Robert Hedinger (eds.), DELAN. 283-314. Paris: ORSTOM.

Orwig, Carol. 1991. Relative time reference in nugunu. In Anderson, Stephen C. \& Bernard Comrie (eds.), Tense and Aspect in Eight Languages of Cameroon. 147-162. Dallas, TX: Summer Institute of Linguistics and The University of Texas at Arlington.
Patman, Frankie. 1991. Tone in the Nugunu verb phrase. In Anderson, Stephen C. (ed.), Tone in five languages of Cameroon. Publications in Linguistics, 102. 73-90. Dallas, TX: Summer Institute of Linguistics and The University of Texas at Arlington.

Paulian, Christiane. 1980. Les classes nominales dans les parlers yambassa. LACITO-informations, Bull. liaison 11. 63-66. Ivry: Centre National de la Recherche Scientifique (CNRS).

Paulian, Christiane. 1986a. Les voyelles en nù-kàlòyè: sept phonèmes, mais.... Cahiers du LACITO 1. 51-65. Paris: Centre National de la Recherche Scientifique (CNRS).
Paulian, Christiane. 1986b. Les parlers yambasa du Cameroun (Bantou A.62) (dialectométrie lexicale). In Guarisma, Gladys \& Wilhelm J. G. Möhlig (eds.), La méthode dialectométrique appliquée aux langues africaines. 243279. Berlin: Dietrich Reimer Verlag.

Pearce, Mary. 2003. Vowel harmony in Kera (Chadic). London: University College London, Department of Phonetics and Linguistics, thesis. http://www.silcam.org/download.php?sstid=030100\&folder=documents\&fi le=KeraVowelHarmony2.pdf.

388 The phonological systems of the Mbam languages

Pearce, Mary. 2007. The interaction of tone with voicing and foot structure: evidence from Kera phonetics and phonology. London: University of London dissertation.

Phillips, Kathleen. 1979. The initial standardization of the Yambeta language. Yaoundé, Cameroon: Université of Yaoundé I D.E.S. dissertation.

Piron, Pascale. 1995. Identification lexicostatistique des groupes bantoïde stables. Journal of West African Languages 25(2). 3-30.

Piron, Pascale. 1997. Classification interne du group bantoïde, vol.II. Lincom Studies in African Linguistics 12. Newcastle: Lincom Europa.

Quilis, Antonio, Théophile Ambadiang \& Victoria Marrero. 1990. Phonologie et phonétique du gunu (langue bantu du Cameroun). Travaux de Linguistique et de Philologie 28. 343-377. Strasbourg-Nancy.
Richardson, Irvine. 1957. Linguistic survey of the northern Bantu borderland, Volume 2 of Linguistic Survey of the Northern Bantu Borderland. Oxford: Oxford University Press.
Roark, Brian 2001. Explaining vowel inventory tendencies via simulation: Finding a role for quantal locations and formant normalization. Proceedings of the North East Linguistic Society 31(1). Washington, D. C.: Georgetown Unive rsity. http://www.cslu.ogi.edu/~roark/nels_paper.pdf. Downloaded: 29 January 2013.
Robinson, Clinton. 1979. Petit lexique gunu-français. Yaoundé: SIL.
Robinson, Clinton. 1984. Phonologie du gunu: parler yambassa. Paris: SELAF (CNRS).

Robinson, Clinton. 1999. Règles d'orthographe pour le nugunu. Yaoundé: OCAFIC.
Satre, Scott A. 2010. The consecutive morpheme in Bamileke-Ngomba. Studies in African linguistics. 39(1). 35-76.

Schadeberg, Thilo C. 1986. The lexicostatistic base of Bennett \& Sterk's reclassification of Niger-Congo with particular reference to the cohesion of Bantu. Studies in African Linguistics 17(1). 69-83.

Schadeberg, Thilo C. 1994/95. Spirantization and the 7-to-5 vowel merger in Bantu. In Dominicy, Marc \& Didier Demolin (eds.), Sound Change. Belgian Journal of Linguistics 9. 73-84.

Schadeberg, Thilo C. 2003. Derivation. In Nurse, Derek \& Gérard Philippson (eds), The Bantu Languages. 71-89. London: Routledge.

Schlindwein Schmidt, Deborah. 1996. Vowel raising in Basaa: A synchronic chain shift. Phonology 13(2). 239-267. Cambridge: Cambridge University Press.

Scruggs, Terri. 1982. Rapport linguistique de l'enquête menée à Bokito. Yaoundé, Cameroon: Université de Yaoundé, FLSH.

Scruggs, Terri. 1983a. Phonological analysis of the nomaande language. Yaoundé, Cameroon: SIL.

Scruggs, Terri. 1983b. Le système des classes nominales en nomaándé. Yaoundé, Cameroon: SIL.

Sebineni, Alphonsine Flore. 2008. Le système des classes nominales du nùbácá. Yaoundé, Cameroon: Université de Yaoundé I thèse.

Starwalt, Coleen G. A. 2008. The acoustic correlates of ATR harmony in seven- and nine-vowel African languages: A phonetic inquiry into phonological structure. Dallas, TX: University of Texas at Arlington dissertation. umi-uta-2046.pdf. Downloaded: 23 March 2009.

Stevens, K. N. 1989. On the quantal nature of speech. Journal of Phonetics, 17. 3-45.
Stewart, John M. 2000. Symmetric versus asymmetric vowel height harmony and e, o versus I , J in proto-Bantu and proto-Savanna Bantu. Journal of West African Languages 28(2). 45-58.
Stewart, John M. 2002. An explanation of Bantu vowel height harmony in terms of a pre-Bantu nasalized vowel lowering. Journal of African Languages and Linguistics 21:161-178.

Stewart, John M. \& Hélène van Leynseele. 1979. Underlying cross-height vowel harmony in Nen (Bantu A.44). Journal of African Languages and Linguistics 1(1). 31-54.

Taylor, Carolyn. 1982. Les langues de l'arrondissement de Bokito. Yaoundé, Cameroon: SIL.
Taylor, Carolyn. 1986. Extensions du radical en nomaande: la morphologie derivationnelle. Journal of West African Languages 16: 53-62.

Taylor, Carolyn. 1990. Vowel harmony in nэmaándé. Yaoundé, Cameroon: SIL.
Walker, Rachel. 2012. Vowel harmony in optimality theory. Language and Linguistics Compass 6/9 575-592.

Walker, Rachel. 2011. Vowel patterns in language. Cambridge: Cambridge University Press. Cambridge Books Online. Web. http://dx.doi.org/10.1017/CBO9780511973710. Downloaded: 09 September 2014.
Warnier, Jean-Pierre. 1979. Noun classes, lexical stocks, multilingualism, and the history of the Cameroon Grassfields. Language in Society. 8(3). 409-423. Cambridge: Cambridge University Press.

390 The phonological systems of the Mbam languages

Watters, John R. 1989. Bantoid overview. In Bendor-Samuel, John (ed.), The Niger-Congo Languages. 401-420. Lanham: University Press of America.
Watters, John R. \& Jacqueline Leroy. 1989. Southern Bantoid. In Bendor-Samuel, John (ed.), The Niger-Congo Languages. 431-449. Lanham: University Press of America.

Wilkendorf, Patricia. 1991. Le système temporel et aspectuel de la langue nomaande. In Anderson, Stephen C. \& Bernard Comrie (eds.), Tense and Aspect in Eight Languages of Cameroon. 105-146. Dallas, TX: SIL and The University of Texas at Arlington.

Wilkendorf, Patricia. 2001. Sketch grammar of nゝmaándé: Sections 1-4. Yaoundé, Cameroon: SIL. http://www.silcam.org/download.php?sstid=030 100\&folder=documents\&file=nomaande_wilkendorf2001_2485_o.pdf.
YALICO (Yambetta language committee). 2003. Yambetta provisional lexicon. ms. http://www.silcam.org/download.php?sstid=030100\&file=YambettaPr ovisionalLexicon.pdf.

\title{
English Summary
}

The languages of the Mbam-et-Inoubou district of the Centre Region of Cameroon have a unique position in Bantu linguistics. Being in between "narrow" Bantu and "wide" Bantu, they sometimes pattern with the one and sometimes with the other, and as such are a rich motherlode for comparative and historical research. The Mbam languages have another point of interest as well. They have formerly been analysed as standard 7 -vowel languages (/i, e, \(\varepsilon, \mathrm{a}, ~ っ, \mathrm{o}, \mathrm{u} /\) ) with Advanced Tongue Root (ATR) harmony

There is a high degree of multilingualism among the speakers of the Mbam languages. These are small language groups in close proximity, acknowledging an ethnic interrelationship and history. As a result, most adults speak not only French as a second language but often one or more of the neighbouring (not exclusively Mbam) languages. The languages discussed in this study are Nen, Maande, Yambeta, Tuki, Gunu, Elip, Mmala, Yangben, Baca and Mbure.

This study begins with an overview of the ten languages concerned, the previous linguistic work done in them and the type of data collected for this analysis.

Basic phonological summaries of the contrastive consonants, vowels and tones, as well as overviews of how the vowel-harmony systems operate within roots and between roots and affixes, for each of the ten languages are given as background information for the study of the complexities of the vowel harmony of these languages. The microvariations within these comparable but different vowel (harmony) systems provide a greater understanding of the phonologies of each individual language, and, by finding in a bottom-up manner, the relevant parameters of variation, contribute to the understanding of vowel harmony in general.

The vowel harmony of the Mbam languages is very complex. Four different types of interrelated vowel harmony (ATR, rounding, fronting and height) exist in these languages, with any given language having between one and three types of vowel harmony. The particularities of vowel harmony of the Mbam languages, various issues such as the behaviour of /a/ and other non-participating vowels, directionality in, and the domain of vowel harmony as well as the mismatches between the phonological and the grammatical word between the different vowel-harmony types are discussed in light of the variations found in the Mbam languages.

The phonological issues in vowel harmony, in particular Dresher's (2009) model of a contrastive-feature hierarchy of features, are discussed at length and applied to explain the relationship between the vowel inventory, vowel harmony and the gaps

392 The phonological systems of the Mbam languages
in vowel harmony found in the Mbam languages. Dresher's contrastive-feature hierarchy is useful in particular to explain why high round vowels, \(/ \mathrm{u} /\) and \(/ \mathrm{v} /\) do not participate in rounding harmony, why languages with similar vowel inventories and even similar contrastive features have rather different vowel-harmony systems. This is particularly useful in explaining the unusual ATR disharmony found in Mmala where all instances of \(/ v /\) in the context of \(/ \rho /\) surface as a \([+A T R]\) vowel, \(/ \mathrm{u} /\).

Next we look at the interrelationships and subgroupings of the Mbam languages within the context of the group by means of diachronic sound and structural changes to consider to what extent historical processes can explain the patterns found in Mbam vowel harmony.

Finally we consider the synchronic lexicostatistical subclassifications of the Mbam languages and their relationship in the wider context of the Bantu and Bantoid languages.

\section*{Samenvatting}

De talen van het Mbam-en-Inoubou district in de Center provincie in Kameroen bekleden een unieke positie in de Bantu taalkunde. Aangezien ze het midden houden tussen de -narrow" en -wide" Bantu talen, gedragen ze zich soms als de een en soms als de ander, en zijn dus een rijke bron van informatie voor vergelijkende en historische taalkunde. De Mbam talen zijn ook interessant op een ander gebied. Ze zijn eerder altijd geanalyseerd als talen met 7 klinkers (/i, e, \(\varepsilon\), a, \(\rho\), o, u/) met Advanced Tongue Root (ATR) harmonie.

Er is een hoge mate van meertaligheid onder de sprekers van de Mbam talen. Het zijn kleine, dicht bij elkaar gelegen taalgroepen en men erkent dat er etnische onderlinge banden en een gezamenlijke geschiedenis zijn. Als gevolg daarvan spreken de meeste volwassenen niet alleen Frans als tweede taal maar vaak ook nog één of meer van de naburige (niet alleen Mbam) talen. De talen die in deze studie besproken worden zijn Nen, Maande, Yambeta, Tuki, Gunu, Yangben, Elip, Mmala, Baca en Mbure.

De studie begint met een overzicht van elk van deze tien talen, eerder onderzoek dat gedaan is en de data die verzameld zijn voor de analyse.

Als achtergrondinformatie voor de studie van de complexe klinkerharmonie van deze talen wordt een fonologisch basisoverzicht van de contrastieve consonanten, klinkers en tonen gegeven. Vervolgens wordt ook het klinkerharmonie systeem zowel binnen de wortels als tussen de wortels en affixen- voor elk van de tien talen behandeld. De kleine variaties in deze vergelijkbare maar toch verschillende klinker(harmonie) systemen geven een beter begrip van de fonologie van iedere individuele taal. En het ontdekken van de relevante voorwaarden voor variatie draagt bij aan een beter inzicht in klinkerharmonie in het algemeen.

Klinkerharmonie in de Mbam talen is erg complex. Er bestaan 4 verschillende types onderling gerelateerde klinkerharmonie (ATR, -rounding", -fronting" en -height") in deze talen, waarbij iedere taal over één tot drie van de verschillende soorten beschikt. In het licht van de verschillende opties die in de Mbam talen worden gevonden, worden specifieke bijzonderheden van klinkerharmonie besproken; de kenmerken van /a/ en andere neutrale klinkers, richting binnen en domein van klinkerharmonie, als ook de verschillen tussen het fonologische en grammaticale woord bij al de verschillende types klinkerharmonie.

De fonologische aandachtspunten van klinkerharmonie, met name het model van Dresher (2009) van contrastieve hiërarchische kenmerken, worden uitgebreid

394 The phonological systems of the Mbam languages
beschreven en toegepast om de relatie tussen de bestaande klinkers, klinkerharmonie en de restricties binnen de klinkerharmonie in de Mbam talen te verklaren.

De contrastieve hiërarchie van Dresher is vooral van toepassing om te kunnen begrijpen waarom de hoge ronde klinkers /u/ en /o/ niet deelnemen aan -round" harmonie, en waarom talen met vergelijkbare klinker bestanden en zelfs vergelijkbare contrastieve kenmerken toch nog zeer verschillende klinkerharmoniesystemen hebben. Dit is vooral nuttig om de bijzondere ATR disharmonie in Mmala te verklaren, waarbij alle gevallen van \(/ v /\) in the omgeving van \(/ \omega /\) gerealiseerd worden als de [+ATR] klinker \(/ \mathrm{u} /\).

Vervolgens kijken we naar de onderlinge verwantschap en sub-groeperingen van de Mbam talen binnen de grotere groep door middel van diachronische klinkerveranderingen en veranderingen in structur, om te bepalen in hoeverre historische processen de Mbam klinkerharmonieregels kunnen verklaren.

Als laatste behandelen we de synchrone lexico-statistische sub-classificatie van de Mbam talen, en hoe ze zich verhouden tot de bredere groep Bantu en Bantoïde talen.

\section*{Curriculum vitae}

\footnotetext{
Virginia Lee (Ginger) Boyd was born on 05 February 1961 in Bethesda, Maryland, USA. She graduated from John F. Kennedy High School in Silver Spring, Maryland, USA in 1979. From 1979 to 1984 she studied early childhood education at Frostburg State University, where she graduated with a Bachelor of Science. After a couple of years teaching children in private schools, she pursued further studies in linguistics at the University of Texas at Arlington in 1989. Following linguistic research on the Gbaya Mbodomo language in Cameroon from 1993 to 1996, she obtained a Masters of Art in Linguistics in 1996. From 1997 to 2003 she did further linguistic research on Moloko, a Chadic language of Cameroon. Subsequently, she began research on the languages of the Mbam.
}```


[^0]:    ${ }^{1}$ Shakespeare's Love's Labour's Lost, act V, scene 1.

[^1]:    ${ }^{2}$ Vowel harmony is a term used in Bantu linguistics to refer to a specific vowel assimilation process which is limited to verbal derivational suffixes. This is discussed in detail below. The kind of vowel harmony as is found in the Mbam languages is not so common in Bantu.
    ${ }^{3}$ Five of the varieties in this study (Gunu, Elip, Mmala, Yangben and Baca) have in various previous works been considered as dialects due to a relatively high lexicostatistic similarity.

[^2]:    ${ }^{4}$ Basaa is briefly discussed in Chapter 5.

[^3]:    ${ }^{5}$ Emmanuel Ngue Um has data on Bati.

[^4]:    ${ }^{6}$ A daughter of the Banen.
    ${ }^{7}$ The first son is returned to the Banen since no bride price had been given for the mother
    ${ }^{8}$ This and the following are the names of the Maande villages.
    ${ }^{9}$ Two villages on the Bafia-Bokito road towards the village of Kiiki.

[^5]:    ${ }^{10}$ p.c. Kibassa Otoke (2013)
    ${ }^{11}$ cf. Sebineni, Alphonsine Flore (2008) also.

[^6]:    ${ }^{18}$ Erroneously labelled as A60 in the $16{ }^{\text {th }}$ edition of Ethnologue.
    ${ }^{19}$ Nigi (Yambeta) is identified by ALCAM [520] as belonging to Guthrie's A46, along with Nomaande. Phillips (1979: 6, 45), for lexicostatistic reasons, places it with the A60 group.
    ${ }^{20}$ Guthrie identifies A62 as Yambassa. It is considered to include all the linguistic varieties identified by ALCAM as [541] to [543].

[^7]:    ${ }^{21}$ Languages lacking narrative texts are Baca, Mbure and Tuki.

[^8]:    ${ }^{22}$ Ethnologue names eight dialects of Nen, six of which are listed here. Also included are Logananga and Nyo'o. The former, I have not been able to place in reference to the dialect names given to me in Ndikinimeki, and the latter is considered by ALCAM as a separate language. It is discussed briefly in section 1.6 .3 below.

[^9]:    ${ }^{23}$ Kongne Welaze Jacquis' (2004) study of the verb morphology of Tuki adds Tungijo (what the Tuki (or Baki) call it) or Letí listed as one of two languages (the other being Njowi) spoken by the Mengisa peoples (Kongne Welaze 2004: 8-9). Neither Lewis et al. (2013) or Dieu and Renaud (1983) consider Letí a dialect of Tuki, although it is known to be closer to the Mbam A60 languages than the A70 languages to which Njowi is considered to belong (Dieu and Renaud 1983: 108-109). Many Tuki speakers do consider it a dialect.
    ${ }^{24}$ Tucangu speakers perceived that their variety is spoken in Angadjimberete, Egona II, and Ngoro as well as the villages listed. See Huey and Mbongué (1995) for more information concerning the dialect situation of Tuki.

[^10]:    ${ }^{25}$ Lewis et al. (2013) has the figure at 2,300 based on 1982 figures. This number seems low, based on my personal knowledge of the area and locally reported population estimates.

[^11]:    ${ }^{26}$ Pronounced as [bat $f$ a].

[^12]:    ${ }^{27}$ Object pronouns, usually referred to in this study as indirect object pronouns, sometimes have additional meanings, including direct object. For simplicity, I refer to them as indirect object pronouns, the more common usage.
    ${ }^{28}$ Only one exception found: \#blì-sóg-ìr-ìn-ì to pray, respectfully request

[^13]:    ${ }^{29}$ In the Bafia group A50 languages, 13 is a plural class generally pairing with 19.

[^14]:    ${ }^{30}$ Orwig (1989: 301) considers this extension to be a diminutive. One of my informants for Yangben suggested that it adds a meaning of "roundness" or "circular".
    ${ }^{31}$ In several Mbam languages, this extension does seem to be a diminutive., but in the examples given here, a diminutive meaning is not evident.

[^15]:    ${ }^{32}$ The main published sources I have consulted in this study are Dugast 1949, De Blois 1981, Van der Hulst et al. 1986, Mous and Breedveld 1986, Bancel 1999, and Mous 1986, 2003. The main wordlist used is an unpublished 2000+ word Toolbox lexicon. From 2002-2005, 1250 items were collected by Alphonsine Flore Sebineni, Bete Samuel, members of CODELATU (Comité de langue Tunen). From 2006-2010, additional items were added by Kongne Welaze Jacquis with the assistance of Balehen Jacques René, Loumou Benoit, Manimben Jean Paul and Monguel Daniel. I have a 2008 version of this database which I have checked and edited, with the above-mentioned team. Much of the information and analysis collected from both published and unpublished sources has been checked, and in many cases modified, by my own research.

[^16]:    ${ }^{33}$ Dugast (1971: 50) alternatively considered that these "voyelles de liaison" may have been final vowels that have disappeared. Janssens (1988: 63) considers rather the opposite, that these vowels are underlyingly present but will elide in certain contexts. His analysis is more generally accepted (see also Mous 2003: 287).

[^17]:    ${ }^{34}$ This analysis of the Nen vowels differs from most previous studies. Most other studies follow Dugast (1971) in identifying seven contrastive vowels. Only Bancel identifies eight and has a similar vowel inventory and analysis to my own.

[^18]:    The formants of vowel $/ v /$, according to my recordings, are $546 / 1000$; those for $/ \mathrm{s} /$ are $600 / 1061$. In addition, there is a slight lowering of vowels in utterance-final position. These words were recorded in isolation, and as a result would have utterance-final lowering which would account for /v/ having a slightly higher than average F1 in these examples.
    ${ }^{36}$ Welaze (2008) lists this word as [j̀hòtá], but the F1/F2 frequencies place it in the range of /v/. If the vowel was really $/ \rho /$, it would trigger rounding harmony. Any underlying $/ \rho-\mathrm{a} /$ patterns would surface as [ $0-0$ ], which is not the case here.

[^19]:    ${ }^{37}$ Very few/I-ঠ/ combinations have been found in Nen.
    ${ }^{38}$ Precluded due to rounding harmony; $/ \mathrm{o}-2 /$ is realised as $/ \mathrm{o}-\mathrm{o} /$.
    ${ }^{39}$ Precluded due to rounding harmony; $/ \mathrm{\rho}-\mathrm{a} /$ is realised as $/ \rho-\rho /$.

[^20]:    ${ }^{40}$ Other numbers such as nine and ten, are [+ATR] but they are invariable and do not take concord prefixes.

[^21]:    ${ }^{41}$ Bancel (1999:6) indicates that the distal demonstrative is also [+ATR].
    ${ }^{42}$ The future tense is written as ŋo in Mous 2003

[^22]:    ${ }^{43}$ Mous (2003: 297) refers to this as a hodiernal past, but notes that it is the most commonly used past for texts situated "in an unspecified far past".

[^23]:    ${ }^{44}$ Only a handful of verbs had this suffix. I have not been able to find a satisfactory definition of it.

[^24]:    ${ }^{45}$ The main published sources I have consulted in this study are Scruggs 1983a, 1983b, Taylor 1984 and 1990, Wilkendorf 1985 and 2001. The main wordlist used is an unpublished 4,000+ word Toolbox lexicon collected by the Dictionary Development Committee (HENYEND) comsisting of the following members: Boulonglong Jonas, Bekoumé Pierre, Betiéné Seth, Belong David, Ondo Charles, Bélang Siméon (scribe) and Balan Marc (lexicographer). I have a 2010 version of this database which I have checked and edited with Balan Marc. Much of the information and analysis collected from published and unpublished sources has been checked, and in many cases modified by my own research.
    ${ }^{46}$ There is free variation between [p] and [b] depending on the speaker (Wilkendorf 2001: 6).

[^25]:    ${ }^{47}$ Hyman (1999: 267, 288) proposes that many Bantu suffixes, of particular interest for this study the applicative, should be analysed as having degree 3 vowels (i.e. *-ed), rather than degree 2 vowels ( ${ }^{*}$-id). Then front height harmony involves raising [ $\varepsilon$ ] to [ I ] by a process of "peripheralisation", inhibited by a mid vowel. If the Mbam applicative -m historically was *- $\varepsilon$ n, it would explain why this suffix does not cause palatalisation on $/ \mathrm{n} /$ in Maande as high front vowels do. The Maande applicative does not surface in the current state of the language as a degree 3 vowel. The analysis of certain suffixes as having degree 3 vowels also explains why these suffixes, including the applicative, are height dominant in Mmala, as discussed in Section 2.7.3.2.5 below.

[^26]:    ${ }^{48}$ The vowel /I/ acoustically has a relatively high F1 and is perceptively closer to a mid vowel than a high vowel (ave F1/F2: 460.1/1699.9). However it is underlyingly /I/. Because of this, [ $\varepsilon$ ] functions in a similar manner to [ I ] in Mmala and Yangben and differs only by the feature [ATR] from /i/. Like /i/, it causes the palatalisation of $/ \mathrm{n} /$.

[^27]:    ${ }^{49}$ All other studies of Maande identify only seven vowels, although certain problems occur with a sevenvowel analysis which various authors were not able to resolve (see Scruggs 1983a: 55-57 and Taylor 1990: 7 "We have not determined any reason why certain verbs take /a/ and others a round vowel/ //").

[^28]:    ${ }^{50}$ The [-ATR] front vowel is underlyingly /I/ although it surfaces in the syllable peak as [ $\varepsilon$ ].
    ${ }^{51}$ All these words are found in the lexicons of Maande to which I have access. I have modified Scruggs transcriptions to correspond with my analysis.
    ${ }^{52}$ My Maande language consultant disagrees with Scruggs here saying that this word does not elide the final vowel; it can only be pronounced [nغ̀hásà].
    ${ }^{53}$ These last two examples come from the Maande lexicon; not fround in Scruggs (1983a: 18-19).

[^29]:    ${ }^{54}$ Precluded due to rounding harmony; / $\mathrm{o}-2 /$ is realised as $/ \mathrm{o}-\mathrm{o} /$.
    ${ }^{55}$ Precluded due to rounding harmony; $/ \mathrm{\rho}-\mathrm{a} /$ is realised as $/ \rho-\rho /$.

[^30]:    ${ }^{56}$ Certain modifications of Taylor's data are made which reflect the differences in the vowel inventory between her analysis and my own.

[^31]:    ${ }^{57}$ Native speakers have a strong intuition that the semivowel is present.
    ${ }^{58}$ This word and the preceding example obviously have the same root. Only a couple of examples have been found with a front vowel in a VC verb root. No examples have been found of a VC verb root with a high round vowel.
    ${ }^{59}$ If the root for face were $\neq$ ว́sı̀ this word should pattern like $\mathbf{b}^{\mathbf{w}} \neq \mathbf{\text { ànù }} /$ mà $\neq$ ə̀nù yam field.

[^32]:    
    ${ }^{61}$ If the root for boa were $\neq \mathbf{\prime} \mathbf{m} \mathbf{z}^{\prime}$, it should pattern like $\mathbf{t} \mathbf{f} \neq \boldsymbol{\jmath}^{\mathbf{n}} \mathbf{d} \mathbf{3}$ ú female. Scruggs (1983a: 52-4) analyses these examples as entailing the following steps: 1) prefix vowel deletion before a long vowel (in which case the root of mouth and boa would have an unusual $\neq \mathrm{VVCV}$ structure), and 2) "root unrounding" following a prefix containing $/ \mathrm{\partial} /$. She states that the assimilation of the prefix vowel to the root vowel is a possible solution but rejects it as being inconsistent with the rest of her analysis.
    ${ }^{62}$ Although $\neq \mathrm{it}$ í as the root of tree is not evident from either the singular or plural surface forms, it can be derived from the two assimilation rules posited. In the singular form, the/ $\mathrm{I} /$ of the root assimilates as all high front vowels to the high round vowel of the prefix. In the plural form, $/_{\mathrm{I}} /$ assimilates to the non-high vowel $/ \mathrm{a} /$. Further justification for $/_{\mathrm{I}} /$ is found in the diminutive form and in the few $\neq \mathrm{VC}(\mathrm{V})$ cognates, especially in Yambeta and Gunu. Another possible interpretation of tree would be bò $\neq \mathbf{t}$ í / mà $\neq \mathbf{t i ́}$. In favour of the simpler root structure is the fact that many of the cognates for tree in the Mbam languages have $\neq \mathrm{CV}(\ldots)$ root:

    | Nen | pù $\ddagger$ liá | mà $\ddagger$ lía | Baca | $\mathrm{p}^{\mathrm{w}} \neq$ j̀s ${ }^{\text {c }}$ | mà $\ddagger$ àsá |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Yambeta | kj $\ddagger \mathrm{it}$ | $\mathrm{p} \geqslant \mathrm{i}$ it | Gunu | bù | mì=ítì |
    | Elip | bù $\ddagger$ dí | mà $=$ dí | Tuki | wò $\neq$ rití | mà $\neq$ rití |
    | Mmaala | bùキ $\ddagger$ î: ${ }_{\text {d }}$ | mà $=$ dî:d | Mbure | bừ $\ddagger$ bứ | mừ $\neq$ ứ |
    | Yangben | pò̀tí | mà $\ddagger$ tí |  |  |  |

    ### 2.2.5.1 Tone melodies on nouns

    High and low tone contrast in monomorphemic noun roots. Four tone melodies are attested in CVCV noun roots, see Example 61 below. Noun prefixes usually have a low tone, although there are a few exceptions.

    ## Example 61: Maande nominal tone melodies

    | à $\neq$ bàkà | $\neq$ L.L | smoked fish |
    | :--- | :--- | :--- |
    | à $\neq$ bàká | $\neq$ L.H | talisman |
    | à $\neq$ bát $\int a$ |  |  |
    | à $\neq$ bátá | $\neq$ H.L | piece of calabash used a a lamp |
    |  | $\neq$ H.H | horn |

    ### 2.2.5.2 Tone melodies on verbs

    Maande verbs have three possible underlying tone melodies: L, H and HL. In verb stems with a H melody, the H spreads to the right. The exception is with the final vowel to which $H$ does not spread. Since final vowels do not take a $H$ tone in their most basic form (without extensions), H and HL verbs both have $\mathrm{L} \neq \mathrm{H}$-L surface representation. It is assumed that verbal suffixes are underlyingly toneless, and the verb melody maps to the entire verb stem. The three verbal tone melodies are illustrated in Example 62 below, showing both the H spread on verb suffixes as well as the failure of H spread onto the final vowel.

    ## Example 62: Maande verbal tone melodies

    | L | ̀̀ $\ddagger$ bı̀l-̀ | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}$ | pierce |
    | :---: | :---: | :---: | :---: |
    |  | う̀ $\ddagger$ bòl-ゝेk-̀̀ | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}-\mathrm{L}$ | pierce (INTENS) |
    |  | ò $=$ bàt-à | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}$ | ask |
    |  | j̀ $\ddagger$ bàt-àk-à | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}-\mathrm{L}$ | ask (INTENS) |
    | H | ò $\ddagger$ tán-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | speak |
    |  | j̀ $\ddagger$ táy-ák-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}-\mathrm{L}$ | speak (INTENS) |
    |  | ò $=$ tán-ín-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}-\mathrm{L}$ | speak against |
    |  | ò $\ddagger \mathrm{k}$ ćt-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | $d r y$ |
    |  | j̀ $\neq \mathrm{kút}$-ák-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}-\mathrm{L}$ | dry (INTENS) |
    |  | ò $\ddagger$ báát-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | climb |
    |  | j̀ $\neq$ báát-ák-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}-\mathrm{L}$ | climb (INTENS) |


    |  | ò-bífkút-ə̀ | L-H $\ddagger$ H-L | shave oneself |
    | :---: | :---: | :---: | :---: |
    |  | ò-bífkút-ə̀k-̇̀ | L-H $\neq \mathrm{H}-\mathrm{L}-\mathrm{L}$ | shave oneself (INTENS) |
    |  | ò $\ddagger$ tám-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | clear (land for planting) |
    |  | òキtám-àk-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}-\mathrm{L}$ | clear (INTENS) |
    | HL | ò-bíf $\times$ ćòn-à | L-H $\neq \mathrm{HL}-\mathrm{L}$ | be full of pride |
    |  | ò-bíキḱsòn-àk-à | L - $\mathrm{H} \neq \mathrm{HL}$ - $\mathrm{L}-\mathrm{L}$ | be full of pride (INTENS) |

    ### 2.3 Yambeta phonological overview

    Yambeta has four dialects; two main dialects Nigii and $N \varepsilon d \varepsilon k$, and two subdialects Begi a subdialect of Nigii, and Nibum a subdialect of Nedzk. This study is based on the largest and most centrally-located dialect, Nigii, which has been chosen by the community as the reference dialect ${ }^{64}$.

    ### 2.3.1 Consonants

    This section discusses the consonant inventory of Yambeta (section 2.3.1.1) and allomorphic realisations of consonants (section 2.3.1.2).

    ### 2.3.1.1 Consonant inventory

    The consonant system of Yambeta consists of 20 contrastive consonants.

    Table 12: Yambeta contrastive consonants

    |  |  | labial | alveolar | palatal | velar | glottal |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | stops |  | p | t | t 5 | k | ? |
    | prenasalised | voiceless |  | ${ }^{n}$ t |  | ${ }^{\mathrm{n}} \mathrm{k}$ |  |
    |  | voiced | mb | ${ }^{\text {n }}$ d |  | ${ }^{\text {ng }}$ |  |
    | fricatives |  | f | s |  | h |  |
    | resonants | nasal | m | n | n | y |  |
    |  | oral |  | 1 | j | w |  |

    All consonants except for $/ \mathrm{t} / /, / \mathrm{w} /{ }^{65}$ and the prenasalised stops occur in word-final position. The glottal stop / $/$ / occurs only in word-final position and contrasts with $/ \mathrm{k} /$, as in Example 63. According to Phillips (1979: 93), the glottal stop is elided intervocalically.

    | Example 63: The glottal stop in Yambeta |  |
    | :---: | :---: |
    | mà $\ddagger$ tà | rheum (dried gunk in eye) |
    | mà $\ddagger$ tà? | poison for arrows |
    | mà $\ddagger$ tàk | joke |
    | kì tí́ | widow |
    | kì $\neq$ tì? | epilepsy |
    | ùn $\ddagger$ nì | tail |
    | ùn $\neq$ nì? | grave digger |

    ### 2.3.1.2 Allophonic and allomorphic realisations

    There is no voicing opposition in Yambeta. All stops, with the exception of $/ \mathrm{l} /$, have voiced and voiceless variants. All stops are voiceless in phrase-initial and phrasefinal position and voiced intervocalically. See Example 64 below.

    Example 64: Voiced/voiceless variation of stops in Yambeta

    | /p,t,k/ | $\rightarrow$ | [b,d,g] | 1 | V__V | nì $=$ bà ì $=$ dò̀ mə̀ $\neq$ gút | claw <br> horn <br> oil |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | /p,t,k/ | $\rightarrow$ | [p,t,k] | 1 | \# | pì $\ddagger$ dà <br> tò̀ $\neq$ mìm <br> kì $\neq$ sùm | saliva <br> tongues <br> lake, pond |
    | /p,t,k/ | $\rightarrow$ | [p,t,k] | 1 | \# | $\begin{aligned} & \text { nì } \neq \text { sìp } \\ & \grave{\mathrm{n} \neq \mathrm{s} \grave{t}} \\ & \mathrm{j} \neq \mathrm{u} \mathbf{k} \end{aligned}$ | peanut, groundnut duiker fire |

    Following nasals, the bilabial stop is voiced, but both the alveolar and velar stops are voiceless as in Example 65.

    Example 65: Stops following a syllabic nasal in Yambeta

    | /p/ | $\rightarrow$ | [b] | / | N | m̀ $\neq \mathbf{b}$ í | pò $\ddagger$ bí | cutting |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  | $\stackrel{\text { m}}{\mathrm{m}} \neq \mathbf{b}$ òn | pò̇ $\ddagger$ bòn | goat |
    | /t, k/ | $\rightarrow$ | [t, k] | 1 | N | ǹ $\ddagger$ tàt | pò $\ddagger$ dàt | type of basket |
    |  |  |  |  |  | ǹ $=$ tòn | pù $f$ dòn | fish sp. |
    |  |  |  |  |  | ỳ $\neq$ kàt | pù $\ddagger$ gàt | type of drum |
    |  |  |  |  |  | ỳ $\neq \mathbf{k u ́ n}$ | pù $\neq$ gún | tortoise |

    In $\mathrm{CV}-\mathrm{CV}(\mathrm{V})(\mathrm{C})$ reduplicated roots, the stop is voiced in the reduplicated part, but voiceless in the base, as in Example 66.

    ## Example 66: Reduplicated roots in Yambeta

    | --- | --- | kì $=\mathrm{b}$ ò-póón | plant sp. |
    | :---: | :---: | :---: | :---: |
    | nì $\ddagger$ dáán | rock | ì $=$ dá-táán ${ }^{66}$ | pebble |
    | ǹ ¢tàt | basket | ì $\ddagger$ dà-tát | small basket |
    | kì $\neq$ dís | wound | ì $\neq$ dí-tís | small wound, scratch |
    | nì $=$ gúù | village, country | ì $\neq$ gú-kúù | small village |
    | --- | --- | ì $\ddagger$ gó-kóó | ankle |

    Oral resonants, $/ 1, \mathrm{j} /$ become voiced obstruents, [d, d3] after a nasal as in Example 67.
    Example 67: Oral resonants following a nasal in Yambeta.

    | òn $\neq$ dìgà | pà $=$ lìgà | seller(s) |
    | :---: | :---: | :---: |
    | ǹ $=$ dòm | pù $=1$ lòm | sorcerer(s) |
    | nì $\ddagger$ lù | ว̀n $=$ dù | knee(s) |
    | nì $\neq \mathbf{j i ̀ n}$ | àn $\neq \mathbf{d}$ gìn | raphia palm(s) |
    | ǹ $=$ d3ò? | pù $=\mathbf{j}$ ò? | elephant(s) |

    The alternation of resonant and voiced obstruent is also evident in reduplicated roots as below:

    ## Example 68: Yambeta oral resonants in reduplicated roots.

    ì $=$ lòn-dòm
    little sorcerer
    kì $\neq j$ jǔn-dzím
    fox
    Phillips (1979: 55-6) claims that $/ \mathrm{w} /$, like $/ \mathrm{l} /$ and $/ \mathrm{j} /$, becomes a voiced stop $[\mathrm{g}]$ following a nasal. She gives the example below on page 56:

    | $[\mathfrak{y ̀}$-gé] | /ỳ-wé/ | road |
    | :--- | :--- | :--- |
    | [p̣ù-wé] | 'pù̀-wé/ | roads |

    However, the YALICO database and my own data list this word as follows:
    ŋgá pùキngá road/roads
    The voiceless fricatives /f/, /s/ and the affricate / $\mathrm{t} / \mathrm{f}$ do not alter following a nasal as in Example 69.

    | $\grave{\mathrm{m}} \neq \mathrm{f} \dot{\mathrm{f}} \mathrm{y}$ | pù ffón | wound |
    | :---: | :---: | :---: |
    | m̀ $\neq \mathrm{f}$ wày | pù $\ddagger$ fwà | type of fish |
    | ǹ $=$ sə̀t | pùfsà̀t | duiker |
    | ǹ $=$ sám | pò $\ddagger$ sám | nut |
    | ǹ tt ¢îm | pò̇tfîm | oath |

    Noun classes 1, 3 and 6 a have a homorganic nasal following a vowel in the prefix. In Nigii, however, the VN- noun-class prefixes are realised as V?- preceding alveolar and velar stops, while the stop is realised as voiceless, as is normal following a nasal. In the $N \varepsilon d \varepsilon k$ dialect, according to Phillips (1979: 51), the nasal of the VN- prefixes is realised before alveolar and velar stops. ${ }^{67}$ She gives the example of head:

    | Nigii | N $\varepsilon d \varepsilon k$ |
    | :--- | :--- |
    | [ò-tò] | [òn-tò] |

    The VN- noun-class prefixes are realised as [VN-] before fricatives and resonants, and as [VP-] before alveolar and velar stops. Below in Example 70 are some instances of $\mathrm{V}(\mathrm{N})$ - noun-class prefixes before both resonants and stops.

    Example 70: Yambeta classes 1, 3 and 6a prefixes

    | surface realisation | underlying form | gloss |
    | :---: | :---: | :---: |
    | òndìgà | òN $\ddagger$ lìgà | c1.seller (from kò̀lìg-à sell) |
    | ònnàn | òN $\neq$ nàn | c1.grandson |
    | ùptìl̀? | ùN\#tıil̀े? | c1.writer |
    | ò?kán | òN $\neq$ kán | c1.wife |
    | ùPtúmò? | òN $\neq$ túmè? | c1.singer (from kùftúm-̇̀ sing) |
    | òfơm | ò\#fồm | c3.forehead |
    | òmbòk | òN $\ddagger=$ pı̀k | c3.hand |
    | ùbว́y | ù $\neq$ pón | c3.ant sp. |
    | ùdì | òキtì | c3.face |
    | ùndìy | òN $\neq \mathrm{lìn}$ | c3.vein, tendon |
    | ò?tím | ò $\mathrm{N} \neq \mathrm{t}$ ¢́m | c3.heart |
    | òptò | òN $\ddagger$ tò̀ | c3.head |
    | ùpkź | òN $\neq$ kı́ | c3.boa constrictor |
    | ù?kòs | òn $\neq$ kòs | c3.cricket |


    surface realisation
    àdsìn
    àndím
    àPtóm
    àPtán
    à？kúù

    | underlying form | gloss |
    | :--- | :--- |
    | à $\neq$ jìn | c6a．raphias |
    | àN $\neq$ lím | c6a．yams |
    | àN $\neq$ tóm | c6a．breasts |
    | à $\neq$ táán | c6a．stones |
    | à $N \neq$ kúù | c6a．villages |

    There appears to be contrast between voiceless stops，voiced stops and prenasalised stops within the morpheme．For example，in noun class 7，which does not have a nasal in the prefix，there are examples of voiceless stops appearing in root－initial position where there should only be voiced stops．In addition，there are some cases of voiceless stops occurring intervocalically within the noun root．As prenasalised stops may occur in root－initial position，as seen below in Example 71 with the bilabial stops，it is possible that $\mathbf{t}$ and $\mathbf{k}$ in intervocalic position are in reality $\left[{ }^{2} t\right]$ and $\left[{ }^{2} \mathrm{k}\right]$ and are the surface realisations of $/ \mathrm{nt} /$ and $/ \mathrm{m} \mathrm{k} /$ following class 7 and within the noun root．Careful pronunciation does reveal a［？］preceding the stop．There is some justification for this in regarding certain of these words in the $N \varepsilon d \varepsilon k$ dialect．

    Example 71：Apparent contrast in stops in Yambeta
    $/ \mathrm{mb} /[\mathrm{mb}]$
    kì $\neq \mathrm{m}$ bódà？kì＝mbódà？
    kì $\neq$ làbùn kì 1 l̀̀pùn tree $s p$ ．
    kìキtòmbók kìłtòmbók
    $/ n t /\left[{ }^{2} t\right]$

    |  | kì $=^{\mathrm{n}} \mathrm{t}^{\text {m }} \mathrm{m}$ bà？ |
    | :---: | :---: |
    | kì $⿻^{2}$ tók | kì $⿻^{\text {n }}$ tók ${ }^{68}$ |

    type of hat
    bow（hunting）
    largeness
    forest
    insult
    event
    traditional dance
    type of calabash
    $/ \mathrm{nt} /\left[{ }^{2} \mathrm{t}\right]$
    kì $\neq$ ló $^{\text {ºt }}$ tók
    kì $\neq 1$ lontón $^{n}$
    ／t／［d］
    kì $=$ bódòm
    kì $\neq$ bótòm
    ／nd／［ $\left.{ }^{\mathrm{n}} \mathrm{d}\right]$
    kì＝sìndìn
    kì $\neq$ sìnlìn
    $\left./ \mathrm{mk} /{ }^{2} \mathrm{k}\right]$
    $/ \mathrm{k} /[\mathrm{g}]$

    | kì $\neq$ ² $k$ n | kì $\ddagger$ nkùn |
    | :---: | :---: |
    | kì $\neq$ k ${ }^{\text {a }}$ ¢ | kì $\ddagger$ nk ${ }^{\text {a }}$ |
    | kì $\ddagger$ gùd | kì $=$ kùd |
    | kì $\ddagger$ gók | kì $=\mathbf{k}$ ¢́k |
    | kìキ ${ }^{\text {gón }}$ | kì $=$ nwón ${ }^{69}$ |

    plant $s p$ ．
    yam
    stump
    fish $s p$ ．
    wind
    stool，bench
    stick，pestle

    |  | surface from | underlying form | gloss |
    | :---: | :---: | :---: | :---: |
    |  | kì $=$ g ${ }^{\text {g }}$ y | kì $=$ nw ${ }^{\text {a }}$ | spittle, slobber |
    | $/ \mathrm{O} \mathrm{k} /{ }^{2} \mathrm{k}$ ] | ì $=$ wà ${ }^{\text {² }}$ kìi | ì $=$ wà ${ }^{\text {b }}$ kì̀? | chimpanzee |
    |  | ì $\neq \mathrm{ba}$ ákín | ì $\ddagger$ bán $k$ ín ${ }^{70}$ | outbuilding |
    | /k/ [g] | ì $\ddagger$ bágín | ì $\ddagger$ bákín | type of calabash |

    ### 2.3.2 Vowels

    This section discusses the vowel inventory of Yambeta (section 2.3.2.1), and various vowel co-occurrences and vowel co-occurrence restrictions (section 2.3.2.2).

    ### 2.3.2.1 Yambeta vowel inventory

    Yambeta ${ }^{71}$ has an inventory of eight contrastive short and long vowels. Long vowels occur only in the first syllable of noun or verb roots. A complex system of vowel harmony regulates the co-occurrences and co-occurrence restrictions of the vowels. The vowels can be divided into two sets, which are mutually exclusive within roots and stems:

    Table 13: Yambeta contrastive vowels
    

    In the verb system, all eight contrastive vowels are attested in the verb root. While the distinction between $/ 0 /$ and $/ \sigma /$ is slight, this distinction is emphasised by rounding harmony. Rounding harmony is triggered by non-high (open) round vowels and targets the final vowel $/-\mathrm{a} /$. High round vowels, $/ \mathrm{u} /$ and $/ \mathrm{v} /$ do not trigger rounding harmony. In the Yambeta verb system, the root vowel generally determines the changes in the final vowel according to ATR and/or rounding harmony, as shown in Example 72 below.

    | Example 72: Contrastive vowels in Yambeta CVC verb stems |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | rt vowel | ATR round |  | $\mathrm{FV}^{73}$ | example | gloss |
    | i | x | --- | -ə | kù $=$ tím-ə̀ | dig |
    |  |  |  |  | kù $=$ wí:j-ì | extinguish-CAUS |
    | 1 | --- | --- | -a | kù $\ddagger$ fik-à | think |
    |  |  |  |  | kòftî:m-ìn | get up |
    | ว | X | --- | -ә | kù $\neq$ kók-̇̀ | coagulate |
    |  |  |  |  | kù $\ddagger$ dâ:y | fall |
    | a | --- | --- | -a | kò $\ddagger$ pàs-à | carve, sharpen |
    |  |  |  |  | kò $\neq 1 \mathrm{a}: m$-ì | announce-CAUS |
    | $\bigcirc$ | --- | x | -0 | kò $\ddagger$ kól-ò | burn |
    |  |  |  |  | kò $\neq$ mó:s-ì | narrow-CAUS |
    | o | x | x | -0 | kù $=$ sóp-ò | be sweet |
    |  |  |  |  | kù $=10$ :d-ì | show-CAUS |
    | O | --- | --- | -a | kòfsớm-à | cut |
    |  |  |  |  | kò $\ddagger \mathrm{j}$ ô: | flow |
    | u | x | --- | -ə | kù $=$ mús-ò | fold |
    |  |  |  |  | kù=sù:1-ì | lower-CAUS |

    In the noun system, the most common root structure is CVC. All eight vowels are attested in CVC noun roots, as in Example 73.

    ## Example 73: Permitted vowels in Yambeta CVC noun roots

    | i | kì $=$ pìn | taro | I | kì $=$ pìp | lip |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | kì $=$ tín | calabash for water |  | kì $\neq$ kìk | molar |
    | 1: | ì $\neq \mathrm{ki}$ : b | work group | I: | ì $\ddagger$ tí:n | tree squirrel |
    | ə | ǹ ¢ s̀̀t | duiker | a | kì $=$ sàk | bird |
    |  | ì $\ddagger$ kót | cataract |  | $\mathfrak{j} \neq$ kák | pangolin, aardvark |
    | ә: | sô:n | father-in-law | a: | kì $\ddagger$ bà:n | palm whip |
    | o | ùg=kòs | cricket | 0 | ùg $\neq$ kòt | nape of neck |
    |  | ì $\ddagger$ sòs | partridge |  | nò $=$ sós | hot pepper |
    | o: | nùf $\ddagger$ b̌: | frog | 9: | kì $\ddagger$ nǒ:k | yam |
    | u | kì $=$ pùn | fracture | v | kì $\ddagger$ pòn | back |
    |  | ì \túk | domesticated animal |  | ì $\ddagger$ tớk | hernia |
    | u : | kì $=$ lùù? | odour | v: | ò $\ddagger \neq$ gò: | foot |

    While $\mathrm{CVCV}(\mathrm{C})$ noun roots do occur, most are reduplicated or compound roots. Only six contrastive vowels have been found in monomorphemic $\mathrm{CV}_{1} \mathrm{CV}_{1}(\mathrm{C})$ roots,


    the high back vowels $/ \mathrm{u} /$ and $/ \mathrm{/} /$ are not attested in the data, except in reduplicated or compound roots, as below in Example 74 below.

    | Example 74: Permitted vowels in monomorphemic $\mathrm{CV}_{1} \mathrm{CV}_{1}(\mathrm{C})$ nouns |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | i | kì ${ }^{\square}$ kínìt | heel | I | ì $=$ pìnìn | hatred |
    |  | kí\# $1 \mathrm{lin}^{\text {n }}$ dì? | shadow |  | kì $=$ sílín | cricket |
    | i: | kìfsì:sí | worm | I: | ì $\ddagger$ nì:n㒬? | mockery |
    | ə | mòf sópò? | evening palm wine | a | ì $\neq$ pàkà | shield |
    |  | ì j j́s ${ }^{\text {án }}$ | cooking pot |  | kìfjàsáy | basket |
    | ә: | --- | --- | a : | kíf $\mathfrak{y a ̂ : y a ̀ ~}$ | crow |
    | o | ùm $\neq$ pòló | woven raphia mat | 0 | ì $\neq$ fòt ${ }^{\text {a }}$ | yam sp. |
    |  | kì $=1 \mathrm{lo}^{\text {ntók }}$ | calabash |  | kíflı̀̀tòk | toad |
    | o: | --- | --- | $\bigcirc$ ) | kìflò:ló | diarrhea type |
    | u | --- | --- | v | --- | --- |
    | u: | --- | --- | ט: | --- | --- |

    ### 2.3.2.2 Vowel co-occurrences

    Several factors govern the co-occurrences of vowels in CVCV nouns. These factors include 1) ATR-harmony restrictions and 2) restrictions on $V_{2}$, depending on the features of $V_{1}$. Each of these vowel co-occurrence restrictions will be discussed in turn in sections Error! Reference source not found. and 2.3.2.2.2 below.

    ### 2.3.2.2.1 ATR-harmony restrictions

    ATR harmony requires that both vowels in the noun root agree in tongue-root position. The [-ATR] vowels never occur in the same root with [+ATR] vowels. The vowel/a/ is always [-ATR] and never found in a [+ATR] environment. In Example 75 below, all ATR vowel co-occurrences in CVCV noun roots are shown.

    |  | ple 75: Vow <br> ] vowels | currence |  | a CVCV <br> ] vowels | n roots |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | I-I | kì $=$ sílín | cricket | i-i | kì $⿻^{\square}$ kínìt | heel |
    | I:-I | kì $\neq \mathrm{dí}:$ dir ${ }^{74}$ | sp. of snake | i:-i | kì $\ddagger$ sì:sí | intestinal worm |
    | I-a | mà $=$ fikà? | thoughts | i-ə | íftil̀ | bitter leaf |
    | I:-a | òng $\neq$ wì:nà? | buyer | i:-ə | --- | --- |
    | I-U | --- | --- | i-u | --- | --- |
    | I-O | --- | --- | i-o | --- | --- |

    | [-ATR] vowels |  |  | [+ATR] vowels |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | a-I | ìłtàpí | palm tree sp. | ว-i | mò $=$ pálí | salt |
    | a:-I | là:nì? | type of drum | ว:-i | kà:nì? | tomb |
    | a-a | kì $\ddagger$ jàsáy | basket | ə-ə | mò $=$ sópà? | evening palm wine |
    | a-v | $\mathfrak{y} \neq \mathrm{kà}{ }^{\text {² }}$ wó | lion | $\partial$-u | kìłtı̀̀kùn | caterpillar sp. |
    | a:-v | ì $\ddagger$ sà:sú | jigger | ว:-u | kǒ:wù? | gorilla |
    | a-o | --- | --- | ə-0 | --- | --- |
    | U-I | ìttómìn | plant $s p$. | u-i | kìflùmìn | mud |
    | U:-I | -- | --- | u:-i | kìłtù:lì? | brawl |
    | $\mathrm{o}-\mathrm{a}$ | kì $\neq$ púņà ${ }^{75}$ | living room | u-ə | ì $=$ kùtà? | sack |
    | 0:-a | --- | --- | u:-ə | --- | --- |
    | U-Ј | --- | --- | u-u | --- | --- |
    | U-ง | --- | --- | u-o | --- | --- |
    | 0-I | ìłtı̀̀̀kì? | confidence | o-i | kì $\ddagger$ kòlìn | throat |
    | 0:-I | kì $=$ nò: y ì? | foreigner | o:-i | $\mathrm{y} \neq \mathrm{gò}: \mathrm{j}^{\text {í }}$ | childrearing rights |
    | 0-a | --- | --- | o-ə | --- | --- |
    | --才 | --- | --- | o-u | --- | --- |
    | -0 | ì $\neq$ ¢̀̀tó | yam sp. | o-o | ùm $\neq$ pòló | woven raphia mat |

    ### 2.3.2.2.2 Other $\mathrm{V}_{2}$ co-occurrence restrictions

    When $\mathrm{V}_{1}$ in $\mathrm{CV}_{1} \mathrm{CV}_{2}$ nouns is a high vowel, $\mathrm{V}_{2}$ is either a high or open (non-high) vowel. When $\mathrm{V}_{1}$ is an open round vowel, $\mathrm{V}_{2}$ is either a high vowel or an identical round vowel. When $V_{1}$ is an open non-round vowel, $V_{2}$ is either a high, a round or an open vowel. Which high, round or open vowel occurs in $V_{2}$ position depends on the ATR value of $\mathrm{V}_{1}$. The high $\mathrm{V}_{2}$ is $/ \mathrm{I} /$ (with a surface representation of $[\varepsilon]$ ) in [-ATR] noun roots or $/ \mathrm{i} /$ in [+ATR] noun roots. The round $\mathrm{V}_{2}$ is generally either $/ \mathrm{v} /$ in [-ATR] noun roots or [u] in [+ATR] roots, except with the open round vowels where the round $V_{2}$ is identical to $V_{1}$. The open vowel is either /a/ in [-ATR] roots or $/ \partial /$ in [+ATR] roots, see Example 76 below.

    | Example 76: Value of $\mathbf{V}_{\mathbf{2}}$ in Yambeta CVCV noun roots |  |  |
    | :--- | :--- | :--- |
    | $\mathbf{V}_{\mathbf{2}}$ in $\mathbf{C V C V}(\mathbf{C})$ noun roots | [-ATR] | [+ATR] |
    | High | I | i |
    | Round | U or $\bigcirc$ | u or o |
    | Open | a | a |

    In summary, the possible combinations of vowels in $\mathrm{CVCV}(\mathrm{C})$ noun roots are presented in Table 14 below:

    Table 14: Surface $\mathrm{CV}_{1} \mathrm{CV}_{2}$ combinations permitted in Yambeta

    | $\mathrm{V}_{1} \mathrm{~V}_{2}$ | high | round | open |
    | :---: | :---: | :---: | :---: |
    | /i/ | i-i | --- | i-ə |
    | /I/ | I-I | --- | I-a |
    | /u/ | u-i | --- | u-ə |
    | /0/ | --I | --- | v-a |
    | /o/ | o-i | 0-0 | --- ${ }^{76}$ |
    | /2/ | --I | --0 | --- ${ }^{77}$ |
    | $\begin{array}{\|l\|} \hline \mathrm{Ia} / \\ \mathrm{l} / \end{array}$ | $\begin{aligned} & \text { a-I } \\ & \partial-i \end{aligned}$ | $\begin{aligned} & \hline \text { a-v } \\ & \mathrm{o}-\mathrm{u} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{a}-\mathrm{a} \\ & \mathrm{\partial}-\mathrm{\partial} \end{aligned}$ |

    ### 2.3.3 Vowel-harmony processes

    Yambeta has a complex system of vowel harmony consisting of two interacting types of harmony: ATR and rounding harmony. Although rounding harmony does not operate as a vowel co-occurrence restriction in roots, both types of vowel harmony cross morpheme boundaries within the phonological word.

    ### 2.3.3.1 Pre-stem elements

    Both nominal and verbal pre-stem elements undergo vowel harmony in Yambeta. These are ATR harmony and rounding harmony which will be discussed in turn below.

    ## ATR harmony in pre-stem elements

    Yambeta has a system of fifteen noun classes, not including the infinitive class 15 ko-. The following double-class genders occur: $1 / 2,3 / 4,3 / 6,5 / 6 a, 7 / 8,9 / 14,11 / 13$, $19 / \mathrm{mo}$ and a few examples of $5 / 6,5 / 14,19 / 14$ and $14 / 6$ are also found in the data. Phillips (1979: 95) identified class $19 / \mathrm{mo}$ as class $5 b / 18$, but in comparison with other Mbam languages, Phillips' class 5b is identical to class 19 found in the Mbam A60 languages. The plural noun class mo- is considered in Guthrie (1971: 32) as extraneous and was not assigned a class number. In some literature it is identified as class 18.

    | class | prefixes |  | class | prefixes |
    | :---: | :---: | :---: | :---: | :---: |
    | 1 | mo- /mu- | — | 2 | pa- / pə- |
    | 1a | o - / u- |  |  |  |
    | 3 | - / / u- |  | 4 | N - |
    | 5 | ni- / ni- |  | 6a | aN - / っN- |
    | 7 | ki- / ki- | $\xrightarrow{+}$ | 8 | pi- / pi- |
    | 9 | N - | +-20 | 10~14 | po- / pu- |
    | 11 | no- / nu- | + | 13 | to- / tu- |
    | 14 | po- / pu- |  | 6 | ma- / mo- |
    | 19 | I- / i- |  | mo- | mo- / mu- |

    All noun-class prefixes with a vowel undergo ATR harmony, as shown in Example 77. The vowel of the prefix will become a glide before vowel-initial noun roots.

    | Example 77: ATR harmony of Yambeta noun-class prefixes |  |  |  |
    | :---: | :---: | :---: | :---: |
    | class | noun-class prefix | example | gloss |
    | 1 | $v(\mathrm{~N})^{78}$ - | ò $\ddagger \neq$ kîilt | woman |
    |  |  | ùm $\neq \mathrm{p}^{\mathrm{w}}$ ¢ิm | hunter |
    | 2 | pà | pà $=$ kíit | women |
    |  |  | p $\mathrm{p} \neq \mathrm{p}^{\mathrm{w}}$ ิm | hunters |
    | 3 | $v(\mathrm{~N})-$ | òm $=$ pò $k$ | hand |
    |  |  | ù $\neq$ pón | ant $s p$. |
    | 5 | ni- | nì $\ddagger$ pò̀m | egg |
    |  |  | nì $\neq$ lù | knee |
    | 6 | ma- | mà $\neq$ ý | blood |
    |  |  | mò $=$ ní | water |
    | 6a | aN- | àm $=$ pòm | eggs |
    |  |  | àn $\neq$ lù | knees |
    | 7 | kı- | kì $=$ pàn | rooster |
    |  |  | kì $\ddagger \mathrm{t}$ ¢út | mouse sp. |
    | 8 | pı- | pì $\neq$ pàn | roosters |
    |  |  | pì̀tfút | mice sp. |

    | class | noun-class prefix | example <br> nò $\neq$ kj̀k <br> núキpòn | gloss <br> feather <br> shrew |
    | :--- | :--- | :--- | :--- |
    | 13 | to- | tò $\neq$ kòk <br> tú $\neq$ pòn | feathers <br> shrews |
    | 14 | po- | pò $\neq$ kák <br> pù $\neq \mathrm{jò?}$ | pangolins, aardvarks <br> elephants |
    | 19 | I- | ì $\neq$ pàk <br> ì $\neq$ sòs | machete <br> partridge |
    | pl of | mo- | mò $\neq$ pàk <br> mù $\neq$ sòs | machetes <br> partridges |

    The infinitive prefix obligatorily harmonises with a [+ATR] vowel in the verb root: infinitives have a /ko-/ (class 15) prefix. As with the noun-class prefixes, it undergoes ATR harmony, see Example 78.

    ## Example 78: ATR harmony of high vowels in Yambeta verb prefixes

    ko-

    | kùftím-ə̀ | dig |
    | :---: | :---: |
    | kò $\ddagger$ tít-à | run |
    | kù $=$ kók-̇̀ | coagulate |
    | kòftál-à | see |
    | kòłtóp-ò | touch |
    | kù $=$ sóp-ò | be sweet, tasty |
    | kòłtók-à | insult |
    | kù\#túm-ə̀ | sing |

    The reflexive in Yambeta consists of a vowel prefix and a suffix. The prefix vowel a- obligatorily harmonises with a [+ATR] vowel in the verb root as in Example 79.

    ## Example 79: ATR harmony of the Reflexive prefix in Yambeta

    | a- | kù $=$ wàs | kò $\ddagger$ á-wás-íl | comb/ comb oneself |
    | :---: | :---: | :---: | :---: |
    |  | kù $=$ píàn | kù=ว̀-píán-íí | birth/ be born |

    Yambeta verbal pre-stem elements undergo ATR harmony. In normal speech, all [-ATR] pre-stem elements will assimilate to a [+ATR] vowel in the verb root. Many verb tenses, however, use an auxiliary + verb structure. The auxiliary, being a separate word, does not assimilate to the verb root. Some examples are shown in Example 80 below.
    

    Yambeta numeral concord prefixes are invariably [-ATR] and assimilate to the [+ATR] vowel of the numeral roots of one and four.

    Example 81: Yambeta numeral concord prefixes

    | class | num. prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 1 | ó- | mòòd óf=mò | one person |
    | 2 | pá- | pòv̀d páfbàn | two people |
    |  |  | pờòd pó $\ddagger$ nì? | four people |
    | 3 | ó- | ò $\ddagger$ tím ó $\neq$ mò? | one heart |
    | 4 |  | ǹ=tím ífbàn | two hearts |
    |  |  | ǹ̇tím ífonì? | four hearts |
    | 5 | ní- | nì $\neq$ dáán ní $=$ mò? | one stone |
    | 6a | á- | àp $\neq$ táán $\mathfrak{a} \neq \mathrm{bàn}$ | two stones |
    |  |  | à? $\neq$ táán $\mathfrak{\text { of }}$ nì ? | four stones |
    | 7 | kí- | kì $=$ tìmbò? kíf=mò? | one bow |
    | 8 | pí- |  | two bows |
    |  |  |  | four bows |
    | 9 | Ń- | n ¢ $=$ nàm m ¢ $=$ mò ? | one animal |
    | 14 | pú- | pù $\ddagger$ nàm púfbàn | two animals |
    |  |  | pù $\ddagger$ nàm pú $=$ nì? | four animals |
    | 11 | nớ- | nờ $\ddagger$ gok nú $\neq$ mò? | one feather |
    | 13 | tó- | tò $=$ gòk tứf bàn | two feathers |
    |  |  | tồ $\ddagger$ gòk tú $\ddagger$ nì? | four feathers |
    | 19 | Í- | íf gòk ífmò? | one sugarcane |
    | mo | mú- | mú $\ddagger$ gòk mó $\ddagger$ bàn | two sugarcanes |
    |  |  | múfgòk múfnì? | four sugarcanes |

    ### 2.3.3.1.1 Rounding harmony in pre-stem elements

    Rounding harmony targets $/ \mathrm{a} /$ and is triggered by the non-high (open) round vowels $/ \mathrm{s} /$ and $/ \mathrm{o} /$. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{\sigma} /$ never trigger rounding harmony. Only two noun-class prefixes, classes 2 and 6 , have an underlying /a/ and consistently undergo rounding harmony, see Example 82 below.

    Example 82: Rounding harmony of /a/in Yambeta noun-class prefixes

    | class | noun-class prefix | examples | gloss |
    | :---: | :---: | :---: | :---: |
    | 2 | pa- | pò $\neq 1 \mathrm{l}^{\mathrm{n}} \mathrm{d}$ ¢́k | deaf-mutes |
    |  |  | pò $\neq 1$ ºn ${ }^{\text {dók }}$ | sorcerers |
    |  |  | pà $=$ nòm | husbands |
    |  |  | pò $\neq \mathfrak{\text { ù }}$ | co-wives |
    | 6 | ma- | mò $⿻^{\mathrm{n}} \mathrm{d}$ ¢́n | problems, affairs |
    |  |  | mò $=$ ókìn | smoke |
    |  |  | màftờm | messages, commissions |
    |  |  | mə̀ftúk | nights |
    | 6 a | $\mathrm{a}(\mathrm{N})$ - | $\grave{\text { j }} \neq \mathrm{t}$ ¢́k | yams sp. |
    |  |  | ò $\neq \mathrm{kój}$ | plants, grass sp. |
    |  |  | à $=$ tớm | breasts |
    |  |  | òn $\neq 1$ ùp | beans |

    The reflexive prefix a- will also undergo rounding harmony as in Example 83. Examples with /o/ in the verb root were not found in the corpus; it is assumed that the gaps are accidental. In the example below, since the infinitive prefix and the vowel-initial reflexive prefix are in juxtaposition, the high back vowel of the infinitive is completely assimilated as described below in section 2.3.4.2.

    ## Example 83: Rounding harmony of Reflexive prefix in Yambeta

    |  | kò $\ddagger$ kòm-ìt | kò $\ddagger$ ó-kóm-ít-íl | scratch oneself |
    | :---: | :---: | :---: | :---: |
    |  | kòłtón-à | kà $\ddagger$ á-tóy-ií |  |
    | á- | --- | kə $\ddagger$ ə-pun-11 | hang oneself meet each other |

    Verbal pre-stem elements with /a/ undergo rounding harmony as well as ATR harmony.

    Example 84: Rounding harmony in Yambeta preverbal morphemes
    ̀̀jónònゝ̀ S/he laughed.
    c1.P1-laugh
    $\mathrm{m}^{\mathrm{wo}}$-sópò $\quad$ They (foods) were sweet.
    c.mu.P1-be sweet

    | j̀̀̀-ŋว̀ǹ̀ <br> c1.FT1-laugh | S/he will laugh. |
    | :---: | :---: |
    | $\mathrm{m}^{\mathrm{w}}$ - -sópò <br> c.mu.FT1-be sweet | They (foods) will be sweet. |
    | à-lìp j̀-ŋ̀̀̀ǹ̀ <br> c1-be PREP-laugh | S/he is laughing. |
    | mờ-lì? ò-sópò <br> c.mu-be PREP-be.sweet | They (foods) are sweet. |

    ### 2.3.3.2 Vowel harmony in suffixes

    Most verb and deverbal noun suffixes undergo vowel harmony. Yambeta, unlike all the other Mbam languages with ATR harmony, does not have dominant suffixes. Discussed in turn in sections 2.3.3.2.1 and 2.3.3.2.2 below are suffixes that undergo ATR harmony and rounding harmony.

    ### 2.3.3.2.1 ATR harmony in suffixes

    ATR harmony is triggered by a dominant vowel in the root and spreads bidirectionally. All [-ATR] vowels in the phonological word change into their [+ATR] counterpart. A few examples are shown in Example 85 below:

    Example 85: ATR harmony of Yambeta verbal suffixes
    

    |  | kù $\neq$ pún |  | break (TR) |
    | :--- | :--- | :--- | :--- | kù $\neq$ pún-ìk $\quad$ break (body part)

    The meaning of the suffix -in varies between lexemes. In certain instances, it has a reversive meaning, in others an applicative meaning and in yet others a reciprocal meaning. These lexical differences are illustrated in the examples above.

    The causative suffix in Yambeta is not dominant. Rather than triggering ATR harmony, it undergoes ATR harmony. The causative suffix is -I for [-ATR] verbs and $\mathbf{- i}$ for [+ATR] verbs as in Example 86 below.

    Example 86: Causative suffix -I/-i in Yambeta

    | kò $\ddagger$ sák | dry up | kò̇ sák-ì | cause to dry up |
    | :---: | :---: | :---: | :---: |
    | kù $\ddagger$ óm | be healed | kò̇úm-ì | heal someone |
    | kò $\ddagger$ lòl-ìt | catch fire | kò̇lılı-ít-ì | set on fire |
    | kù $\neq 1$ lim | be deep | kù $=1 i ́ m$-ì | deepen |
    | kùftı́ày | fall (v) | kù $\neq$ tóźy-ì ${ }^{79}$ | cause to fall |
    | kù=tùs | be dull | kù $=$ tùs-ì | make dull |

    Most deverbal nouns are formed by adding a noun-class prefix to the verb stem. Any verbal suffix found also undergoes ATR harmony, see Example 87 below.

    ## Example 87: Yambeta deverbal nouns

    | kò $\neq$ pán-à | harvest $(v)$ | nì $\neq$ pán-à | harvest $(n)$ |
    | :--- | :--- | :--- | :--- |
    | kù $\neq$ pùk | harvest groundnuts $(v)$ | nì $\neq$ pùk | groundnut harvest |
    | kù $\neq$ púàm | hunt $(v)$ | ùm $\neq$ púàm | hunter |
    | kò $\neq 1$ àm-ì | govern $(v)$ | òn $\neq$ tàm-ì | order, command |
    | kù $\neq$ lùn | be old $(v)$ | ù $\neq$ lùn | old person |

    A few deverbal nouns are formed by adding a noun-class prefix and an applicative suffix to the verb root. Any verbal suffixes present will undergo ATR and rounding harmony where applicable, as in Example 88.

    Example 88: Yambeta deverbal nouns with applicative suffix

    | kú $\neq$ kót-òn nurse, care for ù $\neq$ kót-òn-òn | nurse, caretaker |  |  |
    | :--- | :--- | :--- | :--- |
    | kò $\neq$ sj̀k | wash | j̀ $\neq$ sòk-ìn | purification rite |

    ### 2.3.3.2.2 Rounding harmony in suffixes

    Most verb extensions and inflectional suffixes with an /a/ undergo rounding harmony as well as ATR harmony. Like ATR harmony, rounding harmony is bidirectional. Rounding harmony is triggered only by non-high (open) round vowels. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{J} /$ do not trigger rounding harmony. A few examples are shown in Example 89 below:

    | Example 8 |  | ve | xes |
    | :---: | :---: | :---: | :---: |
    | short continuous | -a | kò $\ddagger$ sòj-ò | talk |
    |  |  | kù $=$ sóp-ò | be sweet, tasty |
    |  |  | kòłtớk-à | insult (v) |
    |  |  | kù $=$ tún-ə̀ | pound (v) |
    | long continuous | -an | kờtón-òn | call |
    |  |  | kùftóy-òn-òn | call one another |
    |  |  | kù $=$ sóp-òn | be sweet |
    |  |  | kùfnút-àn | support |
    |  |  | kù $\neq$ pút-ə̀n | trip, stumble |

    Front vowels are opaque to rounding harmony. Where a suffix or extension with a front vowel occurs, the rounding harmony will be blocked, see Example 90. Since there are no obligatory final vowels in the language, only a few examples were found in the corpus.

    Example 90: Opacity of Yambeta front vowels in rounding harmony
    kòfòp-ìn-à $\quad \operatorname{crush}$ (APPL)
    kùfkós-ín-̀̀ cough (CONT) kò $\neq$ ònd-ìn-̀̀ detach, release (APPL)

    ### 2.3.4 Hiatus-resolution processes

    There are several hiatus-resolution processes in Yambeta. These are glide formation (section 2.3.4.1), vowel assimilation (section 2.3.4.2), hiatus retention (section 2.3.4.3) and consonant insertion (section 2.3.4.4).

    ### 2.3.4.1 Glide formation

    Non-identical vowels in juxtaposition are not permitted across morpheme boundaries. Where $\mathrm{V}_{1} \mathrm{~V}_{2}$ sequences occur, a high vowel in $\mathrm{V}_{1}$ position becomes a glide. Glide formation occurs between a high vowel in the noun-class prefix and a vowel-initial noun root, as seen in Example 91 below:

    | Example 91: surface from | glide formation underlying form | ambeta <br> gloss |
    | :---: | :---: | :---: |
    | kijit | kì $\ddagger$ it | tree (generic) |
    | kižs | kì̇ós | tree sp. |
    | kiùj | kì $=\mathrm{u} j$ | maggot |
    | nios | nì $\neq$ ¢̀s | parrot |
    | niǒn | nìfón | bee |
    | nwit | nò $\ddagger$ ¢̀t | stake |
    | nwàs | nò $\ddagger$ às | chin |
    | pwis | pò̇òs | parrots |
    | p wǒn | pù $=$ ón | bees |

    ### 2.3.4.2 Vowel assimilation

    Between the infinitive prefix and a vowel-initial verb prefix or verb root, the high back vowel of the infinitive is completely assimilated as in Example 92.

    | Example 92: Vowel assimilation in Yambeta $\mathrm{CV} \neq \mathrm{VC}$ verbs |  |  |
    | :---: | :---: | :---: |
    | surface form | underlying form | gloss |
    | kî́p | kòfíp | steal |
    | kè̇́sà | kò\#ísà | scrape |
    | kàák | kù $\ddagger$ ák | put, place |
    | kòj̀p | kò $=$ ¢̀p | grind, crush |
    | kòòndìk | kò $\neq \grave{o l}^{\text {n }}$ d-ìk | wake up |
    | kòón | kòキún | kill |
    | kùút | kò $\ddagger$ út | bend, fold |
    | kàáwásćé | kòłá-wás-íl | comb oneself |
    | kว̀ábíáníí | kòキó-píán-íí | be born |

    ### 2.3.4.3 Hiatus retention

    Identical vowels in juxtaposition are permitted across morpheme boundaries. This is particularly evident between the noun-class prefix and the noun root. Where the vowels are either underlyingly identical or have identical surface realisations due to a vowel-harmony process, both vowels are retained. See Example 93.

    | Example 93: surface form | prefix-root hiatu underlying form | ntion gloss |
    | :---: | :---: | :---: |
    | nì̀s | nìłìs | eye |
    | pà̀̀n | pà $\neq$ ə̀n | strangers, visitors |
    | mààk | màfàk | years |
    | nò̀m | nò $\ddagger$ ¢̀m | river |
    | tùùt | tò $\neq$ ùt | pus |

    Within the noun or verb stem, a VV structure is permitted either between identical vowels or between a high $\mathrm{V}_{1}$ and any $\mathrm{V}_{2}$. According to Phillips (1979) these VV
    structures are considered disyllabic．The attested VV noun and verb roots are listed in Example 94.

    Example 94：VV structure in Yambeta noun and verb stems

    | VV | example | gloss |
    | :---: | :---: | :---: |
    | ii <br> is <br> io <br> iu | $\begin{aligned} & \begin{array}{l} \text { kì } \neq \mathrm{jiì} ? \\ \text { ùm } \neq \text { píàn } \\ \text { nù } \neq \text { sioon } \\ \text {---- } \end{array} \end{aligned}$ | pile（n） <br> nephew <br> goliath frog $\qquad$ |
    | $\begin{aligned} & \text { II } \\ & \text { Ia } \\ & \text { IV } \\ & \text { IU } \end{aligned}$ | ì $\neq 1$ ì̀ <br> nờ $\neq{ }^{n}$ wàsíà <br> pù $\neq f i \grave{̀} ク$ <br> ì $\neq$ lív̀t | fish $s p$ ． <br> grass sp．（used in widow rites） deformation of feet in＂$x$＂shape chicken＇s vent |
    | $\begin{aligned} & \text { әə } \\ & \text { aa } \\ & \text { э๐ } \\ & \text { oo } \end{aligned}$ | nì $=$ sà̀̀ní <br> $\grave{o} \neq$ fáàn <br> kì $\neq$ kóòn <br> －－－ | wake（for funeral） wing streak of dried tears $\qquad$ |
    | UI <br> ঠа <br> 00 <br> UU | òキtờìn pà $=$ fờàt －－－ kì $\neq k$ ùv̀？ | ear <br> diarrhea <br> hoof |
    | $\begin{aligned} & \text { ui } \\ & \text { uә } \\ & \text { uo } \\ & \text { uu } \\ & \hline \end{aligned}$ | kìłtúìn ùm $\neq$ púz̀m －－－ <br> kì＝tùùli？ | nut $s p$ ． <br> hunter <br> －－－ <br> brawl |
    | ii <br> iə <br> io <br> iu | kù $\neq n i ̂ 1 k$ <br> kù $\neq$ ní̀̀n－ə̀ <br> kù $=$ sìòt－ò <br> －－－ | dress（v） <br> ask <br> hop，skip |
    | $\begin{aligned} & \text { II } \\ & \text { Ia } \\ & \text { IO } \\ & \text { IV } \end{aligned}$ | kùłtuì̀s－à <br> kù $\ddagger$ síà <br> kò $\neq 1$ lín ${ }^{n}$ d－òn <br> －－－ | limp <br> bless <br> act timidly <br> －－－ |
    | $\begin{aligned} & \text { әə } \\ & \text { aa } \\ & \text { э๐ } \\ & \text { oo } \end{aligned}$ | kùftı́ə̀ク <br> kù $\neq w a ́ a ̀ k$ <br> kù $\neq m$ mós－ì <br> kù $=$ lòòt－ì | fall <br> build <br> rebraid（caus．） <br> show（caus．） |
    | UI <br> ひа <br> 00 <br> UU | kòキlòìk－ì <br> kò $\neq \mathrm{kúàn}$ <br> －－－ <br> －－－ | announce（caus．） marry <br> －－－ <br> －－－ |


    | VV | example | gloss |
    | :--- | :--- | :--- |
    | ui | kù $\neq$ sútı | pull |
    | uə | kù $\neq$ pùók | close |
    | uo | --- | --- |
    | uu | kù $\neq$ sùùl-ì | lower (caus.) |

    ### 2.3.4.4 Consonant insertion

    Vowel-initial class 5 nouns which have a plural in class $6 \mathrm{a}, \mathbf{a}(\mathbf{N})$-, insert a consonant between the nasal of the prefix and the vowel of the root. If the vowel is [-front], this consonant is [ g$]$ and the nasal is realised as a velar. If the vowel is [+front], then the inserted consonant is either [b] or $[\mathrm{g}]$. The few examples found in the corpus provide insufficient information to determine if there is a phonological basis for the insertion of [b] over [ g ] in the context of front vowels. The consonant $/ \mathrm{n} /$ does not seem adequate justification especially since [ g ] is inserted in the context of other alveolar consonants as in Example 95.

    Example 95: Consonant insertion between VN- and V-initial nouns

    | class 5 | $\begin{aligned} & \text { class 6a } \\ & \text { S.F. } \end{aligned}$ | U.F. | gloss |
    | :---: | :---: | :---: | :---: |
    | n ¢ $\ddagger$ út | ə̀ngút | àN\# $\ddagger$ út | nose |
    | n ¢ $\ddagger$ às | àngàs | àN\#às | twin |
    | nìtín | àmbín | àN $\#$ ¢́n | palm tree |
    | nìfìs | ว̀ngìs | àN\#¢ | eye |
    | ni $\ddagger$ ìn | àmbìn | àN\#¢ı | kola |
    | n ¢ $\ddagger \mathrm{in}$ | àngìn | àN $\ddagger$ ¢̀ | joint |

    ### 2.3.5 Tone

    Yambeta has a two-tone system underlyingly, high and low. Rising tones and falling tones occur only due to glide formation from syllable mergers. Surface tone is marked on the data in this study.

    ### 2.3.5.1 Tone melodies on nouns

    High and low tone contrast in monomorphemic noun roots. Two tone melodies are attested in CV and CVC noun roots. Four tone melodies are attested in CVV and CVCV(C) noun roots, see Example 96 below. Noun prefixes usually have a low tone, although there are a few exceptions.

    Example 96：Yambeta nominal tone melodies

    | ì $\neq$ pá | $\neq \mathrm{H}$ | side，flank |
    | :---: | :---: | :---: |
    | nò $\ddagger$ pà | $\neq \mathrm{L}$ | braid |
    | ì $\ddagger$ tám | $\neq \mathrm{H}$ | type of trap for small animals |
    | ìftàm | $\neq \mathrm{L}$ | hat |
    | mà $\neq$ náá | $\neq \mathrm{H}$ | sap |
    | kì $=$ sáà | $\neq \mathrm{HL}$ | tree sp． |
    | j̀ $\ddagger$ làà | $\neq \mathrm{L}$ | life |
    | j̀ $\ddagger$ sàá | $\neq$ LH | elder |
    | う̀ $\ddagger$ nóón | $\neq \mathrm{H}$ | laziness |
    | kì $\ddagger$ kóòn | $\neq \mathrm{HL}$ | trace of dried tears on face |
    | m $\neq$ pı̀̀̀n | $\neq \mathrm{L}$ | wild cat with grey spotted fur |
    | kì $=$ nı̀ók | $\neq$ LH | yam sp． |
    | kì $\ddagger$ jásáy | $\neq \mathrm{H}$ | corn cob |
    | kì\＃sásà？ | $\neq \mathrm{H}$ L | reprimand，rebuke |
    | nòf kàsà？ | $\neq$ L | kindling |
    | kìfjàsáy | $\neq$ L H | basket for conservation of dry goods |

    ## 2．3．5．2 Tone melodies on verbs

    Yambeta verb roots have three underlying tone melodies： $\mathrm{L}, \mathrm{LH}$ and H ．All suffixes are realised with a low tone except in LH verbs in which the first suffix after the verb root will have a H tone unless it is in word－final position．Verbs with a VV root and a H melody will have a surface realisation of HL if in word－final position．It is assumed that verbal suffixes are underlyingly toneless and the melody is a function of the verb root．The verbal tone melodies are illustrated in Example 97 below．

    ## Example 97：Yambeta verbal tone melodies

    | L | kò $\neq$ tàp | $\mathrm{L} \neq \mathrm{L}$ | be wet |
    | :---: | :---: | :---: | :---: |
    |  | kòキtàp－à | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}$ | be wet（CONT） |
    |  | kờtàp－ìn | L $\ddagger \mathrm{L}$－L | wet oneself |
    |  | kùキtàp－ì | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}$ | cause to be wet |
    |  | kò $=$ s ${ }^{\text {àk }}$ | $\mathrm{L} \neq \mathrm{L}$ | wash |
    |  | kò $=$ sòk－ìn | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}$ | wash（APPL） |
    |  | kò̇fsòk－ìn－à | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}-\mathrm{L}$ | wash（APPL／CONT） |


    | L．H | kù $=$ tiòl－ì | L $\ddagger \mathrm{L}-\mathrm{L}$ | be slippery |
    | :---: | :---: | :---: | :---: |
    |  | kùftiòl－1́k－ə̀n | $\mathrm{L} \neq \mathrm{L}-\mathrm{H}-\mathrm{L}$ | slip，slide |
    |  | kùftì̀l－ík－ə̀n－ì | L $\neq \mathrm{L}-\mathrm{H}-\mathrm{L}-\mathrm{L}$ | make slippery |
    | H | kù $\ddagger$ mús | $\mathrm{L} \neq \mathrm{H}$ | fold |
    |  | kù $\neq$ mús－̇̀ | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | fold（CONT） |
    |  | kù $=$ súìt | L $\neq \mathrm{HL}$ | pull |
    |  | kù $\neq$ súít－̀̀ | $\mathrm{L} \neq \mathrm{H} \mathrm{L}$ | pull（CONT） |
    |  | kò $\neq$ nán－ìn | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | carry |
    |  | kò $\neq$ nán－ìn－à | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}-\mathrm{L}$ | transport |
    |  | kùキnáy－ìn－ì | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}-\mathrm{L}$ | cause to carry |
    |  | kù t t́ày | $\mathrm{L} \neq \mathrm{HL}$ | fall |
    |  | kùキtóáy－ì | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | cause to fall，cut down |
    |  | kùftı́ə́y－⿰訁̀n－ì | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | cause to fall（CONT） |
    |  | kùftáán－ìn－ì | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}-\mathrm{L}$ | cause to fall（APPL） |

    In addition to providing lexical contrast，tone also has a grammatical function． Among other things，tone provides the crucial difference between various tenses in verb conjugations．This is，however，beyond the scope of this study．

    ## 2．4 Tuki phonological overview

    This study is based on Tutsingo，the reference dialect．It is based on personal research as well as previous research of several linguists and a wordlist published on the internet ${ }^{80}$ ．

    ## 2．4．1 Consonants

    This section discusses the consonant inventory of Tuki（section 2．4．1．1），the allophonic and allomorphic realisations of the consonant（section 2．4．1．2），and any distributional restrictions（section 2．4．1．3）．

    ## 2．4．1．1 Tuki consonant inventory

    The consonant system of Tuki consists of 25 contrastive consonants（Essono 1974， Kongne 2004）．

    Table 15: Tuki contrastive consonants

    |  |  | labial | alveolar | palatal | velar | labio-velar |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | stops | voiceless | p | t | tf | k | $\mathrm{kp}^{81}$ |
    |  | voiced | b | d | d 3 | g | $\mathrm{gb}^{82}$ |
    | prenasalised |  | ${ }^{\mathrm{mb}}$ | $\mathrm{n}_{\mathrm{d}}$ | ${ }^{n} \mathrm{~d} 3$ | ${ }^{\mathrm{ng}}$ | ${ }^{\mathrm{mm}} \mathrm{gb}$ |
    | fricatives |  |  | s |  | h |  |
    | resonants | nasal | m | n | n | n |  |
    |  | oral | $\beta$ | r | j |  | w |

    ### 2.4.1.2 Allophonic and allomorphic realisations

    The phoneme $/ \mathrm{h} /$ is realised as a palatal fricative [ç] in the environment of the vowel /i/, see Example 98.

    |  | 98: Allophon surface from | ion of $/ \mathrm{h} /$ in Tuki. underlying form | gloss |
    | :---: | :---: | :---: | :---: |
    | /i/ | $\neq$ çít-ə́ | $\neq$ hít-á | coil rope |
    | /I/ | $\neq$ hínd-á | $\neq$ hín ${ }^{\text {d }}$-á | arrange, repair |
    | /e/ | \#hว̀r-ə̀ | \#hòr-á | draw, design |
    | /a/ | $\neq$ háh-á | $\neq$ háh-á | build |
    | $10 /$ | \#hò-hòng-òr-ò | \#hò-hòng-ăr-ă | be ample |
    | 10 | $\neq$ hór-á | $\neq$ hơr-á | sweep |
    | /u/ | $\neq$ hún-ó | $\neq$ hún-á | blow |

    ### 2.4.1.2.1 Post-nasal hardening and nasal prefix elision

    Following gender $9 / 10$ nasal prefixes, fricatives and oral resonants are hardened. Post-nasal hardening also occur in cases of a nominalised verb taking a nasal prefix or in conjugated verbs with a 1 s subject concord prefix, $\mathbf{N} \neq$. Before voiced fricatives and oral resonants, the nasal prefix is maintained. The nasal prefix is elided before voiceless fricatives, as in Example 99 below.


    

    As with voiceless fricatives, nasal prefixes are also elided before voiceless stops. Example 100 below illustrates the elision of the nasal prefix before voiceless stops in verbs conjugated in the first person singular.

    | Example 100: Elision of nasal prefixes before voiceless stops in Tuki |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{N} \quad \rightarrow$ | $\varnothing$ | $\neq \mathrm{C}_{\text {--Voice] }}$ |  |  |
    |  | N |  |  |  |
    | Verb | gloss | conj. verb | underlyingly | gloss |
    | ò $\neq$ pát-á | pick (fruit) | pátámó | N $\neq$ pát-ámó | 1s-pick-PFV |
    | ò $\ddagger$ bìn-à | hate | m̀̀ìnàmó | Ǹ $\neq$ bìn-àmó | $1 s$-hate-PFV |
    | ò $\ddagger$ tóm-á | send | tómámó | Ǹ $\ddagger$ tóm-ámó | $1 s$-send-PFV |
    | ò $\ddagger$ dá ${ }^{\text {g }} \mathrm{g}-\mathrm{á}$ | disappear | ǹdá ${ }^{\text {g }}$ gámú | Ǹ $\neq$ dă ${ }^{\text {g }}$ g-ámó | $1 s$-disappearPFV |
    | ò $⿻^{\text {n }}$ dǎr-ò | spoil | ǹdǒrámó | Ǹ $\neq$ n d ¢̌r-àmó | $1 s$-spoil-PFV |
    | ù $\ddagger^{\text {n }}$ ḑàm-àn-à | be.afraid | ǹḑàmànà | Ǹ $\#^{\text {n }}$ ḑàm-àn-à | $1 s$-afraid-CONT |
    | ò $=$ kús-óm-à | cough | kúsómàmó | Ǹ $\ddagger$ kúsúm-àmó | 1s-cough-PFV |
    | ò $\neq$ kpá-á | incantation | kpáámó | Ǹ $\ddagger$ kpá-ámó | $1 s$-utter-PFV |
    | ò $\ddagger$ gòr-à | bite, crush | ỳgòràmú | Ǹ $\ddagger$ gòr -àm ${ }^{\text {cou }}$ | $1 s$-bite-PFV |

    ### 2.4.1.2.2 Failure of nasal-prefix elision

    Unlike $9 / 10$ homorganic nasals, $3 \mathrm{a} / 4 \mathrm{a}$ nasal prefixes are not "phonetically fused...with the following consonantal segment" (Maho: 1999: 59). While the "phonetically-fused" $9 / 10$ nasals will elide before a voiceless obstruent, the non-"phonetically-fused" 3a nasals do not. Consider the word pairs illustrated in Example 101.

    | Example 101: surface form | ferences i underlyin |  | nd 9 ho | nic nasal prefixes gloss |
    | :---: | :---: | :---: | :---: | :---: |
    | ற̣pómó | ற̣ı $=$ póm ${ }^{\text {a }}$ | $\rightarrow$ | òm-pómó | c3a.whitewash |
    | pánó | N\#pánı́ |  |  | c9.viper |
    | nìtfö̀mbú |  | $\rightarrow$ | òn $=$ sờmb-ó | c3a.hunt |
    | t ¢ómó | $\mathrm{N} \neq$ sóm-ó |  |  | c9.news, announcement |
    | ற̣̂kàná | ற̣̇キkàná | $\rightarrow$ | òn $\neq$ kàná | c3a.story, proverb |
    | káná | $\mathrm{N} \neq$ káná |  |  | c9.crab |

    The proto-Bantu proposed $3 / 4$ prefixes are $*$ mù- $/ *$ mì-, which could give rise to a process where the prefix vowel was elided between consonants. The remaining $/ \mathrm{m} /$ takes on the syllabicity and tone of the vowel, which then, in juxtaposition with the root consonant, assimilates to its point of articulation. This would be in keeping with Janssens' (1992-3: 90-92) hypothesis that the variation in the 3/4 prefixes (and others) comes from the proto-Bantu augment + noun class, *V-CV-. The loss of the prefix vowel in certain conditions is a fairly common occurrence. A further loss of the augment in other cases leaves only the nasal prefix.

    ### 2.4.1.3 Restrictions in consonant distribution

    Tuki has primarily open syllables; CV, V, and syllabic nasals. There are a few cases of syllables with a nasal coda, CVN. Voiced and voiceless stops contrast in both syllable onsets and intervocalically.

    ### 2.4.2 Vowels

    This section discusses the vowel inventory of Tuki, and the various vowel cooccurrences and co-occurrence restrictions (section 2.1.2.2). Unlike other Mbam languages, Tuki does not have devoiced vowels in utterance-final position.

    ### 2.4.2.1 Vowel inventory

    Tuki has an inventory of seven contrastive vowels with a predictable allophone $[0]^{83}$ which occurs in [+ATR] contexts. ATR and rounding harmony, as well as height dissimilation in the high vowels, regulate the co-occurrences and co-occurrence restrictions of the vowels. The vowels can be divided into two sets which are mutually exclusive within roots and stems:

    Table 16: Tuki contrastive vowels [-ATR]

    i | [+ATR] |
    | :--- |
    | $a^{85}$ |

    In the verb system, all seven contrastive vowels are attested in the verb root. The difference between $/ \mathrm{I} /$ and $/ \partial /$ is slight and many linguists make no distinction between them. However, in verbs, one is clearly [+ATR] and the other [-ATR].

    In many Mbam languages, rounding harmony is triggered by the non-high (open) round vowels $/ \mathrm{o} /$ and $/ \mathrm{\rho} /$ and targets the vowel $/ \mathrm{a} /$. The high round vowels, $/ \mathrm{u} /$ and $/ \mathrm{J} /$ do not trigger rounding harmony. In Tuki, the vowel written " $\mathbf{0}$ " does not trigger


    rounding harmony, while " $\mathbf{\rho}$ " does. As " $\mathbf{o}$ " is misinterpreted in many Mbam languages as a mid vowel, it is reasonable to conclude that in Tuki as well, it is underlyingly a [-ATR] high vowel $/ \mathrm{\sigma} /$.

    In the Tuki verb system, it is generally the root vowel that is dominant for either ATR and/or rounding harmony and causes the final vowel to assimilate, as shown in Example 102 below.

    | Exampl |  | tive vow | in | CVC verb |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | rt vowel | ATR | round | FV | example | gloss |
    | i | X | --- | -ə | $\neq$ hít-ó | coil (rope) |
    | I | --- | --- | -a | $\neq$ tít-á | draw (water) |
    | ə | X | --- | -ә | $\neq$ pót-ó | seal (door) |
    | a | --- | --- | -a | $\neq$ pát-á | pick (fruit) |
    | 0 | --- | x | - | $\neq$ sót-ó | dwell, inhabit |
    | U | --- | --- | -a | \#kót-á | dry (INTR) |
    | u | X | --- | -ә | $\neq$ sús-ó | ask, demand |

    In the noun system, six of the seven contrastive vowels are found in monomorphemic $\mathrm{CV}_{1} \mathrm{CV}_{1}$ roots, as in Example 103 below. The [+ATR] vowel / $/ 2$ is not found in $\mathrm{CV}_{1} \mathrm{CV}_{1}$ noun roots.

    | i | 3: Permitted vowels in Tuki $\mathrm{CV}_{1} \mathrm{CV}_{1}$ noun roots |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | ù $\neq$ gíní <br> ì $\neq$ kísí | firewood piece of meat | u | nù $\neq$ hùtú mò $=$ súsú | mongoose armpits |
    | $\mathrm{I}^{86}$ | ì $\neq$ tíkí wò $\neq$ rítí | peanut shell tree | v | ò $\ddagger$ kúsù <br> ì $\ddagger$ kòmó | baboon stump (tree) |
    | a | ì $\neq \beta$ ásá <br> ì $\neq$ támá | cloud <br> cheek | 0 | $\begin{aligned} & \mathrm{i} \neq \text { śśḱ } \\ & \mathrm{i} \neq \mathrm{t}^{\prime} \mathrm{n} \text { dó } \end{aligned}$ | quiver ( $n$ ) <br> navel |

    ### 2.4.2.2 Vowel co-occurrences

    Several factors govern the co-occurrences of vowels in CVCV nouns. These factors include 1) ATR-harmony restrictions, 2) restrictions on $\mathrm{V}_{2}$, depending on the features of $\mathrm{V}_{1}$, to either a front, round or open (non-high) vowel, and 3) nonidentical high vowels are generally prohibited in the stem. Each of these vowel cooccurrence restrictions will be discussed in turn in sections 2.4.2.2.1 and 2.4.2.2.2 below.


    ### 2.4.2.2.1 ATR-harmony restrictions

    ATR harmony requires that both vowels in the noun root agree in tongue-root position. The [-ATR] vowels never occur in the same root with [+ATR] vowels. The vowel /a/ is always [-ATR] and is never found in a [+ATR] environment. In Example 104 below, all ATR vowel co-occurrences in CVCV noun roots are shown. While [ o ] may occur in either $\mathrm{V}_{1}$ or $\mathrm{V}_{2}$ position in a noun root, it only occurs in the context of $/ \mathrm{i} /$. This will be discussed in greater detail below in the section below on $\mathrm{V}_{1} \mathrm{~V}_{2}$ co-occurrences.

    | Example 104: [-ATR] vowels |  | [+ATR] vowels |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | I-I | ì $\ddagger$ títí | bone | i-i | ù $\neq$ gíní | firewood |
    | I-a | ò $\neq$ tímá | heart | i-2 | màfsíṅ̀ | tears |
    | I-ठ/0 | ò $\neq$ nímó | fruit bat | i-u/o | kító | hair |
    | a-I | ò $\neq$ háhí | green mamba | ว-i | ì̀tótí | rooster |
    | a-a | ì $\neq$ pàná | hoof | ə-ə |  | rings |
    | a-ठ/o | ò̇ $\ddagger$ hánó | machete | ə-u/o | ì $\neq$ kòkú | cola nut |
    | U-I | $i$ ífwòki ${ }^{87}$ | melon | u-1 | ì $\neq$ sútí | peeling |
    | U-a | ì $\ddagger$ kòtá | ringworm | u-ə | ífkútà | fist |
    | U-ঠ/จ | ò¥ kútớ ${ }^{88}$ | wife, spouse | u-u/o | nùfhùtú | mongoose |
    | --I | ì $=$ sòsí | partridge |  |  |  |
    | --a | --- | --- |  |  |  |
    | --\%/ | ì $=$ sóks ${ }^{89}$ | quiver |  |  |  |

    ### 2.4.2.2.2 Other $\mathrm{V}_{2}$ co-occurrence restrictions

    Depending on the ATR value of $\mathrm{V}_{1}$ in $\mathrm{CV}_{1} \mathrm{CV}_{2}$ nouns, $\mathrm{V}_{2}$ is either a high, round or open (non-high) vowel. The high $\mathrm{V}_{2}$ is $/ \mathrm{I} /$ in [-ATR] noun roots or $/ \mathrm{i} /$ in [+ATR] noun roots. The round $\mathrm{V}_{2}$ is either [ $\mathrm{\sigma}$ ] or under certain conditions [ 0 ] in [-ATR] noun roots or [ u ] or under certain conditions [ o ] in [+ATR] roots. The open vowel is either $/ \mathrm{a} /$ in $[-\mathrm{ATR}]$ roots or $/ \partial /$ in [+ATR] roots, see Table 17 below.

    | Table 17: Value of $\mathbf{V}_{2}$ in Tuki CVCV noun roots |  |  |
    | :--- | :--- | :--- |
    | $\mathbf{V}_{2}$ in CVCV noun roots | [-ATR] | [+ATR] |
    | high | I | i |
    | round | $\mathrm{v}($ or $\rho)$ | u (or o) |
    | open | a | o |

    With the exception of $\mathbf{u - i}$, non-identical high vowels are not found in the same noun root, so $\boldsymbol{\sigma}-\mathbf{I}, \mathbf{I - \sigma}$ and $\mathbf{i}-\mathbf{u}$ are disallowed. Tuki resolves the co-occurrence of nonidentical high vowels in CVCV stems by height dissimilation, which generally lowers the high, back vowel. However, contrast is lost between $\boldsymbol{\sigma}-\mathbf{I}$ and $\boldsymbol{0}-\mathbf{I}$, if $/ \mathbf{\sigma} /$ is lowered to $/ \mathrm{\rho} /$, as occurs elsewhere (see Section 2.4.3.2 below for examples of height dissimilation in verb stems), so rather, $/_{\mathrm{I}} /$ is "raised" to $/ \mathrm{i}$ /, and its [+ATR] feature then spreads throughout the word. Both [ $v$ ] and [o] overlap in the same acoustic space, so while underlyingly, it is $\boldsymbol{\sigma}-\mathbf{I}$, its [+ATR] surface representation is realised as [o-i]. We therefore find the following possibilities, in Table 18:

    Table 18: Surface $\mathrm{CV}_{1} \mathbf{C V}_{2}$ combinations permitted in Tuki

    | V1/V2 | i (high) | ว (open) | u (round) | 1 (high) | a (open) | \%/9 (round) |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | i | i-i | i-ə | i-u ([i-o]) |  |  |  |
    | e | --i | จ-ə | ə-u |  |  |  |
    | u | u-i | u-e | $\mathrm{u}-\mathrm{u}$ |  |  |  |
    | I |  |  |  | I-I | I-a | I-U ([I-O]) |
    | a |  |  |  | a-I | a-a | a-d |
    | 0 |  |  |  | --I | ---90 | --0 |
    | U |  |  |  | U-I ([0-i]) | $\mathrm{o}-\mathrm{a}$ | --৩ |

    ### 2.4.3 Vowel-harmony processes

    Tuki has two types of vowel harmony, ATR and rounding harmony. In addition there is a height dissimilation that occurs with at least one suffix. Both types of vowel harmony cross morpheme boundaries within the phonological word.

    ### 2.4.3.1 Vowel harmony in pre-stem elements

    Tuki has a system of sixteen noun classes that combine into eight double-class genders, and two single-class genders. The following double-class genders occur: $1 / 2,3 / 4,3 \mathrm{a} / 4 \mathrm{a},{ }^{91} 5 / 6 \mathrm{a}, 7 / 8,9 / 10,11 / 13,14 / 6$, and $19 / \mathrm{mu}(18)$. The single-class genders are 6 and 3 , which is also the infinitive class prefix. A few examples of $3 / \mathrm{mu}, 3 / 6,3 / 8,5 / 6,5 / 8,11 / 6,11 / 6 \mathrm{a}, 14 / 8,14 / \mathrm{mu}(18)$ are also found in the data. The plural of class 19 noun is mo-. This noun class is considered in Guthrie (1971: 32)


    as extraneous and was not assigned a class number. Essono (1980) and Biloa (1997: 19-21) as well as others, label it as class 18 .
    class

    1 | prefixes |
    | :--- |
    | $\mathrm{mo-}$ |
    | $\mathrm{U-} / \mathrm{u}-$ |
    | 3 |

    Only ATR harmony occurs in Tuki prefixes. Noun-class prefixes fall into two categories, those that are unspecified for ATR, and which will assimilate to the ATR of the word, and those that are specified as either [+ATR], noun classes 5, 8 and 19, or as [-ATR], noun-class 1 prefixes a- and mo-, and noun class 2. Unlike Nen, prefixes specified for ATR are not dominant and do not trigger ATR harmony in the root. Noun classes 9 and 10 consist of a nasal prefix, and thus do not undergo vowel harmony. See Example 105 below. The vowel of the prefix either becomes a glide or elides before vowel-initial noun roots.

    Example 105: ATR harmony of Tuki noun-class prefixes

    | class | noun-class prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 1 | $v(\mathrm{y})$ - | òキnómótò | husband |
    |  |  | ù $\neq$ tún-ú | blacksmith |
    |  | a- ${ }^{93}$ (invariable) | à $=$ bòndà | parent |
    |  |  | à $=$ wùt-ə̀ | farmer |
    |  | mo- | mò̀tù | person |
    | 2 | $\beta \mathrm{a}$ - (invariable) | $\beta$ à $\ddagger$ nómótò | husbands |
    |  |  | $\beta$ à $\neq$ tún-ú | blacksmiths |
    |  |  | $\beta$ à $=$ wùt-ò | farmers |
    |  |  | $\beta$ à $\ddagger$ tò | persons |

    | class | noun-class prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 3 | $v(\mathrm{~N})^{94}$ - | òn $\ddagger$ gìní | hill |
    |  |  | òm $\ddagger$ bìnò | thigh |
    |  |  | ù $\neq$ gíní | firewood |
    |  |  | ùn $\neq$ d 3 írí | drought, famine |
    |  |  | ò̇ $\ddagger$ háhá | green mamba |
    |  |  | ùfhùwò | grass |
    | 4 | I(N)- | ìn $\neq$ gìní | hills |
    |  |  | ìm $=$ bìnò | thighs |
    |  |  | ì $=$ gíní | firewood (pl) |
    |  |  | ì $\neq$ háhá | green mambas |
    |  |  | ì hùwò | grasses |
    | 5 | i- ${ }^{95}$ (invariable) | ì $=$ bání | breast, teat |
    |  |  | ì $\neq$ bírá | oil palm |
    | 6a | $\mathrm{a}(\mathrm{N})^{96}$ - | àm $\neq$ bání | breasts, teats |
    |  |  | àm $=$ bíré | oil palms |
    | 6 | ma- | mà ¢tíjá | water |
    |  |  | mò $=$ síṅ̀ | tears |
    | 7 | I- | ì $\ddagger$ kóhí | shoulder |
    |  |  | ì $\neq$ tótí | rooster |
    | 8 | $\beta \mathrm{i}$ - (invariable) | $\beta$ ¢ì $\ddagger$ kóhí | shoulders |
    |  |  | $\beta$ ì̇tótí | roosters |
    | 11 | no- | nò $=$ wórá | rain |
    |  |  | nù $=$ hùtú | mongoose |
    | 13 | to- | tờ $=$ wórá | rains |
    |  |  | tùキhùtú | mongooses |
    | 14 | wo- | wù $\ddagger$ rítí | tree |
    |  |  | wù $\ddagger$ sí | day |

    | class | noun-class prefix <br> i- (invariable) | example <br> ì $\neq$ hórá <br> ì $\neq$ dsìjò | gloss <br> broom <br> fire |
    | :--- | :--- | :--- | :--- |
    | pl of | mo- | mò $\neq$ hórá <br> 19 | mù $\neq$ djìjò |

    Tuki noun class 3 is the infinitive class. Unlike with nouns, many speakers do not harmonise or only optionally harmonise the infinitive class prefix in the context of a [+ATR] vowel in the verb root, see Example 106. In addition, the further away the infinitive class prefix is from the dominant vowel triggering ATR harmony, the less likely it is to undergo ATR harmony.

    Example 106: Optional ATR harmony of [-ATR] high vowel of inf. NC3
    

    ```
 ò\not=kís-á crunch (v)
 ù\not=pát-\grave{ ~ ù flpót-á seal (door)}
 ̀̀#kàt-à judge (v)
 ̀̀\not=sót-́́ live, inhabit
 ̀̀\not=tút-á pick up, gather
 ò\not=sús-\partialे ~ ùfsús-\partiaĺ ask, request
    ```

    Other than the infinitive class prefix, the only other verb pre-stem element that undergoes vowel harmony is the reflexive prefix $\boldsymbol{\beta} \mathbf{a}^{-97}$, as in Example 107. As with the infinitive prefix, $\boldsymbol{\beta}$ á- optionally undergoes vowel harmony.

    ## Example 107: Optional ATR harmony of the reflexive prefix in Tuki

    | $\beta$ á- | ò- $\beta$ ółtíij-ó | embrace, hug |
    | :---: | :---: | :---: |
    |  | ò- $\beta$ á $\ddagger$ sírćá | tattoo (v) |
    |  | ò- $\beta$ áłt tóm-ìn-à | lie down, sleep |
    |  | ò-ßá $\neq$ rá $^{\dagger} \mathrm{g}$-à | prevent, refuse |
    |  | ò-ßá $\neq$ tór-ó | listen |
    |  | d̀- $\beta$ á $\ddagger=\mathrm{s}^{\prime \prime} \mathrm{g}$ g-á | choke |
    |  | ò- $\beta$ á¥hún-ว́ | blow (nose) |

    Like Nen, Tuki has [+ATR] numeral prefixes for noun classes 8 and 19, two of the three noun classes that have non-dominant [+ATR] prefix vowels.

    Tuki numeral prefixes in general are [-ATR], but do not undergo ATR harmony triggered by a [+ATR] numeral root. Only the numeral prefixes for noun classes 8 and 19 are [+ATR]. Numeral prefix 8 also is dominant and will trigger ATR harmony in the numeral roots $\neq \boldsymbol{\beta}$ ání two and $\neq$ iní four, although not in the other


    numerals. Similar to Nen, Tuki numbers three and five are [-ATR] but do not assimilate to the $[+\mathrm{ATR}]$ numeral prefix.

    Since the numeral root $\neq \mathbf{m}^{\text {w }}$ ̀sí one is already $[+\mathrm{ATR}]$, it is à priori not possible to determine whether the [+ATR] numeral prefix 19 is likewise dominant. However, we must assume this prefix is [+ATR] because numeral prefixes in Tuki do not undergo ATR harmony, and thus the class 19 numeral prefix does not get its [+ATR] from the numeral root. Both class 8 and 19 have clearly [+ATR] prefixes on the noun, although these do not trigger vowel harmony.

    ## Example 108: Tuki [+ATR] dominant numeral prefixes

    | class | numeral prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 1 | ঠ̀- |  | one person |
    | 2 | $\beta$ á- | $\beta$ à $\neq$ tò $\beta$ á $\# \beta$ ání | two people |
    |  |  | $\beta$ à $\ddagger$ tò $\beta$ á $⿻$ ání | four people |
    | 3 | Ú- | ò $\ddagger$ tímá ó $\ddagger$ mwòsí | one heart |
    | 4 | Í- | ì $=$ tímá 1 í $\neq$ ¢ání | two hearts |
    |  |  | ìłtímá í ífiní | four hearts |
    | 5 | nó- | $\mathrm{n} \neq$ ìsó nó $\ddagger \mathrm{m}$ wว̀sí | one eye |
    | 6a | á- |  | two eyes |
    |  |  | ว̀ $\mathrm{g} \neq \mathrm{ìsó}$ á $\ddagger$ ání | four eyes |
    | 7 | í- |  | one arrow |
    | 8 | $\beta$ íl |  | two arrows |
    |  |  | $\mathrm{b} \ddagger \neq \mathrm{ra}$ á $\boldsymbol{\beta} \mathbf{1} \neq$ tátó | three arrows |
    |  |  | bi̇łìrá $\boldsymbol{\beta} \mathbf{1} \neq \neq$ íní | four arrows |
    |  |  | $\mathrm{b} \neq$ Ìrá $\boldsymbol{\beta} \mathbf{1} \neq$ táánó | five arrows |
    | 11 | nó- |  | one leaf |
    | 13 | tú- | ${ }^{\text {w}} \neq$ àní ${ }^{\text {d }}$ tó $\neq \beta$ ání | two leaves |
    |  |  | tw $\ddagger$ àní tớ¥tátơ | three leaves |
    |  |  | ${ }^{\text {tw}} \neq$ àní ${ }^{\text {tw}} \neq$ íní | four leaves |
    |  |  | tw¥àní túキtáánó | five leaves |
    | 14 | wó- | wò $\neq$ rítí ${ }^{\text {wó }} \neq \mathrm{m}^{\text {w }}$ àsí | one tree |
    | 6 |  | mà $\neq$ rítí má $\neq \beta$ ání | two trees |
    | 19 | i- | $\mathrm{j} \neq \mathrm{a}:$ pánú $\mathbf{i} \neq \mathrm{m}^{\text {w}}$ ºsí | one knife |
    | mo | mo- | m $\neq$ ǎpánó mó $\quad$ mání | two knives |
    |  |  | $\mathrm{m}^{\mathrm{w}} \neq$ ǎpánớ $\mathrm{m}^{\text {w }} \neq$ íní | four knives |

    ### 2.4.3.2 Vowel harmony in suffixes

    Many verb suffixes undergo vowel harmony, but some block ATR harmony, and there are two that trigger ATR harmony. Discussed in turn below are suffixes that block and those that undergo ATR harmony, ATR-dominant suffixes -ij and -i, vowel height dissimilation in certain nominalising suffixes and rounding harmony in suffixes.

    ### 2.4.3.2.1 ATR harmony in suffixes

    ATR harmony is triggered by a dominant vowel, usually in the root, and spreads bidirectionally. Most [-ATR] vowels in the phonological word change into their [+ATR] counterpart. Certain suffixes like -an and -m block ATR harmony, and are bolded in Example 109 below.

    Example 109: ATR harmony of verbal suffixes in Tuki

    | diminutive | -It | ò- $\beta$ á $=$ sír-ìt-à <br> $\mathrm{u} \neq \mathrm{t} \rho^{\mathrm{g}} \mathrm{g} \mathrm{g}$-ít-̀े | sit down abandon |
    | :---: | :---: | :---: | :---: |
    | applicative | -In | $\begin{aligned} & \text { ò } \neq \text { tóm-ín-à } \\ & \text { ù } \neq \text { gún-ín-à } \end{aligned}$ | send drive away |
    | separative | -on | ù $\neq$ hát-ón-à <br> ù $\neq b$ ún $^{\eta} \mathrm{g}$-ún-̀̀ | subtract spill, knock over |
    | ?? | -om | ù $\ddagger$ kós-óm-à ù $\neq$ hว́r-úm-ə̀ | cough breathe |
    | stative | -Im | ò $\neq \beta$ ám-ím-à <br> ù $\neq k$ kós-ím-ə̀ | admit (to a wrong) <br> sneeze (v) |
    | continuous | -an | ò $\neq$ sór $r$-án-à <br> ò $\neq$ pìr-ìs-àn-à <br> ù $=$ wús-án-à <br>  | look at separate, divide urinate bend over |
    | reciprocal | -an | ò $\neq$ wòn ${ }^{\text {à }}$ <br> ò $\neq$ wòn-àn-à <br> $\mathrm{u} \neq \mathrm{di}{ }^{\mathrm{n}} \mathrm{g}$ - ${ }^{\text {a }}$ <br> ù $\neq \mathrm{din}^{\mathrm{n}} \mathrm{g}$-àn-à | kill <br> kill e.o. <br> love <br> love e.o. |

    Deverbal nouns are formed in various manners. One method is by adding the applicative suffix and a noun-class prefix to the verb root. The applicative suffix (bolded) in verbs is underlyingly [-ATR] and does not undergo ATR harmony, see Example 110.

    Example 110: Tuki deverbal nouns with applicative suffix

    | $\neq \mathrm{d}$ З${ }^{\text {àm }}$ b-̇̀ | know | $\mathrm{n} \neq$ djàm $^{\text {b }}$-ín-á | c9.knowledge, acquaintance |
    | :---: | :---: | :---: | :---: |
    | $\neq$ sit-à | spread, display | ì $\ddagger$ sit-ín-á | c7.display (n), place to spread |
    | $\neq \beta \mathrm{a}^{\text {n }}$ g-à | weep, cry | $\mathrm{m} \neq \mathrm{ba}{ }^{\text { }} \mathrm{g}$-ím-á | c9.for which one weeps |
    |  | copulate | mà ¢ ${ }^{\text {in }}$ g-ìn-à | c6.sexual relations |

    Deverbal nous are also formed by adding a nominalising suffix $-\boldsymbol{\sigma}$ as well as the noun-class prefix to the verb root, as in Example 111. The nominaliser is nondominant and undergoes ATR harmony.

    | Example 11 verb | minalising s gloss | vin Tuki deverbal noun | gloss |
    | :---: | :---: | :---: | :---: |
    | * bàr-à | hoe (v) | $\mathrm{m} \neq \mathrm{bàr}$-ó | c9.hoed land |
    | $\neq$ sùm ${ }^{\text {b }}$-ìj-z̀ | hunt (v) |  | c3b.hunt (n) |
    | \# hár-úm-ə̀ | breathe | ì $\neq$ hór-ú | c19.tuberculosis |
    | $\neq$ tún-ó | smithing | ù $\ddagger$ tún-ú | cl/2.blacksmith |
    | \#rùn-ó | become old | wù $\ddagger$ rùn-ú | c14.old age |

    Other deverbal nouns are formed simply by adding a noun-class prefix to a verb. Any verbal suffixes present will undergo ATR harmony with the exception of those suffixes which block ATR harmony, see Example 112.

    Example 112: Tuki deverbal nouns with only NC prefix.

    | $\neq$ tít-án-à | bury | ì $=$ tít-án-à | c5/6a.burial, funeral |
    | :---: | :---: | :---: | :---: |
    | \#táh-ân-à | invite | tóh-ân-à ${ }^{\text {8 }}$ | c9.invitation |
    | $\neq$ púmb-j-ź | make clean | $\mathrm{m} \neq \mathrm{pu}$ ú $^{\text {b }}$-án-á | c3b.cleanliness |
    | \# bǎr-àn-à | praise (v) | $\mathrm{m} \neq \mathrm{b}$ ว̌-àn-à | c9.eulogy, praise ( $n$ ) |
    | \#kàt-à | judge (v) | $\mathrm{y} \neq$ kàt-à | c3b.judgement |
    | $\neq w$ ¢́t-íj-ə́ | greet (v) | $\mathrm{m} \neq \mathrm{b}$ ¢́t-íj-ว́ | c9.greeting |
    | - $\beta$ áztór-ó | listen | m-bá $\ddagger$ tór-ó | c9.hearing |
    | $\neq$ sij-əे | saw (wood) | ì $=$ sijj-̀े | c19.saw(n) |
    | $\neq$ giji-ə̀ | support (v) | ì $\neq$ gíj-ə̀ | c7.support (n) |
    | \# kùs-ə̀ | buy | ๆ $=$ kùs-ə̀ | c3b.price |
    | $\neq$ bìn-à | hate (v) | ì $\neq$ bìn-á | c5.hatred |
    | $\neq$ djár-á | speak | $\mathrm{n} \neq$ ḑár -á | c9.speech, language |

    ### 2.4.3.2.2 ATR-dominant suffixes.

    Two suffixes, the [+ATR] causative -ij, and the [+ATR] nominaliser -i are dominant and trigger ATR harmony. ATR harmony is generally bidirectional and spreads from the causative suffix both to the root and to the final vowel. The agentive suffix, on the other hand, being at the right edge of the word, spreads only to the left, as seen in Example 113.

    Example 113: ATR Dominant suffixes in Tuki

    | caus. | -ij | \# sìs-̇̀ | land, lower | $\neq$ sìs-ìj-̇̀ | unload, lower smth |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\neq$ tír-ím-ìn-à | be stopped | \# tír-1́m-ìj-ə̀ | stop, correct |
    |  |  | $\neq$ pón-ó ${ }^{\text {99 }}$ | decorate | $\neq$ pón-íj-ə̀ | caus. to decorate |
    |  |  | $\neq$ hàt-ìn-à | rise up(INTR) | \# hòt-ìj-ə̀ | lift |
    |  |  | $\neq$ sót- ${ }^{\text {of }}$ | live, dwell | $\neq$ sót-1íj-ə̀ | save, caus. to live |
    |  |  | $\neq$ kót-á | dry(INTR) | $\neq$ kút-íj-̇̀ | caus. to dry, dry(TR) |
    |  |  | \# ${ }^{\text {duùm-ə̀ }}$ | be wet | $\neq$ ḑùm-ìj-ə̀ | soak |
    | nom. | -i | $\neq 1$ - ${ }^{\text {a }}$ | steal (v) | ùng $\neq$ úb-1 ${ }^{100}$ | cl.thief |
    |  |  | $\neq \mathrm{k} \mathrm{z}^{\text {s-ím-ə̀ }}$ | sneeze (v) | ì $\neq$ kós-í | c19.sneeze (n) |
    |  |  | $\neq h^{\text {j}}$-á | burn (INTR) | ì $\neq h^{\mathrm{j}}$-ón-ì | c7.burn (n) |
    |  |  | $\neq \mathrm{di}^{\mathrm{n}} \mathrm{g}$ - ${ }^{\text {a }}$ | love (v) | ì $\neq$ dìn-1́ | c5.love ( $n$ ) |
    |  |  | $\neq$ rùm-ə̀ | squeak (v) | $\mathrm{n} \neq$ dùr-ùm-ì | c9.squeak (n) |
    |  |  | $\neq$ sàr-à | split | ì $=$ sə̀r-ì | c7.crevice, part |

    ### 2.4.3.2.3 Height dissimilation in nominalising suffix - $\mathbf{u}$

    A type of height dissimilation occurs in Tuki. When the nominalising suffix - $\mathbf{\sigma}$ occurs in the environment of the high front vowels, its vowel is lowered depending on the ATR feature of the high vowel to either $/ \mathrm{o} / \mathrm{or} / \mathrm{o} /$, see Example 114.

    | Example 114: Height dissimilation in high front vowels in Tuki |  |  |  |
    | :---: | :---: | :---: | :---: |
    | \# sij -à | insult (v) | tfij-ó | c9.insult ( $n$ ) |
    | - $\beta$ áfosír-á | tattoo (v) | tfǐr-ó | c9.facial scar(s) |
    | \#rìm-àn-à | dream (v) | n ¢ dìm-5́ | c9.dream (n) |
    | \#sìm-à | curse (v) | tfîm-ò | c9.curse ( $n$ ) |
    | $\neq \mathrm{bín}$-ó | dance (v) | ì $=$ bín-ó | c7.dance, feast |
    | \#tìmb-̀̀ | hold (v) | ì $\ddagger$ tímb-ó | c7.walking stick |


    ### 2.4.3.2.4 Rounding harmony in suffixes

    The final vowel -a undergoes both rounding and ATR harmony, but the continuous suffix -an will only undergo rounding harmony. Rounding harmony is triggered only by non-high (open) round vowel $/ \omega /$. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{v} /$ (the latter often written as $\mathbf{o}$ in other studies) do not trigger rounding harmony. A few examples are shown in Example 115 below:

    Example 115: Rounding harmony of Tuki verbal suffixes

    | final vowel | -a | $\neq$ sós-ó | suck |
    | :--- | :--- | :--- | :--- |
    |  |  | $\neq$ sòk-ò | slander |
    |  |  | $\neq$ sòw-à | wash (TR) (items) |
    |  | $\neq k$ kút-á | dry |  |
    |  |  | $\neq$ sús-ó | ask, request |
    |  |  | $\neq k u ̀ s-\grave{~}$ | buy |

    Front vowels are opaque to rounding harmony. Where a suffix or extension with a front vowel occurs, rounding harmony is blocked, see Example 116.

    Example 116: Opacity of Tuki front vowels in rounding harmony

    | caus. | -ij | \# sót-1́j-ə̀ | save, caus. to live (from $\neq$ sót-ó dwell) |
    | :---: | :---: | :---: | :---: |
    |  |  | \#tòmb-ìj-̀̀ | appease, pacify ( from $\neq$ ̀ $^{m} b$-̀े calm oneself) |
    | dim. | -It | $\neq \mathrm{n}{ }^{\text {h }}$ g-ìt-à | fold |
    |  |  | $\neq$ nór-ít-à | twist |
    | $? ?^{101}$ | -ij | $\neq$ tós-íj-à | prepare (to do something) |
    | applicative | -In | $\mathrm{j} \neq \mathrm{j}^{\text {nd }}$-ín-à | c7/8.bride price |

    Nen and Maande both have a suffix -i neuter which may be a cognate of the Tuki suffix -1j.

    ## 2．4．4 Hiatus－resolution processes

    There are several hiatus－resolution processes found in Tuki．These are glide formation（section 2．4．4．1），desyllabification of high vowels（section 2．4．4．2），and vowel elision（section 2．4．4．3）．

    ## 2．4．4．1 Glide formation

    Non－identical vowels in juxtaposition are not permitted．Where $\mathrm{V}_{1} \mathrm{~V}_{2}$ sequences occur across morpheme boundaries，a high vowel in $\mathrm{V}_{1}$ position becomes a glide． Glide formation occurs principally between a high vowel in the noun－class prefix and a vowel－initial noun root，as seen in Example 117．Both juxtaposed vowels are retained if they are underlyingly identical．

    | Example 117 surface from | ot glide formation underlying form | gloss |
    | :---: | :---: | :---: |
    | $\mathrm{b}^{\text {win }}{ }^{\text {² }}$ gò |  | cl4．beeswax |
    | $\mathrm{b}^{\text {wil }}{ }^{\text {² }}$ dá | bò̇⿻肀二 ${ }^{\text {nd }}$ dá | cl4．liver |
    | biìbà | ßì $=$ ìbà | c8．pigeons |
    | nwèrı́ | nòłł̀rí | cll．rope，wire |
    | $b^{\text {jàn }}{ }^{\text {dioli }}$ | bì $\ddagger$ à ${ }^{\text {d }}$ dì | c8．houses |
    | n wà ${ }^{\text { }} \mathrm{g}$ ó | nò $=\mathrm{a}^{\text {n }} \mathrm{g}$ ó | c11．broom |
    | niòró | nì $\ddagger$ òró | c5．neck |
    | bwòró | bò̇キòró | c14．tree sp． |
    | biòrá | bì $=$ òrá | c8．skins（fruit） |
    | biùn ${ }^{\text {dù }}$ | bì $\ddagger$ ù ${ }^{\text {duy }}$ | c8．garbage dumps |

    ## 2．4．4．2 Desyllabification of high vowels

    The high vowels，$/ \mathrm{i} /$ ，$/ \mathrm{I} /$／$/ \mathrm{u} /$ and $/ \mathrm{v} /$ when they occur as noun－class prefixes before a vowel－initial root desyllabify as $/ \mathrm{j} /$ or $/ \mathrm{w} /$ even before an identical vowel in the root， as in Example 118.

    | Example 118： surface from | fication of high v underlying form | Is in Tuki． gloss |
    | :---: | :---: | :---: |
    | jìrá | ì $\ddagger$ ¢̀rá | c19．arrow |
    | jìbà | ì $\ddagger$ ìbà | c7．pigeon |
    | wìbá | òflib－á | inf．steal |
    | wùró | òキùr－ó | inf．come |
    | wòná | ò $\neq$ òn－á | inf．kill |
    | jà ${ }^{\text {n }}$ dì | ì $=\mathrm{a}^{\text {n }}$ d3ì | c7．house |
    | wàtá | òłàt－á | inf．shell（nuts） |
    | jòrá | ì $\ddagger$ òrá | c7．skin（fruit） |
    | jù ${ }^{\text {n }}$ ù | ì $\neq$ ù ${ }^{\text {du}}$ | c7．garbage dump |

    ### 2.4.4.3 Vowel elision

    In certain instances, especially in noun classes 2,5 and 6 , which have $V_{1} \neq V_{2}$ sequences across morpheme boundaries, the prefix vowel is elided. In Example 119, the elision of the prefix vowel is shown in contrast with glide formation and other hiatus-resolution processes.

    | Example 119: surface form |  | underlying form |  | in Tuki gloss |
    | :---: | :---: | :---: | :---: | :---: |
    | niòró | à $^{\text {g }}$ gòró | nì $=$ òrś |  | c5/6a.neck |
    | nìsó | $\partial^{\text {n }}$ gisó/ ${ }^{\text {n }}{ }^{\text {gis }}{ }^{102}$ | nì\#ı̀sú | à ${ }^{\text {g }}$ ¢ $\ddagger$ isú | c5/6a.eye |
    | nìjó | $\partial^{\text {n }}$ gijjó/a ${ }^{\text {º }}$ gìjó | nì̇ł̀jú | $\mathrm{a}^{\text {² }} \mathrm{g} \neq \mathrm{i} j \mathrm{ju}$ | c5/6a.tooth |
    | --- | màtéjá | --- | mà tı́já | c6.water |
    | --- | mìnó | --- | màfìnó | c6.blood |
    | $\mathrm{b}^{\text {wìndá }}$ | mìn ${ }^{\text {dá }}$ | bò $\neq \mathrm{l}^{\text {n }}$ dá | mà $\ddagger$ ì ${ }^{\text {dá }}$ | c14/6.liver(s) |
    | $\mathrm{b}^{\text {wòró }}$ | mòró | bùfòró | màfòró | c14/6.tree(s) sp. |
    | bùcù | mùrù | bờfùcù | màfùrù | c14/6.maternity |
    | òkútú | $\beta$ àkútơ | ò $\ddagger$ kótó | $\beta$ à $\ddagger$ kútơ | c1/2.woman(en) |
    | mwàná | $\beta$ ná | mò $\ddagger$ àná | $\beta$ à=àná | c1/2.child(ren) |
    | ù $^{\mathrm{g}} \mathrm{gìn}$ ń | $\beta$ ßiní | ù ${ }^{\text {g }} \neq \mathrm{ìní}$ | ßàłı̀ní | cl/2.visitor(s) |
    | nı̀̀ ${ }^{\text {dá }}$ | tìndó | nò̀ $\mathrm{i}^{\mathrm{n}} \mathrm{d}$ á | tò $\ddagger{ }^{\text {nd }}$ dó | c11/13.rib(s) |

    ### 2.4.5 Tone

    Tuki has two register tones, high and low, and two contour tones, rising and falling (Essono 1974: 12). Vowels with contour tones are perceived as fairly long, and should probably be considered bi-moraic (Essono 1980: 20). Surface tone is marked on the data in this study.

    ### 2.4.5.1 Tone melodies on nouns

    High and low tone contrast in monomorphemic noun roots. Four tone melodies are attested in both CV and CVCV noun roots, see Example 120 below. Noun prefixes usually have a low tone, although there are a few exceptions.

    100 The phonological systems of the Mbam languages

    | Example 120: Nominal tone melodies in Tuki |  |  |
    | :---: | :---: | :---: |
    | ì $\ddagger$ kò | $\neq \mathrm{L}$ | c7.copper |
    | ì $\ddagger$ g ${ }_{\text {c }}$ | $\neq$ LH | c5.elephant grass |
    | màftú | $\neq \mathrm{H}$ | c6.ashes |
    | $\mathrm{i} \neq \mathrm{s} \hat{0}$ | $\neq \mathrm{HL}^{103}$ | c7.quinqueliba (type of grain) |
    | ì $\ddagger$ kı̀kı̀ | $\neq \mathrm{L}$ | c19.instant ( $n$ ) |
    | ìキkòró | $\neq$ L. H | c19.jealousy |
    | ìキkóró | $\neq \mathrm{H}$ | c19.maize |
    | ì $\neq \mathrm{k}$ nd $^{\text {d }}$ ¢ | $\neq$ H.L | c7.plantain |

    In addition, three other noun-root melodies are minimally attested in the corpus: LH.L, HL.L and HL.H, as in Example 121.

    Example 121: Additional nominal melodies in Tuki.
    

    ### 2.4.5.2 Tone melodies on verbs

    Four tone melodies are attested in Tuki verbs. There is, however, a neutralisation of contrast between H and HL melodies in CVC-V verb stems.

    When a verb suffix is added, however, the distinction between H and HL melodies becomes apparent. In verbs with a H melody, the H tone spreads one slot onto the suffix. In verbs with a HL melody, the $L$ is unattached in verb stems with only a final vowel (with a surface representation identical to verbs with a H melody), but docks to a suffix when present. The H tone still spreads one vowel to the right and causes a falling tone on the suffix. The final vowel is always realised with a low tone when a suffix is present. This is illustrated in Example 122 below, along with all four verb melodies.

    | Example 122: Verbal tone melodies in Tuki |  |  |  |
    | :---: | :---: | :---: | :---: |
    | L | ù $\ddagger$ bì ${ }^{\text {n }}$ d-à | $\mathrm{L} \neq \mathrm{L}$-L | close (door) |
    |  | ù $\ddagger$ bì ${ }^{\text {n }}$ d-ìn-à | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}-\mathrm{L}$ | close (door) |
    |  | òf | $\mathrm{L} \neq \mathrm{L}$-L | be long |
    |  | ù $\neq$ ròh-ìj-ə̀ | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}-\mathrm{L}$ | make long |
    |  |  | $\mathrm{L} \neq \mathrm{L}$-L | visit traps |
    |  |  | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}-\mathrm{L}$ | visit traps (ITER) |
    | LH | ò $\ddagger$ jǒ-̇̀ | L $\ddagger$ LH -L | learn |
    |  | ò $\ddagger$ jǒr-ìt-à | L $\neq$ LH -L -L | learn a little |
    |  | ò $\neq$ gǔr-ว̀ | L $\neq$ LH -L | rub |
    |  | ò $\neq$ gǔr-itt-à | L $\neq$ LH -L -L | rub a little |
    | H | ù $\neq$ núb-ó | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}$ | hit, palpitate |
    |  | ù $\neq$ núb-át-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}-\mathrm{L}$ | hit, strike |
    |  | ò $\ddagger$ kút-á | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}$ | $d r y$ |
    |  | ò $\neq \mathrm{k}$ ¢́t-án-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}-\mathrm{L}$ | dry up |
    |  | ù $\neq$ pán-á | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}$ | design, paint |
    |  | ù $\neq$ pón-íj-̀े | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}-\mathrm{L}$ | cause to paint |
    | HL | ò $\neq$ wơt-á | L $\neq \mathrm{H}-\mathrm{H}$ | pack, attach |
    |  | ò $\neq$ wơt-în-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{HL}-\mathrm{L}$ | attach, fasten, bind |
    |  | ò $\neq$ mám-á | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}$ | mix, clasp, unite |
    |  | ̀̀ $\neq$ mám-în-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{HL}-\mathrm{L}$ | clasp (to protect) |
    |  | $\grave{v} \neq w$ ćn $^{\text {d }}$ d 3 -á | $\mathrm{L} \neq \mathrm{H}-\mathrm{H}$ | gather, heap up |
    |  | ò $=$ wớnd 3 -în-à | $\mathrm{L} \neq \mathrm{H}-\mathrm{HL}-\mathrm{L}$ | gather, heap up (APPL) |

    Vowel-initial verb stems also attest all four verb melodies, but the surface representation is different due to the spread to the right of the $L$ of the infinitive prefix.

    | Example 123: Melodies of Tuki $\neq \mathrm{VC}$ verb roots |  |  |  |
    | :---: | :---: | :---: | :---: |
    | L | w $=$ àk-à | $\neq \mathrm{L}-\mathrm{L}$ | help (v) |
    |  | w $\ddagger$ àk-àn-à | $\neq$ L -L -L | help each other (v) |
    | LH | w $\ddagger$ ¢̌t-úr-̇̀ | $\neq$ LH -H -L | drag |
    |  | wキǒt-úr-ìt-à | $\neq$ LH - H -L -L | drag (DIM) |
    | H | w $=$ ùr- ${ }^{\text {a }}$ | $\neq$ L - H | come |
    |  | w $=$ ùr-ík-ìj- | $\neq$ L - $\mathrm{H}-\mathrm{L}-\mathrm{L}$ | leave, depart |
    |  | w $=$ àt-á | $\neq \mathrm{L}-\mathrm{H}$ | shell (peanuts) |
    |  | w $\neq$ àt-ít-à | $\neq \mathrm{L}-\mathrm{H}-\mathrm{L}$ | shell (DIM) |
    | HL | w $\ddagger$ ò̀w-á | $\neq$ L - H | hear |
    |  | wキòw-ân-à | $\neq$ L -HL -L | agree |

    102 The phonological systems of the Mbam languages

    The reflexive prefix is $\boldsymbol{\beta}$ á-. The H tone of the prefix spreads one place to the right. The rightward spread of the reflexive high tone affects low and LH melody verbs only.

    ## Example 124: Reflexive prefix in Tuki

    | L | $\begin{aligned} & \neq \mathrm{dùm}-\grave{̀} \\ & \neq \mathrm{di}^{\eta} \mathrm{g}-\grave{\partial} \end{aligned}$ | strike with force love | $\begin{aligned} & -\beta \partial ́ \neq \mathrm{dúm}-\grave{\partial} \\ & -\beta \hat{\neq} \mathrm{d} 1^{1} \mathrm{~g} \mathrm{~g}-\grave{2} \end{aligned}$ | strike oneself with force love oneself |
    | :---: | :---: | :---: | :---: | :---: |
    | LH | $\not{ }^{\text {n }}$ d${ }^{\text {ăr }}$-̀̀ | spoil | -ßá ${ }^{\text {n }}$ dór-ə̀ | spoil oneself |
    |  | \#jŏr-ə̀ | learn | - $\beta$ á $\ddagger$ jór-ə̀ | teach oneself |
    | H | $\neq$ gún-ó | chase | - $\beta$ á $\ddagger$ gún- ${ }^{\text {a }}$ | chase oneself |
    |  | \# woút-á | attach | - $\beta$ á $=$ wót-á | attach oneself |
    |  | \#tíh-íj-ə̀ | teach, show | - $\beta$ àftíh-íj-ə̀ | boast, brag |
    | HL | ò $\neq \mathrm{bíc}$-ân-à | call | ò-ßáキbíc-ân-à | call |

    In addition to providing lexical contrast, tone also has a grammatical function. Among other things, tone provides the crucial difference between various tenses in verb conjugations. This is, however, beyond the scope of this study.

    ### 2.5 Gunu phonological overview

    This study is based on Gunu Nord, the reference dialect. It is based on personal research as well as previous research of several linguists and a wordlist published on the internet ${ }^{104}$.

    ### 2.5.1 Consonants

    This section discusses the consonant inventory of Gunu (section 2.5.1.1), and consonant distribution restrictions (section 2.5.1.2).

    ### 2.5.1.1 Consonant inventory

    The consonant system of Gunu consists of 23 contrastive consonants

    Table 19: Gunu contrastive consonants

    | stops |  | labial | alveolar | palatal | velar |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | voiceless | p | t | t 5 | k |
    |  | voiced | b | d |  | g |
    | prenasalised | voiceless | ${ }^{\text {m }} \mathrm{p}$ | ${ }^{n} \mathrm{t}$ | ${ }^{n}$ t $\int$ | ${ }^{\text {² }}$ |
    |  | voiced | mb | ${ }^{\text {n }}$ d |  | ${ }^{\text {g }}$ |
    | fricatives resonants | voiceless | f | s |  | h |
    |  | nasal | m | n | n | 1 |
    |  | oral |  | 1 | j |  |

    ### 2.5.1.2 Restrictions in consonant distribution

    Gunu has only open syllables; CV, V, and syllabic nasals. Voiced and voiceless stops contrast in both syllable onsets and intervocalically with the exception of $\mathbf{v k}$ which hasn't been found in initial position.

    ### 2.5.2 Vowels

    This section discusses the vowel inventory of Gunu (section 2.5.2.1), and the various vowel co-occurrences and co-occurrence restrictions (section 2.5.2.2). Unlike other Mbam languages, Gunu does not have devoiced vowels in utterance-final position.

    ### 2.5.2.1 Vowel inventory

    Gunu has an inventory of eight contrastive vowels. A complex system of vowel harmony regulates the co-occurrences and co-occurrence restrictions of the vowels. The vowels can be divided into two sets which are mutually exclusive within roots and stems:

    Table 20: Gunu contrastive vowels

    | 105 | $[-A T R]$ |  |  | $[+$ ATR $]$ |
    | :--- | :--- | :--- | :--- | :--- |
    |  |  | i |  | $u$ |
    |  | 0 | $e^{106}$ |  | 0 |

    All eight contrastive vowels are attested in the verb root. While the distinction between $/ \mathrm{o} /$ and $/ \mathrm{\sigma} /$ is slight, this distinction is emphasised by rounding harmony. Rounding harmony is triggered by non-high (open) round vowels and targets the final vowel $/-\mathrm{a} /$. High round vowels, $/ \mathrm{u} /$ and $/ \mathrm{v} /$ do not trigger rounding harmony. In


    the Gunu verb system, the root vowel generally determines the changes in the final vowel according to ATR and/or rounding harmony, as shown in Example 125 below.

    | Example |  | ve vo | in | CVC verb |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | rt vowel | AT | round | FV | example | gloss |
    | i | X | --- | -e | \#dím-è | dig |
    | I | --- | --- | -a | $\neq$ dìn-à | pound |
    | e | X | --- | -e | \#déb-è | flow, pour |
    | a | --- | --- | -a | $\neq$ dámb-à | trap |
    | $\bigcirc$ | --- | x | - | $\neq \mathrm{d}{ }^{\text {mb }} \mathrm{b}$-うे | stop, cease |
    | o | x | x | -0 | \#kón-ò | remain uncooked |
    | U | --- | --- | -a | $\neq$ dúmb-à | pass, transgress |
    | u | x | --- | -e | $\neq$ sùg-è | pull up |

    In the noun system, only seven contrastive vowels are found in monomorphemic $\mathrm{CV}_{1} \mathrm{CV}_{1}$ roots, as in Example 126 below. The [-ATR] vowel $\boldsymbol{\sigma}$ is not found in $\mathrm{CV}_{1} \mathrm{CV}_{1}$ noun roots.

    Example 126: Permitted vowels in Gunu $\mathrm{CV}_{1} \mathrm{CV}_{1}$ noun roots

    | i | $\begin{aligned} & \text { ùn } \neq \mathrm{t} \text { fílì } \\ & \mathrm{m} \neq \text { bìmì } \end{aligned}$ | time of famine cadaver | I | $\begin{aligned} & \text { ঠ̀ } \neq \text { fínì } \\ & \text { ì } \neq \text { bìgì } \end{aligned}$ | handle (ax) calabash (water) |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | e | $\begin{aligned} & \mathrm{y} \neq \text { gélé } \\ & \text { nì } \neq \text { hèné } \end{aligned}$ | poison (for fish) tree sp. | a | gí $=$ nà ${ }^{n}$ tá <br> nò $\neq$ básá | cricket $s p$. old machete |
    | O | $\begin{aligned} & \text { bù } \neq \text { gónó } \\ & \text { ì } \neq \text { lón}^{\mathrm{n}} \text { t } \int \mathrm{o} \end{aligned}$ | tree sp. <br> sparrow sp. | 0 | $\begin{aligned} & \text { ỳ } \neq \text { gòsò } \\ & \text { gì } \neq 1 \text { j̀ṕ } \end{aligned}$ | grey parrot termite sp. |
    | u | $\begin{aligned} & \text { gì } \neq l u ́ y u ̀ ~ \\ & \text { gì } \neq{ }^{\mathrm{n}} \mathrm{t} \int \text { úyú } \end{aligned}$ | yam sp. <br> basket (groundnuts) | U | --- | --- |

    ### 2.5.2.2 Vowel co-occurrences

    Several factors govern the co-occurrences of vowels in CVCV nouns. These factors include 1) ATR-harmony restrictions and 2) restrictions on $V_{2}$, depending on the features of $\mathrm{V}_{1}$, to either a front, round or open (non-high) vowel. Each of these vowel co-occurrence restrictions will be discussed in turn in sections 2.5.2.2.1 and 2.5.2.2.2 below.

    ### 2.5.2.2.1 ATR-harmony restrictions

    ATR harmony requires that both vowels in the noun root agree in tongue-root position. The [-ATR] vowels never occur in the same root with [+ATR] vowels. The vowel /a/ is always [-ATR] and never found in a [+ATR] environment. In Example 127 below, all ATR vowel co-occurrences in CVCV noun roots are shown. An unexplained gap, the lack of $v-v$ co-occurrence is highlighted.

    | Example 127: ATR vowel co-occurrences in Gunu CVCV noun roots[-ATR] vowels[+ATR] vowels |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | I-I | gì $\ddagger$ dì ${ }^{\text {n }}$ dí | palm tree | i-i | ǹ $\ddagger$ t ílì $^{\text {l }}$ | edible termite sp. |
    | I-a | ò $\neq$ dímá | heart | i-e | gìf bílè | palm nut regime |
    | I-O | mò $\neq$ gíbò | wine | i-o | ù $\neq$ gídó | tuft of grass |
    | I-U | --- | --- | i-u | --- | --- |
    | a-I | ì $\neq$ dání | stone | e-i | gìłlè̀nì | embankment |
    | a-a | gìfbàlà | road | e-e | ỳ $\neq$ gélé | type of poison (for fish) |
    | a-o | --- | --- | e-o | --- | --- |
    | a-v | gìfsàmó | fruit | e-u | ù $=$ kèlú | voice, throat |
    | 0-I | ǹ $=$ dónì | antelope | o-i | ì $=$ nòní | bird |
    | --a | --- | --- | o-e | --- | --- |
    | 0-0 | ì $\ddagger$ dò̀ı̀ | flea | O-O | u\#hóló | tree $s p$. |
    | $\bigcirc$-Ј | --- | --- | o-u | --- | --- |
    | ט-६ | dò $\ddagger$ lò̀ ${ }^{\text {nt }}$ fí | insect $s p$. | u-i | gì $\ddagger$ gúlí | time, hour |
    | ט-a | nò $\ddagger$ búlá | rain | u-e | ífjùkè | fire |
    | ర-0 | --- | --- | u-o | --- | --- |
    | ט-ঠ | --- | --- | u-u | gì $\neq n t \int u ́ \eta u ́$ | basket for groundnuts |

    ### 2.5.2.2.2 Other $\mathrm{V}_{\mathbf{2}}$ co-occurrence restrictions

    In CVCV noun roots, $\mathrm{V}_{2}$ is either a high, round or open (non-high) vowel. The high $\mathrm{V}_{2}$ is $/ \mathrm{I} /$ (which has a surface representation [ $\varepsilon$ ]) in [-ATR] noun roots or $/ \mathrm{i} /$ in [+ATR] noun roots. The round $\mathrm{V}_{2}$ is / $/ /$ with a surface representation [0] in [-ATR] noun roots or $[\mathrm{u}]$ or [ o ] in [ +ATR ] roots. Round $\mathrm{V}_{2}$ vowels cannot be of the same height as the $\mathrm{V}_{1}$ unless identical to $\mathrm{V}_{1}$. The open vowel is either /a/ in [-ATR] roots or /e/ in [+ATR] roots, see Table 21 below.

    | Table 21: Value of $\mathbf{V}_{2}$ in Gunu CVCV noun roots |  |  |
    | :--- | :--- | :--- |
    | $\mathbf{V}_{2}$ in CVCV noun roots | [-ATR] | [+ATR] |
    | high | I | i |
    | round | U | u or o |
    | open | a | e |

    In [+ATR] noun roots, non-identical mid vowels are not found in the same root, so o-e is disallowed. We therefore find the following possibilities:

    106 The phonological systems of the Mbam languages

    Table 22: Surface $\mathrm{CV}_{1} \mathbf{C V}_{2}$ combinations permitted in Gunu

    | $\mathrm{V}_{1} \mathrm{~V}_{2}$ | high | round | open |
    | :---: | :---: | :---: | :---: |
    | /i/ | i-i | i-o | 1-e |
    | /I/ | I-I | I-0 | I-a |
    | /u/ | u-i | u-u | u-e |
    | /0/ | U-I | --- | U-a |
    | /o/ | o-i | 0-0 | --- |
    | /2/ | --1 | --0 | --- |
    | /e/ | e-i | e-u | e-e |
    | /a/ | a-I | a-o | a-a |

    ### 2.5.3 Vowel-harmony processes

    Gunu has a complex system of vowel harmony consisting of two interacting types of harmony: ATR and rounding harmony. Although rounding harmony does not operate in vowel co-occurrence restrictions in roots, both types of vowel harmony cross morpheme boundaries within the phonological word.

    ### 2.5.3.1 Pre-stem elements

    Both nominal and verbal pre-stem elements undergo vowel harmony in Gunu. These are ATR harmony and rounding harmony discussed in turn below.

    ### 2.5.3.1.1 ATR harmony in pre-stem elements

    Gunu has a system of eighteen noun classes that combine into nine double-class genders, and three single-class genders.

    The following double-class genders occur: $1 / 2,3 / 4,3 / 6 \mathrm{a}, 5 / 6 \mathrm{a}, 7 / 8,9 / 10,11 / 13,14 / 6$, and $19 / \mathrm{mu}$. The single-class genders are 6,15 and 16 .

    | class | prefixes |  | class | prefixes |
    | :---: | :---: | :---: | :---: | :---: |
    | 1 | mo- |  | 2 | ba- |
    | 3 | $\begin{aligned} & v-/ \mathrm{u}- \\ & \mathrm{v}(\mathrm{~m})-/ \mathrm{u}(\mathrm{~m})- \end{aligned}$ |  | 4 | I(m)- / i(m)- |
    | 5 | $\mathrm{I}^{-} / \mathrm{i}-$ | - | 6a | $\mathrm{a}(\mathrm{m})-/ \mathrm{e}(\mathrm{m})-$ |
    | 5a | ni- / ni- |  |  |  |
    | 7 | gi- / gi- |  | 8 | bi- / bi- |
    | 9 | N - |  | 10 | N - |
    | 11 | no- / nu- |  | 13 | do- / du- |
    | 14 | bo- / bu- |  | 6 | ma- / me- |
    | 19 | I- / i- |  | mo- | mo- / mu- |
    |  | hi- / hi- |  |  |  |

    Noun-class prefixes are underlyingly [-ATR] but have a [+ATR] counterpart when preceding a [+ATR] noun root. Classes 9 and 10 consist of a nasal prefix. All nounclass prefixes with a vowel undergo ATR harmony, as shown in Example 128.

    Example 128: ATR harmony of Gunu noun-class prefixes

    | class | noun-class prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 1 | $\delta(\mathrm{m})-{ }^{107}$ | ટ̀ $\ddagger$ kódò | woman |
    |  |  | ঠ̀ $\neq$ gónó | elder |
    |  |  | ùm $\neq$ biénì | nephew |
    |  |  | ù $\neq$ gúlè | friend |


    |  | mo- ${ }^{108}$ | $\begin{aligned} & \text { mò }=\text { ónó } \\ & \text { mòキtó } \end{aligned}$ | child person |
    | :---: | :---: | :---: | :---: |
    | 2 | ba- | bà=kódò | women |
    |  |  | bà $=$ áná | children |
    |  |  | bà $\ddagger$ gónó | elders |
    |  |  | bè̇キbiénì | nephews |
    |  |  | bè $\ddagger$ gúlè | friends |
    | 3 | $v(\mathrm{~m})-$ | ò $\ddagger$ dím ${ }^{\text {a }}$ | heart |
    |  |  | òm $\ddagger$ bógò | hand |
    |  |  | ù $=$ kúmbè | feather |


    | 4 | I(m)- | ì $\ddagger$ dímá | hearts |
    | :---: | :---: | :---: | :---: |
    |  |  | ìm\#bógò | hands |
    |  |  | ì $\ddagger$ kú ${ }^{\text {mbè }}$ | feathers |
    |  |  | ì $\neq$ fínò | names |
    | 5 | I- | ì $=$ dání | stone |
    |  |  | ì $=$ bílè | oil palm |
    |  | nI- | nì $=$ bánà | place to defecate |
    |  |  | nìf hèyé | tree sp. |
    | 6a | $\mathrm{a}(\mathrm{m})$ - | à $\neq$ dání | stones |
    |  |  | àm $=$ bánıà | places to defecate |
    |  |  | èm= $=$ bílè | oil palms |
    |  |  | è $\ddagger$ hèné | trees sp. |

    108 The phonological systems of the Mbam languages

    | class | noun-class prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 6 | ma- | mà $=$ sáyà | yams sp. |
    |  |  | mè $\ddagger$ gúdé | fat, oil |
    |  |  | mè $\ddagger$ dúgú | nights |
    | 7 | gI- | gì $\ddagger$ dò ${ }^{\text {a }}$ | village, country |
    |  |  | gì j jèlí | worm |
    | 8 | bI- | bì $\ddagger$ dò ${ }^{\text {à }}$ | villages, countries |
    |  |  | bì $\ddagger$ jèlí | worms |
    | 11 | no- | nò $\ddagger$ bólá | rain |
    |  |  | nù $\neq$ fè̀ ${ }^{\text {dù }}$ | ravine |
    | 13 | do- | dờ $\ddagger$ búlá | rains |
    |  |  | dù $\neq \mathrm{fè}{ }^{\text {n }}$ dù | ravines |
    | 14 | bu- | bò $=$ sáyà | yam sp. |
    |  |  | bù $\ddagger$ dúgú | night |
    | 15 | go- | gù $\ddagger$ súgà | poverty |
    |  |  | gù $\ddagger$ bélì̀ | day before/after |
    | 16 | ho- | hờfúmà | place |
    |  |  | --- | --- |
    | 19 | I- | ì $=$ sólá | hoe |
    |  |  | ì $=$ nòní | bird |
    | $\begin{aligned} & \mathrm{pl} \text { of } \\ & 19 \end{aligned}$ | mo- | mò $\ddagger$ sólá | hoes |
    |  |  | mù $=$ nòní | birds |

    Numeral prefixes in Gunu are underlyingly [-ATR] and undergoes ATR harmony.
    There are no [+ATR] numeral prefixes in Gunu.

    Example 129: Numeral prefixes in Gunu
    class numeral prefix example
    3 jú-

    I(h)-
    mò $\neq$ tò ù $=$ mùè
    bà $\neq$ tò bá $\neq \mathrm{a}^{n} \mathrm{dí}$
    bà $\neq \mathrm{rò} \mathrm{bá} \neq \mathrm{dàdó}$
    ò $\neq$ dímá jú $\neq$ mùè
    ì $\neq$ dímá íh $\neq$ àn $^{\mathrm{n}} \mathrm{dí}^{\prime}$
    ì $\neq$ dímá í í dàdớ

    ## gloss

    one person
    two persons
    three persons
    one heart
    two hearts
    three hearts

    | class | numeral prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 5 | ní- | ì $\neq$ dání nífmùè | one stone |
    | 6a | á(h)- |  | two stones |
    |  |  | à $\neq$ dání á $\neq$ dadú | three stones |
    | 7 | gí- | gì $\ddagger$ dònò gíf mùè | one village |
    | 8 | bí- |  | two villages |
    |  |  | bì $\neq$ dònò bíf dàdú | three villages |
    | 9 | N- | $\mathrm{n} \neq$ nàmà $\mathrm{m}=$ mùè | one animal |
    | 10 | Í(h)- | $\mathrm{n} \neq \mathrm{n}$ àmà $\mathrm{i} h \neq \mathrm{a}^{\text {n }}{ }^{\text {dí }}$ | two animals |
    |  |  | $\mathrm{n} \neq$ nàmà i ídàdó | three animals |
    | 11 | nó- | nù $=$ èlí núf $=$ mùè | one cord |
    | 13 | dư- | dùfèlí dớ $\ddagger$ à ${ }^{\text {dí }}$ | two cords |
    |  |  | dùfèlí dớfàdó | three cords |
    | 14 | bó- | bù $=$ sànà bú $\ddagger$ mùè | one yam sp. |
    | 6 |  | mà $\neq$ sà $y$ à má $\neq \mathrm{a}^{\mathrm{n}}$ dí | two yams |
    |  |  | mà $\ddagger$ sàyà má$\ddagger$ dàdó | three yams |
    | 19 | hí- | ì $=$ nòní híf= mùè | one bird |
    | mo | mo- | mù $\neq$ nòní mófà ${ }^{\text {n }}$ dí | two birds |
    |  |  | mù $\ddagger$ nòní mófdàdớ | three birds |

    Gunu noun class 15 is the infinitive class. As with the other noun-class prefixes with a high vowel, /gò-/ will undergo ATR harmony, see Example 130.

    Example 130: ATR harmony of [-ATR] high vowel of infinitive nc 15
    

    Along with the infinitive prefix, Gunu has other verbal pre-stem elements which will also undergo ATR harmony. These include the reflexive, subject concord, and tense markers. The negative, pre-stem adverbs and the indirect object pronouns will block ATR harmony in the pre-stem elements, see Example 131 below:

    Example 131: ATR harmony of Gunu preverbal elements

    | reflx/ | bá- | gò̀-bá fsìg-à | | |
|---|---|---|---|---|
    | reciproc |  | gò-bá $\neq$ sơgà <br> gù-bé $\neq$ dùl-è <br> gù-bé $\neq$ fúùn-è | | insult e.o. |
    | :--- |

    110 The phonological systems of the Mbam languages

    | indirect object | gó | m̀béè gú-dím-ín-é gìbílá | I dug you a hole. |
    | :---: | :---: | :---: | :---: |
    |  | $\mathrm{N}^{109}$ | 1s.P1 2s-dig-APPL-FV hole <br> à báà tfòg-ìn-à gìlà <br> c1 P1 1p.wash-APPL-FV cloth | S/he washed clothes for us. |
    | future | gàá | à gàá sùg-á <br> c1 FT1 wash-FV | s/he will wash |
    |  |  | è gèé dím-é <br> c1 FT1 dig-FV | s/he will dig |
    | recent past | báà | à báà sờg-à | s/he washed |
    |  |  | c1 P1 wash-FV |  |
    |  |  | mè béè déb-è | it (water) flowed |
    |  |  | c6 P1 flow-FV |  |
    | negative | dì | à dì né dím-è ${ }^{110}$ | s/he did not dig |
    |  |  | c1 NEG FT2 dig-FV |  |
    |  |  | à dì báà sòg-à | s/he did not wash |
    |  |  | c1 NEG P1 wash-FV |  |
    | adverb | gònó | à ná gònó dím-è | s/he will dig again |
    |  |  | c1 FT2 again dig-FV |  |
    |  |  | bá dì gònó bá $\ddagger$ sìg-à | they will not insult e.o. |
    |  |  | c2 NEG again REFL-insult-FV | again |
    | IO pronouns | mò | à báà mò dím-èn-è g gìbílá | s/he dug him a hole |
    |  |  | c1 P1 3sIO dig-CONT-FV |  |
    |  | tfò | àa báà tfò dím-èn-è gibílá | s/he dug us a hole |
    |  |  | c1 P1 1pIO dug-CONT-FV |  |

    ### 2.5.3.1.2 Rounding harmony in pre-stem elements

    Rounding harmony targets /a/ and is triggered by the non-high (open) round vowels $/ \mathrm{s} /$ and $/ \mathrm{o} /$. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{v} /$ never trigger rounding harmony. Only one noun-class prefix, class 6 , with an underlying /a/ consistently undergoes rounding harmony. Another class, 6a, will usually undergo rounding harmony, especially when the root is vowel-initial. However, not all speakers consistently round noun-class 6 a prefixes, see Example 132 below. The noun-class 2 prefix undergoes ATR harmony only.

    | Example 132: Rounding harmony of /a/ in Gunu noun-class prefixes |  |  |  |
    | :---: | :---: | :---: | :---: |
    | class | noun-class prefix | examples | gloss |
    | 6 | ma- | mò $\ddagger$ gíbò | wine |
    |  |  | mò $=$ bínò | dances ${ }^{111}$ |
    |  |  | mà $\neq$ nómì | sperm |
    |  |  | mè $\neq$ gúdé | fat, oil |
    | 6a | $\mathrm{a}(\mathrm{N})$ - |  | necks |
    |  |  | ò $\mathrm{y} \neq$ òní | markets |
    |  |  | òn\#ìsò | eyes |
    |  |  | à $\neq$ gúsà | groups, troops |
    |  |  | èm $\neq$ búusè | urinals |

    Verbal pre-stem elements with /a/ undergo rounding harmony as well as ATR harmony. In Example 133, the reflexive prefix bá- undergoes rounding harmony, and the recent past marker, báà optionally undergoes rounding harmony. Rounding occurs especially in rapid speech:

    Example 133: Rounding harmony of Gunu preverbal elements

    | reflexive | bá | bó $\neq$ gòòd-ò <br> bó $\neq k$ ḱk-òl-̀̀ | refl $x \neq$ meditate $-F V$ <br> refl $x \neq$ crawl-DIM-FV |
    | :---: | :---: | :---: | :---: |
    | recent past | báà | à bós̀ gól-ò | s/he took |
    |  |  | c1 P1 take-FV |  |
    |  |  | à bóò pòl-ò | s/he pierced |

    The high round vowels $/ v /$ and $/ \mathrm{u} /$ do not trigger rounding harmony, neither in the reflexive prefix nor the recent past marker, see Example 134 below.

    Example 134: Non-triggering of rounding harmony in Gunu

    | reflexive | bábá-dớs-à <br> bá-tfòòm-àn-à | REFLX-skin, flay <br> REFLX-chatter-CONT-FV |  |
    | :--- | :--- | :--- | :--- |
    | recent past | báà | à béè fún-èn-è <br> c1 P1 blow-CONT-FV | s/he blew |

    112 The phonological systems of the Mbam languages

    ### 2.5.3.2 Vowel harmony in suffixes

    Most verb suffixes undergo vowel harmony, but there is one that triggers ATR harmony. Discussed in turn below are suffixes that undergo ATR harmony, ATR dominant suffix -i, and rounding harmony in suffixes.

    ### 2.5.3.2.1 ATR harmony in suffixes

    ATR harmony is triggered by a dominant vowel, usually in the root, and spreads bidirectionally. All [-ATR] vowels in the phonological word change into their [+ATR] counterpart. A few examples are shown in Example 135 below:

    Example 135: ATR harmony of Gunu verbal suffixes

    | intensive | -Ig | $\begin{aligned} & \text { \#gás-ìg-à } \\ & \text { \#lìb-ìg-è } \end{aligned}$ | break, fell (tree) soak ${ }^{112}$ |
    | :---: | :---: | :---: | :---: |
    | stative | -Im | $\begin{aligned} & \neq \text { nín-ìm-à } \\ & \text { } \mathrm{t} \text { ték-ìm-è } \end{aligned}$ | float (on water) sneeze |
    | continuous | -an | \# ság-àn-à <br> $\neq$ ém-èn-è <br> $\neq$ gíd-èn-è | spread out (to dry) <br> bleed, exit-CONT-FV <br> add-CONT-FV |
    | diminutive | -Id | $\neq$ nák-ìd-à <br> $\neq$ núùn-ìd-è | lick (a little) glance, look (a little) |
    | applicative | -In | $\begin{aligned} & \text { } \begin{array}{l} \text { soc̀g-ìn-à } \\ \text { } \\ \text { dím-ìn-è } \end{array} \end{aligned}$ | wash-APPL-FV <br> dig-APPL-FV |

    Some deverbal nouns are formed by adding the applicative suffix and a noun-class prefix to the verb root. These suffixes also undergo ATR harmony, see Example 136.

    ## Example 136: Gunu deverbal nouns with applicative suffix

    | $\neq$ bán-à | defecate | gì $\neq$ bán-ín-á | anus |
    | :--- | :--- | :--- | :--- |
    | $\neq$ dúùg-è | rest | gì $\neq$ dúúg-íd-én-é | resting place |
    | $\neq$ bón-ò | drink | gìfbón-ín-ó | drinking place |

    Other deverbal nouns are formed simply by adding a noun-class prefix to a verb. Any verbal suffixes present will undergo ATR harmony, see Example 137.

    | Example 137: | Gunu deverbal nouns |  |  |
    | :--- | :--- | :--- | :--- |
    | \#híl-ìm-à | breathe | gì $\neq$ híl-ìm-à | respiration |
    | $\neq$ bán-à | defecate | nì $\neq$ bán-à | latrine |
    | $\neq$ òn-ìn-ò | request, | ask | gì $\neq$ òn-ìn-ò |

    ### 2.5.3.2.2 ATR-dominant suffixes.

    Two suffixes, the [+ATR] causative -i, and the [+ATR] agentive -i are dominant and trigger ATR harmony. ATR harmony is generally bidirectional and spreads from the causative suffix both to the root and to the final vowel. The agentive suffix, on the other hand, being at the right edge of the word, spreads only to the left, as seen in Example 138.

    Example 138: ATR-dominant suffixes in Gunu

    | caus. | -i | \#ság-à | $d r y ~(I N T R)$ | \# ség-ì-è | $d r y(T R)$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | \# g ¢̀-ゝ | descend (INTR) | \# | descend (TR) |
    |  |  | $\neq$ òb-à | fall (INTR) | \#ùb-ì-è | fell, cause to fall |
    |  |  | $\neq \mathrm{fi}$-̇̀ | heat (INTR) | $\neq$ fí-ìg-ì-ò | heat (TR) |
    |  |  | \#ín-èn-è | enter | $\neq 1$ ín-èn-ì-è | cause enter |
    |  |  | \#füg-è | chill (INTR) | \#fùg-ì-è | chill (TR) |
    |  |  | \#dớs-à | skin (v) | gì $\ddagger$ dús-í-è | skin (removed) |
    | agent. | -i | $\neq f$ fif-à | survey | ò $\neq$ fíf-1́ | guardian |
    |  |  | \# bín-è | dance | òm $\neq$ bín-í | dancer |
    |  |  | \# g óg- ${ }^{\text {ò }}$ | drive, guide | ù $\ddagger$ góg-í | guide, driver |

    ### 2.5.3.2.3 Rounding harmony in suffixes

    Most verb extensions and inflectional suffixes with an /a/ undergo rounding harmony as well as ATR harmony. Like ATR harmony, rounding harmony is bidirectional. Rounding harmony is triggered only by non-high (open) round vowels. The high round vowels $/ \mathrm{u} /$ and $/ \mathrm{v} /$ (often written in the literature as $\mathbf{0}$ ) do not trigger rounding harmony. A few examples are shown in Example 139 below:

    114 The phonological systems of the Mbam languages

    | Example 139: Rounding harmony of Gunu verbal suffixes |  |  |  |
    | :---: | :---: | :---: | :---: |
    | final vowel | -a | \#bòl-ò | borrow |
    |  |  | \# bò̀- ${ }^{\text {a }}$ | delight (v) |
    |  |  | \#hòn-ò | mock, tease |
    |  |  | \#dòg-ò | burp |
    |  |  | \#pòl-ò | pierce |
    |  |  | \# kón-ò | remain uncooked |
    |  |  | \#bôl-à | arrive |
    |  |  | $\neq \mathrm{f} \text { úmb}^{m} \text {-àn-à }$ | sob, cough while drinking |
    | continuous | -an | \# g òs-òn- ${ }^{\text {on }}$ | descend (CONT) |
    |  |  | \# dòg-òn-̇े | boil, heat |
    |  |  | \# bón-òn-òn-ò $_{\text {col }}$ | drink (CONT) |
    |  |  | $\neq f$ fómb-àn-à $^{\text {a }}$ | sob, cough while drinking |
    |  |  | \#fờf-àn-à | smell, inhale |
    |  |  | \#fún-èn-è | blow |

    Front vowels are transparent to rounding harmony. Where a suffix or extension with a front vowel occurs, the rounding will pass through the front vowel to the final vowel, see Example 140.

    Example 140: Transparency of front vowels in rounding harmony

    | applicative | -In | $\neq$ gól-ìn-̀̀̀ <br>  <br>  <br> $\neq$ sòm-ìn-̀े <br>  <br> $\neq$ pòl-ìn-ò | be trapped <br> accuse <br> pierce |
    | :--- | :--- | :--- | :--- |
    | intensive | - Ig |  | $\neq$ sólì̀g-̀े |
    |  | $\neq$ bón-ìg-ì-o | insist <br> cause to drink |  |

    ### 2.5.4 Hiatus-resolution processes

    In general, Gunu permits vowel hiatus of both similar and different juxtaposed vowels. Only in the context of the class 5 prefix allomorphs ni-/ni- is glide formation found to break up juxtaposed vowels, see section 2.1.4.12.5.4.1 below.

    ### 2.5.4.1 Glide formation

    The class 5 prefix $\mathbf{n i}-/ \mathbf{n i}$ - preceding a round vowel will trigger glide formation of the prefix vowel. Both the [-ATR] and [+ATR] allomorphs glide, see Example 141.
    

    Glide formation does not occur when the VCV noun root has an initial front vowel see Example 142.
    

    ### 2.5.5 Tone

    Gunu has a two-tone system underlyingly, high and low. Rising and falling tones are found where there is juxtaposition of two or more dissimilar tones ${ }^{113}$. Juxtaposed dissimilar tones will cause lengthening of the vowel.

    ### 2.5.5.1 Tone melodies on nouns

    High and low tone contrast in monomorphemic noun roots. Four tone melodies are attested in CVCV noun roots, see Example 143 below. Noun prefixes usually have a low tone, although there are a few exceptions.

    ## Example 143: Gunu nominal tone melodies

    | ì $\neq$ bàdà | $\neq \mathrm{L} . \mathrm{L}$ | yaws |
    | :--- | :--- | :--- |
    | ì $=$ bàná | $\neq \mathrm{L} . \mathrm{H}$ | whitlow (type of infection) |
    | $\grave{\mathrm{I}} \neq$ bánà | $\neq \mathrm{H} . \mathrm{L}$ | tree sp. |
    | ì $\neq$ sámá | $\neq \mathrm{H} . \mathrm{H}$ | kidney |

    ### 2.5.5.2 Tone melodies on verbs

    Gunu verb roots divide into three tone-melody groups. Verb roots with both a high or a low lexical melody are found in each of the tone-melody groups. ${ }^{114}$ Although this is similar to the three tone classes found in the various other Mbam languages,


    there are some differences which are beyond the scope of this study. The three verbal tone groups (Patman 1991: 80) are illustrated in Example 144 below ${ }^{115}$.

    | Example 144: Gunu underlying verbal tone melodies |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | lexical | class | underlying melody | examples |  |
    | group 1 | L | L | L-L | bìg-à | carry |
    |  | H |  | H-L | fớl-à | sweep |
    | group 2 | L | $\emptyset$ | L-ø | sìs-è | descend |
    |  | H |  | H-ø | dî̀n-à | let alone |
    | group 3 | L | H | L-H | màn-à | finish |
    |  | H |  | H-H | húm-è ${ }^{116}$ | go out |

    In addition to providing lexical contrast, tone also has a grammatical function. Among other things, tone provides the crucial difference between various tenses in verb conjugations. This is, however, beyond the scope of this study.

    ### 2.6 Elip phonological overview

    The three dialects of Elip, Nuyambassa, Nulamba and Nukanya differ in several ways: the Nuyambassa dialect shows contrast between voiced and voiceless alveolar and velar stops in the word root (although the voiceless stops are more limited in their distribution), while the Nulamba and Nukanya dialects have contrast in voicing only in the velar stops (in the case of Nukanya, there are only a few examples of $/ \mathrm{g} /$ ). In addition, Nulamba and Nukanya differ from each other in the distribution of voiced and voiceless velar consonants, and Nukanya differs from both Nuyambassa and Nulamba in certain vowel-harmony processes. This phonological sketch is based primarily on Nuyambassa, the reference dialect ${ }^{117}$.


    ### 2.6.1 Consonants

    This section discusses the consonant inventory of Elip (section 2.6.1.1), and the various adaptations to it due to allophonic and allomorphic realisations (section 2.3.1.22.6.1.2), distribution restrictions (section 2.6.1.3) and final-vowel devoicing (section 2.6.1.4).

    ### 2.6.1.1 Consonant inventory

    The consonant system of Elip consists of 21 contrastive consonants.
    Table 23: Elip contrastive consonants ${ }^{118}$

    | stops | voiceless aspirated | labial | alveolar <br> t | palatal <br> ( t ) | velar k |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | voiced | b | d |  | g |
    |  | prenasalised | mb | ${ }^{\text {nd }}$ |  | ${ }^{\mathrm{n}} \mathrm{k}$ |
    | fricatives | voiceless | f | s |  | h |
    |  | prenasalised | ${ }^{m} \mathrm{f}\left(\left[p^{\mathrm{h}}\right]\right)$ | ${ }^{\text {n }}$ S $([t 5])$ |  |  |
    | resonants | nasal | m | n | n | 1 |
    |  | oral |  | 1 | j | w |

    ### 2.6.1.2 Allophonic and allomorphic realisations

    Voiceless stops in the Nuyambassa dialect are slightly aspirated except for /t $\mathrm{f} /$ which already has a delayed release. Voiced consonants in utterance-final position become devoiced, but they are not aspirated. Voiceless consonants are not found in wordfinal position.
    

    Prenasalised fricatives in the Nulamba and Nukanya dialects occur as a prenasalised affricate [ t ] or an aspirated stop [ $\mathrm{p}^{\mathrm{h}}$ ] in the Nuyambassa dialect ${ }^{119}$. In addition, morphologically, /f/, /s/ and /h/ undergo alternation when a syllabic nasal prefix precedes them. The labial /f/ following the nasal prefix becomes a strongly aspirated bilabial stop [ $\mathrm{p}^{\mathrm{h}}$ ] not [pf] as would be expected; the alveolar /s/ becomes an affricate $[\mathrm{t} 5]$ and $/ \mathrm{h} /$ changes its place of articulation and like /f/ becomes an aspirated bilabial stop [ $\mathrm{p}^{\mathrm{h}}$ ]. As the nasal prefix is homorganic, it cannot be the trigger for the change of place of articulation. See Example 145 below.

    Example 145: Variations of /f/, /h/ and /s/ between prefix and root

    | gùffig-è | [gùfìgè] | be full of weevils |
    | :---: | :---: | :---: |
    | $\stackrel{\text { m }}{\text { fig }}$ g | [ṃphìg] | weevil |
    | gù $=$ híl-è | [gùhílè] | paint (v) |
    | m$\neq$ híl-è |  | paint (n) |
    | gùf $\ddagger$ sìg-à | [gùsìgà] | insult (v) |
    | ǹ $=$ sìg | [ṇtfig] | insult ( $n$ ) |

    ### 2.6.1.3 Restrictions in consonant distribution

    Elip has both open and closed syllables; CV, CVC, V, VC and syllabic nasals. All consonants except for the voiceless stops ( $/ \mathrm{t} / \mathrm{I} / \mathrm{t} / \mathrm{f} / \mathrm{/k} /$ ), the velar prenasalised stop $/ \mathrm{m} /$, and $/ \mathrm{w} /$ are found in syllable-final position. Voiced, voiceless and prenasalised stops contrast in syllable onsets, see Example 146 below.

    Example 146: Contrast in alveolar and velar stops in Elip

    | t/d/ ${ }^{\text {d }}$ | gìztûn | fist |
    | :---: | :---: | :---: |
    |  | ò $\neq$ dún | forge |
    |  | gì ${ }^{\text {n }}$ dól 1 -án | giant |
    | k/g/pk | gíflkàmbà | type of insect |
    |  | ù $\ddagger$ gán ${ }^{\text {d }}$ ¢ | woman |
    |  | búキıvk̀̀nâ | papaya |
    |  | gì $\neq$ mú.kè | mute (a) |
    |  | ǹ $\#$ dù.gé | smoke |
    |  | ì $\ddagger$ cú. ${ }^{\text {² }}$ kán | herb used for certain skin diseases |


    | U.F | Nuyambassa | Nulamba/Nukanya | gloss |
    | :---: | :---: | :---: | :---: |
    | gíf ${ }^{\text {n }}$ à ${ }^{\text {a }}$ á | [gintfàná] | [gìnsàná] | sour herb |
    | U.F | Nuyambassa | Nulamba/Nukanya | gloss |
    | gò $\ddagger 1 \mathrm{li}^{\text {n }}$ | [gòlદ̇ ${ }^{\text {nt }}$ [] | [gòlè ${ }^{\text {n }}$ S] | know |
    | gì $\ddagger^{\mathrm{m}} \mathrm{a}^{\mathrm{m}}{ }^{\text {m }} \mathrm{m}$ | [gì $\mathbf{p}^{\text {hàm }}$ ] | [gi ${ }^{\text {m }} \mathbf{f a ̀ m ]}$ | warthog tusk |
    | gì $\neq$ un $^{\text {m }} \mathbf{f}$ | [gìnù $\mathbf{p}^{\mathbf{h}}$ ] | [gìnù ${ }^{\text {mf }}$ ]] | bad smell |

    Consonant-glide sequences, especially when they occur at morpheme boundaries, are formed by the desyllabification of a high vowel (discussed in section 2.6.4.1 below).

    ### 2.6.1.4 Final-consonant devoicing

    Voiced obstruents devoice in word-final position. This occurs consistently with voiced and prenasalised stops, with the exception of $/ \mathrm{m} /$ which is not found in syllable-final position.

    ## Example 147: Final consonant devoicing in Elip

    | /b/ $\rightarrow$ [b] | mà $=$ gíb | [màgéb] | wine |
    | :---: | :---: | :---: | :---: |
    | /d/ $\rightarrow$ [d] | mà $\neq$ gúd | [mègúd] | fat |
    | $/ \mathrm{g} / \rightarrow[\mathrm{g}]$ | bò̇fdúg | [bùdúg] | night |
    | $/ \mathrm{mb} / \rightarrow$ [mb] | nì $\ddagger$ bìmb | [nìbìmb] | frog sp. |
    | $/ \mathrm{n}$ d/ $\rightarrow$ [ ${ }^{\text {d }}$ ] $]$ | nò $\ddagger$ gò ${ }^{\text {n }}$ d | [nòg U' $^{\text {d }}$ ] | foot |

    ### 2.6.2 Vowels

    This section discusses the vowel inventory of Elip (2.6.2.1) and the various adaptations to it due to allophonic realisations (section 2.6.2.2), vowel cooccurrences and vowel co-occurrence restrictions (section 2.6.2.3).

    ### 2.6.2.1 Vowel inventory

    Elip ${ }^{120}$ has an inventory of eight contrastive vowels. A complex system of vowel harmony regulates the co-occurrence and co-occurrence restrictions of the vowels. The vowels can be divided into two sets which are mutually exclusive within roots and stems:

    Table 24: Elip contrastive vowels

    | [-ATR] |  |  | [+ATRT] |
    | :--- | :--- | :--- | :--- |
    |  | $\ddots$ | i | u |
    |  | 0 | $\mathrm{e}^{121}$ | o |

    a
    In the verb system, all eight contrastive vowels are attested in the verb root in open syllables. There is, however, surface neutralisation of $/ 0 /-/ 0 /$ in comparable closed syllables and in word-final position. This phenomenon is most clearly seen in comparing verbs with and without the continuous suffix -a, as shown in Example 148 below. In addition it is assumed that a merger of the [-ATR] high vowel /I/ and the [-ATR] mid vowel $/ \varepsilon /$ has occurred.

    120 The phonological systems of the Mbam languages

    |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | inf $\neq$ verb-ext. | inf $\neq$ verb root | conjugated <br> c1-P1-root | gloss |
    | /i/ | gù $=$ dím-è | gù $\ddagger$ dím | ù-sè $\ddagger$ dím | dig |
    | /I/ | gò $\ddagger$ bìg-à | gò $\ddagger$ bèg | ò-sà $=\mathrm{b}$ ¢̀g | burn |
    | /e/ | gù $f$ dén-èn | gù $\ddagger$ dén | ù-sè $\ddagger$ dén | drip |
    | /a/ | gò $\ddagger$ bàs-à | gù $\ddagger$ bàs | ò-sà $=$ bàs | germinate |
    | /u/ | gù $\neq$ gús-è | gù $\neq$ gús | ù-sè $\ddagger$ gús | pierce |
    | $10 /$ | gòf bớd-à | gò $\ddagger$ bód | ò-sà $=$ bód | get, obtain |
    | /o/ | gù $=$ dòg-è | gù $=$ dòg | ù-sò dò ${ }^{\text {d }}$ | burp |
    | /0/ | gòf dób-à | gò $\ddagger$ dób | ర̀-sò $\ddagger$ dób | knead |

    In the noun system, all contrastive vowels are found in monomorphemic $\mathrm{CV}_{1} \mathrm{CV}_{1}$ roots in Example 149 below. There are, however, few examples of $/ v /$ found in the corpus.

    | Ex// | 149: Pe | ed vowels in Elip CV | (C) | n roots |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | gì $=$ bílì <br> ò $\neq$ gwínì $^{\prime}$ | bunch (plantain) firewood | /I/ | ò $\neq$ hínì m̀ $\neq$ fínì | sun <br> viper |
    | /e/ | $\begin{aligned} & \text { ì } \neq \text { léndé } \\ & \text { gì } \neq \text { géné } \end{aligned}$ | bar-breasted mousebird baked clay pan | /a/ | gìłlámà <br> nì $\neq$ gádá | pot (water) courtyard |
    | /o/ | gì $\neq$ dógól <br> nì $\neq$ bóndón | loins tranquility | /o/ | ì $\neq$ góņ́l gìキbógód | ankle bone shoe |
    | /u/ | gì $\neq h u ́ y u ̂ l$ mè $\ddagger$ dúbúl | lump obesity | /0/ | gìlờ ${ }^{\text {dú }}$ | cloud |

    ### 2.6.2.2 Vowel devoicing/elision in utterance-final position

    The high vowels, $/ \mathrm{i} /, / \mathrm{I} /, / \mathrm{u} /$ and $/ \mathrm{J} /$, are susceptible to devoicing and/or elision in utterance-final position. This is the same position where voiced obstruents devoice and tone-melody contrast is lost in noun roots.

    Utterance-final devoicing/elision is conditioned by the tone melody of the noun. Nouns with a melody ending with a high tone tend towards vowel devoicing. In isolation or utterance-final position, the final vowel of noun roots with L and HL melodies is generally elided.

    Only in very careful speech is the presence of the final vowel perceived in utterancefinal position. With the H noun-root melody in utterance-final position, the final vowel is usually only devoiced, although it may also elide depending on the speaker. In contrast, the LH melody permits only devoicing, and never elision, of the final
    vowel. In Table 25 below, $\mathbf{L}$ indicates a devoiced vowel, and ( $\mathbf{L}$ ) indicates a devoiced vowel that is also susceptible to elision.

    Table 25: Elip noun-root melodies and utterance-final vowel devoicing

    | underlying tone | non-final | utterance-final | vowel devoicing | elision |
    | :--- | :--- | :--- | :--- | :--- |
    | $\neq \mathrm{H}$ | $\neq \mathrm{H}$ | $\neq \mathrm{H}(\mathrm{L})$ | Yes | Yes |
    | $\neq \mathrm{HL}$ | $\neq \mathrm{HL}$ | $\neq \mathrm{L}$ | --- | Yes |
    | $\neq \mathrm{LH}$ | $\neq \mathrm{LH}$ | $\neq \mathrm{LL}$ | Yes | No |
    | $\neq \mathrm{L}$ | $\neq \mathrm{L}$ | $\neq \mathrm{L}$ | --- | Yes |

    Example 150 below illustrates the tone-melody adaptations and the associated devoicing/elision of the susceptible vowels in utterance-final position.

    | Example 150: Final-vowel devoicing in Elip |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | /i/ | bì $\neq \mathrm{g}^{\text {wied }}$ dì | L | [bìgwìd ${ }^{\text {d }}$ | [bìgwìdì] | rubbish |
    |  | gì $=$ gòdí | LH | [gìgòdị] | [gìgòdí] | law |
    | /I/ | gì $\ddagger$ à ${ }^{\text {nt }}$ ¢ | L | [giàntf] | [già ${ }^{\text {n }}$ fî] | house |
    |  | gì $=a^{\text {nt }}$ fil | HL | [giànt] | [ $\mathrm{g}^{\text {jant }}$ fin] | cockroach |
    |  | gì $=$ àt ${ }^{\text {İ }}$ | LH | [gà ${ }^{\text {nt }}$ ¢ ${ }_{\text {İ }}$ ] | [giàt ${ }^{\text {ji] }}$ ] | refusal |
    | /u/ | gì $\ddagger$ dégú | H | [gìdég] [ [gìdégù ${ }^{\text {a }}$ ] | [gìdégú] | navel |
    |  |  | LH | [m̀mè̀gù̀] | [m̀mè̀ú] | muscle, flesh |
    | /0/ | mò ${ }^{\text {nd }}$ dò | L | [mò ${ }^{\text {n }}$ d] | [mòndờ] | man |
    |  | gìłlờ ${ }^{\text {d }}$ (ó | LH | [gìlờ ${ }^{\text {deoù }}$ | [gì̀òndó] | cloud |

    In utterance-final position, all low tones fall to some extent. However acoustically, nouns with an underlying $\neq \mathrm{L}$ melody fall more sharply than nouns with an underlying $\neq$ LH melody in utterance-final position. From Example 150 above, the underlyingly L noun [giàntf] house has an average fall of 38.13 Hz in 0.135225 seconds in utterance-final position, while the underlyingly HL noun [giàntf] cockroach has an average fall of 12.32 Hz in 0.18036 seconds ${ }^{122}$.

    ### 2.6.2.3 Vowel co-occurrences

    Several factors govern the co-occurrences of vowels in CVCV nouns. These factors include 1) ATR harmony, 2) high-vowel lowering, and 3) restrictions on $V_{2}$, to either a high, round or open (non-high) vowel. Each of these vowel co-occurrence restrictions will be discussed in turn below.

    122 The phonological systems of the Mbam languages

    ### 2.6.2.3.1 ATR-harmony restrictions

    ATR harmony requires that both vowels in the noun root agree in tongue-root position. The [-ATR] vowels never occur in the same root with [+ATR] vowels. The vowel /a/ is always [-ATR] and never found in a [+ATR] environment. In Example 151 below, all ATR vowel co-occurrences in CVCV noun roots are shown.

    | Example 151: ATR vowel co-occurrences in Elip CVCV(C) noun roots |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | I-I | j̀ $\ddagger$ hínì | sun | i-i | gì $=$ bílì | bunch (plantain) |
    | I-a | nìłhìná | termite sp. | i-e | mı $\ddagger$ bínè | ebony tree |
    | a-I | nì $\ddagger$ dánì | rock, stone | e-i | m̀ $\ddagger$ bèní | elder sister |
    | a-a | gìキlámà | pot (water) | e-e | ì 1 léndè | bar-breasted mousebird |
    | a-d | ǹ=tfámờ | stone, pit | e-u | ǹ $=$ ţêlù | chin |
    | U-I | ---- ${ }^{123}$ | --- | u-1 | nì $=$ gùlì | family |
    | U-a | gì $=$ súmbà | adult | u-e | nì $\ddagger$ gùn ${ }^{\text {dè }}$ | basket |
    | U-Ј | gìłlò̀ ${ }^{\text {dú }}$ | cloud | u-u | gìłhúpûl | lump |
    | 0-I | nò $\ddagger$ gòlì | mushroom | o-i | ì $=$ nònì | bird |
    | --a |  | plantain | o-e | gì $\neq$ gógè | bone |
    | --จ | gì $\ddagger$ jòbò | stutterer | o-o | gìfdógól | loins |

    ### 2.6.2.3.2 High-vowel lowering

    The [-ATR] high vowels $/ \mathrm{I} /$ and $/ v /$ are lowered to $[\varepsilon]$ and [ $\rho$ ] in closed syllables. This is illustrated by, although not limited to, the deverbal nouns shown in Example 152 below.

    | Example 152: Word-final lowering in Elip deverbal noun roots |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | underlying vowel /I/ | surface example |  | gloss | from verb |  |
    |  |  |  |  |  |  |
    |  | [ $\varepsilon$ ] | [ǹ $\ddagger \mathrm{t}$ ¢ $¢ \mathrm{~g}$ ] | insult | [gò̇fì̀g-à] | insult (v) |
    |  |  | [gì $=\mathrm{mèn}$ ] | neck | [gòł $\ddagger$ mín-à] | swallow |
    | /0/ | [0] | [gìキlóy] | cadaver | [gò̇lóñ-à] | agonise, die |

    In $\mathrm{CV}_{1} \mathrm{CV}_{1}$ noun roots where the vowel is $/ \mathrm{I} /$, both vowels will lower to $[\varepsilon]$ when the noun is in isolation or utterance-final position, see Example 153, below.
    

    | non-final | utterance-final | gloss |
    | :---: | :---: | :---: |
    | [òhínì] | [ว̀hénè] | su |
    | [ị̀phínì] |  | viper |

    ### 2.6.2.3.3 Other $V_{2}$ co-occurrence restrictions

    The high vowels, $/ \mathrm{i} /$ / $/ \mathrm{I} /, / \mathrm{u} /$ and $/ v /$ in $\mathrm{V}_{1}$, take only a front or open vowel in $\mathrm{V}_{2}$. The non-high vowels, /e/, / $/$ /, $/ \mathrm{o} /$ and $/ \rho /$ in $\mathrm{V}_{1}$ will also take a round vowel in $\mathrm{V}_{2}$ position. The [-ATR] counterpart of $/ \mathrm{i} / \mathrm{is} / \mathrm{I} /$. In [-ATR] noun roots, the round $\mathrm{V}_{2}$ is $/ 0 /$, and in [+ATR] noun roots, $\mathrm{V}_{2}$ is underlyingly $/ \mathrm{u} /$. When there is $/ \mathrm{o} /$ in $\mathrm{V}_{1}$ position, $/ \mathrm{u} /$ is lowered to $/ \mathrm{o} /$ in $\mathrm{V}_{2}$ position. The open vowel is either /a/ in [-ATR] roots or /e/ in [+ATR] roots, see Table 26 below.

    Table 26: $\mathrm{V}_{\mathbf{2}}$ in Elip CVCV noun roots

    | $\mathrm{V}_{2}$ in CVCV noun roots | $[-\mathrm{ATR}]$ | $[+\mathrm{ATR}]$ |
    | :--- | :--- | :--- |
    | high | I | i |
    | round | U | u or o |
    | open | a | e |

    Table 27 below shows the CVCV combinations permitted in Elip noun roots.

    Table 27: Surface $\mathbf{C V}_{1} \mathbf{C V}_{2}$ combinations permitted in Elip

    | $\mathrm{V}_{1} \mathrm{~V}_{2}$ | [-ATR] |  |  |  | [+ATR] |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | high | open | round | $\mathrm{V}_{1} \mathrm{~V}_{2}$ | high | open | round |
    | I | I-I | I-a | --- | i | i-i | i-e | --- |
    | a | a-I | a-a | a-ঠ | e | e-i | e-e | e-u |
    | $\bigcirc$ | 0-I | --a | --0 | 0 | O-i | o-e | O-O |
    | U | $(\mathrm{J}-\mathrm{I})^{124}$ | U-a | ర-ひ | u | U-1 | u-e | u-u |

    ### 2.6.3 Vowel-harmony processes

    Elip has a complex system of vowel harmony consisting of two interacting types of harmony: ATR and rounding harmony. Although rounding harmony does not operate as vowel co-occurrence restriction in roots, both types of vowel harmony cross morpheme boundaries within the phonological word.

    ### 2.6.3.1 Pre-stem elements

    Both nominal and verbal pre-stem elements undergo vowel harmony in Elip. These are ATR harmony and rounding harmony discussed in turn below.

    124 The phonological systems of the Mbam languages

    ### 2.6.3.1.1 ATR harmony in pre-stem elements

    Elip has a system of eighteen noun classes that combine into eight double-class genders, and three single-class genders.

    The following double-class genders occur: $1 / 2,3 / 4,5 / 6 \mathrm{a}, 7 / 8,9 / 10,11 / 13,14 / 6$, and $19 / \mathrm{mu}$. There are a few isolated examples of $11 / 8,15 / 6$, and $5 / 13$. The single-class genders are 6,15 and 17 .

    | class | prefixes |  | class | prefixes |
    | :---: | :---: | :---: | :---: | :---: |
    | 1 | mo- <br> v- / u- <br> a-/ e- <br> $\varnothing$ |  | 2 | ba- /be- |
    |  |  | - |  |  |
    |  |  |  |  |  |
    |  |  |  |  |  |
    | 3 | $\mathrm{v}(\mathrm{N})-\mathrm{l} \mathbf{u}(\mathrm{N})-$ |  | 4 | $\mathrm{I}(\mathrm{N})-/ \mathrm{i}(\mathrm{N})-$ |
    | 5 | ni- / ni- |  | 6a | $\mathrm{a}(\mathrm{N})-/ \mathrm{eN})$ - |
    | 7 | gi- / gi- |  | 8 | bi- / bi- |
    | 9 | N - |  | 10 | N - |
    | 11 | no- / nu- | $\xrightarrow{\sim}$ | 13 | do- / du- |
    | 14 | bo- / bu- |  | 6 | ma- / me- |
    | 15 | go- / gu- |  |  |  |
    | 19 | I- / i- |  | mu- | mo- / mu- |

    The vowels in noun-class prefixes are underlyingly [-ATR] but change into [+ATR] when preceding a [+ATR] noun root. With the exception of classes 9 and 10 , which consist of a syllabic nasal, most Elip noun classes contain one of three underlying vowels $/ \mathrm{I} /, / \sigma /$ and $/ \mathrm{a} /$, which will undergo ATR harmony. Noun classes 1 and 3 are different from the others and will be discussed below. The [+ATR] counterpart of /a/ is $/ \mathrm{e} /^{125}$, see Example 154.

    | Example 154: ATR harmony of Elip noun-class prefixes |  |  |  |
    | :---: | :---: | :---: | :---: |
    | class | noun-class prefix | example | gloss |
    | 2 | ba- | bà $\neq$ gán ${ }^{\text {dó }}$ | women |
    |  |  | bà $\neq$ nìm | husbands |
    |  |  | bè $=$ ébì | thieves |
    |  |  | bèflìmén | siblings |


    ## Phonological overviews 125

    | class | noun-class prefix | example | gloss |
    | :---: | :---: | :---: | :---: |
    | 4 | $\mathrm{I}(\mathrm{N})^{126}$ - | ì $=$ sǎ | rivers |
    |  |  | ì $\ddagger$ dím | hearts |
    |  |  | ì $\neq \mathrm{d}^{\text {wá }}$ | heads |
    |  |  | ìm $=\mathrm{b}$ ¢́g | hands |
    |  |  | ì $\neq$ gèl | voices, throats |
    |  |  | ì $\neq$ fín | debts |
    |  |  | ì $\neq$ hún | noses |
    | 5 | nI- | nìfbánà | breast, udder |
    |  |  | nìfhìná | termite sp. |
    |  |  | nífogò ${ }^{\text {dà }}$ | plantain |
    |  |  | nì $=$ bèg | melon |
    |  |  | nì $=$ gù ${ }^{\text {dè }}$ | basket for groundnuts |
    | 6 | ma- | mà $\neq$ gíb | wine |
    |  |  | mè $\neq$ gúd | fat, oil |
    | 6a | $\mathrm{a}(\mathrm{N})$ - | àm $=$ bánà | breasts, udders |
    |  |  | àm $=$ bùsìn | fish barricade |
    |  |  | àfhìná | termite sp. |
    |  |  | èm $=$ bèg | melon |
    |  |  | è $\neq$ gùn ${ }^{\text {dè }}$ | basket for groundnuts |
    | 7 | gI- | gìfk $\mathrm{k}^{\text {ánà }}$ | charcoal , |
    |  |  | gì $\neq$ sómból | hill of "mpinya" termites |
    |  |  | gì $=$ gǒgè |  |
    | 8 | bI- | bìfk ${ }^{\text {hánà }}$ | charcoals |
    |  |  | bì $\ddagger$ sómból | hills of "mpinya" termites |
    |  |  | bìf=gǒgè | bones |
    | 11 | no- | nở $\ddagger$ bílà | birdlime |
    |  |  | nù $\ddagger$ g Ón $^{\text {d }}$ | foot |
    |  |  | nù $\neq$ nén ${ }^{\text {wé }}$ | hevea, rubber tree |
    | 13 | do- | dờ $\ddagger$ bílà | birdlime |
    |  |  | $\mathrm{d} u \neq \mathrm{g}$ ond $^{\text {d }}$ | feet |
    |  |  | dù $\neq$ nén ${ }^{\text {wé }}$ | heveas, rubber trees |

    126 The phonological systems of the Mbam languages

    | $\begin{aligned} & \text { class } \\ & 14 \end{aligned}$ | noun－class prefix bu－ | example | gloss |
    | :---: | :---: | :---: | :---: |
    |  |  | bờfnàm | animal |
    |  |  | bòf $\ddagger$ sìb | groundnut |
    |  |  | bù $\ddagger$ dúg | night |
    | 15 | go－ | gờ $\ddagger$ nómà | illness |
    |  |  | gùfnènè | flood，inundation |
    | 17 | go－ | gò $\neq$ mòn | sky |
    |  |  | gờfdànì | savannah，bush |
    | 19 | I－ | ì 1 lòg | poison |
    |  |  | ì\＃línà | uterus |
    |  |  | ì $\neq$ nònì | bird |
    | pl of | mo－ | mơキlòg | poisons |
    | 19 |  | mùf nơnì | birds |

    Numeral prefixes in Elip are underlyingly［－ATR］and undergo ATR harmony．
    There are no［＋ATR］numeral prefixes in Elip．

    | Example class | 155：Elip num．pfx | meral prefixes example | gloss |
    | :---: | :---: | :---: | :---: |
    | 1 | う－ | mò $\ddagger^{\text {n }}$ dò ò $\ddagger$ mòómí | one person |
    | 2 | bá－ | bà $⿻ 肀^{\text {n }}$ dò bá $\neq \mathrm{a}^{\mathrm{n}}$ dì | two persons |
    |  |  | bà $⿻^{\text {n }}$ dò bé $\neq$ níhì | four persons |
    | 3 | ó－ | ò $\ddagger$ dú óf $\ddagger$ mòòmí | one ear |
    | 4 | Í－ | ì $\neq \mathrm{dú}$ íj $\ddagger \neq$ à ${ }^{\text {dì }}$ | two ears |
    |  |  | ì $\ddagger$ dú 1 í níhì | four ears |
    | 5 | ní－ | nì $\ddagger$ sàbà níf＝mòómí | one groundnut |
    | 6a | á－ | à $\neq$ sàbà $\mathrm{a} \neq \mathrm{a}^{\mathrm{n}} \mathrm{dì}$ | two groundnuts |
    |  |  | à $\neq$ sàbà é $\ddagger$ níhì | four groundnuts |
    | 7 | gí－ | gì $\ddagger$ à ${ }^{\text {sic }}$ gíf mòómí | one house |
    | 8 | bí－ | bì $\ddagger$ ànsì bí $\ddagger$ à ${ }^{\text {din }}$ | two houses |
    |  |  | bì àn $^{\text {sì }}$ is bífoníhì | four houses |
    | 9 | Ì－ | $\mathrm{m} \neq$ fún $\mathrm{l}=$ mòómí | one nose |
    | 10 | Í－ | $\mathrm{m} \neq$ fún $\mathrm{i} \neq \mathrm{a}^{\mathrm{n}}$ dì | two noses |
    |  |  | $\mathrm{m} \neq$ fún 1 í níhì | four noses |
    | 11 | nú－ | nò̀tá núf mòómí | one arrowhead |
    | 13 | tó－ | tờ $\neq$ tá tú $\ddagger$ à ${ }^{\text {dio }}$ | two arrowheads |
    |  |  | tò $\neq$ tá tú $\ddagger$ níhì | four arrowheads |
    | 14 | pú－ | bò $\ddagger$ díd búf mòómí | one tree |
    | 6 | má－ | mà $\neq$ díd má ${ }^{\text {a }}$ ndì | two trees |
    |  |  | mà $\neq$ díd mé $=$ níhì | four trees |


    | 19 | Í- | ì $\neq$ nòní íf móómí | one bird |
    | :--- | :--- | :--- | :--- |
    | mu | mó- | mù $\neq$ nòní mó $\neq$ à $\mathrm{dì}$ <br> mù $\neq$ nòní mú $\neq$ níhì | two birds |
    |  |  | four birds |  |

    Elip noun class 15 is the infinitive class. As with the other noun-class prefixes with a high vowel, go- also undergoes ATR harmony, see Example 156.

    ## Example 156: ATR harmony of Elip infinitive nc 15

    | 15 go- | gù $=$ fid-è | joke, amuse |
    | :---: | :---: | :---: |
    |  | gò $\ddagger$ sìg-à | insult |
    |  | gù $\ddagger$ gés-ên | sneeze |
    |  | gò $\ddagger$ bà ${ }^{\text {n }}$-à | hatch, crunch |
    |  | gò $\ddagger$ gòn-à | scratch |
    |  | gù $=$ hòg-è | rest |
    |  | gơ $=$ gòl-à | grind |
    |  | gù $=$ bùn-è | mix |

    Noun classes 1 and 3 differ from the other vowel-initial noun classes. The forms of class 1 are $\mathbf{0}-, \mathbf{a -}, \mathbf{0}-, \mathbf{m o -}$ and $\varnothing$. All class 1 prefixes undergo ATR harmony. Example 157 below gives examples for each of the possible class 1 prefixes.
    

    128 The phonological systems of the Mbam languages

    | nc 1 prefix | example | gloss |
    | :--- | :--- | :--- |
    | $\varnothing$ | sié | father |
    |  | hǒm | wound |
    |  | gélém | back, behind |

    Class 3 prefixes are always round. The two prefix forms found are $\boldsymbol{\boldsymbol { \sigma }}(\mathbf{N})$ - and $\boldsymbol{\jmath}(\mathbf{N})$-. They will both undergo ATR harmony. Example 158 below shows examples for each of the variants of the class 3 prefix.

    | Example 158 nc 3 prefix | rmony of example | fixes in Elip gloss |
    | :---: | :---: | :---: |
    | $\bigcirc(\mathrm{N})$ - | ò\#hínì | sun |
    |  | òm $\ddagger$ bóg | hand |
    |  | ò $\ddagger$ dớnà | stake, prop (for plants) |
    |  | ò $\ddagger$ fín | debt |
    |  | ò $\neq$ hólí | moon |
    |  | ò $\neq$ hún | nose |
    |  | ò $\neq \mathrm{g}^{\text {wé }}$ | stream, brook |
    | $v(\mathrm{~N})-$ | òm $\neq$ bál | boundary |
    |  | ò $\neq$ hàn | thigh |
    |  | ù $\neq$ gèl | voice, throat |

    In addition to the infinitive prefix, Elip has other verbal pre-stem elements which also undergo ATR harmony. These include the reflexive, negation, subject concord, and tense markers, see Example 159 below

    Example 159: ATR harmony of Elip preverbal elements

    | reflexive | bí- | gò-bí $\ddagger$ bís-à | comb oneself |
    | :---: | :---: | :---: | :---: |
    |  |  | gò-bíf gómb-à | shave oneself |
    |  |  | gù-bí $\ddagger$ dúmb-è | wash oneself |
    | ${ }^{\text {negative }}$ (pres. \& fut.) | dì- | ò-dì-gàfhòl-à | cl-NEG-FT $2 \neq$ sweep-CONT |
    |  |  | ù-dì-éf $\ddagger$ dím-è | cl-NEG-Pr $\ddagger$ dig-CONT |
    | negative | sá- | dì-sà-sá\#hờl-à | 1p-P1-NEG $\ddagger$ sweep-CONT |
    | (past tenses) |  | dì-mè-séf $\ddagger$ dím-é | $1 p-P 4-N E G \neq$ dig-CONT |
    | recent past | sà- | ò-sà $f$ hòl-à | cl-Pl $\ddagger$ sweep-CONT |
    |  |  | ù-sèfhún-è | cl-P1 $\ddagger$ vanner-CONT |

    ### 2.6.3.1.2 Rounding harmony in pre-stem elements

    The three noun-class prefixes which have an underlying /a/ may also undergo rounding harmony in the context of a non-high (open) round vowel (/o/ or $/ \mathrm{o} /$ ) in the noun root, see Example 160 below.

    | Example 160: Rounding harmony of /a/ in Elip noun-class prefixes |  |  |  |
    | :---: | :---: | :---: | :---: |
    | class | noun-class prefix | examples | gloss |
    | 2 | ba- | bò $\ddagger$ gôgà | elders, notables |
    |  |  | bò $\neq 1$ óndì $^{\text {a }}$ | traditional healers |
    |  |  | bà $=$ gònâ | ancestor, lord |
    |  |  | bè $\neq$ nùgì | weaver |
    | 6a | $\mathrm{a}(\mathrm{N})$ - | ó $\ddagger$ g ${ }^{\text {and }}$ dà | plantains |
    |  |  | òfhògè | shadows |
    |  |  | à $f$ sùgà | pastures for animals |
    |  |  | è $f$ gùn ${ }^{\text {n }}$ dè | baskets for peanuts |
    | 6 | ma- | mò $=$ dóg | seasonings |
    |  |  | mò $\ddagger$ gòdì | thought |
    |  |  | mà $f$ gòl | cooked palm-nut pulp |
    |  |  | mè $f$ gúd | fat, oil |

    Verbal pre-stem elements with /a/ undergo rounding harmony as well as ATR harmony. In Example 161, the recent past, the past tense negative and the 2 s subject concord prefixes all undergo both ATR and rounding harmony:

    Example 161: Rounding harmony of Elip preverbal elements

    | negative (past) | sá | ù-mò-só $\ddagger$ dól-è | c1-P4-neg-tickle-CONT |
    | :---: | :---: | :---: | :---: |
    |  |  | ò-mó-sóf sòs-à | c1-PO-neg $\ddagger$ smoke-CONT |
    |  |  | ò-sò-só $=$ gól-òn | c1-P1-neg $\ddagger$ take-CONT |
    | recent past | sà- | ò-sò $\ddagger$ sòs-à | c1-P1 $\ddagger$ smoke-CONT |
    |  |  | ù-sò $=$ dól-è | cl-P1 $\ddagger$ tickle-CONT |
    | subject concord | à- | ò-gǒ\#hòg-è | $2 s$-FTl $\ddagger$ rest-CONT |
    |  |  | う-gŏ $\ddagger$ gómb-ìd | $2 s$-FTl $\ddagger$ shave-DIM |

    The high round vowels ( $/ v /$ and $/ \mathrm{u} /$ ) do not trigger rounding harmony, even when they are lowered in the context of a closed syllable, see Example 162 below.

    ## Example 162: Non-triggering of rounding harmony in Elip

    | recent past \& | sà- | ù-sè $\neq$ húg-è | $c 1-P 1 \neq$ cover |
    | :--- | :--- | :--- | :--- |
    | subject concord | à- | à-sà $\neq$ sòg-à | $2 s$-P1才wash |
    | $\&$ near future | bá | bá-gà-gòl | $c 2-$ FT $2 \neq$ grind |
    | negative (past) | sá- | ù-mè-sé $\neq$ hún-è | c1-P4-NEG $\neq$ thresh |

    ### 2.6.3.2 Vowel harmony in suffixes

    Most verb and deverbal noun suffixes undergo vowel harmony, but there are two that trigger ATR harmony. Discussed in turn below are suffixes that undergo ATR harmony, ATR dominant suffixes, and rounding harmony in suffixes.

    130 The phonological systems of the Mbam languages

    ### 2.6.3.2.1 ATR harmony in suffixes

    ATR harmony is triggered by a dominant [+ATR] vowel, usually in the root, and spreads bidirectionally. All [-ATR] vowels in the phonological word change into their [+ATR] counterpart. A few examples are shown in Example 163 below:

    Example 163: ATR harmony of Elip verbal suffixes

    | intensive | -Ig | gò-bífó́l-íg-ìn <br> gòfgás-íg-àn <br> gùfhùn-ìg-èn | listen intently <br> break up, detach, split <br> bury |
    | :--- | :--- | :--- | :--- |
    | separative | -on | gò $\neq$ sán-ón-à <br> gùfhùn-ùn-è | deny <br> unearth, dig up |
    | continuous | -an | gò $\neq$ hám-àn <br> gúfbùn-èn | flow, leak, run <br> open |
    | diminutive | -Id | gòfbón-ìd <br> gùfbúm-ìd | sharpen, file <br> chase |

    Some deverbal nouns are formed by adding the applicative suffix and a noun-class prefix to the verb root. These suffixes also undergo ATR harmony, see Example 164.

    Example 164: Elip deverbal nouns with applicative suffix

    | g-íg | plug, stop-up | gìfnùg-íg-ín | $n)$ |
    | :---: | :---: | :---: | :---: |
    | gò $\ddagger$ námb-à | prepare (food) | nì $\neq$ ná ${ }^{\text {b }}$ b-ín | kitchen |

    Other deverbal nouns are formed by adding an -a suffix onto the verb root. This suffix will also undergo ATR harmony, see Example 165.

    | Example 165: Elip deverbal nouns with -a suffix |  |  |  |
    | :---: | :---: | :---: | :---: |
    | gòfsśd | live | nò̇fśd-à | life |
    | gò $\ddagger$ sín | despise | ì $=$ sín-à | contempt |
    | gò $\ddagger$ dón-ìn | call | ò $\neq$ dón-ín-à | invitation, summons |
    | $\mathrm{g}^{\text {w }} \neq$ èj-ìd | choose, pick | gj̇キèj-ìd-è | choice, vote |
    | gò $\ddagger$ bìn | hate | m $=$ bìn-à | hatred |
    | gù $\ddagger$ bín-ín | enter | ò $=$ bín-ín-é | entrance |

    ### 2.6.3.2.2 ATR-dominant suffixes.

    Two suffixes, the [+ATR] causative -je, and the [+ATR] agentive -i are dominant and trigger ATR harmony. While ATR harmony is generally bidirectional, these dominant suffixes are at the right edge of the word and, as a result, ATR harmony can only spread to the left as seen in Example 166.

    | Example 166: ATR-dominant suffixes in Elip |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | causative | $-\mathrm{je}$ | gù $\ddagger$ dòg | be tired | gù fò̀ -jè | make s.o. tired |
    |  |  | gò $\ddagger$ s ${ }^{\text {ód }}$ | live | gùfosód-jè | save, cause to live |
    |  |  | gò $\ddagger$ ból-íg | climb | gù $=$ búl-íg-jè | raise |
    |  |  | gù $\ddagger$ bàs | sprout | gù $=$ bès-jè | cause to sprout |
    |  |  | gòf $\mathrm{kìl}$ | approach | gù $\neq$ kìl-jè | cause to approach |
    | agentive | -i | gò $\ddagger$ nờg-à | weave | è $\neq$ nùg-ì | weaver |
    |  |  | $\mathrm{g}^{\mathrm{w}} \neq \mathrm{a}^{\mathrm{n}} \mathrm{d}$ | walk | e $\mathrm{f} \neq \mathrm{e}^{\mathrm{n}} \mathrm{d}-\mathrm{i}$ | walker |
    |  |  | gò $\ddagger 1{ }^{\text {n }}$ S | know | è $\neq 1 \mathrm{l}{ }^{\text {n }}$ S-ì | connoisseur |
    |  |  | gòキlóg-à | fish | ò $\neq 10$ g-í | fisherman |

    ### 2.6.3.2.3 Rounding harmony in suffixes

    Most verb extensions and inflectional suffixes with an /a/ undergo rounding harmony as well as ATR harmony. Like ATR harmony, rounding harmony is bidirectional. A few examples of suffixes undergoing rounding are shown in Example 167 below:

    Example 167: Rounding harmony of Elip verbal suffixes

    | continuous | -an | gò $\ddagger$ bón-òn | sharpen |
    | :---: | :---: | :---: | :---: |
    |  |  | $\mathrm{g}^{\mathrm{w}} \neq \mathrm{o}^{\mathrm{n}} \mathrm{d}$-òn | return |
    | passive ${ }^{129}$ | -ab | gù | crawl |
    |  |  | gù $f$ gòg-òb-ìd-iè | make to crawl |
    | extensive | -al | gò $\ddagger$ dóg-ól-ìd | dig shallow |
    |  |  | gù-bíf=sóg-ól-ìd--è | pray |

    ### 2.6.3.2.4 Failure of rounding harmony

    Not all suffixes with /a/ undergo rounding harmony. In Nuyambassa and Nulamba dialects of Elip, both the -a suffix on deverbal nouns and the verb-final vowel -a do not undergo rounding harmony, but in the Nukanya dialect, both do. In Example 168 below, the presence of the non-high (open) round vowel in the root does not cause the nominal suffix to undergo rounding:

    Example 168: Elip deverbal nouns with -a suffix

    | noun sfx | Nuyambassa | Nukanya | gloss |
    | :---: | :---: | :---: | :---: |
    | -a | $\mathrm{g} \ddagger=\mathrm{j} \mathrm{j}$-à |  | love (from verb g wìjìd/kwj̀jit say) |
    |  | y ¢ joj-ìd-à | $\mathrm{k}^{\mathrm{j}}=\mathfrak{\mathrm { j }} \mathrm{j}-\mathrm{it}$-̀ | announcement (verb gẁ̀jid/kwj̀j̀t say) |
    |  | g $\ddagger \neq$ ǒb-iè | $\mathrm{k}^{\mathrm{j}} \neq \mathrm{ǒ} \mathrm{b}-\mathrm{j}$ ò | swelling (from verb gwǒbè/kwǒbò swell) |

    The final vowel is obligatory on certain verbs．Other verbs may occur without any final vowel．With the latter verbs，－a carries a continuous－aspect sense and is optional（see in section 2．3．2；Example 72）．In Nuyambassa and Nulamba dialects of Elip，the verb－final vowel（or the continuous－aspect suffix－a）undergoes only ATR harmony．In the Nukanya dialect，however，－a undergoes both ATR and／or rounding harmony．Table 28 below illustrates the surface realisations of－a due to vowel harmony constraints between the three dialects of Elip．

    Table 28：ATR and rounding harmony in the Elip dialects

    | $\stackrel{\text { 会 }}{\gtrless}$ |  | rt V | Nuyambassa | Nulamba | Nukanya | gloss |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | ／o／ | gò $\neq$ góg－à | kò $\ddagger$ góg－à | kò $\ddagger$ kók－う̀ | pull |
    |  |  |  | gò̇fós－à | kùキsós－à | kù $\ddagger$ sós－ò | smoke |
    |  |  |  | gò $\ddagger$ gòn－à | kùf g ว̀り－à | kù $\ddagger$ kว̀n－ò | scratch |
    |  |  | ／0／ | gù $\ddagger$ sòg－à | kùf＝sòg－à | kù $\ddagger$ sùk－à | wash |
    |  |  |  | gò $\ddagger$ nòd－à | kò $\ddagger$ nòt－à | kò $\ddagger$ nòt－à | vomit |
    |  |  |  | gò $\neq$ hóh－à | kùfhóh－à | kòfhóh－à | flow |
    | $\stackrel{\sim}{\underset{E}{4}}$ |  | ／o／ | gùfhòg－è | kùfhòg－è | kùfhòg－ò | rest |
    |  |  |  | gw $\ddagger$ ób－è | $\mathrm{k}^{\mathrm{w}} \neq$ ób－è | $\mathrm{k}^{\mathrm{w}} \neq$ ób－ò | swell |
    |  |  |  | $\mathrm{g}^{\text {w }} \neq \mathrm{o} j$－è | $\mathrm{k}^{\mathrm{w}} \neq \mathrm{o} j$－è | $\mathrm{k}^{\mathrm{w}} \neq \mathrm{o} j$－ò | raise child |
    |  |  | ／u／ | gù $\neq \mathrm{k}^{\text {hùm－è }}$ | kùfkùm－è | kùfkùm－è | slap back |
    |  |  |  | gùfhún－è | kùfhún－è | kùfhún－è | blow |
    |  |  |  | gù $=$ búm－è | kùfbúm－è | kùfbúm－è | hunt |

    ## 2．6．4 Hiatus－resolution processes

    There are several hiatus－resolution processes found in Elip．These are glide formation（section 2．6．4．1），hiatus retention（section 2．6．4．2），semivowel insertion （section 2．6．4．3）and vowel elision（section 2．6．4．4）．

    ## 2．6．4．1 Glide formation

    Non－identical vowels in juxtaposition are not permitted．Where $V_{1} V_{2}$ sequences occur，either within the morpheme or across morpheme boundaries，a high vowel in $\mathrm{V}_{1}$ position becomes a glide．Glide formation occurs principally between a high vowel in the noun－class prefix and a vowel－initial noun root，as seen in Example 169 below：

    | Example 169: Prefix-root glide formation in Elip |  |  |
    | :---: | :---: | :---: |
    | surface form | underlying form | gloss |
    | $b^{\text {wǎn }}$ | bờキán | tribe |
    | gwisis | go $\#$ ísì | earth, ground |
    | $\mathrm{n}^{\text {w }}$ nd d | nò $\neq$ j$^{\mathrm{n}}$ dì | frog sp. |
    | nwòlì | nòfồì | string |
    | gijjá | gì $=$ j̀já | feather, hair |
    | gwěbèn | guキéb-èn | steal |
    | gwǒl | gò $=0$ l | come |

    Glide formation also occurs between a CV verb root and a -VC verbal extension, Example 170.
    

    Glide formation also occurs in nouns derived from verbs. In Example 171 below, the noun is derived from the verb with the [+ATR] causative extension $\mathbf{- i}$, and a nominalising suffix -e. The high vowel becomes a glide when followed by a vowel.

    | Example 171: | Elip glide-formation in derived nouns |  |  |  |
    | :--- | :--- | :--- | :--- | :--- |
    | verb | gloss | U.F. of noun | S.F. of noun | gloss of noun |
    | gù $\neq$ dúmb-è | wash | gì $\neq$ dúmb-i-e | gìdúmbié | bath |
    | gò $\neq$ dòg | finish | gì $\neq$ dòg-i-e | gìdògjè | fatigue, tiredness |
    | gò $\neq$ jòg-à | cultivate | mò $\neq$ jòg-i-e | mòjògiè | agriculture |
    | gwób-è | swell $(v)$ | g $\neq$ ób-i-e | gióbié | swelling $(a)$ |

    ### 2.6.4.2 Hiatus retention

    Identical vowels in juxtaposition are permitted. This is particularly evident between the noun-class prefix and the noun root. Where the vowels are either underlyingly identical or have identical surface realisations due to a vowel-harmony process, both vowels are retained. See Example 172.

    134 The phonological systems of the Mbam languages

    | Example 172：Elip prefix－root hiatus retention |  |  |
    | :---: | :---: | :---: |
    | surface form | underlying form | gloss |
    | nìis | nìキís | eye |
    | gî́là | gìfíl－à | arrow |
    | mèé ${ }^{\text {mb }}$ | màfémb | side（of body） |
    | máàdà | máキàd－à | poison for arrows |
    | mơớnàjó | mòキón－àjú | child |
    | mòóní | màfóní | palaver |
    | bùò ${ }^{\text {cí }}$ | bò $=$ ò ${ }^{\text {bí }}$ | severity |
    | nùúb | nờúb | white hair |

    ## 2．6．4．3 Semivowel insertion

    In preverbal $\mathrm{V}_{1} \mathrm{~V}_{2}$ sequences a semivowel is inserted to break up the vowel sequence． In the examples below，the subject marker $\mathbf{I}$－first person singular and $\boldsymbol{\sigma}$－third person singular，class 1 and the distant－past tense marker a－occur in juxtaposition． A semivowel is inserted between them to break up the illegal sequence，as in Example 173.

    | Example 173：Semivowel insertion in inflected verbs in Elip |  |  |  |
    | :---: | :---: | :---: | :---: |
    | verb | gloss | 1s－P4\＃verb stem | c1－P4 $\ddagger$ verb stem |
    | gòł $\ddagger$ òd－à | vomit | ìj－á $\ddagger$ nód－á | òw－á $\ddagger$ nód－á |
    | gòf dól－à | twist | ij－ó $\neq$ dól－á | òw－ó $\ddagger$ dól－á |
    | gù $=$ bùh－è | tear | ìj－éf $\ddagger$ búh－é | ùw－é $=$ búh－é |
    | gù $=$ hòn－è | fill－up | ìj－óキ $\neq$ ón－é | ùw－óf hón－é |

    ## 2．6．4．4 Vowel elision

    In non－utterance－initial position，illegal $\mathrm{V}_{1} \mathrm{~V}_{2}$ sequences which occur across morpheme boundaries and in which $\mathrm{V}_{1}$ is not a high vowel（underlined in Example 174 below）， $\mathrm{V}_{1}$ is elided．Such vowel elision occurs between verb roots and extensions and between CV－prefixes and VC noun roots．

    ## Example 174：Vowel elision in Elip

    $\left.\begin{array}{lll}\begin{array}{ll}\text { gò } \neq \text { gà } \\ \text { gò } \neq \text { gà－ìn }\end{array} & \text {［gògà］} & \begin{array}{l}\text { butcher } \\ \text {［gòghn }]\end{array} \\ \text { butcher－APPL }\end{array}\right]$

    ## 2．6．5 Tone

    Elip has a two－tone system underlyingly，high and low．Rising tones and falling tones occur only due to glide formation from syllable mergers．There is a slight lengthening of the vowel due to glide formation in Elip．

    In addition，tone melodies undergo a loss of contrast in utterance－final position in connection with vowel devoicing or elision．Noun－melody adaptations and the
    associated $\mathrm{V}_{2}$ devoicing/elision is discussed in section 2.6.2.2 above. Surface tone is marked on the data in this study.

    ### 2.6.5.1 Tone melodies on nouns

    High and low tone contrast in monomorphemic noun roots. Four tone melodies are attested in CVCV noun roots, see Example 175 below. Noun-class prefixes usually have a low tone, although there are a few exceptions.

    ## Example 175: Elip nominal tone melodies

    | ì $\neq 1$ àmbà | $\neq$ L.L | polygamy |
    | :--- | :--- | :--- |
    | gì $\neq$ bàdá | $\neq$ L.H | bag |
    | gì $\neq$ dámà | $\neq$ H.L | okra |
    | nò $\neq$ bálá | $\neq$ H.H | arrival |

    ### 2.6.5.2 Tone melodies on verbs

    Elip verb roots have three underlying tone melodies: $\mathrm{L}, \mathrm{HL}$ and H . In verb stems with a H melody, the H spreads one syllable to the right, except onto the final vowel or continuous suffix -a. It is assumed that verbal suffixes are underlyingly toneless. The three verbal tone melodies are illustrated in Example 176 below, showing both the H spread on verbal suffixes as well as the failure of H spread onto the final vowel.

    ## Example 176: Elip verbal tone melodies

    | L | gò $\neq$ dàn-à <br> gò $\neq$ dàn-ìd | $\mathrm{L} \neq \mathrm{L}-\mathrm{L}$ <br> $\mathrm{L} \neq \mathrm{L}-\mathrm{L}$ | pound <br> pound ( a little) |
    | :--- | :--- | :--- | :--- |
    | HL | gò $\neq$ bám-à <br> gò $\neq \mathrm{bám}-\mathrm{i} d$ | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ <br> $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | talk loudly <br> talk loudly (a little) |
    | H | gò $\neq$ góg-à <br> gò $\neq$ góg-îd | $\mathrm{L} \neq \mathrm{H}-\mathrm{L}$ | $\mathrm{L} \neq \mathrm{H}-\mathrm{HL}$ |

    In addition to providing lexical contrast, tone also has a grammatical function. Among other things, tone provides the crucial difference between various tenses in verb conjugations. This is, however, beyond the scope of this study.

    ### 2.7 Mmala phonological overview

    This study is based on Nuenyi, the reference dialect. Three databases are the primary sources of data behind this study ${ }^{130}$.

    136 The phonological systems of the Mbam languages

    ### 2.7.1 Consonants

    This section discusses the consonant inventory of Mmala (section 2.7.1.1), and the various adaptations to it due to allophonic and allomorphic realisations (section 2.7.1.2), distributional restrictions (section 2.7.1.3) and final-consonant devoicing (section 2.7.1.4).

    ### 2.7.1.1 Consonant inventory

    The consonant system of Mmala consists of 22 contrastive consonants.

    ## Table 29: Mmala contrastive consonants ${ }^{131}$

    | stops |  | labial | alveolar | palatal <br> t $\int$ | velar <br> k |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | voiceless | p | t |  |  |
    |  | voiced | b | d |  | g |
    |  | prenasalised | mb | ${ }^{\text {nd }}$ |  | ${ }^{\text {g }}$ |
    | fricatives | voiceless | f | s |  | h |
    |  | prenasalised | ${ }^{m} \mathrm{f}$ | ${ }^{\text {n }}$ S |  |  |
    | resonants | nasal | m | n | n | $\eta$ |
    |  | oral |  | 1 | j | w |

    ### 2.7.1.2 Allophonic and allomorphic realisations

    Voiceless stops in the Nuenyi dialect are always aspirated, except for /t $f /$ which already has a delayed release. Voiced stops in utterance-final position become devoiced but are not released. Contrast is therefore maintained in word-final position between the voiced and voiceless consonants.

    =\mathrm{ understand-SEPAR-FV
    tù-tì-\etaź-\partial̀sù=lík-ím-\partialे
    we are not afraid. }\mp@subsup{}{}{234
    1p-NEG-T/A-1p}=\mathrm{ be.afraid-POS -FV
    bó-y\hat{ô=b}\mp@code{b}k-\grave{k}k-\grave{}
    they created.
    c2-P1\not=create-INTENS-FV
    bá-tì-\etaô\not=bók-ók-ò they did not created.
    c2-NEG-P1\not=create-INTENS-FV
    bó-ŋǒ\not=bòk-ò they scream.
    c2-PR-scream-FV
    b\grave{-lì-yǒ=bòk-ò they did not scream.}
    c2-NEG-PR-scream-FV
    ⿺̀-yŏ\notŋ=kón-oे 235 I I am sick.
    1s-PR\not=be.sick- FV
    ì-\etaă-ḿf=kón-̀̀ I am sick.
    1s-PR-1s}\not=be.sick-FV

    ```

 In Yambeta, like Maande, all high vowels are opaque and block rounding harmony. In Example 326 below, the segments with an ATR and/or rounding-dominant vowel are bolded; the opaque vowels are underlined.

 Example 326: Yambeta rounding-opaque vowels in vowel harmony \(\mathrm{m}^{\mathrm{w}}\) ǒ \(\neq\) sóp-ò
 с.mи. \(\mathrm{P} 1 \neq\) be.sweet
 they (foods) were sweet
 \begin{tabular}{|c|c|c|c|}
 \hline mó \({ }^{\text {g gòlò? }}\) & móònì & má-ili-śk̀̀ & う̀-kù \(=\) sóp \\
 \hline c6.mangos & DEM & c6-NEG-be & CONT-INF \(=\) be.sweet \\
 \hline \multicolumn{4}{|l|}{these mangos are not sweet} \\
 \hline
 \end{tabular}

 \footnotetext{
 \({ }^{234}\) Examples from Taylor 1990: 11
 \({ }^{235}\) Taylor 1990: 12, my phonological interpretation.
 }

 262 The phonological systems of the Mbam languages
    ```

    ̀̀\not=\mp@code{́ýy-ìn...}
    c1(3s)-want-APPL
    s/he wants to...
    à-tì=jı́y-ìn...
    1s-NEG-want-APPL
    s/he doesn't want to...
    ̀̀\not=s\̀k-ìn ùdì
    c1(3s)\not=wash-APPL 3.face
    he washes his face
    à-tì=sj̀k-ìn ùdì
    c1(3s)-NEG\not=wash-APPL 3.face
    he didn't wash his face
    pá-má=mù bók moonć
    3p-P1=3sIO grab money
    they took money from him

    ```

 In Gunu, providing there are no inserted grammatical words, the subject concord/tense proclitic will attach to the verb stem as its host and undergo full ATR harmony. However, only the tense marker will undergo rounding harmony. Where both ATR and rounding harmony apply, triggered by a [+ATR, +round]-dominant vowel in the verb stem, rounding harmony is not only blocked from spreading onto the subject concord, but ATR harmony is also blocked, so that the subject-concord surface representation is [-ATR, -round]. In Example 327, the shaded cells indicate the spread of ATR and rounding harmony.

 \section*{Example 327: Gunu pre-stem ATR and rounding harmony}
    ```

    à- gàá= sờg-á gìà
    c1- FT1= wash-FV cloth
    S/he will wash the clothes.

    ```
    ```

    à- báà= tfög-ìn-à gilà

